]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
(function_prologue): Emit prologue as asm. (override_options): Don't emit rtl for...
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for Intel X86
2 (386, 486, Pentium).
3 Copyright (C) 1988, 1992, 1994, 1995, 1996 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
34 PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
35 PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
36
37 /* Names to predefine in the preprocessor for this target machine. */
38
39 #define I386 1
40
41 /* Stubs for half-pic support if not OSF/1 reference platform. */
42
43 #ifndef HALF_PIC_P
44 #define HALF_PIC_P() 0
45 #define HALF_PIC_NUMBER_PTRS 0
46 #define HALF_PIC_NUMBER_REFS 0
47 #define HALF_PIC_ENCODE(DECL)
48 #define HALF_PIC_DECLARE(NAME)
49 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
50 #define HALF_PIC_ADDRESS_P(X) 0
51 #define HALF_PIC_PTR(X) X
52 #define HALF_PIC_FINISH(STREAM)
53 #endif
54
55 /* Define the specific costs for a given cpu */
56
57 struct processor_costs {
58 int add; /* cost of an add instruction */
59 int lea; /* cost of a lea instruction */
60 int shift_var; /* variable shift costs */
61 int shift_const; /* constant shift costs */
62 int mult_init; /* cost of starting a multiply */
63 int mult_bit; /* cost of multiply per each bit set */
64 int divide; /* cost of a divide/mod */
65 };
66
67 extern struct processor_costs *ix86_cost;
68
69 /* Run-time compilation parameters selecting different hardware subsets. */
70
71 extern int target_flags;
72
73 /* Macros used in the machine description to test the flags. */
74
75 /* configure can arrange to make this 2, to force a 486. */
76 #ifndef TARGET_CPU_DEFAULT
77 #define TARGET_CPU_DEFAULT 0
78 #endif
79
80 /* Masks for the -m switches */
81 #define MASK_80387 000000000001 /* Hardware floating point */
82 #define MASK_486 000000000002 /* 80486 specific */
83 #define MASK_NOTUSED1 000000000004 /* bit not currently used */
84 #define MASK_RTD 000000000010 /* Use ret that pops args */
85 #define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
86 #define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
87 #define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
88 #define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
89 #define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
90 #define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
91 /* Temporary codegen switches */
92 #define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
93 #define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
94 #define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
95 #define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
96 #define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
97 #define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
98
99 /* Use the floating point instructions */
100 #define TARGET_80387 (target_flags & MASK_80387)
101
102 /* Compile using ret insn that pops args.
103 This will not work unless you use prototypes at least
104 for all functions that can take varying numbers of args. */
105 #define TARGET_RTD (target_flags & MASK_RTD)
106
107 /* Align doubles to a two word boundary. This breaks compatibility with
108 the published ABI's for structures containing doubles, but produces
109 faster code on the pentium. */
110 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
111
112 /* Put uninitialized locals into bss, not data.
113 Meaningful only on svr3. */
114 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
115
116 /* Use IEEE floating point comparisons. These handle correctly the cases
117 where the result of a comparison is unordered. Normally SIGFPE is
118 generated in such cases, in which case this isn't needed. */
119 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
120
121 /* Functions that return a floating point value may return that value
122 in the 387 FPU or in 386 integer registers. If set, this flag causes
123 the 387 to be used, which is compatible with most calling conventions. */
124 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
125
126 /* Disable generation of FP sin, cos and sqrt operations for 387.
127 This is because FreeBSD lacks these in the math-emulator-code */
128 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
129
130 /* Don't create frame pointers for leaf functions */
131 #define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
132
133 /* Temporary switches for tuning code generation */
134
135 /* Disable 32x32->64 bit multiplies that are used for long long multiplies
136 and division by constants, but sometimes cause reload problems. */
137 #define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
138 #define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
139
140 /* Emit/Don't emit prologue as rtl */
141 #define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
142
143 /* Debug GO_IF_LEGITIMATE_ADDRESS */
144 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
145
146 /* Debug FUNCTION_ARG macros */
147 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
148
149 /* Hack macros for tuning code generation */
150 #define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
151 #define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
152
153 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
154 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
155 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
156 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
157 #define TARGET_USE_LEAVE (ix86_cpu == PROCESSOR_I386)
158 #define TARGET_PUSH_MEMORY (ix86_cpu == PROCESSOR_I386)
159 #define TARGET_ZERO_EXTEND_WITH_AND (ix86_cpu != PROCESSOR_I386)
160 #define TARGET_DOUBLE_WITH_ADD (ix86_cpu != PROCESSOR_I386)
161 #define TARGET_USE_BIT_TEST (ix86_cpu == PROCESSOR_I386)
162 #define TARGET_UNROLL_STRLEN (ix86_cpu != PROCESSOR_I386)
163 #define TARGET_USE_Q_REG (ix86_cpu == PROCESSOR_PENTIUM)
164 #define TARGET_USE_ANY_REG (ix86_cpu == PROCESSOR_I486)
165 #define TARGET_CMOVE (ix86_isa == PROCESSOR_PENTIUMPRO)
166 #define TARGET_DEEP_BRANCH_PREDICTION (ix86_cpu == PROCESSOR_PENTIUMPRO)
167
168 #define TARGET_SWITCHES \
169 { { "80387", MASK_80387 }, \
170 { "no-80387", -MASK_80387 }, \
171 { "hard-float", MASK_80387 }, \
172 { "soft-float", -MASK_80387 }, \
173 { "no-soft-float", MASK_80387 }, \
174 { "386", 0 }, \
175 { "no-386", 0 }, \
176 { "486", 0 }, \
177 { "no-486", 0 }, \
178 { "pentium", 0 }, \
179 { "pentiumpro", 0 }, \
180 { "rtd", MASK_RTD }, \
181 { "no-rtd", -MASK_RTD }, \
182 { "align-double", MASK_ALIGN_DOUBLE }, \
183 { "no-align-double", -MASK_ALIGN_DOUBLE }, \
184 { "svr3-shlib", MASK_SVR3_SHLIB }, \
185 { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \
186 { "ieee-fp", MASK_IEEE_FP }, \
187 { "no-ieee-fp", -MASK_IEEE_FP }, \
188 { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \
189 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \
190 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \
191 { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \
192 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, \
193 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER }, \
194 { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \
195 { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \
196 { "schedule-prologue", MASK_SCHEDULE_PROLOGUE }, \
197 { "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE }, \
198 { "debug-addr", MASK_DEBUG_ADDR }, \
199 { "no-debug-addr", -MASK_DEBUG_ADDR }, \
200 { "move", -MASK_NO_MOVE }, \
201 { "no-move", MASK_NO_MOVE }, \
202 { "debug-arg", MASK_DEBUG_ARG }, \
203 { "no-debug-arg", -MASK_DEBUG_ARG }, \
204 SUBTARGET_SWITCHES \
205 { "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT}}
206
207 /* Which processor to schedule for. The cpu attribute defines a list that
208 mirrors this list, so changes to i386.md must be made at the same time. */
209
210 enum processor_type
211 {PROCESSOR_I386, /* 80386 */
212 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
213 PROCESSOR_PENTIUM,
214 PROCESSOR_PENTIUMPRO};
215
216 #define PROCESSOR_I386_STRING "i386"
217 #define PROCESSOR_I486_STRING "i486"
218 #define PROCESSOR_I586_STRING "i586"
219 #define PROCESSOR_PENTIUM_STRING "pentium"
220 #define PROCESSOR_I686_STRING "i686"
221 #define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
222
223 extern enum processor_type ix86_cpu;
224
225 extern int ix86_isa;
226
227 /* Define generic processor types based upon current deployment. */
228 #define PROCESSOR_COMMON PROCESSOR_I386
229 #define PROCESSOR_COMMON_STRING PROCESSOR_I386_STRING
230
231 /* Define the default processor. This is overridden by other tm.h files. */
232 #define PROCESSOR_DEFAULT \
233 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
234 ? PROCESSOR_I486 \
235 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
236 ? PROCESSOR_PENTIUM \
237 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
238 ? PROCESSOR_PENTIUMPRO \
239 : PROCESSOR_I386
240 #define PROCESSOR_DEFAULT_STRING \
241 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
242 ? PROCESSOR_I486_STRING \
243 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
244 ? PROCESSOR_PENTIUM_STRING \
245 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
246 ? PROCESSOR_PENTIUMPRO_STRING \
247 : PROCESSOR_I386_STRING
248
249 /* This macro is similar to `TARGET_SWITCHES' but defines names of
250 command options that have values. Its definition is an
251 initializer with a subgrouping for each command option.
252
253 Each subgrouping contains a string constant, that defines the
254 fixed part of the option name, and the address of a variable. The
255 variable, type `char *', is set to the variable part of the given
256 option if the fixed part matches. The actual option name is made
257 by appending `-m' to the specified name. */
258 #define TARGET_OPTIONS \
259 { { "cpu=", &ix86_cpu_string}, \
260 { "arch=", &ix86_isa_string}, \
261 { "reg-alloc=", &i386_reg_alloc_order }, \
262 { "regparm=", &i386_regparm_string }, \
263 { "align-loops=", &i386_align_loops_string }, \
264 { "align-jumps=", &i386_align_jumps_string }, \
265 { "align-functions=", &i386_align_funcs_string }, \
266 SUBTARGET_OPTIONS \
267 }
268
269 /* Sometimes certain combinations of command options do not make
270 sense on a particular target machine. You can define a macro
271 `OVERRIDE_OPTIONS' to take account of this. This macro, if
272 defined, is executed once just after all the command options have
273 been parsed.
274
275 Don't use this macro to turn on various extra optimizations for
276 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
277
278 #define OVERRIDE_OPTIONS override_options ()
279
280 /* These are meant to be redefined in the host dependent files */
281 #define SUBTARGET_SWITCHES
282 #define SUBTARGET_OPTIONS
283
284 /* Define this to change the optimizations performed by default. */
285 #define OPTIMIZATION_OPTIONS(LEVEL) optimization_options(LEVEL)
286
287 /* Specs for the compiler proper */
288
289 #ifndef CC1_SPEC
290 #define CC1_SPEC "\
291 %{!mcpu*: \
292 %{m386:-mcpu=i386 -march=i386} \
293 %{mno-486:-mcpu=i386 -march=i386} \
294 %{m486:-mcpu=i486 -march=i486} \
295 %{mno-386:-mcpu=i486 -march=i486} \
296 %{mno-pentium:-mcpu=i486 -march=i486} \
297 %{mpentium:-mcpu=pentium} \
298 %{mno-pentiumpro:-mcpu=pentium} \
299 %{mpentiumpro:-mcpu=pentiumpro}}"
300 #endif
301 \f
302 /* target machine storage layout */
303
304 /* Define for XFmode extended real floating point support.
305 This will automatically cause REAL_ARITHMETIC to be defined. */
306 #define LONG_DOUBLE_TYPE_SIZE 96
307
308 /* Define if you don't want extended real, but do want to use the
309 software floating point emulator for REAL_ARITHMETIC and
310 decimal <-> binary conversion. */
311 /* #define REAL_ARITHMETIC */
312
313 /* Define this if most significant byte of a word is the lowest numbered. */
314 /* That is true on the 80386. */
315
316 #define BITS_BIG_ENDIAN 0
317
318 /* Define this if most significant byte of a word is the lowest numbered. */
319 /* That is not true on the 80386. */
320 #define BYTES_BIG_ENDIAN 0
321
322 /* Define this if most significant word of a multiword number is the lowest
323 numbered. */
324 /* Not true for 80386 */
325 #define WORDS_BIG_ENDIAN 0
326
327 /* number of bits in an addressable storage unit */
328 #define BITS_PER_UNIT 8
329
330 /* Width in bits of a "word", which is the contents of a machine register.
