]> gcc.gnu.org Git - gcc.git/blob - gcc/config/c4x/c4x.h
alpha.c (alpha_start_function): Use switch_to_section.
[gcc.git] / gcc / config / c4x / c4x.h
1 /* Definitions of target machine for GNU compiler. TMS320C[34]x
2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
6 and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 /* RUN-TIME TARGET SPECIFICATION. */
26
27 #define C4x 1
28
29 #define TARGET_CPU_CPP_BUILTINS() \
30 do \
31 { \
32 extern int flag_inline_trees; \
33 if (!TARGET_SMALL) \
34 builtin_define ("_BIGMODEL"); \
35 if (!TARGET_MEMPARM) \
36 builtin_define ("_REGPARM"); \
37 if (flag_inline_functions) \
38 builtin_define ("_INLINE"); \
39 if (TARGET_C3X) \
40 { \
41 builtin_define ("_TMS320C3x"); \
42 builtin_define ("_C3x"); \
43 if (TARGET_C30) \
44 { \
45 builtin_define ("_TMS320C30"); \
46 builtin_define ("_C30"); \
47 } \
48 else if (TARGET_C31) \
49 { \
50 builtin_define ("_TMS320C31"); \
51 builtin_define ("_C31"); \
52 } \
53 else if (TARGET_C32) \
54 { \
55 builtin_define ("_TMS320C32"); \
56 builtin_define ("_C32"); \
57 } \
58 else if (TARGET_C33) \
59 { \
60 builtin_define ("_TMS320C33"); \
61 builtin_define ("_C33"); \
62 } \
63 } \
64 else \
65 { \
66 builtin_define ("_TMS320C4x"); \
67 builtin_define ("_C4x"); \
68 if (TARGET_C40) \
69 { \
70 builtin_define ("_TMS320C40"); \
71 builtin_define ("_C40"); \
72 } \
73 else if (TARGET_C44) \
74 { \
75 builtin_define ("_TMS320C44"); \
76 builtin_define ("_C44"); \
77 } \
78 } \
79 } \
80 while (0)
81
82 /* Define assembler options. */
83
84 #define ASM_SPEC "\
85 %{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:%{!mcpu=40:%{!mcpu=44:\
86 %{!m30:%{!m31:%{!m32:%{!m33:%{!m40:%{!m44:-m40}}}}}}}}}}}} \
87 %{mcpu=30} \
88 %{mcpu=31} \
89 %{mcpu=32} \
90 %{mcpu=33} \
91 %{mcpu=40} \
92 %{mcpu=44} \
93 %{m30} \
94 %{m31} \
95 %{m32} \
96 %{m33} \
97 %{m40} \
98 %{m44} \
99 %{mmemparm} %{mregparm} %{!mmemparm:%{!mregparm:-mregparm}} \
100 %{mbig} %{msmall} %{!msmall:%{!mbig:-mbig}}"
101
102 /* Define linker options. */
103
104 #define LINK_SPEC "\
105 %{m30:--architecture c3x} \
106 %{m31:--architecture c3x} \
107 %{m32:--architecture c3x} \
108 %{m33:--architecture c3x} \
109 %{mcpu=30:--architecture c3x} \
110 %{mcpu=31:--architecture c3x} \
111 %{mcpu=32:--architecture c3x} \
112 %{mcpu=33:--architecture c3x}"
113
114 /* Specify the end file to link with. */
115
116 #define ENDFILE_SPEC ""
117
118 /* Caveats:
119 Max iteration count for RPTB/RPTS is 2^31 + 1.
120 Max iteration count for DB is 2^31 + 1 for C40, but 2^23 + 1 for C30.
121 RPTS blocks interrupts. */
122
123
124 extern int c4x_cpu_version; /* Cpu version C30/31/32/33/40/44. */
125
126 #define TARGET_INLINE (! optimize_size) /* Inline MPYI. */
127 #define TARGET_SMALL_REG_CLASS 0
128
129 #define TARGET_C3X (c4x_cpu_version >= 30 \
130 && c4x_cpu_version <= 39)
131
132 #define TARGET_C30 (c4x_cpu_version == 30)
133 #define TARGET_C31 (c4x_cpu_version == 31)
134 #define TARGET_C32 (c4x_cpu_version == 32)
135 #define TARGET_C33 (c4x_cpu_version == 33)
136 #define TARGET_C40 (c4x_cpu_version == 40)
137 #define TARGET_C44 (c4x_cpu_version == 44)
138
139 /* Nonzero to use load_immed_addr pattern rather than forcing memory
140 addresses into memory. */
141 #define TARGET_LOAD_ADDRESS (1 || (! TARGET_C3X && ! TARGET_SMALL))
142
143 /* Nonzero to convert direct memory references into HIGH/LO_SUM pairs
144 during RTL generation. */
145 #define TARGET_EXPOSE_LDP 0
146
147 /* Nonzero to force loading of direct memory references into a register. */
148 #define TARGET_LOAD_DIRECT_MEMS 0
149
150 /* -mrpts allows the use of the RPTS instruction irregardless.
151 -mrpts=max-cycles will use RPTS if the number of cycles is constant
152 and less than max-cycles. */
153
154 #define TARGET_RPTS_CYCLES(CYCLES) (TARGET_RPTS || (CYCLES) < c4x_rpts_cycles)
155
156 /* Sometimes certain combinations of command options do not make sense
157 on a particular target machine. You can define a macro
158 `OVERRIDE_OPTIONS' to take account of this. This macro, if
159 defined, is executed once just after all the command options have
160 been parsed. */
161
162 #define OVERRIDE_OPTIONS c4x_override_options ()
163
164 /* Define this to change the optimizations performed by default. */
165
166 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) c4x_optimization_options(LEVEL, SIZE)
167
168 /* Run Time Target Specification. */
169
170 #define TARGET_VERSION fprintf (stderr, " (TMS320C[34]x, TI syntax)");
171
172 /* Storage Layout. */
173
174 #define BITS_BIG_ENDIAN 0
175 #define BYTES_BIG_ENDIAN 0
176 #define WORDS_BIG_ENDIAN 0
177
178 /* Technically, we are little endian, but we put the floats out as
179 whole longs and this makes GCC put them out in the right order. */
180
181 #define FLOAT_WORDS_BIG_ENDIAN 1
182
183 /* Note the ANSI C standard requires sizeof(char) = 1. On the C[34]x
184 all integral and floating point data types are stored in memory as
185 32-bits (floating point types can be stored as 40-bits in the
186 extended precision registers), so sizeof(char) = sizeof(short) =
187 sizeof(int) = sizeof(long) = sizeof(float) = sizeof(double) = 1. */
188
189 #define BITS_PER_UNIT 32
190 #define UNITS_PER_WORD 1
191 #define PARM_BOUNDARY 32
192 #define STACK_BOUNDARY 32
193 #define FUNCTION_BOUNDARY 32
194 #define BIGGEST_ALIGNMENT 32
195 #define EMPTY_FIELD_BOUNDARY 32
196 #define STRICT_ALIGNMENT 0
197 #define TARGET_FLOAT_FORMAT C4X_FLOAT_FORMAT
198 #define MAX_FIXED_MODE_SIZE 64 /* HImode. */
199
200 /* If a structure has a floating point field then force structure
201 to have BLKMODE, unless it is the only field. */
202 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
203 (TREE_CODE (TREE_TYPE (FIELD)) == REAL_TYPE && (MODE) == VOIDmode)
204
205 /* Number of bits in the high and low parts of a two stage
206 load of an immediate constant. */
207 #define BITS_PER_HIGH 16
208 #define BITS_PER_LO_SUM 16
209
210 /* Define register numbers. */
211
212 /* Extended-precision registers. */
213
214 #define R0_REGNO 0
215 #define R1_REGNO 1
216 #define R2_REGNO 2
217 #define R3_REGNO 3
