]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i960/i960.h
834a3163593a7e2c295405a325a0a41f0bed8b1e
[gcc.git] / gcc / config / i960 / i960.h
1 /* Definitions of target machine for GNU compiler, for Intel 80960
2 Copyright (C) 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Steven McGeady, Intel Corp.
4 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
5 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 /* Note that some other tm.h files may include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26 /* Names to predefine in the preprocessor for this target machine. */
27 #define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu(i960) -Amachine(i960)"
28
29 /* Name to predefine in the preprocessor for processor variations. */
30 #define CPP_SPEC "%{mic*:-D__i960\
31 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
32 %{msa:-D__i960SA}%{msb:-D__i960SB}\
33 %{mmc:-D__i960MC}\
34 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
35 %{mcf:-D__i960CF}}\
36 %{mka:-D__i960KA__ -D__i960_KA__}\
37 %{mkb:-D__i960KB__ -D__i960_KB__}\
38 %{msa:-D__i960SA__ -D__i960_SA__}\
39 %{msb:-D__i960SB__ -D__i960_SB__}\
40 %{mmc:-D__i960MC__ -D__i960_MC__}\
41 %{mca:-D__i960CA__ -D__i960_CA__}\
42 %{mcc:-D__i960CC__ -D__i960_CC__}\
43 %{mcf:-D__i960CF__ -D__i960_CF__}\
44 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
45 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}"
46
47 /* -mic* options make characters signed by default. */
48 /* Use #if rather than ?: because MIPS C compiler rejects ?: in
49 initializers. */
50 #if DEFAULT_SIGNED_CHAR
51 #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
52 #else
53 #define SIGNED_CHAR_SPEC "%{!fsigned-char:%{!mic*:-D__CHAR_UNSIGNED__}}"
54 #endif
55
56 /* Specs for the compiler, to handle processor variations. */
57 #define CC1_SPEC \
58 "%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-mkb}}}}}}}}\
59 %{mbout:%{g*:-gstabs}}\
60 %{mcoff:%{g*:-gcoff}}\
61 %{!mbout:%{!mcoff:%{g*:-gstabs}}}"
62
63 /* Specs for the assembler, to handle processor variations.
64 For compatibility with Intel's gnu960 tool chain, pass -A options to
65 the assembler. */
66 #define ASM_SPEC \
67 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
68 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
69 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
70 %{mlink-relax:-linkrelax}"
71
72 /* Specs for the linker, to handle processor variations.
73 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
74 to the linker. */
75 #define LINK_SPEC \
76 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
77 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
78 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
79 %{mbout:-Fbout}%{mcoff:-Fcoff}\
80 %{mlink-relax:-relax}"
81
82 /* Specs for the libraries to link with, to handle processor variations.
83 Compatible with Intel's gnu960 tool chain. */
84 #define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
85 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
86
87 /* Show we can debug even without a frame pointer. */
88 #define CAN_DEBUG_WITHOUT_FP
89
90 /* Do leaf procedure and tail call optimizations for -O2 and higher. */
91 #define OPTIMIZATION_OPTIONS(LEVEL) \
92 { \
93 if ((LEVEL) >= 2) \
94 { \
95 target_flags |= TARGET_FLAG_LEAFPROC; \
96 target_flags |= TARGET_FLAG_TAILCALL; \
97 } \
98 }
99
100 /* Print subsidiary information on the compiler version in use. */
101 #define TARGET_VERSION fprintf (stderr," (intel 80960)");
102
103 /* Generate DBX debugging information. */
104 #define DBX_DEBUGGING_INFO
105
106 /* Generate SDB style debugging information. */
107 #define SDB_DEBUGGING_INFO
108
109 /* Generate DBX_DEBUGGING_INFO by default. */
110 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
111
112 /* Redefine this to print in hex and adjust values like GNU960. The extra
113 bit is used to handle the type long double. Gcc does not support long
114 double in sdb output, but we do support the non-standard format. */
115 #define PUT_SDB_TYPE(A) \
116 fprintf (asm_out_file, "\t.type\t0x%x;", (A & 0xf) + 2 * (A & ~0xf))
117
118 /* Run-time compilation parameters selecting different hardware subsets. */
119
120 /* 960 architecture with floating-point. */
121 #define TARGET_FLAG_NUMERICS 0x01
122 #define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
123
124 /* 960 architecture with memory management. */
125 /* ??? Not used currently. */
126 #define TARGET_FLAG_PROTECTED 0x02
127 #define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
128
129 /* The following three are mainly used to provide a little sanity checking
130 against the -mARCH flags given. */
131
132 /* Nonzero if we should generate code for the KA and similar processors.
133 No FPU, no microcode instructions. */
134 #define TARGET_FLAG_K_SERIES 0x04
135 #define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
136
137 /* Nonzero if we should generate code for the MC processor.
138 Not really different from KB for our purposes. */
139 #define TARGET_FLAG_MC 0x08
140 #define TARGET_MC (target_flags & TARGET_FLAG_MC)
141
142 /* Nonzero if we should generate code for the CA processor.
143 Enables different optimization strategies. */
144 #define TARGET_FLAG_C_SERIES 0x10
145 #define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
146
147 /* Nonzero if we should generate leaf-procedures when we find them.
148 You may not want to do this because leaf-proc entries are
149 slower when not entered via BAL - this would be true when
150 a linker not supporting the optimization is used. */
151 #define TARGET_FLAG_LEAFPROC 0x20
152 #define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
153
154 /* Nonzero if we should perform tail-call optimizations when we find them.
155 You may not want to do this because the detection of cases where
156 this is not valid is not totally complete. */
157 #define TARGET_FLAG_TAILCALL 0x40
158 #define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
159
160 /* Nonzero if use of a complex addressing mode is a win on this implementation.
161 Complex addressing modes are probably not worthwhile on the K-series,
162 but they definitely are on the C-series. */
163 #define TARGET_FLAG_COMPLEX_ADDR 0x80
164 #define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
165
166 /* Align code to 8 byte boundaries for faster fetching. */
167 #define TARGET_FLAG_CODE_ALIGN 0x100
168 #define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
169
170 /* Append branch prediction suffixes to branch opcodes. */
171 /* ??? Not used currently. */
172 #define TARGET_FLAG_BRANCH_PREDICT 0x200
173 #define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
174
175 /* Forces prototype and return promotions. */
176 /* ??? This does not work. */
177 #define TARGET_FLAG_CLEAN_LINKAGE 0x400
178 #define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
179
180 /* For compatibility with iC960 v3.0. */
181 #define TARGET_FLAG_IC_COMPAT3_0 0x800
182 #define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
183
184 /* For compatibility with iC960 v2.0. */
185 #define TARGET_FLAG_IC_COMPAT2_0 0x1000
186 #define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
187
188 /* If no unaligned accesses are to be permitted. */
189 #define TARGET_FLAG_STRICT_ALIGN 0x2000
190 #define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
191
192 /* For compatibility with iC960 assembler. */
193 #define TARGET_FLAG_ASM_COMPAT 0x4000
194 #define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
195
196 /* For compatibility with the gcc960 v1.2 compiler. Use the old structure
197 alignment rules. Also, turns on STRICT_ALIGNMENT. */
198 #define TARGET_FLAG_OLD_ALIGN 0x8000
199 #define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
200
201 extern int target_flags;
202
203 /* Macro to define tables used to set the flags.
