]> gcc.gnu.org Git - gcc.git/blob - gcc/config/1750a/1750a.h
4f58560d4e13335068d80c22083af56d91c0841e
[gcc.git] / gcc / config / 1750a / 1750a.h
1 /* Definitions of target machine for GNU compiler.
2 Copyright (C) 1994, 1995 Free Software Foundation, Inc.
3 Contributed by O.M.Kellogg, DASA (okellogg@salyko.cube.net).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 1, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 /* See tm-sun3.h, tm-sun2.h, tm-isi68.h for different CPP_PREDEFINES. */
25 #define CPP_PREDEFINES ""
26
27 /* Print subsidiary information on the compiler version in use. */
28 #ifdef IEEE
29 #define TARGET_VERSION fprintf (stderr, " (1750A, IEEE syntax)");
30 #else
31 #define TARGET_VERSION fprintf (stderr, " (MIL-STD-1750A)");
32 #endif
33
34 /* Run-time compilation parameters selecting different hardware subsets. */
35
36 #define TARGET_SWITCHES \
37 { {"vaxc-alignment", 2}, \
38 { "", TARGET_DEFAULT}}
39
40 /* Default target_flags if no switches specified. */
41
42 #ifndef TARGET_DEFAULT
43 #define TARGET_DEFAULT 1
44 #endif
45
46 /*****************************************************************************/
47
48 /* SPECIAL ADDITION FOR MIL-STD-1750A by O.M.Kellogg, 15-Apr-1993 */
49 /* See file aux-output.c for the actual data instances. */
50 struct datalabel_array {
51 char *name;
52 char value[14];
53 int size;
54 };
55 struct jumplabel_array {
56 int pc;
57 int num;
58 };
59 enum section { Init, Normal, Konst, Static };
60 #define DATALBL_ARRSIZ 256
61 #define JMPLBL_ARRSIZ 256
62 #ifndef __datalbl
63 extern struct datalabel_array datalbl[];
64 extern struct jumplabel_array jmplbl[];
65 extern int datalbl_ndx, jmplbl_ndx, label_pending, program_counter;
66 extern enum section current_section;
67 extern char *sectname[4];
68 extern char *strdup(), *float_label();
69 #endif
70 /*--------------------------------------------------------------------*/
71
72 /* target machine storage layout */
73
74 /* Define this if most significant bit is lowest numbered
75 in instructions that operate on numbered bit-fields.
76 Though 1750 actually counts bits in big-endian fashion, the sign bit
77 is still the most significant bit, which is leftmost. Therefore leaving
78 this little-endian. Adjust short before assembler output when needed:
79 e.g. in QImode, a GCC bit n is a 1750 bit (15-n). */
80 #define BITS_BIG_ENDIAN 0
81
82 /* Define this if most significant byte of a word is the lowest numbered. */
83 /* For 1750 we can decide arbitrarily
84 since there are no machine instructions for them. */
85 #define BYTES_BIG_ENDIAN 0
86
87 /* Define this if most significant word of a multiword value is lowest
88 numbered.
89 True for 1750. */
90 #define WORDS_BIG_ENDIAN 1
91
92 /* number of bits in an addressable storage unit */
93 #define BITS_PER_UNIT 16
94
95 /* Width in bits of a "word", which is the contents of a machine register.
96 Note that this is not necessarily the width of data type `int';
97 if using 16-bit ints on a 68000, this would still be 32.
98 But on a machine with 16-bit registers, this would be 16. */
99 #define BITS_PER_WORD 16
100
101 /* Width of a word, in units (bytes). */
102 #define UNITS_PER_WORD 1
103
104 /* Width in bits of a pointer.
105 See also the macro `Pmode' defined below. */
106 #define POINTER_SIZE 16
107
108 #define PTRDIFF_TYPE "int"
109
110 /* Type to use for `size_t'. If undefined, uses `long unsigned int'. */
111 #define SIZE_TYPE "int"
112
113 /* 1750a preliminary
114 #define TARGET_FLOAT_FORMAT UNKNOWN_FLOAT_FORMAT
115 */
116
117 /* Allocation boundary (in *bits*) for storing pointers in memory. */
118 #define POINTER_BOUNDARY 16
119
120 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
121 /* 1750: should have had to make this 32 when BITS_PER_WORD is 32. */
122 #define PARM_BOUNDARY 16
123
124 /* Boundary (in *bits*) on which stack pointer should be aligned. */
125 #define STACK_BOUNDARY 16
126
127 /* Allocation boundary (in *bits*) for the code of a function. */
128 #define FUNCTION_BOUNDARY 16
129
130 /* Alignment of field after `int : 0' in a structure. */
131 #define EMPTY_FIELD_BOUNDARY 16
132
133 /* No data type wants to be aligned rounder than this. */
134 #define BIGGEST_ALIGNMENT 16
135
136 /* Define this to 1 if move instructions will actually fail to work
137 when given unaligned data. */
138 #define STRICT_ALIGNMENT 0
139
140 /* Define number of bits in most basic integer type.
141 (If undefined, default is BITS_PER_WORD).
142 #define INT_TYPE_SIZE 16 */
143
144 /* Define number of bits in short integer type.
145 (If undefined, default is half of BITS_PER_WORD). */
146 #define SHORT_TYPE_SIZE 16
147
148 /* Define number of bits in long integer type.
149 (If undefined, default is BITS_PER_WORD). */
150 #define LONG_TYPE_SIZE 32
151
152 /* Define number of bits in long long integer type.
153 (If undefined, default is twice BITS_PER_WORD). */
154 /* 1750 PRELIMINARY : no processor support for `long long', therefore
155 need to check out the long-long opencodings ! */
156 #define LONG_LONG_TYPE_SIZE 64
157
158 /* Define number of bits in char type.
159 (If undefined, default is one fourth of BITS_PER_WORD). */
160 #define CHAR_TYPE_SIZE 16
161
162 /* Define number of bits in float type.
163 (If undefined, default is BITS_PER_WORD). */
164 #define FLOAT_TYPE_SIZE 32
165
166 /* Define number of bits in double type.
167 (If undefined, default is twice BITS_PER_WORD). */
168 #define DOUBLE_TYPE_SIZE 48
169
170 /*****************************************************************************/
171
172 /* Standard register usage. */
173
174 /* Number of actual hardware registers.
