]> gcc.gnu.org Git - gcc.git/blob - gcc/config/m32r/m32r.h
update m32r port
[gcc.git] / gcc / config / m32r / m32r.h
1 /* Definitions of target machine for GNU compiler, Mitsubishi M32R cpu.
2 Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* Things to do:
22 - longlong.h?
23 */
24
25 /* ??? Create elf.h and have svr4.h include it. */
26 #include "svr4.h"
27
28 #undef SWITCH_TAKES_ARG
29 #undef WORD_SWITCH_TAKES_ARG
30 #undef HANDLE_SYSV_PRAGMA
31 #undef SIZE_TYPE
32 #undef PTRDIFF_TYPE
33 #undef WCHAR_TYPE
34 #undef WCHAR_TYPE_SIZE
35 #undef ASM_FILE_START
36 #undef ASM_OUTPUT_EXTERNAL_LIBCALL
37 \f
38 /* Print subsidiary information on the compiler version in use. */
39 #define TARGET_VERSION fprintf (stderr, " (m32r)")
40
41
42 /* Switch Recognition by gcc.c. Add -G xx support */
43
44 #undef SWITCH_TAKES_ARG
45 #define SWITCH_TAKES_ARG(CHAR) \
46 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
47
48 /* Names to predefine in the preprocessor for this target machine. */
49 /* __M32R__ is defined by the existing compiler so we use that. */
50 #define CPP_PREDEFINES "-Acpu(m32r) -Amachine(m32r) -D__M32R__"
51
52
53 #define CC1_SPEC "%{G*}"
54
55 /* Options to pass on to the assembler. */
56 #undef ASM_SPEC
57 #define ASM_SPEC "%{v}"
58
59 #if 0 /* not supported yet */
60 #undef ASM_SPEC
61 #define ASM_SPEC "%{v} %{mrelax:-relax}"
62 #endif
63
64
65 #undef ASM_FINAL_SPEC
66
67 #undef LINK_SPEC
68 #if 0 /* not supported yet */
69 #define LINK_SPEC "%{v} %{mrelax:-relax}"
70 #else
71 #define LINK_SPEC "%{v}"
72 #endif
73
74 #undef STARTFILE_SPEC
75 #define STARTFILE_SPEC "%{!shared:crt0.o%s crtsysc.o%s} crtinit.o%s"
76
77
78 #undef ENDFILE_SPEC
79 #define ENDFILE_SPEC "crtfini.o%s"
80
81
82 #undef LIB_SPEC
83 \f
84 /* Run-time compilation parameters selecting different hardware subsets. */
85
86 extern int target_flags;
87
88 /* If non-zero, tell the linker to do relaxing.
89 We don't do anything with the option, other than recognize it.
90 LINK_SPEC handles passing -relax to the linker.
91 This can cause incorrect debugging information as line numbers may
92 turn out wrong. This shouldn't be specified unless accompanied with -O2
93 [where the user expects debugging information to be less accurate]. */
94 #define TARGET_RELAX_MASK 1
95
96 /* For miscellaneous debugging purposes. */
97 #define TARGET_DEBUG_MASK 2
98 #define TARGET_DEBUG (target_flags & TARGET_DEBUG_MASK)
99
100 /* Align loops to 32 byte boundaries (cache line size). */
101 /* ??? This option is experimental and is not documented. */
102 #define TARGET_ALIGN_LOOPS_MASK 4
103 #define TARGET_ALIGN_LOOPS (target_flags & TARGET_ALIGN_LOOPS_MASK)
104
105 /* Use old compare/branch support (kept around for awhile for
106 comparison and backoff purposes). */
107 /* ??? This option is experimental and is not documented.
108 Eventually it will be deleted. */
109 #define TARGET_OLD_COMPARE_MASK 8
110 #define TARGET_OLD_COMPARE (target_flags & TARGET_OLD_COMPARE_MASK)
111
112 /* Target machine to compile for. */
113 #define TARGET_M32R 1
114
115
116 /* Macro to define tables used to set the flags.
117 This is a list in braces of pairs in braces,
118 each pair being { "NAME", VALUE }
119 where VALUE is the bits to set or minus the bits to clear.
120 An empty string NAME is used to identify the default VALUE. */
121
122 #define TARGET_SWITCHES \
123 { \
124 /* { "relax", TARGET_RELAX_MASK }, \
125 { "no-relax", -TARGET_RELAX_MASK },*/ \
126 { "debug", TARGET_DEBUG_MASK }, \
127 { "align-loops", TARGET_ALIGN_LOOPS_MASK }, \
128 { "no-align-loops", -TARGET_ALIGN_LOOPS_MASK }, \
129 { "old-compare", TARGET_OLD_COMPARE_MASK }, \
130 { "no-old-compare", -TARGET_OLD_COMPARE_MASK }, \
131 SUBTARGET_SWITCHES \
132 { "", TARGET_DEFAULT } \
133 }
134
135 #define TARGET_DEFAULT (0)
136
137 #define SUBTARGET_SWITCHES
138
139 /* This macro is similar to `TARGET_SWITCHES' but defines names of
140 command options that have values. Its definition is an
141 initializer with a subgrouping for each command option.
142
143 Each subgrouping contains a string constant, that defines the
144 fixed part of the option name, and the address of a variable.
145 The variable, type `char *', is set to the variable part of the
146 given option if the fixed part matches. The actual option name
147 is made by appending `-m' to the specified name.
148
149 Here is an example which defines `-mshort-data-NUMBER'. If the
150 given option is `-mshort-data-512', the variable `m88k_short_data'
151 will be set to the string `"512"'.
152
153 extern char *m88k_short_data;
154 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
155
156 extern char *m32r_model_string;
157 extern char *m32r_sdata_string;
158
159
160 #define TARGET_OPTIONS \
161 { \
162 { "model=", &m32r_model_string }, \
163 { "sdata=", &m32r_sdata_string }, \
164 }
165
166 /* Code Models
167
168 Code models are used to select between two choices of two separate
169 possibilities (address space size, call insn to use):
170
171 small: addresses use 24 bits, use bl to make calls
172 medium: addresses use 32 bits, use bl to make calls (*1)
173 large: addresses use 32 bits, use seth/add3/jl to make calls (*2)
174
175 The fourth is "addresses use 24 bits, use seth/add3/jl to make calls" but
176 using this one doesn't make much sense.
177
178 (*1) The linker may eventually be able to relax seth/add3 -> ld24.
179 (*2) The linker may eventually be able to relax seth/add3/jl -> bl.
180
181 Internally these are recorded as TARGET_ADDR{24,32} and
182 TARGET_CALL{26,32}.
183
184 The __model__ attribute can be used to select the code model to use when
185 accessing particular objects. */
186
187 enum m32r_model { M32R_MODEL_SMALL, M32R_MODEL_MEDIUM, M32R_MODEL_LARGE };
188
189 extern enum m32r_model m32r_model;
190 #define TARGET_MODEL_SMALL (m32r_model == M32R_MODEL_SMALL)
191 #define TARGET_MODEL_MEDIUM (m32r_model == M32R_MODEL_MEDIUM)
192 #define TARGET_MODEL_LARGE (m32r_model == M32R_MODEL_LARGE)
193 #define TARGET_ADDR24 (m32r_model == M32R_MODEL_SMALL)
194 #define TARGET_ADDR32 (! TARGET_ADDR24)
195 #define TARGET_CALL26 (! TARGET_CALL32)
196 #define TARGET_CALL32 (m32r_model == M32R_MODEL_LARGE)
197
198 /* The default is the small model. */
199 #define M32R_MODEL_DEFAULT "small"
200
201 /* Small Data Area
202
203 The SDA consists of sections .sdata, .sbss, and .scommon.
204 .scommon isn't a real section, symbols in it have their section index
205 set to SHN_M32R_SCOMMON, though support for it exists in the linker script.
206
207 Two switches control the SDA:
208
209 -G NNN - specifies the maximum size of variable to go in the SDA
210
211 -msdata=foo - specifies how such variables are handled
212
213 -msdata=none - small data area is disabled
214
215 -msdata=sdata - small data goes in the SDA, special code isn't
216 generated to use it, and special relocs aren't
217 generated
218
219 -msdata=use - small data goes in the SDA, special code is generated
220 to use the SDA and special relocs are generated
221
222 The SDA is not multilib'd, it isn't necessary.
223 MULTILIB_EXTRA_OPTS is set in tmake_file to -msdata=sdata so multilib'd
224 libraries have small data in .sdata/SHN_M32R_SCOMMON so programs that use
225 -msdata=use will successfully link with them (references in header files
226 will cause the compiler to emit code that refers to library objects in
227 .data). ??? There can be a problem if the user passes a -G value greater
228 than the default and a library object in a header file is that size.
229 The default is 8 so this should be rare - if it occurs the user
230 is required to rebuild the libraries or use a smaller value for -G.
231 */
232
233 /* Maximum size of variables that go in .sdata/.sbss.
234 The -msdata=foo switch also controls how small variables are handled. */
235 #define SDATA_DEFAULT_SIZE 8
236
237 extern int g_switch_value; /* value of the -G xx switch */
238 extern int g_switch_set; /* whether -G xx was passed. */
239
240 enum m32r_sdata { M32R_SDATA_NONE, M32R_SDATA_SDATA, M32R_SDATA_USE };
241
242 extern enum m32r_sdata m32r_sdata;
243 #define TARGET_SDATA_NONE (m32r_sdata == M32R_SDATA_NONE)
244 #define TARGET_SDATA_SDATA (m32r_sdata == M32R_SDATA_SDATA)
245 #define TARGET_SDATA_USE (m32r_sdata == M32R_SDATA_USE)
246
247 /* Default is to disable the SDA
248 [for upward compatibility with previous toolchains]. */
249 #define M32R_SDATA_DEFAULT "none"
250
251 /* Define this macro as a C expression for the initializer of an array of
252 strings to tell the driver program which options are defaults for this
253 target and thus do not need to be handled specially when using
254 `MULTILIB_OPTIONS'. */
255 #define MULTILIB_DEFAULTS { "mmodel=small", "m32r" }
256
257 /* Sometimes certain combinations of command options do not make
258 sense on a particular target machine. You can define a macro
259 `OVERRIDE_OPTIONS' to take account of this. This macro, if
260 defined, is executed once just after all the command options have
261 been parsed.
