]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
i386.h (TARGET_NOCONA): New macro.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_SSE3 0x00010000 /* Support SSE3 regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
183
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
186
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
189
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
209
210 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
211 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
212
213 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
214 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
215 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
216 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
217 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
218 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
219 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
220 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
221 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
222 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
223
224 #define TUNEMASK (1 << ix86_tune)
225 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
226 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
227 extern const int x86_branch_hints, x86_unroll_strlen;
228 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
229 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
230 extern const int x86_use_cltd, x86_read_modify_write;
231 extern const int x86_read_modify, x86_split_long_moves;
232 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
233 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
234 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
235 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
236 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
237 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
238 extern const int x86_epilogue_using_move, x86_decompose_lea;
239 extern const int x86_arch_always_fancy_math_387, x86_shift1;
240 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
241 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
242 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
243 extern const int x86_inter_unit_moves;
244 extern int x86_prefetch_sse;
245
246 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
247 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
248 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
249 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
250 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
251 /* For sane SSE instruction set generation we need fcomi instruction. It is
252 safe to enable all CMOVE instructions. */
253 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
254 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
255 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
256 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
257 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
258 #define TARGET_MOVX (x86_movx & TUNEMASK)
259 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
260 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
261 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
262 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
263 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
264 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
265 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
266 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
267 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
268 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
269 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
270 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
271 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
272 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
273 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
274 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
275 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
276 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
277 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
278 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
279 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
280 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
281 (x86_sse_partial_reg_dependency & TUNEMASK)
282 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
283 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
284 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
285 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
286 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
287 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
288 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
289 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
290 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
291 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
292 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
293 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
294 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
295 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
296 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
297 #define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
298
299 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
300
301 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
302 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
303
304 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
305
306 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
307 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
308 #define TARGET_SSE3 ((target_flags & MASK_SSE3) != 0)
309 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
310 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
311 && (ix86_fpmath & FPMATH_387))
312 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
313 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
314 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
315
316 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
317
318 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
319
320 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
321 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
322
323 /* WARNING: Do not mark empty strings for translation, as calling
324 gettext on an empty string does NOT return an empty
325 string. */
326
327
328 #define TARGET_SWITCHES \
329 { { "80387", MASK_80387, N_("Use hardware fp") }, \
330 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
331 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
332 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
333 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
334 { "386", 0, "" /*Deprecated.*/}, \
335 { "486", 0, "" /*Deprecated.*/}, \
336 { "pentium", 0, "" /*Deprecated.*/}, \
337 { "pentiumpro", 0, "" /*Deprecated.*/}, \
338 { "intel-syntax", 0, "" /*Deprecated.*/}, \
339 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
340 { "rtd", MASK_RTD, \
341 N_("Alternate calling convention") }, \
342 { "no-rtd", -MASK_RTD, \
343 N_("Use normal calling convention") }, \
344 { "align-double", MASK_ALIGN_DOUBLE, \
345 N_("Align some doubles on dword boundary") }, \
346 { "no-align-double", -MASK_ALIGN_DOUBLE, \
347 N_("Align doubles on word boundary") }, \
348 { "svr3-shlib", MASK_SVR3_SHLIB, \
349 N_("Uninitialized locals in .bss") }, \
350 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
351 N_("Uninitialized locals in .data") }, \
352 { "ieee-fp", MASK_IEEE_FP, \
353 N_("Use IEEE math for fp comparisons") }, \
354 { "no-ieee-fp", -MASK_IEEE_FP, \
355 N_("Do not use IEEE math for fp comparisons") }, \
356 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
357 N_("Return values of functions in FPU registers") }, \
358 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
359 N_("Do not return values of functions in FPU registers")}, \
360 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
361 N_("Do not generate sin, cos, sqrt for FPU") }, \
362 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
363 N_("Generate sin, cos, sqrt for FPU")}, \
364 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
365 N_("Omit the frame pointer in leaf functions") }, \
366 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
367 { "stack-arg-probe", MASK_STACK_PROBE, \
368 N_("Enable stack probing") }, \
369 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
370 { "windows", 0, 0 /* undocumented */ }, \
371 { "dll", 0, 0 /* undocumented */ }, \
372 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
373 N_("Align destination of the string operations") }, \
374 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
375 N_("Do not align destination of the string operations") }, \
376 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
377 N_("Inline all known string operations") }, \
378 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
379 N_("Do not inline all known string operations") }, \
380 { "push-args", -MASK_NO_PUSH_ARGS, \
381 N_("Use push instructions to save outgoing arguments") }, \
382 { "no-push-args", MASK_NO_PUSH_ARGS, \
383 N_("Do not use push instructions to save outgoing arguments") }, \
384 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
385 N_("Use push instructions to save outgoing arguments") }, \
386 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
387 N_("Do not use push instructions to save outgoing arguments") }, \
388 { "mmx", MASK_MMX, \
389 N_("Support MMX built-in functions") }, \
390 { "no-mmx", -MASK_MMX, \
391 N_("Do not support MMX built-in functions") }, \
392 { "3dnow", MASK_3DNOW, \
393 N_("Support 3DNow! built-in functions") }, \
394 { "no-3dnow", -MASK_3DNOW, \
395 N_("Do not support 3DNow! built-in functions") }, \
396 { "sse", MASK_SSE, \
397 N_("Support MMX and SSE built-in functions and code generation") }, \
398 { "no-sse", -MASK_SSE, \
399 N_("Do not support MMX and SSE built-in functions and code generation") },\
400 { "sse2", MASK_SSE2, \
401 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
402 { "no-sse2", -MASK_SSE2, \
403 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
404 { "sse3", MASK_SSE3, \
405 N_("Support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
406 { "no-sse3", -MASK_SSE3, \
407 N_("Do not support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
408 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
409 N_("sizeof(long double) is 16") }, \
410 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
411 N_("sizeof(long double) is 12") }, \
412 { "64", MASK_64BIT, \
413 N_("Generate 64bit x86-64 code") }, \
414 { "32", -MASK_64BIT, \
415 N_("Generate 32bit i386 code") }, \
416 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
417 N_("Use native (MS) bitfield layout") }, \
418 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
419 N_("Use gcc default bitfield layout") }, \
420 { "red-zone", -MASK_NO_RED_ZONE, \
421 N_("Use red-zone in the x86-64 code") }, \
422 { "no-red-zone", MASK_NO_RED_ZONE, \
423 N_("Do not use red-zone in the x86-64 code") }, \
424 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
425 N_("Use direct references against %gs when accessing tls data") }, \
426 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
427 N_("Do not use direct references against %gs when accessing tls data") }, \
428 SUBTARGET_SWITCHES \
429 { "", \
430 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
431 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
432
433 #ifndef TARGET_64BIT_DEFAULT
434 #define TARGET_64BIT_DEFAULT 0
435 #endif
436 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
437 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
438 #endif
439
440 /* Once GDB has been enhanced to deal with functions without frame
441 pointers, we can change this to allow for elimination of
442 the frame pointer in leaf functions. */
443 #define TARGET_DEFAULT 0
444
445 /* This is not really a target flag, but is done this way so that
446 it's analogous to similar code for Mach-O on PowerPC. darwin.h
447 redefines this to 1. */
448 #define TARGET_MACHO 0
449
450 /* This macro is similar to `TARGET_SWITCHES' but defines names of
451 command options that have values. Its definition is an
452 initializer with a subgrouping for each command option.
453
454 Each subgrouping contains a string constant, that defines the
455 fixed part of the option name, and the address of a variable. The
456 variable, type `char *', is set to the variable part of the given
457 option if the fixed part matches. The actual option name is made
458 by appending `-m' to the specified name. */
459 #define TARGET_OPTIONS \
460 { { "tune=", &ix86_tune_string, \
461 N_("Schedule code for given CPU"), 0}, \
462 { "fpmath=", &ix86_fpmath_string, \
463 N_("Generate floating point mathematics using given instruction set"), 0},\
464 { "arch=", &ix86_arch_string, \
465 N_("Generate code for given CPU"), 0}, \
466 { "regparm=", &ix86_regparm_string, \
467 N_("Number of registers used to pass integer arguments"), 0},\
468 { "align-loops=", &ix86_align_loops_string, \
469 N_("Loop code aligned to this power of 2"), 0}, \
470 { "align-jumps=", &ix86_align_jumps_string, \
471 N_("Jump targets are aligned to this power of 2"), 0}, \
472 { "align-functions=", &ix86_align_funcs_string, \
473 N_("Function starts are aligned to this power of 2"), 0}, \
474 { "preferred-stack-boundary=", \
475 &ix86_preferred_stack_boundary_string, \
476 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
477 { "branch-cost=", &ix86_branch_cost_string, \
478 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
479 { "cmodel=", &ix86_cmodel_string, \
480 N_("Use given x86-64 code model"), 0}, \
481 { "debug-arg", &ix86_debug_arg_string, \
482 "" /* Undocumented. */, 0}, \
483 { "debug-addr", &ix86_debug_addr_string, \
484 "" /* Undocumented. */, 0}, \
485 { "asm=", &ix86_asm_string, \
486 N_("Use given assembler dialect"), 0}, \
487 { "tls-dialect=", &ix86_tls_dialect_string, \
488 N_("Use given thread-local storage dialect"), 0}, \
489 SUBTARGET_OPTIONS \
490 }
491
492 /* Sometimes certain combinations of command options do not make
493 sense on a particular target machine. You can define a macro
494 `OVERRIDE_OPTIONS' to take account of this. This macro, if
495 defined, is executed once just after all the command options have
496 been parsed.
