]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
rtl.c: Define CONST_DOUBLE_FORMAT to the appropriate format for a CONST_DOUBLE...
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for Intel X86
2 (386, 486, Pentium).
3 Copyright (C) 1988, 92, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
34 PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
35 PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
36
37 /* Names to predefine in the preprocessor for this target machine. */
38
39 #define I386 1
40
41 /* Stubs for half-pic support if not OSF/1 reference platform. */
42
43 #ifndef HALF_PIC_P
44 #define HALF_PIC_P() 0
45 #define HALF_PIC_NUMBER_PTRS 0
46 #define HALF_PIC_NUMBER_REFS 0
47 #define HALF_PIC_ENCODE(DECL)
48 #define HALF_PIC_DECLARE(NAME)
49 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
50 #define HALF_PIC_ADDRESS_P(X) 0
51 #define HALF_PIC_PTR(X) X
52 #define HALF_PIC_FINISH(STREAM)
53 #endif
54
55 /* Define the specific costs for a given cpu */
56
57 struct processor_costs {
58 int add; /* cost of an add instruction */
59 int lea; /* cost of a lea instruction */
60 int shift_var; /* variable shift costs */
61 int shift_const; /* constant shift costs */
62 int mult_init; /* cost of starting a multiply */
63 int mult_bit; /* cost of multiply per each bit set */
64 int divide; /* cost of a divide/mod */
65 };
66
67 extern struct processor_costs *ix86_cost;
68
69 /* Run-time compilation parameters selecting different hardware subsets. */
70
71 extern int target_flags;
72
73 /* Macros used in the machine description to test the flags. */
74
75 /* configure can arrange to make this 2, to force a 486. */
76 #ifndef TARGET_CPU_DEFAULT
77 #define TARGET_CPU_DEFAULT 0
78 #endif
79
80 /* Masks for the -m switches */
81 #define MASK_80387 000000000001 /* Hardware floating point */
82 #define MASK_NOTUSED1 000000000002 /* bit not currently used */
83 #define MASK_NOTUSED2 000000000004 /* bit not currently used */
84 #define MASK_RTD 000000000010 /* Use ret that pops args */
85 #define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
86 #define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
87 #define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
88 #define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
89 #define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
90 #define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
91 /* Temporary codegen switches */
92 #define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
93 #define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
94 #define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
95 #define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
96 #define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
97 #define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
98 #define MASK_STACK_PROBE 000100000000 /* Enable stack probing */
99
100 /* Use the floating point instructions */
101 #define TARGET_80387 (target_flags & MASK_80387)
102
103 /* Compile using ret insn that pops args.
104 This will not work unless you use prototypes at least
105 for all functions that can take varying numbers of args. */
106 #define TARGET_RTD (target_flags & MASK_RTD)
107
108 /* Align doubles to a two word boundary. This breaks compatibility with
109 the published ABI's for structures containing doubles, but produces
110 faster code on the pentium. */
111 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
112
113 /* Put uninitialized locals into bss, not data.
114 Meaningful only on svr3. */
115 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
116
117 /* Use IEEE floating point comparisons. These handle correctly the cases
118 where the result of a comparison is unordered. Normally SIGFPE is
119 generated in such cases, in which case this isn't needed. */
120 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
121
122 /* Functions that return a floating point value may return that value
123 in the 387 FPU or in 386 integer registers. If set, this flag causes
124 the 387 to be used, which is compatible with most calling conventions. */
125 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
126
127 /* Disable generation of FP sin, cos and sqrt operations for 387.
128 This is because FreeBSD lacks these in the math-emulator-code */
129 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
130
131 /* Don't create frame pointers for leaf functions */
132 #define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
133
134 /* Temporary switches for tuning code generation */
135
136 /* Disable 32x32->64 bit multiplies that are used for long long multiplies
137 and division by constants, but sometimes cause reload problems. */
138 #define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
139 #define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
140
141 /* Emit/Don't emit prologue as rtl */
142 #define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
143
144 /* Debug GO_IF_LEGITIMATE_ADDRESS */
145 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
146
147 /* Debug FUNCTION_ARG macros */
148 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
149
150 /* Hack macros for tuning code generation */
151 #define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
152 #define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
153
154 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
155 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
156 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
157 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
158 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
159
160 #define CPUMASK (1 << ix86_cpu)
161 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
162 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
163 extern const int x86_unroll_strlen, x86_use_q_reg, x86_use_any_reg;
164 extern const int x86_double_with_add;
165
166 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
167 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
168 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
169 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
170 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
171 #define TARGET_USE_Q_REG (x86_use_q_reg & CPUMASK)
172 #define TARGET_USE_ANY_REG (x86_use_any_reg & CPUMASK)
173 #define TARGET_CMOVE (x86_cmove & (1 << ix86_arch))
174 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
175 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
176
177 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
178
179 #define TARGET_SWITCHES \
180 { { "80387", MASK_80387, "Use hardware fp" }, \
181 { "no-80387", -MASK_80387, "Do not use hardware fp" },\
182 { "hard-float", MASK_80387, "Use hardware fp" }, \
183 { "soft-float", -MASK_80387, "Do not use hardware fp" },\
184 { "no-soft-float", MASK_80387, "Use hardware fp" }, \
185 { "386", 0, "Same as -mcpu=i386" }, \
186 { "486", 0, "Same as -mcpu=i486" }, \
187 { "pentium", 0, "Same as -mcpu=pentium" }, \
188 { "pentiumpro", 0, "Same as -mcpu=pentiumpro" }, \
189 { "rtd", MASK_RTD, "Alternate calling convention" },\
190 { "no-rtd", -MASK_RTD, "Use normal calling convention" },\
191 { "align-double", MASK_ALIGN_DOUBLE, "Align some doubles on dword boundary" },\
192 { "no-align-double", -MASK_ALIGN_DOUBLE, "Align doubles on word boundary" }, \
193 { "svr3-shlib", MASK_SVR3_SHLIB, "Uninitialized locals in .bss" }, \
194 { "no-svr3-shlib", -MASK_SVR3_SHLIB, "Uninitialized locals in .data" }, \
195 { "ieee-fp", MASK_IEEE_FP, "Use IEEE math for fp comparisons" }, \
196 { "no-ieee-fp", -MASK_IEEE_FP, "Do not use IEEE math for fp comparisons" }, \
197 { "fp-ret-in-387", MASK_FLOAT_RETURNS, "Return values of functions in FPU registers" }, \
198 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , "Do not return values of functions in FPU registers"}, \
199 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, "Do not generate sin, cos, sqrt for 387" }, \
200 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, "Generate sin, cos, sqrt for FPU"}, \
201 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, "Omit the frame pointer in leaf functions" }, \
202 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
203 { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY, "multiplies of 32 bits constrained to 32 bits" }, \
204 { "wide-multiply", -MASK_NO_WIDE_MULTIPLY, "multiplies of 32 bits are 64 bits" }, \
205 { "schedule-prologue", MASK_SCHEDULE_PROLOGUE, "Schedule function prologues" }, \
206 { "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE, "" }, \
207 { "debug-addr", MASK_DEBUG_ADDR, 0 /* intentionally undoc */ }, \
208 { "no-debug-addr", -MASK_DEBUG_ADDR, 0 /* intentionally undoc */ }, \
209 { "move", -MASK_NO_MOVE, "Generate mem-mem moves" }, \
210 { "no-move", MASK_NO_MOVE, "Don't generate mem-mem moves" }, \
211 { "debug-arg", MASK_DEBUG_ARG, 0 /* intentionally undoc */ }, \
212 { "no-debug-arg", -MASK_DEBUG_ARG, 0 /* intentionally undoc */ }, \
213 { "stack-arg-probe", MASK_STACK_PROBE, "Enable stack probing" }, \
214 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
215 { "windows", 0, 0 /* intentionally undoc */ }, \
216 { "dll", 0, 0 /* intentionally undoc */ }, \
217 SUBTARGET_SWITCHES \
218 { "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT, 0 }}
219
220 /* Which processor to schedule for. The cpu attribute defines a list that
221 mirrors this list, so changes to i386.md must be made at the same time. */
222
223 enum processor_type
224 {PROCESSOR_I386, /* 80386 */
225 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
226 PROCESSOR_PENTIUM,
227 PROCESSOR_PENTIUMPRO,
228 PROCESSOR_K6};
229
230 #define PROCESSOR_I386_STRING "i386"
231 #define PROCESSOR_I486_STRING "i486"
232 #define PROCESSOR_I586_STRING "i586"
233 #define PROCESSOR_PENTIUM_STRING "pentium"
234 #define PROCESSOR_I686_STRING "i686"
235 #define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
236 #define PROCESSOR_K6_STRING "k6"
237
238 extern enum processor_type ix86_cpu;
239
240 extern int ix86_arch;
241
242 /* Define the default processor. This is overridden by other tm.h files. */
243 #define PROCESSOR_DEFAULT (enum processor_type) TARGET_CPU_DEFAULT
244 #define PROCESSOR_DEFAULT_STRING \
245 (PROCESSOR_DEFAULT == PROCESSOR_I486 ? PROCESSOR_I486_STRING \
246 : PROCESSOR_DEFAULT == PROCESSOR_PENTIUM ? PROCESSOR_PENTIUM_STRING \
247 : PROCESSOR_DEFAULT == PROCESSOR_PENTIUMPRO ? PROCESSOR_PENTIUMPRO_STRING \
248 : PROCESSOR_DEFAULT == PROCESSOR_K6 ? PROCESSOR_K6_STRING \
249 : PROCESSOR_I386_STRING)
250
251 /* This macro is similar to `TARGET_SWITCHES' but defines names of
252 command options that have values. Its definition is an
253 initializer with a subgrouping for each command option.
254
255 Each subgrouping contains a string constant, that defines the
256 fixed part of the option name, and the address of a variable. The
257 variable, type `char *', is set to the variable part of the given
258 option if the fixed part matches. The actual option name is made
259 by appending `-m' to the specified name. */
260 #define TARGET_OPTIONS \
261 { { "cpu=", &ix86_cpu_string, "Schedule code for given CPU"}, \
262 { "arch=", &ix86_arch_string, "Generate code for given CPU"}, \
263 { "reg-alloc=", &i386_reg_alloc_order, "Control allocation order of integer registers" }, \
264 { "regparm=", &i386_regparm_string, "Number of registers used to pass integer arguments" }, \
265 { "align-loops=", &i386_align_loops_string, "Loop code aligned to this power of 2" }, \
266 { "align-jumps=", &i386_align_jumps_string, "Jump targets are aligned to this power of 2" }, \
267 { "align-functions=", &i386_align_funcs_string, "Function starts are aligned to this power of 2" }, \
268 { "preferred-stack-boundary=", &i386_preferred_stack_boundary_string, "Attempt to keep stack aligned to this power of 2" }, \
269 { "branch-cost=", &i386_branch_cost_string, "Branches are this expensive (1-5, arbitrary units)" }, \
270 SUBTARGET_OPTIONS \
271 }
272
273 /* Sometimes certain combinations of command options do not make
274 sense on a particular target machine. You can define a macro
275 `OVERRIDE_OPTIONS' to take account of this. This macro, if
276 defined, is executed once just after all the command options have
277 been parsed.
