]> gcc.gnu.org Git - gcc.git/blob - gcc/config/i386/i386.h
acconfig.h (HAVE_GAS_MAX_SKIP_P2ALIGN): New tag.
[gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for Intel X86
2 (386, 486, Pentium).
3 Copyright (C) 1988, 92, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
24
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
27
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
30
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
34 PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
35 PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
36
37 /* Names to predefine in the preprocessor for this target machine. */
38
39 #define I386 1
40
41 /* Stubs for half-pic support if not OSF/1 reference platform. */
42
43 #ifndef HALF_PIC_P
44 #define HALF_PIC_P() 0
45 #define HALF_PIC_NUMBER_PTRS 0
46 #define HALF_PIC_NUMBER_REFS 0
47 #define HALF_PIC_ENCODE(DECL)
48 #define HALF_PIC_DECLARE(NAME)
49 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
50 #define HALF_PIC_ADDRESS_P(X) 0
51 #define HALF_PIC_PTR(X) X
52 #define HALF_PIC_FINISH(STREAM)
53 #endif
54
55 /* Define the specific costs for a given cpu */
56
57 struct processor_costs {
58 int add; /* cost of an add instruction */
59 int lea; /* cost of a lea instruction */
60 int shift_var; /* variable shift costs */
61 int shift_const; /* constant shift costs */
62 int mult_init; /* cost of starting a multiply */
63 int mult_bit; /* cost of multiply per each bit set */
64 int divide; /* cost of a divide/mod */
65 };
66
67 extern struct processor_costs *ix86_cost;
68
69 /* Run-time compilation parameters selecting different hardware subsets. */
70
71 extern int target_flags;
72
73 /* Macros used in the machine description to test the flags. */
74
75 /* configure can arrange to make this 2, to force a 486. */
76 #ifndef TARGET_CPU_DEFAULT
77 #define TARGET_CPU_DEFAULT 0
78 #endif
79
80 /* Masks for the -m switches */
81 #define MASK_80387 000000000001 /* Hardware floating point */
82 #define MASK_NOTUSED1 000000000002 /* bit not currently used */
83 #define MASK_NOTUSED2 000000000004 /* bit not currently used */
84 #define MASK_RTD 000000000010 /* Use ret that pops args */
85 #define MASK_ALIGN_DOUBLE 000000000020 /* align doubles to 2 word boundary */
86 #define MASK_SVR3_SHLIB 000000000040 /* Uninit locals into bss */
87 #define MASK_IEEE_FP 000000000100 /* IEEE fp comparisons */
88 #define MASK_FLOAT_RETURNS 000000000200 /* Return float in st(0) */
89 #define MASK_NO_FANCY_MATH_387 000000000400 /* Disable sin, cos, sqrt */
90 #define MASK_OMIT_LEAF_FRAME_POINTER 0x00000800 /* omit leaf frame pointers */
91 /* Temporary codegen switches */
92 #define MASK_DEBUG_ADDR 000001000000 /* Debug GO_IF_LEGITIMATE_ADDRESS */
93 #define MASK_NO_WIDE_MULTIPLY 000002000000 /* Disable 32x32->64 multiplies */
94 #define MASK_NO_MOVE 000004000000 /* Don't generate mem->mem */
95 #define MASK_NO_PSEUDO 000010000000 /* Move op's args -> pseudos */
96 #define MASK_DEBUG_ARG 000020000000 /* Debug function_arg */
97 #define MASK_SCHEDULE_PROLOGUE 000040000000 /* Emit prologue as rtl */
98 #define MASK_STACK_PROBE 000100000000 /* Enable stack probing */
99
100 /* Use the floating point instructions */
101 #define TARGET_80387 (target_flags & MASK_80387)
102
103 /* Compile using ret insn that pops args.
104 This will not work unless you use prototypes at least
105 for all functions that can take varying numbers of args. */
106 #define TARGET_RTD (target_flags & MASK_RTD)
107
108 /* Align doubles to a two word boundary. This breaks compatibility with
109 the published ABI's for structures containing doubles, but produces
110 faster code on the pentium. */
111 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
112
113 /* Put uninitialized locals into bss, not data.
114 Meaningful only on svr3. */
115 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
116
117 /* Use IEEE floating point comparisons. These handle correctly the cases
118 where the result of a comparison is unordered. Normally SIGFPE is
119 generated in such cases, in which case this isn't needed. */
120 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
121
122 /* Functions that return a floating point value may return that value
123 in the 387 FPU or in 386 integer registers. If set, this flag causes
124 the 387 to be used, which is compatible with most calling conventions. */
125 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
126
127 /* Disable generation of FP sin, cos and sqrt operations for 387.
128 This is because FreeBSD lacks these in the math-emulator-code */
129 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
130
131 /* Don't create frame pointers for leaf functions */
132 #define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
133
134 /* Temporary switches for tuning code generation */
135
136 /* Disable 32x32->64 bit multiplies that are used for long long multiplies
137 and division by constants, but sometimes cause reload problems. */
138 #define TARGET_NO_WIDE_MULTIPLY (target_flags & MASK_NO_WIDE_MULTIPLY)
139 #define TARGET_WIDE_MULTIPLY (!TARGET_NO_WIDE_MULTIPLY)
140
141 /* Emit/Don't emit prologue as rtl */
142 #define TARGET_SCHEDULE_PROLOGUE (target_flags & MASK_SCHEDULE_PROLOGUE)
143
144 /* Debug GO_IF_LEGITIMATE_ADDRESS */
145 #define TARGET_DEBUG_ADDR (target_flags & MASK_DEBUG_ADDR)
146
147 /* Debug FUNCTION_ARG macros */
148 #define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
149
150 /* Hack macros for tuning code generation */
151 #define TARGET_MOVE ((target_flags & MASK_NO_MOVE) == 0) /* Don't generate memory->memory */
152 #define TARGET_PSEUDO ((target_flags & MASK_NO_PSEUDO) == 0) /* Move op's args into pseudos */
153
154 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
155 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
156 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
157 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
158 #define TARGET_USE_LEAVE (ix86_cpu == PROCESSOR_I386)
159 #define TARGET_PUSH_MEMORY (ix86_cpu == PROCESSOR_I386)
160 #define TARGET_ZERO_EXTEND_WITH_AND (ix86_cpu != PROCESSOR_I386 \
161 && ix86_cpu != PROCESSOR_PENTIUMPRO)
162 #define TARGET_DOUBLE_WITH_ADD (ix86_cpu != PROCESSOR_I386)
163 #define TARGET_USE_BIT_TEST (ix86_cpu == PROCESSOR_I386)
164 #define TARGET_UNROLL_STRLEN (ix86_cpu != PROCESSOR_I386)
165 #define TARGET_USE_Q_REG (ix86_cpu == PROCESSOR_PENTIUM \
166 || ix86_cpu == PROCESSOR_PENTIUMPRO)
167 #define TARGET_USE_ANY_REG (ix86_cpu == PROCESSOR_I486)
168 #define TARGET_CMOVE (ix86_arch == PROCESSOR_PENTIUMPRO)
169 #define TARGET_DEEP_BRANCH_PREDICTION (ix86_cpu == PROCESSOR_PENTIUMPRO)
170 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
171
172 #define TARGET_SWITCHES \
173 { { "80387", MASK_80387 }, \
174 { "no-80387", -MASK_80387 }, \
175 { "hard-float", MASK_80387 }, \
176 { "soft-float", -MASK_80387 }, \
177 { "no-soft-float", MASK_80387 }, \
178 { "386", 0 }, \
179 { "no-386", 0 }, \
180 { "486", 0 }, \
181 { "no-486", 0 }, \
182 { "pentium", 0 }, \
183 { "pentiumpro", 0 }, \
184 { "rtd", MASK_RTD }, \
185 { "no-rtd", -MASK_RTD }, \
186 { "align-double", MASK_ALIGN_DOUBLE }, \
187 { "no-align-double", -MASK_ALIGN_DOUBLE }, \
188 { "svr3-shlib", MASK_SVR3_SHLIB }, \
189 { "no-svr3-shlib", -MASK_SVR3_SHLIB }, \
190 { "ieee-fp", MASK_IEEE_FP }, \
191 { "no-ieee-fp", -MASK_IEEE_FP }, \
192 { "fp-ret-in-387", MASK_FLOAT_RETURNS }, \
193 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS }, \
194 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387 }, \
195 { "fancy-math-387", -MASK_NO_FANCY_MATH_387 }, \
196 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, \
197 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER }, \
198 { "no-wide-multiply", MASK_NO_WIDE_MULTIPLY }, \
199 { "wide-multiply", -MASK_NO_WIDE_MULTIPLY }, \
200 { "schedule-prologue", MASK_SCHEDULE_PROLOGUE }, \
201 { "no-schedule-prologue", -MASK_SCHEDULE_PROLOGUE }, \
202 { "debug-addr", MASK_DEBUG_ADDR }, \
203 { "no-debug-addr", -MASK_DEBUG_ADDR }, \
204 { "move", -MASK_NO_MOVE }, \
205 { "no-move", MASK_NO_MOVE }, \
206 { "debug-arg", MASK_DEBUG_ARG }, \
207 { "no-debug-arg", -MASK_DEBUG_ARG }, \
208 { "stack-arg-probe", MASK_STACK_PROBE }, \
209 { "no-stack-arg-probe", -MASK_STACK_PROBE }, \
210 { "windows", 0 }, \
211 { "dll", 0 }, \
212 SUBTARGET_SWITCHES \
213 { "", MASK_SCHEDULE_PROLOGUE | TARGET_DEFAULT}}
214
215 /* Which processor to schedule for. The cpu attribute defines a list that
216 mirrors this list, so changes to i386.md must be made at the same time. */
217
218 enum processor_type
219 {PROCESSOR_I386, /* 80386 */
220 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
221 PROCESSOR_PENTIUM,
222 PROCESSOR_PENTIUMPRO};
223
224 #define PROCESSOR_I386_STRING "i386"
225 #define PROCESSOR_I486_STRING "i486"
226 #define PROCESSOR_I586_STRING "i586"
227 #define PROCESSOR_PENTIUM_STRING "pentium"
228 #define PROCESSOR_I686_STRING "i686"
229 #define PROCESSOR_PENTIUMPRO_STRING "pentiumpro"
230
231 extern enum processor_type ix86_cpu;
232
233 extern int ix86_arch;
234
235 /* Define the default processor. This is overridden by other tm.h files. */
236 #define PROCESSOR_DEFAULT \
237 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
238 ? PROCESSOR_I486 \
239 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
240 ? PROCESSOR_PENTIUM \
241 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
242 ? PROCESSOR_PENTIUMPRO \
243 : PROCESSOR_I386
244 #define PROCESSOR_DEFAULT_STRING \
245 ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_I486) \
246 ? PROCESSOR_I486_STRING \
247 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUM) \
248 ? PROCESSOR_PENTIUM_STRING \
249 : ((enum processor_type) TARGET_CPU_DEFAULT == PROCESSOR_PENTIUMPRO) \
250 ? PROCESSOR_PENTIUMPRO_STRING \
251 : PROCESSOR_I386_STRING
252
253 /* This macro is similar to `TARGET_SWITCHES' but defines names of
254 command options that have values. Its definition is an
255 initializer with a subgrouping for each command option.
256
257 Each subgrouping contains a string constant, that defines the
258 fixed part of the option name, and the address of a variable. The
259 variable, type `char *', is set to the variable part of the given
260 option if the fixed part matches. The actual option name is made
261 by appending `-m' to the specified name. */
262 #define TARGET_OPTIONS \
263 { { "cpu=", &ix86_cpu_string}, \
264 { "arch=", &ix86_arch_string}, \
265 { "reg-alloc=", &i386_reg_alloc_order }, \
266 { "regparm=", &i386_regparm_string }, \
267 { "align-loops=", &i386_align_loops_string }, \
268 { "align-jumps=", &i386_align_jumps_string }, \
269 { "align-functions=", &i386_align_funcs_string }, \
270 { "branch-cost=", &i386_branch_cost_string }, \
271 SUBTARGET_OPTIONS \
272 }
273
274 /* Sometimes certain combinations of command options do not make
275 sense on a particular target machine. You can define a macro
276 `OVERRIDE_OPTIONS' to take account of this. This macro, if
277 defined, is executed once just after all the command options have
278 been parsed.