497
498 Don't use this macro to turn on various extra optimizations for
499 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
500
501 #define OVERRIDE_OPTIONS override_options ()
502
503 /* These are meant to be redefined in the host dependent files */
504 #define SUBTARGET_SWITCHES
505 #define SUBTARGET_OPTIONS
506
507 /* Define this to change the optimizations performed by default. */
508 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
509 optimization_options ((LEVEL), (SIZE))
510
511 /* Support for configure-time defaults of some command line options. */
512 #define OPTION_DEFAULT_SPECS \
513 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
514 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
515 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
516
517 /* Specs for the compiler proper */
518
519 #ifndef CC1_CPU_SPEC
520 #define CC1_CPU_SPEC "\
521 %{!mtune*: \
522 %{m386:mtune=i386 \
523 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
524 %{m486:-mtune=i486 \
525 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
526 %{mpentium:-mtune=pentium \
527 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
528 %{mpentiumpro:-mtune=pentiumpro \
529 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
530 %{mcpu=*:-mtune=%* \
531 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
532 %<mcpu=* \
533 %{mintel-syntax:-masm=intel \
534 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
535 %{mno-intel-syntax:-masm=att \
536 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
537 #endif
538 \f
539 /* Target CPU builtins. */
540 #define TARGET_CPU_CPP_BUILTINS() \
541 do \
542 { \
543 size_t arch_len = strlen (ix86_arch_string); \
544 size_t tune_len = strlen (ix86_tune_string); \
545 int last_arch_char = ix86_arch_string[arch_len - 1]; \
546 int last_tune_char = ix86_tune_string[tune_len - 1]; \
547 \
548 if (TARGET_64BIT) \
549 { \
550 builtin_assert ("cpu=x86_64"); \
551 builtin_assert ("machine=x86_64"); \
552 builtin_define ("__amd64"); \
553 builtin_define ("__amd64__"); \
554 builtin_define ("__x86_64"); \
555 builtin_define ("__x86_64__"); \
556 } \
557 else \
558 { \
559 builtin_assert ("cpu=i386"); \
560 builtin_assert ("machine=i386"); \
561 builtin_define_std ("i386"); \
562 } \
563 \
564 /* Built-ins based on -mtune= (or -march= if no \
565 -mtune= given). */ \
566 if (TARGET_386) \
567 builtin_define ("__tune_i386__"); \
568 else if (TARGET_486) \
569 builtin_define ("__tune_i486__"); \
570 else if (TARGET_PENTIUM) \
571 { \
572 builtin_define ("__tune_i586__"); \
573 builtin_define ("__tune_pentium__"); \
574 if (last_tune_char == 'x') \
575 builtin_define ("__tune_pentium_mmx__"); \
576 } \
577 else if (TARGET_PENTIUMPRO) \
578 { \
579 builtin_define ("__tune_i686__"); \
580 builtin_define ("__tune_pentiumpro__"); \
581 switch (last_tune_char) \
582 { \
583 case '3': \
584 builtin_define ("__tune_pentium3__"); \
585 /* FALLTHRU */ \
586 case '2': \
587 builtin_define ("__tune_pentium2__"); \
588 break; \
589 } \
590 } \
591 else if (TARGET_K6) \
592 { \
593 builtin_define ("__tune_k6__"); \
594 if (last_tune_char == '2') \
595 builtin_define ("__tune_k6_2__"); \
596 else if (last_tune_char == '3') \
597 builtin_define ("__tune_k6_3__"); \
598 } \
599 else if (TARGET_ATHLON) \
600 { \
601 builtin_define ("__tune_athlon__"); \
602 /* Only plain "athlon" lacks SSE. */ \
603 if (last_tune_char != 'n') \
604 builtin_define ("__tune_athlon_sse__"); \
605 } \
606 else if (TARGET_K8) \
607 builtin_define ("__tune_k8__"); \
608 else if (TARGET_PENTIUM4) \
609 builtin_define ("__tune_pentium4__"); \
610 else if (TARGET_NOCONA) \
611 builtin_define ("__tune_nocona__"); \
612 \
613 if (TARGET_MMX) \
614 builtin_define ("__MMX__"); \
615 if (TARGET_3DNOW) \
616 builtin_define ("__3dNOW__"); \
617 if (TARGET_3DNOW_A) \
618 builtin_define ("__3dNOW_A__"); \
619 if (TARGET_SSE) \
620 builtin_define ("__SSE__"); \
621 if (TARGET_SSE2) \
622 builtin_define ("__SSE2__"); \
623 if (TARGET_SSE3) \
624 builtin_define ("__SSE3__"); \
625 if (TARGET_SSE_MATH && TARGET_SSE) \
626 builtin_define ("__SSE_MATH__"); \
627 if (TARGET_SSE_MATH && TARGET_SSE2) \
628 builtin_define ("__SSE2_MATH__"); \
629 \
630 /* Built-ins based on -march=. */ \
631 if (ix86_arch == PROCESSOR_I486) \
632 { \
633 builtin_define ("__i486"); \
634 builtin_define ("__i486__"); \
635 } \
636 else if (ix86_arch == PROCESSOR_PENTIUM) \
637 { \
638 builtin_define ("__i586"); \
639 builtin_define ("__i586__"); \
640 builtin_define ("__pentium"); \
641 builtin_define ("__pentium__"); \
642 if (last_arch_char == 'x') \
643 builtin_define ("__pentium_mmx__"); \
644 } \
645 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
646 { \
647 builtin_define ("__i686"); \
648 builtin_define ("__i686__"); \
649 builtin_define ("__pentiumpro"); \
650 builtin_define ("__pentiumpro__"); \
651 } \
652 else if (ix86_arch == PROCESSOR_K6) \
653 { \
654 \
655 builtin_define ("__k6"); \
656 builtin_define ("__k6__"); \
657 if (last_arch_char == '2') \
658 builtin_define ("__k6_2__"); \
659 else if (last_arch_char == '3') \
660 builtin_define ("__k6_3__"); \
661 } \
662 else if (ix86_arch == PROCESSOR_ATHLON) \
663 { \
664 builtin_define ("__athlon"); \
665 builtin_define ("__athlon__"); \
666 /* Only plain "athlon" lacks SSE. */ \
667 if (last_arch_char != 'n') \
668 builtin_define ("__athlon_sse__"); \
669 } \
670 else if (ix86_arch == PROCESSOR_K8) \
671 { \
672 builtin_define ("__k8"); \
673 builtin_define ("__k8__"); \
674 } \
675 else if (ix86_arch == PROCESSOR_PENTIUM4) \
676 { \
677 builtin_define ("__pentium4"); \
678 builtin_define ("__pentium4__"); \
679 } \
680 else if (ix86_arch == PROCESSOR_NOCONA) \
681 { \
682 builtin_define ("__nocona"); \
683 builtin_define ("__nocona__"); \
684 } \
685 } \
686 while (0)
687
688 #define TARGET_CPU_DEFAULT_i386 0
689 #define TARGET_CPU_DEFAULT_i486 1
690 #define TARGET_CPU_DEFAULT_pentium 2
691 #define TARGET_CPU_DEFAULT_pentium_mmx 3
692 #define TARGET_CPU_DEFAULT_pentiumpro 4
693 #define TARGET_CPU_DEFAULT_pentium2 5
694 #define TARGET_CPU_DEFAULT_pentium3 6
695 #define TARGET_CPU_DEFAULT_pentium4 7
696 #define TARGET_CPU_DEFAULT_k6 8
697 #define TARGET_CPU_DEFAULT_k6_2 9
698 #define TARGET_CPU_DEFAULT_k6_3 10
699 #define TARGET_CPU_DEFAULT_athlon 11
700 #define TARGET_CPU_DEFAULT_athlon_sse 12
701 #define TARGET_CPU_DEFAULT_k8 13
702 #define TARGET_CPU_DEFAULT_pentium_m 14
703 #define TARGET_CPU_DEFAULT_prescott 15
704 #define TARGET_CPU_DEFAULT_nocona 16
705
706 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
707 "pentiumpro", "pentium2", "pentium3", \
708 "pentium4", "k6", "k6-2", "k6-3",\
709 "athlon", "athlon-4", "k8", \
710 "pentium-m", "prescott", "nocona"}
711
712 #ifndef CC1_SPEC
713 #define CC1_SPEC "%(cc1_cpu) "
714 #endif
715
716 /* This macro defines names of additional specifications to put in the
717 specs that can be used in various specifications like CC1_SPEC. Its
718 definition is an initializer with a subgrouping for each command option.
719
720 Each subgrouping contains a string constant, that defines the
721 specification name, and a string constant that used by the GCC driver
722 program.
723
724 Do not define this macro if it does not need to do anything. */
725
726 #ifndef SUBTARGET_EXTRA_SPECS
727 #define SUBTARGET_EXTRA_SPECS
728 #endif
729
730 #define EXTRA_SPECS \
731 { "cc1_cpu", CC1_CPU_SPEC }, \
732 SUBTARGET_EXTRA_SPECS
733 \f
734 /* target machine storage layout */
735
736 #define LONG_DOUBLE_TYPE_SIZE 96
737
738 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
739 FPU, assume that the fpcw is set to extended precision; when using
740 only SSE, rounding is correct; when using both SSE and the FPU,
741 the rounding precision is indeterminate, since either may be chosen
742 apparently at random. */
743 #define TARGET_FLT_EVAL_METHOD \
744 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
745
746 #define SHORT_TYPE_SIZE 16
747 #define INT_TYPE_SIZE 32
748 #define FLOAT_TYPE_SIZE 32
749 #define LONG_TYPE_SIZE BITS_PER_WORD
750 #define DOUBLE_TYPE_SIZE 64
751 #define LONG_LONG_TYPE_SIZE 64
752
753 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
754 #define MAX_BITS_PER_WORD 64
755 #else
756 #define MAX_BITS_PER_WORD 32
757 #endif
758
759 /* Define this if most significant byte of a word is the lowest numbered. */
760 /* That is true on the 80386. */
761
762 #define BITS_BIG_ENDIAN 0
763
764 /* Define this if most significant byte of a word is the lowest numbered. */
765 /* That is not true on the 80386. */
766 #define BYTES_BIG_ENDIAN 0
767
768 /* Define this if most significant word of a multiword number is the lowest
769 numbered. */
770 /* Not true for 80386 */
771 #define WORDS_BIG_ENDIAN 0
772
773 /* Width of a word, in units (bytes). */
774 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
775 #ifdef IN_LIBGCC2
776 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
777 #else
778 #define MIN_UNITS_PER_WORD 4
779 #endif
780
781 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
782 #define PARM_BOUNDARY BITS_PER_WORD
783
784 /* Boundary (in *bits*) on which stack pointer should be aligned. */
785 #define STACK_BOUNDARY BITS_PER_WORD
786
787 /* Boundary (in *bits*) on which the stack pointer prefers to be
788 aligned; the compiler cannot rely on having this alignment. */
789 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
790
791 /* As of July 2001, many runtimes to not align the stack properly when
792 entering main. This causes expand_main_function to forcibly align
793 the stack, which results in aligned frames for functions called from
794 main, though it does nothing for the alignment of main itself. */
795 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
796 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
797
798 /* Minimum allocation boundary for the code of a function. */
799 #define FUNCTION_BOUNDARY 8
800
801 /* C++ stores the virtual bit in the lowest bit of function pointers. */
802 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
803
804 /* Alignment of field after `int : 0' in a structure. */
805
806 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
807
808 /* Minimum size in bits of the largest boundary to which any
809 and all fundamental data types supported by the hardware
810 might need to be aligned. No data type wants to be aligned
811 rounder than this.
812
813 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
814 and Pentium Pro XFmode values at 128 bit boundaries. */
815
816 #define BIGGEST_ALIGNMENT 128
817
818 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
819 #define ALIGN_MODE_128(MODE) \
820 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
821
822 /* The published ABIs say that doubles should be aligned on word
823 boundaries, so lower the alignment for structure fields unless
824 -malign-double is set. */
825
826 /* ??? Blah -- this macro is used directly by libobjc. Since it
827 supports no vector modes, cut out the complexity and fall back
828 on BIGGEST_FIELD_ALIGNMENT. */
829 #ifdef IN_TARGET_LIBS
830 #ifdef __x86_64__
831 #define BIGGEST_FIELD_ALIGNMENT 128
832 #else
833 #define BIGGEST_FIELD_ALIGNMENT 32
834 #endif
835 #else
836 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
837 x86_field_alignment (FIELD, COMPUTED)
838 #endif
839
840 /* If defined, a C expression to compute the alignment given to a
841 constant that is being placed in memory. EXP is the constant
842 and ALIGN is the alignment that the object would ordinarily have.
843 The value of this macro is used instead of that alignment to align
844 the object.
845
846 If this macro is not defined, then ALIGN is used.
847
848 The typical use of this macro is to increase alignment for string
849 constants to be word aligned so that `strcpy' calls that copy
850 constants can be done inline. */
851
852 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
853
854 /* If defined, a C expression to compute the alignment for a static
855 variable. TYPE is the data type, and ALIGN is the alignment that
856 the object would ordinarily have. The value of this macro is used
857 instead of that alignment to align the object.
858
859 If this macro is not defined, then ALIGN is used.
860
861 One use of this macro is to increase alignment of medium-size
862 data to make it all fit in fewer cache lines. Another is to
863 cause character arrays to be word-aligned so that `strcpy' calls
864 that copy constants to character arrays can be done inline. */
865
866 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
867
868 /* If defined, a C expression to compute the alignment for a local
869 variable. TYPE is the data type, and ALIGN is the alignment that
870 the object would ordinarily have. The value of this macro is used
871 instead of that alignment to align the object.
872
873 If this macro is not defined, then ALIGN is used.
874
875 One use of this macro is to increase alignment of medium-size
876 data to make it all fit in fewer cache lines. */
877
878 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
879
880 /* If defined, a C expression that gives the alignment boundary, in
881 bits, of an argument with the specified mode and type. If it is
882 not defined, `PARM_BOUNDARY' is used for all arguments. */
883
884 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
885 ix86_function_arg_boundary ((MODE), (TYPE))
886
887 /* Set this nonzero if move instructions will actually fail to work
888 when given unaligned data. */
889 #define STRICT_ALIGNMENT 0
890
891 /* If bit field type is int, don't let it cross an int,
892 and give entire struct the alignment of an int. */
893 /* Required on the 386 since it doesn't have bit-field insns. */
894 #define PCC_BITFIELD_TYPE_MATTERS 1
895 \f
896 /* Standard register usage. */
897
898 /* This processor has special stack-like registers. See reg-stack.c
899 for details. */
900
901 #define STACK_REGS
902 #define IS_STACK_MODE(MODE) \
903 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
904
905 /* Number of actual hardware registers.
906 The hardware registers are assigned numbers for the compiler
907 from 0 to just below FIRST_PSEUDO_REGISTER.
908 All registers that the compiler knows about must be given numbers,
909 even those that are not normally considered general registers.
910
911 In the 80386 we give the 8 general purpose registers the numbers 0-7.
912 We number the floating point registers 8-15.
913 Note that registers 0-7 can be accessed as a short or int,
914 while only 0-3 may be used with byte `mov' instructions.
915
916 Reg 16 does not correspond to any hardware register, but instead
917 appears in the RTL as an argument pointer prior to reload, and is
918 eliminated during reloading in favor of either the stack or frame
919 pointer. */
920
921 #define FIRST_PSEUDO_REGISTER 53
922
923 /* Number of hardware registers that go into the DWARF-2 unwind info.
924 If not defined, equals FIRST_PSEUDO_REGISTER. */
925
926 #define DWARF_FRAME_REGISTERS 17
927
928 /* 1 for registers that have pervasive standard uses
929 and are not available for the register allocator.
930 On the 80386, the stack pointer is such, as is the arg pointer.
931
932 The value is a mask - bit 1 is set for fixed registers
933 for 32bit target, while 2 is set for fixed registers for 64bit.
934 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
935 */
936 #define FIXED_REGISTERS \
937 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
938 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
939 /*arg,flags,fpsr,dir,frame*/ \
940 3, 3, 3, 3, 3, \
941 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
942 0, 0, 0, 0, 0, 0, 0, 0, \
943 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
944 0, 0, 0, 0, 0, 0, 0, 0, \
945 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
946 1, 1, 1, 1, 1, 1, 1, 1, \
947 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
948 1, 1, 1, 1, 1, 1, 1, 1}
949
950
951 /* 1 for registers not available across function calls.
952 These must include the FIXED_REGISTERS and also any
953 registers that can be used without being saved.
954 The latter must include the registers where values are returned
955 and the register where structure-value addresses are passed.
