]>
gcc.gnu.org Git - gcc.git/blob - gcc/config/alpha/alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* Names to predefine in the preprocessor for this target machine. */
24 #define CPP_PREDEFINES "\
25 -Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
28 /* Write out the correct language type definition for the header files. */
30 %{.c: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
31 %{.h: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
32 %{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
33 %{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
34 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
35 %{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS} \
36 %{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
38 /* Set the spec to use for signed char. The default tests the above macro
39 but DEC's compiler can't handle the conditional in a "constant"
42 #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
44 /* No point in running CPP on our assembler output. */
45 #define ASM_SPEC "-nocpp"
47 /* Right now Alpha OSF/1 doesn't seem to have debugging or profiled
50 #define LIB_SPEC "-lc"
52 /* Print subsidiary information on the compiler version in use. */
53 #define TARGET_VERSION
55 /* Define the location for the startup file on OSF/1 for Alpha. */
57 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
59 /* Run-time compilation parameters selecting different hardware subsets. */
61 extern int target_flags
;
63 /* This means that floating-point support exists in the target implementation
64 of the Alpha architecture. This is usually the default. */
66 #define TARGET_FP (target_flags & 1)
68 /* This means that floating-point registers are allowed to be used. Note
69 that Alpha implementations without FP operations are required to
70 provide the FP registers. */
72 #define TARGET_FPREGS (target_flags & 2)
74 /* Macro to define tables used to set the flags.
75 This is a list in braces of pairs in braces,
76 each pair being { "NAME", VALUE }
77 where VALUE is the bits to set or minus the bits to clear.
78 An empty string NAME is used to identify the default VALUE. */
80 #define TARGET_SWITCHES \
81 { {"no-soft-float", 1}, \
85 {"", TARGET_DEFAULT} }
87 #define TARGET_DEFAULT 3
89 /* Define this macro to change register usage conditional on target flags.
91 On the Alpha, we use this to disable the floating-point registers when
94 #define CONDITIONAL_REGISTER_USAGE \
95 if (! TARGET_FPREGS) \
96 for (i = 32; i < 64; i++) \
97 fixed_regs[i] = call_used_regs[i] = 1;
99 /* Define this to change the optimizations performed by default. */
101 #define OPTIMIZATION_OPTIONS(LEVEL) \
105 flag_force_addr = 1; \
106 flag_force_mem = 1; \
107 flag_omit_frame_pointer = 1; \
111 /* target machine storage layout */
113 /* Define the size of `int'. The default is the same as the word size. */
114 #define INT_TYPE_SIZE 32
116 /* Define the size of `long long'. The default is the twice the word size. */
117 #define LONG_LONG_TYPE_SIZE 64
119 /* The two floating-point formats we support are S-floating, which is
120 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
121 and `long double' are T. */
123 #define FLOAT_TYPE_SIZE 32
124 #define DOUBLE_TYPE_SIZE 64
125 #define LONG_DOUBLE_TYPE_SIZE 64
127 #define WCHAR_TYPE "short unsigned int"
128 #define WCHAR_TYPE_SIZE 16
130 /* Define this macro if it is advisable to hold scalars in registers
131 in a wider mode than that declared by the program. In such cases,
132 the value is constrained to be within the bounds of the declared
133 type, but kept valid in the wider mode. The signedness of the
134 extension may differ from that of the type.
136 For Alpha, we always store objects in a full register. 32-bit objects
137 are always sign-extended, but smaller objects retain their signedness. */
139 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
140 if (GET_MODE_CLASS (MODE) == MODE_INT \
141 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
143 if ((MODE) == SImode) \
148 /* Define this if function arguments should also be promoted using the above
151 #define PROMOTE_FUNCTION_ARGS
153 /* Likewise, if the function return value is promoted. */
155 #define PROMOTE_FUNCTION_RETURN
157 /* Define this if most significant bit is lowest numbered
158 in instructions that operate on numbered bit-fields.
160 There are no such instructions on the Alpha, but the documentation
162 #define BITS_BIG_ENDIAN 0
164 /* Define this if most significant byte of a word is the lowest numbered.
165 This is false on the Alpha. */
166 #define BYTES_BIG_ENDIAN 0
168 /* Define this if most significant word of a multiword number is lowest
171 For Alpha we can decide arbitrarily since there are no machine instructions
172 for them. Might as well be consistent with bytes. */
173 #define WORDS_BIG_ENDIAN 0
175 /* number of bits in an addressable storage unit */
176 #define BITS_PER_UNIT 8
178 /* Width in bits of a "word", which is the contents of a machine register.
179 Note that this is not necessarily the width of data type `int';
180 if using 16-bit ints on a 68000, this would still be 32.
181 But on a machine with 16-bit registers, this would be 16. */
182 #define BITS_PER_WORD 64
184 /* Width of a word, in units (bytes). */
185 #define UNITS_PER_WORD 8
187 /* Width in bits of a pointer.
188 See also the macro `Pmode' defined below. */
189 #define POINTER_SIZE 64
191 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
192 #define PARM_BOUNDARY 64
194 /* Boundary (in *bits*) on which stack pointer should be aligned. */
195 #define STACK_BOUNDARY 64
197 /* Allocation boundary (in *bits*) for the code of a function. */
198 #define FUNCTION_BOUNDARY 64
200 /* Alignment of field after `int : 0' in a structure. */
201 #define EMPTY_FIELD_BOUNDARY 64
203 /* Every structure's size must be a multiple of this. */
204 #define STRUCTURE_SIZE_BOUNDARY 8
206 /* A bitfield declared as `int' forces `int' alignment for the struct. */
207 #define PCC_BITFIELD_TYPE_MATTERS 1
209 /* Align loop starts for optimal branching. */
211 #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
212 ASM_OUTPUT_ALIGN (FILE, 5)
214 /* This is how to align an instruction for optimal branching.
215 On Alpha we'll get better performance by aligning on a quadword
218 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
219 ASM_OUTPUT_ALIGN ((FILE), 4)
221 /* No data type wants to be aligned rounder than this. */
222 #define BIGGEST_ALIGNMENT 64
224 /* Make strings word-aligned so strcpy from constants will be faster. */
225 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
226 (TREE_CODE (EXP) == STRING_CST \
227 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
229 /* Make arrays of chars word-aligned for the same reasons. */
230 #define DATA_ALIGNMENT(TYPE, ALIGN) \
231 (TREE_CODE (TYPE) == ARRAY_TYPE \
232 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
233 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
235 /* Set this non-zero if move instructions will actually fail to work
236 when given unaligned data.