204 This is a list in braces of pairs in braces,
205 each pair being { "NAME", VALUE }
206 where VALUE is the bits to set or minus the bits to clear.
207 An empty string NAME is used to identify the default VALUE. */
208
209 /* ??? Not all ten of these architecture variations actually exist, but I
210 am not sure which are real and which aren't. */
211
212 #define TARGET_SWITCHES \
213 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
214 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
215 TARGET_FLAG_COMPLEX_ADDR)},\
216 /* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
217 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
218 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
219 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
220 TARGET_FLAG_COMPLEX_ADDR)},\
221 /* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
222 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
223 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
224 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},\
225 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
226 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
227 /* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES|\
228 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN)},\
229 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
230 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
231 TARGET_FLAG_CODE_ALIGN)}, */ \
232 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
233 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
234 {"numerics", (TARGET_FLAG_NUMERICS)}, \
235 {"soft-float", -(TARGET_FLAG_NUMERICS)}, \
236 {"leaf-procedures", TARGET_FLAG_LEAFPROC}, \
237 {"no-leaf-procedures",-(TARGET_FLAG_LEAFPROC)}, \
238 {"tail-call",TARGET_FLAG_TAILCALL}, \
239 {"no-tail-call",-(TARGET_FLAG_TAILCALL)}, \
240 {"complex-addr",TARGET_FLAG_COMPLEX_ADDR}, \
241 {"no-complex-addr",-(TARGET_FLAG_COMPLEX_ADDR)}, \
242 {"code-align",TARGET_FLAG_CODE_ALIGN}, \
243 {"no-code-align",-(TARGET_FLAG_CODE_ALIGN)}, \
244 {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE)}, \
245 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE)}, \
246 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0}, \
247 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0}, \
248 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0}, \
249 {"asm-compat",TARGET_FLAG_ASM_COMPAT}, \
250 {"intel-asm",TARGET_FLAG_ASM_COMPAT}, \
251 {"strict-align", TARGET_FLAG_STRICT_ALIGN}, \
252 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN)}, \
253 {"old-align", TARGET_FLAG_OLD_ALIGN}, \
254 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN)}, \
255 {"link-relax", 0}, \
256 {"no-link-relax", 0}, \
257 { "", TARGET_DEFAULT}}
258
259 /* Override conflicting target switch options.
260 Doesn't actually detect if more than one -mARCH option is given, but
261 does handle the case of two blatantly conflicting -mARCH options. */
262 #define OVERRIDE_OPTIONS \
263 { \
264 if (TARGET_K_SERIES && TARGET_C_SERIES) \
265 { \
266 warning ("conflicting architectures defined - using C series", 0); \
267 target_flags &= ~TARGET_FLAG_K_SERIES; \
268 } \
269 if (TARGET_K_SERIES && TARGET_MC) \
270 { \
271 warning ("conflicting architectures defined - using K series", 0); \
272 target_flags &= ~TARGET_FLAG_MC; \
273 } \
274 if (TARGET_C_SERIES && TARGET_MC) \
275 { \
276 warning ("conflicting architectures defined - using C series", 0);\
277 target_flags &= ~TARGET_FLAG_MC; \
278 } \
279 if (TARGET_IC_COMPAT3_0) \
280 { \
281 flag_short_enums = 1; \
282 flag_signed_char = 1; \
283 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
284 if (TARGET_IC_COMPAT2_0) \
285 { \
286 warning ("iC2.0 and iC3.0 are incompatible - using iC3.0", 0); \
287 target_flags &= ~TARGET_FLAG_IC_COMPAT2_0; \
288 } \
289 } \
290 if (TARGET_IC_COMPAT2_0) \
291 { \
292 flag_signed_char = 1; \
293 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
294 } \
295 i960_initialize (); \
296 }
297
298 /* Don't enable anything by default. The user is expected to supply a -mARCH
299 option. If none is given, then -mkb is added by CC1_SPEC. */
300 #define TARGET_DEFAULT 0
301 \f
302 /* Target machine storage layout. */
303
304 /* Define this if most significant bit is lowest numbered
305 in instructions that operate on numbered bit-fields. */
306 #define BITS_BIG_ENDIAN 0
307
308 /* Define this if most significant byte of a word is the lowest numbered.
309 The i960 case be either big endian or little endian. We only support
310 little endian, which is the most common. */
311 #define BYTES_BIG_ENDIAN 0
312
313 /* Define this if most significant word of a multiword number is lowest
314 numbered. */
315 #define WORDS_BIG_ENDIAN 0
316
317 /* Number of bits in an addressable storage unit. */
318 #define BITS_PER_UNIT 8
319
320 /* Bitfields cannot cross word boundaries. */
321 #define BITFIELD_NBYTES_LIMITED 1
322
323 /* Width in bits of a "word", which is the contents of a machine register.
324 Note that this is not necessarily the width of data type `int';
325 if using 16-bit ints on a 68000, this would still be 32.
326 But on a machine with 16-bit registers, this would be 16. */
327 #define BITS_PER_WORD 32
328
329 /* Width of a word, in units (bytes). */
330 #define UNITS_PER_WORD 4
331
332 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */
333 #define POINTER_SIZE 32
334
335 /* Width in bits of a long double. Identical to double for now. */
336 #define LONG_DOUBLE_TYPE_SIZE 64
337
338 /* Allocation boundary (in *bits*) for storing pointers in memory. */
339 #define POINTER_BOUNDARY 32
340
341 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
342 #define PARM_BOUNDARY 32
343
344 /* Boundary (in *bits*) on which stack pointer should be aligned. */
345 #define STACK_BOUNDARY 128
346
347 /* Allocation boundary (in *bits*) for the code of a function. */
348 #define FUNCTION_BOUNDARY 128
349
350 /* Alignment of field after `int : 0' in a structure. */
351 #define EMPTY_FIELD_BOUNDARY 32
352
353 /* This makes zero-length anonymous fields lay the next field
354 at a word boundary. It also makes the whole struct have
355 at least word alignment if there are any bitfields at all. */
356 #define PCC_BITFIELD_TYPE_MATTERS 1
357
358 /* Every structure's size must be a multiple of this. */
359 #define STRUCTURE_SIZE_BOUNDARY 8
360
361 /* No data type wants to be aligned rounder than this.
