]> gcc.gnu.org Git - gcc.git/blob - gcc/config/alpha/alpha.h
(RETURN_IN_MEMORY): Delete struct and union references.
[gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "\
25 -Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
26 -D_SYSTYPE_BSD"
27
28 /* Write out the correct language type definition for the header files. */
29 #define CPP_SPEC "\
30 %{.c: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
31 %{.h: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
32 %{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
33 %{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
34 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
35 %{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
36 %{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
37
38 /* Set the spec to use for signed char. The default tests the above macro
39 but DEC's compiler can't handle the conditional in a "constant"
40 operand. */
41
42 #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
43
44 /* No point in running CPP on our assembler output. */
45 #define ASM_SPEC "-nocpp"
46
47 /* Right now Alpha OSF/1 doesn't seem to have debugging or profiled
48 libraries. */
49
50 #define LIB_SPEC "-lc"
51
52 /* Print subsidiary information on the compiler version in use. */
53 #define TARGET_VERSION
54
55 /* Define the location for the startup file on OSF/1 for Alpha. */
56
57 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
58
59 /* Run-time compilation parameters selecting different hardware subsets. */
60
61 extern int target_flags;
62
63 /* This means that floating-point support exists in the target implementation
64 of the Alpha architecture. This is usually the default. */
65
66 #define TARGET_FP (target_flags & 1)
67
68 /* This means that floating-point registers are allowed to be used. Note
69 that Alpha implementations without FP operations are required to
70 provide the FP registers. */
71
72 #define TARGET_FPREGS (target_flags & 2)
73
74 /* Macro to define tables used to set the flags.
75 This is a list in braces of pairs in braces,
76 each pair being { "NAME", VALUE }
77 where VALUE is the bits to set or minus the bits to clear.
78 An empty string NAME is used to identify the default VALUE. */
79
80 #define TARGET_SWITCHES \
81 { {"no-soft-float", 1}, \
82 {"soft-float", -1}, \
83 {"fp-regs", 2}, \
84 {"no-fp-regs", -3}, \
85 {"", TARGET_DEFAULT} }
86
87 #define TARGET_DEFAULT 3
88
89 /* Define this macro to change register usage conditional on target flags.
90
91 On the Alpha, we use this to disable the floating-point registers when
92 they don't exist. */
93
94 #define CONDITIONAL_REGISTER_USAGE \
95 if (! TARGET_FPREGS) \
96 for (i = 32; i < 64; i++) \
97 fixed_regs[i] = call_used_regs[i] = 1;
98
99 /* Define this to change the optimizations performed by default. */
100
101 #define OPTIMIZATION_OPTIONS(LEVEL) \
102 { \
103 if ((LEVEL) > 0) \
104 { \
105 flag_force_addr = 1; \
106 flag_force_mem = 1; \
107 flag_omit_frame_pointer = 1; \
108 } \
109 }
110 \f
111 /* target machine storage layout */
112
113 /* Define the size of `int'. The default is the same as the word size. */
114 #define INT_TYPE_SIZE 32
115
116 /* Define the size of `long long'. The default is the twice the word size. */
117 #define LONG_LONG_TYPE_SIZE 64
118
119 /* The two floating-point formats we support are S-floating, which is
120 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
121 and `long double' are T. */
122
123 #define FLOAT_TYPE_SIZE 32
124 #define DOUBLE_TYPE_SIZE 64
125 #define LONG_DOUBLE_TYPE_SIZE 64
126
127 #define WCHAR_TYPE "short unsigned int"
128 #define WCHAR_TYPE_SIZE 16
129
130 /* Define this macro if it is advisable to hold scalars in registers
131 in a wider mode than that declared by the program. In such cases,
132 the value is constrained to be within the bounds of the declared
133 type, but kept valid in the wider mode. The signedness of the
134 extension may differ from that of the type.
135
136 For Alpha, we always store objects in a full register. 32-bit objects
137 are always sign-extended, but smaller objects retain their signedness. */
138
139 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
140 if (GET_MODE_CLASS (MODE) == MODE_INT \
141 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
142 { \
143 if ((MODE) == SImode) \
144 (UNSIGNEDP) = 0; \
145 (MODE) = DImode; \
146 }
147
148 /* Define this if function arguments should also be promoted using the above
149 procedure. */
150
151 #define PROMOTE_FUNCTION_ARGS
152
153 /* Likewise, if the function return value is promoted. */
154
155 #define PROMOTE_FUNCTION_RETURN
156
157 /* Define this if most significant bit is lowest numbered
158 in instructions that operate on numbered bit-fields.
159
160 There are no such instructions on the Alpha, but the documentation
161 is little endian. */
162 #define BITS_BIG_ENDIAN 0
163
164 /* Define this if most significant byte of a word is the lowest numbered.
165 This is false on the Alpha. */
166 #define BYTES_BIG_ENDIAN 0
167
168 /* Define this if most significant word of a multiword number is lowest
169 numbered.
170
171 For Alpha we can decide arbitrarily since there are no machine instructions
172 for them. Might as well be consistent with bytes. */
173 #define WORDS_BIG_ENDIAN 0
174
175 /* number of bits in an addressable storage unit */
176 #define BITS_PER_UNIT 8
177
178 /* Width in bits of a "word", which is the contents of a machine register.
179 Note that this is not necessarily the width of data type `int';
180 if using 16-bit ints on a 68000, this would still be 32.
181 But on a machine with 16-bit registers, this would be 16. */
182 #define BITS_PER_WORD 64
183
184 /* Width of a word, in units (bytes). */
185 #define UNITS_PER_WORD 8
186
187 /* Width in bits of a pointer.
188 See also the macro `Pmode' defined below. */
189 #define POINTER_SIZE 64
190
191 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
192 #define PARM_BOUNDARY 64
193
194 /* Boundary (in *bits*) on which stack pointer should be aligned. */
195 #define STACK_BOUNDARY 64
196
197 /* Allocation boundary (in *bits*) for the code of a function. */
198 #define FUNCTION_BOUNDARY 64
199
200 /* Alignment of field after `int : 0' in a structure. */
201 #define EMPTY_FIELD_BOUNDARY 64
202
203 /* Every structure's size must be a multiple of this. */
204 #define STRUCTURE_SIZE_BOUNDARY 8
205
206 /* A bitfield declared as `int' forces `int' alignment for the struct. */
207 #define PCC_BITFIELD_TYPE_MATTERS 1
208
209 /* Align loop starts for optimal branching. */
210
211 #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
212 ASM_OUTPUT_ALIGN (FILE, 5)
213
214 /* This is how to align an instruction for optimal branching.
