]> gcc.gnu.org Git - gcc.git/blob - gcc/config/m68k/m68k.h
(RTX_COSTS): Fix typo from last change.
[gcc.git] / gcc / config / m68k / m68k.h
1 /* Definitions of target machine for GNU compiler. Sun 68000/68020 version.
2 Copyright (C) 1987, 1988, 1993, 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24
25 /* Names to predefine in the preprocessor for this target machine. */
26
27 /* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES. */
28
29 /* Print subsidiary information on the compiler version in use. */
30 #ifdef MOTOROLA
31 #define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
32 #else
33 #define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
34 #endif
35
36 /* Define SUPPORT_SUN_FPA to include support for generating code for
37 the Sun Floating Point Accelerator, an optional product for Sun 3
38 machines. By default, it is not defined. Avoid defining it unless
39 you need to output code for the Sun3+FPA architecture, as it has the
40 effect of slowing down the register set operations in hard-reg-set.h
41 (total number of registers will exceed number of bits in a long,
42 if defined, causing the set operations to expand to loops).
43 SUPPORT_SUN_FPA is typically defined in sun3.h. */
44
45 /* Run-time compilation parameters selecting different hardware subsets. */
46
47 extern int target_flags;
48
49 /* Macros used in the machine description to test the flags. */
50
51 /* Compile for a 68020 (not a 68000 or 68010). */
52 #define TARGET_68020 (target_flags & 1)
53
54 /* Compile 68881 insns for floating point (not library calls). */
55 #define TARGET_68881 (target_flags & 2)
56
57 /* Compile using 68020 bitfield insns. */
58 #define TARGET_BITFIELD (target_flags & 4)
59
60 /* Compile using rtd insn calling sequence.
61 This will not work unless you use prototypes at least
62 for all functions that can take varying numbers of args. */
63 #define TARGET_RTD (target_flags & 8)
64
65 /* Compile passing first two args in regs 0 and 1.
66 This exists only to test compiler features that will
67 be needed for RISC chips. It is not usable
68 and is not intended to be usable on this cpu. */
69 #define TARGET_REGPARM (target_flags & 020)
70
71 /* Compile with 16-bit `int'. */
72 #define TARGET_SHORT (target_flags & 040)
73
74 /* Compile with special insns for Sun FPA. */
75 #ifdef SUPPORT_SUN_FPA
76 #define TARGET_FPA (target_flags & 0100)
77 #else
78 #define TARGET_FPA 0
79 #endif
80
81 /* Compile (actually, link) for Sun SKY board. */
82 #define TARGET_SKY (target_flags & 0200)
83
84 /* Optimize for 68040, but still allow execution on 68020
85 (-m68020-40 or -m68040).
86 The 68040 will execute all 68030 and 68881/2 instructions, but some
87 of them must be emulated in software by the OS. When TARGET_68040 is
88 turned on, these instructions won't be used. This code will still
89 run on a 68030 and 68881/2. */
90 #define TARGET_68040 (target_flags & 01400)
91
92 /* Use the 68040-only fp instructions (-m68040). */
93 #define TARGET_68040_ONLY (target_flags & 01000)
94
95 /* Macro to define tables used to set the flags.
96 This is a list in braces of pairs in braces,
97 each pair being { "NAME", VALUE }
98 where VALUE is the bits to set or minus the bits to clear.
99 An empty string NAME is used to identify the default VALUE. */
100
101 #define TARGET_SWITCHES \
102 { { "68020", -01400}, \
103 { "c68020", -01400}, \
104 { "68020", 5}, \
105 { "c68020", 5}, \
106 { "68881", 2}, \
107 { "bitfield", 4}, \
108 { "68000", -01405}, \
109 { "c68000", -01405}, \
110 { "soft-float", -01102}, \
111 { "nobitfield", -4}, \
112 { "rtd", 8}, \
113 { "nortd", -8}, \
114 { "short", 040}, \
115 { "noshort", -040}, \
116 { "fpa", 0100}, \
117 { "nofpa", -0100}, \
118 { "sky", 0200}, \
119 { "nosky", -0200}, \
120 { "68020-40", 0407}, \
121 { "68030", -01400}, \
122 { "68030", 5}, \
123 { "68040", 01007}, \
124 { "68851", 0}, /* Affects *_SPEC and/or GAS. */ \
125 { "no-68851", 0}, /* Affects *_SPEC and/or GAS. */ \
126 { "68302", 0}, /* Affects *_SPEC and/or GAS. */ \
127 { "no-68302", 0}, /* Affects *_SPEC and/or GAS. */ \
128 { "68332", 0}, /* Affects *_SPEC and/or GAS. */ \
129 { "no-68332", 0}, /* Affects *_SPEC and/or GAS. */ \
130 SUBTARGET_SWITCHES \
131 { "", TARGET_DEFAULT}}
132 /* TARGET_DEFAULT is defined in sun*.h and isi.h, etc. */
133
134 /* This is meant to be redefined in the host dependent files */
135 #define SUBTARGET_SWITCHES
136
137 #ifdef SUPPORT_SUN_FPA
138 /* Blow away 68881 flag silently on TARGET_FPA (since we can't clear
139 any bits in TARGET_SWITCHES above) */
140 #define OVERRIDE_OPTIONS \
141 { \
142 if (TARGET_FPA) target_flags &= ~2; \
143 if (! TARGET_68020 && flag_pic == 2) \
144 error("-fPIC is not currently supported on the 68000 or 68010\n"); \
145 SUBTARGET_OVERRIDE_OPTIONS \
146 }
147 #else
148 #define OVERRIDE_OPTIONS \
149 { \
150 if (! TARGET_68020 && flag_pic == 2) \
151 error("-fPIC is not currently supported on the 68000 or 68010\n"); \
152 SUBTARGET_OVERRIDE_OPTIONS \
153 }
154 #endif /* defined SUPPORT_SUN_FPA */
155
156 /* This is meant to be redefined in the host dependent files */
157 #define SUBTARGET_OVERRIDE_OPTIONS
158 \f
159 /* target machine storage layout */
160
161 /* Define for XFmode extended real floating point support.
162 This will automatically cause REAL_ARITHMETIC to be defined. */
163 #define LONG_DOUBLE_TYPE_SIZE 96
164
165 /* Define if you don't want extended real, but do want to use the
166 software floating point emulator for REAL_ARITHMETIC and
167 decimal <-> binary conversion. */
168 /* #define REAL_ARITHMETIC */
169
170 /* Define this if most significant bit is lowest numbered
171 in instructions that operate on numbered bit-fields.
172 This is true for 68020 insns such as bfins and bfexts.
173 We make it true always by avoiding using the single-bit insns
174 except in special cases with constant bit numbers. */
175 #define BITS_BIG_ENDIAN 1
176
177 /* Define this if most significant byte of a word is the lowest numbered. */
178 /* That is true on the 68000. */
179 #define BYTES_BIG_ENDIAN 1
180
181 /* Define this if most significant word of a multiword number is the lowest
182 numbered. */
183 /* For 68000 we can decide arbitrarily
184 since there are no machine instructions for them.
185 So let's be consistent. */
186 #define WORDS_BIG_ENDIAN 1
187
188 /* number of bits in an addressable storage unit */
189 #define BITS_PER_UNIT 8
190
191 /* Width in bits of a "word", which is the contents of a machine register.
192 Note that this is not necessarily the width of data type `int';
193 if using 16-bit ints on a 68000, this would still be 32.
194 But on a machine with 16-bit registers, this would be 16. */
195 #define BITS_PER_WORD 32
196
197 /* Width of a word, in units (bytes). */
198 #define UNITS_PER_WORD 4
199
200 /* Width in bits of a pointer.
201 See also the macro `Pmode' defined below. */
202 #define POINTER_SIZE 32
203
204 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
205 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
206
207 /* Boundary (in *bits*) on which stack pointer should be aligned. */
208 #define STACK_BOUNDARY 16
209
210 /* Allocation boundary (in *bits*) for the code of a function. */
211 #define FUNCTION_BOUNDARY 16
212
213 /* Alignment of field after `int : 0' in a structure. */
214 #define EMPTY_FIELD_BOUNDARY 16
215
216 /* No data type wants to be aligned rounder than this. */
217 #define BIGGEST_ALIGNMENT 16
218
219 /* Set this nonzero if move instructions will actually fail to work
220 when given unaligned data. */
221 #define STRICT_ALIGNMENT 1
222
223 #define SELECT_RTX_SECTION(MODE, X) \
224 { \
225 if (!flag_pic) \
226 readonly_data_section(); \
227 else if (LEGITIMATE_PIC_OPERAND_P (X)) \
228 readonly_data_section(); \
229 else \
230 data_section(); \
231 }
232
233 /* Define number of bits in most basic integer type.
234 (If undefined, default is BITS_PER_WORD). */
235
236 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
237
238 /* Define these to avoid dependence on meaning of `int'.
239 Note that WCHAR_TYPE_SIZE is used in cexp.y,
240 where TARGET_SHORT is not available. */
241
242 #define WCHAR_TYPE "long int"
243 #define WCHAR_TYPE_SIZE 32
244 \f
245 /* Standard register usage. */
246
247 /* Number of actual hardware registers.