218 #define R4_REGNO 4
219 #define R5_REGNO 5
220 #define R6_REGNO 6
221 #define R7_REGNO 7
222
223 /* Auxiliary (address) registers. */
224
225 #define AR0_REGNO 8
226 #define AR1_REGNO 9
227 #define AR2_REGNO 10
228 #define AR3_REGNO 11
229 #define AR4_REGNO 12
230 #define AR5_REGNO 13
231 #define AR6_REGNO 14
232 #define AR7_REGNO 15
233
234 /* Data page register. */
235
236 #define DP_REGNO 16
237
238 /* Index registers. */
239
240 #define IR0_REGNO 17
241 #define IR1_REGNO 18
242
243 /* Block size register. */
244
245 #define BK_REGNO 19
246
247 /* Stack pointer. */
248
249 #define SP_REGNO 20
250
251 /* Status register. */
252
253 #define ST_REGNO 21
254
255 /* Misc. interrupt registers. */
256
257 #define DIE_REGNO 22 /* C4x only. */
258 #define IE_REGNO 22 /* C3x only. */
259 #define IIE_REGNO 23 /* C4x only. */
260 #define IF_REGNO 23 /* C3x only. */
261 #define IIF_REGNO 24 /* C4x only. */
262 #define IOF_REGNO 24 /* C3x only. */
263
264 /* Repeat block registers. */
265
266 #define RS_REGNO 25
267 #define RE_REGNO 26
268 #define RC_REGNO 27
269
270 /* Additional extended-precision registers. */
271
272 #define R8_REGNO 28 /* C4x only. */
273 #define R9_REGNO 29 /* C4x only. */
274 #define R10_REGNO 30 /* C4x only. */
275 #define R11_REGNO 31 /* C4x only. */
276
277 #define FIRST_PSEUDO_REGISTER 32
278
279 /* Extended precision registers (low set). */
280
281 #define IS_R0R1_REGNO(r) \
282 ((unsigned int)((r) - R0_REGNO) <= (R1_REGNO - R0_REGNO))
283 #define IS_R2R3_REGNO(r) \
284 ((unsigned int)((r) - R2_REGNO) <= (R3_REGNO - R2_REGNO))
285 #define IS_EXT_LOW_REGNO(r) \
286 ((unsigned int)((r) - R0_REGNO) <= (R7_REGNO - R0_REGNO))
287
288 /* Extended precision registers (high set). */
289
290 #define IS_EXT_HIGH_REGNO(r) \
291 (! TARGET_C3X \
292 && ((unsigned int) ((r) - R8_REGNO) <= (R11_REGNO - R8_REGNO)))
293
294 /* Address registers. */
295
296 #define IS_AUX_REGNO(r) \
297 ((unsigned int)((r) - AR0_REGNO) <= (AR7_REGNO - AR0_REGNO))
298 #define IS_ADDR_REGNO(r) IS_AUX_REGNO(r)
299 #define IS_DP_REGNO(r) ((r) == DP_REGNO)
300 #define IS_INDEX_REGNO(r) (((r) == IR0_REGNO) || ((r) == IR1_REGNO))
301 #define IS_SP_REGNO(r) ((r) == SP_REGNO)
302 #define IS_BK_REGNO(r) (TARGET_BK && (r) == BK_REGNO)
303
304 /* Misc registers. */
305
306 #define IS_ST_REGNO(r) ((r) == ST_REGNO)
307 #define IS_RC_REGNO(r) ((r) == RC_REGNO)
308 #define IS_REPEAT_REGNO(r) (((r) >= RS_REGNO) && ((r) <= RC_REGNO))
309
310 /* Composite register sets. */
311
312 #define IS_ADDR_OR_INDEX_REGNO(r) (IS_ADDR_REGNO(r) || IS_INDEX_REGNO(r))
313 #define IS_EXT_REGNO(r) (IS_EXT_LOW_REGNO(r) || IS_EXT_HIGH_REGNO(r))
314 #define IS_STD_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) \
315 || IS_REPEAT_REGNO(r) \
316 || IS_SP_REGNO(r) \
317 || IS_BK_REGNO(r))
318 #define IS_INT_REGNO(r) (IS_EXT_REGNO(r) || IS_STD_REGNO(r))
319 #define IS_GROUP1_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) || IS_BK_REGNO(r))
320 #define IS_INT_CALL_SAVED_REGNO(r) (((r) == R4_REGNO) || ((r) == R5_REGNO) \
321 || ((r) == R8_REGNO))
322 #define IS_FLOAT_CALL_SAVED_REGNO(r) (((r) == R6_REGNO) || ((r) == R7_REGNO))
323
324 #define IS_PSEUDO_REGNO(r) ((r) >= FIRST_PSEUDO_REGISTER)
325 #define IS_R0R1_OR_PSEUDO_REGNO(r) (IS_R0R1_REGNO(r) || IS_PSEUDO_REGNO(r))
326 #define IS_R2R3_OR_PSEUDO_REGNO(r) (IS_R2R3_REGNO(r) || IS_PSEUDO_REGNO(r))
327 #define IS_EXT_OR_PSEUDO_REGNO(r) (IS_EXT_REGNO(r) || IS_PSEUDO_REGNO(r))
328 #define IS_STD_OR_PSEUDO_REGNO(r) (IS_STD_REGNO(r) || IS_PSEUDO_REGNO(r))
329 #define IS_INT_OR_PSEUDO_REGNO(r) (IS_INT_REGNO(r) || IS_PSEUDO_REGNO(r))
330 #define IS_ADDR_OR_PSEUDO_REGNO(r) (IS_ADDR_REGNO(r) || IS_PSEUDO_REGNO(r))
331 #define IS_INDEX_OR_PSEUDO_REGNO(r) (IS_INDEX_REGNO(r) || IS_PSEUDO_REGNO(r))
332 #define IS_EXT_LOW_OR_PSEUDO_REGNO(r) (IS_EXT_LOW_REGNO(r) \
333 || IS_PSEUDO_REGNO(r))
334 #define IS_DP_OR_PSEUDO_REGNO(r) (IS_DP_REGNO(r) || IS_PSEUDO_REGNO(r))
335 #define IS_SP_OR_PSEUDO_REGNO(r) (IS_SP_REGNO(r) || IS_PSEUDO_REGNO(r))
336 #define IS_ST_OR_PSEUDO_REGNO(r) (IS_ST_REGNO(r) || IS_PSEUDO_REGNO(r))
337 #define IS_RC_OR_PSEUDO_REGNO(r) (IS_RC_REGNO(r) || IS_PSEUDO_REGNO(r))
338
339 #define IS_PSEUDO_REG(op) (IS_PSEUDO_REGNO(REGNO(op)))
340 #define IS_ADDR_REG(op) (IS_ADDR_REGNO(REGNO(op)))
341 #define IS_INDEX_REG(op) (IS_INDEX_REGNO(REGNO(op)))
342 #define IS_GROUP1_REG(r) (IS_GROUP1_REGNO(REGNO(op)))
343 #define IS_SP_REG(op) (IS_SP_REGNO(REGNO(op)))
344 #define IS_STD_REG(op) (IS_STD_REGNO(REGNO(op)))
345 #define IS_EXT_REG(op) (IS_EXT_REGNO(REGNO(op)))
346
347 #define IS_R0R1_OR_PSEUDO_REG(op) (IS_R0R1_OR_PSEUDO_REGNO(REGNO(op)))
348 #define IS_R2R3_OR_PSEUDO_REG(op) (IS_R2R3_OR_PSEUDO_REGNO(REGNO(op)))
349 #define IS_EXT_OR_PSEUDO_REG(op) (IS_EXT_OR_PSEUDO_REGNO(REGNO(op)))
350 #define IS_STD_OR_PSEUDO_REG(op) (IS_STD_OR_PSEUDO_REGNO(REGNO(op)))
351 #define IS_EXT_LOW_OR_PSEUDO_REG(op) (IS_EXT_LOW_OR_PSEUDO_REGNO(REGNO(op)))
352 #define IS_INT_OR_PSEUDO_REG(op) (IS_INT_OR_PSEUDO_REGNO(REGNO(op)))
353
354 #define IS_ADDR_OR_PSEUDO_REG(op) (IS_ADDR_OR_PSEUDO_REGNO(REGNO(op)))
355 #define IS_INDEX_OR_PSEUDO_REG(op) (IS_INDEX_OR_PSEUDO_REGNO(REGNO(op)))
356 #define IS_DP_OR_PSEUDO_REG(op) (IS_DP_OR_PSEUDO_REGNO(REGNO(op)))
357 #define IS_SP_OR_PSEUDO_REG(op) (IS_SP_OR_PSEUDO_REGNO(REGNO(op)))
358 #define IS_ST_OR_PSEUDO_REG(op) (IS_ST_OR_PSEUDO_REGNO(REGNO(op)))
359 #define IS_RC_OR_PSEUDO_REG(op) (IS_RC_OR_PSEUDO_REGNO(REGNO(op)))
360
361 /* 1 for registers that have pervasive standard uses
362 and are not available for the register allocator. */
363
364 #define FIXED_REGISTERS \
365 { \
366 /* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
368 /* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
369 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 \
370 }
371
372 /* 1 for registers not available across function calls.
373 These must include the FIXED_REGISTERS and also any
374 registers that can be used without being saved.
375 The latter must include the registers where values are returned
376 and the register where structure-value addresses are passed.