215 On Alpha we'll get better performance by aligning on a quadword
216 boundary. */
217
218 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
219 ASM_OUTPUT_ALIGN ((FILE), 4)
220
221 /* No data type wants to be aligned rounder than this. */
222 #define BIGGEST_ALIGNMENT 64
223
224 /* Make strings word-aligned so strcpy from constants will be faster. */
225 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
226 (TREE_CODE (EXP) == STRING_CST \
227 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
228
229 /* Make arrays of chars word-aligned for the same reasons. */
230 #define DATA_ALIGNMENT(TYPE, ALIGN) \
231 (TREE_CODE (TYPE) == ARRAY_TYPE \
232 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
233 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
234
235 /* Set this non-zero if move instructions will actually fail to work
236 when given unaligned data.
237
238 Since we get an error message when we do one, call them invalid. */
239
240 #define STRICT_ALIGNMENT 1
241
242 /* Set this non-zero if unaligned move instructions are extremely slow.
243
244 On the Alpha, they trap. */
245
246 #define SLOW_UNALIGNED_ACCESS 1
247 \f
248 /* Standard register usage. */
249
250 /* Number of actual hardware registers.
251 The hardware registers are assigned numbers for the compiler
252 from 0 to just below FIRST_PSEUDO_REGISTER.
253 All registers that the compiler knows about must be given numbers,
254 even those that are not normally considered general registers.
255
256 We define all 32 integer registers, even though $31 is always zero,
257 and all 32 floating-point registers, even though $f31 is also
258 always zero. We do not bother defining the FP status register and
259 there are no other registers.
260
261 Since $31 is always zero, we will use register number 31 as the
262 argument pointer. It will never appear in the generated code
263 because we will always be eliminating it in favor of the stack
264 poointer or frame pointer. */
265
266 #define FIRST_PSEUDO_REGISTER 64
267
268 /* 1 for registers that have pervasive standard uses
269 and are not available for the register allocator. */
270
271 #define FIXED_REGISTERS \
272 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
273 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
274 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
275 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
276
277 /* 1 for registers not available across function calls.
278 These must include the FIXED_REGISTERS and also any
279 registers that can be used without being saved.
280 The latter must include the registers where values are returned
281 and the register where structure-value addresses are passed.
282 Aside from that, you can include as many other registers as you like. */
283 #define CALL_USED_REGISTERS \
284 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
285 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
286 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
287 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
288
289 /* List the order in which to allocate registers. Each register must be
290 listed once, even those in FIXED_REGISTERS.
291
292 We allocate in the following order:
293 $f1 (nonsaved floating-point register)
294 $f10-$f15 (likewise)
295 $f22-$f30 (likewise)
296 $f21-$f16 (likewise, but input args)
297 $f0 (nonsaved, but return value)
298 $f2-$f9 (saved floating-point registers)
299 $1-$8 (nonsaved integer registers)
300 $22-$25 (likewise)
301 $28 (likewise)
302 $0 (likewise, but return value)
303 $21-$16 (likewise, but input args)
304 $27 (procedure value)
305 $9-$14 (saved integer registers)
306 $26 (return PC)
307 $15 (frame pointer)
308 $29 (global pointer)
309 $30, $31, $f31 (stack pointer and always zero/ap) */
310
311 #define REG_ALLOC_ORDER \
312 {33, \
313 42, 43, 44, 45, \
314 54, 55, 56, 57, 58, 59, 60, 61, 62, \
315 53, 52, 51, 50, 49, 48, \
316 32, \
317 34, 35, 36, 37, 38, 39, 40, 41, \
318 1, 2, 3, 4, 5, 6, 7, 8, \
319 22, 23, 24, 25, \
320 28, \
321 0, \
322 21, 20, 19, 18, 17, 16, \
323 27, \
324 9, 10, 11, 12, 13, 14, \
325 26, \
326 15, \
327 29, \
328 30, 31, 63 }
329
330 /* Return number of consecutive hard regs needed starting at reg REGNO
331 to hold something of mode MODE.
332 This is ordinarily the length in words of a value of mode MODE
333 but can be less for certain modes in special long registers. */
334
335 #define HARD_REGNO_NREGS(REGNO, MODE) \
336 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
337
338 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
339 On Alpha, the integer registers can hold any mode. The floating-point
340 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
341 or 8-bit values. If we only allowed the larger integers into FP registers,
342 we'd have to say that QImode and SImode aren't tiable, which is a
343 pain. So say all registers can hold everything and see how that works. */
344
345 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
346
347 /* Value is 1 if it is a good idea to tie two pseudo registers
348 when one has mode MODE1 and one has mode MODE2.
349 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
350 for any hard reg, then this must be 0 for correct output. */
351
352 #define MODES_TIEABLE_P(MODE1, MODE2) 1
353
354 /* Specify the registers used for certain standard purposes.
355 The values of these macros are register numbers. */
356
357 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
358 /* #define PC_REGNUM */
359
360 /* Register to use for pushing function arguments. */
361 #define STACK_POINTER_REGNUM 30
362
363 /* Base register for access to local variables of the function. */
364 #define FRAME_POINTER_REGNUM 15
365
366 /* Value should be nonzero if functions must have frame pointers.
367 Zero means the frame pointer need not be set up (and parms
368 may be accessed via the stack pointer) in functions that seem suitable.
369 This is computed in `reload', in reload1.c. */
370 #define FRAME_POINTER_REQUIRED 0
371
372 /* Base register for access to arguments of the function. */
373 #define ARG_POINTER_REGNUM 31
374
375 /* Register in which static-chain is passed to a function.
376
377 For the Alpha, this is based on an example; the calling sequence
378 doesn't seem to specify this. */
379 #define STATIC_CHAIN_REGNUM 1
380
381 /* Register in which address to store a structure value
382 arrives in the function. On the Alpha, the address is passed
383 as a hidden argument. */
384 #define STRUCT_VALUE 0
385 \f
386 /* Define the classes of registers for register constraints in the
387 machine description. Also define ranges of constants.
388
389 One of the classes must always be named ALL_REGS and include all hard regs.
390 If there is more than one class, another class must be named NO_REGS
391 and contain no registers.
392
393 The name GENERAL_REGS must be the name of a class (or an alias for
394 another name such as ALL_REGS). This is the class of registers
395 that is allowed by "g" or "r" in a register constraint.
396 Also, registers outside this class are allocated only when
397 instructions express preferences for them.
398
399 The classes must be numbered in nondecreasing order; that is,
400 a larger-numbered class must never be contained completely
401 in a smaller-numbered class.
402
403 For any two classes, it is very desirable that there be another
404 class that represents their union. */
405
406 enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
407 LIM_REG_CLASSES };
408
409 #define N_REG_CLASSES (int) LIM_REG_CLASSES
410
411 /* Give names of register classes as strings for dump file. */
412
413 #define REG_CLASS_NAMES \
414 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
415
416 /* Define which registers fit in which classes.
