]> gcc.gnu.org Git - gcc.git/blob - gcc/config/m32r/m32r.h
Daily bump.
[gcc.git] / gcc / config / m32r / m32r.h
1 /* Definitions of target machine for GNU compiler, Mitsubishi M32R cpu.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Things to do:
23 - longlong.h?
24 */
25
26 #undef SWITCH_TAKES_ARG
27 #undef WORD_SWITCH_TAKES_ARG
28 #undef HANDLE_SYSV_PRAGMA
29 #undef SIZE_TYPE
30 #undef PTRDIFF_TYPE
31 #undef WCHAR_TYPE
32 #undef WCHAR_TYPE_SIZE
33 #undef ASM_FILE_START
34 #undef ASM_OUTPUT_EXTERNAL_LIBCALL
35 #undef TARGET_VERSION
36 #undef CPP_SPEC
37 #undef ASM_SPEC
38 #undef LINK_SPEC
39 #undef STARTFILE_SPEC
40 #undef ENDFILE_SPEC
41 #undef SUBTARGET_SWITCHES
42 \f
43
44 /* M32R/X overrides. */
45 /* Print subsidiary information on the compiler version in use. */
46 #define TARGET_VERSION fprintf (stderr, " (m32r/x)");
47
48 /* Additional flags for the preprocessor. */
49 #define CPP_CPU_SPEC "%{m32rx:-D__M32RX__} %{m32r:-U__M32RX__}"
50
51 /* Assembler switches. */
52 #define ASM_CPU_SPEC \
53 "%{m32r} %{m32rx} %{!O0: %{O*: -O}} --no-warn-explicit-parallel-conflicts"
54
55 /* Use m32rx specific crt0/crtinit/crtfini files. */
56 #define STARTFILE_CPU_SPEC "%{!shared:crt0.o%s} %{m32rx:m32rx/crtinit.o%s} %{!m32rx:crtinit.o%s}"
57 #define ENDFILE_CPU_SPEC "-lgloss %{m32rx:m32rx/crtfini.o%s} %{!m32rx:crtfini.o%s}"
58
59 /* Extra machine dependent switches. */
60 #define SUBTARGET_SWITCHES \
61 { "32rx", TARGET_M32RX_MASK, "Compile for the m32rx" }, \
62 { "32r", -TARGET_M32RX_MASK, "" },
63
64 /* Define this macro as a C expression for the initializer of an array of
65 strings to tell the driver program which options are defaults for this
66 target and thus do not need to be handled specially when using
67 `MULTILIB_OPTIONS'. */
68 #define SUBTARGET_MULTILIB_DEFAULTS , "m32r"
69
70 /* Number of additional registers the subtarget defines. */
71 #define SUBTARGET_NUM_REGISTERS 1
72
73 /* 1 for registers that cannot be allocated. */
74 #define SUBTARGET_FIXED_REGISTERS , 1
75
76 /* 1 for registers that are not available across function calls. */
77 #define SUBTARGET_CALL_USED_REGISTERS , 1
78
79 /* Order to allocate model specific registers. */
80 #define SUBTARGET_REG_ALLOC_ORDER , 19
81
82 /* Registers which are accumulators. */
83 #define SUBTARGET_REG_CLASS_ACCUM 0x80000
84
85 /* All registers added. */
86 #define SUBTARGET_REG_CLASS_ALL SUBTARGET_REG_CLASS_ACCUM
87
88 /* Additional accumulator registers. */
89 #define SUBTARGET_ACCUM_P(REGNO) ((REGNO) == 19)
90
91 /* Define additional register names. */
92 #define SUBTARGET_REGISTER_NAMES , "a1"
93 /* end M32R/X overrides. */
94
95 /* Print subsidiary information on the compiler version in use. */
96 #ifndef TARGET_VERSION
97 #define TARGET_VERSION fprintf (stderr, " (m32r)")
98 #endif
99
100 /* Switch Recognition by gcc.c. Add -G xx support */
101
102 #undef SWITCH_TAKES_ARG
103 #define SWITCH_TAKES_ARG(CHAR) \
104 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
105
106 /* Names to predefine in the preprocessor for this target machine. */
107 /* __M32R__ is defined by the existing compiler so we use that. */
108 #define CPP_PREDEFINES "-Acpu=m32r -Amachine=m32r -D__M32R__"
109
110 /* This macro defines names of additional specifications to put in the specs
111 that can be used in various specifications like CC1_SPEC. Its definition
112 is an initializer with a subgrouping for each command option.
113
114 Each subgrouping contains a string constant, that defines the
115 specification name, and a string constant that used by the GNU CC driver
116 program.
117
118 Do not define this macro if it does not need to do anything. */
119
120 #ifndef SUBTARGET_EXTRA_SPECS
121 #define SUBTARGET_EXTRA_SPECS
122 #endif
123
124 #ifndef ASM_CPU_SPEC
125 #define ASM_CPU_SPEC ""
126 #endif
127
128 #ifndef CPP_CPU_SPEC
129 #define CPP_CPU_SPEC ""
130 #endif
131
132 #ifndef CC1_CPU_SPEC
133 #define CC1_CPU_SPEC ""
134 #endif
135
136 #ifndef LINK_CPU_SPEC
137 #define LINK_CPU_SPEC ""
138 #endif
139
140 #ifndef STARTFILE_CPU_SPEC
141 #define STARTFILE_CPU_SPEC "%{!shared:crt0.o%s} crtinit.o%s"
142 #endif
143
144 #ifndef ENDFILE_CPU_SPEC
145 #define ENDFILE_CPU_SPEC "-lgloss crtfini.o%s"
146 #endif
147
148 #ifndef RELAX_SPEC
149 #if 0 /* not supported yet */
150 #define RELAX_SPEC "%{mrelax:-relax}"
151 #else
152 #define RELAX_SPEC ""
153 #endif
154 #endif
155
156 #define EXTRA_SPECS \
157 { "asm_cpu", ASM_CPU_SPEC }, \
158 { "cpp_cpu", CPP_CPU_SPEC }, \
159 { "cc1_cpu", CC1_CPU_SPEC }, \
160 { "link_cpu", LINK_CPU_SPEC }, \
161 { "startfile_cpu", STARTFILE_CPU_SPEC }, \
162 { "endfile_cpu", ENDFILE_CPU_SPEC }, \
163 { "relax", RELAX_SPEC }, \
164 SUBTARGET_EXTRA_SPECS
165
166 #define CC1_SPEC "%{G*} %(cc1_cpu)"
167
168 /* Options to pass on to the assembler. */
169 #undef ASM_SPEC
170 #define ASM_SPEC "%{v} %(asm_cpu) %(relax)"
171
172 #undef ASM_FINAL_SPEC
173
174 #define LINK_SPEC "%{v} %(link_cpu) %(relax)"
175
176 #undef STARTFILE_SPEC
177 #define STARTFILE_SPEC "%(startfile_cpu)"
178
179 #undef ENDFILE_SPEC
180 #define ENDFILE_SPEC "%(endfile_cpu)"
181
182 #undef LIB_SPEC
183 \f
184 /* Run-time compilation parameters selecting different hardware subsets. */
185
186 extern int target_flags;
187
188 /* If nonzero, tell the linker to do relaxing.
189 We don't do anything with the option, other than recognize it.
190 LINK_SPEC handles passing -relax to the linker.
191 This can cause incorrect debugging information as line numbers may
192 turn out wrong. This shouldn't be specified unless accompanied with -O2
193 [where the user expects debugging information to be less accurate]. */
194 #define TARGET_RELAX_MASK (1 << 0)
195
196 /* For miscellaneous debugging purposes. */
197 #define TARGET_DEBUG_MASK (1 << 1)
198 #define TARGET_DEBUG (target_flags & TARGET_DEBUG_MASK)
199
200 /* Align loops to 32 byte boundaries (cache line size). */
201 /* ??? This option is experimental and is not documented. */
202 #define TARGET_ALIGN_LOOPS_MASK (1 << 2)
203 #define TARGET_ALIGN_LOOPS (target_flags & TARGET_ALIGN_LOOPS_MASK)
204
205 /* Change issue rate. */
206 #define TARGET_LOW_ISSUE_RATE_MASK (1 << 3)
207 #define TARGET_LOW_ISSUE_RATE (target_flags & TARGET_LOW_ISSUE_RATE_MASK)
208
209 /* Change branch cost */
210 #define TARGET_BRANCH_COST_MASK (1 << 4)
211 #define TARGET_BRANCH_COST (target_flags & TARGET_BRANCH_COST_MASK)
212
213 /* Target machine to compile for. */
214 #define TARGET_M32R 1
215
216 /* Support extended instruction set. */
217 #define TARGET_M32RX_MASK (1 << 5)
218 #define TARGET_M32RX (target_flags & TARGET_M32RX_MASK)
219 #undef TARGET_M32R
220 #define TARGET_M32R (! TARGET_M32RX)
221
222 /* Macro to define tables used to set the flags.
223 This is a list in braces of pairs in braces,
224 each pair being { "NAME", VALUE }
225 where VALUE is the bits to set or minus the bits to clear.
