]> gcc.gnu.org Git - gcc.git/blob - gcc/config/m88k/m88k.h
* (RETURN_IN_MEMORY): Handle BLKmode values.
[gcc.git] / gcc / config / m88k / m88k.h
1 /* Definitions of target machine for GNU compiler.
2 Motorola m88100 in an 88open OCS/BCS environment.
3 Copyright (C) 1988, 1989, 1990, 1991 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@mcc.com)
5 Enhanced by Michael Meissner (meissner@osf.org)
6 Version 2 port by Tom Wood (Tom_Wood@NeXT.com)
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 /* The m88100 port of GNU CC adheres to the various standards from 88open.
25 These documents are available by writing:
26
27 88open Consortium Ltd.
28 100 Homeland Court, Suite 800
29 San Jose, CA 95112
30 (408) 436-6600
31
32 In brief, the current standards are:
33
34 Binary Compatibility Standard, Release 1.1A, May 1991
35 This provides for portability of application-level software at the
36 executable level for AT&T System V Release 3.2.
37
38 Object Compatibility Standard, Release 1.1A, May 1991
39 This provides for portability of application-level software at the
40 object file and library level for C, Fortran, and Cobol, and again,
41 largely for SVR3.
42
43 Under development are standards for AT&T System V Release 4, based on the
44 [generic] System V Application Binary Interface from AT&T. These include:
45
46 System V Application Binary Interface, Motorola 88000 Processor Supplement
47 Another document from AT&T for SVR4 specific to the m88100.
48 Available from Prentice Hall.
49
50 System V Application Binary Interface, Motorola 88000 Processor Supplement,
51 Release 1.1, Draft H, May 6, 1991
52 A proposed update to the AT&T document from 88open.
53
54 System V ABI Implementation Guide for the M88000 Processor,
55 Release 1.0, January 1991
56 A companion ABI document from 88open. */
57
58 /* Other m88k*.h files include this one and override certain items.
59 At present, these are m88kv3.h, m88kv4.h, m88kdgux.h, and m88kluna.h.
60 Additionally, m88kv4.h and m88kdgux.h include svr4.h first. All other
61 m88k targets except m88kluna.h are based on svr3.h. */
62
63 /* Choose SVR3 as the default. */
64 #if !defined(DBX_DEBUGGING_INFO) && !defined(DWARF_DEBUGGING_INFO)
65 #include "svr3.h"
66 #endif
67 \f
68 /* External types used. */
69
70 /* What instructions are needed to manufacture an integer constant. */
71 enum m88k_instruction {
72 m88k_zero,
73 m88k_or,
74 m88k_subu,
75 m88k_or_lo16,
76 m88k_or_lo8,
77 m88k_set,
78 m88k_oru_hi16,
79 m88k_oru_or
80 };
81
82 /* External variables/functions defined in m88k.c. */
83
84 extern char *m88k_pound_sign;
85 extern char *m88k_short_data;
86 extern char *m88k_version;
87 extern char m88k_volatile_code;
88
89 extern int m88k_gp_threshold;
90 extern int m88k_prologue_done;
91 extern int m88k_function_number;
92 extern int m88k_fp_offset;
93 extern int m88k_stack_size;
94 extern int m88k_case_index;
95 extern int m88k_version_0300;
96
97 extern struct rtx_def *m88k_compare_reg;
98 extern struct rtx_def *m88k_compare_op0;
99 extern struct rtx_def *m88k_compare_op1;
100
101 extern enum attr_cpu m88k_cpu;
102
103 extern int null_prologue ();
104 extern int integer_ok_for_set ();
105 extern int m88k_debugger_offset ();
106
107 extern void emit_bcnd ();
108 extern void expand_block_move ();
109 extern void m88k_layout_frame ();
110 extern void m88k_expand_prologue ();
111 extern void m88k_begin_prologue ();
112 extern void m88k_end_prologue ();
113 extern void m88k_expand_epilogue ();
114 extern void m88k_begin_epilogue ();
115 extern void m88k_end_epilogue ();
116 extern void output_function_profiler ();
117 extern void output_function_block_profiler ();
118 extern void output_block_profiler ();
119 extern void output_file_start ();
120 extern void output_ascii ();
121 extern void output_label ();
122 extern void print_operand ();
123 extern void print_operand_address ();
124
125 extern char *output_load_const_int ();
126 extern char *output_load_const_float ();
127 extern char *output_load_const_double ();
128 extern char *output_load_const_dimode ();
129 extern char *output_and ();
130 extern char *output_ior ();
131 extern char *output_xor ();
132 extern char *output_call ();
133
134 extern struct rtx_def *emit_test ();
135 extern struct rtx_def *legitimize_address ();
136 extern struct rtx_def *legitimize_operand ();
137 extern struct rtx_def *m88k_function_arg ();
138 extern struct rtx_def *m88k_builtin_saveregs ();
139
140 extern enum m88k_instruction classify_integer ();
141
142 /* external variables defined elsewhere in the compiler */
143
144 extern int target_flags; /* -m compiler switches */
145 extern int frame_pointer_needed; /* current function has a FP */
146 extern int current_function_pretend_args_size; /* args size without ... */
147 extern int flag_delayed_branch; /* -fdelayed-branch */
148 extern int flag_pic; /* -fpic */
149 extern char * reg_names[];
150
151 /* Specify the default monitors. The meaning of these values can
152 be obtained by doing "grep MONITOR_GCC *m88k*". Generally, the
153 values downward from 0x8000 are tests that will soon go away.
154 values upward from 0x1 are generally useful tests that will remain. */
155
156 #ifndef MONITOR_GCC
157 #define MONITOR_GCC 0
158 #endif
159 \f
160 /*** Controlling the Compilation Driver, `gcc' ***/
161
162 /* Some machines may desire to change what optimizations are performed for
163 various optimization levels. This macro, if defined, is executed once
164 just after the optimization level is determined and before the remainder
165 of the command options have been parsed. Values set in this macro are
166 used as the default values for the other command line options.
167
168 LEVEL is the optimization level specified; 2 if -O2 is specified,
169 1 if -O is specified, and 0 if neither is specified. */
170
171 /* This macro used to store 0 in flag_signed_bitfields.
172 Not only is that misuse of this macro; the whole idea is wrong.
173
174 The GNU C dialect makes bitfields signed by default,
175 regardless of machine type. Making any machine inconsistent in this
176 regard is bad for portability.
177
178 I chose to make bitfields signed by default because this is consistent
179 with the way ordinary variables are handled: `int' equals `signed int'.
180 If there is a good reason to prefer making bitfields unsigned by default,
181 it cannot have anything to do with the choice of machine.
182 If the reason is good enough, we should change the convention for all machines.
183
184 -- rms, 20 July 1991. */
185
186 #define OPTIMIZATION_OPTIONS(LEVEL) \
187 do { \
188 if (LEVEL) \
189 { \
190 flag_omit_frame_pointer = 1; \
191 } \
192 } while (0)
193
194 /* If -m88100 is in effect, add -D__m88100__; similarly for -m88110.
195 Here, the CPU_DEFAULT is assumed to be -m88100. */
196 #undef CPP_SPEC
197 #define CPP_SPEC "%{!m88000:%{!m88100:%{m88110:-D__m88110__}}} \
198 %{!m88000:%{!m88110:-D__m88100__}}"
199
200 /* LIB_SPEC, LINK_SPEC, and STARTFILE_SPEC defined in svr3.h.
201 ASM_SPEC, ASM_FINAL_SPEC, LIB_SPEC, LINK_SPEC, and STARTFILE_SPEC redefined
202 in svr4.h.
203 CPP_SPEC, ASM_SPEC, ASM_FINAL_SPEC, LIB_SPEC, LINK_SPEC, and
204 STARTFILE_SPEC redefined in m88kdgux.h. */
205 \f
206 /*** Run-time Target Specification ***/
207
208 /* Names to predefine in the preprocessor for this target machine.
209 Redefined in m88kv3.h, m88kv4.h, m88kdgux.h, and m88kluna.h. */
210 #define CPP_PREDEFINES "-Dm88000 -Dm88k -Dunix -D__CLASSIFY_TYPE__=2"
211
212 #define TARGET_VERSION fprintf (stderr, " (%s%s)", \
213 VERSION_INFO1, VERSION_INFO2)
214
215 /* Print subsidiary information on the compiler version in use.
216 Redefined in m88kv4.h, and m88kluna.h. */
217 #define VERSION_INFO1 "88open OCS/BCS, "
218 #define VERSION_INFO2 "12/16/92"
219 #define VERSION_STRING version_string
220 #define TM_SCCS_ID "@(#)m88k.h 2.3.3.2 12/16/92 08:26:09"
221
222 /* Run-time compilation parameters selecting different hardware subsets. */
223
224 /* Macro to define tables used to set the flags.
225 This is a list in braces of pairs in braces,
226 each pair being { "NAME", VALUE }
227 where VALUE is the bits to set or minus the bits to clear.
228 An empty string NAME is used to identify the default VALUE. */
229
230 #define MASK_88100 0x00000001 /* Target m88100 */
231 #define MASK_88110 0x00000002 /* Target m88110 */
232 #define MASK_OCS_DEBUG_INFO 0x00000004 /* Emit .tdesc info */
233 #define MASK_OCS_FRAME_POSITION 0x00000008 /* Debug frame = CFA, not r30 */
234 #define MASK_SVR4 0x00000010 /* Target is AT&T System V.4 */
235 #define MASK_NO_UNDERSCORES 0x00000040 /* Don't emit a leading `_' */
236 #define MASK_BIG_PIC 0x00000080 /* PIC with large got-rel's -fPIC */
237 #define MASK_TRAP_LARGE_SHIFT 0x00000100 /* Trap if shift not <= 31 */
238 #define MASK_HANDLE_LARGE_SHIFT 0x00000200 /* Handle shift count >= 32 */
239 #define MASK_CHECK_ZERO_DIV 0x00000400 /* Check for int div. by 0 */
240 #define MASK_USE_DIV 0x00000800 /* No signed div. checks */
241 #define MASK_IDENTIFY_REVISION 0x00001000 /* Emit ident, with GCC rev */
242 #define MASK_WARN_PASS_STRUCT 0x00002000 /* Warn about passed structs */
243 #define MASK_OPTIMIZE_ARG_AREA 0x00004000 /* Save stack space */
244 #define MASK_SERIALIZE_VOLATILE 0x00008000 /* Serialize volatile refs */
245 #define MASK_NO_SERIALIZE_VOLATILE 0x00010000 /* Don't serialize */
246
247 #define MASK_88000 (MASK_88100 | MASK_88110)
248 #define MASK_EITHER_LARGE_SHIFT (MASK_TRAP_LARGE_SHIFT | \
249 MASK_HANDLE_LARGE_SHIFT)
250 #define MASK_SERIALIZE (MASK_SERIALIZE_VOLATILE | MASK_NO_SERIALIZE_VOLATILE)
251
252 #define TARGET_88100 ((target_flags & MASK_88000) == MASK_88100)
253 #define TARGET_88110 ((target_flags & MASK_88000) == MASK_88110)
254 #define TARGET_88000 ((target_flags & MASK_88000) == MASK_88000)
255
256 #define TARGET_OCS_DEBUG_INFO (target_flags & MASK_OCS_DEBUG_INFO)
257 #define TARGET_OCS_FRAME_POSITION (target_flags & MASK_OCS_FRAME_POSITION)
258 #define TARGET_SVR4 (target_flags & MASK_SVR4)
259 #define TARGET_NO_UNDERSCORES (target_flags & MASK_NO_UNDERSCORES)
260 #define TARGET_BIG_PIC (target_flags & MASK_BIG_PIC)
261 #define TARGET_TRAP_LARGE_SHIFT (target_flags & MASK_TRAP_LARGE_SHIFT)
262 #define TARGET_HANDLE_LARGE_SHIFT (target_flags & MASK_HANDLE_LARGE_SHIFT)
263 #define TARGET_CHECK_ZERO_DIV (target_flags & MASK_CHECK_ZERO_DIV)
264 #define TARGET_USE_DIV (target_flags & MASK_USE_DIV)
265 #define TARGET_IDENTIFY_REVISION (target_flags & MASK_IDENTIFY_REVISION)
266 #define TARGET_WARN_PASS_STRUCT (target_flags & MASK_WARN_PASS_STRUCT)
267 #define TARGET_OPTIMIZE_ARG_AREA (target_flags & MASK_OPTIMIZE_ARG_AREA)
268 #define TARGET_SERIALIZE_VOLATILE (target_flags & MASK_SERIALIZE_VOLATILE)
269
270 #define TARGET_EITHER_LARGE_SHIFT (target_flags & MASK_EITHER_LARGE_SHIFT)
271
272 /* Redefined in m88kv3.h,m88kv4.h, and m88kdgux.h. */
273 #define TARGET_DEFAULT (MASK_CHECK_ZERO_DIV)
274 #define CPU_DEFAULT MASK_88100
275
276 #define TARGET_SWITCHES \
277 { \
278 { "88110", MASK_88110 }, \
279 { "88100", MASK_88100 }, \
280 { "88000", MASK_88000 }, \
281 { "ocs-debug-info", MASK_OCS_DEBUG_INFO }, \
282 { "no-ocs-debug-info", -MASK_OCS_DEBUG_INFO }, \
283 { "ocs-frame-position", MASK_OCS_FRAME_POSITION }, \
284 { "no-ocs-frame-position", -MASK_OCS_FRAME_POSITION }, \
285 { "svr4", MASK_SVR4 }, \
286 { "svr3", -MASK_SVR4 }, \
287 { "no-underscores", MASK_NO_UNDERSCORES }, \
288 { "big-pic", MASK_BIG_PIC }, \
289 { "trap-large-shift", MASK_TRAP_LARGE_SHIFT }, \
290 { "handle-large-shift", MASK_HANDLE_LARGE_SHIFT }, \
291 { "check-zero-division", MASK_CHECK_ZERO_DIV }, \
292 { "no-check-zero-division", -MASK_CHECK_ZERO_DIV }, \
293 { "use-div-instruction", MASK_USE_DIV }, \
294 { "identify-revision", MASK_IDENTIFY_REVISION }, \
295 { "warn-passed-structs", MASK_WARN_PASS_STRUCT }, \
296 { "optimize-arg-area", MASK_OPTIMIZE_ARG_AREA }, \
297 { "no-optimize-arg-area", -MASK_OPTIMIZE_ARG_AREA }, \
298 { "serialize-volatile", MASK_SERIALIZE_VOLATILE }, \
299 { "no-serialize-volatile", MASK_NO_SERIALIZE_VOLATILE }, \
300 SUBTARGET_SWITCHES \
301 /* Default switches */ \
302 { "", TARGET_DEFAULT }, \
303 }
304
305 /* Redefined in m88kdgux.h. */
306 #define SUBTARGET_SWITCHES
307
308 /* Macro to define table for command options with values. */
309
310 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data }, \
311 { "version-", &m88k_version } }
312
313 /* Do any checking or such that is needed after processing the -m switches. */
314
315 #define OVERRIDE_OPTIONS \
316 do { \
317 register int i; \
318 \
319 if ((target_flags & MASK_88000) == 0) \
320 target_flags |= CPU_DEFAULT; \
321 \
322 m88k_cpu = (TARGET_88000 ? CPU_M88000 \
323 : (TARGET_88100 ? CPU_M88100 : CPU_M88110)); \
324 \
325 if (! TARGET_88100 && (target_flags & MASK_SERIALIZE) == 0) \
326 target_flags |= MASK_SERIALIZE_VOLATILE; \
327 \
328 if ((target_flags & MASK_NO_SERIALIZE_VOLATILE) != 0) \
329 target_flags &= ~MASK_SERIALIZE_VOLATILE; \
330 \
331 if (TARGET_BIG_PIC) \
332 flag_pic = 2; \
333 \
334 if ((target_flags & MASK_EITHER_LARGE_SHIFT) == MASK_EITHER_LARGE_SHIFT) \
335 error ("-mtrap-large-shift and -mhandle-large-shift are incompatible");\
336 \
337 m88k_version_0300 = (m88k_version != 0 \
338 && strcmp (m88k_version, "03.00") >= 0); \
339 \
340 if (VERSION_0300_SYNTAX) \
341 { \
342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
343 reg_names[i]--; \
344 m88k_pound_sign = "#"; \
345 if (m88k_version == 0) \
346 m88k_version = VERSION_0400_SYNTAX ? "04.00" : "03.00"; \
347 else if (strcmp (m88k_version, "03.00") < 0) \
348 error ("Specified assembler version (%s) is less that 03.00", \
349 m88k_version); \
350 } \
351 \
352 m88k_version_0300 = (m88k_version != 0 \
353 && strcmp (m88k_version, "03.00") >= 0); \
354 \
355 if (m88k_short_data) \
356 { \
357 char *p = m88k_short_data; \
358 while (*p) \
359 if (*p >= '0' && *p <= '9') \
360 p++; \
361 else \
362 { \
363 error ("Invalid option `-mshort-data-%s'", m88k_short_data); \
364 break; \
365 } \
366 m88k_gp_threshold = atoi (m88k_short_data); \
367 if (flag_pic) \
368 error ("-mshort-data-%s and PIC are incompatible", m88k_short_data); \
369 } \
370 } while (0)
371 \f
372 /*** Storage Layout ***/
373
374 /* Sizes in bits of the various types. */
375 #define CHAR_TYPE_SIZE 8
376 #define SHORT_TYPE_SIZE 16
377 #define INT_TYPE_SIZE 32
378 #define LONG_TYPE_SIZE 32
379 #define LONG_LONG_TYPE_SIZE 64
380 #define FLOAT_TYPE_SIZE 32
381 #define DOUBLE_TYPE_SIZE 64
382 #define LONG_DOUBLE_TYPE_SIZE 64
383
384 /* Define this if most significant bit is lowest numbered
385 in instructions that operate on numbered bit-fields.
