]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
Fix indexing off arg ptr & push of byte values.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for Intel X86 (386, 486, pentium)
2 Copyright (C) 1988, 1992, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* The purpose of this file is to define the characteristics of the i386,
22 independent of assembler syntax or operating system.
23
24 Three other files build on this one to describe a specific assembler syntax:
25 bsd386.h, att386.h, and sun386.h.
26
27 The actual tm.h file for a particular system should include
28 this file, and then the file for the appropriate assembler syntax.
29
30 Many macros that specify assembler syntax are omitted entirely from
31 this file because they really belong in the files for particular
32 assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
33 PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
34 PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
35
36 /* Names to predefine in the preprocessor for this target machine. */
37
38 #define I386 1
39
40 /* Stubs for half-pic support if not OSF/1 reference platform. */
41
42 #ifndef HALF_PIC_P
43 #define HALF_PIC_P() 0
44 #define HALF_PIC_NUMBER_PTRS 0
45 #define HALF_PIC_NUMBER_REFS 0
46 #define HALF_PIC_ENCODE(DECL)
47 #define HALF_PIC_DECLARE(NAME)
48 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
49 #define HALF_PIC_ADDRESS_P(X) 0
50 #define HALF_PIC_PTR(X) X
51 #define HALF_PIC_FINISH(STREAM)
52 #endif
53
54 /* Run-time compilation parameters selecting different hardware subsets. */
55
56 extern int target_flags;
57
58 /* Macros used in the machine description to test the flags. */
59
60 /* configure can arrage to make this 2, to force a 486. */
61 #ifndef TARGET_CPU_DEFAULT
62 #define TARGET_CPU_DEFAULT 0
63 #endif
64
65 /* Masks for the -m switches */
66 #define MASK_80387 000000000001 /* Hardware floating point */
67 #define MASK_486 000000000002 /* 80486 specific */
68 #define MASK_NOTUSED 000000000004 /* bit not currently used */
69 #define MASK_RTD 000000000010 /* Use ret that pops args */
70 #define MASK_REGPARM 000000000020 /* Pass args in eax, edx */
71 #define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
72 #define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
73 #define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
74 #define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
75
76 /* Temporary codegen switches */
77 #define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
78 #define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
79 #define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
80
81 /* Use the floating point instructions */
82 #define TARGET_80387 (target_flags & MASK_80387)
83
84 /* Compile using ret insn that pops args.
85 This will not work unless you use prototypes at least
86 for all functions that can take varying numbers of args. */
87 #define TARGET_RTD (target_flags & MASK_RTD)
88
89 /* Compile passing first two args in regs 0 and 1.
90 This exists only to test compiler features that will
91 be needed for RISC chips. It is not usable
92 and is not intended to be usable on this cpu. */
93 #define TARGET_REGPARM (target_flags & MASK_RTD)
94
95 /* Put uninitialized locals into bss, not data.
96 Meaningful only on svr3. */
97 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
98
99 /* Use IEEE floating point comparisons. These handle correctly the cases
100 where the result of a comparison is unordered. Normally SIGFPE is
101 generated in such cases, in which case this isn't needed. */
102 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
103
104 /* Functions that return a floating point value may return that value
105 in the 387 FPU or in 386 integer registers. If set, this flag causes
106 the 387 to be used, which is compatible with most calling conventions. */
107 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
108
109 /* Disable generation of FP sin, cos and sqrt operations for 387.
110 This is because FreeBSD lacks these in the math-emulator-code */
111 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
112
113 /* Temporary switches for tuning code generation */
114
115 /* Disable 32x32->64 bit multiplies that are used for long long multiplies
116 and division by constants, but sometimes cause reload problems. */
117 #define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
118 #define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
119
120 /* Debug GO_IF_LEGITIMATE_ADDRESS */
121 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
122
123 /* Hack macros for tuning code generation */
124 #define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
125
126 /* Specific hardware switches */
127 #define TARGET_486 (target_flags & MASK_486) /* 80486DX, 80486SX, 80486DX[24] */
128 #define TARGET_386 (!TARGET_486) /* 80386 */
129
130 #define TARGET_SWITCHES \
131 { { "80387", MASK_80387 }, \
132 { "no-80387", -MASK_80387 }, \
133 { "hard-float", MASK_80387 }, \
134 { "soft-float", -MASK_80387 }, \
135 { "no-soft-float", MASK_80387 }, \
136 { "386", -MASK_486 }, \
137 { "no-386", MASK_486 }, \
138 { "486", MASK_486 }, \
139 { "no-486", -MASK_486 }, \
140 { "rtd", MASK_RTD }, \
141 { "no-rtd", -MASK_RTD }, \
142 { "regparm", MASK_REGPARM }, \
143 { "no-regparm", -MASK_REGPARM }, \
144 { "svr3-shlib", MASK_SVR3_SHLIB }, \
145 { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \
146 { "ieee-fp", MASK_IEEE_FP }, \
147 { "no-ieee-fp", -MASK_IEEE_FP }, \
148 { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \
149 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \
150 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \
151 { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \
152 { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \
153 { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \
154 { "debug-addr", MASK_DEBUG_ADDR }, \
155 { "no-debug-addr", -MASK_DEBUG_ADDR }, \
156 { "move", -MASK_NO_MOVE }, \
157 { "no-move", MASK_NO_MOVE }, \
158 SUBTARGET_SWITCHES \
159 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT}}
160
161 /* This is meant to be redefined in the host dependent files */
162 #define SUBTARGET_SWITCHES
163
164 #define OVERRIDE_OPTIONS \
165 { \
166 SUBTARGET_OVERRIDE_OPTIONS \
167 }
168
169 /* This is meant to be redefined in the host dependent files */
170 #define SUBTARGET_OVERRIDE_OPTIONS
171 \f
172 /* target machine storage layout */
173
174 /* Define for XFmode extended real floating point support.
175 This will automatically cause REAL_ARITHMETIC to be defined. */
176 #define LONG_DOUBLE_TYPE_SIZE 96
177
178 /* Define if you don't want extended real, but do want to use the
179 software floating point emulator for REAL_ARITHMETIC and
180 decimal <-> binary conversion. */
181 /* #define REAL_ARITHMETIC */
182
183 /* Define this if most significant byte of a word is the lowest numbered. */
184 /* That is true on the 80386. */
185
186 #define BITS_BIG_ENDIAN 0
187
188 /* Define this if most significant byte of a word is the lowest numbered. */
189 /* That is not true on the 80386. */
190 #define BYTES_BIG_ENDIAN 0
191
192 /* Define this if most significant word of a multiword number is the lowest
193 numbered. */
194 /* Not true for 80386 */
195 #define WORDS_BIG_ENDIAN 0
196
197 /* number of bits in an addressable storage unit */
198 #define BITS_PER_UNIT 8
199
200 /* Width in bits of a "word", which is the contents of a machine register.
201 Note that this is not necessarily the width of data type `int';
202 if using 16-bit ints on a 80386, this would still be 32.
203 But on a machine with 16-bit registers, this would be 16. */
204 #define BITS_PER_WORD 32
205
206 /* Width of a word, in units (bytes). */
207 #define UNITS_PER_WORD 4
208
209 /* Width in bits of a pointer.