175 The hardware registers are assigned numbers for the compiler
176 from 0 to just below FIRST_PSEUDO_REGISTER.
177 All registers that the compiler knows about must be given numbers,
178 even those that are not normally considered general registers. */
179 #define FIRST_PSEUDO_REGISTER 16
180
181 /* 1 for registers that have pervasive standard uses
182 and are not available for the register allocator.
183 R15 is the 1750A stack pointer. R14 is the frame pointer. */
184
185 #define FIXED_REGISTERS \
186 { 0, 0, 0, 0, 0, 0, 0, 0, \
187 0, 0, 0, 0, 0, 0, 1, 1 }
188
189 /* 1 for registers not available across function calls.
190 These must include the FIXED_REGISTERS and also any
191 registers that can be used without being saved.
192 The latter must include the registers where values are returned
193 and the register where structure-value addresses are passed.
194 Aside from that, you can include as many other registers as you like.
195 1750: return value in R0 foll. (depending on size of retval).
196 Should be possible to refine this (how many regs are actually used) */
197
198 #define CALL_USED_REGISTERS \
199 { 1, 1, 1, 1, 1, 1, 1, 1, \
200 1, 1, 1, 1, 1, 1, 1, 1 }
201
202 /* Return number of consecutive hard regs needed starting at reg REGNO
203 to hold something of mode MODE.
204 This is ordinarily the length in words of a value of mode MODE
205 but can be less for certain modes in special long registers.
206 All 1750 registers are one word long. */
207 #define HARD_REGNO_NREGS(REGNO, MODE) \
208 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
209
210 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
211 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
212
213 /* Value is 1 if it is a good idea to tie two pseudo registers
214 when one has mode MODE1 and one has mode MODE2.
215 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
216 for any hard reg, then this must be 0 for correct output. */
217 #define MODES_TIEABLE_P(MODE1, MODE2) 1
218
219 /* Specify the registers used for certain standard purposes.
220 The values of these macros are register numbers. */
221
222 /* 1750A pc isn't overloaded on a register. */
223 /* #define PC_REGNUM */
224
225 /* Register to use for pushing function arguments. */
226 #define STACK_POINTER_REGNUM 15
227
228 /* Base register for access to local variables of the function. */
229 #define FRAME_POINTER_REGNUM 14
230
231 /* Value should be nonzero if functions must have frame pointers.
232 Zero means the frame pointer need not be set up (and parms
233 may be accessed via the stack pointer) in functions that seem suitable.
234 This is computed in `reload', in reload1.c. */
235 #define FRAME_POINTER_REQUIRED 1
236
237 /* Base register for access to arguments of the function. */
238 #define ARG_POINTER_REGNUM 14
239
240 /* Define this if successive args to a function occupy decreasing addresses
241 on the stack.
242 #define ARGS_GROW_DOWNWARD
243 */
244
245 /* Register in which static-chain is passed to a function. */
246 #define STATIC_CHAIN_REGNUM 13
247
248 /* Register in which address to store a structure value
249 is passed to a function. */
250 #define STRUCT_VALUE_REGNUM 12
251
252 /* Define this to be 1 if all structure return values must be in memory. */
253 #define DEFAUT_PCC_STRUCT_RETURN 0
254
255 /*****************************************************************************/
256
257 /* Define the classes of registers for register constraints in the
258 machine description. Also define ranges of constants.
259
260 One of the classes must always be named ALL_REGS and include all hard regs.
261 If there is more than one class, another class must be named NO_REGS
262 and contain no registers.
263
264 The name GENERAL_REGS must be the name of a class (or an alias for
265 another name such as ALL_REGS). This is the class of registers
266 that is allowed by "g" or "r" in a register constraint.
267 Also, registers outside this class are allocated only when
268 instructions express preferences for them.
269
270 The classes must be numbered in nondecreasing order; that is,
271 a larger-numbered class must never be contained completely
272 in a smaller-numbered class.
273
274 For any two classes, it is very desirable that there be another
275 class that represents their union. */
276
277 /* 1750 note: The names (BASE_REGS/INDEX_REGS) are used in their *gcc sense*
278 (i.e. *opposite* to the MIL-STD-1750A defined meanings). This means that
279 R1..R15 are called "base" regs and R12..R15 are "index" regs.
280 Index reg mode (in the gcc sense) is not yet implemented (these are the
281 1750 "Base with Index Reg" instructions, LBX etc. See 1750.md)
282
283 Here's an example to drive this point home: in "LBX B12,R5"
284 B12 shall be called the "index" reg and R5 shall be the "base" reg.
285 This naming inversion is due to the GCC defined capabilities of
286 "Base" vs. "Index" regs. */
287
288 enum reg_class { NO_REGS, INDEX_REGS, BASE_REGS, ALL_REGS, LIM_REG_CLASSES };
289
290 #define N_REG_CLASSES (int) LIM_REG_CLASSES
291
292 /* Since GENERAL_REGS is the same class as ALL_REGS,
293 don't give it a different class number; just make it an alias. */
294 #define GENERAL_REGS ALL_REGS
295
296 /* Give names of register classes as strings for dump file. */
297
298 #define REG_CLASS_NAMES \
299 { "NO_REGS", "INDEX_REGS", "BASE_REGS", "ALL_REGS" }
300
301 /* Define which registers fit in which classes.
302 This is an initializer for a vector of HARD_REG_SET
303 of length N_REG_CLASSES.
304 1750 "index" (remember, in the *GCC* sense!) regs are R12 through R15.
305 The only 1750 register not usable as BASE_REG is R0. */
306
307 #define REG_CLASS_CONTENTS {0, 0xf000, 0xfffe, 0xffff}
308
309 /* The same information, inverted:
310 Return the class number of the smallest class containing
311 reg number REGNO. This could be a conditional expression
312 or could index an array. */
313 #define REGNO_REG_CLASS(REGNO) \
314 ((REGNO) >= 12 ? INDEX_REGS : (REGNO) > 0 ? BASE_REGS : ALL_REGS)
315
316 /* The class value for index registers, and the one for base regs. */
317
318 #define BASE_REG_CLASS BASE_REGS
319 #define INDEX_REG_CLASS INDEX_REGS
320
321 /* Get reg_class from a letter such as appears in the machine description.