386 Somewhat arbitrary. It matches the bit field patterns. */
387 #define BITS_BIG_ENDIAN 1
388
389 /* Define this if most significant byte of a word is the lowest numbered.
390 That is true on the m88000. */
391 #define BYTES_BIG_ENDIAN 1
392
393 /* Define this if most significant word of a multiword number is the lowest
394 numbered.
395 For the m88000 we can decide arbitrarily since there are no machine
396 instructions for them. */
397 #define WORDS_BIG_ENDIAN 1
398
399 /* Number of bits in an addressable storage unit */
400 #define BITS_PER_UNIT 8
401
402 /* Width in bits of a "word", which is the contents of a machine register.
403 Note that this is not necessarily the width of data type `int';
404 if using 16-bit ints on a 68000, this would still be 32.
405 But on a machine with 16-bit registers, this would be 16. */
406 #define BITS_PER_WORD 32
407
408 /* Width of a word, in units (bytes). */
409 #define UNITS_PER_WORD 4
410
411 /* Width in bits of a pointer.
412 See also the macro `Pmode' defined below. */
413 #define POINTER_SIZE 32
414
415 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
416 #define PARM_BOUNDARY 32
417
418 /* Largest alignment for stack parameters (if greater than PARM_BOUNDARY). */
419 #define MAX_PARM_BOUNDARY 64
420
421 /* Boundary (in *bits*) on which stack pointer should be aligned. */
422 #define STACK_BOUNDARY 128
423
424 /* Allocation boundary (in *bits*) for the code of a function. On the
425 m88100, it is desirable to align to a cache line. However, SVR3 targets
426 only provided 8 byte alignment. The m88110 cache is small, so align
427 to an 8 byte boundary. Pack code tightly when compiling crtstuff.c. */
428 #define FUNCTION_BOUNDARY (flag_inhibit_size_directive ? 32 : \
429 (TARGET_88100 && TARGET_SVR4 ? 128 : 64))
430
431 /* No data type wants to be aligned rounder than this. */
432 #define BIGGEST_ALIGNMENT 64
433
434 /* The best alignment to use in cases where we have a choice. */
435 #define FASTEST_ALIGNMENT (TARGET_88100 ? 32 : 64)
436
437 /* Make strings 4/8 byte aligned so strcpy from constants will be faster. */
438 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
439 ((TREE_CODE (EXP) == STRING_CST \
440 && (ALIGN) < FASTEST_ALIGNMENT) \
441 ? FASTEST_ALIGNMENT : (ALIGN))
442
443 /* Make arrays of chars 4/8 byte aligned for the same reasons. */
444 #define DATA_ALIGNMENT(TYPE, ALIGN) \
445 (TREE_CODE (TYPE) == ARRAY_TYPE \
446 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
447 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
448
449 /* Alignment of field after `int : 0' in a structure.
450 Ignored with PCC_BITFIELD_TYPE_MATTERS. */
451 /* #define EMPTY_FIELD_BOUNDARY 8 */
452
453 /* Every structure's size must be a multiple of this. */
454 #define STRUCTURE_SIZE_BOUNDARY 8
455
456 /* Set this nonzero if move instructions will actually fail to work
457 when given unaligned data. */
458 #define STRICT_ALIGNMENT 1
459
460 /* A bitfield declared as `int' forces `int' alignment for the struct. */
461 #define PCC_BITFIELD_TYPE_MATTERS 1
462
463 /* Maximum size (in bits) to use for the largest integral type that
464 replaces a BLKmode type. */
465 /* #define MAX_FIXED_MODE_SIZE 0 */
466
467 /* Check a `double' value for validity for a particular machine mode.
468 This is defined to avoid crashes outputting certain constants.
469 Since we output the number in hex, the assembler won't choke on it. */
470 /* #define CHECK_FLOAT_VALUE(MODE,VALUE) */
471
472 /* A code distinguishing the floating point format of the target machine. */
473 /* #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT */
474 \f
475 /*** Register Usage ***/
476
477 /* Number of actual hardware registers.
478 The hardware registers are assigned numbers for the compiler
479 from 0 to just below FIRST_PSEUDO_REGISTER.
480 All registers that the compiler knows about must be given numbers,
481 even those that are not normally considered general registers.
482
483 The m88100 has a General Register File (GRF) of 32 32-bit registers.
484 The m88110 adds an Extended Register File (XRF) of 32 80-bit registers. */
485 #define FIRST_PSEUDO_REGISTER 64
486 #define FIRST_EXTENDED_REGISTER 32
487
488 /* General notes on extended registers, their use and misuse.
489
490 Possible good uses:
491
492 spill area instead of memory.
493 -waste if only used once
494
495 floating point calculations
496 -probably a waste unless we have run out of general purpose registers
497
498 freeing up general purpose registers
499 -e.g. may be able to have more loop invariants if floating
500 point is moved into extended registers.
501
502
503 I've noticed wasteful moves into and out of extended registers; e.g. a load
504 into x21, then inside a loop a move into r24, then r24 used as input to
505 an fadd. Why not just load into r24 to begin with? Maybe the new cse.c
506 will address this. This wastes a move, but the load,store and move could
507 have been saved had extended registers been used throughout.
508 E.g. in the code following code, if z and xz are placed in extended
509 registers, there is no need to save preserve registers.
510
511 long c=1,d=1,e=1,f=1,g=1,h=1,i=1,j=1,k;
512
513 double z=0,xz=4.5;
514
515 foo(a,b)
516 long a,b;
517 {
518 while (a < b)
519 {
520 k = b + c + d + e + f + g + h + a + i + j++;
521 z += xz;
522 a++;
523 }
524 printf("k= %d; z=%f;\n", k, z);
525 }
526
527 I've found that it is possible to change the constraints (putting * before
528 the 'r' constraints int the fadd.ddd instruction) and get the entire
529 addition and store to go into extended registers. However, this also
530 forces simple addition and return of floating point arguments to a
531 function into extended registers. Not the correct solution.
532
533 Found the following note in local-alloc.c which may explain why I can't
534 get both registers to be in extended registers since two are allocated in
535 local-alloc and one in global-alloc. Doesn't explain (I don't believe)
536 why an extended register is used instead of just using the preserve
537 register.
538
539 from local-alloc.c:
540 We have provision to exempt registers, even when they are contained
541 within the block, that can be tied to others that are not contained in it.
542 This is so that global_alloc could process them both and tie them then.
543 But this is currently disabled since tying in global_alloc is not
544 yet implemented.
545
546 The explanation of why the preserved register is not used is as follows,
547 I believe. The registers are being allocated in order. Tying is not
548 done so efficiently, so when it comes time to do the first allocation,
549 there are no registers left to use without spilling except extended
550 registers. Then when the next pseudo register needs a hard reg, there
551 are still no registers to be had for free, but this one must be a GRF
552 reg instead of an extended reg, so a preserve register is spilled. Thus
553 the move from extended to GRF is necessitated. I do not believe this can
554 be 'fixed' through the config/*m88k* files.
555
556 gcc seems to sometimes make worse use of register allocation -- not counting
557 moves -- whenever extended registers are present. For example in the
558 whetstone, the simple for loop (slightly modified)
559 for(i = 1; i <= n1; i++)
560 {
561 x1 = (x1 + x2 + x3 - x4) * t;
562 x2 = (x1 + x2 - x3 + x4) * t;
563 x3 = (x1 - x2 + x3 + x4) * t;
564 x4 = (x1 + x2 + x3 + x4) * t;
565 }
566 in general loads the high bits of the addresses of x2-x4 and i into registers
567 outside the loop. Whenever extended registers are used, it loads all of
568 these inside the loop. My conjecture is that since the 88110 has so many
569 registers, and gcc makes no distinction at this point -- just that they are
570 not fixed, that in loop.c it believes it can expect a number of registers
571 to be available. Then it allocates 'too many' in local-alloc which causes
572 problems later. 'Too many' are allocated because a large portion of the
573 registers are extended registers and cannot be used for certain purposes
574 ( e.g. hold the address of a variable). When this loop is compiled on its
575 own, the problem does not occur. I don't know the solution yet, though it
576 is probably in the base sources. Possibly a different way to calculate
577 "threshold". */
578
579 /* 1 for registers that have pervasive standard uses and are not available
580 for the register allocator. Registers r14-r25 and x22-x29 are expected
581 to be preserved across function calls.
582
583 On the 88000, the standard uses of the General Register File (GRF) are:
584 Reg 0 = Pseudo argument pointer (hardware fixed to 0).
585 Reg 1 = Subroutine return pointer (hardware).
586 Reg 2-9 = Parameter registers (OCS).
587 Reg 10 = OCS reserved temporary.
588 Reg 11 = Static link if needed [OCS reserved temporary].
589 Reg 12 = Address of structure return (OCS).
590 Reg 13 = OCS reserved temporary.
591 Reg 14-25 = Preserved register set.
592 Reg 26-29 = Reserved by OCS and ABI.
593 Reg 30 = Frame pointer (Common use).
594 Reg 31 = Stack pointer.
595
596 The following follows the current 88open UCS specification for the
597 Extended Register File (XRF):
598 Reg 32 = x0 Always equal to zero
599 Reg 33-53 = x1-x21 Temporary registers (Caller Save)
600 Reg 54-61 = x22-x29 Preserver registers (Callee Save)
601 Reg 62-63 = x30-x31 Reserved for future ABI use.
602
603 Note: The current 88110 extended register mapping is subject to change.
604 The bias towards caller-save registers is based on the
605 presumption that memory traffic can potentially be reduced by
606 allowing the "caller" to save only that part of the register
607 which is actually being used. (i.e. don't do a st.x if a st.d
608 is sufficient). Also, in scientific code (a.k.a. Fortran), the
609 large number of variables defined in common blocks may require
610 that almost all registers be saved across calls anyway. */
611
612 #define FIXED_REGISTERS \
613 {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
614 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
615 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
616 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}
617
618 /* 1 for registers not available across function calls.
619 These must include the FIXED_REGISTERS and also any
620 registers that can be used without being saved.
621 The latter must include the registers where values are returned
622 and the register where structure-value addresses are passed.
623 Aside from that, you can include as many other registers as you like. */
624
625 #define CALL_USED_REGISTERS \
626 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
627 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
628 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
629 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}
630
631 /* Macro to conditionally modify fixed_regs/call_used_regs. */
632 #define CONDITIONAL_REGISTER_USAGE \
633 { \
634 if (! TARGET_88110) \
635 { \
636 register int i; \
637 for (i = FIRST_EXTENDED_REGISTER; i < FIRST_PSEUDO_REGISTER; i++) \
638 { \
639 fixed_regs[i] = 1; \
640 call_used_regs[i] = 1; \
641 } \
642 } \
643 if (flag_pic) \
644 { \
645 /* Current hack to deal with -fpic -O2 problems. */ \
646 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
647 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
648 global_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
649 } \
650 }
651
652 /* These interfaces that don't apply to the m88000. */
653 /* OVERLAPPING_REGNO_P(REGNO) 0 */
654 /* INSN_CLOBBERS_REGNO_P(INSN, REGNO) 0 */
655 /* PRESERVE_DEATH_INFO_REGNO_P(REGNO) 0 */
656
657 /* Return number of consecutive hard regs needed starting at reg REGNO
658 to hold something of mode MODE.
