]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
Part of the vectorizer patch that was accidently left out...:
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
36
37 /* Define the specific costs for a given cpu */
38
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
87 };
88
89 extern const struct processor_costs *ix86_cost;
90
91 /* Run-time compilation parameters selecting different hardware subsets. */
92
93 extern int target_flags;
94
95 /* Macros used in the machine description to test the flags. */
96
97 /* configure can arrange to make this 2, to force a 486. */
98
99 #ifndef TARGET_CPU_DEFAULT
100 #ifdef TARGET_64BIT_DEFAULT
101 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102 #else
103 #define TARGET_CPU_DEFAULT 0
104 #endif
105 #endif
106
107 /* Masks for the -m switches */
108 #define MASK_80387 0x00000001 /* Hardware floating point */
109 #define MASK_RTD 0x00000002 /* Use ret that pops args */
110 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
111 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
112 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
113 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
114 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
115 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
116 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
117 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
118 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
119 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
120 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121 #define MASK_MMX 0x00002000 /* Support MMX regs/builtins */
122 #define MASK_SSE 0x00004000 /* Support SSE regs/builtins */
123 #define MASK_SSE2 0x00008000 /* Support SSE2 regs/builtins */
124 #define MASK_SSE3 0x00010000 /* Support SSE3 regs/builtins */
125 #define MASK_3DNOW 0x00020000 /* Support 3Dnow builtins */
126 #define MASK_3DNOW_A 0x00040000 /* Support Athlon 3Dnow builtins */
127 #define MASK_128BIT_LONG_DOUBLE 0x00080000 /* long double size is 128bit */
128 #define MASK_64BIT 0x00100000 /* Produce 64bit code */
129 #define MASK_MS_BITFIELD_LAYOUT 0x00200000 /* Use native (MS) bitfield layout */
130 #define MASK_TLS_DIRECT_SEG_REFS 0x00400000 /* Avoid adding %gs:0 */
131
132 /* Unused: 0x03e0000 */
133
134 /* ... overlap with subtarget options starts by 0x04000000. */
135 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
136
137 /* Use the floating point instructions */
138 #define TARGET_80387 (target_flags & MASK_80387)
139
140 /* Compile using ret insn that pops args.
141 This will not work unless you use prototypes at least
142 for all functions that can take varying numbers of args. */
143 #define TARGET_RTD (target_flags & MASK_RTD)
144
145 /* Align doubles to a two word boundary. This breaks compatibility with
146 the published ABI's for structures containing doubles, but produces
147 faster code on the pentium. */
148 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
149
150 /* Use push instructions to save outgoing args. */
151 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
152
153 /* Accumulate stack adjustments to prologue/epilogue. */
154 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
155 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
156
157 /* Put uninitialized locals into bss, not data.
158 Meaningful only on svr3. */
159 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
160
161 /* Use IEEE floating point comparisons. These handle correctly the cases
162 where the result of a comparison is unordered. Normally SIGFPE is
163 generated in such cases, in which case this isn't needed. */
164 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
165
166 /* Functions that return a floating point value may return that value
167 in the 387 FPU or in 386 integer registers. If set, this flag causes
168 the 387 to be used, which is compatible with most calling conventions. */
169 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
170
171 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
172 This mode wastes cache, but avoid misaligned data accesses and simplifies
173 address calculations. */
174 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
175
176 /* Disable generation of FP sin, cos and sqrt operations for 387.
177 This is because FreeBSD lacks these in the math-emulator-code */
178 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
179
180 /* Don't create frame pointers for leaf functions */
181 #define TARGET_OMIT_LEAF_FRAME_POINTER \
182 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
183
184 /* Debug GO_IF_LEGITIMATE_ADDRESS */
185 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
186
187 /* Debug FUNCTION_ARG macros */
188 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
189
190 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
191 compile-time constant. */
192 #ifdef IN_LIBGCC2
193 #ifdef __x86_64__
194 #define TARGET_64BIT 1
195 #else
196 #define TARGET_64BIT 0
197 #endif
198 #else
199 #ifdef TARGET_BI_ARCH
200 #define TARGET_64BIT (target_flags & MASK_64BIT)
201 #else
202 #if TARGET_64BIT_DEFAULT
203 #define TARGET_64BIT 1
204 #else
205 #define TARGET_64BIT 0
206 #endif
207 #endif
208 #endif
209
210 #define HAS_LONG_COND_BRANCH 1
211 #define HAS_LONG_UNCOND_BRANCH 1
212
213 /* Avoid adding %gs:0 in TLS references; use %gs:address directly. */
214 #define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
215
216 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
217 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
218 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
219 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
220 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
221 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
222 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
223 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
224 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
225 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
226
227 #define TUNEMASK (1 << ix86_tune)
228 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
229 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
230 extern const int x86_branch_hints, x86_unroll_strlen;
231 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
232 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
233 extern const int x86_use_cltd, x86_read_modify_write;
234 extern const int x86_read_modify, x86_split_long_moves;
235 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
236 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
237 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
238 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
239 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
240 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
241 extern const int x86_epilogue_using_move, x86_decompose_lea;
242 extern const int x86_arch_always_fancy_math_387, x86_shift1;
243 extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
244 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
245 extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
246 extern const int x86_inter_unit_moves;
247 extern int x86_prefetch_sse;
248
249 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
250 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
251 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
252 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
253 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
254 /* For sane SSE instruction set generation we need fcomi instruction. It is
255 safe to enable all CMOVE instructions. */
256 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
257 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
258 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
259 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
260 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
261 #define TARGET_MOVX (x86_movx & TUNEMASK)
262 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
263 #define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
264 #define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
265 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
266 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
267 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
268 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
269 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
270 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
271 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
272 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
273 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
274 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
275 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
276 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
277 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
278 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
279 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
280 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
281 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
282 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
283 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
284 (x86_sse_partial_reg_dependency & TUNEMASK)
285 #define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
286 #define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
287 (x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
288 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
289 #define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
290 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
291 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
292 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
293 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
294 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
295 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
296 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
297 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
298 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
299 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
300 #define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
301
302 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
303
304 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
305 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
306
307 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
308
309 #define TARGET_SSE ((target_flags & MASK_SSE) != 0)
310 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
311 #define TARGET_SSE3 ((target_flags & MASK_SSE3) != 0)
312 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
313 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
314 && (ix86_fpmath & FPMATH_387))
315 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
316 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
317 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
318
319 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
320
321 #define TARGET_USE_MS_BITFIELD_LAYOUT (target_flags & MASK_MS_BITFIELD_LAYOUT)
322
323 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
324 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
325
326 /* WARNING: Do not mark empty strings for translation, as calling
327 gettext on an empty string does NOT return an empty
328 string. */
329
330
331 #define TARGET_SWITCHES \
332 { { "80387", MASK_80387, N_("Use hardware fp") }, \
333 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
334 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
335 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
336 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
337 { "386", 0, "" /*Deprecated.*/}, \
338 { "486", 0, "" /*Deprecated.*/}, \
339 { "pentium", 0, "" /*Deprecated.*/}, \
340 { "pentiumpro", 0, "" /*Deprecated.*/}, \
341 { "intel-syntax", 0, "" /*Deprecated.*/}, \
342 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
343 { "rtd", MASK_RTD, \
344 N_("Alternate calling convention") }, \
345 { "no-rtd", -MASK_RTD, \
346 N_("Use normal calling convention") }, \
347 { "align-double", MASK_ALIGN_DOUBLE, \
348 N_("Align some doubles on dword boundary") }, \
349 { "no-align-double", -MASK_ALIGN_DOUBLE, \
350 N_("Align doubles on word boundary") }, \
351 { "svr3-shlib", MASK_SVR3_SHLIB, \
352 N_("Uninitialized locals in .bss") }, \
353 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
354 N_("Uninitialized locals in .data") }, \
355 { "ieee-fp", MASK_IEEE_FP, \
356 N_("Use IEEE math for fp comparisons") }, \
357 { "no-ieee-fp", -MASK_IEEE_FP, \
358 N_("Do not use IEEE math for fp comparisons") }, \
359 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
360 N_("Return values of functions in FPU registers") }, \
361 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
362 N_("Do not return values of functions in FPU registers")}, \
363 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
364 N_("Do not generate sin, cos, sqrt for FPU") }, \
365 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
366 N_("Generate sin, cos, sqrt for FPU")}, \
367 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
368 N_("Omit the frame pointer in leaf functions") }, \
369 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
370 { "stack-arg-probe", MASK_STACK_PROBE, \
371 N_("Enable stack probing") }, \
372 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
373 { "windows", 0, 0 /* undocumented */ }, \
374 { "dll", 0, 0 /* undocumented */ }, \
375 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
376 N_("Align destination of the string operations") }, \
377 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
378 N_("Do not align destination of the string operations") }, \
379 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
380 N_("Inline all known string operations") }, \
381 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
382 N_("Do not inline all known string operations") }, \
383 { "push-args", -MASK_NO_PUSH_ARGS, \
384 N_("Use push instructions to save outgoing arguments") }, \
385 { "no-push-args", MASK_NO_PUSH_ARGS, \
386 N_("Do not use push instructions to save outgoing arguments") }, \
387 { "accumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS, \
388 N_("Use push instructions to save outgoing arguments") }, \
389 { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS, \
390 N_("Do not use push instructions to save outgoing arguments") }, \
391 { "mmx", MASK_MMX, \
392 N_("Support MMX built-in functions") }, \
393 { "no-mmx", -MASK_MMX, \
394 N_("Do not support MMX built-in functions") }, \
395 { "3dnow", MASK_3DNOW, \
396 N_("Support 3DNow! built-in functions") }, \
397 { "no-3dnow", -MASK_3DNOW, \
398 N_("Do not support 3DNow! built-in functions") }, \
399 { "sse", MASK_SSE, \
400 N_("Support MMX and SSE built-in functions and code generation") }, \
401 { "no-sse", -MASK_SSE, \
402 N_("Do not support MMX and SSE built-in functions and code generation") },\
403 { "sse2", MASK_SSE2, \
404 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
405 { "no-sse2", -MASK_SSE2, \
406 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
407 { "sse3", MASK_SSE3, \
408 N_("Support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
409 { "no-sse3", -MASK_SSE3, \
410 N_("Do not support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
411 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
412 N_("sizeof(long double) is 16") }, \
413 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
414 N_("sizeof(long double) is 12") }, \
415 { "64", MASK_64BIT, \
416 N_("Generate 64bit x86-64 code") }, \
417 { "32", -MASK_64BIT, \
418 N_("Generate 32bit i386 code") }, \
419 { "ms-bitfields", MASK_MS_BITFIELD_LAYOUT, \
420 N_("Use native (MS) bitfield layout") }, \
421 { "no-ms-bitfields", -MASK_MS_BITFIELD_LAYOUT, \
422 N_("Use gcc default bitfield layout") }, \
423 { "red-zone", -MASK_NO_RED_ZONE, \
424 N_("Use red-zone in the x86-64 code") }, \
425 { "no-red-zone", MASK_NO_RED_ZONE, \
426 N_("Do not use red-zone in the x86-64 code") }, \
427 { "tls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS, \
428 N_("Use direct references against %gs when accessing tls data") }, \
429 { "no-tls-direct-seg-refs", -MASK_TLS_DIRECT_SEG_REFS, \
430 N_("Do not use direct references against %gs when accessing tls data") }, \
431 SUBTARGET_SWITCHES \
432 { "", \
433 TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT \
434 | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
435
436 #ifndef TARGET_64BIT_DEFAULT
437 #define TARGET_64BIT_DEFAULT 0
438 #endif
439 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
440 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
441 #endif
442
443 /* Once GDB has been enhanced to deal with functions without frame
444 pointers, we can change this to allow for elimination of
445 the frame pointer in leaf functions. */
446 #define TARGET_DEFAULT 0
447
448 /* This is not really a target flag, but is done this way so that
449 it's analogous to similar code for Mach-O on PowerPC. darwin.h
450 redefines this to 1. */
451 #define TARGET_MACHO 0
452
453 /* This macro is similar to `TARGET_SWITCHES' but defines names of
454 command options that have values. Its definition is an
455 initializer with a subgrouping for each command option.
