]> gcc.gnu.org Git - gcc.git/blob - gcc/config/bfin/bfin.h
bfin-protos.h (initialize_trampoline): Remove.
[gcc.git] / gcc / config / bfin / bfin.h
1 /* Definitions for the Blackfin port.
2 Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef _BFIN_CONFIG
22 #define _BFIN_CONFIG
23
24 #define OBJECT_FORMAT_ELF
25
26 #define BRT 1
27 #define BRF 0
28
29 /* CPU type. */
30 typedef enum bfin_cpu_type
31 {
32 BFIN_CPU_UNKNOWN,
33 BFIN_CPU_BF512,
34 BFIN_CPU_BF514,
35 BFIN_CPU_BF516,
36 BFIN_CPU_BF518,
37 BFIN_CPU_BF522,
38 BFIN_CPU_BF523,
39 BFIN_CPU_BF524,
40 BFIN_CPU_BF525,
41 BFIN_CPU_BF526,
42 BFIN_CPU_BF527,
43 BFIN_CPU_BF531,
44 BFIN_CPU_BF532,
45 BFIN_CPU_BF533,
46 BFIN_CPU_BF534,
47 BFIN_CPU_BF536,
48 BFIN_CPU_BF537,
49 BFIN_CPU_BF538,
50 BFIN_CPU_BF539,
51 BFIN_CPU_BF542,
52 BFIN_CPU_BF542M,
53 BFIN_CPU_BF544,
54 BFIN_CPU_BF544M,
55 BFIN_CPU_BF547,
56 BFIN_CPU_BF547M,
57 BFIN_CPU_BF548,
58 BFIN_CPU_BF548M,
59 BFIN_CPU_BF549,
60 BFIN_CPU_BF549M,
61 BFIN_CPU_BF561
62 } bfin_cpu_t;
63
64 /* Value of -mcpu= */
65 extern bfin_cpu_t bfin_cpu_type;
66
67 /* Value of -msi-revision= */
68 extern int bfin_si_revision;
69
70 extern unsigned int bfin_workarounds;
71
72 /* Print subsidiary information on the compiler version in use. */
73 #define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
74
75 /* Run-time compilation parameters selecting different hardware subsets. */
76
77 extern int target_flags;
78
79 /* Predefinition in the preprocessor for this target machine */
80 #ifndef TARGET_CPU_CPP_BUILTINS
81 #define TARGET_CPU_CPP_BUILTINS() \
82 do \
83 { \
84 builtin_define_std ("bfin"); \
85 builtin_define_std ("BFIN"); \
86 builtin_define ("__ADSPBLACKFIN__"); \
87 builtin_define ("__ADSPLPBLACKFIN__"); \
88 \
89 switch (bfin_cpu_type) \
90 { \
91 case BFIN_CPU_BF512: \
92 builtin_define ("__ADSPBF512__"); \
93 builtin_define ("__ADSPBF51x__"); \
94 break; \
95 case BFIN_CPU_BF514: \
96 builtin_define ("__ADSPBF514__"); \
97 builtin_define ("__ADSPBF51x__"); \
98 break; \
99 case BFIN_CPU_BF516: \
100 builtin_define ("__ADSPBF516__"); \
101 builtin_define ("__ADSPBF51x__"); \
102 break; \
103 case BFIN_CPU_BF518: \
104 builtin_define ("__ADSPBF518__"); \
105 builtin_define ("__ADSPBF51x__"); \
106 break; \
107 case BFIN_CPU_BF522: \
108 builtin_define ("__ADSPBF522__"); \
109 builtin_define ("__ADSPBF52x__"); \
110 break; \
111 case BFIN_CPU_BF523: \
112 builtin_define ("__ADSPBF523__"); \
113 builtin_define ("__ADSPBF52x__"); \
114 break; \
115 case BFIN_CPU_BF524: \
116 builtin_define ("__ADSPBF524__"); \
117 builtin_define ("__ADSPBF52x__"); \
118 break; \
119 case BFIN_CPU_BF525: \
120 builtin_define ("__ADSPBF525__"); \
121 builtin_define ("__ADSPBF52x__"); \
122 break; \
123 case BFIN_CPU_BF526: \
124 builtin_define ("__ADSPBF526__"); \
125 builtin_define ("__ADSPBF52x__"); \
126 break; \
127 case BFIN_CPU_BF527: \
128 builtin_define ("__ADSPBF527__"); \
129 builtin_define ("__ADSPBF52x__"); \
130 break; \
131 case BFIN_CPU_BF531: \
132 builtin_define ("__ADSPBF531__"); \
133 break; \
134 case BFIN_CPU_BF532: \
135 builtin_define ("__ADSPBF532__"); \
136 break; \
137 case BFIN_CPU_BF533: \
138 builtin_define ("__ADSPBF533__"); \
139 break; \
140 case BFIN_CPU_BF534: \
141 builtin_define ("__ADSPBF534__"); \
142 break; \
143 case BFIN_CPU_BF536: \
144 builtin_define ("__ADSPBF536__"); \
145 break; \
146 case BFIN_CPU_BF537: \
147 builtin_define ("__ADSPBF537__"); \
148 break; \
149 case BFIN_CPU_BF538: \
150 builtin_define ("__ADSPBF538__"); \
151 break; \
152 case BFIN_CPU_BF539: \
153 builtin_define ("__ADSPBF539__"); \
154 break; \
155 case BFIN_CPU_BF542M: \
156 builtin_define ("__ADSPBF542M__"); \
157 case BFIN_CPU_BF542: \
158 builtin_define ("__ADSPBF542__"); \
159 builtin_define ("__ADSPBF54x__"); \
160 break; \
161 case BFIN_CPU_BF544M: \
