]> gcc.gnu.org Git - gcc.git/blob - gcc/config/alpha/alpha.h
99ef24ea9769681aeba3b846883bab533ac7d1c3
[gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* For C++ we need to ensure that __LANGUAGE_C_PLUS_PLUS is defined independent
25 of the source file extension. */
26 #define CPLUSPLUS_CPP_SPEC "\
27 -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus \
28 %(cpp) \
29 "
30
31 /* Write out the correct language type definition for the header files.
32 Unless we have assembler language, write out the symbols for C. */
33 #define CPP_SPEC "\
34 %{!undef:\
35 %{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
36 %{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
37 %{!.S:%{!.cc:%{!.cxx:%{!.cpp:%{!.cp:%{!.c++:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}}}}\
38 %{mieee:-D_IEEE_FP }\
39 %{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
40 %(cpp_cpu) %(cpp_subtarget)"
41
42 #ifndef CPP_SUBTARGET_SPEC
43 #define CPP_SUBTARGET_SPEC ""
44 #endif
45
46 #define WORD_SWITCH_TAKES_ARG(STR) \
47 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
48
49 /* Print subsidiary information on the compiler version in use. */
50 #define TARGET_VERSION
51
52 /* Run-time compilation parameters selecting different hardware subsets. */
53
54 /* Which processor to schedule for. The cpu attribute defines a list that
55 mirrors this list, so changes to alpha.md must be made at the same time. */
56
57 enum processor_type
58 {PROCESSOR_EV4, /* 2106[46]{a,} */
59 PROCESSOR_EV5, /* 21164{a,pc,} */
60 PROCESSOR_EV6}; /* 21264 */
61
62 extern enum processor_type alpha_cpu;
63
64 enum alpha_trap_precision
65 {
66 ALPHA_TP_PROG, /* No precision (default). */
67 ALPHA_TP_FUNC, /* Trap contained within originating function. */
68 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
69 };
70
71 enum alpha_fp_rounding_mode
72 {
73 ALPHA_FPRM_NORM, /* Normal rounding mode. */
74 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
75 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
76 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
77 };
78
79 enum alpha_fp_trap_mode
80 {
81 ALPHA_FPTM_N, /* Normal trap mode. */
82 ALPHA_FPTM_U, /* Underflow traps enabled. */
83 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
84 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
85 };
86
87 extern int target_flags;
88
89 extern enum alpha_trap_precision alpha_tp;
90 extern enum alpha_fp_rounding_mode alpha_fprm;
91 extern enum alpha_fp_trap_mode alpha_fptm;
92
93 /* This means that floating-point support exists in the target implementation
94 of the Alpha architecture. This is usually the default. */
95 #define MASK_FP (1 << 0)
96 #define TARGET_FP (target_flags & MASK_FP)
97
98 /* This means that floating-point registers are allowed to be used. Note
99 that Alpha implementations without FP operations are required to
100 provide the FP registers. */
101
102 #define MASK_FPREGS (1 << 1)
103 #define TARGET_FPREGS (target_flags & MASK_FPREGS)
104
105 /* This means that gas is used to process the assembler file. */
106
107 #define MASK_GAS (1 << 2)
108 #define TARGET_GAS (target_flags & MASK_GAS)
109
110 /* This means that we should mark procedures as IEEE conformant. */
111
112 #define MASK_IEEE_CONFORMANT (1 << 3)
113 #define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
114
115 /* This means we should be IEEE-compliant except for inexact. */
116
117 #define MASK_IEEE (1 << 4)
118 #define TARGET_IEEE (target_flags & MASK_IEEE)
119
120 /* This means we should be fully IEEE-compliant. */
121
122 #define MASK_IEEE_WITH_INEXACT (1 << 5)
123 #define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
124
125 /* This means we must construct all constants rather than emitting
126 them as literal data. */
127
128 #define MASK_BUILD_CONSTANTS (1 << 6)
129 #define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
130
131 /* This means we handle floating points in VAX F- (float)
132 or G- (double) Format. */
133
134 #define MASK_FLOAT_VAX (1 << 7)
135 #define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
136
137 /* This means that the processor has byte and half word loads and stores
138 (the BWX extension). */
139
140 #define MASK_BWX (1 << 8)
141 #define TARGET_BWX (target_flags & MASK_BWX)
142
143 /* This means that the processor has the MAX extension. */
144 #define MASK_MAX (1 << 9)
145 #define TARGET_MAX (target_flags & MASK_MAX)
146
147 /* This means that the processor has the FIX extension. */
148 #define MASK_FIX (1 << 10)
149 #define TARGET_FIX (target_flags & MASK_FIX)
150
151 /* This means that the processor has the CIX extension. */
152 #define MASK_CIX (1 << 11)
153 #define TARGET_CIX (target_flags & MASK_CIX)
154
155 /* This means use !literal style explicit relocations. */
156 #define MASK_EXPLICIT_RELOCS (1 << 12)
157 #define TARGET_EXPLICIT_RELOCS (target_flags & MASK_EXPLICIT_RELOCS)
158
159 /* This means use 16-bit relocations to .sdata/.sbss. */
160 #define MASK_SMALL_DATA (1 << 13)
161 #define TARGET_SMALL_DATA (target_flags & MASK_SMALL_DATA)
162
163 /* This means that the processor is an EV5, EV56, or PCA56.
164 Unlike alpha_cpu this is not affected by -mtune= setting. */
165 #define MASK_CPU_EV5 (1 << 28)
166 #define TARGET_CPU_EV5 (target_flags & MASK_CPU_EV5)
167
168 /* Likewise for EV6. */
169 #define MASK_CPU_EV6 (1 << 29)
170 #define TARGET_CPU_EV6 (target_flags & MASK_CPU_EV6)
171
172 /* This means we support the .arch directive in the assembler. Only
173 defined in TARGET_CPU_DEFAULT. */
174 #define MASK_SUPPORT_ARCH (1 << 30)
175 #define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
176
177 /* These are for target os support and cannot be changed at runtime. */
178 #define TARGET_ABI_WINDOWS_NT 0
179 #define TARGET_ABI_OPEN_VMS 0
180 #define TARGET_ABI_UNICOSMK 0
181 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
182 && !TARGET_ABI_OPEN_VMS \
183 && !TARGET_ABI_UNICOSMK)
184
185 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
186 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
187 #endif
188 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
189 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
190 #endif
191 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
192 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
193 #endif
194 #ifndef TARGET_HAS_XFLOATING_LIBS
195 #define TARGET_HAS_XFLOATING_LIBS 0
196 #endif
197 #ifndef TARGET_PROFILING_NEEDS_GP
198 #define TARGET_PROFILING_NEEDS_GP 0
199 #endif
200 #ifndef TARGET_LD_BUGGY_LDGP
201 #define TARGET_LD_BUGGY_LDGP 0
202 #endif
203 #ifndef TARGET_FIXUP_EV5_PREFETCH
204 #define TARGET_FIXUP_EV5_PREFETCH 0
205 #endif
206
207 /* Macro to define tables used to set the flags.
208 This is a list in braces of pairs in braces,
209 each pair being { "NAME", VALUE }
210 where VALUE is the bits to set or minus the bits to clear.