278
279 Don't use this macro to turn on various extra optimizations for
280 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
281
282 #define OVERRIDE_OPTIONS override_options ()
283
284 /* These are meant to be redefined in the host dependent files */
285 #define SUBTARGET_SWITCHES
286 #define SUBTARGET_OPTIONS
287
288 /* Define this to change the optimizations performed by default. */
289 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
290
291 /* Specs for the compiler proper */
292
293 #ifndef CC1_CPU_SPEC
294 #define CC1_CPU_SPEC "\
295 %{!mcpu*: \
296 %{m386:-mcpu=i386 -march=i386} \
297 %{m486:-mcpu=i486 -march=i486} \
298 %{mpentium:-mcpu=pentium} \
299 %{mpentiumpro:-mcpu=pentiumpro}}"
300 #endif
301 \f
302 #define CPP_486_SPEC "%{!ansi:-Di486} -D__i486 -D__i486__"
303 #define CPP_586_SPEC "%{!ansi:-Di586 -Dpentium} \
304 -D__i586 -D__i586__ -D__pentium -D__pentium__"
305 #define CPP_K6_SPEC "%{!ansi:-Di586 -Dk6} \
306 -D__i586 -D__i586__ -D__k6 -D__k6__"
307 #define CPP_686_SPEC "%{!ansi:-Di686 -Dpentiumpro} \
308 -D__i686 -D__i686__ -D__pentiumpro -D__pentiumpro__"
309
310 #ifndef CPP_CPU_DEFAULT_SPEC
311 #if TARGET_CPU_DEFAULT == 1
312 #define CPP_CPU_DEFAULT_SPEC "%(cpp_486)"
313 #endif
314 #if TARGET_CPU_DEFAULT == 2
315 #define CPP_CPU_DEFAULT_SPEC "%(cpp_586)"
316 #endif
317 #if TARGET_CPU_DEFAULT == 3
318 #define CPP_CPU_DEFAULT_SPEC "%(cpp_686)"
319 #endif
320 #if TARGET_CPU_DEFAULT == 4
321 #define CPP_CPU_DEFAULT_SPEC "%(cpp_k6)"
322 #endif
323 #ifndef CPP_CPU_DEFAULT_SPEC
324 #define CPP_CPU_DEFAULT_SPEC ""
325 #endif
326 #endif /* CPP_CPU_DEFAULT_SPEC */
327
328 #ifndef CPP_CPU_SPEC
329 #define CPP_CPU_SPEC "\
330 -Acpu(i386) -Amachine(i386) \
331 %{!ansi:-Di386} -D__i386 -D__i386__ \
332 %{mcpu=i486:%(cpp_486)} %{m486:%(cpp_486)} \
333 %{mpentium:%(cpp_586)} %{mcpu=pentium:%(cpp_586)} \
334 %{mpentiumpro:%(cpp_686)} %{mcpu=pentiumpro:%(cpp_686)} \
335 %{mcpu=k6:%(cpp_k6)} \
336 %{!mcpu*:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}"
337 #endif
338
339 #ifndef CC1_SPEC
340 #define CC1_SPEC "%(cc1_spec) "
341 #endif
342
343 /* This macro defines names of additional specifications to put in the
344 specs that can be used in various specifications like CC1_SPEC. Its
345 definition is an initializer with a subgrouping for each command option.
346
347 Each subgrouping contains a string constant, that defines the
348 specification name, and a string constant that used by the GNU CC driver
349 program.
350
351 Do not define this macro if it does not need to do anything. */
352
353 #ifndef SUBTARGET_EXTRA_SPECS
354 #define SUBTARGET_EXTRA_SPECS
355 #endif
356
357 #define EXTRA_SPECS \
358 { "cpp_486", CPP_486_SPEC}, \
359 { "cpp_586", CPP_586_SPEC}, \
360 { "cpp_k6", CPP_K6_SPEC}, \
361 { "cpp_686", CPP_686_SPEC}, \
362 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
363 { "cpp_cpu", CPP_CPU_SPEC }, \
364 { "cc1_cpu", CC1_CPU_SPEC }, \
365 SUBTARGET_EXTRA_SPECS
366 \f
367 /* target machine storage layout */
368
369 /* Define for XFmode extended real floating point support.
370 This will automatically cause REAL_ARITHMETIC to be defined. */
371 #define LONG_DOUBLE_TYPE_SIZE 96
372
373 /* Define if you don't want extended real, but do want to use the
374 software floating point emulator for REAL_ARITHMETIC and
375 decimal <-> binary conversion. */
376 /* #define REAL_ARITHMETIC */
377
378 /* Define this if most significant byte of a word is the lowest numbered. */
379 /* That is true on the 80386. */
380
381 #define BITS_BIG_ENDIAN 0
382
383 /* Define this if most significant byte of a word is the lowest numbered. */
384 /* That is not true on the 80386. */
385 #define BYTES_BIG_ENDIAN 0
386
387 /* Define this if most significant word of a multiword number is the lowest
388 numbered. */
389 /* Not true for 80386 */
390 #define WORDS_BIG_ENDIAN 0
391
392 /* number of bits in an addressable storage unit */
393 #define BITS_PER_UNIT 8
394
395 /* Width in bits of a "word", which is the contents of a machine register.
396 Note that this is not necessarily the width of data type `int';
397 if using 16-bit ints on a 80386, this would still be 32.
398 But on a machine with 16-bit registers, this would be 16. */
399 #define BITS_PER_WORD 32
400
401 /* Width of a word, in units (bytes). */
402 #define UNITS_PER_WORD 4
403
404 /* Width in bits of a pointer.
405 See also the macro `Pmode' defined below. */
406 #define POINTER_SIZE 32
407
408 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
409 #define PARM_BOUNDARY 32
410
411 /* Boundary (in *bits*) on which the stack pointer must be aligned. */
412 #define STACK_BOUNDARY 32
413
414 /* Boundary (in *bits*) on which the stack pointer preferrs to be
415 aligned; the compiler cannot rely on having this alignment. */
416 #define PREFERRED_STACK_BOUNDARY i386_preferred_stack_boundary
417
418 /* Allocation boundary (in *bits*) for the code of a function.
419 For i486, we get better performance by aligning to a cache
420 line (i.e. 16 byte) boundary. */
421 #define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
422
423 /* Alignment of field after `int : 0' in a structure. */
424
425 #define EMPTY_FIELD_BOUNDARY 32
426
427 /* Minimum size in bits of the largest boundary to which any
428 and all fundamental data types supported by the hardware
429 might need to be aligned. No data type wants to be aligned
430 rounder than this. The i386 supports 64-bit floating point
431 quantities, but these can be aligned on any 32-bit boundary.
432 The published ABIs say that doubles should be aligned on word
433 boundaries, but the Pentium gets better performance with them
434 aligned on 64 bit boundaries. */
435 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
436
437 /* If defined, a C expression to compute the alignment given to a
438 constant that is being placed in memory. CONSTANT is the constant
439 and ALIGN is the alignment that the object would ordinarily have.
440 The value of this macro is used instead of that alignment to align
441 the object.
442
443 If this macro is not defined, then ALIGN is used.
444
445 The typical use of this macro is to increase alignment for string
446 constants to be word aligned so that `strcpy' calls that copy
447 constants can be done inline. */
448
449 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
450 (TREE_CODE (EXP) == REAL_CST \
451 ? ((TYPE_MODE (TREE_TYPE (EXP)) == DFmode && (ALIGN) < 64) \
452 ? 64 \
453 : (TYPE_MODE (TREE_TYPE (EXP)) == XFmode && (ALIGN) < 128) \
454 ? 128 \
455 : (ALIGN)) \
456 : TREE_CODE (EXP) == STRING_CST \
457 ? ((TREE_STRING_LENGTH (EXP) >= 31 && (ALIGN) < 256) \
458 ? 256 \
459 : (ALIGN)) \
460 : (ALIGN))
461
462 /* If defined, a C expression to compute the alignment for a static
463 variable. TYPE is the data type, and ALIGN is the alignment that
464 the object would ordinarily have. The value of this macro is used
465 instead of that alignment to align the object.
466
467 If this macro is not defined, then ALIGN is used.
468
469 One use of this macro is to increase alignment of medium-size
470 data to make it all fit in fewer cache lines. Another is to
471 cause character arrays to be word-aligned so that `strcpy' calls
472 that copy constants to character arrays can be done inline. */
473
474 #define DATA_ALIGNMENT(TYPE, ALIGN) \
475 ((AGGREGATE_TYPE_P (TYPE) \
476 && TYPE_SIZE (TYPE) \
477 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
478 && (TREE_INT_CST_LOW (TYPE_SIZE (TYPE)) >= 256 \
479 || TREE_INT_CST_HIGH (TYPE_SIZE (TYPE))) && (ALIGN) < 256) \
480 ? 256 \
481 : TREE_CODE (TYPE) == ARRAY_TYPE \
482 ? ((TYPE_MODE (TREE_TYPE (TYPE)) == DFmode && (ALIGN) < 64) \
483 ? 64 \
484 : (TYPE_MODE (TREE_TYPE (TYPE)) == XFmode && (ALIGN) < 128) \
485 ? 128 \
486 : (ALIGN)) \
487 : TREE_CODE (TYPE) == COMPLEX_TYPE \
488 ? ((TYPE_MODE (TYPE) == DCmode && (ALIGN) < 64) \
489 ? 64 \
490 : (TYPE_MODE (TYPE) == XCmode && (ALIGN) < 128) \
491 ? 128 \
492 : (ALIGN)) \
493 : ((TREE_CODE (TYPE) == RECORD_TYPE \
494 || TREE_CODE (TYPE) == UNION_TYPE \
495 || TREE_CODE (TYPE) == QUAL_UNION_TYPE) \
496 && TYPE_FIELDS (TYPE)) \
497 ? ((DECL_MODE (TYPE_FIELDS (TYPE)) == DFmode && (ALIGN) < 64) \
498 ? 64 \
499 : (DECL_MODE (TYPE_FIELDS (TYPE)) == XFmode && (ALIGN) < 128) \
500 ? 128 \
501 : (ALIGN)) \
502 : TREE_CODE (TYPE) == REAL_TYPE \
503 ? ((TYPE_MODE (TYPE) == DFmode && (ALIGN) < 64) \
504 ? 64 \
505 : (TYPE_MODE (TYPE) == XFmode && (ALIGN) < 128) \
506 ? 128 \
507 : (ALIGN)) \
508 : (ALIGN))
509
510 /* If defined, a C expression to compute the alignment for a local
511 variable. TYPE is the data type, and ALIGN is the alignment that
512 the object would ordinarily have. The value of this macro is used
513 instead of that alignment to align the object.
514
515 If this macro is not defined, then ALIGN is used.
516
517 One use of this macro is to increase alignment of medium-size
518 data to make it all fit in fewer cache lines. */
519
520 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
521 (TREE_CODE (TYPE) == ARRAY_TYPE \
522 ? ((TYPE_MODE (TREE_TYPE (TYPE)) == DFmode && (ALIGN) < 64) \
523 ? 64 \
524 : (TYPE_MODE (TREE_TYPE (TYPE)) == XFmode && (ALIGN) < 128) \
525 ? 128 \
526 : (ALIGN)) \
527 : TREE_CODE (TYPE) == COMPLEX_TYPE \
528 ? ((TYPE_MODE (TYPE) == DCmode && (ALIGN) < 64) \
529 ? 64 \
530 : (TYPE_MODE (TYPE) == XCmode && (ALIGN) < 128) \
531 ? 128 \
532 : (ALIGN)) \
533 : ((TREE_CODE (TYPE) == RECORD_TYPE \
534 || TREE_CODE (TYPE) == UNION_TYPE \
535 || TREE_CODE (TYPE) == QUAL_UNION_TYPE) \
536 && TYPE_FIELDS (TYPE)) \
537 ? ((DECL_MODE (TYPE_FIELDS (TYPE)) == DFmode && (ALIGN) < 64) \
538 ? 64 \
539 : (DECL_MODE (TYPE_FIELDS (TYPE)) == XFmode && (ALIGN) < 128) \
540 ? 128 \
541 : (ALIGN)) \
542 : TREE_CODE (TYPE) == REAL_TYPE \
543 ? ((TYPE_MODE (TYPE) == DFmode && (ALIGN) < 64) \
544 ? 64 \
545 : (TYPE_MODE (TYPE) == XFmode && (ALIGN) < 128) \
546 ? 128 \
547 : (ALIGN)) \
548 : (ALIGN))
549
550 /* Set this non-zero if move instructions will actually fail to work
551 when given unaligned data. */
552 #define STRICT_ALIGNMENT 0
553
554 /* If bit field type is int, don't let it cross an int,
555 and give entire struct the alignment of an int. */
556 /* Required on the 386 since it doesn't have bitfield insns. */
557 #define PCC_BITFIELD_TYPE_MATTERS 1
558
559 /* Maximum power of 2 that code can be aligned to. */
560 #define MAX_CODE_ALIGN 6 /* 64 byte alignment */
561
562 /* Align loop starts for optimal branching. */
563 #define LOOP_ALIGN(LABEL) (i386_align_loops)
564 #define LOOP_ALIGN_MAX_SKIP (i386_align_loops_string ? 0 : 7)
565
566 /* This is how to align an instruction for optimal branching.
567 On i486 we'll get better performance by aligning on a
568 cache line (i.e. 16 byte) boundary. */
569 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (i386_align_jumps)
570 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (i386_align_jumps_string ? 0 : 7)
571
572 \f
573 /* Standard register usage. */
574
575 /* This processor has special stack-like registers. See reg-stack.c
576 for details. */
577
578 #define STACK_REGS
579 #define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
580
581 /* Number of actual hardware registers.
582 The hardware registers are assigned numbers for the compiler
583 from 0 to just below FIRST_PSEUDO_REGISTER.
584 All registers that the compiler knows about must be given numbers,
585 even those that are not normally considered general registers.
586
587 In the 80386 we give the 8 general purpose registers the numbers 0-7.
588 We number the floating point registers 8-15.
589 Note that registers 0-7 can be accessed as a short or int,
590 while only 0-3 may be used with byte `mov' instructions.