248 The hardware registers are assigned numbers for the compiler
249 from 0 to just below FIRST_PSEUDO_REGISTER.
250 All registers that the compiler knows about must be given numbers,
251 even those that are not normally considered general registers.
252 For the 68000, we give the data registers numbers 0-7,
253 the address registers numbers 010-017,
254 and the 68881 floating point registers numbers 020-027. */
255 #ifndef SUPPORT_SUN_FPA
256 #define FIRST_PSEUDO_REGISTER 24
257 #else
258 #define FIRST_PSEUDO_REGISTER 56
259 #endif
260
261 /* This defines the register which is used to hold the offset table for PIC. */
262 #define PIC_OFFSET_TABLE_REGNUM 13
263
264 /* Used to output a (use pic_offset_table_rtx) so that we
265 always save/restore a5 in functions that use PIC relocation
266 at *any* time during the compilation process. */
267 #define FINALIZE_PIC finalize_pic()
268
269 #ifndef SUPPORT_SUN_FPA
270
271 /* 1 for registers that have pervasive standard uses
272 and are not available for the register allocator.
273 On the 68000, only the stack pointer is such. */
274
275 #define FIXED_REGISTERS \
276 {/* Data registers. */ \
277 0, 0, 0, 0, 0, 0, 0, 0, \
278 \
279 /* Address registers. */ \
280 0, 0, 0, 0, 0, 0, 0, 1, \
281 \
282 /* Floating point registers \
283 (if available). */ \
284 0, 0, 0, 0, 0, 0, 0, 0 }
285
286 /* 1 for registers not available across function calls.
287 These must include the FIXED_REGISTERS and also any
288 registers that can be used without being saved.
289 The latter must include the registers where values are returned
290 and the register where structure-value addresses are passed.
291 Aside from that, you can include as many other registers as you like. */
292 #define CALL_USED_REGISTERS \
293 {1, 1, 0, 0, 0, 0, 0, 0, \
294 1, 1, 0, 0, 0, 0, 0, 1, \
295 1, 1, 0, 0, 0, 0, 0, 0 }
296
297 #else /* SUPPORT_SUN_FPA */
298
299 /* 1 for registers that have pervasive standard uses
300 and are not available for the register allocator.
301 On the 68000, only the stack pointer is such. */
302
303 /* fpa0 is also reserved so that it can be used to move shit back and
304 forth between high fpa regs and everything else. */
305
306 #define FIXED_REGISTERS \
307 {/* Data registers. */ \
308 0, 0, 0, 0, 0, 0, 0, 0, \
309 \
310 /* Address registers. */ \
311 0, 0, 0, 0, 0, 0, 0, 1, \
312 \
313 /* Floating point registers \
314 (if available). */ \
315 0, 0, 0, 0, 0, 0, 0, 0, \
316 \
317 /* Sun3 FPA registers. */ \
318 1, 0, 0, 0, 0, 0, 0, 0, \
319 0, 0, 0, 0, 0, 0, 0, 0, \
320 0, 0, 0, 0, 0, 0, 0, 0, \
321 0, 0, 0, 0, 0, 0, 0, 0 }
322
323 /* 1 for registers not available across function calls.
324 These must include the FIXED_REGISTERS and also any
325 registers that can be used without being saved.
326 The latter must include the registers where values are returned
327 and the register where structure-value addresses are passed.
328 Aside from that, you can include as many other registers as you like. */
329 #define CALL_USED_REGISTERS \
330 {1, 1, 0, 0, 0, 0, 0, 0, \
331 1, 1, 0, 0, 0, 0, 0, 1, \
332 1, 1, 0, 0, 0, 0, 0, 0, \
333 /* FPA registers. */ \
334 1, 1, 1, 1, 0, 0, 0, 0, \
335 0, 0, 0, 0, 0, 0, 0, 0, \
336 0, 0, 0, 0, 0, 0, 0, 0, \
337 0, 0, 0, 0, 0, 0, 0, 0 }
338
339 #endif /* defined SUPPORT_SUN_FPA */
340
341
342 /* Make sure everything's fine if we *don't* have a given processor.
343 This assumes that putting a register in fixed_regs will keep the
344 compiler's mitts completely off it. We don't bother to zero it out
345 of register classes. If neither TARGET_FPA or TARGET_68881 is set,
346 the compiler won't touch since no instructions that use these
347 registers will be valid.
348
349 Reserve PIC_OFFSET_TABLE_REGNUM (a5) for doing PIC relocation if
350 position independent code is being generated by making it a
351 fixed register */
352
353 #ifndef SUPPORT_SUN_FPA
354
355 #define CONDITIONAL_REGISTER_USAGE \
356 { \
357 if (flag_pic) \
358 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
359 }
360
361 #else /* defined SUPPORT_SUN_FPA */
362
363 #define CONDITIONAL_REGISTER_USAGE \
364 { \
365 int i; \
366 HARD_REG_SET x; \
367 if (!TARGET_FPA) \
368 { \
369 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]); \
370 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
371 if (TEST_HARD_REG_BIT (x, i)) \
372 fixed_regs[i] = call_used_regs[i] = 1; \
373 } \
374 if (TARGET_FPA) \
375 { \
376 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
378 if (TEST_HARD_REG_BIT (x, i)) \
379 fixed_regs[i] = call_used_regs[i] = 1; \
380 } \
381 if (flag_pic) \
382 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
383 }
384
385 #endif /* defined SUPPORT_SUN_FPA */
386
387 /* Return number of consecutive hard regs needed starting at reg REGNO
388 to hold something of mode MODE.
389 This is ordinarily the length in words of a value of mode MODE
390 but can be less for certain modes in special long registers.
391
392 On the 68000, ordinary registers hold 32 bits worth;
393 for the 68881 registers, a single register is always enough for
394 anything that can be stored in them at all. */
395 #define HARD_REGNO_NREGS(REGNO, MODE) \
396 ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
397 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
398
399 #ifndef SUPPORT_SUN_FPA
400
401 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
402 On the 68000, the cpu registers can hold any mode but the 68881 registers
403 can hold only SFmode or DFmode. The 68881 registers can't hold anything
404 if 68881 use is disabled. */
405
406 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
407 (((REGNO) < 16) \
408 || ((REGNO) < 24 \
409 && TARGET_68881 \
410 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
411 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)))
412
413 #else /* defined SUPPORT_SUN_FPA */
414
415 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
416 On the 68000, the cpu registers can hold any mode but the 68881 registers
417 can hold only SFmode or DFmode. And the 68881 registers can't hold anything
418 if 68881 use is disabled. However, the Sun FPA register can
419 (apparently) hold whatever you feel like putting in them.
420 If using the fpa, don't put a double in d7/a0. */
421
422 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
423 (((REGNO) < 16 \
424 && !(TARGET_FPA \
425 && GET_MODE_CLASS ((MODE)) != MODE_INT \
426 && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
427 && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8 \
428 && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0)) \
429 || ((REGNO) < 24 \
430 ? TARGET_68881 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
431 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
432 : ((REGNO) < 56 ? TARGET_FPA : 0)))
433
434 #endif /* defined SUPPORT_SUN_FPA */
435
436 /* Value is 1 if it is a good idea to tie two pseudo registers
437 when one has mode MODE1 and one has mode MODE2.
438 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
439 for any hard reg, then this must be 0 for correct output. */
440 #define MODES_TIEABLE_P(MODE1, MODE2) \
441 (! TARGET_68881 \
442 || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
443 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
444 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
445 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
446
447 /* Specify the registers used for certain standard purposes.
448 The values of these macros are register numbers. */
449
450 /* m68000 pc isn't overloaded on a register. */
451 /* #define PC_REGNUM */
452
453 /* Register to use for pushing function arguments. */
454 #define STACK_POINTER_REGNUM 15
455
456 /* Base register for access to local variables of the function. */
457 #define FRAME_POINTER_REGNUM 14
458
459 /* Value should be nonzero if functions must have frame pointers.
460 Zero means the frame pointer need not be set up (and parms
461 may be accessed via the stack pointer) in functions that seem suitable.
462 This is computed in `reload', in reload1.c. */
463 #define FRAME_POINTER_REQUIRED 0
464
465 /* Base register for access to arguments of the function. */
466 #define ARG_POINTER_REGNUM 14
467
468 /* Register in which static-chain is passed to a function. */
469 #define STATIC_CHAIN_REGNUM 8
470
471 /* Register in which address to store a structure value
472 is passed to a function. */
473 #define STRUCT_VALUE_REGNUM 9
474 \f
475 /* Define the classes of registers for register constraints in the
476 machine description. Also define ranges of constants.
477
478 One of the classes must always be named ALL_REGS and include all hard regs.
479 If there is more than one class, another class must be named NO_REGS
480 and contain no registers.
481
482 The name GENERAL_REGS must be the name of a class (or an alias for
483 another name such as ALL_REGS). This is the class of registers
484 that is allowed by "g" or "r" in a register constraint.
