]> gcc.gnu.org Git - gcc.git/blob - gcc/config/m68k/m68k.h
Added arg to RETURN_POPS_ARGS.
[gcc.git] / gcc / config / m68k / m68k.h
1 /* Definitions of target machine for GNU compiler. Sun 68000/68020 version.
2 Copyright (C) 1987, 1988, 1993, 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24
25 /* Names to predefine in the preprocessor for this target machine. */
26
27 /* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES. */
28
29 /* Print subsidiary information on the compiler version in use. */
30 #ifdef MOTOROLA
31 #define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
32 #else
33 #define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
34 #endif
35
36 /* Define SUPPORT_SUN_FPA to include support for generating code for
37 the Sun Floating Point Accelerator, an optional product for Sun 3
38 machines. By default, it is not defined. Avoid defining it unless
39 you need to output code for the Sun3+FPA architecture, as it has the
40 effect of slowing down the register set operations in hard-reg-set.h
41 (total number of registers will exceed number of bits in a long,
42 if defined, causing the set operations to expand to loops).
43 SUPPORT_SUN_FPA is typically defined in sun3.h. */
44
45 /* Run-time compilation parameters selecting different hardware subsets. */
46
47 extern int target_flags;
48
49 /* Macros used in the machine description to test the flags. */
50
51 /* Compile for a 68020 (not a 68000 or 68010). */
52 #define TARGET_68020 (target_flags & 1)
53
54 /* Compile 68881 insns for floating point (not library calls). */
55 #define TARGET_68881 (target_flags & 2)
56
57 /* Compile using 68020 bitfield insns. */
58 #define TARGET_BITFIELD (target_flags & 4)
59
60 /* Compile using rtd insn calling sequence.
61 This will not work unless you use prototypes at least
62 for all functions that can take varying numbers of args. */
63 #define TARGET_RTD (target_flags & 8)
64
65 /* Compile passing first two args in regs 0 and 1.
66 This exists only to test compiler features that will
67 be needed for RISC chips. It is not usable
68 and is not intended to be usable on this cpu. */
69 #define TARGET_REGPARM (target_flags & 020)
70
71 /* Compile with 16-bit `int'. */
72 #define TARGET_SHORT (target_flags & 040)
73
74 /* Compile with special insns for Sun FPA. */
75 #ifdef SUPPORT_SUN_FPA
76 #define TARGET_FPA (target_flags & 0100)
77 #else
78 #define TARGET_FPA 0
79 #endif
80
81 /* Compile (actually, link) for Sun SKY board. */
82 #define TARGET_SKY (target_flags & 0200)
83
84 /* Optimize for 68040, but still allow execution on 68020
85 (-m68020-40 or -m68040).
86 The 68040 will execute all 68030 and 68881/2 instructions, but some
87 of them must be emulated in software by the OS. When TARGET_68040 is
88 turned on, these instructions won't be used. This code will still
89 run on a 68030 and 68881/2. */
90 #define TARGET_68040 (target_flags & 01400)
91
92 /* Use the 68040-only fp instructions (-m68040). */
93 #define TARGET_68040_ONLY (target_flags & 01000)
94
95 /* Macro to define tables used to set the flags.
96 This is a list in braces of pairs in braces,
97 each pair being { "NAME", VALUE }
98 where VALUE is the bits to set or minus the bits to clear.
99 An empty string NAME is used to identify the default VALUE. */
100
101 #define TARGET_SWITCHES \
102 { { "68020", -01400}, \
103 { "c68020", -01400}, \
104 { "68020", 5}, \
105 { "c68020", 5}, \
106 { "68881", 2}, \
107 { "bitfield", 4}, \
108 { "68000", -01405}, \
109 { "c68000", -01405}, \
110 { "soft-float", -01102}, \
111 { "nobitfield", -4}, \
112 { "rtd", 8}, \
113 { "nortd", -8}, \
114 { "short", 040}, \
115 { "noshort", -040}, \
116 { "fpa", 0100}, \
117 { "nofpa", -0100}, \
118 { "sky", 0200}, \
119 { "nosky", -0200}, \
120 { "68020-40", 0407}, \
121 { "68030", -01400}, \
122 { "68030", 5}, \
123 { "68040", 01007}, \
124 { "68851", 0}, /* Affects *_SPEC and/or GAS. */ \
125 { "no-68851", 0}, /* Affects *_SPEC and/or GAS. */ \
126 { "68302", 0}, /* Affects *_SPEC and/or GAS. */ \
127 { "no-68302", 0}, /* Affects *_SPEC and/or GAS. */ \
128 { "68332", 0}, /* Affects *_SPEC and/or GAS. */ \
129 { "no-68332", 0}, /* Affects *_SPEC and/or GAS. */ \
130 SUBTARGET_SWITCHES \
131 { "", TARGET_DEFAULT}}
132 /* TARGET_DEFAULT is defined in sun*.h and isi.h, etc. */
133
134 /* This is meant to be redefined in the host dependent files */
135 #define SUBTARGET_SWITCHES
136
137 #ifdef SUPPORT_SUN_FPA
138 /* Blow away 68881 flag silently on TARGET_FPA (since we can't clear
139 any bits in TARGET_SWITCHES above) */
140 #define OVERRIDE_OPTIONS \
141 { \
142 if (TARGET_FPA) target_flags &= ~2; \
143 if (! TARGET_68020 && flag_pic == 2) \
144 error("-fPIC is not currently supported on the 68000 or 68010\n"); \
145 SUBTARGET_OVERRIDE_OPTIONS; \
146 }
147 #else
148 #define OVERRIDE_OPTIONS \
149 { \
150 if (! TARGET_68020 && flag_pic == 2) \
151 error("-fPIC is not currently supported on the 68000 or 68010\n"); \
152 SUBTARGET_OVERRIDE_OPTIONS; \
153 }
154 #endif /* defined SUPPORT_SUN_FPA */
155
156 /* This is meant to be redefined in the host dependent files */
157 #define SUBTARGET_OVERRIDE_OPTIONS
158 \f
159 /* target machine storage layout */
160
161 /* Define for XFmode extended real floating point support.
162 This will automatically cause REAL_ARITHMETIC to be defined. */
163 #define LONG_DOUBLE_TYPE_SIZE 96
164
165 /* Define if you don't want extended real, but do want to use the
166 software floating point emulator for REAL_ARITHMETIC and
167 decimal <-> binary conversion. */
168 /* #define REAL_ARITHMETIC */
169
170 /* Define this if most significant bit is lowest numbered
171 in instructions that operate on numbered bit-fields.
172 This is true for 68020 insns such as bfins and bfexts.
173 We make it true always by avoiding using the single-bit insns
174 except in special cases with constant bit numbers. */
175 #define BITS_BIG_ENDIAN 1
176
177 /* Define this if most significant byte of a word is the lowest numbered. */
178 /* That is true on the 68000. */
179 #define BYTES_BIG_ENDIAN 1
180
181 /* Define this if most significant word of a multiword number is the lowest
182 numbered. */
183 /* For 68000 we can decide arbitrarily
184 since there are no machine instructions for them.
185 So let's be consistent. */
186 #define WORDS_BIG_ENDIAN 1
187
188 /* number of bits in an addressable storage unit */
189 #define BITS_PER_UNIT 8
190
191 /* Width in bits of a "word", which is the contents of a machine register.
192 Note that this is not necessarily the width of data type `int';
193 if using 16-bit ints on a 68000, this would still be 32.
194 But on a machine with 16-bit registers, this would be 16. */
195 #define BITS_PER_WORD 32
196
197 /* Width of a word, in units (bytes). */
198 #define UNITS_PER_WORD 4
199
200 /* Width in bits of a pointer.
201 See also the macro `Pmode' defined below. */
202 #define POINTER_SIZE 32
203
204 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
205 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
206
207 /* Boundary (in *bits*) on which stack pointer should be aligned. */
208 #define STACK_BOUNDARY 16
209
210 /* Allocation boundary (in *bits*) for the code of a function. */
211 #define FUNCTION_BOUNDARY 16
212
213 /* Alignment of field after `int : 0' in a structure. */
214 #define EMPTY_FIELD_BOUNDARY 16
215
216 /* No data type wants to be aligned rounder than this. */
217 #define BIGGEST_ALIGNMENT 16
218
219 /* Set this nonzero if move instructions will actually fail to work
220 when given unaligned data. */
221 #define STRICT_ALIGNMENT 1
222
223 #define SELECT_RTX_SECTION(MODE, X) \
224 { \
225 if (!flag_pic) \
226 readonly_data_section(); \
227 else if (LEGITIMATE_PIC_OPERAND_P (X)) \
228 readonly_data_section(); \
229 else \
230 data_section(); \
231 }
232
233 /* Define number of bits in most basic integer type.
234 (If undefined, default is BITS_PER_WORD). */
235
236 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
237
238 /* Define these to avoid dependence on meaning of `int'.
239 Note that WCHAR_TYPE_SIZE is used in cexp.y,
240 where TARGET_SHORT is not available. */
241
242 #define WCHAR_TYPE "long int"
243 #define WCHAR_TYPE_SIZE 32
244 \f
245 /* Standard register usage. */
246
247 /* Number of actual hardware registers.