238 Since we get an error message when we do one, call them invalid. */
240 #define STRICT_ALIGNMENT 1
242 /* Set this non-zero if unaligned move instructions are extremely slow.
244 On the Alpha, they trap. */
246 #define SLOW_UNALIGNED_ACCESS 1
248 /* Standard register usage. */
250 /* Number of actual hardware registers.
251 The hardware registers are assigned numbers for the compiler
252 from 0 to just below FIRST_PSEUDO_REGISTER.
253 All registers that the compiler knows about must be given numbers,
254 even those that are not normally considered general registers.
256 We define all 32 integer registers, even though $31 is always zero,
257 and all 32 floating-point registers, even though $f31 is also
258 always zero. We do not bother defining the FP status register and
259 there are no other registers.
261 Since $31 is always zero, we will use register number 31 as the
262 argument pointer. It will never appear in the generated code
263 because we will always be eliminating it in favor of the stack
264 poointer or frame pointer. */
266 #define FIRST_PSEUDO_REGISTER 64
268 /* 1 for registers that have pervasive standard uses
269 and are not available for the register allocator. */
271 #define FIXED_REGISTERS \
272 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
273 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
274 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
275 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
277 /* 1 for registers not available across function calls.
278 These must include the FIXED_REGISTERS and also any
279 registers that can be used without being saved.
280 The latter must include the registers where values are returned
281 and the register where structure-value addresses are passed.
282 Aside from that, you can include as many other registers as you like. */
283 #define CALL_USED_REGISTERS \
284 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
285 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
286 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
287 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
289 /* List the order in which to allocate registers. Each register must be
290 listed once, even those in FIXED_REGISTERS.
292 We allocate in the following order:
293 $f1 (nonsaved floating-point register)
296 $f21-$f16 (likewise, but input args)
297 $f0 (nonsaved, but return value)
298 $f2-$f9 (saved floating-point registers)
299 $1-$8 (nonsaved integer registers)
302 $0 (likewise, but return value)
303 $21-$16 (likewise, but input args)
304 $27 (procedure value)
305 $9-$14 (saved integer registers)
309 $30, $31, $f31 (stack pointer and always zero/ap) */
311 #define REG_ALLOC_ORDER \
314 54, 55, 56, 57, 58, 59, 60, 61, 62, \
315 53, 52, 51, 50, 49, 48, \
317 34, 35, 36, 37, 38, 39, 40, 41, \
318 1, 2, 3, 4, 5, 6, 7, 8, \
322 21, 20, 19, 18, 17, 16, \
324 9, 10, 11, 12, 13, 14, \
330 /* Return number of consecutive hard regs needed starting at reg REGNO
331 to hold something of mode MODE.
332 This is ordinarily the length in words of a value of mode MODE
333 but can be less for certain modes in special long registers. */
335 #define HARD_REGNO_NREGS(REGNO, MODE) \
336 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
338 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
339 On Alpha, the integer registers can hold any mode. The floating-point
340 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
341 or 8-bit values. If we only allowed the larger integers into FP registers,
342 we'd have to say that QImode and SImode aren't tiable, which is a
343 pain. So say all registers can hold everything and see how that works. */
345 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
347 /* Value is 1 if it is a good idea to tie two pseudo registers
348 when one has mode MODE1 and one has mode MODE2.
349 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
350 for any hard reg, then this must be 0 for correct output. */
352 #define MODES_TIEABLE_P(MODE1, MODE2) 1
354 /* Specify the registers used for certain standard purposes.
355 The values of these macros are register numbers. */
357 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
358 /* #define PC_REGNUM */
360 /* Register to use for pushing function arguments. */
361 #define STACK_POINTER_REGNUM 30
363 /* Base register for access to local variables of the function. */
364 #define FRAME_POINTER_REGNUM 15
366 /* Value should be nonzero if functions must have frame pointers.
367 Zero means the frame pointer need not be set up (and parms
368 may be accessed via the stack pointer) in functions that seem suitable.
369 This is computed in `reload', in reload1.c. */
370 #define FRAME_POINTER_REQUIRED 0
372 /* Base register for access to arguments of the function. */
373 #define ARG_POINTER_REGNUM 31
375 /* Register in which static-chain is passed to a function.
377 For the Alpha, this is based on an example; the calling sequence
378 doesn't seem to specify this. */
379 #define STATIC_CHAIN_REGNUM 1
381 /* Register in which address to store a structure value
382 arrives in the function. On the Alpha, the address is passed
383 as a hidden argument. */
384 #define STRUCT_VALUE 0
386 /* Define the classes of registers for register constraints in the
387 machine description. Also define ranges of constants.
389 One of the classes must always be named ALL_REGS and include all hard regs.
390 If there is more than one class, another class must be named NO_REGS
391 and contain no registers.
393 The name GENERAL_REGS must be the name of a class (or an alias for
394 another name such as ALL_REGS). This is the class of registers
395 that is allowed by "g" or "r" in a register constraint.
396 Also, registers outside this class are allocated only when
397 instructions express preferences for them.
399 The classes must be numbered in nondecreasing order; that is,
400 a larger-numbered class must never be contained completely
401 in a smaller-numbered class.
403 For any two classes, it is very desirable that there be another
404 class that represents their union. */
406 enum reg_class
{ NO_REGS
, GENERAL_REGS
, FLOAT_REGS
, ALL_REGS
,
409 #define N_REG_CLASSES (int) LIM_REG_CLASSES
411 /* Give names of register classes as strings for dump file. */
413 #define REG_CLASS_NAMES \
414 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
416 /* Define which registers fit in which classes.
