]> gcc.gnu.org Git - gcc.git/blob - gcc/config/convex/convex.h
f7a6134971c629a06bcc2b3d5ced7d96c50721d9
[gcc.git] / gcc / config / convex / convex.h
1 /* Definitions of target machine for GNU compiler. Convex version.
2 Copyright (C) 1988, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* Standard GCC variables that we reference. */
22
23 extern int target_flags;
24
25 /* Convex machine-specific flags
26 -mc1 target instruction set, libraries, scheduling
27 -mc2
28 -mc32
29 -mc34
30 -mc38
31 -margcount use standard calling sequence, with arg count word
32 -mno-argcount don't push arg count, depend on symbol table
33 -margcount-nop place arg count in a nop instruction (faster than push)
34 -mvolatile-cache use data cache for volatile mem refs (default)
35 -mvolatile-nocache bypass data cache for volatile mem refs
36 -mlong32 cc- and libc-compatible 32-bit longs
37 -mlong64 64-bit longs
38 */
39
40 /* Macro to define tables used to set -mXXX flags.
41 This is a list in braces of pairs in braces,
42 each pair being { "NAME", VALUE }
43 where VALUE is the bits to set or minus the bits to clear.
44 An empty string NAME is used to identify the default VALUE. */
45
46 #ifndef TARGET_DEFAULT
47 #error Use one of convex1.h, convex2.h, etc.
48 #endif
49
50 #define TARGET_SWITCHES \
51 { { "c1", 001 }, \
52 { "c2", 002 }, \
53 { "c32", 004 }, \
54 { "c34", 010 }, \
55 { "c38", 020 }, \
56 { "argcount", 0100 }, \
57 { "argcount-nop", 0200 }, \
58 { "no-argcount", -0300 }, \
59 { "volatile-cache", -0400 }, \
60 { "no-volatile-cache", 0400 }, \
61 { "volatile-nocache", 0400 }, \
62 { "long64", 01000 }, \
63 { "long32", -01000 }, \
64 { "", TARGET_DEFAULT }}
65
66 /* Macros used in the machine description to test the flags. */
67
68 #define TARGET_C1 (target_cpu == 0)
69 #define TARGET_C2 (target_cpu == 1)
70 #define TARGET_C34 (target_cpu == 2)
71 #define TARGET_C38 (target_cpu == 3)
72 #define TARGET_ARGCOUNT (target_flags & 0100)
73 #define TARGET_ARGCOUNT_NOP (target_flags & 0200)
74 #define TARGET_LONG64 (target_flags & 01000)
75 #define TARGET_VOLATILE_NOCACHE (target_flags & 0400)
76
77 #define OVERRIDE_OPTIONS \
78 { \
79 extern int dollars_in_ident; \
80 init_convex (); \
81 /* To compile system header files, allow $ in identifiers even if -ansi */ \
82 dollars_in_ident = 1; \
83 if ((target_flags & 077) != (TARGET_DEFAULT & 077)) \
84 target_flags &= ~TARGET_DEFAULT; \
85 if (target_flags & 001) \
86 target_cpu = 0; \
87 else if (target_flags & 006) \
88 target_cpu = 1; \
89 else if (target_flags & 010) \
90 target_cpu = 2; \
91 else if (target_flags & 020) \
92 target_cpu = 3; \
93 }
94
95 /* Names to predefine in the preprocessor for this target machine. */
96
97 #define CPP_PREDEFINES "-Dconvex -Dunix -Asystem(unix) -Acpu(convex) -Amachine(convex)"
98
99 /* Print subsidiary information on the compiler version in use. */
100
101 #define TARGET_VERSION fprintf (stderr, " (convex)");
102
103 /* Target-dependent specs.
104 Some libraries come in c1 and c2+ versions; use the appropriate ones.
105 Make a target-dependent __convex_cxx__ define to relay the target cpu
106 to the program being compiled. */
107
108 #if TARGET_DEFAULT & 1
109
110 /* C1 default */
111
112 #if _IEEE_FLOAT_
113
114 #define CPP_SPEC \
115 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \
116 %{mc2:-D__convex_c2__} \
117 %{mc32:-D__convex_c32__} \
118 %{mc34:-D__convex_c34__} \
119 %{mc38:-D__convex_c38__} \
120 %{fno-builtin:-D__NO_INLINE} \
121 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
122 -D_IEEE_FLOAT_ \
123 %{.S:-P} \
124 %{!traditional:-D__stdc__} \
125 %{!traditional:-D_LONGLONG} \
126 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
127 %{!ansi:-D_POSIX_SOURCE} \
128 %{!ansi:-D_CONVEX_SOURCE}"
129
130 #else
131
132 #define CPP_SPEC \
133 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \
134 %{mc2:-D__convex_c2__} \
135 %{mc32:-D__convex_c32__} \
136 %{mc34:-D__convex_c34__} \
137 %{mc38:-D__convex_c38__} \
138 %{fno-builtin:-D__NO_INLINE} \
139 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
140 -D_CONVEX_FLOAT_ \
141 %{.S:-P} \
142 %{!traditional:-D__stdc__} \
143 %{!traditional:-D_LONGLONG} \
144 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
145 %{!ansi:-D_POSIX_SOURCE} \
146 %{!ansi:-D_CONVEX_SOURCE}"
147
148 #endif
149
150 #define LIB_SPEC \
151 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-lC1%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
152 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
153 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
154 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
155 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
156 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
157
158 #endif
159
160 #if TARGET_DEFAULT & 2
161
162 /* C2 default */
163
164 #if _IEEE_FLOAT_
165
166 #define CPP_SPEC \
167 "%{mc1:-D__convex_c1__} \
168 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \
169 %{mc32:-D__convex_c32__} \
170 %{mc34:-D__convex_c34__} \
171 %{mc38:-D__convex_c38__} \
172 %{fno-builtin:-D__NO_INLINE} \
173 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
174 -D_IEEE_FLOAT_ \
175 %{.S:-P} \
176 %{!traditional:-D__stdc__} \
177 %{!traditional:-D_LONGLONG} \
178 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
179 %{!ansi:-D_POSIX_SOURCE} \
180 %{!ansi:-D_CONVEX_SOURCE}"
181
182 #else
183
184 #define CPP_SPEC \
185 "%{mc1:-D__convex_c1__} \
186 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \
187 %{mc32:-D__convex_c32__} \
188 %{mc34:-D__convex_c34__} \
189 %{mc38:-D__convex_c38__} \
190 %{fno-builtin:-D__NO_INLINE} \
191 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
192 -D_CONVEX_FLOAT_ \
193 %{.S:-P} \
194 %{!traditional:-D__stdc__} \
195 %{!traditional:-D_LONGLONG} \
196 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
197 %{!ansi:-D_POSIX_SOURCE} \
198 %{!ansi:-D_CONVEX_SOURCE}"
199
200 #endif
201
202 #define LIB_SPEC \
203 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
204 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
205 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
206 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
207 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
208 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
209
210 #endif
211
212 #if TARGET_DEFAULT & 4
213
214 /* C32 default */
215
216 #if _IEEE_FLOAT_
217
218 #define CPP_SPEC \
219 "%{mc1:-D__convex_c1__} \
220 %{mc2:-D__convex_c2__} \
221 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \
222 %{mc34:-D__convex_c34__} \
223 %{mc38:-D__convex_c38__} \
224 %{fno-builtin:-D__NO_INLINE} \
225 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
