]> gcc.gnu.org Git - gcc.git/blob - gcc/config/alpha/alpha.h
c-decl.c, [...]: Don't check TARGET_MEM_FUNCTIONS.
[gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2004 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__alpha"); \
28 builtin_define ("__alpha__"); \
29 builtin_assert ("cpu=alpha"); \
30 builtin_assert ("machine=alpha"); \
31 if (TARGET_CIX) \
32 { \
33 builtin_define ("__alpha_cix__"); \
34 builtin_assert ("cpu=cix"); \
35 } \
36 if (TARGET_FIX) \
37 { \
38 builtin_define ("__alpha_fix__"); \
39 builtin_assert ("cpu=fix"); \
40 } \
41 if (TARGET_BWX) \
42 { \
43 builtin_define ("__alpha_bwx__"); \
44 builtin_assert ("cpu=bwx"); \
45 } \
46 if (TARGET_MAX) \
47 { \
48 builtin_define ("__alpha_max__"); \
49 builtin_assert ("cpu=max"); \
50 } \
51 if (TARGET_CPU_EV6) \
52 { \
53 builtin_define ("__alpha_ev6__"); \
54 builtin_assert ("cpu=ev6"); \
55 } \
56 else if (TARGET_CPU_EV5) \
57 { \
58 builtin_define ("__alpha_ev5__"); \
59 builtin_assert ("cpu=ev5"); \
60 } \
61 else /* Presumably ev4. */ \
62 { \
63 builtin_define ("__alpha_ev4__"); \
64 builtin_assert ("cpu=ev4"); \
65 } \
66 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP"); \
68 if (TARGET_IEEE_WITH_INEXACT) \
69 builtin_define ("_IEEE_FP_INEXACT"); \
70 if (TARGET_LONG_DOUBLE_128) \
71 builtin_define ("__LONG_DOUBLE_128__"); \
72 \
73 /* Macros dependent on the C dialect. */ \
74 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
75 } while (0)
76
77 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
79 do \
80 { \
81 if (preprocessing_asm_p ()) \
82 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
83 else if (c_dialect_cxx ()) \
84 { \
85 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
86 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
87 } \
88 else \
89 builtin_define_std ("LANGUAGE_C"); \
90 if (c_dialect_objc ()) \
91 { \
92 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
93 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
94 } \
95 } \
96 while (0)
97 #endif
98
99 #define CPP_SPEC "%(cpp_subtarget)"
100
101 #ifndef CPP_SUBTARGET_SPEC
102 #define CPP_SUBTARGET_SPEC ""
103 #endif
104
105 #define WORD_SWITCH_TAKES_ARG(STR) \
106 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
107
108 /* Print subsidiary information on the compiler version in use. */
109 #define TARGET_VERSION
110
111 /* Run-time compilation parameters selecting different hardware subsets. */
112
113 /* Which processor to schedule for. The cpu attribute defines a list that
114 mirrors this list, so changes to alpha.md must be made at the same time. */
115
116 enum processor_type
117 {
118 PROCESSOR_EV4, /* 2106[46]{a,} */
119 PROCESSOR_EV5, /* 21164{a,pc,} */
120 PROCESSOR_EV6, /* 21264 */
121 PROCESSOR_MAX
122 };
123
124 extern enum processor_type alpha_cpu;
125
126 enum alpha_trap_precision
127 {
128 ALPHA_TP_PROG, /* No precision (default). */
129 ALPHA_TP_FUNC, /* Trap contained within originating function. */
130 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
131 };
132
133 enum alpha_fp_rounding_mode
134 {
135 ALPHA_FPRM_NORM, /* Normal rounding mode. */
136 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
137 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
138 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
139 };
140
141 enum alpha_fp_trap_mode
142 {
143 ALPHA_FPTM_N, /* Normal trap mode. */
144 ALPHA_FPTM_U, /* Underflow traps enabled. */
145 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
146 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
147 };
148
149 extern int target_flags;
150
151 extern enum alpha_trap_precision alpha_tp;
152 extern enum alpha_fp_rounding_mode alpha_fprm;
153 extern enum alpha_fp_trap_mode alpha_fptm;
154 extern int alpha_tls_size;
155
156 /* This means that floating-point support exists in the target implementation
157 of the Alpha architecture. This is usually the default. */
158 #define MASK_FP (1 << 0)
159 #define TARGET_FP (target_flags & MASK_FP)
160
161 /* This means that floating-point registers are allowed to be used. Note
162 that Alpha implementations without FP operations are required to
163 provide the FP registers. */
164
165 #define MASK_FPREGS (1 << 1)
166 #define TARGET_FPREGS (target_flags & MASK_FPREGS)
167
168 /* This means that gas is used to process the assembler file. */
169
170 #define MASK_GAS (1 << 2)
171 #define TARGET_GAS (target_flags & MASK_GAS)
172
173 /* This means that we should mark procedures as IEEE conformant. */
174
175 #define MASK_IEEE_CONFORMANT (1 << 3)
176 #define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
177
178 /* This means we should be IEEE-compliant except for inexact. */
179
180 #define MASK_IEEE (1 << 4)
181 #define TARGET_IEEE (target_flags & MASK_IEEE)
182
183 /* This means we should be fully IEEE-compliant. */
184
185 #define MASK_IEEE_WITH_INEXACT (1 << 5)
186 #define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
187
188 /* This means we must construct all constants rather than emitting
189 them as literal data. */
190
191 #define MASK_BUILD_CONSTANTS (1 << 6)
192 #define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
193
194 /* This means we handle floating points in VAX F- (float)
195 or G- (double) Format. */
196
197 #define MASK_FLOAT_VAX (1 << 7)
198 #define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
199
200 /* This means that the processor has byte and half word loads and stores
201 (the BWX extension). */
202
203 #define MASK_BWX (1 << 8)
204 #define TARGET_BWX (target_flags & MASK_BWX)
205
206 /* This means that the processor has the MAX extension. */
207 #define MASK_MAX (1 << 9)
208 #define TARGET_MAX (target_flags & MASK_MAX)
209
210 /* This means that the processor has the FIX extension. */
211 #define MASK_FIX (1 << 10)
212 #define TARGET_FIX (target_flags & MASK_FIX)
213
214 /* This means that the processor has the CIX extension. */
215 #define MASK_CIX (1 << 11)
216 #define TARGET_CIX (target_flags & MASK_CIX)
217
218 /* This means use !literal style explicit relocations. */
219 #define MASK_EXPLICIT_RELOCS (1 << 12)
220 #define TARGET_EXPLICIT_RELOCS (target_flags & MASK_EXPLICIT_RELOCS)
221
222 /* This means use 16-bit relocations to .sdata/.sbss. */
223 #define MASK_SMALL_DATA (1 << 13)
224 #define TARGET_SMALL_DATA (target_flags & MASK_SMALL_DATA)
225
226 /* This means emit thread pointer loads for kernel not user. */
227 #define MASK_TLS_KERNEL (1 << 14)
228 #define TARGET_TLS_KERNEL (target_flags & MASK_TLS_KERNEL)
229
230 /* This means use direct branches to local functions. */
231 #define MASK_SMALL_TEXT (1 << 15)
232 #define TARGET_SMALL_TEXT (target_flags & MASK_SMALL_TEXT)
233
234 /* This means use IEEE quad-format for long double. Assumes the
235 presence of the GEM support library routines. */
236 #define MASK_LONG_DOUBLE_128 (1 << 16)
237 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
238
239 /* This means that the processor is an EV5, EV56, or PCA56.
