]> gcc.gnu.org Git - gcc.git/blob - gcc/config/convex/convex.h
Added arg to RETURN_POPS_ARGS.
[gcc.git] / gcc / config / convex / convex.h
1 /* Definitions of target machine for GNU compiler. Convex version.
2 Copyright (C) 1988, 1994, 1995 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* Standard GCC variables that we reference. */
22
23 extern int target_flags;
24
25 /* Convex machine-specific flags
26 -mc1 target instruction set, libraries, scheduling
27 -mc2
28 -mc32
29 -mc34
30 -mc38
31 -margcount use standard calling sequence, with arg count word
32 -mno-argcount don't push arg count, depend on symbol table
33 -margcount-nop place arg count in a nop instruction (faster than push)
34 -mvolatile-cache use data cache for volatile mem refs (default)
35 -mvolatile-nocache bypass data cache for volatile mem refs
36 -mlong32 cc- and libc-compatible 32-bit longs
37 -mlong64 64-bit longs
38 */
39
40 /* Macro to define tables used to set -mXXX flags.
41 This is a list in braces of pairs in braces,
42 each pair being { "NAME", VALUE }
43 where VALUE is the bits to set or minus the bits to clear.
44 An empty string NAME is used to identify the default VALUE. */
45
46 #ifndef TARGET_DEFAULT
47 #error Use one of convex1.h, convex2.h, etc.
48 #endif
49
50 #define TARGET_SWITCHES \
51 { { "c1", 001 }, \
52 { "c2", 002 }, \
53 { "c32", 004 }, \
54 { "c34", 010 }, \
55 { "c38", 020 }, \
56 { "argcount", 0100 }, \
57 { "argcount-nop", 0200 }, \
58 { "no-argcount", -0300 }, \
59 { "volatile-cache", -0400 }, \
60 { "no-volatile-cache", 0400 }, \
61 { "volatile-nocache", 0400 }, \
62 { "long64", 01000 }, \
63 { "long32", -01000 }, \
64 { "", TARGET_DEFAULT }}
65
66 /* Macros used in the machine description to test the flags. */
67
68 #define TARGET_C1 (target_cpu == 0)
69 #define TARGET_C2 (target_cpu == 1)
70 #define TARGET_C34 (target_cpu == 2)
71 #define TARGET_C38 (target_cpu == 3)
72 #define TARGET_ARGCOUNT (target_flags & 0100)
73 #define TARGET_ARGCOUNT_NOP (target_flags & 0200)
74 #define TARGET_LONG64 (target_flags & 01000)
75 #define TARGET_VOLATILE_NOCACHE (target_flags & 0400)
76
77 #define OVERRIDE_OPTIONS \
78 { \
79 extern int dollars_in_ident; \
80 init_convex (); \
81 /* To compile system header files, allow $ in identifiers even if -ansi */ \
82 dollars_in_ident = 1; \
83 if ((target_flags & 077) != (TARGET_DEFAULT & 077)) \
84 target_flags &= ~TARGET_DEFAULT; \
85 if (target_flags & 001) \
86 target_cpu = 0; \
87 else if (target_flags & 006) \
88 target_cpu = 1; \
89 else if (target_flags & 010) \
90 target_cpu = 2; \
91 else if (target_flags & 020) \
92 target_cpu = 3; \
93 }
94
95 /* Names to predefine in the preprocessor for this target machine. */
96
97 #define CPP_PREDEFINES "-Dconvex -Dunix -Asystem(unix) -Acpu(convex) -Amachine(convex)"
98
99 /* Print subsidiary information on the compiler version in use. */
100
101 #define TARGET_VERSION fprintf (stderr, " (convex)");
102
103 /* Target-dependent specs.
104 Some libraries come in c1 and c2+ versions; use the appropriate ones.
105 Make a target-dependent __convex_cxx__ define to relay the target cpu
106 to the program being compiled. */
107
108 #if TARGET_DEFAULT & 1
109
110 /* C1 default */
111
112 #if _IEEE_FLOAT_
113
114 #define CPP_SPEC \
115 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \
116 %{mc2:-D__convex_c2__} \
117 %{mc32:-D__convex_c32__} \
118 %{mc34:-D__convex_c34__} \
119 %{mc38:-D__convex_c38__} \
120 %{fno-builtin:-D__NO_INLINE} \
121 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
122 -D_IEEE_FLOAT_ \
123 %{.S:-P} \
124 %{!traditional:-D__stdc__} \
125 %{!traditional:-D_LONGLONG} \
126 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
127 %{!ansi:-D_POSIX_SOURCE} \
128 %{!ansi:-D_CONVEX_SOURCE}"
129
130 #else
131
132 #define CPP_SPEC \
133 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \
134 %{mc2:-D__convex_c2__} \
135 %{mc32:-D__convex_c32__} \
136 %{mc34:-D__convex_c34__} \
137 %{mc38:-D__convex_c38__} \
138 %{fno-builtin:-D__NO_INLINE} \
139 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
140 -D_CONVEX_FLOAT_ \
141 %{.S:-P} \
142 %{!traditional:-D__stdc__} \
143 %{!traditional:-D_LONGLONG} \
144 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
145 %{!ansi:-D_POSIX_SOURCE} \
146 %{!ansi:-D_CONVEX_SOURCE}"
147
148 #endif
149
150 #define LIB_SPEC \
151 "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-lC1%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
152 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
153 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
154 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
155 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
156 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
157
158 #endif
159
160 #if TARGET_DEFAULT & 2
161
162 /* C2 default */
163
164 #if _IEEE_FLOAT_
165
166 #define CPP_SPEC \
167 "%{mc1:-D__convex_c1__} \
168 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \
169 %{mc32:-D__convex_c32__} \
170 %{mc34:-D__convex_c34__} \
171 %{mc38:-D__convex_c38__} \
172 %{fno-builtin:-D__NO_INLINE} \
173 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
174 -D_IEEE_FLOAT_ \
175 %{.S:-P} \
176 %{!traditional:-D__stdc__} \
177 %{!traditional:-D_LONGLONG} \
178 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
179 %{!ansi:-D_POSIX_SOURCE} \
180 %{!ansi:-D_CONVEX_SOURCE}"
181
182 #else
183
184 #define CPP_SPEC \
185 "%{mc1:-D__convex_c1__} \
186 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \
187 %{mc32:-D__convex_c32__} \
188 %{mc34:-D__convex_c34__} \
189 %{mc38:-D__convex_c38__} \
190 %{fno-builtin:-D__NO_INLINE} \
191 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
192 -D_CONVEX_FLOAT_ \
193 %{.S:-P} \
194 %{!traditional:-D__stdc__} \
195 %{!traditional:-D_LONGLONG} \
196 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
197 %{!ansi:-D_POSIX_SOURCE} \
198 %{!ansi:-D_CONVEX_SOURCE}"
199
200 #endif
201
202 #define LIB_SPEC \
203 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
204 %{!mc1:%{!mc32:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
205 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
206 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
207 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
208 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
209
210 #endif
211
212 #if TARGET_DEFAULT & 4
213
214 /* C32 default */
215
216 #if _IEEE_FLOAT_
217
218 #define CPP_SPEC \
219 "%{mc1:-D__convex_c1__} \
220 %{mc2:-D__convex_c2__} \
221 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \
222 %{mc34:-D__convex_c34__} \
223 %{mc38:-D__convex_c38__} \
224 %{fno-builtin:-D__NO_INLINE} \
225 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
226 -D_IEEE_FLOAT_ \