262
263 Don't use this macro to turn on various extra optimizations for
264 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
265
266 #define OVERRIDE_OPTIONS \
267 do { \
268 /* These need to be done at start up. It's convenient to do them here. */ \
269 m32r_init (); \
270 } while (0)
271
272 /* Define this macro if debugging can be performed even without a
273 frame pointer. If this macro is defined, GNU CC will turn on the
274 `-fomit-frame-pointer' option whenever `-O' is specified. */
275 #define CAN_DEBUG_WITHOUT_FP
276 \f
277 /* Target machine storage layout. */
278
279 /* Define to use software floating point emulator for REAL_ARITHMETIC and
280 decimal <-> binary conversion. */
281 #define REAL_ARITHMETIC
282
283 /* Define this if most significant bit is lowest numbered
284 in instructions that operate on numbered bit-fields. */
285 #define BITS_BIG_ENDIAN 1
286
287 /* Define this if most significant byte of a word is the lowest numbered. */
288 #define BYTES_BIG_ENDIAN 1
289
290 /* Define this if most significant word of a multiword number is the lowest
291 numbered. */
292 #define WORDS_BIG_ENDIAN 1
293
294 /* Define this macro if WORDS_BIG_ENDIAN is not constant. This must
295 be a constant value with the same meaning as WORDS_BIG_ENDIAN,
296 which will be used only when compiling libgcc2.c. Typically the
297 value will be set based on preprocessor defines. */
298 /*#define LIBGCC2_WORDS_BIG_ENDIAN 1*/
299
300 /* Number of bits in an addressable storage unit. */
301 #define BITS_PER_UNIT 8
302
303 /* Width in bits of a "word", which is the contents of a machine register.
304 Note that this is not necessarily the width of data type `int';
305 if using 16-bit ints on a 68000, this would still be 32.
306 But on a machine with 16-bit registers, this would be 16. */
307 #define BITS_PER_WORD 32
308
309 /* Width of a word, in units (bytes). */
310 #define UNITS_PER_WORD 4
311
312 /* Define this macro if it is advisable to hold scalars in registers
313 in a wider mode than that declared by the program. In such cases,
314 the value is constrained to be within the bounds of the declared
315 type, but kept valid in the wider mode. The signedness of the
316 extension may differ from that of the type. */
317 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
318 if (GET_MODE_CLASS (MODE) == MODE_INT \
319 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
320 { \
321 (MODE) = SImode; \
322 }
323
324 /* Define this macro if the promotion described by `PROMOTE_MODE'
325 should also be done for outgoing function arguments. */
326 /*#define PROMOTE_FUNCTION_ARGS*/
327
328 /* Likewise, if the function return value is promoted.
329 If defined, FUNCTION_VALUE must perform the same promotions done by
330 PROMOTE_MODE. */
331 /*#define PROMOTE_FUNCTION_RETURN*/
332
333 /* Width in bits of a pointer.
334 See also the macro `Pmode' defined below. */
335 #define POINTER_SIZE 32
336
337 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
338 #define PARM_BOUNDARY 32
339
340 /* Boundary (in *bits*) on which stack pointer should be aligned. */
341 #define STACK_BOUNDARY 32
342
343 /* ALIGN FRAMES on word boundaries */
344 #define M32R_STACK_ALIGN(LOC) (((LOC)+3) & ~3)
345
346 /* Allocation boundary (in *bits*) for the code of a function. */
347 #define FUNCTION_BOUNDARY 32
348
349 /* Alignment of field after `int : 0' in a structure. */
350 #define EMPTY_FIELD_BOUNDARY 32
351
352 /* Every structure's size must be a multiple of this. */
353 #define STRUCTURE_SIZE_BOUNDARY 8
354
355 /* A bitfield declared as `int' forces `int' alignment for the struct. */
356 #define PCC_BITFIELD_TYPE_MATTERS 1
357
358 /* No data type wants to be aligned rounder than this. */
359 #define BIGGEST_ALIGNMENT 32
360
361 /* The best alignment to use in cases where we have a choice. */
362 #define FASTEST_ALIGNMENT 32
363
364 /* Make strings word-aligned so strcpy from constants will be faster. */
365 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
366 ((TREE_CODE (EXP) == STRING_CST \
367 && (ALIGN) < FASTEST_ALIGNMENT) \
368 ? FASTEST_ALIGNMENT : (ALIGN))
369
370 /* Make arrays of chars word-aligned for the same reasons. */
371 #define DATA_ALIGNMENT(TYPE, ALIGN) \
372 (TREE_CODE (TYPE) == ARRAY_TYPE \
373 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
374 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
375
376 /* Set this nonzero if move instructions will actually fail to work
377 when given unaligned data. */
378 #define STRICT_ALIGNMENT 1
379 \f
380 /* Layout of source language data types. */
381
382 #define SHORT_TYPE_SIZE 16
383 #define INT_TYPE_SIZE 32
384 #define LONG_TYPE_SIZE 32
385 #define LONG_LONG_TYPE_SIZE 64
386 #define FLOAT_TYPE_SIZE 32
387 #define DOUBLE_TYPE_SIZE 64
388 #define LONG_DOUBLE_TYPE_SIZE 64
389
390 /* Define this as 1 if `char' should by default be signed; else as 0. */
391 #define DEFAULT_SIGNED_CHAR 1
392
393 #define SIZE_TYPE "long unsigned int"
394 #define PTRDIFF_TYPE "long int"
395 #define WCHAR_TYPE "short unsigned int"
396 #define WCHAR_TYPE_SIZE 16
397
398 /* Define results of standard character escape sequences. */
399 #define TARGET_BELL 007
400 #define TARGET_BS 010
401 #define TARGET_TAB 011
402 #define TARGET_NEWLINE 012
403 #define TARGET_VT 013
404 #define TARGET_FF 014
405 #define TARGET_CR 015
406 \f
407 /* Standard register usage. */
408
409 /* Number of actual hardware registers.
410 The hardware registers are assigned numbers for the compiler
411 from 0 to just below FIRST_PSEUDO_REGISTER.
412 All registers that the compiler knows about must be given numbers,
413 even those that are not normally considered general registers. */
414 #define FIRST_PSEUDO_REGISTER 18
415
416 /* 1 for registers that have pervasive standard uses
417 and are not available for the register allocator.
418
419 0-3 - arguments/results
420 4-5 - call used [4 is used as a tmp during prologue/epilogue generation]
421 6 - call used, gptmp
422 7 - call used, static chain pointer
423 8-11 - call saved
424 12 - call saved [reserved for global pointer]
425 13 - frame pointer
426 14 - subroutine link register
427 15 - stack pointer
428 16 - arg pointer
429 17 - carry flag
430
431
432 By default, the extension registers are not available. */
433
434 #define FIXED_REGISTERS \
435 { 0, 0, 0, 0, 0, 0, 0, 0, \
436 0, 0, 0, 0, 0, 0, 0, 1, \
437 1, 0 }
438
439
440 /* 1 for registers not available across function calls.
441 These must include the FIXED_REGISTERS and also any
442 registers that can be used without being saved.
443 The latter must include the registers where values are returned
444 and the register where structure-value addresses are passed.
445 Aside from that, you can include as many other registers as you like. */
446
447 #define CALL_USED_REGISTERS \
448 { 1, 1, 1, 1, 1, 1, 1, 1, \
449 0, 0, 0, 0, 0, 0, 1, 1, \
450 1, 1 }
451
452
453 /* Zero or more C statements that may conditionally modify two variables
454 `fixed_regs' and `call_used_regs' (both of type `char []') after they
455 have been initialized from the two preceding macros.
456
457 This is necessary in case the fixed or call-clobbered registers depend
458 on target flags.
459
460 You need not define this macro if it has no work to do. */
461
462 /*#define CONDITIONAL_REGISTER_USAGE*/
463
464 /* If defined, an initializer for a vector of integers, containing the
465 numbers of hard registers in the order in which GNU CC should
466 prefer to use them (from most preferred to least). */
467 #if 1 /* better for int code */
468 #define REG_ALLOC_ORDER \
469 { 4, 5, 6, 7, 2, 3, 8, 9, 10, 11, 12, 13, 14, 0, 1, 15, 16, 17 }
470 #else /* better for fp code at expense of int code */
471 #define REG_ALLOC_ORDER \
472 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 }
473 #endif
474
475 /* Return number of consecutive hard regs needed starting at reg REGNO
476 to hold something of mode MODE.
477 This is ordinarily the length in words of a value of mode MODE
478 but can be less for certain modes in special long registers. */
479 #define HARD_REGNO_NREGS(REGNO, MODE) \
480 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
481
482 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
483 extern unsigned int m32r_hard_regno_mode_ok[];
484 extern unsigned int m32r_mode_class[];
485 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
486 ((m32r_hard_regno_mode_ok[REGNO] & m32r_mode_class[MODE]) != 0)
487
488 /* A C expression that is nonzero if it is desirable to choose
489 register allocation so as to avoid move instructions between a
490 value of mode MODE1 and a value of mode MODE2.
491
492 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
493 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
494 MODE2)' must be zero. */
495
496 /* Tie QI/HI/SI modes together. */
497 #define MODES_TIEABLE_P(MODE1, MODE2) \
498 (GET_MODE_CLASS (MODE1) == MODE_INT \
499 && GET_MODE_CLASS (MODE2) == MODE_INT \
500 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
501 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD)
502 \f
503 /* Register classes and constants. */
504
505 /* Define the classes of registers for register constraints in the
506 machine description. Also define ranges of constants.
507
508 One of the classes must always be named ALL_REGS and include all hard regs.
509 If there is more than one class, another class must be named NO_REGS
510 and contain no registers.
511
512 The name GENERAL_REGS must be the name of a class (or an alias for
513 another name such as ALL_REGS). This is the class of registers
514 that is allowed by "g" or "r" in a register constraint.
515 Also, registers outside this class are allocated only when
516 instructions express preferences for them.
517
518 The classes must be numbered in nondecreasing order; that is,
519 a larger-numbered class must never be contained completely
520 in a smaller-numbered class.
521
522 For any two classes, it is very desirable that there be another
523 class that represents their union.
524
525 It is important that any condition codes have class NO_REGS.
526 See `register_operand'. */
527
528 enum reg_class {
529 NO_REGS, CARRY_REG, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
530 };
531
532 #define N_REG_CLASSES (int) LIM_REG_CLASSES
533
534 /* Give names of register classes as strings for dump file. */
535 #define REG_CLASS_NAMES \
536 { "NO_REGS", "CARRY_REG", "GENERAL_REGS", "ALL_REGS" }
537
538 /* Define which registers fit in which classes.
