]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i960/i960.h
alpha-protos.h (alpha_output_mi_thunk_osf): Update signature to match target.h.
[gcc.git] / gcc / config / i960 / i960.h
1 /* Definitions of target machine for GNU compiler, for Intel 80960
2 Copyright (C) 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Steven McGeady, Intel Corp.
5 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
6 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files may include this one and then override
26 many of the definitions that relate to assembler syntax. */
27
28 #define MULTILIB_DEFAULTS { "mnumerics" }
29
30 /* Names to predefine in the preprocessor for this target machine. */
31 #define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu=i960 -Amachine=i960"
32
33 /* Name to predefine in the preprocessor for processor variations.
34 -mic* options make characters signed by default. */
35 #define CPP_SPEC "%{mic*:-D__i960 -fsigned-char\
36 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
37 %{mja:-D__i960JA}%{mjd:-D__i960JD}%{mjf:-D__i960JF}\
38 %{mrp:-D__i960RP}\
39 %{msa:-D__i960SA}%{msb:-D__i960SB}\
40 %{mmc:-D__i960MC}\
41 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
42 %{mcf:-D__i960CF}}\
43 %{msoft-float:-D_SOFT_FLOAT}\
44 %{mka:-D__i960KA__ -D__i960_KA__}\
45 %{mkb:-D__i960KB__ -D__i960_KB__}\
46 %{msa:-D__i960SA__ -D__i960_SA__}\
47 %{msb:-D__i960SB__ -D__i960_SB__}\
48 %{mmc:-D__i960MC__ -D__i960_MC__}\
49 %{mca:-D__i960CA__ -D__i960_CA__}\
50 %{mcc:-D__i960CC__ -D__i960_CC__}\
51 %{mcf:-D__i960CF__ -D__i960_CF__}\
52 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
53 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}\
54 %{mlong-double-64:-D__LONG_DOUBLE_64__}"
55
56 /* Specs for the compiler, to handle processor variations.
57 If the user gives an explicit -gstabs or -gcoff option, then do not
58 try to add an implicit one, as this will fail.
59 -mic* options make characters signed by default. */
60 #define CC1_SPEC \
61 "%{mic*:-fsigned-char}\
62 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-mka}}}}}}}}}}}}\
63 %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
64 %{mcoff:%{g*:-gcoff}}\
65 %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
66
67 /* Specs for the assembler, to handle processor variations.
68 For compatibility with Intel's gnu960 tool chain, pass -A options to
69 the assembler. */
70 #define ASM_SPEC \
71 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
72 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
73 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
74 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-AKB}}}}}}}}}}}}\
75 %{mlink-relax:-linkrelax}"
76
77 /* Specs for the linker, to handle processor variations.
78 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
79 to the linker. */
80 #define LINK_SPEC \
81 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
82 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
83 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
84 %{mbout:-Fbout}%{mcoff:-Fcoff}\
85 %{mlink-relax:-relax}"
86
87 /* Specs for the libraries to link with, to handle processor variations.
88 Compatible with Intel's gnu960 tool chain. */
89 #define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
90 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
91
92 /* Defining the macro shows we can debug even without a frame pointer.
93 Actually, we can debug without FP. But defining the macro results in
94 that -O means FP elimination. Addressing through sp requires
95 negative offset and more one word addressing in the most cases
96 (offsets except for 0-4095 require one more word). Therefore we've
97 not defined the macro. */
98 /*#define CAN_DEBUG_WITHOUT_FP*/
99
100 /* Do leaf procedure and tail call optimizations for -O2 and higher. */
101 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
102 { \
103 if ((LEVEL) >= 2) \
104 { \
105 target_flags |= TARGET_FLAG_LEAFPROC; \
106 target_flags |= TARGET_FLAG_TAILCALL; \
107 } \
108 }
109
110 /* Print subsidiary information on the compiler version in use. */
111 #define TARGET_VERSION fprintf (stderr," (intel 80960)");
112
113 /* Generate DBX debugging information. */
114 #define DBX_DEBUGGING_INFO 1
115
116 /* Generate SDB style debugging information. */
117 #define SDB_DEBUGGING_INFO 1
118 #define EXTENDED_SDB_BASIC_TYPES
119
120 /* Generate DBX_DEBUGGING_INFO by default. */
121 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
122
123 /* Redefine this to print in hex. No value adjustment is necessary
124 anymore. */
125 #define PUT_SDB_TYPE(A) \
126 fprintf (asm_out_file, "\t.type\t0x%x;", A)
127
128 /* Handle pragmas for compatibility with Intel's compilers. */
129
130 extern int i960_maxbitalignment;
131 extern int i960_last_maxbitalignment;
132
133 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
134 cpp_register_pragma (PFILE, 0, "align", i960_pr_align); \
135 cpp_register_pragma (PFILE, 0, "noalign", i960_pr_noalign); \
136 } while (0)
137
138 /* Run-time compilation parameters selecting different hardware subsets. */
139
140 /* 960 architecture with floating-point. */
141 #define TARGET_FLAG_NUMERICS 0x01
142 #define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
143
144 /* 960 architecture with memory management. */
145 /* ??? Not used currently. */
146 #define TARGET_FLAG_PROTECTED 0x02
147 #define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
148
149 /* The following three are mainly used to provide a little sanity checking
150 against the -mARCH flags given. The Jx series, for the purposes of
151 gcc, is a Kx with a data cache. */
152
153 /* Nonzero if we should generate code for the KA and similar processors.
154 No FPU, no microcode instructions. */
155 #define TARGET_FLAG_K_SERIES 0x04
156 #define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
157
158 /* Nonzero if we should generate code for the MC processor.
159 Not really different from KB for our purposes. */
160 #define TARGET_FLAG_MC 0x08
161 #define TARGET_MC (target_flags & TARGET_FLAG_MC)
162
163 /* Nonzero if we should generate code for the CA processor.
164 Enables different optimization strategies. */
165 #define TARGET_FLAG_C_SERIES 0x10
166 #define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
167
168 /* Nonzero if we should generate leaf-procedures when we find them.
169 You may not want to do this because leaf-proc entries are
170 slower when not entered via BAL - this would be true when
171 a linker not supporting the optimization is used. */
172 #define TARGET_FLAG_LEAFPROC 0x20
173 #define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
174
175 /* Nonzero if we should perform tail-call optimizations when we find them.
176 You may not want to do this because the detection of cases where
177 this is not valid is not totally complete. */
178 #define TARGET_FLAG_TAILCALL 0x40
179 #define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
180
181 /* Nonzero if use of a complex addressing mode is a win on this implementation.