279
280 Don't use this macro to turn on various extra optimizations for
281 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
282
283 #define OVERRIDE_OPTIONS override_options ()
284
285 /* These are meant to be redefined in the host dependent files */
286 #define SUBTARGET_SWITCHES
287 #define SUBTARGET_OPTIONS
288
289 /* Define this to change the optimizations performed by default. */
290 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
291
292 /* Specs for the compiler proper */
293
294 #ifndef CC1_CPU_SPEC
295 #define CC1_CPU_SPEC "\
296 %{!mcpu*: \
297 %{m386:-mcpu=i386 -march=i386} \
298 %{mno-486:-mcpu=i386 -march=i386} \
299 %{m486:-mcpu=i486 -march=i486} \
300 %{mno-386:-mcpu=i486 -march=i486} \
301 %{mno-pentium:-mcpu=i486 -march=i486} \
302 %{mpentium:-mcpu=pentium} \
303 %{mno-pentiumpro:-mcpu=pentium} \
304 %{mpentiumpro:-mcpu=pentiumpro}}"
305 #endif
306 \f
307 #ifndef CPP_CPU_DEFAULT_SPEC
308 #if TARGET_CPU_DEFAULT == 1
309 #define CPP_CPU_DEFAULT_SPEC "-Di486"
310 #else
311 #if TARGET_CPU_DEFAULT == 2
312 #define CPP_CPU_DEFAULT_SPEC "-Dpentium -Di586"
313 #else
314 #if TARGET_CPU_DEFAULT == 3
315 #define CPP_CPU_DEFAULT_SPEC "-Dpentiumpro -Di686"
316 #else
317 #define CPP_CPU_DEFAULT_SPEC ""
318 #endif
319 #endif
320 #endif
321 #endif /* CPP_CPU_DEFAULT_SPEC */
322
323 #ifndef CPP_CPU_SPEC
324 #define CPP_CPU_SPEC "\
325 -Di386 -Asystem(unix) -Acpu(i386) -Amachine(i386) \
326 %{mcpu=i486:-Di486} %{m486:-Di486} \
327 %{mpentium:-Dpentium -Di586} %{mcpu=pentium:-Dpentium -Di586} \
328 %{mpentiumpro:-Dpentiumpro -Di686} %{mcpu=pentiumpro:-Dpentiumpro -Di686} \
329 %{!mcpu*:%{!m486:%{!mpentium*: %[cpp_cpu_default]}}}"
330 #endif
331
332 #ifndef CC1_SPEC
333 #define CC1_SPEC "%(cc1_spec) "
334 #endif
335
336 /* This macro defines names of additional specifications to put in the
337 specs that can be used in various specifications like CC1_SPEC. Its
338 definition is an initializer with a subgrouping for each command option.
339
340 Each subgrouping contains a string constant, that defines the
341 specification name, and a string constant that used by the GNU CC driver
342 program.
343
344 Do not define this macro if it does not need to do anything. */
345
346 #ifndef SUBTARGET_EXTRA_SPECS
347 #define SUBTARGET_EXTRA_SPECS
348 #endif
349
350 #define EXTRA_SPECS \
351 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
352 { "cpp_cpu", CPP_CPU_SPEC }, \
353 { "cc1_cpu", CC1_CPU_SPEC }, \
354 SUBTARGET_EXTRA_SPECS
355 \f
356 /* target machine storage layout */
357
358 /* Define for XFmode extended real floating point support.
359 This will automatically cause REAL_ARITHMETIC to be defined. */
360 #define LONG_DOUBLE_TYPE_SIZE 96
361
362 /* Define if you don't want extended real, but do want to use the
363 software floating point emulator for REAL_ARITHMETIC and
364 decimal <-> binary conversion. */
365 /* #define REAL_ARITHMETIC */
366
367 /* Define this if most significant byte of a word is the lowest numbered. */
368 /* That is true on the 80386. */
369
370 #define BITS_BIG_ENDIAN 0
371
372 /* Define this if most significant byte of a word is the lowest numbered. */
373 /* That is not true on the 80386. */
374 #define BYTES_BIG_ENDIAN 0
375
376 /* Define this if most significant word of a multiword number is the lowest
377 numbered. */
378 /* Not true for 80386 */
379 #define WORDS_BIG_ENDIAN 0
380
381 /* number of bits in an addressable storage unit */
382 #define BITS_PER_UNIT 8
383
384 /* Width in bits of a "word", which is the contents of a machine register.
385 Note that this is not necessarily the width of data type `int';
386 if using 16-bit ints on a 80386, this would still be 32.
387 But on a machine with 16-bit registers, this would be 16. */
388 #define BITS_PER_WORD 32
389
390 /* Width of a word, in units (bytes). */
391 #define UNITS_PER_WORD 4
392
393 /* Width in bits of a pointer.
394 See also the macro `Pmode' defined below. */
395 #define POINTER_SIZE 32
396
397 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
398 #define PARM_BOUNDARY 32
399
400 /* Boundary (in *bits*) on which stack pointer should be aligned. */
401 #define STACK_BOUNDARY 32
402
403 /* Allocation boundary (in *bits*) for the code of a function.
404 For i486, we get better performance by aligning to a cache
405 line (i.e. 16 byte) boundary. */
406 #define FUNCTION_BOUNDARY (1 << (i386_align_funcs + 3))
407
408 /* Alignment of field after `int : 0' in a structure. */
409
410 #define EMPTY_FIELD_BOUNDARY 32
411
412 /* Minimum size in bits of the largest boundary to which any
413 and all fundamental data types supported by the hardware
414 might need to be aligned. No data type wants to be aligned
415 rounder than this. The i386 supports 64-bit floating point
416 quantities, but these can be aligned on any 32-bit boundary.
417 The published ABIs say that doubles should be aligned on word
418 boundaries, but the Pentium gets better performance with them
419 aligned on 64 bit boundaries. */
420 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
421
422 /* If defined, a C expression to compute the alignment given to a
423 constant that is being placed in memory. CONSTANT is the constant
424 and ALIGN is the alignment that the object would ordinarily have.
425 The value of this macro is used instead of that alignment to align
426 the object.
427
428 If this macro is not defined, then ALIGN is used.
429
430 The typical use of this macro is to increase alignment for string
431 constants to be word aligned so that `strcpy' calls that copy
432 constants can be done inline. */
433
434 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
435 (TREE_CODE (EXP) == REAL_CST \
436 ? ((TYPE_MODE (TREE_TYPE (EXP)) == DFmode && (ALIGN) < 64) \
437 ? 64 \
438 : (TYPE_MODE (TREE_TYPE (EXP)) == XFmode && (ALIGN) < 128) \
439 ? 128 \
440 : (ALIGN)) \
441 : TREE_CODE (EXP) == STRING_CST \
442 ? ((TREE_STRING_LENGTH (EXP) >= 31 && (ALIGN) < 256) \
443 ? 256 \
444 : (ALIGN)) \
445 : (ALIGN))
446
447 /* If defined, a C expression to compute the alignment for a static
448 variable. TYPE is the data type, and ALIGN is the alignment that
449 the object would ordinarily have. The value of this macro is used
450 instead of that alignment to align the object.
451
452 If this macro is not defined, then ALIGN is used.
453
454 One use of this macro is to increase alignment of medium-size
455 data to make it all fit in fewer cache lines. Another is to
456 cause character arrays to be word-aligned so that `strcpy' calls
457 that copy constants to character arrays can be done inline. */
458
459 #define DATA_ALIGNMENT(TYPE, ALIGN) \
460 ((AGGREGATE_TYPE_P (TYPE) \
461 && TYPE_SIZE (TYPE) \
462 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
463 && (TREE_INT_CST_LOW (TYPE_SIZE (TYPE)) >= 256 \
464 || TREE_INT_CST_HIGH (TYPE_SIZE (TYPE))) && (ALIGN) < 256) \
465 ? 256 \
466 : TREE_CODE (TYPE) == ARRAY_TYPE \
467 ? ((TYPE_MODE (TREE_TYPE (TYPE)) == DFmode && (ALIGN) < 64) \
468 ? 64 \
469 : (TYPE_MODE (TREE_TYPE (TYPE)) == XFmode && (ALIGN) < 128) \
470 ? 128 \
471 : (ALIGN)) \
472 : TREE_CODE (TYPE) == COMPLEX_TYPE \
473 ? ((TYPE_MODE (TYPE) == DCmode && (ALIGN) < 64) \
474 ? 64 \
475 : (TYPE_MODE (TYPE) == XCmode && (ALIGN) < 128) \
476 ? 128 \
477 : (ALIGN)) \
478 : ((TREE_CODE (TYPE) == RECORD_TYPE \
479 || TREE_CODE (TYPE) == UNION_TYPE \
480 || TREE_CODE (TYPE) == QUAL_UNION_TYPE) \
481 && TYPE_FIELDS (TYPE)) \
482 ? ((DECL_MODE (TYPE_FIELDS (TYPE)) == DFmode && (ALIGN) < 64) \
483 ? 64 \
484 : (DECL_MODE (TYPE_FIELDS (TYPE)) == XFmode && (ALIGN) < 128) \
485 ? 128 \
486 : (ALIGN)) \
487 : TREE_CODE (TYPE) == REAL_TYPE \
488 ? ((TYPE_MODE (TYPE) == DFmode && (ALIGN) < 64) \
489 ? 64 \
490 : (TYPE_MODE (TYPE) == XFmode && (ALIGN) < 128) \
491 ? 128 \
492 : (ALIGN)) \
493 : (ALIGN))
494
495 /* Set this non-zero if move instructions will actually fail to work
496 when given unaligned data. */
497 #define STRICT_ALIGNMENT 0
498
499 /* If bit field type is int, don't let it cross an int,
500 and give entire struct the alignment of an int. */
501 /* Required on the 386 since it doesn't have bitfield insns. */
502 #define PCC_BITFIELD_TYPE_MATTERS 1
503
504 /* Maximum power of 2 that code can be aligned to. */
505 #define MAX_CODE_ALIGN 6 /* 64 byte alignment */
506
507 /* Align loop starts for optimal branching. */
508 #define LOOP_ALIGN(LABEL) (i386_align_loops)
509 #define LOOP_ALIGN_MAX_SKIP (i386_align_loops_string ? 0 : 7)
510
511 /* This is how to align an instruction for optimal branching.
512 On i486 we'll get better performance by aligning on a
513 cache line (i.e. 16 byte) boundary. */
514 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (i386_align_jumps)
515 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (i386_align_jumps_string ? 0 : 7)
516
517 \f
518 /* Standard register usage. */
519
520 /* This processor has special stack-like registers. See reg-stack.c
521 for details. */
522
523 #define STACK_REGS
524 #define IS_STACK_MODE(mode) (mode==DFmode || mode==SFmode || mode==XFmode)
525
526 /* Number of actual hardware registers.
527 The hardware registers are assigned numbers for the compiler
528 from 0 to just below FIRST_PSEUDO_REGISTER.
529 All registers that the compiler knows about must be given numbers,
530 even those that are not normally considered general registers.
531
532 In the 80386 we give the 8 general purpose registers the numbers 0-7.
533 We number the floating point registers 8-15.
534 Note that registers 0-7 can be accessed as a short or int,
535 while only 0-3 may be used with byte `mov' instructions.
536
537 Reg 16 does not correspond to any hardware register, but instead
538 appears in the RTL as an argument pointer prior to reload, and is
539 eliminated during reloading in favor of either the stack or frame
540 pointer. */
541
542 #define FIRST_PSEUDO_REGISTER 17
543
544 /* 1 for registers that have pervasive standard uses
545 and are not available for the register allocator.
546 On the 80386, the stack pointer is such, as is the arg pointer. */
547 #define FIXED_REGISTERS \
548 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
549 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
550
551 /* 1 for registers not available across function calls.
552 These must include the FIXED_REGISTERS and also any
553 registers that can be used without being saved.
554 The latter must include the registers where values are returned
555 and the register where structure-value addresses are passed.
556 Aside from that, you can include as many other registers as you like. */
557
558 #define CALL_USED_REGISTERS \
559 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
560 { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
561
562 /* Order in which to allocate registers. Each register must be
563 listed once, even those in FIXED_REGISTERS. List frame pointer
564 late and fixed registers last. Note that, in general, we prefer
565 registers listed in CALL_USED_REGISTERS, keeping the others
566 available for storage of persistent values.
567
568 Three different versions of REG_ALLOC_ORDER have been tried:
569
570 If the order is edx, ecx, eax, ... it produces a slightly faster compiler,
571 but slower code on simple functions returning values in eax.
572
573 If the order is eax, ecx, edx, ... it causes reload to abort when compiling
574 perl 4.036 due to not being able to create a DImode register (to hold a 2
575 word union).
576
577 If the order is eax, edx, ecx, ... it produces better code for simple
578 functions, and a slightly slower compiler. Users complained about the code
579 generated by allocating edx first, so restore the 'natural' order of things. */
580
581 #define REG_ALLOC_ORDER \
582 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
583 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }
584
585 /* A C statement (sans semicolon) to choose the order in which to
586 allocate hard registers for pseudo-registers local to a basic
587 block.
588
589 Store the desired register order in the array `reg_alloc_order'.
590 Element 0 should be the register to allocate first; element 1, the
591 next register; and so on.
592
593 The macro body should not assume anything about the contents of
594 `reg_alloc_order' before execution of the macro.
595
596 On most machines, it is not necessary to define this macro. */
597
598 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
599
600 /* Macro to conditionally modify fixed_regs/call_used_regs. */
601 #define CONDITIONAL_REGISTER_USAGE \
602 { \
603 if (flag_pic) \
604 { \
605 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
606 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
607 } \
608 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
609 { \
610 int i; \
611 HARD_REG_SET x; \
612 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
613 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
614 if (TEST_HARD_REG_BIT (x, i)) \
615 fixed_regs[i] = call_used_regs[i] = 1; \
616 } \
617 }
618
619 /* Return number of consecutive hard regs needed starting at reg REGNO
620 to hold something of mode MODE.