377 Aside from that, you can include as many other registers as you like.
378
379 Note that the extended precision registers are only saved in some
380 modes. The macro HARD_REGNO_CALL_CLOBBERED specifies which modes
381 get clobbered for a given regno. */
382
383 #define CALL_USED_REGISTERS \
384 { \
385 /* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
386 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, \
387 /* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
388 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1 \
389 }
390
391 /* Macro to conditionally modify fixed_regs/call_used_regs. */
392
393 #define CONDITIONAL_REGISTER_USAGE \
394 { \
395 if (! TARGET_BK) \
396 { \
397 fixed_regs[BK_REGNO] = 1; \
398 call_used_regs[BK_REGNO] = 1; \
399 c4x_regclass_map[BK_REGNO] = NO_REGS; \
400 } \
401 if (TARGET_C3X) \
402 { \
403 int i; \
404 \
405 reg_names[DIE_REGNO] = "ie"; /* Clobber die. */ \
406 reg_names[IF_REGNO] = "if"; /* Clobber iie. */ \
407 reg_names[IOF_REGNO] = "iof"; /* Clobber iif. */ \
408 \
409 for (i = R8_REGNO; i <= R11_REGNO; i++) \
410 { \
411 fixed_regs[i] = call_used_regs[i] = 1; \
412 c4x_regclass_map[i] = NO_REGS; \
413 } \
414 } \
415 if (TARGET_PRESERVE_FLOAT) \
416 { \
417 c4x_caller_save_map[R6_REGNO] = HFmode; \
418 c4x_caller_save_map[R7_REGNO] = HFmode; \
419 } \
420 }
421
422 /* Order of Allocation of Registers. */
423
424 /* List the order in which to allocate registers. Each register must be
425 listed once, even those in FIXED_REGISTERS.
426
427 First allocate registers that don't need preservation across calls,
428 except index and address registers. Then allocate data registers
429 that require preservation across calls (even though this invokes an
430 extra overhead of having to save/restore these registers). Next
431 allocate the address and index registers, since using these
432 registers for arithmetic can cause pipeline stalls. Finally
433 allocated the fixed registers which won't be allocated anyhow. */
434
435 #define REG_ALLOC_ORDER \
436 {R0_REGNO, R1_REGNO, R2_REGNO, R3_REGNO, \
437 R9_REGNO, R10_REGNO, R11_REGNO, \
438 RS_REGNO, RE_REGNO, RC_REGNO, BK_REGNO, \
439 R4_REGNO, R5_REGNO, R6_REGNO, R7_REGNO, R8_REGNO, \
440 AR0_REGNO, AR1_REGNO, AR2_REGNO, AR3_REGNO, \
441 AR4_REGNO, AR5_REGNO, AR6_REGNO, AR7_REGNO, \
442 IR0_REGNO, IR1_REGNO, \
443 SP_REGNO, DP_REGNO, ST_REGNO, IE_REGNO, IF_REGNO, IOF_REGNO}
444
445 /* A C expression that is nonzero if hard register number REGNO2 can be
446 considered for use as a rename register for REGNO1 */
447
448 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
449 c4x_hard_regno_rename_ok((REGNO1), (REGNO2))
450
451 /* Determine which register classes are very likely used by spill registers.
452 local-alloc.c won't allocate pseudos that have these classes as their
453 preferred class unless they are "preferred or nothing". */
454
455 #define CLASS_LIKELY_SPILLED_P(CLASS) ((CLASS) == INDEX_REGS)
456
457 /* CCmode is wrongly defined in machmode.def. It should have a size
458 of UNITS_PER_WORD. HFmode is 40-bits and thus fits within a single
459 extended precision register. Similarly, HCmode fits within two
460 extended precision registers. */
461
462 #define HARD_REGNO_NREGS(REGNO, MODE) \
463 (((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : \
464 ((MODE) == HFmode) ? 1 : \
465 ((MODE) == HCmode) ? 2 : \
466 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
467
468
469 /* A C expression that is nonzero if the hard register REGNO is preserved
470 across a call in mode MODE. This does not have to include the call used
471 registers. */
472
473 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
474 ((IS_FLOAT_CALL_SAVED_REGNO (REGNO) && ! ((MODE) == QFmode)) \
475 || (IS_INT_CALL_SAVED_REGNO (REGNO) \
476 && ! ((MODE) == QImode || (MODE) == HImode || (MODE) == Pmode)))
477
478 /* Specify the modes required to caller save a given hard regno. */
479
480 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) (c4x_caller_save_map[REGNO])
481
482 #define HARD_REGNO_MODE_OK(REGNO, MODE) c4x_hard_regno_mode_ok(REGNO, MODE)
483
484 /* A C expression that is nonzero if it is desirable to choose
485 register allocation so as to avoid move instructions between a
486 value of mode MODE1 and a value of mode MODE2.
487
488 Value is 1 if it is a good idea to tie two pseudo registers
489 when one has mode MODE1 and one has mode MODE2.
490 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
491 for any hard reg, then this must be 0 for correct output. */
492
493 #define MODES_TIEABLE_P(MODE1, MODE2) 0
494
495
496 /* Define the classes of registers for register constraints in the
497 machine description. Also define ranges of constants.
498
499 One of the classes must always be named ALL_REGS and include all hard regs.
500 If there is more than one class, another class must be named NO_REGS
501 and contain no registers.
502
503 The name GENERAL_REGS must be the name of a class (or an alias for
504 another name such as ALL_REGS). This is the class of registers
505 that is allowed by "g" or "r" in a register constraint.
506 Also, registers outside this class are allocated only when
507 instructions express preferences for them.
508
509 The classes must be numbered in nondecreasing order; that is,
510 a larger-numbered class must never be contained completely
511 in a smaller-numbered class.
512
513 For any two classes, it is very desirable that there be another
514 class that represents their union. */
515
516 enum reg_class
517 {
518 NO_REGS,
519 R0R1_REGS, /* 't'. */
520 R2R3_REGS, /* 'u'. */
521 EXT_LOW_REGS, /* 'q'. */
522 EXT_REGS, /* 'f'. */
523 ADDR_REGS, /* 'a'. */
524 INDEX_REGS, /* 'x'. */
525 BK_REG, /* 'k'. */
526 SP_REG, /* 'b'. */
527 RC_REG, /* 'v'. */
528 COUNTER_REGS, /* */
529 INT_REGS, /* 'c'. */
530 GENERAL_REGS, /* 'r'. */
531 DP_REG, /* 'z'. */
532 ST_REG, /* 'y'. */
533 ALL_REGS,
534 LIM_REG_CLASSES
535 };
536
537 #define N_REG_CLASSES (int) LIM_REG_CLASSES
538
539 #define REG_CLASS_NAMES \
540 { \
541 "NO_REGS", \
542 "R0R1_REGS", \
543 "R2R3_REGS", \
544 "EXT_LOW_REGS", \
545 "EXT_REGS", \
546 "ADDR_REGS", \
547 "INDEX_REGS", \
548 "BK_REG", \
549 "SP_REG", \
550 "RC_REG", \
551 "COUNTER_REGS", \
552 "INT_REGS", \
553 "GENERAL_REGS", \
554 "DP_REG", \
555 "ST_REG", \
556 "ALL_REGS" \
557 }
558
559 /* Define which registers fit in which classes.
560 This is an initializer for a vector of HARD_REG_SET
561 of length N_REG_CLASSES. RC is not included in GENERAL_REGS
562 since the register allocator will often choose a general register
563 in preference to RC for the decrement_and_branch_on_count pattern. */
564
565 #define REG_CLASS_CONTENTS \
566 { \
567 {0x00000000}, /* No registers. */ \
568 {0x00000003}, /* 't' R0-R1 . */ \
569 {0x0000000c}, /* 'u' R2-R3 . */ \
570 {0x000000ff}, /* 'q' R0-R7 . */ \
571 {0xf00000ff}, /* 'f' R0-R11 */ \
572 {0x0000ff00}, /* 'a' AR0-AR7. */ \
573 {0x00060000}, /* 'x' IR0-IR1. */ \
574 {0x00080000}, /* 'k' BK. */ \
575 {0x00100000}, /* 'b' SP. */ \
576 {0x08000000}, /* 'v' RC. */ \
577 {0x0800ff00}, /* RC,AR0-AR7. */ \
578 {0x0e1eff00}, /* 'c' AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */ \
579 {0xfe1effff}, /* 'r' R0-R11, AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */\
580 {0x00010000}, /* 'z' DP. */ \
581 {0x00200000}, /* 'y' ST. */ \
582 {0xffffffff}, /* All registers. */ \
583 }
584
585 /* The same information, inverted:
586 Return the class number of the smallest class containing
587 reg number REGNO. This could be a conditional expression
588 or could index an array. */
589
590 #define REGNO_REG_CLASS(REGNO) (c4x_regclass_map[REGNO])
591
592 /* When SMALL_REGISTER_CLASSES is defined, the lifetime of registers
593 explicitly used in the rtl is kept as short as possible.