162 builtin_define ("__ADSPBF544M__"); \
163 case BFIN_CPU_BF544: \
164 builtin_define ("__ADSPBF544__"); \
165 builtin_define ("__ADSPBF54x__"); \
166 break; \
167 case BFIN_CPU_BF547M: \
168 builtin_define ("__ADSPBF547M__"); \
169 case BFIN_CPU_BF547: \
170 builtin_define ("__ADSPBF547__"); \
171 builtin_define ("__ADSPBF54x__"); \
172 break; \
173 case BFIN_CPU_BF548M: \
174 builtin_define ("__ADSPBF548M__"); \
175 case BFIN_CPU_BF548: \
176 builtin_define ("__ADSPBF548__"); \
177 builtin_define ("__ADSPBF54x__"); \
178 break; \
179 case BFIN_CPU_BF549M: \
180 builtin_define ("__ADSPBF549M__"); \
181 case BFIN_CPU_BF549: \
182 builtin_define ("__ADSPBF549__"); \
183 builtin_define ("__ADSPBF54x__"); \
184 break; \
185 case BFIN_CPU_BF561: \
186 builtin_define ("__ADSPBF561__"); \
187 break; \
188 } \
189 \
190 if (bfin_si_revision != -1) \
191 { \
192 /* space of 0xnnnn and a NUL */ \
193 char *buf = XALLOCAVEC (char, 7); \
194 \
195 sprintf (buf, "0x%04x", bfin_si_revision); \
196 builtin_define_with_value ("__SILICON_REVISION__", buf, 0); \
197 } \
198 \
199 if (bfin_workarounds) \
200 builtin_define ("__WORKAROUNDS_ENABLED"); \
201 if (ENABLE_WA_SPECULATIVE_LOADS) \
202 builtin_define ("__WORKAROUND_SPECULATIVE_LOADS"); \
203 if (ENABLE_WA_SPECULATIVE_SYNCS) \
204 builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS"); \
205 if (ENABLE_WA_INDIRECT_CALLS) \
206 builtin_define ("__WORKAROUND_INDIRECT_CALLS"); \
207 if (ENABLE_WA_RETS) \
208 builtin_define ("__WORKAROUND_RETS"); \
209 \
210 if (TARGET_FDPIC) \
211 { \
212 builtin_define ("__BFIN_FDPIC__"); \
213 builtin_define ("__FDPIC__"); \
214 } \
215 if (TARGET_ID_SHARED_LIBRARY \
216 && !TARGET_SEP_DATA) \
217 builtin_define ("__ID_SHARED_LIB__"); \
218 if (flag_no_builtin) \
219 builtin_define ("__NO_BUILTIN"); \
220 if (TARGET_MULTICORE) \
221 builtin_define ("__BFIN_MULTICORE"); \
222 if (TARGET_COREA) \
223 builtin_define ("__BFIN_COREA"); \
224 if (TARGET_COREB) \
225 builtin_define ("__BFIN_COREB"); \
226 if (TARGET_SDRAM) \
227 builtin_define ("__BFIN_SDRAM"); \
228 } \
229 while (0)
230 #endif
231
232 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
233 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
234 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
235 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
236 "
237 #ifndef SUBTARGET_DRIVER_SELF_SPECS
238 # define SUBTARGET_DRIVER_SELF_SPECS
239 #endif
240
241 #define LINK_GCC_C_SEQUENCE_SPEC "\
242 %{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
243 "
244
245 /* A C string constant that tells the GCC driver program options to pass to
246 the assembler. It can also specify how to translate options you give to GNU
247 CC into options for GCC to pass to the assembler. See the file `sun3.h'
248 for an example of this.
249
250 Do not define this macro if it does not need to do anything.
251
252 Defined in svr4.h. */
253 #undef ASM_SPEC
254 #define ASM_SPEC "\
255 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
256 %{mno-fdpic:-mnopic} %{mfdpic}"
257
258 #define LINK_SPEC "\
259 %{h*} %{v:-V} \
260 %{b} \
261 %{mfdpic:-melf32bfinfd -z text} \
262 %{static:-dn -Bstatic} \
263 %{shared:-G -Bdynamic} \
264 %{symbolic:-Bsymbolic} \
265 %{G*} \
266 %{YP,*} \
267 %{Qy:} %{!Qn:-Qy} \
268 -init __init -fini __fini "
269
270 /* Generate DSP instructions, like DSP halfword loads */
271 #define TARGET_DSP (1)
272
273 #define TARGET_DEFAULT 0
274
275 /* Maximum number of library ids we permit */
276 #define MAX_LIBRARY_ID 255
277
278 extern const char *bfin_library_id_string;
279
280 /* Sometimes certain combinations of command options do not make
281 sense on a particular target machine. You can define a macro
282 `OVERRIDE_OPTIONS' to take account of this. This macro, if
283 defined, is executed once just after all the command options have
284 been parsed.