182 Complex addressing modes are probably not worthwhile on the K-series,
183 but they definitely are on the C-series. */
184 #define TARGET_FLAG_COMPLEX_ADDR 0x80
185 #define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
186
187 /* Align code to 8 byte boundaries for faster fetching. */
188 #define TARGET_FLAG_CODE_ALIGN 0x100
189 #define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
190
191 /* Append branch prediction suffixes to branch opcodes. */
192 /* ??? Not used currently. */
193 #define TARGET_FLAG_BRANCH_PREDICT 0x200
194 #define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
195
196 /* Forces prototype and return promotions. */
197 /* ??? This does not work. */
198 #define TARGET_FLAG_CLEAN_LINKAGE 0x400
199 #define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
200
201 /* For compatibility with iC960 v3.0. */
202 #define TARGET_FLAG_IC_COMPAT3_0 0x800
203 #define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
204
205 /* For compatibility with iC960 v2.0. */
206 #define TARGET_FLAG_IC_COMPAT2_0 0x1000
207 #define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
208
209 /* If no unaligned accesses are to be permitted. */
210 #define TARGET_FLAG_STRICT_ALIGN 0x2000
211 #define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
212
213 /* For compatibility with iC960 assembler. */
214 #define TARGET_FLAG_ASM_COMPAT 0x4000
215 #define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
216
217 /* For compatibility with the gcc960 v1.2 compiler. Use the old structure
218 alignment rules. Also, turns on STRICT_ALIGNMENT. */
219 #define TARGET_FLAG_OLD_ALIGN 0x8000
220 #define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
221
222 /* Nonzero if long doubles are to be 64 bits. Useful for soft-float targets
223 if 80 bit long double support is missing. */
224 #define TARGET_FLAG_LONG_DOUBLE_64 0x10000
225 #define TARGET_LONG_DOUBLE_64 (target_flags & TARGET_FLAG_LONG_DOUBLE_64)
226
227 extern int target_flags;
228
229 /* Macro to define tables used to set the flags.
230 This is a list in braces of pairs in braces,
231 each pair being { "NAME", VALUE }
232 where VALUE is the bits to set or minus the bits to clear.
233 An empty string NAME is used to identify the default VALUE. */
234
235 /* ??? Not all ten of these architecture variations actually exist, but I
236 am not sure which are real and which aren't. */
237
238 #define TARGET_SWITCHES \
239 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
240 N_("Generate SA code")}, \
241 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
242 TARGET_FLAG_COMPLEX_ADDR), \
243 N_("Generate SB code")}, \
244 /* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
245 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
246 N_("Generate SC code")}, */ \
247 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
248 N_("Generate KA code")}, \
249 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
250 TARGET_FLAG_COMPLEX_ADDR), \
251 N_("Generate KB code")}, \
252 /* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
253 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
254 N_("Generate KC code")}, */ \
255 {"ja", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
256 N_("Generate JA code")}, \
257 {"jd", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
258 N_("Generate JD code")}, \
259 {"jf", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
260 TARGET_FLAG_COMPLEX_ADDR), \
261 N_("Generate JF code")}, \
262 {"rp", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
263 N_("generate RP code")}, \
264 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
265 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
266 N_("Generate MC code")}, \
267 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
268 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
269 N_("Generate CA code")}, \
270 /* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES| \
271 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN),\
272 N_("Generate CB code")}, \
273 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
274 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
275 TARGET_FLAG_CODE_ALIGN), \
276 N_("Generate CC code")}, */ \
277 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
278 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
279 N_("Generate CF code")}, \
280 {"numerics", (TARGET_FLAG_NUMERICS), \
281 N_("Use hardware floating point instructions")}, \
282 {"soft-float", -(TARGET_FLAG_NUMERICS), \
283 N_("Use software floating point")}, \
284 {"leaf-procedures", TARGET_FLAG_LEAFPROC, \
285 N_("Use alternate leaf function entries")}, \
286 {"no-leaf-procedures", -(TARGET_FLAG_LEAFPROC), \
287 N_("Do not use alternate leaf function entries")}, \
288 {"tail-call", TARGET_FLAG_TAILCALL, \
289 N_("Perform tail call optimization")}, \
290 {"no-tail-call", -(TARGET_FLAG_TAILCALL), \
291 N_("Do not perform tail call optimization")}, \
292 {"complex-addr", TARGET_FLAG_COMPLEX_ADDR, \
293 N_("Use complex addressing modes")}, \
294 {"no-complex-addr", -(TARGET_FLAG_COMPLEX_ADDR), \
295 N_("Do not use complex addressing modes")}, \
296 {"code-align", TARGET_FLAG_CODE_ALIGN, \
297 N_("Align code to 8 byte boundary")}, \
298 {"no-code-align", -(TARGET_FLAG_CODE_ALIGN), \
299 N_("Do not align code to 8 byte boundary")}, \
300 /* {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE), \
301 N_("Force use of prototypes")}, \
302 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE), \
303 N_("Do not force use of prototypes")}, */ \
304 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0, \
305 N_("Enable compatibility with iC960 v2.0")}, \
306 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0, \
307 N_("Enable compatibility with iC960 v2.0")}, \
308 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0, \
309 N_("Enable compatibility with iC960 v3.0")}, \
310 {"asm-compat", TARGET_FLAG_ASM_COMPAT, \
311 N_("Enable compatibility with ic960 assembler")}, \
312 {"intel-asm", TARGET_FLAG_ASM_COMPAT, \
313 N_("Enable compatibility with ic960 assembler")}, \
314 {"strict-align", TARGET_FLAG_STRICT_ALIGN, \
315 N_("Do not permit unaligned accesses")}, \
316 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN), \
317 N_("Permit unaligned accesses")}, \
318 {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
319 N_("Layout types like Intel's v1.3 gcc")}, \
320 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
321 N_("Do not layout types like Intel's v1.3 gcc")}, \
322 {"long-double-64", TARGET_FLAG_LONG_DOUBLE_64, \
323 N_("Use 64 bit long doubles")}, \
324 {"link-relax", 0, \
325 N_("Enable linker relaxation")}, \
326 {"no-link-relax", 0, \
327 N_("Do not enable linker relaxation")}, \
328 SUBTARGET_SWITCHES \
329 { "", TARGET_DEFAULT, \
330 NULL}}
331
332 /* This are meant to be redefined in the host dependent files */
333 #define SUBTARGET_SWITCHES
334
335 /* Override conflicting target switch options.