362 Extended precision floats gets 4-word alignment. */
363 #define BIGGEST_ALIGNMENT 128
364
365 /* Define this if move instructions will actually fail to work
366 when given unaligned data.
367 80960 will work even with unaligned data, but it is slow. */
368 #define STRICT_ALIGNMENT TARGET_OLD_ALIGN
369
370 /* Specify alignment for string literals (which might be higher than the
371 base type's minimal alignment requirement. This allows strings to be
372 aligned on word boundaries, and optimizes calls to the str* and mem*
373 library functions. */
374 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
375 (TREE_CODE (EXP) == STRING_CST \
376 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
377 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
378 : (ALIGN))
379
380 /* Macros to determine size of aggregates (structures and unions
381 in C). Normally, these may be defined to simply return the maximum
382 alignment and simple rounded-up size, but on some machines (like
383 the i960), the total size of a structure is based on a non-trivial
384 rounding method. */
385
386 #define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
387 ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE) \
388 ? i960_round_align ((SPECIFIED), TYPE_SIZE (TYPE)) \
389 : MAX ((COMPUTED), (SPECIFIED)))
390
391 #define ROUND_TYPE_SIZE(TYPE, SIZE, ALIGN) \
392 ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE) \
393 ? (tree) i960_round_size (SIZE) \
394 : round_up ((SIZE), (ALIGN)))
395 \f
396 /* Standard register usage. */
397
398 /* Number of actual hardware registers.
399 The hardware registers are assigned numbers for the compiler
400 from 0 to just below FIRST_PSEUDO_REGISTER.
401 All registers that the compiler knows about must be given numbers,
402 even those that are not normally considered general registers.
403
404 Registers 0-15 are the global registers (g0-g15).
405 Registers 16-31 are the local registers (r0-r15).
406 Register 32-35 are the fp registers (fp0-fp3).
407 Register 36 is the condition code register.
408 Register 37 is unused. */
409
410 #define FIRST_PSEUDO_REGISTER 38
411
412 /* 1 for registers that have pervasive standard uses and are not available
413 for the register allocator. On 80960, this includes the frame pointer
414 (g15), the previous FP (r0), the stack pointer (r1), the return
415 instruction pointer (r2), and the argument pointer (g14). */
416 #define FIXED_REGISTERS \
417 {0, 0, 0, 0, 0, 0, 0, 0, \
418 0, 0, 0, 0, 0, 0, 1, 1, \
419 1, 1, 1, 0, 0, 0, 0, 0, \
420 0, 0, 0, 0, 0, 0, 0, 0, \
421 0, 0, 0, 0, 1, 1}
422
423 /* 1 for registers not available across function calls.
424 These must include the FIXED_REGISTERS and also any
425 registers that can be used without being saved.
426 The latter must include the registers where values are returned
427 and the register where structure-value addresses are passed.
428 Aside from that, you can include as many other registers as you like. */
429
430 /* On the 80960, note that:
431 g0..g3 are used for return values,
432 g0..g7 may always be used for parameters,
433 g8..g11 may be used for parameters, but are preserved if they aren't,
434 g12 is always preserved, but otherwise unused,
435 g13 is the struct return ptr if used, or temp, but may be trashed,
436 g14 is the leaf return ptr or the arg block ptr otherwise zero,
437 must be reset to zero before returning if it was used,
438 g15 is the frame pointer,
439 r0 is the previous FP,
440 r1 is the stack pointer,
441 r2 is the return instruction pointer,
442 r3-r15 are always available,
443 r3 is clobbered by calls in functions that use the arg pointer
444 r4-r11 may be clobbered by the mcount call when profiling
445 r4-r15 if otherwise unused may be used for preserving global registers
446 fp0..fp3 are never available. */
447 #define CALL_USED_REGISTERS \
448 {1, 1, 1, 1, 1, 1, 1, 1, \
449 0, 0, 0, 0, 0, 1, 1, 1, \
450 1, 1, 1, 0, 0, 0, 0, 0, \
451 0, 0, 0, 0, 0, 0, 0, 0, \
452 1, 1, 1, 1, 1, 1}
453
454 /* If no fp unit, make all of the fp registers fixed so that they can't
455 be used. */
456 #define CONDITIONAL_REGISTER_USAGE \
457 if (! TARGET_NUMERICS) { \
458 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
459 } \
460
461 /* Return number of consecutive hard regs needed starting at reg REGNO
462 to hold something of mode MODE.
463 This is ordinarily the length in words of a value of mode MODE
464 but can be less for certain modes in special long registers.
465
466 On 80960, ordinary registers hold 32 bits worth, but can be ganged
467 together to hold double or extended precision floating point numbers,
468 and the floating point registers hold any size floating point number */
469 #define HARD_REGNO_NREGS(REGNO, MODE) \
470 ((REGNO) < 32 \
471 ? (((MODE) == VOIDmode) \
472 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
473 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
474
475 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
476 On 80960, the cpu registers can hold any mode but the float registers
477 can only hold SFmode, DFmode, or TFmode. */
478 extern unsigned int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
479 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
480 ((hard_regno_mode_ok[REGNO] & (1 << (int) (MODE))) != 0)
481
482 /* Value is 1 if it is a good idea to tie two pseudo registers
483 when one has mode MODE1 and one has mode MODE2.
484 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
485 for any hard reg, then this must be 0 for correct output. */
486
487 #define MODES_TIEABLE_P(MODE1, MODE2) \
488 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
489
490 /* Specify the registers used for certain standard purposes.
491 The values of these macros are register numbers. */
492
493 /* 80960 pc isn't overloaded on a register that the compiler knows about. */
494 /* #define PC_REGNUM */
495
496 /* Register to use for pushing function arguments. */
497 #define STACK_POINTER_REGNUM 17
498
499 /* Actual top-of-stack address is same as
500 the contents of the stack pointer register. */
501 #define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
502
503 /* Base register for access to local variables of the function. */
504 #define FRAME_POINTER_REGNUM 15
505
506 /* Value should be nonzero if functions must have frame pointers.
507 Zero means the frame pointer need not be set up (and parms
508 may be accessed via the stack pointer) in functions that seem suitable.
509 This is computed in `reload', in reload1.c. */
510 /* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
511 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
512 caused this to fail. */
513 #define FRAME_POINTER_REQUIRED (! leaf_function_p ())
514
515 /* C statement to store the difference between the frame pointer
516 and the stack pointer values immediately after the function prologue.
517
518 Since the stack grows upward on the i960, this must be a negative number.
519 This includes the 64 byte hardware register save area and the size of
520 the frame. */
521
522 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
523 do { (VAR) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
524
525 /* Base register for access to arguments of the function. */
526 #define ARG_POINTER_REGNUM 14
527
528 /* Register in which static-chain is passed to a function.