240 Unlike alpha_cpu this is not affected by -mtune= setting. */
241 #define MASK_CPU_EV5 (1 << 28)
242 #define TARGET_CPU_EV5 (target_flags & MASK_CPU_EV5)
243
244 /* Likewise for EV6. */
245 #define MASK_CPU_EV6 (1 << 29)
246 #define TARGET_CPU_EV6 (target_flags & MASK_CPU_EV6)
247
248 /* This means we support the .arch directive in the assembler. Only
249 defined in TARGET_CPU_DEFAULT. */
250 #define MASK_SUPPORT_ARCH (1 << 30)
251 #define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
252
253 /* These are for target os support and cannot be changed at runtime. */
254 #define TARGET_ABI_WINDOWS_NT 0
255 #define TARGET_ABI_OPEN_VMS 0
256 #define TARGET_ABI_UNICOSMK 0
257 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
258 && !TARGET_ABI_OPEN_VMS \
259 && !TARGET_ABI_UNICOSMK)
260
261 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
262 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
263 #endif
264 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
265 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
266 #endif
267 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
268 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
269 #endif
270 #ifndef TARGET_HAS_XFLOATING_LIBS
271 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
272 #endif
273 #ifndef TARGET_PROFILING_NEEDS_GP
274 #define TARGET_PROFILING_NEEDS_GP 0
275 #endif
276 #ifndef TARGET_LD_BUGGY_LDGP
277 #define TARGET_LD_BUGGY_LDGP 0
278 #endif
279 #ifndef TARGET_FIXUP_EV5_PREFETCH
280 #define TARGET_FIXUP_EV5_PREFETCH 0
281 #endif
282 #ifndef HAVE_AS_TLS
283 #define HAVE_AS_TLS 0
284 #endif
285
286 /* Macro to define tables used to set the flags.
287 This is a list in braces of pairs in braces,
288 each pair being { "NAME", VALUE }
289 where VALUE is the bits to set or minus the bits to clear.
290 An empty string NAME is used to identify the default VALUE. */
291
292 #define TARGET_SWITCHES \
293 { {"no-soft-float", MASK_FP, N_("Use hardware fp")}, \
294 {"soft-float", - MASK_FP, N_("Do not use hardware fp")}, \
295 {"fp-regs", MASK_FPREGS, N_("Use fp registers")}, \
296 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), \
297 N_("Do not use fp registers")}, \
298 {"alpha-as", -MASK_GAS, N_("Do not assume GAS")}, \
299 {"gas", MASK_GAS, N_("Assume GAS")}, \
300 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
301 N_("Request IEEE-conformant math library routines (OSF/1)")}, \
302 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
303 N_("Emit IEEE-conformant code, without inexact exceptions")}, \
304 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
305 N_("Emit IEEE-conformant code, with inexact exceptions")}, \
306 {"build-constants", MASK_BUILD_CONSTANTS, \
307 N_("Do not emit complex integer constants to read-only memory")}, \
308 {"float-vax", MASK_FLOAT_VAX, N_("Use VAX fp")}, \
309 {"float-ieee", -MASK_FLOAT_VAX, N_("Do not use VAX fp")}, \
310 {"bwx", MASK_BWX, N_("Emit code for the byte/word ISA extension")}, \
311 {"no-bwx", -MASK_BWX, ""}, \
312 {"max", MASK_MAX, \
313 N_("Emit code for the motion video ISA extension")}, \
314 {"no-max", -MASK_MAX, ""}, \
315 {"fix", MASK_FIX, \
316 N_("Emit code for the fp move and sqrt ISA extension")}, \
317 {"no-fix", -MASK_FIX, ""}, \
318 {"cix", MASK_CIX, N_("Emit code for the counting ISA extension")}, \
319 {"no-cix", -MASK_CIX, ""}, \
320 {"explicit-relocs", MASK_EXPLICIT_RELOCS, \
321 N_("Emit code using explicit relocation directives")}, \
322 {"no-explicit-relocs", -MASK_EXPLICIT_RELOCS, ""}, \
323 {"small-data", MASK_SMALL_DATA, \
324 N_("Emit 16-bit relocations to the small data areas")}, \
325 {"large-data", -MASK_SMALL_DATA, \
326 N_("Emit 32-bit relocations to the small data areas")}, \
327 {"small-text", MASK_SMALL_TEXT, \
328 N_("Emit direct branches to local functions")}, \
329 {"large-text", -MASK_SMALL_TEXT, ""}, \
330 {"tls-kernel", MASK_TLS_KERNEL, \
331 N_("Emit rdval instead of rduniq for thread pointer")}, \
332 {"long-double-128", MASK_LONG_DOUBLE_128, \
333 N_("Use 128-bit long double")}, \
334 {"long-double-64", -MASK_LONG_DOUBLE_128, \
335 N_("Use 64-bit long double")}, \
336 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT \
337 | TARGET_DEFAULT_EXPLICIT_RELOCS, ""} }
338
339 #define TARGET_DEFAULT MASK_FP|MASK_FPREGS
340
341 #ifndef TARGET_CPU_DEFAULT
342 #define TARGET_CPU_DEFAULT 0
343 #endif
344
345 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
346 #ifdef HAVE_AS_EXPLICIT_RELOCS
347 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
348 #else
349 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
350 #endif
351 #endif
352
353 extern const char *alpha_cpu_string; /* For -mcpu= */
354 extern const char *alpha_tune_string; /* For -mtune= */
355 extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
356 extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
357 extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
358 extern const char *alpha_mlat_string; /* For -mmemory-latency= */
359 extern const char *alpha_tls_size_string; /* For -mtls-size= */
360
361 #define TARGET_OPTIONS \
362 { \
363 {"cpu=", &alpha_cpu_string, \
364 N_("Use features of and schedule given CPU"), 0}, \
365 {"tune=", &alpha_tune_string, \
366 N_("Schedule given CPU"), 0}, \
367 {"fp-rounding-mode=", &alpha_fprm_string, \
368 N_("Control the generated fp rounding mode"), 0}, \
369 {"fp-trap-mode=", &alpha_fptm_string, \
370 N_("Control the IEEE trap mode"), 0}, \
371 {"trap-precision=", &alpha_tp_string, \
372 N_("Control the precision given to fp exceptions"), 0}, \
373 {"memory-latency=", &alpha_mlat_string, \
374 N_("Tune expected memory latency"), 0}, \
375 {"tls-size=", &alpha_tls_size_string, \
376 N_("Specify bit size of immediate TLS offsets"), 0}, \
377 }
378
379 /* Support for a compile-time default CPU, et cetera. The rules are:
380 --with-cpu is ignored if -mcpu is specified.
381 --with-tune is ignored if -mtune is specified. */
382 #define OPTION_DEFAULT_SPECS \
383 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
384 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
385
386 /* This macro defines names of additional specifications to put in the
387 specs that can be used in various specifications like CC1_SPEC. Its
388 definition is an initializer with a subgrouping for each command option.
389
390 Each subgrouping contains a string constant, that defines the
391 specification name, and a string constant that used by the GCC driver
392 program.
393
394 Do not define this macro if it does not need to do anything. */
395
396 #ifndef SUBTARGET_EXTRA_SPECS
397 #define SUBTARGET_EXTRA_SPECS
398 #endif
399
400 #define EXTRA_SPECS \
401 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
402 SUBTARGET_EXTRA_SPECS
403
404
405 /* Sometimes certain combinations of command options do not make sense
406 on a particular target machine. You can define a macro
407 `OVERRIDE_OPTIONS' to take account of this. This macro, if
408 defined, is executed once just after all the command options have
409 been parsed.
410
411 On the Alpha, it is used to translate target-option strings into
412 numeric values. */
413
414 #define OVERRIDE_OPTIONS override_options ()
415
416
417 /* Define this macro to change register usage conditional on target flags.
