]> gcc.gnu.org Git - gcc.git/blob - gcc/config/1750a/1750a.h
Added arg to RETURN_POPS_ARGS.
[gcc.git] / gcc / config / 1750a / 1750a.h
1 /* Definitions of target machine for GNU compiler.
2 Copyright (C) 1994, 1995 Free Software Foundation, Inc.
3 Contributed by O.M.Kellogg, DASA (okellogg@salyko.cube.net).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 1, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 /* See tm-sun3.h, tm-sun2.h, tm-isi68.h for different CPP_PREDEFINES. */
25 #define CPP_PREDEFINES ""
26
27 /* Print subsidiary information on the compiler version in use. */
28 #ifdef IEEE
29 #define TARGET_VERSION fprintf (stderr, " (1750A, IEEE syntax)");
30 #else
31 #define TARGET_VERSION fprintf (stderr, " (MIL-STD-1750A)");
32 #endif
33
34 /* Run-time compilation parameters selecting different hardware subsets. */
35
36 #define TARGET_SWITCHES \
37 { {"vaxc-alignment", 2}, \
38 { "", TARGET_DEFAULT}}
39
40 /* Default target_flags if no switches specified. */
41
42 #ifndef TARGET_DEFAULT
43 #define TARGET_DEFAULT 1
44 #endif
45
46 /*****************************************************************************/
47
48 /* SPECIAL ADDITION FOR MIL-STD-1750A by O.M.Kellogg, 15-Apr-1993 */
49 /* See file aux-output.c for the actual data instances. */
50 struct datalabel_array {
51 char *name;
52 char value[14];
53 int size;
54 };
55 struct jumplabel_array {
56 int pc;
57 int num;
58 };
59 enum section { Init, Normal, Konst, Static };
60 #define DATALBL_ARRSIZ 256
61 #define JMPLBL_ARRSIZ 256
62 #ifndef __datalbl
63 extern struct datalabel_array datalbl[];
64 extern struct jumplabel_array jmplbl[];
65 extern int datalbl_ndx, jmplbl_ndx, label_pending, program_counter;
66 extern enum section current_section;
67 extern char *sectname[4];
68 extern char *strdup(), *float_label();
69 #endif
70 /*--------------------------------------------------------------------*/
71
72 /* target machine storage layout */
73
74 /* Define this if most significant bit is lowest numbered
75 in instructions that operate on numbered bit-fields.
76 Though 1750 actually counts bits in big-endian fashion, the sign bit
77 is still the most significant bit, which is leftmost. Therefore leaving
78 this little-endian. Adjust short before assembler output when needed:
79 e.g. in QImode, a GCC bit n is a 1750 bit (15-n). */
80 #define BITS_BIG_ENDIAN 0
81
82 /* Define this if most significant byte of a word is the lowest numbered. */
83 /* For 1750 we can decide arbitrarily
84 since there are no machine instructions for them. */
85 #define BYTES_BIG_ENDIAN 0
86
87 /* Define this if most significant word of a multiword value is lowest
88 numbered.
89 True for 1750. */
90 #define WORDS_BIG_ENDIAN 1
91
92 /* number of bits in an addressable storage unit */
93 #define BITS_PER_UNIT 16
94
95 /* Width in bits of a "word", which is the contents of a machine register.
96 Note that this is not necessarily the width of data type `int';
97 if using 16-bit ints on a 68000, this would still be 32.
98 But on a machine with 16-bit registers, this would be 16. */
99 #define BITS_PER_WORD 16
100
101 /* Width of a word, in units (bytes). */
102 #define UNITS_PER_WORD 1
103
104 /* Width in bits of a pointer.
105 See also the macro `Pmode' defined below. */
106 #define POINTER_SIZE 16
107
108 #define PTRDIFF_TYPE "int"
109
110 /* Type to use for `size_t'. If undefined, uses `long unsigned int'. */
111 #define SIZE_TYPE "int"
112
113 /* 1750a preliminary
114 #define TARGET_FLOAT_FORMAT UNKNOWN_FLOAT_FORMAT
115 */
116
117 /* Allocation boundary (in *bits*) for storing pointers in memory. */
118 #define POINTER_BOUNDARY 16
119
120 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
121 /* 1750: should have had to make this 32 when BITS_PER_WORD is 32. */
122 #define PARM_BOUNDARY 16
123
124 /* Boundary (in *bits*) on which stack pointer should be aligned. */
125 #define STACK_BOUNDARY 16
126
127 /* Allocation boundary (in *bits*) for the code of a function. */
128 #define FUNCTION_BOUNDARY 16
129
130 /* Alignment of field after `int : 0' in a structure. */
131 #define EMPTY_FIELD_BOUNDARY 16
132
133 /* No data type wants to be aligned rounder than this. */
134 #define BIGGEST_ALIGNMENT 16
135
136 /* Define this to 1 if move instructions will actually fail to work
137 when given unaligned data. */
138 #define STRICT_ALIGNMENT 0
139
140 /* Define number of bits in most basic integer type.
141 (If undefined, default is BITS_PER_WORD).
142 #define INT_TYPE_SIZE 16 */
143
144 /* Define number of bits in short integer type.
145 (If undefined, default is half of BITS_PER_WORD). */
146 #define SHORT_TYPE_SIZE 16
147
148 /* Define number of bits in long integer type.
149 (If undefined, default is BITS_PER_WORD). */
150 #define LONG_TYPE_SIZE 32
151
152 /* Define number of bits in long long integer type.
153 (If undefined, default is twice BITS_PER_WORD). */
154 /* 1750 PRELIMINARY : no processor support for `long long', therefore
155 need to check out the long-long opencodings ! */
156 #define LONG_LONG_TYPE_SIZE 64
157
158 /* Define number of bits in char type.
159 (If undefined, default is one fourth of BITS_PER_WORD). */
160 #define CHAR_TYPE_SIZE 16
161
162 /* Define number of bits in float type.
163 (If undefined, default is BITS_PER_WORD). */
164 #define FLOAT_TYPE_SIZE 32
165
166 /* Define number of bits in double type.
167 (If undefined, default is twice BITS_PER_WORD). */
168 #define DOUBLE_TYPE_SIZE 48
169
170 /*****************************************************************************/
171
172 /* Standard register usage. */
173
174 /* Number of actual hardware registers.