227 %{.S:-P} \
228 %{!traditional:-D__stdc__} \
229 %{!traditional:-D_LONGLONG} \
230 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
231 %{!ansi:-D_POSIX_SOURCE} \
232 %{!ansi:-D_CONVEX_SOURCE}"
233
234 #else
235
236 #define CPP_SPEC \
237 "%{mc1:-D__convex_c1__} \
238 %{mc2:-D__convex_c2__} \
239 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \
240 %{mc34:-D__convex_c34__} \
241 %{mc38:-D__convex_c38__} \
242 %{fno-builtin:-D__NO_INLINE} \
243 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
244 -D_CONVEX_FLOAT_ \
245 %{.S:-P} \
246 %{!traditional:-D__stdc__} \
247 %{!traditional:-D_LONGLONG} \
248 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
249 %{!ansi:-D_POSIX_SOURCE} \
250 %{!ansi:-D_CONVEX_SOURCE}"
251
252 #endif
253
254 #define LIB_SPEC \
255 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
256 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
257 %{!mc1:%{!mc2:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
258 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
259 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
260 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
261
262 #endif
263
264 #if TARGET_DEFAULT & 010
265
266 /* C34 default */
267
268 #if _IEEE_FLOAT_
269
270 #define CPP_SPEC \
271 "%{mc1:-D__convex_c1__} \
272 %{mc2:-D__convex_c2__} \
273 %{mc32:-D__convex_c32__} \
274 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \
275 %{mc38:-D__convex_c38__} \
276 %{fno-builtin:-D__NO_INLINE} \
277 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
278 -D_IEEE_FLOAT_ \
279 %{.S:-P} \
280 %{!traditional:-D__stdc__} \
281 %{!traditional:-D_LONGLONG} \
282 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
283 %{!ansi:-D_POSIX_SOURCE} \
284 %{!ansi:-D_CONVEX_SOURCE}"
285
286 #else
287
288 #define CPP_SPEC \
289 "%{mc1:-D__convex_c1__} \
290 %{mc2:-D__convex_c2__} \
291 %{mc32:-D__convex_c32__} \
292 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \
293 %{mc38:-D__convex_c38__} \
294 %{fno-builtin:-D__NO_INLINE} \
295 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
296 -D_CONVEX_FLOAT_ \
297 %{.S:-P} \
298 %{!traditional:-D__stdc__} \
299 %{!traditional:-D_LONGLONG} \
300 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
301 %{!ansi:-D_POSIX_SOURCE} \
302 %{!ansi:-D_CONVEX_SOURCE}"
303
304 #endif
305
306 #define LIB_SPEC \
307 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
308 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
309 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
310 %{!mc1:%{!mc2:%{!mc32:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
311 %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
312 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
313
314 #endif
315
316 #if TARGET_DEFAULT & 020
317
318 /* C38 default */
319
320 #if _IEEE_FLOAT_
321
322 #define CPP_SPEC \
323 "%{mc1:-D__convex_c1__} \
324 %{mc2:-D__convex_c2__} \
325 %{mc32:-D__convex_c32__} \
326 %{mc34:-D__convex_c34__} \
327 %{fno-builtin:-D__NO_INLINE} \
328 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
329 -D_IEEE_FLOAT_ \
330 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \
331 %{.S:-P} \
332 %{!traditional:-D__stdc__} \
333 %{!traditional:-D_LONGLONG} \
334 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
335 %{!ansi:-D_POSIX_SOURCE} \
336 %{!ansi:-D_CONVEX_SOURCE}"
337
338 #else
339
340 #define CPP_SPEC \
341 "%{mc1:-D__convex_c1__} \
342 %{mc2:-D__convex_c2__} \
343 %{mc32:-D__convex_c32__} \
344 %{mc34:-D__convex_c34__} \
345 %{fno-builtin:-D__NO_INLINE} \
346 -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
347 -D_CONVEX_FLOAT_ \
348 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \
349 %{.S:-P} \
350 %{!traditional:-D__stdc__} \
351 %{!traditional:-D_LONGLONG} \
352 %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
353 %{!ansi:-D_POSIX_SOURCE} \
354 %{!ansi:-D_CONVEX_SOURCE}"
355
356 #endif
357
358 #define LIB_SPEC \
359 "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
360 %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
361 %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
362 %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
363 %{!mc1:%{!mc2:%{!mc32:%{!mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
364 -lc%{traditional:_old}%{p:_p}%{pg:_p}"
365
366 #endif
367
368 #if _IEEE_FLOAT_
369
370 /* ieee default */
371
372 #define ASM_SPEC "-fi"
373
374 #define LINK_SPEC \
375 "-E%{traditional:no}posix \
376 -X \
377 %{F} %{M*} %{y*} \
378 -fi \
379 -A__iob=___ap$iob \
380 -A_use_libc_sema=___ap$use_libc_sema \
381 %{traditional:-A___gcc_cleanup=__cleanup} \
382 %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \
383 -L/usr/lib"
384
385 #define STARTFILE_SPEC \
386 "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \
387 %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \
388 %{pg:/usr/lib/crt/gcrt0.o} \
389 /usr/lib/crt/fpmode_i.o"
390
391 #else
392
393 /* native default */
394
395 #define ASM_SPEC "-fn"
396
397 #define LINK_SPEC \
398 "-E%{traditional:no}posix \
399 -X \
400 %{F} %{M*} %{y*} \
401 -fn \
402 -A__iob=___ap$iob \
403 -A_use_libc_sema=___ap$use_libc_sema \
404 %{traditional:-A___gcc_cleanup=__cleanup} \
405 %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \
406 -L/usr/lib"
407
408 #define STARTFILE_SPEC \
409 "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \
410 %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \
411 %{pg:/usr/lib/crt/gcrt0.o}"
412
413 #endif
414
415 /* Use /path/libgcc.a instead of -lgcc, makes bootstrap work more smoothly. */
416
417 #define LINK_LIBGCC_SPECIAL_1
418
419 /* Allow $ in identifiers. */
420
421 #define DOLLARS_IN_IDENTIFIERS 2
422
423 /* Since IEEE support was added to gcc, most things seem to like it
424 better if we disable exceptions and check afterward for infinity. */
425
426 #if __convex__
427 #if _IEEE_FLOAT_
428 #define REAL_VALUE_ISNAN(x) 0
429 #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0x7ff0) == 0x7ff0)
430 #else
431 #define REAL_VALUE_ISNAN(x) 0
432 #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0xfff0) == 0x8000)
433 #endif
434 #endif
435 \f
436 /* Target machine storage layout */
437
438 /* Define this if most significant bit is lowest numbered
439 in instructions that operate on numbered bit-fields. */
440 #define BITS_BIG_ENDIAN 1
441
442 /* Define this if most significant byte of a word is the lowest numbered. */
443 #define BYTES_BIG_ENDIAN 1
444
445 /* Define this if most significant word of a multiword number is numbered. */
446 #define WORDS_BIG_ENDIAN 1
447
448 /* Number of bits in an addressable storage unit */
449 #define BITS_PER_UNIT 8
450
451 /* Width in bits of a "word", which is the contents of a machine register.