322 For the 1750, we have 'b' for gcc Base regs and 'x' for gcc Index regs. */
323
324 #define REG_CLASS_FROM_LETTER(C) ((C) == 'b' ? BASE_REGS : \
325 (C) == 'x' ? INDEX_REGS : NO_REGS)
326
327 /* The letters I,J,K,.. to P in a register constraint string
328 can be used to stand for particular ranges of immediate operands.
329 This macro defines what the ranges are.
330 C is the letter, and VALUE is a constant value.
331 Return 1 if VALUE is in the range specified by C.
332
333 For the 1750A,
334 `I' is used for ISP mode instructions,
335 `J' is used for ISN mode instructions,
336 `K' is used for the STC instruction's constant range,
337 `L' is used for unsigned 8-bit address displacements in instructions
338 of addressing mode "Base Relative",
339 `M' is for IM mode instructions et al.,
340 `O' is a synonym for (const_int 0). */
341
342 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
343 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 16 : \
344 (C) == 'J' ? (VALUE) < 0 && (VALUE) >= -16 : \
345 (C) == 'K' ? (VALUE) >= 0 && (VALUE) <= 15 : \
346 (C) == 'L' ? (VALUE) >= 0 && (VALUE) <= 0xFF : \
347 (C) == 'M' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
348 (C) == 'O' ? (VALUE) == 0 : 0)
349
350 /* Similar, but for floating constants, and defining letter 'G'.
351 Here VALUE is the CONST_DOUBLE rtx itself. */
352 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
353
354 /* Given an rtx X being reloaded into a reg required to be
355 in class CLASS, return the class of reg to actually use.
356 In general this is just CLASS; but on some machines
357 in some cases it is preferable to use a more restrictive class.
358 For the 1750A, we force an immediate CONST_DOUBLE value to memory. */
359 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
360 (GET_CODE(X) == CONST_DOUBLE ? NO_REGS : CLASS)
361
362 /* Return the maximum number of consecutive registers
363 needed to represent mode MODE in a register of class CLASS.
364 On the 1750A, this is the size of MODE in words,
365 since class doesn't make any difference. */
366 #define CLASS_MAX_NREGS(CLASS,MODE) GET_MODE_SIZE(MODE)
367
368 /*****************************************************************************/
369
370 /* Stack layout; function entry, exit and calling. */
371
372 /* Define this if pushing a word on the stack
373 makes the stack pointer a smaller address. */
374 #define STACK_GROWS_DOWNWARD 1
375
376 /* Define this if the nominal address of the stack frame
377 is at the high-address end of the local variables;
378 goes at a more negative offset in the frame.
379 #define FRAME_GROWS_DOWNWARD
380 */
381
382 /* Offset within stack frame to start allocating local variables at.
383 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
384 first local allocated. Otherwise, it is the offset to the BEGINNING
385 of the first local allocated.
386 */
387 #define STARTING_FRAME_OFFSET 1
388
389 /* This is the default anyway:
390 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) FRAMEADDR
391 */
392
393 /* If we generate an insn to push BYTES bytes,
394 this says how many the stack pointer really advances by.
395 1750 note: what GCC calls a "byte" is really a 16-bit word,
396 because BITS_PER_UNIT is 16. */
397
398 #define PUSH_ROUNDING(BYTES) (BYTES)
399
400 /* Define this macro if functions should assume that stack space has
401 been allocated for arguments even when their values are passed in
402 registers.
403 Size, in bytes, of the area reserved for arguments passed in
404 registers for the function represented by FNDECL.
405 #define REG_PARM_STACK_SPACE(FNDECL) 14 */
406
407 /* Define this if it is the responsibility of the caller to allocate
408 the area reserved for arguments passed in registers.
409 #define OUTGOING_REG_PARM_STACK_SPACE */
410
411 /* Offset of first parameter from the argument pointer register value.
412 1750 note:
413 Parameters appear in reversed order on the frame (so when they are
414 popped, they come off in the normal left-to-right order.)
415 Computed as follows:
416 one word for the caller's (PC+1) (i.e. the return address)
417 plus total size of called function's "auto" variables
418 plus one word for the caller's frame pointer (i.e. the old FP) */
419
420 #define FIRST_PARM_OFFSET(FNDECL) \
421 (1 + get_frame_size() + 1)
422
423 /* Value is 1 if returning from a function call automatically
424 pops the arguments described by the number-of-args field in the call.
425 FUNTYPE is the data type of the function (as a tree),
426 or for a library call it is an identifier node for the subroutine name.
427 */
428
429 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
430
431 /* Define how to find the value returned by a function.
432 VALTYPE is the data type of the value (as a tree).
433 If the precise function being called is known, FUNC is its FUNCTION_DECL;
434 otherwise, FUNC is 0. */
435
436 #define FUNCTION_VALUE(VALTYPE, FUNC) \
437 gen_rtx(REG,TYPE_MODE(VALTYPE),0)
438
439 /* Define how to find the value returned by a library function
440 assuming the value has mode MODE. */
441 /* 1750 note: no libcalls yet */
442
443 #define LIBCALL_VALUE(MODE) printf("LIBCALL_VALUE called!\n"), \
444 gen_rtx(REG,MODE,0)
445
446 /* 1 if N is a possible register number for a function value. */
447
448 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
449
450 /* 1 if the tree TYPE should be returned in memory instead of in regs.
451 #define RETURN_IN_MEMORY(TYPE) \
452 (int_size_in_bytes(TYPE) > 12)
453 */
454
455 /* Define this if PCC uses the nonreentrant convention for returning
456 structure and union values.
457 #define PCC_STATIC_STRUCT_RETURN */
458
459 /* 1 if N is a possible register number for function argument passing. */
460
461 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
462
463 /*****************************************************************************/
464
465 /* Define a data type for recording info about an argument list
466 during the scan of that argument list. This data type should
467 hold all necessary information about the function itself
468 and about the args processed so far, enough to enable macros
469 such as FUNCTION_ARG to determine where the next arg should go.
470
471 For 1750A, this is a single integer, which is a number of words
472 of arguments scanned so far. */
473
474 #define CUMULATIVE_ARGS int
475
476 /* Initialize a variable CUM of type CUMULATIVE_ARGS
477 for a call to a function whose data type is FNTYPE.
478 For a library call, FNTYPE is 0.
479
480 For 1750A, the offset starts at 0. */
481
482 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
483
484 /* Update the data in CUM to advance over an argument
485 of mode MODE and data type TYPE.
