]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
(ASM_OUTPUT_REG_{PUSH,POP}): add %% before register name.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for Intel X86
2 (386, 486, Pentium).
3 Copyright (C) 1988, 1992, 1994, 1995, 1996 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
34 PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
35 PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
36
37 /* Names to predefine in the preprocessor for this target machine. */
38
39 #define I386 1
40
41 /* Stubs for half-pic support if not OSF/1 reference platform. */
42
43 #ifndef HALF_PIC_P
44 #define HALF_PIC_P() 0
45 #define HALF_PIC_NUMBER_PTRS 0
46 #define HALF_PIC_NUMBER_REFS 0
47 #define HALF_PIC_ENCODE(DECL)
48 #define HALF_PIC_DECLARE(NAME)
49 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
50 #define HALF_PIC_ADDRESS_P(X) 0
51 #define HALF_PIC_PTR(X) X
52 #define HALF_PIC_FINISH(STREAM)
53 #endif
54
55 /* Define the specific costs for a given cpu */
56
57 struct processor_costs {
58 int add; /* cost of an add instruction */
59 int lea; /* cost of a lea instruction */
60 int shift_var; /* variable shift costs */
61 int shift_const; /* constant shift costs */
62 int mult_init; /* cost of starting a multiply */
63 int mult_bit; /* cost of multiply per each bit set */
64 int divide; /* cost of a divide/mod */
65 };
66
67 extern struct processor_costs *ix86_cost;
68
69 /* Run-time compilation parameters selecting different hardware subsets. */
70
71 extern int target_flags;
72
73 /* Macros used in the machine description to test the flags. */
74
75 /* configure can arrange to make this 2, to force a 486. */
76 #ifndef TARGET_CPU_DEFAULT
77 #define TARGET_CPU_DEFAULT 0
78 #endif
79
80 /* Masks for the -m switches */
81 #define MASK_80387 000000000001 /* Hardware floating point */
82 #define MASK_NOTUSED1 000000000002 /* bit not currently used */
83 #define MASK_NOTUSED2 000000000004 /* bit not currently used */
84 #define MASK_RTD 000000000010 /* Use ret that pops args */
85 #define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
86 #define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
87 #define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
88 #define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
89 #define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
90 #define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
91 /* Temporary codegen switches */
92 #define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
93 #define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
94 #define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
95 #define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
96 #define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
97 #define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
98 #define MASK_STACK_PROBE 000100000000 /* Enable stack probing */
99
100 /* Use the floating point instructions */
101 #define TARGET_80387 (target_flags & MASK_80387)
102
103 /* Compile using ret insn that pops args.
104 This will not work unless you use prototypes at least
105 for all functions that can take varying numbers of args. */
106 #define TARGET_RTD (target_flags & MASK_RTD)
107
108 /* Align doubles to a two word boundary. This breaks compatibility with
109 the published ABI's for structures containing doubles, but produces
110 faster code on the pentium. */
111 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
112
113 /* Put uninitialized locals into bss, not data.
114 Meaningful only on svr3. */
115 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
116
117 /* Use IEEE floating point comparisons. These handle correctly the cases
118 where the result of a comparison is unordered. Normally SIGFPE is
119 generated in such cases, in which case this isn't needed. */
120 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
121
122 /* Functions that return a floating point value may return that value
123 in the 387 FPU or in 386 integer registers. If set, this flag causes
124 the 387 to be used, which is compatible with most calling conventions. */
125 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
126
127 /* Disable generation of FP sin, cos and sqrt operations for 387.
128 This is because FreeBSD lacks these in the math-emulator-code */
129 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
130
131 /* Don't create frame pointers for leaf functions */
132 #define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
133
134 /* Temporary switches for tuning code generation */
135
136 /* Disable 32x32->64 bit multiplies that are used for long long multiplies
137 and division by constants, but sometimes cause reload problems. */
138 #define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
139 #define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
140
141 /* Emit/Don't emit prologue as rtl */
142 #define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
143
144 /* Debug GO_IF_LEGITIMATE_ADDRESS */
145 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
146
147 /* Debug FUNCTION_ARG macros */
148 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
149
150 /* Hack macros for tuning code generation */
151 #define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
152 #define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
153
154 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
155 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
156 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
157 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
158 #define TARGET_USE_LEAVE (ix86_cpu == PROCESSOR_I386)
159 #define TARGET_PUSH_MEMORY (ix86_cpu == PROCESSOR_I386)
160 #define TARGET_ZERO_EXTEND_WITH_AND (ix86_cpu != PROCESSOR_I386 \
161 && ix86_cpu != PROCESSOR_PENTIUMPRO)
162 #define TARGET_DOUBLE_WITH_ADD (ix86_cpu != PROCESSOR_I386)
163 #define TARGET_USE_BIT_TEST (ix86_cpu == PROCESSOR_I386)
164 #define TARGET_UNROLL_STRLEN (ix86_cpu != PROCESSOR_I386)
165 #define TARGET_USE_Q_REG (ix86_cpu == PROCESSOR_PENTIUM \
166 || ix86_cpu == PROCESSOR_PENTIUMPRO)
167 #define TARGET_USE_ANY_REG (ix86_cpu == PROCESSOR_I486)
168 #define TARGET_CMOVE (ix86_arch == PROCESSOR_PENTIUMPRO)
169 #define TARGET_DEEP_BRANCH_PREDICTION (ix86_cpu == PROCESSOR_PENTIUMPRO)
170 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
171
172 #define TARGET_SWITCHES \
173 { { "80387", MASK_80387 }, \
174 { "no-80387", -MASK_80387 }, \
175 { "hard-float", MASK_80387 }, \
176 { "soft-float", -MASK_80387 }, \
177 { "no-soft-float", MASK_80387 }, \
178 { "386", 0 }, \
179 { "no-386", 0 }, \
180 { "486", 0 }, \
181 { "no-486", 0 }, \
182 { "pentium", 0 }, \
183 { "pentiumpro", 0 }, \
184 { "rtd", MASK_RTD }, \
185 { "no-rtd", -MASK_RTD }, \
186 { "align-double", MASK_ALIGN_DOUBLE }, \
187 { "no-align-double", -MASK_ALIGN_DOUBLE }, \
188 { "svr3-shlib", MASK_SVR3_SHLIB }, \
189 { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \
190 { "ieee-fp", MASK_IEEE_FP }, \
191 { "no-ieee-fp", -MASK_IEEE_FP }, \
192 { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \
193 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \
194 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \
195 { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \
196 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, \
197 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER }, \
198 { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \
199 { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \
200 { "schedule-prologue", MASK_SCHEDULE_PROLOGUE }, \
201 { "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE }, \
202 { "debug-addr", MASK_DEBUG_ADDR }, \
203 { "no-debug-addr", -MASK_DEBUG_ADDR }, \
204 { "move", -MASK_NO_MOVE }, \
205 { "no-move", MASK_NO_MOVE }, \
206 { "debug-arg", MASK_DEBUG_ARG }, \
207 { "no-debug-arg", -MASK_DEBUG_ARG }, \
208 { "stack-arg-probe", MASK_STACK_PROBE }, \
209 { "no-stack-arg-probe", -MASK_STACK_PROBE }, \
210 SUBTARGET_SWITCHES \
211 { "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT}}
212
213 /* Which processor to schedule for. The cpu attribute defines a list that
214 mirrors this list, so changes to i386.md must be made at the same time. */
215
216 enum processor_type
217 {PROCESSOR_I386, /* 80386 */
218 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
219 PROCESSOR_PENTIUM,
220 PROCESSOR_PENTIUMPRO};
221
222 #define PROCESSOR_I386_STRING "i386"
223 #define PROCESSOR_I486_STRING "i486"
224 #define PROCESSOR_I586_STRING "i586"
225 #define PROCESSOR_PENTIUM_STRING "pentium"
226 #define PROCESSOR_I686_STRING "i686"
227 #define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
228
229 extern enum processor_type ix86_cpu;
230
231 extern int ix86_arch;
232
233 /* Define the default processor. This is overridden by other tm.h files. */
234 #define PROCESSOR_DEFAULT \
235 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
236 ? PROCESSOR_I486 \
237 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
238 ? PROCESSOR_PENTIUM \
239 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
240 ? PROCESSOR_PENTIUMPRO \
241 : PROCESSOR_I386
242 #define PROCESSOR_DEFAULT_STRING \
243 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
244 ? PROCESSOR_I486_STRING \
245 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
246 ? PROCESSOR_PENTIUM_STRING \
247 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
248 ? PROCESSOR_PENTIUMPRO_STRING \
249 : PROCESSOR_I386_STRING
250
251 /* This macro is similar to `TARGET_SWITCHES' but defines names of
252 command options that have values. Its definition is an
253 initializer with a subgrouping for each command option.
254
255 Each subgrouping contains a string constant, that defines the
256 fixed part of the option name, and the address of a variable. The
257 variable, type `char *', is set to the variable part of the given
258 option if the fixed part matches. The actual option name is made
259 by appending `-m' to the specified name. */
260 #define TARGET_OPTIONS \
261 { { "cpu=", &ix86_cpu_string}, \
262 { "arch=", &ix86_arch_string}, \
263 { "reg-alloc=", &i386_reg_alloc_order }, \
264 { "regparm=", &i386_regparm_string }, \
265 { "align-loops=", &i386_align_loops_string }, \
266 { "align-jumps=", &i386_align_jumps_string }, \
267 { "align-functions=", &i386_align_funcs_string }, \
268 { "branch-cost=", &i386_branch_cost_string }, \
269 SUBTARGET_OPTIONS \
270 }
271
272 /* Sometimes certain combinations of command options do not make
273 sense on a particular target machine. You can define a macro
274 `OVERRIDE_OPTIONS' to take account of this. This macro, if
275 defined, is executed once just after all the command options have
276 been parsed.
277
278 Don't use this macro to turn on various extra optimizations for
279 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
280
281 #define OVERRIDE_OPTIONS override_options ()
282
283 /* These are meant to be redefined in the host dependent files */
284 #define SUBTARGET_SWITCHES
285 #define SUBTARGET_OPTIONS
286
287 /* Define this to change the optimizations performed by default. */
288 #define OPTIMIZATION_OPTIONS(LEVEL) optimization_options(LEVEL)
289
290 /* Specs for the compiler proper */
291
292 #ifndef CC1_SPEC
293 #define CC1_SPEC "\
294 %{!mcpu*: \
295 %{m386:-mcpu=i386 -march=i386} \
296 %{mno-486:-mcpu=i386 -march=i386} \
297 %{m486:-mcpu=i486 -march=i486} \
298 %{mno-386:-mcpu=i486 -march=i486} \
299 %{mno-pentium:-mcpu=i486 -march=i486} \
300 %{mpentium:-mcpu=pentium} \
301 %{mno-pentiumpro:-mcpu=pentium} \
302 %{mpentiumpro:-mcpu=pentiumpro}}"
303 #endif
304 \f
305 #ifndef CPP_CPU_SPEC
306 #ifdef __STDC__
307 #if TARGET_CPU_DEFAULT == 1
308 #define CPP_CPU_DEFAULT "-Di486"
309 #elif TARGET_CPU_DEFAULT == 2
310 #define CPP_CPU_DEFAULT "-Di586"
311 #elif TARGET_CPU_DEFAULT == 3
312 #define CPP_CPU_DEFAULT "-Di686"
313 #else
314 #define CPP_CPU_DEFAULT ""
315 #endif /* TARGET_CPU_DEFAULT */
316
317 #define CPP_CPU_SPEC "\
318 -Di386 " CPP_CPU_DEFAULT " -Asystem(unix) -Acpu(i386) -Amachine(i386) \
319 %{mcpu=i486:-Di486} %{m486:-Di486} \
320 %{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
321 %{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686}"
322
323 #else
324 #define CPP_CPU_SPEC "\
325 -Di386 -Asystem(unix) -Acpu(i386) -Amachine(i386) \
326 %{mcpu=i486:-Di486} %{m486:-Di486} \
327 %{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
328 %{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686}"
329 #endif /* __STDC__ */
330 #endif /* CPP_CPU_SPEC */
331
332 /* This macro defines names of additional specifications to put in the specs
333 that can be used in various specifications like CC1_SPEC. Its definition
334 is an initializer with a subgrouping for each command option.