226 -D_IEEE_FLOAT_ \
227 %{.S:-P} \
228 %{!traditional:-D__stdc__} \
229 %{!traditional:-D_LONGLONG} \
230 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
231 %{!ansi:-D_POSIX_SOURCE} \
232 %{!ansi:-D_CONVEX_SOURCE}"
233
234 #else
235
236 #define CPP_SPEC \
237 "%{mc1:-D__convex_c1__} \
238 %{mc2:-D__convex_c2__} \
239 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \
240 %{mc34:-D__convex_c34__} \
241 %{mc38:-D__convex_c38__} \
242 %{fno-builtin:-D__NO_INLINE} \
243 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
244 -D_CONVEX_FLOAT_ \
245 %{.S:-P} \
246 %{!traditional:-D__stdc__} \
247 %{!traditional:-D_LONGLONG} \
248 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
249 %{!ansi:-D_POSIX_SOURCE} \
250 %{!ansi:-D_CONVEX_SOURCE}"
251
252 #endif
253
254 #define LIB_SPEC \
255 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
256 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
257 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
258 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
259 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
260 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
261
262 #endif
263
264 #if TARGET_DEFAULT & 010
265
266 /* C34 default */
267
268 #if _IEEE_FLOAT_
269
270 #define CPP_SPEC \
271 "%{mc1:-D__convex_c1__} \
272 %{mc2:-D__convex_c2__} \
273 %{mc32:-D__convex_c32__} \
274 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \
275 %{mc38:-D__convex_c38__} \
276 %{fno-builtin:-D__NO_INLINE} \
277 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
278 -D_IEEE_FLOAT_ \
279 %{.S:-P} \
280 %{!traditional:-D__stdc__} \
281 %{!traditional:-D_LONGLONG} \
282 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
283 %{!ansi:-D_POSIX_SOURCE} \
284 %{!ansi:-D_CONVEX_SOURCE}"
285
286 #else
287
288 #define CPP_SPEC \
289 "%{mc1:-D__convex_c1__} \
290 %{mc2:-D__convex_c2__} \
291 %{mc32:-D__convex_c32__} \
292 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \
293 %{mc38:-D__convex_c38__} \
294 %{fno-builtin:-D__NO_INLINE} \
295 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
296 -D_CONVEX_FLOAT_ \
297 %{.S:-P} \
298 %{!traditional:-D__stdc__} \
299 %{!traditional:-D_LONGLONG} \
300 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
301 %{!ansi:-D_POSIX_SOURCE} \
302 %{!ansi:-D_CONVEX_SOURCE}"
303
304 #endif
305
306 #define LIB_SPEC \
307 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
308 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
309 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
310 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
311 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
312 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
313
314 #endif
315
316 #if TARGET_DEFAULT & 020
317
318 /* C38 default */
319
320 #if _IEEE_FLOAT_
321
322 #define CPP_SPEC \
323 "%{mc1:-D__convex_c1__} \
324 %{mc2:-D__convex_c2__} \
325 %{mc32:-D__convex_c32__} \
326 %{mc34:-D__convex_c34__} \
327 %{fno-builtin:-D__NO_INLINE} \
328 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
329 -D_IEEE_FLOAT_ \
330 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \
331 %{.S:-P} \
332 %{!traditional:-D__stdc__} \
333 %{!traditional:-D_LONGLONG} \
334 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
335 %{!ansi:-D_POSIX_SOURCE} \
336 %{!ansi:-D_CONVEX_SOURCE}"
337
338 #else
339
340 #define CPP_SPEC \
341 "%{mc1:-D__convex_c1__} \
342 %{mc2:-D__convex_c2__} \
343 %{mc32:-D__convex_c32__} \
344 %{mc34:-D__convex_c34__} \
345 %{fno-builtin:-D__NO_INLINE} \
346 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
347 -D_CONVEX_FLOAT_ \
348 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \
349 %{.S:-P} \
350 %{!traditional:-D__stdc__} \
351 %{!traditional:-D_LONGLONG} \
352 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
353 %{!ansi:-D_POSIX_SOURCE} \
354 %{!ansi:-D_CONVEX_SOURCE}"
355
356 #endif
357
358 #define LIB_SPEC \
359 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
360 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
361 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
362 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
363 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
364 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
365
366 #endif
367
368 #if _IEEE_FLOAT_
369
370 /* ieee default */
371
372 #define ASM_SPEC "-fi"
373
374 #define LINK_SPEC \
375 "-E%{traditional:no}posix \
376 -X \
377 %{F} %{M*} %{y*} \
378 -fi \
379 -A__iob=___ap$iob \
380 -A_use_libc_sema=___ap$use_libc_sema \
381 %{traditional:-A___gcc_cleanup=__cleanup} \
382 %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \
383 -L/usr/lib"
384
385 #define STARTFILE_SPEC \
386 "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \
387 %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \
388 %{pg:/usr/lib/crt/gcrt0.o} \
389 /usr/lib/crt/fpmode_i.o"
390
391 #else
392
393 /* native default */
394
395 #define ASM_SPEC "-fn"
396
397 #define LINK_SPEC \
398 "-E%{traditional:no}posix \
399 -X \
400 %{F} %{M*} %{y*} \
401 -fn \
402 -A__iob=___ap$iob \
403 -A_use_libc_sema=___ap$use_libc_sema \
404 %{traditional:-A___gcc_cleanup=__cleanup} \
405 %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \
406 -L/usr/lib"
407
408 #define STARTFILE_SPEC \
409 "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \
410 %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \
411 %{pg:/usr/lib/crt/gcrt0.o}"
412
413 #endif
414
415 /* Use /path/libgcc.a instead of -lgcc, makes bootstrap work more smoothly. */
416
417 #define LINK_LIBGCC_SPECIAL_1
418
419 /* Allow $ in identifiers. */
420
421 #define DOLLARS_IN_IDENTIFIERS 2
422
423 /* Since IEEE support was added to gcc, most things seem to like it
424 better if we disable exceptions and check afterward for infinity. */
425
426 #if __convex__
427 #if _IEEE_FLOAT_
428 #define REAL_VALUE_ISNAN(x) 0
429 #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0x7ff0) == 0x7ff0)
430 #else
431 #define REAL_VALUE_ISNAN(x) 0
432 #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0xfff0) == 0x8000)
433 #endif
434 #endif
435 \f
436 /* Target machine storage layout */
437
438 /* Define this if most significant bit is lowest numbered
439 in instructions that operate on numbered bit-fields. */
440 #define BITS_BIG_ENDIAN 1
441
442 /* Define this if most significant byte of a word is the lowest numbered. */
443 #define BYTES_BIG_ENDIAN 1
444
445 /* Define this if most significant word of a multiword number is numbered. */
446 #define WORDS_BIG_ENDIAN 1
447
448 /* Number of bits in an addressable storage unit */
449 #define BITS_PER_UNIT 8
450
451 /* Width in bits of a "word", which is the contents of a machine register.
