]> gcc.gnu.org Git - gcc.git/blob - gcc/config/m68k/m68k.h
(LEGITIMATE_PIC_OPERAND): Allow SYMBOL_REF_FLAG symref.
[gcc.git] / gcc / config / m68k / m68k.h
1 /* Definitions of target machine for GNU compiler. Sun 68000/68020 version.
2 Copyright (C) 1987, 1988, 1993, 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25
26 /* Names to predefine in the preprocessor for this target machine. */
27
28 /* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES. */
29
30 /* Print subsidiary information on the compiler version in use. */
31 #ifdef MOTOROLA
32 #define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
33 #else
34 #define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
35 #endif
36
37 /* Define SUPPORT_SUN_FPA to include support for generating code for
38 the Sun Floating Point Accelerator, an optional product for Sun 3
39 machines. By default, it is not defined. Avoid defining it unless
40 you need to output code for the Sun3+FPA architecture, as it has the
41 effect of slowing down the register set operations in hard-reg-set.h
42 (total number of registers will exceed number of bits in a long,
43 if defined, causing the set operations to expand to loops).
44 SUPPORT_SUN_FPA is typically defined in sun3.h. */
45
46 /* Run-time compilation parameters selecting different hardware subsets. */
47
48 extern int target_flags;
49
50 /* Macros used in the machine description to test the flags. */
51
52 /* Compile for a 68020 (not a 68000 or 68010). */
53 #define TARGET_68020 (target_flags & 1)
54
55 /* Compile 68881 insns for floating point (not library calls). */
56 #define TARGET_68881 (target_flags & 2)
57
58 /* Compile using 68020 bitfield insns. */
59 #define TARGET_BITFIELD (target_flags & 4)
60
61 /* Compile using rtd insn calling sequence.
62 This will not work unless you use prototypes at least
63 for all functions that can take varying numbers of args. */
64 #define TARGET_RTD (target_flags & 8)
65
66 /* Compile passing first two args in regs 0 and 1.
67 This exists only to test compiler features that will
68 be needed for RISC chips. It is not usable
69 and is not intended to be usable on this cpu. */
70 #define TARGET_REGPARM (target_flags & 020)
71
72 /* Compile with 16-bit `int'. */
73 #define TARGET_SHORT (target_flags & 040)
74
75 /* Compile with special insns for Sun FPA. */
76 #ifdef SUPPORT_SUN_FPA
77 #define TARGET_FPA (target_flags & 0100)
78 #else
79 #define TARGET_FPA 0
80 #endif
81
82 /* Compile (actually, link) for Sun SKY board. */
83 #define TARGET_SKY (target_flags & 0200)
84
85 /* Optimize for 68040, but still allow execution on 68020
86 (-m68020-40 or -m68040).
87 The 68040 will execute all 68030 and 68881/2 instructions, but some
88 of them must be emulated in software by the OS. When TARGET_68040 is
89 turned on, these instructions won't be used. This code will still
90 run on a 68030 and 68881/2. */
91 #define TARGET_68040 (target_flags & 01400)
92
93 /* Use the 68040-only fp instructions (-m68040). */
94 #define TARGET_68040_ONLY (target_flags & 01000)
95
96 /* Macro to define tables used to set the flags.
97 This is a list in braces of pairs in braces,
98 each pair being { "NAME", VALUE }
99 where VALUE is the bits to set or minus the bits to clear.
100 An empty string NAME is used to identify the default VALUE. */
101
102 #define TARGET_SWITCHES \
103 { { "68020", -01400}, \
104 { "c68020", -01400}, \
105 { "68020", 5}, \
106 { "c68020", 5}, \
107 { "68881", 2}, \
108 { "bitfield", 4}, \
109 { "68000", -01405}, \
110 { "c68000", -01405}, \
111 { "soft-float", -01102}, \
112 { "nobitfield", -4}, \
113 { "rtd", 8}, \
114 { "nortd", -8}, \
115 { "short", 040}, \
116 { "noshort", -040}, \
117 { "fpa", 0100}, \
118 { "nofpa", -0100}, \
119 { "sky", 0200}, \
120 { "nosky", -0200}, \
121 { "68020-40", 0407}, \
122 { "68030", -01400}, \
123 { "68030", 5}, \
124 { "68040", 01007}, \
125 { "68851", 0}, /* Affects *_SPEC and/or GAS. */ \
126 { "no-68851", 0}, /* Affects *_SPEC and/or GAS. */ \
127 { "68302", 0}, /* Affects *_SPEC and/or GAS. */ \
128 { "no-68302", 0}, /* Affects *_SPEC and/or GAS. */ \
129 { "68332", 0}, /* Affects *_SPEC and/or GAS. */ \
130 { "no-68332", 0}, /* Affects *_SPEC and/or GAS. */ \
131 SUBTARGET_SWITCHES \
132 { "", TARGET_DEFAULT}}
133 /* TARGET_DEFAULT is defined in sun*.h and isi.h, etc. */
134
135 /* This is meant to be redefined in the host dependent files */
136 #define SUBTARGET_SWITCHES
137
138 #ifdef SUPPORT_SUN_FPA
139 /* Blow away 68881 flag silently on TARGET_FPA (since we can't clear
140 any bits in TARGET_SWITCHES above) */
141 #define OVERRIDE_OPTIONS \
142 { \
143 if (TARGET_FPA) target_flags &= ~2; \
144 if (! TARGET_68020 && flag_pic == 2) \
145 error("-fPIC is not currently supported on the 68000 or 68010\n"); \
146 SUBTARGET_OVERRIDE_OPTIONS; \
147 }
148 #else
149 #define OVERRIDE_OPTIONS \
150 { \
151 if (! TARGET_68020 && flag_pic == 2) \
152 error("-fPIC is not currently supported on the 68000 or 68010\n"); \
153 SUBTARGET_OVERRIDE_OPTIONS; \
154 }
155 #endif /* defined SUPPORT_SUN_FPA */
156
157 /* This is meant to be redefined in the host dependent files */
158 #define SUBTARGET_OVERRIDE_OPTIONS
159 \f
160 /* target machine storage layout */
161
162 /* Define for XFmode extended real floating point support.
163 This will automatically cause REAL_ARITHMETIC to be defined. */
164 #define LONG_DOUBLE_TYPE_SIZE 96
165
166 /* Define if you don't want extended real, but do want to use the
167 software floating point emulator for REAL_ARITHMETIC and
168 decimal <-> binary conversion. */
169 /* #define REAL_ARITHMETIC */
170
171 /* Define this if most significant bit is lowest numbered
172 in instructions that operate on numbered bit-fields.
173 This is true for 68020 insns such as bfins and bfexts.
174 We make it true always by avoiding using the single-bit insns
175 except in special cases with constant bit numbers. */
176 #define BITS_BIG_ENDIAN 1
177
178 /* Define this if most significant byte of a word is the lowest numbered. */
179 /* That is true on the 68000. */
180 #define BYTES_BIG_ENDIAN 1
181
182 /* Define this if most significant word of a multiword number is the lowest
183 numbered. */
184 /* For 68000 we can decide arbitrarily
185 since there are no machine instructions for them.
186 So let's be consistent. */
187 #define WORDS_BIG_ENDIAN 1
188
189 /* number of bits in an addressable storage unit */
190 #define BITS_PER_UNIT 8
191
192 /* Width in bits of a "word", which is the contents of a machine register.
193 Note that this is not necessarily the width of data type `int';
194 if using 16-bit ints on a 68000, this would still be 32.
195 But on a machine with 16-bit registers, this would be 16. */
196 #define BITS_PER_WORD 32
197
198 /* Width of a word, in units (bytes). */
199 #define UNITS_PER_WORD 4
200
201 /* Width in bits of a pointer.
202 See also the macro `Pmode' defined below. */
203 #define POINTER_SIZE 32
204
205 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
206 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
207
208 /* Boundary (in *bits*) on which stack pointer should be aligned. */
209 #define STACK_BOUNDARY 16
210
211 /* Allocation boundary (in *bits*) for the code of a function. */
212 #define FUNCTION_BOUNDARY 16
213
214 /* Alignment of field after `int : 0' in a structure. */
215 #define EMPTY_FIELD_BOUNDARY 16
216
217 /* No data type wants to be aligned rounder than this. */
218 #define BIGGEST_ALIGNMENT 16
219
220 /* Set this nonzero if move instructions will actually fail to work
221 when given unaligned data. */
222 #define STRICT_ALIGNMENT 1
223
224 #define SELECT_RTX_SECTION(MODE, X) \
225 { \
226 if (!flag_pic) \
227 readonly_data_section(); \
228 else if (LEGITIMATE_PIC_OPERAND_P (X)) \
229 readonly_data_section(); \
230 else \
231 data_section(); \
232 }
233
234 /* Define number of bits in most basic integer type.
235 (If undefined, default is BITS_PER_WORD). */
236
237 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
238
239 /* Define these to avoid dependence on meaning of `int'.