417 This is an initializer for a vector of HARD_REG_SET
418 of length N_REG_CLASSES. */
419
420 #define REG_CLASS_CONTENTS \
421 { {0, 0}, {~0, 0}, {0, ~0}, {~0, ~0} }
422
423 /* The same information, inverted:
424 Return the class number of the smallest class containing
425 reg number REGNO. This could be a conditional expression
426 or could index an array. */
427
428 #define REGNO_REG_CLASS(REGNO) ((REGNO) >= 32 ? FLOAT_REGS : GENERAL_REGS)
429
430 /* The class value for index registers, and the one for base regs. */
431 #define INDEX_REG_CLASS NO_REGS
432 #define BASE_REG_CLASS GENERAL_REGS
433
434 /* Get reg_class from a letter such as appears in the machine description. */
435
436 #define REG_CLASS_FROM_LETTER(C) \
437 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
438
439 /* Define this macro to change register usage conditional on target flags. */
440 /* #define CONDITIONAL_REGISTER_USAGE */
441
442 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
443 can be used to stand for particular ranges of immediate operands.
444 This macro defines what the ranges are.
445 C is the letter, and VALUE is a constant value.
446 Return 1 if VALUE is in the range specified by C.
447
448 For Alpha:
449 `I' is used for the range of constants most insns can contain.
450 `J' is the constant zero.
451 `K' is used for the constant in an LDA insn.
452 `L' is used for the constant in a LDAH insn.
453 `M' is used for the constants that can be AND'ed with using a ZAP insn.
454 `N' is used for complemented 8-bit constants.
455 `O' is used for negated 8-bit constants.
456 `P' is used for the constants 1, 2 and 3. */
457
458 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
459 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
460 : (C) == 'J' ? (VALUE) == 0 \
461 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
462 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
463 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
464 : (C) == 'M' ? zap_mask (VALUE) \
465 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
466 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
467 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
468 : 0)
469
470 /* Similar, but for floating or large integer constants, and defining letters
471 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
472
473 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
474 that is the operand of a ZAP insn. */
475
476 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
477 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
478 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
479 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
480 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
481 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
482 : 0)
483
484 /* Given an rtx X being reloaded into a reg required to be
485 in class CLASS, return the class of reg to actually use.
486 In general this is just CLASS; but on some machines
487 in some cases it is preferable to use a more restrictive class.
488
489 On the Alpha, all constants except zero go into a floating-point
490 register via memory. */
491
492 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
493 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
494 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
495 : (CLASS))
496
497 /* Loading and storing HImode or QImode values to and from memory
498 usually requires a scratch register. The exceptions are loading
499 QImode and HImode from an aligned address to a general register. */
500
501 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
502 (((GET_CODE (IN) == MEM \
503 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
504 || (GET_CODE (IN) == SUBREG \
505 && (GET_CODE (SUBREG_REG (IN)) == MEM \
506 || (GET_CODE (SUBREG_REG (IN)) == REG \
507 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
508 && (((CLASS) == FLOAT_REGS \
509 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
510 || (((MODE) == QImode || (MODE) == HImode) \
511 && unaligned_memory_operand (IN, MODE)))) \
512 ? GENERAL_REGS : NO_REGS)
513
514 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
515 (((GET_CODE (OUT) == MEM \
516 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
517 || (GET_CODE (OUT) == SUBREG \
518 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
519 || (GET_CODE (SUBREG_REG (OUT)) == REG \
520 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
521 && (((MODE) == HImode || (MODE) == QImode \
522 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
523 ? GENERAL_REGS : NO_REGS)
524
525 /* If we are copying between general and FP registers, we need a memory
526 location. */
527
528 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
529
530 /* Return the maximum number of consecutive registers
531 needed to represent mode MODE in a register of class CLASS. */
532
533 #define CLASS_MAX_NREGS(CLASS, MODE) \
534 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
535
536 /* Define the cost of moving between registers of various classes. Moving
537 between FLOAT_REGS and anything else except float regs is expensive.
538 In fact, we make it quite expensive because we really don't want to
539 do these moves unless it is clearly worth it. Optimizations may
540 reduce the impact of not being able to allocate a pseudo to a
541 hard register. */
542
543 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
544 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
545
546 /* A C expressions returning the cost of moving data of MODE from a register to
547 or from memory.
548
549 On the Alpha, bump this up a bit. */
550
551 #define MEMORY_MOVE_COST(MODE) 6
552
553 /* Provide the cost of a branch. Exact meaning under development. */
554 #define BRANCH_COST 5
555
556 /* Adjust the cost of dependencies. */
557
558 #define ADJUST_COST(INSN,LINK,DEP,COST) \
559 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
560 \f
561 /* Stack layout; function entry, exit and calling. */
562
563 /* Define this if pushing a word on the stack
564 makes the stack pointer a smaller address. */
565 #define STACK_GROWS_DOWNWARD
566
567 /* Define this if the nominal address of the stack frame
568 is at the high-address end of the local variables;
569 that is, each additional local variable allocated
570 goes at a more negative offset in the frame. */
571 /* #define FRAME_GROWS_DOWNWARD */
572
573 /* Offset within stack frame to start allocating local variables at.
574 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
575 first local allocated. Otherwise, it is the offset to the BEGINNING
576 of the first local allocated. */
577
578 #define STARTING_FRAME_OFFSET current_function_outgoing_args_size
579
580 /* If we generate an insn to push BYTES bytes,
581 this says how many the stack pointer really advances by.
582 On Alpha, don't define this because there are no push insns. */
583 /* #define PUSH_ROUNDING(BYTES) */
584
585 /* Define this if the maximum size of all the outgoing args is to be
586 accumulated and pushed during the prologue. The amount can be
587 found in the variable current_function_outgoing_args_size. */
588 #define ACCUMULATE_OUTGOING_ARGS
589
590 /* Offset of first parameter from the argument pointer register value. */
591
592 #define FIRST_PARM_OFFSET(FNDECL) 0
593
594 /* Definitions for register eliminations.
595
596 We have two registers that can be eliminated on the i386. First, the
597 frame pointer register can often be eliminated in favor of the stack
598 pointer register. Secondly, the argument pointer register can always be
599 eliminated; it is replaced with either the stack or frame pointer. */
600
601 /* This is an array of structures. Each structure initializes one pair
602 of eliminable registers. The "from" register number is given first,
603 followed by "to". Eliminations of the same "from" register are listed
604 in order of preference. */
605
606 #define ELIMINABLE_REGS \
607 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
608 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
609 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
610
611 /* Given FROM and TO register numbers, say whether this elimination is allowed.
612 Frame pointer elimination is automatically handled.
613
614 All eliminations are valid since the cases where FP can't be
615 eliminated are already handled. */
616
617 #define CAN_ELIMINATE(FROM, TO) 1
618
619 /* Define the offset between two registers, one to be eliminated, and the other
620 its replacement, at the start of a routine. */
621 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
622 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
623 (OFFSET) = 0; \
624 else \
625 (OFFSET) = (get_frame_size () + current_function_outgoing_args_size \
626 + current_function_pretend_args_size \
627 + alpha_sa_size () + 15) & ~ 15; \
628 }
629
630 /* Define this if stack space is still allocated for a parameter passed
631 in a register. */
632 /* #define REG_PARM_STACK_SPACE */
633
634 /* Value is the number of bytes of arguments automatically
635 popped when returning from a subroutine call.