335
336 Each subgrouping contains a string constant, that defines the
337 specification name, and a string constant that used by the GNU CC driver
338 program.
339
340 Do not define this macro if it does not need to do anything. */
341
342 #ifndef SUBTARGET_EXTRA_SPECS
343 #define SUBTARGET_EXTRA_SPECS
344 #endif
345
346 #define EXTRA_SPECS \
347 { "cpp_cpu", CPP_CPU_SPEC }, \
348 SUBTARGET_EXTRA_SPECS
349 \f
350 /* target machine storage layout */
351
352 /* Define for XFmode extended real floating point support.
353 This will automatically cause REAL_ARITHMETIC to be defined. */
354 #define LONG_DOUBLE_TYPE_SIZE 96
355
356 /* Define if you don't want extended real, but do want to use the
357 software floating point emulator for REAL_ARITHMETIC and
358 decimal <-> binary conversion. */
359 /* #define REAL_ARITHMETIC */
360
361 /* Define this if most significant byte of a word is the lowest numbered. */
362 /* That is true on the 80386. */
363
364 #define BITS_BIG_ENDIAN 0
365
366 /* Define this if most significant byte of a word is the lowest numbered. */
367 /* That is not true on the 80386. */
368 #define BYTES_BIG_ENDIAN 0
369
370 /* Define this if most significant word of a multiword number is the lowest
371 numbered. */
372 /* Not true for 80386 */
373 #define WORDS_BIG_ENDIAN 0
374
375 /* number of bits in an addressable storage unit */
376 #define BITS_PER_UNIT 8
377
378 /* Width in bits of a "word", which is the contents of a machine register.
379 Note that this is not necessarily the width of data type `int';
380 if using 16-bit ints on a 80386, this would still be 32.
381 But on a machine with 16-bit registers, this would be 16. */
382 #define BITS_PER_WORD 32
383
384 /* Width of a word, in units (bytes). */
385 #define UNITS_PER_WORD 4
386
387 /* Width in bits of a pointer.
388 See also the macro `Pmode' defined below. */
389 #define POINTER_SIZE 32
390
391 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
392 #define PARM_BOUNDARY 32
393
394 /* Boundary (in *bits*) on which stack pointer should be aligned. */
395 #define STACK_BOUNDARY 32
396
397 /* Allocation boundary (in *bits*) for the code of a function.
398 For i486, we get better performance by aligning to a cache
399 line (i.e. 16 byte) boundary. */
400 #define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
401
402 /* Alignment of field after `int : 0' in a structure. */
403
404 #define EMPTY_FIELD_BOUNDARY 32
405
406 /* Minimum size in bits of the largest boundary to which any
407 and all fundamental data types supported by the hardware
408 might need to be aligned. No data type wants to be aligned
409 rounder than this. The i386 supports 64-bit floating point
410 quantities, but these can be aligned on any 32-bit boundary.
411 The published ABIs say that doubles should be aligned on word
412 boundaries, but the Pentium gets better performance with them
413 aligned on 64 bit boundaries. */
414 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
415
416 /* align DFmode constants and nonaggregates */
417 #define ALIGN_DFmode (!TARGET_386)
418
419 /* Set this non-zero if move instructions will actually fail to work
420 when given unaligned data. */
421 #define STRICT_ALIGNMENT 0
422
423 /* If bit field type is int, don't let it cross an int,
424 and give entire struct the alignment of an int. */
425 /* Required on the 386 since it doesn't have bitfield insns. */
426 #define PCC_BITFIELD_TYPE_MATTERS 1
427
428 /* Maximum power of 2 that code can be aligned to. */
429 #define MAX_CODE_ALIGN 6 /* 64 byte alignment */
430
431 /* Align loop starts for optimal branching. */
432 #define ASM_OUTPUT_LOOP_ALIGN(FILE) ASM_OUTPUT_ALIGN (FILE, i386_align_loops)
433
434 /* This is how to align an instruction for optimal branching.
435 On i486 we'll get better performance by aligning on a
436 cache line (i.e. 16 byte) boundary. */
437 #define ASM_OUTPUT_ALIGN_CODE(FILE) ASM_OUTPUT_ALIGN ((FILE), i386_align_jumps)
438
439 \f
440 /* Standard register usage. */
441
442 /* This processor has special stack-like registers. See reg-stack.c
443 for details. */
444
445 #define STACK_REGS
446 #define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
447
448 /* Number of actual hardware registers.
449 The hardware registers are assigned numbers for the compiler
450 from 0 to just below FIRST_PSEUDO_REGISTER.
451 All registers that the compiler knows about must be given numbers,
452 even those that are not normally considered general registers.
453
454 In the 80386 we give the 8 general purpose registers the numbers 0-7.
455 We number the floating point registers 8-15.
456 Note that registers 0-7 can be accessed as a short or int,
457 while only 0-3 may be used with byte `mov' instructions.
458
459 Reg 16 does not correspond to any hardware register, but instead
460 appears in the RTL as an argument pointer prior to reload, and is
461 eliminated during reloading in favor of either the stack or frame
462 pointer. */
463
464 #define FIRST_PSEUDO_REGISTER 17
465
466 /* 1 for registers that have pervasive standard uses
467 and are not available for the register allocator.
468 On the 80386, the stack pointer is such, as is the arg pointer. */
469 #define FIXED_REGISTERS \
470 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
471 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
472
473 /* 1 for registers not available across function calls.
474 These must include the FIXED_REGISTERS and also any
475 registers that can be used without being saved.
476 The latter must include the registers where values are returned
477 and the register where structure-value addresses are passed.
478 Aside from that, you can include as many other registers as you like. */
479
480 #define CALL_USED_REGISTERS \
481 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
482 { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
483
484 /* Order in which to allocate registers. Each register must be
485 listed once, even those in FIXED_REGISTERS. List frame pointer
486 late and fixed registers last. Note that, in general, we prefer
487 registers listed in CALL_USED_REGISTERS, keeping the others
488 available for storage of persistent values.
489
490 Three different versions of REG_ALLOC_ORDER have been tried:
491
492 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
493 but slower code on simple functions returning values in eax.
494
495 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
496 perl 4.036 due to not being able to create a DImode register (to hold a 2
497 word union).
498
499 If the order is eax, edx, ecx, ... it produces better code for simple
500 functions, and a slightly slower compiler. Users complained about the code
501 generated by allocating edx first, so restore the 'natural' order of things. */
502
503 #define REG_ALLOC_ORDER \
504 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
505 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
506
507 /* A C statement (sans semicolon) to choose the order in which to
508 allocate hard registers for pseudo-registers local to a basic
509 block.
510
511 Store the desired register order in the array `reg_alloc_order'.
512 Element 0 should be the register to allocate first; element 1, the
513 next register; and so on.
514
515 The macro body should not assume anything about the contents of
516 `reg_alloc_order' before execution of the macro.
517
518 On most machines, it is not necessary to define this macro. */
519
520 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
521
522 /* Macro to conditionally modify fixed_regs/call_used_regs. */
523 #define CONDITIONAL_REGISTER_USAGE \
524 { \
525 if (flag_pic) \
526 { \
527 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
528 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
529 } \
530 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
531 { \
532 int i; \
533 HARD_REG_SET x; \
534 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
535 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
536 if (TEST_HARD_REG_BIT (x, i)) \
537 fixed_regs[i] = call_used_regs[i] = 1; \
538 } \
539 }
540
541 /* Return number of consecutive hard regs needed starting at reg REGNO
542 to hold something of mode MODE.
543 This is ordinarily the length in words of a value of mode MODE
544 but can be less for certain modes in special long registers.
545
546 Actually there are no two word move instructions for consecutive
547 registers. And only registers 0-3 may have mov byte instructions
548 applied to them.
549 */
550
551 #define HARD_REGNO_NREGS(REGNO, MODE) \
552 (FP_REGNO_P (REGNO) ? 1 \
553 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
554
555 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
556 On the 80386, the first 4 cpu registers can hold any mode
557 while the floating point registers may hold only floating point.
558 Make it clear that the fp regs could not hold a 16-byte float. */
559
560 /* The casts to int placate a compiler on a microvax,
561 for cross-compiler testing. */
562
563 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
564 ((REGNO) < 2 ? 1 \
565 : (REGNO) < 4 ? 1 \
566 : FP_REGNO_P (REGNO) \
567 ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
568 || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
569 && GET_MODE_UNIT_SIZE (MODE) <= (LONG_DOUBLE_TYPE_SIZE == 96 ? 12 : 8))\
570 : (int) (MODE) != (int) QImode ? 1 \
571 : (reload_in_progress | reload_completed) == 1)
572
573 /* Value is 1 if it is a good idea to tie two pseudo registers
574 when one has mode MODE1 and one has mode MODE2.
575 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
576 for any hard reg, then this must be 0 for correct output. */
577
578 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
579
580 /* Specify the registers used for certain standard purposes.
581 The values of these macros are register numbers. */
582
583 /* on the 386 the pc register is %eip, and is not usable as a general
584 register. The ordinary mov instructions won't work */
585 /* #define PC_REGNUM */
586
587 /* Register to use for pushing function arguments. */
588 #define STACK_POINTER_REGNUM 7
589
590 /* Base register for access to local variables of the function. */
591 #define FRAME_POINTER_REGNUM 6
592
593 /* First floating point reg */
594 #define FIRST_FLOAT_REG 8
595
596 /* First & last stack-like regs */
597 #define FIRST_STACK_REG FIRST_FLOAT_REG
598 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
599
600 /* Value should be nonzero if functions must have frame pointers.
601 Zero means the frame pointer need not be set up (and parms
602 may be accessed via the stack pointer) in functions that seem suitable.
603 This is computed in `reload', in reload1.c. */
604 #define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
605
606 /* Base register for access to arguments of the function. */
607 #define ARG_POINTER_REGNUM 16
608
609 /* Register in which static-chain is passed to a function. */
610 #define STATIC_CHAIN_REGNUM 2
611
612 /* Register to hold the addressing base for position independent
613 code access to data items. */
614 #define PIC_OFFSET_TABLE_REGNUM 3
615
616 /* Register in which address to store a structure value
617 arrives in the function. On the 386, the prologue
618 copies this from the stack to register %eax. */
619 #define STRUCT_VALUE_INCOMING 0
620
621 /* Place in which caller passes the structure value address.
622 0 means push the value on the stack like an argument. */
623 #define STRUCT_VALUE 0
624
625 /* A C expression which can inhibit the returning of certain function
626 values in registers, based on the type of value. A nonzero value
627 says to return the function value in memory, just as large
628 structures are always returned. Here TYPE will be a C expression
629 of type `tree', representing the data type of the value.
630
631 Note that values of mode `BLKmode' must be explicitly handled by
632 this macro. Also, the option `-fpcc-struct-return' takes effect
633 regardless of this macro. On most systems, it is possible to
634 leave the macro undefined; this causes a default definition to be
635 used, whose value is the constant 1 for `BLKmode' values, and 0
636 otherwise.
637
638 Do not use this macro to indicate that structures and unions
639 should always be returned in memory. You should instead use
640 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
641
642 #define RETURN_IN_MEMORY(TYPE) \
643 ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
644
645 \f
646 /* Define the classes of registers for register constraints in the
647 machine description. Also define ranges of constants.
648
649 One of the classes must always be named ALL_REGS and include all hard regs.
650 If there is more than one class, another class must be named NO_REGS
651 and contain no registers.