175 The hardware registers are assigned numbers for the compiler
176 from 0 to just below FIRST_PSEUDO_REGISTER.
177 All registers that the compiler knows about must be given numbers,
178 even those that are not normally considered general registers. */
179 #define FIRST_PSEUDO_REGISTER 16
180
181 /* 1 for registers that have pervasive standard uses
182 and are not available for the register allocator.
183 R15 is the 1750A stack pointer. R14 is the frame pointer. */
184
185 #define FIXED_REGISTERS \
186 { 0, 0, 0, 0, 0, 0, 0, 0, \
187 0, 0, 0, 0, 0, 0, 1, 1 }
188
189 /* 1 for registers not available across function calls.
190 These must include the FIXED_REGISTERS and also any
191 registers that can be used without being saved.
192 The latter must include the registers where values are returned
193 and the register where structure-value addresses are passed.
194 Aside from that, you can include as many other registers as you like.
195 1750: return value in R0 foll. (depending on size of retval).
196 Should be possible to refine this (how many regs are actually used) */
197
198 #define CALL_USED_REGISTERS \
199 { 1, 1, 1, 1, 1, 1, 1, 1, \
200 1, 1, 1, 1, 1, 1, 1, 1 }
201
202 /* Return number of consecutive hard regs needed starting at reg REGNO
203 to hold something of mode MODE.
204 This is ordinarily the length in words of a value of mode MODE
205 but can be less for certain modes in special long registers.
206 All 1750 registers are one word long. */
207 #define HARD_REGNO_NREGS(REGNO, MODE) \
208 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
209
210 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
211 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
212
213 /* Value is 1 if it is a good idea to tie two pseudo registers
214 when one has mode MODE1 and one has mode MODE2.
215 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
216 for any hard reg, then this must be 0 for correct output. */
217 #define MODES_TIEABLE_P(MODE1, MODE2) 1
218
219 /* Specify the registers used for certain standard purposes.
220 The values of these macros are register numbers. */
221
222 /* 1750A pc isn't overloaded on a register. */
223 /* #define PC_REGNUM */
224
225 /* Register to use for pushing function arguments. */
226 #define STACK_POINTER_REGNUM 15
227
228 /* Base register for access to local variables of the function. */
229 #define FRAME_POINTER_REGNUM 14
230
231 /* Value should be nonzero if functions must have frame pointers.
232 Zero means the frame pointer need not be set up (and parms
233 may be accessed via the stack pointer) in functions that seem suitable.
234 This is computed in `reload', in reload1.c. */
235 #define FRAME_POINTER_REQUIRED 1
236
237 /* Base register for access to arguments of the function. */
238 #define ARG_POINTER_REGNUM 14
239
240 /* Define this if successive args to a function occupy decreasing addresses
241 on the stack.
242 #define ARGS_GROW_DOWNWARD
243 */
244
245 /* Register in which static-chain is passed to a function. */
246 #define STATIC_CHAIN_REGNUM 13
247
248 /* Register in which address to store a structure value
249 is passed to a function. */
250 #define STRUCT_VALUE_REGNUM 12
251
252 /* Define this to be 1 if all structure return values must be in memory. */
253 #define DEFAUT_PCC_STRUCT_RETURN 0
254
255 /*****************************************************************************/
256
257 /* Define the classes of registers for register constraints in the
258 machine description. Also define ranges of constants.
259
260 One of the classes must always be named ALL_REGS and include all hard regs.
261 If there is more than one class, another class must be named NO_REGS
262 and contain no registers.
263
264 The name GENERAL_REGS must be the name of a class (or an alias for
265 another name such as ALL_REGS). This is the class of registers
266 that is allowed by "g" or "r" in a register constraint.
267 Also, registers outside this class are allocated only when
268 instructions express preferences for them.
269
270 The classes must be numbered in nondecreasing order; that is,
271 a larger-numbered class must never be contained completely
272 in a smaller-numbered class.
273
274 For any two classes, it is very desirable that there be another
275 class that represents their union. */
276
277 /* 1750 note: The names (BASE_REGS/INDEX_REGS) are used in their *gcc sense*
278 (i.e. *opposite* to the MIL-STD-1750A defined meanings). This means that
279 R1..R15 are called "base" regs and R12..R15 are "index" regs.
280 Index reg mode (in the gcc sense) is not yet implemented (these are the
281 1750 "Base with Index Reg" instructions, LBX etc. See 1750.md)
282
283 Here's an example to drive this point home: in "LBX B12,R5"
284 B12 shall be called the "index" reg and R5 shall be the "base" reg.
285 This naming inversion is due to the GCC defined capabilities of
286 "Base" vs. "Index" regs. */
287
288 enum reg_class { NO_REGS, INDEX_REGS, BASE_REGS, ALL_REGS, LIM_REG_CLASSES };
289
290 #define N_REG_CLASSES (int) LIM_REG_CLASSES
291
292 /* Since GENERAL_REGS is the same class as ALL_REGS,
293 don't give it a different class number; just make it an alias. */
294 #define GENERAL_REGS ALL_REGS
295
296 /* Give names of register classes as strings for dump file. */
297
298 #define REG_CLASS_NAMES \
299 { "NO_REGS", "INDEX_REGS", "BASE_REGS", "ALL_REGS" }
300
301 /* Define which registers fit in which classes.
302 This is an initializer for a vector of HARD_REG_SET
303 of length N_REG_CLASSES.
304 1750 "index" (remember, in the *GCC* sense!) regs are R12 through R15.
305 The only 1750 register not usable as BASE_REG is R0. */
306
307 #define REG_CLASS_CONTENTS {0, 0xf000, 0xfffe, 0xffff}
308
309 /* The same information, inverted:
310 Return the class number of the smallest class containing
311 reg number REGNO. This could be a conditional expression
312 or could index an array. */
313 #define REGNO_REG_CLASS(REGNO) \
314 ((REGNO) >= 12 ? INDEX_REGS : (REGNO) > 0 ? BASE_REGS : ALL_REGS)
315
316 /* The class value for index registers, and the one for base regs. */
317
318 #define BASE_REG_CLASS BASE_REGS
319 #define INDEX_REG_CLASS INDEX_REGS
320
321 /* Get reg_class from a letter such as appears in the machine description.