418
419 On the Alpha, we use this to disable the floating-point registers when
420 they don't exist. */
421
422 #define CONDITIONAL_REGISTER_USAGE \
423 { \
424 int i; \
425 if (! TARGET_FPREGS) \
426 for (i = 32; i < 63; i++) \
427 fixed_regs[i] = call_used_regs[i] = 1; \
428 }
429
430
431 /* Show we can debug even without a frame pointer. */
432 #define CAN_DEBUG_WITHOUT_FP
433 \f
434 /* target machine storage layout */
435
436 /* Define the size of `int'. The default is the same as the word size. */
437 #define INT_TYPE_SIZE 32
438
439 /* Define the size of `long long'. The default is the twice the word size. */
440 #define LONG_LONG_TYPE_SIZE 64
441
442 /* We're IEEE unless someone says to use VAX. */
443 #define TARGET_FLOAT_FORMAT \
444 (TARGET_FLOAT_VAX ? VAX_FLOAT_FORMAT : IEEE_FLOAT_FORMAT)
445
446 /* The two floating-point formats we support are S-floating, which is
447 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
448 and `long double' are T. */
449
450 #define FLOAT_TYPE_SIZE 32
451 #define DOUBLE_TYPE_SIZE 64
452 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
453
454 /* Define this to set long double type size to use in libgcc2.c, which can
455 not depend on target_flags. */
456 #ifdef __LONG_DOUBLE_128__
457 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
458 #else
459 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
460 #endif
461
462 /* Work around target_flags dependency in ada/targtyps.c. */
463 #define WIDEST_HARDWARE_FP_SIZE 64
464
465 #define WCHAR_TYPE "unsigned int"
466 #define WCHAR_TYPE_SIZE 32
467
468 /* Define this macro if it is advisable to hold scalars in registers
469 in a wider mode than that declared by the program. In such cases,
470 the value is constrained to be within the bounds of the declared
471 type, but kept valid in the wider mode. The signedness of the
472 extension may differ from that of the type.
473
474 For Alpha, we always store objects in a full register. 32-bit objects
475 are always sign-extended, but smaller objects retain their signedness. */
476
477 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
478 if (GET_MODE_CLASS (MODE) == MODE_INT \
479 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
480 { \
481 if ((MODE) == SImode) \
482 (UNSIGNEDP) = 0; \
483 (MODE) = DImode; \
484 }
485
486 /* Define this if most significant bit is lowest numbered
487 in instructions that operate on numbered bit-fields.
488
489 There are no such instructions on the Alpha, but the documentation
490 is little endian. */
491 #define BITS_BIG_ENDIAN 0
492
493 /* Define this if most significant byte of a word is the lowest numbered.
494 This is false on the Alpha. */
495 #define BYTES_BIG_ENDIAN 0
496
497 /* Define this if most significant word of a multiword number is lowest
498 numbered.
499
500 For Alpha we can decide arbitrarily since there are no machine instructions
501 for them. Might as well be consistent with bytes. */
502 #define WORDS_BIG_ENDIAN 0
503
504 /* Width of a word, in units (bytes). */
505 #define UNITS_PER_WORD 8
506
507 /* Width in bits of a pointer.
508 See also the macro `Pmode' defined below. */
509 #define POINTER_SIZE 64
510
511 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
512 #define PARM_BOUNDARY 64
513
514 /* Boundary (in *bits*) on which stack pointer should be aligned. */
515 #define STACK_BOUNDARY 128
516
517 /* Allocation boundary (in *bits*) for the code of a function. */
518 #define FUNCTION_BOUNDARY 32
519
520 /* Alignment of field after `int : 0' in a structure. */
521 #define EMPTY_FIELD_BOUNDARY 64
522
523 /* Every structure's size must be a multiple of this. */
524 #define STRUCTURE_SIZE_BOUNDARY 8
525
526 /* A bit-field declared as `int' forces `int' alignment for the struct. */
527 #define PCC_BITFIELD_TYPE_MATTERS 1
528
529 /* No data type wants to be aligned rounder than this. */
530 #define BIGGEST_ALIGNMENT 128
531
532 /* For atomic access to objects, must have at least 32-bit alignment
533 unless the machine has byte operations. */
534 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
535
536 /* Align all constants and variables to at least a word boundary so
537 we can pick up pieces of them faster. */
538 /* ??? Only if block-move stuff knows about different source/destination
539 alignment. */
540 #if 0
541 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
542 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
543 #endif
544
545 /* Set this nonzero if move instructions will actually fail to work
546 when given unaligned data.
547
548 Since we get an error message when we do one, call them invalid. */
549
550 #define STRICT_ALIGNMENT 1
551
552 /* Set this nonzero if unaligned move instructions are extremely slow.
553
554 On the Alpha, they trap. */
555
556 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
557 \f
558 /* Standard register usage. */
559
560 /* Number of actual hardware registers.
561 The hardware registers are assigned numbers for the compiler
562 from 0 to just below FIRST_PSEUDO_REGISTER.
563 All registers that the compiler knows about must be given numbers,
564 even those that are not normally considered general registers.
565
566 We define all 32 integer registers, even though $31 is always zero,
567 and all 32 floating-point registers, even though $f31 is also
568 always zero. We do not bother defining the FP status register and
569 there are no other registers.
570
571 Since $31 is always zero, we will use register number 31 as the
572 argument pointer. It will never appear in the generated code
573 because we will always be eliminating it in favor of the stack
574 pointer or hardware frame pointer.
575
576 Likewise, we use $f31 for the frame pointer, which will always
577 be eliminated in favor of the hardware frame pointer or the
578 stack pointer. */
579
580 #define FIRST_PSEUDO_REGISTER 64
581
582 /* 1 for registers that have pervasive standard uses
583 and are not available for the register allocator. */
584
585 #define FIXED_REGISTERS \
586 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
587 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
588 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
589 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
590
591 /* 1 for registers not available across function calls.
592 These must include the FIXED_REGISTERS and also any
593 registers that can be used without being saved.
594 The latter must include the registers where values are returned
595 and the register where structure-value addresses are passed.
596 Aside from that, you can include as many other registers as you like. */
597 #define CALL_USED_REGISTERS \
598 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
599 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
600 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
601 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
602
603 /* List the order in which to allocate registers. Each register must be
604 listed once, even those in FIXED_REGISTERS. */
605
606 #define REG_ALLOC_ORDER { \
607 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
608 22, 23, 24, 25, 28, /* likewise */ \
609 0, /* likewise, but return value */ \
610 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
611 27, /* likewise, but OSF procedure value */ \
612 \
613 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
614 54, 55, 56, 57, 58, 59, /* likewise */ \
615 60, 61, 62, /* likewise */ \
616 32, 33, /* likewise, but return values */ \
617 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
618 \
619 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
620 26, /* return address */ \
621 15, /* hard frame pointer */ \
622 \
623 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
624 40, 41, /* likewise */ \
625 \
626 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
627 }
628
629 /* Return number of consecutive hard regs needed starting at reg REGNO
630 to hold something of mode MODE.
631 This is ordinarily the length in words of a value of mode MODE
632 but can be less for certain modes in special long registers. */
633
634 #define HARD_REGNO_NREGS(REGNO, MODE) \
635 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
636
637 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
638 On Alpha, the integer registers can hold any mode. The floating-point
639 registers can hold 64-bit integers as well, but not smaller values. */
640
641 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
642 ((REGNO) >= 32 && (REGNO) <= 62 \
643 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
644 : 1)
645
646 /* Value is 1 if MODE is a supported vector mode. */
647
648 #define VECTOR_MODE_SUPPORTED_P(MODE) \
649 (TARGET_MAX \
650 && ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode))
651
652 /* A C expression that is nonzero if a value of mode
653 MODE1 is accessible in mode MODE2 without copying.
654
655 This asymmetric test is true when MODE1 could be put
656 in an FP register but MODE2 could not. */
657
658 #define MODES_TIEABLE_P(MODE1, MODE2) \
659 (HARD_REGNO_MODE_OK (32, (MODE1)) \
660 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
661 : 1)
662
663 /* Specify the registers used for certain standard purposes.
664 The values of these macros are register numbers. */
665
666 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
667 /* #define PC_REGNUM */
668
669 /* Register to use for pushing function arguments. */
670 #define STACK_POINTER_REGNUM 30
671
672 /* Base register for access to local variables of the function. */
673 #define HARD_FRAME_POINTER_REGNUM 15
674
675 /* Value should be nonzero if functions must have frame pointers.