226 An empty string NAME is used to identify the default VALUE. */
227
228 #ifndef SUBTARGET_SWITCHES
229 #define SUBTARGET_SWITCHES
230 #endif
231
232 #ifndef TARGET_DEFAULT
233 #define TARGET_DEFAULT 0
234 #endif
235
236 #define TARGET_SWITCHES \
237 { \
238 /* { "relax", TARGET_RELAX_MASK, "" }, \
239 { "no-relax", -TARGET_RELAX_MASK, "" },*/ \
240 { "debug", TARGET_DEBUG_MASK, \
241 N_("Display compile time statistics") }, \
242 { "align-loops", TARGET_ALIGN_LOOPS_MASK, \
243 N_("Align all loops to 32 byte boundary") }, \
244 { "no-align-loops", -TARGET_ALIGN_LOOPS_MASK, "" }, \
245 { "issue-rate=1", TARGET_LOW_ISSUE_RATE_MASK, \
246 N_("Only issue one instruction per cycle") }, \
247 { "issue-rate=2", -TARGET_LOW_ISSUE_RATE_MASK, "" }, \
248 { "branch-cost=1", TARGET_BRANCH_COST_MASK, \
249 N_("Prefer branches over conditional execution") }, \
250 { "branch-cost=2", -TARGET_BRANCH_COST_MASK, "" }, \
251 SUBTARGET_SWITCHES \
252 { "", TARGET_DEFAULT, "" } \
253 }
254
255 extern const char * m32r_model_string;
256 extern const char * m32r_sdata_string;
257
258 #ifndef SUBTARGET_OPTIONS
259 #define SUBTARGET_OPTIONS
260 #endif
261
262 #define TARGET_OPTIONS \
263 { \
264 { "model=", & m32r_model_string, \
265 N_("Code size: small, medium or large") }, \
266 { "sdata=", & m32r_sdata_string, \
267 N_("Small data area: none, sdata, use") } \
268 SUBTARGET_OPTIONS \
269 }
270
271 /* Code Models
272
273 Code models are used to select between two choices of two separate
274 possibilities (address space size, call insn to use):
275
276 small: addresses use 24 bits, use bl to make calls
277 medium: addresses use 32 bits, use bl to make calls (*1)
278 large: addresses use 32 bits, use seth/add3/jl to make calls (*2)
279
280 The fourth is "addresses use 24 bits, use seth/add3/jl to make calls" but
281 using this one doesn't make much sense.
282
283 (*1) The linker may eventually be able to relax seth/add3 -> ld24.
284 (*2) The linker may eventually be able to relax seth/add3/jl -> bl.
285
286 Internally these are recorded as TARGET_ADDR{24,32} and
287 TARGET_CALL{26,32}.
288
289 The __model__ attribute can be used to select the code model to use when
290 accessing particular objects. */
291
292 enum m32r_model { M32R_MODEL_SMALL, M32R_MODEL_MEDIUM, M32R_MODEL_LARGE };
293
294 extern enum m32r_model m32r_model;
295 #define TARGET_MODEL_SMALL (m32r_model == M32R_MODEL_SMALL)
296 #define TARGET_MODEL_MEDIUM (m32r_model == M32R_MODEL_MEDIUM)
297 #define TARGET_MODEL_LARGE (m32r_model == M32R_MODEL_LARGE)
298 #define TARGET_ADDR24 (m32r_model == M32R_MODEL_SMALL)
299 #define TARGET_ADDR32 (! TARGET_ADDR24)
300 #define TARGET_CALL26 (! TARGET_CALL32)
301 #define TARGET_CALL32 (m32r_model == M32R_MODEL_LARGE)
302
303 /* The default is the small model. */
304 #ifndef M32R_MODEL_DEFAULT
305 #define M32R_MODEL_DEFAULT "small"
306 #endif
307
308 /* Small Data Area
309
310 The SDA consists of sections .sdata, .sbss, and .scommon.
311 .scommon isn't a real section, symbols in it have their section index
312 set to SHN_M32R_SCOMMON, though support for it exists in the linker script.
313
314 Two switches control the SDA:
315
316 -G NNN - specifies the maximum size of variable to go in the SDA
317
318 -msdata=foo - specifies how such variables are handled
319
320 -msdata=none - small data area is disabled
321
322 -msdata=sdata - small data goes in the SDA, special code isn't
323 generated to use it, and special relocs aren't
324 generated
325
326 -msdata=use - small data goes in the SDA, special code is generated
327 to use the SDA and special relocs are generated
328
329 The SDA is not multilib'd, it isn't necessary.
330 MULTILIB_EXTRA_OPTS is set in tmake_file to -msdata=sdata so multilib'd
331 libraries have small data in .sdata/SHN_M32R_SCOMMON so programs that use
332 -msdata=use will successfully link with them (references in header files
333 will cause the compiler to emit code that refers to library objects in
334 .data). ??? There can be a problem if the user passes a -G value greater
335 than the default and a library object in a header file is that size.
336 The default is 8 so this should be rare - if it occurs the user
337 is required to rebuild the libraries or use a smaller value for -G.
338 */
339
340 /* Maximum size of variables that go in .sdata/.sbss.
341 The -msdata=foo switch also controls how small variables are handled. */
342 #ifndef SDATA_DEFAULT_SIZE
343 #define SDATA_DEFAULT_SIZE 8
344 #endif
345
346 extern int g_switch_value; /* value of the -G xx switch */
347 extern int g_switch_set; /* whether -G xx was passed. */
348
349 enum m32r_sdata { M32R_SDATA_NONE, M32R_SDATA_SDATA, M32R_SDATA_USE };
350
351 extern enum m32r_sdata m32r_sdata;
352 #define TARGET_SDATA_NONE (m32r_sdata == M32R_SDATA_NONE)
353 #define TARGET_SDATA_SDATA (m32r_sdata == M32R_SDATA_SDATA)
354 #define TARGET_SDATA_USE (m32r_sdata == M32R_SDATA_USE)
355
356 /* Default is to disable the SDA
357 [for upward compatibility with previous toolchains]. */
358 #ifndef M32R_SDATA_DEFAULT
359 #define M32R_SDATA_DEFAULT "none"
360 #endif
361
362 /* Define this macro as a C expression for the initializer of an array of
363 strings to tell the driver program which options are defaults for this
364 target and thus do not need to be handled specially when using
365 `MULTILIB_OPTIONS'. */
366 #ifndef SUBTARGET_MULTILIB_DEFAULTS
367 #define SUBTARGET_MULTILIB_DEFAULTS
368 #endif
369
370 #ifndef MULTILIB_DEFAULTS
371 #define MULTILIB_DEFAULTS { "mmodel=small" SUBTARGET_MULTILIB_DEFAULTS }
372 #endif
373
374 /* Sometimes certain combinations of command options do not make
375 sense on a particular target machine. You can define a macro
376 `OVERRIDE_OPTIONS' to take account of this. This macro, if
377 defined, is executed once just after all the command options have
378 been parsed.
379
380 Don't use this macro to turn on various extra optimizations for
381 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
382
383 #ifndef SUBTARGET_OVERRIDE_OPTIONS
384 #define SUBTARGET_OVERRIDE_OPTIONS
385 #endif
386
387 #define OVERRIDE_OPTIONS \
388 do \
389 { \
390 /* These need to be done at start up. \
391 It's convenient to do them here. */ \
392 m32r_init (); \
393 SUBTARGET_OVERRIDE_OPTIONS \
394 } \
395 while (0)
396
397 #ifndef SUBTARGET_OPTIMIZATION_OPTIONS
398 #define SUBTARGET_OPTIMIZATION_OPTIONS
399 #endif
400
401 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
402 do \
403 { \
404 if (LEVEL == 1) \
405 flag_regmove = TRUE; \
406 \
407 if (SIZE) \
408 { \
409 flag_omit_frame_pointer = TRUE; \
410 flag_strength_reduce = FALSE; \
411 } \
412 \
413 SUBTARGET_OPTIMIZATION_OPTIONS \
414 } \
415 while (0)
416
417 /* Define this macro if debugging can be performed even without a
418 frame pointer. If this macro is defined, GNU CC will turn on the
419 `-fomit-frame-pointer' option whenever `-O' is specified. */
420 #define CAN_DEBUG_WITHOUT_FP
421 \f
422 /* Target machine storage layout. */
423
424 /* Define this if most significant bit is lowest numbered
425 in instructions that operate on numbered bit-fields. */
426 #define BITS_BIG_ENDIAN 1
427
428 /* Define this if most significant byte of a word is the lowest numbered. */
429 #define BYTES_BIG_ENDIAN 1
430
431 /* Define this if most significant word of a multiword number is the lowest
432 numbered. */
433 #define WORDS_BIG_ENDIAN 1
434
435 /* Define this macro if WORDS_BIG_ENDIAN is not constant. This must
436 be a constant value with the same meaning as WORDS_BIG_ENDIAN,
437 which will be used only when compiling libgcc2.c. Typically the
438 value will be set based on preprocessor defines. */
439 /*#define LIBGCC2_WORDS_BIG_ENDIAN 1*/
440
441 /* Width of a word, in units (bytes). */
442 #define UNITS_PER_WORD 4
443
444 /* Define this macro if it is advisable to hold scalars in registers
445 in a wider mode than that declared by the program. In such cases,
446 the value is constrained to be within the bounds of the declared
447 type, but kept valid in the wider mode. The signedness of the
448 extension may differ from that of the type. */
449 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
450 if (GET_MODE_CLASS (MODE) == MODE_INT \
451 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
452 { \
453 (MODE) = SImode; \
454 }
455
456 /* Define this macro if the promotion described by `PROMOTE_MODE'
457 should also be done for outgoing function arguments. */
458 /*#define PROMOTE_FUNCTION_ARGS*/
459
460 /* Likewise, if the function return value is promoted.
461 If defined, FUNCTION_VALUE must perform the same promotions done by
462 PROMOTE_MODE. */
463 /*#define PROMOTE_FUNCTION_RETURN*/
464
465 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
466 #define PARM_BOUNDARY 32
467
468 /* Boundary (in *bits*) on which stack pointer should be aligned. */
469 #define STACK_BOUNDARY 32
470
471 /* ALIGN FRAMES on word boundaries */
472 #define M32R_STACK_ALIGN(LOC) (((LOC)+3) & ~3)
473
474 /* Allocation boundary (in *bits*) for the code of a function. */
475 #define FUNCTION_BOUNDARY 32
476
477 /* Alignment of field after `int : 0' in a structure. */
478 #define EMPTY_FIELD_BOUNDARY 32
479
480 /* Every structure's size must be a multiple of this. */
481 #define STRUCTURE_SIZE_BOUNDARY 8
482
483 /* A bitfield declared as `int' forces `int' alignment for the struct. */
484 #define PCC_BITFIELD_TYPE_MATTERS 1
485
486 /* No data type wants to be aligned rounder than this. */
487 #define BIGGEST_ALIGNMENT 32
488
489 /* The best alignment to use in cases where we have a choice. */
490 #define FASTEST_ALIGNMENT 32
491
492 /* Make strings word-aligned so strcpy from constants will be faster. */
493 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
494 ((TREE_CODE (EXP) == STRING_CST \
495 && (ALIGN) < FASTEST_ALIGNMENT) \
496 ? FASTEST_ALIGNMENT : (ALIGN))
497
498 /* Make arrays of chars word-aligned for the same reasons. */
499 #define DATA_ALIGNMENT(TYPE, ALIGN) \
500 (TREE_CODE (TYPE) == ARRAY_TYPE \
501 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
502 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
503
504 /* Set this nonzero if move instructions will actually fail to work
505 when given unaligned data. */
506 #define STRICT_ALIGNMENT 1
507 \f
508 /* Layout of source language data types. */
509
510 #define SHORT_TYPE_SIZE 16
511 #define INT_TYPE_SIZE 32
512 #define LONG_TYPE_SIZE 32
513 #define LONG_LONG_TYPE_SIZE 64
514 #define FLOAT_TYPE_SIZE 32
515 #define DOUBLE_TYPE_SIZE 64
516 #define LONG_DOUBLE_TYPE_SIZE 64
517
518 /* Define this as 1 if `char' should by default be signed; else as 0. */
519 #define DEFAULT_SIGNED_CHAR 1
520
521 #define SIZE_TYPE "long unsigned int"
522 #define PTRDIFF_TYPE "long int"
523 #define WCHAR_TYPE "short unsigned int"
524 #define WCHAR_TYPE_SIZE 16
525 \f
526 /* Standard register usage. */
527
528 /* Number of actual hardware registers.