210 See also the macro `Pmode' defined below. */
211 #define POINTER_SIZE 32
212
213 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
214 #define PARM_BOUNDARY 32
215
216 /* Boundary (in *bits*) on which stack pointer should be aligned. */
217 #define STACK_BOUNDARY 32
218
219 /* Allocation boundary (in *bits*) for the code of a function.
220 For i486, we get better performance by aligning to a cache
221 line (i.e. 16 byte) boundary. */
222 #define FUNCTION_BOUNDARY (TARGET_486 ? 128 : 32)
223
224 /* Alignment of field after `int : 0' in a structure. */
225
226 #define EMPTY_FIELD_BOUNDARY 32
227
228 /* Minimum size in bits of the largest boundary to which any
229 and all fundamental data types supported by the hardware
230 might need to be aligned. No data type wants to be aligned
231 rounder than this. The i386 supports 64-bit floating point
232 quantities, but these can be aligned on any 32-bit boundary. */
233 #define BIGGEST_ALIGNMENT 32
234
235 /* Set this non-zero if move instructions will actually fail to work
236 when given unaligned data. */
237 #define STRICT_ALIGNMENT 0
238
239 /* If bit field type is int, don't let it cross an int,
240 and give entire struct the alignment of an int. */
241 /* Required on the 386 since it doesn't have bitfield insns. */
242 #define PCC_BITFIELD_TYPE_MATTERS 1
243
244 /* Align loop starts for optimal branching. */
245 #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
246 ASM_OUTPUT_ALIGN (FILE, 2)
247
248 /* This is how to align an instruction for optimal branching.
249 On i486 we'll get better performance by aligning on a
250 cache line (i.e. 16 byte) boundary. */
251 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
252 ASM_OUTPUT_ALIGN ((FILE), (TARGET_486 ? 4 : 2))
253 \f
254 /* Standard register usage. */
255
256 /* This processor has special stack-like registers. See reg-stack.c
257 for details. */
258
259 #define STACK_REGS
260
261 /* Number of actual hardware registers.
262 The hardware registers are assigned numbers for the compiler
263 from 0 to just below FIRST_PSEUDO_REGISTER.
264 All registers that the compiler knows about must be given numbers,
265 even those that are not normally considered general registers.
266
267 In the 80386 we give the 8 general purpose registers the numbers 0-7.
268 We number the floating point registers 8-15.
269 Note that registers 0-7 can be accessed as a short or int,
270 while only 0-3 may be used with byte `mov' instructions.
271
272 Reg 16 does not correspond to any hardware register, but instead
273 appears in the RTL as an argument pointer prior to reload, and is
274 eliminated during reloading in favor of either the stack or frame
275 pointer. */
276
277 #define FIRST_PSEUDO_REGISTER 17
278
279 /* 1 for registers that have pervasive standard uses
280 and are not available for the register allocator.
281 On the 80386, the stack pointer is such, as is the arg pointer. */
282 #define FIXED_REGISTERS \
283 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
284 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
285
286 /* 1 for registers not available across function calls.
287 These must include the FIXED_REGISTERS and also any
288 registers that can be used without being saved.
289 The latter must include the registers where values are returned
290 and the register where structure-value addresses are passed.
291 Aside from that, you can include as many other registers as you like. */
292
293 #define CALL_USED_REGISTERS \
294 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
295 { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
296
297 /* Order in which to allocate registers. Each register must be
298 listed once, even those in FIXED_REGISTERS. List frame pointer
299 late and fixed registers last. Note that, in general, we prefer
300 registers listed in CALL_USED_REGISTERS, keeping the others
301 available for storage of persistent values.
302
303 Three different versions of REG_ALLOC_ORDER have been tried:
304
305 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
306 but slower code on simple functions returning values in eax.
307
308 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
309 perl 4.036 due to not being able to create a DImode register (to hold a 2
310 word union).
311
312 If the order is eax, edx, ecx, ... it produces better code for simple
313 functions, and a slightly slower compiler. Users complained about the code
314 generated by allocating edx first, so restore the 'natural' order of things. */
315
316 #if 0
317 #define REG_ALLOC_ORDER \
318 /*dx,cx,ax,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
319 { 1, 2, 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
320 #endif
321
322 /* Macro to conditionally modify fixed_regs/call_used_regs. */
323 #define CONDITIONAL_REGISTER_USAGE \
324 { \
325 if (flag_pic) \
326 { \
327 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
328 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
329 } \
330 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
331 { \
332 int i; \
333 HARD_REG_SET x; \
334 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
335 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
336 if (TEST_HARD_REG_BIT (x, i)) \
337 fixed_regs[i] = call_used_regs[i] = 1; \
338 } \
339 }
340
341 /* Return number of consecutive hard regs needed starting at reg REGNO
342 to hold something of mode MODE.
343 This is ordinarily the length in words of a value of mode MODE
344 but can be less for certain modes in special long registers.
345
346 Actually there are no two word move instructions for consecutive
347 registers. And only registers 0-3 may have mov byte instructions
348 applied to them.
349 */
350
351 #define HARD_REGNO_NREGS(REGNO, MODE) \
352 (FP_REGNO_P (REGNO) ? 1 \
353 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
354
355 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
356 On the 80386, the first 4 cpu registers can hold any mode
357 while the floating point registers may hold only floating point.
358 Make it clear that the fp regs could not hold a 16-byte float. */
359
360 /* The casts to int placate a compiler on a microvax,
361 for cross-compiler testing. */
362
363 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
364 ((REGNO) < 2 ? 1 \
365 : (REGNO) < 4 ? 1 \
366 : FP_REGNO_P (REGNO) \
367 ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
368 || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
369 && GET_MODE_UNIT_SIZE (MODE) <= 12) \
370 : (int) (MODE) != (int) QImode)
371
372 /* Value is 1 if it is a good idea to tie two pseudo registers
373 when one has mode MODE1 and one has mode MODE2.
374 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
375 for any hard reg, then this must be 0 for correct output. */
376
377 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
378
379 /* A C expression returning the cost of moving data from a register of class
380 CLASS1 to one of CLASS2.
381
382 On the i386, copying between floating-point and fixed-point
383 registers is expensive. */
384
385 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
386 (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
387 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
388 : 2)
389
390 /* Specify the registers used for certain standard purposes.
391 The values of these macros are register numbers. */
392
393 /* on the 386 the pc register is %eip, and is not usable as a general
394 register. The ordinary mov instructions won't work */
395 /* #define PC_REGNUM */
396
397 /* Register to use for pushing function arguments. */
398 #define STACK_POINTER_REGNUM 7
399
400 /* Base register for access to local variables of the function. */
401 #define FRAME_POINTER_REGNUM 6
402
403 /* First floating point reg */
404 #define FIRST_FLOAT_REG 8
405
406 /* First & last stack-like regs */
407 #define FIRST_STACK_REG FIRST_FLOAT_REG
408 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
409
410 /* Value should be nonzero if functions must have frame pointers.
411 Zero means the frame pointer need not be set up (and parms
412 may be accessed via the stack pointer) in functions that seem suitable.