452 Note that this is not necessarily the width of data type `int';
453 if using 16-bit ints on a 68000, this would still be 32.
454 But on a machine with 16-bit registers, this would be 16. */
455 #define BITS_PER_WORD 64
456
457 /* Width of a word, in units (bytes). */
458 #define UNITS_PER_WORD 8
459
460 /* Width in bits of a pointer.
461 See also the macro `Pmode' defined below. */
462 #define POINTER_SIZE 32
463
464 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
465 #define PARM_BOUNDARY 32
466
467 /* Boundary (in *bits*) on which stack pointer should be aligned. */
468 #define STACK_BOUNDARY 64
469
470 /* Allocation boundary (in *bits*) for the code of a function. */
471 #define FUNCTION_BOUNDARY 16
472
473 /* Alignment of field after `int : 0' in a structure. */
474 #define EMPTY_FIELD_BOUNDARY 32
475
476 /* Every structure's size must be a multiple of this. */
477 #define STRUCTURE_SIZE_BOUNDARY 8
478
479 /* A bitfield declared as `int' forces `int' alignment for the struct. */
480 #define PCC_BITFIELD_TYPE_MATTERS 1
481
482 /* No data type wants to be aligned rounder than this. */
483 /* beware of doubles in structs -- 64 is incompatible with cc */
484 #define BIGGEST_ALIGNMENT 32
485
486 /* Set this nonzero if move instructions will actually fail to work
487 when given unaligned data. */
488 #define STRICT_ALIGNMENT 0
489
490 /* Define sizes of basic C types to conform to ordinary usage -- these
491 types depend on BITS_PER_WORD otherwise. */
492 #define CHAR_TYPE_SIZE 8
493 #define SHORT_TYPE_SIZE 16
494 #define INT_TYPE_SIZE 32
495 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
496 #define LONG_LONG_TYPE_SIZE 64
497 #define FLOAT_TYPE_SIZE 32
498 #define DOUBLE_TYPE_SIZE 64
499 #define LONG_DOUBLE_TYPE_SIZE 64
500 /* This prevents cexp.c from depending on LONG_TYPE_SIZE. */
501 #define MAX_LONG_TYPE_SIZE 64
502
503 /* Declare the standard types used by builtins to match convex stddef.h --
504 with int rather than long. */
505
506 #define SIZE_TYPE "unsigned int"
507 #define PTRDIFF_TYPE "int"
508 \f
509 /* Standard register usage. */
510
511 /* Number of actual hardware registers.
512 The hardware registers are assigned numbers for the compiler
513 from 0 to just below FIRST_PSEUDO_REGISTER.
514 All registers that the compiler knows about must be given numbers,
515 even those that are not normally considered general registers. */
516 #define FIRST_PSEUDO_REGISTER 16
517
518 /* 1 for registers that have pervasive standard uses
519 and are not available for the register allocator.
520 For Convex, these are AP, FP, and SP. */
521 #define FIXED_REGISTERS \
522 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 }
523
524 /* 1 for registers not available across function calls.
525 These must include the FIXED_REGISTERS and also any
526 registers that can be used without being saved.
527 The latter must include the registers where values are returned
528 and the register where structure-value addresses are passed.
529 Aside from that, you can include as many other registers as you like. */
530 #define CALL_USED_REGISTERS \
531 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
532
533 /* List the order in which to allocate registers. Each register must be
534 listed once, even those in FIXED_REGISTERS.
535 For Convex, put S0 (the return register) last. */
536 #define REG_ALLOC_ORDER \
537 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 0, 8, 14, 15 }
538
539 /* Return number of consecutive hard regs needed starting at reg REGNO
540 to hold something of mode MODE.
541 This is ordinarily the length in words of a value of mode MODE
542 but can be less for certain modes in special long registers. */
543 #define HARD_REGNO_NREGS(REGNO, MODE) \
544 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
545
546 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
547 On Convex, S registers can hold any type, A registers any nonfloat. */
548 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
549 (S_REGNO_P (REGNO) \
550 || (GET_MODE_SIZE (MODE) <= 4 && (MODE) != SFmode))
551
552 /* Value is 1 if it is a good idea to tie two pseudo registers
553 when one has mode MODE1 and one has mode MODE2.
554 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
555 for any hard reg, then this must be 0 for correct output. */
556 #define MODES_TIEABLE_P(MODE1, MODE2) \
557 ((GET_MODE_SIZE (MODE1) <= 4 && (MODE1) != SFmode) \
558 == (GET_MODE_SIZE (MODE2) <= 4 && (MODE2) != SFmode))
559
560 /* Specify the registers used for certain standard purposes.
561 The values of these macros are register numbers. */
562
563 #define S0_REGNUM 0
564 #define A0_REGNUM 8
565
566 /* Register to use for pushing function arguments. */
567 #define STACK_POINTER_REGNUM A0_REGNUM
568
569 /* Base register for access to local variables of the function. */
570 #define FRAME_POINTER_REGNUM (A0_REGNUM + 7)
571
572 /* Value should be nonzero if functions must have frame pointers.
573 Zero means the frame pointer need not be set up (and parms
574 may be accessed via the stack pointer) in functions that seem suitable.
575 This is computed in `reload', in reload1.c. */
576 #define FRAME_POINTER_REQUIRED 1
577
578 /* Base register for access to arguments of the function. */
579 #define ARG_POINTER_REGNUM (A0_REGNUM + 6)
580
581 /* Register in which static-chain is passed to a function.
582 Use S0, not an A reg, because this rare use would otherwise prevent
583 an A reg from being available to global-alloc across calls. */
584 #define STATIC_CHAIN_REGNUM S0_REGNUM
585
586 /* Register in which address to store a structure value
587 is passed to a function. */
588 #define STRUCT_VALUE_REGNUM (A0_REGNUM + 1)
589 \f
590 /* Define the classes of registers for register constraints in the
591 machine description. Also define ranges of constants.
592
593 One of the classes must always be named ALL_REGS and include all hard regs.
594 If there is more than one class, another class must be named NO_REGS
595 and contain no registers.
596
597 The name GENERAL_REGS must be the name of a class (or an alias for
598 another name such as ALL_REGS). This is the class of registers
599 that is allowed by "g" or "r" in a register constraint.
600 Also, registers outside this class are allocated only when
601 instructions express preferences for them.
602
603 The classes must be numbered in nondecreasing order; that is,
604 a larger-numbered class must never be contained completely
605 in a smaller-numbered class.
606
607 For any two classes, it is very desirable that there be another
608 class that represents their union. */
609
610 /* Convex has classes A (address) and S (scalar).
