]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
bt-load.c (link_btr_uses): Fix uninitialised warnings.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
99 #include "timevar.h"
100 #include "tree-pass.h"
101
102 /* Number of attempts to combine instructions in this function. */
103
104 static int combine_attempts;
105
106 /* Number of attempts that got as far as substitution in this function. */
107
108 static int combine_merges;
109
110 /* Number of instructions combined with added SETs in this function. */
111
112 static int combine_extras;
113
114 /* Number of instructions combined in this function. */
115
116 static int combine_successes;
117
118 /* Totals over entire compilation. */
119
120 static int total_attempts, total_merges, total_extras, total_successes;
121
122 \f
123 /* Vector mapping INSN_UIDs to cuids.
124 The cuids are like uids but increase monotonically always.
125 Combine always uses cuids so that it can compare them.
126 But actually renumbering the uids, which we used to do,
127 proves to be a bad idea because it makes it hard to compare
128 the dumps produced by earlier passes with those from later passes. */
129
130 static int *uid_cuid;
131 static int max_uid_cuid;
132
133 /* Get the cuid of an insn. */
134
135 #define INSN_CUID(INSN) \
136 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
137
138 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
139 BITS_PER_WORD would invoke undefined behavior. Work around it. */
140
141 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
142 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
143
144 /* Maximum register number, which is the size of the tables below. */
145
146 static unsigned int combine_max_regno;
147
148 struct reg_stat {
149 /* Record last point of death of (hard or pseudo) register n. */
150 rtx last_death;
151
152 /* Record last point of modification of (hard or pseudo) register n. */
153 rtx last_set;
154
155 /* The next group of fields allows the recording of the last value assigned
156 to (hard or pseudo) register n. We use this information to see if an
157 operation being processed is redundant given a prior operation performed
158 on the register. For example, an `and' with a constant is redundant if
159 all the zero bits are already known to be turned off.
160
161 We use an approach similar to that used by cse, but change it in the
162 following ways:
163
164 (1) We do not want to reinitialize at each label.
165 (2) It is useful, but not critical, to know the actual value assigned
166 to a register. Often just its form is helpful.
167
168 Therefore, we maintain the following fields:
169
170 last_set_value the last value assigned
171 last_set_label records the value of label_tick when the
172 register was assigned
173 last_set_table_tick records the value of label_tick when a
174 value using the register is assigned
175 last_set_invalid set to nonzero when it is not valid
176 to use the value of this register in some
177 register's value
178
179 To understand the usage of these tables, it is important to understand
180 the distinction between the value in last_set_value being valid and
181 the register being validly contained in some other expression in the
182 table.
183
184 (The next two parameters are out of date).
185
186 reg_stat[i].last_set_value is valid if it is nonzero, and either
187 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188
189 Register I may validly appear in any expression returned for the value
190 of another register if reg_n_sets[i] is 1. It may also appear in the
191 value for register J if reg_stat[j].last_set_invalid is zero, or
192 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193
194 If an expression is found in the table containing a register which may
195 not validly appear in an expression, the register is replaced by
196 something that won't match, (clobber (const_int 0)). */
197
198 /* Record last value assigned to (hard or pseudo) register n. */
199
200 rtx last_set_value;
201
202 /* Record the value of label_tick when an expression involving register n
203 is placed in last_set_value. */
204
205 int last_set_table_tick;
206
207 /* Record the value of label_tick when the value for register n is placed in
208 last_set_value. */
209
210 int last_set_label;
211
212 /* These fields are maintained in parallel with last_set_value and are
213 used to store the mode in which the register was last set, the bits
214 that were known to be zero when it was last set, and the number of
215 sign bits copies it was known to have when it was last set. */
216
217 unsigned HOST_WIDE_INT last_set_nonzero_bits;
218 char last_set_sign_bit_copies;
219 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
220
221 /* Set nonzero if references to register n in expressions should not be
222 used. last_set_invalid is set nonzero when this register is being
223 assigned to and last_set_table_tick == label_tick. */
224
225 char last_set_invalid;
226
227 /* Some registers that are set more than once and used in more than one
228 basic block are nevertheless always set in similar ways. For example,
229 a QImode register may be loaded from memory in two places on a machine
230 where byte loads zero extend.