456
457 Each subgrouping contains a string constant, that defines the
458 fixed part of the option name, and the address of a variable. The
459 variable, type `char *', is set to the variable part of the given
460 option if the fixed part matches. The actual option name is made
461 by appending `-m' to the specified name. */
462 #define TARGET_OPTIONS \
463 { { "tune=", &ix86_tune_string, \
464 N_("Schedule code for given CPU"), 0}, \
465 { "fpmath=", &ix86_fpmath_string, \
466 N_("Generate floating point mathematics using given instruction set"), 0},\
467 { "arch=", &ix86_arch_string, \
468 N_("Generate code for given CPU"), 0}, \
469 { "regparm=", &ix86_regparm_string, \
470 N_("Number of registers used to pass integer arguments"), 0},\
471 { "align-loops=", &ix86_align_loops_string, \
472 N_("Loop code aligned to this power of 2"), 0}, \
473 { "align-jumps=", &ix86_align_jumps_string, \
474 N_("Jump targets are aligned to this power of 2"), 0}, \
475 { "align-functions=", &ix86_align_funcs_string, \
476 N_("Function starts are aligned to this power of 2"), 0}, \
477 { "preferred-stack-boundary=", \
478 &ix86_preferred_stack_boundary_string, \
479 N_("Attempt to keep stack aligned to this power of 2"), 0}, \
480 { "branch-cost=", &ix86_branch_cost_string, \
481 N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
482 { "cmodel=", &ix86_cmodel_string, \
483 N_("Use given x86-64 code model"), 0}, \
484 { "debug-arg", &ix86_debug_arg_string, \
485 "" /* Undocumented. */, 0}, \
486 { "debug-addr", &ix86_debug_addr_string, \
487 "" /* Undocumented. */, 0}, \
488 { "asm=", &ix86_asm_string, \
489 N_("Use given assembler dialect"), 0}, \
490 { "tls-dialect=", &ix86_tls_dialect_string, \
491 N_("Use given thread-local storage dialect"), 0}, \
492 SUBTARGET_OPTIONS \
493 }
494
495 /* Sometimes certain combinations of command options do not make
496 sense on a particular target machine. You can define a macro
497 `OVERRIDE_OPTIONS' to take account of this. This macro, if
498 defined, is executed once just after all the command options have
499 been parsed.
500
501 Don't use this macro to turn on various extra optimizations for
502 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
503
504 #define OVERRIDE_OPTIONS override_options ()
505
506 /* These are meant to be redefined in the host dependent files */
507 #define SUBTARGET_SWITCHES
508 #define SUBTARGET_OPTIONS
509
510 /* Define this to change the optimizations performed by default. */
511 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
512 optimization_options ((LEVEL), (SIZE))
513
514 /* Support for configure-time defaults of some command line options. */
515 #define OPTION_DEFAULT_SPECS \
516 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
517 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
518 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
519
520 /* Specs for the compiler proper */
521
522 #ifndef CC1_CPU_SPEC
523 #define CC1_CPU_SPEC "\
524 %{!mtune*: \
525 %{m386:mtune=i386 \
526 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
527 %{m486:-mtune=i486 \
528 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
529 %{mpentium:-mtune=pentium \
530 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
531 %{mpentiumpro:-mtune=pentiumpro \
532 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
533 %{mcpu=*:-mtune=%* \
534 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
535 %<mcpu=* \
536 %{mintel-syntax:-masm=intel \
537 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
538 %{mno-intel-syntax:-masm=att \
539 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
540 #endif
541 \f
542 /* Target CPU builtins. */
543 #define TARGET_CPU_CPP_BUILTINS() \
544 do \
545 { \
546 size_t arch_len = strlen (ix86_arch_string); \
547 size_t tune_len = strlen (ix86_tune_string); \
548 int last_arch_char = ix86_arch_string[arch_len - 1]; \
549 int last_tune_char = ix86_tune_string[tune_len - 1]; \
550 \
551 if (TARGET_64BIT) \
552 { \
553 builtin_assert ("cpu=x86_64"); \
554 builtin_assert ("machine=x86_64"); \
555 builtin_define ("__amd64"); \
556 builtin_define ("__amd64__"); \
557 builtin_define ("__x86_64"); \
558 builtin_define ("__x86_64__"); \
559 } \
560 else \
561 { \
562 builtin_assert ("cpu=i386"); \
563 builtin_assert ("machine=i386"); \
564 builtin_define_std ("i386"); \
565 } \
566 \
567 /* Built-ins based on -mtune= (or -march= if no \
568 -mtune= given). */ \
569 if (TARGET_386) \
570 builtin_define ("__tune_i386__"); \
571 else if (TARGET_486) \
572 builtin_define ("__tune_i486__"); \
573 else if (TARGET_PENTIUM) \
574 { \
575 builtin_define ("__tune_i586__"); \
576 builtin_define ("__tune_pentium__"); \
577 if (last_tune_char == 'x') \
578 builtin_define ("__tune_pentium_mmx__"); \
579 } \
580 else if (TARGET_PENTIUMPRO) \
581 { \
582 builtin_define ("__tune_i686__"); \
583 builtin_define ("__tune_pentiumpro__"); \
584 switch (last_tune_char) \
585 { \
586 case '3': \
587 builtin_define ("__tune_pentium3__"); \
588 /* FALLTHRU */ \
589 case '2': \
590 builtin_define ("__tune_pentium2__"); \
591 break; \
592 } \
593 } \
594 else if (TARGET_K6) \
595 { \
596 builtin_define ("__tune_k6__"); \
597 if (last_tune_char == '2') \
598 builtin_define ("__tune_k6_2__"); \
599 else if (last_tune_char == '3') \
600 builtin_define ("__tune_k6_3__"); \
601 } \
602 else if (TARGET_ATHLON) \
603 { \
604 builtin_define ("__tune_athlon__"); \
605 /* Only plain "athlon" lacks SSE. */ \
606 if (last_tune_char != 'n') \
607 builtin_define ("__tune_athlon_sse__"); \
608 } \
609 else if (TARGET_K8) \
610 builtin_define ("__tune_k8__"); \
611 else if (TARGET_PENTIUM4) \
612 builtin_define ("__tune_pentium4__"); \
613 else if (TARGET_NOCONA) \
614 builtin_define ("__tune_nocona__"); \
615 \
616 if (TARGET_MMX) \
617 builtin_define ("__MMX__"); \
618 if (TARGET_3DNOW) \
619 builtin_define ("__3dNOW__"); \
620 if (TARGET_3DNOW_A) \
621 builtin_define ("__3dNOW_A__"); \
622 if (TARGET_SSE) \
623 builtin_define ("__SSE__"); \
624 if (TARGET_SSE2) \
625 builtin_define ("__SSE2__"); \
626 if (TARGET_SSE3) \
627 builtin_define ("__SSE3__"); \
628 if (TARGET_SSE_MATH && TARGET_SSE) \
629 builtin_define ("__SSE_MATH__"); \
630 if (TARGET_SSE_MATH && TARGET_SSE2) \
631 builtin_define ("__SSE2_MATH__"); \
632 \
633 /* Built-ins based on -march=. */ \
634 if (ix86_arch == PROCESSOR_I486) \
635 { \
636 builtin_define ("__i486"); \
637 builtin_define ("__i486__"); \
638 } \
639 else if (ix86_arch == PROCESSOR_PENTIUM) \
640 { \
641 builtin_define ("__i586"); \
642 builtin_define ("__i586__"); \
643 builtin_define ("__pentium"); \
644 builtin_define ("__pentium__"); \
645 if (last_arch_char == 'x') \
646 builtin_define ("__pentium_mmx__"); \
647 } \
648 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
649 { \
650 builtin_define ("__i686"); \
651 builtin_define ("__i686__"); \
652 builtin_define ("__pentiumpro"); \
653 builtin_define ("__pentiumpro__"); \
654 } \
655 else if (ix86_arch == PROCESSOR_K6) \
656 { \
657 \
658 builtin_define ("__k6"); \
659 builtin_define ("__k6__"); \
660 if (last_arch_char == '2') \
661 builtin_define ("__k6_2__"); \
662 else if (last_arch_char == '3') \
663 builtin_define ("__k6_3__"); \
664 } \
665 else if (ix86_arch == PROCESSOR_ATHLON) \
666 { \
667 builtin_define ("__athlon"); \
668 builtin_define ("__athlon__"); \
669 /* Only plain "athlon" lacks SSE. */ \
670 if (last_arch_char != 'n') \
671 builtin_define ("__athlon_sse__"); \
672 } \
673 else if (ix86_arch == PROCESSOR_K8) \
674 { \
675 builtin_define ("__k8"); \
676 builtin_define ("__k8__"); \
677 } \
678 else if (ix86_arch == PROCESSOR_PENTIUM4) \
679 { \
680 builtin_define ("__pentium4"); \
681 builtin_define ("__pentium4__"); \
682 } \
683 else if (ix86_arch == PROCESSOR_NOCONA) \
684 { \
685 builtin_define ("__nocona"); \
686 builtin_define ("__nocona__"); \
687 } \
688 } \
689 while (0)
690
691 #define TARGET_CPU_DEFAULT_i386 0
692 #define TARGET_CPU_DEFAULT_i486 1
693 #define TARGET_CPU_DEFAULT_pentium 2
694 #define TARGET_CPU_DEFAULT_pentium_mmx 3
695 #define TARGET_CPU_DEFAULT_pentiumpro 4
696 #define TARGET_CPU_DEFAULT_pentium2 5
697 #define TARGET_CPU_DEFAULT_pentium3 6
698 #define TARGET_CPU_DEFAULT_pentium4 7
699 #define TARGET_CPU_DEFAULT_k6 8
700 #define TARGET_CPU_DEFAULT_k6_2 9
701 #define TARGET_CPU_DEFAULT_k6_3 10
702 #define TARGET_CPU_DEFAULT_athlon 11
703 #define TARGET_CPU_DEFAULT_athlon_sse 12
704 #define TARGET_CPU_DEFAULT_k8 13
705 #define TARGET_CPU_DEFAULT_pentium_m 14
706 #define TARGET_CPU_DEFAULT_prescott 15
707 #define TARGET_CPU_DEFAULT_nocona 16
708
709 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
710 "pentiumpro", "pentium2", "pentium3", \
711 "pentium4", "k6", "k6-2", "k6-3",\
712 "athlon", "athlon-4", "k8", \
713 "pentium-m", "prescott", "nocona"}
714
715 #ifndef CC1_SPEC
716 #define CC1_SPEC "%(cc1_cpu) "
717 #endif
718
719 /* This macro defines names of additional specifications to put in the
720 specs that can be used in various specifications like CC1_SPEC. Its
721 definition is an initializer with a subgrouping for each command option.
722
723 Each subgrouping contains a string constant, that defines the
724 specification name, and a string constant that used by the GCC driver
725 program.
726
727 Do not define this macro if it does not need to do anything. */
728
729 #ifndef SUBTARGET_EXTRA_SPECS
730 #define SUBTARGET_EXTRA_SPECS
731 #endif
732
733 #define EXTRA_SPECS \
734 { "cc1_cpu", CC1_CPU_SPEC }, \
735 SUBTARGET_EXTRA_SPECS
736 \f
737 /* target machine storage layout */
738
739 #define LONG_DOUBLE_TYPE_SIZE 80
740
741 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
742 FPU, assume that the fpcw is set to extended precision; when using
743 only SSE, rounding is correct; when using both SSE and the FPU,
744 the rounding precision is indeterminate, since either may be chosen
745 apparently at random. */
746 #define TARGET_FLT_EVAL_METHOD \
747 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
748
749 #define SHORT_TYPE_SIZE 16
750 #define INT_TYPE_SIZE 32
751 #define FLOAT_TYPE_SIZE 32
752 #define LONG_TYPE_SIZE BITS_PER_WORD
753 #define DOUBLE_TYPE_SIZE 64
754 #define LONG_LONG_TYPE_SIZE 64
755
756 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
757 #define MAX_BITS_PER_WORD 64
758 #else
759 #define MAX_BITS_PER_WORD 32
760 #endif
761
762 /* Define this if most significant byte of a word is the lowest numbered. */
763 /* That is true on the 80386. */
764
765 #define BITS_BIG_ENDIAN 0
766
767 /* Define this if most significant byte of a word is the lowest numbered. */
768 /* That is not true on the 80386. */
769 #define BYTES_BIG_ENDIAN 0
770
771 /* Define this if most significant word of a multiword number is the lowest
772 numbered. */
773 /* Not true for 80386 */
774 #define WORDS_BIG_ENDIAN 0
775
776 /* Width of a word, in units (bytes). */
777 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
778 #ifdef IN_LIBGCC2
779 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
780 #else
781 #define MIN_UNITS_PER_WORD 4
782 #endif
783
784 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
785 #define PARM_BOUNDARY BITS_PER_WORD
786
787 /* Boundary (in *bits*) on which stack pointer should be aligned. */
788 #define STACK_BOUNDARY BITS_PER_WORD
789
790 /* Boundary (in *bits*) on which the stack pointer prefers to be
791 aligned; the compiler cannot rely on having this alignment. */
792 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
793
794 /* As of July 2001, many runtimes to not align the stack properly when
795 entering main. This causes expand_main_function to forcibly align
796 the stack, which results in aligned frames for functions called from
797 main, though it does nothing for the alignment of main itself. */
798 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
799 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
800
801 /* Minimum allocation boundary for the code of a function. */
802 #define FUNCTION_BOUNDARY 8
803
804 /* C++ stores the virtual bit in the lowest bit of function pointers. */
805 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
806
807 /* Alignment of field after `int : 0' in a structure. */
808
809 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
810
811 /* Minimum size in bits of the largest boundary to which any
812 and all fundamental data types supported by the hardware
813 might need to be aligned. No data type wants to be aligned
814 rounder than this.