529 The hardware registers are assigned numbers for the compiler
530 from 0 to just below FIRST_PSEUDO_REGISTER.
531 All registers that the compiler knows about must be given numbers,
532 even those that are not normally considered general registers. */
533
534 #define M32R_NUM_REGISTERS 19
535
536 #ifndef SUBTARGET_NUM_REGISTERS
537 #define SUBTARGET_NUM_REGISTERS 0
538 #endif
539
540 #define FIRST_PSEUDO_REGISTER (M32R_NUM_REGISTERS + SUBTARGET_NUM_REGISTERS)
541
542 /* 1 for registers that have pervasive standard uses
543 and are not available for the register allocator.
544
545 0-3 - arguments/results
546 4-5 - call used [4 is used as a tmp during prologue/epilogue generation]
547 6 - call used, gptmp
548 7 - call used, static chain pointer
549 8-11 - call saved
550 12 - call saved [reserved for global pointer]
551 13 - frame pointer
552 14 - subroutine link register
553 15 - stack pointer
554 16 - arg pointer
555 17 - carry flag
556 18 - accumulator
557 19 - accumulator 1 in the m32r/x
558 By default, the extension registers are not available. */
559
560 #ifndef SUBTARGET_FIXED_REGISTERS
561 #define SUBTARGET_FIXED_REGISTERS
562 #endif
563
564 #define FIXED_REGISTERS \
565 { \
566 0, 0, 0, 0, 0, 0, 0, 0, \
567 0, 0, 0, 0, 0, 0, 0, 1, \
568 1, 1, 1 \
569 SUBTARGET_FIXED_REGISTERS \
570 }
571
572 /* 1 for registers not available across function calls.
573 These must include the FIXED_REGISTERS and also any
574 registers that can be used without being saved.
575 The latter must include the registers where values are returned
576 and the register where structure-value addresses are passed.
577 Aside from that, you can include as many other registers as you like. */
578
579 #ifndef SUBTARGET_CALL_USED_REGISTERS
580 #define SUBTARGET_CALL_USED_REGISTERS
581 #endif
582
583 #define CALL_USED_REGISTERS \
584 { \
585 1, 1, 1, 1, 1, 1, 1, 1, \
586 0, 0, 0, 0, 0, 0, 1, 1, \
587 1, 1, 1 \
588 SUBTARGET_CALL_USED_REGISTERS \
589 }
590
591 /* Zero or more C statements that may conditionally modify two variables
592 `fixed_regs' and `call_used_regs' (both of type `char []') after they
593 have been initialized from the two preceding macros.
594
595 This is necessary in case the fixed or call-clobbered registers depend
596 on target flags.
597
598 You need not define this macro if it has no work to do. */
599
600 #ifdef SUBTARGET_CONDITIONAL_REGISTER_USAGE
601 #define CONDITIONAL_REGISTER_USAGE SUBTARGET_CONDITIONAL_REGISTER_USAGE
602 #endif
603
604 /* If defined, an initializer for a vector of integers, containing the
605 numbers of hard registers in the order in which GNU CC should
606 prefer to use them (from most preferred to least). */
607
608 #ifndef SUBTARGET_REG_ALLOC_ORDER
609 #define SUBTARGET_REG_ALLOC_ORDER
610 #endif
611
612 #if 1 /* better for int code */
613 #define REG_ALLOC_ORDER \
614 { \
615 4, 5, 6, 7, 2, 3, 8, 9, 10, \
616 11, 12, 13, 14, 0, 1, 15, 16, 17, 18 \
617 SUBTARGET_REG_ALLOC_ORDER \
618 }
619
620 #else /* better for fp code at expense of int code */
621 #define REG_ALLOC_ORDER \
622 { \
623 0, 1, 2, 3, 4, 5, 6, 7, 8, \
624 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 \
625 SUBTARGET_REG_ALLOC_ORDER \
626 }
627 #endif
628
629 /* Return number of consecutive hard regs needed starting at reg REGNO
630 to hold something of mode MODE.
631 This is ordinarily the length in words of a value of mode MODE
632 but can be less for certain modes in special long registers. */
633 #define HARD_REGNO_NREGS(REGNO, MODE) \
634 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
635
636 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
637 extern const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
638 extern unsigned int m32r_mode_class[];
639 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
640 ((m32r_hard_regno_mode_ok[REGNO] & m32r_mode_class[MODE]) != 0)
641
642 /* A C expression that is nonzero if it is desirable to choose
643 register allocation so as to avoid move instructions between a
644 value of mode MODE1 and a value of mode MODE2.
645
646 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
647 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
648 MODE2)' must be zero. */
649
650 /* Tie QI/HI/SI modes together. */
651 #define MODES_TIEABLE_P(MODE1, MODE2) \
652 (GET_MODE_CLASS (MODE1) == MODE_INT \
653 && GET_MODE_CLASS (MODE2) == MODE_INT \
654 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
655 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD)
656 \f
657 /* Register classes and constants. */
658
659 /* Define the classes of registers for register constraints in the
660 machine description. Also define ranges of constants.
661
662 One of the classes must always be named ALL_REGS and include all hard regs.
663 If there is more than one class, another class must be named NO_REGS
664 and contain no registers.
665
666 The name GENERAL_REGS must be the name of a class (or an alias for
667 another name such as ALL_REGS). This is the class of registers
668 that is allowed by "g" or "r" in a register constraint.
669 Also, registers outside this class are allocated only when
670 instructions express preferences for them.
671
672 The classes must be numbered in nondecreasing order; that is,
673 a larger-numbered class must never be contained completely
674 in a smaller-numbered class.
675
676 For any two classes, it is very desirable that there be another
677 class that represents their union.
678
679 It is important that any condition codes have class NO_REGS.
680 See `register_operand'. */
681
682 enum reg_class
683 {
684 NO_REGS, CARRY_REG, ACCUM_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
685 };
686
687 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
688
689 /* Give names of register classes as strings for dump file. */
690 #define REG_CLASS_NAMES \
691 { "NO_REGS", "CARRY_REG", "ACCUM_REGS", "GENERAL_REGS", "ALL_REGS" }
692
693 /* Define which registers fit in which classes.
694 This is an initializer for a vector of HARD_REG_SET
695 of length N_REG_CLASSES. */
696
697 #ifndef SUBTARGET_REG_CLASS_CARRY
698 #define SUBTARGET_REG_CLASS_CARRY 0
699 #endif
700
701 #ifndef SUBTARGET_REG_CLASS_ACCUM
702 #define SUBTARGET_REG_CLASS_ACCUM 0
703 #endif
704
705 #ifndef SUBTARGET_REG_CLASS_GENERAL
706 #define SUBTARGET_REG_CLASS_GENERAL 0
707 #endif
708
709 #ifndef SUBTARGET_REG_CLASS_ALL
710 #define SUBTARGET_REG_CLASS_ALL 0
711 #endif
712
713 #define REG_CLASS_CONTENTS \
714 { \
715 { 0x00000 }, \
716 { 0x20000 | SUBTARGET_REG_CLASS_CARRY }, \
717 { 0x40000 | SUBTARGET_REG_CLASS_ACCUM }, \
718 { 0x1ffff | SUBTARGET_REG_CLASS_GENERAL }, \
719 { 0x7ffff | SUBTARGET_REG_CLASS_ALL }, \
720 }
721
722 /* The same information, inverted:
723 Return the class number of the smallest class containing
724 reg number REGNO. This could be a conditional expression
725 or could index an array. */
726 extern enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
727 #define REGNO_REG_CLASS(REGNO) (m32r_regno_reg_class[REGNO])
728
729 /* The class value for index registers, and the one for base regs. */
730 #define INDEX_REG_CLASS GENERAL_REGS
731 #define BASE_REG_CLASS GENERAL_REGS
732
733 #define REG_CLASS_FROM_LETTER(C) \
734 ((C) == 'c' ? CARRY_REG \
735 : (C) == 'a' ? ACCUM_REGS \
736 : NO_REGS)
737
738 /* These assume that REGNO is a hard or pseudo reg number.
739 They give nonzero only if REGNO is a hard reg of the suitable class
740 or a pseudo reg currently allocated to a suitable hard reg.
741 Since they use reg_renumber, they are safe only once reg_renumber
742 has been allocated, which happens in local-alloc.c. */
743 #define REGNO_OK_FOR_BASE_P(REGNO) \
744 ((REGNO) < FIRST_PSEUDO_REGISTER \
745 ? GPR_P (REGNO) || (REGNO) == ARG_POINTER_REGNUM \
746 : GPR_P (reg_renumber[REGNO]))
747 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
748
749 /* Given an rtx X being reloaded into a reg required to be
750 in class CLASS, return the class of reg to actually use.
751 In general this is just CLASS; but on some machines
752 in some cases it is preferable to use a more restrictive class. */
753 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
754 (CLASS)
755
756 /* Return the maximum number of consecutive registers
757 needed to represent mode MODE in a register of class CLASS. */
758 #define CLASS_MAX_NREGS(CLASS, MODE) \
759 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
760
761 /* The letters I, J, K, L, M, N, O, P in a register constraint string
762 can be used to stand for particular ranges of immediate operands.