336 Doesn't actually detect if more than one -mARCH option is given, but
337 does handle the case of two blatantly conflicting -mARCH options. */
338 #define OVERRIDE_OPTIONS i960_initialize ()
339
340 /* Don't enable anything by default. The user is expected to supply a -mARCH
341 option. If none is given, then -mka is added by CC1_SPEC. */
342 #define TARGET_DEFAULT 0
343 \f
344 /* Target machine storage layout. */
345
346 /* Define this if most significant bit is lowest numbered
347 in instructions that operate on numbered bit-fields. */
348 #define BITS_BIG_ENDIAN 0
349
350 /* Define this if most significant byte of a word is the lowest numbered.
351 The i960 case be either big endian or little endian. We only support
352 little endian, which is the most common. */
353 #define BYTES_BIG_ENDIAN 0
354
355 /* Define this if most significant word of a multiword number is lowest
356 numbered. */
357 #define WORDS_BIG_ENDIAN 0
358
359 /* Bitfields cannot cross word boundaries. */
360 #define BITFIELD_NBYTES_LIMITED 1
361
362 /* Width of a word, in units (bytes). */
363 #define UNITS_PER_WORD 4
364
365 /* Width in bits of a long double. */
366 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 128)
367 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
368
369 /* Define this to set long double type size to use in libgcc2.c, which can
370 not depend on target_flags. */
371 #if defined(__LONG_DOUBLE_64__)
372 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
373 #else
374 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
375 #endif
376
377 /* Allocation boundary (in *bits*) for storing pointers in memory. */
378 #define POINTER_BOUNDARY 32
379
380 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
381 #define PARM_BOUNDARY 32
382
383 /* Boundary (in *bits*) on which stack pointer should be aligned. */
384 #define STACK_BOUNDARY 128
385
386 /* Allocation boundary (in *bits*) for the code of a function. */
387 #define FUNCTION_BOUNDARY 128
388
389 /* Alignment of field after `int : 0' in a structure. */
390 #define EMPTY_FIELD_BOUNDARY 32
391
392 /* This makes zero-length anonymous fields lay the next field
393 at a word boundary. It also makes the whole struct have
394 at least word alignment if there are any bitfields at all. */
395 #define PCC_BITFIELD_TYPE_MATTERS 1
396
397 /* Every structure's size must be a multiple of this. */
398 #define STRUCTURE_SIZE_BOUNDARY 8
399
400 /* No data type wants to be aligned rounder than this.
401 Extended precision floats gets 4-word alignment. */
402 #define BIGGEST_ALIGNMENT 128
403
404 /* Define this if move instructions will actually fail to work
405 when given unaligned data.
406 80960 will work even with unaligned data, but it is slow. */
407 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
408
409 /* Specify alignment for string literals (which might be higher than the
410 base type's minimal alignment requirement. This allows strings to be
411 aligned on word boundaries, and optimizes calls to the str* and mem*
412 library functions. */
413 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
414 (TREE_CODE (EXP) == STRING_CST \
415 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
416 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
417 : (ALIGN))
418
419 /* Macros to determine size of aggregates (structures and unions
420 in C). Normally, these may be defined to simply return the maximum
421 alignment and simple rounded-up size, but on some machines (like
422 the i960), the total size of a structure is based on a non-trivial
423 rounding method. */
424
425 #define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
426 i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE)
427 \f
428 /* Standard register usage. */
429
430 /* Number of actual hardware registers.
431 The hardware registers are assigned numbers for the compiler
432 from 0 to just below FIRST_PSEUDO_REGISTER.
433 All registers that the compiler knows about must be given numbers,
434 even those that are not normally considered general registers.
435
436 Registers 0-15 are the global registers (g0-g15).
437 Registers 16-31 are the local registers (r0-r15).
438 Register 32-35 are the fp registers (fp0-fp3).
439 Register 36 is the condition code register.
440 Register 37 is unused. */
441
442 #define FIRST_PSEUDO_REGISTER 38
443
444 /* 1 for registers that have pervasive standard uses and are not available
445 for the register allocator. On 80960, this includes the frame pointer
446 (g15), the previous FP (r0), the stack pointer (r1), the return
447 instruction pointer (r2), and the argument pointer (g14). */
448 #define FIXED_REGISTERS \
449 {0, 0, 0, 0, 0, 0, 0, 0, \
450 0, 0, 0, 0, 0, 0, 1, 1, \
451 1, 1, 1, 0, 0, 0, 0, 0, \
452 0, 0, 0, 0, 0, 0, 0, 0, \
453 0, 0, 0, 0, 1, 1}
454
455 /* 1 for registers not available across function calls.
456 These must include the FIXED_REGISTERS and also any
457 registers that can be used without being saved.
458 The latter must include the registers where values are returned
459 and the register where structure-value addresses are passed.
460 Aside from that, you can include as many other registers as you like. */
461
462 /* On the 80960, note that:
463 g0..g3 are used for return values,
464 g0..g7 may always be used for parameters,
465 g8..g11 may be used for parameters, but are preserved if they aren't,
466 g12 is the static chain if needed, otherwise is preserved
467 g13 is the struct return ptr if used, or temp, but may be trashed,
468 g14 is the leaf return ptr or the arg block ptr otherwise zero,
469 must be reset to zero before returning if it was used,
470 g15 is the frame pointer,
471 r0 is the previous FP,
472 r1 is the stack pointer,
473 r2 is the return instruction pointer,
474 r3-r15 are always available,
475 r3 is clobbered by calls in functions that use the arg pointer
476 r4-r11 may be clobbered by the mcount call when profiling
477 r4-r15 if otherwise unused may be used for preserving global registers
478 fp0..fp3 are never available. */
479 #define CALL_USED_REGISTERS \
480 {1, 1, 1, 1, 1, 1, 1, 1, \
481 0, 0, 0, 0, 0, 1, 1, 1, \
482 1, 1, 1, 0, 0, 0, 0, 0, \
483 0, 0, 0, 0, 0, 0, 0, 0, \
484 1, 1, 1, 1, 1, 1}
485
486 /* If no fp unit, make all of the fp registers fixed so that they can't
487 be used. */
488 #define CONDITIONAL_REGISTER_USAGE \
489 if (! TARGET_NUMERICS) { \
490 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
491 } \
492
493 /* Return number of consecutive hard regs needed starting at reg REGNO
494 to hold something of mode MODE.
495 This is ordinarily the length in words of a value of mode MODE
496 but can be less for certain modes in special long registers.