815
816 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
817 and Pentium Pro XFmode values at 128 bit boundaries. */
818
819 #define BIGGEST_ALIGNMENT 128
820
821 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
822 #define ALIGN_MODE_128(MODE) \
823 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
824
825 /* The published ABIs say that doubles should be aligned on word
826 boundaries, so lower the alignment for structure fields unless
827 -malign-double is set. */
828
829 /* ??? Blah -- this macro is used directly by libobjc. Since it
830 supports no vector modes, cut out the complexity and fall back
831 on BIGGEST_FIELD_ALIGNMENT. */
832 #ifdef IN_TARGET_LIBS
833 #ifdef __x86_64__
834 #define BIGGEST_FIELD_ALIGNMENT 128
835 #else
836 #define BIGGEST_FIELD_ALIGNMENT 32
837 #endif
838 #else
839 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
840 x86_field_alignment (FIELD, COMPUTED)
841 #endif
842
843 /* If defined, a C expression to compute the alignment given to a
844 constant that is being placed in memory. EXP is the constant
845 and ALIGN is the alignment that the object would ordinarily have.
846 The value of this macro is used instead of that alignment to align
847 the object.
848
849 If this macro is not defined, then ALIGN is used.
850
851 The typical use of this macro is to increase alignment for string
852 constants to be word aligned so that `strcpy' calls that copy
853 constants can be done inline. */
854
855 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
856
857 /* If defined, a C expression to compute the alignment for a static
858 variable. TYPE is the data type, and ALIGN is the alignment that
859 the object would ordinarily have. The value of this macro is used
860 instead of that alignment to align the object.
861
862 If this macro is not defined, then ALIGN is used.
863
864 One use of this macro is to increase alignment of medium-size
865 data to make it all fit in fewer cache lines. Another is to
866 cause character arrays to be word-aligned so that `strcpy' calls
867 that copy constants to character arrays can be done inline. */
868
869 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
870
871 /* If defined, a C expression to compute the alignment for a local
872 variable. TYPE is the data type, and ALIGN is the alignment that
873 the object would ordinarily have. The value of this macro is used
874 instead of that alignment to align the object.
875
876 If this macro is not defined, then ALIGN is used.
877
878 One use of this macro is to increase alignment of medium-size
879 data to make it all fit in fewer cache lines. */
880
881 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
882
883 /* If defined, a C expression that gives the alignment boundary, in
884 bits, of an argument with the specified mode and type. If it is
885 not defined, `PARM_BOUNDARY' is used for all arguments. */
886
887 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
888 ix86_function_arg_boundary ((MODE), (TYPE))
889
890 /* Set this nonzero if move instructions will actually fail to work
891 when given unaligned data. */
892 #define STRICT_ALIGNMENT 0
893
894 /* If bit field type is int, don't let it cross an int,
895 and give entire struct the alignment of an int. */
896 /* Required on the 386 since it doesn't have bit-field insns. */
897 #define PCC_BITFIELD_TYPE_MATTERS 1
898 \f
899 /* Standard register usage. */
900
901 /* This processor has special stack-like registers. See reg-stack.c
902 for details. */
903
904 #define STACK_REGS
905 #define IS_STACK_MODE(MODE) \
906 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
907
908 /* Number of actual hardware registers.
909 The hardware registers are assigned numbers for the compiler
910 from 0 to just below FIRST_PSEUDO_REGISTER.
911 All registers that the compiler knows about must be given numbers,
912 even those that are not normally considered general registers.
913
914 In the 80386 we give the 8 general purpose registers the numbers 0-7.
915 We number the floating point registers 8-15.
916 Note that registers 0-7 can be accessed as a short or int,
917 while only 0-3 may be used with byte `mov' instructions.
918
919 Reg 16 does not correspond to any hardware register, but instead
920 appears in the RTL as an argument pointer prior to reload, and is
921 eliminated during reloading in favor of either the stack or frame
922 pointer. */
923
924 #define FIRST_PSEUDO_REGISTER 53
925
926 /* Number of hardware registers that go into the DWARF-2 unwind info.
927 If not defined, equals FIRST_PSEUDO_REGISTER. */
928
929 #define DWARF_FRAME_REGISTERS 17
930
931 /* 1 for registers that have pervasive standard uses
932 and are not available for the register allocator.
933 On the 80386, the stack pointer is such, as is the arg pointer.
934
935 The value is a mask - bit 1 is set for fixed registers
936 for 32bit target, while 2 is set for fixed registers for 64bit.
937 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
938 */
939 #define FIXED_REGISTERS \
940 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
941 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
942 /*arg,flags,fpsr,dir,frame*/ \
943 3, 3, 3, 3, 3, \
944 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
945 0, 0, 0, 0, 0, 0, 0, 0, \
946 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
947 0, 0, 0, 0, 0, 0, 0, 0, \
948 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
949 1, 1, 1, 1, 1, 1, 1, 1, \
950 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
951 1, 1, 1, 1, 1, 1, 1, 1}
952
953
954 /* 1 for registers not available across function calls.
955 These must include the FIXED_REGISTERS and also any
956 registers that can be used without being saved.
957 The latter must include the registers where values are returned
958 and the register where structure-value addresses are passed.
959 Aside from that, you can include as many other registers as you like.
960
961 The value is a mask - bit 1 is set for call used
962 for 32bit target, while 2 is set for call used for 64bit.
963 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
964 */
965 #define CALL_USED_REGISTERS \
966 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
967 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
968 /*arg,flags,fpsr,dir,frame*/ \
969 3, 3, 3, 3, 3, \
970 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
971 3, 3, 3, 3, 3, 3, 3, 3, \
972 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
973 3, 3, 3, 3, 3, 3, 3, 3, \
974 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
975 3, 3, 3, 3, 1, 1, 1, 1, \
976 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
977 3, 3, 3, 3, 3, 3, 3, 3} \
978
979 /* Order in which to allocate registers. Each register must be
980 listed once, even those in FIXED_REGISTERS. List frame pointer
981 late and fixed registers last. Note that, in general, we prefer
982 registers listed in CALL_USED_REGISTERS, keeping the others
983 available for storage of persistent values.
984
985 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
986 so this is just empty initializer for array. */
987
988 #define REG_ALLOC_ORDER \
989 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
990 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
991 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
992 48, 49, 50, 51, 52 }
993
994 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
995 to be rearranged based on a particular function. When using sse math,
996 we want to allocate SSE before x87 registers and vice vera. */
997
998 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
999
1000
1001 /* Macro to conditionally modify fixed_regs/call_used_regs. */
1002 #define CONDITIONAL_REGISTER_USAGE \
1003 do { \
1004 int i; \
1005 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1006 { \
1007 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
1008 call_used_regs[i] = (call_used_regs[i] \
1009 & (TARGET_64BIT ? 2 : 1)) != 0; \
1010 } \
1011 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1012 { \
1013 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1014 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1015 } \
1016 if (! TARGET_MMX) \
1017 { \
1018 int i; \
1019 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1020 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
1021 fixed_regs[i] = call_used_regs[i] = 1; \
1022 } \
1023 if (! TARGET_SSE) \
1024 { \
1025 int i; \
1026 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1027 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
1028 fixed_regs[i] = call_used_regs[i] = 1; \
1029 } \
1030 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
1031 { \
1032 int i; \
1033 HARD_REG_SET x; \
1034 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
1035 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
1036 if (TEST_HARD_REG_BIT (x, i)) \
1037 fixed_regs[i] = call_used_regs[i] = 1; \
1038 } \
1039 } while (0)
1040
1041 /* Return number of consecutive hard regs needed starting at reg REGNO
1042 to hold something of mode MODE.
1043 This is ordinarily the length in words of a value of mode MODE
1044 but can be less for certain modes in special long registers.
1045
1046 Actually there are no two word move instructions for consecutive
1047 registers. And only registers 0-3 may have mov byte instructions
1048 applied to them.
1049 */
1050
1051 #define HARD_REGNO_NREGS(REGNO, MODE) \
1052 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1053 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1054 : ((MODE) == XFmode \
1055 ? (TARGET_64BIT ? 2 : 3) \
1056 : (MODE) == XCmode \
1057 ? (TARGET_64BIT ? 4 : 6) \
1058 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1059
1060 #define VALID_SSE2_REG_MODE(MODE) \
1061 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1062 || (MODE) == V2DImode)
1063
1064 #define VALID_SSE_REG_MODE(MODE) \
1065 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1066 || (MODE) == SFmode || (MODE) == TFmode \
1067 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
1068 || VALID_SSE2_REG_MODE (MODE) \
1069 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1070
1071 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1072 ((MODE) == V2SFmode || (MODE) == SFmode)
1073
1074 #define VALID_MMX_REG_MODE(MODE) \
1075 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
1076 || (MODE) == V2SImode || (MODE) == SImode)
1077
1078 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1079 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
1080 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
1081 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1082
1083 #define UNITS_PER_SIMD_WORD \
1084 (TARGET_SSE ? 16 : TARGET_MMX || TARGET_3DNOW ? 8 : 0)
1085
1086 #define VALID_FP_MODE_P(MODE) \
1087 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1088 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1089
1090 #define VALID_INT_MODE_P(MODE) \
1091 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1092 || (MODE) == DImode \
1093 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1094 || (MODE) == CDImode \
1095 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1096 || (MODE) == TFmode || (MODE) == TCmode)))
1097
1098 /* Return true for modes passed in SSE registers. */
1099 #define SSE_REG_MODE_P(MODE) \
1100 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1101 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1102 || (MODE) == V4SFmode || (MODE) == V4SImode)
1103
1104 /* Return true for modes passed in MMX registers. */
1105 #define MMX_REG_MODE_P(MODE) \
1106 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode \
1107 || (MODE) == V2SFmode)
1108
1109 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1110
1111 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1112 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1113
1114 /* Value is 1 if it is a good idea to tie two pseudo registers
1115 when one has mode MODE1 and one has mode MODE2.
1116 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1117 for any hard reg, then this must be 0 for correct output. */
1118
1119 #define MODES_TIEABLE_P(MODE1, MODE2) \
1120 ((MODE1) == (MODE2) \
1121 || (((MODE1) == HImode || (MODE1) == SImode \
1122 || ((MODE1) == QImode \
1123 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1124 || ((MODE1) == DImode && TARGET_64BIT)) \
1125 && ((MODE2) == HImode || (MODE2) == SImode \
1126 || ((MODE2) == QImode \
1127 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1128 || ((MODE2) == DImode && TARGET_64BIT))))
1129
1130 /* It is possible to write patterns to move flags; but until someone
1131 does it, */
1132 #define AVOID_CCMODE_COPIES
1133
1134 /* Specify the modes required to caller save a given hard regno.
1135 We do this on i386 to prevent flags from being saved at all.
1136
1137 Kill any attempts to combine saving of modes. */
1138
1139 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1140 (CC_REGNO_P (REGNO) ? VOIDmode \
1141 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1142 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1143 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1144 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1145 : (MODE))
1146 /* Specify the registers used for certain standard purposes.
1147 The values of these macros are register numbers. */
1148
1149 /* on the 386 the pc register is %eip, and is not usable as a general
1150 register. The ordinary mov instructions won't work */
1151 /* #define PC_REGNUM */
1152
1153 /* Register to use for pushing function arguments. */
1154 #define STACK_POINTER_REGNUM 7
1155
1156 /* Base register for access to local variables of the function. */
1157 #define HARD_FRAME_POINTER_REGNUM 6
1158
1159 /* Base register for access to local variables of the function. */
1160 #define FRAME_POINTER_REGNUM 20
1161
1162 /* First floating point reg */
1163 #define FIRST_FLOAT_REG 8
1164
1165 /* First & last stack-like regs */
1166 #define FIRST_STACK_REG FIRST_FLOAT_REG
1167 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1168
1169 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1170 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1171
1172 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1173 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1174
1175 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1176 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1177
1178 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1179 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1180
1181 /* Value should be nonzero if functions must have frame pointers.
1182 Zero means the frame pointer need not be set up (and parms
1183 may be accessed via the stack pointer) in functions that seem suitable.
1184 This is computed in `reload', in reload1.c. */
1185 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1186
1187 /* Override this in other tm.h files to cope with various OS losage
1188 requiring a frame pointer. */
1189 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1190 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1191 #endif
1192
1193 /* Make sure we can access arbitrary call frames. */
1194 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1195
1196 /* Base register for access to arguments of the function. */
1197 #define ARG_POINTER_REGNUM 16
1198
1199 /* Register in which static-chain is passed to a function.
1200 We do use ECX as static chain register for 32 bit ABI. On the
1201 64bit ABI, ECX is an argument register, so we use R10 instead. */
1202 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1203
1204 /* Register to hold the addressing base for position independent
1205 code access to data items. We don't use PIC pointer for 64bit
1206 mode. Define the regnum to dummy value to prevent gcc from
1207 pessimizing code dealing with EBX.
1208
1209 To avoid clobbering a call-saved register unnecessarily, we renumber
1210 the pic register when possible. The change is visible after the
1211 prologue has been emitted. */
1212
1213 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1214
1215 #define PIC_OFFSET_TABLE_REGNUM \
1216 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM \
1217 : reload_completed ? REGNO (pic_offset_table_rtx) \
1218 : REAL_PIC_OFFSET_TABLE_REGNUM)
1219
1220 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1221
1222 /* A C expression which can inhibit the returning of certain function
1223 values in registers, based on the type of value. A nonzero value
1224 says to return the function value in memory, just as large
1225 structures are always returned. Here TYPE will be a C expression
1226 of type `tree', representing the data type of the value.