417 This is an initializer for a vector of HARD_REG_SET
418 of length N_REG_CLASSES. */
420 #define REG_CLASS_CONTENTS \
421 { {0, 0}, {~0, 0}, {0, ~0}, {~0, ~0} }
423 /* The same information, inverted:
424 Return the class number of the smallest class containing
425 reg number REGNO. This could be a conditional expression
426 or could index an array. */
428 #define REGNO_REG_CLASS(REGNO) ((REGNO) >= 32 ? FLOAT_REGS : GENERAL_REGS)
430 /* The class value for index registers, and the one for base regs. */
431 #define INDEX_REG_CLASS NO_REGS
432 #define BASE_REG_CLASS GENERAL_REGS
434 /* Get reg_class from a letter such as appears in the machine description. */
436 #define REG_CLASS_FROM_LETTER(C) \
437 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
439 /* Define this macro to change register usage conditional on target flags. */
440 /* #define CONDITIONAL_REGISTER_USAGE */
442 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
443 can be used to stand for particular ranges of immediate operands.
444 This macro defines what the ranges are.
445 C is the letter, and VALUE is a constant value.
446 Return 1 if VALUE is in the range specified by C.
449 `I' is used for the range of constants most insns can contain.
450 `J' is the constant zero.
451 `K' is used for the constant in an LDA insn.
452 `L' is used for the constant in a LDAH insn.
453 `M' is used for the constants that can be AND'ed with using a ZAP insn.
454 `N' is used for complemented 8-bit constants.
455 `O' is used for negated 8-bit constants.
456 `P' is used for the constants 1, 2 and 3. */
458 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
459 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
460 : (C) == 'J' ? (VALUE) == 0 \
461 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
462 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
463 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
464 : (C) == 'M' ? zap_mask (VALUE) \
465 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
466 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
467 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
470 /* Similar, but for floating or large integer constants, and defining letters
471 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
473 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
474 that is the operand of a ZAP insn. */
476 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
477 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
478 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
479 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
480 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
481 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
484 /* Given an rtx X being reloaded into a reg required to be
485 in class CLASS, return the class of reg to actually use.
486 In general this is just CLASS; but on some machines
487 in some cases it is preferable to use a more restrictive class.
489 On the Alpha, all constants except zero go into a floating-point
490 register via memory. */
492 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
493 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
494 ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
497 /* Loading and storing HImode or QImode values to and from memory
498 usually requires a scratch register. The exceptions are loading
499 QImode and HImode from an aligned address to a general register. */
501 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
502 (((GET_CODE (IN) == MEM \
503 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
504 || (GET_CODE (IN) == SUBREG \
505 && (GET_CODE (SUBREG_REG (IN)) == MEM \
506 || (GET_CODE (SUBREG_REG (IN)) == REG \
507 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
508 && (((CLASS) == FLOAT_REGS \
509 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
510 || (((MODE) == QImode || (MODE) == HImode) \
511 && unaligned_memory_operand (IN, MODE)))) \
512 ? GENERAL_REGS : NO_REGS)
514 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
515 (((GET_CODE (OUT) == MEM \
516 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
517 || (GET_CODE (OUT) == SUBREG \
518 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
519 || (GET_CODE (SUBREG_REG (OUT)) == REG \
520 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
521 && (((MODE) == HImode || (MODE) == QImode \
522 || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
523 ? GENERAL_REGS : NO_REGS)
525 /* If we are copying between general and FP registers, we need a memory
528 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
530 /* Return the maximum number of consecutive registers
531 needed to represent mode MODE in a register of class CLASS. */
533 #define CLASS_MAX_NREGS(CLASS, MODE) \
534 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
536 /* Define the cost of moving between registers of various classes. Moving
537 between FLOAT_REGS and anything else except float regs is expensive.
538 In fact, we make it quite expensive because we really don't want to
539 do these moves unless it is clearly worth it. Optimizations may
540 reduce the impact of not being able to allocate a pseudo to a
543 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
544 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
546 /* A C expressions returning the cost of moving data of MODE from a register to
549 On the Alpha, bump this up a bit. */
551 #define MEMORY_MOVE_COST(MODE) 6
553 /* Provide the cost of a branch. Exact meaning under development. */
554 #define BRANCH_COST 5
556 /* Adjust the cost of dependencies. */
558 #define ADJUST_COST(INSN,LINK,DEP,COST) \
559 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
561 /* Stack layout; function entry, exit and calling. */
563 /* Define this if pushing a word on the stack
564 makes the stack pointer a smaller address. */
565 #define STACK_GROWS_DOWNWARD
567 /* Define this if the nominal address of the stack frame
568 is at the high-address end of the local variables;
569 that is, each additional local variable allocated
570 goes at a more negative offset in the frame. */
571 /* #define FRAME_GROWS_DOWNWARD */
573 /* Offset within stack frame to start allocating local variables at.
574 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
575 first local allocated. Otherwise, it is the offset to the BEGINNING
576 of the first local allocated. */
578 #define STARTING_FRAME_OFFSET current_function_outgoing_args_size
580 /* If we generate an insn to push BYTES bytes,
581 this says how many the stack pointer really advances by.
582 On Alpha, don't define this because there are no push insns. */
583 /* #define PUSH_ROUNDING(BYTES) */
585 /* Define this if the maximum size of all the outgoing args is to be
586 accumulated and pushed during the prologue. The amount can be
587 found in the variable current_function_outgoing_args_size. */
588 #define ACCUMULATE_OUTGOING_ARGS
590 /* Offset of first parameter from the argument pointer register value. */
592 #define FIRST_PARM_OFFSET(FNDECL) 0
594 /* Definitions for register eliminations.
596 We have two registers that can be eliminated on the i386. First, the
597 frame pointer register can often be eliminated in favor of the stack
598 pointer register. Secondly, the argument pointer register can always be
599 eliminated; it is replaced with either the stack or frame pointer. */
601 /* This is an array of structures. Each structure initializes one pair
602 of eliminable registers. The "from" register number is given first,
603 followed by "to". Eliminations of the same "from" register are listed
604 in order of preference. */
606 #define ELIMINABLE_REGS \
607 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
608 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
609 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
611 /* Given FROM and TO register numbers, say whether this elimination is allowed.
612 Frame pointer elimination is automatically handled.
614 All eliminations are valid since the cases where FP can't be
615 eliminated are already handled. */
617 #define CAN_ELIMINATE(FROM, TO) 1
619 /* Define the offset between two registers, one to be eliminated, and the other
620 its replacement, at the start of a routine. */
621 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
622 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
625 (OFFSET) = (get_frame_size () + current_function_outgoing_args_size \
626 + current_function_pretend_args_size \
627 + alpha_sa_size () + 15) & ~ 15; \
630 /* Define this if stack space is still allocated for a parameter passed
632 /* #define REG_PARM_STACK_SPACE */
634 /* Value is the number of bytes of arguments automatically
635 popped when returning from a subroutine call.
