]> gcc.gnu.org Git - gcc.git/blob - gcc/config/m32r/m32r.h
flags.h (g_switch_value): Change to an unsigned HOST_WIDE_INT.
[gcc.git] / gcc / config / m32r / m32r.h
1 /* Definitions of target machine for GNU compiler, Mitsubishi M32R cpu.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Things to do:
23 - longlong.h?
24 */
25
26 #undef SWITCH_TAKES_ARG
27 #undef WORD_SWITCH_TAKES_ARG
28 #undef HANDLE_SYSV_PRAGMA
29 #undef SIZE_TYPE
30 #undef PTRDIFF_TYPE
31 #undef WCHAR_TYPE
32 #undef WCHAR_TYPE_SIZE
33 #undef ASM_FILE_START
34 #undef ASM_OUTPUT_EXTERNAL_LIBCALL
35 #undef TARGET_VERSION
36 #undef CPP_SPEC
37 #undef ASM_SPEC
38 #undef LINK_SPEC
39 #undef STARTFILE_SPEC
40 #undef ENDFILE_SPEC
41 #undef SUBTARGET_SWITCHES
42 \f
43
44 /* M32R/X overrides. */
45 /* Print subsidiary information on the compiler version in use. */
46 #define TARGET_VERSION fprintf (stderr, " (m32r/x)");
47
48 /* Additional flags for the preprocessor. */
49 #define CPP_CPU_SPEC "%{m32rx:-D__M32RX__} %{m32r:-U__M32RX__}"
50
51 /* Assembler switches. */
52 #define ASM_CPU_SPEC \
53 "%{m32r} %{m32rx} %{!O0: %{O*: -O}} --no-warn-explicit-parallel-conflicts"
54
55 /* Use m32rx specific crt0/crtinit/crtfini files. */
56 #define STARTFILE_CPU_SPEC "%{!shared:crt0.o%s} %{m32rx:m32rx/crtinit.o%s} %{!m32rx:crtinit.o%s}"
57 #define ENDFILE_CPU_SPEC "-lgloss %{m32rx:m32rx/crtfini.o%s} %{!m32rx:crtfini.o%s}"
58
59 /* Extra machine dependent switches. */
60 #define SUBTARGET_SWITCHES \
61 { "32rx", TARGET_M32RX_MASK, "Compile for the m32rx" }, \
62 { "32r", -TARGET_M32RX_MASK, "" },
63
64 /* Define this macro as a C expression for the initializer of an array of
65 strings to tell the driver program which options are defaults for this
66 target and thus do not need to be handled specially when using
67 `MULTILIB_OPTIONS'. */
68 #define SUBTARGET_MULTILIB_DEFAULTS , "m32r"
69
70 /* Number of additional registers the subtarget defines. */
71 #define SUBTARGET_NUM_REGISTERS 1
72
73 /* 1 for registers that cannot be allocated. */
74 #define SUBTARGET_FIXED_REGISTERS , 1
75
76 /* 1 for registers that are not available across function calls. */
77 #define SUBTARGET_CALL_USED_REGISTERS , 1
78
79 /* Order to allocate model specific registers. */
80 #define SUBTARGET_REG_ALLOC_ORDER , 19
81
82 /* Registers which are accumulators. */
83 #define SUBTARGET_REG_CLASS_ACCUM 0x80000
84
85 /* All registers added. */
86 #define SUBTARGET_REG_CLASS_ALL SUBTARGET_REG_CLASS_ACCUM
87
88 /* Additional accumulator registers. */
89 #define SUBTARGET_ACCUM_P(REGNO) ((REGNO) == 19)
90
91 /* Define additional register names. */
92 #define SUBTARGET_REGISTER_NAMES , "a1"
93 /* end M32R/X overrides. */
94
95 /* Print subsidiary information on the compiler version in use. */
96 #ifndef TARGET_VERSION
97 #define TARGET_VERSION fprintf (stderr, " (m32r)")
98 #endif
99
100 /* Switch Recognition by gcc.c. Add -G xx support */
101
102 #undef SWITCH_TAKES_ARG
103 #define SWITCH_TAKES_ARG(CHAR) \
104 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
105
106 /* Names to predefine in the preprocessor for this target machine. */
107 /* __M32R__ is defined by the existing compiler so we use that. */
108 #define TARGET_CPU_CPP_BUILTINS() \
109 do \
110 { \
111 builtin_define ("__M32R__"); \
112 builtin_assert ("cpu=m32r"); \
113 builtin_assert ("machine=m32r"); \
114 } \
115 while (0)
116
117 /* This macro defines names of additional specifications to put in the specs
118 that can be used in various specifications like CC1_SPEC. Its definition
119 is an initializer with a subgrouping for each command option.
120
121 Each subgrouping contains a string constant, that defines the
122 specification name, and a string constant that used by the GNU CC driver
123 program.
124
125 Do not define this macro if it does not need to do anything. */
126
127 #ifndef SUBTARGET_EXTRA_SPECS
128 #define SUBTARGET_EXTRA_SPECS
129 #endif
130
131 #ifndef ASM_CPU_SPEC
132 #define ASM_CPU_SPEC ""
133 #endif
134
135 #ifndef CPP_CPU_SPEC
136 #define CPP_CPU_SPEC ""
137 #endif
138
139 #ifndef CC1_CPU_SPEC
140 #define CC1_CPU_SPEC ""
141 #endif
142
143 #ifndef LINK_CPU_SPEC
144 #define LINK_CPU_SPEC ""
145 #endif
146
147 #ifndef STARTFILE_CPU_SPEC
148 #define STARTFILE_CPU_SPEC "%{!shared:crt0.o%s} crtinit.o%s"
149 #endif
150
151 #ifndef ENDFILE_CPU_SPEC
152 #define ENDFILE_CPU_SPEC "-lgloss crtfini.o%s"
153 #endif
154
155 #ifndef RELAX_SPEC
156 #if 0 /* not supported yet */
157 #define RELAX_SPEC "%{mrelax:-relax}"
158 #else
159 #define RELAX_SPEC ""
160 #endif
161 #endif
162
163 #define EXTRA_SPECS \
164 { "asm_cpu", ASM_CPU_SPEC }, \
165 { "cpp_cpu", CPP_CPU_SPEC }, \
166 { "cc1_cpu", CC1_CPU_SPEC }, \
167 { "link_cpu", LINK_CPU_SPEC }, \
168 { "startfile_cpu", STARTFILE_CPU_SPEC }, \
169 { "endfile_cpu", ENDFILE_CPU_SPEC }, \
170 { "relax", RELAX_SPEC }, \
171 SUBTARGET_EXTRA_SPECS
172
173 #define CC1_SPEC "%{G*} %(cc1_cpu)"
174
175 /* Options to pass on to the assembler. */
176 #undef ASM_SPEC
177 #define ASM_SPEC "%{v} %(asm_cpu) %(relax)"
178
179 #undef ASM_FINAL_SPEC
180
181 #define LINK_SPEC "%{v} %(link_cpu) %(relax)"
182
183 #undef STARTFILE_SPEC
184 #define STARTFILE_SPEC "%(startfile_cpu)"
185
186 #undef ENDFILE_SPEC
187 #define ENDFILE_SPEC "%(endfile_cpu)"
188
189 #undef LIB_SPEC
190 \f
191 /* Run-time compilation parameters selecting different hardware subsets. */
192
193 extern int target_flags;
194
195 /* If nonzero, tell the linker to do relaxing.
196 We don't do anything with the option, other than recognize it.
197 LINK_SPEC handles passing -relax to the linker.
198 This can cause incorrect debugging information as line numbers may
199 turn out wrong. This shouldn't be specified unless accompanied with -O2
200 [where the user expects debugging information to be less accurate]. */
201 #define TARGET_RELAX_MASK (1 << 0)
202
203 /* For miscellaneous debugging purposes. */
204 #define TARGET_DEBUG_MASK (1 << 1)
205 #define TARGET_DEBUG (target_flags & TARGET_DEBUG_MASK)
206
207 /* Align loops to 32 byte boundaries (cache line size). */
208 /* ??? This option is experimental and is not documented. */
209 #define TARGET_ALIGN_LOOPS_MASK (1 << 2)
210 #define TARGET_ALIGN_LOOPS (target_flags & TARGET_ALIGN_LOOPS_MASK)
211
212 /* Change issue rate. */
213 #define TARGET_LOW_ISSUE_RATE_MASK (1 << 3)
214 #define TARGET_LOW_ISSUE_RATE (target_flags & TARGET_LOW_ISSUE_RATE_MASK)
215
216 /* Change branch cost */
217 #define TARGET_BRANCH_COST_MASK (1 << 4)
218 #define TARGET_BRANCH_COST (target_flags & TARGET_BRANCH_COST_MASK)
219
220 /* Target machine to compile for. */
221 #define TARGET_M32R 1
222
223 /* Support extended instruction set. */
224 #define TARGET_M32RX_MASK (1 << 5)
225 #define TARGET_M32RX (target_flags & TARGET_M32RX_MASK)
226 #undef TARGET_M32R
227 #define TARGET_M32R (! TARGET_M32RX)
228
229 /* Macro to define tables used to set the flags.
230 This is a list in braces of pairs in braces,
231 each pair being { "NAME", VALUE }
232 where VALUE is the bits to set or minus the bits to clear.