285
286 Don't use this macro to turn on various extra optimizations for
287 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
288
289 #define OVERRIDE_OPTIONS override_options ()
290
291 #define FUNCTION_MODE SImode
292 #define Pmode SImode
293
294 /* store-condition-codes instructions store 0 for false
295 This is the value stored for true. */
296 #define STORE_FLAG_VALUE 1
297
298 /* Define this if pushing a word on the stack
299 makes the stack pointer a smaller address. */
300 #define STACK_GROWS_DOWNWARD
301
302 #define STACK_PUSH_CODE PRE_DEC
303
304 /* Define this to nonzero if the nominal address of the stack frame
305 is at the high-address end of the local variables;
306 that is, each additional local variable allocated
307 goes at a more negative offset in the frame. */
308 #define FRAME_GROWS_DOWNWARD 1
309
310 /* We define a dummy ARGP register; the parameters start at offset 0 from
311 it. */
312 #define FIRST_PARM_OFFSET(DECL) 0
313
314 /* Offset within stack frame to start allocating local variables at.
315 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
316 first local allocated. Otherwise, it is the offset to the BEGINNING
317 of the first local allocated. */
318 #define STARTING_FRAME_OFFSET 0
319
320 /* Register to use for pushing function arguments. */
321 #define STACK_POINTER_REGNUM REG_P6
322
323 /* Base register for access to local variables of the function. */
324 #define FRAME_POINTER_REGNUM REG_P7
325
326 /* A dummy register that will be eliminated to either FP or SP. */
327 #define ARG_POINTER_REGNUM REG_ARGP
328
329 /* `PIC_OFFSET_TABLE_REGNUM'
330 The register number of the register used to address a table of
331 static data addresses in memory. In some cases this register is
332 defined by a processor's "application binary interface" (ABI).
333 When this macro is defined, RTL is generated for this register
334 once, as with the stack pointer and frame pointer registers. If
335 this macro is not defined, it is up to the machine-dependent files
336 to allocate such a register (if necessary). */
337 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
338
339 #define FDPIC_FPTR_REGNO REG_P1
340 #define FDPIC_REGNO REG_P3
341 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
342
343 /* A static chain register for nested functions. We need to use a
344 call-clobbered register for this. */
345 #define STATIC_CHAIN_REGNUM REG_P2
346
347 /* Define this if functions should assume that stack space has been
348 allocated for arguments even when their values are passed in
349 registers.
350
351 The value of this macro is the size, in bytes, of the area reserved for
352 arguments passed in registers.
353
354 This space can either be allocated by the caller or be a part of the
355 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
356 says which. */
357 #define FIXED_STACK_AREA 12
358 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
359
360 /* Define this if the above stack space is to be considered part of the
361 * space allocated by the caller. */
362 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
363
364 /* Define this if the maximum size of all the outgoing args is to be
365 accumulated and pushed during the prologue. The amount can be
366 found in the variable crtl->outgoing_args_size. */
367 #define ACCUMULATE_OUTGOING_ARGS 1
368
369 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
370
371 /* If defined, a C expression to compute the alignment for a local
372 variable. TYPE is the data type, and ALIGN is the alignment that
373 the object would ordinarily have. The value of this macro is used
374 instead of that alignment to align the object.
375
376 If this macro is not defined, then ALIGN is used.
377
378 One use of this macro is to increase alignment of medium-size
379 data to make it all fit in fewer cache lines. */
380
381 #define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
382
383 /* Make strings word-aligned so strcpy from constants will be faster. */
384 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
385 (TREE_CODE (EXP) == STRING_CST \
386 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
387
388 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
389 \f
390 /* Definitions for register eliminations.
391
392 This is an array of structures. Each structure initializes one pair
393 of eliminable registers. The "from" register number is given first,
394 followed by "to". Eliminations of the same "from" register are listed
395 in order of preference.
396
397 There are two registers that can always be eliminated on the i386.
398 The frame pointer and the arg pointer can be replaced by either the
399 hard frame pointer or to the stack pointer, depending upon the
400 circumstances. The hard frame pointer is not used before reload and
401 so it is not eligible for elimination. */
402
403 #define ELIMINABLE_REGS \
404 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
405 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
406 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
407
408 /* Define the offset between two registers, one to be eliminated, and the other
409 its replacement, at the start of a routine. */
410
411 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
412 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
413 \f
414 /* This processor has
415 8 data register for doing arithmetic
416 8 pointer register for doing addressing, including
417 1 stack pointer P6
418 1 frame pointer P7
419 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
420 1 condition code flag register CC
421 5 return address registers RETS/I/X/N/E
422 1 arithmetic status register (ASTAT). */
423
424 #define FIRST_PSEUDO_REGISTER 50
425
426 #define D_REGNO_P(X) ((X) <= REG_R7)
427 #define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
428 #define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
429 #define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
430 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
431 #define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
432 #define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
433 #define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
434 #define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
435
436 #define REGISTER_NAMES { \
437 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
438 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
439 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
440 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
441 "A0", "A1", \
442 "CC", \
443 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
444 "ARGP", \
445 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
446 }
447
448 #define SHORT_REGISTER_NAMES { \
449 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
450 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
451 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
452 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
453
454 #define HIGH_REGISTER_NAMES { \
455 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
456 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
457 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
458 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
459
460 #define DREGS_PAIR_NAMES { \
461 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
462
463 #define BYTE_REGISTER_NAMES { \
464 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
465
466
467 /* 1 for registers that have pervasive standard uses
468 and are not available for the register allocator. */
469
470 #define FIXED_REGISTERS \
471 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
472 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
473 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
474 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
475 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
476 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
477 /*lb0/1 */ \
478 1, 1 \
479 }
480
481 /* 1 for registers not available across function calls.
482 These must include the FIXED_REGISTERS and also any
483 registers that can be used without being saved.
484 The latter must include the registers where values are returned
485 and the register where structure-value addresses are passed.