659 This is ordinarily the length in words of a value of mode MODE
660 but can be less for certain modes in special long registers.
661
662 On the m88000, GRF registers hold 32-bits and XRF registers hold 80-bits.
663 An XRF register can hold any mode, but two GRF registers are required
664 for larger modes. */
665 #define HARD_REGNO_NREGS(REGNO, MODE) \
666 ((REGNO < FIRST_PSEUDO_REGISTER && REGNO >= FIRST_EXTENDED_REGISTER) \
667 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
668
669 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
670
671 For double integers, we never put the value into an odd register so that
672 the operators don't run into the situation where the high part of one of
673 the inputs is the low part of the result register. (It's ok if the output
674 registers are the same as the input registers.) The XRF registers can
675 hold all modes, but only DF and SF modes can be manipulated in these
676 registers. The compiler should be allowed to use these as a fast spill
677 area. */
678 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
679 ((REGNO < FIRST_PSEUDO_REGISTER && REGNO >= FIRST_EXTENDED_REGISTER) \
680 ? TARGET_88110 \
681 : (((MODE) != DImode && (MODE) != DFmode && (MODE) != DCmode) \
682 || ((REGNO) & 1) == 0))
683
684 /* Value is 1 if it is a good idea to tie two pseudo registers
685 when one has mode MODE1 and one has mode MODE2.
686 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
687 for any hard reg, then this must be 0 for correct output. */
688 #define MODES_TIEABLE_P(MODE1, MODE2) \
689 (((MODE1) == DFmode || (MODE1) == DCmode || (MODE1) == DImode) \
690 == ((MODE2) == DFmode || (MODE2) == DCmode || (MODE2) == DImode))
691
692 /* Specify the registers used for certain standard purposes.
693 The values of these macros are register numbers. */
694
695 /* the m88000 pc isn't overloaded on a register that the compiler knows about. */
696 /* #define PC_REGNUM */
697
698 /* Register to use for pushing function arguments. */
699 #define STACK_POINTER_REGNUM 31
700
701 /* Base register for access to local variables of the function. */
702 #define FRAME_POINTER_REGNUM 30
703
704 /* Base register for access to arguments of the function. */
705 #define ARG_POINTER_REGNUM 0
706
707 /* Register used in cases where a temporary is known to be safe to use. */
708 #define TEMP_REGNUM 10
709
710 /* Register in which static-chain is passed to a function. */
711 #define STATIC_CHAIN_REGNUM 11
712
713 /* Register in which address to store a structure value
714 is passed to a function. */
715 #define STRUCT_VALUE_REGNUM 12
716
717 /* Register to hold the addressing base for position independent
718 code access to data items. */
719 #define PIC_OFFSET_TABLE_REGNUM 25
720
721 /* Order in which registers are preferred (most to least). Use temp
722 registers, then param registers top down. Preserve registers are
723 top down to maximize use of double memory ops for register save.
724 The 88open reserved registers (r26-r29 and x30-x31) may commonly be used
725 in most environments with the -fcall-used- or -fcall-saved- options. */
726 #define REG_ALLOC_ORDER \
727 { \
728 13, 12, 11, 10, 29, 28, 27, 26, \
729 62, 63, 9, 8, 7, 6, 5, 4, \
730 3, 2, 1, 53, 52, 51, 50, 49, \
731 48, 47, 46, 45, 44, 43, 42, 41, \
732 40, 39, 38, 37, 36, 35, 34, 33, \
733 25, 24, 23, 22, 21, 20, 19, 18, \
734 17, 16, 15, 14, 61, 60, 59, 58, \
735 57, 56, 55, 54, 30, 31, 0, 32}
736
737 /* Order for leaf functions. */
738 #define REG_LEAF_ALLOC_ORDER \
739 { \
740 9, 8, 7, 6, 13, 12, 11, 10, \
741 29, 28, 27, 26, 62, 63, 5, 4, \
742 3, 2, 0, 53, 52, 51, 50, 49, \
743 48, 47, 46, 45, 44, 43, 42, 41, \
744 40, 39, 38, 37, 36, 35, 34, 33, \
745 25, 24, 23, 22, 21, 20, 19, 18, \
746 17, 16, 15, 14, 61, 60, 59, 58, \
747 57, 56, 55, 54, 30, 31, 1, 32}
748
749 /* Switch between the leaf and non-leaf orderings. The purpose is to avoid
750 write-over scoreboard delays between caller and callee. */
751 #define ORDER_REGS_FOR_LOCAL_ALLOC \
752 { \
753 static int leaf[] = REG_LEAF_ALLOC_ORDER; \
754 static int nonleaf[] = REG_ALLOC_ORDER; \
755 \
756 bcopy (regs_ever_live[1] ? nonleaf : leaf, reg_alloc_order, \
757 FIRST_PSEUDO_REGISTER * sizeof (int)); \
758 }
759 \f
760 /*** Register Classes ***/
761
762 /* Define the classes of registers for register constraints in the
763 machine description. Also define ranges of constants.
764
765 One of the classes must always be named ALL_REGS and include all hard regs.
766 If there is more than one class, another class must be named NO_REGS
767 and contain no registers.
768
769 The name GENERAL_REGS must be the name of a class (or an alias for
770 another name such as ALL_REGS). This is the class of registers
771 that is allowed by "g" or "r" in a register constraint.
772 Also, registers outside this class are allocated only when
773 instructions express preferences for them.
774
775 The classes must be numbered in nondecreasing order; that is,
776 a larger-numbered class must never be contained completely
777 in a smaller-numbered class.
778
779 For any two classes, it is very desirable that there be another
780 class that represents their union. */
781
782 /* The m88000 hardware has two kinds of registers. In addition, we denote
783 the arg pointer as a separate class. */
784
785 enum reg_class { NO_REGS, AP_REG, XRF_REGS, GENERAL_REGS, AGRF_REGS,
786 XGRF_REGS, ALL_REGS, LIM_REG_CLASSES };
787
788 #define N_REG_CLASSES (int) LIM_REG_CLASSES
789
790 /* Give names of register classes as strings for dump file. */
791 #define REG_CLASS_NAMES {"NO_REGS", "AP_REG", "XRF_REGS", "GENERAL_REGS", \
792 "AGRF_REGS", "XGRF_REGS", "ALL_REGS" }
793
794 /* Define which registers fit in which classes.
795 This is an initializer for a vector of HARD_REG_SET
796 of length N_REG_CLASSES. */
797 #define REG_CLASS_CONTENTS {{0x00000000, 0x00000000}, \
798 {0x00000001, 0x00000000}, \
799 {0x00000000, 0xffffffff}, \
800 {0xfffffffe, 0x00000000}, \
801 {0xffffffff, 0x00000000}, \
802 {0xfffffffe, 0xffffffff}, \
803 {0xffffffff, 0xffffffff}}
804
805 /* The same information, inverted:
806 Return the class number of the smallest class containing
807 reg number REGNO. This could be a conditional expression
808 or could index an array. */
809 #define REGNO_REG_CLASS(REGNO) \
810 ((REGNO) ? ((REGNO < 32) ? GENERAL_REGS : XRF_REGS) : AP_REG)
811
812 /* The class value for index registers, and the one for base regs. */
813 #define BASE_REG_CLASS AGRF_REGS
814 #define INDEX_REG_CLASS GENERAL_REGS
815
816 /* Get reg_class from a letter such as appears in the machine description.
817 For the 88000, the following class/letter is defined for the XRF:
818 x - Extended register file */
819 #define REG_CLASS_FROM_LETTER(C) \
820 (((C) == 'x') ? XRF_REGS : NO_REGS)
821
822 /* Macros to check register numbers against specific register classes.
823 These assume that REGNO is a hard or pseudo reg number.
824 They give nonzero only if REGNO is a hard reg of the suitable class
825 or a pseudo reg currently allocated to a suitable hard reg.
826 Since they use reg_renumber, they are safe only once reg_renumber
827 has been allocated, which happens in local-alloc.c. */
828 #define REGNO_OK_FOR_BASE_P(REGNO) \
829 ((REGNO) < FIRST_EXTENDED_REGISTER \
830 || (unsigned) reg_renumber[REGNO] < FIRST_EXTENDED_REGISTER)
831 #define REGNO_OK_FOR_INDEX_P(REGNO) \
832 (((REGNO) && (REGNO) < FIRST_EXTENDED_REGISTER) \
833 || (unsigned) reg_renumber[REGNO] < FIRST_EXTENDED_REGISTER)
834
835 /* Given an rtx X being reloaded into a reg required to be
836 in class CLASS, return the class of reg to actually use.
837 In general this is just CLASS; but on some machines
838 in some cases it is preferable to use a more restrictive class.
839 Double constants should be in a register iff they can be made cheaply. */
840 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
841 (CONSTANT_P(X) && (CLASS == XRF_REGS) ? NO_REGS : (CLASS))
842
843 /* Return the register class of a scratch register needed to load IN
844 into a register of class CLASS in MODE. On the m88k, when PIC, we
845 need a temporary when loading some addresses into a register. */
846 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
847 ((flag_pic \
848 && GET_CODE (IN) == CONST \
849 && GET_CODE (XEXP (IN, 0)) == PLUS \
850 && GET_CODE (XEXP (XEXP (IN, 0), 0)) == CONST_INT \
851 && ! SMALL_INT (XEXP (XEXP (IN, 0), 1))) ? GENERAL_REGS : NO_REGS)
852
853 /* Return the maximum number of consecutive registers
854 needed to represent mode MODE in a register of class CLASS. */
855 #define CLASS_MAX_NREGS(CLASS, MODE) \
856 ((((CLASS) == XRF_REGS) ? 1 \
857 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
858
859 /* Letters in the range `I' through `P' in a register constraint string can
860 be used to stand for particular ranges of immediate operands. The C
861 expression is true iff C is a known letter and VALUE is appropriate for
862 that letter.
863
864 For the m88000, the following constants are used:
865 `I' requires a non-negative 16-bit value.
866 `J' requires a non-positive 16-bit value.
867 `K' requires a non-negative value < 32.
868 `L' requires a constant with only the upper 16-bits set.
869 `M' requires constant values that can be formed with `set'.
870 `N' requires a negative value.
871 `O' requires zero.
872 `P' requires a non-negative value. */
873
874 /* Quick tests for certain values. */
875 #define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X)))
876 #define SMALL_INTVAL(I) ((unsigned) (I) < 0x10000)
877 #define ADD_INT(X) (ADD_INTVAL (INTVAL (X)))
878 #define ADD_INTVAL(I) ((unsigned) (I) + 0xffff < 0x1ffff)
879 #define POWER_OF_2(I) ((I) && POWER_OF_2_or_0(I))
880 #define POWER_OF_2_or_0(I) (((I) & ((unsigned)(I) - 1)) == 0)
881
882 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
883 ((C) == 'I' ? SMALL_INTVAL (VALUE) \
884 : (C) == 'J' ? SMALL_INTVAL (-(VALUE)) \
885 : (C) == 'K' ? (unsigned)(VALUE) < 32 \
886 : (C) == 'L' ? ((VALUE) & 0xffff) == 0 \
887 : (C) == 'M' ? integer_ok_for_set (VALUE) \
888 : (C) == 'N' ? (VALUE) < 0 \
889 : (C) == 'O' ? (VALUE) == 0 \
890 : (C) == 'P' ? (VALUE) >= 0 \
891 : 0)
892
893 /* Similar, but for floating constants, and defining letters G and H.
894 Here VALUE is the CONST_DOUBLE rtx itself. For the m88000, the
895 constraints are: `G' requires zero, and `H' requires one or two. */
896 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
897 ((C) == 'G' ? (CONST_DOUBLE_HIGH (VALUE) == 0 \
898 && CONST_DOUBLE_LOW (VALUE) == 0) \
899 : 0)
900
901 /* Letters in the range `Q' through `U' in a register constraint string
902 may be defined in a machine-dependent fashion to stand for arbitrary
903 operand types.
904
905 For the m88k, `Q' handles addresses in a call context. */
906
907 #define EXTRA_CONSTRAINT(OP, C) \
908 ((C) == 'Q' ? symbolic_address_p (OP) : 0)
909 \f
910 /*** Describing Stack Layout ***/
911
912 /* Define this if pushing a word on the stack moves the stack pointer
913 to a smaller address. */
914 #define STACK_GROWS_DOWNWARD
915
916 /* Define this if the addresses of local variable slots are at negative
917 offsets from the frame pointer. */
918 /* #define FRAME_GROWS_DOWNWARD */
919
920 /* Offset from the frame pointer to the first local variable slot to be
921 allocated. For the m88k, the debugger wants the return address (r1)
922 stored at location r30+4, and the previous frame pointer stored at
923 location r30. */
924 #define STARTING_FRAME_OFFSET 8
925
926 /* If we generate an insn to push BYTES bytes, this says how many the
927 stack pointer really advances by. The m88k has no push instruction. */
928 /* #define PUSH_ROUNDING(BYTES) */
929
930 /* If defined, the maximum amount of space required for outgoing arguments
931 will be computed and placed into the variable
932 `current_function_outgoing_args_size'. No space will be pushed
933 onto the stack for each call; instead, the function prologue should
934 increase the stack frame size by this amount. */
935 #define ACCUMULATE_OUTGOING_ARGS
936
937 /* Offset from the stack pointer register to the first location at which
938 outgoing arguments are placed. Use the default value zero. */
939 /* #define STACK_POINTER_OFFSET 0 */
940
941 /* Offset of first parameter from the argument pointer register value.
942 Using an argument pointer, this is 0 for the m88k. GCC knows
943 how to eliminate the argument pointer references if necessary. */
944 #define FIRST_PARM_OFFSET(FNDECL) 0
945
946 /* Define this if functions should assume that stack space has been
947 allocated for arguments even when their values are passed in
948 registers.
949
950 The value of this macro is the size, in bytes, of the area reserved for
951 arguments passed in registers.