591
592 Reg 16 does not correspond to any hardware register, but instead
593 appears in the RTL as an argument pointer prior to reload, and is
594 eliminated during reloading in favor of either the stack or frame
595 pointer. */
596
597 #define FIRST_PSEUDO_REGISTER 17
598
599 /* 1 for registers that have pervasive standard uses
600 and are not available for the register allocator.
601 On the 80386, the stack pointer is such, as is the arg pointer. */
602 #define FIXED_REGISTERS \
603 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
604 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
605
606 /* 1 for registers not available across function calls.
607 These must include the FIXED_REGISTERS and also any
608 registers that can be used without being saved.
609 The latter must include the registers where values are returned
610 and the register where structure-value addresses are passed.
611 Aside from that, you can include as many other registers as you like. */
612
613 #define CALL_USED_REGISTERS \
614 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
615 { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
616
617 /* Order in which to allocate registers. Each register must be
618 listed once, even those in FIXED_REGISTERS. List frame pointer
619 late and fixed registers last. Note that, in general, we prefer
620 registers listed in CALL_USED_REGISTERS, keeping the others
621 available for storage of persistent values.
622
623 Three different versions of REG_ALLOC_ORDER have been tried:
624
625 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
626 but slower code on simple functions returning values in eax.
627
628 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
629 perl 4.036 due to not being able to create a DImode register (to hold a 2
630 word union).
631
632 If the order is eax, edx, ecx, ... it produces better code for simple
633 functions, and a slightly slower compiler. Users complained about the code
634 generated by allocating edx first, so restore the 'natural' order of things. */
635
636 #define REG_ALLOC_ORDER \
637 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
638 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
639
640 /* A C statement (sans semicolon) to choose the order in which to
641 allocate hard registers for pseudo-registers local to a basic
642 block.
643
644 Store the desired register order in the array `reg_alloc_order'.
645 Element 0 should be the register to allocate first; element 1, the
646 next register; and so on.
647
648 The macro body should not assume anything about the contents of
649 `reg_alloc_order' before execution of the macro.
650
651 On most machines, it is not necessary to define this macro. */
652
653 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
654
655 /* Macro to conditionally modify fixed_regs/call_used_regs. */
656 #define CONDITIONAL_REGISTER_USAGE \
657 { \
658 if (flag_pic) \
659 { \
660 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
661 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
662 } \
663 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
664 { \
665 int i; \
666 HARD_REG_SET x; \
667 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
668 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
669 if (TEST_HARD_REG_BIT (x, i)) \
670 fixed_regs[i] = call_used_regs[i] = 1; \
671 } \
672 }
673
674 /* Return number of consecutive hard regs needed starting at reg REGNO
675 to hold something of mode MODE.
676 This is ordinarily the length in words of a value of mode MODE
677 but can be less for certain modes in special long registers.
678
679 Actually there are no two word move instructions for consecutive
680 registers. And only registers 0-3 may have mov byte instructions
681 applied to them.
682 */
683
684 #define HARD_REGNO_NREGS(REGNO, MODE) \
685 (FP_REGNO_P (REGNO) ? 1 \
686 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
687
688 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
689 On the 80386, the first 4 cpu registers can hold any mode
690 while the floating point registers may hold only floating point.
691 Make it clear that the fp regs could not hold a 16-byte float. */
692
693 /* The casts to int placate a compiler on a microvax,
694 for cross-compiler testing. */
695
696 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
697 ((REGNO) < 4 ? 1 \
698 : FP_REGNO_P (REGNO) \
699 ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
700 || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
701 && GET_MODE_UNIT_SIZE (MODE) <= (LONG_DOUBLE_TYPE_SIZE == 96 ? 12 : 8))\
702 : (int) (MODE) != (int) QImode ? 1 \
703 : (reload_in_progress | reload_completed) == 1)
704
705 /* Value is 1 if it is a good idea to tie two pseudo registers
706 when one has mode MODE1 and one has mode MODE2.
707 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
708 for any hard reg, then this must be 0 for correct output. */
709
710 #define MODES_TIEABLE_P(MODE1, MODE2) \
711 ((MODE1) == (MODE2) \
712 || ((MODE1) == SImode && (MODE2) == HImode) \
713 || ((MODE1) == HImode && (MODE2) == SImode))
714
715 /* Specify the registers used for certain standard purposes.
716 The values of these macros are register numbers. */
717
718 /* on the 386 the pc register is %eip, and is not usable as a general
719 register. The ordinary mov instructions won't work */
720 /* #define PC_REGNUM */
721
722 /* Register to use for pushing function arguments. */
723 #define STACK_POINTER_REGNUM 7
724
725 /* Base register for access to local variables of the function. */
726 #define FRAME_POINTER_REGNUM 6
727
728 /* First floating point reg */
729 #define FIRST_FLOAT_REG 8
730
731 /* First & last stack-like regs */
732 #define FIRST_STACK_REG FIRST_FLOAT_REG
733 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
734
735 /* Value should be nonzero if functions must have frame pointers.
736 Zero means the frame pointer need not be set up (and parms
737 may be accessed via the stack pointer) in functions that seem suitable.
738 This is computed in `reload', in reload1.c. */
739 #define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
740
741 /* Base register for access to arguments of the function. */
742 #define ARG_POINTER_REGNUM 16
743
744 /* Register in which static-chain is passed to a function. */
745 #define STATIC_CHAIN_REGNUM 2
746
747 /* Register to hold the addressing base for position independent
748 code access to data items. */
749 #define PIC_OFFSET_TABLE_REGNUM 3
750
751 /* Register in which address to store a structure value
752 arrives in the function. On the 386, the prologue
753 copies this from the stack to register %eax. */
754 #define STRUCT_VALUE_INCOMING 0
755
756 /* Place in which caller passes the structure value address.
757 0 means push the value on the stack like an argument. */
758 #define STRUCT_VALUE 0
759
760 /* A C expression which can inhibit the returning of certain function
761 values in registers, based on the type of value. A nonzero value
762 says to return the function value in memory, just as large
763 structures are always returned. Here TYPE will be a C expression
764 of type `tree', representing the data type of the value.
765
766 Note that values of mode `BLKmode' must be explicitly handled by
767 this macro. Also, the option `-fpcc-struct-return' takes effect
768 regardless of this macro. On most systems, it is possible to
769 leave the macro undefined; this causes a default definition to be
770 used, whose value is the constant 1 for `BLKmode' values, and 0
771 otherwise.
772
773 Do not use this macro to indicate that structures and unions
774 should always be returned in memory. You should instead use
775 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
776
777 #define RETURN_IN_MEMORY(TYPE) \
778 ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
779
780 \f
781 /* Define the classes of registers for register constraints in the
782 machine description. Also define ranges of constants.
783
784 One of the classes must always be named ALL_REGS and include all hard regs.
785 If there is more than one class, another class must be named NO_REGS
786 and contain no registers.
787
788 The name GENERAL_REGS must be the name of a class (or an alias for
789 another name such as ALL_REGS). This is the class of registers
790 that is allowed by "g" or "r" in a register constraint.
791 Also, registers outside this class are allocated only when
792 instructions express preferences for them.
793
794 The classes must be numbered in nondecreasing order; that is,
795 a larger-numbered class must never be contained completely
796 in a smaller-numbered class.
797
798 For any two classes, it is very desirable that there be another
799 class that represents their union.
800
801 It might seem that class BREG is unnecessary, since no useful 386
802 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
803 and the "b" register constraint is useful in asms for syscalls. */
804
805 enum reg_class
806 {
807 NO_REGS,
808 AREG, DREG, CREG, BREG,
809 AD_REGS, /* %eax/%edx for DImode */
810 Q_REGS, /* %eax %ebx %ecx %edx */
811 SIREG, DIREG,
812 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
813 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
814 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
815 FLOAT_REGS,
816 ALL_REGS, LIM_REG_CLASSES
817 };
818
819 #define N_REG_CLASSES (int) LIM_REG_CLASSES
820
821 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
822
823 /* Give names of register classes as strings for dump file. */
824
825 #define REG_CLASS_NAMES \
826 { "NO_REGS", \
827 "AREG", "DREG", "CREG", "BREG", \
828 "AD_REGS", \
829 "Q_REGS", \
830 "SIREG", "DIREG", \
831 "INDEX_REGS", \
832 "GENERAL_REGS", \
833 "FP_TOP_REG", "FP_SECOND_REG", \
834 "FLOAT_REGS", \
835 "ALL_REGS" }
836
837 /* Define which registers fit in which classes.
838 This is an initializer for a vector of HARD_REG_SET
839 of length N_REG_CLASSES. */
840
841 #define REG_CLASS_CONTENTS \
842 { {0}, \
843 {0x1}, {0x2}, {0x4}, {0x8}, /* AREG, DREG, CREG, BREG */ \
844 {0x3}, /* AD_REGS */ \
845 {0xf}, /* Q_REGS */ \
846 {0x10}, {0x20}, /* SIREG, DIREG */ \
847 {0x7f}, /* INDEX_REGS */ \
848 {0x100ff}, /* GENERAL_REGS */ \
849 {0x0100}, {0x0200}, /* FP_TOP_REG, FP_SECOND_REG */ \
850 {0xff00}, /* FLOAT_REGS */ \
851 {0x1ffff}}
852
853 /* The same information, inverted:
854 Return the class number of the smallest class containing
855 reg number REGNO. This could be a conditional expression
856 or could index an array. */
857
858 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
859
860 /* When defined, the compiler allows registers explicitly used in the
861 rtl to be used as spill registers but prevents the compiler from
862 extending the lifetime of these registers. */
863
864 #define SMALL_REGISTER_CLASSES 1
865
866 #define QI_REG_P(X) \
867 (REG_P (X) && REGNO (X) < 4)
868 #define NON_QI_REG_P(X) \
869 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
870
871 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
872 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
873
874 #define STACK_REG_P(xop) (REG_P (xop) && \
875 REGNO (xop) >= FIRST_STACK_REG && \
876 REGNO (xop) <= LAST_STACK_REG)
877
878 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
879
880 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
881
882 /* 1 if register REGNO can magically overlap other regs.
883 Note that nonzero values work only in very special circumstances. */
884
885 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
886
887 /* The class value for index registers, and the one for base regs. */
888
889 #define INDEX_REG_CLASS INDEX_REGS
890 #define BASE_REG_CLASS GENERAL_REGS
891
892 /* Get reg_class from a letter such as appears in the machine description. */
893
894 #define REG_CLASS_FROM_LETTER(C) \
895 ((C) == 'r' ? GENERAL_REGS : \
896 (C) == 'q' ? Q_REGS : \
897 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
898 ? FLOAT_REGS \
899 : NO_REGS) : \
900 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
901 ? FP_TOP_REG \
902 : NO_REGS) : \
903 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
904 ? FP_SECOND_REG \
905 : NO_REGS) : \
906 (C) == 'a' ? AREG : \
907 (C) == 'b' ? BREG : \
908 (C) == 'c' ? CREG : \
909 (C) == 'd' ? DREG : \
910 (C) == 'A' ? AD_REGS : \
911 (C) == 'D' ? DIREG : \
912 (C) == 'S' ? SIREG : NO_REGS)
913
914 /* The letters I, J, K, L and M in a register constraint string
915 can be used to stand for particular ranges of immediate operands.
916 This macro defines what the ranges are.
917 C is the letter, and VALUE is a constant value.
918 Return 1 if VALUE is in the range specified by C.
919
920 I is for non-DImode shifts.
921 J is for DImode shifts.
922 K and L are for an `andsi' optimization.
923 M is for shifts that can be executed by the "lea" opcode.
924 */
925
926 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
927 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
928 (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
929 (C) == 'K' ? (VALUE) == 0xff : \
930 (C) == 'L' ? (VALUE) == 0xffff : \
931 (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
932 (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
933 (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
934 0)
935
936 /* Similar, but for floating constants, and defining letters G and H.
937 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
938 TARGET_387 isn't set, because the stack register converter may need to
939 load 0.0 into the function value register. */
940
941 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
942 ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
943
944 /* Place additional restrictions on the register class to use when it
945 is necessary to be able to hold a value of mode MODE in a reload
946 register for which class CLASS would ordinarily be used. */
947
948 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
949 ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
950 ? Q_REGS : (CLASS))
951
952 /* Given an rtx X being reloaded into a reg required to be
953 in class CLASS, return the class of reg to actually use.
954 In general this is just CLASS; but on some machines
955 in some cases it is preferable to use a more restrictive class.