636 FUNTYPE is the data type of the function (as a tree),
637 or for a library call it is an identifier node for the subroutine name.
638 SIZE is the number of bytes of arguments passed on the stack. */
639
640 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
641
642 /* Define how to find the value returned by a function.
643 VALTYPE is the data type of the value (as a tree).
644 If the precise function being called is known, FUNC is its FUNCTION_DECL;
645 otherwise, FUNC is 0.
646
647 On Alpha the value is found in $0 for integer functions and
648 $f0 for floating-point functions. */
649
650 #define FUNCTION_VALUE(VALTYPE, FUNC) \
651 gen_rtx (REG, \
652 ((TREE_CODE (VALTYPE) == INTEGER_TYPE \
653 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
654 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
655 || TREE_CODE (VALTYPE) == CHAR_TYPE \
656 || TREE_CODE (VALTYPE) == POINTER_TYPE \
657 || TREE_CODE (VALTYPE) == OFFSET_TYPE) \
658 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
659 ? word_mode : TYPE_MODE (VALTYPE), \
660 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
661
662 /* Define how to find the value returned by a library function
663 assuming the value has mode MODE. */
664
665 #define LIBCALL_VALUE(MODE) \
666 gen_rtx (REG, MODE, \
667 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
668
669 /* The definition of this macro implies that there are cases where
670 a scalar value cannot be returned in registers.
671
672 For the Alpha, any structure or union type is returned in memory, as
673 are integers whose size is larger than 64 bits. */
674
675 #define RETURN_IN_MEMORY(TYPE) \
676 (TYPE_MODE (TYPE) == BLKmode \
677 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
678
679 /* 1 if N is a possible register number for a function value
680 as seen by the caller. */
681
682 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
683
684 /* 1 if N is a possible register number for function argument passing.
685 On Alpha, these are $16-$21 and $f16-$f21. */
686
687 #define FUNCTION_ARG_REGNO_P(N) \
688 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
689 \f
690 /* Define a data type for recording info about an argument list
691 during the scan of that argument list. This data type should
692 hold all necessary information about the function itself
693 and about the args processed so far, enough to enable macros
694 such as FUNCTION_ARG to determine where the next arg should go.
695
696 On Alpha, this is a single integer, which is a number of words
697 of arguments scanned so far.
698 Thus 6 or more means all following args should go on the stack. */
699
700 #define CUMULATIVE_ARGS int
701
702 /* Initialize a variable CUM of type CUMULATIVE_ARGS
703 for a call to a function whose data type is FNTYPE.
704 For a library call, FNTYPE is 0. */
705
706 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
707
708 /* Define intermediate macro to compute the size (in registers) of an argument
709 for the Alpha. */
710
711 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
712 ((MODE) != BLKmode \
713 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
714 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
715
716 /* Update the data in CUM to advance over an argument
717 of mode MODE and data type TYPE.
718 (TYPE is null for libcalls where that information may not be available.) */
719
720 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
721 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
722 (CUM) = 6; \
723 else \
724 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
725
726 /* Determine where to put an argument to a function.
727 Value is zero to push the argument on the stack,
728 or a hard register in which to store the argument.
729
730 MODE is the argument's machine mode.
731 TYPE is the data type of the argument (as a tree).
732 This is null for libcalls where that information may
733 not be available.
734 CUM is a variable of type CUMULATIVE_ARGS which gives info about
735 the preceding args and about the function being called.
736 NAMED is nonzero if this argument is a named parameter
737 (otherwise it is an extra parameter matching an ellipsis).
738
739 On Alpha the first 6 words of args are normally in registers
740 and the rest are pushed. */
741
742 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
743 ((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
744 ? gen_rtx(REG, (MODE), \
745 (CUM) + 16 + (TARGET_FPREGS \
746 && GET_MODE_CLASS (MODE) == MODE_FLOAT) * 32) : 0)
747
748 /* Specify the padding direction of arguments.
749
750 On the Alpha, we must pad upwards in order to be able to pass args in
751 registers. */
752
753 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
754
755 /* For an arg passed partly in registers and partly in memory,
756 this is the number of registers used.
757 For args passed entirely in registers or entirely in memory, zero. */
758
759 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
760 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
761 ? 6 - (CUM) : 0)
762
763 /* Perform any needed actions needed for a function that is receiving a
764 variable number of arguments.
765
766 CUM is as above.
767
768 MODE and TYPE are the mode and type of the current parameter.
769
770 PRETEND_SIZE is a variable that should be set to the amount of stack
771 that must be pushed by the prolog to pretend that our caller pushed
772 it.
773
774 Normally, this macro will push all remaining incoming registers on the
775 stack and set PRETEND_SIZE to the length of the registers pushed.
776
777 On the Alpha, we allocate space for all 12 arg registers, but only
778 push those that are remaining.
779
780 However, if NO registers need to be saved, don't allocate any space.
781 This is not only because we won't need the space, but because AP includes
782 the current_pretend_args_size and we don't want to mess up any
783 ap-relative addresses already made. */
784
785 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
786 { if ((CUM) < 6) \
787 { \
788 if (! (NO_RTL)) \
789 { \
790 move_block_from_reg \
791 (16 + CUM, \
792 gen_rtx (MEM, BLKmode, \
793 plus_constant (virtual_incoming_args_rtx, \
794 ((CUM) - 6) * UNITS_PER_WORD)), \
795 6 - (CUM)); \
796 move_block_from_reg \
797 (16 + 32 + CUM, \
798 gen_rtx (MEM, BLKmode, \
799 plus_constant (virtual_incoming_args_rtx, \
800 ((CUM) - 12) * UNITS_PER_WORD)), \
801 6 - (CUM)); \
802 } \
803 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
804 } \
805 }
806
807 /* Generate necessary RTL for __builtin_saveregs().
808 ARGLIST is the argument list; see expr.c. */
809 extern struct rtx_def *alpha_builtin_saveregs ();
810 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
811
812 /* Define the information needed to generate branch and scc insns. This is
813 stored from the compare operation. Note that we can't use "rtx" here
814 since it hasn't been defined! */
815
816 extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
817 extern int alpha_compare_fp_p;
818
819 /* This macro produces the initial definition of a function name. On the
820 Alpha, we need to save the function name for the epilogue. */
821
822 extern char *alpha_function_name;
823
824 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
825 { int _level; \
826 tree _context; \
827 for (_level = -1, _context = (DECL); _context; \
828 _context = DECL_CONTEXT (_context), _level++) \
829 ; \
830 fprintf (FILE, "\t.ent %s %d\n", NAME, _level); \
831 ASM_OUTPUT_LABEL (FILE, NAME); \
832 alpha_function_name = NAME; \
833 }
834
835 /* This macro generates the assembly code for function entry.