611 A is further divided into SP_REGS (stack pointer) and INDEX_REGS.
612 SI_REGS is S_REGS + INDEX_REGS -- all the regs except SP. */
613
614 enum reg_class {
615 NO_REGS, S_REGS, INDEX_REGS, SP_REGS, A_REGS, SI_REGS,
616 ALL_REGS, LIM_REG_CLASSES
617 };
618
619 #define N_REG_CLASSES (int) LIM_REG_CLASSES
620
621 /* Since GENERAL_REGS is the same class as ALL_REGS,
622 don't give it a different class number; just make it an alias. */
623
624 #define GENERAL_REGS ALL_REGS
625
626 /* Give names of register classes as strings for dump file. */
627
628 #define REG_CLASS_NAMES \
629 {"NO_REGS", "S_REGS", "INDEX_REGS", "SP_REGS", "A_REGS", "SI_REGS", \
630 "ALL_REGS" }
631
632 /* Define which registers fit in which classes.
633 This is an initializer for a vector of HARD_REG_SET
634 of length N_REG_CLASSES. */
635
636 #define REG_CLASS_CONTENTS \
637 { 0, 0x00ff, 0xfe00, 0x0100, 0xff00, 0xfeff, 0xffff }
638
639 /* The same information, inverted:
640 Return the class number of the smallest class containing
641 reg number REGNO. This could be a conditional expression
642 or could index an array. */
643
644 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[REGNO])
645
646 #define S_REGNO_P(REGNO) (((REGNO) - S0_REGNUM) < (unsigned) 8)
647 #define A_REGNO_P(REGNO) (((REGNO) - A0_REGNUM) < (unsigned) 8)
648
649 #define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
650 #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
651
652 /* The class value for index registers, and the one for base regs. */
653
654 #define INDEX_REG_CLASS INDEX_REGS
655 #define BASE_REG_CLASS INDEX_REGS
656
657 /* Get reg_class from a letter such as appears in the machine description. */
658 /* a => A_REGS
659 d => S_REGS ('s' is taken)
660 A => INDEX_REGS (i.e., A_REGS except sp) */
661
662 #define REG_CLASS_FROM_LETTER(C) \
663 reg_class_from_letter[(unsigned char) (C)]
664
665 /* The letters I, J, K, L and M in a register constraint string
666 can be used to stand for particular ranges of immediate operands.
667 This macro defines what the ranges are.
668 C is the letter, and VALUE is a constant value.
669 Return 1 if VALUE is in the range specified by C. */
670 /* 'I' is used to pass any CONST_INT and reject any CONST_DOUBLE.
671 CONST_DOUBLE integers are handled by G and H constraint chars. */
672
673 #define CONST_OK_FOR_LETTER_P(VALUE, C) 1
674
675 /* Similar, but for floating constants, and defining letters G and H.
676 Here VALUE is the CONST_DOUBLE rtx itself. */
677 /* Convex uses G, H:
678 value usable in ld.d (low word 0) or ld.l (high word all sign) */
679
680 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
681 (((C) == 'G' && LD_D_P (VALUE)) || \
682 ((C) == 'H' && LD_L_P (VALUE)) || \
683 0)
684
685 #define LD_D_P(X) (const_double_low_int (X) == 0)
686
687 #define LD_L_P(X) (const_double_low_int (X) >= 0 \
688 ? const_double_high_int (X) == 0 \
689 : const_double_high_int (X) == -1)
690
691 /* Optional extra constraints for this machine.
692 For Convex, 'Q' means that OP is a volatile MEM.
693 For volatile scalars, we use instructions that bypass the data cache. */
694
695 #define EXTRA_CONSTRAINT(OP, C) \
696 ((C) == 'Q' ? (GET_CODE (OP) == MEM && MEM_VOLATILE_P (OP) \
697 && ! TARGET_C1 && TARGET_VOLATILE_NOCACHE) \
698 : 0)
699
700 /* Given an rtx X being reloaded into a reg required to be
701 in class CLASS, return the class of reg to actually use.
702 In general this is just CLASS; but on some machines
703 in some cases it is preferable to use a more restrictive class. */
704
705 /* Put 2-word constants that can't be immediate operands into memory. */
706
707 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
708 ((GET_CODE (X) != CONST_DOUBLE \
709 || GET_MODE (X) == SFmode \
710 || LD_L_P (X) || LD_D_P (X)) ? (CLASS) : NO_REGS)
711
712 /* Return the maximum number of consecutive registers
713 needed to represent mode MODE in a register of class CLASS. */
714 #define CLASS_MAX_NREGS(CLASS, MODE) ((GET_MODE_SIZE (MODE) + 7) / 8)
715 \f
716 /* Stack layout; function entry, exit and calling. */
717
718 /* Define this if pushing a word on the stack
719 makes the stack pointer a smaller address. */
720 #define STACK_GROWS_DOWNWARD
721
722 /* Define this if the nominal address of the stack frame
723 is at the high-address end of the local variables;
724 that is, each additional local variable allocated
725 goes at a more negative offset in the frame. */
726 #define FRAME_GROWS_DOWNWARD
727
728 /* Define this if should default to -fcaller-saves. */
729 #define DEFAULT_CALLER_SAVES
730
731 /* Offset within stack frame to start allocating local variables at.
732 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
733 first local allocated. Otherwise, it is the offset to the BEGINNING
734 of the first local allocated. */
735 #define STARTING_FRAME_OFFSET 0
736
737 /* If we generate an insn to push BYTES bytes,
738 this says how many the stack pointer really advances by. */
739 #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
740
741 /* Offset of first parameter from the argument pointer register value. */
742 #define FIRST_PARM_OFFSET(FNDECL) 0
743
744 /* Value is the number of bytes of arguments automatically
745 popped when returning from a subroutine call.
746 FUNTYPE is the data type of the function (as a tree),
747 or for a library call it is an identifier node for the subroutine name.
748 SIZE is the number of bytes of arguments passed on the stack. */
749
750 #define RETURN_POPS_ARGS(FUNTYPE, SIZE) (SIZE)
751
752 /* Define how to find the value returned by a function.
753 VALTYPE is the data type of the value (as a tree).
754 If the precise function being called is known, FUNC is its FUNCTION_DECL;
755 otherwise, FUNC is 0. */
756
757 #define FUNCTION_VALUE(VALTYPE, FUNC) \
758 gen_rtx (REG, TYPE_MODE (VALTYPE), S0_REGNUM)
759
760 /* Define how to find the value returned by a library function
761 assuming the value has mode MODE. */
762
763 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, S0_REGNUM)
764
765 /* Define this if PCC uses the nonreentrant convention for returning
766 structure and union values. */
767
768 #define PCC_STATIC_STRUCT_RETURN
769
770 /* 1 if N is a possible register number for a function value.
