]>
gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
1 /* Definitions of target machine for GNU compiler for Intel X86
3 Copyright (C) 1988, 92, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
34 PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
35 PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
37 /* Names to predefine in the preprocessor for this target machine. */
41 /* Stubs for half-pic support if not OSF/1 reference platform. */
44 #define HALF_PIC_P() 0
45 #define HALF_PIC_NUMBER_PTRS 0
46 #define HALF_PIC_NUMBER_REFS 0
47 #define HALF_PIC_ENCODE(DECL)
48 #define HALF_PIC_DECLARE(NAME)
49 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
50 #define HALF_PIC_ADDRESS_P(X) 0
51 #define HALF_PIC_PTR(X) X
52 #define HALF_PIC_FINISH(STREAM)
55 /* Define the specific costs for a given cpu */
57 struct processor_costs
{
58 int add
; /* cost of an add instruction */
59 int lea
; /* cost of a lea instruction */
60 int shift_var
; /* variable shift costs */
61 int shift_const
; /* constant shift costs */
62 int mult_init
; /* cost of starting a multiply */
63 int mult_bit
; /* cost of multiply per each bit set */
64 int divide
; /* cost of a divide/mod */
67 extern struct processor_costs
*ix86_cost
;
69 /* Run-time compilation parameters selecting different hardware subsets. */
71 extern int target_flags
;
73 /* Macros used in the machine description to test the flags. */
75 /* configure can arrange to make this 2, to force a 486. */
76 #ifndef TARGET_CPU_DEFAULT
77 #define TARGET_CPU_DEFAULT 0
80 /* Masks for the -m switches */
81 #define MASK_80387 000000000001 /* Hardware floating point */
82 #define MASK_NOTUSED1 000000000002 /* bit not currently used */
83 #define MASK_NOTUSED2 000000000004 /* bit not currently used */
84 #define MASK_RTD 000000000010 /* Use ret that pops args */
85 #define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
86 #define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
87 #define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
88 #define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
89 #define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
90 #define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
91 /* Temporary codegen switches */
92 #define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
93 #define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
94 #define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
95 #define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
96 #define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
97 #define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
98 #define MASK_STACK_PROBE 000100000000 /* Enable stack probing */
100 /* Use the floating point instructions */
101 #define TARGET_80387 (target_flags & MASK_80387)
103 /* Compile using ret insn that pops args.
104 This will not work unless you use prototypes at least
105 for all functions that can take varying numbers of args. */
106 #define TARGET_RTD (target_flags & MASK_RTD)
108 /* Align doubles to a two word boundary. This breaks compatibility with
109 the published ABI's for structures containing doubles, but produces
110 faster code on the pentium. */
111 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
113 /* Put uninitialized locals into bss, not data.
114 Meaningful only on svr3. */
115 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
117 /* Use IEEE floating point comparisons. These handle correctly the cases
118 where the result of a comparison is unordered. Normally SIGFPE is
119 generated in such cases, in which case this isn't needed. */
120 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
122 /* Functions that return a floating point value may return that value
123 in the 387 FPU or in 386 integer registers. If set, this flag causes
124 the 387 to be used, which is compatible with most calling conventions. */
125 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
127 /* Disable generation of FP sin, cos and sqrt operations for 387.
128 This is because FreeBSD lacks these in the math-emulator-code */
129 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
131 /* Don't create frame pointers for leaf functions */
132 #define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
134 /* Temporary switches for tuning code generation */
136 /* Disable 32x32->64 bit multiplies that are used for long long multiplies
137 and division by constants, but sometimes cause reload problems. */
138 #define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
139 #define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
141 /* Emit/Don't emit prologue as rtl */
142 #define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
144 /* Debug GO_IF_LEGITIMATE_ADDRESS */
145 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
147 /* Debug FUNCTION_ARG macros */
148 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
150 /* Hack macros for tuning code generation */
151 #define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
152 #define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
154 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
155 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
156 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
157 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
158 #define TARGET_USE_LEAVE (ix86_cpu == PROCESSOR_I386)
159 #define TARGET_PUSH_MEMORY (ix86_cpu == PROCESSOR_I386)
160 #define TARGET_ZERO_EXTEND_WITH_AND (ix86_cpu != PROCESSOR_I386 \
161 && ix86_cpu != PROCESSOR_PENTIUMPRO)
162 #define TARGET_DOUBLE_WITH_ADD (ix86_cpu != PROCESSOR_I386)
163 #define TARGET_USE_BIT_TEST (ix86_cpu == PROCESSOR_I386)
164 #define TARGET_UNROLL_STRLEN (ix86_cpu != PROCESSOR_I386)
165 #define TARGET_USE_Q_REG (ix86_cpu == PROCESSOR_PENTIUM \
166 || ix86_cpu == PROCESSOR_PENTIUMPRO)
167 #define TARGET_USE_ANY_REG (ix86_cpu == PROCESSOR_I486)
168 #define TARGET_CMOVE (ix86_arch == PROCESSOR_PENTIUMPRO)
169 #define TARGET_DEEP_BRANCH_PREDICTION (ix86_cpu == PROCESSOR_PENTIUMPRO)
170 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
172 #define TARGET_SWITCHES \
173 { { "80387", MASK_80387 }, \
174 { "no-80387", -MASK_80387 }, \
175 { "hard-float", MASK_80387 }, \
176 { "soft-float", -MASK_80387 }, \
177 { "no-soft-float", MASK_80387 }, \
183 { "pentiumpro", 0 }, \
184 { "rtd", MASK_RTD }, \
185 { "no-rtd", -MASK_RTD }, \
186 { "align-double", MASK_ALIGN_DOUBLE }, \
187 { "no-align-double", -MASK_ALIGN_DOUBLE }, \
188 { "svr3-shlib", MASK_SVR3_SHLIB }, \
189 { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \
190 { "ieee-fp", MASK_IEEE_FP }, \
191 { "no-ieee-fp", -MASK_IEEE_FP }, \
192 { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \
193 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \
194 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \
195 { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \
196 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, \
197 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER }, \
198 { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \
199 { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \
200 { "schedule-prologue", MASK_SCHEDULE_PROLOGUE }, \
201 { "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE }, \
202 { "debug-addr", MASK_DEBUG_ADDR }, \
203 { "no-debug-addr", -MASK_DEBUG_ADDR }, \
204 { "move", -MASK_NO_MOVE }, \
205 { "no-move", MASK_NO_MOVE }, \
206 { "debug-arg", MASK_DEBUG_ARG }, \
207 { "no-debug-arg", -MASK_DEBUG_ARG }, \
208 { "stack-arg-probe", MASK_STACK_PROBE }, \
209 { "no-stack-arg-probe", -MASK_STACK_PROBE }, \
213 { "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT}}
215 /* Which processor to schedule for. The cpu attribute defines a list that
216 mirrors this list, so changes to i386.md must be made at the same time. */
219 {PROCESSOR_I386
, /* 80386 */
220 PROCESSOR_I486
, /* 80486DX, 80486SX, 80486DX[24] */
222 PROCESSOR_PENTIUMPRO
};
224 #define PROCESSOR_I386_STRING "i386"
225 #define PROCESSOR_I486_STRING "i486"
226 #define PROCESSOR_I586_STRING "i586"
227 #define PROCESSOR_PENTIUM_STRING "pentium"
228 #define PROCESSOR_I686_STRING "i686"
229 #define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
231 extern enum processor_type ix86_cpu
;
233 extern int ix86_arch
;
235 /* Define the default processor. This is overridden by other tm.h files. */
236 #define PROCESSOR_DEFAULT \
237 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
239 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
240 ? PROCESSOR_PENTIUM \
241 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
242 ? PROCESSOR_PENTIUMPRO \
244 #define PROCESSOR_DEFAULT_STRING \
245 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
246 ? PROCESSOR_I486_STRING \
247 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
248 ? PROCESSOR_PENTIUM_STRING \
249 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
250 ? PROCESSOR_PENTIUMPRO_STRING \
251 : PROCESSOR_I386_STRING
253 /* This macro is similar to `TARGET_SWITCHES' but defines names of
254 command options that have values. Its definition is an
255 initializer with a subgrouping for each command option.
257 Each subgrouping contains a string constant, that defines the
258 fixed part of the option name, and the address of a variable. The
259 variable, type `char *', is set to the variable part of the given
260 option if the fixed part matches. The actual option name is made
261 by appending `-m' to the specified name. */
262 #define TARGET_OPTIONS \
263 { { "cpu=", &ix86_cpu_string}, \
264 { "arch=", &ix86_arch_string}, \
265 { "reg-alloc=", &i386_reg_alloc_order }, \
266 { "regparm=", &i386_regparm_string }, \
267 { "align-loops=", &i386_align_loops_string }, \
268 { "align-jumps=", &i386_align_jumps_string }, \
269 { "align-functions=", &i386_align_funcs_string }, \
270 { "branch-cost=", &i386_branch_cost_string }, \
274 /* Sometimes certain combinations of command options do not make
275 sense on a particular target machine. You can define a macro
276 `OVERRIDE_OPTIONS' to take account of this. This macro, if
277 defined, is executed once just after all the command options have
280 Don't use this macro to turn on various extra optimizations for
281 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
283 #define OVERRIDE_OPTIONS override_options ()
285 /* These are meant to be redefined in the host dependent files */
286 #define SUBTARGET_SWITCHES
287 #define SUBTARGET_OPTIONS
289 /* Define this to change the optimizations performed by default. */
290 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
292 /* Specs for the compiler proper */
295 #define CC1_CPU_SPEC "\
297 %{m386:-mcpu=i386 -march=i386} \
298 %{mno-486:-mcpu=i386 -march=i386} \
299 %{m486:-mcpu=i486 -march=i486} \
300 %{mno-386:-mcpu=i486 -march=i486} \
301 %{mno-pentium:-mcpu=i486 -march=i486} \
302 %{mpentium:-mcpu=pentium} \
303 %{mno-pentiumpro:-mcpu=pentium} \
304 %{mpentiumpro:-mcpu=pentiumpro}}"
307 #ifndef CPP_CPU_DEFAULT_SPEC
308 #if TARGET_CPU_DEFAULT == 1
309 #define CPP_CPU_DEFAULT_SPEC "-Di486"
311 #if TARGET_CPU_DEFAULT == 2
312 #define CPP_CPU_DEFAULT_SPEC "-Dpentium -Di586"
314 #if TARGET_CPU_DEFAULT == 3
315 #define CPP_CPU_DEFAULT_SPEC "-Dpentiumpro -Di686"
317 #define CPP_CPU_DEFAULT_SPEC ""
321 #endif /* CPP_CPU_DEFAULT_SPEC */
324 #define CPP_CPU_SPEC "\
325 -Di386 -Asystem(unix) -Acpu(i386) -Amachine(i386) \
326 %{mcpu=i486:-Di486} %{m486:-Di486} \
327 %{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
328 %{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686} \
329 %{!mcpu*:%{!m486:%{!mpentium*: %[cpp_cpu_default]}}}"
333 #define CC1_SPEC "%(cc1_spec) "
336 /* This macro defines names of additional specifications to put in the
337 specs that can be used in various specifications like CC1_SPEC. Its
338 definition is an initializer with a subgrouping for each command option.