485 Also, registers outside this class are allocated only when
486 instructions express preferences for them.
487
488 The classes must be numbered in nondecreasing order; that is,
489 a larger-numbered class must never be contained completely
490 in a smaller-numbered class.
491
492 For any two classes, it is very desirable that there be another
493 class that represents their union. */
494
495 /* The 68000 has three kinds of registers, so eight classes would be
496 a complete set. One of them is not needed. */
497
498 #ifndef SUPPORT_SUN_FPA
499
500 enum reg_class {
501 NO_REGS, DATA_REGS,
502 ADDR_REGS, FP_REGS,
503 GENERAL_REGS, DATA_OR_FP_REGS,
504 ADDR_OR_FP_REGS, ALL_REGS,
505 LIM_REG_CLASSES };
506
507 #define N_REG_CLASSES (int) LIM_REG_CLASSES
508
509 /* Give names of register classes as strings for dump file. */
510
511 #define REG_CLASS_NAMES \
512 { "NO_REGS", "DATA_REGS", \
513 "ADDR_REGS", "FP_REGS", \
514 "GENERAL_REGS", "DATA_OR_FP_REGS", \
515 "ADDR_OR_FP_REGS", "ALL_REGS" }
516
517 /* Define which registers fit in which classes.
518 This is an initializer for a vector of HARD_REG_SET
519 of length N_REG_CLASSES. */
520
521 #define REG_CLASS_CONTENTS \
522 { \
523 0x00000000, /* NO_REGS */ \
524 0x000000ff, /* DATA_REGS */ \
525 0x0000ff00, /* ADDR_REGS */ \
526 0x00ff0000, /* FP_REGS */ \
527 0x0000ffff, /* GENERAL_REGS */ \
528 0x00ff00ff, /* DATA_OR_FP_REGS */ \
529 0x00ffff00, /* ADDR_OR_FP_REGS */ \
530 0x00ffffff, /* ALL_REGS */ \
531 }
532
533 /* The same information, inverted:
534 Return the class number of the smallest class containing
535 reg number REGNO. This could be a conditional expression
536 or could index an array. */
537
538 #define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
539
540 #else /* defined SUPPORT_SUN_FPA */
541
542 /*
543 * Notes on final choices:
544 *
545 * 1) Didn't feel any need to union-ize LOW_FPA_REGS with anything
546 * else.
547 * 2) Removed all unions that involve address registers with
548 * floating point registers (left in unions of address and data with
549 * floating point).
550 * 3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS.
551 * 4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS.
552 * 4) Left in everything else.
553 */
554 enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS,
555 FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS,
556 DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS,
557 GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS,
558 LIM_REG_CLASSES };
559
560 #define N_REG_CLASSES (int) LIM_REG_CLASSES
561
562 /* Give names of register classes as strings for dump file. */
563
564 #define REG_CLASS_NAMES \
565 { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS", \
566 "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS", \
567 "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS", \
568 "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" }
569
570 /* Define which registers fit in which classes.
571 This is an initializer for a vector of HARD_REG_SET
572 of length N_REG_CLASSES. */
573
574 #define REG_CLASS_CONTENTS \
575 { \
576 {0, 0}, /* NO_REGS */ \
577 {0xff000000, 0x000000ff}, /* LO_FPA_REGS */ \
578 {0xff000000, 0x00ffffff}, /* FPA_REGS */ \
579 {0x00ff0000, 0x00000000}, /* FP_REGS */ \
580 {0xffff0000, 0x00ffffff}, /* FP_OR_FPA_REGS */ \
581 {0x000000ff, 0x00000000}, /* DATA_REGS */ \
582 {0xff0000ff, 0x00ffffff}, /* DATA_OR_FPA_REGS */ \
583 {0x00ff00ff, 0x00000000}, /* DATA_OR_FP_REGS */ \
584 {0xffff00ff, 0x00ffffff}, /* DATA_OR_FP_OR_FPA_REGS */\
585 {0x0000ff00, 0x00000000}, /* ADDR_REGS */ \
586 {0x0000ffff, 0x00000000}, /* GENERAL_REGS */ \
587 {0xff00ffff, 0x00ffffff}, /* GENERAL_OR_FPA_REGS */\
588 {0x00ffffff, 0x00000000}, /* GENERAL_OR_FP_REGS */\
589 {0xffffffff, 0x00ffffff}, /* ALL_REGS */ \
590 }
591
592 /* The same information, inverted:
593 Return the class number of the smallest class containing
594 reg number REGNO. This could be a conditional expression
595 or could index an array. */
596
597 extern enum reg_class regno_reg_class[];
598 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
599
600 #endif /* SUPPORT_SUN_FPA */
601
602 /* The class value for index registers, and the one for base regs. */
603
604 #define INDEX_REG_CLASS GENERAL_REGS
605 #define BASE_REG_CLASS ADDR_REGS
606
607 /* Get reg_class from a letter such as appears in the machine description.
608 We do a trick here to modify the effective constraints on the
609 machine description; we zorch the constraint letters that aren't
610 appropriate for a specific target. This allows us to guarantee
611 that a specific kind of register will not be used for a given target
612 without fiddling with the register classes above. */
613
614 #ifndef SUPPORT_SUN_FPA
615
616 #define REG_CLASS_FROM_LETTER(C) \
617 ((C) == 'a' ? ADDR_REGS : \
618 ((C) == 'd' ? DATA_REGS : \
619 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
620 NO_REGS) : \
621 NO_REGS)))
622
623 #else /* defined SUPPORT_SUN_FPA */
624
625 #define REG_CLASS_FROM_LETTER(C) \
626 ((C) == 'a' ? ADDR_REGS : \
627 ((C) == 'd' ? DATA_REGS : \
628 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
629 NO_REGS) : \
630 ((C) == 'x' ? (TARGET_FPA ? FPA_REGS : \
631 NO_REGS) : \
632 ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS : \
633 NO_REGS) : \
634 NO_REGS)))))
635
636 #endif /* defined SUPPORT_SUN_FPA */
637
638 /* The letters I, J, K, L and M in a register constraint string
639 can be used to stand for particular ranges of immediate operands.
640 This macro defines what the ranges are.
641 C is the letter, and VALUE is a constant value.
642 Return 1 if VALUE is in the range specified by C.
643
644 For the 68000, `I' is used for the range 1 to 8
645 allowed as immediate shift counts and in addq.
646 `J' is used for the range of signed numbers that fit in 16 bits.
647 `K' is for numbers that moveq can't handle.
648 `L' is for range -8 to -1, range of values that can be added with subq. */
649
650 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
651 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
652 (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
653 (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
654 (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
655
656 /*
657 * A small bit of explanation:
658 * "G" defines all of the floating constants that are *NOT* 68881
659 * constants. this is so 68881 constants get reloaded and the
660 * fpmovecr is used. "H" defines *only* the class of constants that
661 * the fpa can use, because these can be gotten at in any fpa
662 * instruction and there is no need to force reloads.
663 */
664 #ifndef SUPPORT_SUN_FPA
665 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
666 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
667 #else /* defined SUPPORT_SUN_FPA */
668 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
669 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \
670 (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0)
671 #endif /* defined SUPPORT_SUN_FPA */
672
673 /* Given an rtx X being reloaded into a reg required to be
674 in class CLASS, return the class of reg to actually use.
675 In general this is just CLASS; but on some machines
676 in some cases it is preferable to use a more restrictive class.
677 On the 68000 series, use a data reg if possible when the
678 value is a constant in the range where moveq could be used
679 and we ensure that QImodes are reloaded into data regs.
680 Also, if a floating constant needs reloading, put it in memory.
681 Don't do this for !G constants, since all patterns in the md file
682 expect them to be loaded into a register via fpmovecr. See above. */
683
684 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
685 ((GET_CODE (X) == CONST_INT \
686 && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
687 && (CLASS) != ADDR_REGS) \
688 ? DATA_REGS \
689 : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
690 ? DATA_REGS \
691 : (GET_CODE (X) == CONST_DOUBLE \
692 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
693 ? (! CONST_DOUBLE_OK_FOR_LETTER_P (X, 'G') \
694 && CLASS == FP_REGS \
695 ? FP_REGS : NO_REGS) \
696 : (CLASS))
697
698 /* Return the maximum number of consecutive registers
699 needed to represent mode MODE in a register of class CLASS. */
700 /* On the 68000, this is the size of MODE in words,
701 except in the FP regs, where a single reg is always enough. */
702 #ifndef SUPPORT_SUN_FPA
703
704 #define CLASS_MAX_NREGS(CLASS, MODE) \
705 ((CLASS) == FP_REGS ? 1 \
706 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
707
708 /* Moves between fp regs and other regs are two insns. */
709 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
710 (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
711 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
712 ? 4 : 2)
713
714 #else /* defined SUPPORT_SUN_FPA */
715
716 #define CLASS_MAX_NREGS(CLASS, MODE) \
717 ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \
718 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
719
720 /* Moves between fp regs and other regs are two insns. */
721 /* Likewise for high fpa regs and other regs. */
722 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
723 ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
724 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
725 || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS) \
726 || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS)) \
727 ? 4 : 2)
728
729 #endif /* define SUPPORT_SUN_FPA */
730 \f
731 /* Stack layout; function entry, exit and calling. */
732
733 /* Define this if pushing a word on the stack
734 makes the stack pointer a smaller address. */
735 #define STACK_GROWS_DOWNWARD
736
737 /* Nonzero if we need to generate stack-probe insns.