331 Note that this is not necessarily the width of data type `int';
332 if using 16-bit ints on a 80386, this would still be 32.
333 But on a machine with 16-bit registers, this would be 16. */
334 #define BITS_PER_WORD 32
335
336 /* Width of a word, in units (bytes). */
337 #define UNITS_PER_WORD 4
338
339 /* Width in bits of a pointer.
340 See also the macro `Pmode' defined below. */
341 #define POINTER_SIZE 32
342
343 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
344 #define PARM_BOUNDARY 32
345
346 /* Boundary (in *bits*) on which stack pointer should be aligned. */
347 #define STACK_BOUNDARY 32
348
349 /* Allocation boundary (in *bits*) for the code of a function.
350 For i486, we get better performance by aligning to a cache
351 line (i.e. 16 byte) boundary. */
352 #define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
353
354 /* Alignment of field after `int : 0' in a structure. */
355
356 #define EMPTY_FIELD_BOUNDARY 32
357
358 /* Minimum size in bits of the largest boundary to which any
359 and all fundamental data types supported by the hardware
360 might need to be aligned. No data type wants to be aligned
361 rounder than this. The i386 supports 64-bit floating point
362 quantities, but these can be aligned on any 32-bit boundary.
363 The published ABIs say that doubles should be aligned on word
364 boundaries, but the Pentium gets better performance with them
365 aligned on 64 bit boundaries. */
366 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
367
368 /* align DFmode constants and nonaggregates */
369 #define ALIGN_DFmode (!TARGET_386)
370
371 /* Set this non-zero if move instructions will actually fail to work
372 when given unaligned data. */
373 #define STRICT_ALIGNMENT 0
374
375 /* If bit field type is int, don't let it cross an int,
376 and give entire struct the alignment of an int. */
377 /* Required on the 386 since it doesn't have bitfield insns. */
378 #define PCC_BITFIELD_TYPE_MATTERS 1
379
380 /* Maximum power of 2 that code can be aligned to. */
381 #define MAX_CODE_ALIGN 6 /* 64 byte alignment */
382
383 /* Align loop starts for optimal branching. */
384 #define ASM_OUTPUT_LOOP_ALIGN(FILE) ASM_OUTPUT_ALIGN (FILE, i386_align_loops)
385
386 /* This is how to align an instruction for optimal branching.
387 On i486 we'll get better performance by aligning on a
388 cache line (i.e. 16 byte) boundary. */
389 #define ASM_OUTPUT_ALIGN_CODE(FILE) ASM_OUTPUT_ALIGN ((FILE), i386_align_jumps)
390
391 \f
392 /* Standard register usage. */
393
394 /* This processor has special stack-like registers. See reg-stack.c
395 for details. */
396
397 #define STACK_REGS
398 #define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
399
400 /* Number of actual hardware registers.
401 The hardware registers are assigned numbers for the compiler
402 from 0 to just below FIRST_PSEUDO_REGISTER.
403 All registers that the compiler knows about must be given numbers,
404 even those that are not normally considered general registers.
405
406 In the 80386 we give the 8 general purpose registers the numbers 0-7.
407 We number the floating point registers 8-15.
408 Note that registers 0-7 can be accessed as a short or int,
409 while only 0-3 may be used with byte `mov' instructions.
410
411 Reg 16 does not correspond to any hardware register, but instead
412 appears in the RTL as an argument pointer prior to reload, and is
413 eliminated during reloading in favor of either the stack or frame
414 pointer. */
415
416 #define FIRST_PSEUDO_REGISTER 17
417
418 /* 1 for registers that have pervasive standard uses
419 and are not available for the register allocator.
420 On the 80386, the stack pointer is such, as is the arg pointer. */
421 #define FIXED_REGISTERS \
422 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
423 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
424
425 /* 1 for registers not available across function calls.
426 These must include the FIXED_REGISTERS and also any
427 registers that can be used without being saved.
428 The latter must include the registers where values are returned
429 and the register where structure-value addresses are passed.
430 Aside from that, you can include as many other registers as you like. */
431
432 #define CALL_USED_REGISTERS \
433 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
434 { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
435
436 /* Order in which to allocate registers. Each register must be
437 listed once, even those in FIXED_REGISTERS. List frame pointer
438 late and fixed registers last. Note that, in general, we prefer
439 registers listed in CALL_USED_REGISTERS, keeping the others
440 available for storage of persistent values.
441
442 Three different versions of REG_ALLOC_ORDER have been tried:
443
444 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
445 but slower code on simple functions returning values in eax.
446
447 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
448 perl 4.036 due to not being able to create a DImode register (to hold a 2
449 word union).
450
451 If the order is eax, edx, ecx, ... it produces better code for simple
452 functions, and a slightly slower compiler. Users complained about the code
453 generated by allocating edx first, so restore the 'natural' order of things. */
454
455 #define REG_ALLOC_ORDER \
456 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
457 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
458
459 /* A C statement (sans semicolon) to choose the order in which to
460 allocate hard registers for pseudo-registers local to a basic
461 block.
462
463 Store the desired register order in the array `reg_alloc_order'.
464 Element 0 should be the register to allocate first; element 1, the
465 next register; and so on.
466
467 The macro body should not assume anything about the contents of
468 `reg_alloc_order' before execution of the macro.
469
470 On most machines, it is not necessary to define this macro. */
471
472 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
473
474 /* Macro to conditionally modify fixed_regs/call_used_regs. */
475 #define CONDITIONAL_REGISTER_USAGE \
476 { \
477 if (flag_pic) \
478 { \
479 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
480 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
481 } \
482 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
483 { \
484 int i; \
485 HARD_REG_SET x; \
486 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
488 if (TEST_HARD_REG_BIT (x, i)) \
489 fixed_regs[i] = call_used_regs[i] = 1; \
490 } \
491 }
492
493 /* Return number of consecutive hard regs needed starting at reg REGNO
494 to hold something of mode MODE.
495 This is ordinarily the length in words of a value of mode MODE
496 but can be less for certain modes in special long registers.
497
498 Actually there are no two word move instructions for consecutive
499 registers. And only registers 0-3 may have mov byte instructions
500 applied to them.
501 */
502
503 #define HARD_REGNO_NREGS(REGNO, MODE) \
504 (FP_REGNO_P (REGNO) ? 1 \
505 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
506
507 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
508 On the 80386, the first 4 cpu registers can hold any mode
509 while the floating point registers may hold only floating point.
510 Make it clear that the fp regs could not hold a 16-byte float. */
511
512 /* The casts to int placate a compiler on a microvax,
513 for cross-compiler testing. */
514
515 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
516 ((REGNO) < 2 ? 1 \
517 : (REGNO) < 4 ? 1 \
518 : FP_REGNO_P (REGNO) \
519 ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
520 || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
521 && GET_MODE_UNIT_SIZE (MODE) <= 12) \
522 : (int) (MODE) != (int) QImode ? 1 \
523 : (reload_in_progress | reload_completed) == 1)
524
525 /* Value is 1 if it is a good idea to tie two pseudo registers
526 when one has mode MODE1 and one has mode MODE2.
527 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
528 for any hard reg, then this must be 0 for correct output. */
529
530 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
531
532 /* Provide the cost of a branch. Exact meaning under development. */
533 #define BRANCH_COST (TARGET_PENTIUMPRO ? 5 : 1)
534
535 /* Specify the registers used for certain standard purposes.
536 The values of these macros are register numbers. */
537
538 /* on the 386 the pc register is %eip, and is not usable as a general
539 register. The ordinary mov instructions won't work */
540 /* #define PC_REGNUM */
541
542 /* Register to use for pushing function arguments. */
543 #define STACK_POINTER_REGNUM 7
544
545 /* Base register for access to local variables of the function. */
546 #define FRAME_POINTER_REGNUM 6
547
548 /* First floating point reg */
549 #define FIRST_FLOAT_REG 8
550
551 /* First & last stack-like regs */
552 #define FIRST_STACK_REG FIRST_FLOAT_REG
553 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
554
555 /* Value should be nonzero if functions must have frame pointers.
556 Zero means the frame pointer need not be set up (and parms
557 may be accessed via the stack pointer) in functions that seem suitable.
558 This is computed in `reload', in reload1.c. */
559 #define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
560
561 /* Base register for access to arguments of the function. */
562 #define ARG_POINTER_REGNUM 16
563
564 /* Register in which static-chain is passed to a function. */
565 #define STATIC_CHAIN_REGNUM 2
566
567 /* Register to hold the addressing base for position independent
568 code access to data items. */
569 #define PIC_OFFSET_TABLE_REGNUM 3
570
571 /* Register in which address to store a structure value
572 arrives in the function. On the 386, the prologue
573 copies this from the stack to register %eax. */
574 #define STRUCT_VALUE_INCOMING 0
575
576 /* Place in which caller passes the structure value address.
577 0 means push the value on the stack like an argument. */
578 #define STRUCT_VALUE 0
579
580 /* A C expression which can inhibit the returning of certain function
581 values in registers, based on the type of value. A nonzero value
582 says to return the function value in memory, just as large
583 structures are always returned. Here TYPE will be a C expression
584 of type `tree', representing the data type of the value.
585
586 Note that values of mode `BLKmode' must be explicitly handled by
587 this macro. Also, the option `-fpcc-struct-return' takes effect
588 regardless of this macro. On most systems, it is possible to
589 leave the macro undefined; this causes a default definition to be
590 used, whose value is the constant 1 for `BLKmode' values, and 0
591 otherwise.
592
593 Do not use this macro to indicate that structures and unions
594 should always be returned in memory. You should instead use
595 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
596
597 #define RETURN_IN_MEMORY(TYPE) \
598 ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
599
600 \f
601 /* Define the classes of registers for register constraints in the
602 machine description. Also define ranges of constants.
603
604 One of the classes must always be named ALL_REGS and include all hard regs.
605 If there is more than one class, another class must be named NO_REGS
606 and contain no registers.
607
608 The name GENERAL_REGS must be the name of a class (or an alias for
609 another name such as ALL_REGS). This is the class of registers
610 that is allowed by "g" or "r" in a register constraint.
611 Also, registers outside this class are allocated only when
612 instructions express preferences for them.
613
614 The classes must be numbered in nondecreasing order; that is,
615 a larger-numbered class must never be contained completely
616 in a smaller-numbered class.
617
618 For any two classes, it is very desirable that there be another
619 class that represents their union.
620
621 It might seem that class BREG is unnecessary, since no useful 386
622 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
623 and the "b" register constraint is useful in asms for syscalls. */
624
625 enum reg_class
626 {
627 NO_REGS,
628 AREG, DREG, CREG, BREG,
629 AD_REGS, /* %eax/%edx for DImode */
630 Q_REGS, /* %eax %ebx %ecx %edx */
631 SIREG, DIREG,
632 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
633 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
634 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
635 FLOAT_REGS,
636 ALL_REGS, LIM_REG_CLASSES
637 };
638
639 #define N_REG_CLASSES (int) LIM_REG_CLASSES
640
641 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
642
643 /* Give names of register classes as strings for dump file. */
644
645 #define REG_CLASS_NAMES \
646 { "NO_REGS", \
647 "AREG", "DREG", "CREG", "BREG", \
648 "AD_REGS", \
649 "Q_REGS", \
650 "SIREG", "DIREG", \
651 "INDEX_REGS", \
652 "GENERAL_REGS", \
653 "FP_TOP_REG", "FP_SECOND_REG", \
654 "FLOAT_REGS", \
655 "ALL_REGS" }
656
657 /* Define which registers fit in which classes.