340 Each subgrouping contains a string constant, that defines the
341 specification name, and a string constant that used by the GNU CC driver
344 Do not define this macro if it does not need to do anything. */
346 #ifndef SUBTARGET_EXTRA_SPECS
347 #define SUBTARGET_EXTRA_SPECS
350 #define EXTRA_SPECS \
351 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
352 { "cpp_cpu", CPP_CPU_SPEC }, \
353 { "cc1_cpu", CC1_CPU_SPEC }, \
354 SUBTARGET_EXTRA_SPECS
356 /* target machine storage layout */
358 /* Define for XFmode extended real floating point support.
359 This will automatically cause REAL_ARITHMETIC to be defined. */
360 #define LONG_DOUBLE_TYPE_SIZE 96
362 /* Define if you don't want extended real, but do want to use the
363 software floating point emulator for REAL_ARITHMETIC and
364 decimal <-> binary conversion. */
365 /* #define REAL_ARITHMETIC */
367 /* Define this if most significant byte of a word is the lowest numbered. */
368 /* That is true on the 80386. */
370 #define BITS_BIG_ENDIAN 0
372 /* Define this if most significant byte of a word is the lowest numbered. */
373 /* That is not true on the 80386. */
374 #define BYTES_BIG_ENDIAN 0
376 /* Define this if most significant word of a multiword number is the lowest
378 /* Not true for 80386 */
379 #define WORDS_BIG_ENDIAN 0
381 /* number of bits in an addressable storage unit */
382 #define BITS_PER_UNIT 8
384 /* Width in bits of a "word", which is the contents of a machine register.
385 Note that this is not necessarily the width of data type `int';
386 if using 16-bit ints on a 80386, this would still be 32.
387 But on a machine with 16-bit registers, this would be 16. */
388 #define BITS_PER_WORD 32
390 /* Width of a word, in units (bytes). */
391 #define UNITS_PER_WORD 4
393 /* Width in bits of a pointer.
394 See also the macro `Pmode' defined below. */
395 #define POINTER_SIZE 32
397 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
398 #define PARM_BOUNDARY 32
400 /* Boundary (in *bits*) on which stack pointer should be aligned. */
401 #define STACK_BOUNDARY 32
403 /* Allocation boundary (in *bits*) for the code of a function.
404 For i486, we get better performance by aligning to a cache
405 line (i.e. 16 byte) boundary. */
406 #define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
408 /* Alignment of field after `int : 0' in a structure. */
410 #define EMPTY_FIELD_BOUNDARY 32
412 /* Minimum size in bits of the largest boundary to which any
413 and all fundamental data types supported by the hardware
414 might need to be aligned. No data type wants to be aligned
415 rounder than this. The i386 supports 64-bit floating point
416 quantities, but these can be aligned on any 32-bit boundary.
417 The published ABIs say that doubles should be aligned on word
418 boundaries, but the Pentium gets better performance with them
419 aligned on 64 bit boundaries. */
420 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
422 /* align DFmode constants and nonaggregates */
423 #define ALIGN_DFmode (!TARGET_386)
425 /* Set this non-zero if move instructions will actually fail to work
426 when given unaligned data. */
427 #define STRICT_ALIGNMENT 0
429 /* If bit field type is int, don't let it cross an int,
430 and give entire struct the alignment of an int. */
431 /* Required on the 386 since it doesn't have bitfield insns. */
432 #define PCC_BITFIELD_TYPE_MATTERS 1
434 /* Maximum power of 2 that code can be aligned to. */
435 #define MAX_CODE_ALIGN 6 /* 64 byte alignment */
437 /* Align loop starts for optimal branching. */
438 #define LOOP_ALIGN(LABEL) (i386_align_loops)
440 /* This is how to align an instruction for optimal branching.
441 On i486 we'll get better performance by aligning on a
442 cache line (i.e. 16 byte) boundary. */
443 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (i386_align_jumps)
446 /* Standard register usage. */
448 /* This processor has special stack-like registers. See reg-stack.c
452 #define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
454 /* Number of actual hardware registers.
455 The hardware registers are assigned numbers for the compiler
456 from 0 to just below FIRST_PSEUDO_REGISTER.
457 All registers that the compiler knows about must be given numbers,
458 even those that are not normally considered general registers.
460 In the 80386 we give the 8 general purpose registers the numbers 0-7.
461 We number the floating point registers 8-15.
462 Note that registers 0-7 can be accessed as a short or int,
463 while only 0-3 may be used with byte `mov' instructions.
465 Reg 16 does not correspond to any hardware register, but instead
466 appears in the RTL as an argument pointer prior to reload, and is
467 eliminated during reloading in favor of either the stack or frame
470 #define FIRST_PSEUDO_REGISTER 17
472 /* 1 for registers that have pervasive standard uses
473 and are not available for the register allocator.
474 On the 80386, the stack pointer is such, as is the arg pointer. */
475 #define FIXED_REGISTERS \
476 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
477 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
479 /* 1 for registers not available across function calls.
480 These must include the FIXED_REGISTERS and also any
481 registers that can be used without being saved.
482 The latter must include the registers where values are returned
483 and the register where structure-value addresses are passed.
484 Aside from that, you can include as many other registers as you like. */
486 #define CALL_USED_REGISTERS \
487 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
488 { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
490 /* Order in which to allocate registers. Each register must be
491 listed once, even those in FIXED_REGISTERS. List frame pointer
492 late and fixed registers last. Note that, in general, we prefer
493 registers listed in CALL_USED_REGISTERS, keeping the others
494 available for storage of persistent values.
496 Three different versions of REG_ALLOC_ORDER have been tried:
498 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
499 but slower code on simple functions returning values in eax.
501 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
502 perl 4.036 due to not being able to create a DImode register (to hold a 2
505 If the order is eax, edx, ecx, ... it produces better code for simple
506 functions, and a slightly slower compiler. Users complained about the code
507 generated by allocating edx first, so restore the 'natural' order of things. */
509 #define REG_ALLOC_ORDER \
510 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
511 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
513 /* A C statement (sans semicolon) to choose the order in which to
514 allocate hard registers for pseudo-registers local to a basic
517 Store the desired register order in the array `reg_alloc_order'.
518 Element 0 should be the register to allocate first; element 1, the
519 next register; and so on.
521 The macro body should not assume anything about the contents of
522 `reg_alloc_order' before execution of the macro.
524 On most machines, it is not necessary to define this macro. */
526 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
528 /* Macro to conditionally modify fixed_regs/call_used_regs. */
529 #define CONDITIONAL_REGISTER_USAGE \
533 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
534 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
536 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
540 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
541 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
542 if (TEST_HARD_REG_BIT (x, i)) \
543 fixed_regs[i] = call_used_regs[i] = 1; \
547 /* Return number of consecutive hard regs needed starting at reg REGNO
548 to hold something of mode MODE.
549 This is ordinarily the length in words of a value of mode MODE
550 but can be less for certain modes in special long registers.
552 Actually there are no two word move instructions for consecutive
553 registers. And only registers 0-3 may have mov byte instructions
557 #define HARD_REGNO_NREGS(REGNO, MODE) \
558 (FP_REGNO_P (REGNO) ? 1 \
559 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
561 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
562 On the 80386, the first 4 cpu registers can hold any mode
563 while the floating point registers may hold only floating point.
564 Make it clear that the fp regs could not hold a 16-byte float. */
566 /* The casts to int placate a compiler on a microvax,
567 for cross-compiler testing. */
569 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
572 : FP_REGNO_P (REGNO) \
573 ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
574 || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
575 && GET_MODE_UNIT_SIZE (MODE) <= (LONG_DOUBLE_TYPE_SIZE == 96 ? 12 : 8))\
576 : (int) (MODE) != (int) QImode ? 1 \
577 : (reload_in_progress | reload_completed) == 1)
579 /* Value is 1 if it is a good idea to tie two pseudo registers
580 when one has mode MODE1 and one has mode MODE2.
581 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
582 for any hard reg, then this must be 0 for correct output. */
584 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
586 /* Specify the registers used for certain standard purposes.
587 The values of these macros are register numbers. */
589 /* on the 386 the pc register is %eip, and is not usable as a general
590 register. The ordinary mov instructions won't work */
591 /* #define PC_REGNUM */
593 /* Register to use for pushing function arguments. */
594 #define STACK_POINTER_REGNUM 7
596 /* Base register for access to local variables of the function. */
597 #define FRAME_POINTER_REGNUM 6
599 /* First floating point reg */
600 #define FIRST_FLOAT_REG 8
602 /* First & last stack-like regs */
603 #define FIRST_STACK_REG FIRST_FLOAT_REG
604 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
606 /* Value should be nonzero if functions must have frame pointers.
607 Zero means the frame pointer need not be set up (and parms
608 may be accessed via the stack pointer) in functions that seem suitable.
609 This is computed in `reload', in reload1.c. */
610 #define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
612 /* Base register for access to arguments of the function. */
613 #define ARG_POINTER_REGNUM 16
615 /* Register in which static-chain is passed to a function. */
616 #define STATIC_CHAIN_REGNUM 2
618 /* Register to hold the addressing base for position independent
619 code access to data items. */
620 #define PIC_OFFSET_TABLE_REGNUM 3
622 /* Register in which address to store a structure value
623 arrives in the function. On the 386, the prologue
624 copies this from the stack to register %eax. */
625 #define STRUCT_VALUE_INCOMING 0
627 /* Place in which caller passes the structure value address.