594
595 We only need to define SMALL_REGISTER_CLASSES if TARGET_PARALLEL_MPY
596 is defined since the MPY|ADD insns require the classes R0R1_REGS and
597 R2R3_REGS which are used by the function return registers (R0,R1) and
598 the register arguments (R2,R3), respectively. I'm reluctant to define
599 this macro since it stomps on many potential optimizations. Ideally
600 it should have a register class argument so that not all the register
601 classes gets penalized for the sake of a naughty few... For long
602 double arithmetic we need two additional registers that we can use as
603 spill registers. */
604
605 #define SMALL_REGISTER_CLASSES (TARGET_SMALL_REG_CLASS && TARGET_PARALLEL_MPY)
606
607 #define BASE_REG_CLASS ADDR_REGS
608 #define INDEX_REG_CLASS INDEX_REGS
609
610 /*
611 Register constraints for the C4x
612
613 a - address reg (ar0-ar7)
614 b - stack reg (sp)
615 c - other gp int-only reg
616 d - data/int reg (equiv. to f)
617 f - data/float reg
618 h - data/long double reg (equiv. to f)
619 k - block count (bk)
620 q - r0-r7
621 t - r0-r1
622 u - r2-r3
623 v - repeat count (rc)
624 x - index register (ir0-ir1)
625 y - status register (st)
626 z - dp reg (dp)
627
628 Memory/constant constraints for the C4x
629
630 G - short float 16-bit
631 I - signed 16-bit constant (sign extended)
632 J - signed 8-bit constant (sign extended) (C4x only)
633 K - signed 5-bit constant (sign extended) (C4x only for stik)
634 L - unsigned 16-bit constant
635 M - unsigned 8-bit constant (C4x only)
636 N - ones complement of unsigned 16-bit constant
637 Q - indirect arx + 9-bit signed displacement
638 (a *-arx(n) or *+arx(n) is used to account for the sign bit)
639 R - indirect arx + 5-bit unsigned displacement (C4x only)
640 S - indirect arx + 0, 1, or irn displacement
641 T - direct symbol ref
642 > - indirect with autoincrement
643 < - indirect with autodecrement
644 } - indirect with post-modify
645 { - indirect with pre-modify
646 */
647
648 #define REG_CLASS_FROM_LETTER(CC) \
649 ( ((CC) == 'a') ? ADDR_REGS \
650 : ((CC) == 'b') ? SP_REG \
651 : ((CC) == 'c') ? INT_REGS \
652 : ((CC) == 'd') ? EXT_REGS \
653 : ((CC) == 'f') ? EXT_REGS \
654 : ((CC) == 'h') ? EXT_REGS \
655 : ((CC) == 'k') ? BK_REG \
656 : ((CC) == 'q') ? EXT_LOW_REGS \
657 : ((CC) == 't') ? R0R1_REGS \
658 : ((CC) == 'u') ? R2R3_REGS \
659 : ((CC) == 'v') ? RC_REG \
660 : ((CC) == 'x') ? INDEX_REGS \
661 : ((CC) == 'y') ? ST_REG \
662 : ((CC) == 'z') ? DP_REG \
663 : NO_REGS )
664
665 /* These assume that REGNO is a hard or pseudo reg number.
666 They give nonzero only if REGNO is a hard reg of the suitable class
667 or a pseudo reg currently allocated to a suitable hard reg.
668 Since they use reg_renumber, they are safe only once reg_renumber
669 has been allocated, which happens in local-alloc.c. */
670
671 #define REGNO_OK_FOR_BASE_P(REGNO) \
672 (IS_ADDR_REGNO(REGNO) || IS_ADDR_REGNO((unsigned)reg_renumber[REGNO]))
673
674 #define REGNO_OK_FOR_INDEX_P(REGNO) \
675 (IS_INDEX_REGNO(REGNO) || IS_INDEX_REGNO((unsigned)reg_renumber[REGNO]))
676
677 /* If we have to generate framepointer + constant prefer an ADDR_REGS
678 register. This avoids using EXT_REGS in addqi3_noclobber_reload. */
679
680 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
681 (GET_CODE (X) == PLUS \
682 && GET_MODE (X) == Pmode \
683 && GET_CODE (XEXP ((X), 0)) == REG \
684 && GET_MODE (XEXP ((X), 0)) == Pmode \
685 && REGNO (XEXP ((X), 0)) == FRAME_POINTER_REGNUM \
686 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
687 ? ADDR_REGS : (CLASS))
688
689 #define LIMIT_RELOAD_CLASS(X, CLASS) (CLASS)
690
691 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) 0
692
693 #define CLASS_MAX_NREGS(CLASS, MODE) \
694 (((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : ((MODE) == HFmode) ? 1 : \
695 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
696
697 #define IS_INT5_CONST(VAL) (((VAL) <= 15) && ((VAL) >= -16)) /* 'K'. */
698
699 #define IS_UINT5_CONST(VAL) (((VAL) <= 31) && ((VAL) >= 0)) /* 'R'. */
700
701 #define IS_INT8_CONST(VAL) (((VAL) <= 127) && ((VAL) >= -128)) /* 'J'. */
702
703 #define IS_UINT8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= 0)) /* 'M'. */
704
705 #define IS_INT16_CONST(VAL) (((VAL) <= 32767) && ((VAL) >= -32768)) /* 'I'. */
706
707 #define IS_UINT16_CONST(VAL) (((VAL) <= 65535) && ((VAL) >= 0)) /* 'L'. */
708
709 #define IS_NOT_UINT16_CONST(VAL) IS_UINT16_CONST(~(VAL)) /* 'N'. */
710
711 #define IS_HIGH_CONST(VAL) \
712 (! TARGET_C3X && (((VAL) & 0xffff) == 0)) /* 'O'. */
713
714
715 #define IS_DISP1_CONST(VAL) (((VAL) <= 1) && ((VAL) >= -1)) /* 'S'. */
716
717 #define IS_DISP8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= -255)) /* 'Q'. */
718
719 #define IS_DISP1_OFF_CONST(VAL) (IS_DISP1_CONST (VAL) \
720 && IS_DISP1_CONST (VAL + 1))
721
722 #define IS_DISP8_OFF_CONST(VAL) (IS_DISP8_CONST (VAL) \
723 && IS_DISP8_CONST (VAL + 1))
724
725 #define CONST_OK_FOR_LETTER_P(VAL, C) \
726 ( ((C) == 'I') ? (IS_INT16_CONST (VAL)) \
727 : ((C) == 'J') ? (! TARGET_C3X && IS_INT8_CONST (VAL)) \
728 : ((C) == 'K') ? (! TARGET_C3X && IS_INT5_CONST (VAL)) \
729 : ((C) == 'L') ? (IS_UINT16_CONST (VAL)) \
730 : ((C) == 'M') ? (! TARGET_C3X && IS_UINT8_CONST (VAL)) \
731 : ((C) == 'N') ? (IS_NOT_UINT16_CONST (VAL)) \
732 : ((C) == 'O') ? (IS_HIGH_CONST (VAL)) \
733 : 0 )
734
735 #define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
736 ( ((C) == 'G') ? (fp_zero_operand (OP, QFmode)) \
737 : ((C) == 'H') ? (c4x_H_constant (OP)) \
738 : 0 )
739
740 #define EXTRA_CONSTRAINT(OP, C) \
741 ( ((C) == 'Q') ? (c4x_Q_constraint (OP)) \
742 : ((C) == 'R') ? (c4x_R_constraint (OP)) \
743 : ((C) == 'S') ? (c4x_S_constraint (OP)) \
744 : ((C) == 'T') ? (c4x_T_constraint (OP)) \
745 : ((C) == 'U') ? (c4x_U_constraint (OP)) \
746 : 0 )
747
748 #define SMALL_CONST(VAL, insn) \
749 ( ((insn == NULL_RTX) || (get_attr_data (insn) == DATA_INT16)) \
750 ? IS_INT16_CONST (VAL) \
751 : ( (get_attr_data (insn) == DATA_NOT_UINT16) \
752 ? IS_NOT_UINT16_CONST (VAL) \
753 : ( (get_attr_data (insn) == DATA_HIGH_16) \
754 ? IS_HIGH_CONST (VAL) \
755 : IS_UINT16_CONST (VAL) \
756 ) \
757 ) \
758 )
759
760 /*
761 I. Routine calling with arguments in registers
762 ----------------------------------------------
763
764 The TI C3x compiler has a rather unusual register passing algorithm.
765 Data is passed in the following registers (in order):
766
767 AR2, R2, R3, RC, RS, RE
768
769 However, the first and second floating point values are always in R2
770 and R3 (and all other floats are on the stack). Structs are always
771 passed on the stack. If the last argument is an ellipsis, the
772 previous argument is passed on the stack so that its address can be
773 taken for the stdargs macros.