621 This is ordinarily the length in words of a value of mode MODE
622 but can be less for certain modes in special long registers.
623
624 Actually there are no two word move instructions for consecutive
625 registers. And only registers 0-3 may have mov byte instructions
626 applied to them.
627 */
628
629 #define HARD_REGNO_NREGS(REGNO, MODE) \
630 (FP_REGNO_P (REGNO) ? 1 \
631 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
632
633 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
634 On the 80386, the first 4 cpu registers can hold any mode
635 while the floating point registers may hold only floating point.
636 Make it clear that the fp regs could not hold a 16-byte float. */
637
638 /* The casts to int placate a compiler on a microvax,
639 for cross-compiler testing. */
640
641 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
642 ((REGNO) < 2 ? 1 \
643 : (REGNO) < 4 ? 1 \
644 : FP_REGNO_P (REGNO) \
645 ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
646 || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
647 && GET_MODE_UNIT_SIZE (MODE) <= (LONG_DOUBLE_TYPE_SIZE == 96 ? 12 : 8))\
648 : (int) (MODE) != (int) QImode ? 1 \
649 : (reload_in_progress | reload_completed) == 1)
650
651 /* Value is 1 if it is a good idea to tie two pseudo registers
652 when one has mode MODE1 and one has mode MODE2.
653 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
654 for any hard reg, then this must be 0 for correct output. */
655
656 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
657
658 /* Specify the registers used for certain standard purposes.
659 The values of these macros are register numbers. */
660
661 /* on the 386 the pc register is %eip, and is not usable as a general
662 register. The ordinary mov instructions won't work */
663 /* #define PC_REGNUM */
664
665 /* Register to use for pushing function arguments. */
666 #define STACK_POINTER_REGNUM 7
667
668 /* Base register for access to local variables of the function. */
669 #define FRAME_POINTER_REGNUM 6
670
671 /* First floating point reg */
672 #define FIRST_FLOAT_REG 8
673
674 /* First & last stack-like regs */
675 #define FIRST_STACK_REG FIRST_FLOAT_REG
676 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
677
678 /* Value should be nonzero if functions must have frame pointers.
679 Zero means the frame pointer need not be set up (and parms
680 may be accessed via the stack pointer) in functions that seem suitable.
681 This is computed in `reload', in reload1.c. */
682 #define FRAME_POINTER_REQUIRED (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ())
683
684 /* Base register for access to arguments of the function. */
685 #define ARG_POINTER_REGNUM 16
686
687 /* Register in which static-chain is passed to a function. */
688 #define STATIC_CHAIN_REGNUM 2
689
690 /* Register to hold the addressing base for position independent
691 code access to data items. */
692 #define PIC_OFFSET_TABLE_REGNUM 3
693
694 /* Register in which address to store a structure value
695 arrives in the function. On the 386, the prologue
696 copies this from the stack to register %eax. */
697 #define STRUCT_VALUE_INCOMING 0
698
699 /* Place in which caller passes the structure value address.
700 0 means push the value on the stack like an argument. */
701 #define STRUCT_VALUE 0
702
703 /* A C expression which can inhibit the returning of certain function
704 values in registers, based on the type of value. A nonzero value
705 says to return the function value in memory, just as large
706 structures are always returned. Here TYPE will be a C expression
707 of type `tree', representing the data type of the value.
708
709 Note that values of mode `BLKmode' must be explicitly handled by
710 this macro. Also, the option `-fpcc-struct-return' takes effect
711 regardless of this macro. On most systems, it is possible to
712 leave the macro undefined; this causes a default definition to be
713 used, whose value is the constant 1 for `BLKmode' values, and 0
714 otherwise.
715
716 Do not use this macro to indicate that structures and unions
717 should always be returned in memory. You should instead use
718 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
719
720 #define RETURN_IN_MEMORY(TYPE) \
721 ((TYPE_MODE (TYPE) == BLKmode) || int_size_in_bytes (TYPE) > 12)
722
723 \f
724 /* Define the classes of registers for register constraints in the
725 machine description. Also define ranges of constants.
726
727 One of the classes must always be named ALL_REGS and include all hard regs.
728 If there is more than one class, another class must be named NO_REGS
729 and contain no registers.
730
731 The name GENERAL_REGS must be the name of a class (or an alias for
732 another name such as ALL_REGS). This is the class of registers
733 that is allowed by "g" or "r" in a register constraint.
734 Also, registers outside this class are allocated only when
735 instructions express preferences for them.
736
737 The classes must be numbered in nondecreasing order; that is,
738 a larger-numbered class must never be contained completely
739 in a smaller-numbered class.
740
741 For any two classes, it is very desirable that there be another
742 class that represents their union.
743
744 It might seem that class BREG is unnecessary, since no useful 386
745 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
746 and the "b" register constraint is useful in asms for syscalls. */
747
748 enum reg_class
749 {
750 NO_REGS,
751 AREG, DREG, CREG, BREG,
752 AD_REGS, /* %eax/%edx for DImode */
753 Q_REGS, /* %eax %ebx %ecx %edx */
754 SIREG, DIREG,
755 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
756 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
757 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
758 FLOAT_REGS,
759 ALL_REGS, LIM_REG_CLASSES
760 };
761
762 #define N_REG_CLASSES (int) LIM_REG_CLASSES
763
764 #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
765
766 /* Give names of register classes as strings for dump file. */
767
768 #define REG_CLASS_NAMES \
769 { "NO_REGS", \
770 "AREG", "DREG", "CREG", "BREG", \
771 "AD_REGS", \
772 "Q_REGS", \
773 "SIREG", "DIREG", \
774 "INDEX_REGS", \
775 "GENERAL_REGS", \
776 "FP_TOP_REG", "FP_SECOND_REG", \
777 "FLOAT_REGS", \
778 "ALL_REGS" }
779
780 /* Define which registers fit in which classes.
781 This is an initializer for a vector of HARD_REG_SET
782 of length N_REG_CLASSES. */
783
784 #define REG_CLASS_CONTENTS \
785 { {0}, \
786 {0x1}, {0x2}, {0x4}, {0x8}, /* AREG, DREG, CREG, BREG */ \
787 {0x3}, /* AD_REGS */ \
788 {0xf}, /* Q_REGS */ \
789 {0x10}, {0x20}, /* SIREG, DIREG */ \
790 {0x7f}, /* INDEX_REGS */ \
791 {0x100ff}, /* GENERAL_REGS */ \
792 {0x0100}, {0x0200}, /* FP_TOP_REG, FP_SECOND_REG */ \
793 {0xff00}, /* FLOAT_REGS */ \
794 {0x1ffff}}
795
796 /* The same information, inverted:
797 Return the class number of the smallest class containing
798 reg number REGNO. This could be a conditional expression
799 or could index an array. */
800
801 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
802
803 /* When defined, the compiler allows registers explicitly used in the
804 rtl to be used as spill registers but prevents the compiler from
805 extending the lifetime of these registers. */
806
807 #define SMALL_REGISTER_CLASSES 1
808
809 #define QI_REG_P(X) \
810 (REG_P (X) && REGNO (X) < 4)
811 #define NON_QI_REG_P(X) \
812 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
813
814 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
815 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
816
817 #define STACK_REG_P(xop) (REG_P (xop) && \
818 REGNO (xop) >= FIRST_STACK_REG && \
819 REGNO (xop) <= LAST_STACK_REG)
820
821 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
822
823 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
824
825 /* Try to maintain the accuracy of the death notes for regs satisfying the
826 following. Important for stack like regs, to know when to pop. */
827
828 /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
829
830 /* 1 if register REGNO can magically overlap other regs.
831 Note that nonzero values work only in very special circumstances. */
832
833 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
834
835 /* The class value for index registers, and the one for base regs. */
836
837 #define INDEX_REG_CLASS INDEX_REGS
838 #define BASE_REG_CLASS GENERAL_REGS
839
840 /* Get reg_class from a letter such as appears in the machine description. */
841
842 #define REG_CLASS_FROM_LETTER(C) \
843 ((C) == 'r' ? GENERAL_REGS : \
844 (C) == 'q' ? Q_REGS : \
845 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
846 ? FLOAT_REGS \
847 : NO_REGS) : \
848 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
849 ? FP_TOP_REG \
850 : NO_REGS) : \
851 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
852 ? FP_SECOND_REG \
853 : NO_REGS) : \
854 (C) == 'a' ? AREG : \
855 (C) == 'b' ? BREG : \
856 (C) == 'c' ? CREG : \
857 (C) == 'd' ? DREG : \
858 (C) == 'A' ? AD_REGS : \
859 (C) == 'D' ? DIREG : \
860 (C) == 'S' ? SIREG : NO_REGS)
861
862 /* The letters I, J, K, L and M in a register constraint string
863 can be used to stand for particular ranges of immediate operands.
864 This macro defines what the ranges are.
865 C is the letter, and VALUE is a constant value.
866 Return 1 if VALUE is in the range specified by C.
867
868 I is for non-DImode shifts.
869 J is for DImode shifts.
870 K and L are for an `andsi' optimization.
871 M is for shifts that can be executed by the "lea" opcode.
872 */
873
874 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
875 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
876 (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
877 (C) == 'K' ? (VALUE) == 0xff : \
878 (C) == 'L' ? (VALUE) == 0xffff : \
879 (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
880 (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 :\
881 (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 32 : \
882 0)
883
884 /* Similar, but for floating constants, and defining letters G and H.
885 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
886 TARGET_387 isn't set, because the stack register converter may need to
887 load 0.0 into the function value register. */
888
889 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
890 ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
891
892 /* Place additional restrictions on the register class to use when it
893 is necessary to be able to hold a value of mode MODE in a reload
894 register for which class CLASS would ordinarily be used. */
895
896 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
897 ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
898 ? Q_REGS : (CLASS))
899
900 /* Given an rtx X being reloaded into a reg required to be
901 in class CLASS, return the class of reg to actually use.
902 In general this is just CLASS; but on some machines
903 in some cases it is preferable to use a more restrictive class.
904 On the 80386 series, we prevent floating constants from being
905 reloaded into floating registers (since no move-insn can do that)
906 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
907
908 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
909 QImode must go into class Q_REGS.
910 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
911 movdf to do mem-to-mem moves through integer regs. */
912
913 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
914 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
915 : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
916 : ((CLASS) == ALL_REGS \
917 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
918 : (CLASS))
919
920 /* If we are copying between general and FP registers, we need a memory
921 location. */
922
923 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
924 ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
925 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
926
927 /* Return the maximum number of consecutive registers
928 needed to represent mode MODE in a register of class CLASS. */
929 /* On the 80386, this is the size of MODE in words,
930 except in the FP regs, where a single reg is always enough. */
931 #define CLASS_MAX_NREGS(CLASS, MODE) \
932 (FLOAT_CLASS_P (CLASS) ? 1 : \
933 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
934
935 /* A C expression whose value is nonzero if pseudos that have been
936 assigned to registers of class CLASS would likely be spilled
937 because registers of CLASS are needed for spill registers.
938
939 The default value of this macro returns 1 if CLASS has exactly one
940 register and zero otherwise. On most machines, this default
941 should be used. Only define this macro to some other expression
942 if pseudo allocated by `local-alloc.c' end up in memory because
943 their hard registers were needed for spill registers. If this
944 macro returns nonzero for those classes, those pseudos will only
945 be allocated by `global.c', which knows how to reallocate the
946 pseudo to another register. If there would not be another
947 register available for reallocation, you should not change the
948 definition of this macro since the only effect of such a
949 definition would be to slow down register allocation. */
950
951 #define CLASS_LIKELY_SPILLED_P(CLASS) \
952 (((CLASS) == AREG) \
953 || ((CLASS) == DREG) \
954 || ((CLASS) == CREG) \
955 || ((CLASS) == BREG) \
956 || ((CLASS) == AD_REGS) \
957 || ((CLASS) == SIREG) \
958 || ((CLASS) == DIREG))
959
960 \f
961 /* Stack layout; function entry, exit and calling. */
962
963 /* Define this if pushing a word on the stack
964 makes the stack pointer a smaller address. */
965 #define STACK_GROWS_DOWNWARD
966
967 /* Define this if the nominal address of the stack frame
968 is at the high-address end of the local variables;
969 that is, each additional local variable allocated
970 goes at a more negative offset in the frame. */
971 #define FRAME_GROWS_DOWNWARD
972
973 /* Offset within stack frame to start allocating local variables at.
974 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
975 first local allocated. Otherwise, it is the offset to the BEGINNING
976 of the first local allocated. */
977 #define STARTING_FRAME_OFFSET 0
978
979 /* If we generate an insn to push BYTES bytes,
980 this says how many the stack pointer really advances by.
981 On 386 pushw decrements by exactly 2 no matter what the position was.
982 On the 386 there is no pushb; we use pushw instead, and this
983 has the effect of rounding up to 2. */
984
985 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
986
987 /* Offset of first parameter from the argument pointer register value. */
988 #define FIRST_PARM_OFFSET(FNDECL) 0
989
990 /* Value is the number of bytes of arguments automatically
991 popped when returning from a subroutine call.