636 FUNTYPE is the data type of the function (as a tree),
637 or for a library call it is an identifier node for the subroutine name.
638 SIZE is the number of bytes of arguments passed on the stack. */
640 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
642 /* Define how to find the value returned by a function.
643 VALTYPE is the data type of the value (as a tree).
644 If the precise function being called is known, FUNC is its FUNCTION_DECL;
645 otherwise, FUNC is 0.
647 On Alpha the value is found in $0 for integer functions and
648 $f0 for floating-point functions. */
650 #define FUNCTION_VALUE(VALTYPE, FUNC) \
652 ((TREE_CODE (VALTYPE) == INTEGER_TYPE \
653 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
654 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
655 || TREE_CODE (VALTYPE) == CHAR_TYPE \
656 || TREE_CODE (VALTYPE) == POINTER_TYPE \
657 || TREE_CODE (VALTYPE) == OFFSET_TYPE) \
658 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
659 ? word_mode : TYPE_MODE (VALTYPE), \
660 TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
662 /* Define how to find the value returned by a library function
663 assuming the value has mode MODE. */
665 #define LIBCALL_VALUE(MODE) \
666 gen_rtx (REG, MODE, \
667 TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
669 /* The definition of this macro implies that there are cases where
670 a scalar value cannot be returned in registers.
672 For the Alpha, any structure or union type is returned in memory, as
673 are integers whose size is larger than 64 bits. */
675 #define RETURN_IN_MEMORY(TYPE) \
676 (TYPE_MODE (TYPE) == BLKmode \
677 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
679 /* 1 if N is a possible register number for a function value
680 as seen by the caller. */
682 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
684 /* 1 if N is a possible register number for function argument passing.
685 On Alpha, these are $16-$21 and $f16-$f21. */
687 #define FUNCTION_ARG_REGNO_P(N) \
688 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
690 /* Define a data type for recording info about an argument list
691 during the scan of that argument list. This data type should
692 hold all necessary information about the function itself
693 and about the args processed so far, enough to enable macros
694 such as FUNCTION_ARG to determine where the next arg should go.
696 On Alpha, this is a single integer, which is a number of words
697 of arguments scanned so far.
698 Thus 6 or more means all following args should go on the stack. */
700 #define CUMULATIVE_ARGS int
702 /* Initialize a variable CUM of type CUMULATIVE_ARGS
703 for a call to a function whose data type is FNTYPE.
704 For a library call, FNTYPE is 0. */
706 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
708 /* Define intermediate macro to compute the size (in registers) of an argument
711 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
713 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
714 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
716 /* Update the data in CUM to advance over an argument
717 of mode MODE and data type TYPE.
718 (TYPE is null for libcalls where that information may not be available.) */
720 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
721 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
724 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
726 /* Determine where to put an argument to a function.
727 Value is zero to push the argument on the stack,
728 or a hard register in which to store the argument.
730 MODE is the argument's machine mode.
731 TYPE is the data type of the argument (as a tree).
732 This is null for libcalls where that information may
734 CUM is a variable of type CUMULATIVE_ARGS which gives info about
735 the preceding args and about the function being called.
736 NAMED is nonzero if this argument is a named parameter
737 (otherwise it is an extra parameter matching an ellipsis).
739 On Alpha the first 6 words of args are normally in registers
740 and the rest are pushed. */
742 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
743 ((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
744 ? gen_rtx(REG, (MODE), \
745 (CUM) + 16 + (TARGET_FPREGS \
746 && GET_MODE_CLASS (MODE) == MODE_FLOAT) * 32) : 0)
748 /* Specify the padding direction of arguments.
750 On the Alpha, we must pad upwards in order to be able to pass args in
753 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
755 /* For an arg passed partly in registers and partly in memory,
756 this is the number of registers used.
757 For args passed entirely in registers or entirely in memory, zero. */
759 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
760 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
763 /* Perform any needed actions needed for a function that is receiving a
764 variable number of arguments.
768 MODE and TYPE are the mode and type of the current parameter.
770 PRETEND_SIZE is a variable that should be set to the amount of stack
771 that must be pushed by the prolog to pretend that our caller pushed
774 Normally, this macro will push all remaining incoming registers on the
775 stack and set PRETEND_SIZE to the length of the registers pushed.
777 On the Alpha, we allocate space for all 12 arg registers, but only
778 push those that are remaining.
780 However, if NO registers need to be saved, don't allocate any space.
781 This is not only because we won't need the space, but because AP includes
782 the current_pretend_args_size and we don't want to mess up any
783 ap-relative addresses already made. */
785 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
790 move_block_from_reg \
792 gen_rtx (MEM, BLKmode, \
793 plus_constant (virtual_incoming_args_rtx, \
794 ((CUM) - 6) * UNITS_PER_WORD)), \
796 move_block_from_reg \
798 gen_rtx (MEM, BLKmode, \
799 plus_constant (virtual_incoming_args_rtx, \
800 ((CUM) - 12) * UNITS_PER_WORD)), \
803 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
807 /* Generate necessary RTL for __builtin_saveregs().
808 ARGLIST is the argument list; see expr.c. */
809 extern struct rtx_def
*alpha_builtin_saveregs ();
810 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
812 /* Define the information needed to generate branch and scc insns. This is
813 stored from the compare operation. Note that we can't use "rtx" here
814 since it hasn't been defined! */
816 extern struct rtx_def
*alpha_compare_op0
, *alpha_compare_op1
;
817 extern int alpha_compare_fp_p
;
819 /* This macro produces the initial definition of a function name. On the
820 Alpha, we need to save the function name for the epilogue. */
822 extern char *alpha_function_name
;
824 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
827 for (_level = -1, _context = (DECL); _context; \
828 _context = DECL_CONTEXT (_context), _level++) \
830 fprintf (FILE, "\t.ent %s %d\n", NAME, _level); \
831 ASM_OUTPUT_LABEL (FILE, NAME); \
832 alpha_function_name = NAME; \
835 /* This macro generates the assembly code for function entry.