628 0 means push the value on the stack like an argument. */
629 #define STRUCT_VALUE 0
631 /* A C expression which can inhibit the returning of certain function
632 values in registers, based on the type of value. A nonzero value
633 says to return the function value in memory, just as large
634 structures are always returned. Here TYPE will be a C expression
635 of type `tree', representing the data type of the value.
637 Note that values of mode `BLKmode' must be explicitly handled by
638 this macro. Also, the option `-fpcc-struct-return' takes effect
639 regardless of this macro. On most systems, it is possible to
640 leave the macro undefined; this causes a default definition to be
641 used, whose value is the constant 1 for `BLKmode' values, and 0
644 Do not use this macro to indicate that structures and unions
645 should always be returned in memory. You should instead use
646 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
648 #define RETURN_IN_MEMORY(TYPE) \
649 ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
652 /* Define the classes of registers for register constraints in the
653 machine description. Also define ranges of constants.
655 One of the classes must always be named ALL_REGS and include all hard regs.
656 If there is more than one class, another class must be named NO_REGS
657 and contain no registers.
659 The name GENERAL_REGS must be the name of a class (or an alias for
660 another name such as ALL_REGS). This is the class of registers
661 that is allowed by "g" or "r" in a register constraint.
662 Also, registers outside this class are allocated only when
663 instructions express preferences for them.
665 The classes must be numbered in nondecreasing order; that is,
666 a larger-numbered class must never be contained completely
667 in a smaller-numbered class.
669 For any two classes, it is very desirable that there be another
670 class that represents their union.
672 It might seem that class BREG is unnecessary, since no useful 386
673 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
674 and the "b" register constraint is useful in asms for syscalls. */
679 AREG
, DREG
, CREG
, BREG
,
680 AD_REGS
, /* %eax/%edx for DImode */
681 Q_REGS
, /* %eax %ebx %ecx %edx */
683 INDEX_REGS
, /* %eax %ebx %ecx %edx %esi %edi %ebp */
684 GENERAL_REGS
, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
685 FP_TOP_REG
, FP_SECOND_REG
, /* %st(0) %st(1) */
687 ALL_REGS
, LIM_REG_CLASSES
690 #define N_REG_CLASSES (int) LIM_REG_CLASSES
692 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
694 /* Give names of register classes as strings for dump file. */
696 #define REG_CLASS_NAMES \
698 "AREG", "DREG", "CREG", "BREG", \
704 "FP_TOP_REG", "FP_SECOND_REG", \
708 /* Define which registers fit in which classes.
709 This is an initializer for a vector of HARD_REG_SET
710 of length N_REG_CLASSES. */
712 #define REG_CLASS_CONTENTS \
714 0x1, 0x2, 0x4, 0x8, /* AREG, DREG, CREG, BREG */ \
717 0x10, 0x20, /* SIREG, DIREG */ \
718 0x7f, /* INDEX_REGS */ \
719 0x100ff, /* GENERAL_REGS */ \
720 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \
721 0xff00, /* FLOAT_REGS */ \
724 /* The same information, inverted:
725 Return the class number of the smallest class containing
726 reg number REGNO. This could be a conditional expression
727 or could index an array. */
729 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
731 /* When defined, the compiler allows registers explicitly used in the
732 rtl to be used as spill registers but prevents the compiler from
733 extending the lifetime of these registers. */
735 #define SMALL_REGISTER_CLASSES 1
737 #define QI_REG_P(X) \
738 (REG_P (X) && REGNO (X) < 4)
739 #define NON_QI_REG_P(X) \
740 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
742 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
743 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
745 #define STACK_REG_P(xop) (REG_P (xop) && \
746 REGNO (xop) >= FIRST_STACK_REG && \
747 REGNO (xop) <= LAST_STACK_REG)
749 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
751 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
753 /* Try to maintain the accuracy of the death notes for regs satisfying the
754 following. Important for stack like regs, to know when to pop. */
756 /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
758 /* 1 if register REGNO can magically overlap other regs.
759 Note that nonzero values work only in very special circumstances. */
761 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
763 /* The class value for index registers, and the one for base regs. */
765 #define INDEX_REG_CLASS INDEX_REGS
766 #define BASE_REG_CLASS GENERAL_REGS
768 /* Get reg_class from a letter such as appears in the machine description. */
770 #define REG_CLASS_FROM_LETTER(C) \
771 ((C) == 'r' ? GENERAL_REGS : \
772 (C) == 'q' ? Q_REGS : \
773 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
776 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
779 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
782 (C) == 'a' ? AREG : \
783 (C) == 'b' ? BREG : \
784 (C) == 'c' ? CREG : \
785 (C) == 'd' ? DREG : \
786 (C) == 'A' ? AD_REGS : \
787 (C) == 'D' ? DIREG : \
788 (C) == 'S' ? SIREG : NO_REGS)
790 /* The letters I, J, K, L and M in a register constraint string
791 can be used to stand for particular ranges of immediate operands.
792 This macro defines what the ranges are.
793 C is the letter, and VALUE is a constant value.
794 Return 1 if VALUE is in the range specified by C.
796 I is for non-DImode shifts.
797 J is for DImode shifts.
798 K and L are for an `andsi' optimization.
799 M is for shifts that can be executed by the "lea" opcode.
802 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
803 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
804 (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
805 (C) == 'K' ? (VALUE) == 0xff : \
806 (C) == 'L' ? (VALUE) == 0xffff : \
807 (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
808 (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
809 (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
812 /* Similar, but for floating constants, and defining letters G and H.
813 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
814 TARGET_387 isn't set, because the stack register converter may need to
815 load 0.0 into the function value register. */
817 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
818 ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
820 /* Place additional restrictions on the register class to use when it
821 is necessary to be able to hold a value of mode MODE in a reload
822 register for which class CLASS would ordinarily be used. */
824 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
825 ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
828 /* Given an rtx X being reloaded into a reg required to be
829 in class CLASS, return the class of reg to actually use.
830 In general this is just CLASS; but on some machines
831 in some cases it is preferable to use a more restrictive class.
832 On the 80386 series, we prevent floating constants from being
833 reloaded into floating registers (since no move-insn can do that)
834 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
836 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
837 QImode must go into class Q_REGS.
838 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
839 movdf to do mem-to-mem moves through integer regs. */
841 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
842 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
843 : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
844 : ((CLASS) == ALL_REGS \
845 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
848 /* If we are copying between general and FP registers, we need a memory
851 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
852 ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
853 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
855 /* Return the maximum number of consecutive registers
856 needed to represent mode MODE in a register of class CLASS. */
857 /* On the 80386, this is the size of MODE in words,
858 except in the FP regs, where a single reg is always enough. */
859 #define CLASS_MAX_NREGS(CLASS, MODE) \
860 (FLOAT_CLASS_P (CLASS) ? 1 : \
861 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
863 /* A C expression whose value is nonzero if pseudos that have been
864 assigned to registers of class CLASS would likely be spilled
865 because registers of CLASS are needed for spill registers.
867 The default value of this macro returns 1 if CLASS has exactly one
868 register and zero otherwise. On most machines, this default
869 should be used. Only define this macro to some other expression
870 if pseudo allocated by `local-alloc.c' end up in memory because
871 their hard registers were needed for spill registers. If this
872 macro returns nonzero for those classes, those pseudos will only
873 be allocated by `global.c', which knows how to reallocate the
874 pseudo to another register. If there would not be another
875 register available for reallocation, you should not change the
876 definition of this macro since the only effect of such a
877 definition would be to slow down register allocation. */
879 #define CLASS_LIKELY_SPILLED_P(CLASS) \
881 || ((CLASS) == DREG) \
882 || ((CLASS) == CREG) \
883 || ((CLASS) == BREG) \
884 || ((CLASS) == AD_REGS) \
885 || ((CLASS) == SIREG) \
886 || ((CLASS) == DIREG))
889 /* Stack layout; function entry, exit and calling. */
891 /* Define this if pushing a word on the stack
892 makes the stack pointer a smaller address. */
893 #define STACK_GROWS_DOWNWARD
895 /* Define this if the nominal address of the stack frame
896 is at the high-address end of the local variables;
897 that is, each additional local variable allocated
898 goes at a more negative offset in the frame. */
899 #define FRAME_GROWS_DOWNWARD
901 /* Offset within stack frame to start allocating local variables at.
902 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
903 first local allocated. Otherwise, it is the offset to the BEGINNING
904 of the first local allocated. */
905 #define STARTING_FRAME_OFFSET 0
907 /* If we generate an insn to push BYTES bytes,
908 this says how many the stack pointer really advances by.
909 On 386 pushw decrements by exactly 2 no matter what the position was.
910 On the 386 there is no pushb; we use pushw instead, and this
911 has the effect of rounding up to 2. */
913 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
915 /* Offset of first parameter from the argument pointer register value. */
916 #define FIRST_PARM_OFFSET(FNDECL) 0
918 /* Value is the number of bytes of arguments automatically
919 popped when returning from a subroutine call.
920 FUNDECL is the declaration node of the function (as a tree),
921 FUNTYPE is the data type of the function (as a tree),
922 or for a library call it is an identifier node for the subroutine name.
923 SIZE is the number of bytes of arguments passed on the stack.
925 On the 80386, the RTD insn may be used to pop them if the number
926 of args is fixed, but if the number is variable then the caller
927 must pop them all. RTD can't be used for library calls now
928 because the library is compiled with the Unix compiler.
929 Use of RTD is a selectable option, since it is incompatible with
930 standard Unix calling sequences. If the option is not selected,
931 the caller must always pop the args.
933 The attribute stdcall is equivalent to RTD on a per module basis. */
935 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
936 (i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
938 /* Define how to find the value returned by a function.