992 FUNDECL is the declaration node of the function (as a tree),
993 FUNTYPE is the data type of the function (as a tree),
994 or for a library call it is an identifier node for the subroutine name.
995 SIZE is the number of bytes of arguments passed on the stack.
996
997 On the 80386, the RTD insn may be used to pop them if the number
998 of args is fixed, but if the number is variable then the caller
999 must pop them all. RTD can't be used for library calls now
1000 because the library is compiled with the Unix compiler.
1001 Use of RTD is a selectable option, since it is incompatible with
1002 standard Unix calling sequences. If the option is not selected,
1003 the caller must always pop the args.
1004
1005 The attribute stdcall is equivalent to RTD on a per module basis. */
1006
1007 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
1008 (i386_return_pops_args (FUNDECL, FUNTYPE, SIZE))
1009
1010 /* Define how to find the value returned by a function.
1011 VALTYPE is the data type of the value (as a tree).
1012 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1013 otherwise, FUNC is 0. */
1014 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1015 gen_rtx_REG (TYPE_MODE (VALTYPE), \
1016 VALUE_REGNO (TYPE_MODE (VALTYPE)))
1017
1018 /* Define how to find the value returned by a library function
1019 assuming the value has mode MODE. */
1020
1021 #define LIBCALL_VALUE(MODE) \
1022 gen_rtx_REG (MODE, VALUE_REGNO (MODE))
1023
1024 /* Define the size of the result block used for communication between
1025 untyped_call and untyped_return. The block contains a DImode value
1026 followed by the block used by fnsave and frstor. */
1027
1028 #define APPLY_RESULT_SIZE (8+108)
1029
1030 /* 1 if N is a possible register number for function argument passing. */
1031 #define FUNCTION_ARG_REGNO_P(N) ((N) >= 0 && (N) < REGPARM_MAX)
1032
1033 /* Define a data type for recording info about an argument list
1034 during the scan of that argument list. This data type should
1035 hold all necessary information about the function itself
1036 and about the args processed so far, enough to enable macros
1037 such as FUNCTION_ARG to determine where the next arg should go. */
1038
1039 typedef struct i386_args {
1040 int words; /* # words passed so far */
1041 int nregs; /* # registers available for passing */
1042 int regno; /* next available register number */
1043 } CUMULATIVE_ARGS;
1044
1045 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1046 for a call to a function whose data type is FNTYPE.
1047 For a library call, FNTYPE is 0. */
1048
1049 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1050 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1051
1052 /* Update the data in CUM to advance over an argument
1053 of mode MODE and data type TYPE.
1054 (TYPE is null for libcalls where that information may not be available.) */
1055
1056 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1057 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
1058
1059 /* Define where to put the arguments to a function.
1060 Value is zero to push the argument on the stack,
1061 or a hard register in which to store the argument.
1062
1063 MODE is the argument's machine mode.
1064 TYPE is the data type of the argument (as a tree).
1065 This is null for libcalls where that information may
1066 not be available.
1067 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1068 the preceding args and about the function being called.
1069 NAMED is nonzero if this argument is a named parameter
1070 (otherwise it is an extra parameter matching an ellipsis). */
1071
1072 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1073 (function_arg (&CUM, MODE, TYPE, NAMED))
1074
1075 /* For an arg passed partly in registers and partly in memory,
1076 this is the number of registers used.
1077 For args passed entirely in registers or entirely in memory, zero. */
1078
1079 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1080 (function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED))
1081
1082 /* This macro is invoked just before the start of a function.
1083 It is used here to output code for -fpic that will load the
1084 return address into %ebx. */
1085
1086 #undef ASM_OUTPUT_FUNCTION_PREFIX
1087 #define ASM_OUTPUT_FUNCTION_PREFIX(FILE, FNNAME) \
1088 asm_output_function_prefix (FILE, FNNAME)
1089
1090 /* This macro generates the assembly code for function entry.
1091 FILE is a stdio stream to output the code to.
1092 SIZE is an int: how many units of temporary storage to allocate.
1093 Refer to the array `regs_ever_live' to determine which registers
1094 to save; `regs_ever_live[I]' is nonzero if register number I
1095 is ever used in the function. This macro is responsible for
1096 knowing which registers should not be saved even if used. */
1097
1098 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1099 function_prologue (FILE, SIZE)
1100
1101 /* Output assembler code to FILE to increment profiler label # LABELNO
1102 for profiling a function entry. */
1103
1104 #define FUNCTION_PROFILER(FILE, LABELNO) \
1105 { \
1106 if (flag_pic) \
1107 { \
1108 fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
1109 LPREFIX, (LABELNO)); \
1110 fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
1111 } \
1112 else \
1113 { \
1114 fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1115 fprintf (FILE, "\tcall _mcount\n"); \
1116 } \
1117 }
1118
1119
1120 /* There are three profiling modes for basic blocks available.
1121 The modes are selected at compile time by using the options
1122 -a or -ax of the gnu compiler.
1123 The variable `profile_block_flag' will be set according to the
1124 selected option.
1125
1126 profile_block_flag == 0, no option used:
1127
1128 No profiling done.
1129
1130 profile_block_flag == 1, -a option used.
1131
1132 Count frequency of execution of every basic block.
1133
1134 profile_block_flag == 2, -ax option used.
1135
1136 Generate code to allow several different profiling modes at run time.
1137 Available modes are:
1138 Produce a trace of all basic blocks.
1139 Count frequency of jump instructions executed.
1140 In every mode it is possible to start profiling upon entering
1141 certain functions and to disable profiling of some other functions.
1142
1143 The result of basic-block profiling will be written to a file `bb.out'.
1144 If the -ax option is used parameters for the profiling will be read
1145 from file `bb.in'.
1146
1147 */
1148
1149 /* The following macro shall output assembler code to FILE
1150 to initialize basic-block profiling.
1151
1152 If profile_block_flag == 2
1153
1154 Output code to call the subroutine `__bb_init_trace_func'
1155 and pass two parameters to it. The first parameter is
1156 the address of a block allocated in the object module.
1157 The second parameter is the number of the first basic block
1158 of the function.
1159
1160 The name of the block is a local symbol made with this statement:
1161
1162 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1163
1164 Of course, since you are writing the definition of
1165 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1166 can take a short cut in the definition of this macro and use the
1167 name that you know will result.
1168
1169 The number of the first basic block of the function is
1170 passed to the macro in BLOCK_OR_LABEL.
1171
1172 If described in a virtual assembler language the code to be
1173 output looks like:
1174
1175 parameter1 <- LPBX0
1176 parameter2 <- BLOCK_OR_LABEL
1177 call __bb_init_trace_func
1178
1179 else if profile_block_flag != 0
1180
1181 Output code to call the subroutine `__bb_init_func'
1182 and pass one single parameter to it, which is the same
1183 as the first parameter to `__bb_init_trace_func'.
1184
1185 The first word of this parameter is a flag which will be nonzero if
1186 the object module has already been initialized. So test this word
1187 first, and do not call `__bb_init_func' if the flag is nonzero.
1188 Note: When profile_block_flag == 2 the test need not be done
1189 but `__bb_init_trace_func' *must* be called.
1190
1191 BLOCK_OR_LABEL may be used to generate a label number as a
1192 branch destination in case `__bb_init_func' will not be called.
1193
1194 If described in a virtual assembler language the code to be
1195 output looks like:
1196
1197 cmp (LPBX0),0
1198 jne local_label
1199 parameter1 <- LPBX0
1200 call __bb_init_func
1201 local_label:
1202
1203 */
1204
1205 #undef FUNCTION_BLOCK_PROFILER
1206 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1207 do \
1208 { \
1209 static int num_func = 0; \
1210 rtx xops[8]; \
1211 char block_table[80], false_label[80]; \
1212 \
1213 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1214 \
1215 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1216 xops[5] = stack_pointer_rtx; \
1217 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1218 \
1219 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1220 \
1221 switch (profile_block_flag) \
1222 { \
1223 \
1224 case 2: \
1225 \
1226 xops[2] = GEN_INT ((BLOCK_OR_LABEL)); \
1227 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_trace_func")); \
1228 xops[6] = GEN_INT (8); \
1229 \
1230 output_asm_insn (AS1(push%L2,%2), xops); \
1231 if (!flag_pic) \
1232 output_asm_insn (AS1(push%L1,%1), xops); \
1233 else \
1234 { \
1235 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1236 output_asm_insn (AS1 (push%L7,%7), xops); \
1237 } \
1238 \
1239 output_asm_insn (AS1(call,%P3), xops); \
1240 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1241 \
1242 break; \
1243 \
1244 default: \
1245 \
1246 ASM_GENERATE_INTERNAL_LABEL (false_label, "LPBZ", num_func); \
1247 \
1248 xops[0] = const0_rtx; \
1249 xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, false_label)); \
1250 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_init_func")); \
1251 xops[4] = gen_rtx_MEM (Pmode, xops[1]); \
1252 xops[6] = GEN_INT (4); \
1253 \
1254 CONSTANT_POOL_ADDRESS_P (xops[2]) = TRUE; \
1255 \
1256 output_asm_insn (AS2(cmp%L4,%0,%4), xops); \
1257 output_asm_insn (AS1(jne,%2), xops); \
1258 \
1259 if (!flag_pic) \
1260 output_asm_insn (AS1(push%L1,%1), xops); \
1261 else \
1262 { \
1263 output_asm_insn (AS2 (lea%L7,%a1,%7), xops); \
1264 output_asm_insn (AS1 (push%L7,%7), xops); \
1265 } \
1266 \
1267 output_asm_insn (AS1(call,%P3), xops); \
1268 output_asm_insn (AS2(add%L0,%6,%5), xops); \
1269 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LPBZ", num_func); \
1270 num_func++; \
1271 \
1272 break; \
1273 \
1274 } \
1275 } \
1276 while (0)
1277
1278 /* The following macro shall output assembler code to FILE
1279 to increment a counter associated with basic block number BLOCKNO.
1280
1281 If profile_block_flag == 2
1282
1283 Output code to initialize the global structure `__bb' and
1284 call the function `__bb_trace_func' which will increment the
1285 counter.
1286
1287 `__bb' consists of two words. In the first word the number
1288 of the basic block has to be stored. In the second word
1289 the address of a block allocated in the object module
1290 has to be stored.
1291
1292 The basic block number is given by BLOCKNO.
1293
1294 The address of the block is given by the label created with
1295
1296 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
1297
1298 by FUNCTION_BLOCK_PROFILER.
1299
1300 Of course, since you are writing the definition of
1301 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1302 can take a short cut in the definition of this macro and use the
1303 name that you know will result.
1304
1305 If described in a virtual assembler language the code to be
1306 output looks like:
1307
1308 move BLOCKNO -> (__bb)
1309 move LPBX0 -> (__bb+4)
1310 call __bb_trace_func
1311
1312 Note that function `__bb_trace_func' must not change the
1313 machine state, especially the flag register. To grant
1314 this, you must output code to save and restore registers
1315 either in this macro or in the macros MACHINE_STATE_SAVE
1316 and MACHINE_STATE_RESTORE. The last two macros will be
1317 used in the function `__bb_trace_func', so you must make
1318 sure that the function prologue does not change any
1319 register prior to saving it with MACHINE_STATE_SAVE.
1320
1321 else if profile_block_flag != 0
1322
1323 Output code to increment the counter directly.
1324 Basic blocks are numbered separately from zero within each
1325 compiled object module. The count associated with block number
1326 BLOCKNO is at index BLOCKNO in an array of words; the name of
1327 this array is a local symbol made with this statement:
1328
1329 ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
1330
1331 Of course, since you are writing the definition of
1332 `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
1333 can take a short cut in the definition of this macro and use the
1334 name that you know will result.