763 This macro defines what the ranges are.
764 C is the letter, and VALUE is a constant value.
765 Return 1 if VALUE is in the range specified by C. */
766 /* 'I' is used for 8 bit signed immediates.
767 'J' is used for 16 bit signed immediates.
768 'K' is used for 16 bit unsigned immediates.
769 'L' is used for 16 bit immediates left shifted by 16 (sign ???).
770 'M' is used for 24 bit unsigned immediates.
771 'N' is used for any 32 bit non-symbolic value.
772 'O' is used for 5 bit unsigned immediates (shift count).
773 'P' is used for 16 bit signed immediates for compares
774 (values in the range -32767 to +32768). */
775
776 /* Return true if a value is inside a range. */
777 #define IN_RANGE_P(VALUE, LOW, HIGH) \
778 (((unsigned HOST_WIDE_INT)((VALUE) - (LOW))) \
779 <= ((unsigned HOST_WIDE_INT)((HIGH) - (LOW))))
780
781 /* Local to this file. */
782 #define INT8_P(X) ((X) >= -0x80 && (X) <= 0x7f)
783 #define INT16_P(X) ((X) >= -0x8000 && (X) <= 0x7fff)
784 #define CMP_INT16_P(X) ((X) >= -0x7fff && (X) <= 0x8000)
785 #define UPPER16_P(X) (((X) & 0xffff) == 0 \
786 && ((X) >> 16) >= -0x8000 \
787 && ((X) >> 16) <= 0x7fff)
788 #define UINT16_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0x0000ffff)
789 #define UINT24_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0x00ffffff)
790 #define UINT32_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0xffffffff)
791 #define UINT5_P(X) ((X) >= 0 && (X) < 32)
792 #define INVERTED_SIGNED_8BIT(VAL) ((VAL) >= -127 && (VAL) <= 128)
793
794 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
795 ((C) == 'I' ? INT8_P (VALUE) \
796 : (C) == 'J' ? INT16_P (VALUE) \
797 : (C) == 'K' ? UINT16_P (VALUE) \
798 : (C) == 'L' ? UPPER16_P (VALUE) \
799 : (C) == 'M' ? UINT24_P (VALUE) \
800 : (C) == 'N' ? INVERTED_SIGNED_8BIT (VALUE) \
801 : (C) == 'O' ? UINT5_P (VALUE) \
802 : (C) == 'P' ? CMP_INT16_P (VALUE) \
803 : 0)
804
805 /* Similar, but for floating constants, and defining letters G and H.
806 Here VALUE is the CONST_DOUBLE rtx itself.
807 For the m32r, handle a few constants inline.
808 ??? We needn't treat DI and DF modes differently, but for now we do. */
809 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
810 ((C) == 'G' ? easy_di_const (VALUE) \
811 : (C) == 'H' ? easy_df_const (VALUE) \
812 : 0)
813
814 /* A C expression that defines the optional machine-dependent constraint
815 letters that can be used to segregate specific types of operands,
816 usually memory references, for the target machine. It should return 1 if
817 VALUE corresponds to the operand type represented by the constraint letter
818 C. If C is not defined as an extra constraint, the value returned should
819 be 0 regardless of VALUE. */
820 /* Q is for symbolic addresses loadable with ld24.
821 R is for symbolic addresses when ld24 can't be used.
822 S is for stores with pre {inc,dec}rement
823 T is for indirect of a pointer.
824 U is for loads with post increment. */
825
826 #define EXTRA_CONSTRAINT(VALUE, C) \
827 ( (C) == 'Q' ? ((TARGET_ADDR24 && GET_CODE (VALUE) == LABEL_REF) \
828 || addr24_operand (VALUE, VOIDmode)) \
829 : (C) == 'R' ? ((TARGET_ADDR32 && GET_CODE (VALUE) == LABEL_REF) \
830 || addr32_operand (VALUE, VOIDmode)) \
831 : (C) == 'S' ? (GET_CODE (VALUE) == MEM \
832 && STORE_PREINC_PREDEC_P (GET_MODE (VALUE), \
833 XEXP (VALUE, 0))) \
834 : (C) == 'T' ? (GET_CODE (VALUE) == MEM \
835 && memreg_operand (VALUE, GET_MODE (VALUE))) \
836 : (C) == 'U' ? (GET_CODE (VALUE) == MEM \
837 && LOAD_POSTINC_P (GET_MODE (VALUE), \
838 XEXP (VALUE, 0))) \
839 : 0)
840 \f
841 /* Stack layout and stack pointer usage. */
842
843 /* Define this macro if pushing a word onto the stack moves the stack
844 pointer to a smaller address. */
845 #define STACK_GROWS_DOWNWARD
846
847 /* Define this if the nominal address of the stack frame
848 is at the high-address end of the local variables;
849 that is, each additional local variable allocated
850 goes at a more negative offset from the frame pointer. */
851 /*#define FRAME_GROWS_DOWNWARD*/
852
853 /* Offset from frame pointer to start allocating local variables at.
854 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
855 first local allocated. Otherwise, it is the offset to the BEGINNING
856 of the first local allocated. */
857 /* The frame pointer points at the same place as the stack pointer, except if
858 alloca has been called. */
859 #define STARTING_FRAME_OFFSET \
860 M32R_STACK_ALIGN (current_function_outgoing_args_size)
861
862 /* Offset from the stack pointer register to the first location at which
863 outgoing arguments are placed. */
864 #define STACK_POINTER_OFFSET 0
865
866 /* Offset of first parameter from the argument pointer register value. */
867 #define FIRST_PARM_OFFSET(FNDECL) 0
868
869 /* A C expression whose value is RTL representing the address in a
870 stack frame where the pointer to the caller's frame is stored.
871 Assume that FRAMEADDR is an RTL expression for the address of the
872 stack frame itself.
873
874 If you don't define this macro, the default is to return the value
875 of FRAMEADDR--that is, the stack frame address is also the address
876 of the stack word that points to the previous frame. */
877 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
878
879 /* A C expression whose value is RTL representing the value of the
880 return address for the frame COUNT steps up from the current frame.
881 FRAMEADDR is the frame pointer of the COUNT frame, or the frame
882 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
883 is defined. */
884 /* The current return address is in r14. */
885 #if 0 /* The default value should work. */
886 #define RETURN_ADDR_RTX(COUNT, FRAME) \
887 (((COUNT) == -1) \
888 ? gen_rtx_REG (Pmode, 14) \
889 : copy_to_reg (gen_rtx_MEM (Pmode, \
890 memory_address (Pmode, \
891 plus_constant ((FRAME), \
892 UNITS_PER_WORD)))))
893 #endif
894
895 /* Register to use for pushing function arguments. */
896 #define STACK_POINTER_REGNUM 15
897
898 /* Base register for access to local variables of the function. */
899 #define FRAME_POINTER_REGNUM 13
900
901 /* Base register for access to arguments of the function. */
902 #define ARG_POINTER_REGNUM 16
903
904 /* The register number of the return address pointer register, which
905 is used to access the current function's return address from the
906 stack. On some machines, the return address is not at a fixed
907 offset from the frame pointer or stack pointer or argument
908 pointer. This register can be defined to point to the return
909 address on the stack, and then be converted by `ELIMINABLE_REGS'
910 into either the frame pointer or stack pointer.
911
912 Do not define this macro unless there is no other way to get the
913 return address from the stack. */
914 /* ??? revisit */
915 /* #define RETURN_ADDRESS_POINTER_REGNUM */
916
917 /* Register in which static-chain is passed to a function. This must
918 not be a register used by the prologue. */
919 #define STATIC_CHAIN_REGNUM 7
920
921 /* These aren't official macros. */
922 #define PROLOGUE_TMP_REGNUM 4
923 #define RETURN_ADDR_REGNUM 14
924 /* #define GP_REGNUM 12 */
925 #define CARRY_REGNUM 17
926 #define ACCUM_REGNUM 18
927 #define M32R_MAX_INT_REGS 16
928
929 #ifndef SUBTARGET_GPR_P
930 #define SUBTARGET_GPR_P(REGNO) 0
931 #endif
932
933 #ifndef SUBTARGET_ACCUM_P
934 #define SUBTARGET_ACCUM_P(REGNO) 0
935 #endif
936
937 #ifndef SUBTARGET_CARRY_P
938 #define SUBTARGET_CARRY_P(REGNO) 0
939 #endif
940
941 #define GPR_P(REGNO) (IN_RANGE_P ((REGNO), 0, 15) || SUBTARGET_GPR_P (REGNO))
942 #define ACCUM_P(REGNO) ((REGNO) == ACCUM_REGNUM || SUBTARGET_ACCUM_P (REGNO))
943 #define CARRY_P(REGNO) ((REGNO) == CARRY_REGNUM || SUBTARGET_CARRY_P (REGNO))
944 \f
945 /* Eliminating the frame and arg pointers. */
946
947 /* A C expression which is nonzero if a function must have and use a
948 frame pointer. This expression is evaluated in the reload pass.
949 If its value is nonzero the function will have a frame pointer. */
950 #define FRAME_POINTER_REQUIRED current_function_calls_alloca
951
952 #if 0
953 /* C statement to store the difference between the frame pointer
954 and the stack pointer values immediately after the function prologue.
955 If `ELIMINABLE_REGS' is defined, this macro will be not be used and
956 need not be defined. */
957 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
958 ((VAR) = m32r_compute_frame_size (get_frame_size ()))
959 #endif
960
961 /* If defined, this macro specifies a table of register pairs used to
962 eliminate unneeded registers that point into the stack frame. If
963 it is not defined, the only elimination attempted by the compiler
964 is to replace references to the frame pointer with references to
965 the stack pointer.