486 Aside from that, you can include as many other registers as you like. */
487
488 #define CALL_USED_REGISTERS \
489 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
490 { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
491 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
492 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
493 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
494 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
495 /*lb0/1 */ \
496 1, 1 \
497 }
498
499 /* Order in which to allocate registers. Each register must be
500 listed once, even those in FIXED_REGISTERS. List frame pointer
501 late and fixed registers last. Note that, in general, we prefer
502 registers listed in CALL_USED_REGISTERS, keeping the others
503 available for storage of persistent values. */
504
505 #define REG_ALLOC_ORDER \
506 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
507 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
508 REG_A0, REG_A1, \
509 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
510 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
511 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
512 REG_ASTAT, REG_SEQSTAT, REG_USP, \
513 REG_CC, REG_ARGP, \
514 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
515 }
516
517 /* Macro to conditionally modify fixed_regs/call_used_regs. */
518 #define CONDITIONAL_REGISTER_USAGE \
519 { \
520 conditional_register_usage(); \
521 if (TARGET_FDPIC) \
522 call_used_regs[FDPIC_REGNO] = 1; \
523 if (!TARGET_FDPIC && flag_pic) \
524 { \
525 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
526 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
527 } \
528 }
529
530 /* Define the classes of registers for register constraints in the
531 machine description. Also define ranges of constants.
532
533 One of the classes must always be named ALL_REGS and include all hard regs.
534 If there is more than one class, another class must be named NO_REGS
535 and contain no registers.
536
537 The name GENERAL_REGS must be the name of a class (or an alias for
538 another name such as ALL_REGS). This is the class of registers
539 that is allowed by "g" or "r" in a register constraint.
540 Also, registers outside this class are allocated only when
541 instructions express preferences for them.
542
543 The classes must be numbered in nondecreasing order; that is,
544 a larger-numbered class must never be contained completely
545 in a smaller-numbered class.
546
547 For any two classes, it is very desirable that there be another
548 class that represents their union. */
549
550
551 enum reg_class
552 {
553 NO_REGS,
554 IREGS,
555 BREGS,
556 LREGS,
557 MREGS,
558 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
559 DAGREGS,
560 EVEN_AREGS,
561 ODD_AREGS,
562 AREGS,
563 CCREGS,
564 EVEN_DREGS,
565 ODD_DREGS,
566 D0REGS,
567 D1REGS,
568 D2REGS,
569 D3REGS,
570 D4REGS,
571 D5REGS,
572 D6REGS,
573 D7REGS,
574 DREGS,
575 P0REGS,
576 FDPIC_REGS,
577 FDPIC_FPTR_REGS,
578 PREGS_CLOBBERED,
579 PREGS,
580 IPREGS,
581 DPREGS,
582 MOST_REGS,
583 LT_REGS,
584 LC_REGS,
585 LB_REGS,
586 PROLOGUE_REGS,
587 NON_A_CC_REGS,
588 ALL_REGS, LIM_REG_CLASSES
589 };
590
591 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
592
593 #define GENERAL_REGS DPREGS
594
595 /* Give names of register classes as strings for dump file. */
596
597 #define REG_CLASS_NAMES \
598 { "NO_REGS", \
599 "IREGS", \
600 "BREGS", \
601 "LREGS", \
602 "MREGS", \
603 "CIRCREGS", \
604 "DAGREGS", \
605 "EVEN_AREGS", \
606 "ODD_AREGS", \
607 "AREGS", \
608 "CCREGS", \
609 "EVEN_DREGS", \
610 "ODD_DREGS", \
611 "D0REGS", \
612 "D1REGS", \
613 "D2REGS", \
614 "D3REGS", \
615 "D4REGS", \
616 "D5REGS", \
617 "D6REGS", \
618 "D7REGS", \
619 "DREGS", \
620 "P0REGS", \
621 "FDPIC_REGS", \
622 "FDPIC_FPTR_REGS", \
623 "PREGS_CLOBBERED", \
624 "PREGS", \
625 "IPREGS", \
626 "DPREGS", \
627 "MOST_REGS", \
628 "LT_REGS", \
629 "LC_REGS", \
630 "LB_REGS", \
631 "PROLOGUE_REGS", \
632 "NON_A_CC_REGS", \
633 "ALL_REGS" }
634
635 /* An initializer containing the contents of the register classes, as integers
636 which are bit masks. The Nth integer specifies the contents of class N.
637 The way the integer MASK is interpreted is that register R is in the class
638 if `MASK & (1 << R)' is 1.