956 Aside from that, you can include as many other registers as you like.
957
958 The value is a mask - bit 1 is set for call used
959 for 32bit target, while 2 is set for call used for 64bit.
960 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
961 */
962 #define CALL_USED_REGISTERS \
963 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
964 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
965 /*arg,flags,fpsr,dir,frame*/ \
966 3, 3, 3, 3, 3, \
967 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
968 3, 3, 3, 3, 3, 3, 3, 3, \
969 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
970 3, 3, 3, 3, 3, 3, 3, 3, \
971 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
972 3, 3, 3, 3, 1, 1, 1, 1, \
973 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
974 3, 3, 3, 3, 3, 3, 3, 3} \
975
976 /* Order in which to allocate registers. Each register must be
977 listed once, even those in FIXED_REGISTERS. List frame pointer
978 late and fixed registers last. Note that, in general, we prefer
979 registers listed in CALL_USED_REGISTERS, keeping the others
980 available for storage of persistent values.
981
982 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
983 so this is just empty initializer for array. */
984
985 #define REG_ALLOC_ORDER \
986 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
987 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
988 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
989 48, 49, 50, 51, 52 }
990
991 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
992 to be rearranged based on a particular function. When using sse math,
993 we want to allocate SSE before x87 registers and vice vera. */
994
995 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
996
997
998 /* Macro to conditionally modify fixed_regs/call_used_regs. */
999 #define CONDITIONAL_REGISTER_USAGE \
1000 do { \
1001 int i; \
1002 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1003 { \
1004 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
1005 call_used_regs[i] = (call_used_regs[i] \
1006 & (TARGET_64BIT ? 2 : 1)) != 0; \
1007 } \
1008 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1009 { \
1010 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1011 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1012 } \
1013 if (! TARGET_MMX) \
1014 { \
1015 int i; \
1016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1017 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1018 fixed_regs[i] = call_used_regs[i] = 1; \
1019 } \
1020 if (! TARGET_SSE) \
1021 { \
1022 int i; \
1023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1024 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1025 fixed_regs[i] = call_used_regs[i] = 1; \
1026 } \
1027 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1028 { \
1029 int i; \
1030 HARD_REG_SET x; \
1031 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1032 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1033 if (TEST_HARD_REG_BIT (x, i)) \
1034 fixed_regs[i] = call_used_regs[i] = 1; \
1035 } \
1036 } while (0)
1037
1038 /* Return number of consecutive hard regs needed starting at reg REGNO
1039 to hold something of mode MODE.
1040 This is ordinarily the length in words of a value of mode MODE
1041 but can be less for certain modes in special long registers.
1042
1043 Actually there are no two word move instructions for consecutive
1044 registers. And only registers 0-3 may have mov byte instructions
1045 applied to them.
1046 */
1047
1048 #define HARD_REGNO_NREGS(REGNO, MODE) \
1049 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1050 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1051 : ((MODE) == XFmode \
1052 ? (TARGET_64BIT ? 2 : 3) \
1053 : (MODE) == XCmode \
1054 ? (TARGET_64BIT ? 4 : 6) \
1055 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1056
1057 #define VALID_SSE2_REG_MODE(MODE) \
1058 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1059 || (MODE) == V2DImode)
1060
1061 #define VALID_SSE_REG_MODE(MODE) \
1062 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1063 || (MODE) == SFmode || (MODE) == TFmode \
1064 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1065 || VALID_SSE2_REG_MODE (MODE) \
1066 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1067
1068 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1069 ((MODE) == V2SFmode || (MODE) == SFmode)
1070
1071 #define VALID_MMX_REG_MODE(MODE) \
1072 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1073 || (MODE) == V2SImode || (MODE) == SImode)
1074
1075 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1076 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1077 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1078 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1079
1080 #define VALID_FP_MODE_P(MODE) \
1081 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1082 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1083
1084 #define VALID_INT_MODE_P(MODE) \
1085 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1086 || (MODE) == DImode \
1087 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1088 || (MODE) == CDImode \
1089 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1090 || (MODE) == TFmode || (MODE) == TCmode)))
1091
1092 /* Return true for modes passed in SSE registers. */
1093 #define SSE_REG_MODE_P(MODE) \
1094 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1095 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1096 || (MODE) == V4SFmode || (MODE) == V4SImode)
1097
1098 /* Return true for modes passed in MMX registers. */
1099 #define MMX_REG_MODE_P(MODE) \
1100 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1101 || (MODE) == V2SFmode)
1102
1103 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1104
1105 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1106 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1107
1108 /* Value is 1 if it is a good idea to tie two pseudo registers
1109 when one has mode MODE1 and one has mode MODE2.
1110 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1111 for any hard reg, then this must be 0 for correct output. */
1112
1113 #define MODES_TIEABLE_P(MODE1, MODE2) \
1114 ((MODE1) == (MODE2) \
1115 || (((MODE1) == HImode || (MODE1) == SImode \
1116 || ((MODE1) == QImode \
1117 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1118 || ((MODE1) == DImode && TARGET_64BIT)) \
1119 && ((MODE2) == HImode || (MODE2) == SImode \
1120 || ((MODE2) == QImode \
1121 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1122 || ((MODE2) == DImode && TARGET_64BIT))))
1123
1124 /* It is possible to write patterns to move flags; but until someone
1125 does it, */
1126 #define AVOID_CCMODE_COPIES
1127
1128 /* Specify the modes required to caller save a given hard regno.
1129 We do this on i386 to prevent flags from being saved at all.
1130
1131 Kill any attempts to combine saving of modes. */
1132
1133 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1134 (CC_REGNO_P (REGNO) ? VOIDmode \
1135 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1136 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1137 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1138 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1139 : (MODE))
1140 /* Specify the registers used for certain standard purposes.
1141 The values of these macros are register numbers. */
1142
1143 /* on the 386 the pc register is %eip, and is not usable as a general
1144 register. The ordinary mov instructions won't work */
1145 /* #define PC_REGNUM */
1146
1147 /* Register to use for pushing function arguments. */
1148 #define STACK_POINTER_REGNUM 7
1149
1150 /* Base register for access to local variables of the function. */
1151 #define HARD_FRAME_POINTER_REGNUM 6
1152
1153 /* Base register for access to local variables of the function. */
1154 #define FRAME_POINTER_REGNUM 20
1155
1156 /* First floating point reg */
1157 #define FIRST_FLOAT_REG 8
1158
1159 /* First & last stack-like regs */
1160 #define FIRST_STACK_REG FIRST_FLOAT_REG
1161 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1162
1163 #define FLAGS_REG 17
1164 #define FPSR_REG 18
1165 #define DIRFLAG_REG 19
1166
1167 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1168 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1169
1170 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1171 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1172
1173 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1174 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1175
1176 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1177 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1178
1179 /* Value should be nonzero if functions must have frame pointers.
1180 Zero means the frame pointer need not be set up (and parms
1181 may be accessed via the stack pointer) in functions that seem suitable.
1182 This is computed in `reload', in reload1.c. */
1183 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1184
1185 /* Override this in other tm.h files to cope with various OS losage
1186 requiring a frame pointer. */
1187 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1188 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1189 #endif
1190
1191 /* Make sure we can access arbitrary call frames. */
1192 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1193
1194 /* Base register for access to arguments of the function. */
1195 #define ARG_POINTER_REGNUM 16
1196
1197 /* Register in which static-chain is passed to a function.
1198 We do use ECX as static chain register for 32 bit ABI. On the
1199 64bit ABI, ECX is an argument register, so we use R10 instead. */
1200 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1201
1202 /* Register to hold the addressing base for position independent
1203 code access to data items. We don't use PIC pointer for 64bit
1204 mode. Define the regnum to dummy value to prevent gcc from
1205 pessimizing code dealing with EBX.
1206
1207 To avoid clobbering a call-saved register unnecessarily, we renumber
1208 the pic register when possible. The change is visible after the
1209 prologue has been emitted. */
1210
1211 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1212
1213 #define PIC_OFFSET_TABLE_REGNUM \
1214 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1215 : reload_completed ? REGNO (pic_offset_table_rtx) \
1216 : REAL_PIC_OFFSET_TABLE_REGNUM)
1217
1218 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1219
1220 /* A C expression which can inhibit the returning of certain function
1221 values in registers, based on the type of value. A nonzero value
1222 says to return the function value in memory, just as large
1223 structures are always returned. Here TYPE will be a C expression
1224 of type `tree', representing the data type of the value.
1225
1226 Note that values of mode `BLKmode' must be explicitly handled by
1227 this macro. Also, the option `-fpcc-struct-return' takes effect
1228 regardless of this macro. On most systems, it is possible to
1229 leave the macro undefined; this causes a default definition to be
1230 used, whose value is the constant 1 for `BLKmode' values, and 0
1231 otherwise.
1232
1233 Do not use this macro to indicate that structures and unions
1234 should always be returned in memory. You should instead use
1235 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1236
1237 #define RETURN_IN_MEMORY(TYPE) \
1238 ix86_return_in_memory (TYPE)
1239
1240 /* This is overridden by <cygwin.h>. */
1241 #define MS_AGGREGATE_RETURN 0
1242
1243 \f
1244 /* Define the classes of registers for register constraints in the
1245 machine description. Also define ranges of constants.
1246
1247 One of the classes must always be named ALL_REGS and include all hard regs.
1248 If there is more than one class, another class must be named NO_REGS
1249 and contain no registers.
1250
1251 The name GENERAL_REGS must be the name of a class (or an alias for
1252 another name such as ALL_REGS). This is the class of registers
1253 that is allowed by "g" or "r" in a register constraint.
1254 Also, registers outside this class are allocated only when
1255 instructions express preferences for them.
1256
1257 The classes must be numbered in nondecreasing order; that is,
1258 a larger-numbered class must never be contained completely
1259 in a smaller-numbered class.
1260
1261 For any two classes, it is very desirable that there be another
1262 class that represents their union.
1263
1264 It might seem that class BREG is unnecessary, since no useful 386
1265 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1266 and the "b" register constraint is useful in asms for syscalls.
1267
1268 The flags and fpsr registers are in no class. */
1269
1270 enum reg_class
1271 {
1272 NO_REGS,
1273 AREG, DREG, CREG, BREG, SIREG, DIREG,
1274 AD_REGS, /* %eax/%edx for DImode */
1275 Q_REGS, /* %eax %ebx %ecx %edx */
1276 NON_Q_REGS, /* %esi %edi %ebp %esp */
1277 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1278 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1279 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1280 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1281 FLOAT_REGS,
1282 SSE_REGS,
1283 MMX_REGS,
1284 FP_TOP_SSE_REGS,
1285 FP_SECOND_SSE_REGS,
1286 FLOAT_SSE_REGS,
1287 FLOAT_INT_REGS,
1288 INT_SSE_REGS,
1289 FLOAT_INT_SSE_REGS,
1290 ALL_REGS, LIM_REG_CLASSES
1291 };
1292
1293 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1294
1295 #define INTEGER_CLASS_P(CLASS) \
1296 reg_class_subset_p ((CLASS), GENERAL_REGS)
1297 #define FLOAT_CLASS_P(CLASS) \
1298 reg_class_subset_p ((CLASS), FLOAT_REGS)
1299 #define SSE_CLASS_P(CLASS) \
1300 reg_class_subset_p ((CLASS), SSE_REGS)
1301 #define MMX_CLASS_P(CLASS) \
1302 reg_class_subset_p ((CLASS), MMX_REGS)
1303 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1304 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1305 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1306 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1307 #define MAYBE_SSE_CLASS_P(CLASS) \
1308 reg_classes_intersect_p (SSE_REGS, (CLASS))
1309 #define MAYBE_MMX_CLASS_P(CLASS) \
1310 reg_classes_intersect_p (MMX_REGS, (CLASS))
1311
1312 #define Q_CLASS_P(CLASS) \
1313 reg_class_subset_p ((CLASS), Q_REGS)
1314
1315 /* Give names of register classes as strings for dump file. */
1316
1317 #define REG_CLASS_NAMES \
1318 { "NO_REGS", \
1319 "AREG", "DREG", "CREG", "BREG", \
1320 "SIREG", "DIREG", \
1321 "AD_REGS", \
1322 "Q_REGS", "NON_Q_REGS", \
1323 "INDEX_REGS", \
1324 "LEGACY_REGS", \
1325 "GENERAL_REGS", \
1326 "FP_TOP_REG", "FP_SECOND_REG", \
1327 "FLOAT_REGS", \
1328 "SSE_REGS", \
1329 "MMX_REGS", \
1330 "FP_TOP_SSE_REGS", \
1331 "FP_SECOND_SSE_REGS", \
1332 "FLOAT_SSE_REGS", \
1333 "FLOAT_INT_REGS", \
1334 "INT_SSE_REGS", \
1335 "FLOAT_INT_SSE_REGS", \
1336 "ALL_REGS" }
1337
1338 /* Define which registers fit in which classes.