1227
1228 Note that values of mode `BLKmode' must be explicitly handled by
1229 this macro. Also, the option `-fpcc-struct-return' takes effect
1230 regardless of this macro. On most systems, it is possible to
1231 leave the macro undefined; this causes a default definition to be
1232 used, whose value is the constant 1 for `BLKmode' values, and 0
1233 otherwise.
1234
1235 Do not use this macro to indicate that structures and unions
1236 should always be returned in memory. You should instead use
1237 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1238
1239 #define RETURN_IN_MEMORY(TYPE) \
1240 ix86_return_in_memory (TYPE)
1241
1242 /* This is overridden by <cygwin.h>. */
1243 #define MS_AGGREGATE_RETURN 0
1244
1245 \f
1246 /* Define the classes of registers for register constraints in the
1247 machine description. Also define ranges of constants.
1248
1249 One of the classes must always be named ALL_REGS and include all hard regs.
1250 If there is more than one class, another class must be named NO_REGS
1251 and contain no registers.
1252
1253 The name GENERAL_REGS must be the name of a class (or an alias for
1254 another name such as ALL_REGS). This is the class of registers
1255 that is allowed by "g" or "r" in a register constraint.
1256 Also, registers outside this class are allocated only when
1257 instructions express preferences for them.
1258
1259 The classes must be numbered in nondecreasing order; that is,
1260 a larger-numbered class must never be contained completely
1261 in a smaller-numbered class.
1262
1263 For any two classes, it is very desirable that there be another
1264 class that represents their union.
1265
1266 It might seem that class BREG is unnecessary, since no useful 386
1267 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1268 and the "b" register constraint is useful in asms for syscalls.
1269
1270 The flags and fpsr registers are in no class. */
1271
1272 enum reg_class
1273 {
1274 NO_REGS,
1275 AREG, DREG, CREG, BREG, SIREG, DIREG,
1276 AD_REGS, /* %eax/%edx for DImode */
1277 Q_REGS, /* %eax %ebx %ecx %edx */
1278 NON_Q_REGS, /* %esi %edi %ebp %esp */
1279 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1280 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1281 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1282 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1283 FLOAT_REGS,
1284 SSE_REGS,
1285 MMX_REGS,
1286 FP_TOP_SSE_REGS,
1287 FP_SECOND_SSE_REGS,
1288 FLOAT_SSE_REGS,
1289 FLOAT_INT_REGS,
1290 INT_SSE_REGS,
1291 FLOAT_INT_SSE_REGS,
1292 ALL_REGS, LIM_REG_CLASSES
1293 };
1294
1295 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1296
1297 #define INTEGER_CLASS_P(CLASS) \
1298 reg_class_subset_p ((CLASS), GENERAL_REGS)
1299 #define FLOAT_CLASS_P(CLASS) \
1300 reg_class_subset_p ((CLASS), FLOAT_REGS)
1301 #define SSE_CLASS_P(CLASS) \
1302 reg_class_subset_p ((CLASS), SSE_REGS)
1303 #define MMX_CLASS_P(CLASS) \
1304 reg_class_subset_p ((CLASS), MMX_REGS)
1305 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1306 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1307 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1308 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1309 #define MAYBE_SSE_CLASS_P(CLASS) \
1310 reg_classes_intersect_p (SSE_REGS, (CLASS))
1311 #define MAYBE_MMX_CLASS_P(CLASS) \
1312 reg_classes_intersect_p (MMX_REGS, (CLASS))
1313
1314 #define Q_CLASS_P(CLASS) \
1315 reg_class_subset_p ((CLASS), Q_REGS)
1316
1317 /* Give names of register classes as strings for dump file. */
1318
1319 #define REG_CLASS_NAMES \
1320 { "NO_REGS", \
1321 "AREG", "DREG", "CREG", "BREG", \
1322 "SIREG", "DIREG", \
1323 "AD_REGS", \
1324 "Q_REGS", "NON_Q_REGS", \
1325 "INDEX_REGS", \
1326 "LEGACY_REGS", \
1327 "GENERAL_REGS", \
1328 "FP_TOP_REG", "FP_SECOND_REG", \
1329 "FLOAT_REGS", \
1330 "SSE_REGS", \
1331 "MMX_REGS", \
1332 "FP_TOP_SSE_REGS", \
1333 "FP_SECOND_SSE_REGS", \
1334 "FLOAT_SSE_REGS", \
1335 "FLOAT_INT_REGS", \
1336 "INT_SSE_REGS", \
1337 "FLOAT_INT_SSE_REGS", \
1338 "ALL_REGS" }
1339
1340 /* Define which registers fit in which classes.
1341 This is an initializer for a vector of HARD_REG_SET
1342 of length N_REG_CLASSES. */
1343
1344 #define REG_CLASS_CONTENTS \
1345 { { 0x00, 0x0 }, \
1346 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1347 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1348 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1349 { 0x03, 0x0 }, /* AD_REGS */ \
1350 { 0x0f, 0x0 }, /* Q_REGS */ \
1351 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1352 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1353 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1354 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1355 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1356 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1357 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1358 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1359 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1360 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1361 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1362 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1363 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1364 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1365 { 0xffffffff,0x1fffff } \
1366 }
1367
1368 /* The same information, inverted:
1369 Return the class number of the smallest class containing
1370 reg number REGNO. This could be a conditional expression
1371 or could index an array. */
1372
1373 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1374
1375 /* When defined, the compiler allows registers explicitly used in the
1376 rtl to be used as spill registers but prevents the compiler from
1377 extending the lifetime of these registers. */
1378
1379 #define SMALL_REGISTER_CLASSES 1
1380
1381 #define QI_REG_P(X) \
1382 (REG_P (X) && REGNO (X) < 4)
1383
1384 #define GENERAL_REGNO_P(N) \
1385 ((N) < 8 || REX_INT_REGNO_P (N))
1386
1387 #define GENERAL_REG_P(X) \
1388 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1389
1390 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1391
1392 #define NON_QI_REG_P(X) \
1393 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1394
1395 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1396 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1397
1398 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1399 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1400 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1401 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1402
1403 #define SSE_REGNO_P(N) \
1404 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1405 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1406
1407 #define REX_SSE_REGNO_P(N) \
1408 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1409
1410 #define SSE_REGNO(N) \
1411 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1412 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1413
1414 #define SSE_FLOAT_MODE_P(MODE) \
1415 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1416
1417 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1418 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1419
1420 #define STACK_REG_P(XOP) \
1421 (REG_P (XOP) && \
1422 REGNO (XOP) >= FIRST_STACK_REG && \
1423 REGNO (XOP) <= LAST_STACK_REG)
1424
1425 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1426
1427 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1428
1429 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1430 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1431
1432 /* The class value for index registers, and the one for base regs. */
1433
1434 #define INDEX_REG_CLASS INDEX_REGS
1435 #define BASE_REG_CLASS GENERAL_REGS
1436
1437 /* Get reg_class from a letter such as appears in the machine description. */
1438
1439 #define REG_CLASS_FROM_LETTER(C) \
1440 ((C) == 'r' ? GENERAL_REGS : \
1441 (C) == 'R' ? LEGACY_REGS : \
1442 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1443 (C) == 'Q' ? Q_REGS : \
1444 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1445 ? FLOAT_REGS \
1446 : NO_REGS) : \
1447 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1448 ? FP_TOP_REG \
1449 : NO_REGS) : \
1450 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1451 ? FP_SECOND_REG \
1452 : NO_REGS) : \
1453 (C) == 'a' ? AREG : \
1454 (C) == 'b' ? BREG : \
1455 (C) == 'c' ? CREG : \
1456 (C) == 'd' ? DREG : \
1457 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1458 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1459 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1460 (C) == 'A' ? AD_REGS : \
1461 (C) == 'D' ? DIREG : \
1462 (C) == 'S' ? SIREG : NO_REGS)
1463
1464 /* The letters I, J, K, L and M in a register constraint string
1465 can be used to stand for particular ranges of immediate operands.
1466 This macro defines what the ranges are.
1467 C is the letter, and VALUE is a constant value.
1468 Return 1 if VALUE is in the range specified by C.
1469
1470 I is for non-DImode shifts.
1471 J is for DImode shifts.
1472 K is for signed imm8 operands.
1473 L is for andsi as zero-extending move.
1474 M is for shifts that can be executed by the "lea" opcode.
1475 N is for immediate operands for out/in instructions (0-255)
1476 */
1477
1478 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1479 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1480 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1481 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1482 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1483 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1484 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1485 : 0)
1486
1487 /* Similar, but for floating constants, and defining letters G and H.
1488 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1489 TARGET_387 isn't set, because the stack register converter may need to
1490 load 0.0 into the function value register. */
1491
1492 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1493 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1494 : 0)
1495
1496 /* A C expression that defines the optional machine-dependent
1497 constraint letters that can be used to segregate specific types of
1498 operands, usually memory references, for the target machine. Any
1499 letter that is not elsewhere defined and not matched by
1500 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1501 be defined.
1502
1503 If it is required for a particular target machine, it should
1504 return 1 if VALUE corresponds to the operand type represented by
1505 the constraint letter C. If C is not defined as an extra
1506 constraint, the value returned should be 0 regardless of VALUE. */
1507
1508 #define EXTRA_CONSTRAINT(VALUE, D) \
1509 ((D) == 'e' ? x86_64_immediate_operand (VALUE, VOIDmode) \
1510 : (D) == 'Z' ? x86_64_zext_immediate_operand (VALUE, VOIDmode) \
1511 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1512 : 0)
1513
1514 /* Place additional restrictions on the register class to use when it
1515 is necessary to be able to hold a value of mode MODE in a reload
1516 register for which class CLASS would ordinarily be used. */
1517
1518 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1519 ((MODE) == QImode && !TARGET_64BIT \
1520 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1521 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1522 ? Q_REGS : (CLASS))
1523
1524 /* Given an rtx X being reloaded into a reg required to be
1525 in class CLASS, return the class of reg to actually use.
1526 In general this is just CLASS; but on some machines
1527 in some cases it is preferable to use a more restrictive class.
1528 On the 80386 series, we prevent floating constants from being
1529 reloaded into floating registers (since no move-insn can do that)
1530 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1531
1532 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1533 QImode must go into class Q_REGS.
1534 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1535 movdf to do mem-to-mem moves through integer regs. */
1536
1537 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1538 ix86_preferred_reload_class ((X), (CLASS))
1539
1540 /* If we are copying between general and FP registers, we need a memory
1541 location. The same is true for SSE and MMX registers. */
1542 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1543 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1544
1545 /* QImode spills from non-QI registers need a scratch. This does not
1546 happen often -- the only example so far requires an uninitialized
1547 pseudo. */
1548
1549 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1550 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1551 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1552 ? Q_REGS : NO_REGS)
1553
1554 /* Return the maximum number of consecutive registers
1555 needed to represent mode MODE in a register of class CLASS. */
1556 /* On the 80386, this is the size of MODE in words,
1557 except in the FP regs, where a single reg is always enough. */
1558 #define CLASS_MAX_NREGS(CLASS, MODE) \
1559 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1560 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1561 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1562 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1563
1564 /* A C expression whose value is nonzero if pseudos that have been
1565 assigned to registers of class CLASS would likely be spilled
1566 because registers of CLASS are needed for spill registers.
1567
1568 The default value of this macro returns 1 if CLASS has exactly one
1569 register and zero otherwise. On most machines, this default
1570 should be used. Only define this macro to some other expression
1571 if pseudo allocated by `local-alloc.c' end up in memory because
1572 their hard registers were needed for spill registers. If this
1573 macro returns nonzero for those classes, those pseudos will only
1574 be allocated by `global.c', which knows how to reallocate the
1575 pseudo to another register. If there would not be another
1576 register available for reallocation, you should not change the
1577 definition of this macro since the only effect of such a
1578 definition would be to slow down register allocation. */
1579
1580 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1581 (((CLASS) == AREG) \
1582 || ((CLASS) == DREG) \
1583 || ((CLASS) == CREG) \
1584 || ((CLASS) == BREG) \
1585 || ((CLASS) == AD_REGS) \
1586 || ((CLASS) == SIREG) \
1587 || ((CLASS) == DIREG) \
1588 || ((CLASS) == FP_TOP_REG) \
1589 || ((CLASS) == FP_SECOND_REG))
1590
1591 /* Return a class of registers that cannot change FROM mode to TO mode.
1592
1593 x87 registers can't do subreg as all values are reformated to extended
1594 precision. XMM registers does not support with nonzero offsets equal
1595 to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1596 determine these, prohibit all nonparadoxical subregs changing size. */
1597
1598 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1599 (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM) \
1600 ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS)) \
1601 || MAYBE_MMX_CLASS_P (CLASS) \
1602 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1603 ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1604 \f
1605 /* Stack layout; function entry, exit and calling. */
1606
1607 /* Define this if pushing a word on the stack
1608 makes the stack pointer a smaller address. */
1609 #define STACK_GROWS_DOWNWARD
1610
1611 /* Define this if the nominal address of the stack frame
1612 is at the high-address end of the local variables;
1613 that is, each additional local variable allocated
1614 goes at a more negative offset in the frame. */
1615 #define FRAME_GROWS_DOWNWARD
1616
1617 /* Offset within stack frame to start allocating local variables at.