497
498 On 80960, ordinary registers hold 32 bits worth, but can be ganged
499 together to hold double or extended precision floating point numbers,
500 and the floating point registers hold any size floating point number */
501 #define HARD_REGNO_NREGS(REGNO, MODE) \
502 ((REGNO) < 32 \
503 ? (((MODE) == VOIDmode) \
504 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
505 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
506
507 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
508 On 80960, the cpu registers can hold any mode but the float registers
509 can only hold SFmode, DFmode, or TFmode. */
510 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok ((REGNO), (MODE))
511
512 /* Value is 1 if it is a good idea to tie two pseudo registers
513 when one has mode MODE1 and one has mode MODE2.
514 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
515 for any hard reg, then this must be 0 for correct output. */
516
517 #define MODES_TIEABLE_P(MODE1, MODE2) \
518 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
519
520 /* Specify the registers used for certain standard purposes.
521 The values of these macros are register numbers. */
522
523 /* 80960 pc isn't overloaded on a register that the compiler knows about. */
524 /* #define PC_REGNUM */
525
526 /* Register to use for pushing function arguments. */
527 #define STACK_POINTER_REGNUM 17
528
529 /* Actual top-of-stack address is same as
530 the contents of the stack pointer register. */
531 #define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
532
533 /* Base register for access to local variables of the function. */
534 #define FRAME_POINTER_REGNUM 15
535
536 /* Value should be nonzero if functions must have frame pointers.
537 Zero means the frame pointer need not be set up (and parms
538 may be accessed via the stack pointer) in functions that seem suitable.
539 This is computed in `reload', in reload1.c. */
540 /* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
541 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
542 caused this to fail. */
543 /* ??? Must check current_function_has_nonlocal_goto, otherwise frame pointer
544 elimination messes up nonlocal goto sequences. I think this works for other
545 targets because they use indirect jumps for the return which disables fp
546 elimination. */
547 #define FRAME_POINTER_REQUIRED \
548 (! leaf_function_p () || current_function_has_nonlocal_goto)
549
550 /* Definitions for register eliminations.
551
552 This is an array of structures. Each structure initializes one pair
553 of eliminable registers. The "from" register number is given first,
554 followed by "to". Eliminations of the same "from" register are listed
555 in order of preference.. */
556
557 #define ELIMINABLE_REGS {{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
558
559 /* Given FROM and TO register numbers, say whether this elimination is allowed.
560 Frame pointer elimination is automatically handled. */
561 #define CAN_ELIMINATE(FROM, TO) 1
562
563 /* Define the offset between two registers, one to be eliminated, and
564 the other its replacement, at the start of a routine.
565
566 Since the stack grows upward on the i960, this must be a negative number.
567 This includes the 64 byte hardware register save area and the size of
568 the frame. */
569
570 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
571 do { (OFFSET) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
572
573 /* Base register for access to arguments of the function. */
574 #define ARG_POINTER_REGNUM 14
575
576 /* Register in which static-chain is passed to a function.
577 On i960, we use g12. We can't use any local register, because we need
578 a register that can be set before a call or before a jump. */
579 #define STATIC_CHAIN_REGNUM 12
580
581 /* Functions which return large structures get the address
582 to place the wanted value at in g13. */
583
584 #define STRUCT_VALUE_REGNUM 13
585
586 /* The order in which to allocate registers. */
587
588 #define REG_ALLOC_ORDER \
589 { 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
590 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
591 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
592 11, 12, /* g11, g12 */ \
593 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
594 /* We can't actually allocate these. */ \
595 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
596 \f
597 /* Define the classes of registers for register constraints in the
598 machine description. Also define ranges of constants.
599
600 One of the classes must always be named ALL_REGS and include all hard regs.
601 If there is more than one class, another class must be named NO_REGS
602 and contain no registers.
603
604 The name GENERAL_REGS must be the name of a class (or an alias for
605 another name such as ALL_REGS). This is the class of registers
606 that is allowed by "g" or "r" in a register constraint.
607 Also, registers outside this class are allocated only when
608 instructions express preferences for them.
609
610 The classes must be numbered in nondecreasing order; that is,
611 a larger-numbered class must never be contained completely
612 in a smaller-numbered class.
613
614 For any two classes, it is very desirable that there be another
615 class that represents their union. */
616
617 /* The 80960 has four kinds of registers, global, local, floating point,
618 and condition code. The cc register is never allocated, so no class
619 needs to be defined for it. */
620
621 enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
622 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
623
624 /* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
625 does. */
626 #define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
627
628 #define N_REG_CLASSES (int) LIM_REG_CLASSES
629
630 /* Give names of register classes as strings for dump file. */
631
632 #define REG_CLASS_NAMES \
633 { "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
634 "FP_REGS", "ALL_REGS" }
635
636 /* Define which registers fit in which classes.
637 This is an initializer for a vector of HARD_REG_SET
638 of length N_REG_CLASSES. */
639
640 #define REG_CLASS_CONTENTS \
641 { {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
642
643 /* The same information, inverted:
644 Return the class number of the smallest class containing
645 reg number REGNO. This could be a conditional expression
646 or could index an array. */
647
648 #define REGNO_REG_CLASS(REGNO) \
649 ((REGNO) < 16 ? GLOBAL_REGS \
650 : (REGNO) < 32 ? LOCAL_REGS \
651 : (REGNO) < 36 ? FP_REGS \
652 : NO_REGS)
653
654 /* The class value for index registers, and the one for base regs.
655 There is currently no difference between base and index registers on the
656 i960, but this distinction may one day be useful. */
657 #define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
658 #define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
659
660 /* Get reg_class from a letter such as appears in the machine description.
661 'f' is a floating point register (fp0..fp3)
662 'l' is a local register (r0-r15)
663 'b' is a global register (g0-g15)
664 'd' is any local or global register
665 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
666 /* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
667 the same thing, since 'r' may include the fp registers. */
668 #define REG_CLASS_FROM_LETTER(C) \
669 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
670 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
671
672 /* The letters I, J, K, L and M in a register constraint string
673 can be used to stand for particular ranges of immediate operands.
674 This macro defines what the ranges are.
675 C is the letter, and VALUE is a constant value.
676 Return 1 if VALUE is in the range specified by C.
677
678 For 80960:
679 'I' is used for literal values 0..31
680 'J' means literal 0
681 'K' means 0..-31. */
682
683 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
684 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
685 : (C) == 'J' ? ((VALUE) == 0) \
686 : (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
687 : (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
688 : 0)
689
690 /* Similar, but for floating constants, and defining letters G and H.
691 Here VALUE is the CONST_DOUBLE rtx itself.
692 For the 80960, G is 0.0 and H is 1.0. */
693
694 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
695 ((TARGET_NUMERICS) && \
696 (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
697 || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
698
699 /* Given an rtx X being reloaded into a reg required to be
700 in class CLASS, return the class of reg to actually use.