248 The hardware registers are assigned numbers for the compiler
249 from 0 to just below FIRST_PSEUDO_REGISTER.
250 All registers that the compiler knows about must be given numbers,
251 even those that are not normally considered general registers.
252 For the 68000, we give the data registers numbers 0-7,
253 the address registers numbers 010-017,
254 and the 68881 floating point registers numbers 020-027. */
255 #ifndef SUPPORT_SUN_FPA
256 #define FIRST_PSEUDO_REGISTER 24
257 #else
258 #define FIRST_PSEUDO_REGISTER 56
259 #endif
260
261 /* This defines the register which is used to hold the offset table for PIC. */
262 #define PIC_OFFSET_TABLE_REGNUM 13
263
264 /* Used to output a (use pic_offset_table_rtx) so that we
265 always save/restore a5 in functions that use PIC relocation
266 at *any* time during the compilation process. */
267 #define FINALIZE_PIC finalize_pic()
268
269 #ifndef SUPPORT_SUN_FPA
270
271 /* 1 for registers that have pervasive standard uses
272 and are not available for the register allocator.
273 On the 68000, only the stack pointer is such. */
274
275 #define FIXED_REGISTERS \
276 {/* Data registers. */ \
277 0, 0, 0, 0, 0, 0, 0, 0, \
278 \
279 /* Address registers. */ \
280 0, 0, 0, 0, 0, 0, 0, 1, \
281 \
282 /* Floating point registers \
283 (if available). */ \
284 0, 0, 0, 0, 0, 0, 0, 0 }
285
286 /* 1 for registers not available across function calls.
287 These must include the FIXED_REGISTERS and also any
288 registers that can be used without being saved.
289 The latter must include the registers where values are returned
290 and the register where structure-value addresses are passed.
291 Aside from that, you can include as many other registers as you like. */
292 #define CALL_USED_REGISTERS \
293 {1, 1, 0, 0, 0, 0, 0, 0, \
294 1, 1, 0, 0, 0, 0, 0, 1, \
295 1, 1, 0, 0, 0, 0, 0, 0 }
296
297 #else /* SUPPORT_SUN_FPA */
298
299 /* 1 for registers that have pervasive standard uses
300 and are not available for the register allocator.
301 On the 68000, only the stack pointer is such. */
302
303 /* fpa0 is also reserved so that it can be used to move shit back and
304 forth between high fpa regs and everything else. */
305
306 #define FIXED_REGISTERS \
307 {/* Data registers. */ \
308 0, 0, 0, 0, 0, 0, 0, 0, \
309 \
310 /* Address registers. */ \
311 0, 0, 0, 0, 0, 0, 0, 1, \
312 \
313 /* Floating point registers \
314 (if available). */ \
315 0, 0, 0, 0, 0, 0, 0, 0, \
316 \
317 /* Sun3 FPA registers. */ \
318 1, 0, 0, 0, 0, 0, 0, 0, \
319 0, 0, 0, 0, 0, 0, 0, 0, \
320 0, 0, 0, 0, 0, 0, 0, 0, \
321 0, 0, 0, 0, 0, 0, 0, 0 }
322
323 /* 1 for registers not available across function calls.
324 These must include the FIXED_REGISTERS and also any
325 registers that can be used without being saved.
326 The latter must include the registers where values are returned
327 and the register where structure-value addresses are passed.
328 Aside from that, you can include as many other registers as you like. */
329 #define CALL_USED_REGISTERS \
330 {1, 1, 0, 0, 0, 0, 0, 0, \
331 1, 1, 0, 0, 0, 0, 0, 1, \
332 1, 1, 0, 0, 0, 0, 0, 0, \
333 /* FPA registers. */ \
334 1, 1, 1, 1, 0, 0, 0, 0, \
335 0, 0, 0, 0, 0, 0, 0, 0, \
336 0, 0, 0, 0, 0, 0, 0, 0, \
337 0, 0, 0, 0, 0, 0, 0, 0 }
338
339 #endif /* defined SUPPORT_SUN_FPA */
340
341
342 /* Make sure everything's fine if we *don't* have a given processor.
343 This assumes that putting a register in fixed_regs will keep the
344 compiler's mitts completely off it. We don't bother to zero it out
345 of register classes. If neither TARGET_FPA or TARGET_68881 is set,
346 the compiler won't touch since no instructions that use these
347 registers will be valid.
348
349 Reserve PIC_OFFSET_TABLE_REGNUM (a5) for doing PIC relocation if
350 position independent code is being generated by making it a
351 fixed register */
352
353 #ifndef SUPPORT_SUN_FPA
354
355 #define CONDITIONAL_REGISTER_USAGE \
356 { \
357 if (flag_pic) \
358 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
359 }
360
361 #else /* defined SUPPORT_SUN_FPA */
362
363 #define CONDITIONAL_REGISTER_USAGE \
364 { \
365 int i; \
366 HARD_REG_SET x; \
367 if (!TARGET_FPA) \
368 { \
369 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]); \
370 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
371 if (TEST_HARD_REG_BIT (x, i)) \
372 fixed_regs[i] = call_used_regs[i] = 1; \
373 } \
374 if (TARGET_FPA) \
375 { \
376 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
378 if (TEST_HARD_REG_BIT (x, i)) \
379 fixed_regs[i] = call_used_regs[i] = 1; \
380 } \
381 if (flag_pic) \
382 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
383 }
384
385 #endif /* defined SUPPORT_SUN_FPA */
386
387 /* Return number of consecutive hard regs needed starting at reg REGNO
388 to hold something of mode MODE.
389 This is ordinarily the length in words of a value of mode MODE
390 but can be less for certain modes in special long registers.
391
392 On the 68000, ordinary registers hold 32 bits worth;
393 for the 68881 registers, a single register is always enough for
394 anything that can be stored in them at all. */
395 #define HARD_REGNO_NREGS(REGNO, MODE) \
396 ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
397 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
398
399 #ifndef SUPPORT_SUN_FPA
400
401 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
402 On the 68000, the cpu registers can hold any mode but the 68881 registers
403 can hold only SFmode or DFmode. The 68881 registers can't hold anything
404 if 68881 use is disabled. */
405
406 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
407 (((REGNO) < 16) \
408 || ((REGNO) < 24 \
409 && TARGET_68881 \
410 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
411 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)))
412
413 #else /* defined SUPPORT_SUN_FPA */
414
415 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
416 On the 68000, the cpu registers can hold any mode but the 68881 registers
417 can hold only SFmode or DFmode. And the 68881 registers can't hold anything
418 if 68881 use is disabled. However, the Sun FPA register can
419 (apparently) hold whatever you feel like putting in them.
420 If using the fpa, don't put a double in d7/a0. */
421
422 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
423 (((REGNO) < 16 \
424 && !(TARGET_FPA \
425 && GET_MODE_CLASS ((MODE)) != MODE_INT \
426 && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
427 && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8 \
428 && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0)) \
429 || ((REGNO) < 24 \
430 ? TARGET_68881 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
431 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
432 : ((REGNO) < 56 ? TARGET_FPA : 0)))
433
434 #endif /* defined SUPPORT_SUN_FPA */
435
436 /* Value is 1 if it is a good idea to tie two pseudo registers
437 when one has mode MODE1 and one has mode MODE2.
438 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
439 for any hard reg, then this must be 0 for correct output. */
440 #define MODES_TIEABLE_P(MODE1, MODE2) \
441 (! TARGET_68881 \
442 || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
443 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
444 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
445 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
446
447 /* Specify the registers used for certain standard purposes.
448 The values of these macros are register numbers. */
449
450 /* m68000 pc isn't overloaded on a register. */
451 /* #define PC_REGNUM */
452
453 /* Register to use for pushing function arguments. */
454 #define STACK_POINTER_REGNUM 15
455
456 /* Base register for access to local variables of the function. */
457 #define FRAME_POINTER_REGNUM 14
458
459 /* Value should be nonzero if functions must have frame pointers.
460 Zero means the frame pointer need not be set up (and parms
461 may be accessed via the stack pointer) in functions that seem suitable.
462 This is computed in `reload', in reload1.c. */
463 #define FRAME_POINTER_REQUIRED 0
464
465 /* Base register for access to arguments of the function. */
466 #define ARG_POINTER_REGNUM 14
467
468 /* Register in which static-chain is passed to a function. */
469 #define STATIC_CHAIN_REGNUM 8
470
471 /* Register in which address to store a structure value
472 is passed to a function. */
473 #define STRUCT_VALUE_REGNUM 9
474 \f
475 /* Define the classes of registers for register constraints in the
476 machine description. Also define ranges of constants.
477
478 One of the classes must always be named ALL_REGS and include all hard regs.
479 If there is more than one class, another class must be named NO_REGS
480 and contain no registers.
481
482 The name GENERAL_REGS must be the name of a class (or an alias for
483 another name such as ALL_REGS). This is the class of registers
484 that is allowed by "g" or "r" in a register constraint.