738 On most systems they are not needed.
739 When they are needed, define this as the stack offset to probe at. */
740 #define NEED_PROBE 0
741
742 /* Define this if the nominal address of the stack frame
743 is at the high-address end of the local variables;
744 that is, each additional local variable allocated
745 goes at a more negative offset in the frame. */
746 #define FRAME_GROWS_DOWNWARD
747
748 /* Offset within stack frame to start allocating local variables at.
749 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
750 first local allocated. Otherwise, it is the offset to the BEGINNING
751 of the first local allocated. */
752 #define STARTING_FRAME_OFFSET 0
753
754 /* If we generate an insn to push BYTES bytes,
755 this says how many the stack pointer really advances by.
756 On the 68000, sp@- in a byte insn really pushes a word. */
757 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
758
759 /* Offset of first parameter from the argument pointer register value. */
760 #define FIRST_PARM_OFFSET(FNDECL) 8
761
762 /* Value is the number of byte of arguments automatically
763 popped when returning from a subroutine call.
764 FUNTYPE is the data type of the function (as a tree),
765 or for a library call it is an identifier node for the subroutine name.
766 SIZE is the number of bytes of arguments passed on the stack.
767
768 On the 68000, the RTS insn cannot pop anything.
769 On the 68010, the RTD insn may be used to pop them if the number
770 of args is fixed, but if the number is variable then the caller
771 must pop them all. RTD can't be used for library calls now
772 because the library is compiled with the Unix compiler.
773 Use of RTD is a selectable option, since it is incompatible with
774 standard Unix calling sequences. If the option is not selected,
775 the caller must always pop the args. */
776
777 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
778 ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
779 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
780 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
781 == void_type_node))) \
782 ? (SIZE) : 0)
783
784 /* Define how to find the value returned by a function.
785 VALTYPE is the data type of the value (as a tree).
786 If the precise function being called is known, FUNC is its FUNCTION_DECL;
787 otherwise, FUNC is 0. */
788
789 /* On the 68000 the return value is in D0 regardless. */
790
791 #define FUNCTION_VALUE(VALTYPE, FUNC) \
792 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
793
794 /* Define how to find the value returned by a library function
795 assuming the value has mode MODE. */
796
797 /* On the 68000 the return value is in D0 regardless. */
798
799 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
800
801 /* 1 if N is a possible register number for a function value.
802 On the 68000, d0 is the only register thus used. */
803
804 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
805
806 /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
807 more than one register. */
808
809 #define NEEDS_UNTYPED_CALL 0
810
811 /* Define this if PCC uses the nonreentrant convention for returning
812 structure and union values. */
813
814 #define PCC_STATIC_STRUCT_RETURN
815
816 /* 1 if N is a possible register number for function argument passing.
817 On the 68000, no registers are used in this way. */
818
819 #define FUNCTION_ARG_REGNO_P(N) 0
820 \f
821 /* Define a data type for recording info about an argument list
822 during the scan of that argument list. This data type should
823 hold all necessary information about the function itself
824 and about the args processed so far, enough to enable macros
825 such as FUNCTION_ARG to determine where the next arg should go.
826
827 On the m68k, this is a single integer, which is a number of bytes
828 of arguments scanned so far. */
829
830 #define CUMULATIVE_ARGS int
831
832 /* Initialize a variable CUM of type CUMULATIVE_ARGS
833 for a call to a function whose data type is FNTYPE.
834 For a library call, FNTYPE is 0.
835
836 On the m68k, the offset starts at 0. */
837
838 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
839 ((CUM) = 0)
840
841 /* Update the data in CUM to advance over an argument
842 of mode MODE and data type TYPE.
843 (TYPE is null for libcalls where that information may not be available.) */
844
845 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
846 ((CUM) += ((MODE) != BLKmode \
847 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
848 : (int_size_in_bytes (TYPE) + 3) & ~3))
849
850 /* Define where to put the arguments to a function.
851 Value is zero to push the argument on the stack,
852 or a hard register in which to store the argument.
853
854 MODE is the argument's machine mode.
855 TYPE is the data type of the argument (as a tree).
856 This is null for libcalls where that information may
857 not be available.
858 CUM is a variable of type CUMULATIVE_ARGS which gives info about
859 the preceding args and about the function being called.
860 NAMED is nonzero if this argument is a named parameter
861 (otherwise it is an extra parameter matching an ellipsis). */
862
863 /* On the 68000 all args are pushed, except if -mregparm is specified
864 then the first two words of arguments are passed in d0, d1.
865 *NOTE* -mregparm does not work.
866 It exists only to test register calling conventions. */
867
868 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
869 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
870
871 /* For an arg passed partly in registers and partly in memory,
872 this is the number of registers used.
873 For args passed entirely in registers or entirely in memory, zero. */
874
875 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
876 ((TARGET_REGPARM && (CUM) < 8 \
877 && 8 < ((CUM) + ((MODE) == BLKmode \
878 ? int_size_in_bytes (TYPE) \
879 : GET_MODE_SIZE (MODE)))) \
880 ? 2 - (CUM) / 4 : 0)
881
882 /* Generate the assembly code for function entry. */
883 #define FUNCTION_PROLOGUE(FILE, SIZE) output_function_prologue(FILE, SIZE)
884
885 /* Output assembler code to FILE to increment profiler label # LABELNO
886 for profiling a function entry. */
887
888 #define FUNCTION_PROFILER(FILE, LABELNO) \
889 asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
890
891 /* Output assembler code to FILE to initialize this source file's
892 basic block profiling info, if that has not already been done. */
893
894 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
895 asm_fprintf (FILE, "\ttstl %LLPBX0\n\tbne %LLPI%d\n\tpea %LLPBX0\n\tjsr %U__bb_init_func\n\taddql %I4,%Rsp\n%LLPI%d:\n", \
896 LABELNO, LABELNO);
897
898 /* Output assembler code to FILE to increment the entry-count for
899 the BLOCKNO'th basic block in this source file. */
900
901 #define BLOCK_PROFILER(FILE, BLOCKNO) \
902 asm_fprintf (FILE, "\taddql %I1,%LLPBX2+%d\n", 4 * BLOCKNO)
903
904 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
905 the stack pointer does not matter. The value is tested only in
906 functions that have frame pointers.
907 No definition is equivalent to always zero. */
908
909 #define EXIT_IGNORE_STACK 1
910
911 /* Generate the assembly code for function exit. */
912 #define FUNCTION_EPILOGUE(FILE, SIZE) output_function_epilogue (FILE, SIZE)
913
914 /* This is a hook for other tm files to change. */
915 /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
916
917 /* Determine if the epilogue should be output as RTL.
918 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
919 #define USE_RETURN_INSN use_return_insn ()
920
921 /* Store in the variable DEPTH the initial difference between the
922 frame pointer reg contents and the stack pointer reg contents,
923 as of the start of the function body. This depends on the layout
924 of the fixed parts of the stack frame and on how registers are saved.
925
926 On the 68k, if we have a frame, we must add one word to its length
927 to allow for the place that a6 is stored when we do have a frame pointer.
928 Otherwise, we would need to compute the offset from the frame pointer
929 of a local variable as a function of frame_pointer_needed, which
930 is hard. */
931
932 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
933 { int regno; \
934 int offset = -4; \
935 for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
936 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
937 offset += 12; \
938 for (regno = 0; regno < 16; regno++) \
939 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
940 offset += 4; \
941 (DEPTH) = (offset + ((get_frame_size () + 3) & -4) \
942 + (get_frame_size () == 0 ? 0 : 4)); \
943 }
944
945 /* Output assembler code for a block containing the constant parts
946 of a trampoline, leaving space for the variable parts. */
947
948 /* On the 68k, the trampoline looks like this:
949 mov @#.,a0
950 jsr @#___trampoline
951 jsr @#___trampoline
952 .long STATIC
953 .long FUNCTION
954 The reason for having three jsr insns is so that an entire line
955 of the instruction cache is filled in a predictable way
956 that will always be the same.
957
958 We always use the assembler label ___trampoline
959 regardless of whether the system adds underscores. */
960
961 #define TRAMPOLINE_TEMPLATE(FILE) \
962 { \
963 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x207c)); \
964 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
965 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
966 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9)); \
967 ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
968 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9)); \
969 ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
970 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
971 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
972 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
973 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
974 }
975
976 /* Length in units of the trampoline for entering a nested function. */
977
978 #define TRAMPOLINE_SIZE 26
979
980 /* Alignment required for a trampoline. 16 is used to find the
981 beginning of a line in the instruction cache. */
982
983 #define TRAMPOLINE_ALIGN 16
984
985 /* Emit RTL insns to initialize the variable parts of a trampoline.