658 This is an initializer for a vector of HARD_REG_SET
659 of length N_REG_CLASSES. */
660
661 #define REG_CLASS_CONTENTS \
662 { 0, \
663 0x1, 0x2, 0x4, 0x8, /* AREG, DREG, CREG, BREG */ \
664 0x3, /* AD_REGS */ \
665 0xf, /* Q_REGS */ \
666 0x10, 0x20, /* SIREG, DIREG */ \
667 0x7f, /* INDEX_REGS */ \
668 0x100ff, /* GENERAL_REGS */ \
669 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \
670 0xff00, /* FLOAT_REGS */ \
671 0x1ffff }
672
673 /* The same information, inverted:
674 Return the class number of the smallest class containing
675 reg number REGNO. This could be a conditional expression
676 or could index an array. */
677
678 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
679
680 /* When defined, the compiler allows registers explicitly used in the
681 rtl to be used as spill registers but prevents the compiler from
682 extending the lifetime of these registers. */
683
684 #define SMALL_REGISTER_CLASSES
685
686 #define QI_REG_P(X) \
687 (REG_P (X) && REGNO (X) < 4)
688 #define NON_QI_REG_P(X) \
689 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
690
691 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
692 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
693
694 #define STACK_REG_P(xop) (REG_P (xop) && \
695 REGNO (xop) >= FIRST_STACK_REG && \
696 REGNO (xop) <= LAST_STACK_REG)
697
698 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
699
700 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
701
702 /* Try to maintain the accuracy of the death notes for regs satisfying the
703 following. Important for stack like regs, to know when to pop. */
704
705 /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
706
707 /* 1 if register REGNO can magically overlap other regs.
708 Note that nonzero values work only in very special circumstances. */
709
710 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
711
712 /* The class value for index registers, and the one for base regs. */
713
714 #define INDEX_REG_CLASS INDEX_REGS
715 #define BASE_REG_CLASS GENERAL_REGS
716
717 /* Get reg_class from a letter such as appears in the machine description. */
718
719 #define REG_CLASS_FROM_LETTER(C) \
720 ((C) == 'r' ? GENERAL_REGS : \
721 (C) == 'q' ? Q_REGS : \
722 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
723 ? FLOAT_REGS \
724 : NO_REGS) : \
725 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
726 ? FP_TOP_REG \
727 : NO_REGS) : \
728 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
729 ? FP_SECOND_REG \
730 : NO_REGS) : \
731 (C) == 'a' ? AREG : \
732 (C) == 'b' ? BREG : \
733 (C) == 'c' ? CREG : \
734 (C) == 'd' ? DREG : \
735 (C) == 'A' ? AD_REGS : \
736 (C) == 'D' ? DIREG : \
737 (C) == 'S' ? SIREG : NO_REGS)
738
739 /* The letters I, J, K, L and M in a register constraint string
740 can be used to stand for particular ranges of immediate operands.
741 This macro defines what the ranges are.
742 C is the letter, and VALUE is a constant value.
743 Return 1 if VALUE is in the range specified by C.
744
745 I is for non-DImode shifts.
746 J is for DImode shifts.
747 K and L are for an `andsi' optimization.
748 M is for shifts that can be executed by the "lea" opcode.
749 */
750
751 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
752 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
753 (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
754 (C) == 'K' ? (VALUE) == 0xff : \
755 (C) == 'L' ? (VALUE) == 0xffff : \
756 (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
757 (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
758 (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
759 0)
760
761 /* Similar, but for floating constants, and defining letters G and H.
762 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
763 TARGET_387 isn't set, because the stack register converter may need to
764 load 0.0 into the function value register. */
765
766 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
767 ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
768
769 /* Place additional restrictions on the register class to use when it
770 is necessary to be able to hold a value of mode MODE in a reload
771 register for which class CLASS would ordinarily be used. */
772
773 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
774 ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
775 ? Q_REGS : (CLASS))
776
777 /* Given an rtx X being reloaded into a reg required to be
778 in class CLASS, return the class of reg to actually use.
779 In general this is just CLASS; but on some machines
780 in some cases it is preferable to use a more restrictive class.
781 On the 80386 series, we prevent floating constants from being
782 reloaded into floating registers (since no move-insn can do that)
783 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
784
785 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
786 QImode must go into class Q_REGS.
787 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
788 movdf to do mem-to-mem moves through integer regs. */
789
790 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
791 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
792 : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
793 : ((CLASS) == ALL_REGS \
794 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
795 : (CLASS))
796
797 /* If we are copying between general and FP registers, we need a memory
798 location. */
799
800 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
801 ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
802 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
803
804 /* Return the maximum number of consecutive registers
805 needed to represent mode MODE in a register of class CLASS. */
806 /* On the 80386, this is the size of MODE in words,
807 except in the FP regs, where a single reg is always enough. */
808 #define CLASS_MAX_NREGS(CLASS, MODE) \
809 (FLOAT_CLASS_P (CLASS) ? 1 : \
810 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
811
812 /* A C expression whose value is nonzero if pseudos that have been
813 assigned to registers of class CLASS would likely be spilled
814 because registers of CLASS are needed for spill registers.
815
816 The default value of this macro returns 1 if CLASS has exactly one
817 register and zero otherwise. On most machines, this default
818 should be used. Only define this macro to some other expression
819 if pseudo allocated by `local-alloc.c' end up in memory because
820 their hard registers were needed for spill registers. If this
821 macro returns nonzero for those classes, those pseudos will only
822 be allocated by `global.c', which knows how to reallocate the
823 pseudo to another register. If there would not be another
824 register available for reallocation, you should not change the
825 definition of this macro since the only effect of such a
826 definition would be to slow down register allocation. */
827
828 #define CLASS_LIKELY_SPILLED_P(CLASS) \
829 (((CLASS) == AREG) \
830 || ((CLASS) == DREG) \
831 || ((CLASS) == CREG) \
832 || ((CLASS) == BREG) \
833 || ((CLASS) == AD_REGS) \
834 || ((CLASS) == SIREG) \
835 || ((CLASS) == DIREG))
836
837 \f
838 /* Stack layout; function entry, exit and calling. */
839
840 /* Define this if pushing a word on the stack
841 makes the stack pointer a smaller address. */
842 #define STACK_GROWS_DOWNWARD
843
844 /* Define this if the nominal address of the stack frame
845 is at the high-address end of the local variables;
846 that is, each additional local variable allocated
847 goes at a more negative offset in the frame. */
848 #define FRAME_GROWS_DOWNWARD
849
850 /* Offset within stack frame to start allocating local variables at.
851 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
852 first local allocated. Otherwise, it is the offset to the BEGINNING
853 of the first local allocated. */
854 #define STARTING_FRAME_OFFSET 0
855
856 /* If we generate an insn to push BYTES bytes,
857 this says how many the stack pointer really advances by.
858 On 386 pushw decrements by exactly 2 no matter what the position was.
859 On the 386 there is no pushb; we use pushw instead, and this
860 has the effect of rounding up to 2. */
861
862 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
863
864 /* Offset of first parameter from the argument pointer register value. */
865 #define FIRST_PARM_OFFSET(FNDECL) 0
866
867 /* Value is the number of bytes of arguments automatically
868 popped when returning from a subroutine call.
869 FUNDECL is the declaration node of the function (as a tree),
870 FUNTYPE is the data type of the function (as a tree),
871 or for a library call it is an identifier node for the subroutine name.
872 SIZE is the number of bytes of arguments passed on the stack.
873
874 On the 80386, the RTD insn may be used to pop them if the number
875 of args is fixed, but if the number is variable then the caller
876 must pop them all. RTD can't be used for library calls now
877 because the library is compiled with the Unix compiler.
878 Use of RTD is a selectable option, since it is incompatible with
879 standard Unix calling sequences. If the option is not selected,
880 the caller must always pop the args.
881
882 The attribute stdcall is equivalent to RTD on a per module basis. */
883
884 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
885 (i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
886
887 /* Define how to find the value returned by a function.
888 VALTYPE is the data type of the value (as a tree).
889 If the precise function being called is known, FUNC is its FUNCTION_DECL;
890 otherwise, FUNC is 0. */
891 #define FUNCTION_VALUE(VALTYPE, FUNC) \
892 gen_rtx (REG, TYPE_MODE (VALTYPE), \
893 VALUE_REGNO (TYPE_MODE (VALTYPE)))
894
895 /* Define how to find the value returned by a library function
896 assuming the value has mode MODE. */
897
898 #define LIBCALL_VALUE(MODE) \
899 gen_rtx (REG, MODE, VALUE_REGNO (MODE))
900
901 /* Define the size of the result block used for communication between
902 untyped_call and untyped_return. The block contains a DImode value
903 followed by the block used by fnsave and frstor. */
904
905 #define APPLY_RESULT_SIZE (8+108)
906
907 /* 1 if N is a possible register number for function argument passing. */
908 #define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
909
910 /* Define a data type for recording info about an argument list
911 during the scan of that argument list. This data type should
912 hold all necessary information about the function itself
913 and about the args processed so far, enough to enable macros
914 such as FUNCTION_ARG to determine where the next arg should go. */
915
916 typedef struct i386_args {
917 int words; /* # words passed so far */
918 int nregs; /* # registers available for passing */
919 int regno; /* next available register number */
920 } CUMULATIVE_ARGS;
921
922 /* Initialize a variable CUM of type CUMULATIVE_ARGS
923 for a call to a function whose data type is FNTYPE.
924 For a library call, FNTYPE is 0. */
925
926 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
927 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
928
929 /* Update the data in CUM to advance over an argument
930 of mode MODE and data type TYPE.
931 (TYPE is null for libcalls where that information may not be available.) */
932
933 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
934 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
935
936 /* Define where to put the arguments to a function.
937 Value is zero to push the argument on the stack,
938 or a hard register in which to store the argument.
939
940 MODE is the argument's machine mode.
941 TYPE is the data type of the argument (as a tree).
942 This is null for libcalls where that information may
943 not be available.
944 CUM is a variable of type CUMULATIVE_ARGS which gives info about
945 the preceding args and about the function being called.
946 NAMED is nonzero if this argument is a named parameter
947 (otherwise it is an extra parameter matching an ellipsis). */
948
949 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
950 (function_arg (&CUM, MODE, TYPE, NAMED))
951
952 /* For an arg passed partly in registers and partly in memory,
953 this is the number of registers used.
954 For args passed entirely in registers or entirely in memory, zero. */
955
956 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
957 (function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
958
959 /* This macro is invoked just before the start of a function.
960 It is used here to output code for -fpic that will load the
961 return address into %ebx. */
962
963 #undef ASM_OUTPUT_FUNCTION_PREFIX
964 #define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
965 asm_output_function_prefix (FILE, FNNAME)
966
967 /* This macro generates the assembly code for function entry.
