]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
i386.h (DATA_ALIGNMENT): Define.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for Intel X86
2 (386, 486, Pentium).
3 Copyright (C) 1988, 92, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
34 PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
35 PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
36
37 /* Names to predefine in the preprocessor for this target machine. */
38
39 #define I386 1
40
41 /* Stubs for half-pic support if not OSF/1 reference platform. */
42
43 #ifndef HALF_PIC_P
44 #define HALF_PIC_P() 0
45 #define HALF_PIC_NUMBER_PTRS 0
46 #define HALF_PIC_NUMBER_REFS 0
47 #define HALF_PIC_ENCODE(DECL)
48 #define HALF_PIC_DECLARE(NAME)
49 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
50 #define HALF_PIC_ADDRESS_P(X) 0
51 #define HALF_PIC_PTR(X) X
52 #define HALF_PIC_FINISH(STREAM)
53 #endif
54
55 /* Define the specific costs for a given cpu */
56
57 struct processor_costs {
58 int add; /* cost of an add instruction */
59 int lea; /* cost of a lea instruction */
60 int shift_var; /* variable shift costs */
61 int shift_const; /* constant shift costs */
62 int mult_init; /* cost of starting a multiply */
63 int mult_bit; /* cost of multiply per each bit set */
64 int divide; /* cost of a divide/mod */
65 };
66
67 extern struct processor_costs *ix86_cost;
68
69 /* Run-time compilation parameters selecting different hardware subsets. */
70
71 extern int target_flags;
72
73 /* Macros used in the machine description to test the flags. */
74
75 /* configure can arrange to make this 2, to force a 486. */
76 #ifndef TARGET_CPU_DEFAULT
77 #define TARGET_CPU_DEFAULT 0
78 #endif
79
80 /* Masks for the -m switches */
81 #define MASK_80387 000000000001 /* Hardware floating point */
82 #define MASK_NOTUSED1 000000000002 /* bit not currently used */
83 #define MASK_NOTUSED2 000000000004 /* bit not currently used */
84 #define MASK_RTD 000000000010 /* Use ret that pops args */
85 #define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
86 #define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
87 #define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
88 #define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
89 #define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
90 #define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
91 /* Temporary codegen switches */
92 #define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
93 #define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
94 #define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
95 #define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
96 #define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
97 #define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
98 #define MASK_STACK_PROBE 000100000000 /* Enable stack probing */
99
100 /* Use the floating point instructions */
101 #define TARGET_80387 (target_flags & MASK_80387)
102
103 /* Compile using ret insn that pops args.
104 This will not work unless you use prototypes at least
105 for all functions that can take varying numbers of args. */
106 #define TARGET_RTD (target_flags & MASK_RTD)
107
108 /* Align doubles to a two word boundary. This breaks compatibility with
109 the published ABI's for structures containing doubles, but produces
110 faster code on the pentium. */
111 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
112
113 /* Put uninitialized locals into bss, not data.
114 Meaningful only on svr3. */
115 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
116
117 /* Use IEEE floating point comparisons. These handle correctly the cases
118 where the result of a comparison is unordered. Normally SIGFPE is
119 generated in such cases, in which case this isn't needed. */
120 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
121
122 /* Functions that return a floating point value may return that value
123 in the 387 FPU or in 386 integer registers. If set, this flag causes
124 the 387 to be used, which is compatible with most calling conventions. */
125 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
126
127 /* Disable generation of FP sin, cos and sqrt operations for 387.
128 This is because FreeBSD lacks these in the math-emulator-code */
129 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
130
131 /* Don't create frame pointers for leaf functions */
132 #define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
133
134 /* Temporary switches for tuning code generation */
135
136 /* Disable 32x32->64 bit multiplies that are used for long long multiplies
137 and division by constants, but sometimes cause reload problems. */
138 #define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
139 #define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
140
141 /* Emit/Don't emit prologue as rtl */
142 #define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
143
144 /* Debug GO_IF_LEGITIMATE_ADDRESS */
145 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
146
147 /* Debug FUNCTION_ARG macros */
148 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
149
150 /* Hack macros for tuning code generation */
151 #define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
152 #define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
153
154 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
155 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
156 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
157 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
158 #define TARGET_USE_LEAVE (ix86_cpu == PROCESSOR_I386)
159 #define TARGET_PUSH_MEMORY (ix86_cpu == PROCESSOR_I386)
160 #define TARGET_ZERO_EXTEND_WITH_AND (ix86_cpu != PROCESSOR_I386 \
161 && ix86_cpu != PROCESSOR_PENTIUMPRO)
162 #define TARGET_DOUBLE_WITH_ADD (ix86_cpu != PROCESSOR_I386)
163 #define TARGET_USE_BIT_TEST (ix86_cpu == PROCESSOR_I386)
164 #define TARGET_UNROLL_STRLEN (ix86_cpu != PROCESSOR_I386)
165 #define TARGET_USE_Q_REG (ix86_cpu == PROCESSOR_PENTIUM \
166 || ix86_cpu == PROCESSOR_PENTIUMPRO)
167 #define TARGET_USE_ANY_REG (ix86_cpu == PROCESSOR_I486)
168 #define TARGET_CMOVE (ix86_arch == PROCESSOR_PENTIUMPRO)
169 #define TARGET_DEEP_BRANCH_PREDICTION (ix86_cpu == PROCESSOR_PENTIUMPRO)
170 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
171
172 #define TARGET_SWITCHES \
173 { { "80387", MASK_80387 }, \
174 { "no-80387", -MASK_80387 }, \
175 { "hard-float", MASK_80387 }, \
176 { "soft-float", -MASK_80387 }, \
177 { "no-soft-float", MASK_80387 }, \
178 { "386", 0 }, \
179 { "no-386", 0 }, \
180 { "486", 0 }, \
181 { "no-486", 0 }, \
182 { "pentium", 0 }, \
183 { "pentiumpro", 0 }, \
184 { "rtd", MASK_RTD }, \
185 { "no-rtd", -MASK_RTD }, \
186 { "align-double", MASK_ALIGN_DOUBLE }, \
187 { "no-align-double", -MASK_ALIGN_DOUBLE }, \
188 { "svr3-shlib", MASK_SVR3_SHLIB }, \
189 { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \
190 { "ieee-fp", MASK_IEEE_FP }, \
191 { "no-ieee-fp", -MASK_IEEE_FP }, \
192 { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \
193 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \
194 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \
195 { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \
196 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, \
197 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER }, \
198 { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \
199 { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \
200 { "schedule-prologue", MASK_SCHEDULE_PROLOGUE }, \
201 { "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE }, \
202 { "debug-addr", MASK_DEBUG_ADDR }, \
203 { "no-debug-addr", -MASK_DEBUG_ADDR }, \
204 { "move", -MASK_NO_MOVE }, \
205 { "no-move", MASK_NO_MOVE }, \
206 { "debug-arg", MASK_DEBUG_ARG }, \
207 { "no-debug-arg", -MASK_DEBUG_ARG }, \
208 { "stack-arg-probe", MASK_STACK_PROBE }, \
209 { "no-stack-arg-probe", -MASK_STACK_PROBE }, \
210 { "windows", 0 }, \
211 { "dll", 0 }, \
212 SUBTARGET_SWITCHES \
213 { "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT}}
214
215 /* Which processor to schedule for. The cpu attribute defines a list that
216 mirrors this list, so changes to i386.md must be made at the same time. */
217
218 enum processor_type
219 {PROCESSOR_I386, /* 80386 */
220 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
221 PROCESSOR_PENTIUM,
222 PROCESSOR_PENTIUMPRO};
223
224 #define PROCESSOR_I386_STRING "i386"
225 #define PROCESSOR_I486_STRING "i486"
226 #define PROCESSOR_I586_STRING "i586"
227 #define PROCESSOR_PENTIUM_STRING "pentium"
228 #define PROCESSOR_I686_STRING "i686"
229 #define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
230
231 extern enum processor_type ix86_cpu;
232
233 extern int ix86_arch;
234
235 /* Define the default processor. This is overridden by other tm.h files. */
236 #define PROCESSOR_DEFAULT \
237 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
238 ? PROCESSOR_I486 \
239 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
240 ? PROCESSOR_PENTIUM \
241 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
242 ? PROCESSOR_PENTIUMPRO \
243 : PROCESSOR_I386
244 #define PROCESSOR_DEFAULT_STRING \
245 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
246 ? PROCESSOR_I486_STRING \
247 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
248 ? PROCESSOR_PENTIUM_STRING \
249 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
250 ? PROCESSOR_PENTIUMPRO_STRING \
251 : PROCESSOR_I386_STRING
252
253 /* This macro is similar to `TARGET_SWITCHES' but defines names of
254 command options that have values. Its definition is an
255 initializer with a subgrouping for each command option.
256
257 Each subgrouping contains a string constant, that defines the
258 fixed part of the option name, and the address of a variable. The
259 variable, type `char *', is set to the variable part of the given
260 option if the fixed part matches. The actual option name is made
261 by appending `-m' to the specified name. */
262 #define TARGET_OPTIONS \
263 { { "cpu=", &ix86_cpu_string}, \
264 { "arch=", &ix86_arch_string}, \
265 { "reg-alloc=", &i386_reg_alloc_order }, \
266 { "regparm=", &i386_regparm_string }, \
267 { "align-loops=", &i386_align_loops_string }, \
268 { "align-jumps=", &i386_align_jumps_string }, \
269 { "align-functions=", &i386_align_funcs_string }, \
270 { "branch-cost=", &i386_branch_cost_string }, \
271 SUBTARGET_OPTIONS \
272 }
273
274 /* Sometimes certain combinations of command options do not make
275 sense on a particular target machine. You can define a macro
276 `OVERRIDE_OPTIONS' to take account of this. This macro, if
277 defined, is executed once just after all the command options have
278 been parsed.
279
280 Don't use this macro to turn on various extra optimizations for
281 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
282
283 #define OVERRIDE_OPTIONS override_options ()
284
285 /* These are meant to be redefined in the host dependent files */
286 #define SUBTARGET_SWITCHES
287 #define SUBTARGET_OPTIONS
288
289 /* Define this to change the optimizations performed by default. */
290 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
291
292 /* Specs for the compiler proper */
293
294 #ifndef CC1_CPU_SPEC
295 #define CC1_CPU_SPEC "\
296 %{!mcpu*: \
297 %{m386:-mcpu=i386 -march=i386} \
298 %{mno-486:-mcpu=i386 -march=i386} \
299 %{m486:-mcpu=i486 -march=i486} \
300 %{mno-386:-mcpu=i486 -march=i486} \
301 %{mno-pentium:-mcpu=i486 -march=i486} \
302 %{mpentium:-mcpu=pentium} \
303 %{mno-pentiumpro:-mcpu=pentium} \
304 %{mpentiumpro:-mcpu=pentiumpro}}"
305 #endif
306 \f
307 #ifndef CPP_CPU_DEFAULT_SPEC
308 #if TARGET_CPU_DEFAULT == 1
309 #define CPP_CPU_DEFAULT_SPEC "-Di486"
310 #else
311 #if TARGET_CPU_DEFAULT == 2
312 #define CPP_CPU_DEFAULT_SPEC "-Dpentium -Di586"
313 #else
314 #if TARGET_CPU_DEFAULT == 3
315 #define CPP_CPU_DEFAULT_SPEC "-Dpentiumpro -Di686"
316 #else
317 #define CPP_CPU_DEFAULT_SPEC ""
318 #endif
319 #endif
320 #endif
321 #endif /* CPP_CPU_DEFAULT_SPEC */
322
323 #ifndef CPP_CPU_SPEC
324 #define CPP_CPU_SPEC "\
325 -Di386 -Asystem(unix) -Acpu(i386) -Amachine(i386) \
326 %{mcpu=i486:-Di486} %{m486:-Di486} \
327 %{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
328 %{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686} \
329 %{!mcpu*:%{!m486:%{!mpentium*: %[cpp_cpu_default]}}}"
330 #endif
331
332 #ifndef CC1_SPEC
333 #define CC1_SPEC "%(cc1_spec) "
334 #endif
335
336 /* This macro defines names of additional specifications to put in the
337 specs that can be used in various specifications like CC1_SPEC. Its
338 definition is an initializer with a subgrouping for each command option.