413 This is computed in `reload', in reload1.c. */
414 #define FRAME_POINTER_REQUIRED 0
415
416 /* Base register for access to arguments of the function. */
417 #define ARG_POINTER_REGNUM 16
418
419 /* Register in which static-chain is passed to a function. */
420 #define STATIC_CHAIN_REGNUM 2
421
422 /* Register to hold the addressing base for position independent
423 code access to data items. */
424 #define PIC_OFFSET_TABLE_REGNUM 3
425
426 /* Register in which address to store a structure value
427 arrives in the function. On the 386, the prologue
428 copies this from the stack to register %eax. */
429 #define STRUCT_VALUE_INCOMING 0
430
431 /* Place in which caller passes the structure value address.
432 0 means push the value on the stack like an argument. */
433 #define STRUCT_VALUE 0
434 \f
435 /* Define the classes of registers for register constraints in the
436 machine description. Also define ranges of constants.
437
438 One of the classes must always be named ALL_REGS and include all hard regs.
439 If there is more than one class, another class must be named NO_REGS
440 and contain no registers.
441
442 The name GENERAL_REGS must be the name of a class (or an alias for
443 another name such as ALL_REGS). This is the class of registers
444 that is allowed by "g" or "r" in a register constraint.
445 Also, registers outside this class are allocated only when
446 instructions express preferences for them.
447
448 The classes must be numbered in nondecreasing order; that is,
449 a larger-numbered class must never be contained completely
450 in a smaller-numbered class.
451
452 For any two classes, it is very desirable that there be another
453 class that represents their union.
454
455 It might seem that class BREG is unnecessary, since no useful 386
456 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
457 and the "b" register constraint is useful in asms for syscalls. */
458
459 enum reg_class
460 {
461 NO_REGS,
462 AREG, DREG, CREG, BREG,
463 AD_REGS, /* %eax/%edx for DImode */
464 Q_REGS, /* %eax %ebx %ecx %edx */
465 SIREG, DIREG,
466 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
467 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
468 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
469 FLOAT_REGS,
470 ALL_REGS, LIM_REG_CLASSES
471 };
472
473 #define N_REG_CLASSES (int) LIM_REG_CLASSES
474
475 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
476
477 /* Give names of register classes as strings for dump file. */
478
479 #define REG_CLASS_NAMES \
480 { "NO_REGS", \
481 "AREG", "DREG", "CREG", "BREG", \
482 "AD_REGS", \
483 "Q_REGS", \
484 "SIREG", "DIREG", \
485 "INDEX_REGS", \
486 "GENERAL_REGS", \
487 "FP_TOP_REG", "FP_SECOND_REG", \
488 "FLOAT_REGS", \
489 "ALL_REGS" }
490
491 /* Define which registers fit in which classes.
492 This is an initializer for a vector of HARD_REG_SET
493 of length N_REG_CLASSES. */
494
495 #define REG_CLASS_CONTENTS \
496 { 0, \
497 0x1, 0x2, 0x4, 0x8, /* AREG, DREG, CREG, BREG */ \
498 0x3, /* AD_REGS */ \
499 0xf, /* Q_REGS */ \
500 0x10, 0x20, /* SIREG, DIREG */ \
501 0x07f, /* INDEX_REGS */ \
502 0x100ff, /* GENERAL_REGS */ \
503 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \
504 0xff00, /* FLOAT_REGS */ \
505 0x1ffff }
506
507 /* The same information, inverted:
508 Return the class number of the smallest class containing
509 reg number REGNO. This could be a conditional expression
510 or could index an array. */
511
512 extern enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
513 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
514
515 /* When defined, the compiler allows registers explicitly used in the
516 rtl to be used as spill registers but prevents the compiler from
517 extending the lifetime of these registers. */
518
519 #define SMALL_REGISTER_CLASSES
520
521 #define QI_REG_P(X) \
522 (REG_P (X) && REGNO (X) < 4)
523 #define NON_QI_REG_P(X) \
524 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
525
526 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
527 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
528
529 #define STACK_REG_P(xop) (REG_P (xop) && \
530 REGNO (xop) >= FIRST_STACK_REG && \
531 REGNO (xop) <= LAST_STACK_REG)
532
533 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
534
535 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
536
537 /* Try to maintain the accuracy of the death notes for regs satisfying the
538 following. Important for stack like regs, to know when to pop. */
539
540 /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
541
542 /* 1 if register REGNO can magically overlap other regs.
543 Note that nonzero values work only in very special circumstances. */
544
545 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
546
547 /* The class value for index registers, and the one for base regs. */
548
549 #define INDEX_REG_CLASS INDEX_REGS
550 #define BASE_REG_CLASS GENERAL_REGS
551
552 /* Get reg_class from a letter such as appears in the machine description. */
553
554 #define REG_CLASS_FROM_LETTER(C) \
555 ((C) == 'r' ? GENERAL_REGS : \
556 (C) == 'q' ? Q_REGS : \
557 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
558 ? FLOAT_REGS \
559 : NO_REGS) : \
560 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
561 ? FP_TOP_REG \
562 : NO_REGS) : \
563 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
564 ? FP_SECOND_REG \
565 : NO_REGS) : \
566 (C) == 'a' ? AREG : \
567 (C) == 'b' ? BREG : \
568 (C) == 'c' ? CREG : \
569 (C) == 'd' ? DREG : \
570 (C) == 'A' ? AD_REGS : \
571 (C) == 'D' ? DIREG : \
572 (C) == 'S' ? SIREG : NO_REGS)
573
574 /* The letters I, J, K, L and M in a register constraint string
575 can be used to stand for particular ranges of immediate operands.
576 This macro defines what the ranges are.
577 C is the letter, and VALUE is a constant value.
578 Return 1 if VALUE is in the range specified by C.
579
580 I is for non-DImode shifts.
581 J is for DImode shifts.
582 K and L are for an `andsi' optimization.
583 M is for shifts that can be executed by the "lea" opcode.
584 */
585
586 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
587 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
588 (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
589 (C) == 'K' ? (VALUE) == 0xff : \
590 (C) == 'L' ? (VALUE) == 0xffff : \
591 (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
592 0)
593
594 /* Similar, but for floating constants, and defining letters G and H.
595 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
596 TARGET_387 isn't set, because the stack register converter may need to
597 load 0.0 into the function value register. */
598
599 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
600 ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
601
602 /* Place additional restrictions on the register class to use when it
603 is necessary to be able to hold a value of mode MODE in a reload
604 register for which class CLASS would ordinarily be used. */
605
606 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
607 ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
608 ? Q_REGS : (CLASS))
609
610 /* Given an rtx X being reloaded into a reg required to be
611 in class CLASS, return the class of reg to actually use.
612 In general this is just CLASS; but on some machines
613 in some cases it is preferable to use a more restrictive class.
614 On the 80386 series, we prevent floating constants from being
615 reloaded into floating registers (since no move-insn can do that)
616 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
617
618 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
619 QImode must go into class Q_REGS.
620 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
621 movdf to do mem-to-mem moves through integer regs. */
622
623 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
624 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
625 : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
626 : ((CLASS) == ALL_REGS \
627 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
628 : (CLASS))
629
630 /* If we are copying between general and FP registers, we need a memory
631 location. */
632
633 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
634 ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
635 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
636
637 /* Return the maximum number of consecutive registers
638 needed to represent mode MODE in a register of class CLASS. */
639 /* On the 80386, this is the size of MODE in words,
640 except in the FP regs, where a single reg is always enough. */
641 #define CLASS_MAX_NREGS(CLASS, MODE) \
642 (FLOAT_CLASS_P (CLASS) ? 1 : \
643 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
644 \f
645 /* Stack layout; function entry, exit and calling. */
646
647 /* Define this if pushing a word on the stack
648 makes the stack pointer a smaller address. */
649 #define STACK_GROWS_DOWNWARD
650
651 /* Define this if the nominal address of the stack frame
652 is at the high-address end of the local variables;
653 that is, each additional local variable allocated
654 goes at a more negative offset in the frame. */
655 #define FRAME_GROWS_DOWNWARD
656
657 /* Offset within stack frame to start allocating local variables at.