639
640 When the machine has more than 32 registers, an integer does not suffice.
641 Then the integers are replaced by sub-initializers, braced groupings
642 containing several integers. Each sub-initializer must be suitable as an
643 initializer for the type `HARD_REG_SET' which is defined in
644 `hard-reg-set.h'. */
645
646 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
647 MOST_REGS as the union of DPREGS and DAGREGS. */
648
649 #define REG_CLASS_CONTENTS \
650 /* 31 - 0 63-32 */ \
651 { { 0x00000000, 0 }, /* NO_REGS */ \
652 { 0x000f0000, 0 }, /* IREGS */ \
653 { 0x00f00000, 0 }, /* BREGS */ \
654 { 0x0f000000, 0 }, /* LREGS */ \
655 { 0xf0000000, 0 }, /* MREGS */ \
656 { 0x0fff0000, 0 }, /* CIRCREGS */ \
657 { 0xffff0000, 0 }, /* DAGREGS */ \
658 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
659 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
660 { 0x00000000, 0x3 }, /* AREGS */ \
661 { 0x00000000, 0x4 }, /* CCREGS */ \
662 { 0x00000055, 0 }, /* EVEN_DREGS */ \
663 { 0x000000aa, 0 }, /* ODD_DREGS */ \
664 { 0x00000001, 0 }, /* D0REGS */ \
665 { 0x00000002, 0 }, /* D1REGS */ \
666 { 0x00000004, 0 }, /* D2REGS */ \
667 { 0x00000008, 0 }, /* D3REGS */ \
668 { 0x00000010, 0 }, /* D4REGS */ \
669 { 0x00000020, 0 }, /* D5REGS */ \
670 { 0x00000040, 0 }, /* D6REGS */ \
671 { 0x00000080, 0 }, /* D7REGS */ \
672 { 0x000000ff, 0 }, /* DREGS */ \
673 { 0x00000100, 0x000 }, /* P0REGS */ \
674 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
675 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
676 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
677 { 0x0000ff00, 0x800 }, /* PREGS */ \
678 { 0x000fff00, 0x800 }, /* IPREGS */ \
679 { 0x0000ffff, 0x800 }, /* DPREGS */ \
680 { 0xffffffff, 0x800 }, /* MOST_REGS */\
681 { 0x00000000, 0x3000 }, /* LT_REGS */\
682 { 0x00000000, 0xc000 }, /* LC_REGS */\
683 { 0x00000000, 0x30000 }, /* LB_REGS */\
684 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
685 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
686 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
687
688 #define IREG_POSSIBLE_P(OUTER) \
689 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
690 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
691 || (OUTER) == MEM || (OUTER) == ADDRESS)
692
693 #define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
694 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
695
696 #define INDEX_REG_CLASS PREGS
697
698 #define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
699 (P_REGNO_P (X) || (X) == REG_ARGP \
700 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
701 && I_REGNO_P (X)))
702
703 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
704 ((X) >= FIRST_PSEUDO_REGISTER \
705 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
706
707 #ifdef REG_OK_STRICT
708 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
709 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
710 #else
711 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
712 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
713 #endif
714
715 #define REGNO_OK_FOR_INDEX_P(X) 0
716
717 /* The same information, inverted:
718 Return the class number of the smallest class containing
719 reg number REGNO. This could be a conditional expression
720 or could index an array. */
721
722 #define REGNO_REG_CLASS(REGNO) \
723 ((REGNO) == REG_R0 ? D0REGS \
724 : (REGNO) == REG_R1 ? D1REGS \
725 : (REGNO) == REG_R2 ? D2REGS \
726 : (REGNO) == REG_R3 ? D3REGS \
727 : (REGNO) == REG_R4 ? D4REGS \
728 : (REGNO) == REG_R5 ? D5REGS \
729 : (REGNO) == REG_R6 ? D6REGS \
730 : (REGNO) == REG_R7 ? D7REGS \
731 : (REGNO) == REG_P0 ? P0REGS \
732 : (REGNO) < REG_I0 ? PREGS \
733 : (REGNO) == REG_ARGP ? PREGS \
734 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
735 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
736 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
737 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
738 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
739 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
740 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
741 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
742 : (REGNO) == REG_CC ? CCREGS \
743 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
744 : NO_REGS)
745
746 /* The following macro defines cover classes for Integrated Register
747 Allocator. Cover classes is a set of non-intersected register
748 classes covering all hard registers used for register allocation
749 purpose. Any move between two registers of a cover class should be
750 cheaper than load or store of the registers. The macro value is
751 array of register classes with LIM_REG_CLASSES used as the end
752 marker. */
753
754 #define IRA_COVER_CLASSES \
755 { \
756 MOST_REGS, AREGS, CCREGS, LIM_REG_CLASSES \
757 }
758
759 /* When defined, the compiler allows registers explicitly used in the
760 rtl to be used as spill registers but prevents the compiler from
761 extending the lifetime of these registers. */
762 #define SMALL_REGISTER_CLASSES 1
763
764 #define CLASS_LIKELY_SPILLED_P(CLASS) \
765 ((CLASS) == PREGS_CLOBBERED \
766 || (CLASS) == PROLOGUE_REGS \
767 || (CLASS) == P0REGS \
768 || (CLASS) == D0REGS \
769 || (CLASS) == D1REGS \
770 || (CLASS) == D2REGS \
771 || (CLASS) == CCREGS)
772
773 /* Do not allow to store a value in REG_CC for any mode */
774 /* Do not allow to store value in pregs if mode is not SI*/
775 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
776
777 /* Return the maximum number of consecutive registers
778 needed to represent mode MODE in a register of class CLASS. */
779 #define CLASS_MAX_NREGS(CLASS, MODE) \
780 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
781 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
782
783 #define HARD_REGNO_NREGS(REGNO, MODE) \
784 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
785 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
786 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
787
788 /* A C expression that is nonzero if hard register TO can be
789 considered for use as a rename register for FROM register */
790 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
791
792 /* A C expression that is nonzero if it is desirable to choose
793 register allocation so as to avoid move instructions between a
794 value of mode MODE1 and a value of mode MODE2.