240 Note that WCHAR_TYPE_SIZE is used in cexp.y,
241 where TARGET_SHORT is not available. */
242
243 #define WCHAR_TYPE "long int"
244 #define WCHAR_TYPE_SIZE 32
245 \f
246 /* Standard register usage. */
247
248 /* Number of actual hardware registers.
249 The hardware registers are assigned numbers for the compiler
250 from 0 to just below FIRST_PSEUDO_REGISTER.
251 All registers that the compiler knows about must be given numbers,
252 even those that are not normally considered general registers.
253 For the 68000, we give the data registers numbers 0-7,
254 the address registers numbers 010-017,
255 and the 68881 floating point registers numbers 020-027. */
256 #ifndef SUPPORT_SUN_FPA
257 #define FIRST_PSEUDO_REGISTER 24
258 #else
259 #define FIRST_PSEUDO_REGISTER 56
260 #endif
261
262 /* This defines the register which is used to hold the offset table for PIC. */
263 #define PIC_OFFSET_TABLE_REGNUM 13
264
265 /* Used to output a (use pic_offset_table_rtx) so that we
266 always save/restore a5 in functions that use PIC relocation
267 at *any* time during the compilation process. */
268 #define FINALIZE_PIC finalize_pic()
269
270 #ifndef SUPPORT_SUN_FPA
271
272 /* 1 for registers that have pervasive standard uses
273 and are not available for the register allocator.
274 On the 68000, only the stack pointer is such. */
275
276 #define FIXED_REGISTERS \
277 {/* Data registers. */ \
278 0, 0, 0, 0, 0, 0, 0, 0, \
279 \
280 /* Address registers. */ \
281 0, 0, 0, 0, 0, 0, 0, 1, \
282 \
283 /* Floating point registers \
284 (if available). */ \
285 0, 0, 0, 0, 0, 0, 0, 0 }
286
287 /* 1 for registers not available across function calls.
288 These must include the FIXED_REGISTERS and also any
289 registers that can be used without being saved.
290 The latter must include the registers where values are returned
291 and the register where structure-value addresses are passed.
292 Aside from that, you can include as many other registers as you like. */
293 #define CALL_USED_REGISTERS \
294 {1, 1, 0, 0, 0, 0, 0, 0, \
295 1, 1, 0, 0, 0, 0, 0, 1, \
296 1, 1, 0, 0, 0, 0, 0, 0 }
297
298 #else /* SUPPORT_SUN_FPA */
299
300 /* 1 for registers that have pervasive standard uses
301 and are not available for the register allocator.
302 On the 68000, only the stack pointer is such. */
303
304 /* fpa0 is also reserved so that it can be used to move shit back and
305 forth between high fpa regs and everything else. */
306
307 #define FIXED_REGISTERS \
308 {/* Data registers. */ \
309 0, 0, 0, 0, 0, 0, 0, 0, \
310 \
311 /* Address registers. */ \
312 0, 0, 0, 0, 0, 0, 0, 1, \
313 \
314 /* Floating point registers \
315 (if available). */ \
316 0, 0, 0, 0, 0, 0, 0, 0, \
317 \
318 /* Sun3 FPA registers. */ \
319 1, 0, 0, 0, 0, 0, 0, 0, \
320 0, 0, 0, 0, 0, 0, 0, 0, \
321 0, 0, 0, 0, 0, 0, 0, 0, \
322 0, 0, 0, 0, 0, 0, 0, 0 }
323
324 /* 1 for registers not available across function calls.
325 These must include the FIXED_REGISTERS and also any
326 registers that can be used without being saved.
327 The latter must include the registers where values are returned
328 and the register where structure-value addresses are passed.
329 Aside from that, you can include as many other registers as you like. */
330 #define CALL_USED_REGISTERS \
331 {1, 1, 0, 0, 0, 0, 0, 0, \
332 1, 1, 0, 0, 0, 0, 0, 1, \
333 1, 1, 0, 0, 0, 0, 0, 0, \
334 /* FPA registers. */ \
335 1, 1, 1, 1, 0, 0, 0, 0, \
336 0, 0, 0, 0, 0, 0, 0, 0, \
337 0, 0, 0, 0, 0, 0, 0, 0, \
338 0, 0, 0, 0, 0, 0, 0, 0 }
339
340 #endif /* defined SUPPORT_SUN_FPA */
341
342
343 /* Make sure everything's fine if we *don't* have a given processor.
344 This assumes that putting a register in fixed_regs will keep the
345 compiler's mitts completely off it. We don't bother to zero it out
346 of register classes. If neither TARGET_FPA or TARGET_68881 is set,
347 the compiler won't touch since no instructions that use these
348 registers will be valid. */
349
350 #ifdef SUPPORT_SUN_FPA
351
352 #define CONDITIONAL_REGISTER_USAGE \
353 { \
354 int i; \
355 HARD_REG_SET x; \
356 if (!TARGET_FPA) \
357 { \
358 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]); \
359 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
360 if (TEST_HARD_REG_BIT (x, i)) \
361 fixed_regs[i] = call_used_regs[i] = 1; \
362 } \
363 if (TARGET_FPA) \
364 { \
365 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
366 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
367 if (TEST_HARD_REG_BIT (x, i)) \
368 fixed_regs[i] = call_used_regs[i] = 1; \
369 } \
370 }
371
372 #endif /* defined SUPPORT_SUN_FPA */
373
374 /* Return number of consecutive hard regs needed starting at reg REGNO
375 to hold something of mode MODE.
376 This is ordinarily the length in words of a value of mode MODE
377 but can be less for certain modes in special long registers.
378
379 On the 68000, ordinary registers hold 32 bits worth;
380 for the 68881 registers, a single register is always enough for
381 anything that can be stored in them at all. */
382 #define HARD_REGNO_NREGS(REGNO, MODE) \
383 ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
384 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
385
386 #ifndef SUPPORT_SUN_FPA
387
388 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
389 On the 68000, the cpu registers can hold any mode but the 68881 registers
390 can hold only SFmode or DFmode. The 68881 registers can't hold anything
391 if 68881 use is disabled. */
392
393 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
394 (((REGNO) < 16 \
395 && !((REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8)) \
396 || ((REGNO) < 24 \
397 && TARGET_68881 \
398 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
399 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)))
400
401 #else /* defined SUPPORT_SUN_FPA */
402
403 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
404 On the 68000, the cpu registers can hold any mode but the 68881 registers
405 can hold only SFmode or DFmode. And the 68881 registers can't hold anything
406 if 68881 use is disabled. However, the Sun FPA register can
407 (apparently) hold whatever you feel like putting in them.
408 If using the fpa, don't put a double in d7/a0. */
409
410 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
411 (((REGNO) < 16 \
412 && !(TARGET_FPA \
413 && GET_MODE_CLASS ((MODE)) != MODE_INT \
414 && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
415 && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8 \
416 && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0)) \
417 || ((REGNO) < 24 \
418 ? TARGET_68881 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
419 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
420 : ((REGNO) < 56 ? TARGET_FPA : 0)))
421
422 #endif /* defined SUPPORT_SUN_FPA */
423
424 /* Value is 1 if it is a good idea to tie two pseudo registers
425 when one has mode MODE1 and one has mode MODE2.
426 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
427 for any hard reg, then this must be 0 for correct output. */
428 #define MODES_TIEABLE_P(MODE1, MODE2) \
429 (! TARGET_68881 \
430 || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
431 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
432 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
433 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
434
435 /* Specify the registers used for certain standard purposes.
436 The values of these macros are register numbers. */
437
438 /* m68000 pc isn't overloaded on a register. */
439 /* #define PC_REGNUM */
440
441 /* Register to use for pushing function arguments. */
442 #define STACK_POINTER_REGNUM 15
443
444 /* Base register for access to local variables of the function. */
445 #define FRAME_POINTER_REGNUM 14
446
447 /* Value should be nonzero if functions must have frame pointers.
448 Zero means the frame pointer need not be set up (and parms
449 may be accessed via the stack pointer) in functions that seem suitable.
450 This is computed in `reload', in reload1.c. */
451 #define FRAME_POINTER_REQUIRED 0
452
453 /* Base register for access to arguments of the function. */
454 #define ARG_POINTER_REGNUM 14
455
456 /* Register in which static-chain is passed to a function. */
457 #define STATIC_CHAIN_REGNUM 8
458
459 /* Register in which address to store a structure value
460 is passed to a function. */
461 #define STRUCT_VALUE_REGNUM 9
462 \f
463 /* Define the classes of registers for register constraints in the
464 machine description. Also define ranges of constants.
465
466 One of the classes must always be named ALL_REGS and include all hard regs.
467 If there is more than one class, another class must be named NO_REGS
468 and contain no registers.
469
470 The name GENERAL_REGS must be the name of a class (or an alias for
471 another name such as ALL_REGS). This is the class of registers
472 that is allowed by "g" or "r" in a register constraint.
473 Also, registers outside this class are allocated only when
474 instructions express preferences for them.
475
476 The classes must be numbered in nondecreasing order; that is,
477 a larger-numbered class must never be contained completely
478 in a smaller-numbered class.