485 Also, registers outside this class are allocated only when
486 instructions express preferences for them.
487
488 The classes must be numbered in nondecreasing order; that is,
489 a larger-numbered class must never be contained completely
490 in a smaller-numbered class.
491
492 For any two classes, it is very desirable that there be another
493 class that represents their union. */
494
495 /* The 68000 has three kinds of registers, so eight classes would be
496 a complete set. One of them is not needed. */
497
498 #ifndef SUPPORT_SUN_FPA
499
500 enum reg_class {
501 NO_REGS, DATA_REGS,
502 ADDR_REGS, FP_REGS,
503 GENERAL_REGS, DATA_OR_FP_REGS,
504 ADDR_OR_FP_REGS, ALL_REGS,
505 LIM_REG_CLASSES };
506
507 #define N_REG_CLASSES (int) LIM_REG_CLASSES
508
509 /* Give names of register classes as strings for dump file. */
510
511 #define REG_CLASS_NAMES \
512 { "NO_REGS", "DATA_REGS", \
513 "ADDR_REGS", "FP_REGS", \
514 "GENERAL_REGS", "DATA_OR_FP_REGS", \
515 "ADDR_OR_FP_REGS", "ALL_REGS" }
516
517 /* Define which registers fit in which classes.
518 This is an initializer for a vector of HARD_REG_SET
519 of length N_REG_CLASSES. */
520
521 #define REG_CLASS_CONTENTS \
522 { \
523 0x00000000, /* NO_REGS */ \
524 0x000000ff, /* DATA_REGS */ \
525 0x0000ff00, /* ADDR_REGS */ \
526 0x00ff0000, /* FP_REGS */ \
527 0x0000ffff, /* GENERAL_REGS */ \
528 0x00ff00ff, /* DATA_OR_FP_REGS */ \
529 0x00ffff00, /* ADDR_OR_FP_REGS */ \
530 0x00ffffff, /* ALL_REGS */ \
531 }
532
533 /* The same information, inverted:
534 Return the class number of the smallest class containing
535 reg number REGNO. This could be a conditional expression
536 or could index an array. */
537
538 #define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
539
540 #else /* defined SUPPORT_SUN_FPA */
541
542 /*
543 * Notes on final choices:
544 *
545 * 1) Didn't feel any need to union-ize LOW_FPA_REGS with anything
546 * else.
547 * 2) Removed all unions that involve address registers with
548 * floating point registers (left in unions of address and data with
549 * floating point).
550 * 3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS.
551 * 4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS.
552 * 4) Left in everything else.
553 */
554 enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS,
555 FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS,
556 DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS,
557 GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS,
558 LIM_REG_CLASSES };
559
560 #define N_REG_CLASSES (int) LIM_REG_CLASSES
561
562 /* Give names of register classes as strings for dump file. */
563
564 #define REG_CLASS_NAMES \
565 { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS", \
566 "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS", \
567 "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS", \
568 "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" }
569
570 /* Define which registers fit in which classes.
571 This is an initializer for a vector of HARD_REG_SET
572 of length N_REG_CLASSES. */
573
574 #define REG_CLASS_CONTENTS \
575 { \
576 {0, 0}, /* NO_REGS */ \
577 {0xff000000, 0x000000ff}, /* LO_FPA_REGS */ \
578 {0xff000000, 0x00ffffff}, /* FPA_REGS */ \
579 {0x00ff0000, 0x00000000}, /* FP_REGS */ \
580 {0xffff0000, 0x00ffffff}, /* FP_OR_FPA_REGS */ \
581 {0x000000ff, 0x00000000}, /* DATA_REGS */ \
582 {0xff0000ff, 0x00ffffff}, /* DATA_OR_FPA_REGS */ \
583 {0x00ff00ff, 0x00000000}, /* DATA_OR_FP_REGS */ \
584 {0xffff00ff, 0x00ffffff}, /* DATA_OR_FP_OR_FPA_REGS */\
585 {0x0000ff00, 0x00000000}, /* ADDR_REGS */ \
586 {0x0000ffff, 0x00000000}, /* GENERAL_REGS */ \
587 {0xff00ffff, 0x00ffffff}, /* GENERAL_OR_FPA_REGS */\
588 {0x00ffffff, 0x00000000}, /* GENERAL_OR_FP_REGS */\
589 {0xffffffff, 0x00ffffff}, /* ALL_REGS */ \
590 }
591
592 /* The same information, inverted:
593 Return the class number of the smallest class containing
594 reg number REGNO. This could be a conditional expression
595 or could index an array. */
596
597 extern enum reg_class regno_reg_class[];
598 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
599
600 #endif /* SUPPORT_SUN_FPA */
601
602 /* The class value for index registers, and the one for base regs. */
603
604 #define INDEX_REG_CLASS GENERAL_REGS
605 #define BASE_REG_CLASS ADDR_REGS
606
607 /* Get reg_class from a letter such as appears in the machine description.
608 We do a trick here to modify the effective constraints on the
609 machine description; we zorch the constraint letters that aren't
610 appropriate for a specific target. This allows us to guarantee
611 that a specific kind of register will not be used for a given target
612 without fiddling with the register classes above. */
613
614 #ifndef SUPPORT_SUN_FPA
615
616 #define REG_CLASS_FROM_LETTER(C) \
617 ((C) == 'a' ? ADDR_REGS : \
618 ((C) == 'd' ? DATA_REGS : \
619 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
620 NO_REGS) : \
621 NO_REGS)))
622
623 #else /* defined SUPPORT_SUN_FPA */
624
625 #define REG_CLASS_FROM_LETTER(C) \
626 ((C) == 'a' ? ADDR_REGS : \
627 ((C) == 'd' ? DATA_REGS : \
628 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
629 NO_REGS) : \
630 ((C) == 'x' ? (TARGET_FPA ? FPA_REGS : \
631 NO_REGS) : \
632 ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS : \
633 NO_REGS) : \
634 NO_REGS)))))
635
636 #endif /* defined SUPPORT_SUN_FPA */
637
638 /* The letters I, J, K, L and M in a register constraint string
639 can be used to stand for particular ranges of immediate operands.
640 This macro defines what the ranges are.
641 C is the letter, and VALUE is a constant value.
642 Return 1 if VALUE is in the range specified by C.
643
644 For the 68000, `I' is used for the range 1 to 8
645 allowed as immediate shift counts and in addq.
646 `J' is used for the range of signed numbers that fit in 16 bits.
647 `K' is for numbers that moveq can't handle.
648 `L' is for range -8 to -1, range of values that can be added with subq. */
649
650 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
651 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
652 (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
653 (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
654 (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
655
656 /*
657 * A small bit of explanation:
658 * "G" defines all of the floating constants that are *NOT* 68881
659 * constants. this is so 68881 constants get reloaded and the
660 * fpmovecr is used. "H" defines *only* the class of constants that
661 * the fpa can use, because these can be gotten at in any fpa
662 * instruction and there is no need to force reloads.
663 */
664 #ifndef SUPPORT_SUN_FPA
665 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
666 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
667 #else /* defined SUPPORT_SUN_FPA */
668 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
669 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \
670 (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0)
671 #endif /* defined SUPPORT_SUN_FPA */
672
673 /* Given an rtx X being reloaded into a reg required to be
674 in class CLASS, return the class of reg to actually use.
675 In general this is just CLASS; but on some machines
676 in some cases it is preferable to use a more restrictive class.
677 On the 68000 series, use a data reg if possible when the
678 value is a constant in the range where moveq could be used
679 and we ensure that QImodes are reloaded into data regs.
680 Also, if a floating constant needs reloading, put it in memory.
681 Don't do this for !G constants, since all patterns in the md file
682 expect them to be loaded into a register via fpmovecr. See above. */
683
684 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
685 ((GET_CODE (X) == CONST_INT \
686 && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
687 && (CLASS) != ADDR_REGS) \
688 ? DATA_REGS \
689 : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
690 ? DATA_REGS \
691 : (GET_CODE (X) == CONST_DOUBLE \
692 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
693 ? (! CONST_DOUBLE_OK_FOR_LETTER_P (X, 'G') \
694 && CLASS == FP_REGS \
695 ? FP_REGS : NO_REGS) \
696 : (CLASS))
697
698 /* Return the maximum number of consecutive registers
699 needed to represent mode MODE in a register of class CLASS. */
700 /* On the 68000, this is the size of MODE in words,
701 except in the FP regs, where a single reg is always enough. */
702 #ifndef SUPPORT_SUN_FPA
703
704 #define CLASS_MAX_NREGS(CLASS, MODE) \
705 ((CLASS) == FP_REGS ? 1 \
706 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
707
708 /* Moves between fp regs and other regs are two insns. */
709 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
710 (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
711 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
712 ? 4 : 2)
713
714 #else /* defined SUPPORT_SUN_FPA */
715
716 #define CLASS_MAX_NREGS(CLASS, MODE) \
717 ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \
718 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
719
720 /* Moves between fp regs and other regs are two insns. */
721 /* Likewise for high fpa regs and other regs. */
722 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
723 ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
724 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
725 || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS) \
726 || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS)) \
727 ? 4 : 2)
728
729 #endif /* define SUPPORT_SUN_FPA */
730 \f
731 /* Stack layout; function entry, exit and calling. */
732
733 /* Define this if pushing a word on the stack
734 makes the stack pointer a smaller address. */
735 #define STACK_GROWS_DOWNWARD
736
737 /* Nonzero if we need to generate stack-probe insns.