211 An empty string NAME is used to identify the default VALUE. */
212
213 #define TARGET_SWITCHES \
214 { {"no-soft-float", MASK_FP, N_("Use hardware fp")}, \
215 {"soft-float", - MASK_FP, N_("Do not use hardware fp")}, \
216 {"fp-regs", MASK_FPREGS, N_("Use fp registers")}, \
217 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), \
218 N_("Do not use fp registers")}, \
219 {"alpha-as", -MASK_GAS, N_("Do not assume GAS")}, \
220 {"gas", MASK_GAS, N_("Assume GAS")}, \
221 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
222 N_("Request IEEE-conformant math library routines (OSF/1)")}, \
223 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
224 N_("Emit IEEE-conformant code, without inexact exceptions")}, \
225 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
226 N_("Emit IEEE-conformant code, with inexact exceptions")}, \
227 {"build-constants", MASK_BUILD_CONSTANTS, \
228 N_("Do not emit complex integer constants to read-only memory")}, \
229 {"float-vax", MASK_FLOAT_VAX, N_("Use VAX fp")}, \
230 {"float-ieee", -MASK_FLOAT_VAX, N_("Do not use VAX fp")}, \
231 {"bwx", MASK_BWX, N_("Emit code for the byte/word ISA extension")}, \
232 {"no-bwx", -MASK_BWX, ""}, \
233 {"max", MASK_MAX, \
234 N_("Emit code for the motion video ISA extension")}, \
235 {"no-max", -MASK_MAX, ""}, \
236 {"fix", MASK_FIX, \
237 N_("Emit code for the fp move and sqrt ISA extension")}, \
238 {"no-fix", -MASK_FIX, ""}, \
239 {"cix", MASK_CIX, N_("Emit code for the counting ISA extension")}, \
240 {"no-cix", -MASK_CIX, ""}, \
241 {"explicit-relocs", MASK_EXPLICIT_RELOCS, \
242 N_("Emit code using explicit relocation directives")}, \
243 {"no-explicit-relocs", -MASK_EXPLICIT_RELOCS, ""}, \
244 {"small-data", MASK_SMALL_DATA, \
245 N_("Emit 16-bit relocations to the small data areas")}, \
246 {"large-data", -MASK_SMALL_DATA, \
247 N_("Emit 32-bit relocations to the small data areas")}, \
248 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT \
249 | TARGET_DEFAULT_EXPLICIT_RELOCS, ""} }
250
251 #define TARGET_DEFAULT MASK_FP|MASK_FPREGS
252
253 #ifndef TARGET_CPU_DEFAULT
254 #define TARGET_CPU_DEFAULT 0
255 #endif
256
257 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
258 #ifdef HAVE_AS_EXPLICIT_RELOCS
259 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
260 #else
261 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
262 #endif
263 #endif
264
265 extern const char *alpha_cpu_string; /* For -mcpu= */
266 extern const char *alpha_tune_string; /* For -mtune= */
267 extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
268 extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
269 extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
270 extern const char *alpha_mlat_string; /* For -mmemory-latency= */
271
272 #define TARGET_OPTIONS \
273 { \
274 {"cpu=", &alpha_cpu_string, \
275 N_("Use features of and schedule given CPU")}, \
276 {"tune=", &alpha_tune_string, \
277 N_("Schedule given CPU")}, \
278 {"fp-rounding-mode=", &alpha_fprm_string, \
279 N_("Control the generated fp rounding mode")}, \
280 {"fp-trap-mode=", &alpha_fptm_string, \
281 N_("Control the IEEE trap mode")}, \
282 {"trap-precision=", &alpha_tp_string, \
283 N_("Control the precision given to fp exceptions")}, \
284 {"memory-latency=", &alpha_mlat_string, \
285 N_("Tune expected memory latency")}, \
286 }
287
288 /* Attempt to describe CPU characteristics to the preprocessor. */
289
290 /* Corresponding to amask... */
291 #define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu=bwx"
292 #define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu=max"
293 #define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu=fix"
294 #define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu=cix"
295
296 /* Corresponding to implver... */
297 #define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu=ev4"
298 #define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu=ev5"
299 #define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu=ev6"
300
301 /* Common combinations. */
302 #define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
303 #define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
304 #define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
305 #define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
306 #define CPP_CPU_EV6_SPEC \
307 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
308 #define CPP_CPU_EV67_SPEC \
309 "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix) %(cpp_am_cix)"
310
311 #ifndef CPP_CPU_DEFAULT_SPEC
312 # if TARGET_CPU_DEFAULT & MASK_CPU_EV6
313 # if TARGET_CPU_DEFAULT & MASK_CIX
314 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV67_SPEC
315 # else
316 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
317 # endif
318 # else
319 # if TARGET_CPU_DEFAULT & MASK_CPU_EV5
320 # if TARGET_CPU_DEFAULT & MASK_MAX
321 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
322 # else
323 # if TARGET_CPU_DEFAULT & MASK_BWX
324 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
325 # else
326 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
327 # endif
328 # endif
329 # else
330 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
331 # endif
332 # endif
333 #endif /* CPP_CPU_DEFAULT_SPEC */
334
335 #ifndef CPP_CPU_SPEC
336 #define CPP_CPU_SPEC "\
337 %{!undef:-Acpu=alpha -Amachine=alpha -D__alpha -D__alpha__ \
338 %{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
339 %{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
340 %{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
341 %{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
342 %{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
343 %{mcpu=ev67|mcpu=21264a:%(cpp_cpu_ev67) }\
344 %{!mcpu*:%(cpp_cpu_default) }}"
345 #endif
346
347 /* This macro defines names of additional specifications to put in the
348 specs that can be used in various specifications like CC1_SPEC. Its
349 definition is an initializer with a subgrouping for each command option.
350
351 Each subgrouping contains a string constant, that defines the
352 specification name, and a string constant that used by the GNU CC driver
353 program.
354
355 Do not define this macro if it does not need to do anything. */
356
357 #ifndef SUBTARGET_EXTRA_SPECS
358 #define SUBTARGET_EXTRA_SPECS
359 #endif
360
361 #define EXTRA_SPECS \
362 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
363 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
364 { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
365 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
366 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
367 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
368 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
369 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
370 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
371 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
372 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
373 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
374 { "cpp_cpu_ev67", CPP_CPU_EV67_SPEC }, \
375 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
376 { "cpp_cpu", CPP_CPU_SPEC }, \
377 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
378 SUBTARGET_EXTRA_SPECS
379
380
381 /* Sometimes certain combinations of command options do not make sense
382 on a particular target machine. You can define a macro
383 `OVERRIDE_OPTIONS' to take account of this. This macro, if
384 defined, is executed once just after all the command options have
385 been parsed.
386
387 On the Alpha, it is used to translate target-option strings into
388 numeric values. */
389
390 #define OVERRIDE_OPTIONS override_options ()
391
392
393 /* Define this macro to change register usage conditional on target flags.
394
395 On the Alpha, we use this to disable the floating-point registers when
396 they don't exist. */
397
398 #define CONDITIONAL_REGISTER_USAGE \
399 { \
400 int i; \
401 if (! TARGET_FPREGS) \
402 for (i = 32; i < 63; i++) \
403 fixed_regs[i] = call_used_regs[i] = 1; \
404 }
405
406
407 /* Show we can debug even without a frame pointer. */
408 #define CAN_DEBUG_WITHOUT_FP
409 \f
410 /* target machine storage layout */
411
412 /* Define to enable software floating point emulation. */
413 #define REAL_ARITHMETIC
414
415 /* Define the size of `int'. The default is the same as the word size. */
416 #define INT_TYPE_SIZE 32
417
418 /* Define the size of `long long'. The default is the twice the word size. */
419 #define LONG_LONG_TYPE_SIZE 64
420
421 /* The two floating-point formats we support are S-floating, which is
422 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
423 and `long double' are T. */
424
425 #define FLOAT_TYPE_SIZE 32
426 #define DOUBLE_TYPE_SIZE 64
427 #define LONG_DOUBLE_TYPE_SIZE 64
428
429 #define WCHAR_TYPE "unsigned int"
430 #define WCHAR_TYPE_SIZE 32
431
432 /* Define this macro if it is advisable to hold scalars in registers
433 in a wider mode than that declared by the program. In such cases,
434 the value is constrained to be within the bounds of the declared
435 type, but kept valid in the wider mode. The signedness of the
436 extension may differ from that of the type.
437
438 For Alpha, we always store objects in a full register. 32-bit objects
439 are always sign-extended, but smaller objects retain their signedness. */
440
441 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
442 if (GET_MODE_CLASS (MODE) == MODE_INT \
443 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
444 { \
445 if ((MODE) == SImode) \
446 (UNSIGNEDP) = 0; \
447 (MODE) = DImode; \
448 }
449
450 /* Define this if function arguments should also be promoted using the above
451 procedure. */
452
453 #define PROMOTE_FUNCTION_ARGS
454
455 /* Likewise, if the function return value is promoted. */
456
457 #define PROMOTE_FUNCTION_RETURN
458
459 /* Define this if most significant bit is lowest numbered
460 in instructions that operate on numbered bit-fields.
461
462 There are no such instructions on the Alpha, but the documentation
463 is little endian. */
464 #define BITS_BIG_ENDIAN 0
465
466 /* Define this if most significant byte of a word is the lowest numbered.
467 This is false on the Alpha. */
468 #define BYTES_BIG_ENDIAN 0
469
470 /* Define this if most significant word of a multiword number is lowest
471 numbered.
472
473 For Alpha we can decide arbitrarily since there are no machine instructions
474 for them. Might as well be consistent with bytes. */
475 #define WORDS_BIG_ENDIAN 0
476
477 /* number of bits in an addressable storage unit */
478 #define BITS_PER_UNIT 8
479
480 /* Width in bits of a "word", which is the contents of a machine register.
481 Note that this is not necessarily the width of data type `int';
482 if using 16-bit ints on a 68000, this would still be 32.
483 But on a machine with 16-bit registers, this would be 16. */
484 #define BITS_PER_WORD 64
485
486 /* Width of a word, in units (bytes). */
487 #define UNITS_PER_WORD 8
488
489 /* Width in bits of a pointer.
490 See also the macro `Pmode' defined below. */
491 #define POINTER_SIZE 64
492
493 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
494 #define PARM_BOUNDARY 64
495
496 /* Boundary (in *bits*) on which stack pointer should be aligned. */
497 #define STACK_BOUNDARY 64
498
499 /* Allocation boundary (in *bits*) for the code of a function. */
500 #define FUNCTION_BOUNDARY 32
501
502 /* Alignment of field after `int : 0' in a structure. */
503 #define EMPTY_FIELD_BOUNDARY 64
504
505 /* Every structure's size must be a multiple of this. */
506 #define STRUCTURE_SIZE_BOUNDARY 8
507
508 /* A bitfield declared as `int' forces `int' alignment for the struct. */
509 #define PCC_BITFIELD_TYPE_MATTERS 1
510
511 /* No data type wants to be aligned rounder than this. */
512 #define BIGGEST_ALIGNMENT 128
513
514 /* For atomic access to objects, must have at least 32-bit alignment
515 unless the machine has byte operations. */
516 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
517
518 /* Align all constants and variables to at least a word boundary so
519 we can pick up pieces of them faster. */
520 /* ??? Only if block-move stuff knows about different source/destination
521 alignment. */
522 #if 0
523 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
524 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
525 #endif
526
527 /* Set this non-zero if move instructions will actually fail to work
528 when given unaligned data.
529
530 Since we get an error message when we do one, call them invalid. */
531
532 #define STRICT_ALIGNMENT 1
533
534 /* Set this non-zero if unaligned move instructions are extremely slow.
535
536 On the Alpha, they trap. */
537
538 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
539 \f
540 /* Standard register usage. */
541
542 /* Number of actual hardware registers.
543 The hardware registers are assigned numbers for the compiler
544 from 0 to just below FIRST_PSEUDO_REGISTER.
545 All registers that the compiler knows about must be given numbers,
546 even those that are not normally considered general registers.