836 FILE is a stdio stream to output the code to.
837 SIZE is an int: how many units of temporary storage to allocate.
838 Refer to the array `regs_ever_live' to determine which registers
839 to save; `regs_ever_live[I]' is nonzero if register number I
840 is ever used in the function. This macro is responsible for
841 knowing which registers should not be saved even if used. */
843 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
845 /* Output assembler code to FILE to increment profiler label # LABELNO
846 for profiling a function entry. */
848 #define FUNCTION_PROFILER(FILE, LABELNO)
850 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
851 the stack pointer does not matter. The value is tested only in
852 functions that have frame pointers.
853 No definition is equivalent to always zero. */
855 #define EXIT_IGNORE_STACK 1
857 /* This macro generates the assembly code for function exit,
858 on machines that need it. If FUNCTION_EPILOGUE is not defined
859 then individual return instructions are generated for each
860 return statement. Args are same as for FUNCTION_PROLOGUE.
862 The function epilogue should not depend on the current stack pointer!
863 It should use the frame pointer only. This is mandatory because
864 of alloca; we also take advantage of it to omit stack adjustments
867 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
870 /* Output assembler code for a block containing the constant parts
871 of a trampoline, leaving space for the variable parts.
873 The trampoline should set the static chain pointer to value placed
874 into the trampoline and should branch to the specified routine.
875 Note that $27 has been set to the address of the trampoline, so we can
876 use it for addressability of the two data items. Trampolines are always
877 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
879 #define TRAMPOLINE_TEMPLATE(FILE) \
881 fprintf (FILE, "\tldq $1,24($27)\n"); \
882 fprintf (FILE, "\tldq $27,16($27)\n"); \
883 fprintf (FILE, "\tjmp $31,($27),0\n"); \
884 fprintf (FILE, "\tnop\n"); \
885 fprintf (FILE, "\t.quad 0,0\n"); \
888 /* Section in which to place the trampoline. On Alpha, instructions
889 may only be placed in a text segment. */
891 #define TRAMPOLINE_SECTION text_section
893 /* Length in units of the trampoline for entering a nested function. */
895 #define TRAMPOLINE_SIZE 32
897 /* Emit RTL insns to initialize the variable parts of a trampoline.
898 FNADDR is an RTX for the address of the function's pure code.
899 CXT is an RTX for the static chain value for the function. We assume
900 here that a function will be called many more times than its address
901 is taken (e.g., it might be passed to qsort), so we take the trouble
902 to initialize the "hint" field in the JMP insn. Note that the hint
903 field is PC (new) + 4 * bits 13:0. */
905 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
907 rtx _temp, _temp1, _addr; \
909 _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
910 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
911 _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
912 emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
914 _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
915 _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
917 _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
918 build_int_2 (2, 0), NULL_RTX, 1); \
919 _temp = expand_and (gen_lowpart (SImode, _temp), \
920 GEN_INT (0x3fff), 0); \
922 _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
923 _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
924 _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
925 _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
928 emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
930 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
931 "__enable_execute_stack"), \
932 0, VOIDmode, 1,_addr, Pmode); \
934 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
935 gen_rtvec (1, const0_rtx), 0)); \
938 /* Attempt to turn on access permissions for the stack. */
940 #define TRANSFER_FROM_TRAMPOLINE \
943 __enable_execute_stack (addr) \
946 long size = getpagesize (); \
947 long mask = ~(size-1); \
948 char *page = (char *) (((long) addr) & mask); \
949 char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
951 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
952 if (mprotect (page, end - page, 7) < 0) \
953 perror ("mprotect of trampoline code"); \
956 /* Addressing modes, and classification of registers for them. */
958 /* #define HAVE_POST_INCREMENT */
959 /* #define HAVE_POST_DECREMENT */
961 /* #define HAVE_PRE_DECREMENT */
962 /* #define HAVE_PRE_INCREMENT */
964 /* Macros to check register numbers against specific register classes. */
966 /* These assume that REGNO is a hard or pseudo reg number.
967 They give nonzero only if REGNO is a hard reg of the suitable class
968 or a pseudo reg currently allocated to a suitable hard reg.
969 Since they use reg_renumber, they are safe only once reg_renumber
970 has been allocated, which happens in local-alloc.c. */
972 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
973 #define REGNO_OK_FOR_BASE_P(REGNO) \
974 (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
976 /* Maximum number of registers that can appear in a valid memory address. */
977 #define MAX_REGS_PER_ADDRESS 1
979 /* Recognize any constant value that is a valid address. For the Alpha,
980 there are only constants none since we want to use LDA to load any
981 symbolic addresses into registers. */
983 #define CONSTANT_ADDRESS_P(X) \
984 (GET_CODE (X) == CONST_INT \
985 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
987 /* Include all constant integers and constant doubles, but not
988 floating-point, except for floating-point zero. */
990 #define LEGITIMATE_CONSTANT_P(X) \
991 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
992 || (X) == CONST0_RTX (GET_MODE (X)))
994 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
995 and check its validity for a certain class.
996 We have two alternate definitions for each of them.
997 The usual definition accepts all pseudo regs; the other rejects
998 them unless they have been allocated suitable hard regs.
999 The symbol REG_OK_STRICT causes the latter definition to be used.
1001 Most source files want to accept pseudo regs in the hope that
1002 they will get allocated to the class that the insn wants them to be in.
1003 Source files for reload pass need to be strict.
1004 After reload, it makes no difference, since pseudo regs have
1005 been eliminated by then. */
1007 #ifndef REG_OK_STRICT
1009 /* Nonzero if X is a hard reg that can be used as an index
1010 or if it is a pseudo reg. */
1011 #define REG_OK_FOR_INDEX_P(X) 0
1012 /* Nonzero if X is a hard reg that can be used as a base reg
1013 or if it is a pseudo reg. */
1014 #define REG_OK_FOR_BASE_P(X) \
1015 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1019 /* Nonzero if X is a hard reg that can be used as an index. */
1020 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1021 /* Nonzero if X is a hard reg that can be used as a base reg. */
1022 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1026 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1027 that is a valid memory address for an instruction.
1028 The MODE argument is the machine mode for the MEM expression
1029 that wants to use this address.