956 On the 80386 series, we prevent floating constants from being
957 reloaded into floating registers (since no move-insn can do that)
958 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
959
960 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
961 QImode must go into class Q_REGS.
962 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
963 movdf to do mem-to-mem moves through integer regs. */
964
965 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
966 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode \
967 ? (standard_80387_constant_p (X) \
968 ? reg_class_subset_p (CLASS, FLOAT_REGS) ? CLASS : FLOAT_REGS \
969 : NO_REGS) \
970 : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
971 : ((CLASS) == ALL_REGS \
972 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
973 : (CLASS))
974
975 /* If we are copying between general and FP registers, we need a memory
976 location. */
977
978 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
979 ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
980 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
981
982 /* Return the maximum number of consecutive registers
983 needed to represent mode MODE in a register of class CLASS. */
984 /* On the 80386, this is the size of MODE in words,
985 except in the FP regs, where a single reg is always enough. */
986 #define CLASS_MAX_NREGS(CLASS, MODE) \
987 (FLOAT_CLASS_P (CLASS) ? 1 : \
988 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
989
990 /* A C expression whose value is nonzero if pseudos that have been
991 assigned to registers of class CLASS would likely be spilled
992 because registers of CLASS are needed for spill registers.
993
994 The default value of this macro returns 1 if CLASS has exactly one
995 register and zero otherwise. On most machines, this default
996 should be used. Only define this macro to some other expression
997 if pseudo allocated by `local-alloc.c' end up in memory because
998 their hard registers were needed for spill registers. If this
999 macro returns nonzero for those classes, those pseudos will only
1000 be allocated by `global.c', which knows how to reallocate the
1001 pseudo to another register. If there would not be another
1002 register available for reallocation, you should not change the
1003 definition of this macro since the only effect of such a
1004 definition would be to slow down register allocation. */
1005
1006 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1007 (((CLASS) == AREG) \
1008 || ((CLASS) == DREG) \
1009 || ((CLASS) == CREG) \
1010 || ((CLASS) == BREG) \
1011 || ((CLASS) == AD_REGS) \
1012 || ((CLASS) == SIREG) \
1013 || ((CLASS) == DIREG))
1014
1015 \f
1016 /* Stack layout; function entry, exit and calling. */
1017
1018 /* Define this if pushing a word on the stack
1019 makes the stack pointer a smaller address. */
1020 #define STACK_GROWS_DOWNWARD
1021
1022 /* Define this if the nominal address of the stack frame
1023 is at the high-address end of the local variables;
1024 that is, each additional local variable allocated
1025 goes at a more negative offset in the frame. */
1026 #define FRAME_GROWS_DOWNWARD
1027
1028 /* Offset within stack frame to start allocating local variables at.
1029 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1030 first local allocated. Otherwise, it is the offset to the BEGINNING
1031 of the first local allocated. */
1032 #define STARTING_FRAME_OFFSET 0
1033
1034 /* If we generate an insn to push BYTES bytes,
1035 this says how many the stack pointer really advances by.
1036 On 386 pushw decrements by exactly 2 no matter what the position was.
1037 On the 386 there is no pushb; we use pushw instead, and this
1038 has the effect of rounding up to 2. */
1039
1040 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
1041
1042 /* Offset of first parameter from the argument pointer register value. */
1043 #define FIRST_PARM_OFFSET(FNDECL) 0
1044
1045 /* Value is the number of bytes of arguments automatically
1046 popped when returning from a subroutine call.
1047 FUNDECL is the declaration node of the function (as a tree),
1048 FUNTYPE is the data type of the function (as a tree),
1049 or for a library call it is an identifier node for the subroutine name.
1050 SIZE is the number of bytes of arguments passed on the stack.
1051
1052 On the 80386, the RTD insn may be used to pop them if the number
1053 of args is fixed, but if the number is variable then the caller
1054 must pop them all. RTD can't be used for library calls now
1055 because the library is compiled with the Unix compiler.
1056 Use of RTD is a selectable option, since it is incompatible with
1057 standard Unix calling sequences. If the option is not selected,
1058 the caller must always pop the args.
1059
1060 The attribute stdcall is equivalent to RTD on a per module basis. */
1061
1062 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
1063 (i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
1064
1065 /* Define how to find the value returned by a function.
1066 VALTYPE is the data type of the value (as a tree).
1067 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1068 otherwise, FUNC is 0. */
1069 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1070 gen_rtx_REG (TYPE_MODE (VALTYPE), \
1071 VALUE_REGNO (TYPE_MODE (VALTYPE)))
1072
1073 /* Define how to find the value returned by a library function
1074 assuming the value has mode MODE. */
1075
1076 #define LIBCALL_VALUE(MODE) \
1077 gen_rtx_REG (MODE, VALUE_REGNO (MODE))
1078
1079 /* Define the size of the result block used for communication between
1080 untyped_call and untyped_return. The block contains a DImode value
1081 followed by the block used by fnsave and frstor. */
1082
1083 #define APPLY_RESULT_SIZE (8+108)
1084
1085 /* 1 if N is a possible register number for function argument passing. */
1086 #define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
1087
1088 /* Define a data type for recording info about an argument list
1089 during the scan of that argument list. This data type should
1090 hold all necessary information about the function itself
1091 and about the args processed so far, enough to enable macros
1092 such as FUNCTION_ARG to determine where the next arg should go. */
1093
1094 typedef struct i386_args {
1095 int words; /* # words passed so far */
1096 int nregs; /* # registers available for passing */
1097 int regno; /* next available register number */
1098 } CUMULATIVE_ARGS;
1099
1100 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1101 for a call to a function whose data type is FNTYPE.
1102 For a library call, FNTYPE is 0. */
1103
1104 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1105 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1106
1107 /* Update the data in CUM to advance over an argument
1108 of mode MODE and data type TYPE.
1109 (TYPE is null for libcalls where that information may not be available.) */
1110
1111 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1112 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
1113
1114 /* Define where to put the arguments to a function.
1115 Value is zero to push the argument on the stack,
1116 or a hard register in which to store the argument.
1117
1118 MODE is the argument's machine mode.
1119 TYPE is the data type of the argument (as a tree).
1120 This is null for libcalls where that information may
1121 not be available.
1122 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1123 the preceding args and about the function being called.
1124 NAMED is nonzero if this argument is a named parameter
1125 (otherwise it is an extra parameter matching an ellipsis). */
1126
1127 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1128 (function_arg (&CUM, MODE, TYPE, NAMED))
1129
1130 /* For an arg passed partly in registers and partly in memory,
1131 this is the number of registers used.
1132 For args passed entirely in registers or entirely in memory, zero. */
1133
1134 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1135 (function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
1136
1137 /* This macro is invoked just before the start of a function.
1138 It is used here to output code for -fpic that will load the
1139 return address into %ebx. */
1140
1141 #undef ASM_OUTPUT_FUNCTION_PREFIX
1142 #define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
1143 asm_output_function_prefix (FILE, FNNAME)
1144
1145 /* This macro generates the assembly code for function entry.
1146 FILE is a stdio stream to output the code to.
1147 SIZE is an int: how many units of temporary storage to allocate.
1148 Refer to the array `regs_ever_live' to determine which registers
1149 to save; `regs_ever_live[I]' is nonzero if register number I
1150 is ever used in the function. This macro is responsible for
1151 knowing which registers should not be saved even if used. */
1152
1153 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1154 function_prologue (FILE, SIZE)
1155
1156 /* Output assembler code to FILE to increment profiler label # LABELNO
1157 for profiling a function entry. */
1158
1159 #define FUNCTION_PROFILER(FILE, LABELNO) \
1160 { \
1161 if (flag_pic) \
1162 { \
1163 fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
1164 LPREFIX, (LABELNO)); \
1165 fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
1166 } \
1167 else \
1168 { \
1169 fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1170 fprintf (FILE, "\tcall _mcount\n"); \
1171 } \
1172 }
1173
1174
1175 /* There are three profiling modes for basic blocks available.
1176 The modes are selected at compile time by using the options
1177 -a or -ax of the gnu compiler.
1178 The variable `profile_block_flag' will be set according to the
1179 selected option.
1180
1181 profile_block_flag == 0, no option used:
1182
1183 No profiling done.
1184
1185 profile_block_flag == 1, -a option used.
1186
1187 Count frequency of execution of every basic block.
1188
1189 profile_block_flag == 2, -ax option used.
1190
1191 Generate code to allow several different profiling modes at run time.
1192 Available modes are:
1193 Produce a trace of all basic blocks.
1194 Count frequency of jump instructions executed.
1195 In every mode it is possible to start profiling upon entering
1196 certain functions and to disable profiling of some other functions.
1197
1198 The result of basic-block profiling will be written to a file `bb.out'.
1199 If the -ax option is used parameters for the profiling will be read
1200 from file `bb.in'.
1201
1202 */
1203
1204 /* The following macro shall output assembler code to FILE
1205 to initialize basic-block profiling.
1206
1207 If profile_block_flag == 2
1208
1209 Output code to call the subroutine `__bb_init_trace_func'
1210 and pass two parameters to it. The first parameter is
1211 the address of a block allocated in the object module.
1212 The second parameter is the number of the first basic block
1213 of the function.
1214
1215 The name of the block is a local symbol made with this statement:
1216
1217 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1218
1219 Of course, since you are writing the definition of
1220 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1221 can take a short cut in the definition of this macro and use the
1222 name that you know will result.
1223
1224 The number of the first basic block of the function is
1225 passed to the macro in BLOCK_OR_LABEL.
1226
1227 If described in a virtual assembler language the code to be
1228 output looks like:
1229
1230 parameter1 <- LPBX0
1231 parameter2 <- BLOCK_OR_LABEL
1232 call __bb_init_trace_func
1233
1234 else if profile_block_flag != 0
1235
1236 Output code to call the subroutine `__bb_init_func'
1237 and pass one single parameter to it, which is the same
1238 as the first parameter to `__bb_init_trace_func'.
1239
1240 The first word of this parameter is a flag which will be nonzero if
1241 the object module has already been initialized. So test this word
1242 first, and do not call `__bb_init_func' if the flag is nonzero.
1243 Note: When profile_block_flag == 2 the test need not be done
1244 but `__bb_init_trace_func' *must* be called.
1245
1246 BLOCK_OR_LABEL may be used to generate a label number as a
1247 branch destination in case `__bb_init_func' will not be called.
1248
1249 If described in a virtual assembler language the code to be
1250 output looks like:
1251
1252 cmp (LPBX0),0
1253 jne local_label
1254 parameter1 <- LPBX0
1255 call __bb_init_func
1256 local_label:
1257
1258 */
1259
1260 #undef FUNCTION_BLOCK_PROFILER
1261 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1262 do \
1263 { \
1264 static int num_func = 0; \
1265 rtx xops[8]; \
1266 char block_table[80], false_label[80]; \
1267 \
1268 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1269 \
1270 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1271 xops[5] = stack_pointer_rtx; \
1272 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1273 \
1274 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1275 \
1276 switch (profile_block_flag) \
1277 { \
1278 \
1279 case 2: \
1280 \
1281 xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
1282 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_trace_func")); \
1283 xops[6] = GEN_INT (8); \
1284 \
1285 output_asm_insn (AS1(push%L2,%2), xops); \
1286 if (!flag_pic) \
1287 output_asm_insn (AS1(push%L1,%1), xops); \
1288 else \
1289 { \
1290 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1291 output_asm_insn (AS1 (push%L7,%7), xops); \
1292 } \
1293 \
1294 output_asm_insn (AS1(call,%P3), xops); \
1295 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1296 \
1297 break; \
1298 \
1299 default: \
1300 \
1301 ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
1302 \
1303 xops[0] = const0_rtx; \
1304 xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, false_label)); \
1305 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_func")); \
1306 xops[4] = gen_rtx_MEM (Pmode, xops[1]); \
1307 xops[6] = GEN_INT (4); \
1308 \
1309 CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
1310 \
1311 output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
1312 output_asm_insn (AS1(jne,%2), xops); \
1313 \
1314 if (!flag_pic) \
1315 output_asm_insn (AS1(push%L1,%1), xops); \
1316 else \
1317 { \
1318 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1319 output_asm_insn (AS1 (push%L7,%7), xops); \
1320 } \
1321 \
1322 output_asm_insn (AS1(call,%P3), xops); \
1323 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1324 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
1325 num_func++; \
1326 \
1327 break; \
1328 \
1329 } \
1330 } \
1331 while (0)
1332
1333 /* The following macro shall output assembler code to FILE
1334 to increment a counter associated with basic block number BLOCKNO.
1335
1336 If profile_block_flag == 2
1337
1338 Output code to initialize the global structure `__bb' and
1339 call the function `__bb_trace_func' which will increment the
1340 counter.
1341
1342 `__bb' consists of two words. In the first word the number
1343 of the basic block has to be stored. In the second word
1344 the address of a block allocated in the object module
1345 has to be stored.
