]> gcc.gnu.org Git - gcc.git/blob - gcc/config/alpha/alpha.h
a7d339b119cfca96762d67073336c9eb073aaf9b
[gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "\
25 -Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
26 -D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
27
28 /* Write out the correct language type definition for the header files.
29 Unless we have assembler language, write out the symbols for C. */
30 #define CPP_SPEC "\
31 %{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
32 %{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
33 %{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
34 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
35 %{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
36 %{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
37
38 /* Set the spec to use for signed char. The default tests the above macro
39 but DEC's compiler can't handle the conditional in a "constant"
40 operand. */
41
42 #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
43
44 /* No point in running CPP on our assembler output. */
45 #define ASM_SPEC "-nocpp"
46
47 /* Under OSF/1, -p and -pg require -lprof1. */
48
49 #define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
50
51 /* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
52 optimizing, -O1 if we are not. Pass -shared, -non_shared or
53 -call_shared as appropriate. Also pass -pg. */
54 #define LINK_SPEC \
55 "-G 8 %{O*:-O3} %{!O*:-O1} %{!shared:-init __main} %{static:-non_shared} \
56 %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg}"
57
58 #define STARTFILE_SPEC \
59 "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
60
61 /* Print subsidiary information on the compiler version in use. */
62 #define TARGET_VERSION
63
64 /* Define the location for the startup file on OSF/1 for Alpha. */
65
66 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
67
68 /* Run-time compilation parameters selecting different hardware subsets. */
69
70 extern int target_flags;
71
72 /* This means that floating-point support exists in the target implementation
73 of the Alpha architecture. This is usually the default. */
74
75 #define TARGET_FP (target_flags & 1)
76
77 /* This means that floating-point registers are allowed to be used. Note
78 that Alpha implementations without FP operations are required to
79 provide the FP registers. */
80
81 #define TARGET_FPREGS (target_flags & 2)
82
83 /* This means that gas is used to process the assembler file. */
84
85 #define MASK_GAS 4
86 #define TARGET_GAS (target_flags & MASK_GAS)
87
88 /* Macro to define tables used to set the flags.
89 This is a list in braces of pairs in braces,
90 each pair being { "NAME", VALUE }
91 where VALUE is the bits to set or minus the bits to clear.
92 An empty string NAME is used to identify the default VALUE. */
93
94 #define TARGET_SWITCHES \
95 { {"no-soft-float", 1}, \
96 {"soft-float", -1}, \
97 {"fp-regs", 2}, \
98 {"no-fp-regs", -3}, \
99 {"alpha-as", -MASK_GAS}, \
100 {"gas", MASK_GAS}, \
101 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
102
103 #define TARGET_DEFAULT 3
104
105 #ifndef TARGET_CPU_DEFAULT
106 #define TARGET_CPU_DEFAULT 0
107 #endif
108
109 /* Define this macro to change register usage conditional on target flags.
110
111 On the Alpha, we use this to disable the floating-point registers when
112 they don't exist. */
113
114 #define CONDITIONAL_REGISTER_USAGE \
115 if (! TARGET_FPREGS) \
116 for (i = 32; i < 63; i++) \
117 fixed_regs[i] = call_used_regs[i] = 1;
118
119 /* Show we can debug even without a frame pointer. */
120 #define CAN_DEBUG_WITHOUT_FP
121 \f
122 /* target machine storage layout */
123
124 /* Define to enable software floating point emulation. */
125 #define REAL_ARITHMETIC
126
127 /* Define the size of `int'. The default is the same as the word size. */
128 #define INT_TYPE_SIZE 32
129
130 /* Define the size of `long long'. The default is the twice the word size. */
131 #define LONG_LONG_TYPE_SIZE 64
132
133 /* The two floating-point formats we support are S-floating, which is
134 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
135 and `long double' are T. */
136
137 #define FLOAT_TYPE_SIZE 32
138 #define DOUBLE_TYPE_SIZE 64
139 #define LONG_DOUBLE_TYPE_SIZE 64
140
141 #define WCHAR_TYPE "short unsigned int"
142 #define WCHAR_TYPE_SIZE 16
143
144 /* Define this macro if it is advisable to hold scalars in registers
145 in a wider mode than that declared by the program. In such cases,
146 the value is constrained to be within the bounds of the declared
147 type, but kept valid in the wider mode. The signedness of the
148 extension may differ from that of the type.
149
150 For Alpha, we always store objects in a full register. 32-bit objects
151 are always sign-extended, but smaller objects retain their signedness. */
152
153 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
154 if (GET_MODE_CLASS (MODE) == MODE_INT \
155 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
156 { \
157 if ((MODE) == SImode) \
158 (UNSIGNEDP) = 0; \
159 (MODE) = DImode; \
160 }
161
162 /* Define this if function arguments should also be promoted using the above
163 procedure. */
164
165 #define PROMOTE_FUNCTION_ARGS
166
167 /* Likewise, if the function return value is promoted. */
168
169 #define PROMOTE_FUNCTION_RETURN
170
171 /* Define this if most significant bit is lowest numbered
172 in instructions that operate on numbered bit-fields.
173
174 There are no such instructions on the Alpha, but the documentation
175 is little endian. */
176 #define BITS_BIG_ENDIAN 0
177
178 /* Define this if most significant byte of a word is the lowest numbered.
179 This is false on the Alpha. */
180 #define BYTES_BIG_ENDIAN 0
181
182 /* Define this if most significant word of a multiword number is lowest
183 numbered.
184
185 For Alpha we can decide arbitrarily since there are no machine instructions
186 for them. Might as well be consistent with bytes. */
187 #define WORDS_BIG_ENDIAN 0
188
189 /* number of bits in an addressable storage unit */
190 #define BITS_PER_UNIT 8
191
192 /* Width in bits of a "word", which is the contents of a machine register.
193 Note that this is not necessarily the width of data type `int';
194 if using 16-bit ints on a 68000, this would still be 32.
195 But on a machine with 16-bit registers, this would be 16. */
196 #define BITS_PER_WORD 64
197
198 /* Width of a word, in units (bytes). */
199 #define UNITS_PER_WORD 8
200
201 /* Width in bits of a pointer.
202 See also the macro `Pmode' defined below. */
203 #define POINTER_SIZE 64
204
205 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
206 #define PARM_BOUNDARY 64
207
208 /* Boundary (in *bits*) on which stack pointer should be aligned. */
209 #define STACK_BOUNDARY 64
210
211 /* Allocation boundary (in *bits*) for the code of a function. */
212 #define FUNCTION_BOUNDARY 64
213
214 /* Alignment of field after `int : 0' in a structure. */
215 #define EMPTY_FIELD_BOUNDARY 64
216
217 /* Every structure's size must be a multiple of this. */
218 #define STRUCTURE_SIZE_BOUNDARY 8
219
220 /* A bitfield declared as `int' forces `int' alignment for the struct. */
221 #define PCC_BITFIELD_TYPE_MATTERS 1
222
223 /* Align loop starts for optimal branching.
224
225 ??? Kludge this and the next macro for the moment by not doing anything if
226 we don't optimize and also if we are writing ECOFF symbols to work around
227 a bug in DEC's assembler. */
228
229 #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
230 if (optimize > 0 && write_symbols != SDB_DEBUG) \
231 ASM_OUTPUT_ALIGN (FILE, 5)
232
233 /* This is how to align an instruction for optimal branching.
234 On Alpha we'll get better performance by aligning on a quadword
235 boundary. */
236
237 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
238 if (optimize > 0 && write_symbols != SDB_DEBUG) \
239 ASM_OUTPUT_ALIGN ((FILE), 4)
240
241 /* No data type wants to be aligned rounder than this. */
242 #define BIGGEST_ALIGNMENT 64
243
244 /* Make strings word-aligned so strcpy from constants will be faster. */
245 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
246 (TREE_CODE (EXP) == STRING_CST \
247 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
248
249 /* Make arrays of chars word-aligned for the same reasons. */
250 #define DATA_ALIGNMENT(TYPE, ALIGN) \
251 (TREE_CODE (TYPE) == ARRAY_TYPE \
252 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
253 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
254
255 /* Set this non-zero if move instructions will actually fail to work
256 when given unaligned data.
257
258 Since we get an error message when we do one, call them invalid. */
259
260 #define STRICT_ALIGNMENT 1
261
262 /* Set this non-zero if unaligned move instructions are extremely slow.