1335
1336 If described in a virtual assembler language the code to be
1337 output looks like:
1338
1339 inc (LPBX2+4*BLOCKNO)
1340
1341 */
1342
1343 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1344 do \
1345 { \
1346 rtx xops[8], cnt_rtx; \
1347 char counts[80]; \
1348 char *block_table = counts; \
1349 \
1350 switch (profile_block_flag) \
1351 { \
1352 \
1353 case 2: \
1354 \
1355 ASM_GENERATE_INTERNAL_LABEL (block_table, "LPBX", 0); \
1356 \
1357 xops[1] = gen_rtx_SYMBOL_REF (VOIDmode, block_table); \
1358 xops[2] = GEN_INT ((BLOCKNO)); \
1359 xops[3] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_func")); \
1360 xops[4] = gen_rtx_SYMBOL_REF (VOIDmode, "__bb"); \
1361 xops[5] = plus_constant (xops[4], 4); \
1362 xops[0] = gen_rtx_MEM (SImode, xops[4]); \
1363 xops[6] = gen_rtx_MEM (SImode, xops[5]); \
1364 \
1365 CONSTANT_POOL_ADDRESS_P (xops[1]) = TRUE; \
1366 \
1367 fprintf(FILE, "\tpushf\n"); \
1368 output_asm_insn (AS2(mov%L0,%2,%0), xops); \
1369 if (flag_pic) \
1370 { \
1371 xops[7] = gen_rtx_REG (Pmode, 0); /* eax */ \
1372 output_asm_insn (AS1(push%L7,%7), xops); \
1373 output_asm_insn (AS2(lea%L7,%a1,%7), xops); \
1374 output_asm_insn (AS2(mov%L6,%7,%6), xops); \
1375 output_asm_insn (AS1(pop%L7,%7), xops); \
1376 } \
1377 else \
1378 output_asm_insn (AS2(mov%L6,%1,%6), xops); \
1379 output_asm_insn (AS1(call,%P3), xops); \
1380 fprintf(FILE, "\tpopf\n"); \
1381 \
1382 break; \
1383 \
1384 default: \
1385 \
1386 ASM_GENERATE_INTERNAL_LABEL (counts, "LPBX", 2); \
1387 cnt_rtx = gen_rtx_SYMBOL_REF (VOIDmode, counts); \
1388 SYMBOL_REF_FLAG (cnt_rtx) = TRUE; \
1389 \
1390 if (BLOCKNO) \
1391 cnt_rtx = plus_constant (cnt_rtx, (BLOCKNO)*4); \
1392 \
1393 if (flag_pic) \
1394 cnt_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, cnt_rtx); \
1395 \
1396 xops[0] = gen_rtx_MEM (SImode, cnt_rtx); \
1397 output_asm_insn (AS1(inc%L0,%0), xops); \
1398 \
1399 break; \
1400 \
1401 } \
1402 } \
1403 while (0)
1404
1405 /* The following macro shall output assembler code to FILE
1406 to indicate a return from function during basic-block profiling.
1407
1408 If profiling_block_flag == 2:
1409
1410 Output assembler code to call function `__bb_trace_ret'.
1411
1412 Note that function `__bb_trace_ret' must not change the
1413 machine state, especially the flag register. To grant
1414 this, you must output code to save and restore registers
1415 either in this macro or in the macros MACHINE_STATE_SAVE_RET
1416 and MACHINE_STATE_RESTORE_RET. The last two macros will be
1417 used in the function `__bb_trace_ret', so you must make
1418 sure that the function prologue does not change any
1419 register prior to saving it with MACHINE_STATE_SAVE_RET.
1420
1421 else if profiling_block_flag != 0:
1422
1423 The macro will not be used, so it need not distinguish
1424 these cases.
1425 */
1426
1427 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1428 do \
1429 { \
1430 rtx xops[1]; \
1431 \
1432 xops[0] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (VOIDmode, "__bb_trace_ret")); \
1433 \
1434 output_asm_insn (AS1(call,%P0), xops); \
1435 \
1436 } \
1437 while (0)
1438
1439 /* The function `__bb_trace_func' is called in every basic block
1440 and is not allowed to change the machine state. Saving (restoring)
1441 the state can either be done in the BLOCK_PROFILER macro,
1442 before calling function (rsp. after returning from function)
1443 `__bb_trace_func', or it can be done inside the function by
1444 defining the macros:
1445
1446 MACHINE_STATE_SAVE(ID)
1447 MACHINE_STATE_RESTORE(ID)
1448
1449 In the latter case care must be taken, that the prologue code
1450 of function `__bb_trace_func' does not already change the
1451 state prior to saving it with MACHINE_STATE_SAVE.
1452
1453 The parameter `ID' is a string identifying a unique macro use.
1454
1455 On the i386 the initialization code at the begin of
1456 function `__bb_trace_func' contains a `sub' instruction
1457 therefore we handle save and restore of the flag register
1458 in the BLOCK_PROFILER macro. */
1459
1460 #define MACHINE_STATE_SAVE(ID) \
1461 asm (" pushl %eax"); \
1462 asm (" pushl %ecx"); \
1463 asm (" pushl %edx"); \
1464 asm (" pushl %esi");
1465
1466 #define MACHINE_STATE_RESTORE(ID) \
1467 asm (" popl %esi"); \
1468 asm (" popl %edx"); \
1469 asm (" popl %ecx"); \
1470 asm (" popl %eax");
1471
1472 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1473 the stack pointer does not matter. The value is tested only in
1474 functions that have frame pointers.
1475 No definition is equivalent to always zero. */
1476 /* Note on the 386 it might be more efficient not to define this since
1477 we have to restore it ourselves from the frame pointer, in order to
1478 use pop */
1479
1480 #define EXIT_IGNORE_STACK 1
1481
1482 /* This macro generates the assembly code for function exit,
1483 on machines that need it. If FUNCTION_EPILOGUE is not defined
1484 then individual return instructions are generated for each
1485 return statement. Args are same as for FUNCTION_PROLOGUE.
1486
1487 The function epilogue should not depend on the current stack pointer!
1488 It should use the frame pointer only. This is mandatory because
1489 of alloca; we also take advantage of it to omit stack adjustments
1490 before returning.
1491
1492 If the last non-note insn in the function is a BARRIER, then there
1493 is no need to emit a function prologue, because control does not fall
1494 off the end. This happens if the function ends in an "exit" call, or
1495 if a `return' insn is emitted directly into the function. */
1496
1497 #if 0
1498 #define FUNCTION_BEGIN_EPILOGUE(FILE) \
1499 do { \
1500 rtx last = get_last_insn (); \
1501 if (last && GET_CODE (last) == NOTE) \
1502 last = prev_nonnote_insn (last); \
1503 /* if (! last || GET_CODE (last) != BARRIER) \
1504 function_epilogue (FILE, SIZE);*/ \
1505 } while (0)
1506 #endif
1507
1508 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1509 function_epilogue (FILE, SIZE)
1510
1511 /* Output assembler code for a block containing the constant parts
1512 of a trampoline, leaving space for the variable parts. */
1513
1514 /* On the 386, the trampoline contains three instructions:
1515 mov #STATIC,ecx
1516 mov #FUNCTION,eax
1517 jmp @eax */
1518 #define TRAMPOLINE_TEMPLATE(FILE) \
1519 { \
1520 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
1521 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1522 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1523 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
1524 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1525 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
1526 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
1527 ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
1528 }
1529
1530 /* Length in units of the trampoline for entering a nested function. */
1531
1532 #define TRAMPOLINE_SIZE 12
1533
1534 /* Emit RTL insns to initialize the variable parts of a trampoline.
1535 FNADDR is an RTX for the address of the function's pure code.
1536 CXT is an RTX for the static chain value for the function. */
1537
1538 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1539 { \
1540 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 1)), CXT); \
1541 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 6)), FNADDR); \
1542 }
1543 \f
1544 /* Definitions for register eliminations.
1545
1546 This is an array of structures. Each structure initializes one pair
1547 of eliminable registers. The "from" register number is given first,
1548 followed by "to". Eliminations of the same "from" register are listed
1549 in order of preference.
1550
1551 We have two registers that can be eliminated on the i386. First, the
1552 frame pointer register can often be eliminated in favor of the stack
1553 pointer register. Secondly, the argument pointer register can always be
1554 eliminated; it is replaced with either the stack or frame pointer. */
1555
1556 #define ELIMINABLE_REGS \
1557 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1558 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1559 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1560
1561 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1562 Frame pointer elimination is automatically handled.
1563
1564 For the i386, if frame pointer elimination is being done, we would like to
1565 convert ap into sp, not fp.
1566
1567 All other eliminations are valid. */
1568
1569 #define CAN_ELIMINATE(FROM, TO) \
1570 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1571 ? ! frame_pointer_needed \
1572 : 1)
1573
1574 /* Define the offset between two registers, one to be eliminated, and the other
1575 its replacement, at the start of a routine. */
1576
1577 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1578 { \
1579 if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1580 (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
1581 else \
1582 { \
1583 int regno; \
1584 int offset = 0; \
1585 \
1586 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1587 if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
1588 || ((current_function_uses_pic_offset_table \
1589 || current_function_uses_const_pool) \
1590 && flag_pic && regno == PIC_OFFSET_TABLE_REGNUM)) \
1591 offset += 4; \
1592 \
1593 (OFFSET) = offset + get_frame_size (); \
1594 \
1595 if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1596 (OFFSET) += 4; /* Skip saved PC */ \
1597 } \
1598 }
1599 \f
1600 /* Addressing modes, and classification of registers for them. */
1601
1602 /* #define HAVE_POST_INCREMENT */
1603 /* #define HAVE_POST_DECREMENT */
1604
1605 /* #define HAVE_PRE_DECREMENT */
1606 /* #define HAVE_PRE_INCREMENT */
1607
1608 /* Macros to check register numbers against specific register classes. */
1609
1610 /* These assume that REGNO is a hard or pseudo reg number.
1611 They give nonzero only if REGNO is a hard reg of the suitable class
1612 or a pseudo reg currently allocated to a suitable hard reg.
1613 Since they use reg_renumber, they are safe only once reg_renumber
1614 has been allocated, which happens in local-alloc.c. */
1615
1616 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1617 ((REGNO) < STACK_POINTER_REGNUM \
1618 || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
1619
1620 #define REGNO_OK_FOR_BASE_P(REGNO) \
1621 ((REGNO) <= STACK_POINTER_REGNUM \
1622 || (REGNO) == ARG_POINTER_REGNUM \
1623 || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
1624
1625 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
1626 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
1627
1628 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1629 and check its validity for a certain class.
1630 We have two alternate definitions for each of them.
1631 The usual definition accepts all pseudo regs; the other rejects
1632 them unless they have been allocated suitable hard regs.
1633 The symbol REG_OK_STRICT causes the latter definition to be used.
1634
1635 Most source files want to accept pseudo regs in the hope that
1636 they will get allocated to the class that the insn wants them to be in.
1637 Source files for reload pass need to be strict.
1638 After reload, it makes no difference, since pseudo regs have
1639 been eliminated by then. */
1640
1641
1642 /* Non strict versions, pseudos are ok */
1643 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1644 (REGNO (X) < STACK_POINTER_REGNUM \
1645 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1646
1647 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1648 (REGNO (X) <= STACK_POINTER_REGNUM \
1649 || REGNO (X) == ARG_POINTER_REGNUM \
1650 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1651
1652 #define REG_OK_FOR_STRREG_NONSTRICT_P(X) \
1653 (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1654
1655 /* Strict versions, hard registers only */
1656 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1657 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1658 #define REG_OK_FOR_STRREG_STRICT_P(X) \
1659 (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
1660
1661 #ifndef REG_OK_STRICT
1662 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
1663 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
1664 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_NONSTRICT_P(X)
1665
1666 #else
1667 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
1668 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
1669 #define REG_OK_FOR_STRREG_P(X) REG_OK_FOR_STRREG_STRICT_P(X)
1670 #endif
1671
1672 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1673 that is a valid memory address for an instruction.
1674 The MODE argument is the machine mode for the MEM expression
1675 that wants to use this address.
1676
1677 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1678 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1679
1680 See legitimize_pic_address in i386.c for details as to what
1681 constitutes a legitimate address when -fpic is used. */
1682
1683 #define MAX_REGS_PER_ADDRESS 2
1684
1685 #define CONSTANT_ADDRESS_P(X) \
1686 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1687 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1688 || GET_CODE (X) == HIGH)
1689
1690 /* Nonzero if the constant value X is a legitimate general operand.
1691 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1692
1693 #define LEGITIMATE_CONSTANT_P(X) 1
1694
1695 #ifdef REG_OK_STRICT
1696 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1697 { \
1698 if (legitimate_address_p (MODE, X, 1)) \
1699 goto ADDR; \
1700 }
1701
1702 #else
1703 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1704 { \
1705 if (legitimate_address_p (MODE, X, 0)) \
1706 goto ADDR; \
1707 }
1708
1709 #endif
1710
1711 /* Try machine-dependent ways of modifying an illegitimate address
1712 to be legitimate. If we find one, return the new, valid address.
1713 This macro is used in only one place: `memory_address' in explow.c.
1714
1715 OLDX is the address as it was before break_out_memory_refs was called.
1716 In some cases it is useful to look at this to decide what needs to be done.
1717
1718 MODE and WIN are passed so that this macro can use
1719 GO_IF_LEGITIMATE_ADDRESS.
1720
1721 It is always safe for this macro to do nothing. It exists to recognize
1722 opportunities to optimize the output.
1723
1724 For the 80386, we handle X+REG by loading X into a register R and
1725 using R+REG. R will go in a general reg and indexing will be used.
1726 However, if REG is a broken-out memory address or multiplication,
1727 nothing needs to be done because REG can certainly go in a general reg.
1728
1729 When -fpic is used, special handling is needed for symbolic references.
1730 See comments by legitimize_pic_address in i386.c for details. */
1731
1732 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1733 { \
1734 (X) = legitimize_address (X, OLDX, MODE); \
1735 if (memory_address_p (MODE, X)) \
1736 goto WIN; \
1737 }
1738
1739 #define REWRITE_ADDRESS(x) rewrite_address(x)
1740
1741 /* Nonzero if the constant value X is a legitimate general operand
1742 when generating PIC code. It is given that flag_pic is on and
1743 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1744
1745 #define LEGITIMATE_PIC_OPERAND_P(X) \
1746 (! SYMBOLIC_CONST (X) \
1747 || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
1748
1749 #define SYMBOLIC_CONST(X) \
1750 (GET_CODE (X) == SYMBOL_REF \
1751 || GET_CODE (X) == LABEL_REF \
1752 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1753
1754 /* Go to LABEL if ADDR (a legitimate address expression)
1755 has an effect that depends on the machine mode it is used for.