774
775 Because of this, we have to pre-scan the list of arguments to figure
776 out what goes where in the list.
777
778 II. Routine calling with arguments on stack
779 -------------------------------------------
780
781 Let the subroutine declared as "foo(arg0, arg1, arg2);" have local
782 variables loc0, loc1, and loc2. After the function prologue has
783 been executed, the stack frame will look like:
784
785 [stack grows towards increasing addresses]
786 I-------------I
787 5 I saved reg1 I <= SP points here
788 I-------------I
789 4 I saved reg0 I
790 I-------------I
791 3 I loc2 I
792 I-------------I
793 2 I loc1 I
794 I-------------I
795 1 I loc0 I
796 I-------------I
797 0 I old FP I <= FP (AR3) points here
798 I-------------I
799 -1 I return PC I
800 I-------------I
801 -2 I arg0 I
802 I-------------I
803 -3 I arg1 I
804 I-------------I
805 -4 I arg2 I
806 I-------------I
807
808 All local variables (locn) are accessible by means of +FP(n+1)
809 addressing, where n is the local variable number.
810
811 All stack arguments (argn) are accessible by means of -FP(n-2).
812
813 The stack pointer (SP) points to the last register saved in the
814 prologue (regn).
815
816 Note that a push instruction performs a preincrement of the stack
817 pointer. (STACK_PUSH_CODE == PRE_INC)
818
819 III. Registers used in function calling convention
820 --------------------------------------------------
821
822 Preserved across calls: R4...R5 (only by PUSH, i.e. lower 32 bits)
823 R6...R7 (only by PUSHF, i.e. upper 32 bits)
824 AR3...AR7
825
826 (Because of this model, we only assign FP values in R6, R7 and
827 only assign integer values in R4, R5.)
828
829 These registers are saved at each function entry and restored at
830 the exit. Also it is expected any of these not affected by any
831 call to user-defined (not service) functions.
832
833 Not preserved across calls: R0...R3
834 R4...R5 (upper 8 bits)
835 R6...R7 (lower 8 bits)
836 AR0...AR2, IR0, IR1, BK, ST, RS, RE, RC
837
838 These registers are used arbitrary in a function without being preserved.
839 It is also expected that any of these can be clobbered by any call.
840
841 Not used by GCC (except for in user "asm" statements):
842 IE (DIE), IF (IIE), IOF (IIF)
843
844 These registers are never used by GCC for any data, but can be used
845 with "asm" statements. */
846
847 #define C4X_ARG0 -2
848 #define C4X_LOC0 1
849
850 /* Basic Stack Layout. */
851
852 /* The stack grows upward, stack frame grows upward, and args grow
853 downward. */
854
855 #define STARTING_FRAME_OFFSET C4X_LOC0
856 #define FIRST_PARM_OFFSET(FNDECL) (C4X_ARG0 + 1)
857 #define ARGS_GROW_DOWNWARD
858 #define STACK_POINTER_OFFSET 1
859
860 /* Define this if pushing a word on the stack
861 makes the stack pointer a smaller address. */
862
863 /* #define STACK_GROWS_DOWNWARD. */
864 /* Like the dsp16xx, i370, i960, and we32k ports. */
865
866 /* Define this to nonzero if the nominal address of the stack frame
867 is at the high-address end of the local variables;
868 that is, each additional local variable allocated
869 goes at a more negative offset in the frame. */
870
871 #define FRAME_GROWS_DOWNWARD 0
872
873
874 /* Registers That Address the Stack Frame. */
875
876 #define STACK_POINTER_REGNUM SP_REGNO /* SP. */
877 #define FRAME_POINTER_REGNUM AR3_REGNO /* AR3. */
878 #define ARG_POINTER_REGNUM AR3_REGNO /* AR3. */
879 #define STATIC_CHAIN_REGNUM AR0_REGNO /* AR0. */
880
881 /* Eliminating Frame Pointer and Arg Pointer. */
882
883 #define FRAME_POINTER_REQUIRED 0
884
885 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
886 { \
887 int regno; \
888 int offset = 0; \
889 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
890 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
891 offset += TARGET_PRESERVE_FLOAT \
892 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
893 (DEPTH) = -(offset + get_frame_size ()); \
894 }
895
896 /* This is a hack... We need to specify a register. */
897 #define ELIMINABLE_REGS \
898 {{ FRAME_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
899
900 #define CAN_ELIMINATE(FROM, TO) \
901 (! (((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
902 || ((FROM) == FRAME_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)))
903
904 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
905 { \
906 int regno; \
907 int offset = 0; \
908 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
909 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
910 offset += TARGET_PRESERVE_FLOAT \
911 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
912 (OFFSET) = -(offset + get_frame_size ()); \
913 }
914
915
916 /* Passing Function Arguments on the Stack. */
917
918 #define PUSH_ARGS 1
919 #define PUSH_ROUNDING(BYTES) (BYTES)
920 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
921
922 /* The following structure is used by calls.c, function.c, c4x.c. */
923
924 typedef struct c4x_args
925 {
926 int floats;
927 int ints;
928 int maxfloats;
929 int maxints;
930 int init;
931 int var;
932 int prototype;
933 int args;
934 }
935 CUMULATIVE_ARGS;
936
937 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
938 (c4x_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
939
940 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
941 (c4x_function_arg_advance (&CUM, MODE, TYPE, NAMED))
942
943 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
944 (c4x_function_arg(&CUM, MODE, TYPE, NAMED))
945
946 /* Define the profitability of saving registers around calls.
947 We disable caller save to avoid a bug in flow.c (this also affects
948 other targets such as m68k). Since we must use stf/sti,
949 the profitability is marginal anyway. */
950
951 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
952
953 /* 1 if N is a possible register number for function argument passing. */
954
955 #define FUNCTION_ARG_REGNO_P(REGNO) \
956 ( ( ((REGNO) == AR2_REGNO) /* AR2. */ \
957 || ((REGNO) == R2_REGNO) /* R2. */ \
958 || ((REGNO) == R3_REGNO) /* R3. */ \
959 || ((REGNO) == RC_REGNO) /* RC. */ \
960 || ((REGNO) == RS_REGNO) /* RS. */ \
961 || ((REGNO) == RE_REGNO)) /* RE. */ \
962 ? 1 \
963 : 0)
964
965 /* How Scalar Function Values Are Returned. */
966
967 #define FUNCTION_VALUE(VALTYPE, FUNC) \
968 gen_rtx_REG (TYPE_MODE(VALTYPE), R0_REGNO) /* Return in R0. */
969
970 #define LIBCALL_VALUE(MODE) \
971 gen_rtx_REG (MODE, R0_REGNO) /* Return in R0. */
972
973 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == R0_REGNO)
974
975 /* How Large Values Are Returned. */
976
977 #define DEFAULT_PCC_STRUCT_RETURN 0
978
979 /* Generating Code for Profiling. */
980
981 /* Note that the generated assembly uses the ^ operator to load the 16
982 MSBs of the address. This is not supported by the TI assembler.
983 The FUNCTION profiler needs a function mcount which gets passed
984 a pointer to the LABELNO. */
985
986 #define FUNCTION_PROFILER(FILE, LABELNO) \
987 if (! TARGET_C3X) \
988 { \
989 fprintf (FILE, "\tpush\tar2\n"); \
990 fprintf (FILE, "\tldhi\t^LP%d,ar2\n", (LABELNO)); \
991 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
992 fprintf (FILE, "\tcall\tmcount\n"); \
993 fprintf (FILE, "\tpop\tar2\n"); \
994 } \
995 else \
996 { \
997 fprintf (FILE, "\tpush\tar2\n"); \
998 fprintf (FILE, "\tldiu\t^LP%d,ar2\n", (LABELNO)); \
999 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1000 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
1001 fprintf (FILE, "\tcall\tmcount\n"); \
1002 fprintf (FILE, "\tpop\tar2\n"); \
1003 }
1004
1005 /* CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG
1006 or MULT.