479
480 For any two classes, it is very desirable that there be another
481 class that represents their union. */
482
483 /* The 68000 has three kinds of registers, so eight classes would be
484 a complete set. One of them is not needed. */
485
486 #ifndef SUPPORT_SUN_FPA
487
488 enum reg_class {
489 NO_REGS, DATA_REGS,
490 ADDR_REGS, FP_REGS,
491 GENERAL_REGS, DATA_OR_FP_REGS,
492 ADDR_OR_FP_REGS, ALL_REGS,
493 LIM_REG_CLASSES };
494
495 #define N_REG_CLASSES (int) LIM_REG_CLASSES
496
497 /* Give names of register classes as strings for dump file. */
498
499 #define REG_CLASS_NAMES \
500 { "NO_REGS", "DATA_REGS", \
501 "ADDR_REGS", "FP_REGS", \
502 "GENERAL_REGS", "DATA_OR_FP_REGS", \
503 "ADDR_OR_FP_REGS", "ALL_REGS" }
504
505 /* Define which registers fit in which classes.
506 This is an initializer for a vector of HARD_REG_SET
507 of length N_REG_CLASSES. */
508
509 #define REG_CLASS_CONTENTS \
510 { \
511 0x00000000, /* NO_REGS */ \
512 0x000000ff, /* DATA_REGS */ \
513 0x0000ff00, /* ADDR_REGS */ \
514 0x00ff0000, /* FP_REGS */ \
515 0x0000ffff, /* GENERAL_REGS */ \
516 0x00ff00ff, /* DATA_OR_FP_REGS */ \
517 0x00ffff00, /* ADDR_OR_FP_REGS */ \
518 0x00ffffff, /* ALL_REGS */ \
519 }
520
521 /* The same information, inverted:
522 Return the class number of the smallest class containing
523 reg number REGNO. This could be a conditional expression
524 or could index an array. */
525
526 #define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
527
528 #else /* defined SUPPORT_SUN_FPA */
529
530 /*
531 * Notes on final choices:
532 *
533 * 1) Didn't feel any need to union-ize LOW_FPA_REGS with anything
534 * else.
535 * 2) Removed all unions that involve address registers with
536 * floating point registers (left in unions of address and data with
537 * floating point).
538 * 3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS.
539 * 4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS.
540 * 4) Left in everything else.
541 */
542 enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS,
543 FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS,
544 DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS,
545 GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS,
546 LIM_REG_CLASSES };
547
548 #define N_REG_CLASSES (int) LIM_REG_CLASSES
549
550 /* Give names of register classes as strings for dump file. */
551
552 #define REG_CLASS_NAMES \
553 { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS", \
554 "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS", \
555 "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS", \
556 "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" }
557
558 /* Define which registers fit in which classes.
559 This is an initializer for a vector of HARD_REG_SET
560 of length N_REG_CLASSES. */
561
562 #define REG_CLASS_CONTENTS \
563 { \
564 {0, 0}, /* NO_REGS */ \
565 {0xff000000, 0x000000ff}, /* LO_FPA_REGS */ \
566 {0xff000000, 0x00ffffff}, /* FPA_REGS */ \
567 {0x00ff0000, 0x00000000}, /* FP_REGS */ \
568 {0xffff0000, 0x00ffffff}, /* FP_OR_FPA_REGS */ \
569 {0x000000ff, 0x00000000}, /* DATA_REGS */ \
570 {0xff0000ff, 0x00ffffff}, /* DATA_OR_FPA_REGS */ \
571 {0x00ff00ff, 0x00000000}, /* DATA_OR_FP_REGS */ \
572 {0xffff00ff, 0x00ffffff}, /* DATA_OR_FP_OR_FPA_REGS */\
573 {0x0000ff00, 0x00000000}, /* ADDR_REGS */ \
574 {0x0000ffff, 0x00000000}, /* GENERAL_REGS */ \
575 {0xff00ffff, 0x00ffffff}, /* GENERAL_OR_FPA_REGS */\
576 {0x00ffffff, 0x00000000}, /* GENERAL_OR_FP_REGS */\
577 {0xffffffff, 0x00ffffff}, /* ALL_REGS */ \
578 }
579
580 /* The same information, inverted:
581 Return the class number of the smallest class containing
582 reg number REGNO. This could be a conditional expression
583 or could index an array. */
584
585 extern enum reg_class regno_reg_class[];
586 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
587
588 #endif /* SUPPORT_SUN_FPA */
589
590 /* The class value for index registers, and the one for base regs. */
591
592 #define INDEX_REG_CLASS GENERAL_REGS
593 #define BASE_REG_CLASS ADDR_REGS
594
595 /* Get reg_class from a letter such as appears in the machine description.
596 We do a trick here to modify the effective constraints on the
597 machine description; we zorch the constraint letters that aren't
598 appropriate for a specific target. This allows us to guarantee
599 that a specific kind of register will not be used for a given target
600 without fiddling with the register classes above. */
601
602 #ifndef SUPPORT_SUN_FPA
603
604 #define REG_CLASS_FROM_LETTER(C) \
605 ((C) == 'a' ? ADDR_REGS : \
606 ((C) == 'd' ? DATA_REGS : \
607 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
608 NO_REGS) : \
609 NO_REGS)))
610
611 #else /* defined SUPPORT_SUN_FPA */
612
613 #define REG_CLASS_FROM_LETTER(C) \
614 ((C) == 'a' ? ADDR_REGS : \
615 ((C) == 'd' ? DATA_REGS : \
616 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
617 NO_REGS) : \
618 ((C) == 'x' ? (TARGET_FPA ? FPA_REGS : \
619 NO_REGS) : \
620 ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS : \
621 NO_REGS) : \
622 NO_REGS)))))
623
624 #endif /* defined SUPPORT_SUN_FPA */
625
626 /* The letters I, J, K, L and M in a register constraint string
627 can be used to stand for particular ranges of immediate operands.
628 This macro defines what the ranges are.
629 C is the letter, and VALUE is a constant value.
630 Return 1 if VALUE is in the range specified by C.
631
632 For the 68000, `I' is used for the range 1 to 8
633 allowed as immediate shift counts and in addq.
634 `J' is used for the range of signed numbers that fit in 16 bits.
635 `K' is for numbers that moveq can't handle.
636 `L' is for range -8 to -1, range of values that can be added with subq. */
637
638 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
639 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
640 (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
641 (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
642 (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
643
644 /*
645 * A small bit of explanation:
646 * "G" defines all of the floating constants that are *NOT* 68881
647 * constants. this is so 68881 constants get reloaded and the
648 * fpmovecr is used. "H" defines *only* the class of constants that
649 * the fpa can use, because these can be gotten at in any fpa
650 * instruction and there is no need to force reloads.
651 */
652 #ifndef SUPPORT_SUN_FPA
653 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
654 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
655 #else /* defined SUPPORT_SUN_FPA */
656 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
657 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \
658 (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0)
659 #endif /* defined SUPPORT_SUN_FPA */
660
661 /* Given an rtx X being reloaded into a reg required to be
662 in class CLASS, return the class of reg to actually use.
663 In general this is just CLASS; but on some machines
664 in some cases it is preferable to use a more restrictive class.
665 On the 68000 series, use a data reg if possible when the
666 value is a constant in the range where moveq could be used
667 and we ensure that QImodes are reloaded into data regs.
668 Also, if a floating constant needs reloading, put it in memory.
669 Don't do this for !G constants, since all patterns in the md file
670 expect them to be loaded into a register via fpmovecr. See above. */
671
672 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
673 ((GET_CODE (X) == CONST_INT \
674 && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
675 && (CLASS) != ADDR_REGS) \
676 ? DATA_REGS \
677 : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
678 ? DATA_REGS \
679 : (GET_CODE (X) == CONST_DOUBLE \
680 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
681 ? (! CONST_DOUBLE_OK_FOR_LETTER_P (X, 'G') \
682 && CLASS == FP_REGS \
683 ? FP_REGS : NO_REGS) \
684 : (CLASS))
685
686 /* Return the maximum number of consecutive registers
687 needed to represent mode MODE in a register of class CLASS. */
688 /* On the 68000, this is the size of MODE in words,
689 except in the FP regs, where a single reg is always enough. */
690 #ifndef SUPPORT_SUN_FPA
691
692 #define CLASS_MAX_NREGS(CLASS, MODE) \
693 ((CLASS) == FP_REGS ? 1 \
694 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
695
696 /* Moves between fp regs and other regs are two insns. */
697 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
698 (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
699 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
700 ? 4 : 2)
701
702 #else /* defined SUPPORT_SUN_FPA */
703
704 #define CLASS_MAX_NREGS(CLASS, MODE) \
705 ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \
706 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
707
708 /* Moves between fp regs and other regs are two insns. */
709 /* Likewise for high fpa regs and other regs. */
710 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
711 ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
712 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
713 || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS) \
714 || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS)) \
715 ? 4 : 2)
716
717 #endif /* define SUPPORT_SUN_FPA */
718 \f
719 /* Stack layout; function entry, exit and calling. */
720
721 /* Define this if pushing a word on the stack
722 makes the stack pointer a smaller address. */
723 #define STACK_GROWS_DOWNWARD
724
725 /* Nonzero if we need to generate stack-probe insns.