676 Zero means the frame pointer need not be set up (and parms
677 may be accessed via the stack pointer) in functions that seem suitable.
678 This is computed in `reload', in reload1.c. */
679 #define FRAME_POINTER_REQUIRED 0
680
681 /* Base register for access to arguments of the function. */
682 #define ARG_POINTER_REGNUM 31
683
684 /* Base register for access to local variables of function. */
685 #define FRAME_POINTER_REGNUM 63
686
687 /* Register in which static-chain is passed to a function.
688
689 For the Alpha, this is based on an example; the calling sequence
690 doesn't seem to specify this. */
691 #define STATIC_CHAIN_REGNUM 1
692
693 /* The register number of the register used to address a table of
694 static data addresses in memory. */
695 #define PIC_OFFSET_TABLE_REGNUM 29
696
697 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
698 is clobbered by calls. */
699 /* ??? It is and it isn't. It's required to be valid for a given
700 function when the function returns. It isn't clobbered by
701 current_file functions. Moreover, we do not expose the ldgp
702 until after reload, so we're probably safe. */
703 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
704 \f
705 /* Define the classes of registers for register constraints in the
706 machine description. Also define ranges of constants.
707
708 One of the classes must always be named ALL_REGS and include all hard regs.
709 If there is more than one class, another class must be named NO_REGS
710 and contain no registers.
711
712 The name GENERAL_REGS must be the name of a class (or an alias for
713 another name such as ALL_REGS). This is the class of registers
714 that is allowed by "g" or "r" in a register constraint.
715 Also, registers outside this class are allocated only when
716 instructions express preferences for them.
717
718 The classes must be numbered in nondecreasing order; that is,
719 a larger-numbered class must never be contained completely
720 in a smaller-numbered class.
721
722 For any two classes, it is very desirable that there be another
723 class that represents their union. */
724
725 enum reg_class {
726 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
727 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
728 LIM_REG_CLASSES
729 };
730
731 #define N_REG_CLASSES (int) LIM_REG_CLASSES
732
733 /* Give names of register classes as strings for dump file. */
734
735 #define REG_CLASS_NAMES \
736 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
737 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
738
739 /* Define which registers fit in which classes.
740 This is an initializer for a vector of HARD_REG_SET
741 of length N_REG_CLASSES. */
742
743 #define REG_CLASS_CONTENTS \
744 { {0x00000000, 0x00000000}, /* NO_REGS */ \
745 {0x00000001, 0x00000000}, /* R0_REG */ \
746 {0x01000000, 0x00000000}, /* R24_REG */ \
747 {0x02000000, 0x00000000}, /* R25_REG */ \
748 {0x08000000, 0x00000000}, /* R27_REG */ \
749 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
750 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
751 {0xffffffff, 0xffffffff} }
752
753 /* The same information, inverted:
754 Return the class number of the smallest class containing
755 reg number REGNO. This could be a conditional expression
756 or could index an array. */
757
758 #define REGNO_REG_CLASS(REGNO) \
759 ((REGNO) == 0 ? R0_REG \
760 : (REGNO) == 24 ? R24_REG \
761 : (REGNO) == 25 ? R25_REG \
762 : (REGNO) == 27 ? R27_REG \
763 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
764 : GENERAL_REGS)
765
766 /* The class value for index registers, and the one for base regs. */
767 #define INDEX_REG_CLASS NO_REGS
768 #define BASE_REG_CLASS GENERAL_REGS
769
770 /* Get reg_class from a letter such as appears in the machine description. */
771
772 #define REG_CLASS_FROM_LETTER(C) \
773 ((C) == 'a' ? R24_REG \
774 : (C) == 'b' ? R25_REG \
775 : (C) == 'c' ? R27_REG \
776 : (C) == 'f' ? FLOAT_REGS \
777 : (C) == 'v' ? R0_REG \
778 : NO_REGS)
779
780 /* Define this macro to change register usage conditional on target flags. */
781 /* #define CONDITIONAL_REGISTER_USAGE */
782
783 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
784 can be used to stand for particular ranges of immediate operands.
785 This macro defines what the ranges are.
786 C is the letter, and VALUE is a constant value.
787 Return 1 if VALUE is in the range specified by C.
788
789 For Alpha:
790 `I' is used for the range of constants most insns can contain.
791 `J' is the constant zero.
792 `K' is used for the constant in an LDA insn.
793 `L' is used for the constant in a LDAH insn.
794 `M' is used for the constants that can be AND'ed with using a ZAP insn.
795 `N' is used for complemented 8-bit constants.
796 `O' is used for negated 8-bit constants.
797 `P' is used for the constants 1, 2 and 3. */
798
799 #define CONST_OK_FOR_LETTER_P alpha_const_ok_for_letter_p
800
801 /* Similar, but for floating or large integer constants, and defining letters
802 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
803
804 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
805 that is the operand of a ZAP insn. */
806
807 #define CONST_DOUBLE_OK_FOR_LETTER_P alpha_const_double_ok_for_letter_p
808
809 /* Optional extra constraints for this machine.
810
811 For the Alpha, `Q' means that this is a memory operand but not a
812 reference to an unaligned location.
813
814 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
815 function.
816
817 'S' is a 6-bit constant (valid for a shift insn).
818
819 'T' is a HIGH.
820
821 'U' is a symbolic operand.
822
823 'W' is a vector zero. */
824
825 #define EXTRA_CONSTRAINT alpha_extra_constraint
826
827 /* Given an rtx X being reloaded into a reg required to be
828 in class CLASS, return the class of reg to actually use.
829 In general this is just CLASS; but on some machines
830 in some cases it is preferable to use a more restrictive class. */
831
832 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
833
834 /* Loading and storing HImode or QImode values to and from memory
835 usually requires a scratch register. The exceptions are loading
836 QImode and HImode from an aligned address to a general register
837 unless byte instructions are permitted.
838 We also cannot load an unaligned address or a paradoxical SUBREG into an
839 FP register. */
840
841 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
842 secondary_reload_class((CLASS), (MODE), (IN), 1)
843
844 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
845 secondary_reload_class((CLASS), (MODE), (OUT), 0)
846
847 /* If we are copying between general and FP registers, we need a memory
848 location unless the FIX extension is available. */
849
850 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
851 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
852 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
853
854 /* Specify the mode to be used for memory when a secondary memory
855 location is needed. If MODE is floating-point, use it. Otherwise,
856 widen to a word like the default. This is needed because we always
857 store integers in FP registers in quadword format. This whole
858 area is very tricky! */
859 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
860 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
861 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
862 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
863
864 /* Return the maximum number of consecutive registers
865 needed to represent mode MODE in a register of class CLASS. */
866
867 #define CLASS_MAX_NREGS(CLASS, MODE) \
868 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
869
870 /* Return the class of registers that cannot change mode from FROM to TO. */
871
872 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
873 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
874 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
875
876 /* Define the cost of moving between registers of various classes. Moving
877 between FLOAT_REGS and anything else except float regs is expensive.
878 In fact, we make it quite expensive because we really don't want to
879 do these moves unless it is clearly worth it. Optimizations may
880 reduce the impact of not being able to allocate a pseudo to a
881 hard register. */
882
883 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
884 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
885 ? 2 \
886 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
887
888 /* A C expressions returning the cost of moving data of MODE from a register to
889 or from memory.
890
891 On the Alpha, bump this up a bit. */
892
893 extern int alpha_memory_latency;
894 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
895
896 /* Provide the cost of a branch. Exact meaning under development. */
897 #define BRANCH_COST 5
898 \f
899 /* Stack layout; function entry, exit and calling. */
900
901 /* Define this if pushing a word on the stack
902 makes the stack pointer a smaller address. */
903 #define STACK_GROWS_DOWNWARD
904
905 /* Define this if the nominal address of the stack frame
906 is at the high-address end of the local variables;
907 that is, each additional local variable allocated
908 goes at a more negative offset in the frame. */
909 /* #define FRAME_GROWS_DOWNWARD */
910
911 /* Offset within stack frame to start allocating local variables at.