233 An empty string NAME is used to identify the default VALUE. */
234
235 #ifndef SUBTARGET_SWITCHES
236 #define SUBTARGET_SWITCHES
237 #endif
238
239 #ifndef TARGET_DEFAULT
240 #define TARGET_DEFAULT 0
241 #endif
242
243 #define TARGET_SWITCHES \
244 { \
245 /* { "relax", TARGET_RELAX_MASK, "" }, \
246 { "no-relax", -TARGET_RELAX_MASK, "" },*/ \
247 { "debug", TARGET_DEBUG_MASK, \
248 N_("Display compile time statistics") }, \
249 { "align-loops", TARGET_ALIGN_LOOPS_MASK, \
250 N_("Align all loops to 32 byte boundary") }, \
251 { "no-align-loops", -TARGET_ALIGN_LOOPS_MASK, "" }, \
252 { "issue-rate=1", TARGET_LOW_ISSUE_RATE_MASK, \
253 N_("Only issue one instruction per cycle") }, \
254 { "issue-rate=2", -TARGET_LOW_ISSUE_RATE_MASK, "" }, \
255 { "branch-cost=1", TARGET_BRANCH_COST_MASK, \
256 N_("Prefer branches over conditional execution") }, \
257 { "branch-cost=2", -TARGET_BRANCH_COST_MASK, "" }, \
258 SUBTARGET_SWITCHES \
259 { "", TARGET_DEFAULT, "" } \
260 }
261
262 extern const char * m32r_model_string;
263 extern const char * m32r_sdata_string;
264
265 #ifndef SUBTARGET_OPTIONS
266 #define SUBTARGET_OPTIONS
267 #endif
268
269 #define TARGET_OPTIONS \
270 { \
271 { "model=", & m32r_model_string, \
272 N_("Code size: small, medium or large"), 0}, \
273 { "sdata=", & m32r_sdata_string, \
274 N_("Small data area: none, sdata, use"), 0} \
275 SUBTARGET_OPTIONS \
276 }
277
278 /* Code Models
279
280 Code models are used to select between two choices of two separate
281 possibilities (address space size, call insn to use):
282
283 small: addresses use 24 bits, use bl to make calls
284 medium: addresses use 32 bits, use bl to make calls (*1)
285 large: addresses use 32 bits, use seth/add3/jl to make calls (*2)
286
287 The fourth is "addresses use 24 bits, use seth/add3/jl to make calls" but
288 using this one doesn't make much sense.
289
290 (*1) The linker may eventually be able to relax seth/add3 -> ld24.
291 (*2) The linker may eventually be able to relax seth/add3/jl -> bl.
292
293 Internally these are recorded as TARGET_ADDR{24,32} and
294 TARGET_CALL{26,32}.
295
296 The __model__ attribute can be used to select the code model to use when
297 accessing particular objects. */
298
299 enum m32r_model { M32R_MODEL_SMALL, M32R_MODEL_MEDIUM, M32R_MODEL_LARGE };
300
301 extern enum m32r_model m32r_model;
302 #define TARGET_MODEL_SMALL (m32r_model == M32R_MODEL_SMALL)
303 #define TARGET_MODEL_MEDIUM (m32r_model == M32R_MODEL_MEDIUM)
304 #define TARGET_MODEL_LARGE (m32r_model == M32R_MODEL_LARGE)
305 #define TARGET_ADDR24 (m32r_model == M32R_MODEL_SMALL)
306 #define TARGET_ADDR32 (! TARGET_ADDR24)
307 #define TARGET_CALL26 (! TARGET_CALL32)
308 #define TARGET_CALL32 (m32r_model == M32R_MODEL_LARGE)
309
310 /* The default is the small model. */
311 #ifndef M32R_MODEL_DEFAULT
312 #define M32R_MODEL_DEFAULT "small"
313 #endif
314
315 /* Small Data Area
316
317 The SDA consists of sections .sdata, .sbss, and .scommon.
318 .scommon isn't a real section, symbols in it have their section index
319 set to SHN_M32R_SCOMMON, though support for it exists in the linker script.
320
321 Two switches control the SDA:
322
323 -G NNN - specifies the maximum size of variable to go in the SDA
324
325 -msdata=foo - specifies how such variables are handled
326
327 -msdata=none - small data area is disabled
328
329 -msdata=sdata - small data goes in the SDA, special code isn't
330 generated to use it, and special relocs aren't
331 generated
332
333 -msdata=use - small data goes in the SDA, special code is generated
334 to use the SDA and special relocs are generated
335
336 The SDA is not multilib'd, it isn't necessary.
337 MULTILIB_EXTRA_OPTS is set in tmake_file to -msdata=sdata so multilib'd
338 libraries have small data in .sdata/SHN_M32R_SCOMMON so programs that use
339 -msdata=use will successfully link with them (references in header files
340 will cause the compiler to emit code that refers to library objects in
341 .data). ??? There can be a problem if the user passes a -G value greater
342 than the default and a library object in a header file is that size.
343 The default is 8 so this should be rare - if it occurs the user
344 is required to rebuild the libraries or use a smaller value for -G.
345 */
346
347 /* Maximum size of variables that go in .sdata/.sbss.
348 The -msdata=foo switch also controls how small variables are handled. */
349 #ifndef SDATA_DEFAULT_SIZE
350 #define SDATA_DEFAULT_SIZE 8
351 #endif
352
353 enum m32r_sdata { M32R_SDATA_NONE, M32R_SDATA_SDATA, M32R_SDATA_USE };
354
355 extern enum m32r_sdata m32r_sdata;
356 #define TARGET_SDATA_NONE (m32r_sdata == M32R_SDATA_NONE)
357 #define TARGET_SDATA_SDATA (m32r_sdata == M32R_SDATA_SDATA)
358 #define TARGET_SDATA_USE (m32r_sdata == M32R_SDATA_USE)
359
360 /* Default is to disable the SDA
361 [for upward compatibility with previous toolchains]. */
362 #ifndef M32R_SDATA_DEFAULT
363 #define M32R_SDATA_DEFAULT "none"
364 #endif
365
366 /* Define this macro as a C expression for the initializer of an array of
367 strings to tell the driver program which options are defaults for this
368 target and thus do not need to be handled specially when using
369 `MULTILIB_OPTIONS'. */
370 #ifndef SUBTARGET_MULTILIB_DEFAULTS
371 #define SUBTARGET_MULTILIB_DEFAULTS
372 #endif
373
374 #ifndef MULTILIB_DEFAULTS
375 #define MULTILIB_DEFAULTS { "mmodel=small" SUBTARGET_MULTILIB_DEFAULTS }
376 #endif
377
378 /* Sometimes certain combinations of command options do not make
379 sense on a particular target machine. You can define a macro
380 `OVERRIDE_OPTIONS' to take account of this. This macro, if
381 defined, is executed once just after all the command options have
382 been parsed.
383
384 Don't use this macro to turn on various extra optimizations for
385 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
386
387 #ifndef SUBTARGET_OVERRIDE_OPTIONS
388 #define SUBTARGET_OVERRIDE_OPTIONS
389 #endif
390
391 #define OVERRIDE_OPTIONS \
392 do \
393 { \
394 /* These need to be done at start up. \
395 It's convenient to do them here. */ \
396 m32r_init (); \
397 SUBTARGET_OVERRIDE_OPTIONS \
398 } \
399 while (0)
400
401 #ifndef SUBTARGET_OPTIMIZATION_OPTIONS
402 #define SUBTARGET_OPTIMIZATION_OPTIONS
403 #endif
404
405 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
406 do \
407 { \
408 if (LEVEL == 1) \
409 flag_regmove = TRUE; \
410 \
411 if (SIZE) \
412 { \
413 flag_omit_frame_pointer = TRUE; \
414 flag_strength_reduce = FALSE; \
415 } \
416 \
417 SUBTARGET_OPTIMIZATION_OPTIONS \
418 } \
419 while (0)
420
421 /* Define this macro if debugging can be performed even without a
422 frame pointer. If this macro is defined, GNU CC will turn on the
423 `-fomit-frame-pointer' option whenever `-O' is specified. */
424 #define CAN_DEBUG_WITHOUT_FP
425 \f
426 /* Target machine storage layout. */
427
428 /* Define this if most significant bit is lowest numbered
429 in instructions that operate on numbered bit-fields. */
430 #define BITS_BIG_ENDIAN 1
431
432 /* Define this if most significant byte of a word is the lowest numbered. */
433 #define BYTES_BIG_ENDIAN 1
434
435 /* Define this if most significant word of a multiword number is the lowest
436 numbered. */
437 #define WORDS_BIG_ENDIAN 1
438
439 /* Define this macro if WORDS_BIG_ENDIAN is not constant. This must
440 be a constant value with the same meaning as WORDS_BIG_ENDIAN,
441 which will be used only when compiling libgcc2.c. Typically the
442 value will be set based on preprocessor defines. */
443 /*#define LIBGCC2_WORDS_BIG_ENDIAN 1*/
444
445 /* Width of a word, in units (bytes). */
446 #define UNITS_PER_WORD 4
447
448 /* Define this macro if it is advisable to hold scalars in registers
449 in a wider mode than that declared by the program. In such cases,
450 the value is constrained to be within the bounds of the declared
451 type, but kept valid in the wider mode. The signedness of the
452 extension may differ from that of the type. */
453 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
454 if (GET_MODE_CLASS (MODE) == MODE_INT \
455 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
456 { \
457 (MODE) = SImode; \
458 }
459
460 /* Define this macro if the promotion described by `PROMOTE_MODE'
461 should also be done for outgoing function arguments. */
462 /*#define PROMOTE_FUNCTION_ARGS*/
463
464 /* Likewise, if the function return value is promoted.