263
264 On the Alpha, they trap. */
265
266 #define SLOW_UNALIGNED_ACCESS 1
267 \f
268 /* Standard register usage. */
269
270 /* Number of actual hardware registers.
271 The hardware registers are assigned numbers for the compiler
272 from 0 to just below FIRST_PSEUDO_REGISTER.
273 All registers that the compiler knows about must be given numbers,
274 even those that are not normally considered general registers.
275
276 We define all 32 integer registers, even though $31 is always zero,
277 and all 32 floating-point registers, even though $f31 is also
278 always zero. We do not bother defining the FP status register and
279 there are no other registers.
280
281 Since $31 is always zero, we will use register number 31 as the
282 argument pointer. It will never appear in the generated code
283 because we will always be eliminating it in favor of the stack
284 pointer or hardware frame pointer.
285
286 Likewise, we use $f31 for the frame pointer, which will always
287 be eliminated in favor of the hardware frame pointer or the
288 stack pointer. */
289
290 #define FIRST_PSEUDO_REGISTER 64
291
292 /* 1 for registers that have pervasive standard uses
293 and are not available for the register allocator. */
294
295 #define FIXED_REGISTERS \
296 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
297 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
298 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
299 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
300
301 /* 1 for registers not available across function calls.
302 These must include the FIXED_REGISTERS and also any
303 registers that can be used without being saved.
304 The latter must include the registers where values are returned
305 and the register where structure-value addresses are passed.
306 Aside from that, you can include as many other registers as you like. */
307 #define CALL_USED_REGISTERS \
308 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
309 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
310 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
311 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
312
313 /* List the order in which to allocate registers. Each register must be
314 listed once, even those in FIXED_REGISTERS.
315
316 We allocate in the following order:
317 $f1 (nonsaved floating-point register)
318 $f10-$f15 (likewise)
319 $f22-$f30 (likewise)
320 $f21-$f16 (likewise, but input args)
321 $f0 (nonsaved, but return value)
322 $f2-$f9 (saved floating-point registers)
323 $1-$8 (nonsaved integer registers)
324 $22-$25 (likewise)
325 $28 (likewise)
326 $0 (likewise, but return value)
327 $21-$16 (likewise, but input args)
328 $27 (procedure value)
329 $9-$14 (saved integer registers)
330 $26 (return PC)
331 $15 (frame pointer)
332 $29 (global pointer)
333 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
334
335 #define REG_ALLOC_ORDER \
336 {33, \
337 42, 43, 44, 45, 46, 47, \
338 54, 55, 56, 57, 58, 59, 60, 61, 62, \
339 53, 52, 51, 50, 49, 48, \
340 32, \
341 34, 35, 36, 37, 38, 39, 40, 41, \
342 1, 2, 3, 4, 5, 6, 7, 8, \
343 22, 23, 24, 25, \
344 28, \
345 0, \
346 21, 20, 19, 18, 17, 16, \
347 27, \
348 9, 10, 11, 12, 13, 14, \
349 26, \
350 15, \
351 29, \
352 30, 31, 63 }
353
354 /* Return number of consecutive hard regs needed starting at reg REGNO
355 to hold something of mode MODE.
356 This is ordinarily the length in words of a value of mode MODE
357 but can be less for certain modes in special long registers. */
358
359 #define HARD_REGNO_NREGS(REGNO, MODE) \
360 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
361
362 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
363 On Alpha, the integer registers can hold any mode. The floating-point
364 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
365 or 8-bit values. If we only allowed the larger integers into FP registers,
366 we'd have to say that QImode and SImode aren't tiable, which is a
367 pain. So say all registers can hold everything and see how that works. */
368
369 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
370
371 /* Value is 1 if it is a good idea to tie two pseudo registers
372 when one has mode MODE1 and one has mode MODE2.
373 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
374 for any hard reg, then this must be 0 for correct output. */
375
376 #define MODES_TIEABLE_P(MODE1, MODE2) 1
377
378 /* Specify the registers used for certain standard purposes.
379 The values of these macros are register numbers. */
380
381 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
382 /* #define PC_REGNUM */
383
384 /* Register to use for pushing function arguments. */
385 #define STACK_POINTER_REGNUM 30
386
387 /* Base register for access to local variables of the function. */
388 #define HARD_FRAME_POINTER_REGNUM 15
389
390 /* Value should be nonzero if functions must have frame pointers.
391 Zero means the frame pointer need not be set up (and parms
392 may be accessed via the stack pointer) in functions that seem suitable.
393 This is computed in `reload', in reload1.c. */
394 #define FRAME_POINTER_REQUIRED 0
395
396 /* Base register for access to arguments of the function. */
397 #define ARG_POINTER_REGNUM 31
398
399 /* Base register for access to local variables of function. */
400 #define FRAME_POINTER_REGNUM 63
401
402 /* Register in which static-chain is passed to a function.
403
404 For the Alpha, this is based on an example; the calling sequence
405 doesn't seem to specify this. */
406 #define STATIC_CHAIN_REGNUM 1
407
408 /* Register in which address to store a structure value
409 arrives in the function. On the Alpha, the address is passed
410 as a hidden argument. */
411 #define STRUCT_VALUE 0
412 \f
413 /* Define the classes of registers for register constraints in the
414 machine description. Also define ranges of constants.
415
416 One of the classes must always be named ALL_REGS and include all hard regs.
417 If there is more than one class, another class must be named NO_REGS
418 and contain no registers.
419
420 The name GENERAL_REGS must be the name of a class (or an alias for
421 another name such as ALL_REGS). This is the class of registers
422 that is allowed by "g" or "r" in a register constraint.
423 Also, registers outside this class are allocated only when
424 instructions express preferences for them.
425
426 The classes must be numbered in nondecreasing order; that is,
427 a larger-numbered class must never be contained completely
428 in a smaller-numbered class.
429
430 For any two classes, it is very desirable that there be another
431 class that represents their union. */
432
433 enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
434 LIM_REG_CLASSES };
435
436 #define N_REG_CLASSES (int) LIM_REG_CLASSES
437
438 /* Give names of register classes as strings for dump file. */
439
440 #define REG_CLASS_NAMES \
441 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
442
443 /* Define which registers fit in which classes.
444 This is an initializer for a vector of HARD_REG_SET
445 of length N_REG_CLASSES. */
446
447 #define REG_CLASS_CONTENTS \
448 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
449
450 /* The same information, inverted:
451 Return the class number of the smallest class containing
452 reg number REGNO. This could be a conditional expression
453 or could index an array. */
454
455 #define REGNO_REG_CLASS(REGNO) \
456 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
457
458 /* The class value for index registers, and the one for base regs. */
459 #define INDEX_REG_CLASS NO_REGS
460 #define BASE_REG_CLASS GENERAL_REGS
461
462 /* Get reg_class from a letter such as appears in the machine description. */
463
464 #define REG_CLASS_FROM_LETTER(C) \
465 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
466
467 /* Define this macro to change register usage conditional on target flags. */
468 /* #define CONDITIONAL_REGISTER_USAGE */
469
470 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
471 can be used to stand for particular ranges of immediate operands.
472 This macro defines what the ranges are.
473 C is the letter, and VALUE is a constant value.
474 Return 1 if VALUE is in the range specified by C.
475
476 For Alpha:
477 `I' is used for the range of constants most insns can contain.
478 `J' is the constant zero.
479 `K' is used for the constant in an LDA insn.
480 `L' is used for the constant in a LDAH insn.
481 `M' is used for the constants that can be AND'ed with using a ZAP insn.
482 `N' is used for complemented 8-bit constants.
483 `O' is used for negated 8-bit constants.
484 `P' is used for the constants 1, 2 and 3. */
485
486 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
487 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
488 : (C) == 'J' ? (VALUE) == 0 \
489 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
490 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
491 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
492 : (C) == 'M' ? zap_mask (VALUE) \
493 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
494 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
495 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
496 : 0)
497
498 /* Similar, but for floating or large integer constants, and defining letters
499 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
500
501 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
502 that is the operand of a ZAP insn. */
503
504 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
505 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
506 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
507 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
508 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
509 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
510 : 0)
511
512 /* Optional extra constraints for this machine.
513
514 For the Alpha, `Q' means that this is a memory operand but not a
515 reference to an unaligned location.