339
340 Each subgrouping contains a string constant, that defines the
341 specification name, and a string constant that used by the GNU CC driver
342 program.
343
344 Do not define this macro if it does not need to do anything. */
345
346 #ifndef SUBTARGET_EXTRA_SPECS
347 #define SUBTARGET_EXTRA_SPECS
348 #endif
349
350 #define EXTRA_SPECS \
351 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
352 { "cpp_cpu", CPP_CPU_SPEC }, \
353 { "cc1_cpu", CC1_CPU_SPEC }, \
354 SUBTARGET_EXTRA_SPECS
355 \f
356 /* target machine storage layout */
357
358 /* Define for XFmode extended real floating point support.
359 This will automatically cause REAL_ARITHMETIC to be defined. */
360 #define LONG_DOUBLE_TYPE_SIZE 96
361
362 /* Define if you don't want extended real, but do want to use the
363 software floating point emulator for REAL_ARITHMETIC and
364 decimal <-> binary conversion. */
365 /* #define REAL_ARITHMETIC */
366
367 /* Define this if most significant byte of a word is the lowest numbered. */
368 /* That is true on the 80386. */
369
370 #define BITS_BIG_ENDIAN 0
371
372 /* Define this if most significant byte of a word is the lowest numbered. */
373 /* That is not true on the 80386. */
374 #define BYTES_BIG_ENDIAN 0
375
376 /* Define this if most significant word of a multiword number is the lowest
377 numbered. */
378 /* Not true for 80386 */
379 #define WORDS_BIG_ENDIAN 0
380
381 /* number of bits in an addressable storage unit */
382 #define BITS_PER_UNIT 8
383
384 /* Width in bits of a "word", which is the contents of a machine register.
385 Note that this is not necessarily the width of data type `int';
386 if using 16-bit ints on a 80386, this would still be 32.
387 But on a machine with 16-bit registers, this would be 16. */
388 #define BITS_PER_WORD 32
389
390 /* Width of a word, in units (bytes). */
391 #define UNITS_PER_WORD 4
392
393 /* Width in bits of a pointer.
394 See also the macro `Pmode' defined below. */
395 #define POINTER_SIZE 32
396
397 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
398 #define PARM_BOUNDARY 32
399
400 /* Boundary (in *bits*) on which stack pointer should be aligned. */
401 #define STACK_BOUNDARY 32
402
403 /* Allocation boundary (in *bits*) for the code of a function.
404 For i486, we get better performance by aligning to a cache
405 line (i.e. 16 byte) boundary. */
406 #define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
407
408 /* Alignment of field after `int : 0' in a structure. */
409
410 #define EMPTY_FIELD_BOUNDARY 32
411
412 /* Minimum size in bits of the largest boundary to which any
413 and all fundamental data types supported by the hardware
414 might need to be aligned. No data type wants to be aligned
415 rounder than this. The i386 supports 64-bit floating point
416 quantities, but these can be aligned on any 32-bit boundary.
417 The published ABIs say that doubles should be aligned on word
418 boundaries, but the Pentium gets better performance with them
419 aligned on 64 bit boundaries. */
420 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
421
422 /* align DFmode constants and nonaggregates */
423 #define ALIGN_DFmode (!TARGET_386)
424
425 /* If defined, a C expression to compute the alignment for a static
426 variable. TYPE is the data type, and ALIGN is the alignment that
427 the object would ordinarily have. The value of this macro is used
428 instead of that alignment to align the object.
429
430 If this macro is not defined, then ALIGN is used.
431
432 One use of this macro is to increase alignment of medium-size
433 data to make it all fit in fewer cache lines. Another is to
434 cause character arrays to be word-aligned so that `strcpy' calls
435 that copy constants to character arrays can be done inline. */
436
437 #define DATA_ALIGNMENT(TYPE, ALIGN) \
438 ((AGGREGATE_TYPE_P (TYPE) \
439 && TYPE_SIZE (TYPE) \
440 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
441 && (TREE_INT_CST_LOW (TYPE_SIZE (TYPE)) >= 256 \
442 || TREE_INT_CST_HIGH (TYPE_SIZE (TYPE))) && (ALIGN) < 256) \
443 ? 256 \
444 : TREE_CODE (TYPE) == ARRAY_TYPE \
445 ? ((TYPE_MODE (TREE_TYPE (TYPE)) == DFmode && (ALIGN) < 64) \
446 ? 64 \
447 : (TYPE_MODE (TREE_TYPE (TYPE)) == XFmode && (ALIGN) < 128) \
448 ? 128 \
449 : (ALIGN)) \
450 : TREE_CODE (TYPE) == COMPLEX_TYPE \
451 ? ((TYPE_MODE (TYPE) == DCmode && (ALIGN) < 64) \
452 ? 64 \
453 : (TYPE_MODE (TYPE) == XCmode && (ALIGN) < 128) \
454 ? 128 \
455 : (ALIGN)) \
456 : ((TREE_CODE (TYPE) == RECORD_TYPE \
457 || TREE_CODE (TYPE) == UNION_TYPE \
458 || TREE_CODE (TYPE) == QUAL_UNION_TYPE) \
459 && TYPE_FIELDS (TYPE)) \
460 ? ((DECL_MODE (TYPE_FIELDS (TYPE)) == DFmode && (ALIGN) < 64) \
461 ? 64 \
462 : (DECL_MODE (TYPE_FIELDS (TYPE)) == XFmode && (ALIGN) < 128) \
463 ? 128 \
464 : (ALIGN)) \
465 : TREE_CODE (TYPE) == REAL_TYPE \
466 ? ((TYPE_MODE (TYPE) == DFmode && (ALIGN) < 64) \
467 ? 64 \
468 : (TYPE_MODE (TYPE) == XFmode && (ALIGN) < 128) \
469 ? 128 \
470 : (ALIGN)) \
471 : (ALIGN))
472
473 /* Set this non-zero if move instructions will actually fail to work
474 when given unaligned data. */
475 #define STRICT_ALIGNMENT 0
476
477 /* If bit field type is int, don't let it cross an int,
478 and give entire struct the alignment of an int. */
479 /* Required on the 386 since it doesn't have bitfield insns. */
480 #define PCC_BITFIELD_TYPE_MATTERS 1
481
482 /* Maximum power of 2 that code can be aligned to. */
483 #define MAX_CODE_ALIGN 6 /* 64 byte alignment */
484
485 /* Align loop starts for optimal branching. */
486 #define LOOP_ALIGN(LABEL) (i386_align_loops)
487
488 /* This is how to align an instruction for optimal branching.
489 On i486 we'll get better performance by aligning on a
490 cache line (i.e. 16 byte) boundary. */
491 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (i386_align_jumps)
492
493 \f
494 /* Standard register usage. */
495
496 /* This processor has special stack-like registers. See reg-stack.c
497 for details. */
498
499 #define STACK_REGS
500 #define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
501
502 /* Number of actual hardware registers.
503 The hardware registers are assigned numbers for the compiler
504 from 0 to just below FIRST_PSEUDO_REGISTER.
505 All registers that the compiler knows about must be given numbers,
506 even those that are not normally considered general registers.
507
508 In the 80386 we give the 8 general purpose registers the numbers 0-7.
509 We number the floating point registers 8-15.
510 Note that registers 0-7 can be accessed as a short or int,
511 while only 0-3 may be used with byte `mov' instructions.
512
513 Reg 16 does not correspond to any hardware register, but instead
514 appears in the RTL as an argument pointer prior to reload, and is
515 eliminated during reloading in favor of either the stack or frame
516 pointer. */
517
518 #define FIRST_PSEUDO_REGISTER 17
519
520 /* 1 for registers that have pervasive standard uses
521 and are not available for the register allocator.
522 On the 80386, the stack pointer is such, as is the arg pointer. */
523 #define FIXED_REGISTERS \
524 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
525 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
526
527 /* 1 for registers not available across function calls.
528 These must include the FIXED_REGISTERS and also any
529 registers that can be used without being saved.
530 The latter must include the registers where values are returned
531 and the register where structure-value addresses are passed.
532 Aside from that, you can include as many other registers as you like. */
533
534 #define CALL_USED_REGISTERS \
535 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
536 { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
537
538 /* Order in which to allocate registers. Each register must be
539 listed once, even those in FIXED_REGISTERS. List frame pointer
540 late and fixed registers last. Note that, in general, we prefer
541 registers listed in CALL_USED_REGISTERS, keeping the others
542 available for storage of persistent values.
543
544 Three different versions of REG_ALLOC_ORDER have been tried:
545
546 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
547 but slower code on simple functions returning values in eax.
548
549 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
550 perl 4.036 due to not being able to create a DImode register (to hold a 2
551 word union).
552
553 If the order is eax, edx, ecx, ... it produces better code for simple
554 functions, and a slightly slower compiler. Users complained about the code
555 generated by allocating edx first, so restore the 'natural' order of things. */
556
557 #define REG_ALLOC_ORDER \
558 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
559 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
560
561 /* A C statement (sans semicolon) to choose the order in which to
562 allocate hard registers for pseudo-registers local to a basic
563 block.
564
565 Store the desired register order in the array `reg_alloc_order'.
566 Element 0 should be the register to allocate first; element 1, the
567 next register; and so on.
568
569 The macro body should not assume anything about the contents of
570 `reg_alloc_order' before execution of the macro.
571
572 On most machines, it is not necessary to define this macro. */
573
574 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
575
576 /* Macro to conditionally modify fixed_regs/call_used_regs. */
577 #define CONDITIONAL_REGISTER_USAGE \
578 { \
579 if (flag_pic) \
580 { \
581 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
582 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
583 } \
584 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
585 { \
586 int i; \
587 HARD_REG_SET x; \
588 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
589 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
590 if (TEST_HARD_REG_BIT (x, i)) \
591 fixed_regs[i] = call_used_regs[i] = 1; \
592 } \
593 }
594
595 /* Return number of consecutive hard regs needed starting at reg REGNO
596 to hold something of mode MODE.
597 This is ordinarily the length in words of a value of mode MODE
598 but can be less for certain modes in special long registers.
599
600 Actually there are no two word move instructions for consecutive
601 registers. And only registers 0-3 may have mov byte instructions
602 applied to them.
603 */
604
605 #define HARD_REGNO_NREGS(REGNO, MODE) \
606 (FP_REGNO_P (REGNO) ? 1 \
607 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
608
609 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
610 On the 80386, the first 4 cpu registers can hold any mode
611 while the floating point registers may hold only floating point.
612 Make it clear that the fp regs could not hold a 16-byte float. */
613
614 /* The casts to int placate a compiler on a microvax,
615 for cross-compiler testing. */
616
617 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
618 ((REGNO) < 2 ? 1 \
619 : (REGNO) < 4 ? 1 \
620 : FP_REGNO_P (REGNO) \
621 ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
622 || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
623 && GET_MODE_UNIT_SIZE (MODE) <= (LONG_DOUBLE_TYPE_SIZE == 96 ? 12 : 8))\
624 : (int) (MODE) != (int) QImode ? 1 \
625 : (reload_in_progress | reload_completed) == 1)
626
627 /* Value is 1 if it is a good idea to tie two pseudo registers
628 when one has mode MODE1 and one has mode MODE2.
629 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
630 for any hard reg, then this must be 0 for correct output. */
631
632 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
633
634 /* Specify the registers used for certain standard purposes.
635 The values of these macros are register numbers. */
636
637 /* on the 386 the pc register is %eip, and is not usable as a general
638 register. The ordinary mov instructions won't work */
639 /* #define PC_REGNUM */
640
641 /* Register to use for pushing function arguments. */
642 #define STACK_POINTER_REGNUM 7
643
644 /* Base register for access to local variables of the function. */
645 #define FRAME_POINTER_REGNUM 6
646
647 /* First floating point reg */
648 #define FIRST_FLOAT_REG 8
649
650 /* First & last stack-like regs */
651 #define FIRST_STACK_REG FIRST_FLOAT_REG
652 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
653
654 /* Value should be nonzero if functions must have frame pointers.