1618 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1619 first local allocated. Otherwise, it is the offset to the BEGINNING
1620 of the first local allocated. */
1621 #define STARTING_FRAME_OFFSET 0
1622
1623 /* If we generate an insn to push BYTES bytes,
1624 this says how many the stack pointer really advances by.
1625 On 386 pushw decrements by exactly 2 no matter what the position was.
1626 On the 386 there is no pushb; we use pushw instead, and this
1627 has the effect of rounding up to 2.
1628
1629 For 64bit ABI we round up to 8 bytes.
1630 */
1631
1632 #define PUSH_ROUNDING(BYTES) \
1633 (TARGET_64BIT \
1634 ? (((BYTES) + 7) & (-8)) \
1635 : (((BYTES) + 1) & (-2)))
1636
1637 /* If defined, the maximum amount of space required for outgoing arguments will
1638 be computed and placed into the variable
1639 `current_function_outgoing_args_size'. No space will be pushed onto the
1640 stack for each call; instead, the function prologue should increase the stack
1641 frame size by this amount. */
1642
1643 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1644
1645 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1646 instructions to pass outgoing arguments. */
1647
1648 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1649
1650 /* We want the stack and args grow in opposite directions, even if
1651 PUSH_ARGS is 0. */
1652 #define PUSH_ARGS_REVERSED 1
1653
1654 /* Offset of first parameter from the argument pointer register value. */
1655 #define FIRST_PARM_OFFSET(FNDECL) 0
1656
1657 /* Define this macro if functions should assume that stack space has been
1658 allocated for arguments even when their values are passed in registers.
1659
1660 The value of this macro is the size, in bytes, of the area reserved for
1661 arguments passed in registers for the function represented by FNDECL.
1662
1663 This space can be allocated by the caller, or be a part of the
1664 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1665 which. */
1666 #define REG_PARM_STACK_SPACE(FNDECL) 0
1667
1668 /* Value is the number of bytes of arguments automatically
1669 popped when returning from a subroutine call.
1670 FUNDECL is the declaration node of the function (as a tree),
1671 FUNTYPE is the data type of the function (as a tree),
1672 or for a library call it is an identifier node for the subroutine name.
1673 SIZE is the number of bytes of arguments passed on the stack.
1674
1675 On the 80386, the RTD insn may be used to pop them if the number
1676 of args is fixed, but if the number is variable then the caller
1677 must pop them all. RTD can't be used for library calls now
1678 because the library is compiled with the Unix compiler.
1679 Use of RTD is a selectable option, since it is incompatible with
1680 standard Unix calling sequences. If the option is not selected,
1681 the caller must always pop the args.
1682
1683 The attribute stdcall is equivalent to RTD on a per module basis. */
1684
1685 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1686 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1687
1688 /* Define how to find the value returned by a function.
1689 VALTYPE is the data type of the value (as a tree).
1690 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1691 otherwise, FUNC is 0. */
1692 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1693 ix86_function_value (VALTYPE)
1694
1695 #define FUNCTION_VALUE_REGNO_P(N) \
1696 ix86_function_value_regno_p (N)
1697
1698 /* Define how to find the value returned by a library function
1699 assuming the value has mode MODE. */
1700
1701 #define LIBCALL_VALUE(MODE) \
1702 ix86_libcall_value (MODE)
1703
1704 /* Define the size of the result block used for communication between
1705 untyped_call and untyped_return. The block contains a DImode value
1706 followed by the block used by fnsave and frstor. */
1707
1708 #define APPLY_RESULT_SIZE (8+108)
1709
1710 /* 1 if N is a possible register number for function argument passing. */
1711 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1712
1713 /* Define a data type for recording info about an argument list
1714 during the scan of that argument list. This data type should
1715 hold all necessary information about the function itself
1716 and about the args processed so far, enough to enable macros
1717 such as FUNCTION_ARG to determine where the next arg should go. */
1718
1719 typedef struct ix86_args {
1720 int words; /* # words passed so far */
1721 int nregs; /* # registers available for passing */
1722 int regno; /* next available register number */
1723 int fastcall; /* fastcall calling convention is used */
1724 int sse_words; /* # sse words passed so far */
1725 int sse_nregs; /* # sse registers available for passing */
1726 int warn_sse; /* True when we want to warn about SSE ABI. */
1727 int warn_mmx; /* True when we want to warn about MMX ABI. */
1728 int sse_regno; /* next available sse register number */
1729 int mmx_words; /* # mmx words passed so far */
1730 int mmx_nregs; /* # mmx registers available for passing */
1731 int mmx_regno; /* next available mmx register number */
1732 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1733 } CUMULATIVE_ARGS;
1734
1735 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1736 for a call to a function whose data type is FNTYPE.
1737 For a library call, FNTYPE is 0. */
1738
1739 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1740 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1741
1742 /* Update the data in CUM to advance over an argument
1743 of mode MODE and data type TYPE.
1744 (TYPE is null for libcalls where that information may not be available.) */
1745
1746 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1747 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1748
1749 /* Define where to put the arguments to a function.
1750 Value is zero to push the argument on the stack,
1751 or a hard register in which to store the argument.
1752
1753 MODE is the argument's machine mode.
1754 TYPE is the data type of the argument (as a tree).
1755 This is null for libcalls where that information may
1756 not be available.
1757 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1758 the preceding args and about the function being called.
1759 NAMED is nonzero if this argument is a named parameter
1760 (otherwise it is an extra parameter matching an ellipsis). */
1761
1762 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1763 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1764
1765 /* For an arg passed partly in registers and partly in memory,
1766 this is the number of registers used.
1767 For args passed entirely in registers or entirely in memory, zero. */
1768
1769 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1770
1771 /* Implement `va_start' for varargs and stdarg. */
1772 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1773 ix86_va_start (VALIST, NEXTARG)
1774
1775 #define TARGET_ASM_FILE_END ix86_file_end
1776 #define NEED_INDICATE_EXEC_STACK 0
1777
1778 /* Output assembler code to FILE to increment profiler label # LABELNO
1779 for profiling a function entry. */
1780
1781 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1782
1783 #define MCOUNT_NAME "_mcount"
1784
1785 #define PROFILE_COUNT_REGISTER "edx"
1786
1787 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1788 the stack pointer does not matter. The value is tested only in
1789 functions that have frame pointers.
1790 No definition is equivalent to always zero. */
1791 /* Note on the 386 it might be more efficient not to define this since
1792 we have to restore it ourselves from the frame pointer, in order to
1793 use pop */
1794
1795 #define EXIT_IGNORE_STACK 1
1796
1797 /* Output assembler code for a block containing the constant parts
1798 of a trampoline, leaving space for the variable parts. */
1799
1800 /* On the 386, the trampoline contains two instructions:
1801 mov #STATIC,ecx
1802 jmp FUNCTION
1803 The trampoline is generated entirely at runtime. The operand of JMP
1804 is the address of FUNCTION relative to the instruction following the
1805 JMP (which is 5 bytes long). */
1806
1807 /* Length in units of the trampoline for entering a nested function. */
1808
1809 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1810
1811 /* Emit RTL insns to initialize the variable parts of a trampoline.
1812 FNADDR is an RTX for the address of the function's pure code.
1813 CXT is an RTX for the static chain value for the function. */
1814
1815 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1816 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1817 \f
1818 /* Definitions for register eliminations.
1819
1820 This is an array of structures. Each structure initializes one pair
1821 of eliminable registers. The "from" register number is given first,
1822 followed by "to". Eliminations of the same "from" register are listed
1823 in order of preference.
1824
1825 There are two registers that can always be eliminated on the i386.
1826 The frame pointer and the arg pointer can be replaced by either the
1827 hard frame pointer or to the stack pointer, depending upon the
1828 circumstances. The hard frame pointer is not used before reload and
1829 so it is not eligible for elimination. */
1830
1831 #define ELIMINABLE_REGS \
1832 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1833 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1834 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1835 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1836
1837 /* Given FROM and TO register numbers, say whether this elimination is
1838 allowed. Frame pointer elimination is automatically handled.
1839
1840 All other eliminations are valid. */
1841
1842 #define CAN_ELIMINATE(FROM, TO) \
1843 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1844
1845 /* Define the offset between two registers, one to be eliminated, and the other
1846 its replacement, at the start of a routine. */
1847
1848 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1849 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1850 \f
1851 /* Addressing modes, and classification of registers for them. */
1852
1853 /* Macros to check register numbers against specific register classes. */
1854
1855 /* These assume that REGNO is a hard or pseudo reg number.
1856 They give nonzero only if REGNO is a hard reg of the suitable class
1857 or a pseudo reg currently allocated to a suitable hard reg.
1858 Since they use reg_renumber, they are safe only once reg_renumber
1859 has been allocated, which happens in local-alloc.c. */
1860
1861 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1862 ((REGNO) < STACK_POINTER_REGNUM \
1863 || (REGNO >= FIRST_REX_INT_REG \
1864 && (REGNO) <= LAST_REX_INT_REG) \
1865 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1866 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1867 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1868
1869 #define REGNO_OK_FOR_BASE_P(REGNO) \
1870 ((REGNO) <= STACK_POINTER_REGNUM \
1871 || (REGNO) == ARG_POINTER_REGNUM \
1872 || (REGNO) == FRAME_POINTER_REGNUM \
1873 || (REGNO >= FIRST_REX_INT_REG \
1874 && (REGNO) <= LAST_REX_INT_REG) \
1875 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1876 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1877 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1878
1879 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1880 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1881 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1882 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1883
1884 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1885 and check its validity for a certain class.
1886 We have two alternate definitions for each of them.
1887 The usual definition accepts all pseudo regs; the other rejects
1888 them unless they have been allocated suitable hard regs.
1889 The symbol REG_OK_STRICT causes the latter definition to be used.
1890
1891 Most source files want to accept pseudo regs in the hope that
1892 they will get allocated to the class that the insn wants them to be in.
1893 Source files for reload pass need to be strict.
1894 After reload, it makes no difference, since pseudo regs have
1895 been eliminated by then. */
1896
1897
1898 /* Non strict versions, pseudos are ok. */
1899 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1900 (REGNO (X) < STACK_POINTER_REGNUM \
1901 || (REGNO (X) >= FIRST_REX_INT_REG \
1902 && REGNO (X) <= LAST_REX_INT_REG) \
1903 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1904
1905 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1906 (REGNO (X) <= STACK_POINTER_REGNUM \
1907 || REGNO (X) == ARG_POINTER_REGNUM \
1908 || REGNO (X) == FRAME_POINTER_REGNUM \
1909 || (REGNO (X) >= FIRST_REX_INT_REG \
1910 && REGNO (X) <= LAST_REX_INT_REG) \
1911 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1912
1913 /* Strict versions, hard registers only */
1914 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1915 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1916
1917 #ifndef REG_OK_STRICT
1918 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1919 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1920
1921 #else
1922 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1923 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1924 #endif
1925
1926 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1927 that is a valid memory address for an instruction.
1928 The MODE argument is the machine mode for the MEM expression
1929 that wants to use this address.
1930
1931 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1932 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1933
1934 See legitimize_pic_address in i386.c for details as to what
1935 constitutes a legitimate address when -fpic is used. */
1936
1937 #define MAX_REGS_PER_ADDRESS 2
1938
1939 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1940
1941 /* Nonzero if the constant value X is a legitimate general operand.
1942 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1943
1944 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1945
1946 #ifdef REG_OK_STRICT
1947 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1948 do { \
1949 if (legitimate_address_p ((MODE), (X), 1)) \
1950 goto ADDR; \
1951 } while (0)
1952
1953 #else
1954 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1955 do { \
1956 if (legitimate_address_p ((MODE), (X), 0)) \
1957 goto ADDR; \
1958 } while (0)
1959
1960 #endif
1961
1962 /* If defined, a C expression to determine the base term of address X.
1963 This macro is used in only one place: `find_base_term' in alias.c.
1964
1965 It is always safe for this macro to not be defined. It exists so
1966 that alias analysis can understand machine-dependent addresses.
1967
1968 The typical use of this macro is to handle addresses containing
1969 a label_ref or symbol_ref within an UNSPEC. */
1970
1971 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1972
1973 /* Try machine-dependent ways of modifying an illegitimate address
1974 to be legitimate. If we find one, return the new, valid address.
1975 This macro is used in only one place: `memory_address' in explow.c.
1976
1977 OLDX is the address as it was before break_out_memory_refs was called.
1978 In some cases it is useful to look at this to decide what needs to be done.
1979
1980 MODE and WIN are passed so that this macro can use
1981 GO_IF_LEGITIMATE_ADDRESS.
1982
1983 It is always safe for this macro to do nothing. It exists to recognize
1984 opportunities to optimize the output.
1985
1986 For the 80386, we handle X+REG by loading X into a register R and
1987 using R+REG. R will go in a general reg and indexing will be used.
1988 However, if REG is a broken-out memory address or multiplication,
1989 nothing needs to be done because REG can certainly go in a general reg.