539 This is an initializer for a vector of HARD_REG_SET
540 of length N_REG_CLASSES. */
541
542 #define REG_CLASS_CONTENTS \
543 { {0}, {0x20000}, {0x1ffff}, {0x3ffff} }
544
545
546 /* The same information, inverted:
547 Return the class number of the smallest class containing
548 reg number REGNO. This could be a conditional expression
549 or could index an array. */
550 extern enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
551 #define REGNO_REG_CLASS(REGNO) \
552 (m32r_regno_reg_class[REGNO])
553
554 /* The class value for index registers, and the one for base regs. */
555 #define INDEX_REG_CLASS GENERAL_REGS
556 #define BASE_REG_CLASS GENERAL_REGS
557
558 /* Get reg_class from a letter such as appears in the machine description. */
559 #define REG_CLASS_FROM_LETTER(C) NO_REGS
560
561 /* These assume that REGNO is a hard or pseudo reg number.
562 They give nonzero only if REGNO is a hard reg of the suitable class
563 or a pseudo reg currently allocated to a suitable hard reg.
564 Since they use reg_renumber, they are safe only once reg_renumber
565 has been allocated, which happens in local-alloc.c. */
566 #define REGNO_OK_FOR_BASE_P(REGNO) \
567 ((REGNO) < FIRST_PSEUDO_REGISTER \
568 ? GPR_P (REGNO) || (REGNO) == ARG_POINTER_REGNUM \
569 : GPR_P (reg_renumber[REGNO]))
570 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
571
572 /* Given an rtx X being reloaded into a reg required to be
573 in class CLASS, return the class of reg to actually use.
574 In general this is just CLASS; but on some machines
575 in some cases it is preferable to use a more restrictive class. */
576 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
577 (CLASS)
578
579 /* Return the maximum number of consecutive registers
580 needed to represent mode MODE in a register of class CLASS. */
581 #define CLASS_MAX_NREGS(CLASS, MODE) \
582 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
583
584 /* The letters I, J, K, L, M, N, O, P in a register constraint string
585 can be used to stand for particular ranges of immediate operands.
586 This macro defines what the ranges are.
587 C is the letter, and VALUE is a constant value.
588 Return 1 if VALUE is in the range specified by C. */
589 /* 'I' is used for 8 bit signed immediates.
590 'J' is used for 16 bit signed immediates.
591 'K' is used for 16 bit unsigned immediates.
592 'L' is used for 16 bit immediates left shifted by 16 (sign ???).
593 'M' is used for 24 bit unsigned immediates.
594 'N' is used for any 32 bit non-symbolic value.
595 'O' is used for 5 bit unsigned immediates (shift count).
596 'P' is used for 16 bit signed immediates for compares
597 (values in the range -32767 to +32768). */
598
599 /* local to this file */
600 #define INT8_P(X) ((unsigned) ((X) + 0x80) < 0x100)
601 #define INT16_P(X) ((unsigned) ((X) + 0x8000) < 0x10000)
602 #define CMP_INT16_P(X) ((unsigned) ((X) - 1 + 0x8000) < 0x10000)
603 #define UINT16_P(X) ((unsigned) (X) < 0x10000)
604 #define UPPER16_P(X) (((X) & ~0xffff0000) == 0)
605 #define UINT24_P(X) ((unsigned) (X) < 0x1000000)
606 #define INT32_P(X) ((X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
607 && (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
608 #define UINT5_P(X) ((unsigned) (X) < 32)
609
610 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
611 ((C) == 'I' ? INT8_P (VALUE) \
612 : (C) == 'J' ? INT16_P (VALUE) \
613 : (C) == 'K' ? UINT16_P (VALUE) \
614 : (C) == 'L' ? UPPER16_P (VALUE) \
615 : (C) == 'M' ? UINT24_P (VALUE) \
616 : (C) == 'N' ? INT32_P (VALUE) \
617 : (C) == 'O' ? UINT5_P (VALUE) \
618 : (C) == 'P' ? CMP_INT16_P (VALUE) \
619 : 0)
620
621 /* Similar, but for floating constants, and defining letters G and H.
622 Here VALUE is the CONST_DOUBLE rtx itself.
623 For the m32r, handle a few constants inline.
624 ??? We needn't treat DI and DF modes differently, but for now we do. */
625 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
626 ((C) == 'G' ? easy_di_const (VALUE) \
627 : (C) == 'H' ? easy_df_const (VALUE) \
628 : 0)
629
630 /* A C expression that defines the optional machine-dependent constraint
631 letters that can be used to segregate specific types of operands,
632 usually memory references, for the target machine. It should return 1 if
633 VALUE corresponds to the operand type represented by the constraint letter
634 C. If C is not defined as an extra constraint, the value returned should
635 be 0 regardless of VALUE. */
636 /* Q is for symbolic addresses loadable with ld24.
637 R is for symbolic addresses when ld24 can't be used.
638 S is for an 8 bit signed integer in the range +128 to -127 */
639
640 #define INVERTED_SIGNED_8BIT(VAL) ((VAL) >= -127 && (VAL) <= 128)
641
642 #define EXTRA_CONSTRAINT(VALUE, C) \
643 ((C) == 'Q' \
644 ? ((TARGET_ADDR24 && GET_CODE (VALUE) == LABEL_REF) \
645 || addr24_operand (VALUE, VOIDmode)) \
646 : (C) == 'R' \
647 ? ((TARGET_ADDR32 && GET_CODE (VALUE) == LABEL_REF) \
648 || addr32_operand (VALUE, VOIDmode)) \
649 : (C) == 'S' \
650 ? ((GET_CODE (VALUE) == CONST_INT) && INVERTED_SIGNED_8BIT (INTVAL (VALUE))) \
651 : 0)
652 \f
653 /* Stack layout and stack pointer usage. */
654
655 /* Define this macro if pushing a word onto the stack moves the stack
656 pointer to a smaller address. */
657 #define STACK_GROWS_DOWNWARD
658
659 /* Define this if the nominal address of the stack frame
660 is at the high-address end of the local variables;
661 that is, each additional local variable allocated
662 goes at a more negative offset from the frame pointer. */
663 /*#define FRAME_GROWS_DOWNWARD*/
664
665 /* Offset from frame pointer to start allocating local variables at.
666 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
667 first local allocated. Otherwise, it is the offset to the BEGINNING
668 of the first local allocated. */
669 /* The frame pointer points at the same place as the stack pointer, except if
670 alloca has been called. */
671 #define STARTING_FRAME_OFFSET \
672 M32R_STACK_ALIGN (current_function_outgoing_args_size)
673
674 /* Offset from the stack pointer register to the first location at which
675 outgoing arguments are placed. */
676 #define STACK_POINTER_OFFSET 0
677
678 /* Offset of first parameter from the argument pointer register value. */
679 #define FIRST_PARM_OFFSET(FNDECL) 0
680
681 /* A C expression whose value is RTL representing the address in a
682 stack frame where the pointer to the caller's frame is stored.
683 Assume that FRAMEADDR is an RTL expression for the address of the
684 stack frame itself.
685
686 If you don't define this macro, the default is to return the value
687 of FRAMEADDR--that is, the stack frame address is also the address
688 of the stack word that points to the previous frame. */
689 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
690
691 /* A C expression whose value is RTL representing the value of the
692 return address for the frame COUNT steps up from the current frame.
693 FRAMEADDR is the frame pointer of the COUNT frame, or the frame
694 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
695 is defined. */
696 /* The current return address is in r14. */
697 #if 0 /* The default value should work. */
698 #define RETURN_ADDR_RTX(COUNT, FRAME) \
699 (((COUNT) == -1) \
700 ? gen_rtx (REG, Pmode, 14) \
701 : copy_to_reg (gen_rtx (MEM, Pmode, \
702 memory_address (Pmode, plus_constant ((FRAME), UNITS_PER_WORD)))))
703 #endif
704
705 /* Register to use for pushing function arguments. */
706 #define STACK_POINTER_REGNUM 15
707
708 /* Base register for access to local variables of the function. */
709 #define FRAME_POINTER_REGNUM 13
710
711 /* Base register for access to arguments of the function. */
712 #define ARG_POINTER_REGNUM 16
713
714 /* The register number of the return address pointer register, which
715 is used to access the current function's return address from the
716 stack. On some machines, the return address is not at a fixed
717 offset from the frame pointer or stack pointer or argument
718 pointer. This register can be defined to point to the return
719 address on the stack, and then be converted by `ELIMINABLE_REGS'
720 into either the frame pointer or stack pointer.
721
722 Do not define this macro unless there is no other way to get the
723 return address from the stack. */
724 /* ??? revisit */
725 /* #define RETURN_ADDRESS_POINTER_REGNUM */
726
727 /* Register in which static-chain is passed to a function. This must
728 not be a register used by the prologue. */
729 #define STATIC_CHAIN_REGNUM 7
730
731 /* These aren't official macros. */
732 #define PROLOGUE_TMP_REGNUM 4
733 #define RETURN_ADDR_REGNUM 14
734 /* #define GP_REGNUM 12 */
735 #define CARRY_REGNUM 17
736 #define M32R_MAX_INT_REGS 16
737
738
739 #define GPR_P(REGNO) ((unsigned) (REGNO) < M32R_MAX_INT_REGS)
740 \f
741 /* Eliminating the frame and arg pointers. */
742
743 /* A C expression which is nonzero if a function must have and use a
744 frame pointer. This expression is evaluated in the reload pass.
745 If its value is nonzero the function will have a frame pointer. */
746 #define FRAME_POINTER_REQUIRED \
747 (current_function_calls_alloca)
748
749 #if 0
750 /* C statement to store the difference between the frame pointer
751 and the stack pointer values immediately after the function prologue.
752 If `ELIMINABLE_REGS' is defined, this macro will be not be used and
753 need not be defined. */
754 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
755 ((VAR) = m32r_compute_frame_size (get_frame_size ()))
756 #endif
757
758 /* If defined, this macro specifies a table of register pairs used to
759 eliminate unneeded registers that point into the stack frame. If
760 it is not defined, the only elimination attempted by the compiler
761 is to replace references to the frame pointer with references to
762 the stack pointer.