966
967 Note that the elimination of the argument pointer with the stack
968 pointer is specified first since that is the preferred elimination. */
969
970 #define ELIMINABLE_REGS \
971 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
972 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
973 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
974
975 /* A C expression that returns nonzero if the compiler is allowed to
976 try to replace register number FROM-REG with register number
977 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
978 defined, and will usually be the constant 1, since most of the
979 cases preventing register elimination are things that the compiler
980 already knows about. */
981
982 #define CAN_ELIMINATE(FROM, TO) \
983 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
984 ? ! frame_pointer_needed \
985 : 1)
986
987 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
988 specifies the initial difference between the specified pair of
989 registers. This macro must be defined if `ELIMINABLE_REGS' is
990 defined. */
991
992 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
993 { \
994 int size = m32r_compute_frame_size (get_frame_size ()); \
995 \
996 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
997 (OFFSET) = 0; \
998 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
999 (OFFSET) = size - current_function_pretend_args_size; \
1000 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1001 (OFFSET) = size - current_function_pretend_args_size; \
1002 else \
1003 abort (); \
1004 }
1005 \f
1006 /* Function argument passing. */
1007
1008 /* When a prototype says `char' or `short', really pass an `int'. */
1009 #define PROMOTE_PROTOTYPES 1
1010
1011 /* If defined, the maximum amount of space required for outgoing
1012 arguments will be computed and placed into the variable
1013 `current_function_outgoing_args_size'. No space will be pushed
1014 onto the stack for each call; instead, the function prologue should
1015 increase the stack frame size by this amount. */
1016 #define ACCUMULATE_OUTGOING_ARGS 1
1017
1018 /* Define this macro if functions should assume that stack space has
1019 been allocated for arguments even when their values are passed in
1020 registers.
1021
1022 The value of this macro is the size, in bytes, of the area
1023 reserved for arguments passed in registers for the function
1024 represented by FNDECL.
1025
1026 This space can be allocated by the caller, or be a part of the
1027 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1028 which. */
1029 #if 0
1030 #define REG_PARM_STACK_SPACE(FNDECL) \
1031 (M32R_MAX_PARM_REGS * UNITS_PER_WORD)
1032 #endif
1033
1034 /* Value is the number of bytes of arguments automatically
1035 popped when returning from a subroutine call.
1036 FUNDECL is the declaration node of the function (as a tree),
1037 FUNTYPE is the data type of the function (as a tree),
1038 or for a library call it is an identifier node for the subroutine name.
1039 SIZE is the number of bytes of arguments passed on the stack. */
1040 #define RETURN_POPS_ARGS(DECL, FUNTYPE, SIZE) 0
1041
1042 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1043 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1044 ((TYPE) != 0 \
1045 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1046 || TREE_ADDRESSABLE (TYPE)))
1047
1048 /* Define a data type for recording info about an argument list
1049 during the scan of that argument list. This data type should
1050 hold all necessary information about the function itself
1051 and about the args processed so far, enough to enable macros
1052 such as FUNCTION_ARG to determine where the next arg should go. */
1053 #define CUMULATIVE_ARGS int
1054
1055 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1056 for a call to a function whose data type is FNTYPE.
1057 For a library call, FNTYPE is 0. */
1058 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1059 ((CUM) = 0)
1060
1061 /* The number of registers used for parameter passing. Local to this file. */
1062 #define M32R_MAX_PARM_REGS 4
1063
1064 /* 1 if N is a possible register number for function argument passing. */
1065 #define FUNCTION_ARG_REGNO_P(N) \
1066 ((unsigned) (N) < M32R_MAX_PARM_REGS)
1067
1068 /* The ROUND_ADVANCE* macros are local to this file. */
1069 /* Round SIZE up to a word boundary. */
1070 #define ROUND_ADVANCE(SIZE) \
1071 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1072
1073 /* Round arg MODE/TYPE up to the next word boundary. */
1074 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
1075 ((MODE) == BLKmode \
1076 ? ROUND_ADVANCE ((unsigned int) int_size_in_bytes (TYPE)) \
1077 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
1078
1079 /* Round CUM up to the necessary point for argument MODE/TYPE. */
1080 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) (CUM)
1081
1082 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
1083 a reg. This includes arguments that have to be passed by reference as the
1084 pointer to them is passed in a reg if one is available (and that is what
1085 we're given).
1086 This macro is only used in this file. */
1087 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1088 (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) < M32R_MAX_PARM_REGS)
1089
1090 /* Determine where to put an argument to a function.
1091 Value is zero to push the argument on the stack,
1092 or a hard register in which to store the argument.
1093
1094 MODE is the argument's machine mode.
1095 TYPE is the data type of the argument (as a tree).
1096 This is null for libcalls where that information may
1097 not be available.
1098 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1099 the preceding args and about the function being called.
1100 NAMED is nonzero if this argument is a named parameter
1101 (otherwise it is an extra parameter matching an ellipsis). */
1102 /* On the M32R the first M32R_MAX_PARM_REGS args are normally in registers
1103 and the rest are pushed. */
1104 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1105 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1106 ? gen_rtx_REG ((MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE))) \
1107 : 0)
1108
1109 /* A C expression for the number of words, at the beginning of an
1110 argument, must be put in registers. The value must be zero for
1111 arguments that are passed entirely in registers or that are entirely
1112 pushed on the stack.
1113
1114 On some machines, certain arguments must be passed partially in
1115 registers and partially in memory. On these machines, typically the
1116 first @var{n} words of arguments are passed in registers, and the rest
1117 on the stack. If a multi-word argument (a @code{double} or a
1118 structure) crosses that boundary, its first few words must be passed
1119 in registers and the rest must be pushed. This macro tells the
1120 compiler when this occurs, and how many of the words should go in
1121 registers. */
1122 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1123 function_arg_partial_nregs (&CUM, (int)MODE, TYPE, NAMED)
1124
1125 /* A C expression that indicates when an argument must be passed by
1126 reference. If nonzero for an argument, a copy of that argument is
1127 made in memory and a pointer to the argument is passed instead of
1128 the argument itself. The pointer is passed in whatever way is
1129 appropriate for passing a pointer to that type. */
1130 /* All arguments greater than 8 bytes are passed this way. */
1131 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1132 ((TYPE) && int_size_in_bytes (TYPE) > 8)
1133
1134 /* Update the data in CUM to advance over an argument
1135 of mode MODE and data type TYPE.
1136 (TYPE is null for libcalls where that information may not be available.) */
1137 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1138 ((CUM) = (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
1139 + ROUND_ADVANCE_ARG ((MODE), (TYPE))))
1140
1141 /* If defined, a C expression that gives the alignment boundary, in bits,
1142 of an argument with the specified mode and type. If it is not defined,
1143 PARM_BOUNDARY is used for all arguments. */
1144 #if 0
1145 /* We assume PARM_BOUNDARY == UNITS_PER_WORD here. */
1146 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1147 (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \
1148 ? PARM_BOUNDARY \
1149 : 2 * PARM_BOUNDARY)
1150 #endif
1151
1152 /* This macro offers an alternative
1153 to using `__builtin_saveregs' and defining the macro
1154 `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
1155 arguments into the stack so that all the arguments appear to have
1156 been passed consecutively on the stack. Once this is done, you
1157 can use the standard implementation of varargs that works for
1158 machines that pass all their arguments on the stack.
1159
1160 The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure,
1161 containing the values that obtain after processing of the named
1162 arguments. The arguments MODE and TYPE describe the last named
1163 argument--its machine mode and its data type as a tree node.
1164
1165 The macro implementation should do two things: first, push onto the
1166 stack all the argument registers *not* used for the named
1167 arguments, and second, store the size of the data thus pushed into
1168 the `int'-valued variable whose name is supplied as the argument
1169 PRETEND_SIZE. The value that you store here will serve as
1170 additional offset for setting up the stack frame.
1171
1172 If the argument NO_RTL is nonzero, it means that the
1173 arguments of the function are being analyzed for the second time.
1174 This happens for an inline function, which is not actually
1175 compiled until the end of the source file. The macro
1176 `SETUP_INCOMING_VARARGS' should not generate any instructions in
1177 this case. */
1178
1179 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1180 m32r_setup_incoming_varargs (&ARGS_SO_FAR, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1181
1182 /* Implement `va_arg'. */
1183 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1184 m32r_va_arg (valist, type)
1185 \f
1186 /* Function results. */
1187
1188 /* Define how to find the value returned by a function.
1189 VALTYPE is the data type of the value (as a tree).
1190 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1191 otherwise, FUNC is 0. */
1192 #define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
1193
1194 /* Define how to find the value returned by a library function
1195 assuming the value has mode MODE. */
1196 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
1197
1198 /* 1 if N is a possible register number for a function value
1199 as seen by the caller. */
1200 /* ??? What about r1 in DI/DF values. */
1201 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
1202
1203 /* A C expression which can inhibit the returning of certain function
1204 values in registers, based on the type of value. A nonzero value says
1205 to return the function value in memory, just as large structures are
1206 always returned. Here TYPE will be a C expression of type `tree',
1207 representing the data type of the value. */
1208 #define RETURN_IN_MEMORY(TYPE) \
1209 (int_size_in_bytes (TYPE) > 8)
1210
1211 /* Tell GCC to use RETURN_IN_MEMORY. */
1212 #define DEFAULT_PCC_STRUCT_RETURN 0
1213
1214 /* Register in which address to store a structure value
1215 is passed to a function, or 0 to use `invisible' first argument. */
1216 #define STRUCT_VALUE 0
1217 \f
1218 /* Function entry and exit. */
1219
1220 /* Initialize data used by insn expanders. This is called from
1221 init_emit, once for each function, before code is generated. */
1222 #define INIT_EXPANDERS m32r_init_expanders ()
1223
1224 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1225 the stack pointer does not matter. The value is tested only in
1226 functions that have frame pointers.
1227 No definition is equivalent to always zero. */
1228 #define EXIT_IGNORE_STACK 1
1229
1230 /* Output assembler code to FILE to increment profiler label # LABELNO
1231 for profiling a function entry. */
1232 #define FUNCTION_PROFILER(FILE, LABELNO) abort ()
1233 \f
1234 /* Trampolines. */
1235
1236 /* On the M32R, the trampoline is
1237
1238 ld24 r7,STATIC
1239 ld24 r6,FUNCTION
1240 jmp r6
1241 nop
1242
1243 ??? Need addr32 support.
1244 */
1245
1246 /* Length in bytes of the trampoline for entering a nested function. */
1247 #define TRAMPOLINE_SIZE 12
1248
1249 /* Emit RTL insns to initialize the variable parts of a trampoline.