529 On i960, we use r3. */
530 #define STATIC_CHAIN_REGNUM 19
531
532 /* Functions which return large structures get the address
533 to place the wanted value at in g13. */
534
535 #define STRUCT_VALUE_REGNUM 13
536
537 /* The order in which to allocate registers. */
538
539 #define REG_ALLOC_ORDER \
540 { 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
541 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
542 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
543 11, 12, /* g11, g12 */ \
544 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
545 /* We can't actually allocate these. */ \
546 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
547 \f
548 /* Define the classes of registers for register constraints in the
549 machine description. Also define ranges of constants.
550
551 One of the classes must always be named ALL_REGS and include all hard regs.
552 If there is more than one class, another class must be named NO_REGS
553 and contain no registers.
554
555 The name GENERAL_REGS must be the name of a class (or an alias for
556 another name such as ALL_REGS). This is the class of registers
557 that is allowed by "g" or "r" in a register constraint.
558 Also, registers outside this class are allocated only when
559 instructions express preferences for them.
560
561 The classes must be numbered in nondecreasing order; that is,
562 a larger-numbered class must never be contained completely
563 in a smaller-numbered class.
564
565 For any two classes, it is very desirable that there be another
566 class that represents their union. */
567
568 /* The 80960 has four kinds of registers, global, local, floating point,
569 and condition code. The cc register is never allocated, so no class
570 needs to be defined for it. */
571
572 enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
573 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
574
575 /* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
576 does. */
577 #define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
578
579 #define N_REG_CLASSES (int) LIM_REG_CLASSES
580
581 /* Give names of register classes as strings for dump file. */
582
583 #define REG_CLASS_NAMES \
584 { "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
585 "FP_REGS", "ALL_REGS" }
586
587 /* Define which registers fit in which classes.
588 This is an initializer for a vector of HARD_REG_SET
589 of length N_REG_CLASSES. */
590
591 #define REG_CLASS_CONTENTS \
592 { {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
593
594 /* The same information, inverted:
595 Return the class number of the smallest class containing
596 reg number REGNO. This could be a conditional expression
597 or could index an array. */
598
599 #define REGNO_REG_CLASS(REGNO) \
600 ((REGNO) < 16 ? GLOBAL_REGS \
601 : (REGNO) < 32 ? LOCAL_REGS \
602 : (REGNO) < 36 ? FP_REGS \
603 : NO_REGS)
604
605 /* The class value for index registers, and the one for base regs.
606 There is currently no difference between base and index registers on the
607 i960, but this distinction may one day be useful. */
608 #define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
609 #define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
610
611 /* Get reg_class from a letter such as appears in the machine description.
612 'f' is a floating point register (fp0..fp3)
613 'l' is a local register (r0-r15)
614 'b' is a global register (g0-g15)
615 'd' is any local or global register
616 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
617 /* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
618 the same thing, since 'r' may include the fp registers. */
619 #define REG_CLASS_FROM_LETTER(C) \
620 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
621 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
622
623 /* The letters I, J, K, L and M in a register constraint string
624 can be used to stand for particular ranges of immediate operands.
625 This macro defines what the ranges are.
626 C is the letter, and VALUE is a constant value.
627 Return 1 if VALUE is in the range specified by C.
628
629 For 80960:
630 'I' is used for literal values 0..31
631 'J' means literal 0
632 'K' means 0..-31. */
633
634 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
635 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
636 : (C) == 'J' ? ((VALUE) == 0) \
637 : (C) == 'K' ? ((VALUE) > -32 && (VALUE) <= 0) \
638 : 0)
639
640 /* Similar, but for floating constants, and defining letters G and H.
641 Here VALUE is the CONST_DOUBLE rtx itself.
642 For the 80960, G is 0.0 and H is 1.0. */
643
644 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
645 ((TARGET_NUMERICS) && \
646 (((C) == 'G' && ((VALUE) == CONST0_RTX (DFmode) \
647 || (VALUE) == CONST0_RTX (SFmode))) \
648 || ((C) == 'H' && ((VALUE) == CONST1_RTX (DFmode) \
649 || (VALUE) == CONST1_RTX (SFmode)))))
650
651 /* Given an rtx X being reloaded into a reg required to be
652 in class CLASS, return the class of reg to actually use.
653 In general this is just CLASS; but on some machines
654 in some cases it is preferable to use a more restrictive class. */
655
656 /* On 960, can't load constant into floating-point reg except
657 0.0 or 1.0.
658
659 Any hard reg is ok as a src operand of a reload insn. */
660
661 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
662 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
663 ? (CLASS) \
664 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
665 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
666 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
667 ? NO_REGS \
668 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
669
670 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
671 secondary_reload_class (CLASS, MODE, IN)
672
673 /* Return the maximum number of consecutive registers
674 needed to represent mode MODE in a register of class CLASS. */
675 /* On 80960, this is the size of MODE in words,
676 except in the FP regs, where a single reg is always enough. */
677 #define CLASS_MAX_NREGS(CLASS, MODE) \
678 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
679 \f
680 /* Stack layout; function entry, exit and calling. */
681
682 /* Define this if pushing a word on the stack
683 makes the stack pointer a smaller address. */
684 /* #define STACK_GROWS_DOWNWARD */
685
686 /* Define this if the nominal address of the stack frame
687 is at the high-address end of the local variables;
688 that is, each additional local variable allocated
689 goes at a more negative offset in the frame. */
690 /* #define FRAME_GROWS_DOWNWARD */
691
692 /* Offset within stack frame to start allocating local variables at.
693 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
694 first local allocated. Otherwise, it is the offset to the BEGINNING
695 of the first local allocated.
696
697 The i960 has a 64 byte register save area, plus possibly some extra
698 bytes allocated for varargs functions. */
699 #define STARTING_FRAME_OFFSET 64
700
701 /* If we generate an insn to push BYTES bytes,
702 this says how many the stack pointer really advances by.
703 On 80960, don't define this because there are no push insns. */
704 /* #define PUSH_ROUNDING(BYTES) BYTES */
705
706 /* Offset of first parameter from the argument pointer register value. */
707 #define FIRST_PARM_OFFSET(FNDECL) 0
708
709 /* When a parameter is passed in a register, no stack space is
710 allocated for it. However, when args are passed in the
711 stack, space is allocated for every register parameter. */
712 #define MAYBE_REG_PARM_STACK_SPACE 48
713 #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
714 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
715 #define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
716 #define OUTGOING_REG_PARM_STACK_SPACE
717
718 /* Keep the stack pointer constant throughout the function. */
719 #define ACCUMULATE_OUTGOING_ARGS
720
721 /* Value is 1 if returning from a function call automatically
722 pops the arguments described by the number-of-args field in the call.