912 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
913 first local allocated. Otherwise, it is the offset to the BEGINNING
914 of the first local allocated. */
915
916 #define STARTING_FRAME_OFFSET 0
917
918 /* If we generate an insn to push BYTES bytes,
919 this says how many the stack pointer really advances by.
920 On Alpha, don't define this because there are no push insns. */
921 /* #define PUSH_ROUNDING(BYTES) */
922
923 /* Define this to be nonzero if stack checking is built into the ABI. */
924 #define STACK_CHECK_BUILTIN 1
925
926 /* Define this if the maximum size of all the outgoing args is to be
927 accumulated and pushed during the prologue. The amount can be
928 found in the variable current_function_outgoing_args_size. */
929 #define ACCUMULATE_OUTGOING_ARGS 1
930
931 /* Offset of first parameter from the argument pointer register value. */
932
933 #define FIRST_PARM_OFFSET(FNDECL) 0
934
935 /* Definitions for register eliminations.
936
937 We have two registers that can be eliminated on the Alpha. First, the
938 frame pointer register can often be eliminated in favor of the stack
939 pointer register. Secondly, the argument pointer register can always be
940 eliminated; it is replaced with either the stack or frame pointer. */
941
942 /* This is an array of structures. Each structure initializes one pair
943 of eliminable registers. The "from" register number is given first,
944 followed by "to". Eliminations of the same "from" register are listed
945 in order of preference. */
946
947 #define ELIMINABLE_REGS \
948 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
949 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
950 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
951 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
952
953 /* Given FROM and TO register numbers, say whether this elimination is allowed.
954 Frame pointer elimination is automatically handled.
955
956 All eliminations are valid since the cases where FP can't be
957 eliminated are already handled. */
958
959 #define CAN_ELIMINATE(FROM, TO) 1
960
961 /* Round up to a multiple of 16 bytes. */
962 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
963
964 /* Define the offset between two registers, one to be eliminated, and the other
965 its replacement, at the start of a routine. */
966 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
967 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
968
969 /* Define this if stack space is still allocated for a parameter passed
970 in a register. */
971 /* #define REG_PARM_STACK_SPACE */
972
973 /* Value is the number of bytes of arguments automatically
974 popped when returning from a subroutine call.
975 FUNDECL is the declaration node of the function (as a tree),
976 FUNTYPE is the data type of the function (as a tree),
977 or for a library call it is an identifier node for the subroutine name.
978 SIZE is the number of bytes of arguments passed on the stack. */
979
980 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
981
982 /* Define how to find the value returned by a function.
983 VALTYPE is the data type of the value (as a tree).
984 If the precise function being called is known, FUNC is its FUNCTION_DECL;
985 otherwise, FUNC is 0.
986
987 On Alpha the value is found in $0 for integer functions and
988 $f0 for floating-point functions. */
989
990 #define FUNCTION_VALUE(VALTYPE, FUNC) \
991 function_value (VALTYPE, FUNC, VOIDmode)
992
993 /* Define how to find the value returned by a library function
994 assuming the value has mode MODE. */
995
996 #define LIBCALL_VALUE(MODE) \
997 function_value (NULL, NULL, MODE)
998
999 /* 1 if N is a possible register number for a function value
1000 as seen by the caller. */
1001
1002 #define FUNCTION_VALUE_REGNO_P(N) \
1003 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1004
1005 /* 1 if N is a possible register number for function argument passing.
1006 On Alpha, these are $16-$21 and $f16-$f21. */
1007
1008 #define FUNCTION_ARG_REGNO_P(N) \
1009 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1010 \f
1011 /* Define a data type for recording info about an argument list
1012 during the scan of that argument list. This data type should
1013 hold all necessary information about the function itself
1014 and about the args processed so far, enough to enable macros
1015 such as FUNCTION_ARG to determine where the next arg should go.
1016
1017 On Alpha, this is a single integer, which is a number of words
1018 of arguments scanned so far.
1019 Thus 6 or more means all following args should go on the stack. */
1020
1021 #define CUMULATIVE_ARGS int
1022
1023 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1024 for a call to a function whose data type is FNTYPE.
1025 For a library call, FNTYPE is 0. */
1026
1027 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1028 (CUM) = 0
1029
1030 /* Define intermediate macro to compute the size (in registers) of an argument
1031 for the Alpha. */
1032
1033 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
1034 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
1035 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1036 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1037
1038 /* Update the data in CUM to advance over an argument
1039 of mode MODE and data type TYPE.
1040 (TYPE is null for libcalls where that information may not be available.) */
1041
1042 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1043 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1044 (CUM) = 6; \
1045 else \
1046 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1047
1048 /* Determine where to put an argument to a function.
1049 Value is zero to push the argument on the stack,
1050 or a hard register in which to store the argument.
1051
1052 MODE is the argument's machine mode.
1053 TYPE is the data type of the argument (as a tree).
1054 This is null for libcalls where that information may
1055 not be available.
1056 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1057 the preceding args and about the function being called.
1058 NAMED is nonzero if this argument is a named parameter
1059 (otherwise it is an extra parameter matching an ellipsis).
1060
1061 On Alpha the first 6 words of args are normally in registers
1062 and the rest are pushed. */
1063
1064 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1065 function_arg((CUM), (MODE), (TYPE), (NAMED))
1066
1067 /* A C expression that indicates when an argument must be passed by
1068 reference. If nonzero for an argument, a copy of that argument is
1069 made in memory and a pointer to the argument is passed instead of
1070 the argument itself. The pointer is passed in whatever way is
1071 appropriate for passing a pointer to that type. */
1072
1073 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1074 ((MODE) == TFmode || (MODE) == TCmode)
1075
1076 /* For an arg passed partly in registers and partly in memory,
1077 this is the number of registers used.
1078 For args passed entirely in registers or entirely in memory, zero. */
1079
1080 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1081 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1082 ? 6 - (CUM) : 0)
1083
1084 /* Try to output insns to set TARGET equal to the constant C if it can be
1085 done in less than N insns. Do all computations in MODE. Returns the place
1086 where the output has been placed if it can be done and the insns have been
1087 emitted. If it would take more than N insns, zero is returned and no
1088 insns and emitted. */
1089
1090 /* Define the information needed to generate branch and scc insns. This is
1091 stored from the compare operation. Note that we can't use "rtx" here
1092 since it hasn't been defined! */
1093
1094 struct alpha_compare
1095 {
1096 struct rtx_def *op0, *op1;
1097 int fp_p;
1098 };
1099
1100 extern struct alpha_compare alpha_compare;
1101
1102 /* Make (or fake) .linkage entry for function call.
1103 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1104
1105 /* This macro defines the start of an assembly comment. */
1106
1107 #define ASM_COMMENT_START " #"
1108
1109 /* This macro produces the initial definition of a function. */
1110
1111 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1112 alpha_start_function(FILE,NAME,DECL);
1113
1114 /* This macro closes up a function definition for the assembler. */
1115
1116 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1117 alpha_end_function(FILE,NAME,DECL)
1118
1119 /* Output any profiling code before the prologue. */
1120
1121 #define PROFILE_BEFORE_PROLOGUE 1
1122
1123 /* Never use profile counters. */
1124
1125 #define NO_PROFILE_COUNTERS 1
1126
1127 /* Output assembler code to FILE to increment profiler label # LABELNO
1128 for profiling a function entry. Under OSF/1, profiling is enabled
1129 by simply passing -pg to the assembler and linker. */
1130
1131 #define FUNCTION_PROFILER(FILE, LABELNO)
1132
1133 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1134 the stack pointer does not matter. The value is tested only in
1135 functions that have frame pointers.