655 Zero means the frame pointer need not be set up (and parms
656 may be accessed via the stack pointer) in functions that seem suitable.
657 This is computed in `reload', in reload1.c. */
658 #define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
659
660 /* Base register for access to arguments of the function. */
661 #define ARG_POINTER_REGNUM 16
662
663 /* Register in which static-chain is passed to a function. */
664 #define STATIC_CHAIN_REGNUM 2
665
666 /* Register to hold the addressing base for position independent
667 code access to data items. */
668 #define PIC_OFFSET_TABLE_REGNUM 3
669
670 /* Register in which address to store a structure value
671 arrives in the function. On the 386, the prologue
672 copies this from the stack to register %eax. */
673 #define STRUCT_VALUE_INCOMING 0
674
675 /* Place in which caller passes the structure value address.
676 0 means push the value on the stack like an argument. */
677 #define STRUCT_VALUE 0
678
679 /* A C expression which can inhibit the returning of certain function
680 values in registers, based on the type of value. A nonzero value
681 says to return the function value in memory, just as large
682 structures are always returned. Here TYPE will be a C expression
683 of type `tree', representing the data type of the value.
684
685 Note that values of mode `BLKmode' must be explicitly handled by
686 this macro. Also, the option `-fpcc-struct-return' takes effect
687 regardless of this macro. On most systems, it is possible to
688 leave the macro undefined; this causes a default definition to be
689 used, whose value is the constant 1 for `BLKmode' values, and 0
690 otherwise.
691
692 Do not use this macro to indicate that structures and unions
693 should always be returned in memory. You should instead use
694 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
695
696 #define RETURN_IN_MEMORY(TYPE) \
697 ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
698
699 \f
700 /* Define the classes of registers for register constraints in the
701 machine description. Also define ranges of constants.
702
703 One of the classes must always be named ALL_REGS and include all hard regs.
704 If there is more than one class, another class must be named NO_REGS
705 and contain no registers.
706
707 The name GENERAL_REGS must be the name of a class (or an alias for
708 another name such as ALL_REGS). This is the class of registers
709 that is allowed by "g" or "r" in a register constraint.
710 Also, registers outside this class are allocated only when
711 instructions express preferences for them.
712
713 The classes must be numbered in nondecreasing order; that is,
714 a larger-numbered class must never be contained completely
715 in a smaller-numbered class.
716
717 For any two classes, it is very desirable that there be another
718 class that represents their union.
719
720 It might seem that class BREG is unnecessary, since no useful 386
721 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
722 and the "b" register constraint is useful in asms for syscalls. */
723
724 enum reg_class
725 {
726 NO_REGS,
727 AREG, DREG, CREG, BREG,
728 AD_REGS, /* %eax/%edx for DImode */
729 Q_REGS, /* %eax %ebx %ecx %edx */
730 SIREG, DIREG,
731 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
732 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
733 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
734 FLOAT_REGS,
735 ALL_REGS, LIM_REG_CLASSES
736 };
737
738 #define N_REG_CLASSES (int) LIM_REG_CLASSES
739
740 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
741
742 /* Give names of register classes as strings for dump file. */
743
744 #define REG_CLASS_NAMES \
745 { "NO_REGS", \
746 "AREG", "DREG", "CREG", "BREG", \
747 "AD_REGS", \
748 "Q_REGS", \
749 "SIREG", "DIREG", \
750 "INDEX_REGS", \
751 "GENERAL_REGS", \
752 "FP_TOP_REG", "FP_SECOND_REG", \
753 "FLOAT_REGS", \
754 "ALL_REGS" }
755
756 /* Define which registers fit in which classes.
757 This is an initializer for a vector of HARD_REG_SET
758 of length N_REG_CLASSES. */
759
760 #define REG_CLASS_CONTENTS \
761 { {0}, \
762 {0x1}, {0x2}, {0x4}, {0x8}, /* AREG, DREG, CREG, BREG */ \
763 {0x3}, /* AD_REGS */ \
764 {0xf}, /* Q_REGS */ \
765 {0x10}, {0x20}, /* SIREG, DIREG */ \
766 {0x7f}, /* INDEX_REGS */ \
767 {0x100ff}, /* GENERAL_REGS */ \
768 {0x0100}, {0x0200}, /* FP_TOP_REG, FP_SECOND_REG */ \
769 {0xff00}, /* FLOAT_REGS */ \
770 {0x1ffff}}
771
772 /* The same information, inverted:
773 Return the class number of the smallest class containing
774 reg number REGNO. This could be a conditional expression
775 or could index an array. */
776
777 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
778
779 /* When defined, the compiler allows registers explicitly used in the
780 rtl to be used as spill registers but prevents the compiler from
781 extending the lifetime of these registers. */
782
783 #define SMALL_REGISTER_CLASSES 1
784
785 #define QI_REG_P(X) \
786 (REG_P (X) && REGNO (X) < 4)
787 #define NON_QI_REG_P(X) \
788 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
789
790 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
791 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
792
793 #define STACK_REG_P(xop) (REG_P (xop) && \
794 REGNO (xop) >= FIRST_STACK_REG && \
795 REGNO (xop) <= LAST_STACK_REG)
796
797 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
798
799 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
800
801 /* Try to maintain the accuracy of the death notes for regs satisfying the
802 following. Important for stack like regs, to know when to pop. */
803
804 /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
805
806 /* 1 if register REGNO can magically overlap other regs.
807 Note that nonzero values work only in very special circumstances. */
808
809 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
810
811 /* The class value for index registers, and the one for base regs. */
812
813 #define INDEX_REG_CLASS INDEX_REGS
814 #define BASE_REG_CLASS GENERAL_REGS
815
816 /* Get reg_class from a letter such as appears in the machine description. */
817
818 #define REG_CLASS_FROM_LETTER(C) \
819 ((C) == 'r' ? GENERAL_REGS : \
820 (C) == 'q' ? Q_REGS : \
821 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
822 ? FLOAT_REGS \
823 : NO_REGS) : \
824 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
825 ? FP_TOP_REG \
826 : NO_REGS) : \
827 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
828 ? FP_SECOND_REG \
829 : NO_REGS) : \
830 (C) == 'a' ? AREG : \
831 (C) == 'b' ? BREG : \
832 (C) == 'c' ? CREG : \
833 (C) == 'd' ? DREG : \
834 (C) == 'A' ? AD_REGS : \
835 (C) == 'D' ? DIREG : \
836 (C) == 'S' ? SIREG : NO_REGS)
837
838 /* The letters I, J, K, L and M in a register constraint string
839 can be used to stand for particular ranges of immediate operands.
840 This macro defines what the ranges are.
841 C is the letter, and VALUE is a constant value.
842 Return 1 if VALUE is in the range specified by C.
843
844 I is for non-DImode shifts.
845 J is for DImode shifts.
846 K and L are for an `andsi' optimization.
847 M is for shifts that can be executed by the "lea" opcode.
848 */
849
850 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
851 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
852 (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
853 (C) == 'K' ? (VALUE) == 0xff : \
854 (C) == 'L' ? (VALUE) == 0xffff : \
855 (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
856 (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
857 (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
858 0)
859
860 /* Similar, but for floating constants, and defining letters G and H.
861 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
862 TARGET_387 isn't set, because the stack register converter may need to
863 load 0.0 into the function value register. */
864
865 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
866 ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
867
868 /* Place additional restrictions on the register class to use when it
869 is necessary to be able to hold a value of mode MODE in a reload
870 register for which class CLASS would ordinarily be used. */
871
872 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
873 ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
874 ? Q_REGS : (CLASS))
875
876 /* Given an rtx X being reloaded into a reg required to be
877 in class CLASS, return the class of reg to actually use.
878 In general this is just CLASS; but on some machines
879 in some cases it is preferable to use a more restrictive class.
880 On the 80386 series, we prevent floating constants from being
881 reloaded into floating registers (since no move-insn can do that)
882 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
883
884 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
885 QImode must go into class Q_REGS.
886 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
887 movdf to do mem-to-mem moves through integer regs. */
888
889 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
890 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
891 : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
892 : ((CLASS) == ALL_REGS \
893 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
894 : (CLASS))
895
896 /* If we are copying between general and FP registers, we need a memory
897 location. */
898
899 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
900 ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
901 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
902
903 /* Return the maximum number of consecutive registers
904 needed to represent mode MODE in a register of class CLASS. */
905 /* On the 80386, this is the size of MODE in words,
906 except in the FP regs, where a single reg is always enough. */
907 #define CLASS_MAX_NREGS(CLASS, MODE) \
908 (FLOAT_CLASS_P (CLASS) ? 1 : \
909 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
910
911 /* A C expression whose value is nonzero if pseudos that have been
912 assigned to registers of class CLASS would likely be spilled
913 because registers of CLASS are needed for spill registers.
914
915 The default value of this macro returns 1 if CLASS has exactly one
916 register and zero otherwise. On most machines, this default
917 should be used. Only define this macro to some other expression
918 if pseudo allocated by `local-alloc.c' end up in memory because
919 their hard registers were needed for spill registers. If this
920 macro returns nonzero for those classes, those pseudos will only
921 be allocated by `global.c', which knows how to reallocate the
922 pseudo to another register. If there would not be another
923 register available for reallocation, you should not change the
924 definition of this macro since the only effect of such a
925 definition would be to slow down register allocation. */
926
927 #define CLASS_LIKELY_SPILLED_P(CLASS) \
928 (((CLASS) == AREG) \
929 || ((CLASS) == DREG) \
930 || ((CLASS) == CREG) \
931 || ((CLASS) == BREG) \
932 || ((CLASS) == AD_REGS) \
933 || ((CLASS) == SIREG) \
934 || ((CLASS) == DIREG))
935
936 \f
937 /* Stack layout; function entry, exit and calling. */
938
939 /* Define this if pushing a word on the stack
940 makes the stack pointer a smaller address. */
941 #define STACK_GROWS_DOWNWARD
942
943 /* Define this if the nominal address of the stack frame
944 is at the high-address end of the local variables;
945 that is, each additional local variable allocated
946 goes at a more negative offset in the frame. */
947 #define FRAME_GROWS_DOWNWARD
948
949 /* Offset within stack frame to start allocating local variables at.
950 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
951 first local allocated. Otherwise, it is the offset to the BEGINNING
952 of the first local allocated. */
953 #define STARTING_FRAME_OFFSET 0
954
955 /* If we generate an insn to push BYTES bytes,
956 this says how many the stack pointer really advances by.
957 On 386 pushw decrements by exactly 2 no matter what the position was.
958 On the 386 there is no pushb; we use pushw instead, and this
959 has the effect of rounding up to 2. */
960
961 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
962
963 /* Offset of first parameter from the argument pointer register value. */
964 #define FIRST_PARM_OFFSET(FNDECL) 0
965
966 /* Value is the number of bytes of arguments automatically
967 popped when returning from a subroutine call.
968 FUNDECL is the declaration node of the function (as a tree),
969 FUNTYPE is the data type of the function (as a tree),
970 or for a library call it is an identifier node for the subroutine name.
971 SIZE is the number of bytes of arguments passed on the stack.
972
973 On the 80386, the RTD insn may be used to pop them if the number
974 of args is fixed, but if the number is variable then the caller
975 must pop them all. RTD can't be used for library calls now
976 because the library is compiled with the Unix compiler.
977 Use of RTD is a selectable option, since it is incompatible with
978 standard Unix calling sequences. If the option is not selected,
979 the caller must always pop the args.
980
981 The attribute stdcall is equivalent to RTD on a per module basis. */
982
983 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
984 (i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
985
986 /* Define how to find the value returned by a function.