986 FNADDR is an RTX for the address of the function's pure code.
987 CXT is an RTX for the static chain value for the function. */
988
989 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
990 { \
991 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), TRAMP); \
992 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 18)), CXT); \
993 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 22)), FNADDR); \
994 }
995
996 /* This is the library routine that is used
997 to transfer control from the trampoline
998 to the actual nested function. */
999
1000 /* A colon is used with no explicit operands
1001 to cause the template string to be scanned for %-constructs. */
1002 /* The function name __transfer_from_trampoline is not actually used.
1003 The function definition just permits use of "asm with operands"
1004 (though the operand list is empty). */
1005 #define TRANSFER_FROM_TRAMPOLINE \
1006 void \
1007 __transfer_from_trampoline () \
1008 { \
1009 register char *a0 asm ("%a0"); \
1010 asm (GLOBAL_ASM_OP " ___trampoline"); \
1011 asm ("___trampoline:"); \
1012 asm volatile ("move%.l %0,%@" : : "m" (a0[22])); \
1013 asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \
1014 asm ("rts":); \
1015 }
1016 \f
1017 /* Addressing modes, and classification of registers for them. */
1018
1019 #define HAVE_POST_INCREMENT
1020 /* #define HAVE_POST_DECREMENT */
1021
1022 #define HAVE_PRE_DECREMENT
1023 /* #define HAVE_PRE_INCREMENT */
1024
1025 /* Macros to check register numbers against specific register classes. */
1026
1027 /* These assume that REGNO is a hard or pseudo reg number.
1028 They give nonzero only if REGNO is a hard reg of the suitable class
1029 or a pseudo reg currently allocated to a suitable hard reg.
1030 Since they use reg_renumber, they are safe only once reg_renumber
1031 has been allocated, which happens in local-alloc.c. */
1032
1033 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1034 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1035 #define REGNO_OK_FOR_BASE_P(REGNO) \
1036 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1037 #define REGNO_OK_FOR_DATA_P(REGNO) \
1038 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1039 #define REGNO_OK_FOR_FP_P(REGNO) \
1040 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1041 #ifdef SUPPORT_SUN_FPA
1042 #define REGNO_OK_FOR_FPA_P(REGNO) \
1043 (((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56))
1044 #endif
1045
1046 /* Now macros that check whether X is a register and also,
1047 strictly, whether it is in a specified class.
1048
1049 These macros are specific to the 68000, and may be used only
1050 in code for printing assembler insns and in conditions for
1051 define_optimization. */
1052
1053 /* 1 if X is a data register. */
1054
1055 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1056
1057 /* 1 if X is an fp register. */
1058
1059 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1060
1061 /* 1 if X is an address register */
1062
1063 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1064
1065 #ifdef SUPPORT_SUN_FPA
1066 /* 1 if X is a register in the Sun FPA. */
1067 #define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X)))
1068 #else
1069 /* Answer must be no if we don't have an FPA. */
1070 #define FPA_REG_P(X) 0
1071 #endif
1072 \f
1073 /* Maximum number of registers that can appear in a valid memory address. */
1074
1075 #define MAX_REGS_PER_ADDRESS 2
1076
1077 /* Recognize any constant value that is a valid address. */
1078
1079 #define CONSTANT_ADDRESS_P(X) \
1080 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1081 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1082 || GET_CODE (X) == HIGH)
1083
1084 /* Nonzero if the constant value X is a legitimate general operand.
1085 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1086
1087 #define LEGITIMATE_CONSTANT_P(X) 1
1088
1089 /* Nonzero if the constant value X is a legitimate general operand
1090 when generating PIC code. It is given that flag_pic is on and
1091 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1092
1093 #define LEGITIMATE_PIC_OPERAND_P(X) \
1094 (! symbolic_operand (X, VOIDmode))
1095
1096 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1097 and check its validity for a certain class.
1098 We have two alternate definitions for each of them.
1099 The usual definition accepts all pseudo regs; the other rejects
1100 them unless they have been allocated suitable hard regs.
1101 The symbol REG_OK_STRICT causes the latter definition to be used.
1102
1103 Most source files want to accept pseudo regs in the hope that
1104 they will get allocated to the class that the insn wants them to be in.
1105 Source files for reload pass need to be strict.
1106 After reload, it makes no difference, since pseudo regs have
1107 been eliminated by then. */
1108
1109 #ifndef REG_OK_STRICT
1110
1111 /* Nonzero if X is a hard reg that can be used as an index
1112 or if it is a pseudo reg. */
1113 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1114 /* Nonzero if X is a hard reg that can be used as a base reg
1115 or if it is a pseudo reg. */
1116 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1117
1118 #else
1119
1120 /* Nonzero if X is a hard reg that can be used as an index. */
1121 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1122 /* Nonzero if X is a hard reg that can be used as a base reg. */
1123 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1124
1125 #endif
1126 \f
1127 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1128 that is a valid memory address for an instruction.
1129 The MODE argument is the machine mode for the MEM expression
1130 that wants to use this address.
1131
1132 When generating PIC, an address involving a SYMBOL_REF is legitimate
1133 if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1134 We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1135 and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1136
1137 Likewise for a LABEL_REF when generating PIC.
1138
1139 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1140
1141 /* Allow SUBREG everywhere we allow REG. This results in better code. It
1142 also makes function inlining work when inline functions are called with
1143 arguments that are SUBREGs. */
1144
1145 #define LEGITIMATE_BASE_REG_P(X) \
1146 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1147 || (GET_CODE (X) == SUBREG \
1148 && GET_CODE (SUBREG_REG (X)) == REG \
1149 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1150
1151 #define INDIRECTABLE_1_ADDRESS_P(X) \
1152 ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
1153 || LEGITIMATE_BASE_REG_P (X) \
1154 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
1155 && LEGITIMATE_BASE_REG_P (XEXP (X, 0))) \
1156 || (GET_CODE (X) == PLUS \
1157 && LEGITIMATE_BASE_REG_P (XEXP (X, 0)) \
1158 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1159 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000) \
1160 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1161 && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \
1162 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1163 && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF)) \
1164
1165 #if 0
1166 /* This should replace the last two (non-pic) lines
1167 except that Sun's assembler does not seem to handle such operands. */
1168 && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
1169 : (GET_CODE (XEXP (X, 1)) == CONST_INT \
1170 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))
1171 #endif
1172
1173
1174 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
1175 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1176
1177 /* Only labels on dispatch tables are valid for indexing from. */
1178 #define GO_IF_INDEXABLE_BASE(X, ADDR) \
1179 { rtx temp; \
1180 if (GET_CODE (X) == LABEL_REF \
1181 && (temp = next_nonnote_insn (XEXP (X, 0))) != 0 \
1182 && GET_CODE (temp) == JUMP_INSN \
1183 && (GET_CODE (PATTERN (temp)) == ADDR_VEC \
1184 || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC)) \
1185 goto ADDR; \
1186 if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
1187
1188 #define GO_IF_INDEXING(X, ADDR) \
1189 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
1190 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
1191 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
1192 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1193
1194 #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
1195 { GO_IF_INDEXING (X, ADDR); \
1196 if (GET_CODE (X) == PLUS) \
1197 { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1198 && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
1199 { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
1200 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1201 && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
1202 { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1203
1204 #define LEGITIMATE_INDEX_REG_P(X) \
1205 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1206 || (GET_CODE (X) == SIGN_EXTEND \
1207 && GET_CODE (XEXP (X, 0)) == REG \
1208 && GET_MODE (XEXP (X, 0)) == HImode \
1209 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1210 || (GET_CODE (X) == SUBREG \
1211 && GET_CODE (SUBREG_REG (X)) == REG \
1212 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1213
1214 #define LEGITIMATE_INDEX_P(X) \
1215 (LEGITIMATE_INDEX_REG_P (X) \
1216 || (TARGET_68020 && GET_CODE (X) == MULT \
1217 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
1218 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1219 && (INTVAL (XEXP (X, 1)) == 2 \
1220 || INTVAL (XEXP (X, 1)) == 4 \
1221 || INTVAL (XEXP (X, 1)) == 8)))
1222
1223 /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes. */
1224 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1225 { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
1226 GO_IF_INDEXED_ADDRESS (X, ADDR); \
1227 if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS \
1228 && LEGITIMATE_INDEX_P (XEXP (X, 0)) \
1229 && GET_CODE (XEXP (X, 1)) == LABEL_REF) \
1230 goto ADDR; }
1231
1232 /* Don't call memory_address_noforce for the address to fetch
1233 the switch offset. This address is ok as it stands (see above),
1234 but memory_address_noforce would alter it. */
1235 #define PIC_CASE_VECTOR_ADDRESS(index) index
1236 \f
1237 /* Try machine-dependent ways of modifying an illegitimate address
1238 to be legitimate. If we find one, return the new, valid address.