1990
1991 When -fpic is used, special handling is needed for symbolic references.
1992 See comments by legitimize_pic_address in i386.c for details. */
1993
1994 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1995 do { \
1996 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1997 if (memory_address_p ((MODE), (X))) \
1998 goto WIN; \
1999 } while (0)
2000
2001 #define REWRITE_ADDRESS(X) rewrite_address (X)
2002
2003 /* Nonzero if the constant value X is a legitimate general operand
2004 when generating PIC code. It is given that flag_pic is on and
2005 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
2006
2007 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2008
2009 #define SYMBOLIC_CONST(X) \
2010 (GET_CODE (X) == SYMBOL_REF \
2011 || GET_CODE (X) == LABEL_REF \
2012 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2013
2014 /* Go to LABEL if ADDR (a legitimate address expression)
2015 has an effect that depends on the machine mode it is used for.
2016 On the 80386, only postdecrement and postincrement address depend thus
2017 (the amount of decrement or increment being the length of the operand). */
2018 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2019 do { \
2020 if (GET_CODE (ADDR) == POST_INC \
2021 || GET_CODE (ADDR) == POST_DEC) \
2022 goto LABEL; \
2023 } while (0)
2024 \f
2025 /* Codes for all the SSE/MMX builtins. */
2026 enum ix86_builtins
2027 {
2028 IX86_BUILTIN_ADDPS,
2029 IX86_BUILTIN_ADDSS,
2030 IX86_BUILTIN_DIVPS,
2031 IX86_BUILTIN_DIVSS,
2032 IX86_BUILTIN_MULPS,
2033 IX86_BUILTIN_MULSS,
2034 IX86_BUILTIN_SUBPS,
2035 IX86_BUILTIN_SUBSS,
2036
2037 IX86_BUILTIN_CMPEQPS,
2038 IX86_BUILTIN_CMPLTPS,
2039 IX86_BUILTIN_CMPLEPS,
2040 IX86_BUILTIN_CMPGTPS,
2041 IX86_BUILTIN_CMPGEPS,
2042 IX86_BUILTIN_CMPNEQPS,
2043 IX86_BUILTIN_CMPNLTPS,
2044 IX86_BUILTIN_CMPNLEPS,
2045 IX86_BUILTIN_CMPNGTPS,
2046 IX86_BUILTIN_CMPNGEPS,
2047 IX86_BUILTIN_CMPORDPS,
2048 IX86_BUILTIN_CMPUNORDPS,
2049 IX86_BUILTIN_CMPNEPS,
2050 IX86_BUILTIN_CMPEQSS,
2051 IX86_BUILTIN_CMPLTSS,
2052 IX86_BUILTIN_CMPLESS,
2053 IX86_BUILTIN_CMPNEQSS,
2054 IX86_BUILTIN_CMPNLTSS,
2055 IX86_BUILTIN_CMPNLESS,
2056 IX86_BUILTIN_CMPORDSS,
2057 IX86_BUILTIN_CMPUNORDSS,
2058 IX86_BUILTIN_CMPNESS,
2059
2060 IX86_BUILTIN_COMIEQSS,
2061 IX86_BUILTIN_COMILTSS,
2062 IX86_BUILTIN_COMILESS,
2063 IX86_BUILTIN_COMIGTSS,
2064 IX86_BUILTIN_COMIGESS,
2065 IX86_BUILTIN_COMINEQSS,
2066 IX86_BUILTIN_UCOMIEQSS,
2067 IX86_BUILTIN_UCOMILTSS,
2068 IX86_BUILTIN_UCOMILESS,
2069 IX86_BUILTIN_UCOMIGTSS,
2070 IX86_BUILTIN_UCOMIGESS,
2071 IX86_BUILTIN_UCOMINEQSS,
2072
2073 IX86_BUILTIN_CVTPI2PS,
2074 IX86_BUILTIN_CVTPS2PI,
2075 IX86_BUILTIN_CVTSI2SS,
2076 IX86_BUILTIN_CVTSI642SS,
2077 IX86_BUILTIN_CVTSS2SI,
2078 IX86_BUILTIN_CVTSS2SI64,
2079 IX86_BUILTIN_CVTTPS2PI,
2080 IX86_BUILTIN_CVTTSS2SI,
2081 IX86_BUILTIN_CVTTSS2SI64,
2082
2083 IX86_BUILTIN_MAXPS,
2084 IX86_BUILTIN_MAXSS,
2085 IX86_BUILTIN_MINPS,
2086 IX86_BUILTIN_MINSS,
2087
2088 IX86_BUILTIN_LOADAPS,
2089 IX86_BUILTIN_LOADUPS,
2090 IX86_BUILTIN_STOREAPS,
2091 IX86_BUILTIN_STOREUPS,
2092 IX86_BUILTIN_LOADSS,
2093 IX86_BUILTIN_STORESS,
2094 IX86_BUILTIN_MOVSS,
2095
2096 IX86_BUILTIN_MOVHLPS,
2097 IX86_BUILTIN_MOVLHPS,
2098 IX86_BUILTIN_LOADHPS,
2099 IX86_BUILTIN_LOADLPS,
2100 IX86_BUILTIN_STOREHPS,
2101 IX86_BUILTIN_STORELPS,
2102
2103 IX86_BUILTIN_MASKMOVQ,
2104 IX86_BUILTIN_MOVMSKPS,
2105 IX86_BUILTIN_PMOVMSKB,
2106
2107 IX86_BUILTIN_MOVNTPS,
2108 IX86_BUILTIN_MOVNTQ,
2109
2110 IX86_BUILTIN_LOADDQA,
2111 IX86_BUILTIN_LOADDQU,
2112 IX86_BUILTIN_STOREDQA,
2113 IX86_BUILTIN_STOREDQU,
2114 IX86_BUILTIN_MOVQ,
2115 IX86_BUILTIN_LOADD,
2116 IX86_BUILTIN_STORED,
2117
2118 IX86_BUILTIN_CLRTI,
2119
2120 IX86_BUILTIN_PACKSSWB,
2121 IX86_BUILTIN_PACKSSDW,
2122 IX86_BUILTIN_PACKUSWB,
2123
2124 IX86_BUILTIN_PADDB,
2125 IX86_BUILTIN_PADDW,
2126 IX86_BUILTIN_PADDD,
2127 IX86_BUILTIN_PADDQ,
2128 IX86_BUILTIN_PADDSB,
2129 IX86_BUILTIN_PADDSW,
2130 IX86_BUILTIN_PADDUSB,
2131 IX86_BUILTIN_PADDUSW,
2132 IX86_BUILTIN_PSUBB,
2133 IX86_BUILTIN_PSUBW,
2134 IX86_BUILTIN_PSUBD,
2135 IX86_BUILTIN_PSUBQ,
2136 IX86_BUILTIN_PSUBSB,
2137 IX86_BUILTIN_PSUBSW,
2138 IX86_BUILTIN_PSUBUSB,
2139 IX86_BUILTIN_PSUBUSW,
2140
2141 IX86_BUILTIN_PAND,
2142 IX86_BUILTIN_PANDN,
2143 IX86_BUILTIN_POR,
2144 IX86_BUILTIN_PXOR,
2145
2146 IX86_BUILTIN_PAVGB,
2147 IX86_BUILTIN_PAVGW,
2148
2149 IX86_BUILTIN_PCMPEQB,
2150 IX86_BUILTIN_PCMPEQW,
2151 IX86_BUILTIN_PCMPEQD,
2152 IX86_BUILTIN_PCMPGTB,
2153 IX86_BUILTIN_PCMPGTW,
2154 IX86_BUILTIN_PCMPGTD,
2155
2156 IX86_BUILTIN_PEXTRW,
2157 IX86_BUILTIN_PINSRW,
2158
2159 IX86_BUILTIN_PMADDWD,
2160
2161 IX86_BUILTIN_PMAXSW,
2162 IX86_BUILTIN_PMAXUB,
2163 IX86_BUILTIN_PMINSW,
2164 IX86_BUILTIN_PMINUB,
2165
2166 IX86_BUILTIN_PMULHUW,
2167 IX86_BUILTIN_PMULHW,
2168 IX86_BUILTIN_PMULLW,
2169
2170 IX86_BUILTIN_PSADBW,
2171 IX86_BUILTIN_PSHUFW,
2172
2173 IX86_BUILTIN_PSLLW,
2174 IX86_BUILTIN_PSLLD,
2175 IX86_BUILTIN_PSLLQ,
2176 IX86_BUILTIN_PSRAW,
2177 IX86_BUILTIN_PSRAD,
2178 IX86_BUILTIN_PSRLW,
2179 IX86_BUILTIN_PSRLD,
2180 IX86_BUILTIN_PSRLQ,
2181 IX86_BUILTIN_PSLLWI,
2182 IX86_BUILTIN_PSLLDI,
2183 IX86_BUILTIN_PSLLQI,
2184 IX86_BUILTIN_PSRAWI,
2185 IX86_BUILTIN_PSRADI,
2186 IX86_BUILTIN_PSRLWI,
2187 IX86_BUILTIN_PSRLDI,
2188 IX86_BUILTIN_PSRLQI,
2189
2190 IX86_BUILTIN_PUNPCKHBW,
2191 IX86_BUILTIN_PUNPCKHWD,
2192 IX86_BUILTIN_PUNPCKHDQ,
2193 IX86_BUILTIN_PUNPCKLBW,
2194 IX86_BUILTIN_PUNPCKLWD,
2195 IX86_BUILTIN_PUNPCKLDQ,
2196
2197 IX86_BUILTIN_SHUFPS,
2198
2199 IX86_BUILTIN_RCPPS,
2200 IX86_BUILTIN_RCPSS,
2201 IX86_BUILTIN_RSQRTPS,
2202 IX86_BUILTIN_RSQRTSS,
2203 IX86_BUILTIN_SQRTPS,
2204 IX86_BUILTIN_SQRTSS,
2205
2206 IX86_BUILTIN_UNPCKHPS,
2207 IX86_BUILTIN_UNPCKLPS,
2208
2209 IX86_BUILTIN_ANDPS,
2210 IX86_BUILTIN_ANDNPS,
2211 IX86_BUILTIN_ORPS,
2212 IX86_BUILTIN_XORPS,
2213
2214 IX86_BUILTIN_EMMS,
2215 IX86_BUILTIN_LDMXCSR,
2216 IX86_BUILTIN_STMXCSR,
2217 IX86_BUILTIN_SFENCE,
2218
2219 /* 3DNow! Original */
2220 IX86_BUILTIN_FEMMS,
2221 IX86_BUILTIN_PAVGUSB,
2222 IX86_BUILTIN_PF2ID,
2223 IX86_BUILTIN_PFACC,
2224 IX86_BUILTIN_PFADD,
2225 IX86_BUILTIN_PFCMPEQ,
2226 IX86_BUILTIN_PFCMPGE,
2227 IX86_BUILTIN_PFCMPGT,
2228 IX86_BUILTIN_PFMAX,
2229 IX86_BUILTIN_PFMIN,
2230 IX86_BUILTIN_PFMUL,
2231 IX86_BUILTIN_PFRCP,
2232 IX86_BUILTIN_PFRCPIT1,
2233 IX86_BUILTIN_PFRCPIT2,
2234 IX86_BUILTIN_PFRSQIT1,
2235 IX86_BUILTIN_PFRSQRT,
2236 IX86_BUILTIN_PFSUB,
2237 IX86_BUILTIN_PFSUBR,
2238 IX86_BUILTIN_PI2FD,
2239 IX86_BUILTIN_PMULHRW,
2240
2241 /* 3DNow! Athlon Extensions */
2242 IX86_BUILTIN_PF2IW,
2243 IX86_BUILTIN_PFNACC,
2244 IX86_BUILTIN_PFPNACC,
2245 IX86_BUILTIN_PI2FW,
2246 IX86_BUILTIN_PSWAPDSI,
2247 IX86_BUILTIN_PSWAPDSF,
2248
2249 IX86_BUILTIN_SSE_ZERO,
2250 IX86_BUILTIN_MMX_ZERO,
2251
2252 /* SSE2 */
2253 IX86_BUILTIN_ADDPD,
2254 IX86_BUILTIN_ADDSD,
2255 IX86_BUILTIN_DIVPD,
2256 IX86_BUILTIN_DIVSD,
2257 IX86_BUILTIN_MULPD,
2258 IX86_BUILTIN_MULSD,
2259 IX86_BUILTIN_SUBPD,
2260 IX86_BUILTIN_SUBSD,
2261
2262 IX86_BUILTIN_CMPEQPD,
2263 IX86_BUILTIN_CMPLTPD,
2264 IX86_BUILTIN_CMPLEPD,
2265 IX86_BUILTIN_CMPGTPD,
2266 IX86_BUILTIN_CMPGEPD,
2267 IX86_BUILTIN_CMPNEQPD,
2268 IX86_BUILTIN_CMPNLTPD,
2269 IX86_BUILTIN_CMPNLEPD,
2270 IX86_BUILTIN_CMPNGTPD,
2271 IX86_BUILTIN_CMPNGEPD,
2272 IX86_BUILTIN_CMPORDPD,
2273 IX86_BUILTIN_CMPUNORDPD,
2274 IX86_BUILTIN_CMPNEPD,
2275 IX86_BUILTIN_CMPEQSD,
2276 IX86_BUILTIN_CMPLTSD,
2277 IX86_BUILTIN_CMPLESD,
2278 IX86_BUILTIN_CMPNEQSD,
2279 IX86_BUILTIN_CMPNLTSD,
2280 IX86_BUILTIN_CMPNLESD,
2281 IX86_BUILTIN_CMPORDSD,
2282 IX86_BUILTIN_CMPUNORDSD,
2283 IX86_BUILTIN_CMPNESD,
2284
2285 IX86_BUILTIN_COMIEQSD,
2286 IX86_BUILTIN_COMILTSD,
2287 IX86_BUILTIN_COMILESD,
2288 IX86_BUILTIN_COMIGTSD,
2289 IX86_BUILTIN_COMIGESD,
2290 IX86_BUILTIN_COMINEQSD,
2291 IX86_BUILTIN_UCOMIEQSD,
2292 IX86_BUILTIN_UCOMILTSD,
2293 IX86_BUILTIN_UCOMILESD,
2294 IX86_BUILTIN_UCOMIGTSD,
2295 IX86_BUILTIN_UCOMIGESD,
2296 IX86_BUILTIN_UCOMINEQSD,
2297
2298 IX86_BUILTIN_MAXPD,
2299 IX86_BUILTIN_MAXSD,
2300 IX86_BUILTIN_MINPD,
2301 IX86_BUILTIN_MINSD,
2302
2303 IX86_BUILTIN_ANDPD,
2304 IX86_BUILTIN_ANDNPD,
2305 IX86_BUILTIN_ORPD,
2306 IX86_BUILTIN_XORPD,
2307
2308 IX86_BUILTIN_SQRTPD,
2309 IX86_BUILTIN_SQRTSD,
2310
2311 IX86_BUILTIN_UNPCKHPD,
2312 IX86_BUILTIN_UNPCKLPD,
2313
2314 IX86_BUILTIN_SHUFPD,
2315
2316 IX86_BUILTIN_LOADAPD,
2317 IX86_BUILTIN_LOADUPD,
2318 IX86_BUILTIN_STOREAPD,
2319 IX86_BUILTIN_STOREUPD,
2320 IX86_BUILTIN_LOADSD,
2321 IX86_BUILTIN_STORESD,
2322 IX86_BUILTIN_MOVSD,
2323
2324 IX86_BUILTIN_LOADHPD,
2325 IX86_BUILTIN_LOADLPD,
2326 IX86_BUILTIN_STOREHPD,
2327 IX86_BUILTIN_STORELPD,
2328
2329 IX86_BUILTIN_CVTDQ2PD,
2330 IX86_BUILTIN_CVTDQ2PS,
2331
2332 IX86_BUILTIN_CVTPD2DQ,
2333 IX86_BUILTIN_CVTPD2PI,
2334 IX86_BUILTIN_CVTPD2PS,