771 On the Convex, S0 is the only register thus used. */
772
773 #define FUNCTION_VALUE_REGNO_P(N) ((N) == S0_REGNUM)
774
775 /* 1 if N is a possible register number for function argument passing. */
776
777 #define FUNCTION_ARG_REGNO_P(N) 0
778 \f
779 /* Define a data type for recording info about an argument list
780 during the scan of that argument list. This data type should
781 hold all necessary information about the function itself
782 and about the args processed so far, enough to enable macros
783 such as FUNCTION_ARG to determine where the next arg should go. */
784 /* On convex, simply count the arguments in case TARGET_ARGCOUNT is set. */
785
786 #define CUMULATIVE_ARGS int
787
788 /* Initialize a variable CUM of type CUMULATIVE_ARGS
789 for a call to a function whose data type is FNTYPE.
790 For a library call, FNTYPE is 0. */
791
792 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
793 ((CUM) = 0)
794
795 /* Update the data in CUM to advance over an argument
796 of mode MODE and data type TYPE.
797 (TYPE is null for libcalls where that information may not be available.) */
798
799 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
800 ((CUM) += 1)
801
802 /* Define where to put the arguments to a function.
803 Value is zero to push the argument on the stack,
804 or a hard register in which to store the argument.
805
806 MODE is the argument's machine mode.
807 TYPE is the data type of the argument (as a tree).
808 This is null for libcalls where that information may
809 not be available.
810 CUM is a variable of type CUMULATIVE_ARGS which gives info about
811 the preceding args and about the function being called.
812 NAMED is nonzero if this argument is a named parameter
813 (otherwise it is an extra parameter matching an ellipsis).
814
815 Convex: all args go on the stack. But return the arg count
816 as the "next arg register" to be passed to gen_call. */
817
818 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
819 ((MODE) == VOIDmode ? gen_rtx (CONST_INT, VOIDmode, (CUM)) : 0)
820
821 /* This macro generates the assembly code for function entry.
822 FILE is a stdio stream to output the code to.
823 SIZE is an int: how many units of temporary storage to allocate.
824 Refer to the array `regs_ever_live' to determine which registers
825 to save; `regs_ever_live[I]' is nonzero if register number I
826 is ever used in the function. This macro is responsible for
827 knowing which registers should not be saved even if used. */
828
829 #define FUNCTION_PROLOGUE(FILE, SIZE) \
830 { \
831 int size = ((SIZE) + 7) & -8; \
832 if (size != 0) \
833 fprintf (FILE, "\tsub.w #%d,sp\n", size); \
834 }
835
836 /* This macro generates the assembly code for function exit,
837 on machines that need it. If FUNCTION_EPILOGUE is not defined
838 then individual return instructions are generated for each
839 return statement. Args are same as for FUNCTION_PROLOGUE. */
840
841 #define FUNCTION_EPILOGUE(FILE, SIZE) \
842 { \
843 /* Follow function with a zero to stop c34 icache prefetching. */ \
844 fprintf (FILE, "\tds.h 0\n"); \
845 }
846
847 /* Output assembler code for a block containing the constant parts
848 of a trampoline, leaving space for the variable parts. */
849
850 /* On convex, the code for a trampoline is
851 ld.w #<link>,s0
852 jmp <func> */
853
854 #define TRAMPOLINE_TEMPLATE(FILE) \
855 { \
856 fprintf (FILE, "\tld.w #69696969,s0\n"); \
857 fprintf (FILE, "\tjmp 52525252\n"); \
858 }
859
860 /* Length in units of the trampoline for entering a nested function. */
861
862 #define TRAMPOLINE_SIZE 12
863
864 /* Emit RTL insns to initialize the variable parts of a trampoline.
865 FNADDR is an RTX for the address of the function's pure code.
866 CXT is an RTX for the static chain value for the function. */
867
868 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
869 { \
870 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \
871 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR); \
872 emit_call_insn (gen_call_pop (gen_rtx (MEM, QImode, \
873 gen_rtx (SYMBOL_REF, Pmode, \
874 "__enable_execute_stack")), \
875 const0_rtx, const0_rtx, const0_rtx)); \
876 }
877
878 /* Output assembler code to FILE to increment profiler label # LABELNO
879 for profiling a function entry. */
880
881 #define FUNCTION_PROFILER(FILE, LABELNO) \
882 fprintf (FILE, "\tldea LP%d,a1\n\tcallq mcount\n", (LABELNO));
883
884 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
885 the stack pointer does not matter. The value is tested only in
886 functions that have frame pointers.
887 No definition is equivalent to always zero. */
888
889 #define EXIT_IGNORE_STACK 1
890
891 /* Store in the variable DEPTH the initial difference between the
892 frame pointer reg contents and the stack pointer reg contents,
893 as of the start of the function body. This depends on the layout
894 of the fixed parts of the stack frame and on how registers are saved. */
895 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
896 { (DEPTH) = (get_frame_size () + 7) & -8; }
897 \f
898 /* Addressing modes, and classification of registers for them. */
899
900 /* #define HAVE_POST_INCREMENT */
901 /* #define HAVE_POST_DECREMENT */
902
903 /* #define HAVE_PRE_DECREMENT */
904 /* #define HAVE_PRE_INCREMENT */
905
906 /* Macros to check register numbers against specific register classes. */
907
908 /* These assume that REGNO is a hard or pseudo reg number.
909 They give nonzero only if REGNO is a hard reg of the suitable class
910 or a pseudo reg currently allocated to a suitable hard reg.
911 Since they use reg_renumber, they are safe only once reg_renumber
912 has been allocated, which happens in local-alloc.c. */
913
914 #define REGNO_OK_FOR_INDEX_P(regno) \
915 ((regno) <= LAST_VIRTUAL_REGISTER \
916 ? regno_ok_for_index_p[regno] \
917 : regno_ok_for_index_p[reg_renumber[regno]])
918
919 #define REGNO_OK_FOR_BASE_P(regno) REGNO_OK_FOR_INDEX_P (regno)
920 \f
921 /* Maximum number of registers that can appear in a valid memory address. */
922
923 #define MAX_REGS_PER_ADDRESS 1
924
925 /* 1 if X is an rtx for a constant that is a valid address. */
926
927 #define CONSTANT_ADDRESS_P(X) \
928 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
929 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
930 || GET_CODE (X) == HIGH)
931
932 /* Nonzero if the constant value X is a legitimate general operand.
933 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
934
935 /* For convex, bounce 2-word constants that can't be immediate operands. */
936
937 #define LEGITIMATE_CONSTANT_P(X) \
938 (GET_CODE (X) != CONST_DOUBLE \
939 || GET_MODE (X) == SFmode \
940 || LD_L_P (X) || LD_D_P (X))
941
942 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
943 and check its validity for a certain class.
944 We have two alternate definitions for each of them.
945 The usual definition accepts all pseudo regs; the other rejects
946 them unless they have been allocated suitable hard regs.
947 The symbol REG_OK_STRICT causes the latter definition to be used.
948
949 Most source files want to accept pseudo regs in the hope that
950 they will get allocated to the class that the insn wants them to be in.