1339 This is an initializer for a vector of HARD_REG_SET
1340 of length N_REG_CLASSES. */
1341
1342 #define REG_CLASS_CONTENTS \
1343 { { 0x00, 0x0 }, \
1344 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1345 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1346 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1347 { 0x03, 0x0 }, /* AD_REGS */ \
1348 { 0x0f, 0x0 }, /* Q_REGS */ \
1349 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1350 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1351 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1352 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1353 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1354 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1355 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1356 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1357 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1358 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1359 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1360 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1361 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1362 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1363 { 0xffffffff,0x1fffff } \
1364 }
1365
1366 /* The same information, inverted:
1367 Return the class number of the smallest class containing
1368 reg number REGNO. This could be a conditional expression
1369 or could index an array. */
1370
1371 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1372
1373 /* When defined, the compiler allows registers explicitly used in the
1374 rtl to be used as spill registers but prevents the compiler from
1375 extending the lifetime of these registers. */
1376
1377 #define SMALL_REGISTER_CLASSES 1
1378
1379 #define QI_REG_P(X) \
1380 (REG_P (X) && REGNO (X) < 4)
1381
1382 #define GENERAL_REGNO_P(N) \
1383 ((N) < 8 || REX_INT_REGNO_P (N))
1384
1385 #define GENERAL_REG_P(X) \
1386 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1387
1388 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1389
1390 #define NON_QI_REG_P(X) \
1391 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1392
1393 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1394 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1395
1396 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1397 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1398 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1399 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1400
1401 #define SSE_REGNO_P(N) \
1402 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1403 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1404
1405 #define REX_SSE_REGNO_P(N) \
1406 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1407
1408 #define SSE_REGNO(N) \
1409 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1410 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1411
1412 #define SSE_FLOAT_MODE_P(MODE) \
1413 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1414
1415 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1416 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1417
1418 #define STACK_REG_P(XOP) \
1419 (REG_P (XOP) && \
1420 REGNO (XOP) >= FIRST_STACK_REG && \
1421 REGNO (XOP) <= LAST_STACK_REG)
1422
1423 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1424
1425 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1426
1427 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1428 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1429
1430 /* The class value for index registers, and the one for base regs. */
1431
1432 #define INDEX_REG_CLASS INDEX_REGS
1433 #define BASE_REG_CLASS GENERAL_REGS
1434
1435 /* Get reg_class from a letter such as appears in the machine description. */
1436
1437 #define REG_CLASS_FROM_LETTER(C) \
1438 ((C) == 'r' ? GENERAL_REGS : \
1439 (C) == 'R' ? LEGACY_REGS : \
1440 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1441 (C) == 'Q' ? Q_REGS : \
1442 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1443 ? FLOAT_REGS \
1444 : NO_REGS) : \
1445 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1446 ? FP_TOP_REG \
1447 : NO_REGS) : \
1448 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1449 ? FP_SECOND_REG \
1450 : NO_REGS) : \
1451 (C) == 'a' ? AREG : \
1452 (C) == 'b' ? BREG : \
1453 (C) == 'c' ? CREG : \
1454 (C) == 'd' ? DREG : \
1455 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1456 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1457 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1458 (C) == 'A' ? AD_REGS : \
1459 (C) == 'D' ? DIREG : \
1460 (C) == 'S' ? SIREG : NO_REGS)
1461
1462 /* The letters I, J, K, L and M in a register constraint string
1463 can be used to stand for particular ranges of immediate operands.
1464 This macro defines what the ranges are.
1465 C is the letter, and VALUE is a constant value.
1466 Return 1 if VALUE is in the range specified by C.
1467
1468 I is for non-DImode shifts.
1469 J is for DImode shifts.
1470 K is for signed imm8 operands.
1471 L is for andsi as zero-extending move.
1472 M is for shifts that can be executed by the "lea" opcode.
1473 N is for immediate operands for out/in instructions (0-255)
1474 */
1475
1476 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1477 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1478 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1479 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1480 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1481 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1482 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1483 : 0)
1484
1485 /* Similar, but for floating constants, and defining letters G and H.
1486 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1487 TARGET_387 isn't set, because the stack register converter may need to
1488 load 0.0 into the function value register. */
1489
1490 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1491 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1492 : 0)
1493
1494 /* A C expression that defines the optional machine-dependent
1495 constraint letters that can be used to segregate specific types of
1496 operands, usually memory references, for the target machine. Any
1497 letter that is not elsewhere defined and not matched by
1498 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1499 be defined.
1500
1501 If it is required for a particular target machine, it should
1502 return 1 if VALUE corresponds to the operand type represented by
1503 the constraint letter C. If C is not defined as an extra
1504 constraint, the value returned should be 0 regardless of VALUE. */
1505
1506 #define EXTRA_CONSTRAINT(VALUE, D) \
1507 ((D) == 'e' ? x86_64_sign_extended_value (VALUE) \
1508 : (D) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1509 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1510 : 0)
1511
1512 /* Place additional restrictions on the register class to use when it
1513 is necessary to be able to hold a value of mode MODE in a reload
1514 register for which class CLASS would ordinarily be used. */
1515
1516 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1517 ((MODE) == QImode && !TARGET_64BIT \
1518 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1519 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1520 ? Q_REGS : (CLASS))
1521
1522 /* Given an rtx X being reloaded into a reg required to be
1523 in class CLASS, return the class of reg to actually use.
1524 In general this is just CLASS; but on some machines
1525 in some cases it is preferable to use a more restrictive class.
1526 On the 80386 series, we prevent floating constants from being
1527 reloaded into floating registers (since no move-insn can do that)
1528 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1529
1530 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1531 QImode must go into class Q_REGS.
1532 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1533 movdf to do mem-to-mem moves through integer regs. */
1534
1535 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1536 ix86_preferred_reload_class ((X), (CLASS))
1537
1538 /* If we are copying between general and FP registers, we need a memory
1539 location. The same is true for SSE and MMX registers. */
1540 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1541 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1542
1543 /* QImode spills from non-QI registers need a scratch. This does not
1544 happen often -- the only example so far requires an uninitialized
1545 pseudo. */
1546
1547 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1548 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1549 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1550 ? Q_REGS : NO_REGS)
1551
1552 /* Return the maximum number of consecutive registers
1553 needed to represent mode MODE in a register of class CLASS. */
1554 /* On the 80386, this is the size of MODE in words,
1555 except in the FP regs, where a single reg is always enough. */
1556 #define CLASS_MAX_NREGS(CLASS, MODE) \
1557 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1558 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1559 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1560 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1561
1562 /* A C expression whose value is nonzero if pseudos that have been
1563 assigned to registers of class CLASS would likely be spilled
1564 because registers of CLASS are needed for spill registers.
1565
1566 The default value of this macro returns 1 if CLASS has exactly one
1567 register and zero otherwise. On most machines, this default
1568 should be used. Only define this macro to some other expression
1569 if pseudo allocated by `local-alloc.c' end up in memory because
1570 their hard registers were needed for spill registers. If this
1571 macro returns nonzero for those classes, those pseudos will only
1572 be allocated by `global.c', which knows how to reallocate the
1573 pseudo to another register. If there would not be another
1574 register available for reallocation, you should not change the
1575 definition of this macro since the only effect of such a
1576 definition would be to slow down register allocation. */
1577
1578 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1579 (((CLASS) == AREG) \
1580 || ((CLASS) == DREG) \
1581 || ((CLASS) == CREG) \
1582 || ((CLASS) == BREG) \
1583 || ((CLASS) == AD_REGS) \
1584 || ((CLASS) == SIREG) \
1585 || ((CLASS) == DIREG) \
1586 || ((CLASS) == FP_TOP_REG) \
1587 || ((CLASS) == FP_SECOND_REG))
1588
1589 /* Return a class of registers that cannot change FROM mode to TO mode.
1590
1591 x87 registers can't do subreg as all values are reformated to extended
1592 precision. XMM registers does not support with nonzero offsets equal
1593 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1594 determine these, prohibit all nonparadoxical subregs changing size. */
1595
1596 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1597 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1598 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1599 || MAYBE_MMX_CLASS_P (CLASS) \
1600 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1601 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1602 \f
1603 /* Stack layout; function entry, exit and calling. */
1604
1605 /* Define this if pushing a word on the stack
1606 makes the stack pointer a smaller address. */
1607 #define STACK_GROWS_DOWNWARD
1608
1609 /* Define this if the nominal address of the stack frame
1610 is at the high-address end of the local variables;
1611 that is, each additional local variable allocated
1612 goes at a more negative offset in the frame. */
1613 #define FRAME_GROWS_DOWNWARD
1614
1615 /* Offset within stack frame to start allocating local variables at.
1616 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1617 first local allocated. Otherwise, it is the offset to the BEGINNING
1618 of the first local allocated. */
1619 #define STARTING_FRAME_OFFSET 0
1620
1621 /* If we generate an insn to push BYTES bytes,
1622 this says how many the stack pointer really advances by.
1623 On 386 pushw decrements by exactly 2 no matter what the position was.
1624 On the 386 there is no pushb; we use pushw instead, and this
1625 has the effect of rounding up to 2.
1626
1627 For 64bit ABI we round up to 8 bytes.
1628 */
1629
1630 #define PUSH_ROUNDING(BYTES) \
1631 (TARGET_64BIT \
1632 ? (((BYTES) + 7) & (-8)) \
1633 : (((BYTES) + 1) & (-2)))
1634
1635 /* If defined, the maximum amount of space required for outgoing arguments will
1636 be computed and placed into the variable
1637 `current_function_outgoing_args_size'. No space will be pushed onto the
1638 stack for each call; instead, the function prologue should increase the stack
1639 frame size by this amount. */
1640
1641 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1642
1643 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1644 instructions to pass outgoing arguments. */
1645
1646 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1647
1648 /* We want the stack and args grow in opposite directions, even if
1649 PUSH_ARGS is 0. */
1650 #define PUSH_ARGS_REVERSED 1
1651
1652 /* Offset of first parameter from the argument pointer register value. */
1653 #define FIRST_PARM_OFFSET(FNDECL) 0
1654
1655 /* Define this macro if functions should assume that stack space has been
1656 allocated for arguments even when their values are passed in registers.
1657
1658 The value of this macro is the size, in bytes, of the area reserved for
1659 arguments passed in registers for the function represented by FNDECL.
1660
1661 This space can be allocated by the caller, or be a part of the
1662 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1663 which. */
1664 #define REG_PARM_STACK_SPACE(FNDECL) 0
1665
1666 /* Define as a C expression that evaluates to nonzero if we do not know how
1667 to pass TYPE solely in registers. The file expr.h defines a
1668 definition that is usually appropriate, refer to expr.h for additional
1669 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1670 computed in the stack and then loaded into a register. */
1671 #define MUST_PASS_IN_STACK(MODE, TYPE) ix86_must_pass_in_stack ((MODE), (TYPE))
1672
1673 /* Value is the number of bytes of arguments automatically
1674 popped when returning from a subroutine call.
1675 FUNDECL is the declaration node of the function (as a tree),
1676 FUNTYPE is the data type of the function (as a tree),
1677 or for a library call it is an identifier node for the subroutine name.
1678 SIZE is the number of bytes of arguments passed on the stack.
1679
1680 On the 80386, the RTD insn may be used to pop them if the number
1681 of args is fixed, but if the number is variable then the caller
1682 must pop them all. RTD can't be used for library calls now
1683 because the library is compiled with the Unix compiler.
1684 Use of RTD is a selectable option, since it is incompatible with
1685 standard Unix calling sequences. If the option is not selected,
1686 the caller must always pop the args.
1687
1688 The attribute stdcall is equivalent to RTD on a per module basis. */
1689
1690 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1691 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1692
1693 /* Define how to find the value returned by a function.
1694 VALTYPE is the data type of the value (as a tree).
1695 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1696 otherwise, FUNC is 0. */
1697 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1698 ix86_function_value (VALTYPE)
1699
1700 #define FUNCTION_VALUE_REGNO_P(N) \
1701 ix86_function_value_regno_p (N)
1702
1703 /* Define how to find the value returned by a library function
1704 assuming the value has mode MODE. */
1705
1706 #define LIBCALL_VALUE(MODE) \
1707 ix86_libcall_value (MODE)
1708
1709 /* Define the size of the result block used for communication between
1710 untyped_call and untyped_return. The block contains a DImode value
1711 followed by the block used by fnsave and frstor. */
1712
1713 #define APPLY_RESULT_SIZE (8+108)
1714
1715 /* 1 if N is a possible register number for function argument passing. */
1716 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1717
1718 /* Define a data type for recording info about an argument list
1719 during the scan of that argument list. This data type should
1720 hold all necessary information about the function itself
1721 and about the args processed so far, enough to enable macros
1722 such as FUNCTION_ARG to determine where the next arg should go. */
1723
1724 typedef struct ix86_args {
1725 int words; /* # words passed so far */
1726 int nregs; /* # registers available for passing */
1727 int regno; /* next available register number */
1728 int fastcall; /* fastcall calling convention is used */
1729 int sse_words; /* # sse words passed so far */
1730 int sse_nregs; /* # sse registers available for passing */
1731 int warn_sse; /* True when we want to warn about SSE ABI. */
1732 int warn_mmx; /* True when we want to warn about MMX ABI. */
1733 int sse_regno; /* next available sse register number */
1734 int mmx_words; /* # mmx words passed so far */
1735 int mmx_nregs; /* # mmx registers available for passing */
1736 int mmx_regno; /* next available mmx register number */
1737 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1738 } CUMULATIVE_ARGS;
1739
1740 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1741 for a call to a function whose data type is FNTYPE.