1136 No definition is equivalent to always zero. */
1137
1138 #define EXIT_IGNORE_STACK 1
1139
1140 /* Define registers used by the epilogue and return instruction. */
1141
1142 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
1143 \f
1144 /* Output assembler code for a block containing the constant parts
1145 of a trampoline, leaving space for the variable parts.
1146
1147 The trampoline should set the static chain pointer to value placed
1148 into the trampoline and should branch to the specified routine.
1149 Note that $27 has been set to the address of the trampoline, so we can
1150 use it for addressability of the two data items. */
1151
1152 #define TRAMPOLINE_TEMPLATE(FILE) \
1153 do { \
1154 fprintf (FILE, "\tldq $1,24($27)\n"); \
1155 fprintf (FILE, "\tldq $27,16($27)\n"); \
1156 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1157 fprintf (FILE, "\tnop\n"); \
1158 fprintf (FILE, "\t.quad 0,0\n"); \
1159 } while (0)
1160
1161 /* Section in which to place the trampoline. On Alpha, instructions
1162 may only be placed in a text segment. */
1163
1164 #define TRAMPOLINE_SECTION text_section
1165
1166 /* Length in units of the trampoline for entering a nested function. */
1167
1168 #define TRAMPOLINE_SIZE 32
1169
1170 /* The alignment of a trampoline, in bits. */
1171
1172 #define TRAMPOLINE_ALIGNMENT 64
1173
1174 /* Emit RTL insns to initialize the variable parts of a trampoline.
1175 FNADDR is an RTX for the address of the function's pure code.
1176 CXT is an RTX for the static chain value for the function. */
1177
1178 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1179 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
1180
1181 /* A C expression whose value is RTL representing the value of the return
1182 address for the frame COUNT steps up from the current frame.
1183 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1184 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
1185
1186 #define RETURN_ADDR_RTX alpha_return_addr
1187
1188 /* Before the prologue, RA lives in $26. */
1189 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
1190 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
1191 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
1192
1193 /* Describe how we implement __builtin_eh_return. */
1194 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1195 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
1196 #define EH_RETURN_HANDLER_RTX \
1197 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1198 current_function_outgoing_args_size))
1199 \f
1200 /* Addressing modes, and classification of registers for them. */
1201
1202 /* Macros to check register numbers against specific register classes. */
1203
1204 /* These assume that REGNO is a hard or pseudo reg number.
1205 They give nonzero only if REGNO is a hard reg of the suitable class
1206 or a pseudo reg currently allocated to a suitable hard reg.
1207 Since they use reg_renumber, they are safe only once reg_renumber
1208 has been allocated, which happens in local-alloc.c. */
1209
1210 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1211 #define REGNO_OK_FOR_BASE_P(REGNO) \
1212 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1213 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1214 \f
1215 /* Maximum number of registers that can appear in a valid memory address. */
1216 #define MAX_REGS_PER_ADDRESS 1
1217
1218 /* Recognize any constant value that is a valid address. For the Alpha,
1219 there are only constants none since we want to use LDA to load any
1220 symbolic addresses into registers. */
1221
1222 #define CONSTANT_ADDRESS_P(X) \
1223 (GET_CODE (X) == CONST_INT \
1224 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1225
1226 /* Include all constant integers and constant doubles, but not
1227 floating-point, except for floating-point zero. */
1228
1229 #define LEGITIMATE_CONSTANT_P(X) \
1230 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1231 || (X) == CONST0_RTX (GET_MODE (X)))
1232
1233 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1234 and check its validity for a certain class.
1235 We have two alternate definitions for each of them.
1236 The usual definition accepts all pseudo regs; the other rejects
1237 them unless they have been allocated suitable hard regs.
1238 The symbol REG_OK_STRICT causes the latter definition to be used.
1239
1240 Most source files want to accept pseudo regs in the hope that
1241 they will get allocated to the class that the insn wants them to be in.
1242 Source files for reload pass need to be strict.
1243 After reload, it makes no difference, since pseudo regs have
1244 been eliminated by then. */
1245
1246 /* Nonzero if X is a hard reg that can be used as an index
1247 or if it is a pseudo reg. */
1248 #define REG_OK_FOR_INDEX_P(X) 0
1249
1250 /* Nonzero if X is a hard reg that can be used as a base reg
1251 or if it is a pseudo reg. */
1252 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
1253 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1254
1255 /* ??? Nonzero if X is the frame pointer, or some virtual register
1256 that may eliminate to the frame pointer. These will be allowed to
1257 have offsets greater than 32K. This is done because register
1258 elimination offsets will change the hi/lo split, and if we split
1259 before reload, we will require additional instructions. */
1260 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
1261 (REGNO (X) == 31 || REGNO (X) == 63 \
1262 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1263 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1264
1265 /* Nonzero if X is a hard reg that can be used as a base reg. */
1266 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1267
1268 #ifdef REG_OK_STRICT
1269 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
1270 #else
1271 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
1272 #endif
1273 \f
1274 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1275 valid memory address for an instruction. */
1276
1277 #ifdef REG_OK_STRICT
1278 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1279 do { \
1280 if (alpha_legitimate_address_p (MODE, X, 1)) \
1281 goto WIN; \
1282 } while (0)
1283 #else
1284 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1285 do { \
1286 if (alpha_legitimate_address_p (MODE, X, 0)) \
1287 goto WIN; \
1288 } while (0)
1289 #endif
1290
1291 /* Try machine-dependent ways of modifying an illegitimate address
1292 to be legitimate. If we find one, return the new, valid address.
1293 This macro is used in only one place: `memory_address' in explow.c. */
1294
1295 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1296 do { \
1297 rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE); \
1298 if (new_x) \
1299 { \
1300 X = new_x; \
1301 goto WIN; \
1302 } \
1303 } while (0)
1304
1305 /* Try a machine-dependent way of reloading an illegitimate address
1306 operand. If we find one, push the reload and jump to WIN. This
1307 macro is used in only one place: `find_reloads_address' in reload.c. */
1308
1309 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
1310 do { \
1311 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1312 if (new_x) \
1313 { \
1314 X = new_x; \
1315 goto WIN; \
1316 } \
1317 } while (0)
1318
1319 /* Go to LABEL if ADDR (a legitimate address expression)
1320 has an effect that depends on the machine mode it is used for.
1321 On the Alpha this is true only for the unaligned modes. We can
1322 simplify this test since we know that the address must be valid. */
1323
1324 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1325 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1326 \f
1327 /* Specify the machine mode that this machine uses
1328 for the index in the tablejump instruction. */
1329 #define CASE_VECTOR_MODE SImode
1330
1331 /* Define as C expression which evaluates to nonzero if the tablejump
1332 instruction expects the table to contain offsets from the address of the
1333 table.
1334
1335 Do not define this if the table should contain absolute addresses.
1336 On the Alpha, the table is really GP-relative, not relative to the PC
1337 of the table, but we pretend that it is PC-relative; this should be OK,
1338 but we should try to find some better way sometime. */
1339 #define CASE_VECTOR_PC_RELATIVE 1
1340
1341 /* Define this as 1 if `char' should by default be signed; else as 0. */
1342 #define DEFAULT_SIGNED_CHAR 1
1343
1344 /* Max number of bytes we can move to or from memory
1345 in one reasonably fast instruction. */
1346
1347 #define MOVE_MAX 8
1348
1349 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1350 move-instruction pairs, we will do a movstr or libcall instead.
1351
1352 Without byte/word accesses, we want no more than four instructions;
1353 with, several single byte accesses are better. */
1354
1355 #define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1356
1357 /* Largest number of bytes of an object that can be placed in a register.
1358 On the Alpha we have plenty of registers, so use TImode. */
1359 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1360
1361 /* Nonzero if access to memory by bytes is no faster than for words.
1362 Also nonzero if doing byte operations (specifically shifts) in registers
1363 is undesirable.