738 On most systems they are not needed.
739 When they are needed, define this as the stack offset to probe at. */
740 #define NEED_PROBE 0
741
742 /* Define this if the nominal address of the stack frame
743 is at the high-address end of the local variables;
744 that is, each additional local variable allocated
745 goes at a more negative offset in the frame. */
746 #define FRAME_GROWS_DOWNWARD
747
748 /* Offset within stack frame to start allocating local variables at.
749 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
750 first local allocated. Otherwise, it is the offset to the BEGINNING
751 of the first local allocated. */
752 #define STARTING_FRAME_OFFSET 0
753
754 /* If we generate an insn to push BYTES bytes,
755 this says how many the stack pointer really advances by.
756 On the 68000, sp@- in a byte insn really pushes a word. */
757 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
758
759 /* Offset of first parameter from the argument pointer register value. */
760 #define FIRST_PARM_OFFSET(FNDECL) 8
761
762 /* Value is the number of byte of arguments automatically
763 popped when returning from a subroutine call.
764 FUNDECL is the declaration node of the function (as a tree),
765 FUNTYPE is the data type of the function (as a tree),
766 or for a library call it is an identifier node for the subroutine name.
767 SIZE is the number of bytes of arguments passed on the stack.
768
769 On the 68000, the RTS insn cannot pop anything.
770 On the 68010, the RTD insn may be used to pop them if the number
771 of args is fixed, but if the number is variable then the caller
772 must pop them all. RTD can't be used for library calls now
773 because the library is compiled with the Unix compiler.
774 Use of RTD is a selectable option, since it is incompatible with
775 standard Unix calling sequences. If the option is not selected,
776 the caller must always pop the args. */
777
778 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
779 ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
780 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
781 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
782 == void_type_node))) \
783 ? (SIZE) : 0)
784
785 /* Define how to find the value returned by a function.
786 VALTYPE is the data type of the value (as a tree).
787 If the precise function being called is known, FUNC is its FUNCTION_DECL;
788 otherwise, FUNC is 0. */
789
790 /* On the 68000 the return value is in D0 regardless. */
791
792 #define FUNCTION_VALUE(VALTYPE, FUNC) \
793 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
794
795 /* Define how to find the value returned by a library function
796 assuming the value has mode MODE. */
797
798 /* On the 68000 the return value is in D0 regardless. */
799
800 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
801
802 /* 1 if N is a possible register number for a function value.
803 On the 68000, d0 is the only register thus used. */
804
805 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
806
807 /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
808 more than one register. */
809
810 #define NEEDS_UNTYPED_CALL 0
811
812 /* Define this if PCC uses the nonreentrant convention for returning
813 structure and union values. */
814
815 #define PCC_STATIC_STRUCT_RETURN
816
817 /* 1 if N is a possible register number for function argument passing.
818 On the 68000, no registers are used in this way. */
819
820 #define FUNCTION_ARG_REGNO_P(N) 0
821 \f
822 /* Define a data type for recording info about an argument list
823 during the scan of that argument list. This data type should
824 hold all necessary information about the function itself
825 and about the args processed so far, enough to enable macros
826 such as FUNCTION_ARG to determine where the next arg should go.
827
828 On the m68k, this is a single integer, which is a number of bytes
829 of arguments scanned so far. */
830
831 #define CUMULATIVE_ARGS int
832
833 /* Initialize a variable CUM of type CUMULATIVE_ARGS
834 for a call to a function whose data type is FNTYPE.
835 For a library call, FNTYPE is 0.
836
837 On the m68k, the offset starts at 0. */
838
839 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
840 ((CUM) = 0)
841
842 /* Update the data in CUM to advance over an argument
843 of mode MODE and data type TYPE.
844 (TYPE is null for libcalls where that information may not be available.) */
845
846 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
847 ((CUM) += ((MODE) != BLKmode \
848 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
849 : (int_size_in_bytes (TYPE) + 3) & ~3))
850
851 /* Define where to put the arguments to a function.
852 Value is zero to push the argument on the stack,
853 or a hard register in which to store the argument.
854
855 MODE is the argument's machine mode.
856 TYPE is the data type of the argument (as a tree).
857 This is null for libcalls where that information may
858 not be available.
859 CUM is a variable of type CUMULATIVE_ARGS which gives info about
860 the preceding args and about the function being called.
861 NAMED is nonzero if this argument is a named parameter
862 (otherwise it is an extra parameter matching an ellipsis). */
863
864 /* On the 68000 all args are pushed, except if -mregparm is specified
865 then the first two words of arguments are passed in d0, d1.
866 *NOTE* -mregparm does not work.
867 It exists only to test register calling conventions. */
868
869 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
870 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
871
872 /* For an arg passed partly in registers and partly in memory,
873 this is the number of registers used.
874 For args passed entirely in registers or entirely in memory, zero. */
875
876 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
877 ((TARGET_REGPARM && (CUM) < 8 \
878 && 8 < ((CUM) + ((MODE) == BLKmode \
879 ? int_size_in_bytes (TYPE) \
880 : GET_MODE_SIZE (MODE)))) \
881 ? 2 - (CUM) / 4 : 0)
882
883 /* Generate the assembly code for function entry. */
884 #define FUNCTION_PROLOGUE(FILE, SIZE) output_function_prologue(FILE, SIZE)
885
886 /* Output assembler code to FILE to increment profiler label # LABELNO
887 for profiling a function entry. */
888
889 #define FUNCTION_PROFILER(FILE, LABELNO) \
890 asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
891
892 /* Output assembler code to FILE to initialize this source file's
893 basic block profiling info, if that has not already been done. */
894
895 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
896 asm_fprintf (FILE, "\ttstl %LLPBX0\n\tbne %LLPI%d\n\tpea %LLPBX0\n\tjsr %U__bb_init_func\n\taddql %I4,%Rsp\n%LLPI%d:\n", \
897 LABELNO, LABELNO);
898
899 /* Output assembler code to FILE to increment the entry-count for
900 the BLOCKNO'th basic block in this source file. */
901
902 #define BLOCK_PROFILER(FILE, BLOCKNO) \
903 asm_fprintf (FILE, "\taddql %I1,%LLPBX2+%d\n", 4 * BLOCKNO)
904
905 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
906 the stack pointer does not matter. The value is tested only in
907 functions that have frame pointers.
908 No definition is equivalent to always zero. */
909
910 #define EXIT_IGNORE_STACK 1
911
912 /* Generate the assembly code for function exit. */
913 #define FUNCTION_EPILOGUE(FILE, SIZE) output_function_epilogue (FILE, SIZE)
914
915 /* This is a hook for other tm files to change. */
916 /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
917
918 /* Determine if the epilogue should be output as RTL.
919 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
920 #define USE_RETURN_INSN use_return_insn ()
921
922 /* Store in the variable DEPTH the initial difference between the
923 frame pointer reg contents and the stack pointer reg contents,
924 as of the start of the function body. This depends on the layout
925 of the fixed parts of the stack frame and on how registers are saved.
926
927 On the 68k, if we have a frame, we must add one word to its length
928 to allow for the place that a6 is stored when we do have a frame pointer.
929 Otherwise, we would need to compute the offset from the frame pointer
930 of a local variable as a function of frame_pointer_needed, which
931 is hard. */
932
933 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
934 { int regno; \
935 int offset = -4; \
936 for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
937 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
938 offset += 12; \
939 for (regno = 0; regno < 16; regno++) \
940 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
941 offset += 4; \
942 (DEPTH) = (offset + ((get_frame_size () + 3) & -4) \
943 + (get_frame_size () == 0 ? 0 : 4)); \
944 }
945
946 /* Output assembler code for a block containing the constant parts
947 of a trampoline, leaving space for the variable parts. */
948
949 /* On the 68k, the trampoline looks like this:
950 mov @#.,a0
951 jsr @#___trampoline
952 jsr @#___trampoline
953 .long STATIC
954 .long FUNCTION
955 The reason for having three jsr insns is so that an entire line
956 of the instruction cache is filled in a predictable way
957 that will always be the same.
958
959 We always use the assembler label ___trampoline
960 regardless of whether the system adds underscores. */
961
962 #define TRAMPOLINE_TEMPLATE(FILE) \
963 { \
964 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x207c)); \
965 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
966 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
967 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9)); \
968 ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
969 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9)); \
970 ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
971 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
972 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
973 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
974 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
975 }
976
977 /* Length in units of the trampoline for entering a nested function. */
978
979 #define TRAMPOLINE_SIZE 26
980
981 /* Alignment required for a trampoline. 16 is used to find the
982 beginning of a line in the instruction cache. */
983
984 #define TRAMPOLINE_ALIGN 16
985
986 /* Emit RTL insns to initialize the variable parts of a trampoline.