1742 For a library call, FNTYPE is 0. */
1743
1744 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1745 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1746
1747 /* Update the data in CUM to advance over an argument
1748 of mode MODE and data type TYPE.
1749 (TYPE is null for libcalls where that information may not be available.) */
1750
1751 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1752 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1753
1754 /* Define where to put the arguments to a function.
1755 Value is zero to push the argument on the stack,
1756 or a hard register in which to store the argument.
1757
1758 MODE is the argument's machine mode.
1759 TYPE is the data type of the argument (as a tree).
1760 This is null for libcalls where that information may
1761 not be available.
1762 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1763 the preceding args and about the function being called.
1764 NAMED is nonzero if this argument is a named parameter
1765 (otherwise it is an extra parameter matching an ellipsis). */
1766
1767 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1768 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1769
1770 /* For an arg passed partly in registers and partly in memory,
1771 this is the number of registers used.
1772 For args passed entirely in registers or entirely in memory, zero. */
1773
1774 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1775
1776 /* A C expression that indicates when an argument must be passed by
1777 reference. If nonzero for an argument, a copy of that argument is
1778 made in memory and a pointer to the argument is passed instead of
1779 the argument itself. The pointer is passed in whatever way is
1780 appropriate for passing a pointer to that type. */
1781
1782 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1783 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1784
1785 /* Implement `va_start' for varargs and stdarg. */
1786 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1787 ix86_va_start (VALIST, NEXTARG)
1788
1789 /* Implement `va_arg'. */
1790 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1791 ix86_va_arg ((VALIST), (TYPE))
1792
1793 #define TARGET_ASM_FILE_END ix86_file_end
1794 #define NEED_INDICATE_EXEC_STACK 0
1795
1796 /* Output assembler code to FILE to increment profiler label # LABELNO
1797 for profiling a function entry. */
1798
1799 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1800
1801 #define MCOUNT_NAME "_mcount"
1802
1803 #define PROFILE_COUNT_REGISTER "edx"
1804
1805 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1806 the stack pointer does not matter. The value is tested only in
1807 functions that have frame pointers.
1808 No definition is equivalent to always zero. */
1809 /* Note on the 386 it might be more efficient not to define this since
1810 we have to restore it ourselves from the frame pointer, in order to
1811 use pop */
1812
1813 #define EXIT_IGNORE_STACK 1
1814
1815 /* Output assembler code for a block containing the constant parts
1816 of a trampoline, leaving space for the variable parts. */
1817
1818 /* On the 386, the trampoline contains two instructions:
1819 mov #STATIC,ecx
1820 jmp FUNCTION
1821 The trampoline is generated entirely at runtime. The operand of JMP
1822 is the address of FUNCTION relative to the instruction following the
1823 JMP (which is 5 bytes long). */
1824
1825 /* Length in units of the trampoline for entering a nested function. */
1826
1827 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1828
1829 /* Emit RTL insns to initialize the variable parts of a trampoline.
1830 FNADDR is an RTX for the address of the function's pure code.
1831 CXT is an RTX for the static chain value for the function. */
1832
1833 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1834 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1835 \f
1836 /* Definitions for register eliminations.
1837
1838 This is an array of structures. Each structure initializes one pair
1839 of eliminable registers. The "from" register number is given first,
1840 followed by "to". Eliminations of the same "from" register are listed
1841 in order of preference.
1842
1843 There are two registers that can always be eliminated on the i386.
1844 The frame pointer and the arg pointer can be replaced by either the
1845 hard frame pointer or to the stack pointer, depending upon the
1846 circumstances. The hard frame pointer is not used before reload and
1847 so it is not eligible for elimination. */
1848
1849 #define ELIMINABLE_REGS \
1850 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1851 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1852 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1853 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1854
1855 /* Given FROM and TO register numbers, say whether this elimination is
1856 allowed. Frame pointer elimination is automatically handled.
1857
1858 All other eliminations are valid. */
1859
1860 #define CAN_ELIMINATE(FROM, TO) \
1861 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1862
1863 /* Define the offset between two registers, one to be eliminated, and the other
1864 its replacement, at the start of a routine. */
1865
1866 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1867 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1868 \f
1869 /* Addressing modes, and classification of registers for them. */
1870
1871 /* Macros to check register numbers against specific register classes. */
1872
1873 /* These assume that REGNO is a hard or pseudo reg number.
1874 They give nonzero only if REGNO is a hard reg of the suitable class
1875 or a pseudo reg currently allocated to a suitable hard reg.
1876 Since they use reg_renumber, they are safe only once reg_renumber
1877 has been allocated, which happens in local-alloc.c. */
1878
1879 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1880 ((REGNO) < STACK_POINTER_REGNUM \
1881 || (REGNO >= FIRST_REX_INT_REG \
1882 && (REGNO) <= LAST_REX_INT_REG) \
1883 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1884 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1885 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1886
1887 #define REGNO_OK_FOR_BASE_P(REGNO) \
1888 ((REGNO) <= STACK_POINTER_REGNUM \
1889 || (REGNO) == ARG_POINTER_REGNUM \
1890 || (REGNO) == FRAME_POINTER_REGNUM \
1891 || (REGNO >= FIRST_REX_INT_REG \
1892 && (REGNO) <= LAST_REX_INT_REG) \
1893 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1894 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1895 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1896
1897 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1898 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1899 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1900 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1901
1902 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1903 and check its validity for a certain class.
1904 We have two alternate definitions for each of them.
1905 The usual definition accepts all pseudo regs; the other rejects
1906 them unless they have been allocated suitable hard regs.
1907 The symbol REG_OK_STRICT causes the latter definition to be used.
1908
1909 Most source files want to accept pseudo regs in the hope that
1910 they will get allocated to the class that the insn wants them to be in.
1911 Source files for reload pass need to be strict.
1912 After reload, it makes no difference, since pseudo regs have
1913 been eliminated by then. */
1914
1915
1916 /* Non strict versions, pseudos are ok. */
1917 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1918 (REGNO (X) < STACK_POINTER_REGNUM \
1919 || (REGNO (X) >= FIRST_REX_INT_REG \
1920 && REGNO (X) <= LAST_REX_INT_REG) \
1921 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1922
1923 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1924 (REGNO (X) <= STACK_POINTER_REGNUM \
1925 || REGNO (X) == ARG_POINTER_REGNUM \
1926 || REGNO (X) == FRAME_POINTER_REGNUM \
1927 || (REGNO (X) >= FIRST_REX_INT_REG \
1928 && REGNO (X) <= LAST_REX_INT_REG) \
1929 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1930
1931 /* Strict versions, hard registers only */
1932 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1933 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1934
1935 #ifndef REG_OK_STRICT
1936 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1937 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1938
1939 #else
1940 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1941 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1942 #endif
1943
1944 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1945 that is a valid memory address for an instruction.
1946 The MODE argument is the machine mode for the MEM expression
1947 that wants to use this address.
1948
1949 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1950 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1951
1952 See legitimize_pic_address in i386.c for details as to what
1953 constitutes a legitimate address when -fpic is used. */
1954
1955 #define MAX_REGS_PER_ADDRESS 2
1956
1957 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1958
1959 /* Nonzero if the constant value X is a legitimate general operand.
1960 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1961
1962 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1963
1964 #ifdef REG_OK_STRICT
1965 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1966 do { \
1967 if (legitimate_address_p ((MODE), (X), 1)) \
1968 goto ADDR; \
1969 } while (0)
1970
1971 #else
1972 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1973 do { \
1974 if (legitimate_address_p ((MODE), (X), 0)) \
1975 goto ADDR; \
1976 } while (0)
1977
1978 #endif
1979
1980 /* If defined, a C expression to determine the base term of address X.
1981 This macro is used in only one place: `find_base_term' in alias.c.
1982
1983 It is always safe for this macro to not be defined. It exists so
1984 that alias analysis can understand machine-dependent addresses.
1985
1986 The typical use of this macro is to handle addresses containing
1987 a label_ref or symbol_ref within an UNSPEC. */
1988
1989 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1990
1991 /* Try machine-dependent ways of modifying an illegitimate address
1992 to be legitimate. If we find one, return the new, valid address.
1993 This macro is used in only one place: `memory_address' in explow.c.
1994
1995 OLDX is the address as it was before break_out_memory_refs was called.
1996 In some cases it is useful to look at this to decide what needs to be done.
1997
1998 MODE and WIN are passed so that this macro can use
1999 GO_IF_LEGITIMATE_ADDRESS.
2000
2001 It is always safe for this macro to do nothing. It exists to recognize
2002 opportunities to optimize the output.
2003
2004 For the 80386, we handle X+REG by loading X into a register R and
2005 using R+REG. R will go in a general reg and indexing will be used.
2006 However, if REG is a broken-out memory address or multiplication,
2007 nothing needs to be done because REG can certainly go in a general reg.
2008
2009 When -fpic is used, special handling is needed for symbolic references.
2010 See comments by legitimize_pic_address in i386.c for details. */
2011
2012 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2013 do { \
2014 (X) = legitimize_address ((X), (OLDX), (MODE)); \
2015 if (memory_address_p ((MODE), (X))) \
2016 goto WIN; \
2017 } while (0)
2018
2019 #define REWRITE_ADDRESS(X) rewrite_address (X)
2020
2021 /* Nonzero if the constant value X is a legitimate general operand
2022 when generating PIC code. It is given that flag_pic is on and
2023 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2024
2025 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2026
2027 #define SYMBOLIC_CONST(X) \
2028 (GET_CODE (X) == SYMBOL_REF \
2029 || GET_CODE (X) == LABEL_REF \
2030 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2031
2032 /* Go to LABEL if ADDR (a legitimate address expression)
2033 has an effect that depends on the machine mode it is used for.