547
548 We define all 32 integer registers, even though $31 is always zero,
549 and all 32 floating-point registers, even though $f31 is also
550 always zero. We do not bother defining the FP status register and
551 there are no other registers.
552
553 Since $31 is always zero, we will use register number 31 as the
554 argument pointer. It will never appear in the generated code
555 because we will always be eliminating it in favor of the stack
556 pointer or hardware frame pointer.
557
558 Likewise, we use $f31 for the frame pointer, which will always
559 be eliminated in favor of the hardware frame pointer or the
560 stack pointer. */
561
562 #define FIRST_PSEUDO_REGISTER 64
563
564 /* 1 for registers that have pervasive standard uses
565 and are not available for the register allocator. */
566
567 #define FIXED_REGISTERS \
568 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
569 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
570 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
571 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
572
573 /* 1 for registers not available across function calls.
574 These must include the FIXED_REGISTERS and also any
575 registers that can be used without being saved.
576 The latter must include the registers where values are returned
577 and the register where structure-value addresses are passed.
578 Aside from that, you can include as many other registers as you like. */
579 #define CALL_USED_REGISTERS \
580 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
581 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
582 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
583 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
584
585 /* List the order in which to allocate registers. Each register must be
586 listed once, even those in FIXED_REGISTERS.
587
588 We allocate in the following order:
589 $f10-$f15 (nonsaved floating-point register)
590 $f22-$f30 (likewise)
591 $f21-$f16 (likewise, but input args)
592 $f0 (nonsaved, but return value)
593 $f1 (nonsaved, but immediate before saved)
594 $f2-$f9 (saved floating-point registers)
595 $1-$8 (nonsaved integer registers)
596 $22-$25 (likewise)
597 $28 (likewise)
598 $0 (likewise, but return value)
599 $21-$16 (likewise, but input args)
600 $27 (procedure value in OSF, nonsaved in NT)
601 $9-$14 (saved integer registers)
602 $26 (return PC)
603 $15 (frame pointer)
604 $29 (global pointer)
605 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
606
607 #define REG_ALLOC_ORDER \
608 {42, 43, 44, 45, 46, 47, \
609 54, 55, 56, 57, 58, 59, 60, 61, 62, \
610 53, 52, 51, 50, 49, 48, \
611 32, 33, \
612 34, 35, 36, 37, 38, 39, 40, 41, \
613 1, 2, 3, 4, 5, 6, 7, 8, \
614 22, 23, 24, 25, \
615 28, \
616 0, \
617 21, 20, 19, 18, 17, 16, \
618 27, \
619 9, 10, 11, 12, 13, 14, \
620 26, \
621 15, \
622 29, \
623 30, 31, 63 }
624
625 /* Return number of consecutive hard regs needed starting at reg REGNO
626 to hold something of mode MODE.
627 This is ordinarily the length in words of a value of mode MODE
628 but can be less for certain modes in special long registers. */
629
630 #define HARD_REGNO_NREGS(REGNO, MODE) \
631 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
632
633 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
634 On Alpha, the integer registers can hold any mode. The floating-point
635 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
636 or 8-bit values. */
637
638 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
639 ((REGNO) >= 32 && (REGNO) <= 62 \
640 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
641 : 1)
642
643 /* A C expression that is nonzero if a value of mode
644 MODE1 is accessible in mode MODE2 without copying.
645
646 This asymmetric test is true when MODE1 could be put
647 in an FP register but MODE2 could not. */
648
649 #define MODES_TIEABLE_P(MODE1, MODE2) \
650 (HARD_REGNO_MODE_OK (32, (MODE1)) \
651 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
652 : 1)
653
654 /* Specify the registers used for certain standard purposes.
655 The values of these macros are register numbers. */
656
657 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
658 /* #define PC_REGNUM */
659
660 /* Register to use for pushing function arguments. */
661 #define STACK_POINTER_REGNUM 30
662
663 /* Base register for access to local variables of the function. */
664 #define HARD_FRAME_POINTER_REGNUM 15
665
666 /* Value should be nonzero if functions must have frame pointers.
667 Zero means the frame pointer need not be set up (and parms
668 may be accessed via the stack pointer) in functions that seem suitable.
669 This is computed in `reload', in reload1.c. */
670 #define FRAME_POINTER_REQUIRED 0
671
672 /* Base register for access to arguments of the function. */
673 #define ARG_POINTER_REGNUM 31
674
675 /* Base register for access to local variables of function. */
676 #define FRAME_POINTER_REGNUM 63
677
678 /* Register in which static-chain is passed to a function.
679
680 For the Alpha, this is based on an example; the calling sequence
681 doesn't seem to specify this. */
682 #define STATIC_CHAIN_REGNUM 1
683
684 /* The register number of the register used to address a table of
685 static data addresses in memory. */
686 #define PIC_OFFSET_TABLE_REGNUM 29
687
688 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
689 is clobbered by calls. */
690 /* ??? It is and it isn't. It's required to be valid for a given
691 function when the function returns. It isn't clobbered by
692 current_file functions. Moreover, we do not expose the ldgp
693 until after reload, so we're probably safe. */
694 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
695
696 /* Register in which address to store a structure value
697 arrives in the function. On the Alpha, the address is passed
698 as a hidden argument. */
699 #define STRUCT_VALUE 0
700 \f
701 /* Define the classes of registers for register constraints in the
702 machine description. Also define ranges of constants.
703
704 One of the classes must always be named ALL_REGS and include all hard regs.
705 If there is more than one class, another class must be named NO_REGS
706 and contain no registers.
707
708 The name GENERAL_REGS must be the name of a class (or an alias for
709 another name such as ALL_REGS). This is the class of registers
710 that is allowed by "g" or "r" in a register constraint.
711 Also, registers outside this class are allocated only when
712 instructions express preferences for them.
713
714 The classes must be numbered in nondecreasing order; that is,
715 a larger-numbered class must never be contained completely
716 in a smaller-numbered class.
717
718 For any two classes, it is very desirable that there be another
719 class that represents their union. */
720
721 enum reg_class {
722 NO_REGS, R24_REG, R25_REG, R27_REG,
723 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
724 LIM_REG_CLASSES
725 };
726
727 #define N_REG_CLASSES (int) LIM_REG_CLASSES
728
729 /* Give names of register classes as strings for dump file. */
730
731 #define REG_CLASS_NAMES \
732 {"NO_REGS", "R24_REG", "R25_REG", "R27_REG", \
733 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
734
735 /* Define which registers fit in which classes.
736 This is an initializer for a vector of HARD_REG_SET
737 of length N_REG_CLASSES. */
738
739 #define REG_CLASS_CONTENTS \
740 { {0x00000000, 0x00000000}, /* NO_REGS */ \
741 {0x01000000, 0x00000000}, /* R24_REG */ \
742 {0x02000000, 0x00000000}, /* R25_REG */ \
743 {0x08000000, 0x00000000}, /* R27_REG */ \
744 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
745 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
746 {0xffffffff, 0xffffffff} }
747
748 /* The same information, inverted:
749 Return the class number of the smallest class containing
750 reg number REGNO. This could be a conditional expression
751 or could index an array. */
752
753 #define REGNO_REG_CLASS(REGNO) \
754 ((REGNO) == 24 ? R24_REG \
755 : (REGNO) == 25 ? R25_REG \
756 : (REGNO) == 27 ? R27_REG \
757 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
758 : GENERAL_REGS)
759
760 /* The class value for index registers, and the one for base regs. */
761 #define INDEX_REG_CLASS NO_REGS
762 #define BASE_REG_CLASS GENERAL_REGS
763
764 /* Get reg_class from a letter such as appears in the machine description. */
765
766 #define REG_CLASS_FROM_LETTER(C) \
767 ((C) == 'a' ? R24_REG \
768 : (C) == 'b' ? R25_REG \
769 : (C) == 'c' ? R27_REG \
770 : (C) == 'f' ? FLOAT_REGS \
771 : NO_REGS)
772
773 /* Define this macro to change register usage conditional on target flags. */
774 /* #define CONDITIONAL_REGISTER_USAGE */
775
776 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
777 can be used to stand for particular ranges of immediate operands.
778 This macro defines what the ranges are.
779 C is the letter, and VALUE is a constant value.
780 Return 1 if VALUE is in the range specified by C.
781
782 For Alpha:
783 `I' is used for the range of constants most insns can contain.
784 `J' is the constant zero.
785 `K' is used for the constant in an LDA insn.
786 `L' is used for the constant in a LDAH insn.
787 `M' is used for the constants that can be AND'ed with using a ZAP insn.
788 `N' is used for complemented 8-bit constants.
789 `O' is used for negated 8-bit constants.
790 `P' is used for the constants 1, 2 and 3. */
791
792 #define CONST_OK_FOR_LETTER_P alpha_const_ok_for_letter_p
793
794 /* Similar, but for floating or large integer constants, and defining letters
795 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
796
797 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
798 that is the operand of a ZAP insn. */
799
800 #define CONST_DOUBLE_OK_FOR_LETTER_P alpha_const_double_ok_for_letter_p
801
802 /* Optional extra constraints for this machine.
803
804 For the Alpha, `Q' means that this is a memory operand but not a
805 reference to an unaligned location.
806
807 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
808 function.
809
810 'S' is a 6-bit constant (valid for a shift insn).
811
812 'T' is a HIGH.
813
814 'U' is a symbolic operand. */
815
816 #define EXTRA_CONSTRAINT alpha_extra_constraint
817
818 /* Given an rtx X being reloaded into a reg required to be
819 in class CLASS, return the class of reg to actually use.