1031 For Alpha, we have either a constant address or the sum of a register
1032 and a constant address, or just a register. For DImode, any of those
1033 forms can be surrounded with an AND that clear the low-order three bits;
1034 this is an "unaligned" access.
1036 We also allow a SYMBOL_REF that is the name of the current function as
1037 valid address. This is for CALL_INSNs. It cannot be used in any other
1040 First define the basic valid address. */
1042 #define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1043 { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1045 if (CONSTANT_ADDRESS_P (X)) \
1047 if (GET_CODE (X) == PLUS \
1048 && REG_P (XEXP (X, 0)) \
1049 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1050 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1054 /* Now accept the simple address, or, for DImode only, an AND of a simple
1055 address that turns off the low three bits. */
1057 extern char *current_function_name
;
1059 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1060 { GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1061 if ((MODE) == DImode \
1062 && GET_CODE (X) == AND \
1063 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1064 && INTVAL (XEXP (X, 1)) == -8) \
1065 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1066 if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
1067 && ! strcmp (XSTR (X, 0), current_function_name)) \
1071 /* Try machine-dependent ways of modifying an illegitimate address
1072 to be legitimate. If we find one, return the new, valid address.
1073 This macro is used in only one place: `memory_address' in explow.c.
1075 OLDX is the address as it was before break_out_memory_refs was called.
1076 In some cases it is useful to look at this to decide what needs to be done.
1078 MODE and WIN are passed so that this macro can use
1079 GO_IF_LEGITIMATE_ADDRESS.
1081 It is always safe for this macro to do nothing. It exists to recognize
1082 opportunities to optimize the output.
1084 For the Alpha, there are three cases we handle:
1086 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1087 valid offset, compute the high part of the constant and add it to the
1088 register. Then our address is (plus temp low-part-const).
1089 (2) If the address is (const (plus FOO const_int)), find the low-order
1090 part of the CONST_INT. Then load FOO plus any high-order part of the
1091 CONST_INT into a register. Our address is (plus reg low-part-const).
1092 This is done to reduce the number of GOT entries.
1093 (3) If we have a (plus reg const), emit the load as in (2), then add
1094 the two registers, and finally generate (plus reg low-part-const) as
1097 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1098 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1099 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1100 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1102 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1103 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1104 HOST_WIDE_INT highpart = val - lowpart; \
1105 rtx high = GEN_INT (highpart); \
1106 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
1107 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1109 (X) = plus_constant (temp, lowpart); \
1112 else if (GET_CODE (X) == CONST \
1113 && GET_CODE (XEXP (X, 0)) == PLUS \
1114 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1116 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1117 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1118 HOST_WIDE_INT highpart = val - lowpart; \
1119 rtx high = XEXP (XEXP (X, 0), 0); \
1122 high = plus_constant (high, highpart); \
1124 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1127 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1128 && GET_CODE (XEXP (X, 1)) == CONST \
1129 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1130 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1132 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1133 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1134 HOST_WIDE_INT highpart = val - lowpart; \
1135 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1138 high = plus_constant (high, highpart); \
1140 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1141 force_reg (Pmode, high), \
1142 high, 1, OPTAB_LIB_WIDEN); \
1143 (X) = plus_constant (high, lowpart); \
1148 /* Go to LABEL if ADDR (a legitimate address expression)
1149 has an effect that depends on the machine mode it is used for.
1150 On the Alpha this is true only for the unaligned modes. We can
1151 simplify this test since we know that the address must be valid. */
1153 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1154 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1156 /* Compute the cost of an address. For the Alpha, all valid addresses are
1159 #define ADDRESS_COST(X) 0
1161 /* Define this if some processing needs to be done immediately before
1162 emitting code for an insn. */
1164 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1166 /* Specify the machine mode that this machine uses
1167 for the index in the tablejump instruction. */
1168 #define CASE_VECTOR_MODE SImode
1170 /* Define this if the tablejump instruction expects the table
1171 to contain offsets from the address of the table.
1172 Do not define this if the table should contain absolute addresses. */
1173 /* #define CASE_VECTOR_PC_RELATIVE */
1175 /* Specify the tree operation to be used to convert reals to integers. */
1176 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1178 /* This is the kind of divide that is easiest to do in the general case. */
1179 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1181 /* Define this as 1 if `char' should by default be signed; else as 0. */
1182 #define DEFAULT_SIGNED_CHAR 1
1184 /* This flag, if defined, says the same insns that convert to a signed fixnum
1185 also convert validly to an unsigned one.
1187 We actually lie a bit here as overflow conditions are different. But
1188 they aren't being checked anyway. */
1190 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1192 /* Max number of bytes we can move to or from memory
1193 in one reasonably fast instruction. */
1197 /* Largest number of bytes of an object that can be placed in a register.
1198 On the Alpha we have plenty of registers, so use TImode. */
1199 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1201 /* Nonzero if access to memory by bytes is no faster than for words.
1202 Also non-zero if doing byte operations (specifically shifts) in registers
1205 On the Alpha, we want to not use the byte operation and instead use
1206 masking operations to access fields; these will save instructions. */
1208 #define SLOW_BYTE_ACCESS 1
1210 /* Define if normal loads of shorter-than-word items from memory clears
1211 the rest of the bits in the register. */
1212 /* #define BYTE_LOADS_ZERO_EXTEND */
1214 /* Define if normal loads of shorter-than-word items from memory sign-extends
1215 the rest of the bits in the register. */
1216 #define BYTE_LOADS_SIGN_EXTEND
1218 /* We aren't doing ANYTHING about debugging for now. */
1219 /* #define SDB_DEBUGGING_INFO */
1221 /* Do not break .stabs pseudos into continuations. */
1222 #define DBX_CONTIN_LENGTH 0
1224 /* Don't try to use the `x' type-cross-reference character in DBX data.
1225 Also has the consequence of putting each struct, union or enum
1226 into a separate .stabs, containing only cross-refs to the others. */
1227 #define DBX_NO_XREFS
1229 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1230 is done just by pretending it is already truncated. */
1231 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1233 /* We assume that the store-condition-codes instructions store 0 for false
1234 and some other value for true. This is the value stored for true. */
1236 #define STORE_FLAG_VALUE 1
1238 /* Define the value returned by a floating-point comparison instruction. */
1240 #define FLOAT_STORE_FLAG_VALUE 0.5
1242 /* Specify the machine mode that pointers have.