987 FNADDR is an RTX for the address of the function's pure code.
988 CXT is an RTX for the static chain value for the function. */
989
990 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
991 { \
992 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), TRAMP); \
993 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 18)), CXT); \
994 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 22)), FNADDR); \
995 }
996
997 /* This is the library routine that is used
998 to transfer control from the trampoline
999 to the actual nested function. */
1000
1001 /* A colon is used with no explicit operands
1002 to cause the template string to be scanned for %-constructs. */
1003 /* The function name __transfer_from_trampoline is not actually used.
1004 The function definition just permits use of "asm with operands"
1005 (though the operand list is empty). */
1006 #define TRANSFER_FROM_TRAMPOLINE \
1007 void \
1008 __transfer_from_trampoline () \
1009 { \
1010 register char *a0 asm ("%a0"); \
1011 asm (GLOBAL_ASM_OP " ___trampoline"); \
1012 asm ("___trampoline:"); \
1013 asm volatile ("move%.l %0,%@" : : "m" (a0[22])); \
1014 asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \
1015 asm ("rts":); \
1016 }
1017 \f
1018 /* Addressing modes, and classification of registers for them. */
1019
1020 #define HAVE_POST_INCREMENT
1021 /* #define HAVE_POST_DECREMENT */
1022
1023 #define HAVE_PRE_DECREMENT
1024 /* #define HAVE_PRE_INCREMENT */
1025
1026 /* Macros to check register numbers against specific register classes. */
1027
1028 /* These assume that REGNO is a hard or pseudo reg number.
1029 They give nonzero only if REGNO is a hard reg of the suitable class
1030 or a pseudo reg currently allocated to a suitable hard reg.
1031 Since they use reg_renumber, they are safe only once reg_renumber
1032 has been allocated, which happens in local-alloc.c. */
1033
1034 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1035 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1036 #define REGNO_OK_FOR_BASE_P(REGNO) \
1037 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1038 #define REGNO_OK_FOR_DATA_P(REGNO) \
1039 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1040 #define REGNO_OK_FOR_FP_P(REGNO) \
1041 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1042 #ifdef SUPPORT_SUN_FPA
1043 #define REGNO_OK_FOR_FPA_P(REGNO) \
1044 (((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56))
1045 #endif
1046
1047 /* Now macros that check whether X is a register and also,
1048 strictly, whether it is in a specified class.
1049
1050 These macros are specific to the 68000, and may be used only
1051 in code for printing assembler insns and in conditions for
1052 define_optimization. */
1053
1054 /* 1 if X is a data register. */
1055
1056 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1057
1058 /* 1 if X is an fp register. */
1059
1060 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1061
1062 /* 1 if X is an address register */
1063
1064 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1065
1066 #ifdef SUPPORT_SUN_FPA
1067 /* 1 if X is a register in the Sun FPA. */
1068 #define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X)))
1069 #else
1070 /* Answer must be no if we don't have an FPA. */
1071 #define FPA_REG_P(X) 0
1072 #endif
1073 \f
1074 /* Maximum number of registers that can appear in a valid memory address. */
1075
1076 #define MAX_REGS_PER_ADDRESS 2
1077
1078 /* Recognize any constant value that is a valid address. */
1079
1080 #define CONSTANT_ADDRESS_P(X) \
1081 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1082 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1083 || GET_CODE (X) == HIGH)
1084
1085 /* Nonzero if the constant value X is a legitimate general operand.
1086 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1087
1088 #define LEGITIMATE_CONSTANT_P(X) 1
1089
1090 /* Nonzero if the constant value X is a legitimate general operand
1091 when generating PIC code. It is given that flag_pic is on and
1092 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1093
1094 #define LEGITIMATE_PIC_OPERAND_P(X) \
1095 (! symbolic_operand (X, VOIDmode))
1096
1097 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1098 and check its validity for a certain class.
1099 We have two alternate definitions for each of them.
1100 The usual definition accepts all pseudo regs; the other rejects
1101 them unless they have been allocated suitable hard regs.
1102 The symbol REG_OK_STRICT causes the latter definition to be used.
1103
1104 Most source files want to accept pseudo regs in the hope that
1105 they will get allocated to the class that the insn wants them to be in.
1106 Source files for reload pass need to be strict.
1107 After reload, it makes no difference, since pseudo regs have
1108 been eliminated by then. */
1109
1110 #ifndef REG_OK_STRICT
1111
1112 /* Nonzero if X is a hard reg that can be used as an index
1113 or if it is a pseudo reg. */
1114 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1115 /* Nonzero if X is a hard reg that can be used as a base reg
1116 or if it is a pseudo reg. */
1117 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1118
1119 #else
1120
1121 /* Nonzero if X is a hard reg that can be used as an index. */
1122 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1123 /* Nonzero if X is a hard reg that can be used as a base reg. */
1124 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1125
1126 #endif
1127 \f
1128 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1129 that is a valid memory address for an instruction.
1130 The MODE argument is the machine mode for the MEM expression
1131 that wants to use this address.
1132
1133 When generating PIC, an address involving a SYMBOL_REF is legitimate
1134 if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1135 We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1136 and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1137
1138 Likewise for a LABEL_REF when generating PIC.
1139
1140 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1141
1142 /* Allow SUBREG everywhere we allow REG. This results in better code. It
1143 also makes function inlining work when inline functions are called with
1144 arguments that are SUBREGs. */
1145
1146 #define LEGITIMATE_BASE_REG_P(X) \
1147 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1148 || (GET_CODE (X) == SUBREG \
1149 && GET_CODE (SUBREG_REG (X)) == REG \
1150 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1151
1152 #define INDIRECTABLE_1_ADDRESS_P(X) \
1153 ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
1154 || LEGITIMATE_BASE_REG_P (X) \
1155 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
1156 && LEGITIMATE_BASE_REG_P (XEXP (X, 0))) \
1157 || (GET_CODE (X) == PLUS \
1158 && LEGITIMATE_BASE_REG_P (XEXP (X, 0)) \
1159 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1160 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000) \
1161 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1162 && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \
1163 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1164 && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF)) \
1165
1166 #if 0
1167 /* This should replace the last two (non-pic) lines
1168 except that Sun's assembler does not seem to handle such operands. */
1169 && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
1170 : (GET_CODE (XEXP (X, 1)) == CONST_INT \
1171 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))
1172 #endif
1173
1174
1175 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
1176 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1177
1178 /* Only labels on dispatch tables are valid for indexing from. */
1179 #define GO_IF_INDEXABLE_BASE(X, ADDR) \
1180 { rtx temp; \
1181 if (GET_CODE (X) == LABEL_REF \
1182 && (temp = next_nonnote_insn (XEXP (X, 0))) != 0 \
1183 && GET_CODE (temp) == JUMP_INSN \
1184 && (GET_CODE (PATTERN (temp)) == ADDR_VEC \
1185 || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC)) \
1186 goto ADDR; \
1187 if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
1188
1189 #define GO_IF_INDEXING(X, ADDR) \
1190 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
1191 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
1192 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
1193 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1194
1195 #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
1196 { GO_IF_INDEXING (X, ADDR); \
1197 if (GET_CODE (X) == PLUS) \
1198 { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1199 && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
1200 { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
1201 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1202 && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
1203 { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1204
1205 #define LEGITIMATE_INDEX_REG_P(X) \
1206 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1207 || (GET_CODE (X) == SIGN_EXTEND \
1208 && GET_CODE (XEXP (X, 0)) == REG \
1209 && GET_MODE (XEXP (X, 0)) == HImode \
1210 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1211 || (GET_CODE (X) == SUBREG \
1212 && GET_CODE (SUBREG_REG (X)) == REG \
1213 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1214
1215 #define LEGITIMATE_INDEX_P(X) \
1216 (LEGITIMATE_INDEX_REG_P (X) \
1217 || (TARGET_68020 && GET_CODE (X) == MULT \
1218 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
1219 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1220 && (INTVAL (XEXP (X, 1)) == 2 \
1221 || INTVAL (XEXP (X, 1)) == 4 \
1222 || INTVAL (XEXP (X, 1)) == 8)))
1223
1224 /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes. */
1225 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1226 { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
1227 GO_IF_INDEXED_ADDRESS (X, ADDR); \
1228 if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS \
1229 && LEGITIMATE_INDEX_P (XEXP (X, 0)) \
1230 && GET_CODE (XEXP (X, 1)) == LABEL_REF) \
1231 goto ADDR; }
1232
1233 /* Don't call memory_address_noforce for the address to fetch
1234 the switch offset. This address is ok as it stands (see above),
1235 but memory_address_noforce would alter it. */
1236 #define PIC_CASE_VECTOR_ADDRESS(index) index
1237 \f
1238 /* Try machine-dependent ways of modifying an illegitimate address
1239 to be legitimate. If we find one, return the new, valid address.