951 Source files for reload pass need to be strict.
952 After reload, it makes no difference, since pseudo regs have
953 been eliminated by then. */
954
955 #ifndef REG_OK_STRICT
956
957 /* Nonzero if X is a hard reg that can be used as an index
958 or if it is a pseudo reg. */
959 #define REG_OK_FOR_INDEX_P(X) \
960 (REGNO (X) > LAST_VIRTUAL_REGISTER || regno_ok_for_index_p[REGNO (X)])
961
962 /* Nonzero if X is a hard reg that can be used as a base reg
963 or if it is a pseudo reg. */
964 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
965
966 #else
967
968 /* Nonzero if X is a hard reg that can be used as an index. */
969 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
970
971 /* Nonzero if X is a hard reg that can be used as a base reg. */
972 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
973
974 #endif
975 \f
976 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
977 that is a valid memory address for an instruction.
978 The MODE argument is the machine mode for the MEM expression
979 that wants to use this address.
980
981 For Convex, valid addresses are
982 indirectable or (MEM indirectable)
983 where indirectable is
984 const, reg, (PLUS reg const)
985
986 We don't use indirection since with insn scheduling, load + indexing
987 is better. */
988
989 /* 1 if X is an address that we could indirect through. */
990 #define INDIRECTABLE_ADDRESS_P(X) \
991 (CONSTANT_ADDRESS_P (X) \
992 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
993 || (GET_CODE (X) == PLUS \
994 && GET_CODE (XEXP (X, 0)) == REG \
995 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
996 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
997 || (GET_CODE (X) == PLUS \
998 && GET_CODE (XEXP (X, 1)) == REG \
999 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1000 && CONSTANT_ADDRESS_P (XEXP (X, 0))))
1001
1002 /* Go to ADDR if X is a valid address. */
1003 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1004 { register rtx xfoob = (X); \
1005 if (INDIRECTABLE_ADDRESS_P (xfoob)) \
1006 goto ADDR; \
1007 if (GET_CODE (xfoob) == PRE_DEC && XEXP (xfoob, 0) == stack_pointer_rtx) \
1008 goto ADDR; \
1009 }
1010 \f
1011 /* Try machine-dependent ways of modifying an illegitimate address
1012 to be legitimate. If we find one, return the new, valid address.
1013 This macro is used in only one place: `memory_address' in explow.c.
1014
1015 OLDX is the address as it was before break_out_memory_refs was called.
1016 In some cases it is useful to look at this to decide what needs to be done.
1017
1018 MODE and WIN are passed so that this macro can use
1019 GO_IF_LEGITIMATE_ADDRESS.
1020
1021 It is always safe for this macro to do nothing. It exists to recognize
1022 opportunities to optimize the output.
1023
1024 For Convex, nothing needs to be done. */
1025
1026 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
1027
1028 /* Go to LABEL if ADDR (a legitimate address expression)
1029 has an effect that depends on the machine mode it is used for. */
1030
1031 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
1032 \f
1033 /* Specify the machine mode that this machine uses
1034 for the index in the tablejump instruction. */
1035 #define CASE_VECTOR_MODE SImode
1036
1037 /* Define this if the case instruction expects the table
1038 to contain offsets from the address of the table.
1039 Do not define this if the table should contain absolute addresses. */
1040 /* #define CASE_VECTOR_PC_RELATIVE */
1041
1042 /* Define this if the case instruction drops through after the table
1043 when the index is out of range. Don't define it if the case insn
1044 jumps to the default label instead. */
1045 /* #define CASE_DROPS_THROUGH */
1046
1047 /* Specify the tree operation to be used to convert reals to integers. */
1048 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1049
1050 /* This is the kind of divide that is easiest to do in the general case. */
1051 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1052
1053 /* Define this as 1 if `char' should by default be signed; else as 0. */
1054 #define DEFAULT_SIGNED_CHAR 1
1055
1056 /* This flag, if defined, says the same insns that convert to a signed fixnum
1057 also convert validly to an unsigned one. */
1058 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1059
1060 /* Max number of bytes we can move from memory to memory
1061 in one reasonably fast instruction. */
1062 #define MOVE_MAX 8
1063
1064 /* Define this if zero-extension is slow (more than one real instruction). */
1065 /* #define SLOW_ZERO_EXTEND */
1066
1067 /* Nonzero if access to memory by bytes is slow and undesirable. */
1068 #define SLOW_BYTE_ACCESS (! TARGET_C2)
1069
1070 /* Define if shifts truncate the shift count
1071 which implies one can omit a sign-extension or zero-extension
1072 of a shift count. */
1073 /* #define SHIFT_COUNT_TRUNCATED */
1074
1075 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1076 is done just by pretending it is already truncated. */
1077 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1078
1079 /* On Convex, it is as good to call a constant function address as to
1080 call an address kept in a register. */
1081 #define NO_FUNCTION_CSE
1082
1083 /* When a prototype says `char' or `short', really pass an `int'. */
1084 #define PROMOTE_PROTOTYPES
1085
1086 /* Specify the machine mode that pointers have.
1087 After generation of rtl, the compiler makes no further distinction
1088 between pointers and any other objects of this machine mode. */
1089 #define Pmode SImode
1090
1091 /* A function address in a call instruction
1092 is a byte address (for indexing purposes)
1093 so give the MEM rtx a byte's mode. */
1094 #define FUNCTION_MODE QImode
1095
1096 /* Compute the cost of computing a constant rtl expression RTX
1097 whose rtx-code is CODE. The body of this macro is a portion
1098 of a switch statement. If the code is computed here,
1099 return it with a return statement. Otherwise, break from the switch. */
1100
1101 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1102 case CONST: \
1103 case LABEL_REF: \
1104 case SYMBOL_REF: \
1105 case CONST_INT: \
1106 case CONST_DOUBLE: \
1107 return 0;
1108
1109 /* Provide the costs of a rtl expression. This is in the body of a
1110 switch on CODE. */
1111
1112 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
1113 case PLUS: \
1114 if (regno_pointer_flag != 0 \
1115 && GET_CODE (XEXP (RTX, 0)) == REG \
1116 && REGNO_POINTER_FLAG (REGNO (XEXP (RTX, 0))) \
1117 && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \
1118 return 0; \
1119 else break; \
1120 case MULT: \
1121 return 4 * (char) (0x03060403 >> target_cpu * 8); \
1122 case ASHIFT: \
1123 case LSHIFTRT: \
1124 case ASHIFTRT: \
1125 return 4 * (char) (0x03010403 >> target_cpu * 8); \
1126 case MEM: \
1127 return 5;
1128
1129 /* Compute the cost of an address. This is meant to approximate the size
1130 and/or execution delay of an insn using that address. If the cost is
1131 approximated by the RTL complexity, including CONST_COSTS above, as
1132 is usually the case for CISC machines, this macro should not be defined.