1250 FNADDR is an RTX for the address of the function's pure code.
1251 CXT is an RTX for the static chain value for the function. */
1252 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1253 do { \
1254 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 0)), \
1255 plus_constant ((CXT), 0xe7000000)); \
1256 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), \
1257 plus_constant ((FNADDR), 0xe6000000)); \
1258 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), \
1259 GEN_INT (0x1fc67000)); \
1260 emit_insn (gen_flush_icache (validize_mem (gen_rtx_MEM (SImode, TRAMP)))); \
1261 } while (0)
1262 \f
1263 /* Library calls. */
1264
1265 /* Generate calls to memcpy, memcmp and memset. */
1266 #define TARGET_MEM_FUNCTIONS
1267 \f
1268 /* Addressing modes, and classification of registers for them. */
1269
1270 /* Maximum number of registers that can appear in a valid memory address. */
1271 #define MAX_REGS_PER_ADDRESS 1
1272
1273 /* We have post-inc load and pre-dec,pre-inc store,
1274 but only for 4 byte vals. */
1275 #define HAVE_PRE_DECREMENT 1
1276 #define HAVE_PRE_INCREMENT 1
1277 #define HAVE_POST_INCREMENT 1
1278
1279 /* Recognize any constant value that is a valid address. */
1280 #define CONSTANT_ADDRESS_P(X) \
1281 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1282 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)
1283
1284 /* Nonzero if the constant value X is a legitimate general operand.
1285 We don't allow (plus symbol large-constant) as the relocations can't
1286 describe it. INTVAL > 32767 handles both 16 bit and 24 bit relocations.
1287 We allow all CONST_DOUBLE's as the md file patterns will force the
1288 constant to memory if they can't handle them. */
1289
1290 #define LEGITIMATE_CONSTANT_P(X) \
1291 (! (GET_CODE (X) == CONST \
1292 && GET_CODE (XEXP (X, 0)) == PLUS \
1293 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
1294 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1295 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (X, 0), 1)) > 32767))
1296
1297 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1298 and check its validity for a certain class.
1299 We have two alternate definitions for each of them.
1300 The usual definition accepts all pseudo regs; the other rejects
1301 them unless they have been allocated suitable hard regs.
1302 The symbol REG_OK_STRICT causes the latter definition to be used.
1303
1304 Most source files want to accept pseudo regs in the hope that
1305 they will get allocated to the class that the insn wants them to be in.
1306 Source files for reload pass need to be strict.
1307 After reload, it makes no difference, since pseudo regs have
1308 been eliminated by then. */
1309
1310 #ifdef REG_OK_STRICT
1311
1312 /* Nonzero if X is a hard reg that can be used as a base reg. */
1313 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1314 /* Nonzero if X is a hard reg that can be used as an index. */
1315 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1316
1317 #else
1318
1319 /* Nonzero if X is a hard reg that can be used as a base reg
1320 or if it is a pseudo reg. */
1321 #define REG_OK_FOR_BASE_P(X) \
1322 (GPR_P (REGNO (X)) \
1323 || (REGNO (X)) == ARG_POINTER_REGNUM \
1324 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1325 /* Nonzero if X is a hard reg that can be used as an index
1326 or if it is a pseudo reg. */
1327 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1328
1329 #endif
1330
1331 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1332 that is a valid memory address for an instruction.
1333 The MODE argument is the machine mode for the MEM expression
1334 that wants to use this address. */
1335
1336 /* Local to this file. */
1337 #define RTX_OK_FOR_BASE_P(X) (REG_P (X) && REG_OK_FOR_BASE_P (X))
1338
1339 /* Local to this file. */
1340 #define RTX_OK_FOR_OFFSET_P(X) \
1341 (GET_CODE (X) == CONST_INT && INT16_P (INTVAL (X)))
1342
1343 /* Local to this file. */
1344 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \
1345 (GET_CODE (X) == PLUS \
1346 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
1347 && RTX_OK_FOR_OFFSET_P (XEXP (X, 1)))
1348
1349 /* Local to this file. */
1350 /* For LO_SUM addresses, do not allow them if the MODE is > 1 word,
1351 since more than one instruction will be required. */
1352 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1353 (GET_CODE (X) == LO_SUM \
1354 && (MODE != BLKmode && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
1355 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
1356 && CONSTANT_P (XEXP (X, 1)))
1357
1358 /* Local to this file. */
1359 /* Is this a load and increment operation. */
1360 #define LOAD_POSTINC_P(MODE, X) \
1361 (((MODE) == SImode || (MODE) == SFmode) \
1362 && GET_CODE (X) == POST_INC \
1363 && GET_CODE (XEXP (X, 0)) == REG \
1364 && RTX_OK_FOR_BASE_P (XEXP (X, 0)))
1365
1366 /* Local to this file. */
1367 /* Is this an increment/decrement and store operation. */
1368 #define STORE_PREINC_PREDEC_P(MODE, X) \
1369 (((MODE) == SImode || (MODE) == SFmode) \
1370 && (GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1371 && GET_CODE (XEXP (X, 0)) == REG \
1372 && RTX_OK_FOR_BASE_P (XEXP (X, 0)))
1373
1374 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1375 { if (RTX_OK_FOR_BASE_P (X)) \
1376 goto ADDR; \
1377 if (LEGITIMATE_OFFSET_ADDRESS_P ((MODE), (X))) \
1378 goto ADDR; \
1379 if (LEGITIMATE_LO_SUM_ADDRESS_P ((MODE), (X))) \
1380 goto ADDR; \
1381 if (LOAD_POSTINC_P ((MODE), (X))) \
1382 goto ADDR; \
1383 if (STORE_PREINC_PREDEC_P ((MODE), (X))) \
1384 goto ADDR; \
1385 }
1386
1387 /* Try machine-dependent ways of modifying an illegitimate address
1388 to be legitimate. If we find one, return the new, valid address.
1389 This macro is used in only one place: `memory_address' in explow.c.
1390
1391 OLDX is the address as it was before break_out_memory_refs was called.
1392 In some cases it is useful to look at this to decide what needs to be done.
1393
1394 MODE and WIN are passed so that this macro can use
1395 GO_IF_LEGITIMATE_ADDRESS.
1396
1397 It is always safe for this macro to do nothing. It exists to recognize
1398 opportunities to optimize the output.
1399
1400 ??? Is there anything useful we can do here for the M32R? */
1401
1402 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1403
1404 /* Go to LABEL if ADDR (a legitimate address expression)
1405 has an effect that depends on the machine mode it is used for. */
1406 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1407 do { \
1408 if (GET_CODE (ADDR) == PRE_DEC \
1409 || GET_CODE (ADDR) == PRE_INC \
1410 || GET_CODE (ADDR) == POST_INC \
1411 || GET_CODE (ADDR) == LO_SUM) \
1412 goto LABEL; \
1413 } while (0)
1414 \f
1415 /* Condition code usage. */
1416
1417 /* Return nonzero if SELECT_CC_MODE will never return MODE for a
1418 floating point inequality comparison. */
1419 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
1420 \f
1421 /* Costs. */
1422
1423 /* ??? I'm quite sure I don't understand enough of the subtleties involved
1424 in choosing the right numbers to use here, but there doesn't seem to be
1425 enough documentation on this. What I've done is define an insn to cost
1426 4 "units" and work from there. COSTS_N_INSNS (N) is defined as (N) * 4 - 2
1427 so that seems reasonable. Some values are supposed to be defined relative
1428 to each other and thus aren't necessarily related to COSTS_N_INSNS. */
1429
1430 /* Compute the cost of computing a constant rtl expression RTX
1431 whose rtx-code is CODE. The body of this macro is a portion
1432 of a switch statement. If the code is computed here,
1433 return it with a return statement. Otherwise, break from the switch. */
1434 /* Small integers are as cheap as registers. 4 byte values can be fetched
1435 as immediate constants - let's give that the cost of an extra insn. */
1436 #define CONST_COSTS(X, CODE, OUTER_CODE) \
1437 case CONST_INT : \
1438 if (INT16_P (INTVAL (X))) \
1439 return 0; \
1440 /* fall through */ \
1441 case CONST : \
1442 case LABEL_REF : \
1443 case SYMBOL_REF : \
1444 return 4; \
1445 case CONST_DOUBLE : \
1446 { \
1447 rtx high, low; \
1448 split_double (X, &high, &low); \
1449 return 4 * (!INT16_P (INTVAL (high)) \
1450 + !INT16_P (INTVAL (low))); \
1451 }
1452
1453 /* Compute the cost of an address. */
1454 #define ADDRESS_COST(ADDR) m32r_address_cost (ADDR)
1455
1456 /* Compute extra cost of moving data between one register class
1457 and another. */
1458 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) 2
1459
1460 /* Compute the cost of moving data between registers and memory. */
1461 /* Memory is 3 times as expensive as registers.
1462 ??? Is that the right way to look at it? */
1463 #define MEMORY_MOVE_COST(MODE,CLASS,IN_P) \
1464 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
1465
1466 /* The cost of a branch insn. */
1467 /* A value of 2 here causes GCC to avoid using branches in comparisons like
1468 while (a < N && a). Branches aren't that expensive on the M32R so
1469 we define this as 1. Defining it as 2 had a heavy hit in fp-bit.c. */
1470 #define BRANCH_COST ((TARGET_BRANCH_COST) ? 2 : 1)
1471
1472 /* Provide the costs of a rtl expression. This is in the body of a
1473 switch on CODE. The purpose for the cost of MULT is to encourage
1474 `synth_mult' to find a synthetic multiply when reasonable.
1475
1476 If we need more than 12 insns to do a multiply, then go out-of-line,
1477 since the call overhead will be < 10% of the cost of the multiply. */
1478 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1479 case MULT : \
1480 return COSTS_N_INSNS (3); \
1481 case DIV : \
1482 case UDIV : \
1483 case MOD : \
1484 case UMOD : \
1485 return COSTS_N_INSNS (10);
1486
1487 /* Nonzero if access to memory by bytes is slow and undesirable.