987 VALTYPE is the data type of the value (as a tree).
988 If the precise function being called is known, FUNC is its FUNCTION_DECL;
989 otherwise, FUNC is 0. */
990 #define FUNCTION_VALUE(VALTYPE, FUNC) \
991 gen_rtx_REG (TYPE_MODE (VALTYPE), \
992 VALUE_REGNO (TYPE_MODE (VALTYPE)))
993
994 /* Define how to find the value returned by a library function
995 assuming the value has mode MODE. */
996
997 #define LIBCALL_VALUE(MODE) \
998 gen_rtx_REG (MODE, VALUE_REGNO (MODE))
999
1000 /* Define the size of the result block used for communication between
1001 untyped_call and untyped_return. The block contains a DImode value
1002 followed by the block used by fnsave and frstor. */
1003
1004 #define APPLY_RESULT_SIZE (8+108)
1005
1006 /* 1 if N is a possible register number for function argument passing. */
1007 #define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
1008
1009 /* Define a data type for recording info about an argument list
1010 during the scan of that argument list. This data type should
1011 hold all necessary information about the function itself
1012 and about the args processed so far, enough to enable macros
1013 such as FUNCTION_ARG to determine where the next arg should go. */
1014
1015 typedef struct i386_args {
1016 int words; /* # words passed so far */
1017 int nregs; /* # registers available for passing */
1018 int regno; /* next available register number */
1019 } CUMULATIVE_ARGS;
1020
1021 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1022 for a call to a function whose data type is FNTYPE.
1023 For a library call, FNTYPE is 0. */
1024
1025 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1026 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1027
1028 /* Update the data in CUM to advance over an argument
1029 of mode MODE and data type TYPE.
1030 (TYPE is null for libcalls where that information may not be available.) */
1031
1032 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1033 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
1034
1035 /* Define where to put the arguments to a function.
1036 Value is zero to push the argument on the stack,
1037 or a hard register in which to store the argument.
1038
1039 MODE is the argument's machine mode.
1040 TYPE is the data type of the argument (as a tree).
1041 This is null for libcalls where that information may
1042 not be available.
1043 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1044 the preceding args and about the function being called.
1045 NAMED is nonzero if this argument is a named parameter
1046 (otherwise it is an extra parameter matching an ellipsis). */
1047
1048 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1049 (function_arg (&CUM, MODE, TYPE, NAMED))
1050
1051 /* For an arg passed partly in registers and partly in memory,
1052 this is the number of registers used.
1053 For args passed entirely in registers or entirely in memory, zero. */
1054
1055 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1056 (function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
1057
1058 /* This macro is invoked just before the start of a function.
1059 It is used here to output code for -fpic that will load the
1060 return address into %ebx. */
1061
1062 #undef ASM_OUTPUT_FUNCTION_PREFIX
1063 #define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
1064 asm_output_function_prefix (FILE, FNNAME)
1065
1066 /* This macro generates the assembly code for function entry.
1067 FILE is a stdio stream to output the code to.
1068 SIZE is an int: how many units of temporary storage to allocate.
1069 Refer to the array `regs_ever_live' to determine which registers
1070 to save; `regs_ever_live[I]' is nonzero if register number I
1071 is ever used in the function. This macro is responsible for
1072 knowing which registers should not be saved even if used. */
1073
1074 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1075 function_prologue (FILE, SIZE)
1076
1077 /* Output assembler code to FILE to increment profiler label # LABELNO
1078 for profiling a function entry. */
1079
1080 #define FUNCTION_PROFILER(FILE, LABELNO) \
1081 { \
1082 if (flag_pic) \
1083 { \
1084 fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
1085 LPREFIX, (LABELNO)); \
1086 fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
1087 } \
1088 else \
1089 { \
1090 fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1091 fprintf (FILE, "\tcall _mcount\n"); \
1092 } \
1093 }
1094
1095
1096 /* There are three profiling modes for basic blocks available.
1097 The modes are selected at compile time by using the options
1098 -a or -ax of the gnu compiler.
1099 The variable `profile_block_flag' will be set according to the
1100 selected option.
1101
1102 profile_block_flag == 0, no option used:
1103
1104 No profiling done.
1105
1106 profile_block_flag == 1, -a option used.
1107
1108 Count frequency of execution of every basic block.
1109
1110 profile_block_flag == 2, -ax option used.
1111
1112 Generate code to allow several different profiling modes at run time.
1113 Available modes are:
1114 Produce a trace of all basic blocks.
1115 Count frequency of jump instructions executed.
1116 In every mode it is possible to start profiling upon entering
1117 certain functions and to disable profiling of some other functions.
1118
1119 The result of basic-block profiling will be written to a file `bb.out'.
1120 If the -ax option is used parameters for the profiling will be read
1121 from file `bb.in'.
1122
1123 */
1124
1125 /* The following macro shall output assembler code to FILE
1126 to initialize basic-block profiling.
1127
1128 If profile_block_flag == 2
1129
1130 Output code to call the subroutine `__bb_init_trace_func'
1131 and pass two parameters to it. The first parameter is
1132 the address of a block allocated in the object module.
1133 The second parameter is the number of the first basic block
1134 of the function.
1135
1136 The name of the block is a local symbol made with this statement:
1137
1138 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1139
1140 Of course, since you are writing the definition of
1141 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1142 can take a short cut in the definition of this macro and use the
1143 name that you know will result.
1144
1145 The number of the first basic block of the function is
1146 passed to the macro in BLOCK_OR_LABEL.
1147
1148 If described in a virtual assembler language the code to be
1149 output looks like:
1150
1151 parameter1 <- LPBX0
1152 parameter2 <- BLOCK_OR_LABEL
1153 call __bb_init_trace_func
1154
1155 else if profile_block_flag != 0
1156
1157 Output code to call the subroutine `__bb_init_func'
1158 and pass one single parameter to it, which is the same
1159 as the first parameter to `__bb_init_trace_func'.
1160
1161 The first word of this parameter is a flag which will be nonzero if
1162 the object module has already been initialized. So test this word
1163 first, and do not call `__bb_init_func' if the flag is nonzero.
1164 Note: When profile_block_flag == 2 the test need not be done
1165 but `__bb_init_trace_func' *must* be called.
1166
1167 BLOCK_OR_LABEL may be used to generate a label number as a
1168 branch destination in case `__bb_init_func' will not be called.
1169
1170 If described in a virtual assembler language the code to be
1171 output looks like:
1172
1173 cmp (LPBX0),0
1174 jne local_label
1175 parameter1 <- LPBX0
1176 call __bb_init_func
1177 local_label:
1178
1179 */
1180
1181 #undef FUNCTION_BLOCK_PROFILER
1182 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1183 do \
1184 { \
1185 static int num_func = 0; \
1186 rtx xops[8]; \
1187 char block_table[80], false_label[80]; \
1188 \
1189 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1190 \
1191 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1192 xops[5] = stack_pointer_rtx; \
1193 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1194 \
1195 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1196 \
1197 switch (profile_block_flag) \
1198 { \
1199 \
1200 case 2: \
1201 \
1202 xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
1203 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_trace_func")); \
1204 xops[6] = GEN_INT (8); \
1205 \
1206 output_asm_insn (AS1(push%L2,%2), xops); \
1207 if (!flag_pic) \
1208 output_asm_insn (AS1(push%L1,%1), xops); \
1209 else \
1210 { \
1211 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1212 output_asm_insn (AS1 (push%L7,%7), xops); \
1213 } \
1214 \
1215 output_asm_insn (AS1(call,%P3), xops); \
1216 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1217 \
1218 break; \
1219 \
1220 default: \
1221 \
1222 ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
1223 \
1224 xops[0] = const0_rtx; \
1225 xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, false_label)); \
1226 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_func")); \
1227 xops[4] = gen_rtx_MEM (Pmode, xops[1]); \
1228 xops[6] = GEN_INT (4); \
1229 \
1230 CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
1231 \
1232 output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
1233 output_asm_insn (AS1(jne,%2), xops); \
1234 \
1235 if (!flag_pic) \
1236 output_asm_insn (AS1(push%L1,%1), xops); \
1237 else \
1238 { \
1239 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1240 output_asm_insn (AS1 (push%L7,%7), xops); \
1241 } \
1242 \
1243 output_asm_insn (AS1(call,%P3), xops); \
1244 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1245 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
1246 num_func++; \
1247 \
1248 break; \
1249 \
1250 } \
1251 } \
1252 while (0)
1253
1254 /* The following macro shall output assembler code to FILE
1255 to increment a counter associated with basic block number BLOCKNO.
1256
1257 If profile_block_flag == 2
1258
1259 Output code to initialize the global structure `__bb' and
1260 call the function `__bb_trace_func' which will increment the
1261 counter.
1262
1263 `__bb' consists of two words. In the first word the number
1264 of the basic block has to be stored. In the second word
1265 the address of a block allocated in the object module
1266 has to be stored.
1267
1268 The basic block number is given by BLOCKNO.
1269
1270 The address of the block is given by the label created with
1271
1272 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1273
1274 by FUNCTION_BLOCK_PROFILER.
1275
1276 Of course, since you are writing the definition of
1277 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1278 can take a short cut in the definition of this macro and use the
1279 name that you know will result.
1280
1281 If described in a virtual assembler language the code to be
1282 output looks like:
1283
1284 move BLOCKNO -> (__bb)
1285 move LPBX0 -> (__bb+4)
1286 call __bb_trace_func
1287
1288 Note that function `__bb_trace_func' must not change the
1289 machine state, especially the flag register. To grant
1290 this, you must output code to save and restore registers
1291 either in this macro or in the macros MACHINE_STATE_SAVE
1292 and MACHINE_STATE_RESTORE. The last two macros will be
1293 used in the function `__bb_trace_func', so you must make
1294 sure that the function prologue does not change any
1295 register prior to saving it with MACHINE_STATE_SAVE.
1296
1297 else if profile_block_flag != 0
1298
1299 Output code to increment the counter directly.
1300 Basic blocks are numbered separately from zero within each
1301 compiled object module. The count associated with block number
1302 BLOCKNO is at index BLOCKNO in an array of words; the name of
1303 this array is a local symbol made with this statement:
1304
1305 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1306
1307 Of course, since you are writing the definition of
1308 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1309 can take a short cut in the definition of this macro and use the
1310 name that you know will result.
1311
1312 If described in a virtual assembler language the code to be
1313 output looks like:
1314
1315 inc (LPBX2+4*BLOCKNO)
1316
1317 */
1318
1319 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1320 do \
1321 { \
1322 rtx xops[8], cnt_rtx; \
1323 char counts[80]; \
1324 char *block_table = counts; \
1325 \
1326 switch (profile_block_flag) \
1327 { \
1328 \
1329 case 2: \
1330 \
1331 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1332 \
1333 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1334 xops[2] = GEN_INT ((BLOCKNO)); \
1335 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_func")); \
1336 xops[4] = gen_rtx_SYMBOL_REF (VOIDmode, "__bb"); \
1337 xops[5] = plus_constant (xops[4], 4); \
1338 xops[0] = gen_rtx_MEM (SImode, xops[4]); \
1339 xops[6] = gen_rtx_MEM (SImode, xops[5]); \
1340 \
1341 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1342 \
1343 fprintf(FILE, "\tpushf\n"); \
1344 output_asm_insn (AS2(mov%L0,%2,%0), xops); \
1345 if (flag_pic) \
1346 { \
1347 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1348 output_asm_insn (AS1(push%L7,%7), xops); \
1349 output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
1350 output_asm_insn (AS2(mov%L6,%7,%6), xops); \
1351 output_asm_insn (AS1(pop%L7,%7), xops); \
1352 } \
1353 else \
1354 output_asm_insn (AS2(mov%L6,%1,%6), xops); \
1355 output_asm_insn (AS1(call,%P3), xops); \
1356 fprintf(FILE, "\tpopf\n"); \
1357 \
1358 break; \
1359 \
1360 default: \
1361 \
1362 ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
1363 cnt_rtx = gen_rtx_SYMBOL_REF (VOIDmode, counts); \
1364 SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
1365 \
1366 if (BLOCKNO) \
1367 cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
1368 \
1369 if (flag_pic) \
1370 cnt_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, cnt_rtx); \
1371 \
1372 xops[0] = gen_rtx_MEM (SImode, cnt_rtx); \
1373 output_asm_insn (AS1(inc%L0,%0), xops); \
1374 \
1375 break; \
1376 \
1377 } \
1378 } \
1379 while (0)
1380
1381 /* The following macro shall output assembler code to FILE
1382 to indicate a return from function during basic-block profiling.