2335 IX86_BUILTIN_CVTTPD2DQ,
2336 IX86_BUILTIN_CVTTPD2PI,
2337
2338 IX86_BUILTIN_CVTPI2PD,
2339 IX86_BUILTIN_CVTSI2SD,
2340 IX86_BUILTIN_CVTSI642SD,
2341
2342 IX86_BUILTIN_CVTSD2SI,
2343 IX86_BUILTIN_CVTSD2SI64,
2344 IX86_BUILTIN_CVTSD2SS,
2345 IX86_BUILTIN_CVTSS2SD,
2346 IX86_BUILTIN_CVTTSD2SI,
2347 IX86_BUILTIN_CVTTSD2SI64,
2348
2349 IX86_BUILTIN_CVTPS2DQ,
2350 IX86_BUILTIN_CVTPS2PD,
2351 IX86_BUILTIN_CVTTPS2DQ,
2352
2353 IX86_BUILTIN_MOVNTI,
2354 IX86_BUILTIN_MOVNTPD,
2355 IX86_BUILTIN_MOVNTDQ,
2356
2357 IX86_BUILTIN_SETPD1,
2358 IX86_BUILTIN_SETPD,
2359 IX86_BUILTIN_CLRPD,
2360 IX86_BUILTIN_SETRPD,
2361 IX86_BUILTIN_LOADPD1,
2362 IX86_BUILTIN_LOADRPD,
2363 IX86_BUILTIN_STOREPD1,
2364 IX86_BUILTIN_STORERPD,
2365
2366 /* SSE2 MMX */
2367 IX86_BUILTIN_MASKMOVDQU,
2368 IX86_BUILTIN_MOVMSKPD,
2369 IX86_BUILTIN_PMOVMSKB128,
2370 IX86_BUILTIN_MOVQ2DQ,
2371 IX86_BUILTIN_MOVDQ2Q,
2372
2373 IX86_BUILTIN_PACKSSWB128,
2374 IX86_BUILTIN_PACKSSDW128,
2375 IX86_BUILTIN_PACKUSWB128,
2376
2377 IX86_BUILTIN_PADDB128,
2378 IX86_BUILTIN_PADDW128,
2379 IX86_BUILTIN_PADDD128,
2380 IX86_BUILTIN_PADDQ128,
2381 IX86_BUILTIN_PADDSB128,
2382 IX86_BUILTIN_PADDSW128,
2383 IX86_BUILTIN_PADDUSB128,
2384 IX86_BUILTIN_PADDUSW128,
2385 IX86_BUILTIN_PSUBB128,
2386 IX86_BUILTIN_PSUBW128,
2387 IX86_BUILTIN_PSUBD128,
2388 IX86_BUILTIN_PSUBQ128,
2389 IX86_BUILTIN_PSUBSB128,
2390 IX86_BUILTIN_PSUBSW128,
2391 IX86_BUILTIN_PSUBUSB128,
2392 IX86_BUILTIN_PSUBUSW128,
2393
2394 IX86_BUILTIN_PAND128,
2395 IX86_BUILTIN_PANDN128,
2396 IX86_BUILTIN_POR128,
2397 IX86_BUILTIN_PXOR128,
2398
2399 IX86_BUILTIN_PAVGB128,
2400 IX86_BUILTIN_PAVGW128,
2401
2402 IX86_BUILTIN_PCMPEQB128,
2403 IX86_BUILTIN_PCMPEQW128,
2404 IX86_BUILTIN_PCMPEQD128,
2405 IX86_BUILTIN_PCMPGTB128,
2406 IX86_BUILTIN_PCMPGTW128,
2407 IX86_BUILTIN_PCMPGTD128,
2408
2409 IX86_BUILTIN_PEXTRW128,
2410 IX86_BUILTIN_PINSRW128,
2411
2412 IX86_BUILTIN_PMADDWD128,
2413
2414 IX86_BUILTIN_PMAXSW128,
2415 IX86_BUILTIN_PMAXUB128,
2416 IX86_BUILTIN_PMINSW128,
2417 IX86_BUILTIN_PMINUB128,
2418
2419 IX86_BUILTIN_PMULUDQ,
2420 IX86_BUILTIN_PMULUDQ128,
2421 IX86_BUILTIN_PMULHUW128,
2422 IX86_BUILTIN_PMULHW128,
2423 IX86_BUILTIN_PMULLW128,
2424
2425 IX86_BUILTIN_PSADBW128,
2426 IX86_BUILTIN_PSHUFHW,
2427 IX86_BUILTIN_PSHUFLW,
2428 IX86_BUILTIN_PSHUFD,
2429
2430 IX86_BUILTIN_PSLLW128,
2431 IX86_BUILTIN_PSLLD128,
2432 IX86_BUILTIN_PSLLQ128,
2433 IX86_BUILTIN_PSRAW128,
2434 IX86_BUILTIN_PSRAD128,
2435 IX86_BUILTIN_PSRLW128,
2436 IX86_BUILTIN_PSRLD128,
2437 IX86_BUILTIN_PSRLQ128,
2438 IX86_BUILTIN_PSLLDQI128,
2439 IX86_BUILTIN_PSLLWI128,
2440 IX86_BUILTIN_PSLLDI128,
2441 IX86_BUILTIN_PSLLQI128,
2442 IX86_BUILTIN_PSRAWI128,
2443 IX86_BUILTIN_PSRADI128,
2444 IX86_BUILTIN_PSRLDQI128,
2445 IX86_BUILTIN_PSRLWI128,
2446 IX86_BUILTIN_PSRLDI128,
2447 IX86_BUILTIN_PSRLQI128,
2448
2449 IX86_BUILTIN_PUNPCKHBW128,
2450 IX86_BUILTIN_PUNPCKHWD128,
2451 IX86_BUILTIN_PUNPCKHDQ128,
2452 IX86_BUILTIN_PUNPCKHQDQ128,
2453 IX86_BUILTIN_PUNPCKLBW128,
2454 IX86_BUILTIN_PUNPCKLWD128,
2455 IX86_BUILTIN_PUNPCKLDQ128,
2456 IX86_BUILTIN_PUNPCKLQDQ128,
2457
2458 IX86_BUILTIN_CLFLUSH,
2459 IX86_BUILTIN_MFENCE,
2460 IX86_BUILTIN_LFENCE,
2461
2462 /* Prescott New Instructions. */
2463 IX86_BUILTIN_ADDSUBPS,
2464 IX86_BUILTIN_HADDPS,
2465 IX86_BUILTIN_HSUBPS,
2466 IX86_BUILTIN_MOVSHDUP,
2467 IX86_BUILTIN_MOVSLDUP,
2468 IX86_BUILTIN_ADDSUBPD,
2469 IX86_BUILTIN_HADDPD,
2470 IX86_BUILTIN_HSUBPD,
2471 IX86_BUILTIN_LOADDDUP,
2472 IX86_BUILTIN_MOVDDUP,
2473 IX86_BUILTIN_LDDQU,
2474
2475 IX86_BUILTIN_MONITOR,
2476 IX86_BUILTIN_MWAIT,
2477
2478 IX86_BUILTIN_MAX
2479 };
2480 \f
2481 /* Max number of args passed in registers. If this is more than 3, we will
2482 have problems with ebx (register #4), since it is a caller save register and
2483 is also used as the pic register in ELF. So for now, don't allow more than
2484 3 registers to be passed in registers. */
2485
2486 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2487
2488 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2489
2490 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2491
2492 \f
2493 /* Specify the machine mode that this machine uses
2494 for the index in the tablejump instruction. */
2495 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2496
2497 /* Define this as 1 if `char' should by default be signed; else as 0. */
2498 #define DEFAULT_SIGNED_CHAR 1
2499
2500 /* Number of bytes moved into a data cache for a single prefetch operation. */
2501 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2502
2503 /* Number of prefetch operations that can be done in parallel. */
2504 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2505
2506 /* Max number of bytes we can move from memory to memory
2507 in one reasonably fast instruction. */
2508 #define MOVE_MAX 16
2509
2510 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2511 move efficiently, as opposed to MOVE_MAX which is the maximum
2512 number of bytes we can move with a single instruction. */
2513 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2514
2515 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2516 move-instruction pairs, we will do a movmem or libcall instead.
2517 Increasing the value will always make code faster, but eventually
2518 incurs high cost in increased code size.
2519
2520 If you don't define this, a reasonable default is used. */
2521
2522 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2523
2524 /* If a clear memory operation would take CLEAR_RATIO or more simple
2525 move-instruction sequences, we will do a clrmem or libcall instead. */
2526
2527 #define CLEAR_RATIO (optimize_size ? 2 \
2528 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
2529
2530 /* Define if shifts truncate the shift count
2531 which implies one can omit a sign-extension or zero-extension
2532 of a shift count. */
2533 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2534
2535 /* #define SHIFT_COUNT_TRUNCATED */
2536
2537 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2538 is done just by pretending it is already truncated. */
2539 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2540
2541 /* A macro to update M and UNSIGNEDP when an object whose type is
2542 TYPE and which has the specified mode and signedness is to be
2543 stored in a register. This macro is only called when TYPE is a
2544 scalar type.
2545
2546 On i386 it is sometimes useful to promote HImode and QImode
2547 quantities to SImode. The choice depends on target type. */
2548
2549 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2550 do { \
2551 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2552 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2553 (MODE) = SImode; \
2554 } while (0)
2555
2556 /* Specify the machine mode that pointers have.
2557 After generation of rtl, the compiler makes no further distinction
2558 between pointers and any other objects of this machine mode. */
2559 #define Pmode (TARGET_64BIT ? DImode : SImode)
2560
2561 /* A function address in a call instruction
2562 is a byte address (for indexing purposes)
2563 so give the MEM rtx a byte's mode. */
2564 #define FUNCTION_MODE QImode
2565 \f
2566 /* A C expression for the cost of moving data from a register in class FROM to
2567 one in class TO. The classes are expressed using the enumeration values
2568 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2569 interpreted relative to that.
2570
2571 It is not required that the cost always equal 2 when FROM is the same as TO;
2572 on some machines it is expensive to move between registers if they are not
2573 general registers. */
2574
2575 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2576 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2577
2578 /* A C expression for the cost of moving data of mode M between a
2579 register and memory. A value of 2 is the default; this cost is
2580 relative to those in `REGISTER_MOVE_COST'.
2581
2582 If moving between registers and memory is more expensive than
2583 between two registers, you should define this macro to express the
2584 relative cost. */
2585
2586 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2587 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2588
2589 /* A C expression for the cost of a branch instruction. A value of 1
2590 is the default; other values are interpreted relative to that. */
2591
2592 #define BRANCH_COST ix86_branch_cost
2593
2594 /* Define this macro as a C expression which is nonzero if accessing
2595 less than a word of memory (i.e. a `char' or a `short') is no
2596 faster than accessing a word of memory, i.e., if such access
2597 require more than one instruction or if there is no difference in
2598 cost between byte and (aligned) word loads.