465 If defined, FUNCTION_VALUE must perform the same promotions done by
466 PROMOTE_MODE. */
467 /*#define PROMOTE_FUNCTION_RETURN*/
468
469 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
470 #define PARM_BOUNDARY 32
471
472 /* Boundary (in *bits*) on which stack pointer should be aligned. */
473 #define STACK_BOUNDARY 32
474
475 /* ALIGN FRAMES on word boundaries */
476 #define M32R_STACK_ALIGN(LOC) (((LOC)+3) & ~3)
477
478 /* Allocation boundary (in *bits*) for the code of a function. */
479 #define FUNCTION_BOUNDARY 32
480
481 /* Alignment of field after `int : 0' in a structure. */
482 #define EMPTY_FIELD_BOUNDARY 32
483
484 /* Every structure's size must be a multiple of this. */
485 #define STRUCTURE_SIZE_BOUNDARY 8
486
487 /* A bit-field declared as `int' forces `int' alignment for the struct. */
488 #define PCC_BITFIELD_TYPE_MATTERS 1
489
490 /* No data type wants to be aligned rounder than this. */
491 #define BIGGEST_ALIGNMENT 32
492
493 /* The best alignment to use in cases where we have a choice. */
494 #define FASTEST_ALIGNMENT 32
495
496 /* Make strings word-aligned so strcpy from constants will be faster. */
497 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
498 ((TREE_CODE (EXP) == STRING_CST \
499 && (ALIGN) < FASTEST_ALIGNMENT) \
500 ? FASTEST_ALIGNMENT : (ALIGN))
501
502 /* Make arrays of chars word-aligned for the same reasons. */
503 #define DATA_ALIGNMENT(TYPE, ALIGN) \
504 (TREE_CODE (TYPE) == ARRAY_TYPE \
505 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
506 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
507
508 /* Set this nonzero if move instructions will actually fail to work
509 when given unaligned data. */
510 #define STRICT_ALIGNMENT 1
511 \f
512 /* Layout of source language data types. */
513
514 #define SHORT_TYPE_SIZE 16
515 #define INT_TYPE_SIZE 32
516 #define LONG_TYPE_SIZE 32
517 #define LONG_LONG_TYPE_SIZE 64
518 #define FLOAT_TYPE_SIZE 32
519 #define DOUBLE_TYPE_SIZE 64
520 #define LONG_DOUBLE_TYPE_SIZE 64
521
522 /* Define this as 1 if `char' should by default be signed; else as 0. */
523 #define DEFAULT_SIGNED_CHAR 1
524
525 #define SIZE_TYPE "long unsigned int"
526 #define PTRDIFF_TYPE "long int"
527 #define WCHAR_TYPE "short unsigned int"
528 #define WCHAR_TYPE_SIZE 16
529 \f
530 /* Standard register usage. */
531
532 /* Number of actual hardware registers.
533 The hardware registers are assigned numbers for the compiler
534 from 0 to just below FIRST_PSEUDO_REGISTER.
535 All registers that the compiler knows about must be given numbers,
536 even those that are not normally considered general registers. */
537
538 #define M32R_NUM_REGISTERS 19
539
540 #ifndef SUBTARGET_NUM_REGISTERS
541 #define SUBTARGET_NUM_REGISTERS 0
542 #endif
543
544 #define FIRST_PSEUDO_REGISTER (M32R_NUM_REGISTERS + SUBTARGET_NUM_REGISTERS)
545
546 /* 1 for registers that have pervasive standard uses
547 and are not available for the register allocator.
548
549 0-3 - arguments/results
550 4-5 - call used [4 is used as a tmp during prologue/epilogue generation]
551 6 - call used, gptmp
552 7 - call used, static chain pointer
553 8-11 - call saved
554 12 - call saved [reserved for global pointer]
555 13 - frame pointer
556 14 - subroutine link register
557 15 - stack pointer
558 16 - arg pointer
559 17 - carry flag
560 18 - accumulator
561 19 - accumulator 1 in the m32r/x
562 By default, the extension registers are not available. */
563
564 #ifndef SUBTARGET_FIXED_REGISTERS
565 #define SUBTARGET_FIXED_REGISTERS
566 #endif
567
568 #define FIXED_REGISTERS \
569 { \
570 0, 0, 0, 0, 0, 0, 0, 0, \
571 0, 0, 0, 0, 0, 0, 0, 1, \
572 1, 1, 1 \
573 SUBTARGET_FIXED_REGISTERS \
574 }
575
576 /* 1 for registers not available across function calls.
577 These must include the FIXED_REGISTERS and also any
578 registers that can be used without being saved.
579 The latter must include the registers where values are returned
580 and the register where structure-value addresses are passed.
581 Aside from that, you can include as many other registers as you like. */
582
583 #ifndef SUBTARGET_CALL_USED_REGISTERS
584 #define SUBTARGET_CALL_USED_REGISTERS
585 #endif
586
587 #define CALL_USED_REGISTERS \
588 { \
589 1, 1, 1, 1, 1, 1, 1, 1, \
590 0, 0, 0, 0, 0, 0, 1, 1, \
591 1, 1, 1 \
592 SUBTARGET_CALL_USED_REGISTERS \
593 }
594
595 /* Zero or more C statements that may conditionally modify two variables
596 `fixed_regs' and `call_used_regs' (both of type `char []') after they
597 have been initialized from the two preceding macros.
598
599 This is necessary in case the fixed or call-clobbered registers depend
600 on target flags.
601
602 You need not define this macro if it has no work to do. */
603
604 #ifdef SUBTARGET_CONDITIONAL_REGISTER_USAGE
605 #define CONDITIONAL_REGISTER_USAGE SUBTARGET_CONDITIONAL_REGISTER_USAGE
606 #endif
607
608 /* If defined, an initializer for a vector of integers, containing the
609 numbers of hard registers in the order in which GNU CC should
610 prefer to use them (from most preferred to least). */
611
612 #ifndef SUBTARGET_REG_ALLOC_ORDER
613 #define SUBTARGET_REG_ALLOC_ORDER
614 #endif
615
616 #if 1 /* better for int code */
617 #define REG_ALLOC_ORDER \
618 { \
619 4, 5, 6, 7, 2, 3, 8, 9, 10, \
620 11, 12, 13, 14, 0, 1, 15, 16, 17, 18 \
621 SUBTARGET_REG_ALLOC_ORDER \
622 }
623
624 #else /* better for fp code at expense of int code */
625 #define REG_ALLOC_ORDER \
626 { \
627 0, 1, 2, 3, 4, 5, 6, 7, 8, \
628 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 \
629 SUBTARGET_REG_ALLOC_ORDER \
630 }
631 #endif
632
633 /* Return number of consecutive hard regs needed starting at reg REGNO
634 to hold something of mode MODE.
635 This is ordinarily the length in words of a value of mode MODE
636 but can be less for certain modes in special long registers. */
637 #define HARD_REGNO_NREGS(REGNO, MODE) \
638 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
639
640 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
641 extern const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
642 extern unsigned int m32r_mode_class[];
643 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
644 ((m32r_hard_regno_mode_ok[REGNO] & m32r_mode_class[MODE]) != 0)
645
646 /* A C expression that is nonzero if it is desirable to choose
647 register allocation so as to avoid move instructions between a
648 value of mode MODE1 and a value of mode MODE2.
649
650 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
651 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
652 MODE2)' must be zero. */
653
654 /* Tie QI/HI/SI modes together. */
655 #define MODES_TIEABLE_P(MODE1, MODE2) \
656 (GET_MODE_CLASS (MODE1) == MODE_INT \
657 && GET_MODE_CLASS (MODE2) == MODE_INT \
658 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
659 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD)
660 \f
661 /* Register classes and constants. */
662
663 /* Define the classes of registers for register constraints in the
664 machine description. Also define ranges of constants.
665
666 One of the classes must always be named ALL_REGS and include all hard regs.
667 If there is more than one class, another class must be named NO_REGS
668 and contain no registers.
669
670 The name GENERAL_REGS must be the name of a class (or an alias for
671 another name such as ALL_REGS). This is the class of registers
672 that is allowed by "g" or "r" in a register constraint.
673 Also, registers outside this class are allocated only when
674 instructions express preferences for them.
675
676 The classes must be numbered in nondecreasing order; that is,
677 a larger-numbered class must never be contained completely
678 in a smaller-numbered class.
679
680 For any two classes, it is very desirable that there be another
681 class that represents their union.
682
683 It is important that any condition codes have class NO_REGS.
684 See `register_operand'. */
685
686 enum reg_class
687 {
688 NO_REGS, CARRY_REG, ACCUM_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
689 };
690
691 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
692
693 /* Give names of register classes as strings for dump file. */
694 #define REG_CLASS_NAMES \
695 { "NO_REGS", "CARRY_REG", "ACCUM_REGS", "GENERAL_REGS", "ALL_REGS" }
696
697 /* Define which registers fit in which classes.