701 In general this is just CLASS; but on some machines
702 in some cases it is preferable to use a more restrictive class. */
703
704 /* On 960, can't load constant into floating-point reg except
705 0.0 or 1.0.
706
707 Any hard reg is ok as a src operand of a reload insn. */
708
709 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
710 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
711 ? (CLASS) \
712 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
713 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
714 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
715 ? NO_REGS \
716 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
717
718 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
719 secondary_reload_class (CLASS, MODE, IN)
720
721 /* Return the maximum number of consecutive registers
722 needed to represent mode MODE in a register of class CLASS. */
723 /* On 80960, this is the size of MODE in words,
724 except in the FP regs, where a single reg is always enough. */
725 #define CLASS_MAX_NREGS(CLASS, MODE) \
726 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
727 \f
728 /* Stack layout; function entry, exit and calling. */
729
730 /* Define this if pushing a word on the stack
731 makes the stack pointer a smaller address. */
732 /* #define STACK_GROWS_DOWNWARD */
733
734 /* Define this if the nominal address of the stack frame
735 is at the high-address end of the local variables;
736 that is, each additional local variable allocated
737 goes at a more negative offset in the frame. */
738 /* #define FRAME_GROWS_DOWNWARD */
739
740 /* Offset within stack frame to start allocating local variables at.
741 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
742 first local allocated. Otherwise, it is the offset to the BEGINNING
743 of the first local allocated.
744
745 The i960 has a 64 byte register save area, plus possibly some extra
746 bytes allocated for varargs functions. */
747 #define STARTING_FRAME_OFFSET 64
748
749 /* If we generate an insn to push BYTES bytes,
750 this says how many the stack pointer really advances by.
751 On 80960, don't define this because there are no push insns. */
752 /* #define PUSH_ROUNDING(BYTES) BYTES */
753
754 /* Offset of first parameter from the argument pointer register value. */
755 #define FIRST_PARM_OFFSET(FNDECL) 0
756
757 /* When a parameter is passed in a register, no stack space is
758 allocated for it. However, when args are passed in the
759 stack, space is allocated for every register parameter. */
760 #define MAYBE_REG_PARM_STACK_SPACE 48
761 #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
762 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
763 #define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
764 #define OUTGOING_REG_PARM_STACK_SPACE
765
766 /* Keep the stack pointer constant throughout the function. */
767 #define ACCUMULATE_OUTGOING_ARGS 1
768
769 /* Value is 1 if returning from a function call automatically
770 pops the arguments described by the number-of-args field in the call.
771 FUNDECL is the declaration node of the function (as a tree),
772 FUNTYPE is the data type of the function (as a tree),
773 or for a library call it is an identifier node for the subroutine name. */
774
775 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
776
777 /* Define how to find the value returned by a library function
778 assuming the value has mode MODE. */
779
780 #define LIBCALL_VALUE(MODE) gen_rtx_REG ((MODE), 0)
781
782 /* 1 if N is a possible register number for a function value
783 as seen by the caller.
784 On 80960, returns are in g0..g3 */
785
786 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
787
788 /* 1 if N is a possible register number for function argument passing.
789 On 80960, parameters are passed in g0..g11 */
790
791 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
792
793 /* Perform any needed actions needed for a function that is receiving a
794 variable number of arguments.
795
796 CUM is as above.
797
798 MODE and TYPE are the mode and type of the current parameter.
799
800 PRETEND_SIZE is a variable that should be set to the amount of stack
801 that must be pushed by the prolog to pretend that our caller pushed
802 it.
803
804 Normally, this macro will push all remaining incoming registers on the
805 stack and set PRETEND_SIZE to the length of the registers pushed. */
806
807 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
808 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
809
810 /* Define the `__builtin_va_list' type for the ABI. */
811 #define BUILD_VA_LIST_TYPE(VALIST) \
812 (VALIST) = i960_build_va_list ()
813
814 /* Implement `va_start' for varargs and stdarg. */
815 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
816 i960_va_start (valist, nextarg)
817
818 /* Implement `va_arg'. */
819 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
820 i960_va_arg (valist, type)
821 \f
822 /* Define a data type for recording info about an argument list
823 during the scan of that argument list. This data type should
824 hold all necessary information about the function itself
825 and about the args processed so far, enough to enable macros
826 such as FUNCTION_ARG to determine where the next arg should go.
827
828 On 80960, this is two integers, which count the number of register
829 parameters and the number of stack parameters seen so far. */
830
831 struct cum_args { int ca_nregparms; int ca_nstackparms; };
832
833 #define CUMULATIVE_ARGS struct cum_args
834
835 /* Define the number of registers that can hold parameters.
836 This macro is used only in macro definitions below and/or i960.c. */
837 #define NPARM_REGS 12
838
839 /* Define how to round to the next parameter boundary.
840 This macro is used only in macro definitions below and/or i960.c. */
841 #define ROUND_PARM(X, MULTIPLE_OF) \
842 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
843
844 /* Initialize a variable CUM of type CUMULATIVE_ARGS
845 for a call to a function whose data type is FNTYPE.
846 For a library call, FNTYPE is 0.
847
848 On 80960, the offset always starts at 0; the first parm reg is g0. */
849
850 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
851 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
852
853 /* Update the data in CUM to advance over an argument
854 of mode MODE and data type TYPE.
855 CUM should be advanced to align with the data type accessed and
856 also the size of that data type in # of regs.
857 (TYPE is null for libcalls where that information may not be available.) */
858
859 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
860 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
861
862 /* Indicate the alignment boundary for an argument of the specified mode and
863 type. */
864 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
865 (((TYPE) != 0) \
866 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
867 ? PARM_BOUNDARY \
868 : TYPE_ALIGN (TYPE)) \
869 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
870 ? PARM_BOUNDARY \
871 : GET_MODE_ALIGNMENT (MODE)))
872
873 /* Determine where to put an argument to a function.
874 Value is zero to push the argument on the stack,
875 or a hard register in which to store the argument.
876
877 MODE is the argument's machine mode.
878 TYPE is the data type of the argument (as a tree).
879 This is null for libcalls where that information may
880 not be available.
881 CUM is a variable of type CUMULATIVE_ARGS which gives info about
882 the preceding args and about the function being called.
883 NAMED is nonzero if this argument is a named parameter
884 (otherwise it is an extra parameter matching an ellipsis). */
885
886 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
887 i960_function_arg(&CUM, MODE, TYPE, NAMED)
888
889 /* Define how to find the value returned by a function.