231
232 We record in the following fields if a register has some leading bits
233 that are always equal to the sign bit, and what we know about the
234 nonzero bits of a register, specifically which bits are known to be
235 zero.
236
237 If an entry is zero, it means that we don't know anything special. */
238
239 unsigned char sign_bit_copies;
240
241 unsigned HOST_WIDE_INT nonzero_bits;
242 };
243
244 static struct reg_stat *reg_stat;
245
246 /* Record the cuid of the last insn that invalidated memory
247 (anything that writes memory, and subroutine calls, but not pushes). */
248
249 static int mem_last_set;
250
251 /* Record the cuid of the last CALL_INSN
252 so we can tell whether a potential combination crosses any calls. */
253
254 static int last_call_cuid;
255
256 /* When `subst' is called, this is the insn that is being modified
257 (by combining in a previous insn). The PATTERN of this insn
258 is still the old pattern partially modified and it should not be
259 looked at, but this may be used to examine the successors of the insn
260 to judge whether a simplification is valid. */
261
262 static rtx subst_insn;
263
264 /* This is the lowest CUID that `subst' is currently dealing with.
265 get_last_value will not return a value if the register was set at or
266 after this CUID. If not for this mechanism, we could get confused if
267 I2 or I1 in try_combine were an insn that used the old value of a register
268 to obtain a new value. In that case, we might erroneously get the
269 new value of the register when we wanted the old one. */
270
271 static int subst_low_cuid;
272
273 /* This contains any hard registers that are used in newpat; reg_dead_at_p
274 must consider all these registers to be always live. */
275
276 static HARD_REG_SET newpat_used_regs;
277
278 /* This is an insn to which a LOG_LINKS entry has been added. If this
279 insn is the earlier than I2 or I3, combine should rescan starting at
280 that location. */
281
282 static rtx added_links_insn;
283
284 /* Basic block in which we are performing combines. */
285 static basic_block this_basic_block;
286
287 /* A bitmap indicating which blocks had registers go dead at entry.
288 After combine, we'll need to re-do global life analysis with
289 those blocks as starting points. */
290 static sbitmap refresh_blocks;
291 \f
292 /* The following array records the insn_rtx_cost for every insn
293 in the instruction stream. */
294
295 static int *uid_insn_cost;
296
297 /* Length of the currently allocated uid_insn_cost array. */
298
299 static int last_insn_cost;
300
301 /* Incremented for each label. */
302
303 static int label_tick;
304
305 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
306 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
307
308 static enum machine_mode nonzero_bits_mode;
309
310 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
311 be safely used. It is zero while computing them and after combine has
312 completed. This former test prevents propagating values based on
313 previously set values, which can be incorrect if a variable is modified
314 in a loop. */
315
316 static int nonzero_sign_valid;
317
318 \f
319 /* Record one modification to rtl structure
320 to be undone by storing old_contents into *where.
321 is_int is 1 if the contents are an int. */
322
323 struct undo
324 {
325 struct undo *next;
326 int is_int;
327 union {rtx r; int i;} old_contents;
328 union {rtx *r; int *i;} where;
329 };
330
331 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
332 num_undo says how many are currently recorded.