820 In general this is just CLASS; but on some machines
821 in some cases it is preferable to use a more restrictive class. */
822
823 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
824
825 /* Loading and storing HImode or QImode values to and from memory
826 usually requires a scratch register. The exceptions are loading
827 QImode and HImode from an aligned address to a general register
828 unless byte instructions are permitted.
829 We also cannot load an unaligned address or a paradoxical SUBREG into an
830 FP register. */
831
832 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
833 secondary_reload_class((CLASS), (MODE), (IN), 1)
834
835 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
836 secondary_reload_class((CLASS), (MODE), (OUT), 0)
837
838 /* If we are copying between general and FP registers, we need a memory
839 location unless the FIX extension is available. */
840
841 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
842 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
843 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
844
845 /* Specify the mode to be used for memory when a secondary memory
846 location is needed. If MODE is floating-point, use it. Otherwise,
847 widen to a word like the default. This is needed because we always
848 store integers in FP registers in quadword format. This whole
849 area is very tricky! */
850 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
851 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
852 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
853 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
854
855 /* Return the maximum number of consecutive registers
856 needed to represent mode MODE in a register of class CLASS. */
857
858 #define CLASS_MAX_NREGS(CLASS, MODE) \
859 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
860
861 /* If defined, gives a class of registers that cannot be used as the
862 operand of a SUBREG that changes the mode of the object illegally. */
863
864 #define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
865
866 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
867
868 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
869 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
870
871 /* Define the cost of moving between registers of various classes. Moving
872 between FLOAT_REGS and anything else except float regs is expensive.
873 In fact, we make it quite expensive because we really don't want to
874 do these moves unless it is clearly worth it. Optimizations may
875 reduce the impact of not being able to allocate a pseudo to a
876 hard register. */
877
878 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
879 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
880 ? 2 \
881 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
882
883 /* A C expressions returning the cost of moving data of MODE from a register to
884 or from memory.
885
886 On the Alpha, bump this up a bit. */
887
888 extern int alpha_memory_latency;
889 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
890
891 /* Provide the cost of a branch. Exact meaning under development. */
892 #define BRANCH_COST 5
893 \f
894 /* Stack layout; function entry, exit and calling. */
895
896 /* Define this if pushing a word on the stack
897 makes the stack pointer a smaller address. */
898 #define STACK_GROWS_DOWNWARD
899
900 /* Define this if the nominal address of the stack frame
901 is at the high-address end of the local variables;
902 that is, each additional local variable allocated
903 goes at a more negative offset in the frame. */
904 /* #define FRAME_GROWS_DOWNWARD */
905
906 /* Offset within stack frame to start allocating local variables at.
907 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
908 first local allocated. Otherwise, it is the offset to the BEGINNING
909 of the first local allocated. */
910
911 #define STARTING_FRAME_OFFSET 0
912
913 /* If we generate an insn to push BYTES bytes,
914 this says how many the stack pointer really advances by.
915 On Alpha, don't define this because there are no push insns. */
916 /* #define PUSH_ROUNDING(BYTES) */
917
918 /* Define this to be nonzero if stack checking is built into the ABI. */
919 #define STACK_CHECK_BUILTIN 1
920
921 /* Define this if the maximum size of all the outgoing args is to be
922 accumulated and pushed during the prologue. The amount can be
923 found in the variable current_function_outgoing_args_size. */
924 #define ACCUMULATE_OUTGOING_ARGS 1
925
926 /* Offset of first parameter from the argument pointer register value. */
927
928 #define FIRST_PARM_OFFSET(FNDECL) 0
929
930 /* Definitions for register eliminations.
931
932 We have two registers that can be eliminated on the Alpha. First, the
933 frame pointer register can often be eliminated in favor of the stack
934 pointer register. Secondly, the argument pointer register can always be
935 eliminated; it is replaced with either the stack or frame pointer. */
936
937 /* This is an array of structures. Each structure initializes one pair
938 of eliminable registers. The "from" register number is given first,
939 followed by "to". Eliminations of the same "from" register are listed
940 in order of preference. */
941
942 #define ELIMINABLE_REGS \
943 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
944 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
945 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
946 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
947
948 /* Given FROM and TO register numbers, say whether this elimination is allowed.
949 Frame pointer elimination is automatically handled.
950
951 All eliminations are valid since the cases where FP can't be
952 eliminated are already handled. */
953
954 #define CAN_ELIMINATE(FROM, TO) 1
955
956 /* Round up to a multiple of 16 bytes. */
957 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
958
959 /* Define the offset between two registers, one to be eliminated, and the other
960 its replacement, at the start of a routine. */
961 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
962 { if ((FROM) == FRAME_POINTER_REGNUM) \
963 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
964 + alpha_sa_size ()); \
965 else if ((FROM) == ARG_POINTER_REGNUM) \
966 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
967 + alpha_sa_size () \
968 + (ALPHA_ROUND (get_frame_size () \
969 + current_function_pretend_args_size) \
970 - current_function_pretend_args_size)); \
971 else \
972 abort (); \
973 }
974
975 /* Define this if stack space is still allocated for a parameter passed
976 in a register. */
977 /* #define REG_PARM_STACK_SPACE */
978
979 /* Value is the number of bytes of arguments automatically
980 popped when returning from a subroutine call.
981 FUNDECL is the declaration node of the function (as a tree),
982 FUNTYPE is the data type of the function (as a tree),
983 or for a library call it is an identifier node for the subroutine name.
984 SIZE is the number of bytes of arguments passed on the stack. */
985
986 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
987
988 /* Define how to find the value returned by a function.
989 VALTYPE is the data type of the value (as a tree).
990 If the precise function being called is known, FUNC is its FUNCTION_DECL;
991 otherwise, FUNC is 0.
992
993 On Alpha the value is found in $0 for integer functions and
994 $f0 for floating-point functions. */
995
996 #define FUNCTION_VALUE(VALTYPE, FUNC) \
997 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
998 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
999 || POINTER_TYPE_P (VALTYPE)) \
1000 ? word_mode : TYPE_MODE (VALTYPE), \
1001 ((TARGET_FPREGS \
1002 && (TREE_CODE (VALTYPE) == REAL_TYPE \
1003 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
1004 ? 32 : 0))
1005
1006 /* Define how to find the value returned by a library function
1007 assuming the value has mode MODE. */
1008
1009 #define LIBCALL_VALUE(MODE) \
1010 gen_rtx_REG (MODE, \
1011 (TARGET_FPREGS \
1012 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1013 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1014 ? 32 : 0))
1015
1016 /* The definition of this macro implies that there are cases where
1017 a scalar value cannot be returned in registers.
1018
1019 For the Alpha, any structure or union type is returned in memory, as
1020 are integers whose size is larger than 64 bits. */
1021
1022 #define RETURN_IN_MEMORY(TYPE) \
1023 (TYPE_MODE (TYPE) == BLKmode \
1024 || TYPE_MODE (TYPE) == TFmode \
1025 || TYPE_MODE (TYPE) == TCmode \
1026 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1027
1028 /* 1 if N is a possible register number for a function value
1029 as seen by the caller. */
1030
1031 #define FUNCTION_VALUE_REGNO_P(N) \
1032 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1033
1034 /* 1 if N is a possible register number for function argument passing.
1035 On Alpha, these are $16-$21 and $f16-$f21. */
1036
1037 #define FUNCTION_ARG_REGNO_P(N) \
1038 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1039 \f
1040 /* Define a data type for recording info about an argument list
1041 during the scan of that argument list. This data type should
1042 hold all necessary information about the function itself
1043 and about the args processed so far, enough to enable macros
1044 such as FUNCTION_ARG to determine where the next arg should go.
1045
1046 On Alpha, this is a single integer, which is a number of words
1047 of arguments scanned so far.
1048 Thus 6 or more means all following args should go on the stack. */
1049
1050 #define CUMULATIVE_ARGS int
1051
1052 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1053 for a call to a function whose data type is FNTYPE.
1054 For a library call, FNTYPE is 0. */
1055
1056 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1057
1058 /* Define intermediate macro to compute the size (in registers) of an argument
1059 for the Alpha. */
1060
1061 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
1062 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
1063 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1064 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1065
1066 /* Update the data in CUM to advance over an argument
1067 of mode MODE and data type TYPE.
1068 (TYPE is null for libcalls where that information may not be available.) */
1069
1070 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1071 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1072 (CUM) = 6; \
1073 else \
1074 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1075
1076 /* Determine where to put an argument to a function.
1077 Value is zero to push the argument on the stack,
1078 or a hard register in which to store the argument.
1079
1080 MODE is the argument's machine mode.
1081 TYPE is the data type of the argument (as a tree).
1082 This is null for libcalls where that information may
1083 not be available.
1084 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1085 the preceding args and about the function being called.
1086 NAMED is nonzero if this argument is a named parameter
1087 (otherwise it is an extra parameter matching an ellipsis).
1088
1089 On Alpha the first 6 words of args are normally in registers
1090 and the rest are pushed. */
1091
1092 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1093 function_arg((CUM), (MODE), (TYPE), (NAMED))
1094
1095 /* A C expression that indicates when an argument must be passed by
1096 reference. If nonzero for an argument, a copy of that argument is
1097 made in memory and a pointer to the argument is passed instead of
1098 the argument itself. The pointer is passed in whatever way is
1099 appropriate for passing a pointer to that type. */
1100
1101 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1102 ((MODE) == TFmode || (MODE) == TCmode)
1103
1104 /* Specify the padding direction of arguments.
1105
1106 On the Alpha, we must pad upwards in order to be able to pass args in
1107 registers. */
1108
1109 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1110
1111 /* For an arg passed partly in registers and partly in memory,
1112 this is the number of registers used.