516 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
517 function. */
518
519 #define EXTRA_CONSTRAINT(OP, C) \
520 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
521 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
522 : 0)
523
524 /* Given an rtx X being reloaded into a reg required to be
525 in class CLASS, return the class of reg to actually use.
526 In general this is just CLASS; but on some machines
527 in some cases it is preferable to use a more restrictive class.
528
529 On the Alpha, all constants except zero go into a floating-point
530 register via memory. */
531
532 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
533 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
534 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
535 : (CLASS))
536
537 /* Loading and storing HImode or QImode values to and from memory
538 usually requires a scratch register. The exceptions are loading
539 QImode and HImode from an aligned address to a general register.
540 We also cannot load an unaligned address into an FP register. */
541
542 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
543 (((GET_CODE (IN) == MEM \
544 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
545 || (GET_CODE (IN) == SUBREG \
546 && (GET_CODE (SUBREG_REG (IN)) == MEM \
547 || (GET_CODE (SUBREG_REG (IN)) == REG \
548 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
549 && (((CLASS) == FLOAT_REGS \
550 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
551 || (((MODE) == QImode || (MODE) == HImode) \
552 && unaligned_memory_operand (IN, MODE)))) \
553 ? GENERAL_REGS \
554 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
555 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
556 : NO_REGS)
557
558 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
559 (((GET_CODE (OUT) == MEM \
560 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
561 || (GET_CODE (OUT) == SUBREG \
562 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
563 || (GET_CODE (SUBREG_REG (OUT)) == REG \
564 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
565 && (((MODE) == HImode || (MODE) == QImode \
566 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
567 ? GENERAL_REGS \
568 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
569 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
570 : NO_REGS)
571
572 /* If we are copying between general and FP registers, we need a memory
573 location. */
574
575 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
576
577 /* Specify the mode to be used for memory when a secondary memory
578 location is needed. If MODE is floating-point, use it. Otherwise,
579 widen to a word like the default. This is needed because we always
580 store integers in FP registers in quadword format. This whole
581 area is very tricky! */
582 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
583 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
584 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
585
586 /* Return the maximum number of consecutive registers
587 needed to represent mode MODE in a register of class CLASS. */
588
589 #define CLASS_MAX_NREGS(CLASS, MODE) \
590 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
591
592 /* If defined, gives a class of registers that cannot be used as the
593 operand of a SUBREG that changes the size of the object. */
594
595 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
596
597 /* Define the cost of moving between registers of various classes. Moving
598 between FLOAT_REGS and anything else except float regs is expensive.
599 In fact, we make it quite expensive because we really don't want to
600 do these moves unless it is clearly worth it. Optimizations may
601 reduce the impact of not being able to allocate a pseudo to a
602 hard register. */
603
604 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
605 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
606
607 /* A C expressions returning the cost of moving data of MODE from a register to
608 or from memory.
609
610 On the Alpha, bump this up a bit. */
611
612 #define MEMORY_MOVE_COST(MODE) 6
613
614 /* Provide the cost of a branch. Exact meaning under development. */
615 #define BRANCH_COST 5
616
617 /* Adjust the cost of dependencies. */
618
619 #define ADJUST_COST(INSN,LINK,DEP,COST) \
620 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
621 \f
622 /* Stack layout; function entry, exit and calling. */
623
624 /* Define this if pushing a word on the stack
625 makes the stack pointer a smaller address. */
626 #define STACK_GROWS_DOWNWARD
627
628 /* Define this if the nominal address of the stack frame
629 is at the high-address end of the local variables;
630 that is, each additional local variable allocated
631 goes at a more negative offset in the frame. */
632 /* #define FRAME_GROWS_DOWNWARD */
633
634 /* Offset within stack frame to start allocating local variables at.
635 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
636 first local allocated. Otherwise, it is the offset to the BEGINNING
637 of the first local allocated. */
638
639 #define STARTING_FRAME_OFFSET 0
640
641 /* If we generate an insn to push BYTES bytes,
642 this says how many the stack pointer really advances by.
643 On Alpha, don't define this because there are no push insns. */
644 /* #define PUSH_ROUNDING(BYTES) */
645
646 /* Define this if the maximum size of all the outgoing args is to be
647 accumulated and pushed during the prologue. The amount can be
648 found in the variable current_function_outgoing_args_size. */
649 #define ACCUMULATE_OUTGOING_ARGS
650
651 /* Offset of first parameter from the argument pointer register value. */
652
653 #define FIRST_PARM_OFFSET(FNDECL) 0
654
655 /* Definitions for register eliminations.
656
657 We have two registers that can be eliminated on the Alpha. First, the
658 frame pointer register can often be eliminated in favor of the stack
659 pointer register. Secondly, the argument pointer register can always be
660 eliminated; it is replaced with either the stack or frame pointer. */
661
662 /* This is an array of structures. Each structure initializes one pair
663 of eliminable registers. The "from" register number is given first,
664 followed by "to". Eliminations of the same "from" register are listed
665 in order of preference. */
666
667 #define ELIMINABLE_REGS \
668 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
669 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
670 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
671 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
672
673 /* Given FROM and TO register numbers, say whether this elimination is allowed.
674 Frame pointer elimination is automatically handled.
675
676 All eliminations are valid since the cases where FP can't be
677 eliminated are already handled. */
678
679 #define CAN_ELIMINATE(FROM, TO) 1
680
681 /* Round up to a multiple of 16 bytes. */
682 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
683
684 /* Define the offset between two registers, one to be eliminated, and the other
685 its replacement, at the start of a routine. */
686 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
687 { if ((FROM) == FRAME_POINTER_REGNUM) \
688 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
689 + alpha_sa_size ()); \
690 else if ((FROM) == ARG_POINTER_REGNUM) \
691 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
692 + alpha_sa_size () \
693 + (ALPHA_ROUND (get_frame_size () \
694 + current_function_pretend_args_size) \
695 - current_function_pretend_args_size)); \
696 }
697
698 /* Define this if stack space is still allocated for a parameter passed
699 in a register. */
700 /* #define REG_PARM_STACK_SPACE */
701
702 /* Value is the number of bytes of arguments automatically
703 popped when returning from a subroutine call.
704 FUNTYPE is the data type of the function (as a tree),
705 or for a library call it is an identifier node for the subroutine name.
706 SIZE is the number of bytes of arguments passed on the stack. */
707
708 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
709
710 /* Define how to find the value returned by a function.
711 VALTYPE is the data type of the value (as a tree).
712 If the precise function being called is known, FUNC is its FUNCTION_DECL;
713 otherwise, FUNC is 0.
714
715 On Alpha the value is found in $0 for integer functions and
716 $f0 for floating-point functions. */
717
718 #define FUNCTION_VALUE(VALTYPE, FUNC) \
719 gen_rtx (REG, \
720 (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
721 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
722 ? word_mode : TYPE_MODE (VALTYPE), \
723 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
724
725 /* Define how to find the value returned by a library function
726 assuming the value has mode MODE. */
727
728 #define LIBCALL_VALUE(MODE) \
729 gen_rtx (REG, MODE, \
730 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
731
732 /* The definition of this macro implies that there are cases where
733 a scalar value cannot be returned in registers.
734
735 For the Alpha, any structure or union type is returned in memory, as
736 are integers whose size is larger than 64 bits. */
737
738 #define RETURN_IN_MEMORY(TYPE) \
739 (TYPE_MODE (TYPE) == BLKmode \
740 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
741
742 /* 1 if N is a possible register number for a function value
743 as seen by the caller. */
744
745 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
746
747 /* 1 if N is a possible register number for function argument passing.
748 On Alpha, these are $16-$21 and $f16-$f21. */
749
750 #define FUNCTION_ARG_REGNO_P(N) \
751 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
752 \f
753 /* Define a data type for recording info about an argument list
754 during the scan of that argument list. This data type should
755 hold all necessary information about the function itself
756 and about the args processed so far, enough to enable macros
757 such as FUNCTION_ARG to determine where the next arg should go.
758
759 On Alpha, this is a single integer, which is a number of words
760 of arguments scanned so far.
761 Thus 6 or more means all following args should go on the stack. */
762
763 #define CUMULATIVE_ARGS int
764
765 /* Initialize a variable CUM of type CUMULATIVE_ARGS
766 for a call to a function whose data type is FNTYPE.