1239 This macro is used in only one place: `memory_address' in explow.c.
1240
1241 OLDX is the address as it was before break_out_memory_refs was called.
1242 In some cases it is useful to look at this to decide what needs to be done.
1243
1244 MODE and WIN are passed so that this macro can use
1245 GO_IF_LEGITIMATE_ADDRESS.
1246
1247 It is always safe for this macro to do nothing. It exists to recognize
1248 opportunities to optimize the output.
1249
1250 For the 68000, we handle X+REG by loading X into a register R and
1251 using R+REG. R will go in an address reg and indexing will be used.
1252 However, if REG is a broken-out memory address or multiplication,
1253 nothing needs to be done because REG can certainly go in an address reg. */
1254
1255 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1256 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1257 { register int ch = (X) != (OLDX); \
1258 if (GET_CODE (X) == PLUS) \
1259 { int copied = 0; \
1260 if (GET_CODE (XEXP (X, 0)) == MULT) \
1261 { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
1262 if (GET_CODE (XEXP (X, 1)) == MULT) \
1263 { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
1264 if (ch && GET_CODE (XEXP (X, 1)) == REG \
1265 && GET_CODE (XEXP (X, 0)) == REG) \
1266 goto WIN; \
1267 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
1268 if (GET_CODE (XEXP (X, 0)) == REG \
1269 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
1270 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1271 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
1272 { register rtx temp = gen_reg_rtx (Pmode); \
1273 register rtx val = force_operand (XEXP (X, 1), 0); \
1274 emit_move_insn (temp, val); \
1275 COPY_ONCE (X); \
1276 XEXP (X, 1) = temp; \
1277 goto WIN; } \
1278 else if (GET_CODE (XEXP (X, 1)) == REG \
1279 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
1280 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1281 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
1282 { register rtx temp = gen_reg_rtx (Pmode); \
1283 register rtx val = force_operand (XEXP (X, 0), 0); \
1284 emit_move_insn (temp, val); \
1285 COPY_ONCE (X); \
1286 XEXP (X, 0) = temp; \
1287 goto WIN; }}}
1288
1289 /* Go to LABEL if ADDR (a legitimate address expression)
1290 has an effect that depends on the machine mode it is used for.
1291 On the 68000, only predecrement and postincrement address depend thus
1292 (the amount of decrement or increment being the length of the operand). */
1293
1294 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1295 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1296 \f
1297 /* Specify the machine mode that this machine uses
1298 for the index in the tablejump instruction. */
1299 #define CASE_VECTOR_MODE HImode
1300
1301 /* Define this if the tablejump instruction expects the table
1302 to contain offsets from the address of the table.
1303 Do not define this if the table should contain absolute addresses. */
1304 #define CASE_VECTOR_PC_RELATIVE
1305
1306 /* Specify the tree operation to be used to convert reals to integers. */
1307 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1308
1309 /* This is the kind of divide that is easiest to do in the general case. */
1310 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1311
1312 /* Define this as 1 if `char' should by default be signed; else as 0. */
1313 #define DEFAULT_SIGNED_CHAR 1
1314
1315 /* Don't cse the address of the function being compiled. */
1316 #define NO_RECURSIVE_FUNCTION_CSE
1317
1318 /* Max number of bytes we can move from memory to memory
1319 in one reasonably fast instruction. */
1320 #define MOVE_MAX 4
1321
1322 /* Define this if zero-extension is slow (more than one real instruction). */
1323 #define SLOW_ZERO_EXTEND
1324
1325 /* Nonzero if access to memory by bytes is slow and undesirable. */
1326 #define SLOW_BYTE_ACCESS 0
1327
1328 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1329 is done just by pretending it is already truncated. */
1330 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1331
1332 /* We assume that the store-condition-codes instructions store 0 for false
1333 and some other value for true. This is the value stored for true. */
1334
1335 #define STORE_FLAG_VALUE -1
1336
1337 /* When a prototype says `char' or `short', really pass an `int'. */
1338 #define PROMOTE_PROTOTYPES
1339
1340 /* Specify the machine mode that pointers have.
1341 After generation of rtl, the compiler makes no further distinction
1342 between pointers and any other objects of this machine mode. */
1343 #define Pmode SImode
1344
1345 /* A function address in a call instruction
1346 is a byte address (for indexing purposes)
1347 so give the MEM rtx a byte's mode. */
1348 #define FUNCTION_MODE QImode
1349
1350 /* Compute the cost of computing a constant rtl expression RTX
1351 whose rtx-code is CODE. The body of this macro is a portion
1352 of a switch statement. If the code is computed here,
1353 return it with a return statement. Otherwise, break from the switch. */
1354
1355 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1356 case CONST_INT: \
1357 /* Constant zero is super cheap due to clr instruction. */ \
1358 if (RTX == const0_rtx) return 0; \
1359 /* if ((OUTER_CODE) == SET) */ \
1360 return const_int_cost(RTX); \
1361 case CONST: \
1362 case LABEL_REF: \
1363 case SYMBOL_REF: \
1364 return 3; \
1365 case CONST_DOUBLE: \
1366 return 5;
1367
1368 /* Compute the cost of various arithmetic operations.
1369 These are vaguely right for a 68020. */
1370 /* The costs for long multiply have been adjusted to
1371 work properly in synth_mult on the 68020,
1372 relative to an average of the time for add and the time for shift,
1373 taking away a little more because sometimes move insns are needed. */
1374 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
1375 #define MULL_COST (TARGET_68040 ? 5 : 13)
1376 #define MULW_COST (TARGET_68040 ? 3 : TARGET_68020 ? 8 : 5)
1377 #define DIVW_COST (TARGET_68020 ? 27 : 12)
1378
1379 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1380 case PLUS: \
1381 /* An lea costs about three times as much as a simple add. */ \
1382 if (GET_MODE (X) == SImode \
1383 && GET_CODE (XEXP (X, 0)) == REG \
1384 && GET_CODE (XEXP (X, 1)) == MULT \
1385 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1386 && GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT \
1387 && (INTVAL (XEXP (XEXP (X, 1), 1)) == 2 \
1388 || INTVAL (XEXP (XEXP (X, 1), 1)) == 4 \
1389 || INTVAL (XEXP (XEXP (X, 1), 1)) == 8)) \
1390 return COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */ \
1391 break; \
1392 case ASHIFT: \
1393 case ASHIFTRT: \
1394 case LSHIFTRT: \
1395 if (! TARGET_68020) \
1396 { \
1397 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1398 { \
1399 if (INTVAL (XEXP (X, 1)) < 16) \
1400 return COSTS_N_INSNS (2) + INTVAL (XEXP (X, 1)) / 2; \
1401 else \
1402 /* We're using clrw + swap for these cases. */ \
1403 return COSTS_N_INSNS (4) + (INTVAL (XEXP (X, 1)) - 16) / 2; \
1404 } \
1405 return COSTS_N_INSNS (10); /* worst case */ \
1406 } \
1407 /* A shift by a big integer takes an extra instruction. */ \
1408 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1409 && (INTVAL (XEXP (X, 1)) == 16)) \
1410 return COSTS_N_INSNS (2); /* clrw;swap */ \
1411 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1412 && !(INTVAL (XEXP (X, 1)) > 0 \
1413 && INTVAL (XEXP (X, 1)) <= 8)) \
1414 return COSTS_N_INSNS (3); /* lsr #i,dn */ \
1415 break; \
1416 case MULT: \
1417 if ((GET_CODE (XEXP (X, 0)) == ZERO_EXTEND \
1418 || GET_CODE (XEXP (X, 0)) == SIGN_EXTEND) \
1419 && GET_MODE (X) == SImode) \
1420 return COSTS_N_INSNS (MULW_COST); \
1421 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
1422 return COSTS_N_INSNS (MULW_COST); \
1423 else \
1424 return COSTS_N_INSNS (MULL_COST); \
1425 case DIV: \
1426 case UDIV: \
1427 case MOD: \
1428 case UMOD: \
1429 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
1430 return COSTS_N_INSNS (DIVW_COST); /* div.w */ \
1431 return COSTS_N_INSNS (43); /* div.l */
1432 \f
1433 /* Tell final.c how to eliminate redundant test instructions. */
1434
1435 /* Here we define machine-dependent flags and fields in cc_status
1436 (see `conditions.h'). */
1437
1438 /* Set if the cc value is actually in the 68881, so a floating point
1439 conditional branch must be output. */
1440 #define CC_IN_68881 04000
1441
1442 /* Store in cc_status the expressions that the condition codes will
1443 describe after execution of an instruction whose pattern is EXP.