652
653 The name GENERAL_REGS must be the name of a class (or an alias for
654 another name such as ALL_REGS). This is the class of registers
655 that is allowed by "g" or "r" in a register constraint.
656 Also, registers outside this class are allocated only when
657 instructions express preferences for them.
658
659 The classes must be numbered in nondecreasing order; that is,
660 a larger-numbered class must never be contained completely
661 in a smaller-numbered class.
662
663 For any two classes, it is very desirable that there be another
664 class that represents their union.
665
666 It might seem that class BREG is unnecessary, since no useful 386
667 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
668 and the "b" register constraint is useful in asms for syscalls. */
669
670 enum reg_class
671 {
672 NO_REGS,
673 AREG, DREG, CREG, BREG,
674 AD_REGS, /* %eax/%edx for DImode */
675 Q_REGS, /* %eax %ebx %ecx %edx */
676 SIREG, DIREG,
677 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
678 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
679 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
680 FLOAT_REGS,
681 ALL_REGS, LIM_REG_CLASSES
682 };
683
684 #define N_REG_CLASSES (int) LIM_REG_CLASSES
685
686 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
687
688 /* Give names of register classes as strings for dump file. */
689
690 #define REG_CLASS_NAMES \
691 { "NO_REGS", \
692 "AREG", "DREG", "CREG", "BREG", \
693 "AD_REGS", \
694 "Q_REGS", \
695 "SIREG", "DIREG", \
696 "INDEX_REGS", \
697 "GENERAL_REGS", \
698 "FP_TOP_REG", "FP_SECOND_REG", \
699 "FLOAT_REGS", \
700 "ALL_REGS" }
701
702 /* Define which registers fit in which classes.
703 This is an initializer for a vector of HARD_REG_SET
704 of length N_REG_CLASSES. */
705
706 #define REG_CLASS_CONTENTS \
707 { 0, \
708 0x1, 0x2, 0x4, 0x8, /* AREG, DREG, CREG, BREG */ \
709 0x3, /* AD_REGS */ \
710 0xf, /* Q_REGS */ \
711 0x10, 0x20, /* SIREG, DIREG */ \
712 0x7f, /* INDEX_REGS */ \
713 0x100ff, /* GENERAL_REGS */ \
714 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \
715 0xff00, /* FLOAT_REGS */ \
716 0x1ffff }
717
718 /* The same information, inverted:
719 Return the class number of the smallest class containing
720 reg number REGNO. This could be a conditional expression
721 or could index an array. */
722
723 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
724
725 /* When defined, the compiler allows registers explicitly used in the
726 rtl to be used as spill registers but prevents the compiler from
727 extending the lifetime of these registers. */
728
729 #define SMALL_REGISTER_CLASSES 1
730
731 #define QI_REG_P(X) \
732 (REG_P (X) && REGNO (X) < 4)
733 #define NON_QI_REG_P(X) \
734 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
735
736 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
737 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
738
739 #define STACK_REG_P(xop) (REG_P (xop) && \
740 REGNO (xop) >= FIRST_STACK_REG && \
741 REGNO (xop) <= LAST_STACK_REG)
742
743 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
744
745 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
746
747 /* Try to maintain the accuracy of the death notes for regs satisfying the
748 following. Important for stack like regs, to know when to pop. */
749
750 /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
751
752 /* 1 if register REGNO can magically overlap other regs.
753 Note that nonzero values work only in very special circumstances. */
754
755 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
756
757 /* The class value for index registers, and the one for base regs. */
758
759 #define INDEX_REG_CLASS INDEX_REGS
760 #define BASE_REG_CLASS GENERAL_REGS
761
762 /* Get reg_class from a letter such as appears in the machine description. */
763
764 #define REG_CLASS_FROM_LETTER(C) \
765 ((C) == 'r' ? GENERAL_REGS : \
766 (C) == 'q' ? Q_REGS : \
767 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
768 ? FLOAT_REGS \
769 : NO_REGS) : \
770 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
771 ? FP_TOP_REG \
772 : NO_REGS) : \
773 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
774 ? FP_SECOND_REG \
775 : NO_REGS) : \
776 (C) == 'a' ? AREG : \
777 (C) == 'b' ? BREG : \
778 (C) == 'c' ? CREG : \
779 (C) == 'd' ? DREG : \
780 (C) == 'A' ? AD_REGS : \
781 (C) == 'D' ? DIREG : \
782 (C) == 'S' ? SIREG : NO_REGS)
783
784 /* The letters I, J, K, L and M in a register constraint string
785 can be used to stand for particular ranges of immediate operands.
786 This macro defines what the ranges are.
787 C is the letter, and VALUE is a constant value.
788 Return 1 if VALUE is in the range specified by C.
789
790 I is for non-DImode shifts.
791 J is for DImode shifts.
792 K and L are for an `andsi' optimization.
793 M is for shifts that can be executed by the "lea" opcode.
794 */
795
796 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
797 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
798 (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
799 (C) == 'K' ? (VALUE) == 0xff : \
800 (C) == 'L' ? (VALUE) == 0xffff : \
801 (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
802 (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
803 (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
804 0)
805
806 /* Similar, but for floating constants, and defining letters G and H.
807 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
808 TARGET_387 isn't set, because the stack register converter may need to
809 load 0.0 into the function value register. */
810
811 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
812 ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
813
814 /* Place additional restrictions on the register class to use when it
815 is necessary to be able to hold a value of mode MODE in a reload
816 register for which class CLASS would ordinarily be used. */
817
818 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
819 ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
820 ? Q_REGS : (CLASS))
821
822 /* Given an rtx X being reloaded into a reg required to be
823 in class CLASS, return the class of reg to actually use.
824 In general this is just CLASS; but on some machines
825 in some cases it is preferable to use a more restrictive class.
826 On the 80386 series, we prevent floating constants from being
827 reloaded into floating registers (since no move-insn can do that)
828 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
829
830 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
831 QImode must go into class Q_REGS.
832 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
833 movdf to do mem-to-mem moves through integer regs. */
834
835 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
836 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
837 : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
838 : ((CLASS) == ALL_REGS \
839 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
840 : (CLASS))
841
842 /* If we are copying between general and FP registers, we need a memory
843 location. */
844
845 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
846 ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
847 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
848
849 /* Return the maximum number of consecutive registers
850 needed to represent mode MODE in a register of class CLASS. */
851 /* On the 80386, this is the size of MODE in words,
852 except in the FP regs, where a single reg is always enough. */
853 #define CLASS_MAX_NREGS(CLASS, MODE) \
854 (FLOAT_CLASS_P (CLASS) ? 1 : \
855 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
856
857 /* A C expression whose value is nonzero if pseudos that have been
858 assigned to registers of class CLASS would likely be spilled
859 because registers of CLASS are needed for spill registers.
860
861 The default value of this macro returns 1 if CLASS has exactly one
862 register and zero otherwise. On most machines, this default
863 should be used. Only define this macro to some other expression
864 if pseudo allocated by `local-alloc.c' end up in memory because
865 their hard registers were needed for spill registers. If this
866 macro returns nonzero for those classes, those pseudos will only
867 be allocated by `global.c', which knows how to reallocate the
868 pseudo to another register. If there would not be another
869 register available for reallocation, you should not change the
870 definition of this macro since the only effect of such a
871 definition would be to slow down register allocation. */
872
873 #define CLASS_LIKELY_SPILLED_P(CLASS) \
874 (((CLASS) == AREG) \
875 || ((CLASS) == DREG) \
876 || ((CLASS) == CREG) \
877 || ((CLASS) == BREG) \
878 || ((CLASS) == AD_REGS) \
879 || ((CLASS) == SIREG) \
880 || ((CLASS) == DIREG))
881
882 \f
883 /* Stack layout; function entry, exit and calling. */
884
885 /* Define this if pushing a word on the stack
886 makes the stack pointer a smaller address. */
887 #define STACK_GROWS_DOWNWARD
888
889 /* Define this if the nominal address of the stack frame
890 is at the high-address end of the local variables;
891 that is, each additional local variable allocated
892 goes at a more negative offset in the frame. */
893 #define FRAME_GROWS_DOWNWARD
894
895 /* Offset within stack frame to start allocating local variables at.
896 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
897 first local allocated. Otherwise, it is the offset to the BEGINNING
898 of the first local allocated. */
899 #define STARTING_FRAME_OFFSET 0
900
901 /* If we generate an insn to push BYTES bytes,
902 this says how many the stack pointer really advances by.
903 On 386 pushw decrements by exactly 2 no matter what the position was.
904 On the 386 there is no pushb; we use pushw instead, and this
905 has the effect of rounding up to 2. */
906
907 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
908
909 /* Offset of first parameter from the argument pointer register value. */
910 #define FIRST_PARM_OFFSET(FNDECL) 0
911
912 /* Value is the number of bytes of arguments automatically
913 popped when returning from a subroutine call.
914 FUNDECL is the declaration node of the function (as a tree),
915 FUNTYPE is the data type of the function (as a tree),
916 or for a library call it is an identifier node for the subroutine name.
917 SIZE is the number of bytes of arguments passed on the stack.
918
919 On the 80386, the RTD insn may be used to pop them if the number
920 of args is fixed, but if the number is variable then the caller
921 must pop them all. RTD can't be used for library calls now
922 because the library is compiled with the Unix compiler.
923 Use of RTD is a selectable option, since it is incompatible with
924 standard Unix calling sequences. If the option is not selected,
925 the caller must always pop the args.
926
927 The attribute stdcall is equivalent to RTD on a per module basis. */
928
929 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
930 (i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
931
932 /* Define how to find the value returned by a function.
933 VALTYPE is the data type of the value (as a tree).
934 If the precise function being called is known, FUNC is its FUNCTION_DECL;
935 otherwise, FUNC is 0. */
936 #define FUNCTION_VALUE(VALTYPE, FUNC) \
937 gen_rtx (REG, TYPE_MODE (VALTYPE), \
938 VALUE_REGNO (TYPE_MODE (VALTYPE)))
939
940 /* Define how to find the value returned by a library function
941 assuming the value has mode MODE. */
942
943 #define LIBCALL_VALUE(MODE) \
944 gen_rtx (REG, MODE, VALUE_REGNO (MODE))
945
946 /* Define the size of the result block used for communication between
947 untyped_call and untyped_return. The block contains a DImode value
948 followed by the block used by fnsave and frstor. */
949
950 #define APPLY_RESULT_SIZE (8+108)
951
952 /* 1 if N is a possible register number for function argument passing. */
953 #define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
954
955 /* Define a data type for recording info about an argument list
956 during the scan of that argument list. This data type should
957 hold all necessary information about the function itself
958 and about the args processed so far, enough to enable macros
959 such as FUNCTION_ARG to determine where the next arg should go. */
960
961 typedef struct i386_args {
962 int words; /* # words passed so far */
963 int nregs; /* # registers available for passing */
964 int regno; /* next available register number */
965 } CUMULATIVE_ARGS;
966
967 /* Initialize a variable CUM of type CUMULATIVE_ARGS
968 for a call to a function whose data type is FNTYPE.
969 For a library call, FNTYPE is 0. */
970
971 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
972 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
973
974 /* Update the data in CUM to advance over an argument
975 of mode MODE and data type TYPE.
976 (TYPE is null for libcalls where that information may not be available.) */
977
978 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
979 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
980
981 /* Define where to put the arguments to a function.
982 Value is zero to push the argument on the stack,
983 or a hard register in which to store the argument.
984
985 MODE is the argument's machine mode.
986 TYPE is the data type of the argument (as a tree).
987 This is null for libcalls where that information may
988 not be available.
989 CUM is a variable of type CUMULATIVE_ARGS which gives info about
990 the preceding args and about the function being called.