452 Note that this is not necessarily the width of data type `int';
453 if using 16-bit ints on a 68000, this would still be 32.
454 But on a machine with 16-bit registers, this would be 16. */
455 #define BITS_PER_WORD 64
456
457 /* Width of a word, in units (bytes). */
458 #define UNITS_PER_WORD 8
459
460 /* Width in bits of a pointer.
461 See also the macro `Pmode' defined below. */
462 #define POINTER_SIZE 32
463
464 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
465 #define PARM_BOUNDARY 32
466
467 /* Boundary (in *bits*) on which stack pointer should be aligned. */
468 #define STACK_BOUNDARY 64
469
470 /* Allocation boundary (in *bits*) for the code of a function. */
471 #define FUNCTION_BOUNDARY 16
472
473 /* Alignment of field after `int : 0' in a structure. */
474 #define EMPTY_FIELD_BOUNDARY 32
475
476 /* Every structure's size must be a multiple of this. */
477 #define STRUCTURE_SIZE_BOUNDARY 8
478
479 /* A bitfield declared as `int' forces `int' alignment for the struct. */
480 #define PCC_BITFIELD_TYPE_MATTERS 1
481
482 /* No data type wants to be aligned rounder than this. */
483 /* beware of doubles in structs -- 64 is incompatible with cc */
484 #define BIGGEST_ALIGNMENT 32
485
486 /* Set this nonzero if move instructions will actually fail to work
487 when given unaligned data. */
488 #define STRICT_ALIGNMENT 0
489
490 /* Define sizes of basic C types to conform to ordinary usage -- these
491 types depend on BITS_PER_WORD otherwise. */
492 #define CHAR_TYPE_SIZE 8
493 #define SHORT_TYPE_SIZE 16
494 #define INT_TYPE_SIZE 32
495 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
496 #define LONG_LONG_TYPE_SIZE 64
497 #define FLOAT_TYPE_SIZE 32
498 #define DOUBLE_TYPE_SIZE 64
499 #define LONG_DOUBLE_TYPE_SIZE 64
500 /* This prevents cexp.c from depending on LONG_TYPE_SIZE. */
501 #define MAX_LONG_TYPE_SIZE 64
502
503 /* Declare the standard types used by builtins to match convex stddef.h --
504 with int rather than long. */
505
506 #define SIZE_TYPE "unsigned int"
507 #define PTRDIFF_TYPE "int"
508 \f
509 /* Standard register usage. */
510
511 /* Number of actual hardware registers.
512 The hardware registers are assigned numbers for the compiler
513 from 0 to just below FIRST_PSEUDO_REGISTER.
514 All registers that the compiler knows about must be given numbers,
515 even those that are not normally considered general registers. */
516 #define FIRST_PSEUDO_REGISTER 16
517
518 /* 1 for registers that have pervasive standard uses
519 and are not available for the register allocator.
520 For Convex, these are AP, FP, and SP. */
521 #define FIXED_REGISTERS \
522 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 }
523
524 /* 1 for registers not available across function calls.
525 These must include the FIXED_REGISTERS and also any
526 registers that can be used without being saved.
527 The latter must include the registers where values are returned
528 and the register where structure-value addresses are passed.
529 Aside from that, you can include as many other registers as you like. */
530 #define CALL_USED_REGISTERS \
531 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
532
533 /* List the order in which to allocate registers. Each register must be
534 listed once, even those in FIXED_REGISTERS.
535 For Convex, put S0 (the return register) last. */
536 #define REG_ALLOC_ORDER \
537 { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 0, 8, 14, 15 }
538
539 /* Return number of consecutive hard regs needed starting at reg REGNO
540 to hold something of mode MODE.
541 This is ordinarily the length in words of a value of mode MODE
542 but can be less for certain modes in special long registers. */
543 #define HARD_REGNO_NREGS(REGNO, MODE) \
544 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
545
546 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
547 On Convex, S registers can hold any type, A registers any nonfloat. */
548 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
549 (S_REGNO_P (REGNO) \
550 || (GET_MODE_SIZE (MODE) <= 4 && (MODE) != SFmode))
551
552 /* Value is 1 if it is a good idea to tie two pseudo registers
553 when one has mode MODE1 and one has mode MODE2.
554 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
555 for any hard reg, then this must be 0 for correct output. */
556 #define MODES_TIEABLE_P(MODE1, MODE2) \
557 ((GET_MODE_SIZE (MODE1) <= 4 && (MODE1) != SFmode) \
558 == (GET_MODE_SIZE (MODE2) <= 4 && (MODE2) != SFmode))
559
560 /* Specify the registers used for certain standard purposes.
561 The values of these macros are register numbers. */
562
563 #define S0_REGNUM 0
564 #define A0_REGNUM 8
565
566 /* Register to use for pushing function arguments. */
567 #define STACK_POINTER_REGNUM A0_REGNUM
568
569 /* Base register for access to local variables of the function. */
570 #define FRAME_POINTER_REGNUM (A0_REGNUM + 7)
571
572 /* Value should be nonzero if functions must have frame pointers.
573 Zero means the frame pointer need not be set up (and parms
574 may be accessed via the stack pointer) in functions that seem suitable.
575 This is computed in `reload', in reload1.c. */
576 #define FRAME_POINTER_REQUIRED 1
577
578 /* Base register for access to arguments of the function. */
579 #define ARG_POINTER_REGNUM (A0_REGNUM + 6)
580
581 /* Register in which static-chain is passed to a function.
582 Use S0, not an A reg, because this rare use would otherwise prevent
583 an A reg from being available to global-alloc across calls. */
584 #define STATIC_CHAIN_REGNUM S0_REGNUM
585
586 /* Register in which address to store a structure value
587 is passed to a function. */
588 #define STRUCT_VALUE_REGNUM (A0_REGNUM + 1)
589 \f
590 /* Define the classes of registers for register constraints in the
591 machine description. Also define ranges of constants.
592
593 One of the classes must always be named ALL_REGS and include all hard regs.
594 If there is more than one class, another class must be named NO_REGS
595 and contain no registers.
596
597 The name GENERAL_REGS must be the name of a class (or an alias for
598 another name such as ALL_REGS). This is the class of registers
599 that is allowed by "g" or "r" in a register constraint.
600 Also, registers outside this class are allocated only when
601 instructions express preferences for them.
602
603 The classes must be numbered in nondecreasing order; that is,
604 a larger-numbered class must never be contained completely
605 in a smaller-numbered class.