2599
2600 When this macro is not defined, the compiler will access a field by
2601 finding the smallest containing object; when it is defined, a
2602 fullword load will be used if alignment permits. Unless bytes
2603 accesses are faster than word accesses, using word accesses is
2604 preferable since it may eliminate subsequent memory access if
2605 subsequent accesses occur to other fields in the same word of the
2606 structure, but to different bytes. */
2607
2608 #define SLOW_BYTE_ACCESS 0
2609
2610 /* Nonzero if access to memory by shorts is slow and undesirable. */
2611 #define SLOW_SHORT_ACCESS 0
2612
2613 /* Define this macro to be the value 1 if unaligned accesses have a
2614 cost many times greater than aligned accesses, for example if they
2615 are emulated in a trap handler.
2616
2617 When this macro is nonzero, the compiler will act as if
2618 `STRICT_ALIGNMENT' were nonzero when generating code for block
2619 moves. This can cause significantly more instructions to be
2620 produced. Therefore, do not set this macro nonzero if unaligned
2621 accesses only add a cycle or two to the time for a memory access.
2622
2623 If the value of this macro is always zero, it need not be defined. */
2624
2625 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2626
2627 /* Define this macro if it is as good or better to call a constant
2628 function address than to call an address kept in a register.
2629
2630 Desirable on the 386 because a CALL with a constant address is
2631 faster than one with a register address. */
2632
2633 #define NO_FUNCTION_CSE
2634 \f
2635 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2636 return the mode to be used for the comparison.
2637
2638 For floating-point equality comparisons, CCFPEQmode should be used.
2639 VOIDmode should be used in all other cases.
2640
2641 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2642 possible, to allow for more combinations. */
2643
2644 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2645
2646 /* Return nonzero if MODE implies a floating point inequality can be
2647 reversed. */
2648
2649 #define REVERSIBLE_CC_MODE(MODE) 1
2650
2651 /* A C expression whose value is reversed condition code of the CODE for
2652 comparison done in CC_MODE mode. */
2653 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2654
2655 \f
2656 /* Control the assembler format that we output, to the extent
2657 this does not vary between assemblers. */
2658
2659 /* How to refer to registers in assembler output.
2660 This sequence is indexed by compiler's hard-register-number (see above). */
2661
2662 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2663 For non floating point regs, the following are the HImode names.
2664
2665 For float regs, the stack top is sometimes referred to as "%st(0)"
2666 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2667
2668 #define HI_REGISTER_NAMES \
2669 {"ax","dx","cx","bx","si","di","bp","sp", \
2670 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2671 "argp", "flags", "fpsr", "dirflag", "frame", \
2672 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2673 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2674 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2675 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2676
2677 #define REGISTER_NAMES HI_REGISTER_NAMES
2678
2679 /* Table of additional register names to use in user input. */
2680
2681 #define ADDITIONAL_REGISTER_NAMES \
2682 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2683 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2684 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2685 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2686 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2687 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2688 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2689 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2690
2691 /* Note we are omitting these since currently I don't know how
2692 to get gcc to use these, since they want the same but different
2693 number as al, and ax.
2694 */
2695
2696 #define QI_REGISTER_NAMES \
2697 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2698
2699 /* These parallel the array above, and can be used to access bits 8:15
2700 of regs 0 through 3. */
2701
2702 #define QI_HIGH_REGISTER_NAMES \
2703 {"ah", "dh", "ch", "bh", }
2704
2705 /* How to renumber registers for dbx and gdb. */
2706
2707 #define DBX_REGISTER_NUMBER(N) \
2708 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2709
2710 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2711 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2712 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2713
2714 /* Before the prologue, RA is at 0(%esp). */
2715 #define INCOMING_RETURN_ADDR_RTX \
2716 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2717
2718 /* After the prologue, RA is at -4(AP) in the current frame. */
2719 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2720 ((COUNT) == 0 \
2721 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2722 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2723
2724 /* PC is dbx register 8; let's use that column for RA. */
2725 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2726
2727 /* Before the prologue, the top of the frame is at 4(%esp). */
2728 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2729
2730 /* Describe how we implement __builtin_eh_return. */
2731 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2732 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2733
2734
2735 /* Select a format to encode pointers in exception handling data. CODE
2736 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2737 true if the symbol may be affected by dynamic relocations.
2738
2739 ??? All x86 object file formats are capable of representing this.
2740 After all, the relocation needed is the same as for the call insn.
2741 Whether or not a particular assembler allows us to enter such, I
2742 guess we'll have to see. */
2743 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2744 (flag_pic \
2745 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2746 : DW_EH_PE_absptr)
2747
2748 /* This is how to output an insn to push a register on the stack.
2749 It need not be very fast code. */
2750
2751 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2752 do { \
2753 if (TARGET_64BIT) \
2754 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2755 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2756 else \
2757 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2758 } while (0)
2759
2760 /* This is how to output an insn to pop a register from the stack.
2761 It need not be very fast code. */
2762
2763 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2764 do { \
2765 if (TARGET_64BIT) \
2766 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2767 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2768 else \
2769 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2770 } while (0)
2771
2772 /* This is how to output an element of a case-vector that is absolute. */
2773
2774 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2775 ix86_output_addr_vec_elt ((FILE), (VALUE))
2776
2777 /* This is how to output an element of a case-vector that is relative. */
2778
2779 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2780 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2781
2782 /* Under some conditions we need jump tables in the text section, because
2783 the assembler cannot handle label differences between sections. */
2784
2785 #define JUMP_TABLES_IN_TEXT_SECTION \
2786 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2787
2788 /* A C statement that outputs an address constant appropriate to
2789 for DWARF debugging. */
2790
2791 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2792 i386_dwarf_output_addr_const ((FILE), (X))
2793
2794 /* Emit a dtp-relative reference to a TLS variable. */
2795
2796 #ifdef HAVE_AS_TLS
2797 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2798 i386_output_dwarf_dtprel (FILE, SIZE, X)
2799 #endif
2800
2801 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2802 and switch back. For x86 we do this only to save a few bytes that
2803 would otherwise be unused in the text section. */
2804 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2805 asm (SECTION_OP "\n\t" \
2806 "call " USER_LABEL_PREFIX #FUNC "\n" \
2807 TEXT_SECTION_ASM_OP);
2808 \f
2809 /* Print operand X (an rtx) in assembler syntax to file FILE.
2810 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2811 Effect of various CODE letters is described in i386.c near
2812 print_operand function. */
2813
2814 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2815 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2816
2817 #define PRINT_OPERAND(FILE, X, CODE) \
2818 print_operand ((FILE), (X), (CODE))
2819
2820 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2821 print_operand_address ((FILE), (ADDR))
2822
2823 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2824 do { \
2825 if (! output_addr_const_extra (FILE, (X))) \
2826 goto FAIL; \
2827 } while (0);
2828
2829 /* a letter which is not needed by the normal asm syntax, which
2830 we can use for operand syntax in the extended asm */
2831
2832 #define ASM_OPERAND_LETTER '#'
2833 #define RET return ""
2834 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2835 \f
2836 /* Which processor to schedule for. The cpu attribute defines a list that
2837 mirrors this list, so changes to i386.md must be made at the same time. */
2838
2839 enum processor_type
2840 {
2841 PROCESSOR_I386, /* 80386 */
2842 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2843 PROCESSOR_PENTIUM,
2844 PROCESSOR_PENTIUMPRO,
2845 PROCESSOR_K6,
2846 PROCESSOR_ATHLON,
2847 PROCESSOR_PENTIUM4,
2848 PROCESSOR_K8,
2849 PROCESSOR_NOCONA,
2850 PROCESSOR_max
2851 };
2852
2853 extern enum processor_type ix86_tune;
2854 extern const char *ix86_tune_string;
2855
2856 extern enum processor_type ix86_arch;
2857 extern const char *ix86_arch_string;
2858
2859 enum fpmath_unit
2860 {
2861 FPMATH_387 = 1,
2862 FPMATH_SSE = 2
2863 };
2864
2865 extern enum fpmath_unit ix86_fpmath;
2866 extern const char *ix86_fpmath_string;
2867
2868 enum tls_dialect
2869 {
2870 TLS_DIALECT_GNU,
2871 TLS_DIALECT_SUN
2872 };
2873
2874 extern enum tls_dialect ix86_tls_dialect;
2875 extern const char *ix86_tls_dialect_string;
2876
2877 enum cmodel {
2878 CM_32, /* The traditional 32-bit ABI. */
2879 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2880 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2881 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2882 CM_LARGE, /* No assumptions. */
2883 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
2884 };
2885
2886 extern enum cmodel ix86_cmodel;
2887 extern const char *ix86_cmodel_string;
2888
2889 /* Size of the RED_ZONE area. */
2890 #define RED_ZONE_SIZE 128
2891 /* Reserved area of the red zone for temporaries. */
2892 #define RED_ZONE_RESERVE 8
2893
2894 enum asm_dialect {
2895 ASM_ATT,
2896 ASM_INTEL
2897 };
2898
2899 extern const char *ix86_asm_string;
2900 extern enum asm_dialect ix86_asm_dialect;
2901
2902 extern int ix86_regparm;
2903 extern const char *ix86_regparm_string;
2904
2905 extern unsigned int ix86_preferred_stack_boundary;
2906 extern const char *ix86_preferred_stack_boundary_string;
2907
2908 extern int ix86_branch_cost;
2909 extern const char *ix86_branch_cost_string;
2910
2911 extern const char *ix86_debug_arg_string;
2912 extern const char *ix86_debug_addr_string;
2913
2914 /* Obsoleted by -f options. Remove before 3.2 ships. */
2915 extern const char *ix86_align_loops_string;
2916 extern const char *ix86_align_jumps_string;
2917 extern const char *ix86_align_funcs_string;
2918
2919 /* Smallest class containing REGNO. */
2920 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2921
2922 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2923 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2924 \f
2925 /* To properly truncate FP values into integers, we need to set i387 control
2926 word. We can't emit proper mode switching code before reload, as spills
2927 generated by reload may truncate values incorrectly, but we still can avoid
2928 redundant computation of new control word by the mode switching pass.
2929 The fldcw instructions are still emitted redundantly, but this is probably
2930 not going to be noticeable problem, as most CPUs do have fast path for
2931 the sequence.
2932
2933 The machinery is to emit simple truncation instructions and split them
2934 before reload to instructions having USEs of two memory locations that
2935 are filled by this code to old and new control word.
2936
2937 Post-reload pass may be later used to eliminate the redundant fildcw if
2938 needed. */
2939
2940 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
2941
2942 /* Define this macro if the port needs extra instructions inserted
2943 for mode switching in an optimizing compilation. */
2944
2945 #define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
2946
2947 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2948 initializer for an array of integers. Each initializer element N
2949 refers to an entity that needs mode switching, and specifies the
2950 number of different modes that might need to be set for this
2951 entity. The position of the initializer in the initializer -
2952 starting counting at zero - determines the integer that is used to
2953 refer to the mode-switched entity in question. */
2954
2955 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
2956
2957 /* ENTITY is an integer specifying a mode-switched entity. If
2958 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2959 return an integer value not larger than the corresponding element
2960 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2961 must be switched into prior to the execution of INSN. */
2962
2963 #define MODE_NEEDED(ENTITY, I) \
2964 (GET_CODE (I) == CALL_INSN \
2965 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
2966 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
2967 ? FP_CW_UNINITIALIZED \
2968 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
2969 ? FP_CW_ANY \
2970 : FP_CW_STORED)
2971
2972 /* This macro specifies the order in which modes for ENTITY are
2973 processed. 0 is the highest priority. */
2974
2975 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2976
2977 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2978 is the set of hard registers live at the point where the insn(s)
2979 are to be inserted. */
2980
2981 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2982 ((MODE) == FP_CW_STORED \
2983 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
2984 assign_386_stack_local (HImode, 2)), 0\
2985 : 0)
2986 \f
2987 /* Avoid renaming of stack registers, as doing so in combination with
2988 scheduling just increases amount of live registers at time and in
2989 the turn amount of fxch instructions needed.
2990
2991 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2992
2993 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2994 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2995
2996 \f
2997 #define DLL_IMPORT_EXPORT_PREFIX '#'
2998
2999 #define FASTCALL_PREFIX '@'
3000 \f
3001 struct machine_function GTY(())
3002 {
3003 struct stack_local_entry *stack_locals;
3004 const char *some_ld_name;
3005 int save_varrargs_registers;
3006 int accesses_prev_frame;
3007 int optimize_mode_switching;
3008 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3009 determine the style used. */
3010 int use_fast_prologue_epilogue;
3011 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3012 for. */
3013 int use_fast_prologue_epilogue_nregs;
3014 };
3015
3016 #define ix86_stack_locals (cfun->machine->stack_locals)
3017 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3018 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3019
3020 /* Control behavior of x86_file_start. */
3021 #define X86_FILE_START_VERSION_DIRECTIVE false
3022 #define X86_FILE_START_FLTUSED false
3023
3024 /*
3025 Local variables:
3026 version-control: t
3027 End:
3028 */
This page took 0.236327 seconds and 6 git commands to generate.