698 This is an initializer for a vector of HARD_REG_SET
699 of length N_REG_CLASSES. */
700
701 #ifndef SUBTARGET_REG_CLASS_CARRY
702 #define SUBTARGET_REG_CLASS_CARRY 0
703 #endif
704
705 #ifndef SUBTARGET_REG_CLASS_ACCUM
706 #define SUBTARGET_REG_CLASS_ACCUM 0
707 #endif
708
709 #ifndef SUBTARGET_REG_CLASS_GENERAL
710 #define SUBTARGET_REG_CLASS_GENERAL 0
711 #endif
712
713 #ifndef SUBTARGET_REG_CLASS_ALL
714 #define SUBTARGET_REG_CLASS_ALL 0
715 #endif
716
717 #define REG_CLASS_CONTENTS \
718 { \
719 { 0x00000 }, \
720 { 0x20000 | SUBTARGET_REG_CLASS_CARRY }, \
721 { 0x40000 | SUBTARGET_REG_CLASS_ACCUM }, \
722 { 0x1ffff | SUBTARGET_REG_CLASS_GENERAL }, \
723 { 0x7ffff | SUBTARGET_REG_CLASS_ALL }, \
724 }
725
726 /* The same information, inverted:
727 Return the class number of the smallest class containing
728 reg number REGNO. This could be a conditional expression
729 or could index an array. */
730 extern enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
731 #define REGNO_REG_CLASS(REGNO) (m32r_regno_reg_class[REGNO])
732
733 /* The class value for index registers, and the one for base regs. */
734 #define INDEX_REG_CLASS GENERAL_REGS
735 #define BASE_REG_CLASS GENERAL_REGS
736
737 #define REG_CLASS_FROM_LETTER(C) \
738 ((C) == 'c' ? CARRY_REG \
739 : (C) == 'a' ? ACCUM_REGS \
740 : NO_REGS)
741
742 /* These assume that REGNO is a hard or pseudo reg number.
743 They give nonzero only if REGNO is a hard reg of the suitable class
744 or a pseudo reg currently allocated to a suitable hard reg.
745 Since they use reg_renumber, they are safe only once reg_renumber
746 has been allocated, which happens in local-alloc.c. */
747 #define REGNO_OK_FOR_BASE_P(REGNO) \
748 ((REGNO) < FIRST_PSEUDO_REGISTER \
749 ? GPR_P (REGNO) || (REGNO) == ARG_POINTER_REGNUM \
750 : GPR_P (reg_renumber[REGNO]))
751 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
752
753 /* Given an rtx X being reloaded into a reg required to be
754 in class CLASS, return the class of reg to actually use.
755 In general this is just CLASS; but on some machines
756 in some cases it is preferable to use a more restrictive class. */
757 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
758 (CLASS)
759
760 /* Return the maximum number of consecutive registers
761 needed to represent mode MODE in a register of class CLASS. */
762 #define CLASS_MAX_NREGS(CLASS, MODE) \
763 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
764
765 /* The letters I, J, K, L, M, N, O, P in a register constraint string
766 can be used to stand for particular ranges of immediate operands.
767 This macro defines what the ranges are.
768 C is the letter, and VALUE is a constant value.
769 Return 1 if VALUE is in the range specified by C. */
770 /* 'I' is used for 8 bit signed immediates.
771 'J' is used for 16 bit signed immediates.
772 'K' is used for 16 bit unsigned immediates.
773 'L' is used for 16 bit immediates left shifted by 16 (sign ???).
774 'M' is used for 24 bit unsigned immediates.
775 'N' is used for any 32 bit non-symbolic value.
776 'O' is used for 5 bit unsigned immediates (shift count).
777 'P' is used for 16 bit signed immediates for compares
778 (values in the range -32767 to +32768). */
779
780 /* Return true if a value is inside a range. */
781 #define IN_RANGE_P(VALUE, LOW, HIGH) \
782 (((unsigned HOST_WIDE_INT)((VALUE) - (LOW))) \
783 <= ((unsigned HOST_WIDE_INT)((HIGH) - (LOW))))
784
785 /* Local to this file. */
786 #define INT8_P(X) ((X) >= -0x80 && (X) <= 0x7f)
787 #define INT16_P(X) ((X) >= -0x8000 && (X) <= 0x7fff)
788 #define CMP_INT16_P(X) ((X) >= -0x7fff && (X) <= 0x8000)
789 #define UPPER16_P(X) (((X) & 0xffff) == 0 \
790 && ((X) >> 16) >= -0x8000 \
791 && ((X) >> 16) <= 0x7fff)
792 #define UINT16_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0x0000ffff)
793 #define UINT24_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0x00ffffff)
794 #define UINT32_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0xffffffff)
795 #define UINT5_P(X) ((X) >= 0 && (X) < 32)
796 #define INVERTED_SIGNED_8BIT(VAL) ((VAL) >= -127 && (VAL) <= 128)
797
798 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
799 ((C) == 'I' ? INT8_P (VALUE) \
800 : (C) == 'J' ? INT16_P (VALUE) \
801 : (C) == 'K' ? UINT16_P (VALUE) \
802 : (C) == 'L' ? UPPER16_P (VALUE) \
803 : (C) == 'M' ? UINT24_P (VALUE) \
804 : (C) == 'N' ? INVERTED_SIGNED_8BIT (VALUE) \
805 : (C) == 'O' ? UINT5_P (VALUE) \
806 : (C) == 'P' ? CMP_INT16_P (VALUE) \
807 : 0)
808
809 /* Similar, but for floating constants, and defining letters G and H.
810 Here VALUE is the CONST_DOUBLE rtx itself.
811 For the m32r, handle a few constants inline.
812 ??? We needn't treat DI and DF modes differently, but for now we do. */
813 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
814 ((C) == 'G' ? easy_di_const (VALUE) \
815 : (C) == 'H' ? easy_df_const (VALUE) \
816 : 0)
817
818 /* A C expression that defines the optional machine-dependent constraint
819 letters that can be used to segregate specific types of operands,
820 usually memory references, for the target machine. It should return 1 if
821 VALUE corresponds to the operand type represented by the constraint letter
822 C. If C is not defined as an extra constraint, the value returned should
823 be 0 regardless of VALUE. */
824 /* Q is for symbolic addresses loadable with ld24.
825 R is for symbolic addresses when ld24 can't be used.
826 S is for stores with pre {inc,dec}rement
827 T is for indirect of a pointer.
828 U is for loads with post increment. */
829
830 #define EXTRA_CONSTRAINT(VALUE, C) \
831 ( (C) == 'Q' ? ((TARGET_ADDR24 && GET_CODE (VALUE) == LABEL_REF) \
832 || addr24_operand (VALUE, VOIDmode)) \
833 : (C) == 'R' ? ((TARGET_ADDR32 && GET_CODE (VALUE) == LABEL_REF) \
834 || addr32_operand (VALUE, VOIDmode)) \
835 : (C) == 'S' ? (GET_CODE (VALUE) == MEM \
836 && STORE_PREINC_PREDEC_P (GET_MODE (VALUE), \
837 XEXP (VALUE, 0))) \
838 : (C) == 'T' ? (GET_CODE (VALUE) == MEM \
839 && memreg_operand (VALUE, GET_MODE (VALUE))) \
840 : (C) == 'U' ? (GET_CODE (VALUE) == MEM \
841 && LOAD_POSTINC_P (GET_MODE (VALUE), \
842 XEXP (VALUE, 0))) \
843 : 0)
844 \f
845 /* Stack layout and stack pointer usage. */
846
847 /* Define this macro if pushing a word onto the stack moves the stack
848 pointer to a smaller address. */
849 #define STACK_GROWS_DOWNWARD
850
851 /* Define this if the nominal address of the stack frame
852 is at the high-address end of the local variables;
853 that is, each additional local variable allocated
854 goes at a more negative offset from the frame pointer. */
855 /*#define FRAME_GROWS_DOWNWARD*/
856
857 /* Offset from frame pointer to start allocating local variables at.
858 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
859 first local allocated. Otherwise, it is the offset to the BEGINNING
860 of the first local allocated. */
861 /* The frame pointer points at the same place as the stack pointer, except if
862 alloca has been called. */
863 #define STARTING_FRAME_OFFSET \
864 M32R_STACK_ALIGN (current_function_outgoing_args_size)
865
866 /* Offset from the stack pointer register to the first location at which
867 outgoing arguments are placed. */
868 #define STACK_POINTER_OFFSET 0
869
870 /* Offset of first parameter from the argument pointer register value. */
871 #define FIRST_PARM_OFFSET(FNDECL) 0
872
873 /* A C expression whose value is RTL representing the address in a
874 stack frame where the pointer to the caller's frame is stored.
875 Assume that FRAMEADDR is an RTL expression for the address of the
876 stack frame itself.
877
878 If you don't define this macro, the default is to return the value
879 of FRAMEADDR--that is, the stack frame address is also the address
880 of the stack word that points to the previous frame. */
881 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
882
883 /* A C expression whose value is RTL representing the value of the
884 return address for the frame COUNT steps up from the current frame.
885 FRAMEADDR is the frame pointer of the COUNT frame, or the frame
886 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
887 is defined. */
888 /* The current return address is in r14. */
889 #if 0 /* The default value should work. */
890 #define RETURN_ADDR_RTX(COUNT, FRAME) \
891 (((COUNT) == -1) \
892 ? gen_rtx_REG (Pmode, 14) \
893 : copy_to_reg (gen_rtx_MEM (Pmode, \
894 memory_address (Pmode, \
895 plus_constant ((FRAME), \
896 UNITS_PER_WORD)))))
897 #endif
898
899 /* Register to use for pushing function arguments. */
900 #define STACK_POINTER_REGNUM 15
901
902 /* Base register for access to local variables of the function. */
903 #define FRAME_POINTER_REGNUM 13
904
905 /* Base register for access to arguments of the function. */
906 #define ARG_POINTER_REGNUM 16
907
908 /* The register number of the return address pointer register, which
909 is used to access the current function's return address from the
910 stack. On some machines, the return address is not at a fixed
911 offset from the frame pointer or stack pointer or argument
912 pointer. This register can be defined to point to the return
913 address on the stack, and then be converted by `ELIMINABLE_REGS'
914 into either the frame pointer or stack pointer.