606
607 For any two classes, it is very desirable that there be another
608 class that represents their union. */
609
610 /* Convex has classes A (address) and S (scalar).
611 A is further divided into SP_REGS (stack pointer) and INDEX_REGS.
612 SI_REGS is S_REGS + INDEX_REGS -- all the regs except SP. */
613
614 enum reg_class {
615 NO_REGS, S_REGS, INDEX_REGS, SP_REGS, A_REGS, SI_REGS,
616 ALL_REGS, LIM_REG_CLASSES
617 };
618
619 #define N_REG_CLASSES (int) LIM_REG_CLASSES
620
621 /* Since GENERAL_REGS is the same class as ALL_REGS,
622 don't give it a different class number; just make it an alias. */
623
624 #define GENERAL_REGS ALL_REGS
625
626 /* Give names of register classes as strings for dump file. */
627
628 #define REG_CLASS_NAMES \
629 {"NO_REGS", "S_REGS", "INDEX_REGS", "SP_REGS", "A_REGS", "SI_REGS", \
630 "ALL_REGS" }
631
632 /* Define which registers fit in which classes.
633 This is an initializer for a vector of HARD_REG_SET
634 of length N_REG_CLASSES. */
635
636 #define REG_CLASS_CONTENTS \
637 { 0, 0x00ff, 0xfe00, 0x0100, 0xff00, 0xfeff, 0xffff }
638
639 /* The same information, inverted:
640 Return the class number of the smallest class containing
641 reg number REGNO. This could be a conditional expression
642 or could index an array. */
643
644 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[REGNO])
645
646 #define S_REGNO_P(REGNO) (((REGNO) - S0_REGNUM) < (unsigned) 8)
647 #define A_REGNO_P(REGNO) (((REGNO) - A0_REGNUM) < (unsigned) 8)
648
649 #define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
650 #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
651
652 /* The class value for index registers, and the one for base regs. */
653
654 #define INDEX_REG_CLASS INDEX_REGS
655 #define BASE_REG_CLASS INDEX_REGS
656
657 /* Get reg_class from a letter such as appears in the machine description. */
658 /* a => A_REGS
659 d => S_REGS ('s' is taken)
660 A => INDEX_REGS (i.e., A_REGS except sp) */
661
662 #define REG_CLASS_FROM_LETTER(C) \
663 reg_class_from_letter[(unsigned char) (C)]
664
665 /* The letters I, J, K, L and M in a register constraint string
666 can be used to stand for particular ranges of immediate operands.
667 This macro defines what the ranges are.
668 C is the letter, and VALUE is a constant value.
669 Return 1 if VALUE is in the range specified by C. */
670 /* 'I' is used to pass any CONST_INT and reject any CONST_DOUBLE.
671 CONST_DOUBLE integers are handled by G and H constraint chars. */
672
673 #define CONST_OK_FOR_LETTER_P(VALUE, C) 1
674
675 /* Similar, but for floating constants, and defining letters G and H.
676 Here VALUE is the CONST_DOUBLE rtx itself. */
677 /* Convex uses G, H:
678 value usable in ld.d (low word 0) or ld.l (high word all sign) */
679
680 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
681 (((C) == 'G' && LD_D_P (VALUE)) || \
682 ((C) == 'H' && LD_L_P (VALUE)) || \
683 0)
684
685 #define LD_D_P(X) (const_double_low_int (X) == 0)
686
687 #define LD_L_P(X) (const_double_low_int (X) >= 0 \
688 ? const_double_high_int (X) == 0 \
689 : const_double_high_int (X) == -1)
690
691 /* Optional extra constraints for this machine.
692 For Convex, 'Q' means that OP is a volatile MEM.
693 For volatile scalars, we use instructions that bypass the data cache. */
694
695 #define EXTRA_CONSTRAINT(OP, C) \
696 ((C) == 'Q' ? (GET_CODE (OP) == MEM && MEM_VOLATILE_P (OP) \
697 && ! TARGET_C1 && TARGET_VOLATILE_NOCACHE) \
698 : 0)
699
700 /* Given an rtx X being reloaded into a reg required to be
701 in class CLASS, return the class of reg to actually use.
702 In general this is just CLASS; but on some machines
703 in some cases it is preferable to use a more restrictive class. */
704
705 /* Put 2-word constants that can't be immediate operands into memory. */
706
707 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
708 ((GET_CODE (X) != CONST_DOUBLE \
709 || GET_MODE (X) == SFmode \
710 || LD_L_P (X) || LD_D_P (X)) ? (CLASS) : NO_REGS)
711
712 /* Return the maximum number of consecutive registers
713 needed to represent mode MODE in a register of class CLASS. */
714 #define CLASS_MAX_NREGS(CLASS, MODE) ((GET_MODE_SIZE (MODE) + 7) / 8)
715 \f
716 /* Stack layout; function entry, exit and calling. */
717
718 /* Define this if pushing a word on the stack
719 makes the stack pointer a smaller address. */
720 #define STACK_GROWS_DOWNWARD
721
722 /* Define this if the nominal address of the stack frame
723 is at the high-address end of the local variables;
724 that is, each additional local variable allocated
725 goes at a more negative offset in the frame. */
726 #define FRAME_GROWS_DOWNWARD
727
728 /* Define this if should default to -fcaller-saves. */
729 #define DEFAULT_CALLER_SAVES
730
731 /* Offset within stack frame to start allocating local variables at.
732 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
733 first local allocated. Otherwise, it is the offset to the BEGINNING
734 of the first local allocated. */
735 #define STARTING_FRAME_OFFSET 0
736
737 /* If we generate an insn to push BYTES bytes,
738 this says how many the stack pointer really advances by. */
739 #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
740
741 /* Offset of first parameter from the argument pointer register value. */
742 #define FIRST_PARM_OFFSET(FNDECL) 0
743
744 /* Value is the number of bytes of arguments automatically
745 popped when returning from a subroutine call.
746 FUNDECL is the declaration node of the function (as a tree),
747 FUNTYPE is the data type of the function (as a tree),
748 or for a library call it is an identifier node for the subroutine name.
749 SIZE is the number of bytes of arguments passed on the stack. */
750
751 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
752
753 /* Define how to find the value returned by a function.
754 VALTYPE is the data type of the value (as a tree).
755 If the precise function being called is known, FUNC is its FUNCTION_DECL;
756 otherwise, FUNC is 0. */
757
758 #define FUNCTION_VALUE(VALTYPE, FUNC) \
759 gen_rtx (REG, TYPE_MODE (VALTYPE), S0_REGNUM)
760
761 /* Define how to find the value returned by a library function
762 assuming the value has mode MODE. */
763
764 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, S0_REGNUM)
765
766 /* Define this if PCC uses the nonreentrant convention for returning
767 structure and union values. */
768
769 #define PCC_STATIC_STRUCT_RETURN
770
771 /* 1 if N is a possible register number for a function value.