991 NAMED is nonzero if this argument is a named parameter
992 (otherwise it is an extra parameter matching an ellipsis). */
993
994 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
995 (function_arg (&CUM, MODE, TYPE, NAMED))
996
997 /* For an arg passed partly in registers and partly in memory,
998 this is the number of registers used.
999 For args passed entirely in registers or entirely in memory, zero. */
1000
1001 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1002 (function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
1003
1004 /* This macro is invoked just before the start of a function.
1005 It is used here to output code for -fpic that will load the
1006 return address into %ebx. */
1007
1008 #undef ASM_OUTPUT_FUNCTION_PREFIX
1009 #define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
1010 asm_output_function_prefix (FILE, FNNAME)
1011
1012 /* This macro generates the assembly code for function entry.
1013 FILE is a stdio stream to output the code to.
1014 SIZE is an int: how many units of temporary storage to allocate.
1015 Refer to the array `regs_ever_live' to determine which registers
1016 to save; `regs_ever_live[I]' is nonzero if register number I
1017 is ever used in the function. This macro is responsible for
1018 knowing which registers should not be saved even if used. */
1019
1020 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1021 function_prologue (FILE, SIZE)
1022
1023 /* Output assembler code to FILE to increment profiler label # LABELNO
1024 for profiling a function entry. */
1025
1026 #define FUNCTION_PROFILER(FILE, LABELNO) \
1027 { \
1028 if (flag_pic) \
1029 { \
1030 fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
1031 LPREFIX, (LABELNO)); \
1032 fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
1033 } \
1034 else \
1035 { \
1036 fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1037 fprintf (FILE, "\tcall _mcount\n"); \
1038 } \
1039 }
1040
1041
1042 /* There are three profiling modes for basic blocks available.
1043 The modes are selected at compile time by using the options
1044 -a or -ax of the gnu compiler.
1045 The variable `profile_block_flag' will be set according to the
1046 selected option.
1047
1048 profile_block_flag == 0, no option used:
1049
1050 No profiling done.
1051
1052 profile_block_flag == 1, -a option used.
1053
1054 Count frequency of execution of every basic block.
1055
1056 profile_block_flag == 2, -ax option used.
1057
1058 Generate code to allow several different profiling modes at run time.
1059 Available modes are:
1060 Produce a trace of all basic blocks.
1061 Count frequency of jump instructions executed.
1062 In every mode it is possible to start profiling upon entering
1063 certain functions and to disable profiling of some other functions.
1064
1065 The result of basic-block profiling will be written to a file `bb.out'.
1066 If the -ax option is used parameters for the profiling will be read
1067 from file `bb.in'.
1068
1069 */
1070
1071 /* The following macro shall output assembler code to FILE
1072 to initialize basic-block profiling.
1073
1074 If profile_block_flag == 2
1075
1076 Output code to call the subroutine `__bb_init_trace_func'
1077 and pass two parameters to it. The first parameter is
1078 the address of a block allocated in the object module.
1079 The second parameter is the number of the first basic block
1080 of the function.
1081
1082 The name of the block is a local symbol made with this statement:
1083
1084 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1085
1086 Of course, since you are writing the definition of
1087 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1088 can take a short cut in the definition of this macro and use the
1089 name that you know will result.
1090
1091 The number of the first basic block of the function is
1092 passed to the macro in BLOCK_OR_LABEL.
1093
1094 If described in a virtual assembler language the code to be
1095 output looks like:
1096
1097 parameter1 <- LPBX0
1098 parameter2 <- BLOCK_OR_LABEL
1099 call __bb_init_trace_func
1100
1101 else if profile_block_flag != 0
1102
1103 Output code to call the subroutine `__bb_init_func'
1104 and pass one single parameter to it, which is the same
1105 as the first parameter to `__bb_init_trace_func'.
1106
1107 The first word of this parameter is a flag which will be nonzero if
1108 the object module has already been initialized. So test this word
1109 first, and do not call `__bb_init_func' if the flag is nonzero.
1110 Note: When profile_block_flag == 2 the test need not be done
1111 but `__bb_init_trace_func' *must* be called.
1112
1113 BLOCK_OR_LABEL may be used to generate a label number as a
1114 branch destination in case `__bb_init_func' will not be called.
1115
1116 If described in a virtual assembler language the code to be
1117 output looks like:
1118
1119 cmp (LPBX0),0
1120 jne local_label
1121 parameter1 <- LPBX0
1122 call __bb_init_func
1123 local_label:
1124
1125 */
1126
1127 #undef FUNCTION_BLOCK_PROFILER
1128 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1129 do \
1130 { \
1131 static int num_func = 0; \
1132 rtx xops[8]; \
1133 char block_table[80], false_label[80]; \
1134 \
1135 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1136 \
1137 xops[1] = gen_rtx (SYMBOL_REF, VOIDmode, block_table); \
1138 xops[5] = stack_pointer_rtx; \
1139 xops[7] = gen_rtx (REG, Pmode, 0); /* eax */ \
1140 \
1141 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1142 \
1143 switch (profile_block_flag) \
1144 { \
1145 \
1146 case 2: \
1147 \
1148 xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
1149 xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_init_trace_func")); \
1150 xops[6] = GEN_INT (8); \
1151 \
1152 output_asm_insn (AS1(push%L2,%2), xops); \
1153 if (!flag_pic) \
1154 output_asm_insn (AS1(push%L1,%1), xops); \
1155 else \
1156 { \
1157 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1158 output_asm_insn (AS1 (push%L7,%7), xops); \
1159 } \
1160 \
1161 output_asm_insn (AS1(call,%P3), xops); \
1162 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1163 \
1164 break; \
1165 \
1166 default: \
1167 \
1168 ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
1169 \
1170 xops[0] = const0_rtx; \
1171 xops[2] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, false_label)); \
1172 xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_init_func")); \
1173 xops[4] = gen_rtx (MEM, Pmode, xops[1]); \
1174 xops[6] = GEN_INT (4); \
1175 \
1176 CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
1177 \
1178 output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
1179 output_asm_insn (AS1(jne,%2), xops); \
1180 \
1181 if (!flag_pic) \
1182 output_asm_insn (AS1(push%L1,%1), xops); \
1183 else \
1184 { \
1185 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1186 output_asm_insn (AS1 (push%L7,%7), xops); \
1187 } \
1188 \
1189 output_asm_insn (AS1(call,%P3), xops); \
1190 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1191 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
1192 num_func++; \
1193 \
1194 break; \
1195 \
1196 } \
1197 } \
1198 while (0)
1199
1200 /* The following macro shall output assembler code to FILE
1201 to increment a counter associated with basic block number BLOCKNO.
1202
1203 If profile_block_flag == 2
1204
1205 Output code to initialize the global structure `__bb' and
1206 call the function `__bb_trace_func' which will increment the
1207 counter.
1208
1209 `__bb' consists of two words. In the first word the number
1210 of the basic block has to be stored. In the second word
1211 the address of a block allocated in the object module
1212 has to be stored.
1213
1214 The basic block number is given by BLOCKNO.
1215
1216 The address of the block is given by the label created with
1217
1218 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1219
1220 by FUNCTION_BLOCK_PROFILER.
1221
1222 Of course, since you are writing the definition of
1223 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1224 can take a short cut in the definition of this macro and use the
1225 name that you know will result.
1226
1227 If described in a virtual assembler language the code to be
1228 output looks like:
1229
1230 move BLOCKNO -> (__bb)
1231 move LPBX0 -> (__bb+4)
1232 call __bb_trace_func
1233
1234 Note that function `__bb_trace_func' must not change the
1235 machine state, especially the flag register. To grant
1236 this, you must output code to save and restore registers
1237 either in this macro or in the macros MACHINE_STATE_SAVE
1238 and MACHINE_STATE_RESTORE. The last two macros will be
1239 used in the function `__bb_trace_func', so you must make
1240 sure that the function prologue does not change any
1241 register prior to saving it with MACHINE_STATE_SAVE.
1242
1243 else if profile_block_flag != 0
1244
1245 Output code to increment the counter directly.
1246 Basic blocks are numbered separately from zero within each
1247 compiled object module. The count associated with block number
1248 BLOCKNO is at index BLOCKNO in an array of words; the name of
1249 this array is a local symbol made with this statement:
1250
1251 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1252
1253 Of course, since you are writing the definition of
1254 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1255 can take a short cut in the definition of this macro and use the
1256 name that you know will result.
1257
1258 If described in a virtual assembler language the code to be
1259 output looks like:
1260
1261 inc (LPBX2+4*BLOCKNO)
1262
1263 */
1264
1265 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1266 do \
1267 { \
1268 rtx xops[8], cnt_rtx; \
1269 char counts[80]; \
1270 char *block_table = counts; \
1271 \
1272 switch (profile_block_flag) \
1273 { \
1274 \
1275 case 2: \
1276 \
1277 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1278 \
1279 xops[1] = gen_rtx (SYMBOL_REF, VOIDmode, block_table); \
1280 xops[2] = GEN_INT ((BLOCKNO)); \
1281 xops[3] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_trace_func")); \
1282 xops[4] = gen_rtx (SYMBOL_REF, VOIDmode, "__bb"); \
1283 xops[5] = plus_constant (xops[4], 4); \
1284 xops[0] = gen_rtx (MEM, SImode, xops[4]); \
1285 xops[6] = gen_rtx (MEM, SImode, xops[5]); \
1286 \
1287 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1288 \
1289 fprintf(FILE, "\tpushf\n"); \
1290 output_asm_insn (AS2(mov%L0,%2,%0), xops); \
1291 if (flag_pic) \
1292 { \
1293 xops[7] = gen_rtx (REG, Pmode, 0); /* eax */ \
1294 output_asm_insn (AS1(push%L7,%7), xops); \
1295 output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
1296 output_asm_insn (AS2(mov%L6,%7,%6), xops); \
1297 output_asm_insn (AS1(pop%L7,%7), xops); \
1298 } \
1299 else \
1300 output_asm_insn (AS2(mov%L6,%1,%6), xops); \
1301 output_asm_insn (AS1(call,%P3), xops); \
1302 fprintf(FILE, "\tpopf\n"); \
1303 \
1304 break; \
1305 \
1306 default: \
1307 \
1308 ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
1309 cnt_rtx = gen_rtx (SYMBOL_REF, VOIDmode, counts); \
1310 SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
1311 \
1312 if (BLOCKNO) \
1313 cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
1314 \
1315 if (flag_pic) \
1316 cnt_rtx = gen_rtx (PLUS, Pmode, pic_offset_table_rtx, cnt_rtx); \
1317 \
1318 xops[0] = gen_rtx (MEM, SImode, cnt_rtx); \
1319 output_asm_insn (AS1(inc%L0,%0), xops); \
1320 \
1321 break; \
1322 \
1323 } \
1324 } \
1325 while (0)
1326
1327 /* The following macro shall output assembler code to FILE
1328 to indicate a return from function during basic-block profiling.
1329
1330 If profiling_block_flag == 2:
1331
1332 Output assembler code to call function `__bb_trace_ret'.
1333
1334 Note that function `__bb_trace_ret' must not change the
1335 machine state, especially the flag register. To grant
1336 this, you must output code to save and restore registers
1337 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1338 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1339 used in the function `__bb_trace_ret', so you must make
1340 sure that the function prologue does not change any
1341 register prior to saving it with MACHINE_STATE_SAVE_RET.
1342
1343 else if profiling_block_flag != 0:
1344
1345 The macro will not be used, so it need not distinguish
1346 these cases.