658 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
659 first local allocated. Otherwise, it is the offset to the BEGINNING
660 of the first local allocated. */
661 #define STARTING_FRAME_OFFSET 0
662
663 /* If we generate an insn to push BYTES bytes,
664 this says how many the stack pointer really advances by.
665 On 386 pushw decrements by exactly 2 no matter what the position was.
666 On the 386 there is no pushb; we use pushw instead, and this
667 has the effect of rounding up to 2. */
668
669 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
670
671 /* Offset of first parameter from the argument pointer register value. */
672 #define FIRST_PARM_OFFSET(FNDECL) 0
673
674 /* Value is the number of bytes of arguments automatically
675 popped when returning from a subroutine call.
676 FUNTYPE is the data type of the function (as a tree),
677 or for a library call it is an identifier node for the subroutine name.
678 SIZE is the number of bytes of arguments passed on the stack.
679
680 On the 80386, the RTD insn may be used to pop them if the number
681 of args is fixed, but if the number is variable then the caller
682 must pop them all. RTD can't be used for library calls now
683 because the library is compiled with the Unix compiler.
684 Use of RTD is a selectable option, since it is incompatible with
685 standard Unix calling sequences. If the option is not selected,
686 the caller must always pop the args. */
687
688 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
689 (TREE_CODE (FUNTYPE) == IDENTIFIER_NODE ? 0 \
690 : (TARGET_RTD \
691 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
692 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
693 == void_type_node))) ? (SIZE) \
694 : (aggregate_value_p (TREE_TYPE (FUNTYPE))) ? GET_MODE_SIZE (Pmode) : 0)
695
696 /* Define how to find the value returned by a function.
697 VALTYPE is the data type of the value (as a tree).
698 If the precise function being called is known, FUNC is its FUNCTION_DECL;
699 otherwise, FUNC is 0. */
700 #define FUNCTION_VALUE(VALTYPE, FUNC) \
701 gen_rtx (REG, TYPE_MODE (VALTYPE), \
702 VALUE_REGNO (TYPE_MODE (VALTYPE)))
703
704 /* Define how to find the value returned by a library function
705 assuming the value has mode MODE. */
706
707 #define LIBCALL_VALUE(MODE) \
708 gen_rtx (REG, MODE, VALUE_REGNO (MODE))
709
710 /* Define the size of the result block used for communication between
711 untyped_call and untyped_return. The block contains a DImode value
712 followed by the block used by fnsave and frstor. */
713
714 #define APPLY_RESULT_SIZE (8+108)
715
716 /* 1 if N is a possible register number for function argument passing.
717 On the 80386, no registers are used in this way.
718 *NOTE* -mregparm does not work.
719 It exists only to test register calling conventions. */
720
721 #define FUNCTION_ARG_REGNO_P(N) 0
722
723 /* Define a data type for recording info about an argument list
724 during the scan of that argument list. This data type should
725 hold all necessary information about the function itself
726 and about the args processed so far, enough to enable macros
727 such as FUNCTION_ARG to determine where the next arg should go.
728
729 On the 80386, this is a single integer, which is a number of bytes
730 of arguments scanned so far. */
731
732 #define CUMULATIVE_ARGS int
733
734 /* Initialize a variable CUM of type CUMULATIVE_ARGS
735 for a call to a function whose data type is FNTYPE.
736 For a library call, FNTYPE is 0.
737
738 On the 80386, the offset starts at 0. */
739
740 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
741 ((CUM) = 0)
742
743 /* Update the data in CUM to advance over an argument
744 of mode MODE and data type TYPE.
745 (TYPE is null for libcalls where that information may not be available.) */
746
747 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
748 ((CUM) += ((MODE) != BLKmode \
749 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
750 : (int_size_in_bytes (TYPE) + 3) & ~3))
751
752 /* Define where to put the arguments to a function.
753 Value is zero to push the argument on the stack,
754 or a hard register in which to store the argument.
755
756 MODE is the argument's machine mode.
757 TYPE is the data type of the argument (as a tree).
758 This is null for libcalls where that information may
759 not be available.
760 CUM is a variable of type CUMULATIVE_ARGS which gives info about
761 the preceding args and about the function being called.
762 NAMED is nonzero if this argument is a named parameter
763 (otherwise it is an extra parameter matching an ellipsis). */
764
765
766 /* On the 80386 all args are pushed, except if -mregparm is specified
767 then the first two words of arguments are passed in EAX, EDX.
768 *NOTE* -mregparm does not work.
769 It exists only to test register calling conventions. */
770
771 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
772 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
773
774 /* For an arg passed partly in registers and partly in memory,
775 this is the number of registers used.
776 For args passed entirely in registers or entirely in memory, zero. */
777
778
779 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
780 ((TARGET_REGPARM && (CUM) < 8 \
781 && 8 < ((CUM) + ((MODE) == BLKmode \
782 ? int_size_in_bytes (TYPE) \
783 : GET_MODE_SIZE (MODE)))) \
784 ? 2 - (CUM) / 4 : 0)
785
786 /* This macro generates the assembly code for function entry.
787 FILE is a stdio stream to output the code to.
788 SIZE is an int: how many units of temporary storage to allocate.
789 Refer to the array `regs_ever_live' to determine which registers
790 to save; `regs_ever_live[I]' is nonzero if register number I
791 is ever used in the function. This macro is responsible for
792 knowing which registers should not be saved even if used. */
793
794 #define FUNCTION_PROLOGUE(FILE, SIZE) \
795 function_prologue (FILE, SIZE)
796
797 /* Output assembler code to FILE to increment profiler label # LABELNO
798 for profiling a function entry. */
799
800 #define FUNCTION_PROFILER(FILE, LABELNO) \
801 { \
802 if (flag_pic) \
803 { \
804 fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
805 LPREFIX, (LABELNO)); \
806 fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
807 } \
808 else \
809 { \
810 fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
811 fprintf (FILE, "\tcall _mcount\n"); \
812 } \
813 }
814
815 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
816 the stack pointer does not matter. The value is tested only in
817 functions that have frame pointers.
818 No definition is equivalent to always zero. */
819 /* Note on the 386 it might be more efficient not to define this since
820 we have to restore it ourselves from the frame pointer, in order to
821 use pop */
822
823 #define EXIT_IGNORE_STACK 1
824
825 /* This macro generates the assembly code for function exit,
826 on machines that need it. If FUNCTION_EPILOGUE is not defined
827 then individual return instructions are generated for each
828 return statement. Args are same as for FUNCTION_PROLOGUE.
829
830 The function epilogue should not depend on the current stack pointer!
831 It should use the frame pointer only. This is mandatory because
832 of alloca; we also take advantage of it to omit stack adjustments
833 before returning.