772 On the Convex, S0 is the only register thus used. */
773
774 #define FUNCTION_VALUE_REGNO_P(N) ((N) == S0_REGNUM)
775
776 /* 1 if N is a possible register number for function argument passing. */
777
778 #define FUNCTION_ARG_REGNO_P(N) 0
779 \f
780 /* Define a data type for recording info about an argument list
781 during the scan of that argument list. This data type should
782 hold all necessary information about the function itself
783 and about the args processed so far, enough to enable macros
784 such as FUNCTION_ARG to determine where the next arg should go. */
785 /* On convex, simply count the arguments in case TARGET_ARGCOUNT is set. */
786
787 #define CUMULATIVE_ARGS int
788
789 /* Initialize a variable CUM of type CUMULATIVE_ARGS
790 for a call to a function whose data type is FNTYPE.
791 For a library call, FNTYPE is 0. */
792
793 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
794 ((CUM) = 0)
795
796 /* Update the data in CUM to advance over an argument
797 of mode MODE and data type TYPE.
798 (TYPE is null for libcalls where that information may not be available.) */
799
800 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
801 ((CUM) += 1)
802
803 /* Define where to put the arguments to a function.
804 Value is zero to push the argument on the stack,
805 or a hard register in which to store the argument.
806
807 MODE is the argument's machine mode.
808 TYPE is the data type of the argument (as a tree).
809 This is null for libcalls where that information may
810 not be available.
811 CUM is a variable of type CUMULATIVE_ARGS which gives info about
812 the preceding args and about the function being called.
813 NAMED is nonzero if this argument is a named parameter
814 (otherwise it is an extra parameter matching an ellipsis).
815
816 Convex: all args go on the stack. But return the arg count
817 as the "next arg register" to be passed to gen_call. */
818
819 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
820 ((MODE) == VOIDmode ? gen_rtx (CONST_INT, VOIDmode, (CUM)) : 0)
821
822 /* This macro generates the assembly code for function entry.
823 FILE is a stdio stream to output the code to.
824 SIZE is an int: how many units of temporary storage to allocate.
825 Refer to the array `regs_ever_live' to determine which registers
826 to save; `regs_ever_live[I]' is nonzero if register number I
827 is ever used in the function. This macro is responsible for
828 knowing which registers should not be saved even if used. */
829
830 #define FUNCTION_PROLOGUE(FILE, SIZE) \
831 { \
832 int size = ((SIZE) + 7) & -8; \
833 if (size != 0) \
834 fprintf (FILE, "\tsub.w #%d,sp\n", size); \
835 }
836
837 /* This macro generates the assembly code for function exit,
838 on machines that need it. If FUNCTION_EPILOGUE is not defined
839 then individual return instructions are generated for each
840 return statement. Args are same as for FUNCTION_PROLOGUE. */
841
842 #define FUNCTION_EPILOGUE(FILE, SIZE) \
843 { \
844 /* Follow function with a zero to stop c34 icache prefetching. */ \
845 fprintf (FILE, "\tds.h 0\n"); \
846 }
847
848 /* Output assembler code for a block containing the constant parts
849 of a trampoline, leaving space for the variable parts. */
850
851 /* On convex, the code for a trampoline is
852 ld.w #<link>,s0
853 jmp <func> */
854
855 #define TRAMPOLINE_TEMPLATE(FILE) \
856 { \
857 fprintf (FILE, "\tld.w #69696969,s0\n"); \
858 fprintf (FILE, "\tjmp 52525252\n"); \
859 }
860
861 /* Length in units of the trampoline for entering a nested function. */
862
863 #define TRAMPOLINE_SIZE 12
864
865 /* Emit RTL insns to initialize the variable parts of a trampoline.
866 FNADDR is an RTX for the address of the function's pure code.
867 CXT is an RTX for the static chain value for the function. */
868
869 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
870 { \
871 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \
872 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR); \
873 emit_call_insn (gen_call_pop (gen_rtx (MEM, QImode, \
874 gen_rtx (SYMBOL_REF, Pmode, \
875 "__enable_execute_stack")), \
876 const0_rtx, const0_rtx, const0_rtx)); \
877 }
878
879 /* Output assembler code to FILE to increment profiler label # LABELNO
880 for profiling a function entry. */
881
882 #define FUNCTION_PROFILER(FILE, LABELNO) \
883 fprintf (FILE, "\tldea LP%d,a1\n\tcallq mcount\n", (LABELNO));
884
885 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
886 the stack pointer does not matter. The value is tested only in
887 functions that have frame pointers.
888 No definition is equivalent to always zero. */
889
890 #define EXIT_IGNORE_STACK 1
891
892 /* Store in the variable DEPTH the initial difference between the
893 frame pointer reg contents and the stack pointer reg contents,
894 as of the start of the function body. This depends on the layout
895 of the fixed parts of the stack frame and on how registers are saved. */
896 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
897 { (DEPTH) = (get_frame_size () + 7) & -8; }
898 \f
899 /* Addressing modes, and classification of registers for them. */
900
901 /* #define HAVE_POST_INCREMENT */
902 /* #define HAVE_POST_DECREMENT */
903
904 /* #define HAVE_PRE_DECREMENT */
905 /* #define HAVE_PRE_INCREMENT */
906
907 /* Macros to check register numbers against specific register classes. */
908
909 /* These assume that REGNO is a hard or pseudo reg number.
910 They give nonzero only if REGNO is a hard reg of the suitable class
911 or a pseudo reg currently allocated to a suitable hard reg.
912 Since they use reg_renumber, they are safe only once reg_renumber
913 has been allocated, which happens in local-alloc.c. */
914
915 #define REGNO_OK_FOR_INDEX_P(regno) \
916 ((regno) <= LAST_VIRTUAL_REGISTER \
917 ? regno_ok_for_index_p[regno] \
918 : regno_ok_for_index_p[reg_renumber[regno]])
919
920 #define REGNO_OK_FOR_BASE_P(regno) REGNO_OK_FOR_INDEX_P (regno)
921 \f
922 /* Maximum number of registers that can appear in a valid memory address. */
923
924 #define MAX_REGS_PER_ADDRESS 1
925
926 /* 1 if X is an rtx for a constant that is a valid address. */
927
928 #define CONSTANT_ADDRESS_P(X) \
929 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
930 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
931 || GET_CODE (X) == HIGH)
932
933 /* Nonzero if the constant value X is a legitimate general operand.
934 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
935
936 /* For convex, bounce 2-word constants that can't be immediate operands. */
937
938 #define LEGITIMATE_CONSTANT_P(X) \
939 (GET_CODE (X) != CONST_DOUBLE \
940 || GET_MODE (X) == SFmode \
941 || LD_L_P (X) || LD_D_P (X))
942
943 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
944 and check its validity for a certain class.
945 We have two alternate definitions for each of them.
946 The usual definition accepts all pseudo regs; the other rejects
947 them unless they have been allocated suitable hard regs.
948 The symbol REG_OK_STRICT causes the latter definition to be used.
949
950 Most source files want to accept pseudo regs in the hope that
951 they will get allocated to the class that the insn wants them to be in.