1240 This macro is used in only one place: `memory_address' in explow.c.
1241
1242 OLDX is the address as it was before break_out_memory_refs was called.
1243 In some cases it is useful to look at this to decide what needs to be done.
1244
1245 MODE and WIN are passed so that this macro can use
1246 GO_IF_LEGITIMATE_ADDRESS.
1247
1248 It is always safe for this macro to do nothing. It exists to recognize
1249 opportunities to optimize the output.
1250
1251 For the 68000, we handle X+REG by loading X into a register R and
1252 using R+REG. R will go in an address reg and indexing will be used.
1253 However, if REG is a broken-out memory address or multiplication,
1254 nothing needs to be done because REG can certainly go in an address reg. */
1255
1256 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1257 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1258 { register int ch = (X) != (OLDX); \
1259 if (GET_CODE (X) == PLUS) \
1260 { int copied = 0; \
1261 if (GET_CODE (XEXP (X, 0)) == MULT) \
1262 { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
1263 if (GET_CODE (XEXP (X, 1)) == MULT) \
1264 { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
1265 if (ch && GET_CODE (XEXP (X, 1)) == REG \
1266 && GET_CODE (XEXP (X, 0)) == REG) \
1267 goto WIN; \
1268 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
1269 if (GET_CODE (XEXP (X, 0)) == REG \
1270 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
1271 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1272 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
1273 { register rtx temp = gen_reg_rtx (Pmode); \
1274 register rtx val = force_operand (XEXP (X, 1), 0); \
1275 emit_move_insn (temp, val); \
1276 COPY_ONCE (X); \
1277 XEXP (X, 1) = temp; \
1278 goto WIN; } \
1279 else if (GET_CODE (XEXP (X, 1)) == REG \
1280 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
1281 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1282 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
1283 { register rtx temp = gen_reg_rtx (Pmode); \
1284 register rtx val = force_operand (XEXP (X, 0), 0); \
1285 emit_move_insn (temp, val); \
1286 COPY_ONCE (X); \
1287 XEXP (X, 0) = temp; \
1288 goto WIN; }}}
1289
1290 /* Go to LABEL if ADDR (a legitimate address expression)
1291 has an effect that depends on the machine mode it is used for.
1292 On the 68000, only predecrement and postincrement address depend thus
1293 (the amount of decrement or increment being the length of the operand). */
1294
1295 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1296 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1297 \f
1298 /* Specify the machine mode that this machine uses
1299 for the index in the tablejump instruction. */
1300 #define CASE_VECTOR_MODE HImode
1301
1302 /* Define this if the tablejump instruction expects the table
1303 to contain offsets from the address of the table.
1304 Do not define this if the table should contain absolute addresses. */
1305 #define CASE_VECTOR_PC_RELATIVE
1306
1307 /* Specify the tree operation to be used to convert reals to integers. */
1308 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1309
1310 /* This is the kind of divide that is easiest to do in the general case. */
1311 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1312
1313 /* Define this as 1 if `char' should by default be signed; else as 0. */
1314 #define DEFAULT_SIGNED_CHAR 1
1315
1316 /* Don't cse the address of the function being compiled. */
1317 #define NO_RECURSIVE_FUNCTION_CSE
1318
1319 /* Max number of bytes we can move from memory to memory
1320 in one reasonably fast instruction. */
1321 #define MOVE_MAX 4
1322
1323 /* Define this if zero-extension is slow (more than one real instruction). */
1324 #define SLOW_ZERO_EXTEND
1325
1326 /* Nonzero if access to memory by bytes is slow and undesirable. */
1327 #define SLOW_BYTE_ACCESS 0
1328
1329 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1330 is done just by pretending it is already truncated. */
1331 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1332
1333 /* We assume that the store-condition-codes instructions store 0 for false
1334 and some other value for true. This is the value stored for true. */
1335
1336 #define STORE_FLAG_VALUE -1
1337
1338 /* When a prototype says `char' or `short', really pass an `int'. */
1339 #define PROMOTE_PROTOTYPES
1340
1341 /* Specify the machine mode that pointers have.
1342 After generation of rtl, the compiler makes no further distinction
1343 between pointers and any other objects of this machine mode. */
1344 #define Pmode SImode
1345
1346 /* A function address in a call instruction
1347 is a byte address (for indexing purposes)
1348 so give the MEM rtx a byte's mode. */
1349 #define FUNCTION_MODE QImode
1350
1351 /* Compute the cost of computing a constant rtl expression RTX
1352 whose rtx-code is CODE. The body of this macro is a portion
1353 of a switch statement. If the code is computed here,
1354 return it with a return statement. Otherwise, break from the switch. */
1355
1356 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1357 case CONST_INT: \
1358 /* Constant zero is super cheap due to clr instruction. */ \
1359 if (RTX == const0_rtx) return 0; \
1360 /* if ((OUTER_CODE) == SET) */ \
1361 return const_int_cost(RTX); \
1362 case CONST: \
1363 case LABEL_REF: \
1364 case SYMBOL_REF: \
1365 return 3; \
1366 case CONST_DOUBLE: \
1367 return 5;
1368
1369 /* Compute the cost of various arithmetic operations.
1370 These are vaguely right for a 68020. */
1371 /* The costs for long multiply have been adjusted to
1372 work properly in synth_mult on the 68020,
1373 relative to an average of the time for add and the time for shift,
1374 taking away a little more because sometimes move insns are needed. */
1375 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
1376 #define MULL_COST (TARGET_68040 ? 5 : 13)
1377 #define MULW_COST (TARGET_68040 ? 3 : TARGET_68020 ? 8 : 5)
1378 #define DIVW_COST (TARGET_68020 ? 27 : 12)
1379
1380 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1381 case PLUS: \
1382 /* An lea costs about three times as much as a simple add. */ \
1383 if (GET_MODE (X) == SImode \
1384 && GET_CODE (XEXP (X, 0)) == REG \
1385 && GET_CODE (XEXP (X, 1)) == MULT \
1386 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1387 && GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT \
1388 && (INTVAL (XEXP (XEXP (X, 1), 1)) == 2 \
1389 || INTVAL (XEXP (XEXP (X, 1), 1)) == 4 \
1390 || INTVAL (XEXP (XEXP (X, 1), 1)) == 8)) \
1391 return COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */ \
1392 break; \
1393 case ASHIFT: \
1394 case ASHIFTRT: \
1395 case LSHIFTRT: \
1396 if (! TARGET_68020) \
1397 { \
1398 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1399 { \
1400 if (INTVAL (XEXP (X, 1)) < 16) \
1401 return COSTS_N_INSNS (2) + INTVAL (XEXP (X, 1)) / 2; \
1402 else \
1403 /* We're using clrw + swap for these cases. */ \
1404 return COSTS_N_INSNS (4) + (INTVAL (XEXP (X, 1)) - 16) / 2; \
1405 } \
1406 return COSTS_N_INSNS (10); /* worst case */ \
1407 } \
1408 /* A shift by a big integer takes an extra instruction. */ \
1409 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1410 && (INTVAL (XEXP (X, 1)) == 16)) \
1411 return COSTS_N_INSNS (2); /* clrw;swap */ \
1412 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1413 && !(INTVAL (XEXP (X, 1)) > 0 \
1414 && INTVAL (XEXP (X, 1)) <= 8)) \
1415 return COSTS_N_INSNS (3); /* lsr #i,dn */ \
1416 break; \
1417 case MULT: \
1418 if ((GET_CODE (XEXP (X, 0)) == ZERO_EXTEND \
1419 || GET_CODE (XEXP (X, 0)) == SIGN_EXTEND) \
1420 && GET_MODE (X) == SImode) \
1421 return COSTS_N_INSNS (MULW_COST); \
1422 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
1423 return COSTS_N_INSNS (MULW_COST); \
1424 else \
1425 return COSTS_N_INSNS (MULL_COST); \
1426 case DIV: \
1427 case UDIV: \
1428 case MOD: \
1429 case UMOD: \
1430 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
1431 return COSTS_N_INSNS (DIVW_COST); /* div.w */ \
1432 return COSTS_N_INSNS (43); /* div.l */
1433 \f
1434 /* Tell final.c how to eliminate redundant test instructions. */
1435
1436 /* Here we define machine-dependent flags and fields in cc_status
1437 (see `conditions.h'). */
1438
1439 /* Set if the cc value is actually in the 68881, so a floating point
1440 conditional branch must be output. */
1441 #define CC_IN_68881 04000
1442
1443 /* Store in cc_status the expressions that the condition codes will
1444 describe after execution of an instruction whose pattern is EXP.