952
953 This space can either be allocated by the caller or be a part of the
954 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
955 says which. */
956 #define REG_PARM_STACK_SPACE(FNDECL) 32
957
958 /* Define this macro if REG_PARM_STACK_SPACE is defined but stack
959 parameters don't skip the area specified by REG_PARM_STACK_SPACE.
960 Normally, when a parameter is not passed in registers, it is placed on
961 the stack beyond the REG_PARM_STACK_SPACE area. Defining this macro
962 suppresses this behavior and causes the parameter to be passed on the
963 stack in its natural location. */
964 #define STACK_PARMS_IN_REG_PARM_AREA
965
966 /* Define this if it is the responsibility of the caller to allocate the
967 area reserved for arguments passed in registers. If
968 `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect of this
969 macro is to determine whether the space is included in
970 `current_function_outgoing_args_size'. */
971 /* #define OUTGOING_REG_PARM_STACK_SPACE */
972
973 /* Offset from the stack pointer register to an item dynamically allocated
974 on the stack, e.g., by `alloca'.
975
976 The default value for this macro is `STACK_POINTER_OFFSET' plus the
977 length of the outgoing arguments. The default is correct for most
978 machines. See `function.c' for details. */
979 /* #define STACK_DYNAMIC_OFFSET(FUNDECL) ... */
980
981 /* Value is the number of bytes of arguments automatically
982 popped when returning from a subroutine call.
983 FUNTYPE is the data type of the function (as a tree),
984 or for a library call it is an identifier node for the subroutine name.
985 SIZE is the number of bytes of arguments passed on the stack. */
986 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
987
988 /* Define how to find the value returned by a function.
989 VALTYPE is the data type of the value (as a tree).
990 If the precise function being called is known, FUNC is its FUNCTION_DECL;
991 otherwise, FUNC is 0. */
992 #define FUNCTION_VALUE(VALTYPE, FUNC) \
993 gen_rtx (REG, \
994 TYPE_MODE (VALTYPE) == BLKmode ? SImode : TYPE_MODE (VALTYPE), \
995 2)
996
997 /* Define this if it differs from FUNCTION_VALUE. */
998 /* #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) ... */
999
1000 /* Disable the promotion of some structures and unions to registers. */
1001 #define RETURN_IN_MEMORY(TYPE) \
1002 (TYPE_MODE (TYPE) == BLKmode \
1003 || ((TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE(TYPE) == UNION_TYPE) \
1004 && !(TYPE_MODE (TYPE) == SImode \
1005 || (TYPE_MODE (TYPE) == BLKmode \
1006 && TYPE_ALIGN (TYPE) == BITS_PER_WORD \
1007 && int_size_in_bytes (TYPE) == UNITS_PER_WORD))))
1008
1009 /* Define how to find the value returned by a library function
1010 assuming the value has mode MODE. */
1011 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2)
1012
1013 /* True if N is a possible register number for a function value
1014 as seen by the caller. */
1015 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2)
1016
1017 /* Determine whether a function argument is passed in a register, and
1018 which register. See m88k.c. */
1019 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1020 m88k_function_arg (CUM, MODE, TYPE, NAMED)
1021
1022 /* Define this if it differs from FUNCTION_ARG. */
1023 /* #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) ... */
1024
1025 /* A C expression for the number of words, at the beginning of an
1026 argument, must be put in registers. The value must be zero for
1027 arguments that are passed entirely in registers or that are entirely
1028 pushed on the stack. */
1029 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1030
1031 /* A C expression that indicates when an argument must be passed by
1032 reference. If nonzero for an argument, a copy of that argument is
1033 made in memory and a pointer to the argument is passed instead of the
1034 argument itself. The pointer is passed in whatever way is appropriate
1035 for passing a pointer to that type. */
1036 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) (0)
1037
1038 /* A C type for declaring a variable that is used as the first argument
1039 of `FUNCTION_ARG' and other related values. It suffices to count
1040 the number of words of argument so far. */
1041 #define CUMULATIVE_ARGS int
1042
1043 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
1044 function whose data type is FNTYPE. For a library call, FNTYPE is 0. */
1045 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
1046
1047 /* A C statement (sans semicolon) to update the summarizer variable
1048 CUM to advance past an argument in the argument list. The values
1049 MODE, TYPE and NAMED describe that argument. Once this is done,
1050 the variable CUM is suitable for analyzing the *following* argument
1051 with `FUNCTION_ARG', etc. (TYPE is null for libcalls where that
1052 information may not be available.) */
1053 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1054 do { \
1055 enum machine_mode __mode = (TYPE) ? TYPE_MODE (TYPE) : (MODE); \
1056 if ((CUM & 1) \
1057 && (__mode == DImode || __mode == DFmode \
1058 || ((TYPE) && TYPE_ALIGN (TYPE) > BITS_PER_WORD))) \
1059 CUM++; \
1060 CUM += (((__mode != BLKmode) \
1061 ? GET_MODE_SIZE (MODE) : int_size_in_bytes (TYPE)) \
1062 + 3) / 4; \
1063 } while (0)
1064
1065 /* True if N is a possible register number for function argument passing.
1066 On the m88000, these are registers 2 through 9. */
1067 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 9 && (N) >= 2)
1068
1069 /* A C expression which determines whether, and in which direction,
1070 to pad out an argument with extra space. The value should be of
1071 type `enum direction': either `upward' to pad above the argument,
1072 `downward' to pad below, or `none' to inhibit padding.
1073
1074 This macro does not control the *amount* of padding; that is always
1075 just enough to reach the next multiple of `FUNCTION_ARG_BOUNDARY'. */
1076 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1077 ((MODE) == BLKmode \
1078 || ((TYPE) && (TREE_CODE (TYPE) == RECORD_TYPE \
1079 || TREE_CODE (TYPE) == UNION_TYPE)) \
1080 ? upward : GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY ? downward : none)
1081
1082 /* If defined, a C expression that gives the alignment boundary, in bits,
1083 of an argument with the specified mode and type. If it is not defined,
1084 `PARM_BOUNDARY' is used for all arguments. */
1085 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1086 (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_SIZE (MODE)) <= PARM_BOUNDARY \
1087 ? PARM_BOUNDARY : 2 * PARM_BOUNDARY)
1088
1089 /* Generate necessary RTL for __builtin_saveregs().
1090 ARGLIST is the argument list; see expr.c. */
1091 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) m88k_builtin_saveregs (ARGLIST)
1092
1093 /* Generate the assembly code for function entry. */
1094 #define FUNCTION_PROLOGUE(FILE, SIZE) m88k_begin_prologue(FILE, SIZE)
1095
1096 /* Perform special actions at the point where the prologue ends. */
1097 #define FUNCTION_END_PROLOGUE(FILE) m88k_end_prologue(FILE)
1098
1099 /* Output assembler code to FILE to increment profiler label # LABELNO
1100 for profiling a function entry. Redefined in m88kv3.h, m88kv4.h and
1101 m88kdgux.h. */
1102 #define FUNCTION_PROFILER(FILE, LABELNO) \
1103 output_function_profiler (FILE, LABELNO, "mcount", 1)
1104
1105 /* Maximum length in instructions of the code output by FUNCTION_PROFILER. */
1106 #define FUNCTION_PROFILER_LENGTH (5+3+1+5)
1107
1108 /* Output assembler code to FILE to initialize basic-block profiling for
1109 the current module. LABELNO is unique to each instance. */
1110 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1111 output_function_block_profiler (FILE, LABELNO)
1112
1113 /* Maximum length in instructions of the code output by
1114 FUNCTION_BLOCK_PROFILER. */
1115 #define FUNCTION_BLOCK_PROFILER_LENGTH (3+5+2+5)
1116
1117 /* Output assembler code to FILE to increment the count associated with
1118 the basic block number BLOCKNO. */
1119 #define BLOCK_PROFILER(FILE, BLOCKNO) output_block_profiler (FILE, BLOCKNO)
1120
1121 /* Maximum length in instructions of the code output by BLOCK_PROFILER. */
1122 #define BLOCK_PROFILER_LENGTH 4
1123
1124 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1125 the stack pointer does not matter. The value is tested only in
1126 functions that have frame pointers.
1127 No definition is equivalent to always zero. */
1128 #define EXIT_IGNORE_STACK (1)
1129
1130 /* Generate the assembly code for function exit. */
1131 #define FUNCTION_EPILOGUE(FILE, SIZE) m88k_end_epilogue(FILE, SIZE)
1132
1133 /* Perform special actions at the point where the epilogue begins. */
1134 #define FUNCTION_BEGIN_EPILOGUE(FILE) m88k_begin_epilogue(FILE)
1135
1136 /* Value should be nonzero if functions must have frame pointers.
1137 Zero means the frame pointer need not be set up (and parms
1138 may be accessed via the stack pointer) in functions that seem suitable.
1139 This is computed in `reload', in reload1.c. */
1140 #define FRAME_POINTER_REQUIRED \
1141 (frame_pointer_needed \
1142 || (write_symbols != NO_DEBUG && !TARGET_OCS_FRAME_POSITION))
1143
1144 /* Definitions for register eliminations.
1145
1146 We have two registers that can be eliminated on the m88k. First, the
1147 frame pointer register can often be eliminated in favor of the stack
1148 pointer register. Secondly, the argument pointer register can always be
1149 eliminated; it is replaced with either the stack or frame pointer. */
1150
1151 /* This is an array of structures. Each structure initializes one pair
1152 of eliminable registers. The "from" register number is given first,
1153 followed by "to". Eliminations of the same "from" register are listed
1154 in order of preference. */
1155 #define ELIMINABLE_REGS \
1156 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1157 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1158 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1159
1160 /* Given FROM and TO register numbers, say whether this elimination
1161 is allowed. */
1162 #define CAN_ELIMINATE(FROM, TO) \
1163 (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
1164
1165 /* Define the offset between two registers, one to be eliminated, and the other
1166 its replacement, at the start of a routine. */
1167 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1168 { m88k_layout_frame (); \
1169 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1170 (OFFSET) = m88k_fp_offset; \
1171 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1172 (OFFSET) = m88k_stack_size - m88k_fp_offset; \
1173 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1174 (OFFSET) = m88k_stack_size; \
1175 else \
1176 abort (); \
1177 }
1178 \f
1179 /*** Trampolines for Nested Functions ***/
1180
1181 /* Output assembler code for a block containing the constant parts
1182 of a trampoline, leaving space for the variable parts.
1183
1184 This block is placed on the stack and filled in. It is aligned
1185 0 mod 128 and those portions that are executed are constant.
1186 This should work for instruction caches that have cache lines up
1187 to the aligned amount (128 is arbitrary), provided no other code
1188 producer is attempting to play the same game. This of course is
1189 in violation of any number of 88open standards. */
1190
1191 #define TRAMPOLINE_TEMPLATE(FILE) \
1192 { \
1193 /* Save the return address (r1) in the static chain reg (r11). */ \
1194 fprintf (FILE, "\tor\t %s,%s,0\n", reg_names[11], reg_names[1]); \
1195 /* Locate this block; transfer to the next instruction. */ \
1196 fprintf (FILE, "\tbsr\t 1\n"); \
1197 /* Save r10; use it as the relative pointer; restore r1. */ \
1198 fprintf (FILE, "\tst\t %s,%s,24\n", reg_names[10], reg_names[1]); \
1199 fprintf (FILE, "\tor\t %s,%s,0\n", reg_names[10], reg_names[1]); \
1200 fprintf (FILE, "\tor\t %s,%s,0\n", reg_names[1], reg_names[11]); \
1201 /* Load the function's address and go there. */ \
1202 fprintf (FILE, "\tld\t %s,%s,32\n", reg_names[11], reg_names[10]); \
1203 fprintf (FILE, "\tjmp.n\t %s\n", reg_names[11]); \
1204 /* Restore r10 and load the static chain register. */ \
1205 fprintf (FILE, "\tld.d\t %s,%s,24\n", reg_names[10], reg_names[10]); \
1206 /* Storage: r10 save area, static chain, function address. */ \
1207 ASM_OUTPUT_INT (FILE, const0_rtx); \
1208 ASM_OUTPUT_INT (FILE, const0_rtx); \
1209 ASM_OUTPUT_INT (FILE, const0_rtx); \
1210 }
1211
1212 /* Length in units of the trampoline for entering a nested function.
1213 This is really two components. The first 32 bytes are fixed and
1214 must be copied; the last 12 bytes are just storage that's filled
1215 in later. So for allocation purposes, it's 32+12 bytes, but for
1216 initialization purposes, it's 32 bytes. */
1217
1218 #define TRAMPOLINE_SIZE (32+12)
1219
1220 /* Alignment required for a trampoline. 128 is used to find the
1221 beginning of a line in the instruction cache and to allow for
1222 instruction cache lines of up to 128 bytes. */
1223
1224 #define TRAMPOLINE_ALIGNMENT 128
1225
1226 /* Emit RTL insns to initialize the variable parts of a trampoline.
1227 FNADDR is an RTX for the address of the function's pure code.
1228 CXT is an RTX for the static chain value for the function. */
1229
1230 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1231 { \
1232 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 40)), FNADDR); \
1233 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 36)), CXT); \
1234 }
1235
1236 /*** Library Subroutine Names ***/
1237
1238 /* Define this macro if GNU CC should generate calls to the System V
1239 (and ANSI C) library functions `memcpy' and `memset' rather than
1240 the BSD functions `bcopy' and `bzero'. */
1241 #define TARGET_MEM_FUNCTIONS
1242 \f
1243 /*** Addressing Modes ***/
1244
1245 /* #define HAVE_POST_INCREMENT */
1246 /* #define HAVE_POST_DECREMENT */
1247
1248 /* #define HAVE_PRE_DECREMENT */
1249 /* #define HAVE_PRE_INCREMENT */
1250
1251 /* Recognize any constant value that is a valid address. */
1252 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1253
1254 /* Maximum number of registers that can appear in a valid memory address. */
1255 #define MAX_REGS_PER_ADDRESS 2
1256
1257 /* The condition for memory shift insns. */
1258 #define SCALED_ADDRESS_P(ADDR) \
1259 (GET_CODE (ADDR) == PLUS \
1260 && (GET_CODE (XEXP (ADDR, 0)) == MULT \
1261 || GET_CODE (XEXP (ADDR, 1)) == MULT))
1262
1263 /* Can the reference to X be made short? */
1264 #define SHORT_ADDRESS_P(X,TEMP) \
1265 ((TEMP) = (GET_CODE (X) == CONST ? get_related_value (X) : X), \
1266 ((TEMP) && GET_CODE (TEMP) == SYMBOL_REF && SYMBOL_REF_FLAG (TEMP)))
1267
1268 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1269 that is a valid memory address for an instruction.