1444 Do not alter them if the instruction would not alter the cc's. */
1445
1446 /* On the 68000, all the insns to store in an address register fail to
1447 set the cc's. However, in some cases these instructions can make it
1448 possibly invalid to use the saved cc's. In those cases we clear out
1449 some or all of the saved cc's so they won't be used. */
1450
1451 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1452
1453 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1454 { if (cc_prev_status.flags & CC_IN_68881) \
1455 return FLOAT; \
1456 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1457 return NO_OV; \
1458 return NORMAL; }
1459 \f
1460 /* Control the assembler format that we output. */
1461
1462 /* Output at beginning of assembler file. */
1463
1464 #define ASM_FILE_START(FILE) \
1465 fprintf (FILE, "#NO_APP\n");
1466
1467 /* Output to assembler file text saying following lines
1468 may contain character constants, extra white space, comments, etc. */
1469
1470 #define ASM_APP_ON "#APP\n"
1471
1472 /* Output to assembler file text saying following lines
1473 no longer contain unusual constructs. */
1474
1475 #define ASM_APP_OFF "#NO_APP\n"
1476
1477 /* Output before read-only data. */
1478
1479 #define TEXT_SECTION_ASM_OP ".text"
1480
1481 /* Output before writable data. */
1482
1483 #define DATA_SECTION_ASM_OP ".data"
1484
1485 /* Here are four prefixes that are used by asm_fprintf to
1486 facilitate customization for alternate assembler syntaxes.
1487 Machines with no likelihood of an alternate syntax need not
1488 define these and need not use asm_fprintf. */
1489
1490 /* The prefix for register names. Note that REGISTER_NAMES
1491 is supposed to include this prefix. */
1492
1493 #define REGISTER_PREFIX ""
1494
1495 /* The prefix for local labels. You should be able to define this as
1496 an empty string, or any arbitrary string (such as ".", ".L%", etc)
1497 without having to make any other changes to account for the specific
1498 definition. Note it is a string literal, not interpreted by printf
1499 and friends. */
1500
1501 #define LOCAL_LABEL_PREFIX ""
1502
1503 /* The prefix to add to user-visible assembler symbols. */
1504
1505 #define USER_LABEL_PREFIX "_"
1506
1507 /* The prefix for immediate operands. */
1508
1509 #define IMMEDIATE_PREFIX "#"
1510
1511 /* How to refer to registers in assembler output.
1512 This sequence is indexed by compiler's hard-register-number (see above). */
1513
1514 #ifndef SUPPORT_SUN_FPA
1515
1516 #define REGISTER_NAMES \
1517 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1518 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1519 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
1520
1521 #else /* SUPPORTED_SUN_FPA */
1522
1523 #define REGISTER_NAMES \
1524 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1525 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1526 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
1527 "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \
1528 "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \
1529 "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \
1530 "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" }
1531
1532 #endif /* defined SUPPORT_SUN_FPA */
1533
1534 /* How to renumber registers for dbx and gdb.
1535 On the Sun-3, the floating point registers have numbers
1536 18 to 25, not 16 to 23 as they do in the compiler. */
1537
1538 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1539
1540 /* This is how to output the definition of a user-level label named NAME,
1541 such as the label on a static function or variable NAME. */
1542
1543 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1544 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1545
1546 /* This is how to output a command to make the user-level label named NAME
1547 defined for reference from other files. */
1548
1549 #define GLOBAL_ASM_OP ".globl"
1550 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1551 do { fprintf (FILE, "%s ", GLOBAL_ASM_OP); \
1552 assemble_name (FILE, NAME); \
1553 fputs ("\n", FILE);} while (0)
1554
1555 /* This is how to output a reference to a user-level label named NAME.
1556 `assemble_name' uses this. */
1557
1558 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1559 asm_fprintf (FILE, "%0U%s", NAME)
1560
1561 /* This is how to output an internal numbered label where
1562 PREFIX is the class of label and NUM is the number within the class. */
1563
1564 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1565 asm_fprintf (FILE, "%0L%s%d:\n", PREFIX, NUM)
1566
1567 /* This is how to store into the string LABEL
1568 the symbol_ref name of an internal numbered label where
1569 PREFIX is the class of label and NUM is the number within the class.
1570 This is suitable for output with `assemble_name'. */
1571
1572 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1573 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
1574
1575 /* This is how to output a `long double' extended real constant. */
1576
1577 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1578 do { long l[3]; \
1579 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
1580 if (sizeof (int) == sizeof (long)) \
1581 fprintf (FILE, "\t.long 0x%x,0x%x,0x%x\n", l[0], l[1], l[2]); \
1582 else \
1583 fprintf (FILE, "\t.long 0x%lx,0x%lx,0x%lx\n", l[0], l[1], l[2]); \
1584 } while (0)
1585
1586 /* This is how to output an assembler line defining a `double' constant. */
1587
1588 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1589 do { char dstr[30]; \
1590 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1591 fprintf (FILE, "\t.double 0r%s\n", dstr); \
1592 } while (0)
1593
1594 /* This is how to output an assembler line defining a `float' constant. */
1595
1596 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1597 do { long l; \
1598 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1599 if (sizeof (int) == sizeof (long)) \
1600 fprintf (FILE, "\t.long 0x%x\n", l); \
1601 else \
1602 fprintf (FILE, "\t.long 0x%lx\n", l); \
1603 } while (0)
1604
1605 /* This is how to output an assembler line defining an `int' constant. */
1606
1607 #define ASM_OUTPUT_INT(FILE,VALUE) \
1608 ( fprintf (FILE, "\t.long "), \
1609 output_addr_const (FILE, (VALUE)), \
1610 fprintf (FILE, "\n"))
1611
1612 /* Likewise for `char' and `short' constants. */
1613
1614 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1615 ( fprintf (FILE, "\t.word "), \
1616 output_addr_const (FILE, (VALUE)), \
1617 fprintf (FILE, "\n"))
1618
1619 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1620 ( fprintf (FILE, "\t.byte "), \
1621 output_addr_const (FILE, (VALUE)), \
1622 fprintf (FILE, "\n"))
1623
1624 /* This is how to output an assembler line for a numeric constant byte. */
1625
1626 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1627 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1628
1629 /* This is how to output an insn to push a register on the stack.
1630 It need not be very fast code. */
1631
1632 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1633 asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1634
1635 /* This is how to output an insn to pop a register from the stack.
1636 It need not be very fast code. */
1637
1638 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1639 asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1640
1641 /* This is how to output an element of a case-vector that is absolute.
1642 (The 68000 does not use such vectors,
1643 but we must define this macro anyway.) */
1644
1645 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1646 asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1647
1648 /* This is how to output an element of a case-vector that is relative. */
1649
1650 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1651 asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1652
1653 /* This is how to output an assembler line
1654 that says to advance the location counter
1655 to a multiple of 2**LOG bytes. */
1656
1657 /* We don't have a way to align to more than a two-byte boundary, so do the
1658 best we can and don't complain. */
1659 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1660 if ((LOG) >= 1) \
1661 fprintf (FILE, "\t.even\n");
1662
1663 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1664 fprintf (FILE, "\t.skip %u\n", (SIZE))
1665
1666 /* This says how to output an assembler line
1667 to define a global common symbol. */
1668
1669 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1670 ( fputs (".comm ", (FILE)), \
1671 assemble_name ((FILE), (NAME)), \
1672 fprintf ((FILE), ",%u\n", (ROUNDED)))
1673
1674 /* This says how to output an assembler line
1675 to define a local common symbol. */
1676
1677 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1678 ( fputs (".lcomm ", (FILE)), \
1679 assemble_name ((FILE), (NAME)), \
1680 fprintf ((FILE), ",%u\n", (ROUNDED)))
1681
1682 /* Store in OUTPUT a string (made with alloca) containing
1683 an assembler-name for a local static variable named NAME.
1684 LABELNO is an integer which is different for each call. */
1685
1686 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1687 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1688 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1689
1690 /* Define the parentheses used to group arithmetic operations
1691 in assembler code. */
1692
1693 #define ASM_OPEN_PAREN "("
1694 #define ASM_CLOSE_PAREN ")"
1695
1696 /* Define results of standard character escape sequences. */
1697 #define TARGET_BELL 007
1698 #define TARGET_BS 010
1699 #define TARGET_TAB 011
1700 #define TARGET_NEWLINE 012
1701 #define TARGET_VT 013
1702 #define TARGET_FF 014
1703 #define TARGET_CR 015
1704
1705 /* Output a float value (represented as a C double) as an immediate operand.
1706 This macro is a 68k-specific macro. */
1707
1708 #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
1709 do { \
1710 if (CODE == 'f') \
1711 { \
1712 char dstr[30]; \
1713 REAL_VALUE_TO_DECIMAL (VALUE, "%.9g", dstr); \
1714 asm_fprintf ((FILE), "%I0r%s", dstr); \
1715 } \
1716 else \
1717 { \
1718 long l; \
1719 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1720 if (sizeof (int) == sizeof (long)) \
1721 asm_fprintf ((FILE), "%I0x%x", l); \
1722 else \
1723 asm_fprintf ((FILE), "%I0x%lx", l); \
1724 } \
1725 } while (0)
1726
1727 /* Output a double value (represented as a C double) as an immediate operand.
1728 This macro is a 68k-specific macro. */
1729 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
1730 do { char dstr[30]; \
1731 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1732 asm_fprintf (FILE, "%I0r%s", dstr); \
1733 } while (0)
1734
1735 /* Note, long double immediate operands are not actually
1736 generated by m68k.md. */
1737 #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
1738 do { char dstr[30]; \
1739 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1740 asm_fprintf (FILE, "%I0r%s", dstr); \
1741 } while (0)
1742
1743 /* Print operand X (an rtx) in assembler syntax to file FILE.