322 For the 1750, we have 'b' for gcc Base regs and 'x' for gcc Index regs. */
323
324 #define REG_CLASS_FROM_LETTER(C) ((C) == 'b' ? BASE_REGS : \
325 (C) == 'x' ? INDEX_REGS : NO_REGS)
326
327 /* The letters I,J,K,.. to P in a register constraint string
328 can be used to stand for particular ranges of immediate operands.
329 This macro defines what the ranges are.
330 C is the letter, and VALUE is a constant value.
331 Return 1 if VALUE is in the range specified by C.
332
333 For the 1750A,
334 `I' is used for ISP mode instructions,
335 `J' is used for ISN mode instructions,
336 `K' is used for the STC instruction's constant range,
337 `L' is used for unsigned 8-bit address displacements in instructions
338 of addressing mode "Base Relative",
339 `M' is for IM mode instructions et al.,
340 `O' is a synonym for (const_int 0). */
341
342 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
343 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 16 : \
344 (C) == 'J' ? (VALUE) < 0 && (VALUE) >= -16 : \
345 (C) == 'K' ? (VALUE) >= 0 && (VALUE) <= 15 : \
346 (C) == 'L' ? (VALUE) >= 0 && (VALUE) <= 0xFF : \
347 (C) == 'M' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
348 (C) == 'O' ? (VALUE) == 0 : 0)
349
350 /* Similar, but for floating constants, and defining letter 'G'.
351 Here VALUE is the CONST_DOUBLE rtx itself. */
352 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
353
354 /* Given an rtx X being reloaded into a reg required to be
355 in class CLASS, return the class of reg to actually use.
356 In general this is just CLASS; but on some machines
357 in some cases it is preferable to use a more restrictive class.
358 For the 1750A, we force an immediate CONST_DOUBLE value to memory. */
359 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
360 (GET_CODE(X) == CONST_DOUBLE ? NO_REGS : CLASS)
361
362 /* Return the maximum number of consecutive registers
363 needed to represent mode MODE in a register of class CLASS.
364 On the 1750A, this is the size of MODE in words,
365 since class doesn't make any difference. */
366 #define CLASS_MAX_NREGS(CLASS,MODE) GET_MODE_SIZE(MODE)
367
368 /*****************************************************************************/
369
370 /* Stack layout; function entry, exit and calling. */
371
372 /* Define this if pushing a word on the stack
373 makes the stack pointer a smaller address. */
374 #define STACK_GROWS_DOWNWARD 1
375
376 /* Define this if the nominal address of the stack frame
377 is at the high-address end of the local variables;
378 goes at a more negative offset in the frame.
379 #define FRAME_GROWS_DOWNWARD
380 */
381
382 /* Offset within stack frame to start allocating local variables at.
383 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
384 first local allocated. Otherwise, it is the offset to the BEGINNING
385 of the first local allocated.
386 */
387 #define STARTING_FRAME_OFFSET 1
388
389 /* This is the default anyway:
390 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) FRAMEADDR
391 */
392
393 /* If we generate an insn to push BYTES bytes,
394 this says how many the stack pointer really advances by.
395 1750 note: what GCC calls a "byte" is really a 16-bit word,
396 because BITS_PER_UNIT is 16. */
397
398 #define PUSH_ROUNDING(BYTES) (BYTES)
399
400 /* Define this macro if functions should assume that stack space has
401 been allocated for arguments even when their values are passed in
402 registers.
403 Size, in bytes, of the area reserved for arguments passed in
404 registers for the function represented by FNDECL.
405 #define REG_PARM_STACK_SPACE(FNDECL) 14 */
406
407 /* Define this if it is the responsibility of the caller to allocate
408 the area reserved for arguments passed in registers.
409 #define OUTGOING_REG_PARM_STACK_SPACE */
410
411 /* Offset of first parameter from the argument pointer register value.
412 1750 note:
413 Parameters appear in reversed order on the frame (so when they are
414 popped, they come off in the normal left-to-right order.)
415 Computed as follows:
416 one word for the caller's (PC+1) (i.e. the return address)
417 plus total size of called function's "auto" variables
418 plus one word for the caller's frame pointer (i.e. the old FP) */
419
420 #define FIRST_PARM_OFFSET(FNDECL) \
421 (1 + get_frame_size() + 1)
422
423 /* Value is 1 if returning from a function call automatically
424 pops the arguments described by the number-of-args field in the call.
425 FUNDECL is the declaration node of the function (as a tree),
426 FUNTYPE is the data type of the function (as a tree),
427 or for a library call it is an identifier node for the subroutine name.
428 */
429
430 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
431
432 /* Define how to find the value returned by a function.
433 VALTYPE is the data type of the value (as a tree).
434 If the precise function being called is known, FUNC is its FUNCTION_DECL;
435 otherwise, FUNC is 0. */
436
437 #define FUNCTION_VALUE(VALTYPE, FUNC) \
438 gen_rtx(REG,TYPE_MODE(VALTYPE),0)
439
440 /* Define how to find the value returned by a library function
441 assuming the value has mode MODE. */
442 /* 1750 note: no libcalls yet */
443
444 #define LIBCALL_VALUE(MODE) printf("LIBCALL_VALUE called!\n"), \
445 gen_rtx(REG,MODE,0)
446
447 /* 1 if N is a possible register number for a function value. */
448
449 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
450
451 /* 1 if the tree TYPE should be returned in memory instead of in regs.
452 #define RETURN_IN_MEMORY(TYPE) \
453 (int_size_in_bytes(TYPE) > 12)
454 */
455
456 /* Define this if PCC uses the nonreentrant convention for returning
457 structure and union values.
458 #define PCC_STATIC_STRUCT_RETURN */
459
460 /* 1 if N is a possible register number for function argument passing. */
461
462 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
463
464 /*****************************************************************************/
465
466 /* Define a data type for recording info about an argument list
467 during the scan of that argument list. This data type should
468 hold all necessary information about the function itself
469 and about the args processed so far, enough to enable macros
470 such as FUNCTION_ARG to determine where the next arg should go.
471
472 For 1750A, this is a single integer, which is a number of words
473 of arguments scanned so far. */
474
475 #define CUMULATIVE_ARGS int
476
477 /* Initialize a variable CUM of type CUMULATIVE_ARGS
478 for a call to a function whose data type is FNTYPE.