767 For a library call, FNTYPE is 0. */
768
769 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
770
771 /* Define intermediate macro to compute the size (in registers) of an argument
772 for the Alpha. */
773
774 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
775 ((MODE) != BLKmode \
776 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
777 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
778
779 /* Update the data in CUM to advance over an argument
780 of mode MODE and data type TYPE.
781 (TYPE is null for libcalls where that information may not be available.) */
782
783 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
784 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
785 (CUM) = 6; \
786 else \
787 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
788
789 /* Determine where to put an argument to a function.
790 Value is zero to push the argument on the stack,
791 or a hard register in which to store the argument.
792
793 MODE is the argument's machine mode.
794 TYPE is the data type of the argument (as a tree).
795 This is null for libcalls where that information may
796 not be available.
797 CUM is a variable of type CUMULATIVE_ARGS which gives info about
798 the preceding args and about the function being called.
799 NAMED is nonzero if this argument is a named parameter
800 (otherwise it is an extra parameter matching an ellipsis).
801
802 On Alpha the first 6 words of args are normally in registers
803 and the rest are pushed. */
804
805 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
806 ((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
807 ? gen_rtx(REG, (MODE), \
808 (CUM) + 16 + ((TARGET_FPREGS \
809 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
810 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
811 * 32)) \
812 : 0)
813
814 /* Specify the padding direction of arguments.
815
816 On the Alpha, we must pad upwards in order to be able to pass args in
817 registers. */
818
819 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
820
821 /* For an arg passed partly in registers and partly in memory,
822 this is the number of registers used.
823 For args passed entirely in registers or entirely in memory, zero. */
824
825 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
826 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
827 ? 6 - (CUM) : 0)
828
829 /* Perform any needed actions needed for a function that is receiving a
830 variable number of arguments.
831
832 CUM is as above.
833
834 MODE and TYPE are the mode and type of the current parameter.
835
836 PRETEND_SIZE is a variable that should be set to the amount of stack
837 that must be pushed by the prolog to pretend that our caller pushed
838 it.
839
840 Normally, this macro will push all remaining incoming registers on the
841 stack and set PRETEND_SIZE to the length of the registers pushed.
842
843 On the Alpha, we allocate space for all 12 arg registers, but only
844 push those that are remaining.
845
846 However, if NO registers need to be saved, don't allocate any space.
847 This is not only because we won't need the space, but because AP includes
848 the current_pretend_args_size and we don't want to mess up any
849 ap-relative addresses already made.
850
851 If we are not to use the floating-point registers, save the integer
852 registers where we would put the floating-point registers. This is
853 not the most efficient way to implement varargs with just one register
854 class, but it isn't worth doing anything more efficient in this rare
855 case. */
856
857
858 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
859 { if ((CUM) < 6) \
860 { \
861 if (! (NO_RTL)) \
862 { \
863 move_block_from_reg \
864 (16 + CUM, \
865 gen_rtx (MEM, BLKmode, \
866 plus_constant (virtual_incoming_args_rtx, \
867 ((CUM) + 6)* UNITS_PER_WORD)), \
868 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
869 move_block_from_reg \
870 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
871 gen_rtx (MEM, BLKmode, \
872 plus_constant (virtual_incoming_args_rtx, \
873 (CUM) * UNITS_PER_WORD)), \
874 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
875 } \
876 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
877 } \
878 }
879
880 /* Generate necessary RTL for __builtin_saveregs().
881 ARGLIST is the argument list; see expr.c. */
882 extern struct rtx_def *alpha_builtin_saveregs ();
883 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
884
885 /* Define the information needed to generate branch and scc insns. This is
886 stored from the compare operation. Note that we can't use "rtx" here
887 since it hasn't been defined! */
888
889 extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
890 extern int alpha_compare_fp_p;
891
892 /* This macro produces the initial definition of a function name. On the
893 Alpha, we need to save the function name for the prologue and epilogue. */
894
895 extern char *alpha_function_name;
896
897 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
898 { \
899 alpha_function_name = NAME; \
900 }
901
902 /* This macro generates the assembly code for function entry.
903 FILE is a stdio stream to output the code to.
904 SIZE is an int: how many units of temporary storage to allocate.
905 Refer to the array `regs_ever_live' to determine which registers
906 to save; `regs_ever_live[I]' is nonzero if register number I
907 is ever used in the function. This macro is responsible for
908 knowing which registers should not be saved even if used. */
909
910 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
911
912 /* Output assembler code to FILE to increment profiler label # LABELNO
913 for profiling a function entry. Profiling for gprof does not
914 require LABELNO so we don't reference it at all. This does,
915 however, mean that -p won't work. But OSF/1 doesn't support the
916 traditional prof anyways, so there is no good reason to be
917 backwards compatible. */
918
919 #define FUNCTION_PROFILER(FILE, LABELNO) \
920 do { \
921 fputs ("\tlda $28,_mcount\n", (FILE)); \
922 fputs ("\tjsr $28,($28),_mcount\n", (FILE)); \
923 fputs ("\tldgp $29,0($27)\n", (FILE)); \
924 } while (0);
925
926
927 /* Output assembler code to FILE to initialize this source file's
928 basic block profiling info, if that has not already been done.
929 This assumes that __bb_init_func doesn't garble a1-a5. */
930
931 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
932 do { \
933 ASM_OUTPUT_REG_PUSH (FILE, 16); \
934 fputs ("\tlda $16,$PBX32\n", (FILE)); \
935 fputs ("\tldq $26,0($16)\n", (FILE)); \
936 fputs ("\tbne $26,1f\n", (FILE)); \
937 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
938 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
939 fputs ("\tldgp $29,0($26)\n", (FILE)); \
940 fputs ("1:\n", (FILE)); \
941 ASM_OUTPUT_REG_POP (FILE, 16); \
942 } while (0);
943
944 /* Output assembler code to FILE to increment the entry-count for
945 the BLOCKNO'th basic block in this source file. */
946
947 #define BLOCK_PROFILER(FILE, BLOCKNO) \
948 do { \
949 int blockn = (BLOCKNO); \
950 fputs ("\tsubq $30,16,$30\n", (FILE)); \
951 fputs ("\tstq $26,0($30)\n", (FILE)); \
952 fputs ("\tstq $27,8($30)\n", (FILE)); \
953 fputs ("\tlda $26,$PBX34\n", (FILE)); \
954 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
955 fputs ("\taddq $27,1,$27\n", (FILE)); \
956 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
957 fputs ("\tldq $26,0($30)\n", (FILE)); \
958 fputs ("\tldq $27,8($30)\n", (FILE)); \
959 fputs ("\taddq $30,16,$30\n", (FILE)); \
960 } while (0)
961
962
963 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
964 the stack pointer does not matter. The value is tested only in
965 functions that have frame pointers.
966 No definition is equivalent to always zero. */
967
968 #define EXIT_IGNORE_STACK 1
969
970 /* This macro generates the assembly code for function exit,
971 on machines that need it. If FUNCTION_EPILOGUE is not defined
972 then individual return instructions are generated for each
973 return statement. Args are same as for FUNCTION_PROLOGUE.
974
975 The function epilogue should not depend on the current stack pointer!
976 It should use the frame pointer only. This is mandatory because
977 of alloca; we also take advantage of it to omit stack adjustments
978 before returning. */
979
980 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
981
982 \f
983 /* Output assembler code for a block containing the constant parts
984 of a trampoline, leaving space for the variable parts.
985
986 The trampoline should set the static chain pointer to value placed
987 into the trampoline and should branch to the specified routine.
988 Note that $27 has been set to the address of the trampoline, so we can
989 use it for addressability of the two data items. Trampolines are always
990 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
991
992 #define TRAMPOLINE_TEMPLATE(FILE) \
993 { \
994 fprintf (FILE, "\tldq $1,24($27)\n"); \
995 fprintf (FILE, "\tldq $27,16($27)\n"); \
996 fprintf (FILE, "\tjmp $31,($27),0\n"); \
997 fprintf (FILE, "\tnop\n"); \
998 fprintf (FILE, "\t.quad 0,0\n"); \
999 }
1000
1001 /* Section in which to place the trampoline. On Alpha, instructions
1002 may only be placed in a text segment. */
1003
1004 #define TRAMPOLINE_SECTION text_section
1005
1006 /* Length in units of the trampoline for entering a nested function. */
1007
1008 #define TRAMPOLINE_SIZE 32
1009
1010 /* Emit RTL insns to initialize the variable parts of a trampoline.