939 VALTYPE is the data type of the value (as a tree).
940 If the precise function being called is known, FUNC is its FUNCTION_DECL;
941 otherwise, FUNC is 0. */
942 #define FUNCTION_VALUE(VALTYPE, FUNC) \
943 gen_rtx_REG (TYPE_MODE (VALTYPE), \
944 VALUE_REGNO (TYPE_MODE (VALTYPE)))
946 /* Define how to find the value returned by a library function
947 assuming the value has mode MODE. */
949 #define LIBCALL_VALUE(MODE) \
950 gen_rtx_REG (MODE, VALUE_REGNO (MODE))
952 /* Define the size of the result block used for communication between
953 untyped_call and untyped_return. The block contains a DImode value
954 followed by the block used by fnsave and frstor. */
956 #define APPLY_RESULT_SIZE (8+108)
958 /* 1 if N is a possible register number for function argument passing. */
959 #define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
961 /* Define a data type for recording info about an argument list
962 during the scan of that argument list. This data type should
963 hold all necessary information about the function itself
964 and about the args processed so far, enough to enable macros
965 such as FUNCTION_ARG to determine where the next arg should go. */
967 typedef struct i386_args
{
968 int words
; /* # words passed so far */
969 int nregs
; /* # registers available for passing */
970 int regno
; /* next available register number */
973 /* Initialize a variable CUM of type CUMULATIVE_ARGS
974 for a call to a function whose data type is FNTYPE.
975 For a library call, FNTYPE is 0. */
977 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
978 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
980 /* Update the data in CUM to advance over an argument
981 of mode MODE and data type TYPE.
982 (TYPE is null for libcalls where that information may not be available.) */
984 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
985 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
987 /* Define where to put the arguments to a function.
988 Value is zero to push the argument on the stack,
989 or a hard register in which to store the argument.
991 MODE is the argument's machine mode.
992 TYPE is the data type of the argument (as a tree).
993 This is null for libcalls where that information may
995 CUM is a variable of type CUMULATIVE_ARGS which gives info about
996 the preceding args and about the function being called.
997 NAMED is nonzero if this argument is a named parameter
998 (otherwise it is an extra parameter matching an ellipsis). */
1000 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1001 (function_arg (&CUM, MODE, TYPE, NAMED))
1003 /* For an arg passed partly in registers and partly in memory,
1004 this is the number of registers used.
1005 For args passed entirely in registers or entirely in memory, zero. */
1007 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1008 (function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
1010 /* This macro is invoked just before the start of a function.
1011 It is used here to output code for -fpic that will load the
1012 return address into %ebx. */
1014 #undef ASM_OUTPUT_FUNCTION_PREFIX
1015 #define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
1016 asm_output_function_prefix (FILE, FNNAME)
1018 /* This macro generates the assembly code for function entry.
1019 FILE is a stdio stream to output the code to.
1020 SIZE is an int: how many units of temporary storage to allocate.
1021 Refer to the array `regs_ever_live' to determine which registers
1022 to save; `regs_ever_live[I]' is nonzero if register number I
1023 is ever used in the function. This macro is responsible for
1024 knowing which registers should not be saved even if used. */
1026 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1027 function_prologue (FILE, SIZE)
1029 /* Output assembler code to FILE to increment profiler label # LABELNO
1030 for profiling a function entry. */
1032 #define FUNCTION_PROFILER(FILE, LABELNO) \
1036 fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
1037 LPREFIX, (LABELNO)); \
1038 fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
1042 fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1043 fprintf (FILE, "\tcall _mcount\n"); \
1048 /* There are three profiling modes for basic blocks available.
1049 The modes are selected at compile time by using the options
1050 -a or -ax of the gnu compiler.
1051 The variable `profile_block_flag' will be set according to the
1054 profile_block_flag == 0, no option used:
1058 profile_block_flag == 1, -a option used.
1060 Count frequency of execution of every basic block.
1062 profile_block_flag == 2, -ax option used.
1064 Generate code to allow several different profiling modes at run time.
1065 Available modes are:
1066 Produce a trace of all basic blocks.
1067 Count frequency of jump instructions executed.
1068 In every mode it is possible to start profiling upon entering
1069 certain functions and to disable profiling of some other functions.
1071 The result of basic-block profiling will be written to a file `bb.out'.
1072 If the -ax option is used parameters for the profiling will be read
1077 /* The following macro shall output assembler code to FILE
1078 to initialize basic-block profiling.
1080 If profile_block_flag == 2
1082 Output code to call the subroutine `__bb_init_trace_func'
1083 and pass two parameters to it. The first parameter is
1084 the address of a block allocated in the object module.
1085 The second parameter is the number of the first basic block
1088 The name of the block is a local symbol made with this statement:
1090 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1092 Of course, since you are writing the definition of
1093 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1094 can take a short cut in the definition of this macro and use the
1095 name that you know will result.
1097 The number of the first basic block of the function is
1098 passed to the macro in BLOCK_OR_LABEL.
1100 If described in a virtual assembler language the code to be
1104 parameter2 <- BLOCK_OR_LABEL
1105 call __bb_init_trace_func
1107 else if profile_block_flag != 0
1109 Output code to call the subroutine `__bb_init_func'
1110 and pass one single parameter to it, which is the same
1111 as the first parameter to `__bb_init_trace_func'.
1113 The first word of this parameter is a flag which will be nonzero if
1114 the object module has already been initialized. So test this word
1115 first, and do not call `__bb_init_func' if the flag is nonzero.
1116 Note: When profile_block_flag == 2 the test need not be done
1117 but `__bb_init_trace_func' *must* be called.
1119 BLOCK_OR_LABEL may be used to generate a label number as a
1120 branch destination in case `__bb_init_func' will not be called.
1122 If described in a virtual assembler language the code to be
1133 #undef FUNCTION_BLOCK_PROFILER
1134 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1137 static int num_func = 0; \
1139 char block_table[80], false_label[80]; \
1141 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1143 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1144 xops[5] = stack_pointer_rtx; \
1145 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1147 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1149 switch (profile_block_flag) \
1154 xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
1155 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_trace_func")); \
1156 xops[6] = GEN_INT (8); \
1158 output_asm_insn (AS1(push%L2,%2), xops); \
1160 output_asm_insn (AS1(push%L1,%1), xops); \
1163 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1164 output_asm_insn (AS1 (push%L7,%7), xops); \
1167 output_asm_insn (AS1(call,%P3), xops); \
1168 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1174 ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
1176 xops[0] = const0_rtx; \
1177 xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, false_label)); \
1178 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_func")); \
1179 xops[4] = gen_rtx_MEM (Pmode, xops[1]); \
1180 xops[6] = GEN_INT (4); \
1182 CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
1184 output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
1185 output_asm_insn (AS1(jne,%2), xops); \
1188 output_asm_insn (AS1(push%L1,%1), xops); \
1191 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1192 output_asm_insn (AS1 (push%L7,%7), xops); \
1195 output_asm_insn (AS1(call,%P3), xops); \
1196 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1197 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
1206 /* The following macro shall output assembler code to FILE
1207 to increment a counter associated with basic block number BLOCKNO.
1209 If profile_block_flag == 2
1211 Output code to initialize the global structure `__bb' and
1212 call the function `__bb_trace_func' which will increment the
1215 `__bb' consists of two words. In the first word the number
1216 of the basic block has to be stored. In the second word
1217 the address of a block allocated in the object module
1220 The basic block number is given by BLOCKNO.
1222 The address of the block is given by the label created with
1224 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1226 by FUNCTION_BLOCK_PROFILER.
1228 Of course, since you are writing the definition of
1229 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1230 can take a short cut in the definition of this macro and use the
1231 name that you know will result.
1233 If described in a virtual assembler language the code to be
1236 move BLOCKNO -> (__bb)
1237 move LPBX0 -> (__bb+4)
1238 call __bb_trace_func
1240 Note that function `__bb_trace_func' must not change the
1241 machine state, especially the flag register. To grant
1242 this, you must output code to save and restore registers
1243 either in this macro or in the macros MACHINE_STATE_SAVE
1244 and MACHINE_STATE_RESTORE. The last two macros will be
1245 used in the function `__bb_trace_func', so you must make
1246 sure that the function prologue does not change any
1247 register prior to saving it with MACHINE_STATE_SAVE.
1249 else if profile_block_flag != 0
1251 Output code to increment the counter directly.
1252 Basic blocks are numbered separately from zero within each
1253 compiled object module. The count associated with block number
1254 BLOCKNO is at index BLOCKNO in an array of words; the name of
1255 this array is a local symbol made with this statement:
1257 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1259 Of course, since you are writing the definition of
1260 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1261 can take a short cut in the definition of this macro and use the
1262 name that you know will result.
1264 If described in a virtual assembler language the code to be
1267 inc (LPBX2+4*BLOCKNO)
1271 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1274 rtx xops[8], cnt_rtx; \
1276 char *block_table = counts; \
1278 switch (profile_block_flag) \
1283 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1285 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1286 xops[2] = GEN_INT ((BLOCKNO)); \
1287 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_func")); \
1288 xops[4] = gen_rtx_SYMBOL_REF (VOIDmode, "__bb"); \
1289 xops[5] = plus_constant (xops[4], 4); \
1290 xops[0] = gen_rtx_MEM (SImode, xops[4]); \
1291 xops[6] = gen_rtx_MEM (SImode, xops[5]); \
1293 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1295 fprintf(FILE, "\tpushf\n"); \
1296 output_asm_insn (AS2(mov%L0,%2,%0), xops); \
1299 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1300 output_asm_insn (AS1(push%L7,%7), xops); \
1301 output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
1302 output_asm_insn (AS2(mov%L6,%7,%6), xops); \
1303 output_asm_insn (AS1(pop%L7,%7), xops); \
1306 output_asm_insn (AS2(mov%L6,%1,%6), xops); \
1307 output_asm_insn (AS1(call,%P3), xops); \
1308 fprintf(FILE, "\tpopf\n"); \
1314 ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
1315 cnt_rtx = gen_rtx_SYMBOL_REF (VOIDmode, counts); \
1316 SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
1319 cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
1322 cnt_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, cnt_rtx); \
1324 xops[0] = gen_rtx_MEM (SImode, cnt_rtx); \
1325 output_asm_insn (AS1(inc%L0,%0), xops); \
1333 /* The following macro shall output assembler code to FILE
1334 to indicate a return from function during basic-block profiling.
1336 If profiling_block_flag == 2:
1338 Output assembler code to call function `__bb_trace_ret'.
1340 Note that function `__bb_trace_ret' must not change the
1341 machine state, especially the flag register. To grant
1342 this, you must output code to save and restore registers
1343 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1344 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1345 used in the function `__bb_trace_ret', so you must make
1346 sure that the function prologue does not change any
1347 register prior to saving it with MACHINE_STATE_SAVE_RET.