836 FILE is a stdio stream to output the code to.
837 SIZE is an int: how many units of temporary storage to allocate.
838 Refer to the array `regs_ever_live' to determine which registers
839 to save; `regs_ever_live[I]' is nonzero if register number I
840 is ever used in the function. This macro is responsible for
841 knowing which registers should not be saved even if used. */
842
843 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
844
845 /* Output assembler code to FILE to increment profiler label # LABELNO
846 for profiling a function entry. */
847
848 #define FUNCTION_PROFILER(FILE, LABELNO)
849
850 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
851 the stack pointer does not matter. The value is tested only in
852 functions that have frame pointers.
853 No definition is equivalent to always zero. */
854
855 #define EXIT_IGNORE_STACK 1
856
857 /* This macro generates the assembly code for function exit,
858 on machines that need it. If FUNCTION_EPILOGUE is not defined
859 then individual return instructions are generated for each
860 return statement. Args are same as for FUNCTION_PROLOGUE.
861
862 The function epilogue should not depend on the current stack pointer!
863 It should use the frame pointer only. This is mandatory because
864 of alloca; we also take advantage of it to omit stack adjustments
865 before returning. */
866
867 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
868
869 \f
870 /* Output assembler code for a block containing the constant parts
871 of a trampoline, leaving space for the variable parts.
872
873 The trampoline should set the static chain pointer to value placed
874 into the trampoline and should branch to the specified routine.
875 Note that $27 has been set to the address of the trampoline, so we can
876 use it for addressability of the two data items. Trampolines are always
877 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
878
879 #define TRAMPOLINE_TEMPLATE(FILE) \
880 { \
881 fprintf (FILE, "\tldq $1,24($27)\n"); \
882 fprintf (FILE, "\tldq $27,16($27)\n"); \
883 fprintf (FILE, "\tjmp $31,($27),0\n"); \
884 fprintf (FILE, "\tnop\n"); \
885 fprintf (FILE, "\t.quad 0,0\n"); \
886 }
887
888 /* Section in which to place the trampoline. On Alpha, instructions
889 may only be placed in a text segment. */
890
891 #define TRAMPOLINE_SECTION text_section
892
893 /* Length in units of the trampoline for entering a nested function. */
894
895 #define TRAMPOLINE_SIZE 32
896
897 /* Emit RTL insns to initialize the variable parts of a trampoline.
898 FNADDR is an RTX for the address of the function's pure code.
899 CXT is an RTX for the static chain value for the function. We assume
900 here that a function will be called many more times than its address
901 is taken (e.g., it might be passed to qsort), so we take the trouble
902 to initialize the "hint" field in the JMP insn. Note that the hint
903 field is PC (new) + 4 * bits 13:0. */
904
905 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
906 { \
907 rtx _temp, _temp1, _addr; \
908 \
909 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
910 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
911 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
912 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
913 \
914 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
915 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
916 OPTAB_WIDEN); \
917 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
918 build_int_2 (2, 0), NULL_RTX, 1); \
919 _temp = expand_and (gen_lowpart (SImode, _temp), \
920 GEN_INT (0x3fff), 0); \
921 \
922 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
923 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
924 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
925 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
926 OPTAB_WIDEN); \
927 \
928 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
929 \
930 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
931 "__enable_execute_stack"), \
932 0, VOIDmode, 1,_addr, Pmode); \
933 \
934 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
935 gen_rtvec (1, const0_rtx), 0)); \
936 }
937
938 /* Attempt to turn on access permissions for the stack. */
939
940 #define TRANSFER_FROM_TRAMPOLINE \
941 \
942 void \
943 __enable_execute_stack (addr) \
944 void *addr; \
945 { \
946 long size = getpagesize (); \
947 long mask = ~(size-1); \
948 char *page = (char *) (((long) addr) & mask); \
949 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
950 \
951 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
952 if (mprotect (page, end - page, 7) < 0) \
953 perror ("mprotect of trampoline code"); \
954 }
955 \f
956 /* Addressing modes, and classification of registers for them. */
957
958 /* #define HAVE_POST_INCREMENT */
959 /* #define HAVE_POST_DECREMENT */
960
961 /* #define HAVE_PRE_DECREMENT */
962 /* #define HAVE_PRE_INCREMENT */
963
964 /* Macros to check register numbers against specific register classes. */
965
966 /* These assume that REGNO is a hard or pseudo reg number.
967 They give nonzero only if REGNO is a hard reg of the suitable class
968 or a pseudo reg currently allocated to a suitable hard reg.
969 Since they use reg_renumber, they are safe only once reg_renumber
970 has been allocated, which happens in local-alloc.c. */
971
972 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
973 #define REGNO_OK_FOR_BASE_P(REGNO) \
974 (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
975 \f
976 /* Maximum number of registers that can appear in a valid memory address. */
977 #define MAX_REGS_PER_ADDRESS 1
978
979 /* Recognize any constant value that is a valid address. For the Alpha,
980 there are only constants none since we want to use LDA to load any
981 symbolic addresses into registers. */
982
983 #define CONSTANT_ADDRESS_P(X) \
984 (GET_CODE (X) == CONST_INT \
985 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
986
987 /* Include all constant integers and constant doubles, but not
988 floating-point, except for floating-point zero. */
989
990 #define LEGITIMATE_CONSTANT_P(X) \
991 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
992 || (X) == CONST0_RTX (GET_MODE (X)))
993
994 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
995 and check its validity for a certain class.
996 We have two alternate definitions for each of them.
997 The usual definition accepts all pseudo regs; the other rejects
998 them unless they have been allocated suitable hard regs.
999 The symbol REG_OK_STRICT causes the latter definition to be used.
1000
1001 Most source files want to accept pseudo regs in the hope that
1002 they will get allocated to the class that the insn wants them to be in.
1003 Source files for reload pass need to be strict.
1004 After reload, it makes no difference, since pseudo regs have
1005 been eliminated by then. */
1006
1007 #ifndef REG_OK_STRICT
1008
1009 /* Nonzero if X is a hard reg that can be used as an index
1010 or if it is a pseudo reg. */
1011 #define REG_OK_FOR_INDEX_P(X) 0
1012 /* Nonzero if X is a hard reg that can be used as a base reg
1013 or if it is a pseudo reg. */
1014 #define REG_OK_FOR_BASE_P(X) \
1015 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1016
1017 #else
1018
1019 /* Nonzero if X is a hard reg that can be used as an index. */
1020 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1021 /* Nonzero if X is a hard reg that can be used as a base reg. */
1022 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1023
1024 #endif
1025 \f
1026 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1027 that is a valid memory address for an instruction.
1028 The MODE argument is the machine mode for the MEM expression
1029 that wants to use this address.
1030
1031 For Alpha, we have either a constant address or the sum of a register
1032 and a constant address, or just a register. For DImode, any of those
1033 forms can be surrounded with an AND that clear the low-order three bits;
1034 this is an "unaligned" access.
1035
1036 We also allow a SYMBOL_REF that is the name of the current function as
1037 valid address. This is for CALL_INSNs. It cannot be used in any other
1038 context.