1383
1384 If profiling_block_flag == 2:
1385
1386 Output assembler code to call function `__bb_trace_ret'.
1387
1388 Note that function `__bb_trace_ret' must not change the
1389 machine state, especially the flag register. To grant
1390 this, you must output code to save and restore registers
1391 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1392 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1393 used in the function `__bb_trace_ret', so you must make
1394 sure that the function prologue does not change any
1395 register prior to saving it with MACHINE_STATE_SAVE_RET.
1396
1397 else if profiling_block_flag != 0:
1398
1399 The macro will not be used, so it need not distinguish
1400 these cases.
1401 */
1402
1403 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1404 do \
1405 { \
1406 rtx xops[1]; \
1407 \
1408 xops[0] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")); \
1409 \
1410 output_asm_insn (AS1(call,%P0), xops); \
1411 \
1412 } \
1413 while (0)
1414
1415 /* The function `__bb_trace_func' is called in every basic block
1416 and is not allowed to change the machine state. Saving (restoring)
1417 the state can either be done in the BLOCK_PROFILER macro,
1418 before calling function (rsp. after returning from function)
1419 `__bb_trace_func', or it can be done inside the function by
1420 defining the macros:
1421
1422 MACHINE_STATE_SAVE(ID)
1423 MACHINE_STATE_RESTORE(ID)
1424
1425 In the latter case care must be taken, that the prologue code
1426 of function `__bb_trace_func' does not already change the
1427 state prior to saving it with MACHINE_STATE_SAVE.
1428
1429 The parameter `ID' is a string identifying a unique macro use.
1430
1431 On the i386 the initialization code at the begin of
1432 function `__bb_trace_func' contains a `sub' instruction
1433 therefore we handle save and restore of the flag register
1434 in the BLOCK_PROFILER macro. */
1435
1436 #define MACHINE_STATE_SAVE(ID) \
1437 asm (" pushl %eax"); \
1438 asm (" pushl %ecx"); \
1439 asm (" pushl %edx"); \
1440 asm (" pushl %esi");
1441
1442 #define MACHINE_STATE_RESTORE(ID) \
1443 asm (" popl %esi"); \
1444 asm (" popl %edx"); \
1445 asm (" popl %ecx"); \
1446 asm (" popl %eax");
1447
1448 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1449 the stack pointer does not matter. The value is tested only in
1450 functions that have frame pointers.
1451 No definition is equivalent to always zero. */
1452 /* Note on the 386 it might be more efficient not to define this since
1453 we have to restore it ourselves from the frame pointer, in order to
1454 use pop */
1455
1456 #define EXIT_IGNORE_STACK 1
1457
1458 /* This macro generates the assembly code for function exit,
1459 on machines that need it. If FUNCTION_EPILOGUE is not defined
1460 then individual return instructions are generated for each
1461 return statement. Args are same as for FUNCTION_PROLOGUE.
1462
1463 The function epilogue should not depend on the current stack pointer!
1464 It should use the frame pointer only. This is mandatory because
1465 of alloca; we also take advantage of it to omit stack adjustments
1466 before returning.
1467
1468 If the last non-note insn in the function is a BARRIER, then there
1469 is no need to emit a function prologue, because control does not fall
1470 off the end. This happens if the function ends in an "exit" call, or
1471 if a `return' insn is emitted directly into the function. */
1472
1473 #if 0
1474 #define FUNCTION_BEGIN_EPILOGUE(FILE) \
1475 do { \
1476 rtx last = get_last_insn (); \
1477 if (last && GET_CODE (last) == NOTE) \
1478 last = prev_nonnote_insn (last); \
1479 /* if (! last || GET_CODE (last) != BARRIER) \
1480 function_epilogue (FILE, SIZE);*/ \
1481 } while (0)
1482 #endif
1483
1484 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1485 function_epilogue (FILE, SIZE)
1486
1487 /* Output assembler code for a block containing the constant parts
1488 of a trampoline, leaving space for the variable parts. */
1489
1490 /* On the 386, the trampoline contains three instructions:
1491 mov #STATIC,ecx
1492 mov #FUNCTION,eax
1493 jmp @eax */
1494 #define TRAMPOLINE_TEMPLATE(FILE) \
1495 { \
1496 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
1497 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1498 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1499 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
1500 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1501 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1502 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
1503 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
1504 }
1505
1506 /* Length in units of the trampoline for entering a nested function. */
1507
1508 #define TRAMPOLINE_SIZE 12
1509
1510 /* Emit RTL insns to initialize the variable parts of a trampoline.
1511 FNADDR is an RTX for the address of the function's pure code.
1512 CXT is an RTX for the static chain value for the function. */
1513
1514 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1515 { \
1516 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 1)), CXT); \
1517 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 6)), FNADDR); \
1518 }
1519 \f
1520 /* Definitions for register eliminations.
1521
1522 This is an array of structures. Each structure initializes one pair
1523 of eliminable registers. The "from" register number is given first,
1524 followed by "to". Eliminations of the same "from" register are listed
1525 in order of preference.
1526
1527 We have two registers that can be eliminated on the i386. First, the
1528 frame pointer register can often be eliminated in favor of the stack
1529 pointer register. Secondly, the argument pointer register can always be
1530 eliminated; it is replaced with either the stack or frame pointer. */
1531
1532 #define ELIMINABLE_REGS \
1533 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1534 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1535 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1536
1537 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1538 Frame pointer elimination is automatically handled.
1539
1540 For the i386, if frame pointer elimination is being done, we would like to
1541 convert ap into sp, not fp.
1542
1543 All other eliminations are valid. */
1544
1545 #define CAN_ELIMINATE(FROM, TO) \
1546 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1547 ? ! frame_pointer_needed \
1548 : 1)
1549
1550 /* Define the offset between two registers, one to be eliminated, and the other
1551 its replacement, at the start of a routine. */
1552
1553 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1554 { \
1555 if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1556 (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
1557 else \
1558 { \
1559 int regno; \
1560 int offset = 0; \
1561 \
1562 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1563 if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
1564 || ((current_function_uses_pic_offset_table \
1565 || current_function_uses_const_pool) \
1566 && flag_pic && regno == PIC_OFFSET_TABLE_REGNUM)) \
1567 offset += 4; \
1568 \
1569 (OFFSET) = offset + get_frame_size (); \
1570 \
1571 if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1572 (OFFSET) += 4; /* Skip saved PC */ \
1573 } \
1574 }
1575 \f
1576 /* Addressing modes, and classification of registers for them. */
1577
1578 /* #define HAVE_POST_INCREMENT */
1579 /* #define HAVE_POST_DECREMENT */
1580
1581 /* #define HAVE_PRE_DECREMENT */
1582 /* #define HAVE_PRE_INCREMENT */
1583
1584 /* Macros to check register numbers against specific register classes. */
1585
1586 /* These assume that REGNO is a hard or pseudo reg number.
1587 They give nonzero only if REGNO is a hard reg of the suitable class
1588 or a pseudo reg currently allocated to a suitable hard reg.
1589 Since they use reg_renumber, they are safe only once reg_renumber
1590 has been allocated, which happens in local-alloc.c. */
1591
1592 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1593 ((REGNO) < STACK_POINTER_REGNUM \
1594 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1595
1596 #define REGNO_OK_FOR_BASE_P(REGNO) \
1597 ((REGNO) <= STACK_POINTER_REGNUM \
1598 || (REGNO) == ARG_POINTER_REGNUM \
1599 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1600
1601 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1602 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1603
1604 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1605 and check its validity for a certain class.
1606 We have two alternate definitions for each of them.
1607 The usual definition accepts all pseudo regs; the other rejects
1608 them unless they have been allocated suitable hard regs.
1609 The symbol REG_OK_STRICT causes the latter definition to be used.
1610
1611 Most source files want to accept pseudo regs in the hope that
1612 they will get allocated to the class that the insn wants them to be in.
1613 Source files for reload pass need to be strict.
1614 After reload, it makes no difference, since pseudo regs have
1615 been eliminated by then. */
1616
1617
1618 /* Non strict versions, pseudos are ok */
1619 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1620 (REGNO (X) < STACK_POINTER_REGNUM \
1621 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1622
1623 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1624 (REGNO (X) <= STACK_POINTER_REGNUM \
1625 || REGNO (X) == ARG_POINTER_REGNUM \
1626 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1627
1628 #define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
1629 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1630
1631 /* Strict versions, hard registers only */
1632 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1633 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1634 #define REG_OK_FOR_STRREG_STRICT_P(X) \
1635 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
1636
1637 #ifndef REG_OK_STRICT
1638 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1639 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1640 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
1641
1642 #else
1643 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1644 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1645 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
1646 #endif
1647
1648 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1649 that is a valid memory address for an instruction.
1650 The MODE argument is the machine mode for the MEM expression
1651 that wants to use this address.
1652
1653 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1654 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1655
1656 See legitimize_pic_address in i386.c for details as to what
1657 constitutes a legitimate address when -fpic is used. */
1658
1659 #define MAX_REGS_PER_ADDRESS 2
1660
1661 #define CONSTANT_ADDRESS_P(X) \
1662 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1663 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1664 || GET_CODE (X) == HIGH)
1665
1666 /* Nonzero if the constant value X is a legitimate general operand.
1667 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1668
1669 #define LEGITIMATE_CONSTANT_P(X) 1
1670
1671 #ifdef REG_OK_STRICT
1672 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1673 { \
1674 if (legitimate_address_p (MODE, X, 1)) \
1675 goto ADDR; \
1676 }
1677
1678 #else
1679 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1680 { \
1681 if (legitimate_address_p (MODE, X, 0)) \
1682 goto ADDR; \
1683 }
1684
1685 #endif
1686
1687 /* Try machine-dependent ways of modifying an illegitimate address
1688 to be legitimate. If we find one, return the new, valid address.
1689 This macro is used in only one place: `memory_address' in explow.c.
1690
1691 OLDX is the address as it was before break_out_memory_refs was called.
1692 In some cases it is useful to look at this to decide what needs to be done.
1693
1694 MODE and WIN are passed so that this macro can use
1695 GO_IF_LEGITIMATE_ADDRESS.
1696
1697 It is always safe for this macro to do nothing. It exists to recognize
1698 opportunities to optimize the output.
1699
1700 For the 80386, we handle X+REG by loading X into a register R and
1701 using R+REG. R will go in a general reg and indexing will be used.
1702 However, if REG is a broken-out memory address or multiplication,
1703 nothing needs to be done because REG can certainly go in a general reg.
1704
1705 When -fpic is used, special handling is needed for symbolic references.
1706 See comments by legitimize_pic_address in i386.c for details. */
1707
1708 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1709 { \
1710 (X) = legitimize_address (X, OLDX, MODE); \
1711 if (memory_address_p (MODE, X)) \
1712 goto WIN; \
1713 }
1714
1715 #define REWRITE_ADDRESS(x) rewrite_address(x)
1716
1717 /* Nonzero if the constant value X is a legitimate general operand
1718 when generating PIC code. It is given that flag_pic is on and
1719 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1720
1721 #define LEGITIMATE_PIC_OPERAND_P(X) \
1722 (! SYMBOLIC_CONST (X) \
1723 || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
1724
1725 #define SYMBOLIC_CONST(X) \
1726 (GET_CODE (X) == SYMBOL_REF \
1727 || GET_CODE (X) == LABEL_REF \
1728 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1729
1730 /* Go to LABEL if ADDR (a legitimate address expression)
1731 has an effect that depends on the machine mode it is used for.
1732 On the 80386, only postdecrement and postincrement address depend thus
1733 (the amount of decrement or increment being the length of the operand). */
1734 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1735 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1736 \f
1737 /* Define this macro if references to a symbol must be treated
1738 differently depending on something about the variable or
1739 function named by the symbol (such as what section it is in).