1349 else if profiling_block_flag != 0:
1351 The macro will not be used, so it need not distinguish
1355 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1360 xops[0] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")); \
1362 output_asm_insn (AS1(call,%P0), xops); \
1367 /* The function `__bb_trace_func' is called in every basic block
1368 and is not allowed to change the machine state. Saving (restoring)
1369 the state can either be done in the BLOCK_PROFILER macro,
1370 before calling function (rsp. after returning from function)
1371 `__bb_trace_func', or it can be done inside the function by
1372 defining the macros:
1374 MACHINE_STATE_SAVE(ID)
1375 MACHINE_STATE_RESTORE(ID)
1377 In the latter case care must be taken, that the prologue code
1378 of function `__bb_trace_func' does not already change the
1379 state prior to saving it with MACHINE_STATE_SAVE.
1381 The parameter `ID' is a string identifying a unique macro use.
1383 On the i386 the initialization code at the begin of
1384 function `__bb_trace_func' contains a `sub' instruction
1385 therefore we handle save and restore of the flag register
1386 in the BLOCK_PROFILER macro. */
1388 #define MACHINE_STATE_SAVE(ID) \
1389 asm (" pushl %eax"); \
1390 asm (" pushl %ecx"); \
1391 asm (" pushl %edx"); \
1392 asm (" pushl %esi");
1394 #define MACHINE_STATE_RESTORE(ID) \
1395 asm (" popl %esi"); \
1396 asm (" popl %edx"); \
1397 asm (" popl %ecx"); \
1400 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1401 the stack pointer does not matter. The value is tested only in
1402 functions that have frame pointers.
1403 No definition is equivalent to always zero. */
1404 /* Note on the 386 it might be more efficient not to define this since
1405 we have to restore it ourselves from the frame pointer, in order to
1408 #define EXIT_IGNORE_STACK 1
1410 /* This macro generates the assembly code for function exit,
1411 on machines that need it. If FUNCTION_EPILOGUE is not defined
1412 then individual return instructions are generated for each
1413 return statement. Args are same as for FUNCTION_PROLOGUE.
1415 The function epilogue should not depend on the current stack pointer!
1416 It should use the frame pointer only. This is mandatory because
1417 of alloca; we also take advantage of it to omit stack adjustments
1420 If the last non-note insn in the function is a BARRIER, then there
1421 is no need to emit a function prologue, because control does not fall
1422 off the end. This happens if the function ends in an "exit" call, or
1423 if a `return' insn is emitted directly into the function. */
1426 #define FUNCTION_BEGIN_EPILOGUE(FILE) \
1428 rtx last = get_last_insn (); \
1429 if (last && GET_CODE (last) == NOTE) \
1430 last = prev_nonnote_insn (last); \
1431 /* if (! last || GET_CODE (last) != BARRIER) \
1432 function_epilogue (FILE, SIZE);*/ \
1436 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1437 function_epilogue (FILE, SIZE)
1439 /* Output assembler code for a block containing the constant parts
1440 of a trampoline, leaving space for the variable parts. */
1442 /* On the 386, the trampoline contains three instructions:
1446 #define TRAMPOLINE_TEMPLATE(FILE) \
1448 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
1449 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1450 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1451 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
1452 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1453 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1454 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
1455 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
1458 /* Length in units of the trampoline for entering a nested function. */
1460 #define TRAMPOLINE_SIZE 12
1462 /* Emit RTL insns to initialize the variable parts of a trampoline.
1463 FNADDR is an RTX for the address of the function's pure code.
1464 CXT is an RTX for the static chain value for the function. */
1466 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1468 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 1)), CXT); \
1469 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 6)), FNADDR); \
1472 /* Definitions for register eliminations.
1474 This is an array of structures. Each structure initializes one pair
1475 of eliminable registers. The "from" register number is given first,
1476 followed by "to". Eliminations of the same "from" register are listed
1477 in order of preference.
1479 We have two registers that can be eliminated on the i386. First, the
1480 frame pointer register can often be eliminated in favor of the stack
1481 pointer register. Secondly, the argument pointer register can always be
1482 eliminated; it is replaced with either the stack or frame pointer. */
1484 #define ELIMINABLE_REGS \
1485 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1486 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1487 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1489 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1490 Frame pointer elimination is automatically handled.
1492 For the i386, if frame pointer elimination is being done, we would like to
1493 convert ap into sp, not fp.
1495 All other eliminations are valid. */
1497 #define CAN_ELIMINATE(FROM, TO) \
1498 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1499 ? ! frame_pointer_needed \
1502 /* Define the offset between two registers, one to be eliminated, and the other
1503 its replacement, at the start of a routine. */
1505 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1507 if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1508 (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
1514 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1515 if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
1516 || ((current_function_uses_pic_offset_table \
1517 || current_function_uses_const_pool) \
1518 && flag_pic && regno == PIC_OFFSET_TABLE_REGNUM)) \
1521 (OFFSET) = offset + get_frame_size (); \
1523 if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1524 (OFFSET) += 4; /* Skip saved PC */ \
1528 /* Addressing modes, and classification of registers for them. */
1530 /* #define HAVE_POST_INCREMENT */
1531 /* #define HAVE_POST_DECREMENT */
1533 /* #define HAVE_PRE_DECREMENT */
1534 /* #define HAVE_PRE_INCREMENT */
1536 /* Macros to check register numbers against specific register classes. */
1538 /* These assume that REGNO is a hard or pseudo reg number.
1539 They give nonzero only if REGNO is a hard reg of the suitable class
1540 or a pseudo reg currently allocated to a suitable hard reg.
1541 Since they use reg_renumber, they are safe only once reg_renumber
1542 has been allocated, which happens in local-alloc.c. */
1544 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1545 ((REGNO) < STACK_POINTER_REGNUM \
1546 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1548 #define REGNO_OK_FOR_BASE_P(REGNO) \
1549 ((REGNO) <= STACK_POINTER_REGNUM \
1550 || (REGNO) == ARG_POINTER_REGNUM \
1551 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1553 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1554 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1556 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1557 and check its validity for a certain class.
1558 We have two alternate definitions for each of them.
1559 The usual definition accepts all pseudo regs; the other rejects
1560 them unless they have been allocated suitable hard regs.
1561 The symbol REG_OK_STRICT causes the latter definition to be used.
1563 Most source files want to accept pseudo regs in the hope that
1564 they will get allocated to the class that the insn wants them to be in.
1565 Source files for reload pass need to be strict.
1566 After reload, it makes no difference, since pseudo regs have
1567 been eliminated by then. */
1570 /* Non strict versions, pseudos are ok */
1571 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1572 (REGNO (X) < STACK_POINTER_REGNUM \
1573 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1575 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1576 (REGNO (X) <= STACK_POINTER_REGNUM \
1577 || REGNO (X) == ARG_POINTER_REGNUM \
1578 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1580 #define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
1581 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1583 /* Strict versions, hard registers only */
1584 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1585 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1586 #define REG_OK_FOR_STRREG_STRICT_P(X) \
1587 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
1589 #ifndef REG_OK_STRICT
1590 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1591 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1592 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
1595 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1596 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1597 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
1600 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1601 that is a valid memory address for an instruction.
1602 The MODE argument is the machine mode for the MEM expression
1603 that wants to use this address.
1605 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1606 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1608 See legitimize_pic_address in i386.c for details as to what
1609 constitutes a legitimate address when -fpic is used. */
1611 #define MAX_REGS_PER_ADDRESS 2
1613 #define CONSTANT_ADDRESS_P(X) \
1614 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1615 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1616 || GET_CODE (X) == HIGH)
1618 /* Nonzero if the constant value X is a legitimate general operand.
1619 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1621 #define LEGITIMATE_CONSTANT_P(X) 1
1623 #ifdef REG_OK_STRICT
1624 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1626 if (legitimate_address_p (MODE, X, 1)) \
1631 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1633 if (legitimate_address_p (MODE, X, 0)) \
1639 /* Try machine-dependent ways of modifying an illegitimate address
1640 to be legitimate. If we find one, return the new, valid address.
1641 This macro is used in only one place: `memory_address' in explow.c.
1643 OLDX is the address as it was before break_out_memory_refs was called.
1644 In some cases it is useful to look at this to decide what needs to be done.
1646 MODE and WIN are passed so that this macro can use
1647 GO_IF_LEGITIMATE_ADDRESS.
1649 It is always safe for this macro to do nothing. It exists to recognize
1650 opportunities to optimize the output.
1652 For the 80386, we handle X+REG by loading X into a register R and
1653 using R+REG. R will go in a general reg and indexing will be used.
1654 However, if REG is a broken-out memory address or multiplication,
1655 nothing needs to be done because REG can certainly go in a general reg.
1657 When -fpic is used, special handling is needed for symbolic references.
1658 See comments by legitimize_pic_address in i386.c for details. */
1660 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1662 (X) = legitimize_address (X, OLDX, MODE); \
1663 if (memory_address_p (MODE, X)) \
1667 #define REWRITE_ADDRESS(x) rewrite_address(x)
1669 /* Nonzero if the constant value X is a legitimate general operand
1670 when generating PIC code. It is given that flag_pic is on and
1671 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1673 #define LEGITIMATE_PIC_OPERAND_P(X) \
1674 (! SYMBOLIC_CONST (X) \
1675 || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
1677 #define SYMBOLIC_CONST(X) \
1678 (GET_CODE (X) == SYMBOL_REF \
1679 || GET_CODE (X) == LABEL_REF \
1680 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1682 /* Go to LABEL if ADDR (a legitimate address expression)
1683 has an effect that depends on the machine mode it is used for.
1684 On the 80386, only postdecrement and postincrement address depend thus
1685 (the amount of decrement or increment being the length of the operand). */
1686 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1687 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1689 /* Define this macro if references to a symbol must be treated
1690 differently depending on something about the variable or
1691 function named by the symbol (such as what section it is in).