333
334 other_insn is nonzero if we have modified some other insn in the process
335 of working on subst_insn. It must be verified too. */
336
337 struct undobuf
338 {
339 struct undo *undos;
340 struct undo *frees;
341 rtx other_insn;
342 };
343
344 static struct undobuf undobuf;
345
346 /* Number of times the pseudo being substituted for
347 was found and replaced. */
348
349 static int n_occurrences;
350
351 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
352 enum machine_mode,
353 unsigned HOST_WIDE_INT,
354 unsigned HOST_WIDE_INT *);
355 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned int, unsigned int *);
358 static void do_SUBST (rtx *, rtx);
359 static void do_SUBST_INT (int *, int);
360 static void init_reg_last (void);
361 static void setup_incoming_promotions (void);
362 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
363 static int cant_combine_insn_p (rtx);
364 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
365 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
366 static int contains_muldiv (rtx);
367 static rtx try_combine (rtx, rtx, rtx, int *);
368 static void undo_all (void);
369 static void undo_commit (void);
370 static rtx *find_split_point (rtx *, rtx);
371 static rtx subst (rtx, rtx, rtx, int, int);
372 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
373 static rtx simplify_if_then_else (rtx);
374 static rtx simplify_set (rtx);
375 static rtx simplify_logical (rtx);
376 static rtx expand_compound_operation (rtx);
377 static rtx expand_field_assignment (rtx);
378 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
379 rtx, unsigned HOST_WIDE_INT, int, int, int);
380 static rtx extract_left_shift (rtx, int);
381 static rtx make_compound_operation (rtx, enum rtx_code);
382 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
383 unsigned HOST_WIDE_INT *);
384 static rtx force_to_mode (rtx, enum machine_mode,
385 unsigned HOST_WIDE_INT, rtx, int);
386 static rtx if_then_else_cond (rtx, rtx *, rtx *);
387 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
388 static int rtx_equal_for_field_assignment_p (rtx, rtx);
389 static rtx make_field_assignment (rtx);
390 static rtx apply_distributive_law (rtx);
391 static rtx distribute_and_simplify_rtx (rtx, int);
392 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
393 unsigned HOST_WIDE_INT);
394 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
395 HOST_WIDE_INT, enum machine_mode, int *);
396 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
397 int);
398 static int recog_for_combine (rtx *, rtx, rtx *);
399 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
400 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
401 static void update_table_tick (rtx);
402 static void record_value_for_reg (rtx, rtx, rtx);
403 static void check_promoted_subreg (rtx, rtx);
404 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
405 static void record_dead_and_set_regs (rtx);
406 static int get_last_value_validate (rtx *, rtx, int, int);
407 static rtx get_last_value (rtx);
408 static int use_crosses_set_p (rtx, int);
409 static void reg_dead_at_p_1 (rtx, rtx, void *);
410 static int reg_dead_at_p (rtx, rtx);
411 static void move_deaths (rtx, rtx, int, rtx, rtx *);
412 static int reg_bitfield_target_p (rtx, rtx);
413 static void distribute_notes (rtx, rtx, rtx, rtx);
414 static void distribute_links (rtx);
415 static void mark_used_regs_combine (rtx);
416 static int insn_cuid (rtx);
417 static void record_promoted_value (rtx, rtx);
418 static int unmentioned_reg_p_1 (rtx *, void *);
419 static bool unmentioned_reg_p (rtx, rtx);
420 \f
421
422 /* It is not safe to use ordinary gen_lowpart in combine.