915
916 Do not define this macro unless there is no other way to get the
917 return address from the stack. */
918 /* ??? revisit */
919 /* #define RETURN_ADDRESS_POINTER_REGNUM */
920
921 /* Register in which static-chain is passed to a function. This must
922 not be a register used by the prologue. */
923 #define STATIC_CHAIN_REGNUM 7
924
925 /* These aren't official macros. */
926 #define PROLOGUE_TMP_REGNUM 4
927 #define RETURN_ADDR_REGNUM 14
928 /* #define GP_REGNUM 12 */
929 #define CARRY_REGNUM 17
930 #define ACCUM_REGNUM 18
931 #define M32R_MAX_INT_REGS 16
932
933 #ifndef SUBTARGET_GPR_P
934 #define SUBTARGET_GPR_P(REGNO) 0
935 #endif
936
937 #ifndef SUBTARGET_ACCUM_P
938 #define SUBTARGET_ACCUM_P(REGNO) 0
939 #endif
940
941 #ifndef SUBTARGET_CARRY_P
942 #define SUBTARGET_CARRY_P(REGNO) 0
943 #endif
944
945 #define GPR_P(REGNO) (IN_RANGE_P ((REGNO), 0, 15) || SUBTARGET_GPR_P (REGNO))
946 #define ACCUM_P(REGNO) ((REGNO) == ACCUM_REGNUM || SUBTARGET_ACCUM_P (REGNO))
947 #define CARRY_P(REGNO) ((REGNO) == CARRY_REGNUM || SUBTARGET_CARRY_P (REGNO))
948 \f
949 /* Eliminating the frame and arg pointers. */
950
951 /* A C expression which is nonzero if a function must have and use a
952 frame pointer. This expression is evaluated in the reload pass.
953 If its value is nonzero the function will have a frame pointer. */
954 #define FRAME_POINTER_REQUIRED current_function_calls_alloca
955
956 #if 0
957 /* C statement to store the difference between the frame pointer
958 and the stack pointer values immediately after the function prologue.
959 If `ELIMINABLE_REGS' is defined, this macro will be not be used and
960 need not be defined. */
961 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
962 ((VAR) = m32r_compute_frame_size (get_frame_size ()))
963 #endif
964
965 /* If defined, this macro specifies a table of register pairs used to
966 eliminate unneeded registers that point into the stack frame. If
967 it is not defined, the only elimination attempted by the compiler
968 is to replace references to the frame pointer with references to
969 the stack pointer.
970
971 Note that the elimination of the argument pointer with the stack
972 pointer is specified first since that is the preferred elimination. */
973
974 #define ELIMINABLE_REGS \
975 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
976 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
977 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
978
979 /* A C expression that returns nonzero if the compiler is allowed to
980 try to replace register number FROM-REG with register number
981 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
982 defined, and will usually be the constant 1, since most of the
983 cases preventing register elimination are things that the compiler
984 already knows about. */
985
986 #define CAN_ELIMINATE(FROM, TO) \
987 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
988 ? ! frame_pointer_needed \
989 : 1)
990
991 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
992 specifies the initial difference between the specified pair of
993 registers. This macro must be defined if `ELIMINABLE_REGS' is
994 defined. */
995
996 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
997 { \
998 int size = m32r_compute_frame_size (get_frame_size ()); \
999 \
1000 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1001 (OFFSET) = 0; \
1002 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1003 (OFFSET) = size - current_function_pretend_args_size; \
1004 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1005 (OFFSET) = size - current_function_pretend_args_size; \
1006 else \
1007 abort (); \
1008 }
1009 \f
1010 /* Function argument passing. */
1011
1012 /* When a prototype says `char' or `short', really pass an `int'. */
1013 #define PROMOTE_PROTOTYPES 1
1014
1015 /* If defined, the maximum amount of space required for outgoing
1016 arguments will be computed and placed into the variable
1017 `current_function_outgoing_args_size'. No space will be pushed
1018 onto the stack for each call; instead, the function prologue should
1019 increase the stack frame size by this amount. */
1020 #define ACCUMULATE_OUTGOING_ARGS 1
1021
1022 /* Define this macro if functions should assume that stack space has
1023 been allocated for arguments even when their values are passed in
1024 registers.
1025
1026 The value of this macro is the size, in bytes, of the area
1027 reserved for arguments passed in registers for the function
1028 represented by FNDECL.
1029
1030 This space can be allocated by the caller, or be a part of the
1031 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1032 which. */
1033 #if 0
1034 #define REG_PARM_STACK_SPACE(FNDECL) \
1035 (M32R_MAX_PARM_REGS * UNITS_PER_WORD)
1036 #endif
1037
1038 /* Value is the number of bytes of arguments automatically
1039 popped when returning from a subroutine call.
1040 FUNDECL is the declaration node of the function (as a tree),
1041 FUNTYPE is the data type of the function (as a tree),
1042 or for a library call it is an identifier node for the subroutine name.
1043 SIZE is the number of bytes of arguments passed on the stack. */
1044 #define RETURN_POPS_ARGS(DECL, FUNTYPE, SIZE) 0
1045
1046 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1047 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1048 ((TYPE) != 0 \
1049 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1050 || TREE_ADDRESSABLE (TYPE)))
1051
1052 /* Define a data type for recording info about an argument list
1053 during the scan of that argument list. This data type should
1054 hold all necessary information about the function itself
1055 and about the args processed so far, enough to enable macros
1056 such as FUNCTION_ARG to determine where the next arg should go. */
1057 #define CUMULATIVE_ARGS int
1058
1059 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1060 for a call to a function whose data type is FNTYPE.
1061 For a library call, FNTYPE is 0. */
1062 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1063 ((CUM) = 0)
1064
1065 /* The number of registers used for parameter passing. Local to this file. */
1066 #define M32R_MAX_PARM_REGS 4
1067
1068 /* 1 if N is a possible register number for function argument passing. */
1069 #define FUNCTION_ARG_REGNO_P(N) \
1070 ((unsigned) (N) < M32R_MAX_PARM_REGS)
1071
1072 /* The ROUND_ADVANCE* macros are local to this file. */
1073 /* Round SIZE up to a word boundary. */
1074 #define ROUND_ADVANCE(SIZE) \
1075 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1076
1077 /* Round arg MODE/TYPE up to the next word boundary. */
1078 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
1079 ((MODE) == BLKmode \
1080 ? ROUND_ADVANCE ((unsigned int) int_size_in_bytes (TYPE)) \
1081 : ROUND_ADVANCE ((unsigned int) GET_MODE_SIZE (MODE)))
1082
1083 /* Round CUM up to the necessary point for argument MODE/TYPE. */
1084 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) (CUM)
1085
1086 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
1087 a reg. This includes arguments that have to be passed by reference as the
1088 pointer to them is passed in a reg if one is available (and that is what
1089 we're given).
1090 This macro is only used in this file. */
1091 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1092 (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) < M32R_MAX_PARM_REGS)
1093
1094 /* Determine where to put an argument to a function.
1095 Value is zero to push the argument on the stack,
1096 or a hard register in which to store the argument.
1097
1098 MODE is the argument's machine mode.
1099 TYPE is the data type of the argument (as a tree).
1100 This is null for libcalls where that information may
1101 not be available.
1102 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1103 the preceding args and about the function being called.
1104 NAMED is nonzero if this argument is a named parameter
1105 (otherwise it is an extra parameter matching an ellipsis). */
1106 /* On the M32R the first M32R_MAX_PARM_REGS args are normally in registers
1107 and the rest are pushed. */
1108 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1109 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1110 ? gen_rtx_REG ((MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE))) \
1111 : 0)
1112
1113 /* A C expression for the number of words, at the beginning of an
1114 argument, must be put in registers. The value must be zero for
1115 arguments that are passed entirely in registers or that are entirely
1116 pushed on the stack.
1117
1118 On some machines, certain arguments must be passed partially in
1119 registers and partially in memory. On these machines, typically the
1120 first @var{n} words of arguments are passed in registers, and the rest
1121 on the stack. If a multi-word argument (a @code{double} or a
1122 structure) crosses that boundary, its first few words must be passed
1123 in registers and the rest must be pushed. This macro tells the
1124 compiler when this occurs, and how many of the words should go in
1125 registers. */
1126 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1127 function_arg_partial_nregs (&CUM, (int)MODE, TYPE, NAMED)
1128
1129 /* A C expression that indicates when an argument must be passed by
1130 reference. If nonzero for an argument, a copy of that argument is
1131 made in memory and a pointer to the argument is passed instead of
1132 the argument itself. The pointer is passed in whatever way is
1133 appropriate for passing a pointer to that type. */
1134 /* All arguments greater than 8 bytes are passed this way. */
1135 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1136 ((TYPE) && int_size_in_bytes (TYPE) > 8)
1137
1138 /* Update the data in CUM to advance over an argument
1139 of mode MODE and data type TYPE.