2034 On the 80386, only postdecrement and postincrement address depend thus
2035 (the amount of decrement or increment being the length of the operand). */
2036 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2037 do { \
2038 if (GET_CODE (ADDR) == POST_INC \
2039 || GET_CODE (ADDR) == POST_DEC) \
2040 goto LABEL; \
2041 } while (0)
2042 \f
2043 /* Codes for all the SSE/MMX builtins. */
2044 enum ix86_builtins
2045 {
2046 IX86_BUILTIN_ADDPS,
2047 IX86_BUILTIN_ADDSS,
2048 IX86_BUILTIN_DIVPS,
2049 IX86_BUILTIN_DIVSS,
2050 IX86_BUILTIN_MULPS,
2051 IX86_BUILTIN_MULSS,
2052 IX86_BUILTIN_SUBPS,
2053 IX86_BUILTIN_SUBSS,
2054
2055 IX86_BUILTIN_CMPEQPS,
2056 IX86_BUILTIN_CMPLTPS,
2057 IX86_BUILTIN_CMPLEPS,
2058 IX86_BUILTIN_CMPGTPS,
2059 IX86_BUILTIN_CMPGEPS,
2060 IX86_BUILTIN_CMPNEQPS,
2061 IX86_BUILTIN_CMPNLTPS,
2062 IX86_BUILTIN_CMPNLEPS,
2063 IX86_BUILTIN_CMPNGTPS,
2064 IX86_BUILTIN_CMPNGEPS,
2065 IX86_BUILTIN_CMPORDPS,
2066 IX86_BUILTIN_CMPUNORDPS,
2067 IX86_BUILTIN_CMPNEPS,
2068 IX86_BUILTIN_CMPEQSS,
2069 IX86_BUILTIN_CMPLTSS,
2070 IX86_BUILTIN_CMPLESS,
2071 IX86_BUILTIN_CMPNEQSS,
2072 IX86_BUILTIN_CMPNLTSS,
2073 IX86_BUILTIN_CMPNLESS,
2074 IX86_BUILTIN_CMPORDSS,
2075 IX86_BUILTIN_CMPUNORDSS,
2076 IX86_BUILTIN_CMPNESS,
2077
2078 IX86_BUILTIN_COMIEQSS,
2079 IX86_BUILTIN_COMILTSS,
2080 IX86_BUILTIN_COMILESS,
2081 IX86_BUILTIN_COMIGTSS,
2082 IX86_BUILTIN_COMIGESS,
2083 IX86_BUILTIN_COMINEQSS,
2084 IX86_BUILTIN_UCOMIEQSS,
2085 IX86_BUILTIN_UCOMILTSS,
2086 IX86_BUILTIN_UCOMILESS,
2087 IX86_BUILTIN_UCOMIGTSS,
2088 IX86_BUILTIN_UCOMIGESS,
2089 IX86_BUILTIN_UCOMINEQSS,
2090
2091 IX86_BUILTIN_CVTPI2PS,
2092 IX86_BUILTIN_CVTPS2PI,
2093 IX86_BUILTIN_CVTSI2SS,
2094 IX86_BUILTIN_CVTSI642SS,
2095 IX86_BUILTIN_CVTSS2SI,
2096 IX86_BUILTIN_CVTSS2SI64,
2097 IX86_BUILTIN_CVTTPS2PI,
2098 IX86_BUILTIN_CVTTSS2SI,
2099 IX86_BUILTIN_CVTTSS2SI64,
2100
2101 IX86_BUILTIN_MAXPS,
2102 IX86_BUILTIN_MAXSS,
2103 IX86_BUILTIN_MINPS,
2104 IX86_BUILTIN_MINSS,
2105
2106 IX86_BUILTIN_LOADAPS,
2107 IX86_BUILTIN_LOADUPS,
2108 IX86_BUILTIN_STOREAPS,
2109 IX86_BUILTIN_STOREUPS,
2110 IX86_BUILTIN_LOADSS,
2111 IX86_BUILTIN_STORESS,
2112 IX86_BUILTIN_MOVSS,
2113
2114 IX86_BUILTIN_MOVHLPS,
2115 IX86_BUILTIN_MOVLHPS,
2116 IX86_BUILTIN_LOADHPS,
2117 IX86_BUILTIN_LOADLPS,
2118 IX86_BUILTIN_STOREHPS,
2119 IX86_BUILTIN_STORELPS,
2120
2121 IX86_BUILTIN_MASKMOVQ,
2122 IX86_BUILTIN_MOVMSKPS,
2123 IX86_BUILTIN_PMOVMSKB,
2124
2125 IX86_BUILTIN_MOVNTPS,
2126 IX86_BUILTIN_MOVNTQ,
2127
2128 IX86_BUILTIN_LOADDQA,
2129 IX86_BUILTIN_LOADDQU,
2130 IX86_BUILTIN_STOREDQA,
2131 IX86_BUILTIN_STOREDQU,
2132 IX86_BUILTIN_MOVQ,
2133 IX86_BUILTIN_LOADD,
2134 IX86_BUILTIN_STORED,
2135
2136 IX86_BUILTIN_CLRTI,
2137
2138 IX86_BUILTIN_PACKSSWB,
2139 IX86_BUILTIN_PACKSSDW,
2140 IX86_BUILTIN_PACKUSWB,
2141
2142 IX86_BUILTIN_PADDB,
2143 IX86_BUILTIN_PADDW,
2144 IX86_BUILTIN_PADDD,
2145 IX86_BUILTIN_PADDQ,
2146 IX86_BUILTIN_PADDSB,
2147 IX86_BUILTIN_PADDSW,
2148 IX86_BUILTIN_PADDUSB,
2149 IX86_BUILTIN_PADDUSW,
2150 IX86_BUILTIN_PSUBB,
2151 IX86_BUILTIN_PSUBW,
2152 IX86_BUILTIN_PSUBD,
2153 IX86_BUILTIN_PSUBQ,
2154 IX86_BUILTIN_PSUBSB,
2155 IX86_BUILTIN_PSUBSW,
2156 IX86_BUILTIN_PSUBUSB,
2157 IX86_BUILTIN_PSUBUSW,
2158
2159 IX86_BUILTIN_PAND,
2160 IX86_BUILTIN_PANDN,
2161 IX86_BUILTIN_POR,
2162 IX86_BUILTIN_PXOR,
2163
2164 IX86_BUILTIN_PAVGB,
2165 IX86_BUILTIN_PAVGW,
2166
2167 IX86_BUILTIN_PCMPEQB,
2168 IX86_BUILTIN_PCMPEQW,
2169 IX86_BUILTIN_PCMPEQD,
2170 IX86_BUILTIN_PCMPGTB,
2171 IX86_BUILTIN_PCMPGTW,
2172 IX86_BUILTIN_PCMPGTD,
2173
2174 IX86_BUILTIN_PEXTRW,
2175 IX86_BUILTIN_PINSRW,
2176
2177 IX86_BUILTIN_PMADDWD,
2178
2179 IX86_BUILTIN_PMAXSW,
2180 IX86_BUILTIN_PMAXUB,
2181 IX86_BUILTIN_PMINSW,
2182 IX86_BUILTIN_PMINUB,
2183
2184 IX86_BUILTIN_PMULHUW,
2185 IX86_BUILTIN_PMULHW,
2186 IX86_BUILTIN_PMULLW,
2187
2188 IX86_BUILTIN_PSADBW,
2189 IX86_BUILTIN_PSHUFW,
2190
2191 IX86_BUILTIN_PSLLW,
2192 IX86_BUILTIN_PSLLD,
2193 IX86_BUILTIN_PSLLQ,
2194 IX86_BUILTIN_PSRAW,
2195 IX86_BUILTIN_PSRAD,
2196 IX86_BUILTIN_PSRLW,
2197 IX86_BUILTIN_PSRLD,
2198 IX86_BUILTIN_PSRLQ,
2199 IX86_BUILTIN_PSLLWI,
2200 IX86_BUILTIN_PSLLDI,
2201 IX86_BUILTIN_PSLLQI,
2202 IX86_BUILTIN_PSRAWI,
2203 IX86_BUILTIN_PSRADI,
2204 IX86_BUILTIN_PSRLWI,
2205 IX86_BUILTIN_PSRLDI,
2206 IX86_BUILTIN_PSRLQI,
2207
2208 IX86_BUILTIN_PUNPCKHBW,
2209 IX86_BUILTIN_PUNPCKHWD,
2210 IX86_BUILTIN_PUNPCKHDQ,
2211 IX86_BUILTIN_PUNPCKLBW,
2212 IX86_BUILTIN_PUNPCKLWD,
2213 IX86_BUILTIN_PUNPCKLDQ,
2214
2215 IX86_BUILTIN_SHUFPS,
2216
2217 IX86_BUILTIN_RCPPS,
2218 IX86_BUILTIN_RCPSS,
2219 IX86_BUILTIN_RSQRTPS,
2220 IX86_BUILTIN_RSQRTSS,
2221 IX86_BUILTIN_SQRTPS,
2222 IX86_BUILTIN_SQRTSS,
2223
2224 IX86_BUILTIN_UNPCKHPS,
2225 IX86_BUILTIN_UNPCKLPS,
2226
2227 IX86_BUILTIN_ANDPS,
2228 IX86_BUILTIN_ANDNPS,
2229 IX86_BUILTIN_ORPS,
2230 IX86_BUILTIN_XORPS,
2231
2232 IX86_BUILTIN_EMMS,
2233 IX86_BUILTIN_LDMXCSR,
2234 IX86_BUILTIN_STMXCSR,
2235 IX86_BUILTIN_SFENCE,
2236
2237 /* 3DNow! Original */
2238 IX86_BUILTIN_FEMMS,
2239 IX86_BUILTIN_PAVGUSB,
2240 IX86_BUILTIN_PF2ID,
2241 IX86_BUILTIN_PFACC,
2242 IX86_BUILTIN_PFADD,
2243 IX86_BUILTIN_PFCMPEQ,
2244 IX86_BUILTIN_PFCMPGE,
2245 IX86_BUILTIN_PFCMPGT,
2246 IX86_BUILTIN_PFMAX,
2247 IX86_BUILTIN_PFMIN,
2248 IX86_BUILTIN_PFMUL,
2249 IX86_BUILTIN_PFRCP,
2250 IX86_BUILTIN_PFRCPIT1,
2251 IX86_BUILTIN_PFRCPIT2,
2252 IX86_BUILTIN_PFRSQIT1,
2253 IX86_BUILTIN_PFRSQRT,
2254 IX86_BUILTIN_PFSUB,
2255 IX86_BUILTIN_PFSUBR,
2256 IX86_BUILTIN_PI2FD,
2257 IX86_BUILTIN_PMULHRW,
2258
2259 /* 3DNow! Athlon Extensions */
2260 IX86_BUILTIN_PF2IW,
2261 IX86_BUILTIN_PFNACC,
2262 IX86_BUILTIN_PFPNACC,
2263 IX86_BUILTIN_PI2FW,
2264 IX86_BUILTIN_PSWAPDSI,
2265 IX86_BUILTIN_PSWAPDSF,
2266
2267 IX86_BUILTIN_SSE_ZERO,
2268 IX86_BUILTIN_MMX_ZERO,
2269
2270 /* SSE2 */
2271 IX86_BUILTIN_ADDPD,
2272 IX86_BUILTIN_ADDSD,
2273 IX86_BUILTIN_DIVPD,
2274 IX86_BUILTIN_DIVSD,
2275 IX86_BUILTIN_MULPD,
2276 IX86_BUILTIN_MULSD,
2277 IX86_BUILTIN_SUBPD,
2278 IX86_BUILTIN_SUBSD,
2279
2280 IX86_BUILTIN_CMPEQPD,
2281 IX86_BUILTIN_CMPLTPD,
2282 IX86_BUILTIN_CMPLEPD,
2283 IX86_BUILTIN_CMPGTPD,
2284 IX86_BUILTIN_CMPGEPD,
2285 IX86_BUILTIN_CMPNEQPD,
2286 IX86_BUILTIN_CMPNLTPD,
2287 IX86_BUILTIN_CMPNLEPD,
2288 IX86_BUILTIN_CMPNGTPD,
2289 IX86_BUILTIN_CMPNGEPD,
2290 IX86_BUILTIN_CMPORDPD,
2291 IX86_BUILTIN_CMPUNORDPD,
2292 IX86_BUILTIN_CMPNEPD,
2293 IX86_BUILTIN_CMPEQSD,
2294 IX86_BUILTIN_CMPLTSD,
2295 IX86_BUILTIN_CMPLESD,
2296 IX86_BUILTIN_CMPNEQSD,
2297 IX86_BUILTIN_CMPNLTSD,
2298 IX86_BUILTIN_CMPNLESD,
2299 IX86_BUILTIN_CMPORDSD,
2300 IX86_BUILTIN_CMPUNORDSD,
2301 IX86_BUILTIN_CMPNESD,
2302
2303 IX86_BUILTIN_COMIEQSD,
2304 IX86_BUILTIN_COMILTSD,
2305 IX86_BUILTIN_COMILESD,
2306 IX86_BUILTIN_COMIGTSD,
2307 IX86_BUILTIN_COMIGESD,
2308 IX86_BUILTIN_COMINEQSD,
2309 IX86_BUILTIN_UCOMIEQSD,
2310 IX86_BUILTIN_UCOMILTSD,
2311 IX86_BUILTIN_UCOMILESD,
2312 IX86_BUILTIN_UCOMIGTSD,
2313 IX86_BUILTIN_UCOMIGESD,
2314 IX86_BUILTIN_UCOMINEQSD,
2315
2316 IX86_BUILTIN_MAXPD,
2317 IX86_BUILTIN_MAXSD,
2318 IX86_BUILTIN_MINPD,
2319 IX86_BUILTIN_MINSD,
2320
2321 IX86_BUILTIN_ANDPD,
2322 IX86_BUILTIN_ANDNPD,
2323 IX86_BUILTIN_ORPD,
2324 IX86_BUILTIN_XORPD,
2325
2326 IX86_BUILTIN_SQRTPD,
2327 IX86_BUILTIN_SQRTSD,
2328
2329 IX86_BUILTIN_UNPCKHPD,
2330 IX86_BUILTIN_UNPCKLPD,
2331
2332 IX86_BUILTIN_SHUFPD,
2333
2334 IX86_BUILTIN_LOADAPD,
2335 IX86_BUILTIN_LOADUPD,
2336 IX86_BUILTIN_STOREAPD,
2337 IX86_BUILTIN_STOREUPD,
2338 IX86_BUILTIN_LOADSD,
2339 IX86_BUILTIN_STORESD,
2340 IX86_BUILTIN_MOVSD,
2341
2342 IX86_BUILTIN_LOADHPD,
2343 IX86_BUILTIN_LOADLPD,
2344 IX86_BUILTIN_STOREHPD,
2345 IX86_BUILTIN_STORELPD,
2346
2347 IX86_BUILTIN_CVTDQ2PD,
2348 IX86_BUILTIN_CVTDQ2PS,
2349
2350 IX86_BUILTIN_CVTPD2DQ,
2351 IX86_BUILTIN_CVTPD2PI,
2352 IX86_BUILTIN_CVTPD2PS,
2353 IX86_BUILTIN_CVTTPD2DQ,
2354 IX86_BUILTIN_CVTTPD2PI,
2355
2356 IX86_BUILTIN_CVTPI2PD,
2357 IX86_BUILTIN_CVTSI2SD,
2358 IX86_BUILTIN_CVTSI642SD,
2359
2360 IX86_BUILTIN_CVTSD2SI,
2361 IX86_BUILTIN_CVTSD2SI64,
2362 IX86_BUILTIN_CVTSD2SS,
2363 IX86_BUILTIN_CVTSS2SD,
2364 IX86_BUILTIN_CVTTSD2SI,
2365 IX86_BUILTIN_CVTTSD2SI64,
2366
2367 IX86_BUILTIN_CVTPS2DQ,
2368 IX86_BUILTIN_CVTPS2PD,
2369 IX86_BUILTIN_CVTTPS2DQ,
2370
2371 IX86_BUILTIN_MOVNTI,
2372 IX86_BUILTIN_MOVNTPD,
2373 IX86_BUILTIN_MOVNTDQ,
2374
2375 IX86_BUILTIN_SETPD1,
2376 IX86_BUILTIN_SETPD,
2377 IX86_BUILTIN_CLRPD,
2378 IX86_BUILTIN_SETRPD,
2379 IX86_BUILTIN_LOADPD1,
2380 IX86_BUILTIN_LOADRPD,
2381 IX86_BUILTIN_STOREPD1,
2382 IX86_BUILTIN_STORERPD,
2383
2384 /* SSE2 MMX */
2385 IX86_BUILTIN_MASKMOVDQU,
2386 IX86_BUILTIN_MOVMSKPD,
2387 IX86_BUILTIN_PMOVMSKB128,
2388 IX86_BUILTIN_MOVQ2DQ,
2389 IX86_BUILTIN_MOVDQ2Q,
2390
2391 IX86_BUILTIN_PACKSSWB128,
2392 IX86_BUILTIN_PACKSSDW128,
2393 IX86_BUILTIN_PACKUSWB128,
2394
2395 IX86_BUILTIN_PADDB128,
2396 IX86_BUILTIN_PADDW128,
2397 IX86_BUILTIN_PADDD128,
2398 IX86_BUILTIN_PADDQ128,
2399 IX86_BUILTIN_PADDSB128,
2400 IX86_BUILTIN_PADDSW128,
2401 IX86_BUILTIN_PADDUSB128,
2402 IX86_BUILTIN_PADDUSW128,
2403 IX86_BUILTIN_PSUBB128,
2404 IX86_BUILTIN_PSUBW128,
2405 IX86_BUILTIN_PSUBD128,
2406 IX86_BUILTIN_PSUBQ128,
2407 IX86_BUILTIN_PSUBSB128,
2408 IX86_BUILTIN_PSUBSW128,
2409 IX86_BUILTIN_PSUBUSB128,
2410 IX86_BUILTIN_PSUBUSW128,
2411
2412 IX86_BUILTIN_PAND128,
2413 IX86_BUILTIN_PANDN128,
2414 IX86_BUILTIN_POR128,
2415 IX86_BUILTIN_PXOR128,
2416
2417 IX86_BUILTIN_PAVGB128,
2418 IX86_BUILTIN_PAVGW128,
2419
2420 IX86_BUILTIN_PCMPEQB128,
2421 IX86_BUILTIN_PCMPEQW128,
2422 IX86_BUILTIN_PCMPEQD128,
2423 IX86_BUILTIN_PCMPGTB128,
2424 IX86_BUILTIN_PCMPGTW128,
2425 IX86_BUILTIN_PCMPGTD128,
2426
2427 IX86_BUILTIN_PEXTRW128,
2428 IX86_BUILTIN_PINSRW128,
2429
2430 IX86_BUILTIN_PMADDWD128,
2431
2432 IX86_BUILTIN_PMAXSW128,
2433 IX86_BUILTIN_PMAXUB128,
2434 IX86_BUILTIN_PMINSW128,
2435 IX86_BUILTIN_PMINUB128,
2436
2437 IX86_BUILTIN_PMULUDQ,
2438 IX86_BUILTIN_PMULUDQ128,
2439 IX86_BUILTIN_PMULHUW128,
2440 IX86_BUILTIN_PMULHW128,
2441 IX86_BUILTIN_PMULLW128,
2442
2443 IX86_BUILTIN_PSADBW128,
2444 IX86_BUILTIN_PSHUFHW,
2445 IX86_BUILTIN_PSHUFLW,
2446 IX86_BUILTIN_PSHUFD,
2447
2448 IX86_BUILTIN_PSLLW128,
2449 IX86_BUILTIN_PSLLD128,
2450 IX86_BUILTIN_PSLLQ128,
2451 IX86_BUILTIN_PSRAW128,
2452 IX86_BUILTIN_PSRAD128,
2453 IX86_BUILTIN_PSRLW128,
2454 IX86_BUILTIN_PSRLD128,
2455 IX86_BUILTIN_PSRLQ128,