1364
1365 On the Alpha, we want to not use the byte operation and instead use
1366 masking operations to access fields; these will save instructions. */
1367
1368 #define SLOW_BYTE_ACCESS 1
1369
1370 /* Define if operations between registers always perform the operation
1371 on the full register even if a narrower mode is specified. */
1372 #define WORD_REGISTER_OPERATIONS
1373
1374 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1375 will either zero-extend or sign-extend. The value of this macro should
1376 be the code that says which one of the two operations is implicitly
1377 done, NIL if none. */
1378 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1379
1380 /* Define if loading short immediate values into registers sign extends. */
1381 #define SHORT_IMMEDIATES_SIGN_EXTEND
1382
1383 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1384 is done just by pretending it is already truncated. */
1385 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1386
1387 /* The CIX ctlz and cttz instructions return 64 for zero. */
1388 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
1389 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
1390
1391 /* Define the value returned by a floating-point comparison instruction. */
1392
1393 #define FLOAT_STORE_FLAG_VALUE(MODE) \
1394 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1395
1396 /* Canonicalize a comparison from one we don't have to one we do have. */
1397
1398 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1399 do { \
1400 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1401 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1402 { \
1403 rtx tem = (OP0); \
1404 (OP0) = (OP1); \
1405 (OP1) = tem; \
1406 (CODE) = swap_condition (CODE); \
1407 } \
1408 if (((CODE) == LT || (CODE) == LTU) \
1409 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1410 { \
1411 (CODE) = (CODE) == LT ? LE : LEU; \
1412 (OP1) = GEN_INT (255); \
1413 } \
1414 } while (0)
1415
1416 /* Specify the machine mode that pointers have.
1417 After generation of rtl, the compiler makes no further distinction
1418 between pointers and any other objects of this machine mode. */
1419 #define Pmode DImode
1420
1421 /* Mode of a function address in a call instruction (for indexing purposes). */
1422
1423 #define FUNCTION_MODE Pmode
1424
1425 /* Define this if addresses of constant functions
1426 shouldn't be put through pseudo regs where they can be cse'd.
1427 Desirable on machines where ordinary constants are expensive
1428 but a CALL with constant address is cheap.
1429
1430 We define this on the Alpha so that gen_call and gen_call_value
1431 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1432 then copy it into a register, thus actually letting the address be
1433 cse'ed. */
1434
1435 #define NO_FUNCTION_CSE
1436
1437 /* Define this to be nonzero if shift instructions ignore all but the low-order
1438 few bits. */
1439 #define SHIFT_COUNT_TRUNCATED 1
1440 \f
1441 /* Control the assembler format that we output. */
1442
1443 /* Output to assembler file text saying following lines
1444 may contain character constants, extra white space, comments, etc. */
1445 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1446
1447 /* Output to assembler file text saying following lines
1448 no longer contain unusual constructs. */
1449 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1450
1451 #define TEXT_SECTION_ASM_OP "\t.text"
1452
1453 /* Output before read-only data. */
1454
1455 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1456
1457 /* Output before writable data. */
1458
1459 #define DATA_SECTION_ASM_OP "\t.data"
1460
1461 /* How to refer to registers in assembler output.
1462 This sequence is indexed by compiler's hard-register-number (see above). */
1463
1464 #define REGISTER_NAMES \
1465 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1466 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1467 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1468 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1469 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1470 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1471 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1472 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1473
1474 /* Strip name encoding when emitting labels. */
1475
1476 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1477 do { \
1478 const char *name_ = NAME; \
1479 if (*name_ == '@' || *name_ == '%') \
1480 name_ += 2; \
1481 if (*name_ == '*') \
1482 name_++; \
1483 else \
1484 fputs (user_label_prefix, STREAM); \
1485 fputs (name_, STREAM); \
1486 } while (0)
1487
1488 /* Globalizing directive for a label. */
1489 #define GLOBAL_ASM_OP "\t.globl "
1490
1491 /* The prefix to add to user-visible assembler symbols. */
1492
1493 #define USER_LABEL_PREFIX ""
1494
1495 /* This is how to output a label for a jump table. Arguments are the same as
1496 for (*targetm.asm_out.internal_label), except the insn for the jump table is
1497 passed. */
1498
1499 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1500 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1501
1502 /* This is how to store into the string LABEL
1503 the symbol_ref name of an internal numbered label where
1504 PREFIX is the class of label and NUM is the number within the class.
1505 This is suitable for output with `assemble_name'. */
1506
1507 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1508 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1509
1510 /* We use the default ASCII-output routine, except that we don't write more
1511 than 50 characters since the assembler doesn't support very long lines. */
1512
1513 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1514 do { \
1515 FILE *_hide_asm_out_file = (MYFILE); \
1516 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1517 int _hide_thissize = (MYLENGTH); \
1518 int _size_so_far = 0; \
1519 { \
1520 FILE *asm_out_file = _hide_asm_out_file; \
1521 const unsigned char *p = _hide_p; \
1522 int thissize = _hide_thissize; \
1523 int i; \
1524 fprintf (asm_out_file, "\t.ascii \""); \
1525 \
1526 for (i = 0; i < thissize; i++) \
1527 { \
1528 register int c = p[i]; \
1529 \
1530 if (_size_so_far ++ > 50 && i < thissize - 4) \
1531 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1532 \
1533 if (c == '\"' || c == '\\') \
1534 putc ('\\', asm_out_file); \
1535 if (c >= ' ' && c < 0177) \
1536 putc (c, asm_out_file); \
1537 else \
1538 { \
1539 fprintf (asm_out_file, "\\%o", c); \
1540 /* After an octal-escape, if a digit follows, \
1541 terminate one string constant and start another. \
1542 The VAX assembler fails to stop reading the escape \
1543 after three digits, so this is the only way we \
1544 can get it to parse the data properly. */ \
1545 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1546 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1547 } \
1548 } \
1549 fprintf (asm_out_file, "\"\n"); \
1550 } \
1551 } \
1552 while (0)
1553
1554 /* This is how to output an element of a case-vector that is absolute.
1555 (Alpha does not use such vectors, but we must define this macro anyway.) */
1556
1557 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
1558
1559 /* This is how to output an element of a case-vector that is relative. */
1560
1561 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1562 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1563 (VALUE))
1564
1565 /* This is how to output an assembler line
1566 that says to advance the location counter
1567 to a multiple of 2**LOG bytes. */
1568
1569 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1570 if ((LOG) != 0) \
1571 fprintf (FILE, "\t.align %d\n", LOG);
1572
1573 /* This is how to advance the location counter by SIZE bytes. */
1574
1575 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1576 fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1577
1578 /* This says how to output an assembler line
1579 to define a global common symbol. */
1580
1581 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1582 ( fputs ("\t.comm ", (FILE)), \
1583 assemble_name ((FILE), (NAME)), \
1584 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1585
1586 /* This says how to output an assembler line
1587 to define a local common symbol. */
1588
1589 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1590 ( fputs ("\t.lcomm ", (FILE)), \
1591 assemble_name ((FILE), (NAME)), \
1592 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1593 \f
1594
1595 /* Print operand X (an rtx) in assembler syntax to file FILE.
1596 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1597 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1598
1599 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1600
1601 /* Determine which codes are valid without a following integer. These must
1602 not be alphabetic.
1603
1604 ~ Generates the name of the current function.
1605
1606 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1607 attributes are examined to determine what is appropriate.