1346
1347 The basic block number is given by BLOCKNO.
1348
1349 The address of the block is given by the label created with
1350
1351 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1352
1353 by FUNCTION_BLOCK_PROFILER.
1354
1355 Of course, since you are writing the definition of
1356 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1357 can take a short cut in the definition of this macro and use the
1358 name that you know will result.
1359
1360 If described in a virtual assembler language the code to be
1361 output looks like:
1362
1363 move BLOCKNO -> (__bb)
1364 move LPBX0 -> (__bb+4)
1365 call __bb_trace_func
1366
1367 Note that function `__bb_trace_func' must not change the
1368 machine state, especially the flag register. To grant
1369 this, you must output code to save and restore registers
1370 either in this macro or in the macros MACHINE_STATE_SAVE
1371 and MACHINE_STATE_RESTORE. The last two macros will be
1372 used in the function `__bb_trace_func', so you must make
1373 sure that the function prologue does not change any
1374 register prior to saving it with MACHINE_STATE_SAVE.
1375
1376 else if profile_block_flag != 0
1377
1378 Output code to increment the counter directly.
1379 Basic blocks are numbered separately from zero within each
1380 compiled object module. The count associated with block number
1381 BLOCKNO is at index BLOCKNO in an array of words; the name of
1382 this array is a local symbol made with this statement:
1383
1384 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1385
1386 Of course, since you are writing the definition of
1387 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1388 can take a short cut in the definition of this macro and use the
1389 name that you know will result.
1390
1391 If described in a virtual assembler language the code to be
1392 output looks like:
1393
1394 inc (LPBX2+4*BLOCKNO)
1395
1396 */
1397
1398 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1399 do \
1400 { \
1401 rtx xops[8], cnt_rtx; \
1402 char counts[80]; \
1403 char *block_table = counts; \
1404 \
1405 switch (profile_block_flag) \
1406 { \
1407 \
1408 case 2: \
1409 \
1410 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1411 \
1412 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1413 xops[2] = GEN_INT ((BLOCKNO)); \
1414 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_func")); \
1415 xops[4] = gen_rtx_SYMBOL_REF (VOIDmode, "__bb"); \
1416 xops[5] = plus_constant (xops[4], 4); \
1417 xops[0] = gen_rtx_MEM (SImode, xops[4]); \
1418 xops[6] = gen_rtx_MEM (SImode, xops[5]); \
1419 \
1420 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1421 \
1422 fprintf(FILE, "\tpushf\n"); \
1423 output_asm_insn (AS2(mov%L0,%2,%0), xops); \
1424 if (flag_pic) \
1425 { \
1426 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1427 output_asm_insn (AS1(push%L7,%7), xops); \
1428 output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
1429 output_asm_insn (AS2(mov%L6,%7,%6), xops); \
1430 output_asm_insn (AS1(pop%L7,%7), xops); \
1431 } \
1432 else \
1433 output_asm_insn (AS2(mov%L6,%1,%6), xops); \
1434 output_asm_insn (AS1(call,%P3), xops); \
1435 fprintf(FILE, "\tpopf\n"); \
1436 \
1437 break; \
1438 \
1439 default: \
1440 \
1441 ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
1442 cnt_rtx = gen_rtx_SYMBOL_REF (VOIDmode, counts); \
1443 SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
1444 \
1445 if (BLOCKNO) \
1446 cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
1447 \
1448 if (flag_pic) \
1449 cnt_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, cnt_rtx); \
1450 \
1451 xops[0] = gen_rtx_MEM (SImode, cnt_rtx); \
1452 output_asm_insn (AS1(inc%L0,%0), xops); \
1453 \
1454 break; \
1455 \
1456 } \
1457 } \
1458 while (0)
1459
1460 /* The following macro shall output assembler code to FILE
1461 to indicate a return from function during basic-block profiling.
1462
1463 If profiling_block_flag == 2:
1464
1465 Output assembler code to call function `__bb_trace_ret'.
1466
1467 Note that function `__bb_trace_ret' must not change the
1468 machine state, especially the flag register. To grant
1469 this, you must output code to save and restore registers
1470 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1471 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1472 used in the function `__bb_trace_ret', so you must make
1473 sure that the function prologue does not change any
1474 register prior to saving it with MACHINE_STATE_SAVE_RET.
1475
1476 else if profiling_block_flag != 0:
1477
1478 The macro will not be used, so it need not distinguish
1479 these cases.
1480 */
1481
1482 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1483 do \
1484 { \
1485 rtx xops[1]; \
1486 \
1487 xops[0] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")); \
1488 \
1489 output_asm_insn (AS1(call,%P0), xops); \
1490 \
1491 } \
1492 while (0)
1493
1494 /* The function `__bb_trace_func' is called in every basic block
1495 and is not allowed to change the machine state. Saving (restoring)
1496 the state can either be done in the BLOCK_PROFILER macro,
1497 before calling function (rsp. after returning from function)
1498 `__bb_trace_func', or it can be done inside the function by
1499 defining the macros:
1500
1501 MACHINE_STATE_SAVE(ID)
1502 MACHINE_STATE_RESTORE(ID)
1503
1504 In the latter case care must be taken, that the prologue code
1505 of function `__bb_trace_func' does not already change the
1506 state prior to saving it with MACHINE_STATE_SAVE.
1507
1508 The parameter `ID' is a string identifying a unique macro use.
1509
1510 On the i386 the initialization code at the begin of
1511 function `__bb_trace_func' contains a `sub' instruction
1512 therefore we handle save and restore of the flag register
1513 in the BLOCK_PROFILER macro. */
1514
1515 #define MACHINE_STATE_SAVE(ID) \
1516 asm (" pushl %eax"); \
1517 asm (" pushl %ecx"); \
1518 asm (" pushl %edx"); \
1519 asm (" pushl %esi");
1520
1521 #define MACHINE_STATE_RESTORE(ID) \
1522 asm (" popl %esi"); \
1523 asm (" popl %edx"); \
1524 asm (" popl %ecx"); \
1525 asm (" popl %eax");
1526
1527 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1528 the stack pointer does not matter. The value is tested only in
1529 functions that have frame pointers.
1530 No definition is equivalent to always zero. */
1531 /* Note on the 386 it might be more efficient not to define this since
1532 we have to restore it ourselves from the frame pointer, in order to
1533 use pop */
1534
1535 #define EXIT_IGNORE_STACK 1
1536
1537 /* This macro generates the assembly code for function exit,
1538 on machines that need it. If FUNCTION_EPILOGUE is not defined
1539 then individual return instructions are generated for each
1540 return statement. Args are same as for FUNCTION_PROLOGUE.
1541
1542 The function epilogue should not depend on the current stack pointer!
1543 It should use the frame pointer only. This is mandatory because
1544 of alloca; we also take advantage of it to omit stack adjustments
1545 before returning.
1546
1547 If the last non-note insn in the function is a BARRIER, then there
1548 is no need to emit a function prologue, because control does not fall
1549 off the end. This happens if the function ends in an "exit" call, or
1550 if a `return' insn is emitted directly into the function. */
1551
1552 #if 0
1553 #define FUNCTION_BEGIN_EPILOGUE(FILE) \
1554 do { \
1555 rtx last = get_last_insn (); \
1556 if (last && GET_CODE (last) == NOTE) \
1557 last = prev_nonnote_insn (last); \
1558 /* if (! last || GET_CODE (last) != BARRIER) \
1559 function_epilogue (FILE, SIZE);*/ \
1560 } while (0)
1561 #endif
1562
1563 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1564 function_epilogue (FILE, SIZE)
1565
1566 /* Output assembler code for a block containing the constant parts
1567 of a trampoline, leaving space for the variable parts. */
1568
1569 /* On the 386, the trampoline contains two instructions:
1570 mov #STATIC,ecx
1571 jmp FUNCTION
1572 The trampoline is generated entirely at runtime. The operand of JMP
1573 is the address of FUNCTION relative to the instruction following the
1574 JMP (which is 5 bytes long). */
1575
1576 /* Length in units of the trampoline for entering a nested function. */
1577
1578 #define TRAMPOLINE_SIZE 10
1579
1580 /* Emit RTL insns to initialize the variable parts of a trampoline.
1581 FNADDR is an RTX for the address of the function's pure code.
1582 CXT is an RTX for the static chain value for the function. */
1583
1584 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1585 { \
1586 /* Compute offset from the end of the jmp to the target function. */ \
1587 rtx disp = expand_binop (SImode, sub_optab, FNADDR, \
1588 plus_constant (TRAMP, 10), \
1589 NULL_RTX, 1, OPTAB_DIRECT); \
1590 emit_move_insn (gen_rtx_MEM (QImode, TRAMP), GEN_INT (0xb9)); \
1591 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 1)), CXT); \
1592 emit_move_insn (gen_rtx_MEM (QImode, plus_constant (TRAMP, 5)), GEN_INT (0xe9));\
1593 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 6)), disp); \
1594 }
1595 \f
1596 /* Definitions for register eliminations.
1597
1598 This is an array of structures. Each structure initializes one pair
1599 of eliminable registers. The "from" register number is given first,
1600 followed by "to". Eliminations of the same "from" register are listed
1601 in order of preference.
1602
1603 We have two registers that can be eliminated on the i386. First, the
1604 frame pointer register can often be eliminated in favor of the stack
1605 pointer register. Secondly, the argument pointer register can always be
1606 eliminated; it is replaced with either the stack or frame pointer. */
1607
1608 #define ELIMINABLE_REGS \
1609 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1610 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1611 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1612
1613 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1614 Frame pointer elimination is automatically handled.
1615
1616 For the i386, if frame pointer elimination is being done, we would like to
1617 convert ap into sp, not fp.
1618
1619 All other eliminations are valid. */
1620
1621 #define CAN_ELIMINATE(FROM, TO) \
1622 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1623 ? ! frame_pointer_needed \
1624 : 1)
1625
1626 /* Define the offset between two registers, one to be eliminated, and the other
1627 its replacement, at the start of a routine. */
1628
1629 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1630 { \
1631 if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1632 (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
1633 else \
1634 { \
1635 int nregs; \
1636 int offset; \
1637 int preferred_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; \
1638 HOST_WIDE_INT tsize = ix86_compute_frame_size (get_frame_size (), \
1639 &nregs); \
1640 \
1641 (OFFSET) = (tsize + nregs * UNITS_PER_WORD); \
1642 \
1643 offset = 4; \
1644 if (frame_pointer_needed) \
1645 offset += UNITS_PER_WORD; \
1646 \
1647 if ((FROM) == ARG_POINTER_REGNUM) \
1648 (OFFSET) += offset; \
1649 else \
1650 (OFFSET) -= ((offset + preferred_alignment - 1) \
1651 & -preferred_alignment) - offset; \
1652 } \
1653 }
1654 \f
1655 /* Addressing modes, and classification of registers for them. */
1656
1657 /* #define HAVE_POST_INCREMENT 0 */
1658 /* #define HAVE_POST_DECREMENT 0 */
1659
1660 /* #define HAVE_PRE_DECREMENT 0 */
1661 /* #define HAVE_PRE_INCREMENT 0 */
1662
1663 /* Macros to check register numbers against specific register classes. */
1664
1665 /* These assume that REGNO is a hard or pseudo reg number.
1666 They give nonzero only if REGNO is a hard reg of the suitable class
1667 or a pseudo reg currently allocated to a suitable hard reg.
1668 Since they use reg_renumber, they are safe only once reg_renumber
1669 has been allocated, which happens in local-alloc.c. */
1670
1671 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1672 ((REGNO) < STACK_POINTER_REGNUM \
1673 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1674
1675 #define REGNO_OK_FOR_BASE_P(REGNO) \
1676 ((REGNO) <= STACK_POINTER_REGNUM \
1677 || (REGNO) == ARG_POINTER_REGNUM \
1678 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1679
1680 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1681 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1682
1683 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1684 and check its validity for a certain class.
1685 We have two alternate definitions for each of them.
1686 The usual definition accepts all pseudo regs; the other rejects
1687 them unless they have been allocated suitable hard regs.
1688 The symbol REG_OK_STRICT causes the latter definition to be used.
1689
1690 Most source files want to accept pseudo regs in the hope that
1691 they will get allocated to the class that the insn wants them to be in.