795
796 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
797 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
798 MODE2)' must be zero. */
799 #define MODES_TIEABLE_P(MODE1, MODE2) \
800 ((MODE1) == (MODE2) \
801 || ((GET_MODE_CLASS (MODE1) == MODE_INT \
802 || GET_MODE_CLASS (MODE1) == MODE_FLOAT) \
803 && (GET_MODE_CLASS (MODE2) == MODE_INT \
804 || GET_MODE_CLASS (MODE2) == MODE_FLOAT) \
805 && (MODE1) != BImode && (MODE2) != BImode \
806 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
807 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
808
809 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
810 A C expression that places additional restrictions on the register
811 class to use when it is necessary to copy value X into a register
812 in class CLASS. The value is a register class; perhaps CLASS, or
813 perhaps another, smaller class. */
814 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
815 (GET_CODE (X) == POST_INC \
816 || GET_CODE (X) == POST_DEC \
817 || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
818
819 /* Function Calling Conventions. */
820
821 /* The type of the current function; normal functions are of type
822 SUBROUTINE. */
823 typedef enum {
824 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
825 } e_funkind;
826 #define FUNCTION_RETURN_REGISTERS { REG_RETS, REG_RETI, REG_RETX, REG_RETN }
827
828 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
829
830 /* Flags for the call/call_value rtl operations set up by function_arg */
831 #define CALL_NORMAL 0x00000000 /* no special processing */
832 #define CALL_LONG 0x00000001 /* always call indirect */
833 #define CALL_SHORT 0x00000002 /* always call by symbol */
834
835 typedef struct {
836 int words; /* # words passed so far */
837 int nregs; /* # registers available for passing */
838 int *arg_regs; /* array of register -1 terminated */
839 int call_cookie; /* Do special things for this call */
840 } CUMULATIVE_ARGS;
841
842 /* Define where to put the arguments to a function.
843 Value is zero to push the argument on the stack,
844 or a hard register in which to store the argument.
845
846 MODE is the argument's machine mode.
847 TYPE is the data type of the argument (as a tree).
848 This is null for libcalls where that information may
849 not be available.
850 CUM is a variable of type CUMULATIVE_ARGS which gives info about
851 the preceding args and about the function being called.
852 NAMED is nonzero if this argument is a named parameter
853 (otherwise it is an extra parameter matching an ellipsis). */
854
855 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
856 (function_arg (&CUM, MODE, TYPE, NAMED))
857
858 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
859
860
861 /* Initialize a variable CUM of type CUMULATIVE_ARGS
862 for a call to a function whose data type is FNTYPE.
863 For a library call, FNTYPE is 0. */
864 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
865 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
866
867 /* Update the data in CUM to advance over an argument
868 of mode MODE and data type TYPE.
869 (TYPE is null for libcalls where that information may not be available.) */
870 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
871 (function_arg_advance (&CUM, MODE, TYPE, NAMED))
872
873 #define RETURN_POPS_ARGS(FDECL, FUNTYPE, STKSIZE) 0
874
875 /* Define how to find the value returned by a function.
876 VALTYPE is the data type of the value (as a tree).
877 If the precise function being called is known, FUNC is its FUNCTION_DECL;
878 otherwise, FUNC is 0.
879 */
880
881 #define VALUE_REGNO(MODE) (REG_R0)
882
883 #define FUNCTION_VALUE(VALTYPE, FUNC) \
884 gen_rtx_REG (TYPE_MODE (VALTYPE), \
885 VALUE_REGNO(TYPE_MODE(VALTYPE)))
886
887 /* Define how to find the value returned by a library function
888 assuming the value has mode MODE. */
889
890 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
891
892 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
893
894 #define DEFAULT_PCC_STRUCT_RETURN 0
895
896 /* Before the prologue, the return address is in the RETS register. */
897 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
898
899 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
900
901 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
902
903 /* Call instructions don't modify the stack pointer on the Blackfin. */
904 #define INCOMING_FRAME_SP_OFFSET 0
905
906 /* Describe how we implement __builtin_eh_return. */
907 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
908 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
909 #define EH_RETURN_HANDLER_RTX \
910 gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
911
912 /* Addressing Modes */
913
914 /* Recognize any constant value that is a valid address. */
915 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
916
917 /* Nonzero if the constant value X is a legitimate general operand.
918 symbol_ref are not legitimate and will be put into constant pool.
919 See force_const_mem().
920 If -mno-pool, all constants are legitimate.
921 */
922 #define LEGITIMATE_CONSTANT_P(X) bfin_legitimate_constant_p (X)
923
924 /* A number, the maximum number of registers that can appear in a
925 valid memory address. Note that it is up to you to specify a
926 value equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P'
927 would ever accept. */
928 #define MAX_REGS_PER_ADDRESS 1
929
930 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
931 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
932
933 #define HAVE_POST_INCREMENT 1
934 #define HAVE_POST_DECREMENT 1
935 #define HAVE_PRE_DECREMENT 1
936
937 /* `LEGITIMATE_PIC_OPERAND_P (X)'
938 A C expression that is nonzero if X is a legitimate immediate
939 operand on the target machine when generating position independent
940 code. You can assume that X satisfies `CONSTANT_P', so you need
941 not check this. You can also assume FLAG_PIC is true, so you need
942 not check it either. You need not define this macro if all
943 constants (including `SYMBOL_REF') can be immediate operands when
944 generating position independent code. */
945 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
946
947 #define SYMBOLIC_CONST(X) \
948 (GET_CODE (X) == SYMBOL_REF \
949 || GET_CODE (X) == LABEL_REF \
950 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
951
952 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
953
954 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
955 is done just by pretending it is already truncated. */
956 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
957
958 /* Max number of bytes we can move from memory to memory
959 in one reasonably fast instruction. */
960 #define MOVE_MAX UNITS_PER_WORD
961
962 /* If a memory-to-memory move would take MOVE_RATIO or more simple
963 move-instruction pairs, we will do a movmem or libcall instead. */
964
965 #define MOVE_RATIO(speed) 5
966
967 /* STORAGE LAYOUT: target machine storage layout
968 Define this macro as a C expression which is nonzero if accessing
969 less than a word of memory (i.e. a `char' or a `short') is no
970 faster than accessing a word of memory, i.e., if such access
971 require more than one instruction or if there is no difference in
972 cost between byte and (aligned) word loads.