723 FUNTYPE is the data type of the function (as a tree),
724 or for a library call it is an identifier node for the subroutine name. */
725
726 #define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
727
728 /* Define how to find the value returned by a library function
729 assuming the value has mode MODE. */
730
731 #define LIBCALL_VALUE(MODE) gen_rtx ((REG), (MODE), 0)
732
733 /* 1 if N is a possible register number for a function value
734 as seen by the caller.
735 On 80960, returns are in g0..g3 */
736
737 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
738
739 /* 1 if N is a possible register number for function argument passing.
740 On 80960, parameters are passed in g0..g11 */
741
742 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
743
744 /* Perform any needed actions needed for a function that is receiving a
745 variable number of arguments.
746
747 CUM is as above.
748
749 MODE and TYPE are the mode and type of the current parameter.
750
751 PRETEND_SIZE is a variable that should be set to the amount of stack
752 that must be pushed by the prolog to pretend that our caller pushed
753 it.
754
755 Normally, this macro will push all remaining incoming registers on the
756 stack and set PRETEND_SIZE to the length of the registers pushed. */
757
758 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
759 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
760 \f
761 /* Define a data type for recording info about an argument list
762 during the scan of that argument list. This data type should
763 hold all necessary information about the function itself
764 and about the args processed so far, enough to enable macros
765 such as FUNCTION_ARG to determine where the next arg should go.
766
767 On 80960, this is two integers, which count the number of register
768 parameters and the number of stack parameters seen so far. */
769
770 struct cum_args { int ca_nregparms; int ca_nstackparms; };
771
772 #define CUMULATIVE_ARGS struct cum_args
773
774 /* Define the number of registers that can hold parameters.
775 This macro is used only in macro definitions below and/or i960.c. */
776 #define NPARM_REGS 12
777
778 /* Define how to round to the next parameter boundary.
779 This macro is used only in macro definitions below and/or i960.c. */
780 #define ROUND_PARM(X, MULTIPLE_OF) \
781 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
782
783 /* Initialize a variable CUM of type CUMULATIVE_ARGS
784 for a call to a function whose data type is FNTYPE.
785 For a library call, FNTYPE is 0.
786
787 On 80960, the offset always starts at 0; the first parm reg is g0. */
788
789 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
790 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
791
792 /* Update the data in CUM to advance over an argument
793 of mode MODE and data type TYPE.
794 CUM should be advanced to align with the data type accessed and
795 also the size of that data type in # of regs.
796 (TYPE is null for libcalls where that information may not be available.) */
797
798 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
799 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
800
801 /* Indicate the alignment boundary for an argument of the specified mode and
802 type. */
803 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
804 (((TYPE) != 0) \
805 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
806 ? PARM_BOUNDARY \
807 : TYPE_ALIGN (TYPE)) \
808 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
809 ? PARM_BOUNDARY \
810 : GET_MODE_ALIGNMENT (MODE)))
811
812 /* Determine where to put an argument to a function.
813 Value is zero to push the argument on the stack,
814 or a hard register in which to store the argument.
815
816 MODE is the argument's machine mode.
817 TYPE is the data type of the argument (as a tree).
818 This is null for libcalls where that information may
819 not be available.
820 CUM is a variable of type CUMULATIVE_ARGS which gives info about
821 the preceding args and about the function being called.
822 NAMED is nonzero if this argument is a named parameter
823 (otherwise it is an extra parameter matching an ellipsis). */
824
825 extern struct rtx_def *i960_function_arg ();
826 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
827 i960_function_arg(&CUM, MODE, TYPE, NAMED)
828
829 /* Define how to find the value returned by a function.
830 VALTYPE is the data type of the value (as a tree).
831 If the precise function being called is known, FUNC is its FUNCTION_DECL;
832 otherwise, FUNC is 0. */
833
834 #define FUNCTION_VALUE(TYPE, FUNC) \
835 gen_rtx (REG, TYPE_MODE (TYPE), 0)
836
837 /* Force aggregates and objects larger than 16 bytes to be returned in memory,
838 since we only have 4 registers available for return values. */
839
840 #define RETURN_IN_MEMORY(TYPE) \
841 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
842
843 /* Don't default to pcc-struct-return, because we have already specified
844 exactly how to return structures in the RETURN_IN_MEMORY macro. */
845 #define DEFAULT_PCC_STRUCT_RETURN 0
846
847 /* For an arg passed partly in registers and partly in memory,
848 this is the number of registers used.
849 This never happens on 80960. */
850
851 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
852 \f
853 /* Output the label for a function definition.
854 This handles leaf functions and a few other things for the i960. */
855
856 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
857 i960_function_name_declare (FILE, NAME, DECL)
858
859 /* This macro generates the assembly code for function entry.
860 FILE is a stdio stream to output the code to.
861 SIZE is an int: how many units of temporary storage to allocate.
862 Refer to the array `regs_ever_live' to determine which registers
863 to save; `regs_ever_live[I]' is nonzero if register number I
864 is ever used in the function. This macro is responsible for
865 knowing which registers should not be saved even if used. */
866
867 #define FUNCTION_PROLOGUE(FILE, SIZE) i960_function_prologue ((FILE), (SIZE))
868
869 /* Output assembler code to FILE to increment profiler label # LABELNO
870 for profiling a function entry. */
871
872 #define FUNCTION_PROFILER(FILE, LABELNO) \
873 output_function_profiler ((FILE), (LABELNO));
874
875 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
876 the stack pointer does not matter. The value is tested only in
877 functions that have frame pointers.
878 No definition is equivalent to always zero. */
879
880 #define EXIT_IGNORE_STACK 1
881
882 /* This macro generates the assembly code for function exit,
883 on machines that need it. If FUNCTION_EPILOGUE is not defined
884 then individual return instructions are generated for each
885 return statement. Args are same as for FUNCTION_PROLOGUE.
886
887 The function epilogue should not depend on the current stack pointer!
888 It should use the frame pointer only. This is mandatory because
889 of alloca; we also take advantage of it to omit stack adjustments
890 before returning. */
891
892 #define FUNCTION_EPILOGUE(FILE, SIZE) i960_function_epilogue (FILE, SIZE)
893 \f
894 /* Addressing modes, and classification of registers for them. */
895
896 /* #define HAVE_POST_INCREMENT */
897 /* #define HAVE_POST_DECREMENT */
898
899 /* #define HAVE_PRE_DECREMENT */
900 /* #define HAVE_PRE_INCREMENT */
901
902 /* Macros to check register numbers against specific register classes. */
903
904 /* These assume that REGNO is a hard or pseudo reg number.
905 They give nonzero only if REGNO is a hard reg of the suitable class
906 or a pseudo reg currently allocated to a suitable hard reg.
907 Since they use reg_renumber, they are safe only once reg_renumber
908 has been allocated, which happens in local-alloc.c. */
909
910 #define REGNO_OK_FOR_INDEX_P(REGNO) \
911 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
912 #define REGNO_OK_FOR_BASE_P(REGNO) \
913 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
914 #define REGNO_OK_FOR_FP_P(REGNO) \
915 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
916
917 /* Now macros that check whether X is a register and also,
918 strictly, whether it is in a specified class.