726 On most systems they are not needed.
727 When they are needed, define this as the stack offset to probe at. */
728 #define NEED_PROBE 0
729
730 /* Define this if the nominal address of the stack frame
731 is at the high-address end of the local variables;
732 that is, each additional local variable allocated
733 goes at a more negative offset in the frame. */
734 #define FRAME_GROWS_DOWNWARD
735
736 /* Offset within stack frame to start allocating local variables at.
737 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
738 first local allocated. Otherwise, it is the offset to the BEGINNING
739 of the first local allocated. */
740 #define STARTING_FRAME_OFFSET 0
741
742 /* If we generate an insn to push BYTES bytes,
743 this says how many the stack pointer really advances by.
744 On the 68000, sp@- in a byte insn really pushes a word. */
745 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
746
747 /* Offset of first parameter from the argument pointer register value. */
748 #define FIRST_PARM_OFFSET(FNDECL) 8
749
750 /* Value is the number of byte of arguments automatically
751 popped when returning from a subroutine call.
752 FUNDECL is the declaration node of the function (as a tree),
753 FUNTYPE is the data type of the function (as a tree),
754 or for a library call it is an identifier node for the subroutine name.
755 SIZE is the number of bytes of arguments passed on the stack.
756
757 On the 68000, the RTS insn cannot pop anything.
758 On the 68010, the RTD insn may be used to pop them if the number
759 of args is fixed, but if the number is variable then the caller
760 must pop them all. RTD can't be used for library calls now
761 because the library is compiled with the Unix compiler.
762 Use of RTD is a selectable option, since it is incompatible with
763 standard Unix calling sequences. If the option is not selected,
764 the caller must always pop the args. */
765
766 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
767 ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
768 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
769 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
770 == void_type_node))) \
771 ? (SIZE) : 0)
772
773 /* Define how to find the value returned by a function.
774 VALTYPE is the data type of the value (as a tree).
775 If the precise function being called is known, FUNC is its FUNCTION_DECL;
776 otherwise, FUNC is 0. */
777
778 /* On the 68000 the return value is in D0 regardless. */
779
780 #define FUNCTION_VALUE(VALTYPE, FUNC) \
781 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
782
783 /* Define how to find the value returned by a library function
784 assuming the value has mode MODE. */
785
786 /* On the 68000 the return value is in D0 regardless. */
787
788 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
789
790 /* 1 if N is a possible register number for a function value.
791 On the 68000, d0 is the only register thus used. */
792
793 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
794
795 /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
796 more than one register. */
797
798 #define NEEDS_UNTYPED_CALL 0
799
800 /* Define this if PCC uses the nonreentrant convention for returning
801 structure and union values. */
802
803 #define PCC_STATIC_STRUCT_RETURN
804
805 /* 1 if N is a possible register number for function argument passing.
806 On the 68000, no registers are used in this way. */
807
808 #define FUNCTION_ARG_REGNO_P(N) 0
809 \f
810 /* Define a data type for recording info about an argument list
811 during the scan of that argument list. This data type should
812 hold all necessary information about the function itself
813 and about the args processed so far, enough to enable macros
814 such as FUNCTION_ARG to determine where the next arg should go.
815
816 On the m68k, this is a single integer, which is a number of bytes
817 of arguments scanned so far. */
818
819 #define CUMULATIVE_ARGS int
820
821 /* Initialize a variable CUM of type CUMULATIVE_ARGS
822 for a call to a function whose data type is FNTYPE.
823 For a library call, FNTYPE is 0.
824
825 On the m68k, the offset starts at 0. */
826
827 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
828 ((CUM) = 0)
829
830 /* Update the data in CUM to advance over an argument
831 of mode MODE and data type TYPE.
832 (TYPE is null for libcalls where that information may not be available.) */
833
834 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
835 ((CUM) += ((MODE) != BLKmode \
836 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
837 : (int_size_in_bytes (TYPE) + 3) & ~3))
838
839 /* Define where to put the arguments to a function.
840 Value is zero to push the argument on the stack,
841 or a hard register in which to store the argument.
842
843 MODE is the argument's machine mode.
844 TYPE is the data type of the argument (as a tree).
845 This is null for libcalls where that information may
846 not be available.
847 CUM is a variable of type CUMULATIVE_ARGS which gives info about
848 the preceding args and about the function being called.
849 NAMED is nonzero if this argument is a named parameter
850 (otherwise it is an extra parameter matching an ellipsis). */
851
852 /* On the 68000 all args are pushed, except if -mregparm is specified
853 then the first two words of arguments are passed in d0, d1.
854 *NOTE* -mregparm does not work.
855 It exists only to test register calling conventions. */
856
857 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
858 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
859
860 /* For an arg passed partly in registers and partly in memory,
861 this is the number of registers used.
862 For args passed entirely in registers or entirely in memory, zero. */
863
864 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
865 ((TARGET_REGPARM && (CUM) < 8 \
866 && 8 < ((CUM) + ((MODE) == BLKmode \
867 ? int_size_in_bytes (TYPE) \
868 : GET_MODE_SIZE (MODE)))) \
869 ? 2 - (CUM) / 4 : 0)
870
871 /* Generate the assembly code for function entry. */
872 #define FUNCTION_PROLOGUE(FILE, SIZE) output_function_prologue(FILE, SIZE)
873
874 /* Output assembler code to FILE to increment profiler label # LABELNO
875 for profiling a function entry. */
876
877 #define FUNCTION_PROFILER(FILE, LABELNO) \
878 asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
879
880 /* Output assembler code to FILE to initialize this source file's
881 basic block profiling info, if that has not already been done. */
882
883 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
884 asm_fprintf (FILE, "\ttstl %LLPBX0\n\tbne %LLPI%d\n\tpea %LLPBX0\n\tjsr %U__bb_init_func\n\taddql %I4,%Rsp\n%LLPI%d:\n", \
885 LABELNO, LABELNO);
886
887 /* Output assembler code to FILE to increment the entry-count for
888 the BLOCKNO'th basic block in this source file. */
889
890 #define BLOCK_PROFILER(FILE, BLOCKNO) \
891 asm_fprintf (FILE, "\taddql %I1,%LLPBX2+%d\n", 4 * BLOCKNO)
892
893 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
894 the stack pointer does not matter. The value is tested only in
895 functions that have frame pointers.
896 No definition is equivalent to always zero. */
897
898 #define EXIT_IGNORE_STACK 1
899
900 /* Generate the assembly code for function exit. */
901 #define FUNCTION_EPILOGUE(FILE, SIZE) output_function_epilogue (FILE, SIZE)
902
903 /* This is a hook for other tm files to change. */
904 /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
905
906 /* Determine if the epilogue should be output as RTL.
907 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
908 #define USE_RETURN_INSN use_return_insn ()
909
910 /* Store in the variable DEPTH the initial difference between the
911 frame pointer reg contents and the stack pointer reg contents,
912 as of the start of the function body. This depends on the layout
913 of the fixed parts of the stack frame and on how registers are saved.
914
915 On the 68k, if we have a frame, we must add one word to its length
916 to allow for the place that a6 is stored when we do have a frame pointer.
917 Otherwise, we would need to compute the offset from the frame pointer
918 of a local variable as a function of frame_pointer_needed, which
919 is hard. */
920
921 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
922 { int regno; \
923 int offset = -4; \
924 for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
925 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
926 offset += 12; \
927 for (regno = 0; regno < 16; regno++) \
928 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
929 offset += 4; \
930 (DEPTH) = (offset + ((get_frame_size () + 3) & -4) \
931 + (get_frame_size () == 0 ? 0 : 4)); \
932 }
933
934 /* Output assembler code for a block containing the constant parts
935 of a trampoline, leaving space for the variable parts. */
936
937 /* On the 68k, the trampoline looks like this:
938 mov @#.,a0
939 jsr @#___trampoline
940 jsr @#___trampoline
941 .long STATIC
942 .long FUNCTION
943 The reason for having three jsr insns is so that an entire line
944 of the instruction cache is filled in a predictable way
945 that will always be the same.
946
947 We always use the assembler label ___trampoline
948 regardless of whether the system adds underscores. */
949
950 #define TRAMPOLINE_TEMPLATE(FILE) \
951 { \
952 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x207c)); \
953 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
954 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
955 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9)); \
956 ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
957 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9)); \
958 ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
959 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
960 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
961 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
962 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
963 }
964
965 /* Length in units of the trampoline for entering a nested function. */
966
967 #define TRAMPOLINE_SIZE 26
968
969 /* Alignment required for a trampoline. 16 is used to find the
970 beginning of a line in the instruction cache. */
971
972 #define TRAMPOLINE_ALIGN 16
973
974 /* Emit RTL insns to initialize the variable parts of a trampoline.
975 FNADDR is an RTX for the address of the function's pure code.
976 CXT is an RTX for the static chain value for the function. */
977
978 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
979 { \
980 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), TRAMP); \
981 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 18)), CXT); \
982 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 22)), FNADDR); \
983 }
984
985 /* This is the library routine that is used
986 to transfer control from the trampoline
987 to the actual nested function. */
988
989 /* A colon is used with no explicit operands
990 to cause the template string to be scanned for %-constructs. */
991 /* The function name __transfer_from_trampoline is not actually used.