1756 On the 80386, only postdecrement and postincrement address depend thus
1757 (the amount of decrement or increment being the length of the operand). */
1758 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1759 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1760 \f
1761 /* Define this macro if references to a symbol must be treated
1762 differently depending on something about the variable or
1763 function named by the symbol (such as what section it is in).
1764
1765 On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1766 so that we may access it directly in the GOT. */
1767
1768 #define ENCODE_SECTION_INFO(DECL) \
1769 do \
1770 { \
1771 if (flag_pic) \
1772 { \
1773 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1774 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1775 \
1776 if (TARGET_DEBUG_ADDR \
1777 && TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd') \
1778 { \
1779 fprintf (stderr, "Encode %s, public = %d\n", \
1780 IDENTIFIER_POINTER (DECL_NAME (DECL)), \
1781 TREE_PUBLIC (DECL)); \
1782 } \
1783 \
1784 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1785 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1786 || ! TREE_PUBLIC (DECL)); \
1787 } \
1788 } \
1789 while (0)
1790
1791 /* Initialize data used by insn expanders. This is called from
1792 init_emit, once for each function, before code is generated.
1793 For 386, clear stack slot assignments remembered from previous
1794 functions. */
1795
1796 #define INIT_EXPANDERS clear_386_stack_locals ()
1797
1798 /* The `FINALIZE_PIC' macro serves as a hook to emit these special
1799 codes once the function is being compiled into assembly code, but
1800 not before. (It is not done before, because in the case of
1801 compiling an inline function, it would lead to multiple PIC
1802 prologues being included in functions which used inline functions
1803 and were compiled to assembly language.) */
1804
1805 #define FINALIZE_PIC \
1806 do \
1807 { \
1808 extern int current_function_uses_pic_offset_table; \
1809 \
1810 current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
1811 } \
1812 while (0)
1813
1814 \f
1815 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1816 with arguments ARGS is a valid machine specific attribute for DECL.
1817 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1818
1819 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1820 (i386_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1821
1822 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1823 with arguments ARGS is a valid machine specific attribute for TYPE.
1824 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1825
1826 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1827 (i386_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1828
1829 /* If defined, a C expression whose value is zero if the attributes on
1830 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1831 two if they are nearly compatible (which causes a warning to be
1832 generated). */
1833
1834 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1835 (i386_comp_type_attributes (TYPE1, TYPE2))
1836
1837 /* If defined, a C statement that assigns default attributes to newly
1838 defined TYPE. */
1839
1840 /* #define SET_DEFAULT_TYPE_ATTRIBUTES (TYPE) */
1841
1842 /* Max number of args passed in registers. If this is more than 3, we will
1843 have problems with ebx (register #4), since it is a caller save register and
1844 is also used as the pic register in ELF. So for now, don't allow more than
1845 3 registers to be passed in registers. */
1846
1847 #define REGPARM_MAX 3
1848
1849 \f
1850 /* Specify the machine mode that this machine uses
1851 for the index in the tablejump instruction. */
1852 #define CASE_VECTOR_MODE Pmode
1853
1854 /* Define as C expression which evaluates to nonzero if the tablejump
1855 instruction expects the table to contain offsets from the address of the
1856 table.
1857 Do not define this if the table should contain absolute addresses. */
1858 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1859
1860 /* Specify the tree operation to be used to convert reals to integers.
1861 This should be changed to take advantage of fist --wfs ??
1862 */
1863 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1864
1865 /* This is the kind of divide that is easiest to do in the general case. */
1866 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1867
1868 /* Define this as 1 if `char' should by default be signed; else as 0. */
1869 #define DEFAULT_SIGNED_CHAR 1
1870
1871 /* Max number of bytes we can move from memory to memory
1872 in one reasonably fast instruction. */
1873 #define MOVE_MAX 4
1874
1875 /* The number of scalar move insns which should be generated instead
1876 of a string move insn or a library call. Increasing the value
1877 will always make code faster, but eventually incurs high cost in
1878 increased code size.
1879
1880 If you don't define this, a reasonable default is used.
1881
1882 Make this large on i386, since the block move is very inefficient with small
1883 blocks, and the hard register needs of the block move require much reload
1884 work. */
1885
1886 #define MOVE_RATIO 5
1887
1888 /* Define if shifts truncate the shift count
1889 which implies one can omit a sign-extension or zero-extension
1890 of a shift count. */
1891 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1892
1893 /* #define SHIFT_COUNT_TRUNCATED */
1894
1895 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1896 is done just by pretending it is already truncated. */
1897 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1898
1899 /* We assume that the store-condition-codes instructions store 0 for false
1900 and some other value for true. This is the value stored for true. */
1901
1902 #define STORE_FLAG_VALUE 1
1903
1904 /* When a prototype says `char' or `short', really pass an `int'.
1905 (The 386 can't easily push less than an int.) */
1906
1907 #define PROMOTE_PROTOTYPES
1908
1909 /* Specify the machine mode that pointers have.
1910 After generation of rtl, the compiler makes no further distinction
1911 between pointers and any other objects of this machine mode. */
1912 #define Pmode SImode
1913
1914 /* A function address in a call instruction
1915 is a byte address (for indexing purposes)
1916 so give the MEM rtx a byte's mode. */
1917 #define FUNCTION_MODE QImode
1918 \f
1919 /* A part of a C `switch' statement that describes the relative costs
1920 of constant RTL expressions. It must contain `case' labels for
1921 expression codes `const_int', `const', `symbol_ref', `label_ref'
1922 and `const_double'. Each case must ultimately reach a `return'
1923 statement to return the relative cost of the use of that kind of
1924 constant value in an expression. The cost may depend on the
1925 precise value of the constant, which is available for examination
1926 in X, and the rtx code of the expression in which it is contained,
1927 found in OUTER_CODE.
1928
1929 CODE is the expression code--redundant, since it can be obtained
1930 with `GET_CODE (X)'. */
1931
1932 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1933 case CONST_INT: \
1934 return (unsigned) INTVAL (RTX) < 256 ? 0 : 1; \
1935 case CONST: \
1936 case LABEL_REF: \
1937 case SYMBOL_REF: \
1938 return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 1; \
1939 \
1940 case CONST_DOUBLE: \
1941 { \
1942 int code; \
1943 if (GET_MODE (RTX) == VOIDmode) \
1944 return 2; \
1945 \
1946 code = standard_80387_constant_p (RTX); \
1947 return code == 1 ? 0 : \
1948 code == 2 ? 1 : \
1949 2; \
1950 }
1951
1952 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
1953 #define TOPLEVEL_COSTS_N_INSNS(N) {total = COSTS_N_INSNS (N); break;}
1954
1955 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
1956 This can be used, for example, to indicate how costly a multiply
1957 instruction is. In writing this macro, you can use the construct
1958 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
1959 instructions. OUTER_CODE is the code of the expression in which X
1960 is contained.
1961
1962 This macro is optional; do not define it if the default cost
1963 assumptions are adequate for the target machine. */
1964
1965 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1966 case ASHIFT: \
1967 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1968 && GET_MODE (XEXP (X, 0)) == SImode) \
1969 { \
1970 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
1971 \
1972 if (value == 1) \
1973 return COSTS_N_INSNS (ix86_cost->add) \
1974 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1975 \
1976 if (value == 2 || value == 3) \
1977 return COSTS_N_INSNS (ix86_cost->lea) \
1978 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
1979 } \
1980 /* fall through */ \
1981 \
1982 case ROTATE: \
1983 case ASHIFTRT: \
1984 case LSHIFTRT: \
1985 case ROTATERT: \
1986 if (GET_MODE (XEXP (X, 0)) == DImode) \
1987 { \
1988 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1989 { \
1990 if (INTVAL (XEXP (X, 1)) > 32) \
1991 return COSTS_N_INSNS(ix86_cost->shift_const + 2); \
1992 return COSTS_N_INSNS(ix86_cost->shift_const * 2); \
1993 } \
1994 return ((GET_CODE (XEXP (X, 1)) == AND \
1995 ? COSTS_N_INSNS(ix86_cost->shift_var * 2) \
1996 : COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2)) \
1997 + rtx_cost(XEXP (X, 0), OUTER_CODE)); \
1998 } \
1999 return COSTS_N_INSNS (GET_CODE (XEXP (X, 1)) == CONST_INT \
2000 ? ix86_cost->shift_const \
2001 : ix86_cost->shift_var) \
2002 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2003 \
2004 case MULT: \
2005 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2006 { \
2007 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2008 int nbits = 0; \
2009 \
2010 if (value == 2) \
2011 return COSTS_N_INSNS (ix86_cost->add) \
2012 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2013 if (value == 4 || value == 8) \
2014 return COSTS_N_INSNS (ix86_cost->lea) \
2015 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2016 \
2017 while (value != 0) \
2018 { \
2019 nbits++; \
2020 value >>= 1; \
2021 } \
2022 \
2023 if (nbits == 1) \
2024 return COSTS_N_INSNS (ix86_cost->shift_const) \
2025 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2026 \
2027 return COSTS_N_INSNS (ix86_cost->mult_init \
2028 + nbits * ix86_cost->mult_bit) \
2029 + rtx_cost(XEXP (X, 0), OUTER_CODE); \
2030 } \
2031 \
2032 else /* This is arbitrary */ \
2033 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2034 + 7 * ix86_cost->mult_bit); \
2035 \
2036 case DIV: \
2037 case UDIV: \
2038 case MOD: \
2039 case UMOD: \
2040 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2041 \
2042 case PLUS: \
2043 if (GET_CODE (XEXP (X, 0)) == REG \
2044 && GET_MODE (XEXP (X, 0)) == SImode \
2045 && GET_CODE (XEXP (X, 1)) == PLUS) \
2046 return COSTS_N_INSNS (ix86_cost->lea); \
2047 \
2048 /* fall through */ \
2049 case AND: \
2050 case IOR: \
2051 case XOR: \
2052 case MINUS: \
2053 if (GET_MODE (X) == DImode) \
2054 return COSTS_N_INSNS (ix86_cost->add) * 2 \
2055 + (rtx_cost (XEXP (X, 0), OUTER_CODE) \
2056 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2057 + (rtx_cost (XEXP (X, 1), OUTER_CODE) \
2058 << (GET_MODE (XEXP (X, 1)) != DImode)); \
2059 case NEG: \
2060 case NOT: \
2061 if (GET_MODE (X) == DImode) \
2062 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2) \
2063 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add)
2064
2065
2066 /* An expression giving the cost of an addressing mode that contains
2067 ADDRESS. If not defined, the cost is computed from the ADDRESS
2068 expression and the `CONST_COSTS' values.
2069
2070 For most CISC machines, the default cost is a good approximation
2071 of the true cost of the addressing mode. However, on RISC
2072 machines, all instructions normally have the same length and
2073 execution time. Hence all addresses will have equal costs.
2074
2075 In cases where more than one form of an address is known, the form
2076 with the lowest cost will be used. If multiple forms have the
2077 same, lowest, cost, the one that is the most complex will be used.
2078
2079 For example, suppose an address that is equal to the sum of a
2080 register and a constant is used twice in the same basic block.
2081 When this macro is not defined, the address will be computed in a
2082 register and memory references will be indirect through that
2083 register. On machines where the cost of the addressing mode
2084 containing the sum is no higher than that of a simple indirect
2085 reference, this will produce an additional instruction and
2086 possibly require an additional register. Proper specification of
2087 this macro eliminates this overhead for such machines.
2088
2089 Similar use of this macro is made in strength reduction of loops.
2090
2091 ADDRESS need not be valid as an address. In such a case, the cost
2092 is not relevant and can be any value; invalid addresses need not be
2093 assigned a different cost.
2094
2095 On machines where an address involving more than one register is as
2096 cheap as an address computation involving only one register,
2097 defining `ADDRESS_COST' to reflect this can cause two registers to
2098 be live over a region of code where only one would have been if
2099 `ADDRESS_COST' were not defined in that manner. This effect should
2100 be considered in the definition of this macro. Equivalent costs
2101 should probably only be given to addresses with different numbers
2102 of registers on machines with lots of registers.
2103
2104 This macro will normally either not be defined or be defined as a
2105 constant.
2106
2107 For i386, it is better to use a complex address than let gcc copy
2108 the address into a reg and make a new pseudo. But not if the address
2109 requires to two regs - that would mean more pseudos with longer
2110 lifetimes. */
2111
2112 #define ADDRESS_COST(RTX) \
2113 ((CONSTANT_P (RTX) \
2114 || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
2115 && REG_P (XEXP (RTX, 0)))) ? 0 \
2116 : REG_P (RTX) ? 1 \
2117 : 2)
2118
2119 /* A C expression for the cost of moving data of mode M between a
2120 register and memory. A value of 2 is the default; this cost is
2121 relative to those in `REGISTER_MOVE_COST'.