968 FILE is a stdio stream to output the code to.
969 SIZE is an int: how many units of temporary storage to allocate.
970 Refer to the array `regs_ever_live' to determine which registers
971 to save; `regs_ever_live[I]' is nonzero if register number I
972 is ever used in the function. This macro is responsible for
973 knowing which registers should not be saved even if used. */
974
975 #define FUNCTION_PROLOGUE(FILE, SIZE) \
976 function_prologue (FILE, SIZE)
977
978 /* Output assembler code to FILE to increment profiler label # LABELNO
979 for profiling a function entry. */
980
981 #define FUNCTION_PROFILER(FILE, LABELNO) \
982 { \
983 if (flag_pic) \
984 { \
985 fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
986 LPREFIX, (LABELNO)); \
987 fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
988 } \
989 else \
990 { \
991 fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
992 fprintf (FILE, "\tcall _mcount\n"); \
993 } \
994 }
995
996
997 /* There are three profiling modes for basic blocks available.
998 The modes are selected at compile time by using the options
999 -a or -ax of the gnu compiler.
1000 The variable `profile_block_flag' will be set according to the
1001 selected option.
1002
1003 profile_block_flag == 0, no option used:
1004
1005 No profiling done.
1006
1007 profile_block_flag == 1, -a option used.
1008
1009 Count frequency of execution of every basic block.
1010
1011 profile_block_flag == 2, -ax option used.
1012
1013 Generate code to allow several different profiling modes at run time.
1014 Available modes are:
1015 Produce a trace of all basic blocks.
1016 Count frequency of jump instructions executed.
1017 In every mode it is possible to start profiling upon entering
1018 certain functions and to disable profiling of some other functions.
1019
1020 The result of basic-block profiling will be written to a file `bb.out'.
1021 If the -ax option is used parameters for the profiling will be read
1022 from file `bb.in'.
1023
1024 */
1025
1026 /* The following macro shall output assembler code to FILE
1027 to initialize basic-block profiling.
1028
1029 If profile_block_flag == 2
1030
1031 Output code to call the subroutine `__bb_init_trace_func'
1032 and pass two parameters to it. The first parameter is
1033 the address of a block allocated in the object module.
1034 The second parameter is the number of the first basic block
1035 of the function.
1036
1037 The name of the block is a local symbol made with this statement:
1038
1039 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1040
1041 Of course, since you are writing the definition of
1042 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1043 can take a short cut in the definition of this macro and use the
1044 name that you know will result.
1045
1046 The number of the first basic block of the function is
1047 passed to the macro in BLOCK_OR_LABEL.
1048
1049 If described in a virtual assembler language the code to be
1050 output looks like:
1051
1052 parameter1 <- LPBX0
1053 parameter2 <- BLOCK_OR_LABEL
1054 call __bb_init_trace_func
1055
1056 else if profile_block_flag != 0
1057
1058 Output code to call the subroutine `__bb_init_func'
1059 and pass one single parameter to it, which is the same
1060 as the first parameter to `__bb_init_trace_func'.
1061
1062 The first word of this parameter is a flag which will be nonzero if
1063 the object module has already been initialized. So test this word
1064 first, and do not call `__bb_init_func' if the flag is nonzero.
1065 Note: When profile_block_flag == 2 the test need not be done
1066 but `__bb_init_trace_func' *must* be called.
1067
1068 BLOCK_OR_LABEL may be used to generate a label number as a
1069 branch destination in case `__bb_init_func' will not be called.
1070
1071 If described in a virtual assembler language the code to be
1072 output looks like:
1073
1074 cmp (LPBX0),0
1075 jne local_label
1076 parameter1 <- LPBX0
1077 call __bb_init_func
1078 local_label:
1079
1080 */
1081
1082 #undef FUNCTION_BLOCK_PROFILER
1083 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1084 do \
1085 { \
1086 static int num_func = 0; \
1087 rtx xops[8]; \
1088 char block_table[80], false_label[80]; \
1089 \
1090 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1091 \
1092 xops[1] = gen_rtx (SYMBOL_REF, VOIDmode, block_table); \
1093 xops[5] = stack_pointer_rtx; \
1094 xops[7] = gen_rtx (REG, Pmode, 0); /* eax */ \
1095 \
1096 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1097 \
1098 switch (profile_block_flag) \
1099 { \
1100 \
1101 case 2: \
1102 \
1103 xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
1104 xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_init_trace_func")); \
1105 xops[6] = GEN_INT (8); \
1106 \
1107 output_asm_insn (AS1(push%L2,%2), xops); \
1108 if (!flag_pic) \
1109 output_asm_insn (AS1(push%L1,%1), xops); \
1110 else \
1111 { \
1112 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1113 output_asm_insn (AS1 (push%L7,%7), xops); \
1114 } \
1115 \
1116 output_asm_insn (AS1(call,%P3), xops); \
1117 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1118 \
1119 break; \
1120 \
1121 default: \
1122 \
1123 ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
1124 \
1125 xops[0] = const0_rtx; \
1126 xops[2] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, false_label)); \
1127 xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_init_func")); \
1128 xops[4] = gen_rtx (MEM, Pmode, xops[1]); \
1129 xops[6] = GEN_INT (4); \
1130 \
1131 CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
1132 \
1133 output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
1134 output_asm_insn (AS1(jne,%2), xops); \
1135 \
1136 if (!flag_pic) \
1137 output_asm_insn (AS1(push%L1,%1), xops); \
1138 else \
1139 { \
1140 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1141 output_asm_insn (AS1 (push%L7,%7), xops); \
1142 } \
1143 \
1144 output_asm_insn (AS1(call,%P3), xops); \
1145 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1146 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
1147 num_func++; \
1148 \
1149 break; \
1150 \
1151 } \
1152 } \
1153 while (0)
1154
1155 /* The following macro shall output assembler code to FILE
1156 to increment a counter associated with basic block number BLOCKNO.
1157
1158 If profile_block_flag == 2
1159
1160 Output code to initialize the global structure `__bb' and
1161 call the function `__bb_trace_func' which will increment the
1162 counter.
1163
1164 `__bb' consists of two words. In the first word the number
1165 of the basic block has to be stored. In the second word
1166 the address of a block allocated in the object module
1167 has to be stored.
1168
1169 The basic block number is given by BLOCKNO.
1170
1171 The address of the block is given by the label created with
1172
1173 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1174
1175 by FUNCTION_BLOCK_PROFILER.
1176
1177 Of course, since you are writing the definition of
1178 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1179 can take a short cut in the definition of this macro and use the
1180 name that you know will result.
1181
1182 If described in a virtual assembler language the code to be
1183 output looks like:
1184
1185 move BLOCKNO -> (__bb)
1186 move LPBX0 -> (__bb+4)
1187 call __bb_trace_func
1188
1189 Note that function `__bb_trace_func' must not change the
1190 machine state, especially the flag register. To grant
1191 this, you must output code to save and restore registers
1192 either in this macro or in the macros MACHINE_STATE_SAVE
1193 and MACHINE_STATE_RESTORE. The last two macros will be
1194 used in the function `__bb_trace_func', so you must make
1195 sure that the function prologue does not change any
1196 register prior to saving it with MACHINE_STATE_SAVE.
1197
1198 else if profile_block_flag != 0
1199
1200 Output code to increment the counter directly.
1201 Basic blocks are numbered separately from zero within each
1202 compiled object module. The count associated with block number
1203 BLOCKNO is at index BLOCKNO in an array of words; the name of
1204 this array is a local symbol made with this statement:
1205
1206 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1207
1208 Of course, since you are writing the definition of
1209 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1210 can take a short cut in the definition of this macro and use the
1211 name that you know will result.
1212
1213 If described in a virtual assembler language the code to be
1214 output looks like:
1215
1216 inc (LPBX2+4*BLOCKNO)
1217
1218 */
1219
1220 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1221 do \
1222 { \
1223 rtx xops[8], cnt_rtx; \
1224 char counts[80]; \
1225 char *block_table = counts; \
1226 \
1227 switch (profile_block_flag) \
1228 { \
1229 \
1230 case 2: \
1231 \
1232 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1233 \
1234 xops[1] = gen_rtx (SYMBOL_REF, VOIDmode, block_table); \
1235 xops[2] = GEN_INT ((BLOCKNO)); \
1236 xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_trace_func")); \
1237 xops[4] = gen_rtx (SYMBOL_REF, VOIDmode, "__bb"); \
1238 xops[5] = plus_constant (xops[4], 4); \
1239 xops[0] = gen_rtx (MEM, SImode, xops[4]); \
1240 xops[6] = gen_rtx (MEM, SImode, xops[5]); \
1241 \
1242 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1243 \
1244 fprintf(FILE, "\tpushf\n"); \
1245 output_asm_insn (AS2(mov%L0,%2,%0), xops); \
1246 if (flag_pic) \
1247 { \
1248 xops[7] = gen_rtx (REG, Pmode, 0); /* eax */ \
1249 output_asm_insn (AS1(push%L7,%7), xops); \
1250 output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
1251 output_asm_insn (AS2(mov%L6,%7,%6), xops); \
1252 output_asm_insn (AS1(pop%L7,%7), xops); \
1253 } \
1254 else \
1255 output_asm_insn (AS2(mov%L6,%1,%6), xops); \
1256 output_asm_insn (AS1(call,%P3), xops); \
1257 fprintf(FILE, "\tpopf\n"); \
1258 \
1259 break; \
1260 \
1261 default: \
1262 \
1263 ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
1264 cnt_rtx = gen_rtx (SYMBOL_REF, VOIDmode, counts); \
1265 SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
1266 \
1267 if (BLOCKNO) \
1268 cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
1269 \
1270 if (flag_pic) \
1271 cnt_rtx = gen_rtx (PLUS, Pmode, pic_offset_table_rtx, cnt_rtx); \
1272 \
1273 xops[0] = gen_rtx (MEM, SImode, cnt_rtx); \
1274 output_asm_insn (AS1(inc%L0,%0), xops); \
1275 \
1276 break; \
1277 \
1278 } \
1279 } \
1280 while (0)
1281
1282 /* The following macro shall output assembler code to FILE
1283 to indicate a return from function during basic-block profiling.
1284
1285 If profiling_block_flag == 2:
1286
1287 Output assembler code to call function `__bb_trace_ret'.
1288
1289 Note that function `__bb_trace_ret' must not change the
1290 machine state, especially the flag register. To grant
1291 this, you must output code to save and restore registers
1292 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1293 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1294 used in the function `__bb_trace_ret', so you must make
1295 sure that the function prologue does not change any
1296 register prior to saving it with MACHINE_STATE_SAVE_RET.
1297
1298 else if profiling_block_flag != 0:
1299
1300 The macro will not be used, so it need not distinguish
1301 these cases.
1302 */
1303
1304 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1305 do \
1306 { \
1307 rtx xops[1]; \
1308 \
1309 xops[0] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_trace_ret")); \
1310 \
1311 output_asm_insn (AS1(call,%P0), xops); \
1312 \
1313 } \
1314 while (0)
1315
1316 /* The function `__bb_trace_func' is called in every basic block
1317 and is not allowed to change the machine state. Saving (restoring)
1318 the state can either be done in the BLOCK_PROFILER macro,
1319 before calling function (rsp. after returning from function)
1320 `__bb_trace_func', or it can be done inside the function by
1321 defining the macros:
1322
1323 MACHINE_STATE_SAVE(ID)
1324 MACHINE_STATE_RESTORE(ID)
1325
1326 In the latter case care must be taken, that the prologue code
1327 of function `__bb_trace_func' does not already change the
1328 state prior to saving it with MACHINE_STATE_SAVE.