1039
1040 First define the basic valid address. */
1041
1042 #define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1043 { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1044 goto ADDR; \
1045 if (CONSTANT_ADDRESS_P (X)) \
1046 goto ADDR; \
1047 if (GET_CODE (X) == PLUS \
1048 && REG_P (XEXP (X, 0)) \
1049 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1050 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1051 goto ADDR; \
1052 }
1053
1054 /* Now accept the simple address, or, for DImode only, an AND of a simple
1055 address that turns off the low three bits. */
1056
1057 extern char *current_function_name;
1058
1059 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1060 { GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1061 if ((MODE) == DImode \
1062 && GET_CODE (X) == AND \
1063 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1064 && INTVAL (XEXP (X, 1)) == -8) \
1065 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1066 if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
1067 && ! strcmp (XSTR (X, 0), current_function_name)) \
1068 goto ADDR; \
1069 }
1070
1071 /* Try machine-dependent ways of modifying an illegitimate address
1072 to be legitimate. If we find one, return the new, valid address.
1073 This macro is used in only one place: `memory_address' in explow.c.
1074
1075 OLDX is the address as it was before break_out_memory_refs was called.
1076 In some cases it is useful to look at this to decide what needs to be done.
1077
1078 MODE and WIN are passed so that this macro can use
1079 GO_IF_LEGITIMATE_ADDRESS.
1080
1081 It is always safe for this macro to do nothing. It exists to recognize
1082 opportunities to optimize the output.
1083
1084 For the Alpha, there are three cases we handle:
1085
1086 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1087 valid offset, compute the high part of the constant and add it to the
1088 register. Then our address is (plus temp low-part-const).
1089 (2) If the address is (const (plus FOO const_int)), find the low-order
1090 part of the CONST_INT. Then load FOO plus any high-order part of the
1091 CONST_INT into a register. Our address is (plus reg low-part-const).
1092 This is done to reduce the number of GOT entries.
1093 (3) If we have a (plus reg const), emit the load as in (2), then add
1094 the two registers, and finally generate (plus reg low-part-const) as
1095 our address. */
1096
1097 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1098 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1099 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1100 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1101 { \
1102 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1103 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1104 HOST_WIDE_INT highpart = val - lowpart; \
1105 rtx high = GEN_INT (highpart); \
1106 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
1107 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1108 \
1109 (X) = plus_constant (temp, lowpart); \
1110 goto WIN; \
1111 } \
1112 else if (GET_CODE (X) == CONST \
1113 && GET_CODE (XEXP (X, 0)) == PLUS \
1114 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1115 { \
1116 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1117 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1118 HOST_WIDE_INT highpart = val - lowpart; \
1119 rtx high = XEXP (XEXP (X, 0), 0); \
1120 \
1121 if (highpart) \
1122 high = plus_constant (high, highpart); \
1123 \
1124 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1125 goto WIN; \
1126 } \
1127 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1128 && GET_CODE (XEXP (X, 1)) == CONST \
1129 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1130 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1131 { \
1132 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1133 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1134 HOST_WIDE_INT highpart = val - lowpart; \
1135 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1136 \
1137 if (highpart) \
1138 high = plus_constant (high, highpart); \
1139 \
1140 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1141 force_reg (Pmode, high), \
1142 high, 1, OPTAB_LIB_WIDEN); \
1143 (X) = plus_constant (high, lowpart); \
1144 goto WIN; \
1145 } \
1146 }
1147
1148 /* Go to LABEL if ADDR (a legitimate address expression)
1149 has an effect that depends on the machine mode it is used for.
1150 On the Alpha this is true only for the unaligned modes. We can
1151 simplify this test since we know that the address must be valid. */
1152
1153 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1154 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1155
1156 /* Compute the cost of an address. For the Alpha, all valid addresses are
1157 the same cost. */
1158
1159 #define ADDRESS_COST(X) 0
1160
1161 /* Define this if some processing needs to be done immediately before
1162 emitting code for an insn. */
1163
1164 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1165 \f
1166 /* Specify the machine mode that this machine uses
1167 for the index in the tablejump instruction. */
1168 #define CASE_VECTOR_MODE SImode
1169
1170 /* Define this if the tablejump instruction expects the table
1171 to contain offsets from the address of the table.
1172 Do not define this if the table should contain absolute addresses. */
1173 /* #define CASE_VECTOR_PC_RELATIVE */
1174
1175 /* Specify the tree operation to be used to convert reals to integers. */
1176 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1177
1178 /* This is the kind of divide that is easiest to do in the general case. */
1179 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1180
1181 /* Define this as 1 if `char' should by default be signed; else as 0. */
1182 #define DEFAULT_SIGNED_CHAR 1
1183
1184 /* This flag, if defined, says the same insns that convert to a signed fixnum
1185 also convert validly to an unsigned one.
1186
1187 We actually lie a bit here as overflow conditions are different. But
1188 they aren't being checked anyway. */
1189
1190 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1191
1192 /* Max number of bytes we can move to or from memory
1193 in one reasonably fast instruction. */
1194
1195 #define MOVE_MAX 8
1196
1197 /* Largest number of bytes of an object that can be placed in a register.
1198 On the Alpha we have plenty of registers, so use TImode. */
1199 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1200
1201 /* Nonzero if access to memory by bytes is no faster than for words.
1202 Also non-zero if doing byte operations (specifically shifts) in registers
1203 is undesirable.
1204
1205 On the Alpha, we want to not use the byte operation and instead use
1206 masking operations to access fields; these will save instructions. */
1207
1208 #define SLOW_BYTE_ACCESS 1
1209
1210 /* Define if normal loads of shorter-than-word items from memory clears
1211 the rest of the bits in the register. */
1212 /* #define BYTE_LOADS_ZERO_EXTEND */
1213
1214 /* Define if normal loads of shorter-than-word items from memory sign-extends
1215 the rest of the bits in the register. */
1216 #define BYTE_LOADS_SIGN_EXTEND
1217
1218 /* We aren't doing ANYTHING about debugging for now. */
1219 /* #define SDB_DEBUGGING_INFO */
1220
1221 /* Do not break .stabs pseudos into continuations. */
1222 #define DBX_CONTIN_LENGTH 0
1223
1224 /* Don't try to use the `x' type-cross-reference character in DBX data.
1225 Also has the consequence of putting each struct, union or enum
1226 into a separate .stabs, containing only cross-refs to the others. */
1227 #define DBX_NO_XREFS
1228
1229 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1230 is done just by pretending it is already truncated. */
1231 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1232
1233 /* We assume that the store-condition-codes instructions store 0 for false
1234 and some other value for true. This is the value stored for true. */
1235
1236 #define STORE_FLAG_VALUE 1
1237
1238 /* Define the value returned by a floating-point comparison instruction. */
1239
1240 #define FLOAT_STORE_FLAG_VALUE 0.5
1241
1242 /* Specify the machine mode that pointers have.