1243 After generation of rtl, the compiler makes no further distinction
1244 between pointers and any other objects of this machine mode. */
1245 #define Pmode DImode
1247 /* Mode of a function address in a call instruction (for indexing purposes). */
1249 #define FUNCTION_MODE Pmode
1251 /* Define this if addresses of constant functions
1252 shouldn't be put through pseudo regs where they can be cse'd.
1253 Desirable on machines where ordinary constants are expensive
1254 but a CALL with constant address is cheap.
1256 We define this on the Alpha so that gen_call and gen_call_value
1257 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1258 then copy it into a register, thus actually letting the address be
1261 #define NO_FUNCTION_CSE
1263 /* Define this if shift instructions ignore all but the low-order
1265 #define SHIFT_COUNT_TRUNCATED
1267 /* Compute the cost of computing a constant rtl expression RTX
1268 whose rtx-code is CODE. The body of this macro is a portion
1269 of a switch statement. If the code is computed here,
1270 return it with a return statement. Otherwise, break from the switch.
1272 We only care about the cost if it is valid in an insn, so all constants
1275 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1277 case CONST_DOUBLE: \
1284 /* Provide the costs of a rtl expression. This is in the body of a
1287 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1290 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1291 return COSTS_N_INSNS (6); \
1292 else if (GET_CODE (XEXP (X, 0)) == MULT \
1293 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1294 return 2 + rtx_cost (XEXP (XEXP (X, 0), 0)) + rtx_cost (XEXP (X, 1)); \
1297 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1298 return COSTS_N_INSNS (6); \
1299 else if (GET_CODE (XEXP (X, 1)) != CONST_INT \
1300 || exact_log2 (INTVAL (XEXP (X, 1))) < 0) \
1301 return COSTS_N_INSNS (21); \
1302 else if (const48_operand (XEXP (X, 1), VOIDmode)) \
1304 return COSTS_N_INSNS (2); \
1306 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1307 && INTVAL (XEXP (X, 1)) <= 3) \
1309 /* ... fall through ... */ \
1310 case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
1311 return COSTS_N_INSNS (2); \
1316 if (GET_MODE (X) == SFmode) \
1317 return COSTS_N_INSNS (34); \
1318 else if (GET_MODE (X) == DFmode) \
1319 return COSTS_N_INSNS (63); \
1321 return COSTS_N_INSNS (70); \
1323 return COSTS_N_INSNS (3);
1325 /* Control the assembler format that we output. */
1327 /* Output at beginning of assembler file. */
1329 #define ASM_FILE_START(FILE) \
1330 { char *p, *after_dir = main_input_filename; \
1332 alpha_write_verstamp (FILE); \
1333 fprintf (FILE, "\t.set noreorder\n"); \
1334 fprintf (FILE, "\t.set noat\n"); \
1335 for (p = main_input_filename; *p; p++) \
1337 after_dir = p + 1; \
1338 fprintf (FILE, "\n\t.file 2 \"%s\"\n", after_dir); \
1341 /* Output to assembler file text saying following lines
1342 may contain character constants, extra white space, comments, etc. */
1344 #define ASM_APP_ON ""
1346 /* Output to assembler file text saying following lines
1347 no longer contain unusual constructs. */
1349 #define ASM_APP_OFF ""
1351 #define TEXT_SECTION_ASM_OP ".text"
1353 /* Output before read-only data. */
1355 #define READONLY_DATA_SECTION_ASM_OP ".rdata"
1357 /* Output before writable data. */
1359 #define DATA_SECTION_ASM_OP ".data"
1361 /* Define an extra section for read-only data, a routine to enter it, and
1362 indicate that it is for read-only data. */
1364 #define EXTRA_SECTIONS readonly_data
1366 #define EXTRA_SECTION_FUNCTIONS \
1368 literal_section () \
1370 if (in_section != readonly_data) \
1372 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1373 in_section = readonly_data; \
1377 #define READONLY_DATA_SECTION literal_section
1379 /* If we are referencing a function that is static or is known to be
1380 in this file, make the SYMBOL_REF special. We can use this to see
1381 indicate that we can branch to this function without setting PV or
1384 #define ENCODE_SECTION_INFO(DECL) \
1385 if (TREE_CODE (DECL) == FUNCTION_DECL \
1386 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
1387 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1389 /* How to refer to registers in assembler output.
1390 This sequence is indexed by compiler's hard-register-number (see above). */
1392 #define REGISTER_NAMES \
1393 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1394 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1395 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1396 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1397 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1398 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1399 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1400 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"}
1402 /* How to renumber registers for dbx and gdb. */
1404 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1406 /* This is how to output the definition of a user-level label named NAME,
1407 such as the label on a static function or variable NAME. */
1409 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1410 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1412 /* This is how to output a command to make the user-level label named NAME
1413 defined for reference from other files. */
1415 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1416 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1418 /* This is how to output a reference to a user-level label named NAME.
1419 `assemble_name' uses this. */
1421 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1422 fprintf (FILE, "%s", NAME)
1424 /* This is how to output an internal numbered label where
1425 PREFIX is the class of label and NUM is the number within the class. */
1427 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1428 if ((PREFIX)[0] == 'L') \
1429 fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
1431 fprintf (FILE, "%s%d:\n", PREFIX, NUM);
1433 /* This is how to output a label for a jump table. Arguments are the same as
1434 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1437 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1438 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1440 /* This is how to store into the string LABEL