1140 (TYPE is null for libcalls where that information may not be available.) */
1141 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1142 ((CUM) = (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
1143 + ROUND_ADVANCE_ARG ((MODE), (TYPE))))
1144
1145 /* If defined, a C expression that gives the alignment boundary, in bits,
1146 of an argument with the specified mode and type. If it is not defined,
1147 PARM_BOUNDARY is used for all arguments. */
1148 #if 0
1149 /* We assume PARM_BOUNDARY == UNITS_PER_WORD here. */
1150 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1151 (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \
1152 ? PARM_BOUNDARY \
1153 : 2 * PARM_BOUNDARY)
1154 #endif
1155
1156 /* This macro offers an alternative
1157 to using `__builtin_saveregs' and defining the macro
1158 `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
1159 arguments into the stack so that all the arguments appear to have
1160 been passed consecutively on the stack. Once this is done, you
1161 can use the standard implementation of varargs that works for
1162 machines that pass all their arguments on the stack.
1163
1164 The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure,
1165 containing the values that obtain after processing of the named
1166 arguments. The arguments MODE and TYPE describe the last named
1167 argument--its machine mode and its data type as a tree node.
1168
1169 The macro implementation should do two things: first, push onto the
1170 stack all the argument registers *not* used for the named
1171 arguments, and second, store the size of the data thus pushed into
1172 the `int'-valued variable whose name is supplied as the argument
1173 PRETEND_SIZE. The value that you store here will serve as
1174 additional offset for setting up the stack frame.
1175
1176 If the argument NO_RTL is nonzero, it means that the
1177 arguments of the function are being analyzed for the second time.
1178 This happens for an inline function, which is not actually
1179 compiled until the end of the source file. The macro
1180 `SETUP_INCOMING_VARARGS' should not generate any instructions in
1181 this case. */
1182
1183 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1184 m32r_setup_incoming_varargs (&ARGS_SO_FAR, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1185
1186 /* Implement `va_arg'. */
1187 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1188 m32r_va_arg (valist, type)
1189 \f
1190 /* Function results. */
1191
1192 /* Define how to find the value returned by a function.
1193 VALTYPE is the data type of the value (as a tree).
1194 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1195 otherwise, FUNC is 0. */
1196 #define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
1197
1198 /* Define how to find the value returned by a library function
1199 assuming the value has mode MODE. */
1200 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
1201
1202 /* 1 if N is a possible register number for a function value
1203 as seen by the caller. */
1204 /* ??? What about r1 in DI/DF values. */
1205 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
1206
1207 /* A C expression which can inhibit the returning of certain function
1208 values in registers, based on the type of value. A nonzero value says
1209 to return the function value in memory, just as large structures are
1210 always returned. Here TYPE will be a C expression of type `tree',
1211 representing the data type of the value. */
1212 #define RETURN_IN_MEMORY(TYPE) \
1213 (int_size_in_bytes (TYPE) > 8)
1214
1215 /* Tell GCC to use RETURN_IN_MEMORY. */
1216 #define DEFAULT_PCC_STRUCT_RETURN 0
1217
1218 /* Register in which address to store a structure value
1219 is passed to a function, or 0 to use `invisible' first argument. */
1220 #define STRUCT_VALUE 0
1221 \f
1222 /* Function entry and exit. */
1223
1224 /* Initialize data used by insn expanders. This is called from
1225 init_emit, once for each function, before code is generated. */
1226 #define INIT_EXPANDERS m32r_init_expanders ()
1227
1228 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1229 the stack pointer does not matter. The value is tested only in
1230 functions that have frame pointers.
1231 No definition is equivalent to always zero. */
1232 #define EXIT_IGNORE_STACK 1
1233
1234 /* Output assembler code to FILE to increment profiler label # LABELNO
1235 for profiling a function entry. */
1236 #define FUNCTION_PROFILER(FILE, LABELNO) abort ()
1237 \f
1238 /* Trampolines. */
1239
1240 /* On the M32R, the trampoline is
1241
1242 ld24 r7,STATIC
1243 ld24 r6,FUNCTION
1244 jmp r6
1245 nop
1246
1247 ??? Need addr32 support.
1248 */
1249
1250 /* Length in bytes of the trampoline for entering a nested function. */
1251 #define TRAMPOLINE_SIZE 12
1252
1253 /* Emit RTL insns to initialize the variable parts of a trampoline.
1254 FNADDR is an RTX for the address of the function's pure code.
1255 CXT is an RTX for the static chain value for the function. */
1256 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1257 do { \
1258 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 0)), \
1259 plus_constant ((CXT), 0xe7000000)); \
1260 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), \
1261 plus_constant ((FNADDR), 0xe6000000)); \
1262 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), \
1263 GEN_INT (0x1fc67000)); \
1264 emit_insn (gen_flush_icache (validize_mem (gen_rtx_MEM (SImode, TRAMP)))); \
1265 } while (0)
1266 \f
1267 /* Library calls. */
1268
1269 /* Generate calls to memcpy, memcmp and memset. */
1270 #define TARGET_MEM_FUNCTIONS
1271 \f
1272 /* Addressing modes, and classification of registers for them. */
1273
1274 /* Maximum number of registers that can appear in a valid memory address. */
1275 #define MAX_REGS_PER_ADDRESS 1
1276
1277 /* We have post-inc load and pre-dec,pre-inc store,
1278 but only for 4 byte vals. */
1279 #define HAVE_PRE_DECREMENT 1
1280 #define HAVE_PRE_INCREMENT 1
1281 #define HAVE_POST_INCREMENT 1
1282
1283 /* Recognize any constant value that is a valid address. */
1284 #define CONSTANT_ADDRESS_P(X) \
1285 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1286 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)
1287
1288 /* Nonzero if the constant value X is a legitimate general operand.
1289 We don't allow (plus symbol large-constant) as the relocations can't
1290 describe it. INTVAL > 32767 handles both 16 bit and 24 bit relocations.
1291 We allow all CONST_DOUBLE's as the md file patterns will force the
1292 constant to memory if they can't handle them. */
1293
1294 #define LEGITIMATE_CONSTANT_P(X) \
1295 (! (GET_CODE (X) == CONST \
1296 && GET_CODE (XEXP (X, 0)) == PLUS \
1297 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
1298 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1299 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (X, 0), 1)) > 32767))
1300
1301 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1302 and check its validity for a certain class.
1303 We have two alternate definitions for each of them.
1304 The usual definition accepts all pseudo regs; the other rejects
1305 them unless they have been allocated suitable hard regs.
1306 The symbol REG_OK_STRICT causes the latter definition to be used.
1307
1308 Most source files want to accept pseudo regs in the hope that
1309 they will get allocated to the class that the insn wants them to be in.
1310 Source files for reload pass need to be strict.
1311 After reload, it makes no difference, since pseudo regs have
1312 been eliminated by then. */
1313
1314 #ifdef REG_OK_STRICT
1315
1316 /* Nonzero if X is a hard reg that can be used as a base reg. */
1317 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1318 /* Nonzero if X is a hard reg that can be used as an index. */
1319 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1320
1321 #else
1322
1323 /* Nonzero if X is a hard reg that can be used as a base reg
1324 or if it is a pseudo reg. */
1325 #define REG_OK_FOR_BASE_P(X) \
1326 (GPR_P (REGNO (X)) \
1327 || (REGNO (X)) == ARG_POINTER_REGNUM \
1328 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1329 /* Nonzero if X is a hard reg that can be used as an index
1330 or if it is a pseudo reg. */
1331 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1332
1333 #endif
1334
1335 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1336 that is a valid memory address for an instruction.
1337 The MODE argument is the machine mode for the MEM expression
1338 that wants to use this address. */
1339
1340 /* Local to this file. */
1341 #define RTX_OK_FOR_BASE_P(X) (REG_P (X) && REG_OK_FOR_BASE_P (X))
1342
1343 /* Local to this file. */
1344 #define RTX_OK_FOR_OFFSET_P(X) \
1345 (GET_CODE (X) == CONST_INT && INT16_P (INTVAL (X)))
1346
1347 /* Local to this file. */
1348 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \
1349 (GET_CODE (X) == PLUS \
1350 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
1351 && RTX_OK_FOR_OFFSET_P (XEXP (X, 1)))
1352
1353 /* Local to this file. */
1354 /* For LO_SUM addresses, do not allow them if the MODE is > 1 word,
1355 since more than one instruction will be required. */
1356 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1357 (GET_CODE (X) == LO_SUM \
1358 && (MODE != BLKmode && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
1359 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
1360 && CONSTANT_P (XEXP (X, 1)))
1361
1362 /* Local to this file. */
1363 /* Is this a load and increment operation. */
1364 #define LOAD_POSTINC_P(MODE, X) \
1365 (((MODE) == SImode || (MODE) == SFmode) \
1366 && GET_CODE (X) == POST_INC \
1367 && GET_CODE (XEXP (X, 0)) == REG \
1368 && RTX_OK_FOR_BASE_P (XEXP (X, 0)))
1369
1370 /* Local to this file. */
1371 /* Is this an increment/decrement and store operation. */
1372 #define STORE_PREINC_PREDEC_P(MODE, X) \
1373 (((MODE) == SImode || (MODE) == SFmode) \
1374 && (GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1375 && GET_CODE (XEXP (X, 0)) == REG \
1376 && RTX_OK_FOR_BASE_P (XEXP (X, 0)))
1377
1378 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1379 { if (RTX_OK_FOR_BASE_P (X)) \
1380 goto ADDR; \
1381 if (LEGITIMATE_OFFSET_ADDRESS_P ((MODE), (X))) \
1382 goto ADDR; \
1383 if (LEGITIMATE_LO_SUM_ADDRESS_P ((MODE), (X))) \
1384 goto ADDR; \
1385 if (LOAD_POSTINC_P ((MODE), (X))) \
1386 goto ADDR; \
1387 if (STORE_PREINC_PREDEC_P ((MODE), (X))) \
1388 goto ADDR; \
1389 }
1390
1391 /* Try machine-dependent ways of modifying an illegitimate address
1392 to be legitimate. If we find one, return the new, valid address.