1011 FNADDR is an RTX for the address of the function's pure code.
1012 CXT is an RTX for the static chain value for the function. We assume
1013 here that a function will be called many more times than its address
1014 is taken (e.g., it might be passed to qsort), so we take the trouble
1015 to initialize the "hint" field in the JMP insn. Note that the hint
1016 field is PC (new) + 4 * bits 13:0. */
1017
1018 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1019 { \
1020 rtx _temp, _temp1, _addr; \
1021 \
1022 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1023 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
1024 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1025 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
1026 \
1027 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
1028 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
1029 OPTAB_WIDEN); \
1030 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
1031 build_int_2 (2, 0), NULL_RTX, 1); \
1032 _temp = expand_and (gen_lowpart (SImode, _temp), \
1033 GEN_INT (0x3fff), 0); \
1034 \
1035 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
1036 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
1037 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
1038 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
1039 OPTAB_WIDEN); \
1040 \
1041 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
1042 \
1043 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
1044 "__enable_execute_stack"), \
1045 0, VOIDmode, 1,_addr, Pmode); \
1046 \
1047 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1048 gen_rtvec (1, const0_rtx), 0)); \
1049 }
1050
1051 /* Attempt to turn on access permissions for the stack. */
1052
1053 #define TRANSFER_FROM_TRAMPOLINE \
1054 \
1055 void \
1056 __enable_execute_stack (addr) \
1057 void *addr; \
1058 { \
1059 long size = getpagesize (); \
1060 long mask = ~(size-1); \
1061 char *page = (char *) (((long) addr) & mask); \
1062 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1063 \
1064 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1065 if (mprotect (page, end - page, 7) < 0) \
1066 perror ("mprotect of trampoline code"); \
1067 }
1068 \f
1069 /* Addressing modes, and classification of registers for them. */
1070
1071 /* #define HAVE_POST_INCREMENT */
1072 /* #define HAVE_POST_DECREMENT */
1073
1074 /* #define HAVE_PRE_DECREMENT */
1075 /* #define HAVE_PRE_INCREMENT */
1076
1077 /* Macros to check register numbers against specific register classes. */
1078
1079 /* These assume that REGNO is a hard or pseudo reg number.
1080 They give nonzero only if REGNO is a hard reg of the suitable class
1081 or a pseudo reg currently allocated to a suitable hard reg.
1082 Since they use reg_renumber, they are safe only once reg_renumber
1083 has been allocated, which happens in local-alloc.c. */
1084
1085 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1086 #define REGNO_OK_FOR_BASE_P(REGNO) \
1087 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1088 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1089 \f
1090 /* Maximum number of registers that can appear in a valid memory address. */
1091 #define MAX_REGS_PER_ADDRESS 1
1092
1093 /* Recognize any constant value that is a valid address. For the Alpha,
1094 there are only constants none since we want to use LDA to load any
1095 symbolic addresses into registers. */
1096
1097 #define CONSTANT_ADDRESS_P(X) \
1098 (GET_CODE (X) == CONST_INT \
1099 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1100
1101 /* Include all constant integers and constant doubles, but not
1102 floating-point, except for floating-point zero. */
1103
1104 #define LEGITIMATE_CONSTANT_P(X) \
1105 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1106 || (X) == CONST0_RTX (GET_MODE (X)))
1107
1108 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1109 and check its validity for a certain class.
1110 We have two alternate definitions for each of them.
1111 The usual definition accepts all pseudo regs; the other rejects
1112 them unless they have been allocated suitable hard regs.
1113 The symbol REG_OK_STRICT causes the latter definition to be used.
1114
1115 Most source files want to accept pseudo regs in the hope that
1116 they will get allocated to the class that the insn wants them to be in.
1117 Source files for reload pass need to be strict.
1118 After reload, it makes no difference, since pseudo regs have
1119 been eliminated by then. */
1120
1121 #ifndef REG_OK_STRICT
1122
1123 /* Nonzero if X is a hard reg that can be used as an index
1124 or if it is a pseudo reg. */
1125 #define REG_OK_FOR_INDEX_P(X) 0
1126 /* Nonzero if X is a hard reg that can be used as a base reg
1127 or if it is a pseudo reg. */
1128 #define REG_OK_FOR_BASE_P(X) \
1129 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1130
1131 #else
1132
1133 /* Nonzero if X is a hard reg that can be used as an index. */
1134 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1135 /* Nonzero if X is a hard reg that can be used as a base reg. */
1136 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1137
1138 #endif
1139 \f
1140 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1141 that is a valid memory address for an instruction.
1142 The MODE argument is the machine mode for the MEM expression
1143 that wants to use this address.
1144
1145 For Alpha, we have either a constant address or the sum of a register
1146 and a constant address, or just a register. For DImode, any of those
1147 forms can be surrounded with an AND that clear the low-order three bits;
1148 this is an "unaligned" access.
1149
1150 We also allow a SYMBOL_REF that is the name of the current function as
1151 valid address. This is for CALL_INSNs. It cannot be used in any other
1152 context.
1153
1154 First define the basic valid address. */
1155
1156 #define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1157 { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1158 goto ADDR; \
1159 if (CONSTANT_ADDRESS_P (X)) \
1160 goto ADDR; \
1161 if (GET_CODE (X) == PLUS \
1162 && REG_P (XEXP (X, 0)) \
1163 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1164 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1165 goto ADDR; \
1166 }
1167
1168 /* Now accept the simple address, or, for DImode only, an AND of a simple
1169 address that turns off the low three bits. */
1170
1171 extern char *current_function_name;
1172
1173 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1174 { GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1175 if ((MODE) == DImode \
1176 && GET_CODE (X) == AND \
1177 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1178 && INTVAL (XEXP (X, 1)) == -8) \
1179 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1180 if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
1181 && ! strcmp (XSTR (X, 0), current_function_name)) \
1182 goto ADDR; \
1183 }
1184
1185 /* Try machine-dependent ways of modifying an illegitimate address
1186 to be legitimate. If we find one, return the new, valid address.
1187 This macro is used in only one place: `memory_address' in explow.c.
1188
1189 OLDX is the address as it was before break_out_memory_refs was called.
1190 In some cases it is useful to look at this to decide what needs to be done.
1191
1192 MODE and WIN are passed so that this macro can use
1193 GO_IF_LEGITIMATE_ADDRESS.
1194
1195 It is always safe for this macro to do nothing. It exists to recognize
1196 opportunities to optimize the output.
1197
1198 For the Alpha, there are three cases we handle:
1199
1200 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1201 valid offset, compute the high part of the constant and add it to the
1202 register. Then our address is (plus temp low-part-const).
1203 (2) If the address is (const (plus FOO const_int)), find the low-order
1204 part of the CONST_INT. Then load FOO plus any high-order part of the
1205 CONST_INT into a register. Our address is (plus reg low-part-const).
1206 This is done to reduce the number of GOT entries.
1207 (3) If we have a (plus reg const), emit the load as in (2), then add
1208 the two registers, and finally generate (plus reg low-part-const) as
1209 our address. */
1210
1211 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1212 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1213 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1214 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1215 { \
1216 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1217 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1218 HOST_WIDE_INT highpart = val - lowpart; \
1219 rtx high = GEN_INT (highpart); \
1220 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
1221 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1222 \
1223 (X) = plus_constant (temp, lowpart); \
1224 goto WIN; \
1225 } \
1226 else if (GET_CODE (X) == CONST \
1227 && GET_CODE (XEXP (X, 0)) == PLUS \
1228 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1229 { \
1230 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1231 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1232 HOST_WIDE_INT highpart = val - lowpart; \
1233 rtx high = XEXP (XEXP (X, 0), 0); \
1234 \
1235 if (highpart) \
1236 high = plus_constant (high, highpart); \
1237 \
1238 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1239 goto WIN; \
1240 } \
1241 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1242 && GET_CODE (XEXP (X, 1)) == CONST \
1243 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1244 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1245 { \
1246 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1247 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1248 HOST_WIDE_INT highpart = val - lowpart; \
1249 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1250 \
1251 if (highpart) \
1252 high = plus_constant (high, highpart); \
1253 \
1254 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1255 force_reg (Pmode, high), \
1256 high, 1, OPTAB_LIB_WIDEN); \
1257 (X) = plus_constant (high, lowpart); \
1258 goto WIN; \
1259 } \
1260 }
1261
1262 /* Go to LABEL if ADDR (a legitimate address expression)
1263 has an effect that depends on the machine mode it is used for.