1329
1330 The parameter `ID' is a string identifying a unique macro use.
1331
1332 On the i386 the initialization code at the begin of
1333 function `__bb_trace_func' contains a `sub' instruction
1334 therefore we handle save and restore of the flag register
1335 in the BLOCK_PROFILER macro. */
1336
1337 #define MACHINE_STATE_SAVE(ID) \
1338 asm (" pushl %eax"); \
1339 asm (" pushl %ecx"); \
1340 asm (" pushl %edx"); \
1341 asm (" pushl %esi");
1342
1343 #define MACHINE_STATE_RESTORE(ID) \
1344 asm (" popl %esi"); \
1345 asm (" popl %edx"); \
1346 asm (" popl %ecx"); \
1347 asm (" popl %eax");
1348
1349 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1350 the stack pointer does not matter. The value is tested only in
1351 functions that have frame pointers.
1352 No definition is equivalent to always zero. */
1353 /* Note on the 386 it might be more efficient not to define this since
1354 we have to restore it ourselves from the frame pointer, in order to
1355 use pop */
1356
1357 #define EXIT_IGNORE_STACK 1
1358
1359 /* This macro generates the assembly code for function exit,
1360 on machines that need it. If FUNCTION_EPILOGUE is not defined
1361 then individual return instructions are generated for each
1362 return statement. Args are same as for FUNCTION_PROLOGUE.
1363
1364 The function epilogue should not depend on the current stack pointer!
1365 It should use the frame pointer only. This is mandatory because
1366 of alloca; we also take advantage of it to omit stack adjustments
1367 before returning.
1368
1369 If the last non-note insn in the function is a BARRIER, then there
1370 is no need to emit a function prologue, because control does not fall
1371 off the end. This happens if the function ends in an "exit" call, or
1372 if a `return' insn is emitted directly into the function. */
1373
1374 #if 0
1375 #define FUNCTION_BEGIN_EPILOGUE(FILE) \
1376 do { \
1377 rtx last = get_last_insn (); \
1378 if (last && GET_CODE (last) == NOTE) \
1379 last = prev_nonnote_insn (last); \
1380 /* if (! last || GET_CODE (last) != BARRIER) \
1381 function_epilogue (FILE, SIZE);*/ \
1382 } while (0)
1383 #endif
1384
1385 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1386 function_epilogue (FILE, SIZE)
1387
1388 /* Output assembler code for a block containing the constant parts
1389 of a trampoline, leaving space for the variable parts. */
1390
1391 /* On the 386, the trampoline contains three instructions:
1392 mov #STATIC,ecx
1393 mov #FUNCTION,eax
1394 jmp @eax */
1395 #define TRAMPOLINE_TEMPLATE(FILE) \
1396 { \
1397 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
1398 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1399 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1400 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
1401 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1402 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1403 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
1404 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
1405 }
1406
1407 /* Length in units of the trampoline for entering a nested function. */
1408
1409 #define TRAMPOLINE_SIZE 12
1410
1411 /* Emit RTL insns to initialize the variable parts of a trampoline.
1412 FNADDR is an RTX for the address of the function's pure code.
1413 CXT is an RTX for the static chain value for the function. */
1414
1415 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1416 { \
1417 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \
1418 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \
1419 }
1420 \f
1421 /* Definitions for register eliminations.
1422
1423 This is an array of structures. Each structure initializes one pair
1424 of eliminable registers. The "from" register number is given first,
1425 followed by "to". Eliminations of the same "from" register are listed
1426 in order of preference.
1427
1428 We have two registers that can be eliminated on the i386. First, the
1429 frame pointer register can often be eliminated in favor of the stack
1430 pointer register. Secondly, the argument pointer register can always be
1431 eliminated; it is replaced with either the stack or frame pointer. */
1432
1433 #define ELIMINABLE_REGS \
1434 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1435 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1436 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1437
1438 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1439 Frame pointer elimination is automatically handled.
1440
1441 For the i386, if frame pointer elimination is being done, we would like to
1442 convert ap into sp, not fp.
1443
1444 All other eliminations are valid. */
1445
1446 #define CAN_ELIMINATE(FROM, TO) \
1447 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1448 ? ! frame_pointer_needed \
1449 : 1)
1450
1451 /* Define the offset between two registers, one to be eliminated, and the other
1452 its replacement, at the start of a routine. */
1453
1454 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1455 { \
1456 if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1457 (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
1458 else \
1459 { \
1460 int regno; \
1461 int offset = 0; \
1462 \
1463 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1464 if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
1465 || (current_function_uses_pic_offset_table \
1466 && regno == PIC_OFFSET_TABLE_REGNUM)) \
1467 offset += 4; \
1468 \
1469 (OFFSET) = offset + get_frame_size (); \
1470 \
1471 if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1472 (OFFSET) += 4; /* Skip saved PC */ \
1473 } \
1474 }
1475 \f
1476 /* Addressing modes, and classification of registers for them. */
1477
1478 /* #define HAVE_POST_INCREMENT */
1479 /* #define HAVE_POST_DECREMENT */
1480
1481 /* #define HAVE_PRE_DECREMENT */
1482 /* #define HAVE_PRE_INCREMENT */
1483
1484 /* Macros to check register numbers against specific register classes. */
1485
1486 /* These assume that REGNO is a hard or pseudo reg number.
1487 They give nonzero only if REGNO is a hard reg of the suitable class
1488 or a pseudo reg currently allocated to a suitable hard reg.
1489 Since they use reg_renumber, they are safe only once reg_renumber
1490 has been allocated, which happens in local-alloc.c. */
1491
1492 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1493 ((REGNO) < STACK_POINTER_REGNUM \
1494 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1495
1496 #define REGNO_OK_FOR_BASE_P(REGNO) \
1497 ((REGNO) <= STACK_POINTER_REGNUM \
1498 || (REGNO) == ARG_POINTER_REGNUM \
1499 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1500
1501 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1502 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1503
1504 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1505 and check its validity for a certain class.
1506 We have two alternate definitions for each of them.
1507 The usual definition accepts all pseudo regs; the other rejects
1508 them unless they have been allocated suitable hard regs.
1509 The symbol REG_OK_STRICT causes the latter definition to be used.
1510
1511 Most source files want to accept pseudo regs in the hope that
1512 they will get allocated to the class that the insn wants them to be in.
1513 Source files for reload pass need to be strict.
1514 After reload, it makes no difference, since pseudo regs have
1515 been eliminated by then. */
1516
1517
1518 /* Non strict versions, pseudos are ok */
1519 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1520 (REGNO (X) < STACK_POINTER_REGNUM \
1521 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1522
1523 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1524 (REGNO (X) <= STACK_POINTER_REGNUM \
1525 || REGNO (X) == ARG_POINTER_REGNUM \
1526 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1527
1528 #define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
1529 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1530
1531 /* Strict versions, hard registers only */
1532 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1533 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1534 #define REG_OK_FOR_STRREG_STRICT_P(X) \
1535 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
1536
1537 #ifndef REG_OK_STRICT
1538 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1539 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1540 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
1541
1542 #else
1543 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1544 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1545 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
1546 #endif
1547
1548 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1549 that is a valid memory address for an instruction.
1550 The MODE argument is the machine mode for the MEM expression
1551 that wants to use this address.
1552
1553 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1554 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1555
1556 See legitimize_pic_address in i386.c for details as to what
1557 constitutes a legitimate address when -fpic is used. */
1558
1559 #define MAX_REGS_PER_ADDRESS 2
1560
1561 #define CONSTANT_ADDRESS_P(X) \
1562 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1563 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1564 || GET_CODE (X) == HIGH)
1565
1566 /* Nonzero if the constant value X is a legitimate general operand.
1567 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1568
1569 #define LEGITIMATE_CONSTANT_P(X) 1
1570
1571 #ifdef REG_OK_STRICT
1572 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1573 { \
1574 if (legitimate_address_p (MODE, X, 1)) \
1575 goto ADDR; \
1576 }
1577
1578 #else
1579 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1580 { \
1581 if (legitimate_address_p (MODE, X, 0)) \
1582 goto ADDR; \
1583 }
1584
1585 #endif
1586
1587 /* Try machine-dependent ways of modifying an illegitimate address
1588 to be legitimate. If we find one, return the new, valid address.
1589 This macro is used in only one place: `memory_address' in explow.c.
1590
1591 OLDX is the address as it was before break_out_memory_refs was called.
1592 In some cases it is useful to look at this to decide what needs to be done.
1593
1594 MODE and WIN are passed so that this macro can use
1595 GO_IF_LEGITIMATE_ADDRESS.
1596
1597 It is always safe for this macro to do nothing. It exists to recognize
1598 opportunities to optimize the output.
1599
1600 For the 80386, we handle X+REG by loading X into a register R and
1601 using R+REG. R will go in a general reg and indexing will be used.
1602 However, if REG is a broken-out memory address or multiplication,
1603 nothing needs to be done because REG can certainly go in a general reg.
1604
1605 When -fpic is used, special handling is needed for symbolic references.
1606 See comments by legitimize_pic_address in i386.c for details. */
1607
1608 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1609 { \
1610 rtx orig_x = (X); \
1611 (X) = legitimize_address (X, OLDX, MODE); \
1612 if (memory_address_p (MODE, X)) \
1613 goto WIN; \
1614 }
1615
1616 #define REWRITE_ADDRESS(x) rewrite_address(x)
1617
1618 /* Nonzero if the constant value X is a legitimate general operand
1619 when generating PIC code. It is given that flag_pic is on and
1620 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1621
1622 #define LEGITIMATE_PIC_OPERAND_P(X) \
1623 (! SYMBOLIC_CONST (X) \
1624 || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
1625
1626 #define SYMBOLIC_CONST(X) \
1627 (GET_CODE (X) == SYMBOL_REF \
1628 || GET_CODE (X) == LABEL_REF \
1629 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1630
1631 /* Go to LABEL if ADDR (a legitimate address expression)
1632 has an effect that depends on the machine mode it is used for.
1633 On the 80386, only postdecrement and postincrement address depend thus
1634 (the amount of decrement or increment being the length of the operand). */
1635 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1636 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1637 \f
1638 /* Define this macro if references to a symbol must be treated
1639 differently depending on something about the variable or
1640 function named by the symbol (such as what section it is in).
1641
1642 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1643 so that we may access it directly in the GOT. */
1644
1645 #define ENCODE_SECTION_INFO(DECL) \
1646 do \
1647 { \
1648 if (flag_pic) \
1649 { \
1650 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1651 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1652 \
1653 if (TARGET_DEBUG_ADDR \
1654 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
1655 { \
1656 fprintf (stderr, "Encode %s, public = %s\n", \
1657 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
1658 TREE_PUBLIC (DECL)); \
1659 } \
1660 \
1661 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1662 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1663 || ! TREE_PUBLIC (DECL)); \
1664 } \
1665 } \
1666 while (0)
1667
1668 /* Initialize data used by insn expanders. This is called from
1669 init_emit, once for each function, before code is generated.
1670 For 386, clear stack slot assignments remembered from previous
1671 functions. */
1672
1673 #define INIT_EXPANDERS clear_386_stack_locals ()
1674
1675 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
1676 codes once the function is being compiled into assembly code, but
1677 not before. (It is not done before, because in the case of
1678 compiling an inline function, it would lead to multiple PIC
1679 prologues being included in functions which used inline functions
1680 and were compiled to assembly language.) */
1681
1682 #define FINALIZE_PIC \
1683 do \
1684 { \
1685 extern int current_function_uses_pic_offset_table; \
1686 \
1687 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
1688 } \
1689 while (0)
1690
1691 \f
1692 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1693 with arguments ARGS is a valid machine specific attribute for DECL.