1243 After generation of rtl, the compiler makes no further distinction
1244 between pointers and any other objects of this machine mode. */
1245 #define Pmode DImode
1246
1247 /* Mode of a function address in a call instruction (for indexing purposes). */
1248
1249 #define FUNCTION_MODE Pmode
1250
1251 /* Define this if addresses of constant functions
1252 shouldn't be put through pseudo regs where they can be cse'd.
1253 Desirable on machines where ordinary constants are expensive
1254 but a CALL with constant address is cheap.
1255
1256 We define this on the Alpha so that gen_call and gen_call_value
1257 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1258 then copy it into a register, thus actually letting the address be
1259 cse'ed. */
1260
1261 #define NO_FUNCTION_CSE
1262
1263 /* Define this if shift instructions ignore all but the low-order
1264 few bits. */
1265 #define SHIFT_COUNT_TRUNCATED
1266
1267 /* Compute the cost of computing a constant rtl expression RTX
1268 whose rtx-code is CODE. The body of this macro is a portion
1269 of a switch statement. If the code is computed here,
1270 return it with a return statement. Otherwise, break from the switch.
1271
1272 We only care about the cost if it is valid in an insn, so all constants
1273 are cheap. */
1274
1275 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1276 case CONST_INT: \
1277 case CONST_DOUBLE: \
1278 return 0; \
1279 case CONST: \
1280 case SYMBOL_REF: \
1281 case LABEL_REF: \
1282 return 6; \
1283
1284 /* Provide the costs of a rtl expression. This is in the body of a
1285 switch on CODE. */
1286
1287 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1288 case PLUS: \
1289 case MINUS: \
1290 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1291 return COSTS_N_INSNS (6); \
1292 else if (GET_CODE (XEXP (X, 0)) == MULT \
1293 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1294 return 2 + rtx_cost (XEXP (XEXP (X, 0), 0)) + rtx_cost (XEXP (X, 1)); \
1295 break; \
1296 case MULT: \
1297 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1298 return COSTS_N_INSNS (6); \
1299 else if (GET_CODE (XEXP (X, 1)) != CONST_INT \
1300 || exact_log2 (INTVAL (XEXP (X, 1))) < 0) \
1301 return COSTS_N_INSNS (21); \
1302 else if (const48_operand (XEXP (X, 1), VOIDmode)) \
1303 break; \
1304 return COSTS_N_INSNS (2); \
1305 case ASHIFT: \
1306 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1307 && INTVAL (XEXP (X, 1)) <= 3) \
1308 break; \
1309 /* ... fall through ... */ \
1310 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1311 return COSTS_N_INSNS (2); \
1312 case DIV: \
1313 case UDIV: \
1314 case MOD: \
1315 case UMOD: \
1316 if (GET_MODE (X) == SFmode) \
1317 return COSTS_N_INSNS (34); \
1318 else if (GET_MODE (X) == DFmode) \
1319 return COSTS_N_INSNS (63); \
1320 else \
1321 return COSTS_N_INSNS (70); \
1322 case MEM: \
1323 return COSTS_N_INSNS (3);
1324 \f
1325 /* Control the assembler format that we output. */
1326
1327 /* Output at beginning of assembler file. */
1328
1329 #define ASM_FILE_START(FILE) \
1330 { char *p, *after_dir = main_input_filename; \
1331 \
1332 alpha_write_verstamp (FILE); \
1333 fprintf (FILE, "\t.set noreorder\n"); \
1334 fprintf (FILE, "\t.set noat\n"); \
1335 for (p = main_input_filename; *p; p++) \
1336 if (*p == '/') \
1337 after_dir = p + 1; \
1338 fprintf (FILE, "\n\t.file 2 \"%s\"\n", after_dir); \
1339 }
1340
1341 /* Output to assembler file text saying following lines
1342 may contain character constants, extra white space, comments, etc. */
1343
1344 #define ASM_APP_ON ""
1345
1346 /* Output to assembler file text saying following lines
1347 no longer contain unusual constructs. */
1348
1349 #define ASM_APP_OFF ""
1350
1351 #define TEXT_SECTION_ASM_OP ".text"
1352
1353 /* Output before read-only data. */
1354
1355 #define READONLY_DATA_SECTION_ASM_OP ".rdata"
1356
1357 /* Output before writable data. */
1358
1359 #define DATA_SECTION_ASM_OP ".data"
1360
1361 /* Define an extra section for read-only data, a routine to enter it, and
1362 indicate that it is for read-only data. */
1363
1364 #define EXTRA_SECTIONS readonly_data
1365
1366 #define EXTRA_SECTION_FUNCTIONS \
1367 void \
1368 literal_section () \
1369 { \
1370 if (in_section != readonly_data) \
1371 { \
1372 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1373 in_section = readonly_data; \
1374 } \
1375 } \
1376
1377 #define READONLY_DATA_SECTION literal_section
1378
1379 /* If we are referencing a function that is static or is known to be
1380 in this file, make the SYMBOL_REF special. We can use this to see
1381 indicate that we can branch to this function without setting PV or
1382 restoring GP. */
1383
1384 #define ENCODE_SECTION_INFO(DECL) \
1385 if (TREE_CODE (DECL) == FUNCTION_DECL \
1386 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
1387 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1388
1389 /* How to refer to registers in assembler output.
1390 This sequence is indexed by compiler's hard-register-number (see above). */
1391
1392 #define REGISTER_NAMES \
1393 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1394 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1395 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1396 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1397 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1398 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1399 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1400 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"}
1401
1402 /* How to renumber registers for dbx and gdb. */
1403
1404 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1405
1406 /* This is how to output the definition of a user-level label named NAME,
1407 such as the label on a static function or variable NAME. */
1408
1409 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1410 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1411
1412 /* This is how to output a command to make the user-level label named NAME
1413 defined for reference from other files. */
1414
1415 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1416 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1417
1418 /* This is how to output a reference to a user-level label named NAME.
1419 `assemble_name' uses this. */
1420
1421 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1422 fprintf (FILE, "%s", NAME)
1423
1424 /* This is how to output an internal numbered label where
1425 PREFIX is the class of label and NUM is the number within the class. */
1426
1427 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1428 if ((PREFIX)[0] == 'L') \
1429 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1430 else \
1431 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1432
1433 /* This is how to output a label for a jump table. Arguments are the same as
1434 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1435 passed. */
1436
1437 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1438 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1439