1445 Do not alter them if the instruction would not alter the cc's. */
1446
1447 /* On the 68000, all the insns to store in an address register fail to
1448 set the cc's. However, in some cases these instructions can make it
1449 possibly invalid to use the saved cc's. In those cases we clear out
1450 some or all of the saved cc's so they won't be used. */
1451
1452 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1453
1454 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1455 { if (cc_prev_status.flags & CC_IN_68881) \
1456 return FLOAT; \
1457 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1458 return NO_OV; \
1459 return NORMAL; }
1460 \f
1461 /* Control the assembler format that we output. */
1462
1463 /* Output at beginning of assembler file. */
1464
1465 #define ASM_FILE_START(FILE) \
1466 fprintf (FILE, "#NO_APP\n");
1467
1468 /* Output to assembler file text saying following lines
1469 may contain character constants, extra white space, comments, etc. */
1470
1471 #define ASM_APP_ON "#APP\n"
1472
1473 /* Output to assembler file text saying following lines
1474 no longer contain unusual constructs. */
1475
1476 #define ASM_APP_OFF "#NO_APP\n"
1477
1478 /* Output before read-only data. */
1479
1480 #define TEXT_SECTION_ASM_OP ".text"
1481
1482 /* Output before writable data. */
1483
1484 #define DATA_SECTION_ASM_OP ".data"
1485
1486 /* Here are four prefixes that are used by asm_fprintf to
1487 facilitate customization for alternate assembler syntaxes.
1488 Machines with no likelihood of an alternate syntax need not
1489 define these and need not use asm_fprintf. */
1490
1491 /* The prefix for register names. Note that REGISTER_NAMES
1492 is supposed to include this prefix. */
1493
1494 #define REGISTER_PREFIX ""
1495
1496 /* The prefix for local labels. You should be able to define this as
1497 an empty string, or any arbitrary string (such as ".", ".L%", etc)
1498 without having to make any other changes to account for the specific
1499 definition. Note it is a string literal, not interpreted by printf
1500 and friends. */
1501
1502 #define LOCAL_LABEL_PREFIX ""
1503
1504 /* The prefix to add to user-visible assembler symbols. */
1505
1506 #define USER_LABEL_PREFIX "_"
1507
1508 /* The prefix for immediate operands. */
1509
1510 #define IMMEDIATE_PREFIX "#"
1511
1512 /* How to refer to registers in assembler output.
1513 This sequence is indexed by compiler's hard-register-number (see above). */
1514
1515 #ifndef SUPPORT_SUN_FPA
1516
1517 #define REGISTER_NAMES \
1518 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1519 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1520 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
1521
1522 #else /* SUPPORTED_SUN_FPA */
1523
1524 #define REGISTER_NAMES \
1525 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1526 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1527 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
1528 "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \
1529 "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \
1530 "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \
1531 "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" }
1532
1533 #endif /* defined SUPPORT_SUN_FPA */
1534
1535 /* How to renumber registers for dbx and gdb.
1536 On the Sun-3, the floating point registers have numbers
1537 18 to 25, not 16 to 23 as they do in the compiler. */
1538
1539 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1540
1541 /* This is how to output the definition of a user-level label named NAME,
1542 such as the label on a static function or variable NAME. */
1543
1544 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1545 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1546
1547 /* This is how to output a command to make the user-level label named NAME
1548 defined for reference from other files. */
1549
1550 #define GLOBAL_ASM_OP ".globl"
1551 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1552 do { fprintf (FILE, "%s ", GLOBAL_ASM_OP); \
1553 assemble_name (FILE, NAME); \
1554 fputs ("\n", FILE);} while (0)
1555
1556 /* This is how to output a reference to a user-level label named NAME.
1557 `assemble_name' uses this. */
1558
1559 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1560 asm_fprintf (FILE, "%0U%s", NAME)
1561
1562 /* This is how to output an internal numbered label where
1563 PREFIX is the class of label and NUM is the number within the class. */
1564
1565 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1566 asm_fprintf (FILE, "%0L%s%d:\n", PREFIX, NUM)
1567
1568 /* This is how to store into the string LABEL
1569 the symbol_ref name of an internal numbered label where
1570 PREFIX is the class of label and NUM is the number within the class.
1571 This is suitable for output with `assemble_name'. */
1572
1573 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1574 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
1575
1576 /* This is how to output a `long double' extended real constant. */
1577
1578 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1579 do { long l[3]; \
1580 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
1581 if (sizeof (int) == sizeof (long)) \
1582 fprintf (FILE, "\t.long 0x%x,0x%x,0x%x\n", l[0], l[1], l[2]); \
1583 else \
1584 fprintf (FILE, "\t.long 0x%lx,0x%lx,0x%lx\n", l[0], l[1], l[2]); \
1585 } while (0)
1586
1587 /* This is how to output an assembler line defining a `double' constant. */
1588
1589 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1590 do { char dstr[30]; \
1591 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1592 fprintf (FILE, "\t.double 0r%s\n", dstr); \
1593 } while (0)
1594
1595 /* This is how to output an assembler line defining a `float' constant. */
1596
1597 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1598 do { long l; \
1599 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1600 if (sizeof (int) == sizeof (long)) \
1601 fprintf (FILE, "\t.long 0x%x\n", l); \
1602 else \
1603 fprintf (FILE, "\t.long 0x%lx\n", l); \
1604 } while (0)
1605
1606 /* This is how to output an assembler line defining an `int' constant. */
1607
1608 #define ASM_OUTPUT_INT(FILE,VALUE) \
1609 ( fprintf (FILE, "\t.long "), \
1610 output_addr_const (FILE, (VALUE)), \
1611 fprintf (FILE, "\n"))
1612
1613 /* Likewise for `char' and `short' constants. */
1614
1615 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1616 ( fprintf (FILE, "\t.word "), \
1617 output_addr_const (FILE, (VALUE)), \
1618 fprintf (FILE, "\n"))
1619
1620 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1621 ( fprintf (FILE, "\t.byte "), \
1622 output_addr_const (FILE, (VALUE)), \
1623 fprintf (FILE, "\n"))
1624
1625 /* This is how to output an assembler line for a numeric constant byte. */
1626
1627 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1628 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1629
1630 /* This is how to output an insn to push a register on the stack.
1631 It need not be very fast code. */
1632
1633 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1634 asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1635
1636 /* This is how to output an insn to pop a register from the stack.
1637 It need not be very fast code. */
1638
1639 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1640 asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1641
1642 /* This is how to output an element of a case-vector that is absolute.
1643 (The 68000 does not use such vectors,
1644 but we must define this macro anyway.) */
1645
1646 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1647 asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1648
1649 /* This is how to output an element of a case-vector that is relative. */
1650
1651 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1652 asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1653
1654 /* This is how to output an assembler line
1655 that says to advance the location counter
1656 to a multiple of 2**LOG bytes. */
1657
1658 /* We don't have a way to align to more than a two-byte boundary, so do the
1659 best we can and don't complain. */
1660 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1661 if ((LOG) >= 1) \
1662 fprintf (FILE, "\t.even\n");
1663
1664 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1665 fprintf (FILE, "\t.skip %u\n", (SIZE))
1666
1667 /* This says how to output an assembler line
1668 to define a global common symbol. */
1669
1670 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1671 ( fputs (".comm ", (FILE)), \
1672 assemble_name ((FILE), (NAME)), \
1673 fprintf ((FILE), ",%u\n", (ROUNDED)))
1674
1675 /* This says how to output an assembler line
1676 to define a local common symbol. */
1677
1678 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1679 ( fputs (".lcomm ", (FILE)), \
1680 assemble_name ((FILE), (NAME)), \
1681 fprintf ((FILE), ",%u\n", (ROUNDED)))
1682
1683 /* Store in OUTPUT a string (made with alloca) containing
1684 an assembler-name for a local static variable named NAME.
1685 LABELNO is an integer which is different for each call. */
1686
1687 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1688 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1689 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1690
1691 /* Define the parentheses used to group arithmetic operations
1692 in assembler code. */
1693
1694 #define ASM_OPEN_PAREN "("
1695 #define ASM_CLOSE_PAREN ")"
1696
1697 /* Define results of standard character escape sequences. */
1698 #define TARGET_BELL 007
1699 #define TARGET_BS 010
1700 #define TARGET_TAB 011
1701 #define TARGET_NEWLINE 012
1702 #define TARGET_VT 013
1703 #define TARGET_FF 014
1704 #define TARGET_CR 015
1705
1706 /* Output a float value (represented as a C double) as an immediate operand.
1707 This macro is a 68k-specific macro. */
1708
1709 #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
1710 do { \
1711 if (CODE == 'f') \
1712 { \
1713 char dstr[30]; \
1714 REAL_VALUE_TO_DECIMAL (VALUE, "%.9g", dstr); \
1715 asm_fprintf ((FILE), "%I0r%s", dstr); \
1716 } \
1717 else \
1718 { \
1719 long l; \
1720 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1721 if (sizeof (int) == sizeof (long)) \
1722 asm_fprintf ((FILE), "%I0x%x", l); \
1723 else \
1724 asm_fprintf ((FILE), "%I0x%lx", l); \
1725 } \
1726 } while (0)
1727
1728 /* Output a double value (represented as a C double) as an immediate operand.
1729 This macro is a 68k-specific macro. */
1730 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
1731 do { char dstr[30]; \
1732 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1733 asm_fprintf (FILE, "%I0r%s", dstr); \
1734 } while (0)
1735
1736 /* Note, long double immediate operands are not actually
1737 generated by m68k.md. */
1738 #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
1739 do { char dstr[30]; \
1740 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1741 asm_fprintf (FILE, "%I0r%s", dstr); \
1742 } while (0)
1743
1744 /* Print operand X (an rtx) in assembler syntax to file FILE.