423 See comments in gen_lowpart_for_combine. */
424 #undef RTL_HOOKS_GEN_LOWPART
425 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
426
427 /* Our implementation of gen_lowpart never emits a new pseudo. */
428 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
429 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
430
431 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
432 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
433
434 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
435 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
436
437 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
438
439 \f
440 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
441 insn. The substitution can be undone by undo_all. If INTO is already
442 set to NEWVAL, do not record this change. Because computing NEWVAL might
443 also call SUBST, we have to compute it before we put anything into
444 the undo table. */
445
446 static void
447 do_SUBST (rtx *into, rtx newval)
448 {
449 struct undo *buf;
450 rtx oldval = *into;
451
452 if (oldval == newval)
453 return;
454
455 /* We'd like to catch as many invalid transformations here as
456 possible. Unfortunately, there are way too many mode changes
457 that are perfectly valid, so we'd waste too much effort for
458 little gain doing the checks here. Focus on catching invalid
459 transformations involving integer constants. */
460 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
461 && GET_CODE (newval) == CONST_INT)
462 {
463 /* Sanity check that we're replacing oldval with a CONST_INT
464 that is a valid sign-extension for the original mode. */
465 gcc_assert (INTVAL (newval)
466 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
467
468 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
469 CONST_INT is not valid, because after the replacement, the
470 original mode would be gone. Unfortunately, we can't tell
471 when do_SUBST is called to replace the operand thereof, so we
472 perform this test on oldval instead, checking whether an
473 invalid replacement took place before we got here. */
474 gcc_assert (!(GET_CODE (oldval) == SUBREG
475 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
476 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
477 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
478 }
479
480 if (undobuf.frees)
481 buf = undobuf.frees, undobuf.frees = buf->next;
482 else
483 buf = xmalloc (sizeof (struct undo));
484
485 buf->is_int = 0;
486 buf->where.r = into;
487 buf->old_contents.r = oldval;
488 *into = newval;
489
490 buf->next = undobuf.undos, undobuf.undos = buf;
491 }
492
493 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
494
495 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
496 for the value of a HOST_WIDE_INT value (including CONST_INT) is
497 not safe. */
498
499 static void
500 do_SUBST_INT (int *into, int newval)
501 {
502 struct undo *buf;
503 int oldval = *into;
504
505 if (oldval == newval)
506 return;
507
508 if (undobuf.frees)
509 buf = undobuf.frees, undobuf.frees = buf->next;
510 else
511 buf = xmalloc (sizeof (struct undo));
512
513 buf->is_int = 1;
514 buf->where.i = into;
515 buf->old_contents.i = oldval;
516 *into = newval;
517
518 buf->next = undobuf.undos, undobuf.undos = buf;
519 }
520
521 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
522 \f
523 /* Subroutine of try_combine. Determine whether the combine replacement
524 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
525 that the original instruction sequence I1, I2 and I3. Note that I1
526 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
527 costs of all instructions can be estimated, and the replacements are
528 more expensive than the original sequence. */
529
530 static bool
531 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
532 {
533 int i1_cost, i2_cost, i3_cost;
534 int new_i2_cost, new_i3_cost;
535 int old_cost, new_cost;
536
537 /* Lookup the original insn_rtx_costs. */
538 i2_cost = INSN_UID (i2) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i2)] : 0;
540 i3_cost = INSN_UID (i3) <= last_insn_cost
541 ? uid_insn_cost[INSN_UID (i3)] : 0;
542
543 if (i1)
544 {
545 i1_cost = INSN_UID (i1) <= last_insn_cost
546 ? uid_insn_cost[INSN_UID (i1)] : 0;
547 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
548 ? i1_cost + i2_cost + i3_cost : 0;
549 }
550 else
551 {
552 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
553 i1_cost = 0;
554 }
555
556 /* Calculate the replacement insn_rtx_costs. */
557 new_i3_cost = insn_rtx_cost (newpat);
558 if (newi2pat)
559 {
560 new_i2_cost = insn_rtx_cost (newi2pat);
561 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
562 ? new_i2_cost + new_i3_cost : 0;
563 }
564 else
565 {
566 new_cost = new_i3_cost;
567 new_i2_cost = 0;
568 }
569
570 if (undobuf.other_insn)
571 {
572 int old_other_cost, new_other_cost;
573
574 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
575 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
576 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
577 if (old_other_cost > 0 && new_other_cost > 0)
578 {
579 old_cost += old_other_cost;
580 new_cost += new_other_cost;
581 }
582 else
583 old_cost = 0;
584 }
585
586 /* Disallow this recombination if both new_cost and old_cost are
587 greater than zero, and new_cost is greater than old cost. */
588 if (old_cost > 0
589 && new_cost > old_cost)
590 {
591 if (dump_file)
592 {
593 if (i1)
594 {
595 fprintf (dump_file,
596 "rejecting combination of insns %d, %d and %d\n",
597 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
598 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
599 i1_cost, i2_cost, i3_cost, old_cost);
600 }
601 else
602 {
603 fprintf (dump_file,
604 "rejecting combination of insns %d and %d\n",
605 INSN_UID (i2), INSN_UID (i3));
606 fprintf (dump_file, "original costs %d + %d = %d\n",
607 i2_cost, i3_cost, old_cost);
608 }
609
610 if (newi2pat)
611 {
612 fprintf (dump_file, "replacement costs %d + %d = %d\n",
613 new_i2_cost, new_i3_cost, new_cost);
614 }
615 else
616 fprintf (dump_file, "replacement cost %d\n", new_cost);
617 }
618
619 return false;
620 }
621
622 /* Update the uid_insn_cost array with the replacement costs. */
623 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
624 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
625 if (i1)
626 uid_insn_cost[INSN_UID (i1)] = 0;
627
628 return true;
629 }
630 \f
631 /* Main entry point for combiner. F is the first insn of the function.