763
764 Note that the elimination of the argument pointer with the stack
765 pointer is specified first since that is the preferred elimination. */
766
767 #define ELIMINABLE_REGS \
768 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
769 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
770 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }} \
771
772 /* A C expression that returns non-zero if the compiler is allowed to
773 try to replace register number FROM-REG with register number
774 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
775 defined, and will usually be the constant 1, since most of the
776 cases preventing register elimination are things that the compiler
777 already knows about. */
778
779 #define CAN_ELIMINATE(FROM, TO) \
780 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
781 ? ! frame_pointer_needed \
782 : 1)
783
784 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
785 specifies the initial difference between the specified pair of
786 registers. This macro must be defined if `ELIMINABLE_REGS' is
787 defined. */
788
789 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
790 { \
791 int size = m32r_compute_frame_size (get_frame_size ()); \
792 \
793 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
794 (OFFSET) = 0; \
795 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
796 (OFFSET) = size - current_function_pretend_args_size; \
797 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
798 (OFFSET) = size - current_function_pretend_args_size; \
799 else \
800 abort (); \
801 }
802 \f
803 /* Function argument passing. */
804
805 /* When a prototype says `char' or `short', really pass an `int'. */
806 #define PROMOTE_PROTOTYPES
807
808 /* If defined, the maximum amount of space required for outgoing
809 arguments will be computed and placed into the variable
810 `current_function_outgoing_args_size'. No space will be pushed
811 onto the stack for each call; instead, the function prologue should
812 increase the stack frame size by this amount. */
813 #define ACCUMULATE_OUTGOING_ARGS
814
815 /* Define this macro if functions should assume that stack space has
816 been allocated for arguments even when their values are passed in
817 registers.
818
819 The value of this macro is the size, in bytes, of the area
820 reserved for arguments passed in registers for the function
821 represented by FNDECL.
822
823 This space can be allocated by the caller, or be a part of the
824 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
825 which. */
826 #if 0
827 #define REG_PARM_STACK_SPACE(FNDECL) \
828 (M32R_MAX_PARM_REGS * UNITS_PER_WORD)
829 #endif
830
831 /* Value is the number of bytes of arguments automatically
832 popped when returning from a subroutine call.
833 FUNDECL is the declaration node of the function (as a tree),
834 FUNTYPE is the data type of the function (as a tree),
835 or for a library call it is an identifier node for the subroutine name.
836 SIZE is the number of bytes of arguments passed on the stack. */
837 #define RETURN_POPS_ARGS(DECL, FUNTYPE, SIZE) 0
838
839 /* Define a data type for recording info about an argument list
840 during the scan of that argument list. This data type should
841 hold all necessary information about the function itself
842 and about the args processed so far, enough to enable macros
843 such as FUNCTION_ARG to determine where the next arg should go. */
844 #define CUMULATIVE_ARGS int
845
846 /* Initialize a variable CUM of type CUMULATIVE_ARGS
847 for a call to a function whose data type is FNTYPE.
848 For a library call, FNTYPE is 0. */
849 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
850 ((CUM) = 0)
851
852 /* The number of registers used for parameter passing. Local to this file. */
853 #define M32R_MAX_PARM_REGS 4
854
855 /* 1 if N is a possible register number for function argument passing. */
856 #define FUNCTION_ARG_REGNO_P(N) \
857 ((unsigned) (N) < M32R_MAX_PARM_REGS)
858
859 /* The ROUND_ADVANCE* macros are local to this file. */
860 /* Round SIZE up to a word boundary. */
861 #define ROUND_ADVANCE(SIZE) \
862 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
863
864 /* Round arg MODE/TYPE up to the next word boundary. */
865 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
866 ((MODE) == BLKmode \
867 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
868 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
869
870 /* Round CUM up to the necessary point for argument MODE/TYPE. */
871 #if 0
872 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
873 ((((MODE) == BLKmode ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) \
874 > BITS_PER_WORD) \
875 ? ((CUM) + 1 & ~1) \
876 : (CUM))
877 #else
878 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) (CUM)
879 #endif
880
881 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
882 a reg. This includes arguments that have to be passed by reference as the
883 pointer to them is passed in a reg if one is available (and that is what
884 we're given).
885 This macro is only used in this file. */
886 #define PASS_IN_REG_P(CUM, MODE, TYPE, NAMED) \
887 (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) < M32R_MAX_PARM_REGS)
888
889 /* Determine where to put an argument to a function.
890 Value is zero to push the argument on the stack,
891 or a hard register in which to store the argument.
892
893 MODE is the argument's machine mode.
894 TYPE is the data type of the argument (as a tree).
895 This is null for libcalls where that information may
896 not be available.
897 CUM is a variable of type CUMULATIVE_ARGS which gives info about
898 the preceding args and about the function being called.
899 NAMED is nonzero if this argument is a named parameter
900 (otherwise it is an extra parameter matching an ellipsis). */
901 /* On the M32R the first M32R_MAX_PARM_REGS args are normally in registers
902 and the rest are pushed. */
903 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
904 (PASS_IN_REG_P ((CUM), (MODE), (TYPE), (NAMED)) \
905 ? gen_rtx (REG, (MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE))) \
906 : 0)
907
908 /* ??? Quick hack to try to get varargs working the normal way. */
909 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
910 (((! current_function_varargs || (NAMED)) \
911 && PASS_IN_REG_P ((CUM), (MODE), (TYPE), (NAMED))) \
912 ? gen_rtx (REG, (MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE))) \
913 : 0)
914
915 /* A C expression for the number of words, at the beginning of an
916 argument, must be put in registers. The value must be zero for
917 arguments that are passed entirely in registers or that are entirely
918 pushed on the stack.
919
920 On some machines, certain arguments must be passed partially in
921 registers and partially in memory. On these machines, typically the
922 first @var{n} words of arguments are passed in registers, and the rest
923 on the stack. If a multi-word argument (a @code{double} or a
924 structure) crosses that boundary, its first few words must be passed
925 in registers and the rest must be pushed. This macro tells the
926 compiler when this occurs, and how many of the words should go in
927 registers. */
928 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
929 function_arg_partial_nregs (&CUM, (int)MODE, TYPE, NAMED)
930
931 /* A C expression that indicates when an argument must be passed by
932 reference. If nonzero for an argument, a copy of that argument is
933 made in memory and a pointer to the argument is passed instead of
934 the argument itself. The pointer is passed in whatever way is
935 appropriate for passing a pointer to that type. */
936 /* All arguments greater than 8 bytes are passed this way. */
937 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
938 ((TYPE) && int_size_in_bytes (TYPE) > 8)
939
940 /* Update the data in CUM to advance over an argument
941 of mode MODE and data type TYPE.
942 (TYPE is null for libcalls where that information may not be available.) */
943 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
944 ((CUM) = (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
945 + ROUND_ADVANCE_ARG ((MODE), (TYPE))))
946
947 /* If defined, a C expression that gives the alignment boundary, in bits,
948 of an argument with the specified mode and type. If it is not defined,
949 PARM_BOUNDARY is used for all arguments. */
950 #if 0
951 /* We assume PARM_BOUNDARY == UNITS_PER_WORD here. */
952 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
953 (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \
954 ? PARM_BOUNDARY \
955 : 2 * PARM_BOUNDARY)
956 #endif
957
958 #if 0
959 /* If defined, is a C expression that produces the machine-specific
960 code for a call to `__builtin_saveregs'. This code will be moved
961 to the very beginning of the function, before any parameter access
962 are made. The return value of this function should be an RTX that
963 contains the value to use as the return of `__builtin_saveregs'.
964
965 The argument ARGS is a `tree_list' containing the arguments that
966 were passed to `__builtin_saveregs'.
967
968 If this macro is not defined, the compiler will output an ordinary
969 call to the library function `__builtin_saveregs'. */
970 extern struct rtx *m32r_expand_builtin_savergs ();
971 #define EXPAND_BUILTIN_SAVEREGS(ARGS) m32r_expand_builtin_saveregs (ARGS)
972 #endif
973
974 /* This macro offers an alternative
975 to using `__builtin_saveregs' and defining the macro
976 `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
977 arguments into the stack so that all the arguments appear to have
978 been passed consecutively on the stack. Once this is done, you
979 can use the standard implementation of varargs that works for
980 machines that pass all their arguments on the stack.
981
982 The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure,
983 containing the values that obtain after processing of the named
984 arguments. The arguments MODE and TYPE describe the last named
985 argument--its machine mode and its data type as a tree node.
986
987 The macro implementation should do two things: first, push onto the
988 stack all the argument registers *not* used for the named
989 arguments, and second, store the size of the data thus pushed into
990 the `int'-valued variable whose name is supplied as the argument
991 PRETEND_SIZE. The value that you store here will serve as
992 additional offset for setting up the stack frame.
993
994 If the argument NO_RTL is nonzero, it means that the
995 arguments of the function are being analyzed for the second time.
996 This happens for an inline function, which is not actually
997 compiled until the end of the source file. The macro
998 `SETUP_INCOMING_VARARGS' should not generate any instructions in
999 this case. */
1000
1001 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1002 m32r_setup_incoming_varargs (&ARGS_SO_FAR, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1003 \f
1004 /* Function results. */
1005
1006 /* Define how to find the value returned by a function.
1007 VALTYPE is the data type of the value (as a tree).
1008 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1009 otherwise, FUNC is 0. */
1010 #define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
1011
1012 /* Define how to find the value returned by a library function
1013 assuming the value has mode MODE. */
1014 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
1015
1016 /* 1 if N is a possible register number for a function value
1017 as seen by the caller. */
1018 /* ??? What about r1 in DI/DF values. */
1019 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
1020
1021 /* A C expression which can inhibit the returning of certain function
1022 values in registers, based on the type of value. A nonzero value says
1023 to return the function value in memory, just as large structures are
1024 always returned. Here TYPE will be a C expression of type `tree',
1025 representing the data type of the value. */
1026 #define RETURN_IN_MEMORY(TYPE) \
1027 (int_size_in_bytes (TYPE) > 8)
1028
1029 /* Tell GCC to use RETURN_IN_MEMORY. */
1030 #define DEFAULT_PCC_STRUCT_RETURN 0
1031
1032 /* Register in which address to store a structure value
1033 is passed to a function, or 0 to use `invisible' first argument. */
1034 #define STRUCT_VALUE 0
1035 \f
1036 /* Function entry and exit. */
1037
1038 /* Initialize data used by insn expanders. This is called from
1039 init_emit, once for each function, before code is generated. */
1040 #define INIT_EXPANDERS m32r_init_expanders ()
1041
1042 /* This macro generates the assembly code for function entry.