1007 CCmode should be used when no special processing is needed. */
1008 #define SELECT_CC_MODE(OP,X,Y) \
1009 ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
1010 || GET_CODE (X) == NEG || GET_CODE (X) == MULT \
1011 || GET_MODE (X) == ABS \
1012 || GET_CODE (Y) == PLUS || GET_CODE (Y) == MINUS \
1013 || GET_CODE (Y) == NEG || GET_CODE (Y) == MULT \
1014 || GET_MODE (Y) == ABS) \
1015 ? CC_NOOVmode : CCmode)
1016
1017 /* Addressing Modes. */
1018
1019 #define HAVE_POST_INCREMENT 1
1020 #define HAVE_PRE_INCREMENT 1
1021 #define HAVE_POST_DECREMENT 1
1022 #define HAVE_PRE_DECREMENT 1
1023 #define HAVE_PRE_MODIFY_REG 1
1024 #define HAVE_POST_MODIFY_REG 1
1025 #define HAVE_PRE_MODIFY_DISP 1
1026 #define HAVE_POST_MODIFY_DISP 1
1027
1028 /* The number of insns that can be packed into a single opcode. */
1029 #define PACK_INSNS 2
1030
1031 /* Recognize any constant value that is a valid address.
1032 We could allow arbitrary constant addresses in the large memory
1033 model but for the small memory model we can only accept addresses
1034 within the data page. I suppose we could also allow
1035 CONST PLUS SYMBOL_REF. */
1036 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == SYMBOL_REF)
1037
1038 /* Maximum number of registers that can appear in a valid memory
1039 address. */
1040 #define MAX_REGS_PER_ADDRESS 2
1041
1042 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1043 and check its validity for a certain class.
1044 We have two alternate definitions for each of them.
1045 The usual definition accepts all pseudo regs; the other rejects
1046 them unless they have been allocated suitable hard regs.
1047 The symbol REG_OK_STRICT causes the latter definition to be used.
1048
1049 Most source files want to accept pseudo regs in the hope that
1050 they will get allocated to the class that the insn wants them to be in.
1051 Source files for reload pass need to be strict.
1052 After reload, it makes no difference, since pseudo regs have
1053 been eliminated by then. */
1054
1055 #ifndef REG_OK_STRICT
1056
1057 /* Nonzero if X is a hard or pseudo reg that can be used as a base. */
1058
1059 #define REG_OK_FOR_BASE_P(X) IS_ADDR_OR_PSEUDO_REG(X)
1060
1061 /* Nonzero if X is a hard or pseudo reg that can be used as an index. */
1062
1063 #define REG_OK_FOR_INDEX_P(X) IS_INDEX_OR_PSEUDO_REG(X)
1064
1065 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1066 { \
1067 if (c4x_legitimate_address_p (MODE, X, 0)) \
1068 goto ADDR; \
1069 }
1070
1071 #else
1072
1073 /* Nonzero if X is a hard reg that can be used as an index. */
1074
1075 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1076
1077 /* Nonzero if X is a hard reg that can be used as a base reg. */
1078
1079 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1080
1081 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1082 { \
1083 if (c4x_legitimate_address_p (MODE, X, 1)) \
1084 goto ADDR; \
1085 }
1086
1087 #endif
1088
1089 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1090 { \
1091 rtx new; \
1092 \
1093 new = c4x_legitimize_address (X, MODE); \
1094 if (new != NULL_RTX) \
1095 { \
1096 (X) = new; \
1097 goto WIN; \
1098 } \
1099 }
1100
1101 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1102 { \
1103 if (MODE != HImode \
1104 && MODE != HFmode \
1105 && GET_MODE (X) != HImode \
1106 && GET_MODE (X) != HFmode \
1107 && (GET_CODE (X) == CONST \
1108 || GET_CODE (X) == SYMBOL_REF \
1109 || GET_CODE (X) == LABEL_REF)) \
1110 { \
1111 if (! TARGET_SMALL) \
1112 { \
1113 int i; \
1114 (X) = gen_rtx_LO_SUM (GET_MODE (X), \
1115 gen_rtx_HIGH (GET_MODE (X), X), X); \
1116 i = push_reload (XEXP (X, 0), NULL_RTX, \
1117 &XEXP (X, 0), NULL, \
1118 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1119 OPNUM, TYPE); \
1120 /* The only valid reg is DP. This is a fixed reg and will \
1121 normally not be used so force it. */ \
1122 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1123 rld[i].nocombine = 1; \
1124 } \
1125 else \
1126 { \
1127 /* make_memloc in reload will substitute invalid memory \
1128 references. We need to fix them up. */ \
1129 (X) = gen_rtx_LO_SUM (Pmode, gen_rtx_REG (Pmode, DP_REGNO), (X)); \
1130 } \
1131 goto WIN; \
1132 } \
1133 else if (MODE != HImode \
1134 && MODE != HFmode \
1135 && GET_MODE (X) != HImode \
1136 && GET_MODE (X) != HFmode \
1137 && GET_CODE (X) == LO_SUM \
1138 && GET_CODE (XEXP (X,0)) == HIGH \
1139 && (GET_CODE (XEXP (XEXP (X,0),0)) == CONST \
1140 || GET_CODE (XEXP (XEXP (X,0),0)) == SYMBOL_REF \
1141 || GET_CODE (XEXP (XEXP (X,0),0)) == LABEL_REF)) \
1142 { \
1143 if (! TARGET_SMALL) \
1144 { \
1145 int i = push_reload (XEXP (X, 0), NULL_RTX, \
1146 &XEXP (X, 0), NULL, \
1147 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1148 OPNUM, TYPE); \
1149 /* The only valid reg is DP. This is a fixed reg and will \
1150 normally not be used so force it. */ \
1151 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1152 rld[i].nocombine = 1; \
1153 } \
1154 goto WIN; \
1155 } \
1156 }
1157
1158 /* No mode-dependent addresses on the C4x are autoincrements. */
1159
1160 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1161 if (GET_CODE (ADDR) == PRE_DEC \
1162 || GET_CODE (ADDR) == POST_DEC \
1163 || GET_CODE (ADDR) == PRE_INC \
1164 || GET_CODE (ADDR) == POST_INC \
1165 || GET_CODE (ADDR) == POST_MODIFY \
1166 || GET_CODE (ADDR) == PRE_MODIFY) \
1167 goto LABEL
1168
1169
1170 /* Nonzero if the constant value X is a legitimate general operand.
1171 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1172
1173 The C4x can only load 16-bit immediate values, so we only allow a
1174 restricted subset of CONST_INT and CONST_DOUBLE. Disallow
1175 LABEL_REF and SYMBOL_REF (except on the C40 with the big memory
1176 model) so that the symbols will be forced into the constant pool.
1177 On second thoughts, let's do this with the move expanders since
1178 the alias analysis has trouble if we force constant addresses
1179 into memory.
1180 */
1181
1182 #define LEGITIMATE_CONSTANT_P(X) \
1183 ((GET_CODE (X) == CONST_DOUBLE && c4x_H_constant (X)) \
1184 || (GET_CODE (X) == CONST_INT) \
1185 || (GET_CODE (X) == SYMBOL_REF) \
1186 || (GET_CODE (X) == LABEL_REF) \
1187 || (GET_CODE (X) == CONST) \
1188 || (GET_CODE (X) == HIGH && ! TARGET_C3X) \
1189 || (GET_CODE (X) == LO_SUM && ! TARGET_C3X))
1190
1191 #define LEGITIMATE_DISPLACEMENT_P(X) IS_DISP8_CONST (INTVAL (X))
1192
1193 /* Describing Relative Cost of Operations. */
1194
1195 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
1196 if (REG_P (OP1) && ! REG_P (OP0)) \
1197 { \
1198 rtx tmp = OP0; OP0 = OP1 ; OP1 = tmp; \
1199 CODE = swap_condition (CODE); \
1200 }
1201
1202 #define EXT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, EXT_REGS))
1203 #define ADDR_CLASS_P(CLASS) (reg_class_subset_p (CLASS, ADDR_REGS))
1204 #define INDEX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, INDEX_REGS))
1205 #define EXPENSIVE_CLASS_P(CLASS) (ADDR_CLASS_P(CLASS) \
1206 || INDEX_CLASS_P(CLASS) || (CLASS) == SP_REG)
1207
1208 /* Compute extra cost of moving data between one register class
1209 and another. */
1210
1211 #define REGISTER_MOVE_COST(MODE, FROM, TO) 2
1212
1213 /* Memory move cost is same as fast register move. Maybe this should
1214 be bumped up?. */
1215
1216 #define MEMORY_MOVE_COST(M,C,I) 4
1217
1218 /* Branches are kind of expensive (even with delayed branching) so
1219 make their cost higher. */
1220
1221 #define BRANCH_COST 8
1222
1223 #define WORD_REGISTER_OPERATIONS
1224
1225 /* Dividing the Output into Sections. */
1226
1227 #define TEXT_SECTION_ASM_OP "\t.text"
1228
1229 #define DATA_SECTION_ASM_OP "\t.data"
1230
1231 #define READONLY_DATA_SECTION_ASM_OP "\t.sect\t\".const\""
1232
1233 /* Do not use .init section so __main will be called on startup. This will
1234 call __do_global_ctors and prepare for __do_global_dtors on exit. */
1235
1236 #if 0
1237 #define INIT_SECTION_ASM_OP "\t.sect\t\".init\""
1238 #endif
1239
1240 #define FINI_SECTION_ASM_OP "\t.sect\t\".fini\""
1241
1242 /* Switch into a generic section. */
1243 #define TARGET_ASM_NAMED_SECTION c4x_asm_named_section
1244
1245
1246 /* Overall Framework of an Assembler File. */
1247
1248 #define ASM_COMMENT_START ";"
1249
1250 #define ASM_APP_ON ""
1251 #define ASM_APP_OFF ""
1252
1253 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) c4x_output_ascii (FILE, PTR, LEN)
1254
1255 /* Output and Generation of Labels. */
1256
1257 #define NO_DOT_IN_LABEL /* Only required for TI format. */
1258
1259 /* Globalizing directive for a label. */
1260 #define GLOBAL_ASM_OP "\t.global\t"
1261
1262 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1263 c4x_external_ref (NAME)
1264
1265 /* The prefix to add to user-visible assembler symbols. */
1266
1267 #define USER_LABEL_PREFIX "_"