1488 For RISC chips, it means that access to memory by bytes is no
1489 better than access by words when possible, so grab a whole word
1490 and maybe make use of that. */
1491 #define SLOW_BYTE_ACCESS 1
1492
1493 /* Define this macro if it is as good or better to call a constant
1494 function address than to call an address kept in a register. */
1495 #define NO_FUNCTION_CSE
1496
1497 /* Define this macro if it is as good or better for a function to call
1498 itself with an explicit address than to call an address kept in a
1499 register. */
1500 #define NO_RECURSIVE_FUNCTION_CSE
1501
1502 /* When the `length' insn attribute is used, this macro specifies the
1503 value to be assigned to the address of the first insn in a
1504 function. If not specified, 0 is used. */
1505 #define FIRST_INSN_ADDRESS m32r_first_insn_address ()
1506
1507 \f
1508 /* Section selection. */
1509
1510 #define TEXT_SECTION_ASM_OP "\t.section .text"
1511 #define DATA_SECTION_ASM_OP "\t.section .data"
1512 #define RODATA_SECTION_ASM_OP "\t.section .rodata"
1513 #define BSS_SECTION_ASM_OP "\t.section .bss"
1514 #define SDATA_SECTION_ASM_OP "\t.section .sdata"
1515 #define SBSS_SECTION_ASM_OP "\t.section .sbss"
1516 /* This one is for svr4.h. */
1517 #undef READONLY_DATA_SECTION_ASM_OP
1518 #define READONLY_DATA_SECTION_ASM_OP "\t.section .rodata"
1519
1520 /* A list of names for sections other than the standard two, which are
1521 `in_text' and `in_data'. You need not define this macro
1522 on a system with no other sections (that GCC needs to use). */
1523 #undef EXTRA_SECTIONS
1524 #define EXTRA_SECTIONS in_sdata, in_sbss
1525
1526 /* One or more functions to be defined in "varasm.c". These
1527 functions should do jobs analogous to those of `text_section' and
1528 `data_section', for your additional sections. Do not define this
1529 macro if you do not define `EXTRA_SECTIONS'. */
1530 #undef EXTRA_SECTION_FUNCTIONS
1531 #define EXTRA_SECTION_FUNCTIONS \
1532 SDATA_SECTION_FUNCTION \
1533 SBSS_SECTION_FUNCTION
1534
1535 #define SDATA_SECTION_FUNCTION \
1536 void \
1537 sdata_section () \
1538 { \
1539 if (in_section != in_sdata) \
1540 { \
1541 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
1542 in_section = in_sdata; \
1543 } \
1544 } \
1545
1546 #define SBSS_SECTION_FUNCTION \
1547 void \
1548 sbss_section () \
1549 { \
1550 if (in_section != in_sbss) \
1551 { \
1552 fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
1553 in_section = in_sbss; \
1554 } \
1555 } \
1556
1557 #undef TARGET_ASM_SELECT_SECTION
1558 #define TARGET_ASM_SELECT_SECTION m32r_select_section
1559
1560 /* Define this macro if jump tables (for tablejump insns) should be
1561 output in the text section, along with the assembler instructions.
1562 Otherwise, the readonly data section is used.
1563 This macro is irrelevant if there is no separate readonly data section. */
1564 /*#define JUMP_TABLES_IN_TEXT_SECTION*/
1565
1566 /* Define this macro if references to a symbol must be treated
1567 differently depending on something about the variable or
1568 function named by the symbol (such as what section it is in).
1569
1570 The macro definition, if any, is executed immediately after the
1571 rtl for DECL or other node is created.
1572 The value of the rtl will be a `mem' whose address is a
1573 `symbol_ref'.
1574
1575 The usual thing for this macro to do is to store a flag in the
1576 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1577 name string in the `symbol_ref' (if one bit is not enough
1578 information). */
1579
1580 #define SDATA_FLAG_CHAR '@'
1581 /* Small objects are recorded with no prefix for space efficiency since
1582 they'll be the most common. This isn't the case if the user passes
1583 -mmodel={medium|large} and one could choose to not mark symbols that
1584 are the default, but that complicates things. */
1585 /*#define SMALL_FLAG_CHAR '#'*/
1586 #define MEDIUM_FLAG_CHAR '%'
1587 #define LARGE_FLAG_CHAR '&'
1588
1589 #define SDATA_NAME_P(NAME) (*(NAME) == SDATA_FLAG_CHAR)
1590 /*#define SMALL_NAME_P(NAME) (*(NAME) == SMALL_FLAG_CHAR)*/
1591 #define SMALL_NAME_P(NAME) (! ENCODED_NAME_P (NAME) && ! LIT_NAME_P (NAME))
1592 #define MEDIUM_NAME_P(NAME) (*(NAME) == MEDIUM_FLAG_CHAR)
1593 #define LARGE_NAME_P(NAME) (*(NAME) == LARGE_FLAG_CHAR)
1594 /* For string literals, etc. */
1595 #define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.')
1596
1597 #define ENCODED_NAME_P(SYMBOL_NAME) \
1598 (SDATA_NAME_P (SYMBOL_NAME) \
1599 /*|| SMALL_NAME_P (SYMBOL_NAME)*/ \
1600 || MEDIUM_NAME_P (SYMBOL_NAME) \
1601 || LARGE_NAME_P (SYMBOL_NAME))
1602 \f
1603 /* PIC */
1604
1605 /* The register number of the register used to address a table of static
1606 data addresses in memory. In some cases this register is defined by a
1607 processor's ``application binary interface'' (ABI). When this macro
1608 is defined, RTL is generated for this register once, as with the stack
1609 pointer and frame pointer registers. If this macro is not defined, it
1610 is up to the machine-dependent files to allocate such a register (if
1611 necessary). */
1612 /*#define PIC_OFFSET_TABLE_REGNUM 12*/
1613
1614 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1615 clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1616 is not defined. */
1617 /* This register is call-saved on the M32R. */
1618 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1619
1620 /* By generating position-independent code, when two different programs (A
1621 and B) share a common library (libC.a), the text of the library can be
1622 shared whether or not the library is linked at the same address for both
1623 programs. In some of these environments, position-independent code
1624 requires not only the use of different addressing modes, but also
1625 special code to enable the use of these addressing modes.
1626
1627 The FINALIZE_PIC macro serves as a hook to emit these special
1628 codes once the function is being compiled into assembly code, but not
1629 before. (It is not done before, because in the case of compiling an
1630 inline function, it would lead to multiple PIC prologues being
1631 included in functions which used inline functions and were compiled to
1632 assembly language.) */
1633
1634 /*#define FINALIZE_PIC m32r_finalize_pic ()*/
1635
1636 /* A C expression that is nonzero if X is a legitimate immediate
1637 operand on the target machine when generating position independent code.
1638 You can assume that X satisfies CONSTANT_P, so you need not
1639 check this. You can also assume `flag_pic' is true, so you need not
1640 check it either. You need not define this macro if all constants
1641 (including SYMBOL_REF) can be immediate operands when generating
1642 position independent code. */
1643 /*#define LEGITIMATE_PIC_OPERAND_P(X)*/
1644 \f
1645 /* Control the assembler format that we output. */
1646
1647 /* Output at beginning of assembler file. */
1648 #define ASM_FILE_START(FILE) m32r_asm_file_start (FILE)
1649
1650 /* A C string constant describing how to begin a comment in the target
1651 assembler language. The compiler assumes that the comment will
1652 end at the end of the line. */
1653 #define ASM_COMMENT_START ";"
1654
1655 /* Output to assembler file text saying following lines
1656 may contain character constants, extra white space, comments, etc. */
1657 #define ASM_APP_ON ""
1658
1659 /* Output to assembler file text saying following lines
1660 no longer contain unusual constructs. */
1661 #define ASM_APP_OFF ""
1662
1663 /* Globalizing directive for a label. */
1664 #define GLOBAL_ASM_OP "\t.global\t"
1665
1666 /* This is how to output a reference to a user-level label named NAME.
1667 `assemble_name' uses this. */
1668 #undef ASM_OUTPUT_LABELREF
1669 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1670 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
1671
1672 /* If -Os, don't force line number labels to begin at the beginning of
1673 the word; we still want the assembler to try to put things in parallel,
1674 should that be possible.
1675 For m32r/d, instructions are never in parallel (other than with a nop)
1676 and the simulator and stub both handle a breakpoint in the middle of
1677 a word so don't ever force line number labels to begin at the beginning
1678 of a word. */
1679
1680 #undef ASM_OUTPUT_SOURCE_LINE
1681 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
1682 do \
1683 { \
1684 static int sym_lineno = 1; \
1685 fprintf (file, ".stabn 68,0,%d,.LM%d-", \
1686 line, sym_lineno); \
1687 assemble_name \
1688 (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
1689 fprintf (file, (optimize_size || TARGET_M32R) \
1690 ? "\n\t.debugsym .LM%d\n" \
1691 : "\n.LM%d:\n", \
1692 sym_lineno); \
1693 sym_lineno += 1; \
1694 } \
1695 while (0)
1696
1697 /* Store in OUTPUT a string (made with alloca) containing
1698 an assembler-name for a local static variable named NAME.
1699 LABELNO is an integer which is different for each call. */
1700 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1701 do \
1702 { \
1703 (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10);\
1704 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)); \
1705 } \
1706 while (0)
1707
1708 /* How to refer to registers in assembler output.
1709 This sequence is indexed by compiler's hard-register-number (see above). */
1710 #ifndef SUBTARGET_REGISTER_NAMES
1711 #define SUBTARGET_REGISTER_NAMES
1712 #endif
1713
1714 #define REGISTER_NAMES \
1715 { \
1716 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1717 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", \
1718 "ap", "cbit", "a0" \
1719 SUBTARGET_REGISTER_NAMES \
1720 }
1721
1722 /* If defined, a C initializer for an array of structures containing
1723 a name and a register number. This macro defines additional names
1724 for hard registers, thus allowing the `asm' option in declarations
1725 to refer to registers using alternate names. */
1726 #ifndef SUBTARGET_ADDITIONAL_REGISTER_NAMES
1727 #define SUBTARGET_ADDITIONAL_REGISTER_NAMES
1728 #endif
1729
1730 #define ADDITIONAL_REGISTER_NAMES \
1731 { \
1732 /*{ "gp", GP_REGNUM },*/ \
1733 { "r13", FRAME_POINTER_REGNUM }, \
1734 { "r14", RETURN_ADDR_REGNUM }, \
1735 { "r15", STACK_POINTER_REGNUM }, \
1736 SUBTARGET_ADDITIONAL_REGISTER_NAMES \
1737 }
1738
1739 /* A C expression which evaluates to true if CODE is a valid
1740 punctuation character for use in the `PRINT_OPERAND' macro. */
1741 extern char m32r_punct_chars[256];
1742 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1743 m32r_punct_chars[(unsigned char) (CHAR)]
1744
1745 /* Print operand X (an rtx) in assembler syntax to file FILE.