1347 */
1348
1349 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1350 do \
1351 { \
1352 rtx xops[1]; \
1353 \
1354 xops[0] = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, VOIDmode, "__bb_trace_ret")); \
1355 \
1356 output_asm_insn (AS1(call,%P0), xops); \
1357 \
1358 } \
1359 while (0)
1360
1361 /* The function `__bb_trace_func' is called in every basic block
1362 and is not allowed to change the machine state. Saving (restoring)
1363 the state can either be done in the BLOCK_PROFILER macro,
1364 before calling function (rsp. after returning from function)
1365 `__bb_trace_func', or it can be done inside the function by
1366 defining the macros:
1367
1368 MACHINE_STATE_SAVE(ID)
1369 MACHINE_STATE_RESTORE(ID)
1370
1371 In the latter case care must be taken, that the prologue code
1372 of function `__bb_trace_func' does not already change the
1373 state prior to saving it with MACHINE_STATE_SAVE.
1374
1375 The parameter `ID' is a string identifying a unique macro use.
1376
1377 On the i386 the initialization code at the begin of
1378 function `__bb_trace_func' contains a `sub' instruction
1379 therefore we handle save and restore of the flag register
1380 in the BLOCK_PROFILER macro. */
1381
1382 #define MACHINE_STATE_SAVE(ID) \
1383 asm (" pushl %eax"); \
1384 asm (" pushl %ecx"); \
1385 asm (" pushl %edx"); \
1386 asm (" pushl %esi");
1387
1388 #define MACHINE_STATE_RESTORE(ID) \
1389 asm (" popl %esi"); \
1390 asm (" popl %edx"); \
1391 asm (" popl %ecx"); \
1392 asm (" popl %eax");
1393
1394 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1395 the stack pointer does not matter. The value is tested only in
1396 functions that have frame pointers.
1397 No definition is equivalent to always zero. */
1398 /* Note on the 386 it might be more efficient not to define this since
1399 we have to restore it ourselves from the frame pointer, in order to
1400 use pop */
1401
1402 #define EXIT_IGNORE_STACK 1
1403
1404 /* This macro generates the assembly code for function exit,
1405 on machines that need it. If FUNCTION_EPILOGUE is not defined
1406 then individual return instructions are generated for each
1407 return statement. Args are same as for FUNCTION_PROLOGUE.
1408
1409 The function epilogue should not depend on the current stack pointer!
1410 It should use the frame pointer only. This is mandatory because
1411 of alloca; we also take advantage of it to omit stack adjustments
1412 before returning.
1413
1414 If the last non-note insn in the function is a BARRIER, then there
1415 is no need to emit a function prologue, because control does not fall
1416 off the end. This happens if the function ends in an "exit" call, or
1417 if a `return' insn is emitted directly into the function. */
1418
1419 #if 0
1420 #define FUNCTION_BEGIN_EPILOGUE(FILE) \
1421 do { \
1422 rtx last = get_last_insn (); \
1423 if (last && GET_CODE (last) == NOTE) \
1424 last = prev_nonnote_insn (last); \
1425 /* if (! last || GET_CODE (last) != BARRIER) \
1426 function_epilogue (FILE, SIZE);*/ \
1427 } while (0)
1428 #endif
1429
1430 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1431 function_epilogue (FILE, SIZE)
1432
1433 /* Output assembler code for a block containing the constant parts
1434 of a trampoline, leaving space for the variable parts. */
1435
1436 /* On the 386, the trampoline contains three instructions:
1437 mov #STATIC,ecx
1438 mov #FUNCTION,eax
1439 jmp @eax */
1440 #define TRAMPOLINE_TEMPLATE(FILE) \
1441 { \
1442 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
1443 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1444 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1445 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
1446 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1447 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1448 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
1449 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
1450 }
1451
1452 /* Length in units of the trampoline for entering a nested function. */
1453
1454 #define TRAMPOLINE_SIZE 12
1455
1456 /* Emit RTL insns to initialize the variable parts of a trampoline.
1457 FNADDR is an RTX for the address of the function's pure code.
1458 CXT is an RTX for the static chain value for the function. */
1459
1460 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1461 { \
1462 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \
1463 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \
1464 }
1465 \f
1466 /* Definitions for register eliminations.
1467
1468 This is an array of structures. Each structure initializes one pair
1469 of eliminable registers. The "from" register number is given first,
1470 followed by "to". Eliminations of the same "from" register are listed
1471 in order of preference.
1472
1473 We have two registers that can be eliminated on the i386. First, the
1474 frame pointer register can often be eliminated in favor of the stack
1475 pointer register. Secondly, the argument pointer register can always be
1476 eliminated; it is replaced with either the stack or frame pointer. */
1477
1478 #define ELIMINABLE_REGS \
1479 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1480 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1481 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1482
1483 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1484 Frame pointer elimination is automatically handled.
1485
1486 For the i386, if frame pointer elimination is being done, we would like to
1487 convert ap into sp, not fp.
1488
1489 All other eliminations are valid. */
1490
1491 #define CAN_ELIMINATE(FROM, TO) \
1492 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1493 ? ! frame_pointer_needed \
1494 : 1)
1495
1496 /* Define the offset between two registers, one to be eliminated, and the other
1497 its replacement, at the start of a routine. */
1498
1499 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1500 { \
1501 if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1502 (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
1503 else \
1504 { \
1505 int regno; \
1506 int offset = 0; \
1507 \
1508 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1509 if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
1510 || (current_function_uses_pic_offset_table \
1511 && regno == PIC_OFFSET_TABLE_REGNUM)) \
1512 offset += 4; \
1513 \
1514 (OFFSET) = offset + get_frame_size (); \
1515 \
1516 if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1517 (OFFSET) += 4; /* Skip saved PC */ \
1518 } \
1519 }
1520 \f
1521 /* Addressing modes, and classification of registers for them. */
1522
1523 /* #define HAVE_POST_INCREMENT */
1524 /* #define HAVE_POST_DECREMENT */
1525
1526 /* #define HAVE_PRE_DECREMENT */
1527 /* #define HAVE_PRE_INCREMENT */
1528
1529 /* Macros to check register numbers against specific register classes. */
1530
1531 /* These assume that REGNO is a hard or pseudo reg number.
1532 They give nonzero only if REGNO is a hard reg of the suitable class
1533 or a pseudo reg currently allocated to a suitable hard reg.
1534 Since they use reg_renumber, they are safe only once reg_renumber
1535 has been allocated, which happens in local-alloc.c. */
1536
1537 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1538 ((REGNO) < STACK_POINTER_REGNUM \
1539 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1540
1541 #define REGNO_OK_FOR_BASE_P(REGNO) \
1542 ((REGNO) <= STACK_POINTER_REGNUM \
1543 || (REGNO) == ARG_POINTER_REGNUM \
1544 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1545
1546 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1547 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1548
1549 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1550 and check its validity for a certain class.
1551 We have two alternate definitions for each of them.
1552 The usual definition accepts all pseudo regs; the other rejects
1553 them unless they have been allocated suitable hard regs.
1554 The symbol REG_OK_STRICT causes the latter definition to be used.
1555
1556 Most source files want to accept pseudo regs in the hope that
1557 they will get allocated to the class that the insn wants them to be in.
1558 Source files for reload pass need to be strict.
1559 After reload, it makes no difference, since pseudo regs have
1560 been eliminated by then. */
1561
1562
1563 /* Non strict versions, pseudos are ok */
1564 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1565 (REGNO (X) < STACK_POINTER_REGNUM \
1566 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1567
1568 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1569 (REGNO (X) <= STACK_POINTER_REGNUM \
1570 || REGNO (X) == ARG_POINTER_REGNUM \
1571 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1572
1573 #define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
1574 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1575
1576 /* Strict versions, hard registers only */
1577 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1578 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1579 #define REG_OK_FOR_STRREG_STRICT_P(X) \
1580 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
1581
1582 #ifndef REG_OK_STRICT
1583 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1584 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1585 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
1586
1587 #else
1588 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1589 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1590 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
1591 #endif
1592
1593 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1594 that is a valid memory address for an instruction.
1595 The MODE argument is the machine mode for the MEM expression
1596 that wants to use this address.
1597
1598 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1599 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1600
1601 See legitimize_pic_address in i386.c for details as to what
1602 constitutes a legitimate address when -fpic is used. */
1603
1604 #define MAX_REGS_PER_ADDRESS 2
1605
1606 #define CONSTANT_ADDRESS_P(X) \
1607 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1608 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1609 || GET_CODE (X) == HIGH)
1610
1611 /* Nonzero if the constant value X is a legitimate general operand.
1612 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1613
1614 #define LEGITIMATE_CONSTANT_P(X) 1
1615
1616 #ifdef REG_OK_STRICT
1617 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1618 { \
1619 if (legitimate_address_p (MODE, X, 1)) \
1620 goto ADDR; \
1621 }
1622
1623 #else
1624 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1625 { \
1626 if (legitimate_address_p (MODE, X, 0)) \
1627 goto ADDR; \
1628 }
1629
1630 #endif
1631
1632 /* Try machine-dependent ways of modifying an illegitimate address
1633 to be legitimate. If we find one, return the new, valid address.
1634 This macro is used in only one place: `memory_address' in explow.c.
1635
1636 OLDX is the address as it was before break_out_memory_refs was called.
1637 In some cases it is useful to look at this to decide what needs to be done.
1638
1639 MODE and WIN are passed so that this macro can use
1640 GO_IF_LEGITIMATE_ADDRESS.
1641
1642 It is always safe for this macro to do nothing. It exists to recognize
1643 opportunities to optimize the output.
1644
1645 For the 80386, we handle X+REG by loading X into a register R and
1646 using R+REG. R will go in a general reg and indexing will be used.
1647 However, if REG is a broken-out memory address or multiplication,
1648 nothing needs to be done because REG can certainly go in a general reg.
1649
1650 When -fpic is used, special handling is needed for symbolic references.
1651 See comments by legitimize_pic_address in i386.c for details. */
1652
1653 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1654 { \
1655 rtx orig_x = (X); \
1656 (X) = legitimize_address (X, OLDX, MODE); \
1657 if (memory_address_p (MODE, X)) \
1658 goto WIN; \
1659 }
1660
1661 #define REWRITE_ADDRESS(x) rewrite_address(x)
1662
1663 /* Nonzero if the constant value X is a legitimate general operand
1664 when generating PIC code. It is given that flag_pic is on and
1665 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1666
1667 #define LEGITIMATE_PIC_OPERAND_P(X) \
1668 (! SYMBOLIC_CONST (X) \
1669 || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
1670
1671 #define SYMBOLIC_CONST(X) \
1672 (GET_CODE (X) == SYMBOL_REF \
1673 || GET_CODE (X) == LABEL_REF \
1674 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1675
1676 /* Go to LABEL if ADDR (a legitimate address expression)
1677 has an effect that depends on the machine mode it is used for.
1678 On the 80386, only postdecrement and postincrement address depend thus
1679 (the amount of decrement or increment being the length of the operand). */
1680 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1681 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1682 \f
1683 /* Define this macro if references to a symbol must be treated
1684 differently depending on something about the variable or
1685 function named by the symbol (such as what section it is in).
1686
1687 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1688 so that we may access it directly in the GOT. */
1689
1690 #define ENCODE_SECTION_INFO(DECL) \
1691 do \
1692 { \
1693 if (flag_pic) \
1694 { \
1695 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1696 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1697 \
1698 if (TARGET_DEBUG_ADDR \
1699 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
1700 { \
1701 fprintf (stderr, "Encode %s, public = %s\n", \
1702 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
1703 TREE_PUBLIC (DECL)); \
1704 } \
1705 \
1706 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1707 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1708 || ! TREE_PUBLIC (DECL)); \
1709 } \
1710 } \
1711 while (0)
1712
1713 /* Initialize data used by insn expanders. This is called from
1714 init_emit, once for each function, before code is generated.
1715 For 386, clear stack slot assignments remembered from previous
1716 functions. */
1717
1718 #define INIT_EXPANDERS clear_386_stack_locals ()
1719
1720 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
1721 codes once the function is being compiled into assembly code, but
1722 not before. (It is not done before, because in the case of
1723 compiling an inline function, it would lead to multiple PIC
1724 prologues being included in functions which used inline functions
1725 and were compiled to assembly language.) */
1726
1727 #define FINALIZE_PIC \
1728 do \
1729 { \
1730 extern int current_function_uses_pic_offset_table; \
1731 \
1732 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
1733 } \
1734 while (0)
1735
1736 \f
1737 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1738 with arguments ARGS is a valid machine specific attribute for DECL.