952 Source files for reload pass need to be strict.
953 After reload, it makes no difference, since pseudo regs have
954 been eliminated by then. */
955
956 #ifndef REG_OK_STRICT
957
958 /* Nonzero if X is a hard reg that can be used as an index
959 or if it is a pseudo reg. */
960 #define REG_OK_FOR_INDEX_P(X) \
961 (REGNO (X) > LAST_VIRTUAL_REGISTER || regno_ok_for_index_p[REGNO (X)])
962
963 /* Nonzero if X is a hard reg that can be used as a base reg
964 or if it is a pseudo reg. */
965 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
966
967 #else
968
969 /* Nonzero if X is a hard reg that can be used as an index. */
970 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
971
972 /* Nonzero if X is a hard reg that can be used as a base reg. */
973 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
974
975 #endif
976 \f
977 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
978 that is a valid memory address for an instruction.
979 The MODE argument is the machine mode for the MEM expression
980 that wants to use this address.
981
982 For Convex, valid addresses are
983 indirectable or (MEM indirectable)
984 where indirectable is
985 const, reg, (PLUS reg const)
986
987 We don't use indirection since with insn scheduling, load + indexing
988 is better. */
989
990 /* 1 if X is an address that we could indirect through. */
991 #define INDIRECTABLE_ADDRESS_P(X) \
992 (CONSTANT_ADDRESS_P (X) \
993 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
994 || (GET_CODE (X) == PLUS \
995 && GET_CODE (XEXP (X, 0)) == REG \
996 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
997 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
998 || (GET_CODE (X) == PLUS \
999 && GET_CODE (XEXP (X, 1)) == REG \
1000 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1001 && CONSTANT_ADDRESS_P (XEXP (X, 0))))
1002
1003 /* Go to ADDR if X is a valid address. */
1004 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1005 { register rtx xfoob = (X); \
1006 if (INDIRECTABLE_ADDRESS_P (xfoob)) \
1007 goto ADDR; \
1008 if (GET_CODE (xfoob) == PRE_DEC && XEXP (xfoob, 0) == stack_pointer_rtx) \
1009 goto ADDR; \
1010 }
1011 \f
1012 /* Try machine-dependent ways of modifying an illegitimate address
1013 to be legitimate. If we find one, return the new, valid address.
1014 This macro is used in only one place: `memory_address' in explow.c.
1015
1016 OLDX is the address as it was before break_out_memory_refs was called.
1017 In some cases it is useful to look at this to decide what needs to be done.
1018
1019 MODE and WIN are passed so that this macro can use
1020 GO_IF_LEGITIMATE_ADDRESS.
1021
1022 It is always safe for this macro to do nothing. It exists to recognize
1023 opportunities to optimize the output.
1024
1025 For Convex, nothing needs to be done. */
1026
1027 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
1028
1029 /* Go to LABEL if ADDR (a legitimate address expression)
1030 has an effect that depends on the machine mode it is used for. */
1031
1032 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
1033 \f
1034 /* Specify the machine mode that this machine uses
1035 for the index in the tablejump instruction. */
1036 #define CASE_VECTOR_MODE SImode
1037
1038 /* Define this if the case instruction expects the table
1039 to contain offsets from the address of the table.
1040 Do not define this if the table should contain absolute addresses. */
1041 /* #define CASE_VECTOR_PC_RELATIVE */
1042
1043 /* Define this if the case instruction drops through after the table
1044 when the index is out of range. Don't define it if the case insn
1045 jumps to the default label instead. */
1046 /* #define CASE_DROPS_THROUGH */
1047
1048 /* Specify the tree operation to be used to convert reals to integers. */
1049 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1050
1051 /* This is the kind of divide that is easiest to do in the general case. */
1052 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1053
1054 /* Define this as 1 if `char' should by default be signed; else as 0. */
1055 #define DEFAULT_SIGNED_CHAR 1
1056
1057 /* This flag, if defined, says the same insns that convert to a signed fixnum
1058 also convert validly to an unsigned one. */
1059 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1060
1061 /* Max number of bytes we can move from memory to memory
1062 in one reasonably fast instruction. */
1063 #define MOVE_MAX 8
1064
1065 /* Define this if zero-extension is slow (more than one real instruction). */
1066 /* #define SLOW_ZERO_EXTEND */
1067
1068 /* Nonzero if access to memory by bytes is slow and undesirable. */
1069 #define SLOW_BYTE_ACCESS (! TARGET_C2)
1070
1071 /* Define if shifts truncate the shift count
1072 which implies one can omit a sign-extension or zero-extension
1073 of a shift count. */
1074 /* #define SHIFT_COUNT_TRUNCATED */
1075
1076 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1077 is done just by pretending it is already truncated. */
1078 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1079
1080 /* On Convex, it is as good to call a constant function address as to
1081 call an address kept in a register. */
1082 #define NO_FUNCTION_CSE
1083
1084 /* When a prototype says `char' or `short', really pass an `int'. */
1085 #define PROMOTE_PROTOTYPES
1086
1087 /* Specify the machine mode that pointers have.
1088 After generation of rtl, the compiler makes no further distinction
1089 between pointers and any other objects of this machine mode. */
1090 #define Pmode SImode
1091
1092 /* A function address in a call instruction
1093 is a byte address (for indexing purposes)
1094 so give the MEM rtx a byte's mode. */
1095 #define FUNCTION_MODE QImode
1096
1097 /* Compute the cost of computing a constant rtl expression RTX
1098 whose rtx-code is CODE. The body of this macro is a portion
1099 of a switch statement. If the code is computed here,
1100 return it with a return statement. Otherwise, break from the switch. */
1101
1102 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1103 case CONST: \
1104 case LABEL_REF: \
1105 case SYMBOL_REF: \
1106 case CONST_INT: \
1107 case CONST_DOUBLE: \
1108 return 0;
1109
1110 /* Provide the costs of a rtl expression. This is in the body of a
1111 switch on CODE. */
1112
1113 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
1114 case PLUS: \
1115 if (regno_pointer_flag != 0 \
1116 && GET_CODE (XEXP (RTX, 0)) == REG \
1117 && REGNO_POINTER_FLAG (REGNO (XEXP (RTX, 0))) \
1118 && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \
1119 return 0; \
1120 else break; \
1121 case MULT: \
1122 return 4 * (char) (0x03060403 >> target_cpu * 8); \
1123 case ASHIFT: \
1124 case LSHIFTRT: \
1125 case ASHIFTRT: \
1126 return 4 * (char) (0x03010403 >> target_cpu * 8); \
1127 case MEM: \
1128 return 5;
1129
1130 /* Compute the cost of an address. This is meant to approximate the size
1131 and/or execution delay of an insn using that address. If the cost is
1132 approximated by the RTL complexity, including CONST_COSTS above, as
1133 is usually the case for CISC machines, this macro should not be defined.