992 The function definition just permits use of "asm with operands"
993 (though the operand list is empty). */
994 #define TRANSFER_FROM_TRAMPOLINE \
995 void \
996 __transfer_from_trampoline () \
997 { \
998 register char *a0 asm ("%a0"); \
999 asm (GLOBAL_ASM_OP " ___trampoline"); \
1000 asm ("___trampoline:"); \
1001 asm volatile ("move%.l %0,%@" : : "m" (a0[22])); \
1002 asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \
1003 asm ("rts":); \
1004 }
1005 \f
1006 /* Addressing modes, and classification of registers for them. */
1007
1008 #define HAVE_POST_INCREMENT
1009 /* #define HAVE_POST_DECREMENT */
1010
1011 #define HAVE_PRE_DECREMENT
1012 /* #define HAVE_PRE_INCREMENT */
1013
1014 /* Macros to check register numbers against specific register classes. */
1015
1016 /* These assume that REGNO is a hard or pseudo reg number.
1017 They give nonzero only if REGNO is a hard reg of the suitable class
1018 or a pseudo reg currently allocated to a suitable hard reg.
1019 Since they use reg_renumber, they are safe only once reg_renumber
1020 has been allocated, which happens in local-alloc.c. */
1021
1022 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1023 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1024 #define REGNO_OK_FOR_BASE_P(REGNO) \
1025 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1026 #define REGNO_OK_FOR_DATA_P(REGNO) \
1027 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1028 #define REGNO_OK_FOR_FP_P(REGNO) \
1029 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1030 #ifdef SUPPORT_SUN_FPA
1031 #define REGNO_OK_FOR_FPA_P(REGNO) \
1032 (((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56))
1033 #endif
1034
1035 /* Now macros that check whether X is a register and also,
1036 strictly, whether it is in a specified class.
1037
1038 These macros are specific to the 68000, and may be used only
1039 in code for printing assembler insns and in conditions for
1040 define_optimization. */
1041
1042 /* 1 if X is a data register. */
1043
1044 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1045
1046 /* 1 if X is an fp register. */
1047
1048 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1049
1050 /* 1 if X is an address register */
1051
1052 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1053
1054 #ifdef SUPPORT_SUN_FPA
1055 /* 1 if X is a register in the Sun FPA. */
1056 #define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X)))
1057 #else
1058 /* Answer must be no if we don't have an FPA. */
1059 #define FPA_REG_P(X) 0
1060 #endif
1061 \f
1062 /* Maximum number of registers that can appear in a valid memory address. */
1063
1064 #define MAX_REGS_PER_ADDRESS 2
1065
1066 /* Recognize any constant value that is a valid address. */
1067
1068 #define CONSTANT_ADDRESS_P(X) \
1069 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1070 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1071 || GET_CODE (X) == HIGH)
1072
1073 /* Nonzero if the constant value X is a legitimate general operand.
1074 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1075
1076 #define LEGITIMATE_CONSTANT_P(X) 1
1077
1078 /* Nonzero if the constant value X is a legitimate general operand
1079 when generating PIC code. It is given that flag_pic is on and
1080 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1081
1082 #define LEGITIMATE_PIC_OPERAND_P(X) \
1083 ((! symbolic_operand (X, VOIDmode) \
1084 && ! (GET_CODE (X) == CONST_DOUBLE && CONST_DOUBLE_MEM (X) \
1085 && GET_CODE (CONST_DOUBLE_MEM (X)) == MEM \
1086 && symbolic_operand (XEXP (CONST_DOUBLE_MEM (X), 0), \
1087 VOIDmode))) \
1088 || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
1089
1090 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1091 and check its validity for a certain class.
1092 We have two alternate definitions for each of them.
1093 The usual definition accepts all pseudo regs; the other rejects
1094 them unless they have been allocated suitable hard regs.
1095 The symbol REG_OK_STRICT causes the latter definition to be used.
1096
1097 Most source files want to accept pseudo regs in the hope that
1098 they will get allocated to the class that the insn wants them to be in.
1099 Source files for reload pass need to be strict.
1100 After reload, it makes no difference, since pseudo regs have
1101 been eliminated by then. */
1102
1103 #ifndef REG_OK_STRICT
1104
1105 /* Nonzero if X is a hard reg that can be used as an index
1106 or if it is a pseudo reg. */
1107 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1108 /* Nonzero if X is a hard reg that can be used as a base reg
1109 or if it is a pseudo reg. */
1110 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1111
1112 #else
1113
1114 /* Nonzero if X is a hard reg that can be used as an index. */
1115 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1116 /* Nonzero if X is a hard reg that can be used as a base reg. */
1117 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1118
1119 #endif
1120 \f
1121 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1122 that is a valid memory address for an instruction.
1123 The MODE argument is the machine mode for the MEM expression
1124 that wants to use this address.
1125
1126 When generating PIC, an address involving a SYMBOL_REF is legitimate
1127 if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1128 We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1129 and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1130
1131 Likewise for a LABEL_REF when generating PIC.
1132
1133 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1134
1135 /* Allow SUBREG everywhere we allow REG. This results in better code. It
1136 also makes function inlining work when inline functions are called with
1137 arguments that are SUBREGs. */
1138
1139 #define LEGITIMATE_BASE_REG_P(X) \
1140 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1141 || (GET_CODE (X) == SUBREG \
1142 && GET_CODE (SUBREG_REG (X)) == REG \
1143 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1144
1145 #define INDIRECTABLE_1_ADDRESS_P(X) \
1146 ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
1147 || LEGITIMATE_BASE_REG_P (X) \
1148 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
1149 && LEGITIMATE_BASE_REG_P (XEXP (X, 0))) \
1150 || (GET_CODE (X) == PLUS \
1151 && LEGITIMATE_BASE_REG_P (XEXP (X, 0)) \
1152 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1153 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000) \
1154 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1155 && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \
1156 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1157 && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF)) \
1158
1159 #if 0
1160 /* This should replace the last two (non-pic) lines
1161 except that Sun's assembler does not seem to handle such operands. */
1162 && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
1163 : (GET_CODE (XEXP (X, 1)) == CONST_INT \
1164 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))
1165 #endif
1166
1167
1168 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
1169 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1170
1171 /* Only labels on dispatch tables are valid for indexing from. */
1172 #define GO_IF_INDEXABLE_BASE(X, ADDR) \
1173 { rtx temp; \
1174 if (GET_CODE (X) == LABEL_REF \
1175 && (temp = next_nonnote_insn (XEXP (X, 0))) != 0 \
1176 && GET_CODE (temp) == JUMP_INSN \
1177 && (GET_CODE (PATTERN (temp)) == ADDR_VEC \
1178 || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC)) \
1179 goto ADDR; \
1180 if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
1181
1182 #define GO_IF_INDEXING(X, ADDR) \
1183 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
1184 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
1185 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
1186 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1187
1188 #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
1189 { GO_IF_INDEXING (X, ADDR); \
1190 if (GET_CODE (X) == PLUS) \
1191 { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1192 && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
1193 { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
1194 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1195 && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
1196 { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1197
1198 #define LEGITIMATE_INDEX_REG_P(X) \
1199 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1200 || (GET_CODE (X) == SIGN_EXTEND \
1201 && GET_CODE (XEXP (X, 0)) == REG \
1202 && GET_MODE (XEXP (X, 0)) == HImode \
1203 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1204 || (GET_CODE (X) == SUBREG \
1205 && GET_CODE (SUBREG_REG (X)) == REG \
1206 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1207
1208 #define LEGITIMATE_INDEX_P(X) \
1209 (LEGITIMATE_INDEX_REG_P (X) \
1210 || (TARGET_68020 && GET_CODE (X) == MULT \
1211 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
1212 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1213 && (INTVAL (XEXP (X, 1)) == 2 \
1214 || INTVAL (XEXP (X, 1)) == 4 \
1215 || INTVAL (XEXP (X, 1)) == 8)))
1216
1217 /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes. */
1218 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1219 { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
1220 GO_IF_INDEXED_ADDRESS (X, ADDR); \
1221 if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS \
1222 && LEGITIMATE_INDEX_P (XEXP (X, 0)) \
1223 && GET_CODE (XEXP (X, 1)) == LABEL_REF) \
1224 goto ADDR; }
1225
1226 /* Don't call memory_address_noforce for the address to fetch
1227 the switch offset. This address is ok as it stands (see above),
1228 but memory_address_noforce would alter it. */
1229 #define PIC_CASE_VECTOR_ADDRESS(index) index
1230 \f
1231 /* Try machine-dependent ways of modifying an illegitimate address
1232 to be legitimate. If we find one, return the new, valid address.