1441 the symbol_ref name of an internal numbered label where
1442 PREFIX is the class of label and NUM is the number within the class.
1443 This is suitable for output with `assemble_name'. */
1445 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1446 if ((PREFIX)[0] == 'L') \
1447 sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
1449 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1451 /* This is how to output an assembler line defining a `double' constant. */
1453 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1454 fprintf (FILE, "\t.t_floating %.20e\n", (VALUE))
1456 /* This is how to output an assembler line defining a `float' constant. */
1458 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1459 fprintf (FILE, "\t.s_floating %.20e\n", (VALUE))
1461 /* This is how to output an assembler line defining an `int' constant. */
1463 #define ASM_OUTPUT_INT(FILE,VALUE) \
1464 fprintf (FILE, "\t.long %d\n", \
1465 (GET_CODE (VALUE) == CONST_INT \
1466 ? INTVAL (VALUE) & 0xffffffff : (abort (), 0)))
1468 /* This is how to output an assembler line defining a `long' constant. */
1470 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1471 ( fprintf (FILE, "\t.quad "), \
1472 output_addr_const (FILE, (VALUE)), \
1473 fprintf (FILE, "\n"))
1475 /* Likewise for `char' and `short' constants. */
1477 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1478 fprintf (FILE, "\t.word %d\n", \
1479 (GET_CODE (VALUE) == CONST_INT \
1480 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
1482 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1483 fprintf (FILE, "\t.byte %d\n", \
1484 (GET_CODE (VALUE) == CONST_INT \
1485 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
1487 /* We use the default ASCII-output routine, except that we don't write more
1488 than 50 characters since the assembler doesn't support very long lines. */
1490 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1492 FILE *_hide_asm_out_file = (MYFILE); \
1493 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
1494 int _hide_thissize = (MYLENGTH); \
1495 int _size_so_far = 0; \
1497 FILE *asm_out_file = _hide_asm_out_file; \
1498 unsigned char *p = _hide_p; \
1499 int thissize = _hide_thissize; \
1501 fprintf (asm_out_file, "\t.ascii \""); \
1503 for (i = 0; i < thissize; i++) \
1505 register int c = p[i]; \
1507 if (_size_so_far ++ > 50 && i < thissize - 4) \
1508 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1510 if (c == '\"' || c == '\\') \
1511 putc ('\\', asm_out_file); \
1512 if (c >= ' ' && c < 0177) \
1513 putc (c, asm_out_file); \
1516 fprintf (asm_out_file, "\\%o", c); \
1517 /* After an octal-escape, if a digit follows, \
1518 terminate one string constant and start another. \
1519 The Vax assembler fails to stop reading the escape \
1520 after three digits, so this is the only way we \
1521 can get it to parse the data properly. */ \
1522 if (i < thissize - 1 \
1523 && p[i + 1] >= '0' && p[i + 1] <= '9') \
1524 fprintf (asm_out_file, "\"\n\t.ascii \""); \
1527 fprintf (asm_out_file, "\"\n"); \
1531 /* This is how to output an insn to push a register on the stack.
1532 It need not be very fast code. */
1534 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1535 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
1536 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1539 /* This is how to output an insn to pop a register from the stack.
1540 It need not be very fast code. */
1542 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1543 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
1544 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
1547 /* This is how to output an assembler line for a numeric constant byte. */
1549 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1550 fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
1552 /* This is how to output an element of a case-vector that is absolute. */
1554 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1555 fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
1557 /* This is how to output an element of a case-vector that is relative.
1558 (Alpha does not use such vectors, but we must define this macro anyway.) */
1560 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1562 /* This is how to output an assembler line
1563 that says to advance the location counter
1564 to a multiple of 2**LOG bytes. */
1566 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1568 fprintf (FILE, "\t.align %d\n", LOG);
1570 /* This is how to advance the location counter by SIZE bytes. */
1572 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1573 fprintf (FILE, "\t.space %d\n", (SIZE))
1575 /* This says how to output an assembler line
1576 to define a global common symbol. */
1578 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1579 ( fputs ("\t.comm ", (FILE)), \
1580 assemble_name ((FILE), (NAME)), \
1581 fprintf ((FILE), ",%d\n", (SIZE)))
1583 /* This says how to output an assembler line
1584 to define a local common symbol. */
1586 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1587 ( fputs ("\t.lcomm ", (FILE)), \
1588 assemble_name ((FILE), (NAME)), \
1589 fprintf ((FILE), ",%d\n", (SIZE)))
1591 /* Store in OUTPUT a string (made with alloca) containing
1592 an assembler-name for a local static variable named NAME.
1593 LABELNO is an integer which is different for each call. */
1595 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1596 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1597 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1599 /* Define the parentheses used to group arithmetic operations
1600 in assembler code. */
1602 #define ASM_OPEN_PAREN "("
1603 #define ASM_CLOSE_PAREN ")"
1605 /* Define results of standard character escape sequences. */
1606 #define TARGET_BELL 007
1607 #define TARGET_BS 010
1608 #define TARGET_TAB 011
1609 #define TARGET_NEWLINE 012
1610 #define TARGET_VT 013
1611 #define TARGET_FF 014
1612 #define TARGET_CR 015
1614 /* Print operand X (an rtx) in assembler syntax to file FILE.
1615 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1616 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1618 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1620 /* Determine which codes are valid without a following integer. These must
1621 not be alphabetic. */
1623 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1625 /* Print a memory address as an operand to reference that memory location. */
1627 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1628 { rtx addr = (ADDR); \
1630 HOST_WIDE_INT offset = 0; \
1632 if (GET_CODE (addr) == AND) \
1633 addr = XEXP (addr, 0); \
1635 if (GET_CODE (addr) == REG) \
1636 basereg = REGNO (addr); \
1637 else if (GET_CODE (addr) == CONST_INT) \
1638 offset = INTVAL (addr); \
1639 else if (GET_CODE (addr) == PLUS \
1640 && GET_CODE (XEXP (addr, 0)) == REG \
1641 && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1642 basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
1646 fprintf (FILE, "%d($%d)", offset, basereg); \
1648 /* Define the codes that are matched by predicates in alpha.c. */
1650 #define PREDICATE_CODES \
1651 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1652 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
1653 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1654 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1655 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
1656 {"const48_operand", {CONST_INT}}, \
1657 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1658 {"mode_mask_operand", {CONST_INT}}, \
1659 {"mul8_operand", {CONST_INT}}, \
1660 {"mode_width_operand", {CONST_INT}}, \
1661 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1662 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
1663 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
1664 {"fp0_operand", {CONST_DOUBLE}}, \
1665 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
1666 SYMBOL_REF, CONST, LABEL_REF}}, \
1667 {"aligned_memory_operand", {MEM}}, \
1668 {"unaligned_memory_operand", {MEM}}, \
1669 {"any_memory_operand", {MEM}},
This page took 0.12376 seconds and 5 git commands to generate.