973
974 When this macro is not defined, the compiler will access a field by
975 finding the smallest containing object; when it is defined, a
976 fullword load will be used if alignment permits. Unless bytes
977 accesses are faster than word accesses, using word accesses is
978 preferable since it may eliminate subsequent memory access if
979 subsequent accesses occur to other fields in the same word of the
980 structure, but to different bytes. */
981 #define SLOW_BYTE_ACCESS 0
982 #define SLOW_SHORT_ACCESS 0
983
984 /* Define this if most significant bit is lowest numbered
985 in instructions that operate on numbered bit-fields. */
986 #define BITS_BIG_ENDIAN 0
987
988 /* Define this if most significant byte of a word is the lowest numbered.
989 We can't access bytes but if we could we would in the Big Endian order. */
990 #define BYTES_BIG_ENDIAN 0
991
992 /* Define this if most significant word of a multiword number is numbered. */
993 #define WORDS_BIG_ENDIAN 0
994
995 /* number of bits in an addressable storage unit */
996 #define BITS_PER_UNIT 8
997
998 /* Width in bits of a "word", which is the contents of a machine register.
999 Note that this is not necessarily the width of data type `int';
1000 if using 16-bit ints on a 68000, this would still be 32.
1001 But on a machine with 16-bit registers, this would be 16. */
1002 #define BITS_PER_WORD 32
1003
1004 /* Width of a word, in units (bytes). */
1005 #define UNITS_PER_WORD 4
1006
1007 /* Width in bits of a pointer.
1008 See also the macro `Pmode1' defined below. */
1009 #define POINTER_SIZE 32
1010
1011 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1012 #define POINTER_BOUNDARY 32
1013
1014 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1015 #define PARM_BOUNDARY 32
1016
1017 /* Boundary (in *bits*) on which stack pointer should be aligned. */
1018 #define STACK_BOUNDARY 32
1019
1020 /* Allocation boundary (in *bits*) for the code of a function. */
1021 #define FUNCTION_BOUNDARY 32
1022
1023 /* Alignment of field after `int : 0' in a structure. */
1024 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
1025
1026 /* No data type wants to be aligned rounder than this. */
1027 #define BIGGEST_ALIGNMENT 32
1028
1029 /* Define this if move instructions will actually fail to work
1030 when given unaligned data. */
1031 #define STRICT_ALIGNMENT 1
1032
1033 /* (shell-command "rm c-decl.o stor-layout.o")
1034 * never define PCC_BITFIELD_TYPE_MATTERS
1035 * really cause some alignment problem
1036 */
1037
1038 #define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1039 BITS_PER_UNIT)
1040
1041 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
1042 BITS_PER_UNIT)
1043
1044
1045 /* what is the 'type' of size_t */
1046 #define SIZE_TYPE "long unsigned int"
1047
1048 /* Define this as 1 if `char' should by default be signed; else as 0. */
1049 #define DEFAULT_SIGNED_CHAR 1
1050 #define FLOAT_TYPE_SIZE BITS_PER_WORD
1051 #define SHORT_TYPE_SIZE 16
1052 #define CHAR_TYPE_SIZE 8
1053 #define INT_TYPE_SIZE 32
1054 #define LONG_TYPE_SIZE 32
1055 #define LONG_LONG_TYPE_SIZE 64
1056
1057 /* Note: Fix this to depend on target switch. -- lev */
1058
1059 /* Note: Try to implement double and force long double. -- tonyko
1060 * #define __DOUBLES_ARE_FLOATS__
1061 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
1062 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
1063 * #define DOUBLES_ARE_FLOATS 1
1064 */
1065
1066 #define DOUBLE_TYPE_SIZE 64
1067 #define LONG_DOUBLE_TYPE_SIZE 64
1068
1069 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
1070 A macro to update M and UNSIGNEDP when an object whose type is
1071 TYPE and which has the specified mode and signedness is to be
1072 stored in a register. This macro is only called when TYPE is a
1073 scalar type.
1074
1075 On most RISC machines, which only have operations that operate on
1076 a full register, define this macro to set M to `word_mode' if M is
1077 an integer mode narrower than `BITS_PER_WORD'. In most cases,
1078 only integer modes should be widened because wider-precision
1079 floating-point operations are usually more expensive than their
1080 narrower counterparts.
1081
1082 For most machines, the macro definition does not change UNSIGNEDP.
1083 However, some machines, have instructions that preferentially
1084 handle either signed or unsigned quantities of certain modes. For
1085 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
1086 instructions sign-extend the result to 64 bits. On such machines,
1087 set UNSIGNEDP according to which kind of extension is more
1088 efficient.
1089
1090 Do not define this macro if it would never modify M.*/
1091
1092 #define BFIN_PROMOTE_MODE_P(MODE) \
1093 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
1094 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
1095
1096 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1097 if (BFIN_PROMOTE_MODE_P(MODE)) \
1098 { \
1099 if (MODE == QImode) \
1100 UNSIGNEDP = 1; \
1101 else if (MODE == HImode) \
1102 UNSIGNEDP = 0; \
1103 (MODE) = SImode; \
1104 }
1105
1106 /* Describing Relative Costs of Operations */
1107
1108 /* Do not put function addr into constant pool */
1109 #define NO_FUNCTION_CSE 1
1110
1111 /* A C expression for the cost of moving data from a register in class FROM to
1112 one in class TO. The classes are expressed using the enumeration values
1113 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1114 interpreted relative to that.