479 For a library call, FNTYPE is 0.
480
481 For 1750A, the offset starts at 0. */
482
483 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
484
485 /* Update the data in CUM to advance over an argument
486 of mode MODE and data type TYPE.
487 (TYPE is null for libcalls where that information may not be available.)
488
489 1750 note: "int_size_in_bytes()" returns a unit relative to
490 BITS_PER_UNIT, so in our case not bytes, but 16-bit words. */
491
492 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
493 ((CUM) += (MODE) == BLKmode ? int_size_in_bytes(TYPE) : GET_MODE_SIZE(MODE))
494
495 /* Define where to put the arguments to a function.
496 Value is zero to push the argument on the stack,
497 or a hard register in which to store the argument.
498
499 MODE is the argument's machine mode.
500 TYPE is the data type of the argument (as a tree).
501 This is null for libcalls where that information may
502 not be available.
503 CUM is a variable of type CUMULATIVE_ARGS which gives info about
504 the preceding args and about the function being called.
505 NAMED is nonzero if this argument is a named parameter
506 (otherwise it is an extra parameter matching an ellipsis). */
507
508 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
509 (rtx) function_arg(CUM,MODE,TYPE,NAMED)
510 /*
511 (! MUST_PASS_IN_STACK(MODE,TYPE) && \
512 14 >= (CUM) + \
513 ((MODE)==BLKmode ? int_size_in_bytes(TYPE) : GET_MODE_SIZE (MODE)) \
514 ? gen_rtx (REG, MODE, CUM) \
515 : 0)
516 */
517
518 /* Define the following macro if function calls on the target machine
519 do not preserve any registers; in other words, if `CALL_USED_REGISTERS'
520 has 1 for all registers. This macro enables `-fcaller-saves' by
521 default. Eventually that option will be nabled by default on all
522 machines and both the option and this macro will be eliminated. */
523
524 #define DEFAULT_CALLER_SAVES
525
526
527 /* This macro generates the assembly code for function entry.
528 FILE is a stdio stream to output the code to.
529 SIZE is an int: how many units of temporary storage to allocate.
530 Refer to the array `regs_ever_live' to determine which registers
531 to save; `regs_ever_live[I]' is nonzero if register number I
532 is ever used in the function. This macro is responsible for
533 knowing which registers should not be saved even if used. */
534
535
536 #define FUNCTION_PROLOGUE(FILE, SIZE) { \
537 register int regno, none_used=1; \
538 extern char call_used_regs[]; \
539 fprintf(FILE, "; regs used in this function: "); \
540 for (regno = 0; regno < 15; regno++) \
541 if (regs_ever_live[regno]) { \
542 fprintf(FILE," %s",reg_names[regno]); \
543 none_used = 0; \
544 } \
545 if (none_used) \
546 fprintf(FILE," (none)"); \
547 fprintf(FILE,"\n"); \
548 if (SIZE > 0) \
549 fprintf(FILE,"\t%s\tr15,%d ; reserve local-variable space\n",\
550 (SIZE <= 16 ? "sisp" : "sim"),SIZE); \
551 fprintf(FILE,"\tpshm\tr14,r14 ; push old frame\n"); \
552 fprintf(FILE,"\tlr\tr14,r15 ; set new frame\n"); \
553 program_counter = 0; jmplbl_ndx = -1; \
554 }
555
556 /************* 1750: PROFILER HANDLING NOT YET DONE !!!!!!! *************/
557 /* Output assembler code to FILE to increment profiler label # LABELNO
558 for profiling a function entry. */
559
560 #define FUNCTION_PROFILER(FILE, LABELNO) \
561 fprintf (FILE, "; got into FUNCTION_PROFILER with label # %d\n", (LABELNO))
562
563 /* Output assembler code to FILE to initialize this source file's
564 basic block profiling info, if that has not already been done. */
565 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
566 fprintf (FILE, "; got into FUNCTION_BLOCK_PROFILER with label # %d\n",LABELNO)
567
568 /* Output assembler code to FILE to increment the entry-count for
569 the BLOCKNO'th basic block in this source file. */
570 #define BLOCK_PROFILER(FILE, BLOCKNO) \
571 fprintf (FILE, "; got into BLOCK_PROFILER with block # %d\n",BLOCKNO)
572
573 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
574 the stack pointer does not matter. The value is tested only in
575 functions that have frame pointers.
576 No definition is equivalent to always zero. */
577
578 #define EXIT_IGNORE_STACK 1
579
580 /* This macro generates the assembly code for function exit,
581 on machines that need it. If FUNCTION_EPILOGUE is not defined
582 then individual return instructions are generated for each
583 return statement. Args are same as for FUNCTION_PROLOGUE.
584
585 The function epilogue should not depend on the current stack pointer!
586 It should use the frame pointer only. This is mandatory because
587 of alloca; we also take advantage of it to omit stack adjustments
588 before returning. */
589
590 #define FUNCTION_EPILOGUE(FILE, SIZE) { \
591 if (SIZE > 0) \
592 fprintf(FILE,"\t%s\tr14,%d ; free up local-var space\n", \
593 (SIZE <= 16 ? "aisp" : "aim"),SIZE); \
594 fprintf(FILE,"\tlr\tr15,r14 ; set stack to return addr\n"); \
595 fprintf(FILE,"\tpopm\tr14,r14 ; restore prev. frame ptr\n"); \
596 fprintf(FILE,"\turs\tr15\n"); }
597
598 /* If the memory address ADDR is relative to the frame pointer,
599 correct it to be relative to the stack pointer instead.
600 This is for when we don't use a frame pointer.
601 ADDR should be a variable name. */
602
603 #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
604 fprintf(stderr,"FIX_FRAME_POINTER_ADDRESS called, DEPTH=%d\n"), \
605 DEPTH), abort()
606
607 /* Store in the variable DEPTH the initial difference between the
608 frame pointer reg contents and the stack pointer reg contents,
609 as of the start of the function body. This depends on the layout
610 of the fixed parts of the stack frame and on how registers are saved.
611 */
612 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) DEPTH = 0
613
614 /* 1750: not needed 'cause we have INITIAL_FRAME_POINTER_OFFSET.