1693 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1694 so that we may access it directly in the GOT. */
1696 #define ENCODE_SECTION_INFO(DECL) \
1701 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1702 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1704 if (TARGET_DEBUG_ADDR \
1705 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
1707 fprintf (stderr, "Encode %s, public = %d\n", \
1708 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
1709 TREE_PUBLIC (DECL)); \
1712 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1713 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1714 || ! TREE_PUBLIC (DECL)); \
1719 /* Initialize data used by insn expanders. This is called from
1720 init_emit, once for each function, before code is generated.
1721 For 386, clear stack slot assignments remembered from previous
1724 #define INIT_EXPANDERS clear_386_stack_locals ()
1726 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
1727 codes once the function is being compiled into assembly code, but
1728 not before. (It is not done before, because in the case of
1729 compiling an inline function, it would lead to multiple PIC
1730 prologues being included in functions which used inline functions
1731 and were compiled to assembly language.) */
1733 #define FINALIZE_PIC \
1736 extern int current_function_uses_pic_offset_table; \
1738 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
1743 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1744 with arguments ARGS is a valid machine specific attribute for DECL.
1745 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1747 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1748 (i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1750 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1751 with arguments ARGS is a valid machine specific attribute for TYPE.
1752 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1754 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1755 (i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1757 /* If defined, a C expression whose value is zero if the attributes on
1758 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1759 two if they are nearly compatible (which causes a warning to be
1762 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1763 (i386_comp_type_attributes (TYPE1, TYPE2))
1765 /* If defined, a C statement that assigns default attributes to newly
1768 /* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
1770 /* Max number of args passed in registers. If this is more than 3, we will
1771 have problems with ebx (register #4), since it is a caller save register and
1772 is also used as the pic register in ELF. So for now, don't allow more than
1773 3 registers to be passed in registers. */
1775 #define REGPARM_MAX 3
1778 /* Specify the machine mode that this machine uses
1779 for the index in the tablejump instruction. */
1780 #define CASE_VECTOR_MODE Pmode
1782 /* Define as C expression which evaluates to nonzero if the tablejump
1783 instruction expects the table to contain offsets from the address of the
1785 Do not define this if the table should contain absolute addresses. */
1786 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1788 /* Specify the tree operation to be used to convert reals to integers.
1789 This should be changed to take advantage of fist --wfs ??
1791 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1793 /* This is the kind of divide that is easiest to do in the general case. */
1794 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1796 /* Define this as 1 if `char' should by default be signed; else as 0. */
1797 #define DEFAULT_SIGNED_CHAR 1
1799 /* Max number of bytes we can move from memory to memory
1800 in one reasonably fast instruction. */
1803 /* The number of scalar move insns which should be generated instead
1804 of a string move insn or a library call. Increasing the value
1805 will always make code faster, but eventually incurs high cost in
1806 increased code size.
1808 If you don't define this, a reasonable default is used.
1810 Make this large on i386, since the block move is very inefficient with small
1811 blocks, and the hard register needs of the block move require much reload
1814 #define MOVE_RATIO 5
1816 /* Define if shifts truncate the shift count
1817 which implies one can omit a sign-extension or zero-extension
1818 of a shift count. */
1819 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1821 /* #define SHIFT_COUNT_TRUNCATED */
1823 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1824 is done just by pretending it is already truncated. */
1825 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1827 /* We assume that the store-condition-codes instructions store 0 for false
1828 and some other value for true. This is the value stored for true. */
1830 #define STORE_FLAG_VALUE 1
1832 /* When a prototype says `char' or `short', really pass an `int'.
1833 (The 386 can't easily push less than an int.) */
1835 #define PROMOTE_PROTOTYPES
1837 /* Specify the machine mode that pointers have.
1838 After generation of rtl, the compiler makes no further distinction
1839 between pointers and any other objects of this machine mode. */
1840 #define Pmode SImode
1842 /* A function address in a call instruction
1843 is a byte address (for indexing purposes)
1844 so give the MEM rtx a byte's mode. */
1845 #define FUNCTION_MODE QImode
1847 /* A part of a C `switch' statement that describes the relative costs
1848 of constant RTL expressions. It must contain `case' labels for
1849 expression codes `const_int', `const', `symbol_ref', `label_ref'
1850 and `const_double'. Each case must ultimately reach a `return'
1851 statement to return the relative cost of the use of that kind of
1852 constant value in an expression. The cost may depend on the
1853 precise value of the constant, which is available for examination
1854 in X, and the rtx code of the expression in which it is contained,
1855 found in OUTER_CODE.
1857 CODE is the expression code--redundant, since it can be obtained
1858 with `GET_CODE (X)'. */
1860 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1862 return (unsigned) INTVAL (RTX) < 256 ? 0 : 1; \
1866 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
1868 case CONST_DOUBLE: \
1871 if (GET_MODE (RTX) == VOIDmode) \
1874 code = standard_80387_constant_p (RTX); \
1875 return code == 1 ? 0 : \
1880 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
1881 #define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
1883 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1884 This can be used, for example, to indicate how costly a multiply
1885 instruction is. In writing this macro, you can use the construct
1886 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1887 instructions. OUTER_CODE is the code of the expression in which X
1890 This macro is optional; do not define it if the default cost
1891 assumptions are adequate for the target machine. */
1893 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1895 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1896 && GET_MODE (XEXP (X, 0)) == SImode) \
1898 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1901 return COSTS_N_INSNS (ix86_cost->add) \
1902 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1904 if (value == 2 || value == 3) \
1905 return COSTS_N_INSNS (ix86_cost->lea) \
1906 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1908 /* fall through */ \
1914 if (GET_MODE (XEXP (X, 0)) == DImode) \
1916 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1918 if (INTVAL (XEXP (X, 1)) > 32) \
1919 return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
1920 return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
1922 return ((GET_CODE (XEXP (X, 1)) == AND \
1923 ? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
1924 : COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
1925 + rtx_cost(XEXP (X, 0), OUTER_CODE)); \
1927 return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
1928 ? ix86_cost->shift_const \
1929 : ix86_cost->shift_var) \
1930 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1933 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1935 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1939 return COSTS_N_INSNS (ix86_cost->add) \
1940 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1941 if (value == 4 || value == 8) \
1942 return COSTS_N_INSNS (ix86_cost->lea) \
1943 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1945 while (value != 0) \
1952 return COSTS_N_INSNS (ix86_cost->shift_const) \
1953 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1955 return COSTS_N_INSNS (ix86_cost->mult_init \
1956 + nbits * ix86_cost->mult_bit) \
1957 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1960 else /* This is arbitrary */ \
1961 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
1962 + 7 * ix86_cost->mult_bit); \
1968 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
1971 if (GET_CODE (XEXP (X, 0)) == REG \
1972 && GET_MODE (XEXP (X, 0)) == SImode \
1973 && GET_CODE (XEXP (X, 1)) == PLUS) \
1974 return COSTS_N_INSNS (ix86_cost->lea); \
1976 /* fall through */ \
1981 if (GET_MODE (X) == DImode) \
1982 return COSTS_N_INSNS (ix86_cost->add) * 2 \
1983 + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
1984 << (GET_MODE (XEXP (X, 0)) != DImode)) \
1985 + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
1986 << (GET_MODE (XEXP (X, 1)) != DImode)); \
1989 if (GET_MODE (X) == DImode) \
1990 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
1991 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
1994 /* An expression giving the cost of an addressing mode that contains
1995 ADDRESS. If not defined, the cost is computed from the ADDRESS
1996 expression and the `CONST_COSTS' values.
1998 For most CISC machines, the default cost is a good approximation
1999 of the true cost of the addressing mode. However, on RISC
2000 machines, all instructions normally have the same length and
2001 execution time. Hence all addresses will have equal costs.
2003 In cases where more than one form of an address is known, the form
2004 with the lowest cost will be used. If multiple forms have the
2005 same, lowest, cost, the one that is the most complex will be used.
2007 For example, suppose an address that is equal to the sum of a
2008 register and a constant is used twice in the same basic block.
2009 When this macro is not defined, the address will be computed in a
2010 register and memory references will be indirect through that
2011 register. On machines where the cost of the addressing mode
2012 containing the sum is no higher than that of a simple indirect
2013 reference, this will produce an additional instruction and
2014 possibly require an additional register. Proper specification of
2015 this macro eliminates this overhead for such machines.
2017 Similar use of this macro is made in strength reduction of loops.
2019 ADDRESS need not be valid as an address. In such a case, the cost
2020 is not relevant and can be any value; invalid addresses need not be
2021 assigned a different cost.
2023 On machines where an address involving more than one register is as
2024 cheap as an address computation involving only one register,
2025 defining `ADDRESS_COST' to reflect this can cause two registers to
2026 be live over a region of code where only one would have been if
2027 `ADDRESS_COST' were not defined in that manner. This effect should
2028 be considered in the definition of this macro. Equivalent costs
2029 should probably only be given to addresses with different numbers
2030 of registers on machines with lots of registers.
2032 This macro will normally either not be defined or be defined as a
2035 For i386, it is better to use a complex address than let gcc copy
2036 the address into a reg and make a new pseudo. But not if the address
2037 requires to two regs - that would mean more pseudos with longer
2040 #define ADDRESS_COST(RTX) \
2041 ((CONSTANT_P (RTX) \
2042 || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
2043 && REG_P (XEXP (RTX, 0)))) ? 0 \
2047 /* A C expression for the cost of moving data of mode M between a
2048 register and memory. A value of 2 is the default; this cost is
2049 relative to those in `REGISTER_MOVE_COST'.
2051 If moving between registers and memory is more expensive than
2052 between two registers, you should define this macro to express the
2055 On the i386, copying between floating-point and fixed-point
2056 registers is expensive. */
2058 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2059 (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
2060 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
2064 /* A C expression for the cost of moving data of mode M between a
2065 register and memory. A value of 2 is the default; this cost is
2066 relative to those in `REGISTER_MOVE_COST'.
2068 If moving between registers and memory is more expensive than
2069 between two registers, you should define this macro to express the
2072 /* #define MEMORY_MOVE_COST(M,C,I) 2 */
2074 /* A C expression for the cost of a branch instruction. A value of 1
2075 is the default; other values are interpreted relative to that. */
2077 #define BRANCH_COST i386_branch_cost
2079 /* Define this macro as a C expression which is nonzero if accessing
2080 less than a word of memory (i.e. a `char' or a `short') is no
2081 faster than accessing a word of memory, i.e., if such access
2082 require more than one instruction or if there is no difference in
2083 cost between byte and (aligned) word loads.