1740
1741 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1742 so that we may access it directly in the GOT. */
1743
1744 #define ENCODE_SECTION_INFO(DECL) \
1745 do \
1746 { \
1747 if (flag_pic) \
1748 { \
1749 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1750 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1751 \
1752 if (TARGET_DEBUG_ADDR \
1753 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
1754 { \
1755 fprintf (stderr, "Encode %s, public = %d\n", \
1756 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
1757 TREE_PUBLIC (DECL)); \
1758 } \
1759 \
1760 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1761 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1762 || ! TREE_PUBLIC (DECL)); \
1763 } \
1764 } \
1765 while (0)
1766
1767 /* Initialize data used by insn expanders. This is called from
1768 init_emit, once for each function, before code is generated.
1769 For 386, clear stack slot assignments remembered from previous
1770 functions. */
1771
1772 #define INIT_EXPANDERS clear_386_stack_locals ()
1773
1774 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
1775 codes once the function is being compiled into assembly code, but
1776 not before. (It is not done before, because in the case of
1777 compiling an inline function, it would lead to multiple PIC
1778 prologues being included in functions which used inline functions
1779 and were compiled to assembly language.) */
1780
1781 #define FINALIZE_PIC \
1782 do \
1783 { \
1784 extern int current_function_uses_pic_offset_table; \
1785 \
1786 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
1787 } \
1788 while (0)
1789
1790 \f
1791 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1792 with arguments ARGS is a valid machine specific attribute for DECL.
1793 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1794
1795 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1796 (i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1797
1798 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1799 with arguments ARGS is a valid machine specific attribute for TYPE.
1800 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1801
1802 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1803 (i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1804
1805 /* If defined, a C expression whose value is zero if the attributes on
1806 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1807 two if they are nearly compatible (which causes a warning to be
1808 generated). */
1809
1810 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1811 (i386_comp_type_attributes (TYPE1, TYPE2))
1812
1813 /* If defined, a C statement that assigns default attributes to newly
1814 defined TYPE. */
1815
1816 /* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
1817
1818 /* Max number of args passed in registers. If this is more than 3, we will
1819 have problems with ebx (register #4), since it is a caller save register and
1820 is also used as the pic register in ELF. So for now, don't allow more than
1821 3 registers to be passed in registers. */
1822
1823 #define REGPARM_MAX 3
1824
1825 \f
1826 /* Specify the machine mode that this machine uses
1827 for the index in the tablejump instruction. */
1828 #define CASE_VECTOR_MODE Pmode
1829
1830 /* Define as C expression which evaluates to nonzero if the tablejump
1831 instruction expects the table to contain offsets from the address of the
1832 table.
1833 Do not define this if the table should contain absolute addresses. */
1834 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1835
1836 /* Specify the tree operation to be used to convert reals to integers.
1837 This should be changed to take advantage of fist --wfs ??
1838 */
1839 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1840
1841 /* This is the kind of divide that is easiest to do in the general case. */
1842 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1843
1844 /* Define this as 1 if `char' should by default be signed; else as 0. */
1845 #define DEFAULT_SIGNED_CHAR 1
1846
1847 /* Max number of bytes we can move from memory to memory
1848 in one reasonably fast instruction. */
1849 #define MOVE_MAX 4
1850
1851 /* The number of scalar move insns which should be generated instead
1852 of a string move insn or a library call. Increasing the value
1853 will always make code faster, but eventually incurs high cost in
1854 increased code size.
1855
1856 If you don't define this, a reasonable default is used.
1857
1858 Make this large on i386, since the block move is very inefficient with small
1859 blocks, and the hard register needs of the block move require much reload
1860 work. */
1861
1862 #define MOVE_RATIO 5
1863
1864 /* Define if shifts truncate the shift count
1865 which implies one can omit a sign-extension or zero-extension
1866 of a shift count. */
1867 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1868
1869 /* #define SHIFT_COUNT_TRUNCATED */
1870
1871 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1872 is done just by pretending it is already truncated. */
1873 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1874
1875 /* We assume that the store-condition-codes instructions store 0 for false
1876 and some other value for true. This is the value stored for true. */
1877
1878 #define STORE_FLAG_VALUE 1
1879
1880 /* When a prototype says `char' or `short', really pass an `int'.
1881 (The 386 can't easily push less than an int.) */
1882
1883 #define PROMOTE_PROTOTYPES
1884
1885 /* Specify the machine mode that pointers have.
1886 After generation of rtl, the compiler makes no further distinction
1887 between pointers and any other objects of this machine mode. */
1888 #define Pmode SImode
1889
1890 /* A function address in a call instruction
1891 is a byte address (for indexing purposes)
1892 so give the MEM rtx a byte's mode. */
1893 #define FUNCTION_MODE QImode
1894 \f
1895 /* A part of a C `switch' statement that describes the relative costs
1896 of constant RTL expressions. It must contain `case' labels for
1897 expression codes `const_int', `const', `symbol_ref', `label_ref'
1898 and `const_double'. Each case must ultimately reach a `return'
1899 statement to return the relative cost of the use of that kind of
1900 constant value in an expression. The cost may depend on the
1901 precise value of the constant, which is available for examination
1902 in X, and the rtx code of the expression in which it is contained,
1903 found in OUTER_CODE.
1904
1905 CODE is the expression code--redundant, since it can be obtained
1906 with `GET_CODE (X)'. */
1907
1908 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1909 case CONST_INT: \
1910 return (unsigned) INTVAL (RTX) < 256 ? 0 : 1; \
1911 case CONST: \
1912 case LABEL_REF: \
1913 case SYMBOL_REF: \
1914 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
1915 \
1916 case CONST_DOUBLE: \
1917 { \
1918 int code; \
1919 if (GET_MODE (RTX) == VOIDmode) \
1920 return 2; \
1921 \
1922 code = standard_80387_constant_p (RTX); \
1923 return code == 1 ? 0 : \
1924 code == 2 ? 1 : \
1925 2; \
1926 }
1927
1928 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
1929 #define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
1930
1931 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1932 This can be used, for example, to indicate how costly a multiply
1933 instruction is. In writing this macro, you can use the construct
1934 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1935 instructions. OUTER_CODE is the code of the expression in which X
1936 is contained.
1937
1938 This macro is optional; do not define it if the default cost
1939 assumptions are adequate for the target machine. */
1940
1941 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1942 case ASHIFT: \
1943 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1944 && GET_MODE (XEXP (X, 0)) == SImode) \
1945 { \
1946 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1947 \
1948 if (value == 1) \
1949 return COSTS_N_INSNS (ix86_cost->add) \
1950 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1951 \
1952 if (value == 2 || value == 3) \
1953 return COSTS_N_INSNS (ix86_cost->lea) \
1954 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1955 } \
1956 /* fall through */ \
1957 \
1958 case ROTATE: \
1959 case ASHIFTRT: \
1960 case LSHIFTRT: \
1961 case ROTATERT: \
1962 if (GET_MODE (XEXP (X, 0)) == DImode) \
1963 { \
1964 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1965 { \
1966 if (INTVAL (XEXP (X, 1)) > 32) \
1967 return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
1968 return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
1969 } \
1970 return ((GET_CODE (XEXP (X, 1)) == AND \
1971 ? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
1972 : COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
1973 + rtx_cost(XEXP (X, 0), OUTER_CODE)); \
1974 } \
1975 return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
1976 ? ix86_cost->shift_const \
1977 : ix86_cost->shift_var) \
1978 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1979 \
1980 case MULT: \
1981 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1982 { \
1983 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1984 int nbits = 0; \
1985 \
1986 if (value == 2) \
1987 return COSTS_N_INSNS (ix86_cost->add) \
1988 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1989 if (value == 4 || value == 8) \
1990 return COSTS_N_INSNS (ix86_cost->lea) \
1991 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1992 \
1993 while (value != 0) \
1994 { \
1995 nbits++; \
1996 value >>= 1; \
1997 } \
1998 \
1999 if (nbits == 1) \
2000 return COSTS_N_INSNS (ix86_cost->shift_const) \
2001 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2002 \
2003 return COSTS_N_INSNS (ix86_cost->mult_init \
2004 + nbits * ix86_cost->mult_bit) \
2005 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2006 } \
2007 \
2008 else /* This is arbitrary */ \
2009 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2010 + 7 * ix86_cost->mult_bit); \
2011 \
2012 case DIV: \
2013 case UDIV: \
2014 case MOD: \
2015 case UMOD: \
2016 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2017 \
2018 case PLUS: \
2019 if (GET_CODE (XEXP (X, 0)) == REG \
2020 && GET_MODE (XEXP (X, 0)) == SImode \
2021 && GET_CODE (XEXP (X, 1)) == PLUS) \
2022 return COSTS_N_INSNS (ix86_cost->lea); \
2023 \
2024 /* fall through */ \
2025 case AND: \
2026 case IOR: \
2027 case XOR: \
2028 case MINUS: \
2029 if (GET_MODE (X) == DImode) \
2030 return COSTS_N_INSNS (ix86_cost->add) * 2 \
2031 + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
2032 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2033 + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
2034 << (GET_MODE (XEXP (X, 1)) != DImode)); \
2035 case NEG: \
2036 case NOT: \
2037 if (GET_MODE (X) == DImode) \
2038 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
2039 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
2040
2041
2042 /* An expression giving the cost of an addressing mode that contains
2043 ADDRESS. If not defined, the cost is computed from the ADDRESS
2044 expression and the `CONST_COSTS' values.
2045
2046 For most CISC machines, the default cost is a good approximation
2047 of the true cost of the addressing mode. However, on RISC
2048 machines, all instructions normally have the same length and
2049 execution time. Hence all addresses will have equal costs.
2050
2051 In cases where more than one form of an address is known, the form
2052 with the lowest cost will be used. If multiple forms have the
2053 same, lowest, cost, the one that is the most complex will be used.
2054
2055 For example, suppose an address that is equal to the sum of a
2056 register and a constant is used twice in the same basic block.
2057 When this macro is not defined, the address will be computed in a
2058 register and memory references will be indirect through that
2059 register. On machines where the cost of the addressing mode
2060 containing the sum is no higher than that of a simple indirect
2061 reference, this will produce an additional instruction and
2062 possibly require an additional register. Proper specification of
2063 this macro eliminates this overhead for such machines.
2064
2065 Similar use of this macro is made in strength reduction of loops.
2066
2067 ADDRESS need not be valid as an address. In such a case, the cost
2068 is not relevant and can be any value; invalid addresses need not be
2069 assigned a different cost.
2070
2071 On machines where an address involving more than one register is as
2072 cheap as an address computation involving only one register,
2073 defining `ADDRESS_COST' to reflect this can cause two registers to
2074 be live over a region of code where only one would have been if
2075 `ADDRESS_COST' were not defined in that manner. This effect should
2076 be considered in the definition of this macro. Equivalent costs
2077 should probably only be given to addresses with different numbers
2078 of registers on machines with lots of registers.
2079
2080 This macro will normally either not be defined or be defined as a
2081 constant.
2082
2083 For i386, it is better to use a complex address than let gcc copy
2084 the address into a reg and make a new pseudo. But not if the address
2085 requires to two regs - that would mean more pseudos with longer
2086 lifetimes. */
2087
2088 #define ADDRESS_COST(RTX) \
2089 ((CONSTANT_P (RTX) \
2090 || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
2091 && REG_P (XEXP (RTX, 0)))) ? 0 \
2092 : REG_P (RTX) ? 1 \
2093 : 2)
2094
2095 /* A C expression for the cost of moving data of mode M between a
2096 register and memory. A value of 2 is the default; this cost is
2097 relative to those in `REGISTER_MOVE_COST'.
2098
2099 If moving between registers and memory is more expensive than
2100 between two registers, you should define this macro to express the
2101 relative cost.
2102
2103 On the i386, copying between floating-point and fixed-point
2104 registers is expensive. */
2105
2106 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2107 (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
2108 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
2109 : 2)
2110
2111
2112 /* A C expression for the cost of moving data of mode M between a
2113 register and memory. A value of 2 is the default; this cost is
2114 relative to those in `REGISTER_MOVE_COST'.