615 #define ELIMINABLE_REGS { \
616 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
617 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }, \
618 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM } }
619
620 #define CAN_ELIMINATE(FROM, TO) 1
621
622 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) { OFFSET = 0; }
623 */
624
625
626 /* Output assembler code for a block containing the constant parts
627 of a trampoline, leaving space for the variable parts. */
628
629 #define TRAMPOLINE_TEMPLATE(FILE) fprintf(FILE,"TRAMPOLINE_TEMPLATE called\n")
630
631 /* Length in units of the trampoline for entering a nested function. */
632
633 #define TRAMPOLINE_SIZE 2
634
635 /* Emit RTL insns to initialize the variable parts of a trampoline.
636 FNADDR is an RTX for the address of the function's pure code.
637 CXT is an RTX for the static chain value for the function. */
638
639 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) printf("INITIALIZE_TRAMPO called\n")
640 /* { \
641 emit_move_insn (gen_rtx (MEM, QImode, plus_constant (TRAMP, 1)), CXT); \
642 emit_move_insn (gen_rtx (MEM, QImode, plus_constant (TRAMP, 6)), FNADDR); \
643 } */
644
645
646 /*****************************************************************************/
647
648 /* Addressing modes, and classification of registers for them. */
649
650 /* 1750 doesn't have a lot of auto-incr./decr. - just for the stack ptr. */
651
652 /* #define HAVE_POST_INCREMENT just for R15 (stack pointer) */
653 /* #define HAVE_POST_DECREMENT */
654 /* #define HAVE_PRE_DECREMENT just for R15 (stack pointer) */
655 /* #define HAVE_PRE_INCREMENT */
656
657 /* Macros to check register numbers against specific register classes. */
658
659 /* These assume that REGNO is a hard or pseudo reg number.
660 They give nonzero only if REGNO is a hard reg of the suitable class
661 or a pseudo reg currently allocated to a suitable hard reg.
662 Since they use reg_renumber, they are safe only once reg_renumber
663 has been allocated, which happens in local-alloc.c.
664 1750 note: The words BASE and INDEX are used in their GCC senses:
665 The "Index Registers", R12 through R15, can have an address displacement
666 int the range 0..255 words.
667 */
668
669 #define REGNO_OK_FOR_BASE_P(REGNO) \
670 ((REGNO) > 0 && (REGNO) <= 15 || \
671 reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 15)
672 #define REGNO_OK_FOR_INDEX_P(REGNO) \
673 ((REGNO) >= 12 && (REGNO) <= 15 || \
674 reg_renumber[REGNO] >= 12 && reg_renumber[REGNO] <= 15)
675
676 /* Now macros that check whether X is a register and also,
677 strictly, whether it is in a specified class.
678
679 /* 1 if X is an address register */
680
681 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
682
683 /* Maximum number of registers that can appear in a valid memory address. */
684 #define MAX_REGS_PER_ADDRESS 1
685
686 /* Recognize any constant value that is a valid address. */
687
688 #define CONSTANT_ADDRESS_P(X) CONSTANT_P(X)
689
690 /* Nonzero if the constant value X is a legitimate general operand.
691 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
692
693 #define LEGITIMATE_CONSTANT_P(X) 1
694
695 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
696 and check its validity for a certain class.
697 We have two alternate definitions for each of them.
698 The usual definition accepts all pseudo regs; the other rejects
699 them unless they have been allocated suitable hard regs.
700 The symbol REG_OK_STRICT causes the latter definition to be used.
701
702 Most source files want to accept pseudo regs in the hope that
703 they will get allocated to the class that the insn wants them to be in.
704 Source files for reload pass need to be strict.
705 After reload, it makes no difference, since pseudo regs have
706 been eliminated by then. */
707
708 #ifdef REG_OK_STRICT
709
710 /* Nonzero if X is a hard reg that can be used as an index. */
711 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
712 /* Nonzero if X is a hard reg that can be used as a base reg. */
713 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
714
715 #else
716
717 /* Nonzero if X is a hard reg that can be used as an index
718 or if it is a pseudo reg. */
719 #define REG_OK_FOR_INDEX_P(X) (REGNO (X) >= 12)
720 /* Nonzero if X is a hard reg that can be used as a base reg
721 or if it is a pseudo reg. */
722 #define REG_OK_FOR_BASE_P(X) (REGNO (X) > 0)
723
724 #endif
725
726
727 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
728 that is a valid memory address for an instruction.
729 The MODE argument is the machine mode for the MEM expression
730 that wants to use this address.
731 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.
732
733 1750 note: Currently we don't implement address expressions that use
734 GCC "Index"-class regs. To be expanded to handle the 1750 "Base with Index"
735 instructions (see also MAX_REGS_PER_ADDRESS and others). */
736
737 #define GO_IF_BASED_ADDRESS(X, ADDR) { \
738 if ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P(X))) \
739 goto ADDR; \
740 if (GET_CODE (X) == PLUS) \
741 { register rtx x0 = XEXP(X,0), x1 = XEXP(X,1); \
742 if ((REG_P(x0) && REG_OK_FOR_BASE_P(x0) && CONSTANT_ADDRESS_P(x1)) \
743 || (REG_P(x1) && REG_OK_FOR_BASE_P(x1) && CONSTANT_ADDRESS_P(x0))) \
744 goto ADDR; } }
745
746 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) { \
747 if (CONSTANT_ADDRESS_P(X)) goto ADDR; \
748 GO_IF_BASED_ADDRESS(X,ADDR) }
749
750
751 /* Try machine-dependent ways of modifying an illegitimate address
752 to be legitimate. If we find one, return the new, valid address.
753 This macro is used in only one place: `memory_address' in explow.c.
754
755 OLDX is the address as it was before break_out_memory_refs was called.
756 In some cases it is useful to look at this to decide what needs to be done.
757
758 MODE and WIN are passed so that this macro can use
759 GO_IF_LEGITIMATE_ADDRESS.
760
761 It is always safe for this macro to do nothing. It exists to recognize
762 opportunities to optimize the output. */
763
764 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)
765
766 /* Go to LABEL if ADDR (a legitimate address expression)
767 has an effect that depends on the machine mode it is used for.
768 On the 68000, only predecrement and postincrement address depend thus
769 (the amount of decrement or increment being the length of the operand). */
770 /* 1750: not used. */
771
772 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
773
774 /*****************************************************************************/
775
776 /* Specify the machine mode that this machine uses
777 for the index in the tablejump instruction. */
778 #define CASE_VECTOR_MODE QImode
779
780 /* Define this if the tablejump instruction expects the table
781 to contain offsets from the address of the table.