1043 FILE is a stdio stream to output the code to.
1044 SIZE is an int: how many units of temporary storage to allocate.
1045 Refer to the array `regs_ever_live' to determine which registers
1046 to save; `regs_ever_live[I]' is nonzero if register number I
1047 is ever used in the function. This macro is responsible for
1048 knowing which registers should not be saved even if used. */
1049 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1050 m32r_output_function_prologue (FILE, SIZE)
1051
1052 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1053 the stack pointer does not matter. The value is tested only in
1054 functions that have frame pointers.
1055 No definition is equivalent to always zero. */
1056 #define EXIT_IGNORE_STACK 1
1057
1058 /* This macro generates the assembly code for function exit,
1059 on machines that need it. If FUNCTION_EPILOGUE is not defined
1060 then individual return instructions are generated for each
1061 return statement. Args are same as for FUNCTION_PROLOGUE.
1062
1063 The function epilogue should not depend on the current stack pointer!
1064 It should use the frame pointer only. This is mandatory because
1065 of alloca; we also take advantage of it to omit stack adjustments
1066 before returning. */
1067 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1068 m32r_output_function_epilogue (FILE, SIZE)
1069
1070 /* Output assembler code to FILE to increment profiler label # LABELNO
1071 for profiling a function entry. */
1072 #define FUNCTION_PROFILER(FILE, LABELNO)
1073 \f
1074 /* Trampolines. */
1075
1076 /* On the M32R, the trampoline is
1077
1078 ld24 r7,STATIC
1079 ld24 r6,FUNCTION
1080 jmp r6
1081 nop
1082
1083 ??? Need addr32 support.
1084 */
1085
1086 /* Length in bytes of the trampoline for entering a nested function. */
1087 #define TRAMPOLINE_SIZE 12
1088
1089 /* Emit RTL insns to initialize the variable parts of a trampoline.
1090 FNADDR is an RTX for the address of the function's pure code.
1091 CXT is an RTX for the static chain value for the function. */
1092 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1093 do { \
1094 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), \
1095 plus_constant ((CXT), 0xe7000000)); \
1096 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), \
1097 plus_constant ((FNADDR), 0xe6000000)); \
1098 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), \
1099 GEN_INT (0x1fc67000)); \
1100 emit_insn (gen_flush_icache (validize_mem (gen_rtx (MEM, SImode, TRAMP)))); \
1101 } while (0)
1102 \f
1103 /* Library calls. */
1104
1105 /* Generate calls to memcpy, memcmp and memset. */
1106 #define TARGET_MEM_FUNCTIONS
1107 \f
1108 /* Addressing modes, and classification of registers for them. */
1109
1110 /* Maximum number of registers that can appear in a valid memory address. */
1111 #define MAX_REGS_PER_ADDRESS 1
1112
1113 /* We have post-inc load and pre-dec,pre-inc store,
1114 but only for 4 byte vals. */
1115 #if 0
1116 #define HAVE_PRE_DECREMENT
1117 #define HAVE_PRE_INCREMENT
1118 #define HAVE_POST_INCREMENT
1119 #endif
1120
1121 /* Recognize any constant value that is a valid address. */
1122 #define CONSTANT_ADDRESS_P(X) \
1123 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1124 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)
1125
1126 /* Nonzero if the constant value X is a legitimate general operand.
1127 We don't allow (plus symbol large-constant) as the relocations can't
1128 describe it. INTVAL > 32767 handles both 16 bit and 24 bit relocations.
1129 We allow all CONST_DOUBLE's as the md file patterns will force the
1130 constant to memory if they can't handle them. */
1131
1132 #define LEGITIMATE_CONSTANT_P(X) \
1133 (! (GET_CODE (X) == CONST \
1134 && GET_CODE (XEXP (X, 0)) == PLUS \
1135 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
1136 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1137 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (X, 0), 1)) > 32767))
1138
1139 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1140 and check its validity for a certain class.
1141 We have two alternate definitions for each of them.
1142 The usual definition accepts all pseudo regs; the other rejects
1143 them unless they have been allocated suitable hard regs.
1144 The symbol REG_OK_STRICT causes the latter definition to be used.
1145
1146 Most source files want to accept pseudo regs in the hope that
1147 they will get allocated to the class that the insn wants them to be in.
1148 Source files for reload pass need to be strict.
1149 After reload, it makes no difference, since pseudo regs have
1150 been eliminated by then. */
1151
1152 #ifdef REG_OK_STRICT
1153
1154 /* Nonzero if X is a hard reg that can be used as a base reg. */
1155 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1156 /* Nonzero if X is a hard reg that can be used as an index. */
1157 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1158
1159 #else
1160
1161 /* Nonzero if X is a hard reg that can be used as a base reg
1162 or if it is a pseudo reg. */
1163 #define REG_OK_FOR_BASE_P(X) \
1164 (GPR_P (REGNO (X)) \
1165 || (REGNO (X)) == ARG_POINTER_REGNUM \
1166 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1167 /* Nonzero if X is a hard reg that can be used as an index
1168 or if it is a pseudo reg. */
1169 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1170
1171 #endif
1172
1173 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1174 that is a valid memory address for an instruction.
1175 The MODE argument is the machine mode for the MEM expression
1176 that wants to use this address. */
1177
1178 /* local to this file */
1179 #define RTX_OK_FOR_BASE_P(X) \
1180 (REG_P (X) && REG_OK_FOR_BASE_P (X))
1181
1182 /* local to this file */
1183 #define RTX_OK_FOR_OFFSET_P(X) \
1184 (GET_CODE (X) == CONST_INT && INT16_P (INTVAL (X)))
1185
1186 /* local to this file */
1187 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \
1188 (GET_CODE (X) == PLUS \
1189 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
1190 && RTX_OK_FOR_OFFSET_P (XEXP (X, 1)))
1191
1192 /* local to this file */
1193 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1194 (GET_CODE (X) == LO_SUM \
1195 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
1196 && CONSTANT_P (XEXP (X, 1)))
1197
1198 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1199 { if (RTX_OK_FOR_BASE_P (X)) \
1200 goto ADDR; \
1201 if (LEGITIMATE_OFFSET_ADDRESS_P ((MODE), (X))) \
1202 goto ADDR; \
1203 if (LEGITIMATE_LO_SUM_ADDRESS_P ((MODE), (X))) \
1204 goto ADDR; \
1205 }
1206
1207 /* Try machine-dependent ways of modifying an illegitimate address
1208 to be legitimate. If we find one, return the new, valid address.
1209 This macro is used in only one place: `memory_address' in explow.c.
1210
1211 OLDX is the address as it was before break_out_memory_refs was called.
1212 In some cases it is useful to look at this to decide what needs to be done.
1213
1214 MODE and WIN are passed so that this macro can use
1215 GO_IF_LEGITIMATE_ADDRESS.
1216
1217 It is always safe for this macro to do nothing. It exists to recognize
1218 opportunities to optimize the output.
1219
1220 ??? Is there anything useful we can do here for the M32R? */
1221
1222 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1223
1224 /* Go to LABEL if ADDR (a legitimate address expression)
1225 has an effect that depends on the machine mode it is used for. */
1226 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1227 do { \
1228 if (GET_CODE (ADDR) == PRE_DEC) \
1229 goto LABEL; \
1230 if (GET_CODE (ADDR) == PRE_INC) \
1231 goto LABEL; \
1232 if (GET_CODE (ADDR) == POST_INC) \
1233 goto LABEL; \
1234 } while (0)
1235 \f
1236 /* Condition code usage. */
1237
1238 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1239 return the mode to be used for the comparison. */
1240 #define SELECT_CC_MODE(OP, X, Y) \
1241 ((enum machine_mode)m32r_select_cc_mode ((int)OP, X, Y))
1242
1243 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
1244 floating point inequality comparison. */
1245 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
1246 \f
1247 /* Costs. */
1248
1249 /* ??? I'm quite sure I don't understand enough of the subtleties involved
1250 in choosing the right numbers to use here, but there doesn't seem to be
1251 enough documentation on this. What I've done is define an insn to cost
1252 4 "units" and work from there. COSTS_N_INSNS (N) is defined as (N) * 4 - 2
1253 so that seems reasonable. Some values are supposed to be defined relative
1254 to each other and thus aren't necessarily related to COSTS_N_INSNS. */
1255
1256 /* Compute the cost of computing a constant rtl expression RTX
1257 whose rtx-code is CODE. The body of this macro is a portion
1258 of a switch statement. If the code is computed here,
1259 return it with a return statement. Otherwise, break from the switch. */
1260 /* Small integers are as cheap as registers. 4 byte values can be fetched
1261 as immediate constants - let's give that the cost of an extra insn. */
1262 #define CONST_COSTS(X, CODE, OUTER_CODE) \
1263 case CONST_INT : \
1264 if (INT16_P (INTVAL (X))) \
1265 return 0; \
1266 /* fall through */ \
1267 case CONST : \
1268 case LABEL_REF : \
1269 case SYMBOL_REF : \
1270 return 4; \
1271 case CONST_DOUBLE : \
1272 { \
1273 rtx high, low; \
1274 split_double (X, &high, &low); \
1275 return 4 * (!INT16_P (INTVAL (high)) \
1276 + !INT16_P (INTVAL (low))); \
1277 }
1278
1279 /* Compute the cost of an address. */
1280 #define ADDRESS_COST(ADDR) m32r_address_cost (ADDR)
1281
1282 /* Compute extra cost of moving data between one register class
1283 and another. */
1284 #define REGISTER_MOVE_COST(CLASS1, CLASS2) 2
1285
1286 /* Compute the cost of moving data between registers and memory. */
1287 /* Memory is 3 times as expensive as registers.
1288 ??? Is that the right way to look at it? */
1289 #define MEMORY_MOVE_COST(MODE,CLASS,IN_P) \
1290 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
1291
1292 /* The cost of a branch insn. */
1293 /* A value of 2 here causes GCC to avoid using branches in comparisons like
1294 while (a < N && a). Branches aren't that expensive on the M32R so
1295 we define this as 1. Defining it as 2 had a heavy hit in fp-bit.c. */
1296 #define BRANCH_COST 1
1297
1298 /* Provide the costs of a rtl expression. This is in the body of a
1299 switch on CODE. The purpose for the cost of MULT is to encourage
1300 `synth_mult' to find a synthetic multiply when reasonable.