486 (TYPE is null for libcalls where that information may not be available.)
487
488 1750 note: "int_size_in_bytes()" returns a unit relative to
489 BITS_PER_UNIT, so in our case not bytes, but 16-bit words. */
490
491 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
492 ((CUM) += (MODE) == BLKmode ? int_size_in_bytes(TYPE) : GET_MODE_SIZE(MODE))
493
494 /* Define where to put the arguments to a function.
495 Value is zero to push the argument on the stack,
496 or a hard register in which to store the argument.
497
498 MODE is the argument's machine mode.
499 TYPE is the data type of the argument (as a tree).
500 This is null for libcalls where that information may
501 not be available.
502 CUM is a variable of type CUMULATIVE_ARGS which gives info about
503 the preceding args and about the function being called.
504 NAMED is nonzero if this argument is a named parameter
505 (otherwise it is an extra parameter matching an ellipsis). */
506
507 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
508 (rtx) function_arg(CUM,MODE,TYPE,NAMED)
509 /*
510 (! MUST_PASS_IN_STACK(MODE,TYPE) && \
511 14 >= (CUM) + \
512 ((MODE)==BLKmode ? int_size_in_bytes(TYPE) : GET_MODE_SIZE (MODE)) \
513 ? gen_rtx (REG, MODE, CUM) \
514 : 0)
515 */
516
517 /* Define the following macro if function calls on the target machine
518 do not preserve any registers; in other words, if `CALL_USED_REGISTERS'
519 has 1 for all registers. This macro enables `-fcaller-saves' by
520 default. Eventually that option will be nabled by default on all
521 machines and both the option and this macro will be eliminated. */
522
523 #define DEFAULT_CALLER_SAVES
524
525
526 /* This macro generates the assembly code for function entry.
527 FILE is a stdio stream to output the code to.
528 SIZE is an int: how many units of temporary storage to allocate.
529 Refer to the array `regs_ever_live' to determine which registers
530 to save; `regs_ever_live[I]' is nonzero if register number I
531 is ever used in the function. This macro is responsible for
532 knowing which registers should not be saved even if used. */
533
534
535 #define FUNCTION_PROLOGUE(FILE, SIZE) { \
536 register int regno, none_used=1; \
537 extern char call_used_regs[]; \
538 fprintf(FILE, "; regs used in this function: "); \
539 for (regno = 0; regno < 15; regno++) \
540 if (regs_ever_live[regno]) { \
541 fprintf(FILE," %s",reg_names[regno]); \
542 none_used = 0; \
543 } \
544 if (none_used) \
545 fprintf(FILE," (none)"); \
546 fprintf(FILE,"\n"); \
547 if (SIZE > 0) \
548 fprintf(FILE,"\t%s\tr15,%d ; reserve local-variable space\n",\
549 (SIZE <= 16 ? "sisp" : "sim"),SIZE); \
550 fprintf(FILE,"\tpshm\tr14,r14 ; push old frame\n"); \
551 fprintf(FILE,"\tlr\tr14,r15 ; set new frame\n"); \
552 program_counter = 0; jmplbl_ndx = -1; \
553 }
554
555 /************* 1750: PROFILER HANDLING NOT YET DONE !!!!!!! *************/
556 /* Output assembler code to FILE to increment profiler label # LABELNO
557 for profiling a function entry. */
558
559 #define FUNCTION_PROFILER(FILE, LABELNO) \
560 fprintf (FILE, "; got into FUNCTION_PROFILER with label # %d\n", (LABELNO))
561
562 /* Output assembler code to FILE to initialize this source file's
563 basic block profiling info, if that has not already been done. */
564 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
565 fprintf (FILE, "; got into FUNCTION_BLOCK_PROFILER with label # %d\n",LABELNO)
566
567 /* Output assembler code to FILE to increment the entry-count for
568 the BLOCKNO'th basic block in this source file. */
569 #define BLOCK_PROFILER(FILE, BLOCKNO) \
570 fprintf (FILE, "; got into BLOCK_PROFILER with block # %d\n",BLOCKNO)
571
572 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
573 the stack pointer does not matter. The value is tested only in
574 functions that have frame pointers.
575 No definition is equivalent to always zero. */
576
577 #define EXIT_IGNORE_STACK 1
578
579 /* This macro generates the assembly code for function exit,
580 on machines that need it. If FUNCTION_EPILOGUE is not defined
581 then individual return instructions are generated for each
582 return statement. Args are same as for FUNCTION_PROLOGUE.
583
584 The function epilogue should not depend on the current stack pointer!
585 It should use the frame pointer only. This is mandatory because
586 of alloca; we also take advantage of it to omit stack adjustments
587 before returning. */
588
589 #define FUNCTION_EPILOGUE(FILE, SIZE) { \
590 if (SIZE > 0) \
591 fprintf(FILE,"\t%s\tr14,%d ; free up local-var space\n", \
592 (SIZE <= 16 ? "aisp" : "aim"),SIZE); \
593 fprintf(FILE,"\tlr\tr15,r14 ; set stack to return addr\n"); \
594 fprintf(FILE,"\tpopm\tr14,r14 ; restore prev. frame ptr\n"); \
595 fprintf(FILE,"\turs\tr15\n"); }
596
597 /* If the memory address ADDR is relative to the frame pointer,
598 correct it to be relative to the stack pointer instead.
599 This is for when we don't use a frame pointer.
600 ADDR should be a variable name. */
601
602 #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
603 fprintf(stderr,"FIX_FRAME_POINTER_ADDRESS called, DEPTH=%d\n"), \
604 DEPTH), abort()
605
606 /* Store in the variable DEPTH the initial difference between the
607 frame pointer reg contents and the stack pointer reg contents,
608 as of the start of the function body. This depends on the layout
609 of the fixed parts of the stack frame and on how registers are saved.
610 */
611 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) DEPTH = 0
612
613 /* 1750: not needed 'cause we have INITIAL_FRAME_POINTER_OFFSET.