1270 The MODE argument is the machine mode for the MEM expression
1271 that wants to use this address.
1272
1273 On the m88000, a legitimate address has the form REG, REG+REG,
1274 REG+SMALLINT, REG+(REG*modesize) (REG[REG]), or SMALLINT.
1275
1276 The register elimination process should deal with the argument
1277 pointer and frame pointer changing to REG+SMALLINT. */
1278
1279 #define LEGITIMATE_INDEX_P(X, MODE) \
1280 ((GET_CODE (X) == CONST_INT \
1281 && SMALL_INT (X)) \
1282 || (REG_P (X) \
1283 && REG_OK_FOR_INDEX_P (X)) \
1284 || (GET_CODE (X) == MULT \
1285 && REG_P (XEXP (X, 0)) \
1286 && REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
1287 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1288 && INTVAL (XEXP (X, 1)) == GET_MODE_SIZE (MODE)))
1289
1290 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1291 { \
1292 register rtx _x; \
1293 if (REG_P (X)) \
1294 { \
1295 if (REG_OK_FOR_BASE_P (X)) \
1296 goto ADDR; \
1297 } \
1298 else if (GET_CODE (X) == PLUS) \
1299 { \
1300 register rtx _x0 = XEXP (X, 0); \
1301 register rtx _x1 = XEXP (X, 1); \
1302 if ((flag_pic \
1303 && _x0 == pic_offset_table_rtx \
1304 && (flag_pic == 2 \
1305 ? REG_P (_x1) \
1306 : (GET_CODE (_x1) == SYMBOL_REF \
1307 || GET_CODE (_x1) == LABEL_REF))) \
1308 || (REG_P (_x0) \
1309 && (REG_OK_FOR_BASE_P (_x0) \
1310 && LEGITIMATE_INDEX_P (_x1, MODE))) \
1311 || (REG_P (_x1) \
1312 && (REG_OK_FOR_BASE_P (_x1) \
1313 && LEGITIMATE_INDEX_P (_x0, MODE)))) \
1314 goto ADDR; \
1315 } \
1316 else if (GET_CODE (X) == LO_SUM) \
1317 { \
1318 register rtx _x0 = XEXP (X, 0); \
1319 register rtx _x1 = XEXP (X, 1); \
1320 if (((REG_P (_x0) \
1321 && REG_OK_FOR_BASE_P (_x0)) \
1322 || (GET_CODE (_x0) == SUBREG \
1323 && REG_P (SUBREG_REG (_x0)) \
1324 && REG_OK_FOR_BASE_P (SUBREG_REG (_x0)))) \
1325 && CONSTANT_P (_x1)) \
1326 goto ADDR; \
1327 } \
1328 else if (GET_CODE (X) == CONST_INT \
1329 && SMALL_INT (X)) \
1330 goto ADDR; \
1331 else if (SHORT_ADDRESS_P (X, _x)) \
1332 goto ADDR; \
1333 }
1334
1335 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1336 and check its validity for a certain class.
1337 We have two alternate definitions for each of them.
1338 The usual definition accepts all pseudo regs; the other rejects
1339 them unless they have been allocated suitable hard regs.
1340 The symbol REG_OK_STRICT causes the latter definition to be used.
1341
1342 Most source files want to accept pseudo regs in the hope that
1343 they will get allocated to the class that the insn wants them to be in.
1344 Source files for reload pass need to be strict.
1345 After reload, it makes no difference, since pseudo regs have
1346 been eliminated by then. */
1347
1348 #ifndef REG_OK_STRICT
1349
1350 /* Nonzero if X is a hard reg that can be used as an index
1351 or if it is a pseudo reg. Not the argument pointer. */
1352 #define REG_OK_FOR_INDEX_P(X) (X)
1353 /* Nonzero if X is a hard reg that can be used as a base reg
1354 or if it is a pseudo reg. */
1355 #define REG_OK_FOR_BASE_P(X) (1)
1356
1357 #else
1358
1359 /* Nonzero if X is a hard reg that can be used as an index. */
1360 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1361 /* Nonzero if X is a hard reg that can be used as a base reg. */
1362 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1363
1364 #endif
1365
1366 /* Try machine-dependent ways of modifying an illegitimate address
1367 to be legitimate. If we find one, return the new, valid address.
1368 This macro is used in only one place: `memory_address' in explow.c.
1369
1370 OLDX is the address as it was before break_out_memory_refs was called.
1371 In some cases it is useful to look at this to decide what needs to be done.
1372
1373 MODE and WIN are passed so that this macro can use
1374 GO_IF_LEGITIMATE_ADDRESS.
1375
1376 It is always safe for this macro to do nothing. It exists to recognize
1377 opportunities to optimize the output. */
1378
1379 /* On the m88000, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1380
1381 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1382 { \
1383 if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1384 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
1385 copy_to_mode_reg (SImode, XEXP (X, 1))); \
1386 if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1387 (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
1388 copy_to_mode_reg (SImode, XEXP (X, 0))); \
1389 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1390 (X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
1391 force_operand (XEXP (X, 0), 0)); \
1392 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1393 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
1394 force_operand (XEXP (X, 1), 0)); \
1395 if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1396 || GET_CODE (X) == LABEL_REF) \
1397 (X) = legitimize_address (flag_pic, X, 0, 0); \
1398 if (memory_address_p (MODE, X)) \
1399 goto WIN; }
1400
1401 /* Go to LABEL if ADDR (a legitimate address expression)
1402 has an effect that depends on the machine mode it is used for.
1403 On the the m88000 this is never true. */
1404
1405 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1406
1407 /* Nonzero if the constant value X is a legitimate general operand.
1408 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1409 #define LEGITIMATE_CONSTANT_P(X) (1)
1410 \f
1411 /*** Condition Code Information ***/
1412
1413 /* C code for a data type which is used for declaring the `mdep'
1414 component of `cc_status'. It defaults to `int'. */
1415 /* #define CC_STATUS_MDEP int */
1416
1417 /* A C expression to initialize the `mdep' field to "empty". */
1418 /* #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0) */
1419
1420 /* Macro to zap the normal portions of CC_STATUS, but leave the
1421 machine dependent parts (ie, literal synthesis) alone. */
1422 /* #define CC_STATUS_INIT_NO_MDEP \
1423 (cc_status.flags = 0, cc_status.value1 = 0, cc_status.value2 = 0) */
1424
1425 /* When using a register to hold the condition codes, the cc_status
1426 mechanism cannot be used. */
1427 #define NOTICE_UPDATE_CC(EXP, INSN) (0)
1428 \f
1429 /*** Miscellaneous Parameters ***/
1430
1431 /* Define the codes that are matched by predicates in m88k.c. */
1432 #define PREDICATE_CODES \
1433 {"move_operand", {SUBREG, REG, CONST_INT, LO_SUM, MEM}}, \
1434 {"call_address_operand", {SUBREG, REG, SYMBOL_REF, LABEL_REF, CONST}}, \
1435 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1436 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
1437 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
1438 {"arith64_operand", {SUBREG, REG, CONST_INT}}, \
1439 {"int5_operand", {CONST_INT}}, \
1440 {"int32_operand", {CONST_INT}}, \
1441 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1442 {"reg_or_bbx_mask_operand", {SUBREG, REG, CONST_INT}}, \
1443 {"real_or_0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1444 {"relop", {EQ, NE, LT, LE, GE, GT, LTU, LEU, GEU, GTU}}, \
1445 {"relop_no_unsigned", {EQ, NE, LT, LE, GE, GT}}, \
1446 {"equality_op", {EQ, NE}}, \
1447 {"pc_or_label_ref", {PC, LABEL_REF}},
1448
1449 /* The case table contains either words or branch instructions. This says
1450 which. We always claim that the vector is PC-relative. It is position
1451 independent when -fpic is used. */
1452 #define CASE_VECTOR_INSNS (TARGET_88100 || flag_pic)
1453
1454 /* An alias for a machine mode name. This is the machine mode that
1455 elements of a jump-table should have. */
1456 #define CASE_VECTOR_MODE SImode
1457
1458 /* Define this macro if jump-tables should contain relative addresses. */
1459 #define CASE_VECTOR_PC_RELATIVE
1460
1461 /* Define this if control falls through a `case' insn when the index
1462 value is out of range. This means the specified default-label is
1463 actually ignored by the `case' insn proper. */
1464 /* #define CASE_DROPS_THROUGH */
1465
1466 /* Define this to be the smallest number of different values for which it
1467 is best to use a jump-table instead of a tree of conditional branches.
1468 The default is 4 for machines with a casesi instruction and 5 otherwise.
1469 The best 88110 number is around 7, though the exact number isn't yet
1470 known. A third alternative for the 88110 is to use a binary tree of
1471 bb1 instructions on bits 2/1/0 if the range is dense. This may not
1472 win very much though. */
1473 #define CASE_VALUES_THRESHOLD (TARGET_88100 ? 4 : 7)
1474
1475 /* Specify the tree operation to be used to convert reals to integers. */
1476 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1477
1478 /* This is the kind of divide that is easiest to do in the general case. */
1479 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1480
1481 /* Define this as 1 if `char' should by default be signed; else as 0. */
1482 #define DEFAULT_SIGNED_CHAR 1
1483
1484 /* The 88open ABI says size_t is unsigned int. */
1485 #define SIZE_TYPE "unsigned int"
1486
1487 /* Allow and ignore #sccs directives */
1488 #define SCCS_DIRECTIVE
1489
1490 /* Handle #pragma pack and sometimes #pragma weak. */
1491 #define HANDLE_SYSV_PRAGMA
1492
1493 /* Tell when to handle #pragma weak. This is only done for V.4. */
1494 #define HANDLE_PRAGMA_WEAK TARGET_SVR4
1495
1496 /* Max number of bytes we can move from memory to memory
1497 in one reasonably fast instruction. */
1498 #define MOVE_MAX 8
1499
1500 /* Define if normal loads of shorter-than-word items from memory clears
1501 the rest of the bigs in the register. */
1502 #define BYTE_LOADS_ZERO_EXTEND
1503
1504 /* Zero if access to memory by bytes is faster. */
1505 #define SLOW_BYTE_ACCESS 1
1506
1507 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1508 is done just by pretending it is already truncated. */
1509 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1510
1511 /* Define this if addresses of constant functions
1512 shouldn't be put through pseudo regs where they can be cse'd.
1513 Desirable on machines where ordinary constants are expensive
1514 but a CALL with constant address is cheap. */
1515 #define NO_FUNCTION_CSE
1516
1517 /* Define this macro if an argument declared as `char' or
1518 `short' in a prototype should actually be passed as an
1519 `int'. In addition to avoiding errors in certain cases of
1520 mismatch, it also makes for better code on certain machines. */
1521 #define PROMOTE_PROTOTYPES
1522
1523 /* Define this macro if a float function always returns float
1524 (even in traditional mode). Redefined in m88kluna.h. */
1525 #define TRADITIONAL_RETURN_FLOAT
1526
1527 /* We assume that the store-condition-codes instructions store 0 for false
1528 and some other value for true. This is the value stored for true. */
1529 #define STORE_FLAG_VALUE -1
1530
1531 /* Specify the machine mode that pointers have.
1532 After generation of rtl, the compiler makes no further distinction
1533 between pointers and any other objects of this machine mode. */
1534 #define Pmode SImode
1535
1536 /* A function address in a call instruction
1537 is a word address (for indexing purposes)
1538 so give the MEM rtx word mode. */
1539 #define FUNCTION_MODE SImode
1540
1541 /* A barrier will be aligned so account for the possible expansion.
1542 A volatile load may be preceded by a serializing instruction.
1543 Account for profiling code output at NOTE_INSN_PROLOGUE_END.
1544 Account for block profiling code at basic block boundaries. */
1545 #define ADJUST_INSN_LENGTH(RTX, LENGTH) \
1546 if (GET_CODE (RTX) == BARRIER \
1547 || (TARGET_SERIALIZE_VOLATILE \
1548 && GET_CODE (RTX) == INSN \
1549 && GET_CODE (PATTERN (RTX)) == SET \
1550 && ((GET_CODE (SET_SRC (PATTERN (RTX))) == MEM \
1551 && MEM_VOLATILE_P (SET_SRC (PATTERN (RTX))))))) \
1552 LENGTH += 1; \
1553 else if (GET_CODE (RTX) == NOTE \
1554 && NOTE_LINE_NUMBER (RTX) == NOTE_INSN_PROLOGUE_END) \
1555 { \
1556 if (profile_block_flag) \
1557 LENGTH += FUNCTION_BLOCK_PROFILER_LENGTH; \
1558 if (profile_flag) \
1559 LENGTH += (FUNCTION_PROFILER_LENGTH + REG_PUSH_LENGTH \
1560 + REG_POP_LENGTH); \
1561 } \
1562 else if (profile_block_flag \
1563 && (GET_CODE (RTX) == CODE_LABEL \
1564 || GET_CODE (RTX) == JUMP_INSN \
1565 || (GET_CODE (RTX) == INSN \
1566 && GET_CODE (PATTERN (RTX)) == SEQUENCE \
1567 && GET_CODE (XVECEXP (PATTERN (RTX), 0, 0)) == JUMP_INSN)))\
1568 LENGTH += BLOCK_PROFILER_LENGTH;
1569
1570 /* Track the state of the last volatile memory reference. Clear the
1571 state with CC_STATUS_INIT for now. */
1572 #define CC_STATUS_INIT m88k_volatile_code = '\0'
1573
1574 /* Compute the cost of computing a constant rtl expression RTX
1575 whose rtx-code is CODE. The body of this macro is a portion
1576 of a switch statement. If the code is computed here,
1577 return it with a return statement. Otherwise, break from the switch.
1578
1579 We assume that any 16 bit integer can easily be recreated, so we
1580 indicate 0 cost, in an attempt to get GCC not to optimize things
1581 like comparison against a constant.