1268
1269 /* This is how to store into the string LABEL
1270 the symbol_ref name of an internal numbered label where
1271 PREFIX is the class of label and NUM is the number within the class.
1272 This is suitable for output with `assemble_name'. */
1273
1274 #define ASM_GENERATE_INTERNAL_LABEL(BUFFER, PREFIX, NUM) \
1275 sprintf (BUFFER, "*%s%lu", PREFIX, (unsigned long)(NUM))
1276
1277 /* A C statement to output to the stdio stream STREAM assembler code which
1278 defines (equates) the symbol NAME to have the value VALUE. */
1279
1280 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1281 do { \
1282 assemble_name (STREAM, NAME); \
1283 fprintf (STREAM, "\t.set\t%s\n", VALUE); \
1284 } while (0)
1285
1286 /* Output of Dispatch Tables. */
1287
1288 /* This is how to output an element of a case-vector that is absolute. */
1289
1290 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1291 fprintf (FILE, "\t.long\tL%d\n", VALUE);
1292
1293 /* This is how to output an element of a case-vector that is relative. */
1294
1295 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1296 fprintf (FILE, "\t.long\tL%d-L%d\n", VALUE, REL);
1297
1298 #undef SIZE_TYPE
1299 #define SIZE_TYPE "unsigned int"
1300
1301 #undef PTRDIFF_TYPE
1302 #define PTRDIFF_TYPE "int"
1303
1304 #undef WCHAR_TYPE
1305 #define WCHAR_TYPE "long int"
1306
1307 #undef WCHAR_TYPE_SIZE
1308 #define WCHAR_TYPE_SIZE 32
1309
1310 #define INT_TYPE_SIZE 32
1311 #define LONG_LONG_TYPE_SIZE 64
1312 #define FLOAT_TYPE_SIZE 32
1313 #define DOUBLE_TYPE_SIZE 32
1314 #define LONG_DOUBLE_TYPE_SIZE 64 /* Actually only 40. */
1315
1316 /* Output #ident as a .ident. */
1317
1318 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1319 fprintf (FILE, "\t.ident \"%s\"\n", NAME);
1320
1321 /* Output of Uninitialized Variables. */
1322
1323 /* This says how to output an assembler line to define a local
1324 uninitialized variable. */
1325
1326 #undef ASM_OUTPUT_LOCAL
1327 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1328 ( fputs ("\t.bss\t", FILE), \
1329 assemble_name (FILE, (NAME)), \
1330 fprintf (FILE, ",%u\n", (int)(ROUNDED)))
1331
1332 /* This says how to output an assembler line to define a global
1333 uninitialized variable. */
1334
1335 #undef ASM_OUTPUT_COMMON
1336 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1337 ( fputs ("\t.globl\t", FILE), \
1338 assemble_name (FILE, (NAME)), \
1339 fputs ("\n\t.bss\t", FILE), \
1340 assemble_name (FILE, (NAME)), \
1341 fprintf (FILE, ",%u\n", (int)(ROUNDED)))
1342
1343 #undef ASM_OUTPUT_BSS
1344 #define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1345 ( fputs ("\t.globl\t", FILE), \
1346 assemble_name (FILE, (NAME)), \
1347 fputs ("\n\t.bss\t", FILE), \
1348 assemble_name (FILE, (NAME)), \
1349 fprintf (FILE, ",%u\n", (int)(SIZE)))
1350
1351 /* Macros Controlling Initialization Routines. */
1352
1353 #define OBJECT_FORMAT_COFF
1354 #define REAL_NM_FILE_NAME "c4x-nm"
1355
1356 /* Output of Assembler Instructions. */
1357
1358 /* Register names when used for integer modes. */
1359
1360 #define REGISTER_NAMES \
1361 { \
1362 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1363 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
1364 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
1365 "iif", "rs", "re", "rc", "r8", "r9", "r10", "r11" \
1366 }
1367
1368 /* Alternate register names when used for floating point modes. */
1369
1370 #define FLOAT_REGISTER_NAMES \
1371 { \
1372 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1373 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
1374 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
1375 "iif", "rs", "re", "rc", "f8", "f9", "f10", "f11" \
1376 }
1377
1378 #define PRINT_OPERAND(FILE, X, CODE) c4x_print_operand(FILE, X, CODE)
1379
1380 /* Determine which codes are valid without a following integer. These must
1381 not be alphabetic. */
1382
1383 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#')
1384
1385 #define PRINT_OPERAND_ADDRESS(FILE, X) c4x_print_operand_address(FILE, X)
1386
1387 /* C4x specific pragmas. */
1388 #define REGISTER_TARGET_PRAGMAS() do { \
1389 c_register_pragma (0, "CODE_SECTION", c4x_pr_CODE_SECTION); \
1390 c_register_pragma (0, "DATA_SECTION", c4x_pr_DATA_SECTION); \
1391 c_register_pragma (0, "FUNC_CANNOT_INLINE", c4x_pr_ignored); \
1392 c_register_pragma (0, "FUNC_EXT_CALLED", c4x_pr_ignored); \
1393 c_register_pragma (0, "FUNC_IS_PURE", c4x_pr_FUNC_IS_PURE); \
1394 c_register_pragma (0, "FUNC_IS_SYSTEM", c4x_pr_ignored); \
1395 c_register_pragma (0, "FUNC_NEVER_RETURNS", c4x_pr_FUNC_NEVER_RETURNS); \
1396 c_register_pragma (0, "FUNC_NO_GLOBAL_ASG", c4x_pr_ignored); \
1397 c_register_pragma (0, "FUNC_NO_IND_ASG", c4x_pr_ignored); \
1398 c_register_pragma (0, "INTERRUPT", c4x_pr_INTERRUPT); \
1399 } while (0)
1400
1401 /* Assembler Commands for Alignment. */
1402
1403 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
1404 { int c = SIZE; \
1405 for (; c > 0; --c) \
1406 fprintf (FILE,"\t.word\t0\n"); \
1407 }
1408
1409 #define ASM_NO_SKIP_IN_TEXT 1
1410
1411 /* I'm not sure about this one. FIXME. */
1412
1413 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1414 if ((LOG) != 0) \
1415 fprintf (FILE, "\t.align\t%d\n", (1 << (LOG)))
1416
1417
1418 /* Macros for SDB and DWARF Output (use .sdef instead of .def
1419 to avoid conflict with TI's use of .def). */
1420
1421 #define SDB_DELIM "\n"
1422 #define SDB_DEBUGGING_INFO 1
1423
1424 /* Don't use octal since this can confuse gas for the c4x. */
1425 #define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0x%x%s", a, SDB_DELIM)
1426
1427 #define PUT_SDB_DEF(A) \
1428 do { fprintf (asm_out_file, "\t.sdef\t"); \
1429 ASM_OUTPUT_LABELREF (asm_out_file, A); \
1430 fprintf (asm_out_file, SDB_DELIM); } while (0)
1431
1432 #define PUT_SDB_PLAIN_DEF(A) \
1433 fprintf (asm_out_file,"\t.sdef\t.%s%s", A, SDB_DELIM)
1434
1435 #define PUT_SDB_BLOCK_START(LINE) \
1436 fprintf (asm_out_file, \
1437 "\t.sdef\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1438 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1439
1440 #define PUT_SDB_BLOCK_END(LINE) \
1441 fprintf (asm_out_file, \
1442 "\t.sdef\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
1443 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1444
1445 #define PUT_SDB_FUNCTION_START(LINE) \
1446 fprintf (asm_out_file, \
1447 "\t.sdef\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1448 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
1449
1450 /* Note we output relative line numbers for .ef which gas converts
1451 to absolute line numbers. The TI compiler outputs absolute line numbers
1452 in the .sym directive which gas does not support. */
1453 #define PUT_SDB_FUNCTION_END(LINE) \
1454 fprintf (asm_out_file, \
1455 "\t.sdef\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
1456 SDB_DELIM, SDB_DELIM, SDB_DELIM, \
1457 (LINE), SDB_DELIM)
1458
1459 #define PUT_SDB_EPILOGUE_END(NAME) \
1460 do { fprintf (asm_out_file, "\t.sdef\t"); \
1461 ASM_OUTPUT_LABELREF (asm_out_file, NAME); \
1462 fprintf (asm_out_file, \
1463 "%s\t.val\t.%s\t.scl\t-1%s\t.endef\n", \
1464 SDB_DELIM, SDB_DELIM, SDB_DELIM); } while (0)
1465
1466 /* Define this as 1 if `char' should by default be signed; else as 0. */
1467
1468 #define DEFAULT_SIGNED_CHAR 1
1469
1470 /* A function address in a call instruction is a byte address (for
1471 indexing purposes) so give the MEM rtx a byte's mode. */
1472
1473 #define FUNCTION_MODE QImode
1474
1475 #define SLOW_BYTE_ACCESS 0
1476
1477 /* Specify the machine mode that pointers have. After generation of
1478 RTL, the compiler makes no further distinction between pointers and
1479 any other objects of this machine mode. */
1480
1481 #define Pmode QImode
1482
1483 /* On the C4x we can write the following code. We have to clear the cache
1484 every time we execute it because the data in the stack could change.