614 #define ELIMINABLE_REGS { \
615 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
616 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }, \
617 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM } }
618
619 #define CAN_ELIMINATE(FROM, TO) 1
620
621 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) { OFFSET = 0; }
622 */
623
624
625 /* Output assembler code for a block containing the constant parts
626 of a trampoline, leaving space for the variable parts. */
627
628 #define TRAMPOLINE_TEMPLATE(FILE) fprintf(FILE,"TRAMPOLINE_TEMPLATE called\n")
629
630 /* Length in units of the trampoline for entering a nested function. */
631
632 #define TRAMPOLINE_SIZE 2
633
634 /* Emit RTL insns to initialize the variable parts of a trampoline.
635 FNADDR is an RTX for the address of the function's pure code.
636 CXT is an RTX for the static chain value for the function. */
637
638 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) printf("INITIALIZE_TRAMPO called\n")
639 /* { \
640 emit_move_insn (gen_rtx (MEM, QImode, plus_constant (TRAMP, 1)), CXT); \
641 emit_move_insn (gen_rtx (MEM, QImode, plus_constant (TRAMP, 6)), FNADDR); \
642 } */
643
644
645 /*****************************************************************************/
646
647 /* Addressing modes, and classification of registers for them. */
648
649 /* 1750 doesn't have a lot of auto-incr./decr. - just for the stack ptr. */
650
651 /* #define HAVE_POST_INCREMENT just for R15 (stack pointer) */
652 /* #define HAVE_POST_DECREMENT */
653 /* #define HAVE_PRE_DECREMENT just for R15 (stack pointer) */
654 /* #define HAVE_PRE_INCREMENT */
655
656 /* Macros to check register numbers against specific register classes. */
657
658 /* These assume that REGNO is a hard or pseudo reg number.
659 They give nonzero only if REGNO is a hard reg of the suitable class
660 or a pseudo reg currently allocated to a suitable hard reg.
661 Since they use reg_renumber, they are safe only once reg_renumber
662 has been allocated, which happens in local-alloc.c.
663 1750 note: The words BASE and INDEX are used in their GCC senses:
664 The "Index Registers", R12 through R15, can have an address displacement
665 int the range 0..255 words.
666 */
667
668 #define REGNO_OK_FOR_BASE_P(REGNO) \
669 ((REGNO) > 0 && (REGNO) <= 15 || \
670 reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 15)
671 #define REGNO_OK_FOR_INDEX_P(REGNO) \
672 ((REGNO) >= 12 && (REGNO) <= 15 || \
673 reg_renumber[REGNO] >= 12 && reg_renumber[REGNO] <= 15)
674
675 /* Now macros that check whether X is a register and also,
676 strictly, whether it is in a specified class.
677
678 /* 1 if X is an address register */
679
680 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
681
682 /* Maximum number of registers that can appear in a valid memory address. */
683 #define MAX_REGS_PER_ADDRESS 1
684
685 /* Recognize any constant value that is a valid address. */
686
687 #define CONSTANT_ADDRESS_P(X) CONSTANT_P(X)
688
689 /* Nonzero if the constant value X is a legitimate general operand.
690 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
691
692 #define LEGITIMATE_CONSTANT_P(X) 1
693
694 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
695 and check its validity for a certain class.
696 We have two alternate definitions for each of them.
697 The usual definition accepts all pseudo regs; the other rejects
698 them unless they have been allocated suitable hard regs.
699 The symbol REG_OK_STRICT causes the latter definition to be used.
700
701 Most source files want to accept pseudo regs in the hope that
702 they will get allocated to the class that the insn wants them to be in.
703 Source files for reload pass need to be strict.
704 After reload, it makes no difference, since pseudo regs have
705 been eliminated by then. */
706
707 #ifdef REG_OK_STRICT
708
709 /* Nonzero if X is a hard reg that can be used as an index. */
710 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
711 /* Nonzero if X is a hard reg that can be used as a base reg. */
712 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
713
714 #else
715
716 /* Nonzero if X is a hard reg that can be used as an index
717 or if it is a pseudo reg. */
718 #define REG_OK_FOR_INDEX_P(X) (REGNO (X) >= 12)
719 /* Nonzero if X is a hard reg that can be used as a base reg
720 or if it is a pseudo reg. */
721 #define REG_OK_FOR_BASE_P(X) (REGNO (X) > 0)
722
723 #endif
724
725
726 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
727 that is a valid memory address for an instruction.
728 The MODE argument is the machine mode for the MEM expression
729 that wants to use this address.
730 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.
731
732 1750 note: Currently we don't implement address expressions that use
733 GCC "Index"-class regs. To be expanded to handle the 1750 "Base with Index"
734 instructions (see also MAX_REGS_PER_ADDRESS and others). */
735
736 #define GO_IF_BASED_ADDRESS(X, ADDR) { \
737 if ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P(X))) \
738 goto ADDR; \
739 if (GET_CODE (X) == PLUS) \
740 { register rtx x0 = XEXP(X,0), x1 = XEXP(X,1); \
741 if ((REG_P(x0) && REG_OK_FOR_BASE_P(x0) && CONSTANT_ADDRESS_P(x1)) \
742 || (REG_P(x1) && REG_OK_FOR_BASE_P(x1) && CONSTANT_ADDRESS_P(x0))) \
743 goto ADDR; } }
744
745 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) { \
746 if (CONSTANT_ADDRESS_P(X)) goto ADDR; \
747 GO_IF_BASED_ADDRESS(X,ADDR) }
748
749
750 /* Try machine-dependent ways of modifying an illegitimate address
751 to be legitimate. If we find one, return the new, valid address.
752 This macro is used in only one place: `memory_address' in explow.c.
753
754 OLDX is the address as it was before break_out_memory_refs was called.
755 In some cases it is useful to look at this to decide what needs to be done.
756
757 MODE and WIN are passed so that this macro can use
758 GO_IF_LEGITIMATE_ADDRESS.
759
760 It is always safe for this macro to do nothing. It exists to recognize
761 opportunities to optimize the output. */
762
763 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)
764
765 /* Go to LABEL if ADDR (a legitimate address expression)
766 has an effect that depends on the machine mode it is used for.
767 On the 68000, only predecrement and postincrement address depend thus
768 (the amount of decrement or increment being the length of the operand). */
769 /* 1750: not used. */
770
771 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
772
773 /*****************************************************************************/
774
775 /* Specify the machine mode that this machine uses
776 for the index in the tablejump instruction. */
777 #define CASE_VECTOR_MODE QImode
778
779 /* Define this if the tablejump instruction expects the table
780 to contain offsets from the address of the table.