1608
1609 , Generates single precision suffix for floating point
1610 instructions (s for IEEE, f for VAX)
1611
1612 - Generates double precision suffix for floating point
1613 instructions (t for IEEE, g for VAX)
1614
1615 + Generates a nop instruction after a noreturn call at the very end
1616 of the function
1617 */
1618
1619 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1620 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1621 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&' || (CODE) == '+')
1622 \f
1623 /* Print a memory address as an operand to reference that memory location. */
1624
1625 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1626 print_operand_address((FILE), (ADDR))
1627
1628 /* Define the codes that are matched by predicates in alpha.c. */
1629
1630 #define PREDICATE_CODES \
1631 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, \
1632 CONST_VECTOR}}, \
1633 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
1634 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
1635 {"reg_or_const_int_operand", {SUBREG, REG, CONST_INT}}, \
1636 {"cint8_operand", {CONST_INT}}, \
1637 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1638 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1639 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1640 {"const48_operand", {CONST_INT}}, \
1641 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1642 {"or_operand", {SUBREG, REG, CONST_INT}}, \
1643 {"mode_mask_operand", {CONST_INT}}, \
1644 {"mul8_operand", {CONST_INT}}, \
1645 {"mode_width_operand", {CONST_INT}}, \
1646 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1647 {"alpha_zero_comparison_operator", {EQ, NE, LE, LT, LEU, LTU}}, \
1648 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
1649 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1650 {"alpha_fp_comparison_operator", {EQ, LE, LT, UNORDERED}}, \
1651 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
1652 {"fix_operator", {FIX, UNSIGNED_FIX}}, \
1653 {"const0_operand", {CONST_INT, CONST_DOUBLE, CONST_VECTOR}}, \
1654 {"samegp_function_operand", {SYMBOL_REF}}, \
1655 {"direct_call_operand", {SYMBOL_REF}}, \
1656 {"local_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
1657 {"small_symbolic_operand", {SYMBOL_REF, CONST}}, \
1658 {"global_symbolic_operand", {SYMBOL_REF, CONST}}, \
1659 {"dtp16_symbolic_operand", {CONST}}, \
1660 {"dtp32_symbolic_operand", {CONST}}, \
1661 {"gotdtp_symbolic_operand", {CONST}}, \
1662 {"tp16_symbolic_operand", {CONST}}, \
1663 {"tp32_symbolic_operand", {CONST}}, \
1664 {"gottp_symbolic_operand", {CONST}}, \
1665 {"call_operand", {REG, SYMBOL_REF}}, \
1666 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1667 CONST_VECTOR, SYMBOL_REF, CONST, LABEL_REF, HIGH}},\
1668 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1669 CONST_VECTOR, SYMBOL_REF, CONST, LABEL_REF, HIGH}}, \
1670 {"some_ni_operand", {SUBREG, REG, MEM}}, \
1671 {"aligned_memory_operand", {MEM}}, \
1672 {"unaligned_memory_operand", {MEM}}, \
1673 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
1674 {"any_memory_operand", {MEM}}, \
1675 {"normal_memory_operand", {MEM}}, \
1676 {"hard_fp_register_operand", {SUBREG, REG}}, \
1677 {"hard_int_register_operand", {SUBREG, REG}}, \
1678 {"reg_not_elim_operand", {SUBREG, REG}}, \
1679 {"reg_no_subreg_operand", {REG}}, \
1680 {"addition_operation", {PLUS}}, \
1681 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1682 {"some_small_symbolic_operand", {SET, PARALLEL, PREFETCH, UNSPEC, \
1683 UNSPEC_VOLATILE}},
1684 \f
1685 /* Implement `va_start' for varargs and stdarg. */
1686 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1687 alpha_va_start (valist, nextarg)
1688
1689 /* Implement `va_arg'. */
1690 #define EXPAND_BUILTIN_VA_ARG(valist, type) (abort (), NULL_RTX)
1691 \f
1692 /* Tell collect that the object format is ECOFF. */
1693 #define OBJECT_FORMAT_COFF
1694 #define EXTENDED_COFF
1695
1696 /* If we use NM, pass -g to it so it only lists globals. */
1697 #define NM_FLAGS "-pg"
1698
1699 /* Definitions for debugging. */
1700
1701 #define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
1702 #define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
1703 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
1704
1705 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1706 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1707 #endif
1708
1709
1710 /* Correct the offset of automatic variables and arguments. Note that
1711 the Alpha debug format wants all automatic variables and arguments
1712 to be in terms of two different offsets from the virtual frame pointer,
1713 which is the stack pointer before any adjustment in the function.
1714 The offset for the argument pointer is fixed for the native compiler,
1715 it is either zero (for the no arguments case) or large enough to hold
1716 all argument registers.
1717 The offset for the auto pointer is the fourth argument to the .frame
1718 directive (local_offset).
1719 To stay compatible with the native tools we use the same offsets
1720 from the virtual frame pointer and adjust the debugger arg/auto offsets
1721 accordingly. These debugger offsets are set up in output_prolog. */
1722
1723 extern long alpha_arg_offset;
1724 extern long alpha_auto_offset;
1725 #define DEBUGGER_AUTO_OFFSET(X) \
1726 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1727 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1728
1729
1730 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) \
1731 alpha_output_lineno (STREAM, LINE)
1732
1733 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1734 alpha_output_filename (STREAM, NAME)
1735
1736 /* mips-tfile.c limits us to strings of one page. We must underestimate this
1737 number, because the real length runs past this up to the next
1738 continuation point. This is really a dbxout.c bug. */
1739 #define DBX_CONTIN_LENGTH 3000
1740
1741 /* By default, turn on GDB extensions. */
1742 #define DEFAULT_GDB_EXTENSIONS 1
1743
1744 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
1745 #define NO_DBX_FUNCTION_END 1
1746
1747 /* If we are smuggling stabs through the ALPHA ECOFF object
1748 format, put a comment in front of the .stab<x> operation so
1749 that the ALPHA assembler does not choke. The mips-tfile program
1750 will correctly put the stab into the object file. */
1751
1752 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1753 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1754 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1755
1756 /* Forward references to tags are allowed. */
1757 #define SDB_ALLOW_FORWARD_REFERENCES
1758
1759 /* Unknown tags are also allowed. */
1760 #define SDB_ALLOW_UNKNOWN_REFERENCES
1761
1762 #define PUT_SDB_DEF(a) \
1763 do { \
1764 fprintf (asm_out_file, "\t%s.def\t", \
1765 (TARGET_GAS) ? "" : "#"); \
1766 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1767 fputc (';', asm_out_file); \
1768 } while (0)
1769
1770 #define PUT_SDB_PLAIN_DEF(a) \
1771 do { \
1772 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1773 (TARGET_GAS) ? "" : "#", (a)); \
1774 } while (0)
1775
1776 #define PUT_SDB_TYPE(a) \
1777 do { \
1778 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1779 } while (0)
1780
1781 /* For block start and end, we create labels, so that
1782 later we can figure out where the correct offset is.
1783 The normal .ent/.end serve well enough for functions,
1784 so those are just commented out. */
1785
1786 extern int sdb_label_count; /* block start/end next label # */
1787
1788 #define PUT_SDB_BLOCK_START(LINE) \
1789 do { \
1790 fprintf (asm_out_file, \
1791 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1792 sdb_label_count, \
1793 (TARGET_GAS) ? "" : "#", \
1794 sdb_label_count, \
1795 (LINE)); \
1796 sdb_label_count++; \
1797 } while (0)
1798
1799 #define PUT_SDB_BLOCK_END(LINE) \
1800 do { \
1801 fprintf (asm_out_file, \
1802 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1803 sdb_label_count, \
1804 (TARGET_GAS) ? "" : "#", \
1805 sdb_label_count, \
1806 (LINE)); \
1807 sdb_label_count++; \
1808 } while (0)
1809
1810 #define PUT_SDB_FUNCTION_START(LINE)
1811
1812 #define PUT_SDB_FUNCTION_END(LINE)
1813
1814 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1815
1816 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1817 mips-tdump.c to print them out.
1818
1819 These must match the corresponding definitions in gdb/mipsread.c.
1820 Unfortunately, gcc and gdb do not currently share any directories. */
1821
1822 #define CODE_MASK 0x8F300
1823 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1824 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1825 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1826
1827 /* Override some mips-tfile definitions. */
1828
1829 #define SHASH_SIZE 511
1830 #define THASH_SIZE 55
1831
1832 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
1833
1834 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1835
1836 /* The system headers under Alpha systems are generally C++-aware. */
1837 #define NO_IMPLICIT_EXTERN_C
This page took 0.126616 seconds and 5 git commands to generate.