1692 Source files for reload pass need to be strict.
1693 After reload, it makes no difference, since pseudo regs have
1694 been eliminated by then. */
1695
1696
1697 /* Non strict versions, pseudos are ok */
1698 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1699 (REGNO (X) < STACK_POINTER_REGNUM \
1700 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1701
1702 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1703 (REGNO (X) <= STACK_POINTER_REGNUM \
1704 || REGNO (X) == ARG_POINTER_REGNUM \
1705 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1706
1707 #define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
1708 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1709
1710 /* Strict versions, hard registers only */
1711 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1712 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1713 #define REG_OK_FOR_STRREG_STRICT_P(X) \
1714 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
1715
1716 #ifndef REG_OK_STRICT
1717 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1718 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1719 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
1720
1721 #else
1722 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1723 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1724 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
1725 #endif
1726
1727 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1728 that is a valid memory address for an instruction.
1729 The MODE argument is the machine mode for the MEM expression
1730 that wants to use this address.
1731
1732 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1733 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1734
1735 See legitimize_pic_address in i386.c for details as to what
1736 constitutes a legitimate address when -fpic is used. */
1737
1738 #define MAX_REGS_PER_ADDRESS 2
1739
1740 #define CONSTANT_ADDRESS_P(X) \
1741 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1742 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)
1743
1744 /* Nonzero if the constant value X is a legitimate general operand.
1745 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1746
1747 #define LEGITIMATE_CONSTANT_P(X) \
1748 (GET_CODE (X) == CONST_DOUBLE ? standard_80387_constant_p (X) : 1)
1749
1750 #ifdef REG_OK_STRICT
1751 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1752 { \
1753 if (legitimate_address_p (MODE, X, 1)) \
1754 goto ADDR; \
1755 }
1756
1757 #else
1758 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1759 { \
1760 if (legitimate_address_p (MODE, X, 0)) \
1761 goto ADDR; \
1762 }
1763
1764 #endif
1765
1766 /* Try machine-dependent ways of modifying an illegitimate address
1767 to be legitimate. If we find one, return the new, valid address.
1768 This macro is used in only one place: `memory_address' in explow.c.
1769
1770 OLDX is the address as it was before break_out_memory_refs was called.
1771 In some cases it is useful to look at this to decide what needs to be done.
1772
1773 MODE and WIN are passed so that this macro can use
1774 GO_IF_LEGITIMATE_ADDRESS.
1775
1776 It is always safe for this macro to do nothing. It exists to recognize
1777 opportunities to optimize the output.
1778
1779 For the 80386, we handle X+REG by loading X into a register R and
1780 using R+REG. R will go in a general reg and indexing will be used.
1781 However, if REG is a broken-out memory address or multiplication,
1782 nothing needs to be done because REG can certainly go in a general reg.
1783
1784 When -fpic is used, special handling is needed for symbolic references.
1785 See comments by legitimize_pic_address in i386.c for details. */
1786
1787 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1788 { \
1789 (X) = legitimize_address (X, OLDX, MODE); \
1790 if (memory_address_p (MODE, X)) \
1791 goto WIN; \
1792 }
1793
1794 #define REWRITE_ADDRESS(x) rewrite_address(x)
1795
1796 /* Nonzero if the constant value X is a legitimate general operand
1797 when generating PIC code. It is given that flag_pic is on and
1798 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1799
1800 #define LEGITIMATE_PIC_OPERAND_P(X) \
1801 (! SYMBOLIC_CONST (X) || legitimate_pic_address_disp_p (X))
1802
1803 #define SYMBOLIC_CONST(X) \
1804 (GET_CODE (X) == SYMBOL_REF \
1805 || GET_CODE (X) == LABEL_REF \
1806 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1807
1808 /* Go to LABEL if ADDR (a legitimate address expression)
1809 has an effect that depends on the machine mode it is used for.
1810 On the 80386, only postdecrement and postincrement address depend thus
1811 (the amount of decrement or increment being the length of the operand). */
1812 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1813 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1814 \f
1815 /* Define this macro if references to a symbol must be treated
1816 differently depending on something about the variable or
1817 function named by the symbol (such as what section it is in).
1818
1819 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1820 so that we may access it directly in the GOT. */
1821
1822 #define ENCODE_SECTION_INFO(DECL) \
1823 do \
1824 { \
1825 if (flag_pic) \
1826 { \
1827 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1828 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1829 \
1830 if (TARGET_DEBUG_ADDR \
1831 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
1832 { \
1833 fprintf (stderr, "Encode %s, public = %d\n", \
1834 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
1835 TREE_PUBLIC (DECL)); \
1836 } \
1837 \
1838 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1839 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1840 || ! TREE_PUBLIC (DECL)); \
1841 } \
1842 } \
1843 while (0)
1844
1845 /* Initialize data used by insn expanders. This is called from
1846 init_emit, once for each function, before code is generated.
1847 For 386, clear stack slot assignments remembered from previous
1848 functions. */
1849
1850 #define INIT_EXPANDERS clear_386_stack_locals ()
1851
1852 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
1853 codes once the function is being compiled into assembly code, but
1854 not before. (It is not done before, because in the case of
1855 compiling an inline function, it would lead to multiple PIC
1856 prologues being included in functions which used inline functions
1857 and were compiled to assembly language.) */
1858
1859 #define FINALIZE_PIC \
1860 do \
1861 { \
1862 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
1863 } \
1864 while (0)
1865
1866 \f
1867 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1868 with arguments ARGS is a valid machine specific attribute for DECL.
1869 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1870
1871 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1872 (i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1873
1874 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1875 with arguments ARGS is a valid machine specific attribute for TYPE.
1876 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1877
1878 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1879 (i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1880
1881 /* If defined, a C expression whose value is zero if the attributes on
1882 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1883 two if they are nearly compatible (which causes a warning to be
1884 generated). */
1885
1886 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1887 (i386_comp_type_attributes (TYPE1, TYPE2))
1888
1889 /* If defined, a C statement that assigns default attributes to newly
1890 defined TYPE. */
1891
1892 /* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
1893
1894 /* Max number of args passed in registers. If this is more than 3, we will
1895 have problems with ebx (register #4), since it is a caller save register and
1896 is also used as the pic register in ELF. So for now, don't allow more than
1897 3 registers to be passed in registers. */
1898
1899 #define REGPARM_MAX 3
1900
1901 \f
1902 /* Specify the machine mode that this machine uses
1903 for the index in the tablejump instruction. */
1904 #define CASE_VECTOR_MODE Pmode
1905
1906 /* Define as C expression which evaluates to nonzero if the tablejump
1907 instruction expects the table to contain offsets from the address of the
1908 table.
1909 Do not define this if the table should contain absolute addresses. */
1910 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1911
1912 /* Specify the tree operation to be used to convert reals to integers.
1913 This should be changed to take advantage of fist --wfs ??
1914 */
1915 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1916
1917 /* This is the kind of divide that is easiest to do in the general case. */
1918 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1919
1920 /* Define this as 1 if `char' should by default be signed; else as 0. */
1921 #define DEFAULT_SIGNED_CHAR 1
1922
1923 /* Max number of bytes we can move from memory to memory
1924 in one reasonably fast instruction. */
1925 #define MOVE_MAX 4
1926
1927 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1928 move-instruction pairs, we will do a movstr or libcall instead.
1929 Increasing the value will always make code faster, but eventually
1930 incurs high cost in increased code size.
1931
1932 If you don't define this, a reasonable default is used.
1933
1934 Make this large on i386, since the block move is very inefficient with small
1935 blocks, and the hard register needs of the block move require much reload
1936 work. */
1937
1938 #define MOVE_RATIO 5
1939
1940 /* Define if shifts truncate the shift count
1941 which implies one can omit a sign-extension or zero-extension
1942 of a shift count. */
1943 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1944
1945 /* #define SHIFT_COUNT_TRUNCATED */
1946
1947 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1948 is done just by pretending it is already truncated. */
1949 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1950
1951 /* We assume that the store-condition-codes instructions store 0 for false
1952 and some other value for true. This is the value stored for true. */
1953
1954 #define STORE_FLAG_VALUE 1
1955
1956 /* When a prototype says `char' or `short', really pass an `int'.
1957 (The 386 can't easily push less than an int.) */
1958
1959 #define PROMOTE_PROTOTYPES 1
1960
1961 /* Specify the machine mode that pointers have.
1962 After generation of rtl, the compiler makes no further distinction
1963 between pointers and any other objects of this machine mode. */
1964 #define Pmode SImode
1965
1966 /* A function address in a call instruction
1967 is a byte address (for indexing purposes)
1968 so give the MEM rtx a byte's mode. */
1969 #define FUNCTION_MODE QImode
1970 \f
1971 /* A part of a C `switch' statement that describes the relative costs
1972 of constant RTL expressions. It must contain `case' labels for
1973 expression codes `const_int', `const', `symbol_ref', `label_ref'
1974 and `const_double'. Each case must ultimately reach a `return'
1975 statement to return the relative cost of the use of that kind of
1976 constant value in an expression. The cost may depend on the
1977 precise value of the constant, which is available for examination
1978 in X, and the rtx code of the expression in which it is contained,
1979 found in OUTER_CODE.
1980
1981 CODE is the expression code--redundant, since it can be obtained
1982 with `GET_CODE (X)'. */
1983
1984 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1985 case CONST_INT: \
1986 return (unsigned) INTVAL (RTX) < 256 ? 0 : 1; \
1987 case CONST: \
1988 case LABEL_REF: \
1989 case SYMBOL_REF: \
1990 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
1991 \
1992 case CONST_DOUBLE: \
1993 { \
1994 int code; \
1995 if (GET_MODE (RTX) == VOIDmode) \
1996 return 2; \
1997 \
1998 code = standard_80387_constant_p (RTX); \
1999 return code == 1 ? 0 : \
2000 code == 2 ? 1 : \
2001 2; \
2002 }
2003
2004 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2005 #define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
2006
2007 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2008 This can be used, for example, to indicate how costly a multiply
2009 instruction is. In writing this macro, you can use the construct
2010 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2011 instructions. OUTER_CODE is the code of the expression in which X
2012 is contained.
2013
2014 This macro is optional; do not define it if the default cost
2015 assumptions are adequate for the target machine. */
2016
2017 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2018 case ASHIFT: \
2019 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2020 && GET_MODE (XEXP (X, 0)) == SImode) \
2021 { \
2022 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2023 \
2024 if (value == 1) \
2025 return COSTS_N_INSNS (ix86_cost->add) \
2026 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2027 \
2028 if (value == 2 || value == 3) \
2029 return COSTS_N_INSNS (ix86_cost->lea) \
2030 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2031 } \
2032 /* fall through */ \
2033 \
2034 case ROTATE: \
2035 case ASHIFTRT: \
2036 case LSHIFTRT: \
2037 case ROTATERT: \
2038 if (GET_MODE (XEXP (X, 0)) == DImode) \
2039 { \
2040 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2041 { \
2042 if (INTVAL (XEXP (X, 1)) > 32) \
2043 return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2044 return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2045 } \
2046 return ((GET_CODE (XEXP (X, 1)) == AND \
2047 ? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
2048 : COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
2049 + rtx_cost(XEXP (X, 0), OUTER_CODE)); \
2050 } \
2051 return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
2052 ? ix86_cost->shift_const \
2053 : ix86_cost->shift_var) \
2054 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2055 \
2056 case MULT: \
2057 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2058 { \
2059 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2060 int nbits = 0; \
2061 \
2062 if (value == 2) \
2063 return COSTS_N_INSNS (ix86_cost->add) \
2064 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2065 if (value == 4 || value == 8) \
2066 return COSTS_N_INSNS (ix86_cost->lea) \
2067 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2068 \
2069 while (value != 0) \
2070 { \
2071 nbits++; \
2072 value >>= 1; \
2073 } \
2074 \
2075 if (nbits == 1) \
2076 return COSTS_N_INSNS (ix86_cost->shift_const) \
2077 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2078 \
2079 return COSTS_N_INSNS (ix86_cost->mult_init \
2080 + nbits * ix86_cost->mult_bit) \
2081 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2082 } \
2083 \
2084 else /* This is arbitrary */ \
2085 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2086 + 7 * ix86_cost->mult_bit); \
2087 \
2088 case DIV: \
2089 case UDIV: \
2090 case MOD: \
2091 case UMOD: \
2092 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2093 \
2094 case PLUS: \
2095 if (GET_CODE (XEXP (X, 0)) == REG \
2096 && GET_MODE (XEXP (X, 0)) == SImode \
2097 && GET_CODE (XEXP (X, 1)) == PLUS) \
2098 return COSTS_N_INSNS (ix86_cost->lea); \
2099 \
2100 /* fall through */ \
2101 case AND: \
2102 case IOR: \
2103 case XOR: \
2104 case MINUS: \
2105 if (GET_MODE (X) == DImode) \
2106 return COSTS_N_INSNS (ix86_cost->add) * 2 \
2107 + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
2108 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2109 + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
2110 << (GET_MODE (XEXP (X, 1)) != DImode)); \
2111 case NEG: \
2112 case NOT: \
2113 if (GET_MODE (X) == DImode) \
2114 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
2115 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
2116
2117
2118 /* An expression giving the cost of an addressing mode that contains
2119 ADDRESS. If not defined, the cost is computed from the ADDRESS
2120 expression and the `CONST_COSTS' values.