781 Do not define this if the table should contain absolute addresses. */
782 /* #define CASE_VECTOR_PC_RELATIVE */
783
784 /* Specify the tree operation to be used to convert reals to integers. */
785 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
786
787 /* This is the kind of divide that is easiest to do in the general case. */
788 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
789
790 /* Define this as 1 if `char' should by default be signed; else as 0. */
791 #define DEFAULT_SIGNED_CHAR 0
792
793 /* Max number of bytes we can move from memory to memory
794 in one reasonably fast instruction. */
795 /* (was: "1750: not counting the MOV instruction") */
796 #define MOVE_MAX 16
797
798 /* Define this if zero-extension is slow (more than one real instruction). */
799 /* #define SLOW_ZERO_EXTEND */
800
801 /* Nonzero if access to memory by bytes is slow and undesirable. */
802 #define SLOW_BYTE_ACCESS 0
803
804 /* Define if shifts truncate the shift count
805 which implies one can omit a sign-extension or zero-extension
806 of a shift count. */
807 /* #define SHIFT_COUNT_TRUNCATED 1 */
808
809 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
810 is done just by pretending it is already truncated. */
811 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
812
813 /* We assume that the store-condition-codes instructions store 0 for false
814 and some other value for true. This is the value stored for true. */
815
816 #define STORE_FLAG_VALUE 1
817
818 /* When a prototype says `char' or `short', really pass an `int'.
819 1750: for now, `char' is 16 bits wide anyway.
820 #define PROMOTE_PROTOTYPES */
821
822 /* Specify the machine mode that pointers have.
823 After generation of rtl, the compiler makes no further distinction
824 between pointers and any other objects of this machine mode. */
825 #define Pmode QImode
826
827 /* A function address in a call instruction
828 is a 16-bit address (for indexing purposes) */
829 #define FUNCTION_MODE QImode
830
831 /* Compute the cost of computing a constant rtl expression RTX
832 whose rtx-code is CODE. The body of this macro is a portion
833 of a switch statement. If the code is computed here,
834 return it with a return statement. Otherwise, break from the switch. */
835 /* 1750 note: haven't paid attention to this yet. */
836
837 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
838 case CONST_INT: \
839 if (INTVAL(RTX) >= -16 && INTVAL(RTX) <= 16) return 1; \
840 case CONST: \
841 case LABEL_REF: \
842 case SYMBOL_REF: \
843 return 5; \
844 case CONST_DOUBLE: \
845 return 7;
846
847 #define ADDRESS_COST(ADDRESS) (memop_valid(ADDRESS) ? 3 : 1000)
848
849 /* Tell final.c how to eliminate redundant test instructions. */
850
851 /* Here we define machine-dependent flags and fields in cc_status
852 (see `conditions.h'). */
853 /* MIL-STD-1750: none -- just has the garden variety C,P,Z,N flags. */
854
855 /* Store in cc_status the expressions
856 that the condition codes will describe
857 after execution of an instruction whose pattern is EXP.
858 Do not alter them if the instruction would not alter the cc's.
859 1750: See file out-1750a.c for notice_update_cc(). */
860
861 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP)
862
863 /**********************************************/
864 /* Produce debugging info in the DWARF format
865 #define DWARF_DEBUGGING_INFO
866 */
867
868 /*****************************************************************************/
869
870 /* Control the assembler format that we output. */
871
872 /* Output at beginning of assembler file. */
873
874 #define ASM_FILE_START(FILE) { \
875 char *p, name[40]; \
876 if ((p = (char *)strrchr(main_input_filename,'/')) != NULL ? 1 : \
877 (p = (char *)strrchr(main_input_filename,']')) != NULL) \
878 p++; \
879 else \
880 p = main_input_filename; \
881 strcpy(name,p); \
882 if (p = (char *)strchr(name,'.')) \
883 *p = '\0'; \
884 fprintf(FILE,"\tname %s\n",name); \
885 fprintf(FILE,"\tnolist\n\tinclude \"ms1750.inc\"\n\tlist\n\n"); \
886 fprintf(FILE,"\tglobal\t__main\n\n"); }
887
888 /* Output at end of assembler file.
889 For 1750, we copy the data labels accrued in datalbl[] from the Constants
890 section (Konst) to the Writable-Data section (Static). */
891
892 #define ASM_FILE_END(FILE) \
893 do { \
894 if (datalbl_ndx >= 0) { \
895 int i, cum_size=0; \
896 fprintf(FILE,"\n\tstatic\ninit_srel\n"); \
897 for (i = 0; i <= datalbl_ndx; i++) { \
898 if (datalbl[i].name == NULL) \
899 { \
900 fprintf(stderr, "asm_file_end internal datalbl err\n"); \
901 exit (0); \
902 } \
903 fprintf(FILE,"%s \tblock %d\n", \
904 datalbl[i].name,datalbl[i].size); \
905 cum_size += datalbl[i].size; \
906 } \
907 fprintf(FILE,"\n\tinit\n"); \
908 fprintf(FILE,"\tlim\tr0,init_srel\n"); /* destin. */ \
909 fprintf(FILE,"\tlim\tr1,%d\n",cum_size); /* count */ \
910 fprintf(FILE,"\tlim\tr2,K%s\n",datalbl[0].name); /* source */ \
911 fprintf(FILE,"\tmov\tr0,r2\n"); \
912 fprintf(FILE,"\n\tnormal\n"); \
913 datalbl_ndx = -1; /* reset stuff */ \
914 for (i = 0; i < DATALBL_ARRSIZ; i++) \
915 datalbl[i].size = 0; \
916 } \
917 fprintf(FILE,"\n\tend\n"); \
918 } while (0)
919
920 /* Output to assembler file text saying following lines
921 may contain character constants, extra white space, comments, etc. */
922
923 #define ASM_APP_ON "\n\tif 0\n; by ASM_APP_ON\n"
924
925 /* Output to assembler file text saying following lines
926 no longer contain unusual constructs. */
927
928 #define ASM_APP_OFF "\n\tendif\n"
929
930
931 #define EXTRA_SECTIONS in_readonly_data
932
933 #define EXTRA_SECTION_FUNCTIONS \
934 void const_section() \
935 { \
936 fprintf(asm_out_file,"\tkonst\n"); \
937 current_section = Konst; \
938 } \
939 check_section(sect) \
940 enum section sect; \
941 { \
942 if (current_section != sect) { \
943 fprintf(asm_out_file,"\t%s\n",sectname[(int)sect]); \
944 current_section = sect; \
945 } \
946 switch (sect) { \
947 case Init: \
948 case Normal: \
949 in_section = in_text; \
950 break; \
951 case Static: \
952 in_section = in_data; \
953 break; \
954 case Konst: \
955 in_section = in_readonly_data; \
956 break; \
957 } \
958 }
959
960
961 /* Function that switches to the read-only data section (optional) */
962 #define READONLY_DATA_SECTION const_section
963
964 /* Output before program init section */
965 #define INIT_SECTION_ASM_OP "\n\tinit ; init_section\n"
966
967 /* Output before program text section */
968 #define TEXT_SECTION_ASM_OP "\n\tnormal ; text_section\n"
969
970 /* Output before writable data. */
971 #define DATA_SECTION_ASM_OP "\n\tstatic ; data_section\n"
972
973 /* How to refer to registers in assembler output.