834
835 If the last non-note insn in the function is a BARRIER, then there
836 is no need to emit a function prologue, because control does not fall
837 off the end. This happens if the function ends in an "exit" call, or
838 if a `return' insn is emitted directly into the function. */
839
840 #define FUNCTION_EPILOGUE(FILE, SIZE) \
841 do { \
842 rtx last = get_last_insn (); \
843 if (last && GET_CODE (last) == NOTE) \
844 last = prev_nonnote_insn (last); \
845 if (! last || GET_CODE (last) != BARRIER) \
846 function_epilogue (FILE, SIZE); \
847 } while (0)
848
849 /* Output assembler code for a block containing the constant parts
850 of a trampoline, leaving space for the variable parts. */
851
852 /* On the 386, the trampoline contains three instructions:
853 mov #STATIC,ecx
854 mov #FUNCTION,eax
855 jmp @eax */
856 #define TRAMPOLINE_TEMPLATE(FILE) \
857 { \
858 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
859 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
860 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
861 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
862 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
863 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
864 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
865 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
866 }
867
868 /* Length in units of the trampoline for entering a nested function. */
869
870 #define TRAMPOLINE_SIZE 12
871
872 /* Emit RTL insns to initialize the variable parts of a trampoline.
873 FNADDR is an RTX for the address of the function's pure code.
874 CXT is an RTX for the static chain value for the function. */
875
876 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
877 { \
878 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \
879 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \
880 }
881 \f
882 /* Definitions for register eliminations.
883
884 This is an array of structures. Each structure initializes one pair
885 of eliminable registers. The "from" register number is given first,
886 followed by "to". Eliminations of the same "from" register are listed
887 in order of preference.
888
889 We have two registers that can be eliminated on the i386. First, the
890 frame pointer register can often be eliminated in favor of the stack
891 pointer register. Secondly, the argument pointer register can always be
892 eliminated; it is replaced with either the stack or frame pointer. */
893
894 #define ELIMINABLE_REGS \
895 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
896 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
897 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
898
899 /* Given FROM and TO register numbers, say whether this elimination is allowed.
900 Frame pointer elimination is automatically handled.
901
902 For the i386, if frame pointer elimination is being done, we would like to
903 convert ap into sp, not fp.
904
905 All other eliminations are valid. */
906
907 #define CAN_ELIMINATE(FROM, TO) \
908 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
909 ? ! frame_pointer_needed \
910 : 1)
911
912 /* Define the offset between two registers, one to be eliminated, and the other
913 its replacement, at the start of a routine. */
914
915 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
916 { \
917 if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
918 (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
919 else \
920 { \
921 int regno; \
922 int offset = 0; \
923 \
924 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
925 if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
926 || (current_function_uses_pic_offset_table \
927 && regno == PIC_OFFSET_TABLE_REGNUM)) \
928 offset += 4; \
929 \
930 (OFFSET) = offset + get_frame_size (); \
931 \
932 if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
933 (OFFSET) += 4; /* Skip saved PC */ \
934 } \
935 }
936 \f
937 /* Addressing modes, and classification of registers for them. */
938
939 /* #define HAVE_POST_INCREMENT */
940 /* #define HAVE_POST_DECREMENT */
941
942 /* #define HAVE_PRE_DECREMENT */
943 /* #define HAVE_PRE_INCREMENT */
944
945 /* Macros to check register numbers against specific register classes. */
946
947 /* These assume that REGNO is a hard or pseudo reg number.
948 They give nonzero only if REGNO is a hard reg of the suitable class
949 or a pseudo reg currently allocated to a suitable hard reg.
950 Since they use reg_renumber, they are safe only once reg_renumber
951 has been allocated, which happens in local-alloc.c. */
952
953 #define REGNO_OK_FOR_INDEX_P(REGNO) \
954 ((REGNO) < STACK_POINTER_REGNUM \
955 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
956
957 #define REGNO_OK_FOR_BASE_P(REGNO) \
958 ((REGNO) <= STACK_POINTER_REGNUM \
959 || (REGNO) == ARG_POINTER_REGNUM \
960 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
961
962 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
963 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
964
965 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
966 and check its validity for a certain class.
967 We have two alternate definitions for each of them.
968 The usual definition accepts all pseudo regs; the other rejects
969 them unless they have been allocated suitable hard regs.
970 The symbol REG_OK_STRICT causes the latter definition to be used.
971
972 Most source files want to accept pseudo regs in the hope that
973 they will get allocated to the class that the insn wants them to be in.
974 Source files for reload pass need to be strict.
975 After reload, it makes no difference, since pseudo regs have
976 been eliminated by then. */
977
978
979 /* Non strict versions, pseudos are ok */
980 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
981 (REGNO (X) < STACK_POINTER_REGNUM \
982 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
983
984 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
985 (REGNO (X) <= STACK_POINTER_REGNUM \
986 || REGNO (X) == ARG_POINTER_REGNUM \
987 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
988
989 #define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
990 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
991
992 /* Strict versions, hard registers only */
993 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
994 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
995 #define REG_OK_FOR_STRREG_STRICT_P(X) \
996 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
997
998 #ifndef REG_OK_STRICT
999 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1000 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1001 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
1002
1003 #else
1004 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1005 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1006 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
1007 #endif
1008
1009 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1010 that is a valid memory address for an instruction.
1011 The MODE argument is the machine mode for the MEM expression
1012 that wants to use this address.
1013
1014 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1015 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1016
1017 See legitimize_pic_address in i386.c for details as to what
1018 constitutes a legitimate address when -fpic is used. */
1019
1020 #define MAX_REGS_PER_ADDRESS 2
1021
1022 #define CONSTANT_ADDRESS_P(X) \
1023 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1024 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1025 || GET_CODE (X) == HIGH)
1026
1027 /* Nonzero if the constant value X is a legitimate general operand.
1028 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1029
1030 #define LEGITIMATE_CONSTANT_P(X) 1
1031
1032 #ifdef REG_OK_STRICT
1033 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1034 { \
1035 if (legitimate_address_p (MODE, X, 1)) \
1036 goto ADDR; \
1037 }
1038
1039 #else
1040 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1041 { \
1042 if (legitimate_address_p (MODE, X, 0)) \
1043 goto ADDR; \
1044 }
1045
1046 #endif
1047
1048 /* Try machine-dependent ways of modifying an illegitimate address
1049 to be legitimate. If we find one, return the new, valid address.
1050 This macro is used in only one place: `memory_address' in explow.c.
1051
1052 OLDX is the address as it was before break_out_memory_refs was called.
1053 In some cases it is useful to look at this to decide what needs to be done.
1054
1055 MODE and WIN are passed so that this macro can use
1056 GO_IF_LEGITIMATE_ADDRESS.
1057
1058 It is always safe for this macro to do nothing. It exists to recognize
1059 opportunities to optimize the output.
1060
1061 For the 80386, we handle X+REG by loading X into a register R and
1062 using R+REG. R will go in a general reg and indexing will be used.
1063 However, if REG is a broken-out memory address or multiplication,
1064 nothing needs to be done because REG can certainly go in a general reg.