1582
1583 The cost of CONST_DOUBLE is zero (if it can be placed in an insn, it
1584 is as good as a register; since it can't be placed in any insn, it
1585 won't do anything in cse, but it will cause expand_binop to pass the
1586 constant to the define_expands). */
1587 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1588 case CONST_INT: \
1589 if (SMALL_INT (RTX)) \
1590 return 0; \
1591 else if (SMALL_INTVAL (- INTVAL (RTX))) \
1592 return 2; \
1593 else if (classify_integer (SImode, INTVAL (RTX)) != m88k_oru_or) \
1594 return 4; \
1595 return 7; \
1596 case HIGH: \
1597 return 2; \
1598 case CONST: \
1599 case LABEL_REF: \
1600 case SYMBOL_REF: \
1601 if (flag_pic) \
1602 return (flag_pic == 2) ? 11 : 8; \
1603 return 5; \
1604 case CONST_DOUBLE: \
1605 return 0;
1606
1607 /* Provide the costs of an addressing mode that contains ADDR.
1608 If ADDR is not a valid address, its cost is irrelevant.
1609 REG+REG is made slightly more expensive because it might keep
1610 a register live for longer than we might like. */
1611 #define ADDRESS_COST(ADDR) \
1612 (GET_CODE (ADDR) == REG ? 1 : \
1613 GET_CODE (ADDR) == LO_SUM ? 1 : \
1614 GET_CODE (ADDR) == HIGH ? 2 : \
1615 GET_CODE (ADDR) == MULT ? 1 : \
1616 GET_CODE (ADDR) != PLUS ? 4 : \
1617 (REG_P (XEXP (ADDR, 0)) && REG_P (XEXP (ADDR, 1))) ? 2 : 1)
1618
1619 /* Provide the costs of a rtl expression. This is in the body of a
1620 switch on CODE. */
1621 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1622 case MEM: \
1623 return COSTS_N_INSNS (2); \
1624 case MULT: \
1625 return COSTS_N_INSNS (3); \
1626 case DIV: \
1627 case UDIV: \
1628 case MOD: \
1629 case UMOD: \
1630 return COSTS_N_INSNS (38);
1631
1632 /* A C expressions returning the cost of moving data of MODE from a register
1633 to or from memory. This is more costly than between registers. */
1634 #define MEMORY_MOVE_COST(MODE) 4
1635
1636 /* Provide the cost of a branch. Exact meaning under development. */
1637 #define BRANCH_COST (TARGET_88100 ? 1 : 2)
1638
1639 /* A C statement (sans semicolon) to update the integer variable COST
1640 based on the relationship between INSN that is dependent on
1641 DEP_INSN through the dependence LINK. The default is to make no
1642 adjustment to COST. On the m88k, ignore the cost of anti- and
1643 output-dependencies. On the m88100, a store can issue two cycles
1644 before the value (not the address) has finished computing. */
1645 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
1646 do { \
1647 if (REG_NOTE_KIND (LINK) != 0) \
1648 (COST) = 0; /* Anti or output dependence. */ \
1649 else if (! TARGET_88100 \
1650 && recog_memoized (INSN) >= 0 \
1651 && get_attr_type (INSN) == TYPE_STORE \
1652 && SET_SRC (PATTERN (INSN)) == SET_DEST (PATTERN (DEP_INSN))) \
1653 (COST) -= 4; /* 88110 store reservation station. */ \
1654 } while (0)
1655
1656 /* Define this to be nonzero if the character `$' should be allowed
1657 by default in identifier names. */
1658 #define DOLLARS_IN_IDENTIFIERS 1
1659
1660 /* Do not break .stabs pseudos into continuations. */
1661 #define DBX_CONTIN_LENGTH 0
1662 \f
1663 /*** Output of Assembler Code ***/
1664
1665 /* Control the assembler format that we output. */
1666
1667 /* Which assembler syntax. Redefined in m88kdgux.h. */
1668 #define VERSION_0300_SYNTAX TARGET_SVR4
1669
1670 /* At some point, m88kv4.h will redefine this. */
1671 #define VERSION_0400_SYNTAX 0
1672
1673 /* Allow pseudo-ops to be overridden. Override these in svr[34].h. */
1674 #undef INT_ASM_OP
1675 #undef ASCII_DATA_ASM_OP
1676 #undef CONST_SECTION_ASM_OP
1677 #undef CTORS_SECTION_ASM_OP
1678 #undef DTORS_SECTION_ASM_OP
1679 #undef INIT_SECTION_ASM_OP
1680 #undef FINI_SECTION_ASM_OP
1681 #undef TYPE_ASM_OP
1682 #undef SIZE_ASM_OP
1683 #undef WEAK_ASM_OP
1684 #undef SET_ASM_OP
1685 #undef SKIP_ASM_OP
1686 #undef COMMON_ASM_OP
1687 #undef ALIGN_ASM_OP
1688 #undef IDENT_ASM_OP
1689
1690 /* These are used in varasm.c as well. */
1691 #define TEXT_SECTION_ASM_OP "text"
1692 #define DATA_SECTION_ASM_OP "data"
1693
1694 /* Other sections. */
1695 #define CONST_SECTION_ASM_OP (VERSION_0300_SYNTAX \
1696 ? "section\t .rodata,\"a\"" \
1697 : "section\t .rodata,\"x\"")
1698 #define TDESC_SECTION_ASM_OP (VERSION_0300_SYNTAX \
1699 ? "section\t .tdesc,\"a\"" \
1700 : "section\t .tdesc,\"x\"")
1701
1702 /* These must be constant strings for crtstuff.c. */
1703 #define CTORS_SECTION_ASM_OP "section\t .ctors,\"d\""
1704 #define DTORS_SECTION_ASM_OP "section\t .dtors,\"d\""
1705 #define INIT_SECTION_ASM_OP "section\t .init,\"x\""
1706 #define FINI_SECTION_ASM_OP "section\t .fini,\"x\""
1707
1708 /* These are pretty much common to all assemblers. */
1709 #define IDENT_ASM_OP "ident"
1710 #define FILE_ASM_OP "file"
1711 #define SECTION_ASM_OP "section"
1712 #define SET_ASM_OP "def"
1713 #define GLOBAL_ASM_OP "global"
1714 #define ALIGN_ASM_OP "align"
1715 #define SKIP_ASM_OP "zero"
1716 #define COMMON_ASM_OP "comm"
1717 #define BSS_ASM_OP "bss"
1718 #define FLOAT_ASM_OP "float"
1719 #define DOUBLE_ASM_OP "double"
1720 #define INT_ASM_OP "word"
1721 #define ASM_LONG INT_ASM_OP
1722 #define SHORT_ASM_OP "half"
1723 #define CHAR_ASM_OP "byte"
1724 #define ASCII_DATA_ASM_OP "string"
1725
1726 /* These are particular to the global pool optimization. */
1727 #define SBSS_ASM_OP "sbss"
1728 #define SCOMM_ASM_OP "scomm"
1729 #define SDATA_SECTION_ASM_OP "sdata"
1730
1731 /* These are specific to PIC. */
1732 #define TYPE_ASM_OP "type"
1733 #define SIZE_ASM_OP "size"
1734 #define WEAK_ASM_OP "weak"
1735 #ifndef AS_BUG_POUND_TYPE /* Faulty assemblers require @ rather than #. */
1736 #undef TYPE_OPERAND_FMT
1737 #define TYPE_OPERAND_FMT "#%s"
1738 #endif
1739
1740 /* These are specific to version 03.00 assembler syntax. */
1741 #define INTERNAL_ASM_OP "local"
1742 #define VERSION_ASM_OP "version"
1743 #define UNALIGNED_SHORT_ASM_OP "uahalf"
1744 #define UNALIGNED_INT_ASM_OP "uaword"
1745 #define PUSHSECTION_ASM_OP "section"
1746 #define POPSECTION_ASM_OP "previous"
1747
1748 /* These are specific to the version 04.00 assembler syntax. */
1749 #define REQUIRES_88110_ASM_OP "requires_88110"
1750
1751 /* Output any initial stuff to the assembly file. Always put out
1752 a file directive, even if not debugging.
1753
1754 Immediately after putting out the file, put out a "sem.<value>"
1755 declaration. This should be harmless on other systems, and
1756 is used in DG/UX by the debuggers to supplement COFF. The
1757 fields in the integer value are as follows:
1758
1759 Bits Value Meaning
1760 ---- ----- -------
1761 0-1 0 No information about stack locations
1762 1 Auto/param locations are based on r30
1763 2 Auto/param locations are based on CFA
1764
1765 3-2 0 No information on dimension order
1766 1 Array dims in sym table matches source language
1767 2 Array dims in sym table is in reverse order
1768
1769 5-4 0 No information about the case of global names
1770 1 Global names appear in the symbol table as in the source
1771 2 Global names have been converted to lower case
1772 3 Global names have been converted to upper case. */
1773
1774 #ifdef SDB_DEBUGGING_INFO
1775 #define ASM_COFFSEM(FILE) \
1776 if (write_symbols == SDB_DEBUG) \
1777 { \
1778 fprintf (FILE, "\nsem.%x:\t\t; %s\n", \
1779 (((TARGET_OCS_FRAME_POSITION) ? 2 : 1) << 0) + (1 << 2) + (1 << 4),\
1780 (TARGET_OCS_FRAME_POSITION) \
1781 ? "frame is CFA, normal array dims, case unchanged" \
1782 : "frame is r30, normal array dims, case unchanged"); \
1783 }
1784 #else
1785 #define ASM_COFFSEM(FILE)
1786 #endif
1787
1788 /* Output the first line of the assembly file. Redefined in m88kdgux.h. */
1789
1790 #define ASM_FIRST_LINE(FILE) \
1791 do { \
1792 if (m88k_version) \
1793 fprintf (FILE, "\t%s\t \"%s\"\n", VERSION_ASM_OP, m88k_version); \
1794 } while (0)
1795
1796 /* Override svr[34].h. */
1797 #undef ASM_FILE_START
1798 #define ASM_FILE_START(FILE) \
1799 output_file_start (FILE, f_options, sizeof f_options / sizeof f_options[0], \
1800 W_options, sizeof W_options / sizeof W_options[0])
1801
1802 #undef ASM_FILE_END
1803
1804 #define ASM_OUTPUT_SOURCE_FILENAME(FILE, NAME) \
1805 fprintf (FILE, "\t%s\t \"%s\"\n", FILE_ASM_OP, NAME)
1806
1807 #ifdef SDB_DEBUGGING_INFO
1808 #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1809 if (m88k_prologue_done) \
1810 fprintf (FILE, "\n\tln\t %d\t\t\t\t; Real source line %d\n",\
1811 LINE - sdb_begin_function_line, LINE)
1812 #endif
1813
1814 /* Code to handle #ident directives. Override svr[34].h definition. */
1815 #undef ASM_OUTPUT_IDENT
1816 #ifdef DBX_DEBUGGING_INFO
1817 #define ASM_OUTPUT_IDENT(FILE, NAME)
1818 #else
1819 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1820 output_ascii (FILE, IDENT_ASM_OP, 4000, NAME, strlen (NAME));
1821 #endif
1822
1823 /* Output to assembler file text saying following lines
1824 may contain character constants, extra white space, comments, etc. */
1825 #define ASM_APP_ON ""
1826
1827 /* Output to assembler file text saying following lines
1828 no longer contain unusual constructs. */
1829 #define ASM_APP_OFF ""
1830
1831 /* Format the assembly opcode so that the arguments are all aligned.
1832 The maximum instruction size is 8 characters (fxxx.xxx), so a tab and a
1833 space will do to align the output. Abandon the output if a `%' is
1834 encountered. */
1835 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1836 { \
1837 int ch; \
1838 char *orig_ptr; \
1839 \
1840 for (orig_ptr = (PTR); \
1841 (ch = *(PTR)) && ch != ' ' && ch != '\t' && ch != '\n' && ch != '%'; \
1842 (PTR)++) \
1843 putc (ch, STREAM); \
1844 \
1845 if (ch == ' ' && orig_ptr != (PTR) && (PTR) - orig_ptr < 8) \
1846 putc ('\t', STREAM); \
1847 }
1848
1849 /* How to refer to registers in assembler output.
1850 This sequence is indexed by compiler's hard-register-number.
1851 Updated by OVERRIDE_OPTIONS to include the # for version 03.00 syntax. */
1852
1853 #define REGISTER_NAMES \
1854 {"#r0"+1, "#r1"+1, "#r2"+1, "#r3"+1, "#r4"+1, "#r5"+1, "#r6"+1, "#r7"+1, \
1855 "#r8"+1, "#r9"+1, "#r10"+1,"#r11"+1,"#r12"+1,"#r13"+1,"#r14"+1,"#r15"+1,\
1856 "#r16"+1,"#r17"+1,"#r18"+1,"#r19"+1,"#r20"+1,"#r21"+1,"#r22"+1,"#r23"+1,\
1857 "#r24"+1,"#r25"+1,"#r26"+1,"#r27"+1,"#r28"+1,"#r29"+1,"#r30"+1,"#r31"+1,\
1858 "#x0"+1, "#x1"+1, "#x2"+1, "#x3"+1, "#x4"+1, "#x5"+1, "#x6"+1, "#x7"+1, \
1859 "#x8"+1, "#x9"+1, "#x10"+1,"#x11"+1,"#x12"+1,"#x13"+1,"#x14"+1,"#x15"+1,\
1860 "#x16"+1,"#x17"+1,"#x18"+1,"#x19"+1,"#x20"+1,"#x21"+1,"#x22"+1,"#x23"+1,\
1861 "#x24"+1,"#x25"+1,"#x26"+1,"#x27"+1,"#x28"+1,"#x29"+1,"#x30"+1,"#x31"+1}
1862
1863 /* Define additional names for use in asm clobbers and asm declarations.