1113 For args passed entirely in registers or entirely in memory, zero. */
1114
1115 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1116 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1117 ? 6 - (CUM) : 0)
1118
1119 /* Perform any needed actions needed for a function that is receiving a
1120 variable number of arguments.
1121
1122 CUM is as above.
1123
1124 MODE and TYPE are the mode and type of the current parameter.
1125
1126 PRETEND_SIZE is a variable that should be set to the amount of stack
1127 that must be pushed by the prolog to pretend that our caller pushed
1128 it.
1129
1130 Normally, this macro will push all remaining incoming registers on the
1131 stack and set PRETEND_SIZE to the length of the registers pushed.
1132
1133 On the Alpha, we allocate space for all 12 arg registers, but only
1134 push those that are remaining.
1135
1136 However, if NO registers need to be saved, don't allocate any space.
1137 This is not only because we won't need the space, but because AP includes
1138 the current_pretend_args_size and we don't want to mess up any
1139 ap-relative addresses already made.
1140
1141 If we are not to use the floating-point registers, save the integer
1142 registers where we would put the floating-point registers. This is
1143 not the most efficient way to implement varargs with just one register
1144 class, but it isn't worth doing anything more efficient in this rare
1145 case. */
1146
1147 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1148 { if ((CUM) < 6) \
1149 { \
1150 if (! (NO_RTL)) \
1151 { \
1152 rtx tmp; int set = get_varargs_alias_set (); \
1153 tmp = gen_rtx_MEM (BLKmode, \
1154 plus_constant (virtual_incoming_args_rtx, \
1155 ((CUM) + 6)* UNITS_PER_WORD)); \
1156 set_mem_alias_set (tmp, set); \
1157 move_block_from_reg \
1158 (16 + CUM, tmp, \
1159 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
1160 \
1161 tmp = gen_rtx_MEM (BLKmode, \
1162 plus_constant (virtual_incoming_args_rtx, \
1163 (CUM) * UNITS_PER_WORD)); \
1164 set_mem_alias_set (tmp, set); \
1165 move_block_from_reg \
1166 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp, \
1167 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
1168 } \
1169 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1170 } \
1171 }
1172
1173 /* We do not allow indirect calls to be optimized into sibling calls, nor
1174 can we allow a call to a function in a different compilation unit to
1175 be optimized into a sibcall. Except if the function is known not to
1176 return, in which case our caller doesn't care what the gp is. */
1177 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1178 (DECL \
1179 && ((TREE_ASM_WRITTEN (DECL) && !flag_pic) \
1180 || ! TREE_PUBLIC (DECL)))
1181
1182 /* Try to output insns to set TARGET equal to the constant C if it can be
1183 done in less than N insns. Do all computations in MODE. Returns the place
1184 where the output has been placed if it can be done and the insns have been
1185 emitted. If it would take more than N insns, zero is returned and no
1186 insns and emitted. */
1187
1188 /* Define the information needed to generate branch and scc insns. This is
1189 stored from the compare operation. Note that we can't use "rtx" here
1190 since it hasn't been defined! */
1191
1192 struct alpha_compare
1193 {
1194 struct rtx_def *op0, *op1;
1195 int fp_p;
1196 };
1197
1198 extern struct alpha_compare alpha_compare;
1199
1200 /* Make (or fake) .linkage entry for function call.
1201 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1202
1203 /* This macro defines the start of an assembly comment. */
1204
1205 #define ASM_COMMENT_START " #"
1206
1207 /* This macro produces the initial definition of a function. */
1208
1209 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1210 alpha_start_function(FILE,NAME,DECL);
1211
1212 /* This macro closes up a function definition for the assembler. */
1213
1214 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1215 alpha_end_function(FILE,NAME,DECL)
1216
1217 /* Output any profiling code before the prologue. */
1218
1219 #define PROFILE_BEFORE_PROLOGUE 1
1220
1221 /* Output assembler code to FILE to increment profiler label # LABELNO
1222 for profiling a function entry. Under OSF/1, profiling is enabled
1223 by simply passing -pg to the assembler and linker. */
1224
1225 #define FUNCTION_PROFILER(FILE, LABELNO)
1226
1227 /* Output assembler code to FILE to initialize this source file's
1228 basic block profiling info, if that has not already been done.
1229 This assumes that __bb_init_func doesn't garble a1-a5. */
1230
1231 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1232 do { \
1233 ASM_OUTPUT_REG_PUSH (FILE, 16); \
1234 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1235 fputs ("\tldq $26,0($16)\n", (FILE)); \
1236 fputs ("\tbne $26,1f\n", (FILE)); \
1237 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1238 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1239 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1240 fputs ("1:\n", (FILE)); \
1241 ASM_OUTPUT_REG_POP (FILE, 16); \
1242 } while (0);
1243
1244 /* Output assembler code to FILE to increment the entry-count for
1245 the BLOCKNO'th basic block in this source file. */
1246
1247 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1248 do { \
1249 int blockn = (BLOCKNO); \
1250 fputs ("\tsubq $30,16,$30\n", (FILE)); \
1251 fputs ("\tstq $26,0($30)\n", (FILE)); \
1252 fputs ("\tstq $27,8($30)\n", (FILE)); \
1253 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1254 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1255 fputs ("\taddq $27,1,$27\n", (FILE)); \
1256 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1257 fputs ("\tldq $26,0($30)\n", (FILE)); \
1258 fputs ("\tldq $27,8($30)\n", (FILE)); \
1259 fputs ("\taddq $30,16,$30\n", (FILE)); \
1260 } while (0)
1261
1262
1263 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1264 the stack pointer does not matter. The value is tested only in
1265 functions that have frame pointers.
1266 No definition is equivalent to always zero. */
1267
1268 #define EXIT_IGNORE_STACK 1
1269
1270 /* Define registers used by the epilogue and return instruction. */
1271
1272 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
1273 \f
1274 /* Output assembler code for a block containing the constant parts
1275 of a trampoline, leaving space for the variable parts.
1276
1277 The trampoline should set the static chain pointer to value placed
1278 into the trampoline and should branch to the specified routine.
1279 Note that $27 has been set to the address of the trampoline, so we can
1280 use it for addressability of the two data items. */
1281
1282 #define TRAMPOLINE_TEMPLATE(FILE) \
1283 do { \
1284 fprintf (FILE, "\tldq $1,24($27)\n"); \
1285 fprintf (FILE, "\tldq $27,16($27)\n"); \
1286 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1287 fprintf (FILE, "\tnop\n"); \
1288 fprintf (FILE, "\t.quad 0,0\n"); \
1289 } while (0)
1290
1291 /* Section in which to place the trampoline. On Alpha, instructions
1292 may only be placed in a text segment. */
1293
1294 #define TRAMPOLINE_SECTION text_section
1295
1296 /* Length in units of the trampoline for entering a nested function. */
1297
1298 #define TRAMPOLINE_SIZE 32
1299
1300 /* The alignment of a trampoline, in bits. */
1301
1302 #define TRAMPOLINE_ALIGNMENT 64
1303
1304 /* Emit RTL insns to initialize the variable parts of a trampoline.
1305 FNADDR is an RTX for the address of the function's pure code.
1306 CXT is an RTX for the static chain value for the function. */
1307
1308 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1309 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
1310
1311 /* A C expression whose value is RTL representing the value of the return
1312 address for the frame COUNT steps up from the current frame.
1313 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1314 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
1315
1316 #define RETURN_ADDR_RTX alpha_return_addr
1317
1318 /* Before the prologue, RA lives in $26. */
1319 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
1320 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
1321
1322 /* Describe how we implement __builtin_eh_return. */
1323 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1324 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
1325 #define EH_RETURN_HANDLER_RTX \
1326 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1327 current_function_outgoing_args_size))
1328 \f
1329 /* Addressing modes, and classification of registers for them. */
1330
1331 /* #define HAVE_POST_INCREMENT 0 */
1332 /* #define HAVE_POST_DECREMENT 0 */
1333
1334 /* #define HAVE_PRE_DECREMENT 0 */
1335 /* #define HAVE_PRE_INCREMENT 0 */
1336
1337 /* Macros to check register numbers against specific register classes. */
1338
1339 /* These assume that REGNO is a hard or pseudo reg number.
1340 They give nonzero only if REGNO is a hard reg of the suitable class
1341 or a pseudo reg currently allocated to a suitable hard reg.
1342 Since they use reg_renumber, they are safe only once reg_renumber
1343 has been allocated, which happens in local-alloc.c. */
1344
1345 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1346 #define REGNO_OK_FOR_BASE_P(REGNO) \
1347 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1348 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1349 \f
1350 /* Maximum number of registers that can appear in a valid memory address. */
1351 #define MAX_REGS_PER_ADDRESS 1
1352
1353 /* Recognize any constant value that is a valid address. For the Alpha,
1354 there are only constants none since we want to use LDA to load any
1355 symbolic addresses into registers. */
1356
1357 #define CONSTANT_ADDRESS_P(X) \
1358 (GET_CODE (X) == CONST_INT \
1359 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1360
1361 /* Include all constant integers and constant doubles, but not
1362 floating-point, except for floating-point zero. */
1363
1364 #define LEGITIMATE_CONSTANT_P(X) \
1365 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1366 || (X) == CONST0_RTX (GET_MODE (X)))
1367
1368 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1369 and check its validity for a certain class.
1370 We have two alternate definitions for each of them.
1371 The usual definition accepts all pseudo regs; the other rejects
1372 them unless they have been allocated suitable hard regs.
1373 The symbol REG_OK_STRICT causes the latter definition to be used.
1374
1375 Most source files want to accept pseudo regs in the hope that
1376 they will get allocated to the class that the insn wants them to be in.