919
920 These macros are specific to the 960, and may be used only
921 in code for printing assembler insns and in conditions for
922 define_optimization. */
923
924 /* 1 if X is an fp register. */
925
926 #define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
927
928 /* Maximum number of registers that can appear in a valid memory address. */
929 #define MAX_REGS_PER_ADDRESS 2
930
931 #define CONSTANT_ADDRESS_P(X) \
932 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
933 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
934 || GET_CODE (X) == HIGH)
935
936 /* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
937 is a legitimate general operand.
938 It is given that X satisfies CONSTANT_P.
939
940 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0. */
941
942 #define LEGITIMATE_CONSTANT_P(X) \
943 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), VOIDmode))
944
945 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
946 and check its validity for a certain class.
947 We have two alternate definitions for each of them.
948 The usual definition accepts all pseudo regs; the other rejects
949 them unless they have been allocated suitable hard regs.
950 The symbol REG_OK_STRICT causes the latter definition to be used.
951
952 Most source files want to accept pseudo regs in the hope that
953 they will get allocated to the class that the insn wants them to be in.
954 Source files for reload pass need to be strict.
955 After reload, it makes no difference, since pseudo regs have
956 been eliminated by then. */
957
958 #ifndef REG_OK_STRICT
959
960 /* Nonzero if X is a hard reg that can be used as an index
961 or if it is a pseudo reg. */
962 #define REG_OK_FOR_INDEX_P(X) \
963 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
964 /* Nonzero if X is a hard reg that can be used as a base reg
965 or if it is a pseudo reg. */
966 #define REG_OK_FOR_BASE_P(X) \
967 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
968
969 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
970 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
971
972 #else
973
974 /* Nonzero if X is a hard reg that can be used as an index. */
975 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
976 /* Nonzero if X is a hard reg that can be used as a base reg. */
977 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
978
979 #endif
980 \f
981 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
982 that is a valid memory address for an instruction.
983 The MODE argument is the machine mode for the MEM expression
984 that wants to use this address.
985
986 On 80960, legitimate addresses are:
987 base ld (g0),r0
988 disp (12 or 32 bit) ld foo,r0
989 base + index ld (g0)[g1*1],r0
990 base + displ ld 0xf00(g0),r0
991 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
992 index*scale + base ld (g0)[g1*4],r0
993 index*scale + displ ld 0xf00[g1*4],r0
994 index*scale ld [g1*4],r0
995 index + base + displ ld 0xf00(g0)[g1*1],r0
996
997 In each case, scale can be 1, 2, 4, 8, or 16. */
998
999 /* Returns 1 if the scale factor of an index term is valid. */
1000 #define SCALE_TERM_P(X) \
1001 (GET_CODE (X) == CONST_INT \
1002 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1003 || INTVAL(X) == 8 || INTVAL (X) == 16))
1004
1005
1006 #ifdef REG_OK_STRICT
1007 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1008 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1009 #else
1010 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1011 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1012 #endif
1013 \f
1014 /* Try machine-dependent ways of modifying an illegitimate address
1015 to be legitimate. If we find one, return the new, valid address.
1016 This macro is used in only one place: `memory_address' in explow.c.
1017
1018 OLDX is the address as it was before break_out_memory_refs was called.
1019 In some cases it is useful to look at this to decide what needs to be done.
1020
1021 MODE and WIN are passed so that this macro can use
1022 GO_IF_LEGITIMATE_ADDRESS.
1023
1024 It is always safe for this macro to do nothing. It exists to recognize
1025 opportunities to optimize the output. */
1026
1027 /* On 80960, convert non-canonical addresses to canonical form. */
1028
1029 extern struct rtx_def *legitimize_address ();
1030 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1031 { rtx orig_x = (X); \
1032 (X) = legitimize_address (X, OLDX, MODE); \
1033 if ((X) != orig_x && memory_address_p (MODE, X)) \
1034 goto WIN; }
1035
1036 /* Go to LABEL if ADDR (a legitimate address expression)
1037 has an effect that depends on the machine mode it is used for.
1038 On the 960 this is never true. */
1039
1040 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1041 \f
1042 /* Specify the machine mode that this machine uses
1043 for the index in the tablejump instruction. */
1044 #define CASE_VECTOR_MODE SImode
1045
1046 /* Define this if the tablejump instruction expects the table
1047 to contain offsets from the address of the table.
1048 Do not define this if the table should contain absolute addresses. */
1049 /* #define CASE_VECTOR_PC_RELATIVE */
1050
1051 /* Specify the tree operation to be used to convert reals to integers. */
1052 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1053
1054 /* This is the kind of divide that is easiest to do in the general case. */
1055 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1056
1057 /* Define this as 1 if `char' should by default be signed; else as 0. */
1058 #define DEFAULT_SIGNED_CHAR 0
1059
1060 /* Allow and ignore #sccs directives. */
1061 #define SCCS_DIRECTIVE
1062
1063 /* Max number of bytes we can move from memory to memory
1064 in one reasonably fast instruction. */
1065 #define MOVE_MAX 16
1066
1067 /* Define if operations between registers always perform the operation
1068 on the full register even if a narrower mode is specified. */
1069 #define WORD_REGISTER_OPERATIONS
1070
1071 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1072 will either zero-extend or sign-extend. The value of this macro should
1073 be the code that says which one of the two operations is implicitly
1074 done, NIL if none. */
1075 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1076
1077 /* Nonzero if access to memory by bytes is no faster than for words.
1078 Defining this results in worse code on the i960. */
1079
1080 #define SLOW_BYTE_ACCESS 0
1081
1082 /* We assume that the store-condition-codes instructions store 0 for false
1083 and some other value for true. This is the value stored for true. */
1084
1085 #define STORE_FLAG_VALUE 1
1086
1087 /* Define this to be nonzero if shift instructions ignore all but the low-order
1088 few bits. */
1089 #define SHIFT_COUNT_TRUNCATED 1
1090
1091 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1092 is done just by pretending it is already truncated. */
1093 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1094
1095 /* Specify the machine mode that pointers have.
1096 After generation of rtl, the compiler makes no further distinction
1097 between pointers and any other objects of this machine mode. */
1098 #define Pmode SImode
1099
1100 /* Specify the widest mode that BLKmode objects can be promoted to */
1101 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1102 \f
1103 /* These global variables are used to pass information between
1104 cc setter and cc user at insn emit time. */
1105
1106 extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1107
1108 /* Define the function that build the compare insn for scc and bcc. */
1109
1110 extern struct rtx_def *gen_compare_reg ();
1111
1112 /* Add any extra modes needed to represent the condition code.