782 Do not define this if the table should contain absolute addresses. */
783 /* #define CASE_VECTOR_PC_RELATIVE */
784
785 /* Specify the tree operation to be used to convert reals to integers. */
786 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
787
788 /* This is the kind of divide that is easiest to do in the general case. */
789 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
790
791 /* Define this as 1 if `char' should by default be signed; else as 0. */
792 #define DEFAULT_SIGNED_CHAR 0
793
794 /* Max number of bytes we can move from memory to memory
795 in one reasonably fast instruction. */
796 /* (was: "1750: not counting the MOV instruction") */
797 #define MOVE_MAX 16
798
799 /* Define this if zero-extension is slow (more than one real instruction). */
800 /* #define SLOW_ZERO_EXTEND */
801
802 /* Nonzero if access to memory by bytes is slow and undesirable. */
803 #define SLOW_BYTE_ACCESS 0
804
805 /* Define if shifts truncate the shift count
806 which implies one can omit a sign-extension or zero-extension
807 of a shift count. */
808 /* #define SHIFT_COUNT_TRUNCATED 1 */
809
810 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
811 is done just by pretending it is already truncated. */
812 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
813
814 /* We assume that the store-condition-codes instructions store 0 for false
815 and some other value for true. This is the value stored for true. */
816
817 #define STORE_FLAG_VALUE 1
818
819 /* When a prototype says `char' or `short', really pass an `int'.
820 1750: for now, `char' is 16 bits wide anyway.
821 #define PROMOTE_PROTOTYPES */
822
823 /* Specify the machine mode that pointers have.
824 After generation of rtl, the compiler makes no further distinction
825 between pointers and any other objects of this machine mode. */
826 #define Pmode QImode
827
828 /* A function address in a call instruction
829 is a 16-bit address (for indexing purposes) */
830 #define FUNCTION_MODE QImode
831
832 /* Compute the cost of computing a constant rtl expression RTX
833 whose rtx-code is CODE. The body of this macro is a portion
834 of a switch statement. If the code is computed here,
835 return it with a return statement. Otherwise, break from the switch. */
836 /* 1750 note: haven't paid attention to this yet. */
837
838 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
839 case CONST_INT: \
840 if (INTVAL(RTX) >= -16 && INTVAL(RTX) <= 16) return 1; \
841 case CONST: \
842 case LABEL_REF: \
843 case SYMBOL_REF: \
844 return 5; \
845 case CONST_DOUBLE: \
846 return 7;
847
848 #define ADDRESS_COST(ADDRESS) (memop_valid(ADDRESS) ? 3 : 1000)
849
850 /* Tell final.c how to eliminate redundant test instructions. */
851
852 /* Here we define machine-dependent flags and fields in cc_status
853 (see `conditions.h'). */
854 /* MIL-STD-1750: none -- just has the garden variety C,P,Z,N flags. */
855
856 /* Store in cc_status the expressions
857 that the condition codes will describe
858 after execution of an instruction whose pattern is EXP.
859 Do not alter them if the instruction would not alter the cc's.
860 1750: See file out-1750a.c for notice_update_cc(). */
861
862 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP)
863
864 /**********************************************/
865 /* Produce debugging info in the DWARF format
866 #define DWARF_DEBUGGING_INFO
867 */
868
869 /*****************************************************************************/
870
871 /* Control the assembler format that we output. */
872
873 /* Output at beginning of assembler file. */
874
875 #define ASM_FILE_START(FILE) { \
876 char *p, name[40]; \
877 if ((p = (char *)strrchr(main_input_filename,'/')) != NULL ? 1 : \
878 (p = (char *)strrchr(main_input_filename,']')) != NULL) \
879 p++; \
880 else \
881 p = main_input_filename; \
882 strcpy(name,p); \
883 if (p = (char *)strchr(name,'.')) \
884 *p = '\0'; \
885 fprintf(FILE,"\tname %s\n",name); \
886 fprintf(FILE,"\tnolist\n\tinclude \"ms1750.inc\"\n\tlist\n\n"); \
887 fprintf(FILE,"\tglobal\t__main\n\n"); }
888
889 /* Output at end of assembler file.
890 For 1750, we copy the data labels accrued in datalbl[] from the Constants
891 section (Konst) to the Writable-Data section (Static). */
892
893 #define ASM_FILE_END(FILE) \
894 do { \
895 if (datalbl_ndx >= 0) { \
896 int i, cum_size=0; \
897 fprintf(FILE,"\n\tstatic\ninit_srel\n"); \
898 for (i = 0; i <= datalbl_ndx; i++) { \
899 if (datalbl[i].name == NULL) \
900 { \
901 fprintf(stderr, "asm_file_end internal datalbl err\n"); \
902 exit (0); \
903 } \
904 fprintf(FILE,"%s \tblock %d\n", \
905 datalbl[i].name,datalbl[i].size); \
906 cum_size += datalbl[i].size; \
907 } \
908 fprintf(FILE,"\n\tinit\n"); \
909 fprintf(FILE,"\tlim\tr0,init_srel\n"); /* destin. */ \
910 fprintf(FILE,"\tlim\tr1,%d\n",cum_size); /* count */ \
911 fprintf(FILE,"\tlim\tr2,K%s\n",datalbl[0].name); /* source */ \
912 fprintf(FILE,"\tmov\tr0,r2\n"); \
913 fprintf(FILE,"\n\tnormal\n"); \
914 datalbl_ndx = -1; /* reset stuff */ \
915 for (i = 0; i < DATALBL_ARRSIZ; i++) \
916 datalbl[i].size = 0; \
917 } \
918 fprintf(FILE,"\n\tend\n"); \
919 } while (0)
920
921 /* Output to assembler file text saying following lines
922 may contain character constants, extra white space, comments, etc. */
923
924 #define ASM_APP_ON "\n\tif 0\n; by ASM_APP_ON\n"
925
926 /* Output to assembler file text saying following lines
927 no longer contain unusual constructs. */
928
929 #define ASM_APP_OFF "\n\tendif\n"
930
931
932 #define EXTRA_SECTIONS in_readonly_data
933
934 #define EXTRA_SECTION_FUNCTIONS \
935 void const_section() \
936 { \
937 fprintf(asm_out_file,"\tkonst\n"); \
938 current_section = Konst; \
939 } \
940 check_section(sect) \
941 enum section sect; \
942 { \
943 if (current_section != sect) { \
944 fprintf(asm_out_file,"\t%s\n",sectname[(int)sect]); \
945 current_section = sect; \
946 } \
947 switch (sect) { \
948 case Init: \
949 case Normal: \
950 in_section = in_text; \
951 break; \
952 case Static: \
953 in_section = in_data; \
954 break; \
955 case Konst: \
956 in_section = in_readonly_data; \
957 break; \
958 } \
959 }
960
961
962 /* Function that switches to the read-only data section (optional) */
963 #define READONLY_DATA_SECTION const_section
964
965 /* Output before program init section */
966 #define INIT_SECTION_ASM_OP "\n\tinit ; init_section\n"
967
968 /* Output before program text section */
969 #define TEXT_SECTION_ASM_OP "\n\tnormal ; text_section\n"
970
971 /* Output before writable data. */
972 #define DATA_SECTION_ASM_OP "\n\tstatic ; data_section\n"
973
974 /* How to refer to registers in assembler output.