890 VALTYPE is the data type of the value (as a tree).
891 If the precise function being called is known, FUNC is its FUNCTION_DECL;
892 otherwise, FUNC is 0. */
893
894 #define FUNCTION_VALUE(TYPE, FUNC) \
895 gen_rtx_REG (TYPE_MODE (TYPE), 0)
896
897 /* Force aggregates and objects larger than 16 bytes to be returned in memory,
898 since we only have 4 registers available for return values. */
899
900 #define RETURN_IN_MEMORY(TYPE) \
901 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
902
903 /* Don't default to pcc-struct-return, because we have already specified
904 exactly how to return structures in the RETURN_IN_MEMORY macro. */
905 #define DEFAULT_PCC_STRUCT_RETURN 0
906
907 /* For an arg passed partly in registers and partly in memory,
908 this is the number of registers used.
909 This never happens on 80960. */
910
911 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
912 \f
913 /* Output the label for a function definition.
914 This handles leaf functions and a few other things for the i960. */
915
916 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
917 i960_function_name_declare (FILE, NAME, DECL)
918
919 /* Output assembler code to FILE to increment profiler label # LABELNO
920 for profiling a function entry. */
921
922 #define FUNCTION_PROFILER(FILE, LABELNO) \
923 output_function_profiler ((FILE), (LABELNO));
924
925 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
926 the stack pointer does not matter. The value is tested only in
927 functions that have frame pointers.
928 No definition is equivalent to always zero. */
929
930 #define EXIT_IGNORE_STACK 1
931 \f
932 /* Addressing modes, and classification of registers for them. */
933
934 /* #define HAVE_POST_INCREMENT 0 */
935 /* #define HAVE_POST_DECREMENT 0 */
936
937 /* #define HAVE_PRE_DECREMENT 0 */
938 /* #define HAVE_PRE_INCREMENT 0 */
939
940 /* Macros to check register numbers against specific register classes. */
941
942 /* These assume that REGNO is a hard or pseudo reg number.
943 They give nonzero only if REGNO is a hard reg of the suitable class
944 or a pseudo reg currently allocated to a suitable hard reg.
945 Since they use reg_renumber, they are safe only once reg_renumber
946 has been allocated, which happens in local-alloc.c. */
947
948 #define REGNO_OK_FOR_INDEX_P(REGNO) \
949 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
950 #define REGNO_OK_FOR_BASE_P(REGNO) \
951 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
952 #define REGNO_OK_FOR_FP_P(REGNO) \
953 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
954
955 /* Now macros that check whether X is a register and also,
956 strictly, whether it is in a specified class.
957
958 These macros are specific to the 960, and may be used only
959 in code for printing assembler insns and in conditions for
960 define_optimization. */
961
962 /* 1 if X is an fp register. */
963
964 #define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
965
966 /* Maximum number of registers that can appear in a valid memory address. */
967 #define MAX_REGS_PER_ADDRESS 2
968
969 #define CONSTANT_ADDRESS_P(X) \
970 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
971 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
972 || GET_CODE (X) == HIGH)
973
974 /* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
975 is a legitimate general operand.
976 It is given that X satisfies CONSTANT_P.
977
978 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
979
980 ??? This probably should be defined to 1. */
981
982 #define LEGITIMATE_CONSTANT_P(X) \
983 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
984
985 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
986 and check its validity for a certain class.
987 We have two alternate definitions for each of them.
988 The usual definition accepts all pseudo regs; the other rejects
989 them unless they have been allocated suitable hard regs.
990 The symbol REG_OK_STRICT causes the latter definition to be used.
991
992 Most source files want to accept pseudo regs in the hope that
993 they will get allocated to the class that the insn wants them to be in.
994 Source files for reload pass need to be strict.
995 After reload, it makes no difference, since pseudo regs have
996 been eliminated by then. */
997
998 #ifndef REG_OK_STRICT
999
1000 /* Nonzero if X is a hard reg that can be used as an index
1001 or if it is a pseudo reg. */
1002 #define REG_OK_FOR_INDEX_P(X) \
1003 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1004 /* Nonzero if X is a hard reg that can be used as a base reg
1005 or if it is a pseudo reg. */
1006 #define REG_OK_FOR_BASE_P(X) \
1007 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1008
1009 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1010 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1011
1012 #else
1013
1014 /* Nonzero if X is a hard reg that can be used as an index. */
1015 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1016 /* Nonzero if X is a hard reg that can be used as a base reg. */
1017 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1018
1019 #endif
1020 \f
1021 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1022 that is a valid memory address for an instruction.
1023 The MODE argument is the machine mode for the MEM expression
1024 that wants to use this address.
1025
1026 On 80960, legitimate addresses are:
1027 base ld (g0),r0
1028 disp (12 or 32 bit) ld foo,r0
1029 base + index ld (g0)[g1*1],r0
1030 base + displ ld 0xf00(g0),r0
1031 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
1032 index*scale + base ld (g0)[g1*4],r0
1033 index*scale + displ ld 0xf00[g1*4],r0
1034 index*scale ld [g1*4],r0
1035 index + base + displ ld 0xf00(g0)[g1*1],r0
1036
1037 In each case, scale can be 1, 2, 4, 8, or 16. */
1038
1039 /* Returns 1 if the scale factor of an index term is valid. */
1040 #define SCALE_TERM_P(X) \
1041 (GET_CODE (X) == CONST_INT \
1042 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1043 || INTVAL(X) == 8 || INTVAL (X) == 16))
1044
1045
1046 #ifdef REG_OK_STRICT
1047 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1048 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1049 #else
1050 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1051 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1052 #endif
1053 \f
1054 /* Try machine-dependent ways of modifying an illegitimate address
1055 to be legitimate. If we find one, return the new, valid address.
1056 This macro is used in only one place: `memory_address' in explow.c.
1057
1058 OLDX is the address as it was before break_out_memory_refs was called.
1059 In some cases it is useful to look at this to decide what needs to be done.
1060
1061 MODE and WIN are passed so that this macro can use
1062 GO_IF_LEGITIMATE_ADDRESS.
1063
1064 It is always safe for this macro to do nothing. It exists to recognize
1065 opportunities to optimize the output. */
1066
1067 /* On 80960, convert non-canonical addresses to canonical form. */
1068
1069 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1070 { rtx orig_x = (X); \
1071 (X) = legitimize_address (X, OLDX, MODE); \
1072 if ((X) != orig_x && memory_address_p (MODE, X)) \
1073 goto WIN; }
1074
1075 /* Go to LABEL if ADDR (a legitimate address expression)
1076 has an effect that depends on the machine mode it is used for.