1694 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1695
1696 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1697 (i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1698
1699 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1700 with arguments ARGS is a valid machine specific attribute for TYPE.
1701 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1702
1703 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1704 (i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1705
1706 /* If defined, a C expression whose value is zero if the attributes on
1707 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1708 two if they are nearly compatible (which causes a warning to be
1709 generated). */
1710
1711 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1712 (i386_comp_type_attributes (TYPE1, TYPE2))
1713
1714 /* If defined, a C statement that assigns default attributes to newly
1715 defined TYPE. */
1716
1717 /* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
1718
1719 /* Max number of args passed in registers. If this is more than 3, we will
1720 have problems with ebx (register #4), since it is a caller save register and
1721 is also used as the pic register in ELF. So for now, don't allow more than
1722 3 registers to be passed in registers. */
1723
1724 #define REGPARM_MAX 3
1725
1726 \f
1727 /* Specify the machine mode that this machine uses
1728 for the index in the tablejump instruction. */
1729 #define CASE_VECTOR_MODE Pmode
1730
1731 /* Define this if the tablejump instruction expects the table
1732 to contain offsets from the address of the table.
1733 Do not define this if the table should contain absolute addresses. */
1734 /* #define CASE_VECTOR_PC_RELATIVE */
1735
1736 /* Specify the tree operation to be used to convert reals to integers.
1737 This should be changed to take advantage of fist --wfs ??
1738 */
1739 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1740
1741 /* This is the kind of divide that is easiest to do in the general case. */
1742 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1743
1744 /* Define this as 1 if `char' should by default be signed; else as 0. */
1745 #define DEFAULT_SIGNED_CHAR 1
1746
1747 /* Max number of bytes we can move from memory to memory
1748 in one reasonably fast instruction. */
1749 #define MOVE_MAX 4
1750
1751 /* The number of scalar move insns which should be generated instead
1752 of a string move insn or a library call. Increasing the value
1753 will always make code faster, but eventually incurs high cost in
1754 increased code size.
1755
1756 If you don't define this, a reasonable default is used.
1757
1758 Make this large on i386, since the block move is very inefficient with small
1759 blocks, and the hard register needs of the block move require much reload
1760 work. */
1761
1762 #define MOVE_RATIO 5
1763
1764 /* Define if shifts truncate the shift count
1765 which implies one can omit a sign-extension or zero-extension
1766 of a shift count. */
1767 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1768
1769 /* #define SHIFT_COUNT_TRUNCATED */
1770
1771 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1772 is done just by pretending it is already truncated. */
1773 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1774
1775 /* We assume that the store-condition-codes instructions store 0 for false
1776 and some other value for true. This is the value stored for true. */
1777
1778 #define STORE_FLAG_VALUE 1
1779
1780 /* When a prototype says `char' or `short', really pass an `int'.
1781 (The 386 can't easily push less than an int.) */
1782
1783 #define PROMOTE_PROTOTYPES
1784
1785 /* Specify the machine mode that pointers have.
1786 After generation of rtl, the compiler makes no further distinction
1787 between pointers and any other objects of this machine mode. */
1788 #define Pmode SImode
1789
1790 /* A function address in a call instruction
1791 is a byte address (for indexing purposes)
1792 so give the MEM rtx a byte's mode. */
1793 #define FUNCTION_MODE QImode
1794 \f
1795 /* A part of a C `switch' statement that describes the relative costs
1796 of constant RTL expressions. It must contain `case' labels for
1797 expression codes `const_int', `const', `symbol_ref', `label_ref'
1798 and `const_double'. Each case must ultimately reach a `return'
1799 statement to return the relative cost of the use of that kind of
1800 constant value in an expression. The cost may depend on the
1801 precise value of the constant, which is available for examination
1802 in X, and the rtx code of the expression in which it is contained,
1803 found in OUTER_CODE.
1804
1805 CODE is the expression code--redundant, since it can be obtained
1806 with `GET_CODE (X)'. */
1807
1808 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1809 case CONST_INT: \
1810 case CONST: \
1811 case LABEL_REF: \
1812 case SYMBOL_REF: \
1813 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
1814 \
1815 case CONST_DOUBLE: \
1816 { \
1817 int code; \
1818 if (GET_MODE (RTX) == VOIDmode) \
1819 return 2; \
1820 \
1821 code = standard_80387_constant_p (RTX); \
1822 return code == 1 ? 0 : \
1823 code == 2 ? 1 : \
1824 2; \
1825 }
1826
1827 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
1828 #define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
1829
1830 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1831 This can be used, for example, to indicate how costly a multiply
1832 instruction is. In writing this macro, you can use the construct
1833 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1834 instructions. OUTER_CODE is the code of the expression in which X
1835 is contained.
1836
1837 This macro is optional; do not define it if the default cost
1838 assumptions are adequate for the target machine. */
1839
1840 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1841 case ASHIFT: \
1842 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1843 && GET_MODE (XEXP (X, 0)) == SImode) \
1844 { \
1845 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1846 \
1847 if (value == 1) \
1848 return COSTS_N_INSNS (ix86_cost->add) + rtx_cost(XEXP (X, 0));\
1849 \
1850 if (value == 2 || value == 3) \
1851 return COSTS_N_INSNS (ix86_cost->lea) + rtx_cost(XEXP (X, 0));\
1852 } \
1853 /* fall through */ \
1854 \
1855 case ROTATE: \
1856 case ASHIFTRT: \
1857 case LSHIFTRT: \
1858 case ROTATERT: \
1859 if (GET_MODE (XEXP (X, 0)) == DImode) \
1860 { \
1861 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1862 if (INTVAL (XEXP (X, 1)) > 32) \
1863 return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
1864 else \
1865 return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
1866 return ((GET_CODE (XEXP (X, 1)) == AND \
1867 ? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
1868 : COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
1869 + rtx_cost(XEXP (X, 0))); \
1870 } \
1871 return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
1872 ? ix86_cost->shift_const \
1873 : ix86_cost->shift_var) \
1874 + rtx_cost(XEXP (X, 0)); \
1875 \
1876 case MULT: \
1877 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1878 { \
1879 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1880 int nbits = 0; \
1881 \
1882 if (value == 2) \
1883 return COSTS_N_INSNS (ix86_cost->add) + rtx_cost(XEXP (X, 0));\
1884 \
1885 if (value == 4 || value == 8) \
1886 return COSTS_N_INSNS (ix86_cost->lea) + rtx_cost(XEXP (X, 0));\
1887 \
1888 while (value != 0) \
1889 { \
1890 nbits++; \
1891 value >>= 1; \
1892 } \
1893 \
1894 if (nbits == 1) \
1895 return COSTS_N_INSNS (ix86_cost->shift_const) \
1896 + rtx_cost(XEXP (X, 0)); \
1897 \
1898 return COSTS_N_INSNS (ix86_cost->mult_init \
1899 + nbits * ix86_cost->mult_bit) \
1900 + rtx_cost(XEXP (X, 0)); \
1901 } \
1902 \
1903 else /* This is arbitrary */ \
1904 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
1905 + 7 * ix86_cost->mult_bit); \
1906 \
1907 case DIV: \
1908 case UDIV: \
1909 case MOD: \
1910 case UMOD: \
1911 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
1912 \
1913 case PLUS: \
1914 if (GET_CODE (XEXP (X, 0)) == REG \
1915 && GET_MODE (XEXP (X, 0)) == SImode \
1916 && GET_CODE (XEXP (X, 1)) == PLUS) \
1917 return COSTS_N_INSNS (ix86_cost->lea); \
1918 \
1919 /* fall through */ \
1920 case AND: \
1921 case IOR: \
1922 case XOR: \
1923 case MINUS: \
1924 if (GET_MODE (X) == DImode) \
1925 return COSTS_N_INSNS (ix86_cost->add) * 2 \
1926 + (rtx_cost (XEXP (X, 0)) << (GET_MODE (XEXP (X, 0)) != DImode))\
1927 + (rtx_cost (XEXP (X, 1)) << (GET_MODE (XEXP (X, 1)) != DImode));\
1928 case NEG: \
1929 case NOT: \
1930 if (GET_MODE (X) == DImode) \
1931 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
1932 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
1933
1934
1935 /* An expression giving the cost of an addressing mode that contains
1936 ADDRESS. If not defined, the cost is computed from the ADDRESS
1937 expression and the `CONST_COSTS' values.
1938
1939 For most CISC machines, the default cost is a good approximation
1940 of the true cost of the addressing mode. However, on RISC
1941 machines, all instructions normally have the same length and
1942 execution time. Hence all addresses will have equal costs.
1943
1944 In cases where more than one form of an address is known, the form
1945 with the lowest cost will be used. If multiple forms have the
1946 same, lowest, cost, the one that is the most complex will be used.
1947
1948 For example, suppose an address that is equal to the sum of a
1949 register and a constant is used twice in the same basic block.
1950 When this macro is not defined, the address will be computed in a
1951 register and memory references will be indirect through that
1952 register. On machines where the cost of the addressing mode
1953 containing the sum is no higher than that of a simple indirect
1954 reference, this will produce an additional instruction and
1955 possibly require an additional register. Proper specification of
1956 this macro eliminates this overhead for such machines.
1957
1958 Similar use of this macro is made in strength reduction of loops.
1959
1960 ADDRESS need not be valid as an address. In such a case, the cost
1961 is not relevant and can be any value; invalid addresses need not be
1962 assigned a different cost.
1963
1964 On machines where an address involving more than one register is as
1965 cheap as an address computation involving only one register,
1966 defining `ADDRESS_COST' to reflect this can cause two registers to
1967 be live over a region of code where only one would have been if
1968 `ADDRESS_COST' were not defined in that manner. This effect should
1969 be considered in the definition of this macro. Equivalent costs
1970 should probably only be given to addresses with different numbers
1971 of registers on machines with lots of registers.
1972
1973 This macro will normally either not be defined or be defined as a
1974 constant.
1975
1976 For i386, it is better to use a complex address than let gcc copy
1977 the address into a reg and make a new pseudo. But not if the address
1978 requires to two regs - that would mean more pseudos with longer
1979 lifetimes. */
1980
1981 #define ADDRESS_COST(RTX) \
1982 ((CONSTANT_P (RTX) \
1983 || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
1984 && REG_P (XEXP (RTX, 0)))) ? 0 \
1985 : REG_P (RTX) ? 1 \
1986 : 2)
1987
1988 /* A C expression for the cost of moving data of mode M between a
1989 register and memory. A value of 2 is the default; this cost is
1990 relative to those in `REGISTER_MOVE_COST'.
1991
1992 If moving between registers and memory is more expensive than
1993 between two registers, you should define this macro to express the
1994 relative cost.
1995
1996 On the i386, copying between floating-point and fixed-point
1997 registers is expensive. */
1998
1999 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2000 (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
2001 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
2002 : 2)
2003
2004
2005 /* A C expression for the cost of moving data of mode M between a
2006 register and memory. A value of 2 is the default; this cost is
2007 relative to those in `REGISTER_MOVE_COST'.
2008
2009 If moving between registers and memory is more expensive than
2010 between two registers, you should define this macro to express the
2011 relative cost. */
2012
2013 /* #define MEMORY_MOVE_COST(M) 2 */
2014
2015 /* A C expression for the cost of a branch instruction. A value of 1
2016 is the default; other values are interpreted relative to that. */
2017
2018 /* #define BRANCH_COST 1 */
2019
2020 /* Define this macro as a C expression which is nonzero if accessing
2021 less than a word of memory (i.e. a `char' or a `short') is no
2022 faster than accessing a word of memory, i.e., if such access
2023 require more than one instruction or if there is no difference in
2024 cost between byte and (aligned) word loads.