2115
2116 If moving between registers and memory is more expensive than
2117 between two registers, you should define this macro to express the
2118 relative cost. */
2119
2120 /* #define MEMORY_MOVE_COST(M,C,I) 2 */
2121
2122 /* A C expression for the cost of a branch instruction. A value of 1
2123 is the default; other values are interpreted relative to that. */
2124
2125 #define BRANCH_COST i386_branch_cost
2126
2127 /* Define this macro as a C expression which is nonzero if accessing
2128 less than a word of memory (i.e. a `char' or a `short') is no
2129 faster than accessing a word of memory, i.e., if such access
2130 require more than one instruction or if there is no difference in
2131 cost between byte and (aligned) word loads.
2132
2133 When this macro is not defined, the compiler will access a field by
2134 finding the smallest containing object; when it is defined, a
2135 fullword load will be used if alignment permits. Unless bytes
2136 accesses are faster than word accesses, using word accesses is
2137 preferable since it may eliminate subsequent memory access if
2138 subsequent accesses occur to other fields in the same word of the
2139 structure, but to different bytes. */
2140
2141 #define SLOW_BYTE_ACCESS 0
2142
2143 /* Nonzero if access to memory by shorts is slow and undesirable. */
2144 #define SLOW_SHORT_ACCESS 0
2145
2146 /* Define this macro if zero-extension (of a `char' or `short' to an
2147 `int') can be done faster if the destination is a register that is
2148 known to be zero.
2149
2150 If you define this macro, you must have instruction patterns that
2151 recognize RTL structures like this:
2152
2153 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2154
2155 and likewise for `HImode'. */
2156
2157 /* #define SLOW_ZERO_EXTEND */
2158
2159 /* Define this macro to be the value 1 if unaligned accesses have a
2160 cost many times greater than aligned accesses, for example if they
2161 are emulated in a trap handler.
2162
2163 When this macro is non-zero, the compiler will act as if
2164 `STRICT_ALIGNMENT' were non-zero when generating code for block
2165 moves. This can cause significantly more instructions to be
2166 produced. Therefore, do not set this macro non-zero if unaligned
2167 accesses only add a cycle or two to the time for a memory access.
2168
2169 If the value of this macro is always zero, it need not be defined. */
2170
2171 /* #define SLOW_UNALIGNED_ACCESS 0 */
2172
2173 /* Define this macro to inhibit strength reduction of memory
2174 addresses. (On some machines, such strength reduction seems to do
2175 harm rather than good.) */
2176
2177 /* #define DONT_REDUCE_ADDR */
2178
2179 /* Define this macro if it is as good or better to call a constant
2180 function address than to call an address kept in a register.
2181
2182 Desirable on the 386 because a CALL with a constant address is
2183 faster than one with a register address. */
2184
2185 #define NO_FUNCTION_CSE
2186
2187 /* Define this macro if it is as good or better for a function to call
2188 itself with an explicit address than to call an address kept in a
2189 register. */
2190
2191 #define NO_RECURSIVE_FUNCTION_CSE
2192
2193 /* A C statement (sans semicolon) to update the integer variable COST
2194 based on the relationship between INSN that is dependent on
2195 DEP_INSN through the dependence LINK. The default is to make no
2196 adjustment to COST. This can be used for example to specify to
2197 the scheduler that an output- or anti-dependence does not incur
2198 the same cost as a data-dependence. */
2199
2200 #define ADJUST_COST(insn,link,dep_insn,cost) \
2201 { \
2202 rtx next_inst; \
2203 if (GET_CODE (dep_insn) == CALL_INSN) \
2204 (cost) = 0; \
2205 \
2206 else if (GET_CODE (dep_insn) == INSN \
2207 && GET_CODE (PATTERN (dep_insn)) == SET \
2208 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG \
2209 && GET_CODE (insn) == INSN \
2210 && GET_CODE (PATTERN (insn)) == SET \
2211 && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)), \
2212 SET_SRC (PATTERN (insn)))) \
2213 { \
2214 (cost) = 0; \
2215 } \
2216 \
2217 else if (GET_CODE (insn) == JUMP_INSN) \
2218 { \
2219 (cost) = 0; \
2220 } \
2221 \
2222 if (TARGET_PENTIUM) \
2223 { \
2224 if (cost !=0 && is_fp_insn (insn) && is_fp_insn (dep_insn) \
2225 && !is_fp_dest (dep_insn)) \
2226 { \
2227 (cost) = 0; \
2228 } \
2229 \
2230 if (agi_dependent (insn, dep_insn)) \
2231 { \
2232 (cost) = 3; \
2233 } \
2234 else if (GET_CODE (insn) == INSN \
2235 && GET_CODE (PATTERN (insn)) == SET \
2236 && SET_DEST (PATTERN (insn)) == cc0_rtx \
2237 && (next_inst = next_nonnote_insn (insn)) \
2238 && GET_CODE (next_inst) == JUMP_INSN) \
2239 { /* compare probably paired with jump */ \
2240 (cost) = 0; \
2241 } \
2242 } \
2243 else \
2244 if (!is_fp_dest (dep_insn)) \
2245 { \
2246 if(!agi_dependent (insn, dep_insn)) \
2247 (cost) = 0; \
2248 else if (TARGET_486) \
2249 (cost) = 2; \
2250 } \
2251 else \
2252 if (is_fp_store (insn) && is_fp_insn (dep_insn) \
2253 && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn)) \
2254 && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))) \
2255 && (GET_CODE (NEXT_INSN (insn)) == INSN) \
2256 && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN) \
2257 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE) \
2258 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) \
2259 == NOTE_INSN_LOOP_END)) \
2260 { \
2261 (cost) = 3; \
2262 } \
2263 }
2264
2265
2266 #define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
2267 { \
2268 if (is_fp_store (last_insn) && is_fp_insn (insn) \
2269 && NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
2270 && NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
2271 && (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
2272 && (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
2273 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
2274 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
2275 == NOTE_INSN_LOOP_END)) \
2276 { \
2277 (blockage) = 3; \
2278 } \
2279 }
2280
2281 \f
2282 /* Add any extra modes needed to represent the condition code.
2283
2284 For the i386, we need separate modes when floating-point equality
2285 comparisons are being done. */
2286
2287 #define EXTRA_CC_MODES CCFPEQmode
2288
2289 /* Define the names for the modes specified above. */
2290 #define EXTRA_CC_NAMES "CCFPEQ"
2291
2292 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2293 return the mode to be used for the comparison.
2294
2295 For floating-point equality comparisons, CCFPEQmode should be used.
2296 VOIDmode should be used in all other cases. */
2297
2298 #define SELECT_CC_MODE(OP,X,Y) \
2299 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2300 && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
2301
2302 /* Define the information needed to generate branch and scc insns. This is
2303 stored from the compare operation. Note that we can't use "rtx" here
2304 since it hasn't been defined! */
2305
2306 extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
2307
2308 /* Tell final.c how to eliminate redundant test instructions. */
2309
2310 /* Here we define machine-dependent flags and fields in cc_status
2311 (see `conditions.h'). */
2312
2313 /* Set if the cc value was actually from the 80387 and
2314 we are testing eax directly (i.e. no sahf) */
2315 #define CC_TEST_AX 020000
2316
2317 /* Set if the cc value is actually in the 80387, so a floating point
2318 conditional branch must be output. */
2319 #define CC_IN_80387 04000
2320
2321 /* Set if the CC value was stored in a nonstandard way, so that
2322 the state of equality is indicated by zero in the carry bit. */
2323 #define CC_Z_IN_NOT_C 010000
2324
2325 /* Set if the CC value was actually from the 80387 and loaded directly
2326 into the eflags instead of via eax/sahf. */
2327 #define CC_FCOMI 040000
2328
2329 /* Store in cc_status the expressions
2330 that the condition codes will describe
2331 after execution of an instruction whose pattern is EXP.
2332 Do not alter them if the instruction would not alter the cc's. */
2333
2334 #define NOTICE_UPDATE_CC(EXP, INSN) \
2335 notice_update_cc((EXP))
2336
2337 /* Output a signed jump insn. Use template NORMAL ordinarily, or
2338 FLOAT following a floating point comparison.
2339 Use NO_OV following an arithmetic insn that set the cc's
2340 before a test insn that was deleted.
2341 NO_OV may be zero, meaning final should reinsert the test insn
2342 because the jump cannot be handled properly without it. */
2343
2344 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
2345 { \
2346 if (cc_prev_status.flags & CC_IN_80387) \
2347 return FLOAT; \
2348 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
2349 return NO_OV; \
2350 return NORMAL; \
2351 }
2352 \f
2353 /* Control the assembler format that we output, to the extent
2354 this does not vary between assemblers. */
2355
2356 /* How to refer to registers in assembler output.
2357 This sequence is indexed by compiler's hard-register-number (see above). */
2358
2359 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2360 For non floating point regs, the following are the HImode names.
2361
2362 For float regs, the stack top is sometimes referred to as "%st(0)"
2363 instead of just "%st". PRINT_REG handles this with the "y" code. */
2364
2365 #define HI_REGISTER_NAMES \
2366 {"ax","dx","cx","bx","si","di","bp","sp", \
2367 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
2368
2369 #define REGISTER_NAMES HI_REGISTER_NAMES
2370
2371 /* Table of additional register names to use in user input. */
2372
2373 #define ADDITIONAL_REGISTER_NAMES \
2374 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2375 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2376 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2377 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2378
2379 /* Note we are omitting these since currently I don't know how
2380 to get gcc to use these, since they want the same but different
2381 number as al, and ax.
2382 */
2383
2384 /* note the last four are not really qi_registers, but
2385 the md will have to never output movb into one of them
2386 only a movw . There is no movb into the last four regs */
2387
2388 #define QI_REGISTER_NAMES \
2389 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
2390
2391 /* These parallel the array above, and can be used to access bits 8:15
2392 of regs 0 through 3. */
2393
2394 #define QI_HIGH_REGISTER_NAMES \
2395 {"ah", "dh", "ch", "bh", }
2396
2397 /* How to renumber registers for dbx and gdb. */
2398
2399 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
2400 #define DBX_REGISTER_NUMBER(n) \
2401 ((n) == 0 ? 0 : \
2402 (n) == 1 ? 2 : \
2403 (n) == 2 ? 1 : \
2404 (n) == 3 ? 3 : \
2405 (n) == 4 ? 6 : \
2406 (n) == 5 ? 7 : \
2407 (n) == 6 ? 4 : \
2408 (n) == 7 ? 5 : \
2409 (n) + 4)
2410
2411 /* Before the prologue, RA is at 0(%esp). */
2412 #define INCOMING_RETURN_ADDR_RTX \
2413 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2414
2415 /* After the prologue, RA is at -4(AP) in the current frame. */
2416 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2417 ((COUNT) == 0 \
2418 ? gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, arg_pointer_rtx, GEN_INT(-4)))\
2419 : gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, (FRAME), GEN_INT(4))))
2420
2421 /* PC is dbx register 8; let's use that column for RA. */
2422 #define DWARF_FRAME_RETURN_COLUMN 8
2423
2424 /* Before the prologue, the top of the frame is at 4(%esp). */
2425 #define INCOMING_FRAME_SP_OFFSET 4
2426
2427 /* This is how to output the definition of a user-level label named NAME,
2428 such as the label on a static function or variable NAME. */
2429
2430 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2431 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2432
2433 /* This is how to output an assembler line defining a `double' constant. */
2434
2435 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2436 do { long l[2]; \
2437 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2438 fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
2439 } while (0)
2440
2441 /* This is how to output a `long double' extended real constant. */
2442
2443 #undef ASM_OUTPUT_LONG_DOUBLE
2444 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2445 do { long l[3]; \
2446 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
2447 fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
2448 } while (0)
2449
2450 /* This is how to output an assembler line defining a `float' constant. */
2451
2452 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2453 do { long l; \
2454 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2455 fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
2456 } while (0)
2457
2458 /* Store in OUTPUT a string (made with alloca) containing
2459 an assembler-name for a local static variable named NAME.