2085 When this macro is not defined, the compiler will access a field by
2086 finding the smallest containing object; when it is defined, a
2087 fullword load will be used if alignment permits. Unless bytes
2088 accesses are faster than word accesses, using word accesses is
2089 preferable since it may eliminate subsequent memory access if
2090 subsequent accesses occur to other fields in the same word of the
2091 structure, but to different bytes. */
2093 #define SLOW_BYTE_ACCESS 0
2095 /* Nonzero if access to memory by shorts is slow and undesirable. */
2096 #define SLOW_SHORT_ACCESS 0
2098 /* Define this macro if zero-extension (of a `char' or `short' to an
2099 `int') can be done faster if the destination is a register that is
2102 If you define this macro, you must have instruction patterns that
2103 recognize RTL structures like this:
2105 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2107 and likewise for `HImode'. */
2109 /* #define SLOW_ZERO_EXTEND */
2111 /* Define this macro to be the value 1 if unaligned accesses have a
2112 cost many times greater than aligned accesses, for example if they
2113 are emulated in a trap handler.
2115 When this macro is non-zero, the compiler will act as if
2116 `STRICT_ALIGNMENT' were non-zero when generating code for block
2117 moves. This can cause significantly more instructions to be
2118 produced. Therefore, do not set this macro non-zero if unaligned
2119 accesses only add a cycle or two to the time for a memory access.
2121 If the value of this macro is always zero, it need not be defined. */
2123 /* #define SLOW_UNALIGNED_ACCESS 0 */
2125 /* Define this macro to inhibit strength reduction of memory
2126 addresses. (On some machines, such strength reduction seems to do
2127 harm rather than good.) */
2129 /* #define DONT_REDUCE_ADDR */
2131 /* Define this macro if it is as good or better to call a constant
2132 function address than to call an address kept in a register.
2134 Desirable on the 386 because a CALL with a constant address is
2135 faster than one with a register address. */
2137 #define NO_FUNCTION_CSE
2139 /* Define this macro if it is as good or better for a function to call
2140 itself with an explicit address than to call an address kept in a
2143 #define NO_RECURSIVE_FUNCTION_CSE
2145 /* A C statement (sans semicolon) to update the integer variable COST
2146 based on the relationship between INSN that is dependent on
2147 DEP_INSN through the dependence LINK. The default is to make no
2148 adjustment to COST. This can be used for example to specify to
2149 the scheduler that an output- or anti-dependence does not incur
2150 the same cost as a data-dependence. */
2152 #define ADJUST_COST(insn,link,dep_insn,cost) \
2155 if (GET_CODE (dep_insn) == CALL_INSN) \
2158 else if (GET_CODE (dep_insn) == INSN \
2159 && GET_CODE (PATTERN (dep_insn)) == SET \
2160 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG \
2161 && GET_CODE (insn) == INSN \
2162 && GET_CODE (PATTERN (insn)) == SET \
2163 && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)), \
2164 SET_SRC (PATTERN (insn)))) \
2169 else if (GET_CODE (insn) == JUMP_INSN) \
2174 if (TARGET_PENTIUM) \
2176 if (cost !=0 && is_fp_insn (insn) && is_fp_insn (dep_insn) \
2177 && !is_fp_dest (dep_insn)) \
2182 if (agi_dependent (insn, dep_insn)) \
2186 else if (GET_CODE (insn) == INSN \
2187 && GET_CODE (PATTERN (insn)) == SET \
2188 && SET_DEST (PATTERN (insn)) == cc0_rtx \
2189 && (next_inst = next_nonnote_insn (insn)) \
2190 && GET_CODE (next_inst) == JUMP_INSN) \
2191 { /* compare probably paired with jump */ \
2196 if (!is_fp_dest (dep_insn)) \
2198 if(!agi_dependent (insn, dep_insn)) \
2200 else if (TARGET_486) \
2204 if (is_fp_store (insn) && is_fp_insn (dep_insn) \
2205 && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn)) \
2206 && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))) \
2207 && (GET_CODE (NEXT_INSN (insn)) == INSN) \
2208 && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN) \
2209 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE) \
2210 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) \
2211 == NOTE_INSN_LOOP_END)) \
2218 #define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
2220 if (is_fp_store (last_insn) && is_fp_insn (insn) \
2221 && NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
2222 && NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
2223 && (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
2224 && (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
2225 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
2226 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
2227 == NOTE_INSN_LOOP_END)) \
2234 /* Add any extra modes needed to represent the condition code.
2236 For the i386, we need separate modes when floating-point equality
2237 comparisons are being done. */
2239 #define EXTRA_CC_MODES CCFPEQmode
2241 /* Define the names for the modes specified above. */
2242 #define EXTRA_CC_NAMES "CCFPEQ"
2244 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2245 return the mode to be used for the comparison.
2247 For floating-point equality comparisons, CCFPEQmode should be used.
2248 VOIDmode should be used in all other cases. */
2250 #define SELECT_CC_MODE(OP,X,Y) \
2251 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2252 && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
2254 /* Define the information needed to generate branch and scc insns. This is
2255 stored from the compare operation. Note that we can't use "rtx" here
2256 since it hasn't been defined! */
2258 extern struct rtx_def
*(*i386_compare_gen
)(), *(*i386_compare_gen_eq
)();
2260 /* Tell final.c how to eliminate redundant test instructions. */
2262 /* Here we define machine-dependent flags and fields in cc_status
2263 (see `conditions.h'). */
2265 /* Set if the cc value was actually from the 80387 and
2266 we are testing eax directly (i.e. no sahf) */
2267 #define CC_TEST_AX 020000
2269 /* Set if the cc value is actually in the 80387, so a floating point
2270 conditional branch must be output. */
2271 #define CC_IN_80387 04000
2273 /* Set if the CC value was stored in a nonstandard way, so that
2274 the state of equality is indicated by zero in the carry bit. */
2275 #define CC_Z_IN_NOT_C 010000
2277 /* Set if the CC value was actually from the 80387 and loaded directly
2278 into the eflags instead of via eax/sahf. */
2279 #define CC_FCOMI 040000
2281 /* Store in cc_status the expressions
2282 that the condition codes will describe
2283 after execution of an instruction whose pattern is EXP.
2284 Do not alter them if the instruction would not alter the cc's. */
2286 #define NOTICE_UPDATE_CC(EXP, INSN) \
2287 notice_update_cc((EXP))
2289 /* Output a signed jump insn. Use template NORMAL ordinarily, or
2290 FLOAT following a floating point comparison.
2291 Use NO_OV following an arithmetic insn that set the cc's
2292 before a test insn that was deleted.
2293 NO_OV may be zero, meaning final should reinsert the test insn
2294 because the jump cannot be handled properly without it. */
2296 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
2298 if (cc_prev_status.flags & CC_IN_80387) \
2300 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
2305 /* Control the assembler format that we output, to the extent
2306 this does not vary between assemblers. */
2308 /* How to refer to registers in assembler output.
2309 This sequence is indexed by compiler's hard-register-number (see above). */
2311 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2312 For non floating point regs, the following are the HImode names.
2314 For float regs, the stack top is sometimes referred to as "%st(0)"
2315 instead of just "%st". PRINT_REG handles this with the "y" code. */
2317 #define HI_REGISTER_NAMES \
2318 {"ax","dx","cx","bx","si","di","bp","sp", \
2319 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
2321 #define REGISTER_NAMES HI_REGISTER_NAMES
2323 /* Table of additional register names to use in user input. */
2325 #define ADDITIONAL_REGISTER_NAMES \
2326 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2327 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2328 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2329 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2331 /* Note we are omitting these since currently I don't know how
2332 to get gcc to use these, since they want the same but different
2333 number as al, and ax.
2336 /* note the last four are not really qi_registers, but
2337 the md will have to never output movb into one of them
2338 only a movw . There is no movb into the last four regs */
2340 #define QI_REGISTER_NAMES \
2341 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
2343 /* These parallel the array above, and can be used to access bits 8:15
2344 of regs 0 through 3. */
2346 #define QI_HIGH_REGISTER_NAMES \
2347 {"ah", "dh", "ch", "bh", }
2349 /* How to renumber registers for dbx and gdb. */
2351 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
2352 #define DBX_REGISTER_NUMBER(n) \
2363 /* Before the prologue, RA is at 0(%esp). */
2364 #define INCOMING_RETURN_ADDR_RTX \
2365 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2367 /* After the prologue, RA is at -4(AP) in the current frame. */
2368 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2370 ? gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, arg_pointer_rtx, GEN_INT(-4)))\
2371 : gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, (FRAME), GEN_INT(4))))
2373 /* PC is dbx register 8; let's use that column for RA. */
2374 #define DWARF_FRAME_RETURN_COLUMN 8
2376 /* Before the prologue, the top of the frame is at 4(%esp). */
2377 #define INCOMING_FRAME_SP_OFFSET 4
2379 /* This is how to output the definition of a user-level label named NAME,
2380 such as the label on a static function or variable NAME. */
2382 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2383 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2385 /* This is how to output an assembler line defining a `double' constant. */
2387 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2389 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2390 fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
2393 /* This is how to output a `long double' extended real constant. */
2395 #undef ASM_OUTPUT_LONG_DOUBLE
2396 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2398 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
2399 fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
2402 /* This is how to output an assembler line defining a `float' constant. */
2404 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2406 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2407 fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
2410 /* Store in OUTPUT a string (made with alloca) containing
2411 an assembler-name for a local static variable named NAME.
2412 LABELNO is an integer which is different for each call. */
2414 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2415 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2416 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2420 /* This is how to output an assembler line defining an `int' constant. */
2422 #define ASM_OUTPUT_INT(FILE,VALUE) \
2423 ( fprintf (FILE, "%s ", ASM_LONG), \
2424 output_addr_const (FILE,(VALUE)), \
2427 /* Likewise for `char' and `short' constants. */
2428 /* is this supposed to do align too?? */
2430 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2431 ( fprintf (FILE, "%s ", ASM_SHORT), \
2432 output_addr_const (FILE,(VALUE)), \
2436 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2437 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2438 output_addr_const (FILE,(VALUE)), \
2439 fputs (",", FILE), \
2440 output_addr_const (FILE,(VALUE)), \
2441 fputs (" >> 8\n",FILE))
2445 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2446 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2447 output_addr_const (FILE, (VALUE)), \
2450 /* This is how to output an assembler line for a numeric constant byte. */
2452 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2453 fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
2455 /* This is how to output an insn to push a register on the stack.