1113
1114 Also, signed and unsigned comparisons are distinguished, as
1115 are operations which are compatible with chkbit insns. */
1116 #define EXTRA_CC_MODES CC_UNSmode, CC_CHKmode
1117
1118 /* Define the names for the modes specified above. */
1119 #define EXTRA_CC_NAMES "CC_UNS", "CC_CHK"
1120
1121 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1122 return the mode to be used for the comparison. For floating-point, CCFPmode
1123 should be used. CC_NOOVmode should be used when the first operand is a
1124 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1125 needed. */
1126 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
1127
1128 /* A function address in a call instruction is a byte address
1129 (for indexing purposes) so give the MEM rtx a byte's mode. */
1130 #define FUNCTION_MODE SImode
1131
1132 /* Define this if addresses of constant functions
1133 shouldn't be put through pseudo regs where they can be cse'd.
1134 Desirable on machines where ordinary constants are expensive
1135 but a CALL with constant address is cheap. */
1136 #define NO_FUNCTION_CSE
1137
1138 /* Use memcpy, etc. instead of bcopy. */
1139
1140 #ifndef WIND_RIVER
1141 #define TARGET_MEM_FUNCTIONS 1
1142 #endif
1143
1144 /* Compute the cost of computing a constant rtl expression RTX
1145 whose rtx-code is CODE. The body of this macro is a portion
1146 of a switch statement. If the code is computed here,
1147 return it with a return statement. Otherwise, break from the switch. */
1148
1149 /* Constants that can be (non-ldconst) insn operands are cost 0. Constants
1150 that can be non-ldconst operands in rare cases are cost 1. Other constants
1151 have higher costs. */
1152
1153 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1154 case CONST_INT: \
1155 if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
1156 || power2_operand (RTX, VOIDmode)) \
1157 return 0; \
1158 else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
1159 return 1; \
1160 case CONST: \
1161 case LABEL_REF: \
1162 case SYMBOL_REF: \
1163 return (TARGET_FLAG_C_SERIES ? 6 : 8); \
1164 case CONST_DOUBLE: \
1165 if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
1166 || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
1167 return 1; \
1168 return 12;
1169
1170 /* The i960 offers addressing modes which are "as cheap as a register".
1171 See i960.c (or gcc.texinfo) for details. */
1172
1173 #define ADDRESS_COST(RTX) \
1174 (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
1175 \f
1176 /* Control the assembler format that we output. */
1177
1178 /* Output at beginning of assembler file. */
1179
1180 #define ASM_FILE_START(file)
1181
1182 /* Output to assembler file text saying following lines
1183 may contain character constants, extra white space, comments, etc. */
1184
1185 #define ASM_APP_ON ""
1186
1187 /* Output to assembler file text saying following lines
1188 no longer contain unusual constructs. */
1189
1190 #define ASM_APP_OFF ""
1191
1192 /* Output before read-only data. */
1193
1194 #define TEXT_SECTION_ASM_OP ".text"
1195
1196 /* Output before writable data. */
1197
1198 #define DATA_SECTION_ASM_OP ".data"
1199
1200 /* How to refer to registers in assembler output.
1201 This sequence is indexed by compiler's hard-register-number (see above). */
1202
1203 #define REGISTER_NAMES { \
1204 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1205 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1206 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1207 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1208 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1209
1210 /* How to renumber registers for dbx and gdb.
1211 In the 960 encoding, g0..g15 are registers 16..31. */
1212
1213 #define DBX_REGISTER_NUMBER(REGNO) \
1214 (((REGNO) < 16) ? (REGNO) + 16 \
1215 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1216
1217 /* Don't emit dbx records longer than this. This is an arbitrary value. */
1218 #define DBX_CONTIN_LENGTH 1500
1219
1220 /* This is how to output a note to DBX telling it the line number
1221 to which the following sequence of instructions corresponds. */
1222
1223 #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1224 { if (write_symbols == SDB_DEBUG) { \
1225 fprintf ((FILE), "\t.ln %d\n", \
1226 (sdb_begin_function_line \
1227 ? (LINE) - sdb_begin_function_line : 1)); \
1228 } else if (write_symbols == DBX_DEBUG) { \
1229 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1230 } }
1231
1232 /* This is how to output the definition of a user-level label named NAME,
1233 such as the label on a static function or variable NAME. */
1234
1235 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1236 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1237
1238 /* This is how to output a command to make the user-level label named NAME
1239 defined for reference from other files. */
1240
1241 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1242 { fputs ("\t.globl ", FILE); \
1243 assemble_name (FILE, NAME); \
1244 fputs ("\n", FILE); }
1245
1246 /* This is how to output a reference to a user-level label named NAME.
1247 `assemble_name' uses this. */
1248
1249 #define ASM_OUTPUT_LABELREF(FILE,NAME) fprintf (FILE, "_%s", NAME)
1250
1251 /* This is how to output an internal numbered label where
1252 PREFIX is the class of label and NUM is the number within the class. */
1253
1254 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1255 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1256
1257 /* This is how to store into the string LABEL
1258 the symbol_ref name of an internal numbered label where
1259 PREFIX is the class of label and NUM is the number within the class.
1260 This is suitable for output with `assemble_name'. */
1261
1262 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1263 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1264
1265 /* This is how to output an assembler line defining a `double' constant. */
1266
1267 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) i960_output_double(FILE, VALUE)
1268
1269 /* This is how to output an assembler line defining a `float' constant. */
1270
1271 #define ASM_OUTPUT_FLOAT(FILE,VALUE) i960_output_float(FILE, VALUE)
1272
1273 /* This is how to output an assembler line defining an `int' constant. */
1274
1275 #define ASM_OUTPUT_INT(FILE,VALUE) \
1276 ( fprintf (FILE, "\t.word "), \
1277 output_addr_const (FILE, (VALUE)), \
1278 fprintf (FILE, "\n"))
1279
1280 /* Likewise for `char' and `short' constants. */
1281
1282 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1283 ( fprintf (FILE, "\t.short "), \
1284 output_addr_const (FILE, (VALUE)), \
1285 fprintf (FILE, "\n"))
1286
1287 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1288 ( fprintf (FILE, "\t.byte "), \
1289 output_addr_const (FILE, (VALUE)), \
1290 fprintf (FILE, "\n"))
1291
1292 /* This is how to output an assembler line for a numeric constant byte. */
1293
1294 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1295 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1296
1297 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1298 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1299
1300 /* This is how to output an insn to pop a register from the stack.