1233 This macro is used in only one place: `memory_address' in explow.c.
1234
1235 OLDX is the address as it was before break_out_memory_refs was called.
1236 In some cases it is useful to look at this to decide what needs to be done.
1237
1238 MODE and WIN are passed so that this macro can use
1239 GO_IF_LEGITIMATE_ADDRESS.
1240
1241 It is always safe for this macro to do nothing. It exists to recognize
1242 opportunities to optimize the output.
1243
1244 For the 68000, we handle X+REG by loading X into a register R and
1245 using R+REG. R will go in an address reg and indexing will be used.
1246 However, if REG is a broken-out memory address or multiplication,
1247 nothing needs to be done because REG can certainly go in an address reg. */
1248
1249 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1250 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1251 { register int ch = (X) != (OLDX); \
1252 if (GET_CODE (X) == PLUS) \
1253 { int copied = 0; \
1254 if (GET_CODE (XEXP (X, 0)) == MULT) \
1255 { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
1256 if (GET_CODE (XEXP (X, 1)) == MULT) \
1257 { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
1258 if (ch && GET_CODE (XEXP (X, 1)) == REG \
1259 && GET_CODE (XEXP (X, 0)) == REG) \
1260 goto WIN; \
1261 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
1262 if (GET_CODE (XEXP (X, 0)) == REG \
1263 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
1264 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1265 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
1266 { register rtx temp = gen_reg_rtx (Pmode); \
1267 register rtx val = force_operand (XEXP (X, 1), 0); \
1268 emit_move_insn (temp, val); \
1269 COPY_ONCE (X); \
1270 XEXP (X, 1) = temp; \
1271 goto WIN; } \
1272 else if (GET_CODE (XEXP (X, 1)) == REG \
1273 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
1274 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1275 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
1276 { register rtx temp = gen_reg_rtx (Pmode); \
1277 register rtx val = force_operand (XEXP (X, 0), 0); \
1278 emit_move_insn (temp, val); \
1279 COPY_ONCE (X); \
1280 XEXP (X, 0) = temp; \
1281 goto WIN; }}}
1282
1283 /* Go to LABEL if ADDR (a legitimate address expression)
1284 has an effect that depends on the machine mode it is used for.
1285 On the 68000, only predecrement and postincrement address depend thus
1286 (the amount of decrement or increment being the length of the operand). */
1287
1288 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1289 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1290 \f
1291 /* Specify the machine mode that this machine uses
1292 for the index in the tablejump instruction. */
1293 #define CASE_VECTOR_MODE HImode
1294
1295 /* Define this if the tablejump instruction expects the table
1296 to contain offsets from the address of the table.
1297 Do not define this if the table should contain absolute addresses. */
1298 #define CASE_VECTOR_PC_RELATIVE
1299
1300 /* Specify the tree operation to be used to convert reals to integers. */
1301 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1302
1303 /* This is the kind of divide that is easiest to do in the general case. */
1304 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1305
1306 /* Define this as 1 if `char' should by default be signed; else as 0. */
1307 #define DEFAULT_SIGNED_CHAR 1
1308
1309 /* Don't cse the address of the function being compiled. */
1310 #define NO_RECURSIVE_FUNCTION_CSE
1311
1312 /* Max number of bytes we can move from memory to memory
1313 in one reasonably fast instruction. */
1314 #define MOVE_MAX 4
1315
1316 /* Define this if zero-extension is slow (more than one real instruction). */
1317 #define SLOW_ZERO_EXTEND
1318
1319 /* Nonzero if access to memory by bytes is slow and undesirable. */
1320 #define SLOW_BYTE_ACCESS 0
1321
1322 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1323 is done just by pretending it is already truncated. */
1324 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1325
1326 /* We assume that the store-condition-codes instructions store 0 for false
1327 and some other value for true. This is the value stored for true. */
1328
1329 #define STORE_FLAG_VALUE -1
1330
1331 /* When a prototype says `char' or `short', really pass an `int'. */
1332 #define PROMOTE_PROTOTYPES
1333
1334 /* Specify the machine mode that pointers have.
1335 After generation of rtl, the compiler makes no further distinction
1336 between pointers and any other objects of this machine mode. */
1337 #define Pmode SImode
1338
1339 /* A function address in a call instruction
1340 is a byte address (for indexing purposes)
1341 so give the MEM rtx a byte's mode. */
1342 #define FUNCTION_MODE QImode
1343
1344 /* Compute the cost of computing a constant rtl expression RTX
1345 whose rtx-code is CODE. The body of this macro is a portion
1346 of a switch statement. If the code is computed here,
1347 return it with a return statement. Otherwise, break from the switch. */
1348
1349 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1350 case CONST_INT: \
1351 /* Constant zero is super cheap due to clr instruction. */ \
1352 if (RTX == const0_rtx) return 0; \
1353 /* if ((OUTER_CODE) == SET) */ \
1354 return const_int_cost(RTX); \
1355 case CONST: \
1356 case LABEL_REF: \
1357 case SYMBOL_REF: \
1358 return 3; \
1359 case CONST_DOUBLE: \
1360 return 5;
1361
1362 /* Compute the cost of various arithmetic operations.
1363 These are vaguely right for a 68020. */
1364 /* The costs for long multiply have been adjusted to
1365 work properly in synth_mult on the 68020,
1366 relative to an average of the time for add and the time for shift,
1367 taking away a little more because sometimes move insns are needed. */
1368 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
1369 #define MULL_COST (TARGET_68040 ? 5 : 13)
1370 #define MULW_COST (TARGET_68040 ? 3 : TARGET_68020 ? 8 : 5)
1371 #define DIVW_COST (TARGET_68020 ? 27 : 12)
1372
1373 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1374 case PLUS: \
1375 /* An lea costs about three times as much as a simple add. */ \
1376 if (GET_MODE (X) == SImode \
1377 && GET_CODE (XEXP (X, 0)) == REG \
1378 && GET_CODE (XEXP (X, 1)) == MULT \
1379 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1380 && GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT \
1381 && (INTVAL (XEXP (XEXP (X, 1), 1)) == 2 \
1382 || INTVAL (XEXP (XEXP (X, 1), 1)) == 4 \
1383 || INTVAL (XEXP (XEXP (X, 1), 1)) == 8)) \
1384 return COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */ \
1385 break; \
1386 case ASHIFT: \
1387 case ASHIFTRT: \
1388 case LSHIFTRT: \
1389 if (! TARGET_68020) \
1390 { \
1391 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1392 { \
1393 if (INTVAL (XEXP (X, 1)) < 16) \
1394 return COSTS_N_INSNS (2) + INTVAL (XEXP (X, 1)) / 2; \
1395 else \
1396 /* We're using clrw + swap for these cases. */ \
1397 return COSTS_N_INSNS (4) + (INTVAL (XEXP (X, 1)) - 16) / 2; \
1398 } \
1399 return COSTS_N_INSNS (10); /* worst case */ \
1400 } \
1401 /* A shift by a big integer takes an extra instruction. */ \
1402 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1403 && (INTVAL (XEXP (X, 1)) == 16)) \
1404 return COSTS_N_INSNS (2); /* clrw;swap */ \
1405 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1406 && !(INTVAL (XEXP (X, 1)) > 0 \
1407 && INTVAL (XEXP (X, 1)) <= 8)) \
1408 return COSTS_N_INSNS (3); /* lsr #i,dn */ \
1409 break; \
1410 case MULT: \
1411 if ((GET_CODE (XEXP (X, 0)) == ZERO_EXTEND \
1412 || GET_CODE (XEXP (X, 0)) == SIGN_EXTEND) \
1413 && GET_MODE (X) == SImode) \
1414 return COSTS_N_INSNS (MULW_COST); \
1415 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
1416 return COSTS_N_INSNS (MULW_COST); \
1417 else \
1418 return COSTS_N_INSNS (MULL_COST); \
1419 case DIV: \
1420 case UDIV: \
1421 case MOD: \
1422 case UMOD: \
1423 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
1424 return COSTS_N_INSNS (DIVW_COST); /* div.w */ \
1425 return COSTS_N_INSNS (43); /* div.l */
1426 \f
1427 /* Tell final.c how to eliminate redundant test instructions. */
1428
1429 /* Here we define machine-dependent flags and fields in cc_status
1430 (see `conditions.h'). */
1431
1432 /* Set if the cc value is actually in the 68881, so a floating point
1433 conditional branch must be output. */
1434 #define CC_IN_68881 04000
1435
1436 /* Store in cc_status the expressions that the condition codes will
1437 describe after execution of an instruction whose pattern is EXP.