1133 For aggressively RISCy machines, only one insn format is allowed, so
1134 this macro should be a constant. The value of this macro only matters
1135 for valid addresses. */
1136
1137 #define ADDRESS_COST(RTX) 0
1138
1139 /* Specify the cost of a branch insn; roughly the number of extra insns that
1140 should be added to avoid a branch. */
1141
1142 #define BRANCH_COST 0
1143
1144 /* Adjust the cost of dependences. */
1145
1146 #define ADJUST_COST(INSN,LINK,DEP,COST) \
1147 { \
1148 /* Antidependencies don't block issue. */ \
1149 if (REG_NOTE_KIND (LINK) != 0) \
1150 (COST) = 0; \
1151 /* C38 situations where delay depends on context */ \
1152 else if (TARGET_C38 \
1153 && GET_CODE (PATTERN (INSN)) == SET \
1154 && GET_CODE (PATTERN (DEP)) == SET) \
1155 { \
1156 enum attr_type insn_type = get_attr_type (INSN); \
1157 enum attr_type dep_type = get_attr_type (DEP); \
1158 /* index register must be ready one cycle early */ \
1159 if (insn_type == TYPE_MLDW || insn_type == TYPE_MLDL \
1160 || (insn_type == TYPE_MST \
1161 && reg_mentioned_p (SET_DEST (PATTERN (DEP)), \
1162 SET_SRC (PATTERN (INSN))))) \
1163 (COST) += 1; \
1164 /* alu forwarding off alu takes two */ \
1165 if (dep_type == TYPE_ALU \
1166 && insn_type != TYPE_ALU \
1167 && ! (insn_type == TYPE_MST \
1168 && SET_DEST (PATTERN (DEP)) == SET_SRC (PATTERN (INSN)))) \
1169 (COST) += 1; \
1170 } \
1171 }
1172
1173 /* Convex uses Vax or IEEE floats.
1174 Follow the host format. */
1175 #define TARGET_FLOAT_FORMAT HOST_FLOAT_FORMAT
1176
1177 /* But must prevent real.c from constructing Vax dfloats */
1178 #define REAL_VALUE_ATOF(X,S) atof (X)
1179 extern double atof();
1180
1181 /* Check a `double' value for validity for a particular machine mode. */
1182 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1183 overflow = check_float_value (MODE, &D, OVERFLOW)
1184 \f
1185 /* Tell final.c how to eliminate redundant test instructions. */
1186
1187 /* Here we define machine-dependent flags and fields in cc_status
1188 (see `conditions.h'). No extra ones are needed for convex. */
1189
1190 /* Store in cc_status the expressions
1191 that the condition codes will describe
1192 after execution of an instruction whose pattern is EXP.
1193 Do not alter them if the instruction would not alter the cc's. */
1194
1195 #define NOTICE_UPDATE_CC(EXP,INSN) {}
1196 \f
1197 /* Control the assembler format that we output. */
1198
1199 /* Output at beginning of assembler file. */
1200
1201 #if _IEEE_FLOAT_
1202 #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode ieee\n")
1203 #else
1204 #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode native\n")
1205 #endif
1206
1207 /* Output to assembler file text saying following lines
1208 may contain character constants, extra white space, comments, etc. */
1209
1210 #define ASM_APP_ON ";APP\n"
1211
1212 /* Output to assembler file text saying following lines
1213 no longer contain unusual constructs. */
1214
1215 #define ASM_APP_OFF ";NO_APP\n"
1216
1217 /* Alignment with Convex's assembler goes like this:
1218 .text can be .aligned up to a halfword.
1219 .data and .bss can be .aligned up to a longword.
1220 .lcomm is not supported, explicit declarations in .bss must be used instead.
1221 We get alignment for word and longword .text data by conventionally
1222 using .text 2 for word-aligned data and .text 3 for longword-aligned
1223 data. This requires that the data's size be a multiple of its alignment,
1224 which seems to be always true. */
1225
1226 /* Output before read-only data. */
1227
1228 #define TEXT_SECTION_ASM_OP (current_section_is_text = 1, ".text")
1229
1230 /* Output before writable data. */
1231
1232 #define DATA_SECTION_ASM_OP (current_section_is_text = 0, ".data")
1233
1234 /* Output before uninitialized data. */
1235
1236 #define BSS_SECTION_ASM_OP (current_section_is_text = 0, ".bss")
1237
1238 /* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
1239
1240 #define EXTRA_SECTIONS in_bss
1241
1242 #define EXTRA_SECTION_FUNCTIONS \
1243 void \
1244 bss_section () \
1245 { \
1246 if (in_section != in_bss) \
1247 { \
1248 fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
1249 in_section = in_bss; \
1250 } \
1251 }
1252
1253 /* This is how to output an assembler line
1254 that says to advance the location counter
1255 to a multiple of 2**LOG bytes. */
1256
1257 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1258 if (current_section_is_text && (LOG) > 1) \
1259 fprintf (FILE, ".text %d\n", LOG); \
1260 else if (current_section_is_text) \
1261 fprintf (FILE, ".text\n.align %d\n", 1 << (LOG)); \
1262 else \
1263 fprintf (FILE, ".align %d\n", 1 << (LOG))
1264
1265 /* How to refer to registers in assembler output.
1266 This sequence is indexed by compiler's hard-register-number (see above). */
1267
1268 #define REGISTER_NAMES \
1269 { \
1270 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
1271 "sp", "a1", "a2", "a3", "a4", "a5", "ap", "fp", \
1272 }
1273
1274 /* This is BSD, so it wants DBX format. */
1275
1276 #define DBX_DEBUGGING_INFO
1277
1278 /* How to renumber registers for dbx and gdb. */
1279
1280 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1281
1282 /* Do not break .stabs pseudos into continuations. */
1283
1284 #define DBX_CONTIN_LENGTH 0
1285
1286 /* This is the char to use for continuation (in case we need to turn
1287 continuation back on). */
1288
1289 #define DBX_CONTIN_CHAR '?'
1290
1291 /* Don't use stab extensions until GDB v4 port is available for convex. */
1292
1293 #define DEFAULT_GDB_EXTENSIONS 0
1294 #define DBX_NO_XREFS
1295
1296 /* This is how to output the definition of a user-level label named NAME,
1297 such as the label on a static function or variable NAME. */
1298
1299 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1300 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1301
1302 /* This is how to output a command to make the user-level label named NAME
1303 defined for reference from other files. */
1304
1305 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1306 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1307
1308 /* This is how to output a reference to a user-level label named NAME. */
1309
1310 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1311 fprintf (FILE, "_%s", NAME)
1312
1313 /* This is how to output an internal numbered label where
1314 PREFIX is the class of label and NUM is the number within the class. */
1315
1316 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1317 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1318
1319 /* Put case tables in .text 2, where they will be word-aligned */
1320
1321 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1322 ASM_OUTPUT_ALIGN (FILE, 2); \
1323 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM)