2122
2123 If moving between registers and memory is more expensive than
2124 between two registers, you should define this macro to express the
2125 relative cost.
2126
2127 On the i386, copying between floating-point and fixed-point
2128 registers is expensive. */
2129
2130 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2131 (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
2132 || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
2133 : 2)
2134
2135
2136 /* A C expression for the cost of moving data of mode M between a
2137 register and memory. A value of 2 is the default; this cost is
2138 relative to those in `REGISTER_MOVE_COST'.
2139
2140 If moving between registers and memory is more expensive than
2141 between two registers, you should define this macro to express the
2142 relative cost. */
2143
2144 /* #define MEMORY_MOVE_COST(M,C,I) 2 */
2145
2146 /* A C expression for the cost of a branch instruction. A value of 1
2147 is the default; other values are interpreted relative to that. */
2148
2149 #define BRANCH_COST i386_branch_cost
2150
2151 /* Define this macro as a C expression which is nonzero if accessing
2152 less than a word of memory (i.e. a `char' or a `short') is no
2153 faster than accessing a word of memory, i.e., if such access
2154 require more than one instruction or if there is no difference in
2155 cost between byte and (aligned) word loads.
2156
2157 When this macro is not defined, the compiler will access a field by
2158 finding the smallest containing object; when it is defined, a
2159 fullword load will be used if alignment permits. Unless bytes
2160 accesses are faster than word accesses, using word accesses is
2161 preferable since it may eliminate subsequent memory access if
2162 subsequent accesses occur to other fields in the same word of the
2163 structure, but to different bytes. */
2164
2165 #define SLOW_BYTE_ACCESS 0
2166
2167 /* Nonzero if access to memory by shorts is slow and undesirable. */
2168 #define SLOW_SHORT_ACCESS 0
2169
2170 /* Define this macro if zero-extension (of a `char' or `short' to an
2171 `int') can be done faster if the destination is a register that is
2172 known to be zero.
2173
2174 If you define this macro, you must have instruction patterns that
2175 recognize RTL structures like this:
2176
2177 (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
2178
2179 and likewise for `HImode'. */
2180
2181 /* #define SLOW_ZERO_EXTEND */
2182
2183 /* Define this macro to be the value 1 if unaligned accesses have a
2184 cost many times greater than aligned accesses, for example if they
2185 are emulated in a trap handler.
2186
2187 When this macro is non-zero, the compiler will act as if
2188 `STRICT_ALIGNMENT' were non-zero when generating code for block
2189 moves. This can cause significantly more instructions to be
2190 produced. Therefore, do not set this macro non-zero if unaligned
2191 accesses only add a cycle or two to the time for a memory access.
2192
2193 If the value of this macro is always zero, it need not be defined. */
2194
2195 /* #define SLOW_UNALIGNED_ACCESS 0 */
2196
2197 /* Define this macro to inhibit strength reduction of memory
2198 addresses. (On some machines, such strength reduction seems to do
2199 harm rather than good.) */
2200
2201 /* #define DONT_REDUCE_ADDR */
2202
2203 /* Define this macro if it is as good or better to call a constant
2204 function address than to call an address kept in a register.
2205
2206 Desirable on the 386 because a CALL with a constant address is
2207 faster than one with a register address. */
2208
2209 #define NO_FUNCTION_CSE
2210
2211 /* Define this macro if it is as good or better for a function to call
2212 itself with an explicit address than to call an address kept in a
2213 register. */
2214
2215 #define NO_RECURSIVE_FUNCTION_CSE
2216
2217 /* A C statement (sans semicolon) to update the integer variable COST
2218 based on the relationship between INSN that is dependent on
2219 DEP_INSN through the dependence LINK. The default is to make no
2220 adjustment to COST. This can be used for example to specify to
2221 the scheduler that an output- or anti-dependence does not incur
2222 the same cost as a data-dependence. */
2223
2224 #define ADJUST_COST(insn,link,dep_insn,cost) \
2225 { \
2226 rtx next_inst; \
2227 if (GET_CODE (dep_insn) == CALL_INSN) \
2228 (cost) = 0; \
2229 \
2230 else if (GET_CODE (dep_insn) == INSN \
2231 && GET_CODE (PATTERN (dep_insn)) == SET \
2232 && GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG \
2233 && GET_CODE (insn) == INSN \
2234 && GET_CODE (PATTERN (insn)) == SET \
2235 && !reg_overlap_mentioned_p (SET_DEST (PATTERN (dep_insn)), \
2236 SET_SRC (PATTERN (insn)))) \
2237 { \
2238 (cost) = 0; \
2239 } \
2240 \
2241 else if (GET_CODE (insn) == JUMP_INSN) \
2242 { \
2243 (cost) = 0; \
2244 } \
2245 \
2246 if (TARGET_PENTIUM) \
2247 { \
2248 if (cost !=0 && is_fp_insn (insn) && is_fp_insn (dep_insn) \
2249 && !is_fp_dest (dep_insn)) \
2250 { \
2251 (cost) = 0; \
2252 } \
2253 \
2254 if (agi_dependent (insn, dep_insn)) \
2255 { \
2256 (cost) = 3; \
2257 } \
2258 else if (GET_CODE (insn) == INSN \
2259 && GET_CODE (PATTERN (insn)) == SET \
2260 && SET_DEST (PATTERN (insn)) == cc0_rtx \
2261 && (next_inst = next_nonnote_insn (insn)) \
2262 && GET_CODE (next_inst) == JUMP_INSN) \
2263 { /* compare probably paired with jump */ \
2264 (cost) = 0; \
2265 } \
2266 } \
2267 else \
2268 if (!is_fp_dest (dep_insn)) \
2269 { \
2270 if(!agi_dependent (insn, dep_insn)) \
2271 (cost) = 0; \
2272 else if (TARGET_486) \
2273 (cost) = 2; \
2274 } \
2275 else \
2276 if (is_fp_store (insn) && is_fp_insn (dep_insn) \
2277 && NEXT_INSN (insn) && NEXT_INSN (NEXT_INSN (insn)) \
2278 && NEXT_INSN (NEXT_INSN (NEXT_INSN (insn))) \
2279 && (GET_CODE (NEXT_INSN (insn)) == INSN) \
2280 && (GET_CODE (NEXT_INSN (NEXT_INSN (insn))) == JUMP_INSN) \
2281 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) == NOTE) \
2282 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (insn)))) \
2283 == NOTE_INSN_LOOP_END)) \
2284 { \
2285 (cost) = 3; \
2286 } \
2287 }
2288
2289
2290 #define ADJUST_BLOCKAGE(last_insn,insn,blockage) \
2291 { \
2292 if (is_fp_store (last_insn) && is_fp_insn (insn) \
2293 && NEXT_INSN (last_insn) && NEXT_INSN (NEXT_INSN (last_insn)) \
2294 && NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn))) \
2295 && (GET_CODE (NEXT_INSN (last_insn)) == INSN) \
2296 && (GET_CODE (NEXT_INSN (NEXT_INSN (last_insn))) == JUMP_INSN) \
2297 && (GET_CODE (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) == NOTE) \
2298 && (NOTE_LINE_NUMBER (NEXT_INSN (NEXT_INSN (NEXT_INSN (last_insn)))) \
2299 == NOTE_INSN_LOOP_END)) \
2300 { \
2301 (blockage) = 3; \
2302 } \
2303 }
2304
2305 \f
2306 /* Add any extra modes needed to represent the condition code.
2307
2308 For the i386, we need separate modes when floating-point equality
2309 comparisons are being done. */
2310
2311 #define EXTRA_CC_MODES CCFPEQmode
2312
2313 /* Define the names for the modes specified above. */
2314 #define EXTRA_CC_NAMES "CCFPEQ"
2315
2316 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2317 return the mode to be used for the comparison.
2318
2319 For floating-point equality comparisons, CCFPEQmode should be used.
2320 VOIDmode should be used in all other cases. */
2321
2322 #define SELECT_CC_MODE(OP,X,Y) \
2323 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2324 && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
2325
2326 /* Define the information needed to generate branch and scc insns. This is
2327 stored from the compare operation. Note that we can't use "rtx" here
2328 since it hasn't been defined! */
2329
2330 extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
2331
2332 /* Tell final.c how to eliminate redundant test instructions. */
2333
2334 /* Here we define machine-dependent flags and fields in cc_status
2335 (see `conditions.h'). */
2336
2337 /* Set if the cc value was actually from the 80387 and
2338 we are testing eax directly (i.e. no sahf) */
2339 #define CC_TEST_AX 020000
2340
2341 /* Set if the cc value is actually in the 80387, so a floating point
2342 conditional branch must be output. */
2343 #define CC_IN_80387 04000
2344
2345 /* Set if the CC value was stored in a nonstandard way, so that
2346 the state of equality is indicated by zero in the carry bit. */
2347 #define CC_Z_IN_NOT_C 010000
2348
2349 /* Set if the CC value was actually from the 80387 and loaded directly
2350 into the eflags instead of via eax/sahf. */
2351 #define CC_FCOMI 040000
2352
2353 /* Store in cc_status the expressions
2354 that the condition codes will describe
2355 after execution of an instruction whose pattern is EXP.
2356 Do not alter them if the instruction would not alter the cc's. */
2357
2358 #define NOTICE_UPDATE_CC(EXP, INSN) \
2359 notice_update_cc((EXP))
2360
2361 /* Output a signed jump insn. Use template NORMAL ordinarily, or
2362 FLOAT following a floating point comparison.
2363 Use NO_OV following an arithmetic insn that set the cc's
2364 before a test insn that was deleted.
2365 NO_OV may be zero, meaning final should reinsert the test insn
2366 because the jump cannot be handled properly without it. */
2367
2368 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
2369 { \
2370 if (cc_prev_status.flags & CC_IN_80387) \
2371 return FLOAT; \
2372 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
2373 return NO_OV; \
2374 return NORMAL; \
2375 }
2376 \f
2377 /* Control the assembler format that we output, to the extent
2378 this does not vary between assemblers. */
2379
2380 /* How to refer to registers in assembler output.
2381 This sequence is indexed by compiler's hard-register-number (see above). */
2382
2383 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2384 For non floating point regs, the following are the HImode names.
2385
2386 For float regs, the stack top is sometimes referred to as "%st(0)"
2387 instead of just "%st". PRINT_REG handles this with the "y" code. */
2388
2389 #define HI_REGISTER_NAMES \
2390 {"ax","dx","cx","bx","si","di","bp","sp", \
2391 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
2392
2393 #define REGISTER_NAMES HI_REGISTER_NAMES
2394
2395 /* Table of additional register names to use in user input. */
2396
2397 #define ADDITIONAL_REGISTER_NAMES \
2398 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2399 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2400 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2401 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2402
2403 /* Note we are omitting these since currently I don't know how
2404 to get gcc to use these, since they want the same but different
2405 number as al, and ax.
2406 */
2407
2408 /* note the last four are not really qi_registers, but
2409 the md will have to never output movb into one of them
2410 only a movw . There is no movb into the last four regs */
2411
2412 #define QI_REGISTER_NAMES \
2413 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
2414
2415 /* These parallel the array above, and can be used to access bits 8:15
2416 of regs 0 through 3. */
2417
2418 #define QI_HIGH_REGISTER_NAMES \
2419 {"ah", "dh", "ch", "bh", }
2420
2421 /* How to renumber registers for dbx and gdb. */
2422
2423 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
2424 #define DBX_REGISTER_NUMBER(n) \
2425 ((n) == 0 ? 0 : \
2426 (n) == 1 ? 2 : \
2427 (n) == 2 ? 1 : \
2428 (n) == 3 ? 3 : \
2429 (n) == 4 ? 6 : \
2430 (n) == 5 ? 7 : \
2431 (n) == 6 ? 4 : \
2432 (n) == 7 ? 5 : \
2433 (n) + 4)
2434
2435 /* Before the prologue, RA is at 0(%esp). */
2436 #define INCOMING_RETURN_ADDR_RTX \
2437 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2438
2439 /* After the prologue, RA is at -4(AP) in the current frame. */
2440 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2441 ((COUNT) == 0 \
2442 ? gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, arg_pointer_rtx, GEN_INT(-4)))\
2443 : gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, (FRAME), GEN_INT(4))))
2444
2445 /* PC is dbx register 8; let's use that column for RA. */
2446 #define DWARF_FRAME_RETURN_COLUMN 8
2447
2448 /* Before the prologue, the top of the frame is at 4(%esp). */
2449 #define INCOMING_FRAME_SP_OFFSET 4
2450
2451 /* This is how to output the definition of a user-level label named NAME,
2452 such as the label on a static function or variable NAME. */
2453
2454 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2455 (assemble_name (FILE, NAME), fputs (":\n", FILE))
2456
2457 /* This is how to output an assembler line defining a `double' constant. */
2458
2459 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2460 do { long l[2]; \
2461 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2462 fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
2463 } while (0)
2464
2465 /* This is how to output a `long double' extended real constant. */
2466
2467 #undef ASM_OUTPUT_LONG_DOUBLE
2468 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2469 do { long l[3]; \
2470 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
2471 fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
2472 } while (0)
2473
2474 /* This is how to output an assembler line defining a `float' constant. */
2475
2476 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2477 do { long l; \
2478 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2479 fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
2480 } while (0)
2481
2482 /* Store in OUTPUT a string (made with alloca) containing
2483 an assembler-name for a local static variable named NAME.