1438 Do not alter them if the instruction would not alter the cc's. */
1439
1440 /* On the 68000, all the insns to store in an address register fail to
1441 set the cc's. However, in some cases these instructions can make it
1442 possibly invalid to use the saved cc's. In those cases we clear out
1443 some or all of the saved cc's so they won't be used. */
1444
1445 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1446
1447 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1448 { if (cc_prev_status.flags & CC_IN_68881) \
1449 return FLOAT; \
1450 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1451 return NO_OV; \
1452 return NORMAL; }
1453 \f
1454 /* Control the assembler format that we output. */
1455
1456 /* Output at beginning of assembler file. */
1457
1458 #define ASM_FILE_START(FILE) \
1459 fprintf (FILE, "#NO_APP\n");
1460
1461 /* Output to assembler file text saying following lines
1462 may contain character constants, extra white space, comments, etc. */
1463
1464 #define ASM_APP_ON "#APP\n"
1465
1466 /* Output to assembler file text saying following lines
1467 no longer contain unusual constructs. */
1468
1469 #define ASM_APP_OFF "#NO_APP\n"
1470
1471 /* Output before read-only data. */
1472
1473 #define TEXT_SECTION_ASM_OP ".text"
1474
1475 /* Output before writable data. */
1476
1477 #define DATA_SECTION_ASM_OP ".data"
1478
1479 /* Here are four prefixes that are used by asm_fprintf to
1480 facilitate customization for alternate assembler syntaxes.
1481 Machines with no likelihood of an alternate syntax need not
1482 define these and need not use asm_fprintf. */
1483
1484 /* The prefix for register names. Note that REGISTER_NAMES
1485 is supposed to include this prefix. */
1486
1487 #define REGISTER_PREFIX ""
1488
1489 /* The prefix for local labels. You should be able to define this as
1490 an empty string, or any arbitrary string (such as ".", ".L%", etc)
1491 without having to make any other changes to account for the specific
1492 definition. Note it is a string literal, not interpreted by printf
1493 and friends. */
1494
1495 #define LOCAL_LABEL_PREFIX ""
1496
1497 /* The prefix to add to user-visible assembler symbols. */
1498
1499 #define USER_LABEL_PREFIX "_"
1500
1501 /* The prefix for immediate operands. */
1502
1503 #define IMMEDIATE_PREFIX "#"
1504
1505 /* How to refer to registers in assembler output.
1506 This sequence is indexed by compiler's hard-register-number (see above). */
1507
1508 #ifndef SUPPORT_SUN_FPA
1509
1510 #define REGISTER_NAMES \
1511 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1512 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1513 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
1514
1515 #else /* SUPPORTED_SUN_FPA */
1516
1517 #define REGISTER_NAMES \
1518 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1519 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1520 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
1521 "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \
1522 "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \
1523 "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \
1524 "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" }
1525
1526 #endif /* defined SUPPORT_SUN_FPA */
1527
1528 /* How to renumber registers for dbx and gdb.
1529 On the Sun-3, the floating point registers have numbers
1530 18 to 25, not 16 to 23 as they do in the compiler. */
1531
1532 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1533
1534 /* This is how to output the definition of a user-level label named NAME,
1535 such as the label on a static function or variable NAME. */
1536
1537 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1538 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1539
1540 /* This is how to output a command to make the user-level label named NAME
1541 defined for reference from other files. */
1542
1543 #define GLOBAL_ASM_OP ".globl"
1544 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1545 do { fprintf (FILE, "%s ", GLOBAL_ASM_OP); \
1546 assemble_name (FILE, NAME); \
1547 fputs ("\n", FILE);} while (0)
1548
1549 /* This is how to output a reference to a user-level label named NAME.
1550 `assemble_name' uses this. */
1551
1552 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1553 asm_fprintf (FILE, "%0U%s", NAME)
1554
1555 /* This is how to output an internal numbered label where
1556 PREFIX is the class of label and NUM is the number within the class. */
1557
1558 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1559 asm_fprintf (FILE, "%0L%s%d:\n", PREFIX, NUM)
1560
1561 /* This is how to store into the string LABEL
1562 the symbol_ref name of an internal numbered label where
1563 PREFIX is the class of label and NUM is the number within the class.
1564 This is suitable for output with `assemble_name'. */
1565
1566 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1567 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
1568
1569 /* This is how to output a `long double' extended real constant. */
1570
1571 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1572 do { long l[3]; \
1573 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
1574 if (sizeof (int) == sizeof (long)) \
1575 fprintf (FILE, "\t.long 0x%x,0x%x,0x%x\n", l[0], l[1], l[2]); \
1576 else \
1577 fprintf (FILE, "\t.long 0x%lx,0x%lx,0x%lx\n", l[0], l[1], l[2]); \
1578 } while (0)
1579
1580 /* This is how to output an assembler line defining a `double' constant. */
1581
1582 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1583 do { char dstr[30]; \
1584 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1585 fprintf (FILE, "\t.double 0r%s\n", dstr); \
1586 } while (0)
1587
1588 /* This is how to output an assembler line defining a `float' constant. */
1589
1590 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1591 do { long l; \
1592 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1593 if (sizeof (int) == sizeof (long)) \
1594 fprintf (FILE, "\t.long 0x%x\n", l); \
1595 else \
1596 fprintf (FILE, "\t.long 0x%lx\n", l); \
1597 } while (0)
1598
1599 /* This is how to output an assembler line defining an `int' constant. */
1600
1601 #define ASM_OUTPUT_INT(FILE,VALUE) \
1602 ( fprintf (FILE, "\t.long "), \
1603 output_addr_const (FILE, (VALUE)), \
1604 fprintf (FILE, "\n"))
1605
1606 /* Likewise for `char' and `short' constants. */
1607
1608 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1609 ( fprintf (FILE, "\t.word "), \
1610 output_addr_const (FILE, (VALUE)), \
1611 fprintf (FILE, "\n"))
1612
1613 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1614 ( fprintf (FILE, "\t.byte "), \
1615 output_addr_const (FILE, (VALUE)), \
1616 fprintf (FILE, "\n"))
1617
1618 /* This is how to output an assembler line for a numeric constant byte. */
1619
1620 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1621 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1622
1623 /* This is how to output an insn to push a register on the stack.
1624 It need not be very fast code. */
1625
1626 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1627 asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1628
1629 /* This is how to output an insn to pop a register from the stack.
1630 It need not be very fast code. */
1631
1632 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1633 asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1634
1635 /* This is how to output an element of a case-vector that is absolute.
1636 (The 68000 does not use such vectors,
1637 but we must define this macro anyway.) */
1638
1639 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1640 asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1641
1642 /* This is how to output an element of a case-vector that is relative. */
1643
1644 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1645 asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1646
1647 /* This is how to output an assembler line
1648 that says to advance the location counter
1649 to a multiple of 2**LOG bytes. */
1650
1651 /* We don't have a way to align to more than a two-byte boundary, so do the
1652 best we can and don't complain. */
1653 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1654 if ((LOG) >= 1) \
1655 fprintf (FILE, "\t.even\n");
1656
1657 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1658 fprintf (FILE, "\t.skip %u\n", (SIZE))
1659
1660 /* This says how to output an assembler line
1661 to define a global common symbol. */
1662
1663 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1664 ( fputs (".comm ", (FILE)), \
1665 assemble_name ((FILE), (NAME)), \
1666 fprintf ((FILE), ",%u\n", (ROUNDED)))
1667
1668 /* This says how to output an assembler line
1669 to define a local common symbol. */
1670
1671 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1672 ( fputs (".lcomm ", (FILE)), \
1673 assemble_name ((FILE), (NAME)), \
1674 fprintf ((FILE), ",%u\n", (ROUNDED)))
1675
1676 /* Store in OUTPUT a string (made with alloca) containing
1677 an assembler-name for a local static variable named NAME.
1678 LABELNO is an integer which is different for each call. */
1679
1680 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1681 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1682 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1683
1684 /* Define the parentheses used to group arithmetic operations
1685 in assembler code. */
1686
1687 #define ASM_OPEN_PAREN "("
1688 #define ASM_CLOSE_PAREN ")"
1689
1690 /* Define results of standard character escape sequences. */
1691 #define TARGET_BELL 007
1692 #define TARGET_BS 010
1693 #define TARGET_TAB 011
1694 #define TARGET_NEWLINE 012
1695 #define TARGET_VT 013
1696 #define TARGET_FF 014
1697 #define TARGET_CR 015
1698
1699 /* Output a float value (represented as a C double) as an immediate operand.
1700 This macro is a 68k-specific macro. */
1701
1702 #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
1703 do { \
1704 if (CODE == 'f') \
1705 { \
1706 char dstr[30]; \
1707 REAL_VALUE_TO_DECIMAL (VALUE, "%.9g", dstr); \
1708 asm_fprintf ((FILE), "%I0r%s", dstr); \
1709 } \
1710 else \
1711 { \
1712 long l; \
1713 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1714 if (sizeof (int) == sizeof (long)) \
1715 asm_fprintf ((FILE), "%I0x%x", l); \
1716 else \
1717 asm_fprintf ((FILE), "%I0x%lx", l); \
1718 } \
1719 } while (0)
1720
1721 /* Output a double value (represented as a C double) as an immediate operand.
1722 This macro is a 68k-specific macro. */
1723 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
1724 do { char dstr[30]; \
1725 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1726 asm_fprintf (FILE, "%I0r%s", dstr); \
1727 } while (0)
1728
1729 /* Note, long double immediate operands are not actually
1730 generated by m68k.md. */
1731 #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
1732 do { char dstr[30]; \
1733 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1734 asm_fprintf (FILE, "%I0r%s", dstr); \
1735 } while (0)
1736
1737 /* Print operand X (an rtx) in assembler syntax to file FILE.