1115
1116 It is not required that the cost always equal 2 when FROM is the same as TO;
1117 on some machines it is expensive to move between registers if they are not
1118 general registers. */
1119
1120 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1121 bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
1122
1123 /* A C expression for the cost of moving data of mode M between a
1124 register and memory. A value of 2 is the default; this cost is
1125 relative to those in `REGISTER_MOVE_COST'.
1126
1127 If moving between registers and memory is more expensive than
1128 between two registers, you should define this macro to express the
1129 relative cost. */
1130
1131 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1132 bfin_memory_move_cost ((MODE), (CLASS), (IN))
1133
1134 /* Specify the machine mode that this machine uses
1135 for the index in the tablejump instruction. */
1136 #define CASE_VECTOR_MODE SImode
1137
1138 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
1139
1140 /* Define if operations between registers always perform the operation
1141 on the full register even if a narrower mode is specified.
1142 #define WORD_REGISTER_OPERATIONS
1143 */
1144
1145 /* Evaluates to true if A and B are mac flags that can be used
1146 together in a single multiply insn. That is the case if they are
1147 both the same flag not involving M, or if one is a combination of
1148 the other with M. */
1149 #define MACFLAGS_MATCH_P(A, B) \
1150 ((A) == (B) \
1151 || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
1152 || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
1153 || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
1154 || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
1155
1156 /* Switch into a generic section. */
1157 #define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1158
1159 #define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1160 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1161
1162 typedef enum sections {
1163 CODE_DIR,
1164 DATA_DIR,
1165 LAST_SECT_NM
1166 } SECT_ENUM_T;
1167
1168 typedef enum directives {
1169 LONG_CONST_DIR,
1170 SHORT_CONST_DIR,
1171 BYTE_CONST_DIR,
1172 SPACE_DIR,
1173 INIT_DIR,
1174 LAST_DIR_NM
1175 } DIR_ENUM_T;
1176
1177 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) \
1178 ((C) == ';' \
1179 || ((C) == '|' && (STR)[1] == '|'))
1180
1181 #define TEXT_SECTION_ASM_OP ".text;"
1182 #define DATA_SECTION_ASM_OP ".data;"
1183
1184 #define ASM_APP_ON ""
1185 #define ASM_APP_OFF ""
1186
1187 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1188 do { fputs (".global ", FILE); \
1189 assemble_name (FILE, NAME); \
1190 fputc (';',FILE); \
1191 fputc ('\n',FILE); \
1192 } while (0)
1193
1194 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1195 do { \
1196 fputs (".type ", FILE); \
1197 assemble_name (FILE, NAME); \
1198 fputs (", STT_FUNC", FILE); \
1199 fputc (';',FILE); \
1200 fputc ('\n',FILE); \
1201 ASM_OUTPUT_LABEL(FILE, NAME); \
1202 } while (0)
1203
1204 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1205 do { assemble_name (FILE, NAME); \
1206 fputs (":\n",FILE); \
1207 } while (0)
1208
1209 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1210 do { fprintf (FILE, "_%s", NAME); \
1211 } while (0)
1212
1213 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1214 do { char __buf[256]; \
1215 fprintf (FILE, "\t.dd\t"); \
1216 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1217 assemble_name (FILE, __buf); \
1218 fputc (';', FILE); \
1219 fputc ('\n', FILE); \
1220 } while (0)
1221
1222 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1223 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1224
1225 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1226 do { \
1227 char __buf[256]; \
1228 fprintf (FILE, "\t.dd\t"); \
1229 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1230 assemble_name (FILE, __buf); \
1231 fputs (" - ", FILE); \
1232 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1233 assemble_name (FILE, __buf); \
1234 fputc (';', FILE); \
1235 fputc ('\n', FILE); \
1236 } while (0)
1237
1238 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1239 do { \
1240 if ((LOG) != 0) \
1241 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1242 } while (0)
1243
1244 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1245 do { \
1246 asm_output_skip (FILE, SIZE); \
1247 } while (0)
1248
1249 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1250 do { \
1251 switch_to_section (data_section); \
1252 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1253 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1254 ASM_OUTPUT_LABEL (FILE, NAME); \
1255 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1256 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1257 } while (0)
1258
1259 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1260 do { \
1261 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1262 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1263
1264 #define ASM_COMMENT_START "//"
1265
1266 #define FUNCTION_PROFILER(FILE, LABELNO) \
1267 do { \
1268 fprintf (FILE, "\tCALL __mcount;\n"); \
1269 } while(0)
1270
1271 #undef NO_PROFILE_COUNTERS
1272 #define NO_PROFILE_COUNTERS 1
1273
1274 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
1275 #define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
1276
1277 extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
1278
1279 /* This works for GAS and some other assemblers. */
1280 #define SET_ASM_OP ".set "
1281
1282 /* DBX register number for a given compiler register number */
1283 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1284
1285 #define SIZE_ASM_OP "\t.size\t"
1286
1287 extern int splitting_for_sched, splitting_loops;
1288
1289 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1290
1291 #ifndef TARGET_SUPPORTS_SYNC_CALLS
1292 #define TARGET_SUPPORTS_SYNC_CALLS 0
1293 #endif
1294
1295 #endif /* _BFIN_CONFIG */
This page took 0.091829 seconds and 5 git commands to generate.