1739 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1740
1741 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1742 (i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1743
1744 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1745 with arguments ARGS is a valid machine specific attribute for TYPE.
1746 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1747
1748 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1749 (i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1750
1751 /* If defined, a C expression whose value is zero if the attributes on
1752 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1753 two if they are nearly compatible (which causes a warning to be
1754 generated). */
1755
1756 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1757 (i386_comp_type_attributes (TYPE1, TYPE2))
1758
1759 /* If defined, a C statement that assigns default attributes to newly
1760 defined TYPE. */
1761
1762 /* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
1763
1764 /* Max number of args passed in registers. If this is more than 3, we will
1765 have problems with ebx (register #4), since it is a caller save register and
1766 is also used as the pic register in ELF. So for now, don't allow more than
1767 3 registers to be passed in registers. */
1768
1769 #define REGPARM_MAX 3
1770
1771 \f
1772 /* Specify the machine mode that this machine uses
1773 for the index in the tablejump instruction. */
1774 #define CASE_VECTOR_MODE Pmode
1775
1776 /* Define this if the tablejump instruction expects the table
1777 to contain offsets from the address of the table.
1778 Do not define this if the table should contain absolute addresses. */
1779 /* #define CASE_VECTOR_PC_RELATIVE */
1780
1781 /* Specify the tree operation to be used to convert reals to integers.
1782 This should be changed to take advantage of fist --wfs ??
1783 */
1784 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1785
1786 /* This is the kind of divide that is easiest to do in the general case. */
1787 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1788
1789 /* Define this as 1 if `char' should by default be signed; else as 0. */
1790 #define DEFAULT_SIGNED_CHAR 1
1791
1792 /* Max number of bytes we can move from memory to memory
1793 in one reasonably fast instruction. */
1794 #define MOVE_MAX 4
1795
1796 /* The number of scalar move insns which should be generated instead
1797 of a string move insn or a library call. Increasing the value
1798 will always make code faster, but eventually incurs high cost in
1799 increased code size.
1800
1801 If you don't define this, a reasonable default is used.
1802
1803 Make this large on i386, since the block move is very inefficient with small
1804 blocks, and the hard register needs of the block move require much reload
1805 work. */
1806
1807 #define MOVE_RATIO 5
1808
1809 /* Define if shifts truncate the shift count
1810 which implies one can omit a sign-extension or zero-extension
1811 of a shift count. */
1812 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1813
1814 /* #define SHIFT_COUNT_TRUNCATED */
1815
1816 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1817 is done just by pretending it is already truncated. */
1818 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1819
1820 /* We assume that the store-condition-codes instructions store 0 for false
1821 and some other value for true. This is the value stored for true. */
1822
1823 #define STORE_FLAG_VALUE 1
1824
1825 /* When a prototype says `char' or `short', really pass an `int'.
1826 (The 386 can't easily push less than an int.) */
1827
1828 #define PROMOTE_PROTOTYPES
1829
1830 /* Specify the machine mode that pointers have.
1831 After generation of rtl, the compiler makes no further distinction
1832 between pointers and any other objects of this machine mode. */
1833 #define Pmode SImode
1834
1835 /* A function address in a call instruction
1836 is a byte address (for indexing purposes)
1837 so give the MEM rtx a byte's mode. */
1838 #define FUNCTION_MODE QImode
1839 \f
1840 /* A part of a C `switch' statement that describes the relative costs
1841 of constant RTL expressions. It must contain `case' labels for
1842 expression codes `const_int', `const', `symbol_ref', `label_ref'
1843 and `const_double'. Each case must ultimately reach a `return'
1844 statement to return the relative cost of the use of that kind of
1845 constant value in an expression. The cost may depend on the
1846 precise value of the constant, which is available for examination
1847 in X, and the rtx code of the expression in which it is contained,
1848 found in OUTER_CODE.
1849
1850 CODE is the expression code--redundant, since it can be obtained
1851 with `GET_CODE (X)'. */
1852
1853 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1854 case CONST_INT: \
1855 case CONST: \
1856 case LABEL_REF: \
1857 case SYMBOL_REF: \
1858 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
1859 \
1860 case CONST_DOUBLE: \
1861 { \
1862 int code; \
1863 if (GET_MODE (RTX) == VOIDmode) \
1864 return 2; \
1865 \
1866 code = standard_80387_constant_p (RTX); \
1867 return code == 1 ? 0 : \
1868 code == 2 ? 1 : \
1869 2; \
1870 }
1871
1872 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
1873 #define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
1874
1875 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1876 This can be used, for example, to indicate how costly a multiply
1877 instruction is. In writing this macro, you can use the construct
1878 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1879 instructions. OUTER_CODE is the code of the expression in which X
1880 is contained.
1881
1882 This macro is optional; do not define it if the default cost
1883 assumptions are adequate for the target machine. */
1884
1885 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1886 case ASHIFT: \
1887 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1888 && GET_MODE (XEXP (X, 0)) == SImode) \
1889 { \
1890 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1891 \
1892 if (value == 1) \
1893 return COSTS_N_INSNS (ix86_cost->add) \
1894 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1895 \
1896 if (value == 2 || value == 3) \
1897 return COSTS_N_INSNS (ix86_cost->lea) \
1898 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1899 } \
1900 /* fall through */ \
1901 \
1902 case ROTATE: \
1903 case ASHIFTRT: \
1904 case LSHIFTRT: \
1905 case ROTATERT: \
1906 if (GET_MODE (XEXP (X, 0)) == DImode) \
1907 { \
1908 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1909 if (INTVAL (XEXP (X, 1)) > 32) \
1910 return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
1911 else \
1912 return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
1913 return ((GET_CODE (XEXP (X, 1)) == AND \
1914 ? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
1915 : COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
1916 + rtx_cost(XEXP (X, 0), OUTER_CODE)); \
1917 } \
1918 return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
1919 ? ix86_cost->shift_const \
1920 : ix86_cost->shift_var) \
1921 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1922 \
1923 case MULT: \
1924 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1925 { \
1926 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1927 int nbits = 0; \
1928 \
1929 if (value == 2) \
1930 return COSTS_N_INSNS (ix86_cost->add) \
1931 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1932 if (value == 4 || value == 8) \
1933 return COSTS_N_INSNS (ix86_cost->lea) \
1934 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1935 \
1936 while (value != 0) \
1937 { \
1938 nbits++; \
1939 value >>= 1; \
1940 } \
1941 \
1942 if (nbits == 1) \
1943 return COSTS_N_INSNS (ix86_cost->shift_const) \
1944 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1945 \
1946 return COSTS_N_INSNS (ix86_cost->mult_init \
1947 + nbits * ix86_cost->mult_bit) \
1948 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1949 } \
1950 \
1951 else /* This is arbitrary */ \
1952 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
1953 + 7 * ix86_cost->mult_bit); \
1954 \
1955 case DIV: \
1956 case UDIV: \
1957 case MOD: \
1958 case UMOD: \
1959 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
1960 \
1961 case PLUS: \
1962 if (GET_CODE (XEXP (X, 0)) == REG \
1963 && GET_MODE (XEXP (X, 0)) == SImode \
1964 && GET_CODE (XEXP (X, 1)) == PLUS) \
1965 return COSTS_N_INSNS (ix86_cost->lea); \
1966 \
1967 /* fall through */ \
1968 case AND: \
1969 case IOR: \
1970 case XOR: \
1971 case MINUS: \
1972 if (GET_MODE (X) == DImode) \
1973 return COSTS_N_INSNS (ix86_cost->add) * 2 \
1974 + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
1975 << (GET_MODE (XEXP (X, 0)) != DImode)) \
1976 + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
1977 << (GET_MODE (XEXP (X, 1)) != DImode)); \
1978 case NEG: \
1979 case NOT: \
1980 if (GET_MODE (X) == DImode) \
1981 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
1982 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
1983
1984
1985 /* An expression giving the cost of an addressing mode that contains
1986 ADDRESS. If not defined, the cost is computed from the ADDRESS
1987 expression and the `CONST_COSTS' values.
1988
1989 For most CISC machines, the default cost is a good approximation
1990 of the true cost of the addressing mode. However, on RISC
1991 machines, all instructions normally have the same length and
1992 execution time. Hence all addresses will have equal costs.
1993
1994 In cases where more than one form of an address is known, the form
1995 with the lowest cost will be used. If multiple forms have the
1996 same, lowest, cost, the one that is the most complex will be used.
1997
1998 For example, suppose an address that is equal to the sum of a
1999 register and a constant is used twice in the same basic block.
2000 When this macro is not defined, the address will be computed in a
2001 register and memory references will be indirect through that
2002 register. On machines where the cost of the addressing mode
2003 containing the sum is no higher than that of a simple indirect
2004 reference, this will produce an additional instruction and
2005 possibly require an additional register. Proper specification of
2006 this macro eliminates this overhead for such machines.
2007
2008 Similar use of this macro is made in strength reduction of loops.
2009
2010 ADDRESS need not be valid as an address. In such a case, the cost
2011 is not relevant and can be any value; invalid addresses need not be
2012 assigned a different cost.
2013
2014 On machines where an address involving more than one register is as
2015 cheap as an address computation involving only one register,
2016 defining `ADDRESS_COST' to reflect this can cause two registers to
2017 be live over a region of code where only one would have been if
2018 `ADDRESS_COST' were not defined in that manner. This effect should
2019 be considered in the definition of this macro. Equivalent costs
2020 should probably only be given to addresses with different numbers
2021 of registers on machines with lots of registers.
2022
2023 This macro will normally either not be defined or be defined as a
2024 constant.
2025
2026 For i386, it is better to use a complex address than let gcc copy
2027 the address into a reg and make a new pseudo. But not if the address
2028 requires to two regs - that would mean more pseudos with longer
2029 lifetimes. */
2030
2031 #define ADDRESS_COST(RTX) \
2032 ((CONSTANT_P (RTX) \
2033 || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
2034 && REG_P (XEXP (RTX, 0)))) ? 0 \
2035 : REG_P (RTX) ? 1 \
2036 : 2)
2037
2038 /* A C expression for the cost of moving data of mode M between a
2039 register and memory. A value of 2 is the default; this cost is
2040 relative to those in `REGISTER_MOVE_COST'.
2041
2042 If moving between registers and memory is more expensive than
2043 between two registers, you should define this macro to express the
2044 relative cost.
2045
2046 On the i386, copying between floating-point and fixed-point
2047 registers is expensive. */
2048
2049 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2050 (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
2051 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
2052 : 2)
2053
2054
2055 /* A C expression for the cost of moving data of mode M between a
2056 register and memory. A value of 2 is the default; this cost is
2057 relative to those in `REGISTER_MOVE_COST'.
2058
2059 If moving between registers and memory is more expensive than
2060 between two registers, you should define this macro to express the
2061 relative cost. */
2062
2063 /* #define MEMORY_MOVE_COST(M) 2 */
2064
2065 /* A C expression for the cost of a branch instruction. A value of 1
2066 is the default; other values are interpreted relative to that. */
2067
2068 #define BRANCH_COST i386_branch_cost
2069
2070 /* Define this macro as a C expression which is nonzero if accessing
2071 less than a word of memory (i.e. a `char' or a `short') is no
2072 faster than accessing a word of memory, i.e., if such access
2073 require more than one instruction or if there is no difference in
2074 cost between byte and (aligned) word loads.