1134 For aggressively RISCy machines, only one insn format is allowed, so
1135 this macro should be a constant. The value of this macro only matters
1136 for valid addresses. */
1137
1138 #define ADDRESS_COST(RTX) 0
1139
1140 /* Specify the cost of a branch insn; roughly the number of extra insns that
1141 should be added to avoid a branch. */
1142
1143 #define BRANCH_COST 0
1144
1145 /* Adjust the cost of dependences. */
1146
1147 #define ADJUST_COST(INSN,LINK,DEP,COST) \
1148 { \
1149 /* Antidependencies don't block issue. */ \
1150 if (REG_NOTE_KIND (LINK) != 0) \
1151 (COST) = 0; \
1152 /* C38 situations where delay depends on context */ \
1153 else if (TARGET_C38 \
1154 && GET_CODE (PATTERN (INSN)) == SET \
1155 && GET_CODE (PATTERN (DEP)) == SET) \
1156 { \
1157 enum attr_type insn_type = get_attr_type (INSN); \
1158 enum attr_type dep_type = get_attr_type (DEP); \
1159 /* index register must be ready one cycle early */ \
1160 if (insn_type == TYPE_MLDW || insn_type == TYPE_MLDL \
1161 || (insn_type == TYPE_MST \
1162 && reg_mentioned_p (SET_DEST (PATTERN (DEP)), \
1163 SET_SRC (PATTERN (INSN))))) \
1164 (COST) += 1; \
1165 /* alu forwarding off alu takes two */ \
1166 if (dep_type == TYPE_ALU \
1167 && insn_type != TYPE_ALU \
1168 && ! (insn_type == TYPE_MST \
1169 && SET_DEST (PATTERN (DEP)) == SET_SRC (PATTERN (INSN)))) \
1170 (COST) += 1; \
1171 } \
1172 }
1173
1174 /* Convex uses Vax or IEEE floats.
1175 Follow the host format. */
1176 #define TARGET_FLOAT_FORMAT HOST_FLOAT_FORMAT
1177
1178 /* But must prevent real.c from constructing Vax dfloats */
1179 #define REAL_VALUE_ATOF(X,S) atof (X)
1180 extern double atof();
1181
1182 /* Check a `double' value for validity for a particular machine mode. */
1183 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1184 overflow = check_float_value (MODE, &D, OVERFLOW)
1185 \f
1186 /* Tell final.c how to eliminate redundant test instructions. */
1187
1188 /* Here we define machine-dependent flags and fields in cc_status
1189 (see `conditions.h'). No extra ones are needed for convex. */
1190
1191 /* Store in cc_status the expressions
1192 that the condition codes will describe
1193 after execution of an instruction whose pattern is EXP.
1194 Do not alter them if the instruction would not alter the cc's. */
1195
1196 #define NOTICE_UPDATE_CC(EXP,INSN) {}
1197 \f
1198 /* Control the assembler format that we output. */
1199
1200 /* Output at beginning of assembler file. */
1201
1202 #if _IEEE_FLOAT_
1203 #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode ieee\n")
1204 #else
1205 #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode native\n")
1206 #endif
1207
1208 /* Output to assembler file text saying following lines
1209 may contain character constants, extra white space, comments, etc. */
1210
1211 #define ASM_APP_ON ";APP\n"
1212
1213 /* Output to assembler file text saying following lines
1214 no longer contain unusual constructs. */
1215
1216 #define ASM_APP_OFF ";NO_APP\n"
1217
1218 /* Alignment with Convex's assembler goes like this:
1219 .text can be .aligned up to a halfword.
1220 .data and .bss can be .aligned up to a longword.
1221 .lcomm is not supported, explicit declarations in .bss must be used instead.
1222 We get alignment for word and longword .text data by conventionally
1223 using .text 2 for word-aligned data and .text 3 for longword-aligned
1224 data. This requires that the data's size be a multiple of its alignment,
1225 which seems to be always true. */
1226
1227 /* Output before read-only data. */
1228
1229 #define TEXT_SECTION_ASM_OP (current_section_is_text = 1, ".text")
1230
1231 /* Output before writable data. */
1232
1233 #define DATA_SECTION_ASM_OP (current_section_is_text = 0, ".data")
1234
1235 /* Output before uninitialized data. */
1236
1237 #define BSS_SECTION_ASM_OP (current_section_is_text = 0, ".bss")
1238
1239 /* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
1240
1241 #define EXTRA_SECTIONS in_bss
1242
1243 #define EXTRA_SECTION_FUNCTIONS \
1244 void \
1245 bss_section () \
1246 { \
1247 if (in_section != in_bss) \
1248 { \
1249 fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
1250 in_section = in_bss; \
1251 } \
1252 }
1253
1254 /* This is how to output an assembler line
1255 that says to advance the location counter
1256 to a multiple of 2**LOG bytes. */
1257
1258 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1259 if (current_section_is_text && (LOG) > 1) \
1260 fprintf (FILE, ".text %d\n", LOG); \
1261 else if (current_section_is_text) \
1262 fprintf (FILE, ".text\n.align %d\n", 1 << (LOG)); \
1263 else \
1264 fprintf (FILE, ".align %d\n", 1 << (LOG))
1265
1266 /* How to refer to registers in assembler output.
1267 This sequence is indexed by compiler's hard-register-number (see above). */
1268
1269 #define REGISTER_NAMES \
1270 { \
1271 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
1272 "sp", "a1", "a2", "a3", "a4", "a5", "ap", "fp", \
1273 }
1274
1275 /* This is BSD, so it wants DBX format. */
1276
1277 #define DBX_DEBUGGING_INFO
1278
1279 /* How to renumber registers for dbx and gdb. */
1280
1281 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1282
1283 /* Do not break .stabs pseudos into continuations. */
1284
1285 #define DBX_CONTIN_LENGTH 0
1286
1287 /* This is the char to use for continuation (in case we need to turn
1288 continuation back on). */
1289
1290 #define DBX_CONTIN_CHAR '?'
1291
1292 /* Don't use stab extensions until GDB v4 port is available for convex. */
1293
1294 #define DEFAULT_GDB_EXTENSIONS 0
1295 #define DBX_NO_XREFS
1296
1297 /* This is how to output the definition of a user-level label named NAME,
1298 such as the label on a static function or variable NAME. */
1299
1300 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1301 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1302
1303 /* This is how to output a command to make the user-level label named NAME
1304 defined for reference from other files. */
1305
1306 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1307 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1308
1309 /* This is how to output a reference to a user-level label named NAME. */
1310
1311 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1312 fprintf (FILE, "_%s", NAME)
1313
1314 /* This is how to output an internal numbered label where
1315 PREFIX is the class of label and NUM is the number within the class. */
1316
1317 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1318 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1319
1320 /* Put case tables in .text 2, where they will be word-aligned */
1321
1322 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1323 ASM_OUTPUT_ALIGN (FILE, 2); \
1324 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM)