1746 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1747 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1748 #define PRINT_OPERAND(FILE, X, CODE) \
1749 m32r_print_operand (FILE, X, CODE)
1750
1751 /* A C compound statement to output to stdio stream STREAM the
1752 assembler syntax for an instruction operand that is a memory
1753 reference whose address is ADDR. ADDR is an RTL expression. */
1754 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1755 m32r_print_operand_address (FILE, ADDR)
1756
1757 /* If defined, C string expressions to be used for the `%R', `%L',
1758 `%U', and `%I' options of `asm_fprintf' (see `final.c'). These
1759 are useful when a single `md' file must support multiple assembler
1760 formats. In that case, the various `tm.h' files can define these
1761 macros differently. */
1762 #define REGISTER_PREFIX ""
1763 #define LOCAL_LABEL_PREFIX ".L"
1764 #define USER_LABEL_PREFIX ""
1765 #define IMMEDIATE_PREFIX "#"
1766
1767 /* This is how to output an element of a case-vector that is absolute. */
1768 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1769 do \
1770 { \
1771 char label[30]; \
1772 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1773 fprintf (FILE, "\t.word\t"); \
1774 assemble_name (FILE, label); \
1775 fprintf (FILE, "\n"); \
1776 } \
1777 while (0)
1778
1779 /* This is how to output an element of a case-vector that is relative. */
1780 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
1781 do \
1782 { \
1783 char label[30]; \
1784 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1785 fprintf (FILE, "\t.word\t"); \
1786 assemble_name (FILE, label); \
1787 fprintf (FILE, "-"); \
1788 ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
1789 assemble_name (FILE, label); \
1790 fprintf (FILE, ")\n"); \
1791 } \
1792 while (0)
1793
1794 /* The desired alignment for the location counter at the beginning
1795 of a loop. */
1796 /* On the M32R, align loops to 32 byte boundaries (cache line size)
1797 if -malign-loops. */
1798 #define LOOP_ALIGN(LABEL) (TARGET_ALIGN_LOOPS ? 5 : 0)
1799
1800 /* Define this to be the maximum number of insns to move around when moving
1801 a loop test from the top of a loop to the bottom
1802 and seeing whether to duplicate it. The default is thirty.
1803
1804 Loop unrolling currently doesn't like this optimization, so
1805 disable doing if we are unrolling loops and saving space. */
1806 #define LOOP_TEST_THRESHOLD (optimize_size \
1807 && !flag_unroll_loops \
1808 && !flag_unroll_all_loops ? 2 : 30)
1809
1810 /* This is how to output an assembler line
1811 that says to advance the location counter
1812 to a multiple of 2**LOG bytes. */
1813 /* .balign is used to avoid confusion. */
1814 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1815 do \
1816 { \
1817 if ((LOG) != 0) \
1818 fprintf (FILE, "\t.balign %d\n", 1 << (LOG)); \
1819 } \
1820 while (0)
1821
1822 /* Like `ASM_OUTPUT_COMMON' except takes the required alignment as a
1823 separate, explicit argument. If you define this macro, it is used in
1824 place of `ASM_OUTPUT_COMMON', and gives you more flexibility in
1825 handling the required alignment of the variable. The alignment is
1826 specified as the number of bits. */
1827
1828 #define SCOMMON_ASM_OP "\t.scomm\t"
1829
1830 #undef ASM_OUTPUT_ALIGNED_COMMON
1831 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1832 do \
1833 { \
1834 if (! TARGET_SDATA_NONE \
1835 && (SIZE) > 0 && (SIZE) <= g_switch_value) \
1836 fprintf ((FILE), "%s", SCOMMON_ASM_OP); \
1837 else \
1838 fprintf ((FILE), "%s", COMMON_ASM_OP); \
1839 assemble_name ((FILE), (NAME)); \
1840 fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN) / BITS_PER_UNIT); \
1841 } \
1842 while (0)
1843
1844 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
1845 separate, explicit argument. If you define this macro, it is used in
1846 place of `ASM_OUTPUT_BSS', and gives you more flexibility in
1847 handling the required alignment of the variable. The alignment is
1848 specified as the number of bits.
1849
1850 For the M32R we need sbss support. */
1851
1852 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1853 do \
1854 { \
1855 (*targetm.asm_out.globalize_label) (FILE, NAME); \
1856 ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN); \
1857 } \
1858 while (0)
1859 \f
1860 /* Debugging information. */
1861
1862 /* Generate DBX and DWARF debugging information. */
1863 #define DBX_DEBUGGING_INFO 1
1864 #define DWARF_DEBUGGING_INFO 1
1865 #define DWARF2_DEBUGGING_INFO 1
1866
1867 /* Prefer STABS (for now). */
1868 #undef PREFERRED_DEBUGGING_TYPE
1869 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1870
1871 /* Turn off splitting of long stabs. */
1872 #define DBX_CONTIN_LENGTH 0
1873 \f
1874 /* Miscellaneous. */
1875
1876 /* Specify the machine mode that this machine uses
1877 for the index in the tablejump instruction. */
1878 #define CASE_VECTOR_MODE Pmode
1879
1880 /* Define as C expression which evaluates to nonzero if the tablejump
1881 instruction expects the table to contain offsets from the address of the
1882 table.
1883 Do not define this if the table should contain absolute addresses. */
1884 /* It's not clear what PIC will look like or whether we want to use -fpic
1885 for the embedded form currently being talked about. For now require -fpic
1886 to get pc relative switch tables. */
1887 /*#define CASE_VECTOR_PC_RELATIVE 1 */
1888
1889 /* Define if operations between registers always perform the operation
1890 on the full register even if a narrower mode is specified. */
1891 #define WORD_REGISTER_OPERATIONS
1892
1893 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1894 will either zero-extend or sign-extend. The value of this macro should
1895 be the code that says which one of the two operations is implicitly
1896 done, NIL if none. */
1897 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1898
1899 /* Max number of bytes we can move from memory to memory
1900 in one reasonably fast instruction. */
1901 #define MOVE_MAX 4
1902
1903 /* Define this to be nonzero if shift instructions ignore all but the low-order
1904 few bits. */
1905 #define SHIFT_COUNT_TRUNCATED 1
1906
1907 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1908 is done just by pretending it is already truncated. */
1909 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1910
1911 /* We assume that the store-condition-codes instructions store 0 for false
1912 and some other value for true. This is the value stored for true. */
1913 #define STORE_FLAG_VALUE 1
1914
1915 /* Specify the machine mode that pointers have.
1916 After generation of rtl, the compiler makes no further distinction
1917 between pointers and any other objects of this machine mode. */
1918 /* ??? The M32R doesn't have full 32 bit pointers, but making this PSImode has
1919 it's own problems (you have to add extendpsisi2 and truncsipsi2).
1920 Try to avoid it. */
1921 #define Pmode SImode
1922
1923 /* A function address in a call instruction. */
1924 #define FUNCTION_MODE SImode
1925 \f
1926 /* Define the information needed to generate branch and scc insns. This is
1927 stored from the compare operation. Note that we can't use "rtx" here
1928 since it hasn't been defined! */
1929 extern struct rtx_def * m32r_compare_op0;
1930 extern struct rtx_def * m32r_compare_op1;
1931
1932 /* M32R function types. */
1933 enum m32r_function_type
1934 {
1935 M32R_FUNCTION_UNKNOWN, M32R_FUNCTION_NORMAL, M32R_FUNCTION_INTERRUPT
1936 };
1937
1938 #define M32R_INTERRUPT_P(TYPE) ((TYPE) == M32R_FUNCTION_INTERRUPT)
1939
1940 /* Define this if you have defined special-purpose predicates in the
1941 file `MACHINE.c'. This macro is called within an initializer of an
1942 array of structures. The first field in the structure is the name
1943 of a predicate and the second field is an array of rtl codes. For
1944 each predicate, list all rtl codes that can be in expressions
1945 matched by the predicate. The list should have a trailing comma. */
1946
1947 #define PREDICATE_CODES \
1948 { "reg_or_zero_operand", { REG, SUBREG, CONST_INT }}, \
1949 { "conditional_move_operand", { REG, SUBREG, CONST_INT }}, \
1950 { "carry_compare_operand", { EQ, NE }}, \
1951 { "eqne_comparison_operator", { EQ, NE }}, \
1952 { "signed_comparison_operator", { EQ, NE, LT, LE, GT, GE }}, \
1953 { "move_dest_operand", { REG, SUBREG, MEM }}, \
1954 { "move_src_operand", { REG, SUBREG, MEM, CONST_INT, \
1955 CONST_DOUBLE, LABEL_REF, CONST, \
1956 SYMBOL_REF }}, \
1957 { "move_double_src_operand", { REG, SUBREG, MEM, CONST_INT, \
1958 CONST_DOUBLE }}, \
1959 { "two_insn_const_operand", { CONST_INT }}, \
1960 { "symbolic_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1961 { "seth_add3_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1962 { "int8_operand", { CONST_INT }}, \
1963 { "uint16_operand", { CONST_INT }}, \
1964 { "reg_or_int16_operand", { REG, SUBREG, CONST_INT }}, \
1965 { "reg_or_uint16_operand", { REG, SUBREG, CONST_INT }}, \
1966 { "reg_or_cmp_int16_operand", { REG, SUBREG, CONST_INT }}, \
1967 { "reg_or_eq_int16_operand", { REG, SUBREG, CONST_INT }}, \
1968 { "cmp_int16_operand", { CONST_INT }}, \
1969 { "call_address_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1970 { "extend_operand", { REG, SUBREG, MEM }}, \
1971 { "small_insn_p", { INSN, CALL_INSN, JUMP_INSN }}, \
1972 { "m32r_block_immediate_operand",{ CONST_INT }}, \
1973 { "large_insn_p", { INSN, CALL_INSN, JUMP_INSN }}, \
1974 { "seth_add3_operand", { SYMBOL_REF, LABEL_REF, CONST }},
1975
This page took 0.127765 seconds and 6 git commands to generate.