1065
1066 When -fpic is used, special handling is needed for symbolic references.
1067 See comments by legitimize_pic_address in i386.c for details. */
1068
1069 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1070 { \
1071 rtx orig_x = (X); \
1072 (X) = legitimize_address (X, OLDX, MODE); \
1073 if (memory_address_p (MODE, X)) \
1074 goto WIN; \
1075 }
1076
1077 /* Nonzero if the constant value X is a legitimate general operand
1078 when generating PIC code. It is given that flag_pic is on and
1079 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1080
1081 #define LEGITIMATE_PIC_OPERAND_P(X) \
1082 (! SYMBOLIC_CONST (X) \
1083 || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
1084
1085 #define SYMBOLIC_CONST(X) \
1086 (GET_CODE (X) == SYMBOL_REF \
1087 || GET_CODE (X) == LABEL_REF \
1088 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1089
1090 /* Go to LABEL if ADDR (a legitimate address expression)
1091 has an effect that depends on the machine mode it is used for.
1092 On the 80386, only postdecrement and postincrement address depend thus
1093 (the amount of decrement or increment being the length of the operand). */
1094 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1095 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1096 \f
1097 /* Define this macro if references to a symbol must be treated
1098 differently depending on something about the variable or
1099 function named by the symbol (such as what section it is in).
1100
1101 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1102 so that we may access it directly in the GOT. */
1103
1104 #define ENCODE_SECTION_INFO(DECL) \
1105 do \
1106 { \
1107 if (flag_pic) \
1108 { \
1109 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1110 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1111 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1112 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1113 || ! TREE_PUBLIC (DECL)); \
1114 } \
1115 } \
1116 while (0)
1117
1118 /* Initialize data used by insn expanders. This is called from
1119 init_emit, once for each function, before code is generated.
1120 For 386, clear stack slot assignments remembered from previous
1121 functions. */
1122
1123 #define INIT_EXPANDERS clear_386_stack_locals ()
1124
1125 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
1126 codes once the function is being compiled into assembly code, but
1127 not before. (It is not done before, because in the case of
1128 compiling an inline function, it would lead to multiple PIC
1129 prologues being included in functions which used inline functions
1130 and were compiled to assembly language.) */
1131
1132 #define FINALIZE_PIC \
1133 do \
1134 { \
1135 extern int current_function_uses_pic_offset_table; \
1136 \
1137 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
1138 } \
1139 while (0)
1140
1141 \f
1142 /* Specify the machine mode that this machine uses
1143 for the index in the tablejump instruction. */
1144 #define CASE_VECTOR_MODE Pmode
1145
1146 /* Define this if the tablejump instruction expects the table
1147 to contain offsets from the address of the table.
1148 Do not define this if the table should contain absolute addresses. */
1149 /* #define CASE_VECTOR_PC_RELATIVE */
1150
1151 /* Specify the tree operation to be used to convert reals to integers.
1152 This should be changed to take advantage of fist --wfs ??
1153 */
1154 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1155
1156 /* This is the kind of divide that is easiest to do in the general case. */
1157 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1158
1159 /* Define this as 1 if `char' should by default be signed; else as 0. */
1160 #define DEFAULT_SIGNED_CHAR 1
1161
1162 /* Max number of bytes we can move from memory to memory
1163 in one reasonably fast instruction. */
1164 #define MOVE_MAX 4
1165
1166 /* MOVE_RATIO is the number of move instructions that is better than a
1167 block move. Make this large on i386, since the block move is very
1168 inefficient with small blocks, and the hard register needs of the
1169 block move require much reload work. */
1170 #define MOVE_RATIO 5
1171
1172 /* Define this if zero-extension is slow (more than one real instruction). */
1173 /* #define SLOW_ZERO_EXTEND */
1174
1175 /* Nonzero if access to memory by bytes is slow and undesirable. */
1176 #define SLOW_BYTE_ACCESS 0
1177
1178 /* Define if shifts truncate the shift count
1179 which implies one can omit a sign-extension or zero-extension
1180 of a shift count. */
1181 /* One i386, shifts do truncate the count. But bit opcodes don't. */
1182
1183 /* #define SHIFT_COUNT_TRUNCATED */
1184
1185 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1186 is done just by pretending it is already truncated. */
1187 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1188
1189 /* We assume that the store-condition-codes instructions store 0 for false
1190 and some other value for true. This is the value stored for true. */
1191
1192 #define STORE_FLAG_VALUE 1
1193
1194 /* When a prototype says `char' or `short', really pass an `int'.
1195 (The 386 can't easily push less than an int.) */
1196
1197 #define PROMOTE_PROTOTYPES
1198
1199 /* Specify the machine mode that pointers have.
1200 After generation of rtl, the compiler makes no further distinction
1201 between pointers and any other objects of this machine mode. */
1202 #define Pmode SImode
1203
1204 /* A function address in a call instruction
1205 is a byte address (for indexing purposes)
1206 so give the MEM rtx a byte's mode. */
1207 #define FUNCTION_MODE QImode
1208
1209 /* Define this if addresses of constant functions
1210 shouldn't be put through pseudo regs where they can be cse'd.
1211 Desirable on the 386 because a CALL with a constant address is
1212 not much slower than one with a register address. */
1213 #define NO_FUNCTION_CSE
1214
1215 /* Provide the costs of a rtl expression. This is in the body of a
1216 switch on CODE. */
1217
1218 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1219 case MULT: \
1220 return COSTS_N_INSNS (10); \
1221 case DIV: \
1222 case UDIV: \
1223 case MOD: \
1224 case UMOD: \
1225 return COSTS_N_INSNS (40); \
1226 case PLUS: \
1227 if (GET_CODE (XEXP (X, 0)) == REG \
1228 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1229 return 1; \
1230 break;
1231
1232
1233 /* Compute the cost of computing a constant rtl expression RTX
1234 whose rtx-code is CODE. The body of this macro is a portion
1235 of a switch statement. If the code is computed here,
1236 return it with a return statement. Otherwise, break from the switch. */
1237
1238 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1239 case CONST_INT: \
1240 case CONST: \
1241 case LABEL_REF: \
1242 case SYMBOL_REF: \
1243 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 0; \
1244 case CONST_DOUBLE: \
1245 { \
1246 int code; \
1247 if (GET_MODE (RTX) == VOIDmode) \
1248 return 2; \
1249 code = standard_80387_constant_p (RTX); \
1250 return code == 1 ? 0 : \
1251 code == 2 ? 1 : \
1252 2; \
1253 }
1254
1255 /* Compute the cost of an address. This is meant to approximate the size
1256 and/or execution delay of an insn using that address. If the cost is
1257 approximated by the RTL complexity, including CONST_COSTS above, as
1258 is usually the case for CISC machines, this macro should not be defined.
1259 For aggressively RISCy machines, only one insn format is allowed, so
1260 this macro should be a constant. The value of this macro only matters
1261 for valid addresses.
1262
1263 For i386, it is better to use a complex address than let gcc copy
1264 the address into a reg and make a new pseudo. But not if the address
1265 requires to two regs - that would mean more pseudos with longer
1266 lifetimes. */
1267
1268 #define ADDRESS_COST(RTX) \
1269 ((CONSTANT_P (RTX) \
1270 || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
1271 && REG_P (XEXP (RTX, 0)))) ? 0 \
1272 : REG_P (RTX) ? 1 \
1273 : 2)
1274 \f
1275 /* Add any extra modes needed to represent the condition code.
1276
1277 For the i386, we need separate modes when floating-point equality
1278 comparisons are being done. */
1279
1280 #define EXTRA_CC_MODES CCFPEQmode
1281
1282 /* Define the names for the modes specified above. */
1283 #define EXTRA_CC_NAMES "CCFPEQ"
1284
1285 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1286 return the mode to be used for the comparison.