1744 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1745 For `%' followed by punctuation, CODE is the punctuation and X is null.
1746
1747 On the 68000, we use several CODE characters:
1748 '.' for dot needed in Motorola-style opcode names.
1749 '-' for an operand pushing on the stack:
1750 sp@-, -(sp) or -(%sp) depending on the style of syntax.
1751 '+' for an operand pushing on the stack:
1752 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1753 '@' for a reference to the top word on the stack:
1754 sp@, (sp) or (%sp) depending on the style of syntax.
1755 '#' for an immediate operand prefix (# in MIT and Motorola syntax
1756 but & in SGS syntax).
1757 '!' for the fpcr register (used in some float-to-fixed conversions).
1758 '$' for the letter `s' in an op code, but only on the 68040.
1759 '&' for the letter `d' in an op code, but only on the 68040.
1760 '/' for register prefix needed by longlong.h.
1761
1762 'b' for byte insn (no effect, on the Sun; this is for the ISI).
1763 'd' to force memory addressing to be absolute, not relative.
1764 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1765 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
1766 than directly). Second part of 'y' below.
1767 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1768 or print pair of registers as rx:ry.
1769 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
1770 CONST_DOUBLE's as SunFPA constant RAM registers if
1771 possible, so it should not be used except for the SunFPA. */
1772
1773 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1774 ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
1775 || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \
1776 || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1777
1778 /* A C compound statement to output to stdio stream STREAM the
1779 assembler syntax for an instruction operand X. X is an RTL
1780 expression.
1781
1782 CODE is a value that can be used to specify one of several ways
1783 of printing the operand. It is used when identical operands
1784 must be printed differently depending on the context. CODE
1785 comes from the `%' specification that was used to request
1786 printing of the operand. If the specification was just `%DIGIT'
1787 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
1788 is the ASCII code for LTR.
1789
1790 If X is a register, this macro should print the register's name.
1791 The names can be found in an array `reg_names' whose type is
1792 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
1793
1794 When the machine description has a specification `%PUNCT' (a `%'
1795 followed by a punctuation character), this macro is called with
1796 a null pointer for X and the punctuation character for CODE.
1797
1798 See m68k.c for the m68k specific codes. */
1799
1800 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1801
1802 /* A C compound statement to output to stdio stream STREAM the
1803 assembler syntax for an instruction operand that is a memory
1804 reference whose address is ADDR. ADDR is an RTL expression.
1805
1806 On some machines, the syntax for a symbolic address depends on
1807 the section that the address refers to. On these machines,
1808 define the macro `ENCODE_SECTION_INFO' to store the information
1809 into the `symbol_ref', and then check for it here. */
1810
1811 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1812
1813
1814 /* Definitions for generating bytecode */
1815
1816 /* Just so it's known this target is supported by the bytecode generator.
1817 If this define isn't found anywhere in the target config files, then
1818 dummy stubs are supplied by bytecode.h, and any attempt to use
1819 -fbytecode will result in an error message. */
1820
1821 #define TARGET_SUPPORTS_BYTECODE
1822
1823 /* Minimal segment alignment within sections is 8 units. */
1824 #define MACHINE_SEG_ALIGN 3
1825
1826 /* Integer alignment is two units. */
1827 #define INT_ALIGN 2
1828
1829 /* Pointer alignment is eight units. */
1830 #define PTR_ALIGN 3
1831
1832 /* Global symbols begin with `_' */
1833 #define NAMES_HAVE_UNDERSCORES
1834
1835 /* BC_xxx below are similar to their ASM_xxx counterparts above. */
1836 #define BC_GLOBALIZE_LABEL(FP, NAME) bc_globalize_label(NAME)
1837
1838 #define BC_OUTPUT_COMMON(FP, NAME, SIZE, ROUNDED) \
1839 do { bc_emit_common(NAME, ROUNDED); bc_globalize_label(NAME); } while (0)
1840
1841 #define BC_OUTPUT_LOCAL(FP, NAME, SIZE, ROUNDED) \
1842 bc_emit_common(NAME, ROUNDED)
1843
1844 #define BC_OUTPUT_ALIGN(FP, ALIGN) bc_align(ALIGN)
1845
1846 #define BC_OUTPUT_LABEL(FP, NAME) bc_emit_labeldef(NAME)
1847
1848 #define BC_OUTPUT_SKIP(FP, SIZE) bc_emit_skip(SIZE)
1849
1850 #define BC_OUTPUT_LABELREF(FP, NAME) \
1851 do { \
1852 char *foo = (char *) xmalloc(strlen(NAME) + 2); \
1853 strcpy(foo, "_"); \
1854 strcat(foo, NAME); \
1855 bc_emit_labelref (foo); \
1856 free (foo); \
1857 } while (0)
1858
1859 #define BC_OUTPUT_FLOAT(FP, VAL) \
1860 do { \
1861 float F = VAL; \
1862 bc_emit ((char *) &F, sizeof F); \
1863 } while (0)
1864
1865 #define BC_OUTPUT_DOUBLE(FP, VAL) \
1866 do { \
1867 double D = VAL; \
1868 bc_emit ((char *) &D, sizeof D); \
1869 } while (0)
1870
1871 #define BC_OUTPUT_BYTE(FP, VAL) \
1872 do { \
1873 char C = VAL; \
1874 bc_emit (&C, 1); \
1875 } while (0)
1876
1877
1878 #define BC_OUTPUT_FILE ASM_OUTPUT_FILE
1879 #define BC_OUTPUT_ASCII ASM_OUTPUT_ASCII
1880 #define BC_OUTPUT_IDENT ASM_OUTPUT_IDENT
1881
1882 /* Same as XSTR, but for bytecode */
1883 #define BCXSTR(RTX) ((RTX)->bc_label)
1884
1885
1886 /* Flush bytecode buffer onto file */
1887 #define BC_WRITE_FILE(FP) \
1888 { \
1889 fprintf (FP, ".text\n"); \
1890 bc_seg_write (bc_text_seg, FP); \
1891 fprintf(FP, "\n.data\n"); \
1892 bc_seg_write (bc_data_seg, FP); \
1893 bc_sym_write (FP); /* do .globl, .bss, etc. */ \
1894 }
1895
1896 /* Write one symbol */
1897 #define BC_WRITE_SEGSYM(SEGSYM, FP) \
1898 { \
1899 prsym (FP, (SEGSYM)->sym->name); \
1900 fprintf (FP, ":\n"); \
1901 }
1902
1903
1904 /* Write one reloc entry */
1905 #define BC_WRITE_RELOC_ENTRY(SEGRELOC, FP, OFFSET) \
1906 { \
1907 fprintf (FP, "\t.long "); \
1908 prsym (FP, (SEGRELOC)->sym->name); \
1909 fprintf (FP, " + %d\n", OFFSET); \
1910 }
1911
1912 /* Start new line of bytecodes */
1913 #define BC_START_BYTECODE_LINE(FP) \
1914 { \
1915 fprintf (FP, "\t.byte"); \
1916 }
1917
1918 /* Write one bytecode */
1919 #define BC_WRITE_BYTECODE(SEP, VAL, FP) \
1920 { \
1921 fprintf (FP, "%c0x%02X", (SEP), (VAL) & 0xff); \
1922 }
1923
1924 /* Write one bytecode RTL entry */
1925 #define BC_WRITE_RTL(R, FP) \
1926 { \
1927 fprintf (FP, "%s+%d/0x%08X\n", (R)->label, (R)->offset, (R)->bc_label); \
1928 }
1929
1930
1931 /* Emit function entry trampoline */
1932 #define BC_EMIT_TRAMPOLINE(TRAMPSEG, CALLINFO) \
1933 { \
1934 short insn; \
1935 \
1936 /* Push a reference to the callinfo structure. */ \
1937 insn = 0x4879; /* pea xxx.L */ \
1938 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1939 seg_refsym (TRAMPSEG, CALLINFO, 0); \
1940 \
1941 /* Call __interp, pop arguments, and return. */ \
1942 insn = 0x4eb9; /* jsr xxx.L */ \
1943 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1944 seg_refsym (TRAMPSEG, "__callint", 0); \
1945 insn = 0x588f; /* addql #4, sp */ \
1946 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1947 insn = 0x4e75; /* rts */ \
1948 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1949 }
1950
1951
1952
1953 #if 0
1954 #define VALIDATE_STACK() if (stack_depth < 0) abort ();
1955 #else
1956 #if 0
1957 #define VALIDATE_STACK() \
1958 fprintf (stderr, " %%%d%%", stack_depth);
1959 #endif
1960 #endif
1961
1962 /* Define functions defined in aux-output.c and used in templates. */
1963
1964 extern char *output_move_const_into_data_reg ();
1965 extern char *output_move_double ();
1966 extern char *output_move_const_single ();
1967 extern char *output_move_const_double ();
1968 extern char *output_btst ();
1969 \f
1970 /*
1971 Local variables:
1972 version-control: t
1973 End:
1974 */
This page took 0.135627 seconds and 6 git commands to generate.