1377 Source files for reload pass need to be strict.
1378 After reload, it makes no difference, since pseudo regs have
1379 been eliminated by then. */
1380
1381 /* Nonzero if X is a hard reg that can be used as an index
1382 or if it is a pseudo reg. */
1383 #define REG_OK_FOR_INDEX_P(X) 0
1384
1385 /* Nonzero if X is a hard reg that can be used as a base reg
1386 or if it is a pseudo reg. */
1387 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
1388 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1389
1390 /* ??? Nonzero if X is the frame pointer, or some virtual register
1391 that may eliminate to the frame pointer. These will be allowed to
1392 have offsets greater than 32K. This is done because register
1393 elimination offsets will change the hi/lo split, and if we split
1394 before reload, we will require additional instructions. */
1395 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
1396 (REGNO (X) == 31 || REGNO (X) == 63 \
1397 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1398 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1399
1400 /* Nonzero if X is a hard reg that can be used as a base reg. */
1401 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1402
1403 #ifdef REG_OK_STRICT
1404 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
1405 #else
1406 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
1407 #endif
1408 \f
1409 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1410 valid memory address for an instruction. */
1411
1412 #ifdef REG_OK_STRICT
1413 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1414 do { \
1415 if (alpha_legitimate_address_p (MODE, X, 1)) \
1416 goto WIN; \
1417 } while (0)
1418 #else
1419 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1420 do { \
1421 if (alpha_legitimate_address_p (MODE, X, 0)) \
1422 goto WIN; \
1423 } while (0)
1424 #endif
1425
1426 /* Try machine-dependent ways of modifying an illegitimate address
1427 to be legitimate. If we find one, return the new, valid address.
1428 This macro is used in only one place: `memory_address' in explow.c. */
1429
1430 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1431 do { \
1432 rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE); \
1433 if (new_x) \
1434 { \
1435 X = new_x; \
1436 goto WIN; \
1437 } \
1438 } while (0)
1439
1440 /* Try a machine-dependent way of reloading an illegitimate address
1441 operand. If we find one, push the reload and jump to WIN. This
1442 macro is used in only one place: `find_reloads_address' in reload.c. */
1443
1444 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
1445 do { \
1446 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1447 if (new_x) \
1448 { \
1449 X = new_x; \
1450 goto WIN; \
1451 } \
1452 } while (0)
1453
1454 /* Go to LABEL if ADDR (a legitimate address expression)
1455 has an effect that depends on the machine mode it is used for.
1456 On the Alpha this is true only for the unaligned modes. We can
1457 simplify this test since we know that the address must be valid. */
1458
1459 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1460 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1461
1462 /* Compute the cost of an address. For the Alpha, all valid addresses are
1463 the same cost. */
1464
1465 #define ADDRESS_COST(X) 0
1466
1467 /* Machine-dependent reorg pass. */
1468 #define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1469 \f
1470 /* Specify the machine mode that this machine uses
1471 for the index in the tablejump instruction. */
1472 #define CASE_VECTOR_MODE SImode
1473
1474 /* Define as C expression which evaluates to nonzero if the tablejump
1475 instruction expects the table to contain offsets from the address of the
1476 table.
1477
1478 Do not define this if the table should contain absolute addresses.
1479 On the Alpha, the table is really GP-relative, not relative to the PC
1480 of the table, but we pretend that it is PC-relative; this should be OK,
1481 but we should try to find some better way sometime. */
1482 #define CASE_VECTOR_PC_RELATIVE 1
1483
1484 /* Define this as 1 if `char' should by default be signed; else as 0. */
1485 #define DEFAULT_SIGNED_CHAR 1
1486
1487 /* This flag, if defined, says the same insns that convert to a signed fixnum
1488 also convert validly to an unsigned one.
1489
1490 We actually lie a bit here as overflow conditions are different. But
1491 they aren't being checked anyway. */
1492
1493 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1494
1495 /* Max number of bytes we can move to or from memory
1496 in one reasonably fast instruction. */
1497
1498 #define MOVE_MAX 8
1499
1500 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1501 move-instruction pairs, we will do a movstr or libcall instead.
1502
1503 Without byte/word accesses, we want no more than four instructions;
1504 with, several single byte accesses are better. */
1505
1506 #define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1507
1508 /* Largest number of bytes of an object that can be placed in a register.
1509 On the Alpha we have plenty of registers, so use TImode. */
1510 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1511
1512 /* Nonzero if access to memory by bytes is no faster than for words.
1513 Also non-zero if doing byte operations (specifically shifts) in registers
1514 is undesirable.
1515
1516 On the Alpha, we want to not use the byte operation and instead use
1517 masking operations to access fields; these will save instructions. */
1518
1519 #define SLOW_BYTE_ACCESS 1
1520
1521 /* Define if operations between registers always perform the operation
1522 on the full register even if a narrower mode is specified. */
1523 #define WORD_REGISTER_OPERATIONS
1524
1525 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1526 will either zero-extend or sign-extend. The value of this macro should
1527 be the code that says which one of the two operations is implicitly
1528 done, NIL if none. */
1529 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1530
1531 /* Define if loading short immediate values into registers sign extends. */
1532 #define SHORT_IMMEDIATES_SIGN_EXTEND
1533
1534 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1535 is done just by pretending it is already truncated. */
1536 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1537
1538 /* We assume that the store-condition-codes instructions store 0 for false
1539 and some other value for true. This is the value stored for true. */
1540
1541 #define STORE_FLAG_VALUE 1
1542
1543 /* Define the value returned by a floating-point comparison instruction. */
1544
1545 #define FLOAT_STORE_FLAG_VALUE(MODE) \
1546 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1547
1548 /* Canonicalize a comparison from one we don't have to one we do have. */
1549
1550 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1551 do { \
1552 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1553 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1554 { \
1555 rtx tem = (OP0); \
1556 (OP0) = (OP1); \
1557 (OP1) = tem; \
1558 (CODE) = swap_condition (CODE); \
1559 } \
1560 if (((CODE) == LT || (CODE) == LTU) \
1561 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1562 { \
1563 (CODE) = (CODE) == LT ? LE : LEU; \
1564 (OP1) = GEN_INT (255); \
1565 } \
1566 } while (0)
1567
1568 /* Specify the machine mode that pointers have.
1569 After generation of rtl, the compiler makes no further distinction
1570 between pointers and any other objects of this machine mode. */
1571 #define Pmode DImode
1572
1573 /* Mode of a function address in a call instruction (for indexing purposes). */
1574
1575 #define FUNCTION_MODE Pmode
1576
1577 /* Define this if addresses of constant functions
1578 shouldn't be put through pseudo regs where they can be cse'd.
1579 Desirable on machines where ordinary constants are expensive
1580 but a CALL with constant address is cheap.
1581
1582 We define this on the Alpha so that gen_call and gen_call_value
1583 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1584 then copy it into a register, thus actually letting the address be
1585 cse'ed. */
1586
1587 #define NO_FUNCTION_CSE
1588
1589 /* Define this to be nonzero if shift instructions ignore all but the low-order
1590 few bits. */
1591 #define SHIFT_COUNT_TRUNCATED 1
1592
1593 /* Compute the cost of computing a constant rtl expression RTX
1594 whose rtx-code is CODE. The body of this macro is a portion
1595 of a switch statement. If the code is computed here,
1596 return it with a return statement. Otherwise, break from the switch.
1597
1598 If this is an 8-bit constant, return zero since it can be used
1599 nearly anywhere with no cost. If it is a valid operand for an
1600 ADD or AND, likewise return 0 if we know it will be used in that
1601 context. Otherwise, return 2 since it might be used there later.