1393 This macro is used in only one place: `memory_address' in explow.c.
1394
1395 OLDX is the address as it was before break_out_memory_refs was called.
1396 In some cases it is useful to look at this to decide what needs to be done.
1397
1398 MODE and WIN are passed so that this macro can use
1399 GO_IF_LEGITIMATE_ADDRESS.
1400
1401 It is always safe for this macro to do nothing. It exists to recognize
1402 opportunities to optimize the output.
1403
1404 ??? Is there anything useful we can do here for the M32R? */
1405
1406 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1407
1408 /* Go to LABEL if ADDR (a legitimate address expression)
1409 has an effect that depends on the machine mode it is used for. */
1410 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1411 do { \
1412 if (GET_CODE (ADDR) == PRE_DEC \
1413 || GET_CODE (ADDR) == PRE_INC \
1414 || GET_CODE (ADDR) == POST_INC \
1415 || GET_CODE (ADDR) == LO_SUM) \
1416 goto LABEL; \
1417 } while (0)
1418 \f
1419 /* Condition code usage. */
1420
1421 /* Return nonzero if SELECT_CC_MODE will never return MODE for a
1422 floating point inequality comparison. */
1423 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
1424 \f
1425 /* Costs. */
1426
1427 /* Compute extra cost of moving data between one register class
1428 and another. */
1429 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) 2
1430
1431 /* Compute the cost of moving data between registers and memory. */
1432 /* Memory is 3 times as expensive as registers.
1433 ??? Is that the right way to look at it? */
1434 #define MEMORY_MOVE_COST(MODE,CLASS,IN_P) \
1435 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
1436
1437 /* The cost of a branch insn. */
1438 /* A value of 2 here causes GCC to avoid using branches in comparisons like
1439 while (a < N && a). Branches aren't that expensive on the M32R so
1440 we define this as 1. Defining it as 2 had a heavy hit in fp-bit.c. */
1441 #define BRANCH_COST ((TARGET_BRANCH_COST) ? 2 : 1)
1442
1443 /* Nonzero if access to memory by bytes is slow and undesirable.
1444 For RISC chips, it means that access to memory by bytes is no
1445 better than access by words when possible, so grab a whole word
1446 and maybe make use of that. */
1447 #define SLOW_BYTE_ACCESS 1
1448
1449 /* Define this macro if it is as good or better to call a constant
1450 function address than to call an address kept in a register. */
1451 #define NO_FUNCTION_CSE
1452
1453 /* Define this macro if it is as good or better for a function to call
1454 itself with an explicit address than to call an address kept in a
1455 register. */
1456 #define NO_RECURSIVE_FUNCTION_CSE
1457
1458 /* When the `length' insn attribute is used, this macro specifies the
1459 value to be assigned to the address of the first insn in a
1460 function. If not specified, 0 is used. */
1461 #define FIRST_INSN_ADDRESS m32r_first_insn_address ()
1462
1463 \f
1464 /* Section selection. */
1465
1466 #define TEXT_SECTION_ASM_OP "\t.section .text"
1467 #define DATA_SECTION_ASM_OP "\t.section .data"
1468 #define BSS_SECTION_ASM_OP "\t.section .bss"
1469
1470 /* Define this macro if jump tables (for tablejump insns) should be
1471 output in the text section, along with the assembler instructions.
1472 Otherwise, the readonly data section is used.
1473 This macro is irrelevant if there is no separate readonly data section. */
1474 /*#define JUMP_TABLES_IN_TEXT_SECTION*/
1475 \f
1476 /* PIC */
1477
1478 /* The register number of the register used to address a table of static
1479 data addresses in memory. In some cases this register is defined by a
1480 processor's ``application binary interface'' (ABI). When this macro
1481 is defined, RTL is generated for this register once, as with the stack
1482 pointer and frame pointer registers. If this macro is not defined, it
1483 is up to the machine-dependent files to allocate such a register (if
1484 necessary). */
1485 /*#define PIC_OFFSET_TABLE_REGNUM 12*/
1486
1487 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1488 clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1489 is not defined. */
1490 /* This register is call-saved on the M32R. */
1491 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1492
1493 /* By generating position-independent code, when two different programs (A
1494 and B) share a common library (libC.a), the text of the library can be
1495 shared whether or not the library is linked at the same address for both
1496 programs. In some of these environments, position-independent code
1497 requires not only the use of different addressing modes, but also
1498 special code to enable the use of these addressing modes.
1499
1500 The FINALIZE_PIC macro serves as a hook to emit these special
1501 codes once the function is being compiled into assembly code, but not
1502 before. (It is not done before, because in the case of compiling an
1503 inline function, it would lead to multiple PIC prologues being
1504 included in functions which used inline functions and were compiled to
1505 assembly language.) */
1506
1507 /*#define FINALIZE_PIC m32r_finalize_pic ()*/
1508
1509 /* A C expression that is nonzero if X is a legitimate immediate
1510 operand on the target machine when generating position independent code.
1511 You can assume that X satisfies CONSTANT_P, so you need not
1512 check this. You can also assume `flag_pic' is true, so you need not
1513 check it either. You need not define this macro if all constants
1514 (including SYMBOL_REF) can be immediate operands when generating
1515 position independent code. */
1516 /*#define LEGITIMATE_PIC_OPERAND_P(X)*/
1517 \f
1518 /* Control the assembler format that we output. */
1519
1520 /* Output at beginning of assembler file. */
1521 #define ASM_FILE_START(FILE) m32r_asm_file_start (FILE)
1522
1523 /* A C string constant describing how to begin a comment in the target
1524 assembler language. The compiler assumes that the comment will
1525 end at the end of the line. */
1526 #define ASM_COMMENT_START ";"
1527
1528 /* Output to assembler file text saying following lines
1529 may contain character constants, extra white space, comments, etc. */
1530 #define ASM_APP_ON ""
1531
1532 /* Output to assembler file text saying following lines
1533 no longer contain unusual constructs. */
1534 #define ASM_APP_OFF ""
1535
1536 /* Globalizing directive for a label. */
1537 #define GLOBAL_ASM_OP "\t.global\t"
1538
1539 /* If -Os, don't force line number labels to begin at the beginning of
1540 the word; we still want the assembler to try to put things in parallel,
1541 should that be possible.
1542 For m32r/d, instructions are never in parallel (other than with a nop)
1543 and the simulator and stub both handle a breakpoint in the middle of
1544 a word so don't ever force line number labels to begin at the beginning
1545 of a word. */
1546
1547 #undef ASM_OUTPUT_SOURCE_LINE
1548 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
1549 do \
1550 { \
1551 static int sym_lineno = 1; \
1552 fprintf (file, ".stabn 68,0,%d,.LM%d-", \
1553 line, sym_lineno); \
1554 assemble_name \
1555 (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
1556 fprintf (file, (optimize_size || TARGET_M32R) \
1557 ? "\n\t.debugsym .LM%d\n" \
1558 : "\n.LM%d:\n", \
1559 sym_lineno); \
1560 sym_lineno += 1; \
1561 } \
1562 while (0)
1563
1564 /* How to refer to registers in assembler output.
1565 This sequence is indexed by compiler's hard-register-number (see above). */
1566 #ifndef SUBTARGET_REGISTER_NAMES
1567 #define SUBTARGET_REGISTER_NAMES
1568 #endif
1569
1570 #define REGISTER_NAMES \
1571 { \
1572 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1573 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", \
1574 "ap", "cbit", "a0" \
1575 SUBTARGET_REGISTER_NAMES \
1576 }
1577
1578 /* If defined, a C initializer for an array of structures containing
1579 a name and a register number. This macro defines additional names
1580 for hard registers, thus allowing the `asm' option in declarations
1581 to refer to registers using alternate names. */
1582 #ifndef SUBTARGET_ADDITIONAL_REGISTER_NAMES
1583 #define SUBTARGET_ADDITIONAL_REGISTER_NAMES
1584 #endif
1585
1586 #define ADDITIONAL_REGISTER_NAMES \
1587 { \
1588 /*{ "gp", GP_REGNUM },*/ \
1589 { "r13", FRAME_POINTER_REGNUM }, \
1590 { "r14", RETURN_ADDR_REGNUM }, \
1591 { "r15", STACK_POINTER_REGNUM }, \
1592 SUBTARGET_ADDITIONAL_REGISTER_NAMES \
1593 }
1594
1595 /* A C expression which evaluates to true if CODE is a valid
1596 punctuation character for use in the `PRINT_OPERAND' macro. */
1597 extern char m32r_punct_chars[256];
1598 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1599 m32r_punct_chars[(unsigned char) (CHAR)]
1600
1601 /* Print operand X (an rtx) in assembler syntax to file FILE.