974 This sequence is indexed by compiler's hard-register-number (see above). */
975
976 #define REGISTER_NAMES \
977 { "0", "1", "2", "3", "4", "5", "6", "7", \
978 "8", "9","10","11","12","13","14","15" }
979
980 /* How to renumber registers for dbx and gdb. */
981
982 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
983
984 /****************** Assembler output formatting **********************/
985
986 #define ASM_IDENTIFY_GCC(FILE) fputs ("; gcc2_compiled:\n", FILE)
987
988 #define ASM_COMMENT_START ";"
989
990 #define ASM_OUTPUT_FUNNAM(FILE,NAME) \
991 fprintf(FILE,"%s\n",NAME)
992
993 #define ASM_OUTPUT_OPCODE(FILE,PTR) do { \
994 while (*(PTR) != '\0' && *(PTR) != ' ') { \
995 putc (*(PTR), FILE); \
996 (PTR)++; \
997 } \
998 while (*(PTR) == ' ') \
999 (PTR)++; \
1000 putc ('\t', FILE); \
1001 program_counter += 2; \
1002 } while (0)
1003
1004 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1005 fprintf(FILE,"%s\n",NAME)
1006
1007 /* This is how to output the definition of a user-level label named NAME,
1008 such as the label on a static function or variable NAME. */
1009 /* 1750 note: Labels are prefixed with a 'K'. This is because handling
1010 has been changed for labels to be output in the "Constants" section
1011 (named "Konst"), and special initialization code takes care of copying
1012 the Const-section data into the writable data section (named "Static").
1013 In the Static section we therefore have the true label names (i.e.
1014 not prefixed with 'K'). */
1015
1016 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1017 do { if (NAME[0] == '.') { \
1018 fprintf(stderr,"Oops! label %s can't begin with '.'\n",NAME); \
1019 abort(); \
1020 } \
1021 else { \
1022 check_section(Konst); \
1023 fprintf(FILE,"K%s\n",NAME); \
1024 datalbl[++datalbl_ndx].name = (char *)strdup (NAME); \
1025 label_pending = 1; \
1026 } \
1027 } while (0)
1028
1029
1030 /* This is how to output a command to make the user-level label named NAME
1031 defined for reference from other files. */
1032
1033 #define ASM_GLOBALIZE_LABEL(FILE,NAME) do { \
1034 fprintf (FILE, "\tglobal %s\t; export\n", NAME); \
1035 } while (0)
1036
1037 /* This is how to output a reference to a user-level label named NAME.
1038 `assemble_name' uses this. */
1039
1040 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1041 fprintf (FILE, "%s", NAME)
1042
1043 /* This is how to output an internal numbered label where
1044 PREFIX is the class of label and NUM is the number within the class. */
1045
1046 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1047 do { \
1048 if (strcmp(PREFIX,"LC") == 0) { \
1049 label_pending = 1; \
1050 datalbl[++datalbl_ndx].name = (char *) malloc (9); \
1051 sprintf(datalbl[datalbl_ndx].name,"LC%d",NUM); \
1052 check_section(Konst); \
1053 fprintf(FILE,"K%s%d\n",PREFIX,NUM); \
1054 } \
1055 else if (find_jmplbl(NUM) < 0) { \
1056 jmplbl[++jmplbl_ndx].num = NUM; \
1057 jmplbl[jmplbl_ndx].pc = program_counter; \
1058 fprintf(FILE, "%s%d\n", PREFIX, NUM); \
1059 } \
1060 } while (0)