2456 IX86_BUILTIN_PSLLDQI128,
2457 IX86_BUILTIN_PSLLWI128,
2458 IX86_BUILTIN_PSLLDI128,
2459 IX86_BUILTIN_PSLLQI128,
2460 IX86_BUILTIN_PSRAWI128,
2461 IX86_BUILTIN_PSRADI128,
2462 IX86_BUILTIN_PSRLDQI128,
2463 IX86_BUILTIN_PSRLWI128,
2464 IX86_BUILTIN_PSRLDI128,
2465 IX86_BUILTIN_PSRLQI128,
2466
2467 IX86_BUILTIN_PUNPCKHBW128,
2468 IX86_BUILTIN_PUNPCKHWD128,
2469 IX86_BUILTIN_PUNPCKHDQ128,
2470 IX86_BUILTIN_PUNPCKHQDQ128,
2471 IX86_BUILTIN_PUNPCKLBW128,
2472 IX86_BUILTIN_PUNPCKLWD128,
2473 IX86_BUILTIN_PUNPCKLDQ128,
2474 IX86_BUILTIN_PUNPCKLQDQ128,
2475
2476 IX86_BUILTIN_CLFLUSH,
2477 IX86_BUILTIN_MFENCE,
2478 IX86_BUILTIN_LFENCE,
2479
2480 /* Prescott New Instructions. */
2481 IX86_BUILTIN_ADDSUBPS,
2482 IX86_BUILTIN_HADDPS,
2483 IX86_BUILTIN_HSUBPS,
2484 IX86_BUILTIN_MOVSHDUP,
2485 IX86_BUILTIN_MOVSLDUP,
2486 IX86_BUILTIN_ADDSUBPD,
2487 IX86_BUILTIN_HADDPD,
2488 IX86_BUILTIN_HSUBPD,
2489 IX86_BUILTIN_LOADDDUP,
2490 IX86_BUILTIN_MOVDDUP,
2491 IX86_BUILTIN_LDDQU,
2492
2493 IX86_BUILTIN_MONITOR,
2494 IX86_BUILTIN_MWAIT,
2495
2496 IX86_BUILTIN_MAX
2497 };
2498 \f
2499 /* Max number of args passed in registers. If this is more than 3, we will
2500 have problems with ebx (register #4), since it is a caller save register and
2501 is also used as the pic register in ELF. So for now, don't allow more than
2502 3 registers to be passed in registers. */
2503
2504 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2505
2506 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2507
2508 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2509
2510 \f
2511 /* Specify the machine mode that this machine uses
2512 for the index in the tablejump instruction. */
2513 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2514
2515 /* Define this as 1 if `char' should by default be signed; else as 0. */
2516 #define DEFAULT_SIGNED_CHAR 1
2517
2518 /* Number of bytes moved into a data cache for a single prefetch operation. */
2519 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2520
2521 /* Number of prefetch operations that can be done in parallel. */
2522 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2523
2524 /* Max number of bytes we can move from memory to memory
2525 in one reasonably fast instruction. */
2526 #define MOVE_MAX 16
2527
2528 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2529 move efficiently, as opposed to MOVE_MAX which is the maximum
2530 number of bytes we can move with a single instruction. */
2531 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2532
2533 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2534 move-instruction pairs, we will do a movstr or libcall instead.
2535 Increasing the value will always make code faster, but eventually
2536 incurs high cost in increased code size.
2537
2538 If you don't define this, a reasonable default is used. */
2539
2540 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2541
2542 /* Define if shifts truncate the shift count
2543 which implies one can omit a sign-extension or zero-extension
2544 of a shift count. */
2545 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2546
2547 /* #define SHIFT_COUNT_TRUNCATED */
2548
2549 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2550 is done just by pretending it is already truncated. */
2551 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2552
2553 /* A macro to update M and UNSIGNEDP when an object whose type is
2554 TYPE and which has the specified mode and signedness is to be
2555 stored in a register. This macro is only called when TYPE is a
2556 scalar type.
2557
2558 On i386 it is sometimes useful to promote HImode and QImode
2559 quantities to SImode. The choice depends on target type. */
2560
2561 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2562 do { \
2563 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2564 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2565 (MODE) = SImode; \
2566 } while (0)
2567
2568 /* Specify the machine mode that pointers have.
2569 After generation of rtl, the compiler makes no further distinction
2570 between pointers and any other objects of this machine mode. */
2571 #define Pmode (TARGET_64BIT ? DImode : SImode)
2572
2573 /* A function address in a call instruction
2574 is a byte address (for indexing purposes)
2575 so give the MEM rtx a byte's mode. */
2576 #define FUNCTION_MODE QImode
2577 \f
2578 /* A C expression for the cost of moving data from a register in class FROM to
2579 one in class TO. The classes are expressed using the enumeration values
2580 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2581 interpreted relative to that.
2582
2583 It is not required that the cost always equal 2 when FROM is the same as TO;
2584 on some machines it is expensive to move between registers if they are not
2585 general registers. */
2586
2587 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2588 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2589
2590 /* A C expression for the cost of moving data of mode M between a
2591 register and memory. A value of 2 is the default; this cost is
2592 relative to those in `REGISTER_MOVE_COST'.
2593
2594 If moving between registers and memory is more expensive than
2595 between two registers, you should define this macro to express the
2596 relative cost. */
2597
2598 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2599 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2600
2601 /* A C expression for the cost of a branch instruction. A value of 1
2602 is the default; other values are interpreted relative to that. */
2603
2604 #define BRANCH_COST ix86_branch_cost
2605
2606 /* Define this macro as a C expression which is nonzero if accessing
2607 less than a word of memory (i.e. a `char' or a `short') is no
2608 faster than accessing a word of memory, i.e., if such access
2609 require more than one instruction or if there is no difference in
2610 cost between byte and (aligned) word loads.
2611
2612 When this macro is not defined, the compiler will access a field by
2613 finding the smallest containing object; when it is defined, a
2614 fullword load will be used if alignment permits. Unless bytes
2615 accesses are faster than word accesses, using word accesses is
2616 preferable since it may eliminate subsequent memory access if
2617 subsequent accesses occur to other fields in the same word of the
2618 structure, but to different bytes. */
2619
2620 #define SLOW_BYTE_ACCESS 0
2621
2622 /* Nonzero if access to memory by shorts is slow and undesirable. */
2623 #define SLOW_SHORT_ACCESS 0
2624
2625 /* Define this macro to be the value 1 if unaligned accesses have a
2626 cost many times greater than aligned accesses, for example if they
2627 are emulated in a trap handler.
2628
2629 When this macro is nonzero, the compiler will act as if
2630 `STRICT_ALIGNMENT' were nonzero when generating code for block
2631 moves. This can cause significantly more instructions to be
2632 produced. Therefore, do not set this macro nonzero if unaligned
2633 accesses only add a cycle or two to the time for a memory access.
2634
2635 If the value of this macro is always zero, it need not be defined. */
2636
2637 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2638
2639 /* Define this macro if it is as good or better to call a constant
2640 function address than to call an address kept in a register.
2641
2642 Desirable on the 386 because a CALL with a constant address is
2643 faster than one with a register address. */
2644
2645 #define NO_FUNCTION_CSE
2646
2647 /* Define this macro if it is as good or better for a function to call
2648 itself with an explicit address than to call an address kept in a
2649 register. */
2650
2651 #define NO_RECURSIVE_FUNCTION_CSE
2652 \f
2653 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2654 return the mode to be used for the comparison.
2655
2656 For floating-point equality comparisons, CCFPEQmode should be used.
2657 VOIDmode should be used in all other cases.
2658
2659 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2660 possible, to allow for more combinations. */
2661
2662 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2663
2664 /* Return nonzero if MODE implies a floating point inequality can be
2665 reversed. */
2666
2667 #define REVERSIBLE_CC_MODE(MODE) 1
2668
2669 /* A C expression whose value is reversed condition code of the CODE for
2670 comparison done in CC_MODE mode. */
2671 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2672
2673 \f
2674 /* Control the assembler format that we output, to the extent
2675 this does not vary between assemblers. */
2676
2677 /* How to refer to registers in assembler output.
2678 This sequence is indexed by compiler's hard-register-number (see above). */
2679
2680 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2681 For non floating point regs, the following are the HImode names.
2682
2683 For float regs, the stack top is sometimes referred to as "%st(0)"
2684 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2685
2686 #define HI_REGISTER_NAMES \
2687 {"ax","dx","cx","bx","si","di","bp","sp", \
2688 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2689 "argp", "flags", "fpsr", "dirflag", "frame", \
2690 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2691 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2692 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2693 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2694
2695 #define REGISTER_NAMES HI_REGISTER_NAMES
2696
2697 /* Table of additional register names to use in user input. */
2698
2699 #define ADDITIONAL_REGISTER_NAMES \
2700 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2701 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2702 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2703 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2704 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2705 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2706 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2707 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2708
2709 /* Note we are omitting these since currently I don't know how
2710 to get gcc to use these, since they want the same but different
2711 number as al, and ax.