2075
2076 When this macro is not defined, the compiler will access a field by
2077 finding the smallest containing object; when it is defined, a
2078 fullword load will be used if alignment permits. Unless bytes
2079 accesses are faster than word accesses, using word accesses is
2080 preferable since it may eliminate subsequent memory access if
2081 subsequent accesses occur to other fields in the same word of the
2082 structure, but to different bytes. */
2083
2084 #define SLOW_BYTE_ACCESS 0
2085
2086 /* Nonzero if access to memory by shorts is slow and undesirable. */
2087 #define SLOW_SHORT_ACCESS 0
2088
2089 /* Define this macro if zero-extension (of a `char' or `short' to an
2090 `int') can be done faster if the destination is a register that is
2091 known to be zero.
2092
2093 If you define this macro, you must have instruction patterns that
2094 recognize RTL structures like this:
2095
2096 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2097
2098 and likewise for `HImode'. */
2099
2100 /* #define SLOW_ZERO_EXTEND */
2101
2102 /* Define this macro to be the value 1 if unaligned accesses have a
2103 cost many times greater than aligned accesses, for example if they
2104 are emulated in a trap handler.
2105
2106 When this macro is non-zero, the compiler will act as if
2107 `STRICT_ALIGNMENT' were non-zero when generating code for block
2108 moves. This can cause significantly more instructions to be
2109 produced. Therefore, do not set this macro non-zero if unaligned
2110 accesses only add a cycle or two to the time for a memory access.
2111
2112 If the value of this macro is always zero, it need not be defined. */
2113
2114 /* #define SLOW_UNALIGNED_ACCESS 0 */
2115
2116 /* Define this macro to inhibit strength reduction of memory
2117 addresses. (On some machines, such strength reduction seems to do
2118 harm rather than good.) */
2119
2120 /* #define DONT_REDUCE_ADDR */
2121
2122 /* Define this macro if it is as good or better to call a constant
2123 function address than to call an address kept in a register.
2124
2125 Desirable on the 386 because a CALL with a constant address is
2126 faster than one with a register address. */
2127
2128 #define NO_FUNCTION_CSE
2129
2130 /* Define this macro if it is as good or better for a function to call
2131 itself with an explicit address than to call an address kept in a
2132 register. */
2133
2134 #define NO_RECURSIVE_FUNCTION_CSE
2135
2136 /* A C statement (sans semicolon) to update the integer variable COST
2137 based on the relationship between INSN that is dependent on
2138 DEP_INSN through the dependence LINK. The default is to make no
2139 adjustment to COST. This can be used for example to specify to
2140 the scheduler that an output- or anti-dependence does not incur
2141 the same cost as a data-dependence. */
2142
2143 #define ADJUST_COST(insn,link,dep_insn,cost) \
2144 { \
2145 rtx next_inst; \
2146 if (GET_CODE (dep_insn) == CALL_INSN) \
2147 (cost) = 0; \
2148 \
2149 else if (GET_CODE (dep_insn) == INSN \
2150 && GET_CODE (PATTERN (dep_insn)) == SET \
2151 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG \
2152 && GET_CODE (insn) == INSN \
2153 && GET_CODE (PATTERN (insn)) == SET \
2154 && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)), \
2155 SET_SRC (PATTERN (insn)))) \
2156 { \
2157 (cost) = 0; \
2158 } \
2159 \
2160 else if (GET_CODE (insn) == JUMP_INSN) \
2161 { \
2162 (cost) = 0; \
2163 } \
2164 \
2165 if (TARGET_PENTIUM) \
2166 { \
2167 if (cost !=0 && is_fp_insn (insn) && is_fp_insn (dep_insn) \
2168 && !is_fp_dest (dep_insn)) \
2169 { \
2170 (cost) = 0; \
2171 } \
2172 \
2173 if (agi_dependent (insn, dep_insn)) \
2174 { \
2175 (cost) = 3; \
2176 } \
2177 else if (GET_CODE (insn) == INSN \
2178 && GET_CODE (PATTERN (insn)) == SET \
2179 && SET_DEST (PATTERN (insn)) == cc0_rtx \
2180 && (next_inst = next_nonnote_insn (insn)) \
2181 && GET_CODE (next_inst) == JUMP_INSN) \
2182 { /* compare probably paired with jump */ \
2183 (cost) = 0; \
2184 } \
2185 } \
2186 else \
2187 if (!is_fp_dest (dep_insn)) \
2188 { \
2189 if(!agi_dependent (insn, dep_insn)) \
2190 (cost) = 0; \
2191 else if (TARGET_486) \
2192 (cost) = 2; \
2193 } \
2194 else \
2195 if (is_fp_store (insn) && is_fp_insn (dep_insn) \
2196 && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn)) \
2197 && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))) \
2198 && (GET_CODE (NEXT_INSN (insn)) == INSN) \
2199 && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN) \
2200 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE) \
2201 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) \
2202 == NOTE_INSN_LOOP_END)) \
2203 { \
2204 (cost) = 3; \
2205 } \
2206 }
2207
2208
2209 #define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
2210 { \
2211 if (is_fp_store (last_insn) && is_fp_insn (insn) \
2212 && NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
2213 && NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
2214 && (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
2215 && (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
2216 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
2217 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
2218 == NOTE_INSN_LOOP_END)) \
2219 { \
2220 (blockage) = 3; \
2221 } \
2222 }
2223
2224 \f
2225 /* Add any extra modes needed to represent the condition code.
2226
2227 For the i386, we need separate modes when floating-point equality
2228 comparisons are being done. */
2229
2230 #define EXTRA_CC_MODES CCFPEQmode
2231
2232 /* Define the names for the modes specified above. */
2233 #define EXTRA_CC_NAMES "CCFPEQ"
2234
2235 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2236 return the mode to be used for the comparison.
2237
2238 For floating-point equality comparisons, CCFPEQmode should be used.
2239 VOIDmode should be used in all other cases. */
2240
2241 #define SELECT_CC_MODE(OP,X,Y) \
2242 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2243 && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
2244
2245 /* Define the information needed to generate branch and scc insns. This is
2246 stored from the compare operation. Note that we can't use "rtx" here
2247 since it hasn't been defined! */
2248
2249 extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
2250
2251 /* Tell final.c how to eliminate redundant test instructions. */
2252
2253 /* Here we define machine-dependent flags and fields in cc_status
2254 (see `conditions.h'). */
2255
2256 /* Set if the cc value was actually from the 80387 and
2257 we are testing eax directly (i.e. no sahf) */
2258 #define CC_TEST_AX 020000
2259
2260 /* Set if the cc value is actually in the 80387, so a floating point
2261 conditional branch must be output. */
2262 #define CC_IN_80387 04000
2263
2264 /* Set if the CC value was stored in a nonstandard way, so that
2265 the state of equality is indicated by zero in the carry bit. */
2266 #define CC_Z_IN_NOT_C 010000
2267
2268 /* Set if the CC value was actually from the 80387 and loaded directly
2269 into the eflags instead of via eax/sahf. */
2270 #define CC_FCOMI 040000
2271
2272 /* Store in cc_status the expressions
2273 that the condition codes will describe
2274 after execution of an instruction whose pattern is EXP.
2275 Do not alter them if the instruction would not alter the cc's. */
2276
2277 #define NOTICE_UPDATE_CC(EXP, INSN) \
2278 notice_update_cc((EXP))
2279
2280 /* Output a signed jump insn. Use template NORMAL ordinarily, or
2281 FLOAT following a floating point comparison.
2282 Use NO_OV following an arithmetic insn that set the cc's
2283 before a test insn that was deleted.
2284 NO_OV may be zero, meaning final should reinsert the test insn
2285 because the jump cannot be handled properly without it. */
2286
2287 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
2288 { \
2289 if (cc_prev_status.flags & CC_IN_80387) \
2290 return FLOAT; \
2291 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
2292 return NO_OV; \
2293 return NORMAL; \
2294 }
2295 \f
2296 /* Control the assembler format that we output, to the extent
2297 this does not vary between assemblers. */
2298
2299 /* How to refer to registers in assembler output.
2300 This sequence is indexed by compiler's hard-register-number (see above). */
2301
2302 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2303 For non floating point regs, the following are the HImode names.
2304
2305 For float regs, the stack top is sometimes referred to as "%st(0)"
2306 instead of just "%st". PRINT_REG handles this with the "y" code. */
2307
2308 #define HI_REGISTER_NAMES \
2309 {"ax","dx","cx","bx","si","di","bp","sp", \
2310 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
2311
2312 #define REGISTER_NAMES HI_REGISTER_NAMES
2313
2314 /* Table of additional register names to use in user input. */
2315
2316 #define ADDITIONAL_REGISTER_NAMES \
2317 { "eax", 0, "edx", 1, "ecx", 2, "ebx", 3, \
2318 "esi", 4, "edi", 5, "ebp", 6, "esp", 7, \
2319 "al", 0, "dl", 1, "cl", 2, "bl", 3, \
2320 "ah", 0, "dh", 1, "ch", 2, "bh", 3 }
2321
2322 /* Note we are omitting these since currently I don't know how
2323 to get gcc to use these, since they want the same but different
2324 number as al, and ax.
2325 */
2326
2327 /* note the last four are not really qi_registers, but
2328 the md will have to never output movb into one of them
2329 only a movw . There is no movb into the last four regs */
2330
2331 #define QI_REGISTER_NAMES \
2332 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
2333
2334 /* These parallel the array above, and can be used to access bits 8:15
2335 of regs 0 through 3. */
2336
2337 #define QI_HIGH_REGISTER_NAMES \
2338 {"ah", "dh", "ch", "bh", }
2339
2340 /* How to renumber registers for dbx and gdb. */
2341
2342 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
2343 #define DBX_REGISTER_NUMBER(n) \
2344 ((n) == 0 ? 0 : \
2345 (n) == 1 ? 2 : \
2346 (n) == 2 ? 1 : \
2347 (n) == 3 ? 3 : \
2348 (n) == 4 ? 6 : \
2349 (n) == 5 ? 7 : \
2350 (n) == 6 ? 4 : \
2351 (n) == 7 ? 5 : \
2352 (n) + 4)
2353
2354 /* Before the prologue, RA is at 0(%esp). */
2355 #define INCOMING_RETURN_ADDR_RTX \
2356 gen_rtx (MEM, VOIDmode, gen_rtx (REG, VOIDmode, STACK_POINTER_REGNUM))
2357
2358 /* PC is dbx register 8; let's use that column for RA. */
2359 #define DWARF_FRAME_RETURN_COLUMN 8
2360
2361 /* This is how to output the definition of a user-level label named NAME,
2362 such as the label on a static function or variable NAME. */
2363
2364 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2365 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2366
2367 /* This is how to output an assembler line defining a `double' constant. */
2368
2369 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2370 do { long l[2]; \
2371 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2372 if (sizeof (int) == sizeof (long)) \
2373 fprintf (FILE, "%s 0x%x,0x%x\n", ASM_LONG, l[0], l[1]); \
2374 else \
2375 fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
2376 } while (0)
2377
2378 /* This is how to output a `long double' extended real constant. */
2379
2380 #undef ASM_OUTPUT_LONG_DOUBLE
2381 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2382 do { long l[3]; \
2383 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
2384 if (sizeof (int) == sizeof (long)) \
2385 fprintf (FILE, "%s 0x%x,0x%x,0x%x\n", ASM_LONG, l[0], l[1], l[2]); \
2386 else \
2387 fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
2388 } while (0)
2389
2390 /* This is how to output an assembler line defining a `float' constant. */
2391
2392 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2393 do { long l; \
2394 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2395 if (sizeof (int) == sizeof (long)) \
2396 fprintf ((FILE), "%s 0x%x\n", ASM_LONG, l); \
2397 else \
2398 fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
2399 } while (0)
2400
2401 /* Store in OUTPUT a string (made with alloca) containing
2402 an assembler-name for a local static variable named NAME.