2025
2026 When this macro is not defined, the compiler will access a field by
2027 finding the smallest containing object; when it is defined, a
2028 fullword load will be used if alignment permits. Unless bytes
2029 accesses are faster than word accesses, using word accesses is
2030 preferable since it may eliminate subsequent memory access if
2031 subsequent accesses occur to other fields in the same word of the
2032 structure, but to different bytes. */
2033
2034 #define SLOW_BYTE_ACCESS 0
2035
2036 /* Nonzero if access to memory by shorts is slow and undesirable. */
2037 #define SLOW_SHORT_ACCESS 0
2038
2039 /* Define this macro if zero-extension (of a `char' or `short' to an
2040 `int') can be done faster if the destination is a register that is
2041 known to be zero.
2042
2043 If you define this macro, you must have instruction patterns that
2044 recognize RTL structures like this:
2045
2046 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2047
2048 and likewise for `HImode'. */
2049
2050 /* #define SLOW_ZERO_EXTEND */
2051
2052 /* Define this macro to be the value 1 if unaligned accesses have a
2053 cost many times greater than aligned accesses, for example if they
2054 are emulated in a trap handler.
2055
2056 When this macro is non-zero, the compiler will act as if
2057 `STRICT_ALIGNMENT' were non-zero when generating code for block
2058 moves. This can cause significantly more instructions to be
2059 produced. Therefore, do not set this macro non-zero if unaligned
2060 accesses only add a cycle or two to the time for a memory access.
2061
2062 If the value of this macro is always zero, it need not be defined. */
2063
2064 /* #define SLOW_UNALIGNED_ACCESS 0 */
2065
2066 /* Define this macro to inhibit strength reduction of memory
2067 addresses. (On some machines, such strength reduction seems to do
2068 harm rather than good.) */
2069
2070 /* #define DONT_REDUCE_ADDR */
2071
2072 /* Define this macro if it is as good or better to call a constant
2073 function address than to call an address kept in a register.
2074
2075 Desirable on the 386 because a CALL with a constant address is
2076 faster than one with a register address. */
2077
2078 #define NO_FUNCTION_CSE
2079
2080 /* Define this macro if it is as good or better for a function to call
2081 itself with an explicit address than to call an address kept in a
2082 register. */
2083
2084 #define NO_RECURSIVE_FUNCTION_CSE
2085
2086 /* A C statement (sans semicolon) to update the integer variable COST
2087 based on the relationship between INSN that is dependent on
2088 DEP_INSN through the dependence LINK. The default is to make no
2089 adjustment to COST. This can be used for example to specify to
2090 the scheduler that an output- or anti-dependence does not incur
2091 the same cost as a data-dependence. */
2092
2093 #define ADJUST_COST(insn,link,dep_insn,cost) \
2094 { \
2095 rtx next_inst; \
2096 if (GET_CODE (dep_insn) == CALL_INSN) \
2097 (cost) = 0; \
2098 \
2099 else if (GET_CODE (dep_insn) == INSN \
2100 && GET_CODE (PATTERN (dep_insn)) == SET \
2101 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG \
2102 && GET_CODE (insn) == INSN \
2103 && GET_CODE (PATTERN (insn)) == SET \
2104 && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)), \
2105 SET_SRC (PATTERN (insn)))) \
2106 { \
2107 (cost) = 0; \
2108 } \
2109 \
2110 else if (GET_CODE (insn) == JUMP_INSN) \
2111 { \
2112 (cost) = 0; \
2113 } \
2114 \
2115 if (TARGET_PENTIUM) \
2116 { \
2117 if (cost !=0 && is_fp_insn (insn) && is_fp_insn (dep_insn) \
2118 && !is_fp_dest (dep_insn)) \
2119 { \
2120 (cost) = 0; \
2121 } \
2122 \
2123 if (agi_dependent (insn, dep_insn)) \
2124 { \
2125 (cost) = 3; \
2126 } \
2127 else if (GET_CODE (insn) == INSN \
2128 && GET_CODE (PATTERN (insn)) == SET \
2129 && SET_DEST (PATTERN (insn)) == cc0_rtx \
2130 && (next_inst = next_nonnote_insn (insn)) \
2131 && GET_CODE (next_inst) == JUMP_INSN) \
2132 { /* compare probably paired with jump */ \
2133 (cost) = 0; \
2134 } \
2135 } \
2136 else \
2137 if (!is_fp_dest (dep_insn)) \
2138 { \
2139 if(!agi_dependent (insn, dep_insn)) \
2140 (cost) = 0; \
2141 else if (TARGET_486) \
2142 (cost) = 2; \
2143 } \
2144 else \
2145 if (is_fp_store (insn) && is_fp_insn (dep_insn) \
2146 && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn)) \
2147 && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))) \
2148 && (GET_CODE (NEXT_INSN (insn)) == INSN) \
2149 && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN) \
2150 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE) \
2151 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) \
2152 == NOTE_INSN_LOOP_END)) \
2153 { \
2154 (cost) = 3; \
2155 } \
2156 }
2157
2158
2159 #define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
2160 { \
2161 if (is_fp_store (last_insn) && is_fp_insn (insn) \
2162 && NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
2163 && NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
2164 && (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
2165 && (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
2166 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
2167 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
2168 == NOTE_INSN_LOOP_END)) \
2169 { \
2170 (blockage) = 3; \
2171 } \
2172 }
2173
2174 \f
2175 /* Add any extra modes needed to represent the condition code.
2176
2177 For the i386, we need separate modes when floating-point equality
2178 comparisons are being done. */
2179
2180 #define EXTRA_CC_MODES CCFPEQmode
2181
2182 /* Define the names for the modes specified above. */
2183 #define EXTRA_CC_NAMES "CCFPEQ"
2184
2185 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2186 return the mode to be used for the comparison.
2187
2188 For floating-point equality comparisons, CCFPEQmode should be used.
2189 VOIDmode should be used in all other cases. */
2190
2191 #define SELECT_CC_MODE(OP,X,Y) \
2192 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2193 && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
2194
2195 /* Define the information needed to generate branch and scc insns. This is
2196 stored from the compare operation. Note that we can't use "rtx" here
2197 since it hasn't been defined! */
2198
2199 extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
2200
2201 /* Tell final.c how to eliminate redundant test instructions. */
2202
2203 /* Here we define machine-dependent flags and fields in cc_status
2204 (see `conditions.h'). */
2205
2206 /* Set if the cc value is was actually from the 80387 and
2207 we are testing eax directly (i.e. no sahf) */
2208 #define CC_TEST_AX 020000
2209
2210 /* Set if the cc value is actually in the 80387, so a floating point
2211 conditional branch must be output. */
2212 #define CC_IN_80387 04000
2213
2214 /* Set if the CC value was stored in a nonstandard way, so that
2215 the state of equality is indicated by zero in the carry bit. */
2216 #define CC_Z_IN_NOT_C 010000
2217
2218 /* Store in cc_status the expressions
2219 that the condition codes will describe
2220 after execution of an instruction whose pattern is EXP.
2221 Do not alter them if the instruction would not alter the cc's. */
2222
2223 #define NOTICE_UPDATE_CC(EXP, INSN) \
2224 notice_update_cc((EXP))
2225
2226 /* Output a signed jump insn. Use template NORMAL ordinarily, or
2227 FLOAT following a floating point comparison.
2228 Use NO_OV following an arithmetic insn that set the cc's
2229 before a test insn that was deleted.
2230 NO_OV may be zero, meaning final should reinsert the test insn
2231 because the jump cannot be handled properly without it. */
2232
2233 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
2234 { \
2235 if (cc_prev_status.flags & CC_IN_80387) \
2236 return FLOAT; \
2237 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
2238 return NO_OV; \
2239 return NORMAL; \
2240 }
2241 \f
2242 /* Control the assembler format that we output, to the extent
2243 this does not vary between assemblers. */
2244
2245 /* How to refer to registers in assembler output.
2246 This sequence is indexed by compiler's hard-register-number (see above). */
2247
2248 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2249 For non floating point regs, the following are the HImode names.
2250
2251 For float regs, the stack top is sometimes referred to as "%st(0)"
2252 instead of just "%st". PRINT_REG handles this with the "y" code. */
2253
2254 #define HI_REGISTER_NAMES \
2255 {"ax","dx","cx","bx","si","di","bp","sp", \
2256 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
2257
2258 #define REGISTER_NAMES HI_REGISTER_NAMES
2259
2260 /* Table of additional register names to use in user input. */
2261
2262 #define ADDITIONAL_REGISTER_NAMES \
2263 { "eax", 0, "edx", 1, "ecx", 2, "ebx", 3, \
2264 "esi", 4, "edi", 5, "ebp", 6, "esp", 7, \
2265 "al", 0, "dl", 1, "cl", 2, "bl", 3, \
2266 "ah", 0, "dh", 1, "ch", 2, "bh", 3 }
2267
2268 /* Note we are omitting these since currently I don't know how
2269 to get gcc to use these, since they want the same but different
2270 number as al, and ax.
2271 */
2272
2273 /* note the last four are not really qi_registers, but
2274 the md will have to never output movb into one of them
2275 only a movw . There is no movb into the last four regs */
2276
2277 #define QI_REGISTER_NAMES \
2278 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
2279
2280 /* These parallel the array above, and can be used to access bits 8:15
2281 of regs 0 through 3. */
2282
2283 #define QI_HIGH_REGISTER_NAMES \
2284 {"ah", "dh", "ch", "bh", }
2285
2286 /* How to renumber registers for dbx and gdb. */
2287
2288 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
2289 #define DBX_REGISTER_NUMBER(n) \
2290 ((n) == 0 ? 0 : \
2291 (n) == 1 ? 2 : \
2292 (n) == 2 ? 1 : \
2293 (n) == 3 ? 3 : \
2294 (n) == 4 ? 6 : \
2295 (n) == 5 ? 7 : \
2296 (n) == 6 ? 4 : \
2297 (n) == 7 ? 5 : \
2298 (n) + 4)
2299
2300 /* This is how to output the definition of a user-level label named NAME,
2301 such as the label on a static function or variable NAME. */
2302
2303 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2304 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2305
2306 /* This is how to output an assembler line defining a `double' constant. */
2307
2308 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2309 do { long l[2]; \
2310 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2311 if (sizeof (int) == sizeof (long)) \
2312 fprintf (FILE, "%s 0x%x,0x%x\n", ASM_LONG, l[0], l[1]); \
2313 else \
2314 fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
2315 } while (0)
2316
2317 /* This is how to output a `long double' extended real constant. */
2318
2319 #undef ASM_OUTPUT_LONG_DOUBLE
2320 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2321 do { long l[3]; \
2322 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
2323 if (sizeof (int) == sizeof (long)) \
2324 fprintf (FILE, "%s 0x%x,0x%x,0x%x\n", ASM_LONG, l[0], l[1], l[2]); \
2325 else \
2326 fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
2327 } while (0)
2328
2329 /* This is how to output an assembler line defining a `float' constant. */
2330
2331 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2332 do { long l; \
2333 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2334 if (sizeof (int) == sizeof (long)) \
2335 fprintf ((FILE), "%s 0x%x\n", ASM_LONG, l); \
2336 else \
2337 fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
2338 } while (0)
2339
2340 /* Store in OUTPUT a string (made with alloca) containing
2341 an assembler-name for a local static variable named NAME.