2121
2122 For most CISC machines, the default cost is a good approximation
2123 of the true cost of the addressing mode. However, on RISC
2124 machines, all instructions normally have the same length and
2125 execution time. Hence all addresses will have equal costs.
2126
2127 In cases where more than one form of an address is known, the form
2128 with the lowest cost will be used. If multiple forms have the
2129 same, lowest, cost, the one that is the most complex will be used.
2130
2131 For example, suppose an address that is equal to the sum of a
2132 register and a constant is used twice in the same basic block.
2133 When this macro is not defined, the address will be computed in a
2134 register and memory references will be indirect through that
2135 register. On machines where the cost of the addressing mode
2136 containing the sum is no higher than that of a simple indirect
2137 reference, this will produce an additional instruction and
2138 possibly require an additional register. Proper specification of
2139 this macro eliminates this overhead for such machines.
2140
2141 Similar use of this macro is made in strength reduction of loops.
2142
2143 ADDRESS need not be valid as an address. In such a case, the cost
2144 is not relevant and can be any value; invalid addresses need not be
2145 assigned a different cost.
2146
2147 On machines where an address involving more than one register is as
2148 cheap as an address computation involving only one register,
2149 defining `ADDRESS_COST' to reflect this can cause two registers to
2150 be live over a region of code where only one would have been if
2151 `ADDRESS_COST' were not defined in that manner. This effect should
2152 be considered in the definition of this macro. Equivalent costs
2153 should probably only be given to addresses with different numbers
2154 of registers on machines with lots of registers.
2155
2156 This macro will normally either not be defined or be defined as a
2157 constant.
2158
2159 For i386, it is better to use a complex address than let gcc copy
2160 the address into a reg and make a new pseudo. But not if the address
2161 requires to two regs - that would mean more pseudos with longer
2162 lifetimes. */
2163
2164 #define ADDRESS_COST(RTX) \
2165 ((CONSTANT_P (RTX) \
2166 || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
2167 && REG_P (XEXP (RTX, 0)))) ? 0 \
2168 : REG_P (RTX) ? 1 \
2169 : 2)
2170
2171 /* A C expression for the cost of moving data of mode M between a
2172 register and memory. A value of 2 is the default; this cost is
2173 relative to those in `REGISTER_MOVE_COST'.
2174
2175 If moving between registers and memory is more expensive than
2176 between two registers, you should define this macro to express the
2177 relative cost.
2178
2179 On the i386, copying between floating-point and fixed-point
2180 registers is expensive. */
2181
2182 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2183 (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
2184 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
2185 : 2)
2186
2187
2188 /* A C expression for the cost of moving data of mode M between a
2189 register and memory. A value of 2 is the default; this cost is
2190 relative to those in `REGISTER_MOVE_COST'.
2191
2192 If moving between registers and memory is more expensive than
2193 between two registers, you should define this macro to express the
2194 relative cost. */
2195
2196 /* #define MEMORY_MOVE_COST(M,C,I) 2 */
2197
2198 /* A C expression for the cost of a branch instruction. A value of 1
2199 is the default; other values are interpreted relative to that. */
2200
2201 #define BRANCH_COST i386_branch_cost
2202
2203 /* Define this macro as a C expression which is nonzero if accessing
2204 less than a word of memory (i.e. a `char' or a `short') is no
2205 faster than accessing a word of memory, i.e., if such access
2206 require more than one instruction or if there is no difference in
2207 cost between byte and (aligned) word loads.
2208
2209 When this macro is not defined, the compiler will access a field by
2210 finding the smallest containing object; when it is defined, a
2211 fullword load will be used if alignment permits. Unless bytes
2212 accesses are faster than word accesses, using word accesses is
2213 preferable since it may eliminate subsequent memory access if
2214 subsequent accesses occur to other fields in the same word of the
2215 structure, but to different bytes. */
2216
2217 #define SLOW_BYTE_ACCESS 0
2218
2219 /* Nonzero if access to memory by shorts is slow and undesirable. */
2220 #define SLOW_SHORT_ACCESS 0
2221
2222 /* Define this macro if zero-extension (of a `char' or `short' to an
2223 `int') can be done faster if the destination is a register that is
2224 known to be zero.
2225
2226 If you define this macro, you must have instruction patterns that
2227 recognize RTL structures like this:
2228
2229 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2230
2231 and likewise for `HImode'. */
2232
2233 /* #define SLOW_ZERO_EXTEND */
2234
2235 /* Define this macro to be the value 1 if unaligned accesses have a
2236 cost many times greater than aligned accesses, for example if they
2237 are emulated in a trap handler.
2238
2239 When this macro is non-zero, the compiler will act as if
2240 `STRICT_ALIGNMENT' were non-zero when generating code for block
2241 moves. This can cause significantly more instructions to be
2242 produced. Therefore, do not set this macro non-zero if unaligned
2243 accesses only add a cycle or two to the time for a memory access.
2244
2245 If the value of this macro is always zero, it need not be defined. */
2246
2247 /* #define SLOW_UNALIGNED_ACCESS 0 */
2248
2249 /* Define this macro to inhibit strength reduction of memory
2250 addresses. (On some machines, such strength reduction seems to do
2251 harm rather than good.) */
2252
2253 /* #define DONT_REDUCE_ADDR */
2254
2255 /* Define this macro if it is as good or better to call a constant
2256 function address than to call an address kept in a register.
2257
2258 Desirable on the 386 because a CALL with a constant address is
2259 faster than one with a register address. */
2260
2261 #define NO_FUNCTION_CSE
2262
2263 /* Define this macro if it is as good or better for a function to call
2264 itself with an explicit address than to call an address kept in a
2265 register. */
2266
2267 #define NO_RECURSIVE_FUNCTION_CSE
2268
2269 /* A C statement (sans semicolon) to update the integer variable COST
2270 based on the relationship between INSN that is dependent on
2271 DEP_INSN through the dependence LINK. The default is to make no
2272 adjustment to COST. This can be used for example to specify to
2273 the scheduler that an output- or anti-dependence does not incur
2274 the same cost as a data-dependence. */
2275
2276 #define ADJUST_COST(insn,link,dep_insn,cost) \
2277 (cost) = x86_adjust_cost(insn, link, dep_insn, cost)
2278
2279 #define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
2280 { \
2281 if (is_fp_store (last_insn) && is_fp_insn (insn) \
2282 && NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
2283 && NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
2284 && (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
2285 && (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
2286 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
2287 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
2288 == NOTE_INSN_LOOP_END)) \
2289 { \
2290 (blockage) = 3; \
2291 } \
2292 }
2293
2294 #define ISSUE_RATE ((int)ix86_cpu > (int)PROCESSOR_I486 ? 2 : 1)
2295
2296 \f
2297 /* Add any extra modes needed to represent the condition code.
2298
2299 For the i386, we need separate modes when floating-point equality
2300 comparisons are being done. */
2301
2302 #define EXTRA_CC_MODES CC(CCFPEQmode, "CCFPEQ")
2303
2304 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2305 return the mode to be used for the comparison.
2306
2307 For floating-point equality comparisons, CCFPEQmode should be used.
2308 VOIDmode should be used in all other cases. */
2309
2310 #define SELECT_CC_MODE(OP,X,Y) \
2311 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2312 && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
2313
2314 /* Define the information needed to generate branch and scc insns. This is
2315 stored from the compare operation. Note that we can't use "rtx" here
2316 since it hasn't been defined! */
2317
2318 extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
2319
2320 /* Tell final.c how to eliminate redundant test instructions. */
2321
2322 /* Here we define machine-dependent flags and fields in cc_status
2323 (see `conditions.h'). */
2324
2325 /* Set if the cc value was actually from the 80387 and
2326 we are testing eax directly (i.e. no sahf) */
2327 #define CC_TEST_AX 020000
2328
2329 /* Set if the cc value is actually in the 80387, so a floating point
2330 conditional branch must be output. */
2331 #define CC_IN_80387 04000
2332
2333 /* Set if the CC value was stored in a nonstandard way, so that
2334 the state of equality is indicated by zero in the carry bit. */
2335 #define CC_Z_IN_NOT_C 010000
2336
2337 /* Set if the CC value was actually from the 80387 and loaded directly
2338 into the eflags instead of via eax/sahf. */
2339 #define CC_FCOMI 040000
2340
2341 /* Store in cc_status the expressions
2342 that the condition codes will describe
2343 after execution of an instruction whose pattern is EXP.
2344 Do not alter them if the instruction would not alter the cc's. */
2345
2346 #define NOTICE_UPDATE_CC(EXP, INSN) \
2347 notice_update_cc((EXP))
2348
2349 /* Output a signed jump insn. Use template NORMAL ordinarily, or
2350 FLOAT following a floating point comparison.
2351 Use NO_OV following an arithmetic insn that set the cc's
2352 before a test insn that was deleted.
2353 NO_OV may be zero, meaning final should reinsert the test insn
2354 because the jump cannot be handled properly without it. */
2355
2356 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
2357 { \
2358 if (cc_prev_status.flags & CC_IN_80387) \
2359 return FLOAT; \
2360 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
2361 return NO_OV; \
2362 return NORMAL; \
2363 }
2364 \f
2365 /* Control the assembler format that we output, to the extent
2366 this does not vary between assemblers. */
2367
2368 /* How to refer to registers in assembler output.
2369 This sequence is indexed by compiler's hard-register-number (see above). */
2370
2371 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2372 For non floating point regs, the following are the HImode names.
2373
2374 For float regs, the stack top is sometimes referred to as "%st(0)"
2375 instead of just "%st". PRINT_REG handles this with the "y" code. */
2376
2377 #define HI_REGISTER_NAMES \
2378 {"ax","dx","cx","bx","si","di","bp","sp", \
2379 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
2380
2381 #define REGISTER_NAMES HI_REGISTER_NAMES
2382
2383 /* Table of additional register names to use in user input. */
2384
2385 #define ADDITIONAL_REGISTER_NAMES \
2386 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2387 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2388 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2389 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2390
2391 /* Note we are omitting these since currently I don't know how
2392 to get gcc to use these, since they want the same but different
2393 number as al, and ax.
2394 */
2395
2396 /* note the last four are not really qi_registers, but
2397 the md will have to never output movb into one of them
2398 only a movw . There is no movb into the last four regs */
2399
2400 #define QI_REGISTER_NAMES \
2401 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
2402
2403 /* These parallel the array above, and can be used to access bits 8:15
2404 of regs 0 through 3. */
2405
2406 #define QI_HIGH_REGISTER_NAMES \
2407 {"ah", "dh", "ch", "bh", }
2408
2409 /* How to renumber registers for dbx and gdb. */
2410
2411 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
2412 #define DBX_REGISTER_NUMBER(n) \
2413 ((n) == 0 ? 0 : \
2414 (n) == 1 ? 2 : \
2415 (n) == 2 ? 1 : \
2416 (n) == 3 ? 3 : \
2417 (n) == 4 ? 6 : \
2418 (n) == 5 ? 7 : \
2419 (n) == 6 ? 4 : \
2420 (n) == 7 ? 5 : \
2421 (n) + 4)
2422
2423 /* Before the prologue, RA is at 0(%esp). */
2424 #define INCOMING_RETURN_ADDR_RTX \
2425 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2426
2427 /* After the prologue, RA is at -4(AP) in the current frame. */
2428 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2429 ((COUNT) == 0 \
2430 ? gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, arg_pointer_rtx, GEN_INT(-4)))\
2431 : gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, (FRAME), GEN_INT(4))))
2432
2433 /* PC is dbx register 8; let's use that column for RA. */
2434 #define DWARF_FRAME_RETURN_COLUMN 8
2435
2436 /* Before the prologue, the top of the frame is at 4(%esp). */
2437 #define INCOMING_FRAME_SP_OFFSET 4
2438
2439 /* This is how to output the definition of a user-level label named NAME,
2440 such as the label on a static function or variable NAME. */
2441
2442 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2443 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2444
2445 /* This is how to output an assembler line defining a `double' constant. */
2446
2447 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2448 do { long l[2]; \
2449 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2450 fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
2451 } while (0)
2452
2453 /* This is how to output a `long double' extended real constant. */
2454
2455 #undef ASM_OUTPUT_LONG_DOUBLE
2456 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2457 do { long l[3]; \
2458 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
2459 fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
2460 } while (0)
2461
2462 /* This is how to output an assembler line defining a `float' constant. */
2463
2464 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2465 do { long l; \
2466 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2467 fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
2468 } while (0)
2469
2470 /* Store in OUTPUT a string (made with alloca) containing
2471 an assembler-name for a local static variable named NAME.