1602 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1603 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1604 #define PRINT_OPERAND(FILE, X, CODE) \
1605 m32r_print_operand (FILE, X, CODE)
1606
1607 /* A C compound statement to output to stdio stream STREAM the
1608 assembler syntax for an instruction operand that is a memory
1609 reference whose address is ADDR. ADDR is an RTL expression. */
1610 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1611 m32r_print_operand_address (FILE, ADDR)
1612
1613 /* If defined, C string expressions to be used for the `%R', `%L',
1614 `%U', and `%I' options of `asm_fprintf' (see `final.c'). These
1615 are useful when a single `md' file must support multiple assembler
1616 formats. In that case, the various `tm.h' files can define these
1617 macros differently. */
1618 #define REGISTER_PREFIX ""
1619 #define LOCAL_LABEL_PREFIX ".L"
1620 #define USER_LABEL_PREFIX ""
1621 #define IMMEDIATE_PREFIX "#"
1622
1623 /* This is how to output an element of a case-vector that is absolute. */
1624 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1625 do \
1626 { \
1627 char label[30]; \
1628 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1629 fprintf (FILE, "\t.word\t"); \
1630 assemble_name (FILE, label); \
1631 fprintf (FILE, "\n"); \
1632 } \
1633 while (0)
1634
1635 /* This is how to output an element of a case-vector that is relative. */
1636 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
1637 do \
1638 { \
1639 char label[30]; \
1640 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1641 fprintf (FILE, "\t.word\t"); \
1642 assemble_name (FILE, label); \
1643 fprintf (FILE, "-"); \
1644 ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
1645 assemble_name (FILE, label); \
1646 fprintf (FILE, ")\n"); \
1647 } \
1648 while (0)
1649
1650 /* The desired alignment for the location counter at the beginning
1651 of a loop. */
1652 /* On the M32R, align loops to 32 byte boundaries (cache line size)
1653 if -malign-loops. */
1654 #define LOOP_ALIGN(LABEL) (TARGET_ALIGN_LOOPS ? 5 : 0)
1655
1656 /* Define this to be the maximum number of insns to move around when moving
1657 a loop test from the top of a loop to the bottom
1658 and seeing whether to duplicate it. The default is thirty.
1659
1660 Loop unrolling currently doesn't like this optimization, so
1661 disable doing if we are unrolling loops and saving space. */
1662 #define LOOP_TEST_THRESHOLD (optimize_size \
1663 && !flag_unroll_loops \
1664 && !flag_unroll_all_loops ? 2 : 30)
1665
1666 /* This is how to output an assembler line
1667 that says to advance the location counter
1668 to a multiple of 2**LOG bytes. */
1669 /* .balign is used to avoid confusion. */
1670 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1671 do \
1672 { \
1673 if ((LOG) != 0) \
1674 fprintf (FILE, "\t.balign %d\n", 1 << (LOG)); \
1675 } \
1676 while (0)
1677
1678 /* Like `ASM_OUTPUT_COMMON' except takes the required alignment as a
1679 separate, explicit argument. If you define this macro, it is used in
1680 place of `ASM_OUTPUT_COMMON', and gives you more flexibility in
1681 handling the required alignment of the variable. The alignment is
1682 specified as the number of bits. */
1683
1684 #define SCOMMON_ASM_OP "\t.scomm\t"
1685
1686 #undef ASM_OUTPUT_ALIGNED_COMMON
1687 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1688 do \
1689 { \
1690 extern unsigned HOST_WIDE_INT g_switch_value; \
1691 \
1692 if (! TARGET_SDATA_NONE \
1693 && (SIZE) > 0 && (SIZE) <= g_switch_value) \
1694 fprintf ((FILE), "%s", SCOMMON_ASM_OP); \
1695 else \
1696 fprintf ((FILE), "%s", COMMON_ASM_OP); \
1697 assemble_name ((FILE), (NAME)); \
1698 fprintf ((FILE), ",%u,%u\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\
1699 } \
1700 while (0)
1701
1702 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
1703 separate, explicit argument. If you define this macro, it is used in
1704 place of `ASM_OUTPUT_BSS', and gives you more flexibility in
1705 handling the required alignment of the variable. The alignment is
1706 specified as the number of bits.
1707
1708 For the M32R we need sbss support. */
1709
1710 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1711 do \
1712 { \
1713 ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN); \
1714 } \
1715 while (0)
1716 \f
1717 /* Debugging information. */
1718
1719 /* Generate DBX and DWARF debugging information. */
1720 #define DBX_DEBUGGING_INFO 1
1721 #define DWARF_DEBUGGING_INFO 1
1722 #define DWARF2_DEBUGGING_INFO 1
1723
1724 /* Prefer STABS (for now). */
1725 #undef PREFERRED_DEBUGGING_TYPE
1726 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1727
1728 /* Turn off splitting of long stabs. */
1729 #define DBX_CONTIN_LENGTH 0
1730 \f
1731 /* Miscellaneous. */
1732
1733 /* Specify the machine mode that this machine uses
1734 for the index in the tablejump instruction. */
1735 #define CASE_VECTOR_MODE Pmode
1736
1737 /* Define as C expression which evaluates to nonzero if the tablejump
1738 instruction expects the table to contain offsets from the address of the
1739 table.
1740 Do not define this if the table should contain absolute addresses. */
1741 /* It's not clear what PIC will look like or whether we want to use -fpic
1742 for the embedded form currently being talked about. For now require -fpic
1743 to get pc relative switch tables. */
1744 /*#define CASE_VECTOR_PC_RELATIVE 1 */
1745
1746 /* Define if operations between registers always perform the operation
1747 on the full register even if a narrower mode is specified. */
1748 #define WORD_REGISTER_OPERATIONS
1749
1750 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1751 will either zero-extend or sign-extend. The value of this macro should
1752 be the code that says which one of the two operations is implicitly
1753 done, NIL if none. */
1754 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1755
1756 /* Max number of bytes we can move from memory to memory
1757 in one reasonably fast instruction. */
1758 #define MOVE_MAX 4
1759
1760 /* Define this to be nonzero if shift instructions ignore all but the low-order
1761 few bits. */
1762 #define SHIFT_COUNT_TRUNCATED 1
1763
1764 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1765 is done just by pretending it is already truncated. */
1766 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1767
1768 /* We assume that the store-condition-codes instructions store 0 for false
1769 and some other value for true. This is the value stored for true. */
1770 #define STORE_FLAG_VALUE 1
1771
1772 /* Specify the machine mode that pointers have.
1773 After generation of rtl, the compiler makes no further distinction
1774 between pointers and any other objects of this machine mode. */
1775 /* ??? The M32R doesn't have full 32 bit pointers, but making this PSImode has
1776 it's own problems (you have to add extendpsisi2 and truncsipsi2).
1777 Try to avoid it. */
1778 #define Pmode SImode
1779
1780 /* A function address in a call instruction. */
1781 #define FUNCTION_MODE SImode
1782 \f
1783 /* Define the information needed to generate branch and scc insns. This is
1784 stored from the compare operation. Note that we can't use "rtx" here
1785 since it hasn't been defined! */
1786 extern struct rtx_def * m32r_compare_op0;
1787 extern struct rtx_def * m32r_compare_op1;
1788
1789 /* M32R function types. */
1790 enum m32r_function_type
1791 {
1792 M32R_FUNCTION_UNKNOWN, M32R_FUNCTION_NORMAL, M32R_FUNCTION_INTERRUPT
1793 };
1794
1795 #define M32R_INTERRUPT_P(TYPE) ((TYPE) == M32R_FUNCTION_INTERRUPT)
1796
1797 /* Define this if you have defined special-purpose predicates in the
1798 file `MACHINE.c'. This macro is called within an initializer of an
1799 array of structures. The first field in the structure is the name
1800 of a predicate and the second field is an array of rtl codes. For
1801 each predicate, list all rtl codes that can be in expressions
1802 matched by the predicate. The list should have a trailing comma. */
1803
1804 #define PREDICATE_CODES \
1805 { "reg_or_zero_operand", { REG, SUBREG, CONST_INT }}, \
1806 { "conditional_move_operand", { REG, SUBREG, CONST_INT }}, \
1807 { "carry_compare_operand", { EQ, NE }}, \
1808 { "eqne_comparison_operator", { EQ, NE }}, \
1809 { "signed_comparison_operator", { EQ, NE, LT, LE, GT, GE }}, \
1810 { "move_dest_operand", { REG, SUBREG, MEM }}, \
1811 { "move_src_operand", { REG, SUBREG, MEM, CONST_INT, \
1812 CONST_DOUBLE, LABEL_REF, CONST, \
1813 SYMBOL_REF }}, \
1814 { "move_double_src_operand", { REG, SUBREG, MEM, CONST_INT, \
1815 CONST_DOUBLE }}, \
1816 { "two_insn_const_operand", { CONST_INT }}, \
1817 { "symbolic_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1818 { "seth_add3_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1819 { "int8_operand", { CONST_INT }}, \
1820 { "uint16_operand", { CONST_INT }}, \
1821 { "reg_or_int16_operand", { REG, SUBREG, CONST_INT }}, \
1822 { "reg_or_uint16_operand", { REG, SUBREG, CONST_INT }}, \
1823 { "reg_or_cmp_int16_operand", { REG, SUBREG, CONST_INT }}, \
1824 { "reg_or_eq_int16_operand", { REG, SUBREG, CONST_INT }}, \
1825 { "cmp_int16_operand", { CONST_INT }}, \
1826 { "call_address_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1827 { "extend_operand", { REG, SUBREG, MEM }}, \
1828 { "small_insn_p", { INSN, CALL_INSN, JUMP_INSN }}, \
1829 { "m32r_block_immediate_operand",{ CONST_INT }}, \
1830 { "large_insn_p", { INSN, CALL_INSN, JUMP_INSN }}, \
1831 { "seth_add3_operand", { SYMBOL_REF, LABEL_REF, CONST }},
1832
This page took 0.1321 seconds and 5 git commands to generate.