2342 LABELNO is an integer which is different for each call. */
2343
2344 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2345 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2346 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2347
2348
2349
2350 /* This is how to output an assembler line defining an `int' constant. */
2351
2352 #define ASM_OUTPUT_INT(FILE,VALUE) \
2353 ( fprintf (FILE, "%s ", ASM_LONG), \
2354 output_addr_const (FILE,(VALUE)), \
2355 putc('\n',FILE))
2356
2357 /* Likewise for `char' and `short' constants. */
2358 /* is this supposed to do align too?? */
2359
2360 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2361 ( fprintf (FILE, "%s ", ASM_SHORT), \
2362 output_addr_const (FILE,(VALUE)), \
2363 putc('\n',FILE))
2364
2365 /*
2366 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2367 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2368 output_addr_const (FILE,(VALUE)), \
2369 fputs (",", FILE), \
2370 output_addr_const (FILE,(VALUE)), \
2371 fputs (" >> 8\n",FILE))
2372 */
2373
2374
2375 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2376 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2377 output_addr_const (FILE, (VALUE)), \
2378 putc ('\n', FILE))
2379
2380 /* This is how to output an assembler line for a numeric constant byte. */
2381
2382 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2383 fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
2384
2385 /* This is how to output an insn to push a register on the stack.
2386 It need not be very fast code. */
2387
2388 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2389 fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO])
2390
2391 /* This is how to output an insn to pop a register from the stack.
2392 It need not be very fast code. */
2393
2394 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2395 fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO])
2396
2397 /* This is how to output an element of a case-vector that is absolute.
2398 */
2399
2400 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2401 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
2402
2403 /* This is how to output an element of a case-vector that is relative.
2404 We don't use these on the 386 yet, because the ATT assembler can't do
2405 forward reference the differences.
2406 */
2407
2408 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2409 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
2410
2411 /* Define the parentheses used to group arithmetic operations
2412 in assembler code. */
2413
2414 #define ASM_OPEN_PAREN ""
2415 #define ASM_CLOSE_PAREN ""
2416
2417 /* Define results of standard character escape sequences. */
2418 #define TARGET_BELL 007
2419 #define TARGET_BS 010
2420 #define TARGET_TAB 011
2421 #define TARGET_NEWLINE 012
2422 #define TARGET_VT 013
2423 #define TARGET_FF 014
2424 #define TARGET_CR 015
2425 \f
2426 /* Print operand X (an rtx) in assembler syntax to file FILE.
2427 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2428 The CODE z takes the size of operand from the following digit, and
2429 outputs b,w,or l respectively.
2430
2431 On the 80386, we use several such letters:
2432 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
2433 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
2434 R -- print the prefix for register names.
2435 z -- print the opcode suffix for the size of the current operand.
2436 * -- print a star (in certain assembler syntax)
2437 w -- print the operand as if it's a "word" (HImode) even if it isn't.
2438 b -- print the operand as if it's a byte (QImode) even if it isn't.
2439 c -- don't print special prefixes before constant operands. */
2440
2441 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2442 ((CODE) == '*')
2443
2444 /* Print the name of a register based on its machine mode and number.
2445 If CODE is 'w', pretend the mode is HImode.
2446 If CODE is 'b', pretend the mode is QImode.
2447 If CODE is 'k', pretend the mode is SImode.
2448 If CODE is 'h', pretend the reg is the `high' byte register.
2449 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2450
2451 extern char *hi_reg_name[];
2452 extern char *qi_reg_name[];
2453 extern char *qi_high_reg_name[];
2454
2455 #define PRINT_REG(X, CODE, FILE) \
2456 do { if (REGNO (X) == ARG_POINTER_REGNUM) \
2457 abort (); \
2458 fprintf (FILE, "%s", RP); \
2459 switch ((CODE == 'w' ? 2 \
2460 : CODE == 'b' ? 1 \
2461 : CODE == 'k' ? 4 \
2462 : CODE == 'y' ? 3 \
2463 : CODE == 'h' ? 0 \
2464 : GET_MODE_SIZE (GET_MODE (X)))) \
2465 { \
2466 case 3: \
2467 if (STACK_TOP_P (X)) \
2468 { \
2469 fputs ("st(0)", FILE); \
2470 break; \
2471 } \
2472 case 4: \
2473 case 8: \
2474 case 12: \
2475 if (! FP_REG_P (X)) fputs ("e", FILE); \
2476 case 2: \
2477 fputs (hi_reg_name[REGNO (X)], FILE); \
2478 break; \
2479 case 1: \
2480 fputs (qi_reg_name[REGNO (X)], FILE); \
2481 break; \
2482 case 0: \
2483 fputs (qi_high_reg_name[REGNO (X)], FILE); \
2484 break; \
2485 } \
2486 } while (0)
2487
2488 #define PRINT_OPERAND(FILE, X, CODE) \
2489 print_operand (FILE, X, CODE)
2490
2491 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2492 print_operand_address (FILE, ADDR)
2493
2494 /* Print the name of a register for based on its machine mode and number.
2495 This macro is used to print debugging output.
2496 This macro is different from PRINT_REG in that it may be used in
2497 programs that are not linked with aux-output.o. */
2498
2499 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2500 do { static char *hi_name[] = HI_REGISTER_NAMES; \
2501 static char *qi_name[] = QI_REGISTER_NAMES; \
2502 fprintf (FILE, "%d %s", REGNO (X), RP); \
2503 if (REGNO (X) == ARG_POINTER_REGNUM) \
2504 { fputs ("argp", FILE); break; } \
2505 if (STACK_TOP_P (X)) \
2506 { fputs ("st(0)", FILE); break; } \
2507 if (FP_REG_P (X)) \
2508 { fputs (hi_name[REGNO(X)], FILE); break; } \
2509 switch (GET_MODE_SIZE (GET_MODE (X))) \
2510 { \
2511 default: \
2512 fputs ("e", FILE); \
2513 case 2: \
2514 fputs (hi_name[REGNO (X)], FILE); \
2515 break; \
2516 case 1: \
2517 fputs (qi_name[REGNO (X)], FILE); \
2518 break; \
2519 } \
2520 } while (0)
2521
2522 /* Output the prefix for an immediate operand, or for an offset operand. */
2523 #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
2524 #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
2525
2526 /* Routines in libgcc that return floats must return them in an fp reg,
2527 just as other functions do which return such values.
2528 These macros make that happen. */
2529
2530 #define FLOAT_VALUE_TYPE float
2531 #define INTIFY(FLOATVAL) FLOATVAL
2532
2533 /* Nonzero if INSN magically clobbers register REGNO. */
2534
2535 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
2536 (FP_REGNO_P (REGNO) \
2537 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
2538 */
2539
2540 /* a letter which is not needed by the normal asm syntax, which
2541 we can use for operand syntax in the extended asm */
2542
2543 #define ASM_OPERAND_LETTER '#'
2544 \f
2545 #define RET return ""
2546 #define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx))
2547 \f
2548 /* Helper macros to expand a binary/unary operator if needed */
2549 #define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
2550 do { \
2551 if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
2552 FAIL; \
2553 } while (0)
2554
2555 #define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
2556 do { \
2557 if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
2558 FAIL; \
2559 } while (0)
2560
2561 \f
2562 /* Functions in i386.c */
2563 extern void override_options ();
2564 extern void order_regs_for_local_alloc ();
2565 extern char *output_strlen_unroll ();
2566 extern int i386_valid_decl_attribute_p ();
2567 extern int i386_valid_type_attribute_p ();
2568 extern int i386_return_pops_args ();
2569 extern int i386_comp_type_attributes ();
2570 extern void init_cumulative_args ();
2571 extern void function_arg_advance ();
2572 extern struct rtx_def *function_arg ();
2573 extern int function_arg_partial_nregs ();
2574 extern char *output_strlen_unroll ();
2575 extern void output_op_from_reg ();
2576 extern void output_to_reg ();
2577 extern char *singlemove_string ();
2578 extern char *output_move_double ();
2579 extern char *output_move_memory ();
2580 extern char *output_move_pushmem ();
2581 extern int standard_80387_constant_p ();
2582 extern char *output_move_const_single ();
2583 extern int symbolic_operand ();
2584 extern int call_insn_operand ();
2585 extern int expander_call_insn_operand ();
2586 extern int symbolic_reference_mentioned_p ();
2587 extern int ix86_expand_binary_operator ();
2588 extern int ix86_binary_operator_ok ();
2589 extern int ix86_expand_unary_operator ();
2590 extern int ix86_unary_operator_ok ();
2591 extern void emit_pic_move ();
2592 extern void function_prologue ();
2593 extern int simple_386_epilogue ();
2594 extern void function_epilogue ();
2595 extern int legitimate_address_p ();
2596 extern struct rtx_def *legitimize_pic_address ();
2597 extern struct rtx_def *legitimize_address ();
2598 extern void print_operand ();
2599 extern void print_operand_address ();
2600 extern void notice_update_cc ();
2601 extern void split_di ();
2602 extern int binary_387_op ();
2603 extern int shift_op ();
2604 extern int VOIDmode_compare_op ();
2605 extern char *output_387_binary_op ();
2606 extern char *output_fix_trunc ();
2607 extern char *output_float_compare ();
2608 extern char *output_fp_cc0_set ();
2609 extern void save_386_machine_status ();
2610 extern void restore_386_machine_status ();
2611 extern void clear_386_stack_locals ();
2612 extern struct rtx_def *assign_386_stack_local ();
2613 extern int is_mul ();
2614 extern int is_div ();
2615 extern int last_to_set_cc ();
2616 extern int doesnt_set_condition_code ();
2617 extern int sets_condition_code ();
2618 extern int str_immediate_operand ();
2619 extern int is_fp_insn ();
2620 extern int is_fp_dest ();
2621 extern int is_fp_store ();
2622 extern int agi_dependent ();
2623 extern int reg_mentioned_in_mem ();
2624
2625 #ifdef NOTYET
2626 extern struct rtx_def *copy_all_rtx ();
2627 extern void rewrite_address ();
2628 #endif
2629
2630 /* Variables in i386.c */
2631 extern char *ix86_cpu_string; /* for -mcpu=<xxx> */
2632 extern char *ix86_isa_string; /* for -mcpu=<xxx> */
2633 extern char *i386_reg_alloc_order; /* register allocation order */
2634 extern char *i386_regparm_string; /* # registers to use to pass args */
2635 extern char *i386_align_loops_string; /* power of two alignment for loops */
2636 extern char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
2637 extern char *i386_align_funcs_string; /* power of two alignment for functions */
2638 extern int i386_regparm; /* i386_regparm_string as a number */
2639 extern int i386_align_loops; /* power of two alignment for loops */
2640 extern int i386_align_jumps; /* power of two alignment for non-loop jumps */
2641 extern int i386_align_funcs; /* power of two alignment for functions */
2642 extern char *hi_reg_name[]; /* names for 16 bit regs */
2643 extern char *qi_reg_name[]; /* names for 8 bit regs (low) */
2644 extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */
2645 extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
2646 extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */
2647 extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */
2648
2649 /* External variables used */
2650 extern int optimize; /* optimization level */
2651 extern int obey_regdecls; /* TRUE if stupid register allocation */
2652
2653 /* External functions used */
2654 extern struct rtx_def *force_operand ();
2655
2656 \f
2657 /*
2658 Local variables:
2659 version-control: t
2660 End:
2661 */
This page took 0.171932 seconds and 6 git commands to generate.