1738 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1739 For `%' followed by punctuation, CODE is the punctuation and X is null.
1740
1741 On the 68000, we use several CODE characters:
1742 '.' for dot needed in Motorola-style opcode names.
1743 '-' for an operand pushing on the stack:
1744 sp@-, -(sp) or -(%sp) depending on the style of syntax.
1745 '+' for an operand pushing on the stack:
1746 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1747 '@' for a reference to the top word on the stack:
1748 sp@, (sp) or (%sp) depending on the style of syntax.
1749 '#' for an immediate operand prefix (# in MIT and Motorola syntax
1750 but & in SGS syntax).
1751 '!' for the fpcr register (used in some float-to-fixed conversions).
1752 '$' for the letter `s' in an op code, but only on the 68040.
1753 '&' for the letter `d' in an op code, but only on the 68040.
1754 '/' for register prefix needed by longlong.h.
1755
1756 'b' for byte insn (no effect, on the Sun; this is for the ISI).
1757 'd' to force memory addressing to be absolute, not relative.
1758 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1759 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
1760 than directly). Second part of 'y' below.
1761 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1762 or print pair of registers as rx:ry.
1763 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
1764 CONST_DOUBLE's as SunFPA constant RAM registers if
1765 possible, so it should not be used except for the SunFPA. */
1766
1767 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1768 ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
1769 || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \
1770 || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1771
1772 /* A C compound statement to output to stdio stream STREAM the
1773 assembler syntax for an instruction operand X. X is an RTL
1774 expression.
1775
1776 CODE is a value that can be used to specify one of several ways
1777 of printing the operand. It is used when identical operands
1778 must be printed differently depending on the context. CODE
1779 comes from the `%' specification that was used to request
1780 printing of the operand. If the specification was just `%DIGIT'
1781 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
1782 is the ASCII code for LTR.
1783
1784 If X is a register, this macro should print the register's name.
1785 The names can be found in an array `reg_names' whose type is
1786 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
1787
1788 When the machine description has a specification `%PUNCT' (a `%'
1789 followed by a punctuation character), this macro is called with
1790 a null pointer for X and the punctuation character for CODE.
1791
1792 See m68k.c for the m68k specific codes. */
1793
1794 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1795
1796 /* A C compound statement to output to stdio stream STREAM the
1797 assembler syntax for an instruction operand that is a memory
1798 reference whose address is ADDR. ADDR is an RTL expression.
1799
1800 On some machines, the syntax for a symbolic address depends on
1801 the section that the address refers to. On these machines,
1802 define the macro `ENCODE_SECTION_INFO' to store the information
1803 into the `symbol_ref', and then check for it here. */
1804
1805 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1806
1807
1808 /* Definitions for generating bytecode */
1809
1810 /* Just so it's known this target is supported by the bytecode generator.
1811 If this define isn't found anywhere in the target config files, then
1812 dummy stubs are supplied by bytecode.h, and any attempt to use
1813 -fbytecode will result in an error message. */
1814
1815 #define TARGET_SUPPORTS_BYTECODE
1816
1817 /* Minimal segment alignment within sections is 8 units. */
1818 #define MACHINE_SEG_ALIGN 3
1819
1820 /* Integer alignment is two units. */
1821 #define INT_ALIGN 2
1822
1823 /* Pointer alignment is eight units. */
1824 #define PTR_ALIGN 3
1825
1826 /* Global symbols begin with `_' */
1827 #define NAMES_HAVE_UNDERSCORES
1828
1829 /* BC_xxx below are similar to their ASM_xxx counterparts above. */
1830 #define BC_GLOBALIZE_LABEL(FP, NAME) bc_globalize_label(NAME)
1831
1832 #define BC_OUTPUT_COMMON(FP, NAME, SIZE, ROUNDED) \
1833 do { bc_emit_common(NAME, ROUNDED); bc_globalize_label(NAME); } while (0)
1834
1835 #define BC_OUTPUT_LOCAL(FP, NAME, SIZE, ROUNDED) \
1836 bc_emit_common(NAME, ROUNDED)
1837
1838 #define BC_OUTPUT_ALIGN(FP, ALIGN) bc_align(ALIGN)
1839
1840 #define BC_OUTPUT_LABEL(FP, NAME) bc_emit_labeldef(NAME)
1841
1842 #define BC_OUTPUT_SKIP(FP, SIZE) bc_emit_skip(SIZE)
1843
1844 #define BC_OUTPUT_LABELREF(FP, NAME) \
1845 do { \
1846 char *foo = (char *) xmalloc(strlen(NAME) + 2); \
1847 strcpy(foo, "_"); \
1848 strcat(foo, NAME); \
1849 bc_emit_labelref (foo); \
1850 free (foo); \
1851 } while (0)
1852
1853 #define BC_OUTPUT_FLOAT(FP, VAL) \
1854 do { \
1855 float F = VAL; \
1856 bc_emit ((char *) &F, sizeof F); \
1857 } while (0)
1858
1859 #define BC_OUTPUT_DOUBLE(FP, VAL) \
1860 do { \
1861 double D = VAL; \
1862 bc_emit ((char *) &D, sizeof D); \
1863 } while (0)
1864
1865 #define BC_OUTPUT_BYTE(FP, VAL) \
1866 do { \
1867 char C = VAL; \
1868 bc_emit (&C, 1); \
1869 } while (0)
1870
1871
1872 #define BC_OUTPUT_FILE ASM_OUTPUT_FILE
1873 #define BC_OUTPUT_ASCII ASM_OUTPUT_ASCII
1874 #define BC_OUTPUT_IDENT ASM_OUTPUT_IDENT
1875
1876 /* Same as XSTR, but for bytecode */
1877 #define BCXSTR(RTX) ((RTX)->bc_label)
1878
1879
1880 /* Flush bytecode buffer onto file */
1881 #define BC_WRITE_FILE(FP) \
1882 { \
1883 fprintf (FP, ".text\n"); \
1884 bc_seg_write (bc_text_seg, FP); \
1885 fprintf(FP, "\n.data\n"); \
1886 bc_seg_write (bc_data_seg, FP); \
1887 bc_sym_write (FP); /* do .globl, .bss, etc. */ \
1888 }
1889
1890 /* Write one symbol */
1891 #define BC_WRITE_SEGSYM(SEGSYM, FP) \
1892 { \
1893 prsym (FP, (SEGSYM)->sym->name); \
1894 fprintf (FP, ":\n"); \
1895 }
1896
1897
1898 /* Write one reloc entry */
1899 #define BC_WRITE_RELOC_ENTRY(SEGRELOC, FP, OFFSET) \
1900 { \
1901 fprintf (FP, "\t.long "); \
1902 prsym (FP, (SEGRELOC)->sym->name); \
1903 fprintf (FP, " + %d\n", OFFSET); \
1904 }
1905
1906 /* Start new line of bytecodes */
1907 #define BC_START_BYTECODE_LINE(FP) \
1908 { \
1909 fprintf (FP, "\t.byte"); \
1910 }
1911
1912 /* Write one bytecode */
1913 #define BC_WRITE_BYTECODE(SEP, VAL, FP) \
1914 { \
1915 fprintf (FP, "%c0x%02X", (SEP), (VAL) & 0xff); \
1916 }
1917
1918 /* Write one bytecode RTL entry */
1919 #define BC_WRITE_RTL(R, FP) \
1920 { \
1921 fprintf (FP, "%s+%d/0x%08X\n", (R)->label, (R)->offset, (R)->bc_label); \
1922 }
1923
1924
1925 /* Emit function entry trampoline */
1926 #define BC_EMIT_TRAMPOLINE(TRAMPSEG, CALLINFO) \
1927 { \
1928 short insn; \
1929 \
1930 /* Push a reference to the callinfo structure. */ \
1931 insn = 0x4879; /* pea xxx.L */ \
1932 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1933 seg_refsym (TRAMPSEG, CALLINFO, 0); \
1934 \
1935 /* Call __interp, pop arguments, and return. */ \
1936 insn = 0x4eb9; /* jsr xxx.L */ \
1937 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1938 seg_refsym (TRAMPSEG, "__callint", 0); \
1939 insn = 0x588f; /* addql #4, sp */ \
1940 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1941 insn = 0x4e75; /* rts */ \
1942 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1943 }
1944
1945
1946
1947 #if 0
1948 #define VALIDATE_STACK() if (stack_depth < 0) abort ();
1949 #else
1950 #if 0
1951 #define VALIDATE_STACK() \
1952 fprintf (stderr, " %%%d%%", stack_depth);
1953 #endif
1954 #endif
1955
1956 /* Define functions defined in aux-output.c and used in templates. */
1957
1958 extern char *output_move_const_into_data_reg ();
1959 extern char *output_move_double ();
1960 extern char *output_move_const_single ();
1961 extern char *output_move_const_double ();
1962 extern char *output_btst ();
1963 extern char *output_scc_di ();
1964 \f
1965 /*
1966 Local variables:
1967 version-control: t
1968 End:
1969 */
This page took 0.136572 seconds and 6 git commands to generate.