1301
1302 If we need more than 12 insns to do a multiply, then go out-of-line,
1303 since the call overhead will be < 10% of the cost of the multiply. */
1304 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1305 case MULT : \
1306 return COSTS_N_INSNS (3); \
1307 case DIV : \
1308 case UDIV : \
1309 case MOD : \
1310 case UMOD : \
1311 return COSTS_N_INSNS (10); \
1312
1313 /* Nonzero if access to memory by bytes is slow and undesirable.
1314 For RISC chips, it means that access to memory by bytes is no
1315 better than access by words when possible, so grab a whole word
1316 and maybe make use of that. */
1317 #define SLOW_BYTE_ACCESS 1
1318
1319 /* Define this macro if it is as good or better to call a constant
1320 function address than to call an address kept in a register. */
1321 #define NO_FUNCTION_CSE
1322
1323 /* Define this macro if it is as good or better for a function to call
1324 itself with an explicit address than to call an address kept in a
1325 register. */
1326 #define NO_RECURSIVE_FUNCTION_CSE
1327
1328 /* Enable the register move pass.
1329 This is useful for machines with only 2 address instructions.
1330 It's not currently enabled by default because on the stanford benchmarks
1331 the improvement wasn't significant and in a couple of cases caused a
1332 significant de-optimization. */
1333 /* #define ENABLE_REGMOVE_PASS */
1334
1335 /* A C statement (sans semicolon) to update the integer variable COST based on
1336 the relationship between INSN that is dependent on DEP_INSN through the
1337 dependence LINK. The default is to make no adjustment to COST. This can be
1338 used for example to specify to the scheduler that an output- or
1339 anti-dependence does not incur the same cost as a data-dependence. */
1340
1341 /* #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
1342 (COST) = m32r_adjust_cost (INSN, LINK, DEP_INSN, COST) */
1343
1344 /* A C statement (sans semicolon) to update the integer scheduling
1345 priority `INSN_PRIORITY(INSN)'. Reduce the priority to execute
1346 the INSN earlier, increase the priority to execute INSN later.
1347 Do not define this macro if you do not need to adjust the
1348 scheduling priorities of insns. */
1349 /* #define ADJUST_PRIORITY (INSN) */
1350
1351 /* Macro to determine whether the Haifa scheduler is used. */
1352 #ifdef HAIFA
1353 #define HAIFA_P 1
1354 #else
1355 #define HAIFA_P 0
1356 #endif
1357
1358 /* Indicate how many instructions can be issued at the same time. */
1359 #define ISSUE_RATE 2
1360
1361 /* When the `length' insn attribute is used, this macro specifies the
1362 value to be assigned to the address of the first insn in a
1363 function. If not specified, 0 is used. */
1364 #define FIRST_INSN_ADDRESS m32r_first_insn_address ()
1365
1366 \f
1367 /* Section selection. */
1368
1369 #define TEXT_SECTION_ASM_OP "\t.section .text"
1370 #define DATA_SECTION_ASM_OP "\t.section .data"
1371 #define RODATA_SECTION_ASM_OP "\t.section .rodata"
1372 #define BSS_SECTION_ASM_OP "\t.section .bss"
1373 #define SDATA_SECTION_ASM_OP "\t.section .sdata"
1374 #define SBSS_SECTION_ASM_OP "\t.section .sbss"
1375 /* This one is for svr4.h. */
1376 #undef CONST_SECTION_ASM_OP
1377 #define CONST_SECTION_ASM_OP "\t.section .rodata"
1378
1379 /* A list of names for sections other than the standard two, which are
1380 `in_text' and `in_data'. You need not define this macro
1381 on a system with no other sections (that GCC needs to use). */
1382 #undef EXTRA_SECTIONS
1383 #define EXTRA_SECTIONS in_sdata, in_sbss, in_const, in_ctors, in_dtors
1384
1385 /* One or more functions to be defined in "varasm.c". These
1386 functions should do jobs analogous to those of `text_section' and
1387 `data_section', for your additional sections. Do not define this
1388 macro if you do not define `EXTRA_SECTIONS'. */
1389 #undef EXTRA_SECTION_FUNCTIONS
1390 #define EXTRA_SECTION_FUNCTIONS \
1391 CONST_SECTION_FUNCTION \
1392 CTORS_SECTION_FUNCTION \
1393 DTORS_SECTION_FUNCTION \
1394 SDATA_SECTION_FUNCTION \
1395 SBSS_SECTION_FUNCTION
1396
1397 #define SDATA_SECTION_FUNCTION \
1398 void \
1399 sdata_section () \
1400 { \
1401 if (in_section != in_sdata) \
1402 { \
1403 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
1404 in_section = in_sdata; \
1405 } \
1406 } \
1407
1408 #define SBSS_SECTION_FUNCTION \
1409 void \
1410 sbss_section () \
1411 { \
1412 if (in_section != in_sbss) \
1413 { \
1414 fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP); \
1415 in_section = in_sbss; \
1416 } \
1417 } \
1418
1419 /* A C statement or statements to switch to the appropriate section for
1420 output of EXP. You can assume that EXP is either a `VAR_DECL' node
1421 or a constant of some sort. RELOC indicates whether the initial value
1422 of EXP requires link-time relocations. */
1423 extern void m32r_select_section ();
1424 #undef SELECT_SECTION
1425 #define SELECT_SECTION(EXP, RELOC) m32r_select_section ((EXP), (RELOC))
1426
1427 /* A C statement or statements to switch to the appropriate section for
1428 output of RTX in mode MODE. You can assume that RTX
1429 is some kind of constant in RTL. The argument MODE is redundant
1430 except in the case of a `const_int' rtx. Select the section by
1431 calling `text_section' or one of the alternatives for other
1432 sections.
1433
1434 Do not define this macro if you put all constants in the read-only
1435 data section. */
1436
1437 #undef SELECT_RTX_SECTION
1438
1439 /* Define this macro if jump tables (for tablejump insns) should be
1440 output in the text section, along with the assembler instructions.
1441 Otherwise, the readonly data section is used.
1442 This macro is irrelevant if there is no separate readonly data section. */
1443 /*#define JUMP_TABLES_IN_TEXT_SECTION*/
1444
1445 /* Define this macro if references to a symbol must be treated
1446 differently depending on something about the variable or
1447 function named by the symbol (such as what section it is in).
1448
1449 The macro definition, if any, is executed immediately after the
1450 rtl for DECL or other node is created.
1451 The value of the rtl will be a `mem' whose address is a
1452 `symbol_ref'.
1453
1454 The usual thing for this macro to do is to store a flag in the
1455 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1456 name string in the `symbol_ref' (if one bit is not enough
1457 information). */
1458
1459 #define SDATA_FLAG_CHAR '@'
1460 /* Small objects are recorded with no prefix for space efficiency since
1461 they'll be the most common. This isn't the case if the user passes
1462 -mmodel={medium|large} and one could choose to not mark symbols that
1463 are the default, but that complicates things. */
1464 /*#define SMALL_FLAG_CHAR '#'*/
1465 #define MEDIUM_FLAG_CHAR '%'
1466 #define LARGE_FLAG_CHAR '&'
1467
1468 #define SDATA_NAME_P(NAME) (*(NAME) == SDATA_FLAG_CHAR)
1469 /*#define SMALL_NAME_P(NAME) (*(NAME) == SMALL_FLAG_CHAR)*/
1470 #define SMALL_NAME_P(NAME) (! ENCODED_NAME_P (NAME) && ! LIT_NAME_P (NAME))
1471 #define MEDIUM_NAME_P(NAME) (*(NAME) == MEDIUM_FLAG_CHAR)
1472 #define LARGE_NAME_P(NAME) (*(NAME) == LARGE_FLAG_CHAR)
1473 /* For string literals, etc. */
1474 #define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.')
1475
1476 #define ENCODED_NAME_P(SYMBOL_NAME) \
1477 (SDATA_NAME_P (SYMBOL_NAME) \
1478 /*|| SMALL_NAME_P (SYMBOL_NAME)*/ \
1479 || MEDIUM_NAME_P (SYMBOL_NAME) \
1480 || LARGE_NAME_P (SYMBOL_NAME))
1481
1482 #define ENCODE_SECTION_INFO(DECL) m32r_encode_section_info (DECL)
1483
1484 /* Decode SYM_NAME and store the real name part in VAR, sans
1485 the characters that encode section info. Define this macro if
1486 ENCODE_SECTION_INFO alters the symbol's name string. */
1487 /* Note that we have to handle symbols like "%*start". */
1488 #define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
1489 do { \
1490 (VAR) = (SYMBOL_NAME) + ENCODED_NAME_P (SYMBOL_NAME); \
1491 (VAR) += *(VAR) == '*'; \
1492 } while (0)
1493 \f
1494 /* PIC */
1495
1496 /* The register number of the register used to address a table of static
1497 data addresses in memory. In some cases this register is defined by a
1498 processor's ``application binary interface'' (ABI). When this macro
1499 is defined, RTL is generated for this register once, as with the stack
1500 pointer and frame pointer registers. If this macro is not defined, it
1501 is up to the machine-dependent files to allocate such a register (if
1502 necessary). */
1503 /*#define PIC_OFFSET_TABLE_REGNUM 12*/
1504
1505 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1506 clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1507 is not defined. */
1508 /* This register is call-saved on the M32R. */
1509 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1510
1511 /* By generating position-independent code, when two different programs (A
1512 and B) share a common library (libC.a), the text of the library can be
1513 shared whether or not the library is linked at the same address for both
1514 programs. In some of these environments, position-independent code
1515 requires not only the use of different addressing modes, but also
1516 special code to enable the use of these addressing modes.
1517
1518 The FINALIZE_PIC macro serves as a hook to emit these special
1519 codes once the function is being compiled into assembly code, but not
1520 before. (It is not done before, because in the case of compiling an
1521 inline function, it would lead to multiple PIC prologues being
1522 included in functions which used inline functions and were compiled to
1523 assembly language.) */
1524
1525 /*#define FINALIZE_PIC m32r_finalize_pic ()*/
1526
1527 /* A C expression that is nonzero if X is a legitimate immediate
1528 operand on the target machine when generating position independent code.