1287
1288 For floating-point equality comparisons, CCFPEQmode should be used.
1289 VOIDmode should be used in all other cases. */
1290
1291 #define SELECT_CC_MODE(OP,X,Y) \
1292 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1293 && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
1294
1295 /* Define the information needed to generate branch and scc insns. This is
1296 stored from the compare operation. Note that we can't use "rtx" here
1297 since it hasn't been defined! */
1298
1299 extern struct rtx_def *i386_compare_op0, *i386_compare_op1;
1300 extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
1301
1302 /* Tell final.c how to eliminate redundant test instructions. */
1303
1304 /* Here we define machine-dependent flags and fields in cc_status
1305 (see `conditions.h'). */
1306
1307 /* Set if the cc value is actually in the 80387, so a floating point
1308 conditional branch must be output. */
1309 #define CC_IN_80387 04000
1310
1311 /* Set if the CC value was stored in a nonstandard way, so that
1312 the state of equality is indicated by zero in the carry bit. */
1313 #define CC_Z_IN_NOT_C 010000
1314
1315 /* Store in cc_status the expressions
1316 that the condition codes will describe
1317 after execution of an instruction whose pattern is EXP.
1318 Do not alter them if the instruction would not alter the cc's. */
1319
1320 #define NOTICE_UPDATE_CC(EXP, INSN) \
1321 notice_update_cc((EXP))
1322
1323 /* Output a signed jump insn. Use template NORMAL ordinarily, or
1324 FLOAT following a floating point comparison.
1325 Use NO_OV following an arithmetic insn that set the cc's
1326 before a test insn that was deleted.
1327 NO_OV may be zero, meaning final should reinsert the test insn
1328 because the jump cannot be handled properly without it. */
1329
1330 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1331 { \
1332 if (cc_prev_status.flags & CC_IN_80387) \
1333 return FLOAT; \
1334 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1335 return NO_OV; \
1336 return NORMAL; \
1337 }
1338 \f
1339 /* Control the assembler format that we output, to the extent
1340 this does not vary between assemblers. */
1341
1342 /* How to refer to registers in assembler output.
1343 This sequence is indexed by compiler's hard-register-number (see above). */
1344
1345 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
1346 For non floating point regs, the following are the HImode names.
1347
1348 For float regs, the stack top is sometimes referred to as "%st(0)"
1349 instead of just "%st". PRINT_REG handles this with the "y" code. */
1350
1351 #define HI_REGISTER_NAMES \
1352 {"ax","dx","cx","bx","si","di","bp","sp", \
1353 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
1354
1355 #define REGISTER_NAMES HI_REGISTER_NAMES
1356
1357 /* Table of additional register names to use in user input. */
1358
1359 #define ADDITIONAL_REGISTER_NAMES \
1360 { "eax", 0, "edx", 1, "ecx", 2, "ebx", 3, \
1361 "esi", 4, "edi", 5, "ebp", 6, "esp", 7, \
1362 "al", 0, "dl", 1, "cl", 2, "bl", 3, \
1363 "ah", 0, "dh", 1, "ch", 2, "bh", 3 }
1364
1365 /* Note we are omitting these since currently I don't know how
1366 to get gcc to use these, since they want the same but different
1367 number as al, and ax.
1368 */
1369
1370 /* note the last four are not really qi_registers, but
1371 the md will have to never output movb into one of them
1372 only a movw . There is no movb into the last four regs */
1373
1374 #define QI_REGISTER_NAMES \
1375 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
1376
1377 /* These parallel the array above, and can be used to access bits 8:15
1378 of regs 0 through 3. */
1379
1380 #define QI_HIGH_REGISTER_NAMES \
1381 {"ah", "dh", "ch", "bh", }
1382
1383 /* How to renumber registers for dbx and gdb. */
1384
1385 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
1386 #define DBX_REGISTER_NUMBER(n) \
1387 ((n) == 0 ? 0 : \
1388 (n) == 1 ? 2 : \
1389 (n) == 2 ? 1 : \
1390 (n) == 3 ? 3 : \
1391 (n) == 4 ? 6 : \
1392 (n) == 5 ? 7 : \
1393 (n) == 6 ? 4 : \
1394 (n) == 7 ? 5 : \
1395 (n) + 4)
1396
1397 /* This is how to output the definition of a user-level label named NAME,
1398 such as the label on a static function or variable NAME. */
1399
1400 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1401 (assemble_name (FILE, NAME), fputs (":\n", FILE))
1402
1403 /* This is how to output an assembler line defining a `double' constant. */
1404
1405 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1406 do { long l[2]; \
1407 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
1408 if (sizeof (int) == sizeof (long)) \
1409 fprintf (FILE, "%s 0x%x,0x%x\n", ASM_LONG, l[0], l[1]); \
1410 else \
1411 fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
1412 } while (0)
1413
1414 /* This is how to output a `long double' extended real constant. */
1415
1416 #undef ASM_OUTPUT_LONG_DOUBLE
1417 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1418 do { long l[3]; \
1419 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
1420 if (sizeof (int) == sizeof (long)) \
1421 fprintf (FILE, "%s 0x%x,0x%x,0x%x\n", ASM_LONG, l[0], l[1], l[2]); \
1422 else \
1423 fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
1424 } while (0)
1425
1426 /* This is how to output an assembler line defining a `float' constant. */
1427
1428 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1429 do { long l; \
1430 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1431 if (sizeof (int) == sizeof (long)) \
1432 fprintf ((FILE), "%s 0x%x\n", ASM_LONG, l); \
1433 else \
1434 fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
1435 } while (0)
1436
1437 /* Store in OUTPUT a string (made with alloca) containing
1438 an assembler-name for a local static variable named NAME.
1439 LABELNO is an integer which is different for each call. */
1440
1441 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1442 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1443 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1444
1445
1446
1447 /* This is how to output an assembler line defining an `int' constant. */
1448
1449 #define ASM_OUTPUT_INT(FILE,VALUE) \
1450 ( fprintf (FILE, "%s ", ASM_LONG), \
1451 output_addr_const (FILE,(VALUE)), \
1452 putc('\n',FILE))
1453
1454 /* Likewise for `char' and `short' constants. */
1455 /* is this supposed to do align too?? */
1456
1457 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1458 ( fprintf (FILE, "%s ", ASM_SHORT), \
1459 output_addr_const (FILE,(VALUE)), \
1460 putc('\n',FILE))
1461
1462 /*
1463 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1464 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
1465 output_addr_const (FILE,(VALUE)), \
1466 fputs (",", FILE), \
1467 output_addr_const (FILE,(VALUE)), \
1468 fputs (" >> 8\n",FILE))
1469 */
1470
1471
1472 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1473 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
1474 output_addr_const (FILE, (VALUE)), \
1475 putc ('\n', FILE))
1476
1477 /* This is how to output an assembler line for a numeric constant byte. */
1478
1479 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1480 fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
1481
1482 /* This is how to output an insn to push a register on the stack.
1483 It need not be very fast code. */
1484
1485 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1486 fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO])
1487
1488 /* This is how to output an insn to pop a register from the stack.
1489 It need not be very fast code. */
1490
1491 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1492 fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO])
1493
1494 /* This is how to output an element of a case-vector that is absolute.