1602 All other constants take at least two insns. */
1603
1604 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1605 case CONST_INT: \
1606 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
1607 return 0; \
1608 case CONST_DOUBLE: \
1609 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1610 return 0; \
1611 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1612 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1613 return 0; \
1614 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1615 return 2; \
1616 else \
1617 return COSTS_N_INSNS (2); \
1618 case CONST: \
1619 case SYMBOL_REF: \
1620 case LABEL_REF: \
1621 switch (alpha_cpu) \
1622 { \
1623 case PROCESSOR_EV4: \
1624 return COSTS_N_INSNS (3); \
1625 case PROCESSOR_EV5: \
1626 case PROCESSOR_EV6: \
1627 return COSTS_N_INSNS (2); \
1628 default: abort(); \
1629 }
1630
1631 /* Provide the costs of a rtl expression. This is in the body of a
1632 switch on CODE. */
1633
1634 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1635 case PLUS: case MINUS: \
1636 if (FLOAT_MODE_P (GET_MODE (X))) \
1637 switch (alpha_cpu) \
1638 { \
1639 case PROCESSOR_EV4: \
1640 return COSTS_N_INSNS (6); \
1641 case PROCESSOR_EV5: \
1642 case PROCESSOR_EV6: \
1643 return COSTS_N_INSNS (4); \
1644 default: abort(); \
1645 } \
1646 else if (GET_CODE (XEXP (X, 0)) == MULT \
1647 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1648 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1649 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1650 break; \
1651 case MULT: \
1652 switch (alpha_cpu) \
1653 { \
1654 case PROCESSOR_EV4: \
1655 if (FLOAT_MODE_P (GET_MODE (X))) \
1656 return COSTS_N_INSNS (6); \
1657 return COSTS_N_INSNS (23); \
1658 case PROCESSOR_EV5: \
1659 if (FLOAT_MODE_P (GET_MODE (X))) \
1660 return COSTS_N_INSNS (4); \
1661 else if (GET_MODE (X) == DImode) \
1662 return COSTS_N_INSNS (12); \
1663 else \
1664 return COSTS_N_INSNS (8); \
1665 case PROCESSOR_EV6: \
1666 if (FLOAT_MODE_P (GET_MODE (X))) \
1667 return COSTS_N_INSNS (4); \
1668 else \
1669 return COSTS_N_INSNS (7); \
1670 default: abort(); \
1671 } \
1672 case ASHIFT: \
1673 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1674 && INTVAL (XEXP (X, 1)) <= 3) \
1675 break; \
1676 /* ... fall through ... */ \
1677 case ASHIFTRT: case LSHIFTRT: \
1678 switch (alpha_cpu) \
1679 { \
1680 case PROCESSOR_EV4: \
1681 return COSTS_N_INSNS (2); \
1682 case PROCESSOR_EV5: \
1683 case PROCESSOR_EV6: \
1684 return COSTS_N_INSNS (1); \
1685 default: abort(); \
1686 } \
1687 case IF_THEN_ELSE: \
1688 switch (alpha_cpu) \
1689 { \
1690 case PROCESSOR_EV4: \
1691 case PROCESSOR_EV6: \
1692 return COSTS_N_INSNS (2); \
1693 case PROCESSOR_EV5: \
1694 return COSTS_N_INSNS (1); \
1695 default: abort(); \
1696 } \
1697 case DIV: case UDIV: case MOD: case UMOD: \
1698 switch (alpha_cpu) \
1699 { \
1700 case PROCESSOR_EV4: \
1701 if (GET_MODE (X) == SFmode) \
1702 return COSTS_N_INSNS (34); \
1703 else if (GET_MODE (X) == DFmode) \
1704 return COSTS_N_INSNS (63); \
1705 else \
1706 return COSTS_N_INSNS (70); \
1707 case PROCESSOR_EV5: \
1708 if (GET_MODE (X) == SFmode) \
1709 return COSTS_N_INSNS (15); \
1710 else if (GET_MODE (X) == DFmode) \
1711 return COSTS_N_INSNS (22); \
1712 else \
1713 return COSTS_N_INSNS (70); /* ??? */ \
1714 case PROCESSOR_EV6: \
1715 if (GET_MODE (X) == SFmode) \
1716 return COSTS_N_INSNS (12); \
1717 else if (GET_MODE (X) == DFmode) \
1718 return COSTS_N_INSNS (15); \
1719 else \
1720 return COSTS_N_INSNS (70); /* ??? */ \
1721 default: abort(); \
1722 } \
1723 case MEM: \
1724 switch (alpha_cpu) \
1725 { \
1726 case PROCESSOR_EV4: \
1727 case PROCESSOR_EV6: \
1728 return COSTS_N_INSNS (3); \
1729 case PROCESSOR_EV5: \
1730 return COSTS_N_INSNS (2); \
1731 default: abort(); \
1732 } \
1733 case NEG: case ABS: \
1734 if (! FLOAT_MODE_P (GET_MODE (X))) \
1735 break; \
1736 /* ... fall through ... */ \
1737 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1738 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
1739 switch (alpha_cpu) \
1740 { \
1741 case PROCESSOR_EV4: \
1742 return COSTS_N_INSNS (6); \
1743 case PROCESSOR_EV5: \
1744 case PROCESSOR_EV6: \
1745 return COSTS_N_INSNS (4); \
1746 default: abort(); \
1747 }
1748 \f
1749 /* Control the assembler format that we output. */
1750
1751 /* Output to assembler file text saying following lines
1752 may contain character constants, extra white space, comments, etc. */
1753 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1754
1755 /* Output to assembler file text saying following lines
1756 no longer contain unusual constructs. */
1757 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1758
1759 #define TEXT_SECTION_ASM_OP "\t.text"
1760
1761 /* Output before read-only data. */
1762
1763 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1764
1765 /* Output before writable data. */
1766
1767 #define DATA_SECTION_ASM_OP "\t.data"
1768
1769 /* Define an extra section for read-only data, a routine to enter it, and
1770 indicate that it is for read-only data.
1771
1772 The first time we enter the readonly data section for a file, we write
1773 eight bytes of zero. This works around a bug in DEC's assembler in
1774 some versions of OSF/1 V3.x. */
1775
1776 #define EXTRA_SECTIONS readonly_data
1777
1778 #define EXTRA_SECTION_FUNCTIONS \
1779 void \
1780 literal_section () \
1781 { \
1782 if (in_section != readonly_data) \
1783 { \
1784 static int firsttime = 1; \
1785 \
1786 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1787 if (firsttime) \
1788 { \
1789 firsttime = 0; \
1790 assemble_aligned_integer (8, const0_rtx); \
1791 } \
1792 \
1793 in_section = readonly_data; \
1794 } \
1795 } \
1796
1797 #define READONLY_DATA_SECTION literal_section
1798
1799 /* Define this macro if references to a symbol must be treated differently
1800 depending on something about the variable or function named by the symbol
1801 (such as what section it is in). */
1802
1803 #define ENCODE_SECTION_INFO(DECL) alpha_encode_section_info (DECL)
1804
1805 /* If a variable is weakened, made one only or moved into a different
1806 section, it may be necessary to redo the section info to move the
1807 variable out of sdata. */
1808
1809 #define REDO_SECTION_INFO_P(DECL) \
1810 ((TREE_CODE (DECL) == VAR_DECL) \
1811 && (DECL_ONE_ONLY (DECL) || DECL_WEAK (DECL) || DECL_COMMON (DECL) \
1812 || DECL_SECTION_NAME (DECL) != 0))
1813
1814 #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
1815 do { \
1816 (VAR) = (SYMBOL_NAME); \
1817 if ((VAR)[0] == '@') \
1818 (VAR) += 2; \
1819 if ((VAR)[0] == '*') \
1820 (VAR)++; \
1821 } while (0)
1822
1823 /* How to refer to registers in assembler output.
1824 This sequence is indexed by compiler's hard-register-number (see above). */
1825
1826 #define REGISTER_NAMES \
1827 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1828 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1829 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1830 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1831 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1832 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1833 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1834 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1835
1836 /* Strip name encoding when emitting labels. */
1837
1838 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1839 do { \
1840 const char *name_ = NAME; \
1841 if (*name_ == '@') \
1842 name_ += 2; \
1843 if (*name_ == '*') \
1844 name_++; \
1845 else \
1846 fputs (user_label_prefix, STREAM); \
1847 fputs (name_, STREAM); \
1848 } while (0)
1849
1850 /* This is how to output the definition of a user-level label named NAME,
1851 such as the label on a static function or variable NAME. */
1852
1853 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1854 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1855
1856 /* This is how to output a command to make the user-level label named NAME
1857 defined for reference from other files. */
1858
1859 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1860 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1861
1862 /* The prefix to add to user-visible assembler symbols. */
1863
1864 #define USER_LABEL_PREFIX ""
1865
1866 /* This is how to output an internal numbered label where
1867 PREFIX is the class of label and NUM is the number within the class. */
1868
1869 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1870 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
1871
1872 /* This is how to output a label for a jump table. Arguments are the same as
1873 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1874 passed. */
1875
1876 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1877 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1878
1879 /* This is how to store into the string LABEL
1880 the symbol_ref name of an internal numbered label where
1881 PREFIX is the class of label and NUM is the number within the class.
1882 This is suitable for output with `assemble_name'. */
1883
1884 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1885 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1886
1887 /* Check a floating-point value for validity for a particular machine mode. */
1888
1889 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
1890 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
1891
1892 /* We use the default ASCII-output routine, except that we don't write more
1893 than 50 characters since the assembler doesn't support very long lines. */
1894
1895 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1896 do { \
1897 FILE *_hide_asm_out_file = (MYFILE); \
1898 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1899 int _hide_thissize = (MYLENGTH); \
1900 int _size_so_far = 0; \
1901 { \
1902 FILE *asm_out_file = _hide_asm_out_file; \
1903 const unsigned char *p = _hide_p; \
1904 int thissize = _hide_thissize; \
1905 int i; \
1906 fprintf (asm_out_file, "\t.ascii \""); \
1907 \
1908 for (i = 0; i < thissize; i++) \
1909 { \
1910 register int c = p[i]; \
1911 \
1912 if (_size_so_far ++ > 50 && i < thissize - 4) \
1913 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1914 \
1915 if (c == '\"' || c == '\\') \
1916 putc ('\\', asm_out_file); \
1917 if (c >= ' ' && c < 0177) \
1918 putc (c, asm_out_file); \
1919 else \
1920 { \
1921 fprintf (asm_out_file, "\\%o", c); \
1922 /* After an octal-escape, if a digit follows, \
1923 terminate one string constant and start another. \
1924 The VAX assembler fails to stop reading the escape \
1925 after three digits, so this is the only way we \
1926 can get it to parse the data properly. */ \
1927 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1928 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1929 } \
1930 } \
1931 fprintf (asm_out_file, "\"\n"); \
1932 } \
1933 } \
1934 while (0)
1935
1936 /* This is how to output an insn to push a register on the stack.
1937 It need not be very fast code. */
1938
1939 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1940 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1941 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1942 (REGNO) & 31);
1943
1944 /* This is how to output an insn to pop a register from the stack.
1945 It need not be very fast code. */
1946
1947 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1948 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1949 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1950 (REGNO) & 31);
1951
1952 /* This is how to output an element of a case-vector that is absolute.