2484 LABELNO is an integer which is different for each call. */
2485
2486 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2487 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2488 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2489
2490
2491
2492 /* This is how to output an assembler line defining an `int' constant. */
2493
2494 #define ASM_OUTPUT_INT(FILE,VALUE) \
2495 ( fprintf (FILE, "%s ", ASM_LONG), \
2496 output_addr_const (FILE,(VALUE)), \
2497 putc('\n',FILE))
2498
2499 /* Likewise for `char' and `short' constants. */
2500 /* is this supposed to do align too?? */
2501
2502 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2503 ( fprintf (FILE, "%s ", ASM_SHORT), \
2504 output_addr_const (FILE,(VALUE)), \
2505 putc('\n',FILE))
2506
2507 /*
2508 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2509 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2510 output_addr_const (FILE,(VALUE)), \
2511 fputs (",", FILE), \
2512 output_addr_const (FILE,(VALUE)), \
2513 fputs (" >> 8\n",FILE))
2514 */
2515
2516
2517 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2518 ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
2519 output_addr_const (FILE, (VALUE)), \
2520 putc ('\n', FILE))
2521
2522 /* This is how to output an assembler line for a numeric constant byte. */
2523
2524 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2525 fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
2526
2527 /* This is how to output an insn to push a register on the stack.
2528 It need not be very fast code. */
2529
2530 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2531 fprintf (FILE, "\tpushl %%e%s\n", reg_names[REGNO])
2532
2533 /* This is how to output an insn to pop a register from the stack.
2534 It need not be very fast code. */
2535
2536 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2537 fprintf (FILE, "\tpopl %%e%s\n", reg_names[REGNO])
2538
2539 /* This is how to output an element of a case-vector that is absolute.
2540 */
2541
2542 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2543 fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
2544
2545 /* This is how to output an element of a case-vector that is relative.
2546 We don't use these on the 386 yet, because the ATT assembler can't do
2547 forward reference the differences.
2548 */
2549
2550 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2551 fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
2552
2553 /* Define the parentheses used to group arithmetic operations
2554 in assembler code. */
2555
2556 #define ASM_OPEN_PAREN ""
2557 #define ASM_CLOSE_PAREN ""
2558
2559 /* Define results of standard character escape sequences. */
2560 #define TARGET_BELL 007
2561 #define TARGET_BS 010
2562 #define TARGET_TAB 011
2563 #define TARGET_NEWLINE 012
2564 #define TARGET_VT 013
2565 #define TARGET_FF 014
2566 #define TARGET_CR 015
2567 \f
2568 /* Print operand X (an rtx) in assembler syntax to file FILE.
2569 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2570 The CODE z takes the size of operand from the following digit, and
2571 outputs b,w,or l respectively.
2572
2573 On the 80386, we use several such letters:
2574 f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
2575 L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
2576 R -- print the prefix for register names.
2577 z -- print the opcode suffix for the size of the current operand.
2578 * -- print a star (in certain assembler syntax)
2579 P -- if PIC, print an @PLT suffix.
2580 X -- don't print any sort of PIC '@' suffix for a symbol.
2581 J -- print jump insn for arithmetic_comparison_operator.
2582 s -- ??? something to do with double shifts. not actually used, afaik.
2583 C -- print a conditional move suffix corresponding to the op code.
2584 c -- likewise, but reverse the condition.
2585 F,f -- likewise, but for floating-point. */
2586
2587 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2588 ((CODE) == '*')
2589
2590 /* Print the name of a register based on its machine mode and number.
2591 If CODE is 'w', pretend the mode is HImode.
2592 If CODE is 'b', pretend the mode is QImode.
2593 If CODE is 'k', pretend the mode is SImode.
2594 If CODE is 'h', pretend the reg is the `high' byte register.
2595 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
2596
2597 extern char *hi_reg_name[];
2598 extern char *qi_reg_name[];
2599 extern char *qi_high_reg_name[];
2600
2601 #define PRINT_REG(X, CODE, FILE) \
2602 do { if (REGNO (X) == ARG_POINTER_REGNUM) \
2603 abort (); \
2604 fprintf (FILE, "%s", RP); \
2605 switch ((CODE == 'w' ? 2 \
2606 : CODE == 'b' ? 1 \
2607 : CODE == 'k' ? 4 \
2608 : CODE == 'y' ? 3 \
2609 : CODE == 'h' ? 0 \
2610 : GET_MODE_SIZE (GET_MODE (X)))) \
2611 { \
2612 case 3: \
2613 if (STACK_TOP_P (X)) \
2614 { \
2615 fputs ("st(0)", FILE); \
2616 break; \
2617 } \
2618 case 4: \
2619 case 8: \
2620 case 12: \
2621 if (! FP_REG_P (X)) fputs ("e", FILE); \
2622 case 2: \
2623 fputs (hi_reg_name[REGNO (X)], FILE); \
2624 break; \
2625 case 1: \
2626 fputs (qi_reg_name[REGNO (X)], FILE); \
2627 break; \
2628 case 0: \
2629 fputs (qi_high_reg_name[REGNO (X)], FILE); \
2630 break; \
2631 } \
2632 } while (0)
2633
2634 #define PRINT_OPERAND(FILE, X, CODE) \
2635 print_operand (FILE, X, CODE)
2636
2637 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2638 print_operand_address (FILE, ADDR)
2639
2640 /* Print the name of a register for based on its machine mode and number.
2641 This macro is used to print debugging output.
2642 This macro is different from PRINT_REG in that it may be used in
2643 programs that are not linked with aux-output.o. */
2644
2645 #define DEBUG_PRINT_REG(X, CODE, FILE) \
2646 do { static char *hi_name[] = HI_REGISTER_NAMES; \
2647 static char *qi_name[] = QI_REGISTER_NAMES; \
2648 fprintf (FILE, "%d %s", REGNO (X), RP); \
2649 if (REGNO (X) == ARG_POINTER_REGNUM) \
2650 { fputs ("argp", FILE); break; } \
2651 if (STACK_TOP_P (X)) \
2652 { fputs ("st(0)", FILE); break; } \
2653 if (FP_REG_P (X)) \
2654 { fputs (hi_name[REGNO(X)], FILE); break; } \
2655 switch (GET_MODE_SIZE (GET_MODE (X))) \
2656 { \
2657 default: \
2658 fputs ("e", FILE); \
2659 case 2: \
2660 fputs (hi_name[REGNO (X)], FILE); \
2661 break; \
2662 case 1: \
2663 fputs (qi_name[REGNO (X)], FILE); \
2664 break; \
2665 } \
2666 } while (0)
2667
2668 /* Output the prefix for an immediate operand, or for an offset operand. */
2669 #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
2670 #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
2671
2672 /* Routines in libgcc that return floats must return them in an fp reg,
2673 just as other functions do which return such values.
2674 These macros make that happen. */
2675
2676 #define FLOAT_VALUE_TYPE float
2677 #define INTIFY(FLOATVAL) FLOATVAL
2678
2679 /* Nonzero if INSN magically clobbers register REGNO. */
2680
2681 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
2682 (FP_REGNO_P (REGNO) \
2683 && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
2684 */
2685
2686 /* a letter which is not needed by the normal asm syntax, which
2687 we can use for operand syntax in the extended asm */
2688
2689 #define ASM_OPERAND_LETTER '#'
2690 #define RET return ""
2691 #define AT_SP(mode) (gen_rtx_MEM ((mode), stack_pointer_rtx))
2692 \f
2693 /* Helper macros to expand a binary/unary operator if needed */
2694 #define IX86_EXPAND_BINARY_OPERATOR(OP, MODE, OPERANDS) \
2695 do { \
2696 if (!ix86_expand_binary_operator (OP, MODE, OPERANDS)) \
2697 FAIL; \
2698 } while (0)
2699
2700 #define IX86_EXPAND_UNARY_OPERATOR(OP, MODE, OPERANDS) \
2701 do { \
2702 if (!ix86_expand_unary_operator (OP, MODE, OPERANDS,)) \
2703 FAIL; \
2704 } while (0)
2705
2706 \f
2707 /* Functions in i386.c */
2708 extern void override_options ();
2709 extern void order_regs_for_local_alloc ();
2710 extern char *output_strlen_unroll ();
2711 extern struct rtx_def *i386_sext16_if_const ();
2712 extern int i386_aligned_p ();
2713 extern int i386_cc_probably_useless_p ();
2714 extern int i386_valid_decl_attribute_p ();
2715 extern int i386_valid_type_attribute_p ();
2716 extern int i386_return_pops_args ();
2717 extern int i386_comp_type_attributes ();
2718 extern void init_cumulative_args ();
2719 extern void function_arg_advance ();
2720 extern struct rtx_def *function_arg ();
2721 extern int function_arg_partial_nregs ();
2722 extern char *output_strlen_unroll ();
2723 extern void output_op_from_reg ();
2724 extern void output_to_reg ();
2725 extern char *singlemove_string ();
2726 extern char *output_move_double ();
2727 extern char *output_move_memory ();
2728 extern char *output_move_pushmem ();
2729 extern int standard_80387_constant_p ();
2730 extern char *output_move_const_single ();
2731 extern int symbolic_operand ();
2732 extern int call_insn_operand ();
2733 extern int expander_call_insn_operand ();
2734 extern int symbolic_reference_mentioned_p ();
2735 extern int ix86_expand_binary_operator ();
2736 extern int ix86_binary_operator_ok ();
2737 extern int ix86_expand_unary_operator ();
2738 extern int ix86_unary_operator_ok ();
2739 extern void emit_pic_move ();
2740 extern void function_prologue ();
2741 extern int simple_386_epilogue ();
2742 extern void function_epilogue ();
2743 extern int legitimate_address_p ();
2744 extern struct rtx_def *legitimize_pic_address ();
2745 extern struct rtx_def *legitimize_address ();
2746 extern void print_operand ();
2747 extern void print_operand_address ();
2748 extern void notice_update_cc ();
2749 extern void split_di ();
2750 extern int binary_387_op ();
2751 extern int shift_op ();
2752 extern int VOIDmode_compare_op ();
2753 extern char *output_387_binary_op ();
2754 extern char *output_fix_trunc ();
2755 extern char *output_float_compare ();
2756 extern char *output_fp_cc0_set ();
2757 extern void save_386_machine_status ();
2758 extern void restore_386_machine_status ();
2759 extern void clear_386_stack_locals ();
2760 extern struct rtx_def *assign_386_stack_local ();
2761 extern int is_mul ();
2762 extern int is_div ();
2763 extern int last_to_set_cc ();
2764 extern int doesnt_set_condition_code ();
2765 extern int sets_condition_code ();
2766 extern int str_immediate_operand ();
2767 extern int is_fp_insn ();
2768 extern int is_fp_dest ();
2769 extern int is_fp_store ();
2770 extern int agi_dependent ();
2771 extern int reg_mentioned_in_mem ();
2772
2773 #ifdef NOTYET
2774 extern struct rtx_def *copy_all_rtx ();
2775 extern void rewrite_address ();
2776 #endif
2777
2778 /* Variables in i386.c */
2779 extern char *ix86_cpu_string; /* for -mcpu=<xxx> */
2780 extern char *ix86_arch_string; /* for -march=<xxx> */
2781 extern char *i386_reg_alloc_order; /* register allocation order */
2782 extern char *i386_regparm_string; /* # registers to use to pass args */
2783 extern char *i386_align_loops_string; /* power of two alignment for loops */
2784 extern char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
2785 extern char *i386_align_funcs_string; /* power of two alignment for functions */
2786 extern char *i386_branch_cost_string; /* values 1-5: see jump.c */
2787 extern int i386_regparm; /* i386_regparm_string as a number */
2788 extern int i386_align_loops; /* power of two alignment for loops */
2789 extern int i386_align_jumps; /* power of two alignment for non-loop jumps */
2790 extern int i386_align_funcs; /* power of two alignment for functions */
2791 extern int i386_branch_cost; /* values 1-5: see jump.c */
2792 extern char *hi_reg_name[]; /* names for 16 bit regs */
2793 extern char *qi_reg_name[]; /* names for 8 bit regs (low) */
2794 extern char *qi_high_reg_name[]; /* names for 8 bit regs (high) */
2795 extern enum reg_class regclass_map[]; /* smalled class containing REGNO */
2796 extern struct rtx_def *i386_compare_op0; /* operand 0 for comparisons */
2797 extern struct rtx_def *i386_compare_op1; /* operand 1 for comparisons */
2798
2799 /* External variables used */
2800 extern int optimize; /* optimization level */
2801 extern int obey_regdecls; /* TRUE if stupid register allocation */
2802
2803 /* External functions used */
2804 extern struct rtx_def *force_operand ();
2805
2806 \f
2807 /*
2808 Local variables:
2809 version-control: t
2810 End:
2811 */
This page took 0.166053 seconds and 5 git commands to generate.