2472 LABELNO is an integer which is different for each call. */
2473
2474 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2475 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2476 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2477
2478
2479
2480 /* This is how to output an assembler line defining an `int' constant. */
2481
2482 #define ASM_OUTPUT_INT(FILE,VALUE) \
2483 ( fprintf (FILE, "%s ", ASM_LONG), \
2484 output_addr_const (FILE,(VALUE)), \
2485 putc('\n',FILE))
2486
2487 /* Likewise for `char' and `short' constants. */
2488 /* is this supposed to do align too?? */
2489
2490 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2491 ( fprintf (FILE, "%s ", ASM_SHORT), \
2492 output_addr_const (FILE,(VALUE)), \
2493 putc('\n',FILE))
2494
2495 /*
2496 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2497 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2498 output_addr_const (FILE,(VALUE)), \
2499 fputs (",", FILE), \
2500 output_addr_const (FILE,(VALUE)), \
2501 fputs (" >> 8\n",FILE))
2502 */
2503
2504
2505 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2506 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2507 output_addr_const (FILE, (VALUE)), \
2508 putc ('\n', FILE))
2509
2510 /* This is how to output an assembler line for a numeric constant byte. */
2511
2512 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2513 fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
2514
2515 /* This is how to output an insn to push a register on the stack.
2516 It need not be very fast code. */
2517
2518 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2519 fprintf (FILE, "\tpushl %%e%s\n", reg_names[REGNO])
2520
2521 /* This is how to output an insn to pop a register from the stack.
2522 It need not be very fast code. */
2523
2524 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2525 fprintf (FILE, "\tpopl %%e%s\n", reg_names[REGNO])
2526
2527 /* This is how to output an element of a case-vector that is absolute.
2528 */
2529
2530 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2531 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
2532
2533 /* This is how to output an element of a case-vector that is relative.
2534 We don't use these on the 386 yet, because the ATT assembler can't do
2535 forward reference the differences.
2536 */
2537
2538 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2539 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
2540
2541 /* Define the parentheses used to group arithmetic operations
2542 in assembler code. */
2543
2544 #define ASM_OPEN_PAREN ""
2545 #define ASM_CLOSE_PAREN ""
2546
2547 /* Define results of standard character escape sequences. */
2548 #define TARGET_BELL 007
2549 #define TARGET_BS 010
2550 #define TARGET_TAB 011
2551 #define TARGET_NEWLINE 012
2552 #define TARGET_VT 013
2553 #define TARGET_FF 014
2554 #define TARGET_CR 015
2555 \f
2556 /* Print operand X (an rtx) in assembler syntax to file FILE.
2557 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2558 The CODE z takes the size of operand from the following digit, and
2559 outputs b,w,or l respectively.
2560
2561 On the 80386, we use several such letters:
2562 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
2563 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
2564 R -- print the prefix for register names.
2565 z -- print the opcode suffix for the size of the current operand.
2566 * -- print a star (in certain assembler syntax)
2567 P -- if PIC, print an @PLT suffix.
2568 X -- don't print any sort of PIC '@' suffix for a symbol.
2569 J -- print jump insn for arithmetic_comparison_operator.
2570 s -- ??? something to do with double shifts. not actually used, afaik.
2571 C -- print a conditional move suffix corresponding to the op code.
2572 c -- likewise, but reverse the condition.
2573 F,f -- likewise, but for floating-point. */
2574
2575 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2576 ((CODE) == '*' || (CODE) == '_')
2577
2578 /* Print the name of a register based on its machine mode and number.
2579 If CODE is 'w', pretend the mode is HImode.
2580 If CODE is 'b', pretend the mode is QImode.
2581 If CODE is 'k', pretend the mode is SImode.
2582 If CODE is 'h', pretend the reg is the `high' byte register.
2583 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2584
2585 extern char *hi_reg_name[];
2586 extern char *qi_reg_name[];
2587 extern char *qi_high_reg_name[];
2588
2589 #define PRINT_REG(X, CODE, FILE) \
2590 do { if (REGNO (X) == ARG_POINTER_REGNUM) \
2591 abort (); \
2592 fprintf (FILE, "%s", RP); \
2593 switch ((CODE == 'w' ? 2 \
2594 : CODE == 'b' ? 1 \
2595 : CODE == 'k' ? 4 \
2596 : CODE == 'y' ? 3 \
2597 : CODE == 'h' ? 0 \
2598 : GET_MODE_SIZE (GET_MODE (X)))) \
2599 { \
2600 case 3: \
2601 if (STACK_TOP_P (X)) \
2602 { \
2603 fputs ("st(0)", FILE); \
2604 break; \
2605 } \
2606 case 4: \
2607 case 8: \
2608 case 12: \
2609 if (! FP_REG_P (X)) fputs ("e", FILE); \
2610 case 2: \
2611 fputs (hi_reg_name[REGNO (X)], FILE); \
2612 break; \
2613 case 1: \
2614 fputs (qi_reg_name[REGNO (X)], FILE); \
2615 break; \
2616 case 0: \
2617 fputs (qi_high_reg_name[REGNO (X)], FILE); \
2618 break; \
2619 } \
2620 } while (0)
2621
2622 #define PRINT_OPERAND(FILE, X, CODE) \
2623 print_operand (FILE, X, CODE)
2624
2625 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2626 print_operand_address (FILE, ADDR)
2627
2628 /* Print the name of a register for based on its machine mode and number.
2629 This macro is used to print debugging output.
2630 This macro is different from PRINT_REG in that it may be used in
2631 programs that are not linked with aux-output.o. */
2632
2633 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2634 do { static char *hi_name[] = HI_REGISTER_NAMES; \
2635 static char *qi_name[] = QI_REGISTER_NAMES; \
2636 fprintf (FILE, "%d %s", REGNO (X), RP); \
2637 if (REGNO (X) == ARG_POINTER_REGNUM) \
2638 { fputs ("argp", FILE); break; } \
2639 if (STACK_TOP_P (X)) \
2640 { fputs ("st(0)", FILE); break; } \
2641 if (FP_REG_P (X)) \
2642 { fputs (hi_name[REGNO(X)], FILE); break; } \
2643 switch (GET_MODE_SIZE (GET_MODE (X))) \
2644 { \
2645 default: \
2646 fputs ("e", FILE); \
2647 case 2: \
2648 fputs (hi_name[REGNO (X)], FILE); \
2649 break; \
2650 case 1: \
2651 fputs (qi_name[REGNO (X)], FILE); \
2652 break; \
2653 } \
2654 } while (0)
2655
2656 /* Output the prefix for an immediate operand, or for an offset operand. */
2657 #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
2658 #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
2659
2660 /* Routines in libgcc that return floats must return them in an fp reg,
2661 just as other functions do which return such values.
2662 These macros make that happen. */
2663
2664 #define FLOAT_VALUE_TYPE float
2665 #define INTIFY(FLOATVAL) FLOATVAL
2666
2667 /* Nonzero if INSN magically clobbers register REGNO. */
2668
2669 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
2670 (FP_REGNO_P (REGNO) \
2671 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
2672 */
2673
2674 /* a letter which is not needed by the normal asm syntax, which
2675 we can use for operand syntax in the extended asm */
2676
2677 #define ASM_OPERAND_LETTER '#'
2678 #define RET return ""
2679 #define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
2680 \f
2681 /* Helper macros to expand a binary/unary operator if needed */
2682 #define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
2683 do { \
2684 if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
2685 FAIL; \
2686 } while (0)
2687
2688 #define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
2689 do { \
2690 if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
2691 FAIL; \
2692 } while (0)
2693
2694 \f
2695 /* Functions in i386.c */
2696 extern void override_options ();
2697 extern void order_regs_for_local_alloc ();
2698 extern char *output_strlen_unroll ();
2699 extern struct rtx_def *i386_sext16_if_const ();
2700 extern int i386_aligned_p ();
2701 extern int i386_cc_probably_useless_p ();
2702 extern int i386_valid_decl_attribute_p ();
2703 extern int i386_valid_type_attribute_p ();
2704 extern int i386_return_pops_args ();
2705 extern int i386_comp_type_attributes ();
2706 extern void init_cumulative_args ();
2707 extern void function_arg_advance ();
2708 extern struct rtx_def *function_arg ();
2709 extern int function_arg_partial_nregs ();
2710 extern char *output_strlen_unroll ();
2711 extern char *singlemove_string ();
2712 extern char *output_move_double ();
2713 extern char *output_move_pushmem ();
2714 extern int standard_80387_constant_p ();
2715 extern char *output_move_const_single ();
2716 extern int symbolic_operand ();
2717 extern int call_insn_operand ();
2718 extern int expander_call_insn_operand ();
2719 extern int symbolic_reference_mentioned_p ();
2720 extern int ix86_expand_binary_operator ();
2721 extern int ix86_binary_operator_ok ();
2722 extern int ix86_expand_unary_operator ();
2723 extern int ix86_unary_operator_ok ();
2724 extern void emit_pic_move ();
2725 extern void function_prologue ();
2726 extern int simple_386_epilogue ();
2727 extern void function_epilogue ();
2728 extern int legitimate_address_p ();
2729 extern struct rtx_def *legitimize_pic_address ();
2730 extern struct rtx_def *legitimize_address ();
2731 extern void print_operand ();
2732 extern void print_operand_address ();
2733 extern void notice_update_cc ();
2734 extern void split_di ();
2735 extern int binary_387_op ();
2736 extern int shift_op ();
2737 extern int VOIDmode_compare_op ();
2738 extern char *output_387_binary_op ();
2739 extern char *output_fix_trunc ();
2740 extern void output_float_extend ();
2741 extern char *output_float_compare ();
2742 extern char *output_fp_cc0_set ();
2743 extern void save_386_machine_status ();
2744 extern void restore_386_machine_status ();
2745 extern void clear_386_stack_locals ();
2746 extern struct rtx_def *assign_386_stack_local ();
2747 extern int is_mul ();
2748 extern int is_div ();
2749 extern int last_to_set_cc ();
2750 extern int doesnt_set_condition_code ();
2751 extern int sets_condition_code ();
2752 extern int str_immediate_operand ();
2753 extern int is_fp_insn ();
2754 extern int is_fp_dest ();
2755 extern int is_fp_store ();
2756 extern int agi_dependent ();
2757 extern int reg_mentioned_in_mem ();
2758 extern char *output_int_conditional_move ();
2759 extern char *output_fp_conditional_move ();
2760 extern int ix86_can_use_return_insn_p ();
2761 extern int small_shift_operand ();
2762 extern char *output_ashl ();
2763 extern int memory_address_info ();
2764
2765 #ifdef NOTYET
2766 extern struct rtx_def *copy_all_rtx ();
2767 extern void rewrite_address ();
2768 #endif
2769
2770 /* Variables in i386.c */
2771 extern const char *ix86_cpu_string; /* for -mcpu=<xxx> */
2772 extern const char *ix86_arch_string; /* for -march=<xxx> */
2773 extern const char *i386_reg_alloc_order; /* register allocation order */
2774 extern const char *i386_regparm_string; /* # registers to use to pass args */
2775 extern const char *i386_align_loops_string; /* power of two alignment for loops */
2776 extern const char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
2777 extern const char *i386_align_funcs_string; /* power of two alignment for functions */
2778 extern const char *i386_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
2779 extern const char *i386_branch_cost_string; /* values 1-5: see jump.c */
2780 extern int i386_regparm; /* i386_regparm_string as a number */
2781 extern int i386_align_loops; /* power of two alignment for loops */
2782 extern int i386_align_jumps; /* power of two alignment for non-loop jumps */
2783 extern int i386_align_funcs; /* power of two alignment for functions */
2784 extern int i386_preferred_stack_boundary; /* preferred stack boundary alignment in bits */
2785 extern int i386_branch_cost; /* values 1-5: see jump.c */
2786 extern char *hi_reg_name[]; /* names for 16 bit regs */
2787 extern char *qi_reg_name[]; /* names for 8 bit regs (low) */
2788 extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */
2789 extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
2790 extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */
2791 extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */
2792
2793 /* External variables used */
2794 extern int optimize; /* optimization level */
2795 extern int obey_regdecls; /* TRUE if stupid register allocation */
2796
2797 /* External functions used */
2798 extern struct rtx_def *force_operand ();
2799
2800 \f
2801 /*
2802 Local variables:
2803 version-control: t
2804 End:
2805 */
This page took 0.168029 seconds and 5 git commands to generate.