1301 It need not be very fast code. */
1302
1303 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1304 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1305
1306 /* This is how to output an element of a case-vector that is absolute. */
1307
1308 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1309 fprintf (FILE, "\t.word L%d\n", VALUE)
1310
1311 /* This is how to output an element of a case-vector that is relative. */
1312
1313 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1314 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1315
1316 /* This is how to output an assembler line that says to advance the
1317 location counter to a multiple of 2**LOG bytes. */
1318
1319 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1320 fprintf (FILE, "\t.align %d\n", (LOG))
1321
1322 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1323 fprintf (FILE, "\t.space %d\n", (SIZE))
1324
1325 /* This says how to output an assembler line
1326 to define a global common symbol. */
1327
1328 /* For common objects, output unpadded size... gld960 & lnk960 both
1329 have code to align each common object at link time. Also, if size
1330 is 0, treat this as a declaration, not a definition - i.e.,
1331 do nothing at all. */
1332
1333 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1334 { if ((SIZE) != 0) \
1335 { \
1336 fputs (".globl ", (FILE)), \
1337 assemble_name ((FILE), (NAME)), \
1338 fputs ("\n.comm ", (FILE)), \
1339 assemble_name ((FILE), (NAME)), \
1340 fprintf ((FILE), ",%d\n", (SIZE)); \
1341 } \
1342 }
1343
1344 /* This says how to output an assembler line to define a local common symbol.
1345 Output unpadded size, with request to linker to align as requested.
1346 0 size should not be possible here. */
1347
1348 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1349 ( fputs (".bss\t", (FILE)), \
1350 assemble_name ((FILE), (NAME)), \
1351 fprintf ((FILE), ",%d,%d\n", (SIZE), \
1352 ((ALIGN) <= 8 ? 0 \
1353 : ((ALIGN) <= 16 ? 1 \
1354 : ((ALIGN) <= 32 ? 2 \
1355 : ((ALIGN <= 64 ? 3 : 4)))))))
1356
1357 /* Output text for an #ident directive. */
1358 #define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1359
1360 /* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1361
1362 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
1363 { if (TARGET_CODE_ALIGN) fputs("\t.align 3\n",FILE); }
1364
1365 /* Store in OUTPUT a string (made with alloca) containing
1366 an assembler-name for a local static variable named NAME.
1367 LABELNO is an integer which is different for each call. */
1368
1369 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1370 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1371 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1372
1373 /* Define the parentheses used to group arithmetic operations
1374 in assembler code. */
1375
1376 #define ASM_OPEN_PAREN "("
1377 #define ASM_CLOSE_PAREN ")"
1378
1379 /* Define results of standard character escape sequences. */
1380 #define TARGET_BELL 007
1381 #define TARGET_BS 010
1382 #define TARGET_TAB 011
1383 #define TARGET_NEWLINE 012
1384 #define TARGET_VT 013
1385 #define TARGET_FF 014
1386 #define TARGET_CR 015
1387 \f
1388 /* Output assembler code to FILE to initialize this source file's
1389 basic block profiling info, if that has not already been done. */
1390
1391 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1392 { fprintf (FILE, "\tld LPBX0,g12\n"); \
1393 fprintf (FILE, "\tcmpobne 0,g12,LPY%d\n",LABELNO);\
1394 fprintf (FILE, "\tlda LPBX0,g12\n"); \
1395 fprintf (FILE, "\tcall ___bb_init_func\n"); \
1396 fprintf (FILE, "LPY%d:\n",LABELNO); }
1397
1398 /* Output assembler code to FILE to increment the entry-count for
1399 the BLOCKNO'th basic block in this source file. */
1400
1401 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1402 { int blockn = (BLOCKNO); \
1403 fprintf (FILE, "\tld LPBX2+%d,g12\n", 4 * blockn); \
1404 fprintf (FILE, "\taddo g12,1,g12\n"); \
1405 fprintf (FILE, "\tst g12,LPBX2+%d\n", 4 * blockn); }
1406 \f
1407 /* Print operand X (an rtx) in assembler syntax to file FILE.
1408 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1409 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1410
1411 #define PRINT_OPERAND(FILE, X, CODE) \
1412 i960_print_operand (FILE, X, CODE);
1413
1414 /* Print a memory address as an operand to reference that memory location. */
1415
1416 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1417 i960_print_operand_addr (FILE, ADDR)
1418 \f
1419 /* Output assembler code for a block containing the constant parts
1420 of a trampoline, leaving space for the variable parts. */
1421
1422 /* On the i960, the trampoline contains three instructions:
1423 ldconst _function, r4
1424 ldconst static addr, r3
1425 jump (r4) */
1426
1427 #define TRAMPOLINE_TEMPLATE(FILE) \
1428 { \
1429 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C203000)); \
1430 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1431 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C183000)); \
1432 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1433 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x84212000)); \
1434 }
1435
1436 /* Length in units of the trampoline for entering a nested function. */
1437
1438 #define TRAMPOLINE_SIZE 20
1439
1440 /* Emit RTL insns to initialize the variable parts of a trampoline.
1441 FNADDR is an RTX for the address of the function's pure code.
1442 CXT is an RTX for the static chain value for the function. */
1443
1444 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1445 { \
1446 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), \
1447 FNADDR); \
1448 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), \
1449 CXT); \
1450 }
1451
1452 #if 0
1453 /* Promote char and short arguments to ints, when want compatibility with
1454 the iC960 compilers. */
1455
1456 /* ??? In order for this to work, all users would need to be changed
1457 to test the value of the macro at run time. */
1458 #define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1459 /* ??? This does not exist. */
1460 #define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1461 #endif
1462
1463 /* Instruction type definitions. Used to alternate instructions types for
1464 better performance on the C series chips. */
1465
1466 enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1467
1468 /* Holds the insn type of the last insn output to the assembly file. */
1469
1470 extern enum insn_types i960_last_insn_type;
1471
1472 /* Parse opcodes, and set the insn last insn type based on them. */
1473
1474 #define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1475
1476 /* Table listing what rtl codes each predicate in i960.c will accept. */
1477
1478 #define PREDICATE_CODES \
1479 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1480 LABEL_REF, SUBREG, REG, MEM}}, \
1481 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1482 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1483 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1484 {"literal", {CONST_INT}}, \
1485 {"fp_literal_one", {CONST_DOUBLE}}, \
1486 {"fp_literal_double", {CONST_DOUBLE}}, \
1487 {"fp_literal", {CONST_DOUBLE}}, \
1488 {"signed_literal", {CONST_INT}}, \
1489 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1490 {"eq_or_neq", {EQ, NE}}, \
1491 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1492 CONST_DOUBLE, CONST}}, \
1493 {"power2_operand", {CONST_INT}}, \
1494 {"cmplpower2_operand", {CONST_INT}},
1495
1496 /* Define functions in i960.c and used in insn-output.c. */
1497
1498 extern char *i960_output_ldconst ();
1499 extern char *i960_output_call_insn ();
1500 extern char *i960_output_ret_insn ();
1501
1502 /* Defined in reload.c, and used in insn-recog.c. */
1503
1504 extern int rtx_equal_function_value_matters;
This page took 0.109338 seconds and 4 git commands to generate.