1440 /* This is how to store into the string LABEL
1441 the symbol_ref name of an internal numbered label where
1442 PREFIX is the class of label and NUM is the number within the class.
1443 This is suitable for output with `assemble_name'. */
1444
1445 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1446 if ((PREFIX)[0] == 'L') \
1447 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1448 else \
1449 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1450
1451 /* This is how to output an assembler line defining a `double' constant. */
1452
1453 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1454 fprintf (FILE, "\t.t_floating %.20e\n", (VALUE))
1455
1456 /* This is how to output an assembler line defining a `float' constant. */
1457
1458 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1459 fprintf (FILE, "\t.s_floating %.20e\n", (VALUE))
1460
1461 /* This is how to output an assembler line defining an `int' constant. */
1462
1463 #define ASM_OUTPUT_INT(FILE,VALUE) \
1464 fprintf (FILE, "\t.long %d\n", \
1465 (GET_CODE (VALUE) == CONST_INT \
1466 ? INTVAL (VALUE) & 0xffffffff : (abort (), 0)))
1467
1468 /* This is how to output an assembler line defining a `long' constant. */
1469
1470 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1471 ( fprintf (FILE, "\t.quad "), \
1472 output_addr_const (FILE, (VALUE)), \
1473 fprintf (FILE, "\n"))
1474
1475 /* Likewise for `char' and `short' constants. */
1476
1477 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1478 fprintf (FILE, "\t.word %d\n", \
1479 (GET_CODE (VALUE) == CONST_INT \
1480 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1481
1482 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1483 fprintf (FILE, "\t.byte %d\n", \
1484 (GET_CODE (VALUE) == CONST_INT \
1485 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1486
1487 /* We use the default ASCII-output routine, except that we don't write more
1488 than 50 characters since the assembler doesn't support very long lines. */
1489
1490 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1491 do { \
1492 FILE *_hide_asm_out_file = (MYFILE); \
1493 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1494 int _hide_thissize = (MYLENGTH); \
1495 int _size_so_far = 0; \
1496 { \
1497 FILE *asm_out_file = _hide_asm_out_file; \
1498 unsigned char *p = _hide_p; \
1499 int thissize = _hide_thissize; \
1500 int i; \
1501 fprintf (asm_out_file, "\t.ascii \""); \
1502 \
1503 for (i = 0; i < thissize; i++) \
1504 { \
1505 register int c = p[i]; \
1506 \
1507 if (_size_so_far ++ > 50 && i < thissize - 4) \
1508 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1509 \
1510 if (c == '\"' || c == '\\') \
1511 putc ('\\', asm_out_file); \
1512 if (c >= ' ' && c < 0177) \
1513 putc (c, asm_out_file); \
1514 else \
1515 { \
1516 fprintf (asm_out_file, "\\%o", c); \
1517 /* After an octal-escape, if a digit follows, \
1518 terminate one string constant and start another. \
1519 The Vax assembler fails to stop reading the escape \
1520 after three digits, so this is the only way we \
1521 can get it to parse the data properly. */ \
1522 if (i < thissize - 1 \
1523 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1524 fprintf (asm_out_file, "\"\n\t.ascii \""); \
1525 } \
1526 } \
1527 fprintf (asm_out_file, "\"\n"); \
1528 } \
1529 } \
1530 while (0)
1531 /* This is how to output an insn to push a register on the stack.
1532 It need not be very fast code. */
1533
1534 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1535 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1536 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1537 (REGNO) & 31);
1538
1539 /* This is how to output an insn to pop a register from the stack.
1540 It need not be very fast code. */
1541
1542 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1543 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1544 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1545 (REGNO) & 31);
1546
1547 /* This is how to output an assembler line for a numeric constant byte. */
1548
1549 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1550 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1551
1552 /* This is how to output an element of a case-vector that is absolute. */
1553
1554 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1555 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
1556
1557 /* This is how to output an element of a case-vector that is relative.
1558 (Alpha does not use such vectors, but we must define this macro anyway.) */
1559
1560 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1561
1562 /* This is how to output an assembler line
1563 that says to advance the location counter
1564 to a multiple of 2**LOG bytes. */
1565
1566 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1567 if ((LOG) != 0) \
1568 fprintf (FILE, "\t.align %d\n", LOG);
1569
1570 /* This is how to advance the location counter by SIZE bytes. */
1571
1572 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1573 fprintf (FILE, "\t.space %d\n", (SIZE))
1574
1575 /* This says how to output an assembler line
1576 to define a global common symbol. */
1577
1578 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1579 ( fputs ("\t.comm ", (FILE)), \
1580 assemble_name ((FILE), (NAME)), \
1581 fprintf ((FILE), ",%d\n", (SIZE)))
1582
1583 /* This says how to output an assembler line
1584 to define a local common symbol. */
1585
1586 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1587 ( fputs ("\t.lcomm ", (FILE)), \
1588 assemble_name ((FILE), (NAME)), \
1589 fprintf ((FILE), ",%d\n", (SIZE)))
1590
1591 /* Store in OUTPUT a string (made with alloca) containing
1592 an assembler-name for a local static variable named NAME.
1593 LABELNO is an integer which is different for each call. */
1594
1595 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1596 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1597 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1598
1599 /* Define the parentheses used to group arithmetic operations
1600 in assembler code. */
1601
1602 #define ASM_OPEN_PAREN "("
1603 #define ASM_CLOSE_PAREN ")"
1604
1605 /* Define results of standard character escape sequences. */
1606 #define TARGET_BELL 007
1607 #define TARGET_BS 010
1608 #define TARGET_TAB 011
1609 #define TARGET_NEWLINE 012
1610 #define TARGET_VT 013
1611 #define TARGET_FF 014
1612 #define TARGET_CR 015
1613
1614 /* Print operand X (an rtx) in assembler syntax to file FILE.
1615 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1616 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1617
1618 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1619
1620 /* Determine which codes are valid without a following integer. These must
1621 not be alphabetic. */
1622
1623 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1624 \f
1625 /* Print a memory address as an operand to reference that memory location. */
1626
1627 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1628 { rtx addr = (ADDR); \
1629 int basereg = 31; \
1630 HOST_WIDE_INT offset = 0; \
1631 \
1632 if (GET_CODE (addr) == AND) \
1633 addr = XEXP (addr, 0); \
1634 \
1635 if (GET_CODE (addr) == REG) \
1636 basereg = REGNO (addr); \
1637 else if (GET_CODE (addr) == CONST_INT) \
1638 offset = INTVAL (addr); \
1639 else if (GET_CODE (addr) == PLUS \
1640 && GET_CODE (XEXP (addr, 0)) == REG \
1641 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1642 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1643 else \
1644 abort (); \
1645 \
1646 fprintf (FILE, "%d($%d)", offset, basereg); \
1647 }
1648 /* Define the codes that are matched by predicates in alpha.c. */
1649
1650 #define PREDICATE_CODES \
1651 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1652 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
1653 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1654 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1655 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1656 {"const48_operand", {CONST_INT}}, \
1657 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1658 {"mode_mask_operand", {CONST_INT}}, \
1659 {"mul8_operand", {CONST_INT}}, \
1660 {"mode_width_operand", {CONST_INT}}, \
1661 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1662 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1663 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1664 {"fp0_operand", {CONST_DOUBLE}}, \
1665 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1666 SYMBOL_REF, CONST, LABEL_REF}}, \
1667 {"aligned_memory_operand", {MEM}}, \
1668 {"unaligned_memory_operand", {MEM}}, \
1669 {"any_memory_operand", {MEM}},
This page took 0.12376 seconds and 5 git commands to generate.