1324
1325 #define ASM_OUTPUT_CASE_END(FILE,NUM,TABLE) \
1326 ASM_OUTPUT_ALIGN (FILE, 1)
1327
1328 /* This is how to store into the string LABEL
1329 the symbol_ref name of an internal numbered label where
1330 PREFIX is the class of label and NUM is the number within the class.
1331 This is suitable for output with `assemble_name'. */
1332
1333 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1334 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1335
1336 /* This is how to output an assembler line defining a `double' constant. */
1337
1338 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1339 outfloat (FILE, VALUE, "%.17e", "\tds.d ", "\n")
1340
1341 /* This is how to output an assembler line defining a `float' constant. */
1342
1343 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1344 outfloat (FILE, VALUE, "%.9e", "\tds.s ", "\n")
1345
1346 /* This is how to output an assembler line defining an `int' constant. */
1347
1348 #define ASM_OUTPUT_INT(FILE,VALUE) \
1349 { \
1350 fprintf (FILE, "\tds.w "); \
1351 output_addr_const (FILE, simplify_for_convex (VALUE)); \
1352 fprintf (FILE, "\n"); \
1353 }
1354
1355 /* Likewise for a `long long int' constant. */
1356
1357 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1358 { \
1359 if (GET_CODE (VALUE) == CONST_DOUBLE) \
1360 fprintf (FILE, "\tds.w %d,%d\n", \
1361 const_double_high_int (VALUE), const_double_low_int (VALUE)); \
1362 else if (GET_CODE (VALUE) == CONST_INT) \
1363 { \
1364 int val = INTVAL (VALUE); \
1365 fprintf (FILE, "\tds.w %d,%d\n", val < 0 ? -1 : 0, val); \
1366 } \
1367 else \
1368 abort (); \
1369 }
1370
1371 /* Likewise for `char' and `short' constants. */
1372
1373 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1374 ( fprintf (FILE, "\tds.h "), \
1375 output_addr_const (FILE, (VALUE)), \
1376 fprintf (FILE, "\n"))
1377
1378 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1379 ( fprintf (FILE, "\tds.b "), \
1380 output_addr_const (FILE, (VALUE)), \
1381 fprintf (FILE, "\n"))
1382
1383 /* This is how to output an assembler line for a numeric constant byte. */
1384
1385 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1386 fprintf (FILE, "\tds.b %#x\n", (VALUE))
1387
1388 /* This is how to output a string */
1389
1390 #define ASM_OUTPUT_ASCII(FILE,STR,SIZE) do { \
1391 int i; \
1392 fprintf ((FILE), "\tds.b \""); \
1393 for (i = 0; i < (SIZE); i++) { \
1394 register int c = (STR)[i] & 0377; \
1395 if (c >= ' ' && c < 0177 && c != '\\' && c != '"') \
1396 putc (c, (FILE)); \
1397 else \
1398 fprintf ((FILE), "\\%03o", c);} \
1399 fprintf ((FILE), "\"\n");} while (0)
1400
1401 /* This is how to output an insn to push a register on the stack.
1402 It need not be very fast code. */
1403
1404 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1405 fprintf (FILE, "\tpsh.%c %s\n", \
1406 S_REGNO_P (REGNO) ? 'l' : 'w', \
1407 reg_names[REGNO])
1408
1409 /* This is how to output an insn to pop a register from the stack.
1410 It need not be very fast code. */
1411
1412 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1413 fprintf (FILE, "\tpop.%c %s\n", \
1414 S_REGNO_P (REGNO) ? 'l' : 'w', \
1415 reg_names[REGNO])
1416
1417 /* This is how to output an element of a case-vector that is absolute. */
1418
1419 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1420 fprintf (FILE, "\tds.w L%d\n", VALUE)
1421
1422 /* This is how to output an element of a case-vector that is relative.
1423 (not used on Convex) */
1424
1425 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1426 fprintf (FILE, "\tds.w L%d-L%d\n", VALUE, REL)
1427
1428 /* This is how to output an assembler line
1429 that says to advance the location counter by SIZE bytes. */
1430
1431 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1432 fprintf (FILE, "\tds.b %u(0)\n", (SIZE))
1433
1434 /* This says how to output an assembler line
1435 to define a global common symbol. */
1436
1437 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1438 ( fputs (".comm ", (FILE)), \
1439 assemble_name ((FILE), (NAME)), \
1440 fprintf ((FILE), ",%u\n", (ROUNDED)))
1441
1442 /* This says how to output an assembler line
1443 to define a local common symbol. */
1444
1445 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1446 ( bss_section (), \
1447 assemble_name ((FILE), (NAME)), \
1448 fprintf ((FILE), ":\tbs.b %u\n", (ROUNDED)))
1449
1450 /* Store in OUTPUT a string (made with alloca) containing
1451 an assembler-name for a local static variable named NAME.
1452 LABELNO is an integer which is different for each call. */
1453
1454 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1455 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1456 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1457
1458 /* Output an arg count before function entries. */
1459
1460 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1461 asm_declare_function_name (FILE, NAME, DECL)
1462
1463 /* Define the parentheses used to group arithmetic operations
1464 in assembler code. */
1465
1466 #define ASM_OPEN_PAREN "("
1467 #define ASM_CLOSE_PAREN ")"
1468
1469 /* Define results of standard character escape sequences. */
1470 #define TARGET_BELL 007
1471 #define TARGET_BS 010
1472 #define TARGET_TAB 011
1473 #define TARGET_NEWLINE 012
1474 #define TARGET_VT 013
1475 #define TARGET_FF 014
1476 #define TARGET_CR 015
1477
1478 /* Print an instruction operand X on file FILE.
1479 CODE is the code from the %-spec that requested printing this operand;
1480 if `%z3' was used to print operand 3, then CODE is 'z'. */
1481
1482 #define PRINT_OPERAND(FILE, X, CODE) \
1483 print_operand (FILE, X, CODE)
1484
1485 /* Print a memory operand whose address is X, on file FILE. */
1486
1487 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1488 print_operand_address (FILE, ADDR)
1489 \f
1490 /* Do not put out GNU stabs for constructors and destructors.
1491 ld bounces them. */
1492
1493 #define FASCIST_ASSEMBLER
1494
1495 /* __gcc_cleanup is loader-aliased to __ap$do_registered_functions if we
1496 are linking against standard libc, 0 if old (-traditional) libc. */
1497
1498 #define EXIT_BODY \
1499 { \
1500 extern void __gcc_cleanup (); \
1501 if (__gcc_cleanup != _cleanup) \
1502 __gcc_cleanup (); \
1503 _cleanup (); \
1504 }
1505 \f
1506 /* Header for convex.c.
1507 Here at the end so we can use types defined above. */
1508
1509 extern int target_cpu;
1510 extern int current_section_is_text;
1511 extern enum reg_class regno_reg_class[];
1512 extern enum reg_class reg_class_from_letter[];
1513 extern char regno_ok_for_index_p_base[];
1514 #define regno_ok_for_index_p (regno_ok_for_index_p_base + 1)
1515
1516 extern int const_double_low_int ();
1517 extern int const_double_high_int ();
1518 extern char *output_cmp ();
1519 extern char *output_condjump ();
1520 extern char *output_call ();
1521 extern void gen_ap_for_call ();
1522 extern int check_float_value ();
1523 extern void asm_declare_function_name ();
This page took 0.103907 seconds and 4 git commands to generate.