1529 You can assume that X satisfies CONSTANT_P, so you need not
1530 check this. You can also assume `flag_pic' is true, so you need not
1531 check it either. You need not define this macro if all constants
1532 (including SYMBOL_REF) can be immediate operands when generating
1533 position independent code. */
1534 /*#define LEGITIMATE_PIC_OPERAND_P(X)*/
1535 \f
1536 /* Control the assembler format that we output. */
1537
1538 /* Output at beginning of assembler file. */
1539 #define ASM_FILE_START(FILE) m32r_asm_file_start (FILE)
1540
1541 /* A C string constant describing how to begin a comment in the target
1542 assembler language. The compiler assumes that the comment will
1543 end at the end of the line. */
1544 #define ASM_COMMENT_START ";"
1545
1546 /* Output to assembler file text saying following lines
1547 may contain character constants, extra white space, comments, etc. */
1548 #define ASM_APP_ON ""
1549
1550 /* Output to assembler file text saying following lines
1551 no longer contain unusual constructs. */
1552 #define ASM_APP_OFF ""
1553
1554 /* This is how to output an assembler line defining a `char' constant. */
1555 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1556 do { \
1557 fprintf (FILE, "\t.byte\t"); \
1558 output_addr_const (FILE, (VALUE)); \
1559 fprintf (FILE, "\n"); \
1560 } while (0)
1561
1562 /* This is how to output an assembler line defining a `short' constant. */
1563 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1564 do { \
1565 fprintf (FILE, "\t.hword\t"); \
1566 output_addr_const (FILE, (VALUE)); \
1567 fprintf (FILE, "\n"); \
1568 } while (0)
1569
1570 /* This is how to output an assembler line defining an `int' constant.
1571 We also handle symbol output here. */
1572 #define ASM_OUTPUT_INT(FILE, VALUE) \
1573 do { \
1574 fprintf (FILE, "\t.word\t"); \
1575 output_addr_const (FILE, (VALUE)); \
1576 fprintf (FILE, "\n"); \
1577 } while (0)
1578
1579 /* This is how to output an assembler line defining a `float' constant. */
1580 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1581 do { \
1582 long t; \
1583 char str[30]; \
1584 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1585 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1586 fprintf (FILE, "\t.word\t0x%lx %s %s\n", \
1587 t, ASM_COMMENT_START, str); \
1588 } while (0)
1589
1590 /* This is how to output an assembler line defining a `double' constant. */
1591 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1592 do { \
1593 long t[2]; \
1594 char str[30]; \
1595 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1596 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1597 fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
1598 t[0], ASM_COMMENT_START, str, t[1]); \
1599 } while (0)
1600
1601 /* This is how to output an assembler line for a numeric constant byte. */
1602 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1603 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1604
1605 /* The assembler's parentheses characters. */
1606 #define ASM_OPEN_PAREN "("
1607 #define ASM_CLOSE_PAREN ")"
1608
1609 /* This is how to output the definition of a user-level label named NAME,
1610 such as the label on a static function or variable NAME. */
1611 /* On the M32R we need to ensure the next instruction starts on a 32 bit
1612 boundary [the previous insn must either be 2 16 bit insns or 1 32 bit]. */
1613 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1614 do { \
1615 assemble_name (FILE, NAME); \
1616 fputs (":\n", FILE); \
1617 } while (0)
1618
1619 /* This is how to output a command to make the user-level label named NAME
1620 defined for reference from other files. */
1621 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1622 do { \
1623 fputs ("\t.global\t", FILE); \
1624 assemble_name (FILE, NAME); \
1625 fputs ("\n", FILE); \
1626 } while (0)
1627
1628 /* This is how to output a reference to a user-level label named NAME.
1629 `assemble_name' uses this. */
1630 #undef ASM_OUTPUT_LABELREF
1631 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1632 do { \
1633 char * real_name; \
1634 STRIP_NAME_ENCODING (real_name, (NAME)); \
1635 fprintf (FILE, "%s%s", USER_LABEL_PREFIX, real_name); \
1636 } while (0)
1637
1638 /* Store in OUTPUT a string (made with alloca) containing
1639 an assembler-name for a local static variable named NAME.
1640 LABELNO is an integer which is different for each call. */
1641 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1642 do { \
1643 (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10); \
1644 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)); \
1645 } while (0)
1646
1647 /* How to refer to registers in assembler output.
1648 This sequence is indexed by compiler's hard-register-number (see above). */
1649 #define REGISTER_NAMES \
1650 { \
1651 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1652 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", \
1653 "ap", "cbit" \
1654 }
1655
1656 /* If defined, a C initializer for an array of structures containing
1657 a name and a register number. This macro defines additional names
1658 for hard registers, thus allowing the `asm' option in declarations
1659 to refer to registers using alternate names. */
1660 #define ADDITIONAL_REGISTER_NAMES \
1661 { \
1662 /*{ "gp", GP_REGNUM },*/ \
1663 { "r13", FRAME_POINTER_REGNUM }, \
1664 { "r14", RETURN_ADDR_REGNUM }, \
1665 { "r15", STACK_POINTER_REGNUM }, \
1666 }
1667
1668 /* A C expression which evaluates to true if CODE is a valid
1669 punctuation character for use in the `PRINT_OPERAND' macro. */
1670 extern char m32r_punct_chars[];
1671 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1672 m32r_punct_chars[(unsigned char) (CHAR)]
1673
1674 /* Print operand X (an rtx) in assembler syntax to file FILE.
1675 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1676 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1677 #define PRINT_OPERAND(FILE, X, CODE) \
1678 m32r_print_operand (FILE, X, CODE)
1679
1680 /* A C compound statement to output to stdio stream STREAM the
1681 assembler syntax for an instruction operand that is a memory
1682 reference whose address is ADDR. ADDR is an RTL expression.
1683
1684 On some machines, the syntax for a symbolic address depends on
1685 the section that the address refers to. On these machines,
1686 define the macro `ENCODE_SECTION_INFO' to store the information
1687 into the `symbol_ref', and then check for it here. */
1688 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1689 m32r_print_operand_address (FILE, ADDR)
1690
1691 /* If defined, C string expressions to be used for the `%R', `%L',
1692 `%U', and `%I' options of `asm_fprintf' (see `final.c'). These
1693 are useful when a single `md' file must support multiple assembler
1694 formats. In that case, the various `tm.h' files can define these
1695 macros differently. */
1696 #define REGISTER_PREFIX ""
1697 #define LOCAL_LABEL_PREFIX ".L"
1698 #define USER_LABEL_PREFIX ""
1699 #define IMMEDIATE_PREFIX "#"
1700
1701 /* This is how to output an element of a case-vector that is absolute. */
1702 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1703 do { \
1704 char label[30]; \
1705 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1706 fprintf (FILE, "\t.word\t"); \
1707 assemble_name (FILE, label); \
1708 fprintf (FILE, "\n"); \
1709 } while (0)
1710
1711 /* This is how to output an element of a case-vector that is relative. */
1712 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1713 do { \
1714 char label[30]; \
1715 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1716 fprintf (FILE, "\t.word\t"); \
1717 assemble_name (FILE, label); \
1718 fprintf (FILE, "-"); \
1719 ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
1720 assemble_name (FILE, label); \
1721 fprintf (FILE, ")\n"); \
1722 } while (0)
1723
1724 /* The desired alignment for the location counter at the beginning
1725 of a loop. */
1726 /* On the M32R, align loops to 32 byte boundaries (cache line size)
1727 if -malign-loops. */
1728 #define LOOP_ALIGN(LABEL) (TARGET_ALIGN_LOOPS ? 5 : 0)
1729
1730 /* This is how to output an assembler line
1731 that says to advance the location counter
1732 to a multiple of 2**LOG bytes. */
1733 /* .balign is used to avoid confusion. */
1734 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1735 do { if ((LOG) != 0) fprintf (FILE, "\t.balign %d\n", 1 << (LOG)); } while (0)
1736
1737 /* Like `ASM_OUTPUT_COMMON' except takes the required alignment as a
1738 separate, explicit argument. If you define this macro, it is used in
1739 place of `ASM_OUTPUT_COMMON', and gives you more flexibility in
1740 handling the required alignment of the variable. The alignment is
1741 specified as the number of bits. */
1742
1743 #define SCOMMON_ASM_OP ".scomm"
1744
1745 #undef ASM_OUTPUT_ALIGNED_COMMON
1746 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1747 do { \
1748 if (! TARGET_SDATA_NONE \
1749 && (SIZE) > 0 && (SIZE) <= g_switch_value) \
1750 fprintf ((FILE), "\t%s\t", SCOMMON_ASM_OP); \
1751 else \
1752 fprintf ((FILE), "\t%s\t", COMMON_ASM_OP); \
1753 assemble_name ((FILE), (NAME)); \
1754 fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN) / BITS_PER_UNIT); \
1755 } while (0)
1756
1757 #if 0 /* not needed, delete later */
1758 /* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a
1759 separate, explicit argument. If you define this macro, it is used in
1760 place of `ASM_OUTPUT_LOCAL', and gives you more flexibility in
1761 handling the required alignment of the variable. The alignment is
1762 specified as the number of bits. */
1763
1764 #undef ASM_OUTPUT_ALIGNED_LOCAL
1765 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1766 do { \
1767 if ((SIZE) > 0 && (SIZE) <= g_switch_value) \
1768 { \
1769 sbss_section (); \
1770 ASM_OUTPUT_ALIGN (FILE, exact_log2 (ALIGN / BITS_PER_UNIT)); \
1771 ASM_OUTPUT_LABEL (FILE, NAME); \
1772 ASM_OUTPUT_SKIP (FILE, SIZE); \
1773 if (!flag_inhibit_size_directive) \
1774 { \
1775 fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
1776 assemble_name (FILE, NAME); \
1777 fprintf (FILE, ",%d\n", SIZE); \
1778 } \
1779 } \
1780 else \
1781 { \
1782 /* This is copied from svr4.h. */ \
1783 fprintf ((FILE), "\t%s\t", LOCAL_ASM_OP); \
1784 assemble_name ((FILE), (NAME)); \
1785 fprintf ((FILE), "\n"); \
1786 ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN); \
1787 } \
1788 } while (0)
1789 #endif
1790
1791 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
1792 separate, explicit argument. If you define this macro, it is used in
1793 place of `ASM_OUTPUT_BSS', and gives you more flexibility in
1794 handling the required alignment of the variable. The alignment is
1795 specified as the number of bits.