1953 (Alpha does not use such vectors, but we must define this macro anyway.) */
1954
1955 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1956
1957 /* This is how to output an element of a case-vector that is relative. */
1958
1959 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1960 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1961 (VALUE))
1962
1963 /* This is how to output an assembler line
1964 that says to advance the location counter
1965 to a multiple of 2**LOG bytes. */
1966
1967 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1968 if ((LOG) != 0) \
1969 fprintf (FILE, "\t.align %d\n", LOG);
1970
1971 /* This is how to advance the location counter by SIZE bytes. */
1972
1973 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1974 fprintf (FILE, "\t.space %d\n", (SIZE))
1975
1976 /* This says how to output an assembler line
1977 to define a global common symbol. */
1978
1979 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1980 ( fputs ("\t.comm ", (FILE)), \
1981 assemble_name ((FILE), (NAME)), \
1982 fprintf ((FILE), ",%d\n", (SIZE)))
1983
1984 /* This says how to output an assembler line
1985 to define a local common symbol. */
1986
1987 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1988 ( fputs ("\t.lcomm ", (FILE)), \
1989 assemble_name ((FILE), (NAME)), \
1990 fprintf ((FILE), ",%d\n", (SIZE)))
1991
1992 /* Store in OUTPUT a string (made with alloca) containing
1993 an assembler-name for a local static variable named NAME.
1994 LABELNO is an integer which is different for each call. */
1995
1996 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1997 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1998 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1999 \f
2000
2001 /* Print operand X (an rtx) in assembler syntax to file FILE.
2002 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2003 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2004
2005 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2006
2007 /* Determine which codes are valid without a following integer. These must
2008 not be alphabetic.
2009
2010 ~ Generates the name of the current function.
2011
2012 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
2013 attributes are examined to determine what is appropriate.
2014
2015 , Generates single precision suffix for floating point
2016 instructions (s for IEEE, f for VAX)
2017
2018 - Generates double precision suffix for floating point
2019 instructions (t for IEEE, g for VAX)
2020 */
2021
2022 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2023 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
2024 || (CODE) == '#' || (CODE) == '*')
2025 \f
2026 /* Print a memory address as an operand to reference that memory location. */
2027
2028 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2029 print_operand_address((FILE), (ADDR))
2030
2031 /* Define the codes that are matched by predicates in alpha.c. */
2032
2033 #define PREDICATE_CODES \
2034 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2035 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2036 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2037 {"cint8_operand", {CONST_INT}}, \
2038 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2039 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2040 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2041 {"const48_operand", {CONST_INT}}, \
2042 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2043 {"or_operand", {SUBREG, REG, CONST_INT}}, \
2044 {"mode_mask_operand", {CONST_INT}}, \
2045 {"mul8_operand", {CONST_INT}}, \
2046 {"mode_width_operand", {CONST_INT}}, \
2047 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2048 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2049 {"alpha_zero_comparison_operator", {EQ, NE, LE, LT, LEU, LTU}}, \
2050 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2051 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
2052 {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}}, \
2053 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2054 {"fp0_operand", {CONST_DOUBLE}}, \
2055 {"current_file_function_operand", {SYMBOL_REF}}, \
2056 {"direct_call_operand", {SYMBOL_REF}}, \
2057 {"local_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2058 {"small_symbolic_operand", {SYMBOL_REF, CONST}}, \
2059 {"global_symbolic_operand", {SYMBOL_REF, CONST}}, \
2060 {"call_operand", {REG, SYMBOL_REF}}, \
2061 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2062 SYMBOL_REF, CONST, LABEL_REF, HIGH}}, \
2063 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2064 SYMBOL_REF, CONST, LABEL_REF, HIGH}}, \
2065 {"some_ni_operand", {SUBREG, REG, MEM}}, \
2066 {"aligned_memory_operand", {MEM}}, \
2067 {"unaligned_memory_operand", {MEM}}, \
2068 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2069 {"any_memory_operand", {MEM}}, \
2070 {"hard_fp_register_operand", {SUBREG, REG}}, \
2071 {"hard_int_register_operand", {SUBREG, REG}}, \
2072 {"reg_not_elim_operand", {SUBREG, REG}}, \
2073 {"reg_no_subreg_operand", {REG}}, \
2074 {"addition_operation", {PLUS}}, \
2075 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2076 {"some_small_symbolic_mem_operand", {SET, PARALLEL}},
2077 \f
2078 /* Define the `__builtin_va_list' type for the ABI. */
2079 #define BUILD_VA_LIST_TYPE(VALIST) \
2080 (VALIST) = alpha_build_va_list ()
2081
2082 /* Implement `va_start' for varargs and stdarg. */
2083 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2084 alpha_va_start (stdarg, valist, nextarg)
2085
2086 /* Implement `va_arg'. */
2087 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2088 alpha_va_arg (valist, type)
2089 \f
2090 /* Tell collect that the object format is ECOFF. */
2091 #define OBJECT_FORMAT_COFF
2092 #define EXTENDED_COFF
2093
2094 /* If we use NM, pass -g to it so it only lists globals. */
2095 #define NM_FLAGS "-pg"
2096
2097 /* Definitions for debugging. */
2098
2099 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2100 #define DBX_DEBUGGING_INFO /* generate embedded stabs */
2101 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2102
2103 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
2104 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
2105 #endif
2106
2107
2108 /* Correct the offset of automatic variables and arguments. Note that
2109 the Alpha debug format wants all automatic variables and arguments
2110 to be in terms of two different offsets from the virtual frame pointer,
2111 which is the stack pointer before any adjustment in the function.
2112 The offset for the argument pointer is fixed for the native compiler,
2113 it is either zero (for the no arguments case) or large enough to hold
2114 all argument registers.
2115 The offset for the auto pointer is the fourth argument to the .frame
2116 directive (local_offset).
2117 To stay compatible with the native tools we use the same offsets
2118 from the virtual frame pointer and adjust the debugger arg/auto offsets
2119 accordingly. These debugger offsets are set up in output_prolog. */
2120
2121 extern long alpha_arg_offset;
2122 extern long alpha_auto_offset;
2123 #define DEBUGGER_AUTO_OFFSET(X) \
2124 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2125 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2126
2127
2128 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2129 alpha_output_lineno (STREAM, LINE)
2130
2131 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2132 alpha_output_filename (STREAM, NAME)
2133
2134 /* mips-tfile.c limits us to strings of one page. We must underestimate this
2135 number, because the real length runs past this up to the next
2136 continuation point. This is really a dbxout.c bug. */
2137 #define DBX_CONTIN_LENGTH 3000
2138
2139 /* By default, turn on GDB extensions. */
2140 #define DEFAULT_GDB_EXTENSIONS 1
2141
2142 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2143 #define NO_DBX_FUNCTION_END 1
2144
2145 /* If we are smuggling stabs through the ALPHA ECOFF object
2146 format, put a comment in front of the .stab<x> operation so
2147 that the ALPHA assembler does not choke. The mips-tfile program
2148 will correctly put the stab into the object file. */
2149
2150 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
2151 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
2152 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
2153
2154 /* Forward references to tags are allowed. */
2155 #define SDB_ALLOW_FORWARD_REFERENCES
2156
2157 /* Unknown tags are also allowed. */
2158 #define SDB_ALLOW_UNKNOWN_REFERENCES
2159
2160 #define PUT_SDB_DEF(a) \
2161 do { \
2162 fprintf (asm_out_file, "\t%s.def\t", \
2163 (TARGET_GAS) ? "" : "#"); \
2164 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2165 fputc (';', asm_out_file); \
2166 } while (0)
2167
2168 #define PUT_SDB_PLAIN_DEF(a) \
2169 do { \
2170 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2171 (TARGET_GAS) ? "" : "#", (a)); \
2172 } while (0)
2173
2174 #define PUT_SDB_TYPE(a) \
2175 do { \
2176 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2177 } while (0)
2178
2179 /* For block start and end, we create labels, so that
2180 later we can figure out where the correct offset is.
2181 The normal .ent/.end serve well enough for functions,
2182 so those are just commented out. */
2183
2184 extern int sdb_label_count; /* block start/end next label # */
2185
2186 #define PUT_SDB_BLOCK_START(LINE) \
2187 do { \
2188 fprintf (asm_out_file, \
2189 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2190 sdb_label_count, \
2191 (TARGET_GAS) ? "" : "#", \
2192 sdb_label_count, \
2193 (LINE)); \
2194 sdb_label_count++; \
2195 } while (0)
2196
2197 #define PUT_SDB_BLOCK_END(LINE) \
2198 do { \
2199 fprintf (asm_out_file, \
2200 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2201 sdb_label_count, \
2202 (TARGET_GAS) ? "" : "#", \
2203 sdb_label_count, \
2204 (LINE)); \
2205 sdb_label_count++; \
2206 } while (0)
2207
2208 #define PUT_SDB_FUNCTION_START(LINE)
2209
2210 #define PUT_SDB_FUNCTION_END(LINE)
2211
2212 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
2213
2214 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2215 mips-tdump.c to print them out.
2216
2217 These must match the corresponding definitions in gdb/mipsread.c.
2218 Unfortunately, gcc and gdb do not currently share any directories. */
2219
2220 #define CODE_MASK 0x8F300
2221 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2222 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2223 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2224
2225 /* Override some mips-tfile definitions. */
2226
2227 #define SHASH_SIZE 511
2228 #define THASH_SIZE 55
2229
2230 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2231
2232 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2233
2234 /* The system headers under Alpha systems are generally C++-aware. */
2235 #define NO_IMPLICIT_EXTERN_C
2236
2237 /* Generate calls to memcpy, etc., not bcopy, etc. */
2238 #define TARGET_MEM_FUNCTIONS 1
2239
2240 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2241 Used for C++ multiple inheritance. */
2242 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2243 alpha_output_mi_thunk_osf (FILE, THUNK_FNDECL, DELTA, FUNCTION)
This page took 0.137521 seconds and 4 git commands to generate.