1864
1865 We define the fake Condition Code register as an alias for reg 0 (which
1866 is our `condition code' register), so that condition codes can easily
1867 be clobbered by an asm. The carry bit in the PSR is now used. */
1868
1869 #define ADDITIONAL_REGISTER_NAMES {"psr", 0, "cc", 0}
1870
1871 /* How to renumber registers for dbx and gdb. */
1872 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1873
1874 /* Tell when to declare ASM names. Override svr4.h to provide this hook. */
1875 #undef DECLARE_ASM_NAME
1876 #define DECLARE_ASM_NAME TARGET_SVR4
1877
1878 /* Write the extra assembler code needed to declare a function properly. */
1879 #undef ASM_DECLARE_FUNCTION_NAME
1880 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1881 do { \
1882 if (DECLARE_ASM_NAME) \
1883 { \
1884 fprintf (FILE, "\t%s\t ", TYPE_ASM_OP); \
1885 assemble_name (FILE, NAME); \
1886 putc (',', FILE); \
1887 fprintf (FILE, TYPE_OPERAND_FMT, "function"); \
1888 putc ('\n', FILE); \
1889 } \
1890 ASM_OUTPUT_LABEL(FILE, NAME); \
1891 } while (0)
1892
1893 /* Write the extra assembler code needed to declare an object properly. */
1894 #undef ASM_DECLARE_OBJECT_NAME
1895 #define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL) \
1896 do { \
1897 if (DECLARE_ASM_NAME) \
1898 { \
1899 fprintf (FILE, "\t%s\t ", TYPE_ASM_OP); \
1900 assemble_name (FILE, NAME); \
1901 putc (',', FILE); \
1902 fprintf (FILE, TYPE_OPERAND_FMT, "object"); \
1903 putc ('\n', FILE); \
1904 if (!flag_inhibit_size_directive) \
1905 { \
1906 fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
1907 assemble_name (FILE, NAME); \
1908 fprintf (FILE, ",%d\n", int_size_in_bytes (TREE_TYPE (decl))); \
1909 } \
1910 } \
1911 ASM_OUTPUT_LABEL(FILE, NAME); \
1912 } while (0)
1913
1914 /* This is how to declare the size of a function. */
1915 #undef ASM_DECLARE_FUNCTION_SIZE
1916 #define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1917 do { \
1918 if (DECLARE_ASM_NAME) \
1919 { \
1920 if (!flag_inhibit_size_directive) \
1921 { \
1922 char label[256]; \
1923 static int labelno; \
1924 labelno++; \
1925 ASM_GENERATE_INTERNAL_LABEL (label, "Lfe", labelno); \
1926 ASM_OUTPUT_INTERNAL_LABEL (FILE, "Lfe", labelno); \
1927 fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
1928 assemble_name (FILE, (FNAME)); \
1929 fprintf (FILE, ",%s-", &label[1]); \
1930 assemble_name (FILE, (FNAME)); \
1931 putc ('\n', FILE); \
1932 } \
1933 } \
1934 } while (0)
1935
1936 /* This is how to output the definition of a user-level label named NAME,
1937 such as the label on a static function or variable NAME. */
1938 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1939 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1940
1941 /* This is how to output a command to make the user-level label named NAME
1942 defined for reference from other files. */
1943 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1944 do { \
1945 fprintf (FILE, "\t%s\t ", GLOBAL_ASM_OP); \
1946 assemble_name (FILE, NAME); \
1947 putc ('\n', FILE); \
1948 } while (0)
1949
1950 /* This is how to output a reference to a user-level label named NAME.
1951 Override svr[34].h. */
1952 #undef ASM_OUTPUT_LABELREF
1953 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1954 { \
1955 if (! TARGET_NO_UNDERSCORES && ! VERSION_0300_SYNTAX) \
1956 fputc ('_', FILE); \
1957 fputs (NAME, FILE); \
1958 }
1959
1960 /* This is how to output an internal numbered label where
1961 PREFIX is the class of label and NUM is the number within the class.
1962 For V.4, labels use `.' rather than `@'. */
1963
1964 #undef ASM_OUTPUT_INTERNAL_LABEL
1965 #ifdef AS_BUG_DOT_LABELS /* The assembler requires a declaration of local. */
1966 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1967 fprintf (FILE, VERSION_0300_SYNTAX ? ".%s%d:\n\t%s\t .%s%d\n" : "@%s%d:\n", \
1968 PREFIX, NUM, INTERNAL_ASM_OP, PREFIX, NUM)
1969 #else
1970 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1971 fprintf (FILE, VERSION_0300_SYNTAX ? ".%s%d:\n" : "@%s%d:\n", PREFIX, NUM)
1972 #endif /* AS_BUG_DOT_LABELS */
1973
1974 /* This is how to store into the string LABEL
1975 the symbol_ref name of an internal numbered label where
1976 PREFIX is the class of label and NUM is the number within the class.
1977 This is suitable for output with `assemble_name'. This must agree
1978 with ASM_OUTPUT_INTERNAL_LABEL above, except for being prefixed
1979 with an `*'. */
1980
1981 #undef ASM_GENERATE_INTERNAL_LABEL
1982 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1983 sprintf (LABEL, VERSION_0300_SYNTAX ? "*.%s%d" : "*@%s%d", PREFIX, NUM)
1984
1985 /* Internal macro to get a single precision floating point value into
1986 an int, so we can print it's value in hex. */
1987 #define FLOAT_TO_INT_INTERNAL( FVALUE, IVALUE ) \
1988 { union { \
1989 REAL_VALUE_TYPE d; \
1990 struct { \
1991 unsigned sign : 1; \
1992 unsigned exponent1 : 1; \
1993 unsigned exponent2 : 3; \
1994 unsigned exponent3 : 7; \
1995 unsigned mantissa1 : 20; \
1996 unsigned mantissa2 : 3; \
1997 unsigned mantissa3 : 29; \
1998 } s; \
1999 } _u; \
2000 \
2001 union { \
2002 int i; \
2003 struct { \
2004 unsigned sign : 1; \
2005 unsigned exponent1 : 1; \
2006 unsigned exponent3 : 7; \
2007 unsigned mantissa1 : 20; \
2008 unsigned mantissa2 : 3; \
2009 } s; \
2010 } _u2; \
2011 \
2012 _u.d = REAL_VALUE_TRUNCATE (SFmode, FVALUE); \
2013 _u2.s.sign = _u.s.sign; \
2014 _u2.s.exponent1 = _u.s.exponent1; \
2015 _u2.s.exponent3 = _u.s.exponent3; \
2016 _u2.s.mantissa1 = _u.s.mantissa1; \
2017 _u2.s.mantissa2 = _u.s.mantissa2; \
2018 IVALUE = _u2.i; \
2019 }
2020
2021 /* This is how to output an assembler line defining a `double' constant.
2022 Use "word" pseudos to avoid printing NaNs, infinity, etc. */
2023 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2024 do { \
2025 union { REAL_VALUE_TYPE d; long l[2]; } x; \
2026 x.d = (VALUE); \
2027 fprintf (FILE, "\t%s\t 0x%.8x, 0x%.8x\n", INT_ASM_OP, \
2028 x.l[0], x.l[1]); \
2029 } while (0)
2030
2031 /* This is how to output an assembler line defining a `float' constant. */
2032 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2033 do { \
2034 int i; \
2035 FLOAT_TO_INT_INTERNAL (VALUE, i); \
2036 fprintf (FILE, "\t%s\t 0x%.8x\n", INT_ASM_OP, i); \
2037 } while (0)
2038
2039 /* Likewise for `int', `short', and `char' constants. */
2040 #define ASM_OUTPUT_INT(FILE,VALUE) \
2041 ( fprintf (FILE, "\t%s\t ", INT_ASM_OP), \
2042 output_addr_const (FILE, (VALUE)), \
2043 fprintf (FILE, "\n"))
2044
2045 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2046 ( fprintf (FILE, "\t%s\t ", SHORT_ASM_OP), \
2047 output_addr_const (FILE, (VALUE)), \
2048 fprintf (FILE, "\n"))
2049
2050 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2051 ( fprintf (FILE, "\t%s\t ", CHAR_ASM_OP), \
2052 output_addr_const (FILE, (VALUE)), \
2053 fprintf (FILE, "\n"))
2054
2055 /* This is how to output an assembler line for a numeric constant byte. */
2056 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2057 fprintf (FILE, "\t%s\t 0x%x\n", CHAR_ASM_OP, (VALUE))
2058
2059 /* The single-byte pseudo-op is the default. Override svr[34].h. */
2060 #undef ASM_BYTE_OP
2061 #define ASM_BYTE_OP "byte"
2062 #undef ASM_OUTPUT_ASCII
2063 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
2064 output_ascii (FILE, ASCII_DATA_ASM_OP, 48, P, SIZE)
2065
2066 /* Override svr4.h. Change to the readonly data section for a table of
2067 addresses. final_scan_insn changes back to the text section. */
2068 #undef ASM_OUTPUT_CASE_LABEL
2069 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, TABLE) \
2070 do { \
2071 if (! CASE_VECTOR_INSNS) \
2072 { \
2073 readonly_data_section (); \
2074 ASM_OUTPUT_ALIGN (FILE, 2); \
2075 } \
2076 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
2077 } while (0)
2078
2079 /* Epilogue for case labels. This jump instruction is called by casesi
2080 to transfer to the appropriate branch instruction within the table.
2081 The label `@L<n>e' is coined to mark the end of the table. */
2082 #define ASM_OUTPUT_CASE_END(FILE, NUM, TABLE) \
2083 do { \
2084 if (CASE_VECTOR_INSNS) \
2085 { \
2086 char label[256]; \
2087 ASM_GENERATE_INTERNAL_LABEL (label, "L", NUM); \
2088 fprintf (FILE, "%se:\n", &label[1]); \
2089 if (! flag_delayed_branch) \
2090 fprintf (FILE, "\tlda\t %s,%s[%s]\n", reg_names[1], \
2091 reg_names[1], reg_names[m88k_case_index]); \
2092 fprintf (FILE, "\tjmp\t %s\n", reg_names[1]); \
2093 } \
2094 } while (0)
2095
2096 /* This is how to output an element of a case-vector that is absolute. */
2097 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2098 do { \
2099 char buffer[256]; \
2100 ASM_GENERATE_INTERNAL_LABEL (buffer, "L", VALUE); \
2101 fprintf (FILE, CASE_VECTOR_INSNS ? "\tbr\t %s\n" : "\tword\t %s\n", \
2102 &buffer[1]); \
2103 } while (0)
2104
2105 /* This is how to output an element of a case-vector that is relative. */
2106 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2107 ASM_OUTPUT_ADDR_VEC_ELT (FILE, VALUE)
2108
2109 /* This is how to output an assembler line
2110 that says to advance the location counter
2111 to a multiple of 2**LOG bytes. */
2112 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2113 if ((LOG) != 0) \
2114 fprintf (FILE, "\t%s\t %d\n", ALIGN_ASM_OP, 1<<(LOG))
2115
2116 /* On the m88100, align the text address to half a cache boundary when it
2117 can only be reached by jumping. Pack code tightly when compiling
2118 crtstuff.c. */
2119 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
2120 ASM_OUTPUT_ALIGN (FILE, \
2121 (TARGET_88100 && !flag_inhibit_size_directive ? 3 : 2))
2122
2123 /* Override svr[34].h. */
2124 #undef ASM_OUTPUT_SKIP
2125 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2126 fprintf (FILE, "\t%s\t %u\n", SKIP_ASM_OP, (SIZE))
2127
2128 /* Override svr4.h. */
2129 #undef ASM_OUTPUT_EXTERNAL_LIBCALL
2130
2131 /* This says how to output an assembler line to define a global common
2132 symbol. Size can be zero for the unusual case of a `struct { int : 0; }'.
2133 Override svr[34].h. */
2134 #undef ASM_OUTPUT_COMMON
2135 #undef ASM_OUTPUT_ALIGNED_COMMON
2136 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2137 ( fprintf ((FILE), "\t%s\t ", \
2138 ((SIZE) ? (SIZE) : 1) <= m88k_gp_threshold ? SCOMM_ASM_OP : COMMON_ASM_OP), \
2139 assemble_name ((FILE), (NAME)), \
2140 fprintf ((FILE), ",%u\n", (SIZE) ? (SIZE) : 1))
2141
2142 /* This says how to output an assembler line to define a local common
2143 symbol. Override svr[34].h. */
2144 #undef ASM_OUTPUT_LOCAL
2145 #undef ASM_OUTPUT_ALIGNED_LOCAL
2146 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
2147 ( fprintf ((FILE), "\t%s\t ", \
2148 ((SIZE) ? (SIZE) : 1) <= m88k_gp_threshold ? SBSS_ASM_OP : BSS_ASM_OP), \
2149 assemble_name ((FILE), (NAME)), \
2150 fprintf ((FILE), ",%u,%d\n", (SIZE) ? (SIZE) : 1, (SIZE) <= 4 ? 4 : 8))
2151
2152 /* Store in OUTPUT a string (made with alloca) containing
2153 an assembler-name for a local static variable named NAME.
2154 LABELNO is an integer which is different for each call. */
2155 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2156 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2157 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2158
2159 /* This is how to output an insn to push a register on the stack.