1077 On the 960 this is never true. */
1078
1079 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1080 \f
1081 /* Specify the machine mode that this machine uses
1082 for the index in the tablejump instruction. */
1083 #define CASE_VECTOR_MODE SImode
1084
1085 /* Define as C expression which evaluates to nonzero if the tablejump
1086 instruction expects the table to contain offsets from the address of the
1087 table.
1088 Do not define this if the table should contain absolute addresses. */
1089 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1090
1091 /* Define this as 1 if `char' should by default be signed; else as 0. */
1092 #define DEFAULT_SIGNED_CHAR 0
1093
1094 /* Max number of bytes we can move from memory to memory
1095 in one reasonably fast instruction. */
1096 #define MOVE_MAX 16
1097
1098 /* Define if operations between registers always perform the operation
1099 on the full register even if a narrower mode is specified. */
1100 #define WORD_REGISTER_OPERATIONS
1101
1102 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1103 will either zero-extend or sign-extend. The value of this macro should
1104 be the code that says which one of the two operations is implicitly
1105 done, NIL if none. */
1106 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1107
1108 /* Nonzero if access to memory by bytes is no faster than for words.
1109 Value changed to 1 after reports of poor bit-field code with g++.
1110 Indications are that code is usually as good, sometimes better. */
1111
1112 #define SLOW_BYTE_ACCESS 1
1113
1114 /* We assume that the store-condition-codes instructions store 0 for false
1115 and some other value for true. This is the value stored for true. */
1116
1117 #define STORE_FLAG_VALUE 1
1118
1119 /* Define this to be nonzero if shift instructions ignore all but the low-order
1120 few bits. */
1121 #define SHIFT_COUNT_TRUNCATED 0
1122
1123 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1124 is done just by pretending it is already truncated. */
1125 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1126
1127 /* Specify the machine mode that pointers have.
1128 After generation of rtl, the compiler makes no further distinction
1129 between pointers and any other objects of this machine mode. */
1130 #define Pmode SImode
1131
1132 /* Specify the widest mode that BLKmode objects can be promoted to */
1133 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1134 \f
1135 /* These global variables are used to pass information between
1136 cc setter and cc user at insn emit time. */
1137
1138 extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1139
1140 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1141 return the mode to be used for the comparison. For floating-point, CCFPmode
1142 should be used. CC_NOOVmode should be used when the first operand is a
1143 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1144 needed. */
1145 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
1146
1147 /* A function address in a call instruction is a byte address
1148 (for indexing purposes) so give the MEM rtx a byte's mode. */
1149 #define FUNCTION_MODE SImode
1150
1151 /* Define this if addresses of constant functions
1152 shouldn't be put through pseudo regs where they can be cse'd.
1153 Desirable on machines where ordinary constants are expensive
1154 but a CALL with constant address is cheap. */
1155 #define NO_FUNCTION_CSE
1156
1157 /* Use memcpy, etc. instead of bcopy. */
1158
1159 #ifndef WIND_RIVER
1160 #define TARGET_MEM_FUNCTIONS 1
1161 #endif
1162
1163 /* Compute the cost of computing a constant rtl expression RTX
1164 whose rtx-code is CODE. The body of this macro is a portion
1165 of a switch statement. If the code is computed here,
1166 return it with a return statement. Otherwise, break from the switch. */
1167
1168 /* Constants that can be (non-ldconst) insn operands are cost 0. Constants
1169 that can be non-ldconst operands in rare cases are cost 1. Other constants
1170 have higher costs. */
1171
1172 /* Must check for OUTER_CODE of SET for power2_operand, because
1173 reload_cse_move2add calls us with OUTER_CODE of PLUS to decide when
1174 to replace set with add. */
1175
1176 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1177 case CONST_INT: \
1178 if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
1179 || (OUTER_CODE == SET && power2_operand (RTX, VOIDmode))) \
1180 return 0; \
1181 else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
1182 return 1; \
1183 case CONST: \
1184 case LABEL_REF: \
1185 case SYMBOL_REF: \
1186 return (TARGET_C_SERIES ? 6 : 8); \
1187 case CONST_DOUBLE: \
1188 if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
1189 || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
1190 return 1; \
1191 return 12;
1192
1193 /* The i960 offers addressing modes which are "as cheap as a register".
1194 See i960.c (or gcc.texinfo) for details. */
1195
1196 #define ADDRESS_COST(RTX) \
1197 (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
1198 \f
1199 /* Control the assembler format that we output. */
1200
1201 /* Output at beginning of assembler file. */
1202
1203 #define ASM_FILE_START(file)
1204
1205 /* Output to assembler file text saying following lines
1206 may contain character constants, extra white space, comments, etc. */
1207
1208 #define ASM_APP_ON ""
1209
1210 /* Output to assembler file text saying following lines
1211 no longer contain unusual constructs. */
1212
1213 #define ASM_APP_OFF ""
1214
1215 /* Output before read-only data. */
1216
1217 #define TEXT_SECTION_ASM_OP "\t.text"
1218
1219 /* Output before writable data. */
1220
1221 #define DATA_SECTION_ASM_OP "\t.data"
1222
1223 /* How to refer to registers in assembler output.
1224 This sequence is indexed by compiler's hard-register-number (see above). */
1225
1226 #define REGISTER_NAMES { \
1227 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1228 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1229 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1230 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1231 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1232
1233 /* How to renumber registers for dbx and gdb.
1234 In the 960 encoding, g0..g15 are registers 16..31. */
1235
1236 #define DBX_REGISTER_NUMBER(REGNO) \
1237 (((REGNO) < 16) ? (REGNO) + 16 \
1238 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1239
1240 /* Don't emit dbx records longer than this. This is an arbitrary value. */
1241 #define DBX_CONTIN_LENGTH 1500
1242
1243 /* This is how to output a note to DBX telling it the line number
1244 to which the following sequence of instructions corresponds. */
1245
1246 #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1247 { if (write_symbols == SDB_DEBUG) { \
1248 fprintf ((FILE), "\t.ln %d\n", \
1249 (sdb_begin_function_line \
1250 ? (LINE) - sdb_begin_function_line : 1)); \
1251 } else if (write_symbols == DBX_DEBUG) { \
1252 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1253 } }
1254
1255 /* Globalizing directive for a label. */
1256 #define GLOBAL_ASM_OP "\t.globl "
1257
1258 /* The prefix to add to user-visible assembler symbols. */
1259
1260 #define USER_LABEL_PREFIX "_"
1261
1262 /* This is how to output an internal numbered label where
1263 PREFIX is the class of label and NUM is the number within the class. */
1264
1265 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1266 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1267
1268 /* This is how to store into the string LABEL
1269 the symbol_ref name of an internal numbered label where
1270 PREFIX is the class of label and NUM is the number within the class.
1271 This is suitable for output with `assemble_name'. */
1272
1273 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1274 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1275
1276 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1277 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1278
1279 /* This is how to output an insn to pop a register from the stack.