2712 */
2713
2714 #define QI_REGISTER_NAMES \
2715 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2716
2717 /* These parallel the array above, and can be used to access bits 8:15
2718 of regs 0 through 3. */
2719
2720 #define QI_HIGH_REGISTER_NAMES \
2721 {"ah", "dh", "ch", "bh", }
2722
2723 /* How to renumber registers for dbx and gdb. */
2724
2725 #define DBX_REGISTER_NUMBER(N) \
2726 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2727
2728 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2729 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2730 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2731
2732 /* Before the prologue, RA is at 0(%esp). */
2733 #define INCOMING_RETURN_ADDR_RTX \
2734 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2735
2736 /* After the prologue, RA is at -4(AP) in the current frame. */
2737 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2738 ((COUNT) == 0 \
2739 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2740 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2741
2742 /* PC is dbx register 8; let's use that column for RA. */
2743 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2744
2745 /* Before the prologue, the top of the frame is at 4(%esp). */
2746 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2747
2748 /* Describe how we implement __builtin_eh_return. */
2749 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2750 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2751
2752
2753 /* Select a format to encode pointers in exception handling data. CODE
2754 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2755 true if the symbol may be affected by dynamic relocations.
2756
2757 ??? All x86 object file formats are capable of representing this.
2758 After all, the relocation needed is the same as for the call insn.
2759 Whether or not a particular assembler allows us to enter such, I
2760 guess we'll have to see. */
2761 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2762 (flag_pic \
2763 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2764 : DW_EH_PE_absptr)
2765
2766 /* This is how to output an insn to push a register on the stack.
2767 It need not be very fast code. */
2768
2769 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2770 do { \
2771 if (TARGET_64BIT) \
2772 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2773 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2774 else \
2775 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2776 } while (0)
2777
2778 /* This is how to output an insn to pop a register from the stack.
2779 It need not be very fast code. */
2780
2781 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2782 do { \
2783 if (TARGET_64BIT) \
2784 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2785 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2786 else \
2787 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2788 } while (0)
2789
2790 /* This is how to output an element of a case-vector that is absolute. */
2791
2792 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2793 ix86_output_addr_vec_elt ((FILE), (VALUE))
2794
2795 /* This is how to output an element of a case-vector that is relative. */
2796
2797 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2798 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2799
2800 /* Under some conditions we need jump tables in the text section, because
2801 the assembler cannot handle label differences between sections. */
2802
2803 #define JUMP_TABLES_IN_TEXT_SECTION \
2804 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2805
2806 /* A C statement that outputs an address constant appropriate to
2807 for DWARF debugging. */
2808
2809 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2810 i386_dwarf_output_addr_const ((FILE), (X))
2811
2812 /* Emit a dtp-relative reference to a TLS variable. */
2813
2814 #ifdef HAVE_AS_TLS
2815 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2816 i386_output_dwarf_dtprel (FILE, SIZE, X)
2817 #endif
2818
2819 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2820 and switch back. For x86 we do this only to save a few bytes that
2821 would otherwise be unused in the text section. */
2822 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2823 asm (SECTION_OP "\n\t" \
2824 "call " USER_LABEL_PREFIX #FUNC "\n" \
2825 TEXT_SECTION_ASM_OP);
2826 \f
2827 /* Print operand X (an rtx) in assembler syntax to file FILE.
2828 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2829 Effect of various CODE letters is described in i386.c near
2830 print_operand function. */
2831
2832 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2833 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2834
2835 #define PRINT_OPERAND(FILE, X, CODE) \
2836 print_operand ((FILE), (X), (CODE))
2837
2838 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2839 print_operand_address ((FILE), (ADDR))
2840
2841 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2842 do { \
2843 if (! output_addr_const_extra (FILE, (X))) \
2844 goto FAIL; \
2845 } while (0);
2846
2847 /* a letter which is not needed by the normal asm syntax, which
2848 we can use for operand syntax in the extended asm */
2849
2850 #define ASM_OPERAND_LETTER '#'
2851 #define RET return ""
2852 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2853 \f
2854 /* Define the codes that are matched by predicates in i386.c. */
2855
2856 #define PREDICATE_CODES \
2857 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
2858 SYMBOL_REF, LABEL_REF, CONST}}, \
2859 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2860 SYMBOL_REF, LABEL_REF, CONST}}, \
2861 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
2862 SYMBOL_REF, LABEL_REF, CONST}}, \
2863 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
2864 SYMBOL_REF, LABEL_REF, CONST}}, \
2865 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2866 SYMBOL_REF, LABEL_REF, CONST}}, \
2867 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
2868 SYMBOL_REF, LABEL_REF, CONST}}, \
2869 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2870 SYMBOL_REF, LABEL_REF}}, \
2871 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
2872 {"const_int_1_31_operand", {CONST_INT}}, \
2873 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2874 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2875 LABEL_REF, SUBREG, REG, MEM}}, \
2876 {"pic_symbolic_operand", {CONST}}, \
2877 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
2878 {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}}, \
2879 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
2880 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
2881 {"const1_operand", {CONST_INT}}, \
2882 {"const248_operand", {CONST_INT}}, \
2883 {"const_0_to_3_operand", {CONST_INT}}, \
2884 {"const_0_to_7_operand", {CONST_INT}}, \
2885 {"const_0_to_15_operand", {CONST_INT}}, \
2886 {"const_0_to_255_operand", {CONST_INT}}, \
2887 {"incdec_operand", {CONST_INT}}, \
2888 {"mmx_reg_operand", {REG}}, \
2889 {"reg_no_sp_operand", {SUBREG, REG}}, \
2890 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
2891 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
2892 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
2893 {"index_register_operand", {SUBREG, REG}}, \
2894 {"flags_reg_operand", {REG}}, \
2895 {"q_regs_operand", {SUBREG, REG}}, \
2896 {"non_q_regs_operand", {SUBREG, REG}}, \
2897 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2898 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
2899 GE, UNGE, LTGT, UNEQ}}, \
2900 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
2901 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
2902 }}, \
2903 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
2904 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
2905 UNGE, UNGT, LTGT, UNEQ }}, \
2906 {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE, \
2907 GE, UNGE, LTGT, UNEQ}}, \
2908 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
2909 {"ext_register_operand", {SUBREG, REG}}, \
2910 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
2911 {"mult_operator", {MULT}}, \
2912 {"div_operator", {DIV}}, \
2913 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2914 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
2915 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
2916 LSHIFTRT, ROTATERT}}, \
2917 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
2918 {"memory_displacement_operand", {MEM}}, \
2919 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2920 LABEL_REF, SUBREG, REG, MEM, AND}}, \
2921 {"long_memory_operand", {MEM}}, \
2922 {"tls_symbolic_operand", {SYMBOL_REF}}, \
2923 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2924 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
2925 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
2926 {"local_exec_symbolic_operand", {SYMBOL_REF}}, \
2927 {"any_fp_register_operand", {REG}}, \
2928 {"register_and_not_any_fp_reg_operand", {REG}}, \
2929 {"fp_register_operand", {REG}}, \
2930 {"register_and_not_fp_reg_operand", {REG}}, \
2931 {"zero_extended_scalar_load_operand", {MEM}}, \
2932 {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}}, \
2933 {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2934 LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
2935
2936 /* A list of predicates that do special things with modes, and so
2937 should not elicit warnings for VOIDmode match_operand. */
2938
2939 #define SPECIAL_MODE_PREDICATES \
2940 "ext_register_operand",
2941 \f
2942 /* Which processor to schedule for. The cpu attribute defines a list that
2943 mirrors this list, so changes to i386.md must be made at the same time. */
2944
2945 enum processor_type
2946 {
2947 PROCESSOR_I386, /* 80386 */
2948 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2949 PROCESSOR_PENTIUM,
2950 PROCESSOR_PENTIUMPRO,
2951 PROCESSOR_K6,
2952 PROCESSOR_ATHLON,
2953 PROCESSOR_PENTIUM4,
2954 PROCESSOR_K8,
2955 PROCESSOR_NOCONA,
2956 PROCESSOR_max
2957 };
2958
2959 extern enum processor_type ix86_tune;
2960 extern const char *ix86_tune_string;
2961
2962 extern enum processor_type ix86_arch;
2963 extern const char *ix86_arch_string;
2964
2965 enum fpmath_unit
2966 {
2967 FPMATH_387 = 1,
2968 FPMATH_SSE = 2
2969 };
2970
2971 extern enum fpmath_unit ix86_fpmath;
2972 extern const char *ix86_fpmath_string;
2973
2974 enum tls_dialect
2975 {
2976 TLS_DIALECT_GNU,
2977 TLS_DIALECT_SUN
2978 };
2979
2980 extern enum tls_dialect ix86_tls_dialect;
2981 extern const char *ix86_tls_dialect_string;
2982
2983 enum cmodel {
2984 CM_32, /* The traditional 32-bit ABI. */
2985 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2986 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2987 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2988 CM_LARGE, /* No assumptions. */
2989 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
2990 };
2991
2992 extern enum cmodel ix86_cmodel;
2993 extern const char *ix86_cmodel_string;
2994
2995 /* Size of the RED_ZONE area. */
2996 #define RED_ZONE_SIZE 128
2997 /* Reserved area of the red zone for temporaries. */
2998 #define RED_ZONE_RESERVE 8
2999
3000 enum asm_dialect {
3001 ASM_ATT,
3002 ASM_INTEL
3003 };
3004
3005 extern const char *ix86_asm_string;
3006 extern enum asm_dialect ix86_asm_dialect;
3007
3008 extern int ix86_regparm;
3009 extern const char *ix86_regparm_string;
3010
3011 extern int ix86_preferred_stack_boundary;
3012 extern const char *ix86_preferred_stack_boundary_string;
3013
3014 extern int ix86_branch_cost;
3015 extern const char *ix86_branch_cost_string;
3016
3017 extern const char *ix86_debug_arg_string;
3018 extern const char *ix86_debug_addr_string;
3019
3020 /* Obsoleted by -f options. Remove before 3.2 ships. */
3021 extern const char *ix86_align_loops_string;
3022 extern const char *ix86_align_jumps_string;
3023 extern const char *ix86_align_funcs_string;
3024
3025 /* Smallest class containing REGNO. */
3026 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3027
3028 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3029 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3030 \f
3031 /* To properly truncate FP values into integers, we need to set i387 control
3032 word. We can't emit proper mode switching code before reload, as spills
3033 generated by reload may truncate values incorrectly, but we still can avoid
3034 redundant computation of new control word by the mode switching pass.
3035 The fldcw instructions are still emitted redundantly, but this is probably
3036 not going to be noticeable problem, as most CPUs do have fast path for
3037 the sequence.
3038
3039 The machinery is to emit simple truncation instructions and split them
3040 before reload to instructions having USEs of two memory locations that
3041 are filled by this code to old and new control word.
3042
3043 Post-reload pass may be later used to eliminate the redundant fildcw if
3044 needed. */
3045
3046 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3047
3048 /* Define this macro if the port needs extra instructions inserted
3049 for mode switching in an optimizing compilation. */
3050
3051 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3052
3053 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3054 initializer for an array of integers. Each initializer element N
3055 refers to an entity that needs mode switching, and specifies the
3056 number of different modes that might need to be set for this
3057 entity. The position of the initializer in the initializer -
3058 starting counting at zero - determines the integer that is used to
3059 refer to the mode-switched entity in question. */
3060
3061 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3062
3063 /* ENTITY is an integer specifying a mode-switched entity. If
3064 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3065 return an integer value not larger than the corresponding element
3066 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3067 must be switched into prior to the execution of INSN. */
3068
3069 #define MODE_NEEDED(ENTITY, I) \
3070 (GET_CODE (I) == CALL_INSN \
3071 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3072 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3073 ? FP_CW_UNINITIALIZED \
3074 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3075 ? FP_CW_ANY \
3076 : FP_CW_STORED)
3077
3078 /* This macro specifies the order in which modes for ENTITY are
3079 processed. 0 is the highest priority. */
3080
3081 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3082
3083 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3084 is the set of hard registers live at the point where the insn(s)
3085 are to be inserted. */
3086
3087 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3088 ((MODE) == FP_CW_STORED \
3089 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3090 assign_386_stack_local (HImode, 2)), 0\
3091 : 0)
3092 \f
3093 /* Avoid renaming of stack registers, as doing so in combination with
3094 scheduling just increases amount of live registers at time and in
3095 the turn amount of fxch instructions needed.
3096
3097 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
3098
3099 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3100 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3101
3102 \f
3103 #define DLL_IMPORT_EXPORT_PREFIX '#'
3104
3105 #define FASTCALL_PREFIX '@'
3106 \f
3107 struct machine_function GTY(())
3108 {
3109 struct stack_local_entry *stack_locals;
3110 const char *some_ld_name;
3111 int save_varrargs_registers;
3112 int accesses_prev_frame;
3113 int optimize_mode_switching;
3114 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3115 determine the style used. */
3116 int use_fast_prologue_epilogue;
3117 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3118 for. */
3119 int use_fast_prologue_epilogue_nregs;
3120 };
3121
3122 #define ix86_stack_locals (cfun->machine->stack_locals)
3123 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3124 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3125
3126 /* Control behavior of x86_file_start. */
3127 #define X86_FILE_START_VERSION_DIRECTIVE false
3128 #define X86_FILE_START_FLTUSED false
3129
3130 /*
3131 Local variables:
3132 version-control: t
3133 End:
3134 */
This page took 0.16774 seconds and 6 git commands to generate.