1264 On the Alpha this is true only for the unaligned modes. We can
1265 simplify this test since we know that the address must be valid. */
1266
1267 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1268 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1269
1270 /* Compute the cost of an address. For the Alpha, all valid addresses are
1271 the same cost. */
1272
1273 #define ADDRESS_COST(X) 0
1274
1275 /* Define this if some processing needs to be done immediately before
1276 emitting code for an insn. */
1277
1278 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1279 \f
1280 /* Specify the machine mode that this machine uses
1281 for the index in the tablejump instruction. */
1282 #define CASE_VECTOR_MODE SImode
1283
1284 /* Define this if the tablejump instruction expects the table
1285 to contain offsets from the address of the table.
1286 Do not define this if the table should contain absolute addresses.
1287 On the Alpha, the table is really GP-relative, not relative to the PC
1288 of the table, but we pretend that it is PC-relative; this should be OK,
1289 but we hsould try to find some better way sometime. */
1290 #define CASE_VECTOR_PC_RELATIVE
1291
1292 /* Specify the tree operation to be used to convert reals to integers. */
1293 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1294
1295 /* This is the kind of divide that is easiest to do in the general case. */
1296 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1297
1298 /* Define this as 1 if `char' should by default be signed; else as 0. */
1299 #define DEFAULT_SIGNED_CHAR 1
1300
1301 /* This flag, if defined, says the same insns that convert to a signed fixnum
1302 also convert validly to an unsigned one.
1303
1304 We actually lie a bit here as overflow conditions are different. But
1305 they aren't being checked anyway. */
1306
1307 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1308
1309 /* Max number of bytes we can move to or from memory
1310 in one reasonably fast instruction. */
1311
1312 #define MOVE_MAX 8
1313
1314 /* Largest number of bytes of an object that can be placed in a register.
1315 On the Alpha we have plenty of registers, so use TImode. */
1316 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1317
1318 /* Nonzero if access to memory by bytes is no faster than for words.
1319 Also non-zero if doing byte operations (specifically shifts) in registers
1320 is undesirable.
1321
1322 On the Alpha, we want to not use the byte operation and instead use
1323 masking operations to access fields; these will save instructions. */
1324
1325 #define SLOW_BYTE_ACCESS 1
1326
1327 /* Define if operations between registers always perform the operation
1328 on the full register even if a narrower mode is specified. */
1329 #define WORD_REGISTER_OPERATIONS
1330
1331 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1332 will either zero-extend or sign-extend. The value of this macro should
1333 be the code that says which one of the two operations is implicitly
1334 done, NIL if none. */
1335 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1336
1337 /* Define if loading short immediate values into registers sign extends. */
1338 #define SHORT_IMMEDIATES_SIGN_EXTEND
1339
1340 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1341 is done just by pretending it is already truncated. */
1342 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1343
1344 /* We assume that the store-condition-codes instructions store 0 for false
1345 and some other value for true. This is the value stored for true. */
1346
1347 #define STORE_FLAG_VALUE 1
1348
1349 /* Define the value returned by a floating-point comparison instruction. */
1350
1351 #define FLOAT_STORE_FLAG_VALUE 0.5
1352
1353 /* Canonicalize a comparison from one we don't have to one we do have. */
1354
1355 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1356 do { \
1357 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1358 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1359 { \
1360 rtx tem = (OP0); \
1361 (OP0) = (OP1); \
1362 (OP1) = tem; \
1363 (CODE) = swap_condition (CODE); \
1364 } \
1365 if (((CODE) == LT || (CODE) == LTU) \
1366 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1367 { \
1368 (CODE) = (CODE) == LT ? LE : LEU; \
1369 (OP1) = GEN_INT (255); \
1370 } \
1371 } while (0)
1372
1373 /* Specify the machine mode that pointers have.
1374 After generation of rtl, the compiler makes no further distinction
1375 between pointers and any other objects of this machine mode. */
1376 #define Pmode DImode
1377
1378 /* Mode of a function address in a call instruction (for indexing purposes). */
1379
1380 #define FUNCTION_MODE Pmode
1381
1382 /* Define this if addresses of constant functions
1383 shouldn't be put through pseudo regs where they can be cse'd.
1384 Desirable on machines where ordinary constants are expensive
1385 but a CALL with constant address is cheap.
1386
1387 We define this on the Alpha so that gen_call and gen_call_value
1388 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1389 then copy it into a register, thus actually letting the address be
1390 cse'ed. */
1391
1392 #define NO_FUNCTION_CSE
1393
1394 /* Define this to be nonzero if shift instructions ignore all but the low-order
1395 few bits. */
1396 #define SHIFT_COUNT_TRUNCATED 1
1397
1398 /* Use atexit for static constructors/destructors, instead of defining
1399 our own exit function. */
1400 #define HAVE_ATEXIT
1401
1402 /* Compute the cost of computing a constant rtl expression RTX
1403 whose rtx-code is CODE. The body of this macro is a portion
1404 of a switch statement. If the code is computed here,
1405 return it with a return statement. Otherwise, break from the switch.
1406
1407 If this is an 8-bit constant, return zero since it can be used
1408 nearly anywhere with no cost. If it is a valid operand for an
1409 ADD or AND, likewise return 0 if we know it will be used in that
1410 context. Otherwise, return 2 since it might be used there later.
1411 All other constants take at least two insns. */
1412
1413 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1414 case CONST_INT: \
1415 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
1416 return 0; \
1417 case CONST_DOUBLE: \
1418 if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1419 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1420 return 0; \
1421 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1422 return 2; \
1423 else \
1424 return COSTS_N_INSNS (2); \
1425 case CONST: \
1426 case SYMBOL_REF: \
1427 case LABEL_REF: \
1428 return COSTS_N_INSNS (3);
1429
1430 /* Provide the costs of a rtl expression. This is in the body of a
1431 switch on CODE. */
1432
1433 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1434 case PLUS: \
1435 case MINUS: \
1436 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1437 return COSTS_N_INSNS (6); \
1438 else if (GET_CODE (XEXP (X, 0)) == MULT \
1439 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1440 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1441 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1442 break; \
1443 case MULT: \
1444 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1445 return COSTS_N_INSNS (6); \
1446 return COSTS_N_INSNS (23); \
1447 case ASHIFT: \
1448 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1449 && INTVAL (XEXP (X, 1)) <= 3) \
1450 break; \
1451 /* ... fall through ... */ \
1452 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1453 return COSTS_N_INSNS (2); \
1454 case DIV: \
1455 case UDIV: \
1456 case MOD: \
1457 case UMOD: \
1458 if (GET_MODE (X) == SFmode) \
1459 return COSTS_N_INSNS (34); \
1460 else if (GET_MODE (X) == DFmode) \
1461 return COSTS_N_INSNS (63); \
1462 else \
1463 return COSTS_N_INSNS (70); \
1464 case MEM: \
1465 return COSTS_N_INSNS (3);
1466 \f
1467 /* Control the assembler format that we output. */
1468
1469 /* Output at beginning of assembler file. */
1470
1471 #define ASM_FILE_START(FILE) \
1472 { \
1473 alpha_write_verstamp (FILE); \
1474 fprintf (FILE, "\t.set noreorder\n"); \
1475 fprintf (FILE, "\t.set volatile\n"); \
1476 fprintf (FILE, "\t.set noat\n"); \
1477 ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
1478 }
1479
1480 /* Output to assembler file text saying following lines
1481 may contain character constants, extra white space, comments, etc. */
1482
1483 #define ASM_APP_ON ""
1484
1485 /* Output to assembler file text saying following lines
1486 no longer contain unusual constructs. */
1487
1488 #define ASM_APP_OFF ""
1489
1490 #define TEXT_SECTION_ASM_OP ".text"
1491
1492 /* Output before read-only data. */
1493
1494 #define READONLY_DATA_SECTION_ASM_OP ".rdata"
1495
1496 /* Output before writable data. */
1497
1498 #define DATA_SECTION_ASM_OP ".data"
1499
1500 /* Define an extra section for read-only data, a routine to enter it, and
1501 indicate that it is for read-only data. */
1502
1503 #define EXTRA_SECTIONS readonly_data
1504
1505 #define EXTRA_SECTION_FUNCTIONS \
1506 void \
1507 literal_section () \
1508 { \
1509 if (in_section != readonly_data) \
1510 { \
1511 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1512 in_section = readonly_data; \
1513 } \
1514 } \
1515
1516 #define READONLY_DATA_SECTION literal_section
1517
1518 /* If we are referencing a function that is static, make the SYMBOL_REF
1519 special. We use this to see indicate we can branch to this function
1520 without setting PV or restoring GP. */
1521
1522 #define ENCODE_SECTION_INFO(DECL) \
1523 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
1524 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1525
1526 /* How to refer to registers in assembler output.