2160 It need not be very fast code. */
2161 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2162 fprintf (FILE, "\tsubu\t %s,%s,%d\n\tst\t %s,%s,0\n", \
2163 reg_names[STACK_POINTER_REGNUM], \
2164 reg_names[STACK_POINTER_REGNUM], \
2165 (STACK_BOUNDARY / BITS_PER_UNIT), \
2166 reg_names[REGNO], \
2167 reg_names[STACK_POINTER_REGNUM])
2168
2169 /* Length in instructions of the code output by ASM_OUTPUT_REG_PUSH. */
2170 #define REG_PUSH_LENGTH 2
2171
2172 /* This is how to output an insn to pop a register from the stack. */
2173 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2174 fprintf (FILE, "\tld\t %s,%s,0\n\taddu\t %s,%s,%d\n", \
2175 reg_names[REGNO], \
2176 reg_names[STACK_POINTER_REGNUM], \
2177 reg_names[STACK_POINTER_REGNUM], \
2178 reg_names[STACK_POINTER_REGNUM], \
2179 (STACK_BOUNDARY / BITS_PER_UNIT))
2180
2181 /* Length in instructions of the code output by ASM_OUTPUT_REG_POP. */
2182 #define REG_POP_LENGTH 2
2183
2184 /* Define the parentheses used to group arithmetic operations
2185 in assembler code. */
2186 #define ASM_OPEN_PAREN "("
2187 #define ASM_CLOSE_PAREN ")"
2188
2189 /* Define results of standard character escape sequences. */
2190 #define TARGET_BELL 007
2191 #define TARGET_BS 010
2192 #define TARGET_TAB 011
2193 #define TARGET_NEWLINE 012
2194 #define TARGET_VT 013
2195 #define TARGET_FF 014
2196 #define TARGET_CR 015
2197 \f
2198 /* Macros to deal with OCS debug information */
2199
2200 #define OCS_START_PREFIX "Ltb"
2201 #define OCS_END_PREFIX "Lte"
2202
2203 #define PUT_OCS_FUNCTION_START(FILE) \
2204 { ASM_OUTPUT_INTERNAL_LABEL (FILE, OCS_START_PREFIX, m88k_function_number); }
2205
2206 #define PUT_OCS_FUNCTION_END(FILE) \
2207 { ASM_OUTPUT_INTERNAL_LABEL (FILE, OCS_END_PREFIX, m88k_function_number); }
2208
2209 /* Macros for debug information */
2210 #define DEBUGGER_AUTO_OFFSET(X) \
2211 (m88k_debugger_offset (X, 0) \
2212 + (TARGET_OCS_FRAME_POSITION ? 0 : m88k_stack_size - m88k_fp_offset))
2213
2214 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
2215 (m88k_debugger_offset (X, OFFSET) \
2216 + (TARGET_OCS_FRAME_POSITION ? 0 : m88k_stack_size - m88k_fp_offset))
2217
2218 /* Macros to deal with SDB debug information */
2219 #ifdef SDB_DEBUGGING_INFO
2220
2221 /* Output structure tag names even when it causes a forward reference. */
2222 #define SDB_ALLOW_FORWARD_REFERENCES
2223
2224 /* Print out extra debug information in the assembler file */
2225 #define PUT_SDB_SCL(a) \
2226 do { \
2227 register int s = (a); \
2228 register char *scl; \
2229 switch (s) \
2230 { \
2231 case C_EFCN: scl = "end of function"; break; \
2232 case C_NULL: scl = "NULL storage class"; break; \
2233 case C_AUTO: scl = "automatic"; break; \
2234 case C_EXT: scl = "external"; break; \
2235 case C_STAT: scl = "static"; break; \
2236 case C_REG: scl = "register"; break; \
2237 case C_EXTDEF: scl = "external definition"; break; \
2238 case C_LABEL: scl = "label"; break; \
2239 case C_ULABEL: scl = "undefined label"; break; \
2240 case C_MOS: scl = "structure member"; break; \
2241 case C_ARG: scl = "argument"; break; \
2242 case C_STRTAG: scl = "structure tag"; break; \
2243 case C_MOU: scl = "union member"; break; \
2244 case C_UNTAG: scl = "union tag"; break; \
2245 case C_TPDEF: scl = "typedef"; break; \
2246 case C_USTATIC: scl = "uninitialized static"; break; \
2247 case C_ENTAG: scl = "enumeration tag"; break; \
2248 case C_MOE: scl = "member of enumeration"; break; \
2249 case C_REGPARM: scl = "register parameter"; break; \
2250 case C_FIELD: scl = "bit field"; break; \
2251 case C_BLOCK: scl = "block start/end"; break; \
2252 case C_FCN: scl = "function start/end"; break; \
2253 case C_EOS: scl = "end of structure"; break; \
2254 case C_FILE: scl = "filename"; break; \
2255 case C_LINE: scl = "line"; break; \
2256 case C_ALIAS: scl = "duplicated tag"; break; \
2257 case C_HIDDEN: scl = "hidden"; break; \
2258 default: scl = "unknown"; break; \
2259 } \
2260 \
2261 fprintf(asm_out_file, "\tscl\t %d\t\t\t\t; %s\n", s, scl); \
2262 } while (0)
2263
2264 #define PUT_SDB_TYPE(a) \
2265 do { \
2266 register int t = (a); \
2267 static char buffer[100]; \
2268 register char *p = buffer, *q; \
2269 register int typ = t; \
2270 register int i,d; \
2271 \
2272 for (i = 0; i <= 5; i++) \
2273 { \
2274 switch ((typ >> ((i*N_TSHIFT) + N_BTSHFT)) & 03) \
2275 { \
2276 case DT_PTR: \
2277 strcpy (p, "ptr to "); \
2278 p += sizeof("ptr to"); \
2279 break; \
2280 \
2281 case DT_ARY: \
2282 strcpy (p, "array of "); \
2283 p += sizeof("array of"); \
2284 break; \
2285 \
2286 case DT_FCN: \
2287 strcpy (p, "func ret "); \
2288 p += sizeof("func ret"); \
2289 break; \
2290 } \
2291 } \
2292 \
2293 switch (typ & N_BTMASK) \
2294 { \
2295 case T_NULL: q = "<no type>"; break; \
2296 case T_CHAR: q = "char"; break; \
2297 case T_SHORT: q = "short"; break; \
2298 case T_INT: q = "int"; break; \
2299 case T_LONG: q = "long"; break; \
2300 case T_FLOAT: q = "float"; break; \
2301 case T_DOUBLE: q = "double"; break; \
2302 case T_STRUCT: q = "struct"; break; \
2303 case T_UNION: q = "union"; break; \
2304 case T_ENUM: q = "enum"; break; \
2305 case T_MOE: q = "enum member"; break; \
2306 case T_UCHAR: q = "unsigned char"; break; \
2307 case T_USHORT: q = "unsigned short"; break; \
2308 case T_UINT: q = "unsigned int"; break; \
2309 case T_ULONG: q = "unsigned long"; break; \
2310 default: q = "void"; break; \
2311 } \
2312 \
2313 strcpy (p, q); \
2314 fprintf(asm_out_file, "\ttype\t %d\t\t\t\t; %s\n", \
2315 t, buffer); \
2316 } while (0)
2317
2318 #define PUT_SDB_INT_VAL(a) \
2319 fprintf (asm_out_file, "\tval\t %d\n", (a))
2320
2321 #define PUT_SDB_VAL(a) \
2322 ( fprintf (asm_out_file, "\tval\t "), \
2323 output_addr_const (asm_out_file, (a)), \
2324 fputc ('\n', asm_out_file))
2325
2326 #define PUT_SDB_DEF(a) \
2327 do { fprintf (asm_out_file, "\tsdef\t "); \
2328 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2329 fputc ('\n', asm_out_file); \
2330 } while (0)
2331
2332 #define PUT_SDB_PLAIN_DEF(a) \
2333 fprintf(asm_out_file,"\tsdef\t .%s\n", a)
2334
2335 /* Simply and endef now. */
2336 #define PUT_SDB_ENDEF \
2337 fputs("\tendef\n\n", asm_out_file)
2338
2339 #define PUT_SDB_SIZE(a) \
2340 fprintf (asm_out_file, "\tsize\t %d\n", (a))
2341
2342 /* Max dimensions to store for debug information (limited by COFF). */
2343 #define SDB_MAX_DIM 6
2344
2345 /* New method for dim operations. */
2346 #define PUT_SDB_START_DIM \
2347 fputs("\tdim\t ", asm_out_file)
2348
2349 /* How to end the DIM sequence. */
2350 #define PUT_SDB_LAST_DIM(a) \
2351 fprintf(asm_out_file, "%d\n", a)
2352
2353 #define PUT_SDB_TAG(a) \
2354 do { \
2355 fprintf (asm_out_file, "\ttag\t "); \
2356 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2357 fputc ('\n', asm_out_file); \
2358 } while( 0 )
2359
2360 #define PUT_SDB_BLOCK_OR_FUNCTION(NAME, SCL, LINE) \
2361 do { \
2362 fprintf (asm_out_file, "\n\tsdef\t %s\n\tval\t .\n", \
2363 NAME); \
2364 PUT_SDB_SCL( SCL ); \
2365 fprintf (asm_out_file, "\tline\t %d\n\tendef\n\n", \
2366 (LINE)); \
2367 } while (0)
2368
2369 #define PUT_SDB_BLOCK_START(LINE) \
2370 PUT_SDB_BLOCK_OR_FUNCTION (".bb", C_BLOCK, (LINE))
2371
2372 #define PUT_SDB_BLOCK_END(LINE) \
2373 PUT_SDB_BLOCK_OR_FUNCTION (".eb", C_BLOCK, (LINE))
2374
2375 #define PUT_SDB_FUNCTION_START(LINE) \
2376 do { \
2377 fprintf (asm_out_file, "\tln\t 1\n"); \
2378 PUT_SDB_BLOCK_OR_FUNCTION (".bf", C_FCN, (LINE)); \
2379 } while (0)
2380
2381 #define PUT_SDB_FUNCTION_END(LINE) \
2382 do { \
2383 PUT_SDB_BLOCK_OR_FUNCTION (".ef", C_FCN, (LINE)); \
2384 } while (0)
2385
2386 #define PUT_SDB_EPILOGUE_END(NAME) \
2387 do { \
2388 text_section (); \
2389 fprintf (asm_out_file, "\n\tsdef\t "); \
2390 ASM_OUTPUT_LABELREF(asm_out_file, (NAME)); \
2391 fputc('\n', asm_out_file); \
2392 PUT_SDB_SCL( C_EFCN ); \
2393 fprintf (asm_out_file, "\tendef\n\n"); \
2394 } while (0)
2395
2396 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
2397 sprintf ((BUFFER), ".%dfake", (NUMBER));
2398
2399 #endif /* SDB_DEBUGGING_INFO */
2400 \f
2401 /* Support const and tdesc sections. Generally, a const section will
2402 be distinct from the text section whenever we do V.4-like things
2403 and so follows DECLARE_ASM_NAME. Note that strings go in text
2404 rather than const. Override svr[34].h. */
2405
2406 #undef USE_CONST_SECTION
2407 #undef EXTRA_SECTIONS
2408
2409 #define USE_CONST_SECTION DECLARE_ASM_NAME
2410
2411 #if defined(USING_SVR4_H)
2412
2413 #define EXTRA_SECTIONS in_const, in_tdesc, in_sdata, in_ctors, in_dtors
2414 #define INIT_SECTION_FUNCTION
2415 #define FINI_SECTION_FUNCTION
2416
2417 #else
2418 #if defined(USING_SVR3_H)
2419
2420 #define EXTRA_SECTIONS in_const, in_tdesc, in_sdata, in_ctors, in_dtors, \
2421 in_init, in_fini
2422
2423 #else /* m88kluna or other not based on svr[34].h. */
2424
2425 #undef INIT_SECTION_ASM_OP
2426 #define EXTRA_SECTIONS in_const, in_tdesc, in_sdata
2427 #define CONST_SECTION_FUNCTION \
2428 void \
2429 const_section () \
2430 { \
2431 text_section(); \
2432 }
2433 #define CTORS_SECTION_FUNCTION
2434 #define DTORS_SECTION_FUNCTION
2435 #define INIT_SECTION_FUNCTION
2436 #define FINI_SECTION_FUNCTION
2437
2438 #endif /* USING_SVR3_H */
2439 #endif /* USING_SVR4_H */
2440
2441 #undef EXTRA_SECTION_FUNCTIONS
2442 #define EXTRA_SECTION_FUNCTIONS \
2443 CONST_SECTION_FUNCTION \
2444 \
2445 void \
2446 tdesc_section () \
2447 { \
2448 if (in_section != in_tdesc) \
2449 { \
2450 fprintf (asm_out_file, "%s\n", TDESC_SECTION_ASM_OP); \
2451 in_section = in_tdesc; \
2452 } \
2453 } \
2454 \
2455 void \
2456 sdata_section () \
2457 { \
2458 if (in_section != in_sdata) \
2459 { \
2460 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
2461 in_section = in_sdata; \
2462 } \
2463 } \
2464 \
2465 CTORS_SECTION_FUNCTION \
2466 DTORS_SECTION_FUNCTION \
2467 INIT_SECTION_FUNCTION \
2468 FINI_SECTION_FUNCTION
2469
2470 /* A C statement or statements to switch to the appropriate
2471 section for output of DECL. DECL is either a `VAR_DECL' node
2472 or a constant of some sort. RELOC indicates whether forming
2473 the initial value of DECL requires link-time relocations.
2474
2475 For strings, the section is selected before the segment info is encoded. */
2476 #undef SELECT_SECTION
2477 #define SELECT_SECTION(DECL,RELOC) \
2478 { \
2479 if (TREE_CODE (DECL) == STRING_CST) \
2480 { \
2481 if (! flag_writable_strings) \
2482 const_section (); \
2483 else if (m88k_gp_threshold > 0 \
2484 && TREE_STRING_LENGTH (DECL) <= m88k_gp_threshold) \
2485 sdata_section (); \
2486 else \
2487 data_section (); \
2488 } \
2489 else if (TREE_CODE (DECL) == VAR_DECL) \
2490 { \
2491 if (SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0))) \
2492 sdata_section (); \
2493 else if ((flag_pic && RELOC) \
2494 || !TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL)) \
2495 data_section (); \
2496 else \
2497 const_section (); \
2498 } \
2499 else \
2500 const_section (); \
2501 }
2502
2503 /* Jump tables consist of branch instructions and should be output in
2504 the text section. When we use a table of addresses, we explicitly
2505 change to the readonly data section. */
2506 #define JUMP_TABLES_IN_TEXT_SECTION 1
2507
2508 /* Define this macro if references to a symbol must be treated differently
2509 depending on something about the variable or function named by the
2510 symbol (such as what section it is in).
2511
2512 The macro definition, if any, is executed immediately after the rtl for
2513 DECL has been created and stored in `DECL_RTL (DECL)'. The value of the
2514 rtl will be a `mem' whose address is a `symbol_ref'.
2515
2516 For the m88k, determine if the item should go in the global pool. */
2517 #define ENCODE_SECTION_INFO(DECL) \
2518 do { \
2519 if (m88k_gp_threshold > 0) \
2520 if (TREE_CODE (DECL) == VAR_DECL) \
2521 { \
2522 if (!TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL)) \
2523 { \
2524 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
2525 \
2526 if (size > 0 && size <= m88k_gp_threshold) \
2527 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2528 } \
2529 } \
2530 else if (TREE_CODE (DECL) == STRING_CST \
2531 && flag_writable_strings \
2532 && TREE_STRING_LENGTH (DECL) <= m88k_gp_threshold) \
2533 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
2534 } while (0)
2535 \f
2536 /* Print operand X (an rtx) in assembler syntax to file FILE.
2537 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2538 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2539 #define PRINT_OPERAND_PUNCT_VALID_P(c) \
2540 ((c) == '#' || (c) == '.' || (c) == '!' || (c) == '*' || (c) == ';')
2541
2542 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2543
2544 /* Print a memory address as an operand to reference that memory location. */
2545 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
This page took 0.160491 seconds and 5 git commands to generate.