1325
1326 #define ASM_OUTPUT_CASE_END(FILE,NUM,TABLE) \
1327 ASM_OUTPUT_ALIGN (FILE, 1)
1328
1329 /* This is how to store into the string LABEL
1330 the symbol_ref name of an internal numbered label where
1331 PREFIX is the class of label and NUM is the number within the class.
1332 This is suitable for output with `assemble_name'. */
1333
1334 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1335 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1336
1337 /* This is how to output an assembler line defining a `double' constant. */
1338
1339 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1340 outfloat (FILE, VALUE, "%.17e", "\tds.d ", "\n")
1341
1342 /* This is how to output an assembler line defining a `float' constant. */
1343
1344 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1345 outfloat (FILE, VALUE, "%.9e", "\tds.s ", "\n")
1346
1347 /* This is how to output an assembler line defining an `int' constant. */
1348
1349 #define ASM_OUTPUT_INT(FILE,VALUE) \
1350 { \
1351 fprintf (FILE, "\tds.w "); \
1352 output_addr_const (FILE, simplify_for_convex (VALUE)); \
1353 fprintf (FILE, "\n"); \
1354 }
1355
1356 /* Likewise for a `long long int' constant. */
1357
1358 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1359 { \
1360 if (GET_CODE (VALUE) == CONST_DOUBLE) \
1361 fprintf (FILE, "\tds.w %d,%d\n", \
1362 const_double_high_int (VALUE), const_double_low_int (VALUE)); \
1363 else if (GET_CODE (VALUE) == CONST_INT) \
1364 { \
1365 int val = INTVAL (VALUE); \
1366 fprintf (FILE, "\tds.w %d,%d\n", val < 0 ? -1 : 0, val); \
1367 } \
1368 else \
1369 abort (); \
1370 }
1371
1372 /* Likewise for `char' and `short' constants. */
1373
1374 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1375 ( fprintf (FILE, "\tds.h "), \
1376 output_addr_const (FILE, (VALUE)), \
1377 fprintf (FILE, "\n"))
1378
1379 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1380 ( fprintf (FILE, "\tds.b "), \
1381 output_addr_const (FILE, (VALUE)), \
1382 fprintf (FILE, "\n"))
1383
1384 /* This is how to output an assembler line for a numeric constant byte. */
1385
1386 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1387 fprintf (FILE, "\tds.b %#x\n", (VALUE))
1388
1389 /* This is how to output a string */
1390
1391 #define ASM_OUTPUT_ASCII(FILE,STR,SIZE) do { \
1392 int i; \
1393 fprintf ((FILE), "\tds.b \""); \
1394 for (i = 0; i < (SIZE); i++) { \
1395 register int c = (STR)[i] & 0377; \
1396 if (c >= ' ' && c < 0177 && c != '\\' && c != '"') \
1397 putc (c, (FILE)); \
1398 else \
1399 fprintf ((FILE), "\\%03o", c);} \
1400 fprintf ((FILE), "\"\n");} while (0)
1401
1402 /* This is how to output an insn to push a register on the stack.
1403 It need not be very fast code. */
1404
1405 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1406 fprintf (FILE, "\tpsh.%c %s\n", \
1407 S_REGNO_P (REGNO) ? 'l' : 'w', \
1408 reg_names[REGNO])
1409
1410 /* This is how to output an insn to pop a register from the stack.
1411 It need not be very fast code. */
1412
1413 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1414 fprintf (FILE, "\tpop.%c %s\n", \
1415 S_REGNO_P (REGNO) ? 'l' : 'w', \
1416 reg_names[REGNO])
1417
1418 /* This is how to output an element of a case-vector that is absolute. */
1419
1420 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1421 fprintf (FILE, "\tds.w L%d\n", VALUE)
1422
1423 /* This is how to output an element of a case-vector that is relative.
1424 (not used on Convex) */
1425
1426 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1427 fprintf (FILE, "\tds.w L%d-L%d\n", VALUE, REL)
1428
1429 /* This is how to output an assembler line
1430 that says to advance the location counter by SIZE bytes. */
1431
1432 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1433 fprintf (FILE, "\tds.b %u(0)\n", (SIZE))
1434
1435 /* This says how to output an assembler line
1436 to define a global common symbol. */
1437
1438 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1439 ( fputs (".comm ", (FILE)), \
1440 assemble_name ((FILE), (NAME)), \
1441 fprintf ((FILE), ",%u\n", (ROUNDED)))
1442
1443 /* This says how to output an assembler line
1444 to define a local common symbol. */
1445
1446 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1447 ( bss_section (), \
1448 assemble_name ((FILE), (NAME)), \
1449 fprintf ((FILE), ":\tbs.b %u\n", (ROUNDED)))
1450
1451 /* Store in OUTPUT a string (made with alloca) containing
1452 an assembler-name for a local static variable named NAME.
1453 LABELNO is an integer which is different for each call. */
1454
1455 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1456 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1457 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1458
1459 /* Output an arg count before function entries. */
1460
1461 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1462 asm_declare_function_name (FILE, NAME, DECL)
1463
1464 /* Define the parentheses used to group arithmetic operations
1465 in assembler code. */
1466
1467 #define ASM_OPEN_PAREN "("
1468 #define ASM_CLOSE_PAREN ")"
1469
1470 /* Define results of standard character escape sequences. */
1471 #define TARGET_BELL 007
1472 #define TARGET_BS 010
1473 #define TARGET_TAB 011
1474 #define TARGET_NEWLINE 012
1475 #define TARGET_VT 013
1476 #define TARGET_FF 014
1477 #define TARGET_CR 015
1478
1479 /* Print an instruction operand X on file FILE.
1480 CODE is the code from the %-spec that requested printing this operand;
1481 if `%z3' was used to print operand 3, then CODE is 'z'. */
1482
1483 #define PRINT_OPERAND(FILE, X, CODE) \
1484 print_operand (FILE, X, CODE)
1485
1486 /* Print a memory operand whose address is X, on file FILE. */
1487
1488 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1489 print_operand_address (FILE, ADDR)
1490 \f
1491 /* Do not put out GNU stabs for constructors and destructors.
1492 ld bounces them. */
1493
1494 #define FASCIST_ASSEMBLER
1495
1496 /* __gcc_cleanup is loader-aliased to __ap$do_registered_functions if we
1497 are linking against standard libc, 0 if old (-traditional) libc. */
1498
1499 #define EXIT_BODY \
1500 { \
1501 extern void __gcc_cleanup (); \
1502 if (__gcc_cleanup != _cleanup) \
1503 __gcc_cleanup (); \
1504 _cleanup (); \
1505 }
1506 \f
1507 /* Header for convex.c.
1508 Here at the end so we can use types defined above. */
1509
1510 extern int target_cpu;
1511 extern int current_section_is_text;
1512 extern enum reg_class regno_reg_class[];
1513 extern enum reg_class reg_class_from_letter[];
1514 extern char regno_ok_for_index_p_base[];
1515 #define regno_ok_for_index_p (regno_ok_for_index_p_base + 1)
1516
1517 extern int const_double_low_int ();
1518 extern int const_double_high_int ();
1519 extern char *output_cmp ();
1520 extern char *output_condjump ();
1521 extern char *output_call ();
1522 extern void gen_ap_for_call ();
1523 extern int check_float_value ();
1524 extern void asm_declare_function_name ();
This page took 0.103647 seconds and 5 git commands to generate.