1527 This sequence is indexed by compiler's hard-register-number (see above). */
1528
1529 #define REGISTER_NAMES \
1530 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1531 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1532 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1533 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1534 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1535 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1536 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1537 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1538
1539 /* How to renumber registers for dbx and gdb. */
1540
1541 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1542
1543 /* This is how to output the definition of a user-level label named NAME,
1544 such as the label on a static function or variable NAME. */
1545
1546 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1547 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1548
1549 /* This is how to output a command to make the user-level label named NAME
1550 defined for reference from other files. */
1551
1552 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1553 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1554
1555 /* This is how to output a reference to a user-level label named NAME.
1556 `assemble_name' uses this. */
1557
1558 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1559 fprintf (FILE, "%s", NAME)
1560
1561 /* This is how to output an internal numbered label where
1562 PREFIX is the class of label and NUM is the number within the class. */
1563
1564 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1565 if ((PREFIX)[0] == 'L') \
1566 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1567 else \
1568 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1569
1570 /* This is how to output a label for a jump table. Arguments are the same as
1571 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1572 passed. */
1573
1574 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1575 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1576
1577 /* This is how to store into the string LABEL
1578 the symbol_ref name of an internal numbered label where
1579 PREFIX is the class of label and NUM is the number within the class.
1580 This is suitable for output with `assemble_name'. */
1581
1582 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1583 if ((PREFIX)[0] == 'L') \
1584 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1585 else \
1586 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1587
1588 /* This is how to output an assembler line defining a `double' constant. */
1589
1590 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1591 { \
1592 if (REAL_VALUE_ISINF (VALUE) \
1593 || REAL_VALUE_ISNAN (VALUE) \
1594 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1595 { \
1596 long t[2]; \
1597 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1598 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
1599 t[1] & 0xffffffff, t[0] & 0xffffffff); \
1600 } \
1601 else \
1602 { \
1603 char str[30]; \
1604 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1605 fprintf (FILE, "\t.t_floating %s\n", str); \
1606 } \
1607 }
1608
1609 /* This is how to output an assembler line defining a `float' constant. */
1610
1611 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1612 { \
1613 if (REAL_VALUE_ISINF (VALUE) \
1614 || REAL_VALUE_ISNAN (VALUE) \
1615 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1616 { \
1617 long t; \
1618 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1619 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1620 } \
1621 else \
1622 { \
1623 char str[30]; \
1624 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1625 fprintf (FILE, "\t.s_floating %s\n", str); \
1626 } \
1627 }
1628
1629 /* This is how to output an assembler line defining an `int' constant. */
1630
1631 #define ASM_OUTPUT_INT(FILE,VALUE) \
1632 fprintf (FILE, "\t.long %d\n", \
1633 (GET_CODE (VALUE) == CONST_INT \
1634 ? INTVAL (VALUE) & 0xffffffff : (abort (), 0)))
1635
1636 /* This is how to output an assembler line defining a `long' constant. */
1637
1638 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1639 ( fprintf (FILE, "\t.quad "), \
1640 output_addr_const (FILE, (VALUE)), \
1641 fprintf (FILE, "\n"))
1642
1643 /* Likewise for `char' and `short' constants. */
1644
1645 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1646 fprintf (FILE, "\t.word %d\n", \
1647 (GET_CODE (VALUE) == CONST_INT \
1648 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1649
1650 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1651 fprintf (FILE, "\t.byte %d\n", \
1652 (GET_CODE (VALUE) == CONST_INT \
1653 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1654
1655 /* We use the default ASCII-output routine, except that we don't write more
1656 than 50 characters since the assembler doesn't support very long lines. */
1657
1658 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1659 do { \
1660 FILE *_hide_asm_out_file = (MYFILE); \
1661 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1662 int _hide_thissize = (MYLENGTH); \
1663 int _size_so_far = 0; \
1664 { \
1665 FILE *asm_out_file = _hide_asm_out_file; \
1666 unsigned char *p = _hide_p; \
1667 int thissize = _hide_thissize; \
1668 int i; \
1669 fprintf (asm_out_file, "\t.ascii \""); \
1670 \
1671 for (i = 0; i < thissize; i++) \
1672 { \
1673 register int c = p[i]; \
1674 \
1675 if (_size_so_far ++ > 50 && i < thissize - 4) \
1676 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1677 \
1678 if (c == '\"' || c == '\\') \
1679 putc ('\\', asm_out_file); \
1680 if (c >= ' ' && c < 0177) \
1681 putc (c, asm_out_file); \
1682 else \
1683 { \
1684 fprintf (asm_out_file, "\\%o", c); \
1685 /* After an octal-escape, if a digit follows, \
1686 terminate one string constant and start another. \
1687 The Vax assembler fails to stop reading the escape \
1688 after three digits, so this is the only way we \
1689 can get it to parse the data properly. */ \
1690 if (i < thissize - 1 \
1691 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1692 fprintf (asm_out_file, "\"\n\t.ascii \""); \
1693 } \
1694 } \
1695 fprintf (asm_out_file, "\"\n"); \
1696 } \
1697 } \
1698 while (0)
1699
1700 /* This is how to output an insn to push a register on the stack.
1701 It need not be very fast code. */
1702
1703 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1704 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1705 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1706 (REGNO) & 31);
1707
1708 /* This is how to output an insn to pop a register from the stack.
1709 It need not be very fast code. */
1710
1711 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1712 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1713 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1714 (REGNO) & 31);
1715
1716 /* This is how to output an assembler line for a numeric constant byte. */
1717
1718 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1719 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1720
1721 /* This is how to output an element of a case-vector that is absolute.
1722 (Alpha does not use such vectors, but we must define this macro anyway.) */
1723
1724 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1725
1726 /* This is how to output an element of a case-vector that is relative. */
1727
1728 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1729 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
1730
1731 /* This is how to output an assembler line
1732 that says to advance the location counter
1733 to a multiple of 2**LOG bytes. */
1734
1735 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1736 if ((LOG) != 0) \
1737 fprintf (FILE, "\t.align %d\n", LOG);
1738
1739 /* This is how to advance the location counter by SIZE bytes. */
1740
1741 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1742 fprintf (FILE, "\t.space %d\n", (SIZE))
1743
1744 /* This says how to output an assembler line
1745 to define a global common symbol. */
1746
1747 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1748 ( fputs ("\t.comm ", (FILE)), \
1749 assemble_name ((FILE), (NAME)), \
1750 fprintf ((FILE), ",%d\n", (SIZE)))
1751
1752 /* This says how to output an assembler line
1753 to define a local common symbol. */
1754
1755 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1756 ( fputs ("\t.lcomm ", (FILE)), \
1757 assemble_name ((FILE), (NAME)), \
1758 fprintf ((FILE), ",%d\n", (SIZE)))
1759
1760 /* Store in OUTPUT a string (made with alloca) containing
1761 an assembler-name for a local static variable named NAME.
1762 LABELNO is an integer which is different for each call. */
1763
1764 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1765 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1766 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1767
1768 /* Define the parentheses used to group arithmetic operations
1769 in assembler code. */
1770
1771 #define ASM_OPEN_PAREN "("
1772 #define ASM_CLOSE_PAREN ")"
1773
1774 /* Define results of standard character escape sequences. */
1775 #define TARGET_BELL 007
1776 #define TARGET_BS 010
1777 #define TARGET_TAB 011
1778 #define TARGET_NEWLINE 012
1779 #define TARGET_VT 013
1780 #define TARGET_FF 014
1781 #define TARGET_CR 015
1782
1783 /* Print operand X (an rtx) in assembler syntax to file FILE.