1280 It need not be very fast code. */
1281
1282 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1283 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1284
1285 /* This is how to output an element of a case-vector that is absolute. */
1286
1287 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1288 fprintf (FILE, "\t.word L%d\n", VALUE)
1289
1290 /* This is how to output an element of a case-vector that is relative. */
1291
1292 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1293 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1294
1295 /* This is how to output an assembler line that says to advance the
1296 location counter to a multiple of 2**LOG bytes. */
1297
1298 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1299 fprintf (FILE, "\t.align %d\n", (LOG))
1300
1301 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1302 fprintf (FILE, "\t.space %d\n", (SIZE))
1303
1304 /* This says how to output an assembler line
1305 to define a global common symbol. */
1306
1307 /* For common objects, output unpadded size... gld960 & lnk960 both
1308 have code to align each common object at link time. Also, if size
1309 is 0, treat this as a declaration, not a definition - i.e.,
1310 do nothing at all. */
1311
1312 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1313 { if ((SIZE) != 0) \
1314 { \
1315 fputs (".globl ", (FILE)), \
1316 assemble_name ((FILE), (NAME)), \
1317 fputs ("\n.comm ", (FILE)), \
1318 assemble_name ((FILE), (NAME)), \
1319 fprintf ((FILE), ",%d\n", (SIZE)); \
1320 } \
1321 }
1322
1323 /* This says how to output an assembler line to define a local common symbol.
1324 Output unpadded size, with request to linker to align as requested.
1325 0 size should not be possible here. */
1326
1327 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1328 ( fputs (".bss\t", (FILE)), \
1329 assemble_name ((FILE), (NAME)), \
1330 fprintf ((FILE), ",%d,%d\n", (SIZE), \
1331 (floor_log2 ((ALIGN) / BITS_PER_UNIT))))
1332
1333 /* A C statement (sans semicolon) to output to the stdio stream
1334 FILE the assembler definition of uninitialized global DECL named
1335 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1336 Try to use asm_output_aligned_bss to implement this macro. */
1337
1338 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1339 do { \
1340 fputs (".globl ", (FILE)); \
1341 assemble_name ((FILE), (NAME)); \
1342 fputs ("\n", (FILE)); \
1343 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1344 } while (0)
1345
1346 /* Output text for an #ident directive. */
1347 #define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1348
1349 /* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1350
1351 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_CODE_ALIGN ? 3 : 0)
1352
1353 /* Store in OUTPUT a string (made with alloca) containing
1354 an assembler-name for a local static variable named NAME.
1355 LABELNO is an integer which is different for each call. */
1356
1357 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1358 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1359 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1360 \f
1361 /* Print operand X (an rtx) in assembler syntax to file FILE.
1362 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1363 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1364
1365 #define PRINT_OPERAND(FILE, X, CODE) \
1366 i960_print_operand (FILE, X, CODE);
1367
1368 /* Print a memory address as an operand to reference that memory location. */
1369
1370 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1371 i960_print_operand_addr (FILE, ADDR)
1372
1373 /* Determine which codes are valid without a following integer. These must
1374 not be alphabetic (the characters are chosen so that
1375 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
1376 using ASCII). */
1377
1378 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '+')
1379 \f
1380 /* Output assembler code for a block containing the constant parts
1381 of a trampoline, leaving space for the variable parts. */
1382
1383 /* On the i960, the trampoline contains three instructions:
1384 ldconst _function, r4
1385 ldconst static addr, g12
1386 jump (r4) */
1387
1388 #define TRAMPOLINE_TEMPLATE(FILE) \
1389 { \
1390 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8C203000)); \
1391 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1392 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8CE03000)); \
1393 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1394 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x84212000)); \
1395 }
1396
1397 /* Length in units of the trampoline for entering a nested function. */
1398
1399 #define TRAMPOLINE_SIZE 20
1400
1401 /* Emit RTL insns to initialize the variable parts of a trampoline.
1402 FNADDR is an RTX for the address of the function's pure code.
1403 CXT is an RTX for the static chain value for the function. */
1404
1405 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1406 { \
1407 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), FNADDR); \
1408 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \
1409 }
1410
1411 /* Generate RTL to flush the register windows so as to make arbitrary frames
1412 available. */
1413 #define SETUP_FRAME_ADDRESSES() \
1414 emit_insn (gen_flush_register_windows ())
1415
1416 #define BUILTIN_SETJMP_FRAME_VALUE hard_frame_pointer_rtx
1417
1418 #if 0
1419 /* Promote char and short arguments to ints, when want compatibility with
1420 the iC960 compilers. */
1421
1422 /* ??? In order for this to work, all users would need to be changed
1423 to test the value of the macro at run time. */
1424 #define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1425 /* ??? This does not exist. */
1426 #define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1427 #endif
1428
1429 /* Instruction type definitions. Used to alternate instructions types for
1430 better performance on the C series chips. */
1431
1432 enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1433
1434 /* Holds the insn type of the last insn output to the assembly file. */
1435
1436 extern enum insn_types i960_last_insn_type;
1437
1438 /* Parse opcodes, and set the insn last insn type based on them. */
1439
1440 #define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1441
1442 /* Table listing what rtl codes each predicate in i960.c will accept. */
1443
1444 #define PREDICATE_CODES \
1445 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1446 LABEL_REF, SUBREG, REG, MEM}}, \
1447 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1448 {"logic_operand", {SUBREG, REG, CONST_INT}}, \
1449 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1450 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1451 {"literal", {CONST_INT}}, \
1452 {"fp_literal_one", {CONST_DOUBLE}}, \
1453 {"fp_literal_double", {CONST_DOUBLE}}, \
1454 {"fp_literal", {CONST_DOUBLE}}, \
1455 {"signed_literal", {CONST_INT}}, \
1456 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1457 {"eq_or_neq", {EQ, NE}}, \
1458 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1459 CONST_DOUBLE, CONST}}, \
1460 {"power2_operand", {CONST_INT}}, \
1461 {"cmplpower2_operand", {CONST_INT}},
1462
1463 /* Defined in reload.c, and used in insn-recog.c. */
1464
1465 extern int rtx_equal_function_value_matters;
1466
1467 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1468 Used for C++ multiple inheritance. */
1469 #define TARGET_ASM_OUTPUT_MI_THUNK i960_output_mi_thunk
This page took 0.102398 seconds and 5 git commands to generate.