2456 It need not be very fast code. */
2458 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2459 fprintf (FILE, "\tpushl %%e%s\n", reg_names[REGNO])
2461 /* This is how to output an insn to pop a register from the stack.
2462 It need not be very fast code. */
2464 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2465 fprintf (FILE, "\tpopl %%e%s\n", reg_names[REGNO])
2467 /* This is how to output an element of a case-vector that is absolute.
2470 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2471 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
2473 /* This is how to output an element of a case-vector that is relative.
2474 We don't use these on the 386 yet, because the ATT assembler can't do
2475 forward reference the differences.
2478 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2479 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
2481 /* Define the parentheses used to group arithmetic operations
2482 in assembler code. */
2484 #define ASM_OPEN_PAREN ""
2485 #define ASM_CLOSE_PAREN ""
2487 /* Define results of standard character escape sequences. */
2488 #define TARGET_BELL 007
2489 #define TARGET_BS 010
2490 #define TARGET_TAB 011
2491 #define TARGET_NEWLINE 012
2492 #define TARGET_VT 013
2493 #define TARGET_FF 014
2494 #define TARGET_CR 015
2496 /* Print operand X (an rtx) in assembler syntax to file FILE.
2497 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2498 The CODE z takes the size of operand from the following digit, and
2499 outputs b,w,or l respectively.
2501 On the 80386, we use several such letters:
2502 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
2503 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
2504 R -- print the prefix for register names.
2505 z -- print the opcode suffix for the size of the current operand.
2506 * -- print a star (in certain assembler syntax)
2507 P -- if PIC, print an @PLT suffix.
2508 X -- don't print any sort of PIC '@' suffix for a symbol.
2509 J -- print jump insn for arithmetic_comparison_operator.
2510 s -- ??? something to do with double shifts. not actually used, afaik.
2511 C -- print a conditional move suffix corresponding to the op code.
2512 c -- likewise, but reverse the condition.
2513 F,f -- likewise, but for floating-point. */
2515 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2518 /* Print the name of a register based on its machine mode and number.
2519 If CODE is 'w', pretend the mode is HImode.
2520 If CODE is 'b', pretend the mode is QImode.
2521 If CODE is 'k', pretend the mode is SImode.
2522 If CODE is 'h', pretend the reg is the `high' byte register.
2523 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2525 extern char *hi_reg_name
[];
2526 extern char *qi_reg_name
[];
2527 extern char *qi_high_reg_name
[];
2529 #define PRINT_REG(X, CODE, FILE) \
2530 do { if (REGNO (X) == ARG_POINTER_REGNUM) \
2532 fprintf (FILE, "%s", RP); \
2533 switch ((CODE == 'w' ? 2 \
2538 : GET_MODE_SIZE (GET_MODE (X)))) \
2541 if (STACK_TOP_P (X)) \
2543 fputs ("st(0)", FILE); \
2549 if (! FP_REG_P (X)) fputs ("e", FILE); \
2551 fputs (hi_reg_name[REGNO (X)], FILE); \
2554 fputs (qi_reg_name[REGNO (X)], FILE); \
2557 fputs (qi_high_reg_name[REGNO (X)], FILE); \
2562 #define PRINT_OPERAND(FILE, X, CODE) \
2563 print_operand (FILE, X, CODE)
2565 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2566 print_operand_address (FILE, ADDR)
2568 /* Print the name of a register for based on its machine mode and number.
2569 This macro is used to print debugging output.
2570 This macro is different from PRINT_REG in that it may be used in
2571 programs that are not linked with aux-output.o. */
2573 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2574 do { static char *hi_name[] = HI_REGISTER_NAMES; \
2575 static char *qi_name[] = QI_REGISTER_NAMES; \
2576 fprintf (FILE, "%d %s", REGNO (X), RP); \
2577 if (REGNO (X) == ARG_POINTER_REGNUM) \
2578 { fputs ("argp", FILE); break; } \
2579 if (STACK_TOP_P (X)) \
2580 { fputs ("st(0)", FILE); break; } \
2582 { fputs (hi_name[REGNO(X)], FILE); break; } \
2583 switch (GET_MODE_SIZE (GET_MODE (X))) \
2586 fputs ("e", FILE); \
2588 fputs (hi_name[REGNO (X)], FILE); \
2591 fputs (qi_name[REGNO (X)], FILE); \
2596 /* Output the prefix for an immediate operand, or for an offset operand. */
2597 #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
2598 #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
2600 /* Routines in libgcc that return floats must return them in an fp reg,
2601 just as other functions do which return such values.
2602 These macros make that happen. */
2604 #define FLOAT_VALUE_TYPE float
2605 #define INTIFY(FLOATVAL) FLOATVAL
2607 /* Nonzero if INSN magically clobbers register REGNO. */
2609 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
2610 (FP_REGNO_P (REGNO) \
2611 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
2614 /* a letter which is not needed by the normal asm syntax, which
2615 we can use for operand syntax in the extended asm */
2617 #define ASM_OPERAND_LETTER '#'
2618 #define RET return ""
2619 #define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
2621 /* Helper macros to expand a binary/unary operator if needed */
2622 #define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
2624 if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
2628 #define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
2630 if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
2635 /* Functions in i386.c */
2636 extern void override_options ();
2637 extern void order_regs_for_local_alloc ();
2638 extern char *output_strlen_unroll ();
2639 extern struct rtx_def
*i386_sext16_if_const ();
2640 extern int i386_aligned_p ();
2641 extern int i386_cc_probably_useless_p ();
2642 extern int i386_valid_decl_attribute_p ();
2643 extern int i386_valid_type_attribute_p ();
2644 extern int i386_return_pops_args ();
2645 extern int i386_comp_type_attributes ();
2646 extern void init_cumulative_args ();
2647 extern void function_arg_advance ();
2648 extern struct rtx_def
*function_arg ();
2649 extern int function_arg_partial_nregs ();
2650 extern char *output_strlen_unroll ();
2651 extern void output_op_from_reg ();
2652 extern void output_to_reg ();
2653 extern char *singlemove_string ();
2654 extern char *output_move_double ();
2655 extern char *output_move_memory ();
2656 extern char *output_move_pushmem ();
2657 extern int standard_80387_constant_p ();
2658 extern char *output_move_const_single ();
2659 extern int symbolic_operand ();
2660 extern int call_insn_operand ();
2661 extern int expander_call_insn_operand ();
2662 extern int symbolic_reference_mentioned_p ();
2663 extern int ix86_expand_binary_operator ();
2664 extern int ix86_binary_operator_ok ();
2665 extern int ix86_expand_unary_operator ();
2666 extern int ix86_unary_operator_ok ();
2667 extern void emit_pic_move ();
2668 extern void function_prologue ();
2669 extern int simple_386_epilogue ();
2670 extern void function_epilogue ();
2671 extern int legitimate_address_p ();
2672 extern struct rtx_def
*legitimize_pic_address ();
2673 extern struct rtx_def
*legitimize_address ();
2674 extern void print_operand ();
2675 extern void print_operand_address ();
2676 extern void notice_update_cc ();
2677 extern void split_di ();
2678 extern int binary_387_op ();
2679 extern int shift_op ();
2680 extern int VOIDmode_compare_op ();
2681 extern char *output_387_binary_op ();
2682 extern char *output_fix_trunc ();
2683 extern char *output_float_compare ();
2684 extern char *output_fp_cc0_set ();
2685 extern void save_386_machine_status ();
2686 extern void restore_386_machine_status ();
2687 extern void clear_386_stack_locals ();
2688 extern struct rtx_def
*assign_386_stack_local ();
2689 extern int is_mul ();
2690 extern int is_div ();
2691 extern int last_to_set_cc ();
2692 extern int doesnt_set_condition_code ();
2693 extern int sets_condition_code ();
2694 extern int str_immediate_operand ();
2695 extern int is_fp_insn ();
2696 extern int is_fp_dest ();
2697 extern int is_fp_store ();
2698 extern int agi_dependent ();
2699 extern int reg_mentioned_in_mem ();
2702 extern struct rtx_def
*copy_all_rtx ();
2703 extern void rewrite_address ();
2706 /* Variables in i386.c */
2707 extern char *ix86_cpu_string
; /* for -mcpu=<xxx> */
2708 extern char *ix86_arch_string
; /* for -march=<xxx> */
2709 extern char *i386_reg_alloc_order
; /* register allocation order */
2710 extern char *i386_regparm_string
; /* # registers to use to pass args */
2711 extern char *i386_align_loops_string
; /* power of two alignment for loops */
2712 extern char *i386_align_jumps_string
; /* power of two alignment for non-loop jumps */
2713 extern char *i386_align_funcs_string
; /* power of two alignment for functions */
2714 extern char *i386_branch_cost_string
; /* values 1-5: see jump.c */
2715 extern int i386_regparm
; /* i386_regparm_string as a number */
2716 extern int i386_align_loops
; /* power of two alignment for loops */
2717 extern int i386_align_jumps
; /* power of two alignment for non-loop jumps */
2718 extern int i386_align_funcs
; /* power of two alignment for functions */
2719 extern int i386_branch_cost
; /* values 1-5: see jump.c */
2720 extern char *hi_reg_name
[]; /* names for 16 bit regs */
2721 extern char *qi_reg_name
[]; /* names for 8 bit regs (low) */
2722 extern char *qi_high_reg_name
[]; /* names for 8 bit regs (high) */
2723 extern enum reg_class regclass_map
[]; /* smalled class containing REGNO */
2724 extern struct rtx_def
*i386_compare_op0
; /* operand 0 for comparisons */
2725 extern struct rtx_def
*i386_compare_op1
; /* operand 1 for comparisons */
2727 /* External variables used */
2728 extern int optimize
; /* optimization level */
2729 extern int obey_regdecls
; /* TRUE if stupid register allocation */
2731 /* External functions used */
2732 extern struct rtx_def
*force_operand ();
This page took 0.172905 seconds and 6 git commands to generate.