2403 LABELNO is an integer which is different for each call. */
2404
2405 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2406 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2407 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2408
2409
2410
2411 /* This is how to output an assembler line defining an `int' constant. */
2412
2413 #define ASM_OUTPUT_INT(FILE,VALUE) \
2414 ( fprintf (FILE, "%s ", ASM_LONG), \
2415 output_addr_const (FILE,(VALUE)), \
2416 putc('\n',FILE))
2417
2418 /* Likewise for `char' and `short' constants. */
2419 /* is this supposed to do align too?? */
2420
2421 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2422 ( fprintf (FILE, "%s ", ASM_SHORT), \
2423 output_addr_const (FILE,(VALUE)), \
2424 putc('\n',FILE))
2425
2426 /*
2427 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2428 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2429 output_addr_const (FILE,(VALUE)), \
2430 fputs (",", FILE), \
2431 output_addr_const (FILE,(VALUE)), \
2432 fputs (" >> 8\n",FILE))
2433 */
2434
2435
2436 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2437 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2438 output_addr_const (FILE, (VALUE)), \
2439 putc ('\n', FILE))
2440
2441 /* This is how to output an assembler line for a numeric constant byte. */
2442
2443 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2444 fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
2445
2446 /* This is how to output an insn to push a register on the stack.
2447 It need not be very fast code. */
2448
2449 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2450 fprintf (FILE, "\tpushl %%e%s\n", reg_names[REGNO])
2451
2452 /* This is how to output an insn to pop a register from the stack.
2453 It need not be very fast code. */
2454
2455 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2456 fprintf (FILE, "\tpopl %%e%s\n", reg_names[REGNO])
2457
2458 /* This is how to output an element of a case-vector that is absolute.
2459 */
2460
2461 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2462 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
2463
2464 /* This is how to output an element of a case-vector that is relative.
2465 We don't use these on the 386 yet, because the ATT assembler can't do
2466 forward reference the differences.
2467 */
2468
2469 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2470 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
2471
2472 /* Define the parentheses used to group arithmetic operations
2473 in assembler code. */
2474
2475 #define ASM_OPEN_PAREN ""
2476 #define ASM_CLOSE_PAREN ""
2477
2478 /* Define results of standard character escape sequences. */
2479 #define TARGET_BELL 007
2480 #define TARGET_BS 010
2481 #define TARGET_TAB 011
2482 #define TARGET_NEWLINE 012
2483 #define TARGET_VT 013
2484 #define TARGET_FF 014
2485 #define TARGET_CR 015
2486 \f
2487 /* Print operand X (an rtx) in assembler syntax to file FILE.
2488 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2489 The CODE z takes the size of operand from the following digit, and
2490 outputs b,w,or l respectively.
2491
2492 On the 80386, we use several such letters:
2493 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
2494 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
2495 R -- print the prefix for register names.
2496 z -- print the opcode suffix for the size of the current operand.
2497 * -- print a star (in certain assembler syntax)
2498 w -- print the operand as if it's a "word" (HImode) even if it isn't.
2499 b -- print the operand as if it's a byte (QImode) even if it isn't.
2500 c -- don't print special prefixes before constant operands. */
2501
2502 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2503 ((CODE) == '*')
2504
2505 /* Print the name of a register based on its machine mode and number.
2506 If CODE is 'w', pretend the mode is HImode.
2507 If CODE is 'b', pretend the mode is QImode.
2508 If CODE is 'k', pretend the mode is SImode.
2509 If CODE is 'h', pretend the reg is the `high' byte register.
2510 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2511
2512 extern char *hi_reg_name[];
2513 extern char *qi_reg_name[];
2514 extern char *qi_high_reg_name[];
2515
2516 #define PRINT_REG(X, CODE, FILE) \
2517 do { if (REGNO (X) == ARG_POINTER_REGNUM) \
2518 abort (); \
2519 fprintf (FILE, "%s", RP); \
2520 switch ((CODE == 'w' ? 2 \
2521 : CODE == 'b' ? 1 \
2522 : CODE == 'k' ? 4 \
2523 : CODE == 'y' ? 3 \
2524 : CODE == 'h' ? 0 \
2525 : GET_MODE_SIZE (GET_MODE (X)))) \
2526 { \
2527 case 3: \
2528 if (STACK_TOP_P (X)) \
2529 { \
2530 fputs ("st(0)", FILE); \
2531 break; \
2532 } \
2533 case 4: \
2534 case 8: \
2535 case 12: \
2536 if (! FP_REG_P (X)) fputs ("e", FILE); \
2537 case 2: \
2538 fputs (hi_reg_name[REGNO (X)], FILE); \
2539 break; \
2540 case 1: \
2541 fputs (qi_reg_name[REGNO (X)], FILE); \
2542 break; \
2543 case 0: \
2544 fputs (qi_high_reg_name[REGNO (X)], FILE); \
2545 break; \
2546 } \
2547 } while (0)
2548
2549 #define PRINT_OPERAND(FILE, X, CODE) \
2550 print_operand (FILE, X, CODE)
2551
2552 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2553 print_operand_address (FILE, ADDR)
2554
2555 /* Print the name of a register for based on its machine mode and number.
2556 This macro is used to print debugging output.
2557 This macro is different from PRINT_REG in that it may be used in
2558 programs that are not linked with aux-output.o. */
2559
2560 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2561 do { static char *hi_name[] = HI_REGISTER_NAMES; \
2562 static char *qi_name[] = QI_REGISTER_NAMES; \
2563 fprintf (FILE, "%d %s", REGNO (X), RP); \
2564 if (REGNO (X) == ARG_POINTER_REGNUM) \
2565 { fputs ("argp", FILE); break; } \
2566 if (STACK_TOP_P (X)) \
2567 { fputs ("st(0)", FILE); break; } \
2568 if (FP_REG_P (X)) \
2569 { fputs (hi_name[REGNO(X)], FILE); break; } \
2570 switch (GET_MODE_SIZE (GET_MODE (X))) \
2571 { \
2572 default: \
2573 fputs ("e", FILE); \
2574 case 2: \
2575 fputs (hi_name[REGNO (X)], FILE); \
2576 break; \
2577 case 1: \
2578 fputs (qi_name[REGNO (X)], FILE); \
2579 break; \
2580 } \
2581 } while (0)
2582
2583 /* Output the prefix for an immediate operand, or for an offset operand. */
2584 #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
2585 #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
2586
2587 /* Routines in libgcc that return floats must return them in an fp reg,
2588 just as other functions do which return such values.
2589 These macros make that happen. */
2590
2591 #define FLOAT_VALUE_TYPE float
2592 #define INTIFY(FLOATVAL) FLOATVAL
2593
2594 /* Nonzero if INSN magically clobbers register REGNO. */
2595
2596 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
2597 (FP_REGNO_P (REGNO) \
2598 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
2599 */
2600
2601 /* a letter which is not needed by the normal asm syntax, which
2602 we can use for operand syntax in the extended asm */
2603
2604 #define ASM_OPERAND_LETTER '#'
2605 \f
2606 #define RET return ""
2607 #define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx))
2608 \f
2609 /* Helper macros to expand a binary/unary operator if needed */
2610 #define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
2611 do { \
2612 if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
2613 FAIL; \
2614 } while (0)
2615
2616 #define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
2617 do { \
2618 if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
2619 FAIL; \
2620 } while (0)
2621
2622 \f
2623 /* Functions in i386.c */
2624 extern void override_options ();
2625 extern void order_regs_for_local_alloc ();
2626 extern char *output_strlen_unroll ();
2627 extern struct rtx_def *i386_sext16_if_const ();
2628 extern int i386_aligned_p ();
2629 extern int i386_cc_probably_useless_p ();
2630 extern int i386_valid_decl_attribute_p ();
2631 extern int i386_valid_type_attribute_p ();
2632 extern int i386_return_pops_args ();
2633 extern int i386_comp_type_attributes ();
2634 extern void init_cumulative_args ();
2635 extern void function_arg_advance ();
2636 extern struct rtx_def *function_arg ();
2637 extern int function_arg_partial_nregs ();
2638 extern char *output_strlen_unroll ();
2639 extern void output_op_from_reg ();
2640 extern void output_to_reg ();
2641 extern char *singlemove_string ();
2642 extern char *output_move_double ();
2643 extern char *output_move_memory ();
2644 extern char *output_move_pushmem ();
2645 extern int standard_80387_constant_p ();
2646 extern char *output_move_const_single ();
2647 extern int symbolic_operand ();
2648 extern int call_insn_operand ();
2649 extern int expander_call_insn_operand ();
2650 extern int symbolic_reference_mentioned_p ();
2651 extern int ix86_expand_binary_operator ();
2652 extern int ix86_binary_operator_ok ();
2653 extern int ix86_expand_unary_operator ();
2654 extern int ix86_unary_operator_ok ();
2655 extern void emit_pic_move ();
2656 extern void function_prologue ();
2657 extern int simple_386_epilogue ();
2658 extern void function_epilogue ();
2659 extern int legitimate_address_p ();
2660 extern struct rtx_def *legitimize_pic_address ();
2661 extern struct rtx_def *legitimize_address ();
2662 extern void print_operand ();
2663 extern void print_operand_address ();
2664 extern void notice_update_cc ();
2665 extern void split_di ();
2666 extern int binary_387_op ();
2667 extern int shift_op ();
2668 extern int VOIDmode_compare_op ();
2669 extern char *output_387_binary_op ();
2670 extern char *output_fix_trunc ();
2671 extern char *output_float_compare ();
2672 extern char *output_fp_cc0_set ();
2673 extern void save_386_machine_status ();
2674 extern void restore_386_machine_status ();
2675 extern void clear_386_stack_locals ();
2676 extern struct rtx_def *assign_386_stack_local ();
2677 extern int is_mul ();
2678 extern int is_div ();
2679 extern int last_to_set_cc ();
2680 extern int doesnt_set_condition_code ();
2681 extern int sets_condition_code ();
2682 extern int str_immediate_operand ();
2683 extern int is_fp_insn ();
2684 extern int is_fp_dest ();
2685 extern int is_fp_store ();
2686 extern int agi_dependent ();
2687 extern int reg_mentioned_in_mem ();
2688
2689 #ifdef NOTYET
2690 extern struct rtx_def *copy_all_rtx ();
2691 extern void rewrite_address ();
2692 #endif
2693
2694 /* Variables in i386.c */
2695 extern char *ix86_cpu_string; /* for -mcpu=<xxx> */
2696 extern char *ix86_arch_string; /* for -march=<xxx> */
2697 extern char *i386_reg_alloc_order; /* register allocation order */
2698 extern char *i386_regparm_string; /* # registers to use to pass args */
2699 extern char *i386_align_loops_string; /* power of two alignment for loops */
2700 extern char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
2701 extern char *i386_align_funcs_string; /* power of two alignment for functions */
2702 extern char *i386_branch_cost_string; /* values 1-5: see jump.c */
2703 extern int i386_regparm; /* i386_regparm_string as a number */
2704 extern int i386_align_loops; /* power of two alignment for loops */
2705 extern int i386_align_jumps; /* power of two alignment for non-loop jumps */
2706 extern int i386_align_funcs; /* power of two alignment for functions */
2707 extern int i386_branch_cost; /* values 1-5: see jump.c */
2708 extern char *hi_reg_name[]; /* names for 16 bit regs */
2709 extern char *qi_reg_name[]; /* names for 8 bit regs (low) */
2710 extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */
2711 extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
2712 extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */
2713 extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */
2714
2715 /* External variables used */
2716 extern int optimize; /* optimization level */
2717 extern int obey_regdecls; /* TRUE if stupid register allocation */
2718
2719 /* External functions used */
2720 extern struct rtx_def *force_operand ();
2721
2722 \f
2723 /*
2724 Local variables:
2725 version-control: t
2726 End:
2727 */
This page took 0.1594 seconds and 6 git commands to generate.