1495 */
1496
1497 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1498 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
1499
1500 /* This is how to output an element of a case-vector that is relative.
1501 We don't use these on the 386 yet, because the ATT assembler can't do
1502 forward reference the differences.
1503 */
1504
1505 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1506 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
1507
1508 /* Define the parentheses used to group arithmetic operations
1509 in assembler code. */
1510
1511 #define ASM_OPEN_PAREN ""
1512 #define ASM_CLOSE_PAREN ""
1513
1514 /* Define results of standard character escape sequences. */
1515 #define TARGET_BELL 007
1516 #define TARGET_BS 010
1517 #define TARGET_TAB 011
1518 #define TARGET_NEWLINE 012
1519 #define TARGET_VT 013
1520 #define TARGET_FF 014
1521 #define TARGET_CR 015
1522 \f
1523 /* Print operand X (an rtx) in assembler syntax to file FILE.
1524 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1525 The CODE z takes the size of operand from the following digit, and
1526 outputs b,w,or l respectively.
1527
1528 On the 80386, we use several such letters:
1529 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
1530 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
1531 R -- print the prefix for register names.
1532 z -- print the opcode suffix for the size of the current operand.
1533 * -- print a star (in certain assembler syntax)
1534 w -- print the operand as if it's a "word" (HImode) even if it isn't.
1535 b -- print the operand as if it's a byte (QImode) even if it isn't.
1536 c -- don't print special prefixes before constant operands. */
1537
1538 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1539 ((CODE) == '*')
1540
1541 /* Print the name of a register based on its machine mode and number.
1542 If CODE is 'w', pretend the mode is HImode.
1543 If CODE is 'b', pretend the mode is QImode.
1544 If CODE is 'k', pretend the mode is SImode.
1545 If CODE is 'h', pretend the reg is the `high' byte register.
1546 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
1547
1548 extern char *hi_reg_name[];
1549 extern char *qi_reg_name[];
1550 extern char *qi_high_reg_name[];
1551
1552 #define PRINT_REG(X, CODE, FILE) \
1553 do { if (REGNO (X) == ARG_POINTER_REGNUM) \
1554 abort (); \
1555 fprintf (FILE, "%s", RP); \
1556 switch ((CODE == 'w' ? 2 \
1557 : CODE == 'b' ? 1 \
1558 : CODE == 'k' ? 4 \
1559 : CODE == 'y' ? 3 \
1560 : CODE == 'h' ? 0 \
1561 : GET_MODE_SIZE (GET_MODE (X)))) \
1562 { \
1563 case 3: \
1564 if (STACK_TOP_P (X)) \
1565 { \
1566 fputs ("st(0)", FILE); \
1567 break; \
1568 } \
1569 case 4: \
1570 case 8: \
1571 case 12: \
1572 if (! FP_REG_P (X)) fputs ("e", FILE); \
1573 case 2: \
1574 fputs (hi_reg_name[REGNO (X)], FILE); \
1575 break; \
1576 case 1: \
1577 fputs (qi_reg_name[REGNO (X)], FILE); \
1578 break; \
1579 case 0: \
1580 fputs (qi_high_reg_name[REGNO (X)], FILE); \
1581 break; \
1582 } \
1583 } while (0)
1584
1585 #define PRINT_OPERAND(FILE, X, CODE) \
1586 print_operand (FILE, X, CODE)
1587
1588 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1589 print_operand_address (FILE, ADDR)
1590
1591 /* Print the name of a register for based on its machine mode and number.
1592 This macro is used to print debugging output.
1593 This macro is different from PRINT_REG in that it may be used in
1594 programs that are not linked with aux-output.o. */
1595
1596 #define DEBUG_PRINT_REG(X, CODE, FILE) \
1597 do { static char *hi_name[] = HI_REGISTER_NAMES; \
1598 static char *qi_name[] = QI_REGISTER_NAMES; \
1599 fprintf (FILE, "%d %s", REGNO (X), RP); \
1600 if (REGNO (X) == ARG_POINTER_REGNUM) \
1601 { fputs ("argp", FILE); break; } \
1602 if (STACK_TOP_P (X)) \
1603 { fputs ("st(0)", FILE); break; } \
1604 if (FP_REG_P (X)) \
1605 { fputs (hi_name[REGNO(X)], FILE); break; } \
1606 switch (GET_MODE_SIZE (GET_MODE (X))) \
1607 { \
1608 default: \
1609 fputs ("e", FILE); \
1610 case 2: \
1611 fputs (hi_name[REGNO (X)], FILE); \
1612 break; \
1613 case 1: \
1614 fputs (qi_name[REGNO (X)], FILE); \
1615 break; \
1616 } \
1617 } while (0)
1618
1619 /* Output the prefix for an immediate operand, or for an offset operand. */
1620 #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
1621 #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
1622
1623 /* Routines in libgcc that return floats must return them in an fp reg,
1624 just as other functions do which return such values.
1625 These macros make that happen. */
1626
1627 #define FLOAT_VALUE_TYPE float
1628 #define INTIFY(FLOATVAL) FLOATVAL
1629
1630 /* Nonzero if INSN magically clobbers register REGNO. */
1631
1632 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
1633 (FP_REGNO_P (REGNO) \
1634 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
1635 */
1636
1637 /* a letter which is not needed by the normal asm syntax, which
1638 we can use for operand syntax in the extended asm */
1639
1640 #define ASM_OPERAND_LETTER '#'
1641 \f
1642 #define RET return ""
1643 #define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx))
1644 \f
1645 /* Functions in i386.c */
1646 extern void output_op_from_reg ();
1647 extern void output_to_reg ();
1648 extern char *singlemove_string ();
1649 extern char *output_move_double ();
1650 extern int standard_80387_constant_p ();
1651 extern char *output_move_const_single ();
1652 extern int symbolic_operand ();
1653 extern int call_insn_operand ();
1654 extern int expander_call_insn_operand ();
1655 extern int symbolic_reference_mentioned_p ();
1656 extern void emit_pic_move ();
1657 extern void function_prologue ();
1658 extern int simple_386_epilogue ();
1659 extern void function_epilogue ();
1660 extern int legitimate_address_p ();
1661 extern struct rtx_def *legitimize_pic_address ();
1662 extern struct rtx_def *legitimize_address ();
1663 extern void print_operand ();
1664 extern void print_operand_address ();
1665 extern void notice_update_cc ();
1666 extern void split_di ();
1667 extern int binary_387_op ();
1668 extern int shift_op ();
1669 extern int VOIDmode_compare_op ();
1670 extern char *output_387_binary_op ();
1671 extern char *output_fix_trunc ();
1672 extern char *output_float_compare ();
1673 extern char *output_fp_cc0_set ();
1674 extern void save_386_machine_status ();
1675 extern void restore_386_machine_status ();
1676 extern void clear_386_stack_locals ();
1677 extern struct rtx_def *assign_386_stack_local ();
1678
1679 /* External variables used */
1680 extern int optimize; /* optimization level */
1681 extern int obey_regdecls; /* TRUE if stupid register allocation */
1682
1683 /* External functions used */
1684 extern struct rtx_def *force_operand ();
1685 \f
1686 /*
1687 Local variables:
1688 version-control: t
1689 End:
1690 */
This page took 0.306078 seconds and 6 git commands to generate.