975 This sequence is indexed by compiler's hard-register-number (see above). */
976
977 #define REGISTER_NAMES \
978 { "0", "1", "2", "3", "4", "5", "6", "7", \
979 "8", "9","10","11","12","13","14","15" }
980
981 /* How to renumber registers for dbx and gdb. */
982
983 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
984
985 /****************** Assembler output formatting **********************/
986
987 #define ASM_IDENTIFY_GCC(FILE) fputs ("; gcc2_compiled:\n", FILE)
988
989 #define ASM_COMMENT_START ";"
990
991 #define ASM_OUTPUT_FUNNAM(FILE,NAME) \
992 fprintf(FILE,"%s\n",NAME)
993
994 #define ASM_OUTPUT_OPCODE(FILE,PTR) do { \
995 while (*(PTR) != '\0' && *(PTR) != ' ') { \
996 putc (*(PTR), FILE); \
997 (PTR)++; \
998 } \
999 while (*(PTR) == ' ') \
1000 (PTR)++; \
1001 putc ('\t', FILE); \
1002 program_counter += 2; \
1003 } while (0)
1004
1005 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1006 fprintf(FILE,"%s\n",NAME)
1007
1008 /* This is how to output the definition of a user-level label named NAME,
1009 such as the label on a static function or variable NAME. */
1010 /* 1750 note: Labels are prefixed with a 'K'. This is because handling
1011 has been changed for labels to be output in the "Constants" section
1012 (named "Konst"), and special initialization code takes care of copying
1013 the Const-section data into the writable data section (named "Static").
1014 In the Static section we therefore have the true label names (i.e.
1015 not prefixed with 'K'). */
1016
1017 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1018 do { if (NAME[0] == '.') { \
1019 fprintf(stderr,"Oops! label %s can't begin with '.'\n",NAME); \
1020 abort(); \
1021 } \
1022 else { \
1023 check_section(Konst); \
1024 fprintf(FILE,"K%s\n",NAME); \
1025 datalbl[++datalbl_ndx].name = (char *)strdup (NAME); \
1026 label_pending = 1; \
1027 } \
1028 } while (0)
1029
1030
1031 /* This is how to output a command to make the user-level label named NAME
1032 defined for reference from other files. */
1033
1034 #define ASM_GLOBALIZE_LABEL(FILE,NAME) do { \
1035 fprintf (FILE, "\tglobal %s\t; export\n", NAME); \
1036 } while (0)
1037
1038 /* This is how to output a reference to a user-level label named NAME.
1039 `assemble_name' uses this. */
1040
1041 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1042 fprintf (FILE, "%s", NAME)
1043
1044 /* This is how to output an internal numbered label where
1045 PREFIX is the class of label and NUM is the number within the class. */
1046
1047 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1048 do { \
1049 if (strcmp(PREFIX,"LC") == 0) { \
1050 label_pending = 1; \
1051 datalbl[++datalbl_ndx].name = (char *) malloc (9); \
1052 sprintf(datalbl[datalbl_ndx].name,"LC%d",NUM); \
1053 check_section(Konst); \
1054 fprintf(FILE,"K%s%d\n",PREFIX,NUM); \
1055 } \
1056 else if (find_jmplbl(NUM) < 0) { \
1057 jmplbl[++jmplbl_ndx].num = NUM; \
1058 jmplbl[jmplbl_ndx].pc = program_counter; \
1059 fprintf(FILE, "%s%d\n", PREFIX, NUM); \
1060 } \
1061 } while (0)