1796
1797 For the M32R we need sbss support. */
1798
1799 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1800 do { \
1801 ASM_GLOBALIZE_LABEL (FILE, NAME); \
1802 ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN); \
1803 } while (0)
1804 \f
1805 /* Debugging information. */
1806
1807 /* Generate DBX and DWARF debugging information. */
1808 #define DBX_DEBUGGING_INFO
1809 #define DWARF_DEBUGGING_INFO
1810
1811 /* Prefer STABS (for now). */
1812 #undef PREFERRED_DEBUGGING_TYPE
1813 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1814
1815 /* How to renumber registers for dbx and gdb. */
1816 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1817
1818 /* Turn off splitting of long stabs. */
1819 #define DBX_CONTIN_LENGTH 0
1820 \f
1821 /* Miscellaneous. */
1822
1823 /* Specify the machine mode that this machine uses
1824 for the index in the tablejump instruction. */
1825 #define CASE_VECTOR_MODE Pmode
1826
1827 /* Define as C expression which evaluates to nonzero if the tablejump
1828 instruction expects the table to contain offsets from the address of the
1829 table.
1830 Do not define this if the table should contain absolute addresses. */
1831 /* It's not clear what PIC will look like or whether we want to use -fpic
1832 for the embedded form currently being talked about. For now require -fpic
1833 to get pc relative switch tables. */
1834 /*#define CASE_VECTOR_PC_RELATIVE 1 */
1835
1836 /* Define if operations between registers always perform the operation
1837 on the full register even if a narrower mode is specified. */
1838 #define WORD_REGISTER_OPERATIONS
1839
1840 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1841 will either zero-extend or sign-extend. The value of this macro should
1842 be the code that says which one of the two operations is implicitly
1843 done, NIL if none. */
1844 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1845
1846 /* Specify the tree operation to be used to convert reals to integers. */
1847 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1848
1849 /* This is the kind of divide that is easiest to do in the general case. */
1850 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1851
1852 /* Max number of bytes we can move from memory to memory
1853 in one reasonably fast instruction. */
1854 #define MOVE_MAX 4
1855
1856 /* Define this to be nonzero if shift instructions ignore all but the low-order
1857 few bits. */
1858 #define SHIFT_COUNT_TRUNCATED 1
1859
1860 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1861 is done just by pretending it is already truncated. */
1862 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1863
1864 /* We assume that the store-condition-codes instructions store 0 for false
1865 and some other value for true. This is the value stored for true. */
1866 #define STORE_FLAG_VALUE 1
1867
1868 /* Specify the machine mode that pointers have.
1869 After generation of rtl, the compiler makes no further distinction
1870 between pointers and any other objects of this machine mode. */
1871 /* ??? The M32R doesn't have full 32 bit pointers, but making this PSImode has
1872 it's own problems (you have to add extendpsisi2 and truncsipsi2).
1873 Try to avoid it. */
1874 #define Pmode SImode
1875
1876 /* A function address in a call instruction. */
1877 #define FUNCTION_MODE SImode
1878
1879 /* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
1880 is a valid machine specific attribute for DECL.
1881 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1882 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
1883 m32r_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
1884
1885 /* A C expression that returns zero if the attributes on TYPE1 and TYPE2 are
1886 incompatible, one if they are compatible, and two if they are
1887 nearly compatible (which causes a warning to be generated). */
1888 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1889 m32r_comp_type_attributes (TYPE1, TYPE2)
1890
1891 /* Give newly defined TYPE some default attributes. */
1892 #define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1893 m32r_set_default_type_attributes (TYPE)
1894 \f
1895 /* Define the information needed to generate branch and scc insns. This is
1896 stored from the compare operation. Note that we can't use "rtx" here
1897 since it hasn't been defined! */
1898 extern struct rtx_def * m32r_compare_op0;
1899 extern struct rtx_def * m32r_compare_op1;
1900
1901 /* M32R function types. */
1902 enum m32r_function_type
1903 {
1904 M32R_FUNCTION_UNKNOWN, M32R_FUNCTION_NORMAL, M32R_FUNCTION_INTERRUPT
1905 };
1906 #define M32R_INTERRUPT_P(TYPE) \
1907 ((TYPE) == M32R_FUNCTION_INTERRUPT)
1908
1909 /* Define this if you have defined special-purpose predicates in the
1910 file `MACHINE.c'. This macro is called within an initializer of an
1911 array of structures. The first field in the structure is the name
1912 of a predicate and the second field is an array of rtl codes. For
1913 each predicate, list all rtl codes that can be in expressions
1914 matched by the predicate. The list should have a trailing comma. */
1915
1916 #define PREDICATE_CODES \
1917 { "conditional_move_operand", { REG, SUBREG, CONST_INT }}, \
1918 { "carry_compare_operand", { EQ, NE }}, \
1919 { "eqne_comparison_operator", { EQ, NE }}, \
1920 { "signed_comparison_operator", { EQ, NE, LT, LE, GT, GE }}, \
1921 { "move_dest_operand", { REG, SUBREG, MEM }}, \
1922 { "move_src_operand", { REG, SUBREG, MEM, CONST_INT, \
1923 CONST_DOUBLE, LABEL_REF, CONST, \
1924 SYMBOL_REF }}, \
1925 { "move_double_src_operand", { REG, SUBREG, MEM, CONST_INT, \
1926 CONST_DOUBLE }}, \
1927 { "two_insn_const_operand", { CONST_INT }}, \
1928 { "symbolic_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1929 { "reg_or_int16_operand", { REG, SUBREG, CONST_INT }}, \
1930 { "reg_or_uint16_operand", { REG, SUBREG, CONST_INT }}, \
1931 { "reg_or_cmp_int16_operand", { REG, SUBREG, CONST_INT }}, \
1932 { "reg_or_zero_operand", { REG, SUBREG, CONST_INT }}, \
1933 { "cmp_int16_operand", { CONST_INT }}, \
1934 { "call_address_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1935 { "small_insn_p", { INSN, CALL_INSN, JUMP_INSN }}, \
1936 { "large_insn_p", { INSN, CALL_INSN, JUMP_INSN }},
1937
1938 /* Functions declared in m32r.c */
1939 #ifndef PROTO
1940 #if defined (USE_PROTOTYPES) ? USE_PROTOTYPES : defined (__STDC__)
1941 #define PROTO(ARGS) ARGS
1942 #else
1943 #define PROTO(ARGS) ()
1944 #endif
1945 #endif
1946
1947 #ifdef BUFSIZE /* stdio.h has been included, ok to use FILE * */
1948 #define STDIO_PROTO(ARGS) PROTO(ARGS)
1949 #else
1950 #define STDIO_PROTO(ARGS) ()
1951 #endif
1952
1953 #ifndef TREE_CODE
1954 union tree_node;
1955 #define Tree union tree_node *
1956 #else
1957 #define Tree tree
1958 #endif
1959
1960 #ifndef RTX_CODE
1961 struct rtx_def;
1962 #define Rtx struct rtx_def *
1963 #else
1964 #define Rtx rtx
1965 #endif
1966
1967 extern void sbss_section PROTO((void));
1968 extern void sdata_section PROTO((void));
1969 extern void m32r_init PROTO((void));
1970 extern int m32r_valid_machine_decl_attribute PROTO((Tree, Tree, Tree, Tree));
1971 extern int m32r_comp_type_attributes PROTO((Tree, Tree));
1972 extern void m32r_select_section PROTO((Tree, int));
1973 extern void m32r_encode_section_info PROTO((Tree));
1974 extern void m32r_init_expanders PROTO((void));
1975 extern int call_address_operand PROTO((Rtx, int));
1976 extern int call_operand PROTO((Rtx, int));
1977 extern int symbolic_operand PROTO((Rtx, int));
1978 extern int small_data_operand PROTO((Rtx, int));
1979 extern int addr24_operand PROTO((Rtx, int));
1980 extern int addr32_operand PROTO((Rtx, int));
1981 extern int call26_operand PROTO((Rtx, int));
1982 extern int seth_add3_operand PROTO((Rtx, int));
1983 extern int cmp_int16_operand PROTO((Rtx, int));
1984 extern int uint16_operand PROTO((Rtx, int));
1985 extern int reg_or_int16_operand PROTO((Rtx, int));
1986 extern int reg_or_uint16_operand PROTO((Rtx, int));
1987 extern int reg_or_cmp_nt16_operand PROTO((Rtx, int));
1988 extern int two_insn_const_operand PROTO((Rtx, int));
1989 extern int move_src_operand PROTO((Rtx, int));
1990 extern int move_double_src_operand PROTO((Rtx, int));
1991 extern int move_dest_operand PROTO((Rtx, int));
1992 extern int easy_di_const PROTO((Rtx));
1993 extern int easy_df_const PROTO((Rtx));
1994 extern int eqne_comparison_operator PROTO((Rtx, int));
1995 extern int signed_comparison_operator PROTO((Rtx, int));
1996 extern int memreg_operand PROTO((Rtx, int));
1997 extern int small_insn_p PROTO((Rtx, int));
1998 extern int large_insn_p PROTO((Rtx, int));
1999 extern int m32r_select_cc_mode PROTO((int, Rtx, Rtx));
2000 extern Rtx gen_compare PROTO((int, Rtx, Rtx, int));
2001 extern int function_arg_partial_nregs PROTO((CUMULATIVE_ARGS *,
2002 int, Tree, int));
2003 extern void m32r_setup_incoming_varargs PROTO((CUMULATIVE_ARGS *,
2004 int, Tree, int *,
2005 int));
2006 extern int m32r_address_code PROTO((Rtx));
2007 extern enum m32r_function_type m32r_compute_function_type
2008 PROTO((Tree));
2009 extern unsigned m32r_compute_frame_size PROTO((int));
2010 extern int m32r_first_insn_address PROTO((void));
2011 extern void m32r_output_function_prologue STDIO_PROTO((FILE *, int));
2012 extern void m32r_output_function_epilogue STDIO_PROTO((FILE *, int));
2013 extern void m32r_finalize_pic PROTO((void));
2014 extern void m32r_initialize_trampoline PROTO((Rtx, Rtx, Rtx));
2015 extern void m32r_asm_file_start STDIO_PROTO((FILE *));
2016 extern void m32r_print_operand STDIO_PROTO((FILE *, Rtx, int));
2017 extern void m32r_print_operand_address STDIO_PROTO((FILE *, Rtx));
2018 extern int zero_and_one PROTO((Rtx, Rtx));
2019 extern int conditional_move_operand PROTO((Rtx, int));
2020 extern int carry_compare_operand PROTO((Rtx, int));
2021 extern char *emit_cond_move PROTO((Rtx *, Rtx));
2022
2023 /* Needed by a peephole optimisation. */
2024 #define PRESERVE_DEATH_INFO_REGNO_P(regno) (regno < FIRST_PSEUDO_REGISTER)
This page took 0.149918 seconds and 6 git commands to generate.