1061
1062
1063 /* This is how to store into the string LABEL
1064 the symbol_ref name of an internal numbered label where
1065 PREFIX is the class of label and NUM is the number within the class.
1066 This is suitable for output with `assemble_name'. */
1067
1068 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1069 sprintf (LABEL, "%s%d", PREFIX, NUM)
1070
1071 /* This is how to output an assembler line defining a 1750A `float'
1072 constant. */
1073
1074 #define ASM_OUTPUT_SHORT_FLOAT(FILE,VALUE) \
1075 do { \
1076 if (label_pending) \
1077 label_pending = 0; \
1078 else \
1079 datalbl[++datalbl_ndx].name = float_label('D',VALUE); \
1080 sprintf (datalbl[datalbl_ndx].value, "%lf", (double) VALUE); \
1081 datalbl[datalbl_ndx].size = 2; \
1082 fprintf (FILE, "\tdataf\t%lf\n",VALUE); \
1083 } while(0)
1084
1085 /* This is how to output an assembler line defining a 1750A `double'
1086 constant. */
1087
1088 #define ASM_OUTPUT_THREE_QUARTER_FLOAT(FILE,VALUE) \
1089 do { \
1090 if (label_pending) \
1091 label_pending = 0; \
1092 else \
1093 datalbl[++datalbl_ndx].name = float_label('E',VALUE); \
1094 sprintf (datalbl[datalbl_ndx].value, "%lf", VALUE); \
1095 datalbl[datalbl_ndx].size = 3; \
1096 fprintf(FILE,"\tdataef\t%lf\n",VALUE); \
1097 } while (0)
1098
1099 /* This is how to output an assembler line defining a string constant. */
1100
1101 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) do { \
1102 int i; \
1103 if (! label_pending) \
1104 fprintf(FILE,";in ASM_OUTPUT_ASCII without label_pending\n");\
1105 else { \
1106 label_pending = 0; \
1107 datalbl[datalbl_ndx].size = LEN; \
1108 } \
1109 for (i = 0; i < LEN; i++) \
1110 if (PTR[i] >= 32 && PTR[i] < 127) \
1111 fprintf(FILE,"\tdata\t%d\t; '%c'\n",PTR[i],PTR[i]); \
1112 else \
1113 fprintf(FILE,"\tdata\t%d\t; (ascii)\n",PTR[i]); \
1114 } while (0)
1115
1116 /* This is how to output an assembler line defining an `int' constant. */
1117
1118 #define ASM_OUTPUT_INT(FILE,VALUE) do { \
1119 if (! label_pending) \
1120 fprintf(FILE,";in ASM_OUTPUT_INT without label_pending\n"); \
1121 else { \
1122 label_pending = 0; \
1123 datalbl[datalbl_ndx].size = 1; \
1124 } \
1125 fprintf(FILE, "\tdata\t"); output_addr_const(FILE,VALUE); \
1126 fprintf(FILE, "\n"); } while (0)
1127
1128 /* This is how to output an assembler line defining a `long int' constant. */
1129
1130 #define ASM_OUTPUT_LONG_INT(FILE,VALUE) do { \
1131 if (! label_pending) \
1132 fprintf(FILE,";in ASM_OUTPUT_LONG_INT without label_pending\n");\
1133 else { \
1134 label_pending = 0; \
1135 datalbl[datalbl_ndx].size = 2; \
1136 } \
1137 fprintf(FILE, "\tdatal\t"); output_addr_const(FILE,VALUE); \
1138 fprintf(FILE, "\n"); } while (0)
1139
1140 /* Likewise for `short' and `char' constants. */
1141
1142 #define ASM_OUTPUT_SHORT(FILE,VALUE) ASM_OUTPUT_INT(FILE,VALUE)
1143
1144 /* For 1750, we treat char same as word. Tektronix 1750
1145 Assembler does a better (packing) job with strings. */
1146 #define ASM_OUTPUT_CHAR(FILE,VALUE) ASM_OUTPUT_INT(FILE,VALUE)
1147
1148 /* This is how to output an assembler line for a numeric constant byte. */
1149 /* 1750: For the time being, treating this same as word. Tektronix 1750
1150 Assembler does a better (packing) job with strings. */
1151 #define ASM_OUTPUT_BYTE(FILE,VALUE) ASM_OUTPUT_INT(FILE,VALUE)
1152
1153 /* This is how to output an insn to push a register on the stack.
1154 It need not be very fast code. */
1155
1156 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1157 fprintf (FILE, "\tPSHM R%s,R%s\n", reg_names[REGNO])
1158
1159 /* This is how to output an insn to pop a register from the stack.
1160 It need not be very fast code. */
1161
1162 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1163 fprintf (FILE, "\tPOPM R%s,R%s\n", reg_names[REGNO])
1164
1165 /* This is how to output an element of a case-vector that is absolute. */
1166
1167 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1168 fprintf (FILE, "\tdata\tL%d ;addr_vec_elt\n", VALUE)
1169
1170 /* This is how to output an element of a case-vector that is relative. */
1171
1172 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1173 fprintf (FILE, "\tdata\tL%d-L%d ;addr_diff_elt\n", VALUE,REL)
1174
1175 /* This is how to output an assembler line
1176 that says to advance the location counter
1177 to a multiple of 2**LOG bytes. */
1178
1179 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1180 fprintf(FILE,"; in ASM_OUTPUT_ALIGN: pwr_of_2_bytcnt=%d\n",LOG)
1181
1182 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1183 fprintf(FILE,"; in ASM_OUTPUT_SKIP: size=%d\n",SIZE)
1184
1185 /* This says how to output an assembler line
1186 to define a global common symbol. */
1187
1188 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) do { \
1189 fprintf (FILE, "\tcommon %s,%d\n", NAME, SIZE); \
1190 } while (0)
1191
1192 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) do { \
1193 fprintf (FILE, "\tglobal %s\t; import\n", NAME); \
1194 } while (0)
1195
1196 /* This says how to output an assembler line
1197 to define a local common symbol. */
1198
1199 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) do { \
1200 check_section (Static); \
1201 fprintf(FILE,"%s \tblock %d\t; local common\n",NAME,SIZE); \
1202 } while (0)
1203
1204 /* Store in OUTPUT a string (made with alloca) containing
1205 an assembler-name for a local static variable named NAME.
1206 LABELNO is an integer which is different for each call. */
1207
1208 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1209 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1210 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1211
1212 #define ASM_OUTPUT_CONSTRUCTOR(FILE, NAME) do { \
1213 fprintf(FILE, "\tinit\n\t"); assemble_name(NAME); \
1214 fprintf(FILE," ;constructor"); } while (0)
1215
1216 #define ASM_OUTPUT_DESTRUCTOR(FILE, NAME) do { \
1217 fprintf(FILE, "\tinit\n\t"); assemble_name(NAME); \
1218 fprintf(FILE," ;destructor"); } while (0)
1219
1220 /* Define the parentheses used to group arithmetic operations
1221 in assembler code. */
1222
1223 #define ASM_OPEN_PAREN "("
1224 #define ASM_CLOSE_PAREN ")"
1225
1226 /* Define results of standard character escape sequences. */
1227 #define TARGET_BELL 007
1228 #define TARGET_BS 010
1229 #define TARGET_TAB 011
1230 #define TARGET_NEWLINE 012
1231 #define TARGET_VT 013
1232 #define TARGET_FF 014
1233 #define TARGET_CR 015
1234
1235
1236 /* Print operand X (an rtx) in assembler syntax to file FILE.
1237 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1238 For `%' followed by punctuation, CODE is the punctuation and X is null.
1239 1750 note: there are three special CODE characters:
1240 'D', 'E': print a reference to a floating point constant (D=double,
1241 E=single precision) label name
1242 'F': print a label defining a floating-point constant value
1243 'J': print the absolute value of a negative INT_CONST
1244 (this is used in LISN/CISN/MISN/SISP and others) */
1245
1246 /* 1750A: see file aux-output.c */
1247 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1248 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE,ADDR)
1249
This page took 0.08873 seconds and 4 git commands to generate.