2460 LABELNO is an integer which is different for each call. */
2461
2462 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2463 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2464 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2465
2466
2467
2468 /* This is how to output an assembler line defining an `int' constant. */
2469
2470 #define ASM_OUTPUT_INT(FILE,VALUE) \
2471 ( fprintf (FILE, "%s ", ASM_LONG), \
2472 output_addr_const (FILE,(VALUE)), \
2473 putc('\n',FILE))
2474
2475 /* Likewise for `char' and `short' constants. */
2476 /* is this supposed to do align too?? */
2477
2478 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2479 ( fprintf (FILE, "%s ", ASM_SHORT), \
2480 output_addr_const (FILE,(VALUE)), \
2481 putc('\n',FILE))
2482
2483 /*
2484 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2485 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2486 output_addr_const (FILE,(VALUE)), \
2487 fputs (",", FILE), \
2488 output_addr_const (FILE,(VALUE)), \
2489 fputs (" >> 8\n",FILE))
2490 */
2491
2492
2493 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2494 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2495 output_addr_const (FILE, (VALUE)), \
2496 putc ('\n', FILE))
2497
2498 /* This is how to output an assembler line for a numeric constant byte. */
2499
2500 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2501 fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
2502
2503 /* This is how to output an insn to push a register on the stack.
2504 It need not be very fast code. */
2505
2506 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2507 fprintf (FILE, "\tpushl %%e%s\n", reg_names[REGNO])
2508
2509 /* This is how to output an insn to pop a register from the stack.
2510 It need not be very fast code. */
2511
2512 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2513 fprintf (FILE, "\tpopl %%e%s\n", reg_names[REGNO])
2514
2515 /* This is how to output an element of a case-vector that is absolute.
2516 */
2517
2518 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2519 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
2520
2521 /* This is how to output an element of a case-vector that is relative.
2522 We don't use these on the 386 yet, because the ATT assembler can't do
2523 forward reference the differences.
2524 */
2525
2526 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2527 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
2528
2529 /* Define the parentheses used to group arithmetic operations
2530 in assembler code. */
2531
2532 #define ASM_OPEN_PAREN ""
2533 #define ASM_CLOSE_PAREN ""
2534
2535 /* Define results of standard character escape sequences. */
2536 #define TARGET_BELL 007
2537 #define TARGET_BS 010
2538 #define TARGET_TAB 011
2539 #define TARGET_NEWLINE 012
2540 #define TARGET_VT 013
2541 #define TARGET_FF 014
2542 #define TARGET_CR 015
2543 \f
2544 /* Print operand X (an rtx) in assembler syntax to file FILE.
2545 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2546 The CODE z takes the size of operand from the following digit, and
2547 outputs b,w,or l respectively.
2548
2549 On the 80386, we use several such letters:
2550 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
2551 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
2552 R -- print the prefix for register names.
2553 z -- print the opcode suffix for the size of the current operand.
2554 * -- print a star (in certain assembler syntax)
2555 P -- if PIC, print an @PLT suffix.
2556 X -- don't print any sort of PIC '@' suffix for a symbol.
2557 J -- print jump insn for arithmetic_comparison_operator.
2558 s -- ??? something to do with double shifts. not actually used, afaik.
2559 C -- print a conditional move suffix corresponding to the op code.
2560 c -- likewise, but reverse the condition.
2561 F,f -- likewise, but for floating-point. */
2562
2563 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2564 ((CODE) == '*')
2565
2566 /* Print the name of a register based on its machine mode and number.
2567 If CODE is 'w', pretend the mode is HImode.
2568 If CODE is 'b', pretend the mode is QImode.
2569 If CODE is 'k', pretend the mode is SImode.
2570 If CODE is 'h', pretend the reg is the `high' byte register.
2571 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2572
2573 extern char *hi_reg_name[];
2574 extern char *qi_reg_name[];
2575 extern char *qi_high_reg_name[];
2576
2577 #define PRINT_REG(X, CODE, FILE) \
2578 do { if (REGNO (X) == ARG_POINTER_REGNUM) \
2579 abort (); \
2580 fprintf (FILE, "%s", RP); \
2581 switch ((CODE == 'w' ? 2 \
2582 : CODE == 'b' ? 1 \
2583 : CODE == 'k' ? 4 \
2584 : CODE == 'y' ? 3 \
2585 : CODE == 'h' ? 0 \
2586 : GET_MODE_SIZE (GET_MODE (X)))) \
2587 { \
2588 case 3: \
2589 if (STACK_TOP_P (X)) \
2590 { \
2591 fputs ("st(0)", FILE); \
2592 break; \
2593 } \
2594 case 4: \
2595 case 8: \
2596 case 12: \
2597 if (! FP_REG_P (X)) fputs ("e", FILE); \
2598 case 2: \
2599 fputs (hi_reg_name[REGNO (X)], FILE); \
2600 break; \
2601 case 1: \
2602 fputs (qi_reg_name[REGNO (X)], FILE); \
2603 break; \
2604 case 0: \
2605 fputs (qi_high_reg_name[REGNO (X)], FILE); \
2606 break; \
2607 } \
2608 } while (0)
2609
2610 #define PRINT_OPERAND(FILE, X, CODE) \
2611 print_operand (FILE, X, CODE)
2612
2613 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2614 print_operand_address (FILE, ADDR)
2615
2616 /* Print the name of a register for based on its machine mode and number.
2617 This macro is used to print debugging output.
2618 This macro is different from PRINT_REG in that it may be used in
2619 programs that are not linked with aux-output.o. */
2620
2621 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2622 do { static char *hi_name[] = HI_REGISTER_NAMES; \
2623 static char *qi_name[] = QI_REGISTER_NAMES; \
2624 fprintf (FILE, "%d %s", REGNO (X), RP); \
2625 if (REGNO (X) == ARG_POINTER_REGNUM) \
2626 { fputs ("argp", FILE); break; } \
2627 if (STACK_TOP_P (X)) \
2628 { fputs ("st(0)", FILE); break; } \
2629 if (FP_REG_P (X)) \
2630 { fputs (hi_name[REGNO(X)], FILE); break; } \
2631 switch (GET_MODE_SIZE (GET_MODE (X))) \
2632 { \
2633 default: \
2634 fputs ("e", FILE); \
2635 case 2: \
2636 fputs (hi_name[REGNO (X)], FILE); \
2637 break; \
2638 case 1: \
2639 fputs (qi_name[REGNO (X)], FILE); \
2640 break; \
2641 } \
2642 } while (0)
2643
2644 /* Output the prefix for an immediate operand, or for an offset operand. */
2645 #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
2646 #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
2647
2648 /* Routines in libgcc that return floats must return them in an fp reg,
2649 just as other functions do which return such values.
2650 These macros make that happen. */
2651
2652 #define FLOAT_VALUE_TYPE float
2653 #define INTIFY(FLOATVAL) FLOATVAL
2654
2655 /* Nonzero if INSN magically clobbers register REGNO. */
2656
2657 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
2658 (FP_REGNO_P (REGNO) \
2659 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
2660 */
2661
2662 /* a letter which is not needed by the normal asm syntax, which
2663 we can use for operand syntax in the extended asm */
2664
2665 #define ASM_OPERAND_LETTER '#'
2666 #define RET return ""
2667 #define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
2668 \f
2669 /* Helper macros to expand a binary/unary operator if needed */
2670 #define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
2671 do { \
2672 if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
2673 FAIL; \
2674 } while (0)
2675
2676 #define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
2677 do { \
2678 if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
2679 FAIL; \
2680 } while (0)
2681
2682 \f
2683 /* Functions in i386.c */
2684 extern void override_options ();
2685 extern void order_regs_for_local_alloc ();
2686 extern char *output_strlen_unroll ();
2687 extern struct rtx_def *i386_sext16_if_const ();
2688 extern int i386_aligned_p ();
2689 extern int i386_cc_probably_useless_p ();
2690 extern int i386_valid_decl_attribute_p ();
2691 extern int i386_valid_type_attribute_p ();
2692 extern int i386_return_pops_args ();
2693 extern int i386_comp_type_attributes ();
2694 extern void init_cumulative_args ();
2695 extern void function_arg_advance ();
2696 extern struct rtx_def *function_arg ();
2697 extern int function_arg_partial_nregs ();
2698 extern char *output_strlen_unroll ();
2699 extern void output_op_from_reg ();
2700 extern void output_to_reg ();
2701 extern char *singlemove_string ();
2702 extern char *output_move_double ();
2703 extern char *output_move_memory ();
2704 extern char *output_move_pushmem ();
2705 extern int standard_80387_constant_p ();
2706 extern char *output_move_const_single ();
2707 extern int symbolic_operand ();
2708 extern int call_insn_operand ();
2709 extern int expander_call_insn_operand ();
2710 extern int symbolic_reference_mentioned_p ();
2711 extern int ix86_expand_binary_operator ();
2712 extern int ix86_binary_operator_ok ();
2713 extern int ix86_expand_unary_operator ();
2714 extern int ix86_unary_operator_ok ();
2715 extern void emit_pic_move ();
2716 extern void function_prologue ();
2717 extern int simple_386_epilogue ();
2718 extern void function_epilogue ();
2719 extern int legitimate_address_p ();
2720 extern struct rtx_def *legitimize_pic_address ();
2721 extern struct rtx_def *legitimize_address ();
2722 extern void print_operand ();
2723 extern void print_operand_address ();
2724 extern void notice_update_cc ();
2725 extern void split_di ();
2726 extern int binary_387_op ();
2727 extern int shift_op ();
2728 extern int VOIDmode_compare_op ();
2729 extern char *output_387_binary_op ();
2730 extern char *output_fix_trunc ();
2731 extern char *output_float_compare ();
2732 extern char *output_fp_cc0_set ();
2733 extern void save_386_machine_status ();
2734 extern void restore_386_machine_status ();
2735 extern void clear_386_stack_locals ();
2736 extern struct rtx_def *assign_386_stack_local ();
2737 extern int is_mul ();
2738 extern int is_div ();
2739 extern int last_to_set_cc ();
2740 extern int doesnt_set_condition_code ();
2741 extern int sets_condition_code ();
2742 extern int str_immediate_operand ();
2743 extern int is_fp_insn ();
2744 extern int is_fp_dest ();
2745 extern int is_fp_store ();
2746 extern int agi_dependent ();
2747 extern int reg_mentioned_in_mem ();
2748
2749 #ifdef NOTYET
2750 extern struct rtx_def *copy_all_rtx ();
2751 extern void rewrite_address ();
2752 #endif
2753
2754 /* Variables in i386.c */
2755 extern char *ix86_cpu_string; /* for -mcpu=<xxx> */
2756 extern char *ix86_arch_string; /* for -march=<xxx> */
2757 extern char *i386_reg_alloc_order; /* register allocation order */
2758 extern char *i386_regparm_string; /* # registers to use to pass args */
2759 extern char *i386_align_loops_string; /* power of two alignment for loops */
2760 extern char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
2761 extern char *i386_align_funcs_string; /* power of two alignment for functions */
2762 extern char *i386_branch_cost_string; /* values 1-5: see jump.c */
2763 extern int i386_regparm; /* i386_regparm_string as a number */
2764 extern int i386_align_loops; /* power of two alignment for loops */
2765 extern int i386_align_jumps; /* power of two alignment for non-loop jumps */
2766 extern int i386_align_funcs; /* power of two alignment for functions */
2767 extern int i386_branch_cost; /* values 1-5: see jump.c */
2768 extern char *hi_reg_name[]; /* names for 16 bit regs */
2769 extern char *qi_reg_name[]; /* names for 8 bit regs (low) */
2770 extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */
2771 extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
2772 extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */
2773 extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */
2774
2775 /* External variables used */
2776 extern int optimize; /* optimization level */
2777 extern int obey_regdecls; /* TRUE if stupid register allocation */
2778
2779 /* External functions used */
2780 extern struct rtx_def *force_operand ();
2781
2782 \f
2783 /*
2784 Local variables:
2785 version-control: t
2786 End:
2787 */
This page took 0.166173 seconds and 6 git commands to generate.