1784 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1785 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1786
1787 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1788
1789 /* Determine which codes are valid without a following integer. These must
1790 not be alphabetic. */
1791
1792 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1793 \f
1794 /* Print a memory address as an operand to reference that memory location. */
1795
1796 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1797 { rtx addr = (ADDR); \
1798 int basereg = 31; \
1799 HOST_WIDE_INT offset = 0; \
1800 \
1801 if (GET_CODE (addr) == AND) \
1802 addr = XEXP (addr, 0); \
1803 \
1804 if (GET_CODE (addr) == REG) \
1805 basereg = REGNO (addr); \
1806 else if (GET_CODE (addr) == CONST_INT) \
1807 offset = INTVAL (addr); \
1808 else if (GET_CODE (addr) == PLUS \
1809 && GET_CODE (XEXP (addr, 0)) == REG \
1810 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1811 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1812 else \
1813 abort (); \
1814 \
1815 fprintf (FILE, "%d($%d)", offset, basereg); \
1816 }
1817 /* Define the codes that are matched by predicates in alpha.c. */
1818
1819 #define PREDICATE_CODES \
1820 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1821 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1822 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
1823 {"cint8_operand", {CONST_INT}}, \
1824 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1825 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1826 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1827 {"const48_operand", {CONST_INT}}, \
1828 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1829 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1830 {"mode_mask_operand", {CONST_INT}}, \
1831 {"mul8_operand", {CONST_INT}}, \
1832 {"mode_width_operand", {CONST_INT}}, \
1833 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1834 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1835 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1836 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1837 {"fp0_operand", {CONST_DOUBLE}}, \
1838 {"current_file_function_operand", {SYMBOL_REF}}, \
1839 {"call_operand", {REG, SYMBOL_REF}}, \
1840 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1841 SYMBOL_REF, CONST, LABEL_REF}}, \
1842 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1843 SYMBOL_REF, CONST, LABEL_REF}}, \
1844 {"aligned_memory_operand", {MEM}}, \
1845 {"unaligned_memory_operand", {MEM}}, \
1846 {"any_memory_operand", {MEM}},
1847 \f
1848 /* Tell collect that the object format is ECOFF. */
1849 #define OBJECT_FORMAT_COFF
1850 #define EXTENDED_COFF
1851
1852 /* If we use NM, pass -g to it so it only lists globals. */
1853 #define NM_FLAGS "-pg"
1854
1855 /* Definitions for debugging. */
1856
1857 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1858 #define DBX_DEBUGGING_INFO /* generate embedded stabs */
1859 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1860
1861 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1862 #define PREFERRED_DEBUGGING_TYPE \
1863 ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
1864 #endif
1865
1866
1867 /* Correct the offset of automatic variables and arguments. Note that
1868 the Alpha debug format wants all automatic variables and arguments
1869 to be in terms of two different offsets from the virtual frame pointer,
1870 which is the stack pointer before any adjustment in the function.
1871 The offset for the argument pointer is fixed for the native compiler,
1872 it is either zero (for the no arguments case) or large enough to hold
1873 all argument registers.
1874 The offset for the auto pointer is the fourth argument to the .frame
1875 directive (local_offset).
1876 To stay compatible with the native tools we use the same offsets
1877 from the virtual frame pointer and adjust the debugger arg/auto offsets
1878 accordingly. These debugger offsets are set up in output_prolog. */
1879
1880 long alpha_arg_offset;
1881 long alpha_auto_offset;
1882 #define DEBUGGER_AUTO_OFFSET(X) \
1883 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1884 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1885
1886
1887 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1888 alpha_output_lineno (STREAM, LINE)
1889 extern void alpha_output_lineno ();
1890
1891 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1892 alpha_output_filename (STREAM, NAME)
1893 extern void alpha_output_filename ();
1894
1895
1896 /* mips-tfile.c limits us to strings of one page. */
1897 #define DBX_CONTIN_LENGTH 4000
1898
1899 /* By default, turn on GDB extensions. */
1900 #define DEFAULT_GDB_EXTENSIONS 1
1901
1902 /* If we are smuggling stabs through the ALPHA ECOFF object
1903 format, put a comment in front of the .stab<x> operation so
1904 that the ALPHA assembler does not choke. The mips-tfile program
1905 will correctly put the stab into the object file. */
1906
1907 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
1908 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
1909 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
1910
1911 /* Forward references to tags are allowed. */
1912 #define SDB_ALLOW_FORWARD_REFERENCES
1913
1914 /* Unknown tags are also allowed. */
1915 #define SDB_ALLOW_UNKNOWN_REFERENCES
1916
1917 #define PUT_SDB_DEF(a) \
1918 do { \
1919 fprintf (asm_out_file, "\t%s.def\t", \
1920 (TARGET_GAS) ? "" : "#"); \
1921 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1922 fputc (';', asm_out_file); \
1923 } while (0)
1924
1925 #define PUT_SDB_PLAIN_DEF(a) \
1926 do { \
1927 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1928 (TARGET_GAS) ? "" : "#", (a)); \
1929 } while (0)
1930
1931 #define PUT_SDB_TYPE(a) \
1932 do { \
1933 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1934 } while (0)
1935
1936 /* For block start and end, we create labels, so that
1937 later we can figure out where the correct offset is.
1938 The normal .ent/.end serve well enough for functions,
1939 so those are just commented out. */
1940
1941 extern int sdb_label_count; /* block start/end next label # */
1942
1943 #define PUT_SDB_BLOCK_START(LINE) \
1944 do { \
1945 fprintf (asm_out_file, \
1946 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1947 sdb_label_count, \
1948 (TARGET_GAS) ? "" : "#", \
1949 sdb_label_count, \
1950 (LINE)); \
1951 sdb_label_count++; \
1952 } while (0)
1953
1954 #define PUT_SDB_BLOCK_END(LINE) \
1955 do { \
1956 fprintf (asm_out_file, \
1957 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1958 sdb_label_count, \
1959 (TARGET_GAS) ? "" : "#", \
1960 sdb_label_count, \
1961 (LINE)); \
1962 sdb_label_count++; \
1963 } while (0)
1964
1965 #define PUT_SDB_FUNCTION_START(LINE)
1966
1967 #define PUT_SDB_FUNCTION_END(LINE)
1968
1969 #define PUT_SDB_EPILOGUE_END(NAME)
1970
1971 /* Specify to run a post-processor, mips-tfile after the assembler
1972 has run to stuff the ecoff debug information into the object file.
1973 This is needed because the Alpha assembler provides no way
1974 of specifying such information in the assembly file. */
1975
1976 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
1977
1978 #define ASM_FINAL_SPEC "\
1979 %{malpha-as: %{!mno-mips-tfile: \
1980 \n mips-tfile %{v*: -v} \
1981 %{K: -I %b.o~} \
1982 %{!K: %{save-temps: -I %b.o~}} \
1983 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1984 %{.s:%i} %{!.s:%g.s}}}"
1985
1986 #else
1987 #define ASM_FINAL_SPEC "\
1988 %{!mgas: %{!mno-mips-tfile: \
1989 \n mips-tfile %{v*: -v} \
1990 %{K: -I %b.o~} \
1991 %{!K: %{save-temps: -I %b.o~}} \
1992 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1993 %{.s:%i} %{!.s:%g.s}}}"
1994
1995 #endif
1996
1997 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1998 mips-tdump.c to print them out.
1999
2000 These must match the corresponding definitions in gdb/mipsread.c.
2001 Unfortunately, gcc and gdb do not currently share any directories. */
2002
2003 #define CODE_MASK 0x8F300
2004 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2005 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2006 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2007
2008 /* Override some mips-tfile definitions. */
2009
2010 #define SHASH_SIZE 511
2011 #define THASH_SIZE 55
2012
2013 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2014
2015 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2016
2017 /* The system headers under OSF/1 are C++-aware. */
2018 #define NO_IMPLICIT_EXTERN_C
2019
2020 /* The linker will stick __main into the .init section. */
2021 #define HAS_INIT_SECTION
2022 #define LD_INIT_SWITCH "-init"
2023 #define LD_FINI_SWITCH "-fini"
2024
2025 /* We do want to link in libgcc when building shared libraries under OSF/1. */
2026 #define LIBGCC_SPEC "-lgcc"
This page took 0.144567 seconds and 4 git commands to generate.