1745 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1746 For `%' followed by punctuation, CODE is the punctuation and X is null.
1747
1748 On the 68000, we use several CODE characters:
1749 '.' for dot needed in Motorola-style opcode names.
1750 '-' for an operand pushing on the stack:
1751 sp@-, -(sp) or -(%sp) depending on the style of syntax.
1752 '+' for an operand pushing on the stack:
1753 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1754 '@' for a reference to the top word on the stack:
1755 sp@, (sp) or (%sp) depending on the style of syntax.
1756 '#' for an immediate operand prefix (# in MIT and Motorola syntax
1757 but & in SGS syntax).
1758 '!' for the fpcr register (used in some float-to-fixed conversions).
1759 '$' for the letter `s' in an op code, but only on the 68040.
1760 '&' for the letter `d' in an op code, but only on the 68040.
1761 '/' for register prefix needed by longlong.h.
1762
1763 'b' for byte insn (no effect, on the Sun; this is for the ISI).
1764 'd' to force memory addressing to be absolute, not relative.
1765 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1766 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
1767 than directly). Second part of 'y' below.
1768 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1769 or print pair of registers as rx:ry.
1770 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
1771 CONST_DOUBLE's as SunFPA constant RAM registers if
1772 possible, so it should not be used except for the SunFPA. */
1773
1774 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1775 ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
1776 || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \
1777 || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1778
1779 /* A C compound statement to output to stdio stream STREAM the
1780 assembler syntax for an instruction operand X. X is an RTL
1781 expression.
1782
1783 CODE is a value that can be used to specify one of several ways
1784 of printing the operand. It is used when identical operands
1785 must be printed differently depending on the context. CODE
1786 comes from the `%' specification that was used to request
1787 printing of the operand. If the specification was just `%DIGIT'
1788 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
1789 is the ASCII code for LTR.
1790
1791 If X is a register, this macro should print the register's name.
1792 The names can be found in an array `reg_names' whose type is
1793 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
1794
1795 When the machine description has a specification `%PUNCT' (a `%'
1796 followed by a punctuation character), this macro is called with
1797 a null pointer for X and the punctuation character for CODE.
1798
1799 See m68k.c for the m68k specific codes. */
1800
1801 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1802
1803 /* A C compound statement to output to stdio stream STREAM the
1804 assembler syntax for an instruction operand that is a memory
1805 reference whose address is ADDR. ADDR is an RTL expression.
1806
1807 On some machines, the syntax for a symbolic address depends on
1808 the section that the address refers to. On these machines,
1809 define the macro `ENCODE_SECTION_INFO' to store the information
1810 into the `symbol_ref', and then check for it here. */
1811
1812 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1813
1814
1815 /* Definitions for generating bytecode */
1816
1817 /* Just so it's known this target is supported by the bytecode generator.
1818 If this define isn't found anywhere in the target config files, then
1819 dummy stubs are supplied by bytecode.h, and any attempt to use
1820 -fbytecode will result in an error message. */
1821
1822 #define TARGET_SUPPORTS_BYTECODE
1823
1824 /* Minimal segment alignment within sections is 8 units. */
1825 #define MACHINE_SEG_ALIGN 3
1826
1827 /* Integer alignment is two units. */
1828 #define INT_ALIGN 2
1829
1830 /* Pointer alignment is eight units. */
1831 #define PTR_ALIGN 3
1832
1833 /* Global symbols begin with `_' */
1834 #define NAMES_HAVE_UNDERSCORES
1835
1836 /* BC_xxx below are similar to their ASM_xxx counterparts above. */
1837 #define BC_GLOBALIZE_LABEL(FP, NAME) bc_globalize_label(NAME)
1838
1839 #define BC_OUTPUT_COMMON(FP, NAME, SIZE, ROUNDED) \
1840 do { bc_emit_common(NAME, ROUNDED); bc_globalize_label(NAME); } while (0)
1841
1842 #define BC_OUTPUT_LOCAL(FP, NAME, SIZE, ROUNDED) \
1843 bc_emit_common(NAME, ROUNDED)
1844
1845 #define BC_OUTPUT_ALIGN(FP, ALIGN) bc_align(ALIGN)
1846
1847 #define BC_OUTPUT_LABEL(FP, NAME) bc_emit_labeldef(NAME)
1848
1849 #define BC_OUTPUT_SKIP(FP, SIZE) bc_emit_skip(SIZE)
1850
1851 #define BC_OUTPUT_LABELREF(FP, NAME) \
1852 do { \
1853 char *foo = (char *) xmalloc(strlen(NAME) + 2); \
1854 strcpy(foo, "_"); \
1855 strcat(foo, NAME); \
1856 bc_emit_labelref (foo); \
1857 free (foo); \
1858 } while (0)
1859
1860 #define BC_OUTPUT_FLOAT(FP, VAL) \
1861 do { \
1862 float F = VAL; \
1863 bc_emit ((char *) &F, sizeof F); \
1864 } while (0)
1865
1866 #define BC_OUTPUT_DOUBLE(FP, VAL) \
1867 do { \
1868 double D = VAL; \
1869 bc_emit ((char *) &D, sizeof D); \
1870 } while (0)
1871
1872 #define BC_OUTPUT_BYTE(FP, VAL) \
1873 do { \
1874 char C = VAL; \
1875 bc_emit (&C, 1); \
1876 } while (0)
1877
1878
1879 #define BC_OUTPUT_FILE ASM_OUTPUT_FILE
1880 #define BC_OUTPUT_ASCII ASM_OUTPUT_ASCII
1881 #define BC_OUTPUT_IDENT ASM_OUTPUT_IDENT
1882
1883 /* Same as XSTR, but for bytecode */
1884 #define BCXSTR(RTX) ((RTX)->bc_label)
1885
1886
1887 /* Flush bytecode buffer onto file */
1888 #define BC_WRITE_FILE(FP) \
1889 { \
1890 fprintf (FP, ".text\n"); \
1891 bc_seg_write (bc_text_seg, FP); \
1892 fprintf(FP, "\n.data\n"); \
1893 bc_seg_write (bc_data_seg, FP); \
1894 bc_sym_write (FP); /* do .globl, .bss, etc. */ \
1895 }
1896
1897 /* Write one symbol */
1898 #define BC_WRITE_SEGSYM(SEGSYM, FP) \
1899 { \
1900 prsym (FP, (SEGSYM)->sym->name); \
1901 fprintf (FP, ":\n"); \
1902 }
1903
1904
1905 /* Write one reloc entry */
1906 #define BC_WRITE_RELOC_ENTRY(SEGRELOC, FP, OFFSET) \
1907 { \
1908 fprintf (FP, "\t.long "); \
1909 prsym (FP, (SEGRELOC)->sym->name); \
1910 fprintf (FP, " + %d\n", OFFSET); \
1911 }
1912
1913 /* Start new line of bytecodes */
1914 #define BC_START_BYTECODE_LINE(FP) \
1915 { \
1916 fprintf (FP, "\t.byte"); \
1917 }
1918
1919 /* Write one bytecode */
1920 #define BC_WRITE_BYTECODE(SEP, VAL, FP) \
1921 { \
1922 fprintf (FP, "%c0x%02X", (SEP), (VAL) & 0xff); \
1923 }
1924
1925 /* Write one bytecode RTL entry */
1926 #define BC_WRITE_RTL(R, FP) \
1927 { \
1928 fprintf (FP, "%s+%d/0x%08X\n", (R)->label, (R)->offset, (R)->bc_label); \
1929 }
1930
1931
1932 /* Emit function entry trampoline */
1933 #define BC_EMIT_TRAMPOLINE(TRAMPSEG, CALLINFO) \
1934 { \
1935 short insn; \
1936 \
1937 /* Push a reference to the callinfo structure. */ \
1938 insn = 0x4879; /* pea xxx.L */ \
1939 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1940 seg_refsym (TRAMPSEG, CALLINFO, 0); \
1941 \
1942 /* Call __interp, pop arguments, and return. */ \
1943 insn = 0x4eb9; /* jsr xxx.L */ \
1944 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1945 seg_refsym (TRAMPSEG, "__callint", 0); \
1946 insn = 0x588f; /* addql #4, sp */ \
1947 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1948 insn = 0x4e75; /* rts */ \
1949 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
1950 }
1951
1952
1953
1954 #if 0
1955 #define VALIDATE_STACK() if (stack_depth < 0) abort ();
1956 #else
1957 #if 0
1958 #define VALIDATE_STACK() \
1959 fprintf (stderr, " %%%d%%", stack_depth);
1960 #endif
1961 #endif
1962
1963 /* Define functions defined in aux-output.c and used in templates. */
1964
1965 extern char *output_move_const_into_data_reg ();
1966 extern char *output_move_double ();
1967 extern char *output_move_const_single ();
1968 extern char *output_move_const_double ();
1969 extern char *output_btst ();
1970 \f
1971 /*
1972 Local variables:
1973 version-control: t
1974 End:
1975 */
This page took 0.126658 seconds and 5 git commands to generate.