1485
1486 laj $+4
1487 addi3 4,r11,ar0
1488 lda *ar0,ar1
1489 lda *+ar0(1),ar0
1490 bud ar1
1491 nop
1492 nop
1493 or 1000h,st
1494 .word FNADDR
1495 .word CXT
1496
1497 On the c3x this is a bit more difficult. We have to write self
1498 modifying code here. So we have to clear the cache every time
1499 we execute it because the data in the stack could change.
1500
1501 ldiu TOP_OF_FUNCTION,ar1
1502 lsh 16,ar1
1503 or BOTTOM_OF_FUNCTION,ar1
1504 ldiu TOP_OF_STATIC,ar0
1505 bud ar1
1506 lsh 16,ar0
1507 or BOTTOM_OF_STATIC,ar0
1508 or 1000h,st
1509
1510 */
1511
1512 #define TRAMPOLINE_SIZE (TARGET_C3X ? 8 : 10)
1513
1514 #define TRAMPOLINE_TEMPLATE(FILE) \
1515 { \
1516 if (TARGET_C3X) \
1517 { \
1518 fprintf (FILE, "\tldiu\t0,ar1\n"); \
1519 fprintf (FILE, "\tlsh\t16,ar1\n"); \
1520 fprintf (FILE, "\tor\t0,ar1\n"); \
1521 fprintf (FILE, "\tldiu\t0,ar0\n"); \
1522 fprintf (FILE, "\tbud\tar1\n"); \
1523 fprintf (FILE, "\tlsh\t16,ar0\n"); \
1524 fprintf (FILE, "\tor\t0,ar0\n"); \
1525 fprintf (FILE, "\tor\t1000h,st\n"); \
1526 } \
1527 else \
1528 { \
1529 fprintf (FILE, "\tlaj\t$+4\n"); \
1530 fprintf (FILE, "\taddi3\t4,r11,ar0\n"); \
1531 fprintf (FILE, "\tlda\t*ar0,ar1\n"); \
1532 fprintf (FILE, "\tlda\t*+ar0(1),ar0\n"); \
1533 fprintf (FILE, "\tbud\tar1\n"); \
1534 fprintf (FILE, "\tnop\n"); \
1535 fprintf (FILE, "\tnop\n"); \
1536 fprintf (FILE, "\tor\t1000h,st\n"); \
1537 fprintf (FILE, "\t.word\t0\n"); \
1538 fprintf (FILE, "\t.word\t0\n"); \
1539 } \
1540 }
1541
1542 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1543 { \
1544 if (TARGET_C3X) \
1545 { \
1546 rtx tmp1, tmp2; \
1547 tmp1 = expand_shift (RSHIFT_EXPR, QImode, FNADDR, \
1548 size_int (16), 0, 1); \
1549 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1550 GEN_INT (0x5069), size_int (16), 0, 1); \
1551 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1552 emit_move_insn (gen_rtx_MEM (QImode, \
1553 plus_constant (TRAMP, 0)), tmp1); \
1554 tmp1 = expand_and (QImode, FNADDR, GEN_INT (0xffff), 0); \
1555 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1556 GEN_INT (0x1069), size_int (16), 0, 1); \
1557 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1558 emit_move_insn (gen_rtx_MEM (QImode, \
1559 plus_constant (TRAMP, 2)), tmp1); \
1560 tmp1 = expand_shift (RSHIFT_EXPR, QImode, CXT, \
1561 size_int (16), 0, 1); \
1562 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1563 GEN_INT (0x5068), size_int (16), 0, 1); \
1564 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1565 emit_move_insn (gen_rtx_MEM (QImode, \
1566 plus_constant (TRAMP, 3)), tmp1); \
1567 tmp1 = expand_and (QImode, CXT, GEN_INT (0xffff), 0); \
1568 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
1569 GEN_INT (0x1068), size_int (16), 0, 1); \
1570 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
1571 emit_move_insn (gen_rtx_MEM (QImode, \
1572 plus_constant (TRAMP, 6)), tmp1); \
1573 } \
1574 else \
1575 { \
1576 emit_move_insn (gen_rtx_MEM (QImode, \
1577 plus_constant (TRAMP, 8)), FNADDR); \
1578 emit_move_insn (gen_rtx_MEM (QImode, \
1579 plus_constant (TRAMP, 9)), CXT); \
1580 } \
1581 }
1582
1583 /* Specify the machine mode that this machine uses for the index in
1584 the tablejump instruction. */
1585
1586 #define CASE_VECTOR_MODE Pmode
1587
1588 /* Max number of (32-bit) bytes we can move from memory to memory
1589 in one reasonably fast instruction. */
1590
1591 #define MOVE_MAX 1
1592
1593 /* MOVE_RATIO is the number of move instructions that is better than a
1594 block move. */
1595
1596 #define MOVE_RATIO 3
1597
1598 #define BSS_SECTION_ASM_OP "\t.bss"
1599
1600 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1601 fprintf (FILE, "\tpush\t%s\n", reg_names[REGNO])
1602
1603 /* This is how to output an insn to pop a register from the stack.
1604 It need not be very fast code. */
1605
1606 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1607 fprintf (FILE, "\tpop\t%s\n", reg_names[REGNO])
1608
1609 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1610 is done just by pretending it is already truncated. */
1611
1612 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1613
1614 #define DBR_OUTPUT_SEQEND(FILE) \
1615 if (final_sequence != NULL_RTX) \
1616 { \
1617 int count; \
1618 rtx insn = XVECEXP (final_sequence, 0, 0); \
1619 int laj = GET_CODE (insn) == CALL_INSN \
1620 || (GET_CODE (insn) == INSN \
1621 && GET_CODE (PATTERN (insn)) == TRAP_IF);\
1622 \
1623 count = dbr_sequence_length(); \
1624 while (count < (laj ? 2 : 3)) \
1625 { \
1626 fputs("\tnop\n", FILE); \
1627 count++; \
1628 } \
1629 if (laj) \
1630 fputs("\tpush\tr11\n", FILE); \
1631 }
1632
1633 #define NO_FUNCTION_CSE
1634
1635 /* We don't want a leading tab. */
1636
1637 #define ASM_OUTPUT_ASM(FILE, STRING) fprintf (FILE, "%s\n", STRING)
1638
1639 /* Define the intrinsic functions for the c3x/c4x. */
1640
1641 enum c4x_builtins
1642 {
1643 /* intrinsic name */
1644 C4X_BUILTIN_FIX, /* fast_ftoi */
1645 C4X_BUILTIN_FIX_ANSI, /* ansi_ftoi */
1646 C4X_BUILTIN_MPYI, /* fast_imult (only C3x) */
1647 C4X_BUILTIN_TOIEEE, /* toieee (only C4x) */
1648 C4X_BUILTIN_FRIEEE, /* frieee (only C4x) */
1649 C4X_BUILTIN_RCPF /* fast_invf (only C4x) */
1650 };
1651
1652
1653 /* Hack to overcome use of libgcc2.c using auto-host.h to determine
1654 HAVE_GAS_HIDDEN. */
1655 #undef HAVE_GAS_HIDDEN
This page took 0.111221 seconds and 5 git commands to generate.