1062
1063
1064 /* This is how to store into the string LABEL
1065 the symbol_ref name of an internal numbered label where
1066 PREFIX is the class of label and NUM is the number within the class.
1067 This is suitable for output with `assemble_name'. */
1068
1069 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1070 sprintf (LABEL, "%s%d", PREFIX, NUM)
1071
1072 /* This is how to output an assembler line defining a 1750A `float'
1073 constant. */
1074
1075 #define ASM_OUTPUT_SHORT_FLOAT(FILE,VALUE) \
1076 do { \
1077 if (label_pending) \
1078 label_pending = 0; \
1079 else \
1080 datalbl[++datalbl_ndx].name = float_label('D',VALUE); \
1081 sprintf (datalbl[datalbl_ndx].value, "%lf", (double) VALUE); \
1082 datalbl[datalbl_ndx].size = 2; \
1083 fprintf (FILE, "\tdataf\t%lf\n",VALUE); \
1084 } while(0)
1085
1086 /* This is how to output an assembler line defining a 1750A `double'
1087 constant. */
1088
1089 #define ASM_OUTPUT_THREE_QUARTER_FLOAT(FILE,VALUE) \
1090 do { \
1091 if (label_pending) \
1092 label_pending = 0; \
1093 else \
1094 datalbl[++datalbl_ndx].name = float_label('E',VALUE); \
1095 sprintf (datalbl[datalbl_ndx].value, "%lf", VALUE); \
1096 datalbl[datalbl_ndx].size = 3; \
1097 fprintf(FILE,"\tdataef\t%lf\n",VALUE); \
1098 } while (0)
1099
1100 /* This is how to output an assembler line defining a string constant. */
1101
1102 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) do { \
1103 int i; \
1104 if (! label_pending) \
1105 fprintf(FILE,";in ASM_OUTPUT_ASCII without label_pending\n");\
1106 else { \
1107 label_pending = 0; \
1108 datalbl[datalbl_ndx].size = LEN; \
1109 } \
1110 for (i = 0; i < LEN; i++) \
1111 if (PTR[i] >= 32 && PTR[i] < 127) \
1112 fprintf(FILE,"\tdata\t%d\t; '%c'\n",PTR[i],PTR[i]); \
1113 else \
1114 fprintf(FILE,"\tdata\t%d\t; (ascii)\n",PTR[i]); \
1115 } while (0)
1116
1117 /* This is how to output an assembler line defining an `int' constant. */
1118
1119 #define ASM_OUTPUT_INT(FILE,VALUE) do { \
1120 if (! label_pending) \
1121 fprintf(FILE,";in ASM_OUTPUT_INT without label_pending\n"); \
1122 else { \
1123 label_pending = 0; \
1124 datalbl[datalbl_ndx].size = 1; \
1125 } \
1126 fprintf(FILE, "\tdata\t"); output_addr_const(FILE,VALUE); \
1127 fprintf(FILE, "\n"); } while (0)
1128
1129 /* This is how to output an assembler line defining a `long int' constant. */
1130
1131 #define ASM_OUTPUT_LONG_INT(FILE,VALUE) do { \
1132 if (! label_pending) \
1133 fprintf(FILE,";in ASM_OUTPUT_LONG_INT without label_pending\n");\
1134 else { \
1135 label_pending = 0; \
1136 datalbl[datalbl_ndx].size = 2; \
1137 } \
1138 fprintf(FILE, "\tdatal\t"); output_addr_const(FILE,VALUE); \
1139 fprintf(FILE, "\n"); } while (0)
1140
1141 /* Likewise for `short' and `char' constants. */
1142
1143 #define ASM_OUTPUT_SHORT(FILE,VALUE) ASM_OUTPUT_INT(FILE,VALUE)
1144
1145 /* For 1750, we treat char same as word. Tektronix 1750
1146 Assembler does a better (packing) job with strings. */
1147 #define ASM_OUTPUT_CHAR(FILE,VALUE) ASM_OUTPUT_INT(FILE,VALUE)
1148
1149 /* This is how to output an assembler line for a numeric constant byte. */
1150 /* 1750: For the time being, treating this same as word. Tektronix 1750
1151 Assembler does a better (packing) job with strings. */
1152 #define ASM_OUTPUT_BYTE(FILE,VALUE) ASM_OUTPUT_INT(FILE,VALUE)
1153
1154 /* This is how to output an insn to push a register on the stack.
1155 It need not be very fast code. */
1156
1157 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1158 fprintf (FILE, "\tPSHM R%s,R%s\n", reg_names[REGNO])
1159
1160 /* This is how to output an insn to pop a register from the stack.
1161 It need not be very fast code. */
1162
1163 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1164 fprintf (FILE, "\tPOPM R%s,R%s\n", reg_names[REGNO])
1165
1166 /* This is how to output an element of a case-vector that is absolute. */
1167
1168 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1169 fprintf (FILE, "\tdata\tL%d ;addr_vec_elt\n", VALUE)
1170
1171 /* This is how to output an element of a case-vector that is relative. */
1172
1173 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1174 fprintf (FILE, "\tdata\tL%d-L%d ;addr_diff_elt\n", VALUE,REL)
1175
1176 /* This is how to output an assembler line
1177 that says to advance the location counter
1178 to a multiple of 2**LOG bytes. */
1179
1180 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1181 fprintf(FILE,"; in ASM_OUTPUT_ALIGN: pwr_of_2_bytcnt=%d\n",LOG)
1182
1183 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1184 fprintf(FILE,"; in ASM_OUTPUT_SKIP: size=%d\n",SIZE)
1185
1186 /* This says how to output an assembler line
1187 to define a global common symbol. */
1188
1189 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) do { \
1190 fprintf (FILE, "\tcommon %s,%d\n", NAME, SIZE); \
1191 } while (0)
1192
1193 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) do { \
1194 fprintf (FILE, "\tglobal %s\t; import\n", NAME); \
1195 } while (0)
1196
1197 /* This says how to output an assembler line
1198 to define a local common symbol. */
1199
1200 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) do { \
1201 check_section (Static); \
1202 fprintf(FILE,"%s \tblock %d\t; local common\n",NAME,SIZE); \
1203 } while (0)
1204
1205 /* Store in OUTPUT a string (made with alloca) containing
1206 an assembler-name for a local static variable named NAME.
1207 LABELNO is an integer which is different for each call. */
1208
1209 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1210 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1211 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1212
1213 #define ASM_OUTPUT_CONSTRUCTOR(FILE, NAME) do { \
1214 fprintf(FILE, "\tinit\n\t"); assemble_name(NAME); \
1215 fprintf(FILE," ;constructor"); } while (0)
1216
1217 #define ASM_OUTPUT_DESTRUCTOR(FILE, NAME) do { \
1218 fprintf(FILE, "\tinit\n\t"); assemble_name(NAME); \
1219 fprintf(FILE," ;destructor"); } while (0)
1220
1221 /* Define the parentheses used to group arithmetic operations
1222 in assembler code. */
1223
1224 #define ASM_OPEN_PAREN "("
1225 #define ASM_CLOSE_PAREN ")"
1226
1227 /* Define results of standard character escape sequences. */
1228 #define TARGET_BELL 007
1229 #define TARGET_BS 010
1230 #define TARGET_TAB 011
1231 #define TARGET_NEWLINE 012
1232 #define TARGET_VT 013
1233 #define TARGET_FF 014
1234 #define TARGET_CR 015
1235
1236
1237 /* Print operand X (an rtx) in assembler syntax to file FILE.
1238 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1239 For `%' followed by punctuation, CODE is the punctuation and X is null.
1240 1750 note: there are three special CODE characters:
1241 'D', 'E': print a reference to a floating point constant (D=double,
1242 E=single precision) label name
1243 'F': print a label defining a floating-point constant value
1244 'J': print the absolute value of a negative INT_CONST
1245 (this is used in LISN/CISN/MISN/SISP and others) */
1246
1247 /* 1750A: see file aux-output.c */
1248 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1249 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE,ADDR)
1250
This page took 0.093601 seconds and 5 git commands to generate.