632 NREGS is the first unused pseudo-reg number.
633
634 Return nonzero if the combiner has turned an indirect jump
635 instruction into a direct jump. */
636 int
637 combine_instructions (rtx f, unsigned int nregs)
638 {
639 rtx insn, next;
640 #ifdef HAVE_cc0
641 rtx prev;
642 #endif
643 int i;
644 unsigned int j = 0;
645 rtx links, nextlinks;
646 sbitmap_iterator sbi;
647
648 int new_direct_jump_p = 0;
649
650 combine_attempts = 0;
651 combine_merges = 0;
652 combine_extras = 0;
653 combine_successes = 0;
654
655 combine_max_regno = nregs;
656
657 rtl_hooks = combine_rtl_hooks;
658
659 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
660
661 init_recog_no_volatile ();
662
663 /* Compute maximum uid value so uid_cuid can be allocated. */
664
665 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
666 if (INSN_UID (insn) > i)
667 i = INSN_UID (insn);
668
669 uid_cuid = xmalloc ((i + 1) * sizeof (int));
670 max_uid_cuid = i;
671
672 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
673
674 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
675 problems when, for example, we have j <<= 1 in a loop. */
676
677 nonzero_sign_valid = 0;
678
679 /* Compute the mapping from uids to cuids.
680 Cuids are numbers assigned to insns, like uids,
681 except that cuids increase monotonically through the code.
682
683 Scan all SETs and see if we can deduce anything about what
684 bits are known to be zero for some registers and how many copies
685 of the sign bit are known to exist for those registers.
686
687 Also set any known values so that we can use it while searching
688 for what bits are known to be set. */
689
690 label_tick = 1;
691
692 setup_incoming_promotions ();
693
694 refresh_blocks = sbitmap_alloc (last_basic_block);
695 sbitmap_zero (refresh_blocks);
696
697 /* Allocate array of current insn_rtx_costs. */
698 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
699 last_insn_cost = max_uid_cuid;
700
701 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
702 {
703 uid_cuid[INSN_UID (insn)] = ++i;
704 subst_low_cuid = i;
705 subst_insn = insn;
706
707 if (INSN_P (insn))
708 {
709 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
710 NULL);
711 record_dead_and_set_regs (insn);
712
713 #ifdef AUTO_INC_DEC
714 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
715 if (REG_NOTE_KIND (links) == REG_INC)
716 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
717 NULL);
718 #endif
719
720 /* Record the current insn_rtx_cost of this instruction. */
721 if (NONJUMP_INSN_P (insn))
722 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
723 if (dump_file)
724 fprintf(dump_file, "insn_cost %d: %d\n",
725 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
726 }
727
728 if (LABEL_P (insn))
729 label_tick++;
730 }
731
732 nonzero_sign_valid = 1;
733
734 /* Now scan all the insns in forward order. */
735
736 label_tick = 1;
737 last_call_cuid = 0;
738 mem_last_set = 0;
739 init_reg_last ();
740 setup_incoming_promotions ();
741
742 FOR_EACH_BB (this_basic_block)
743 {
744 for (insn = BB_HEAD (this_basic_block);
745 insn != NEXT_INSN (BB_END (this_basic_block));
746 insn = next ? next : NEXT_INSN (insn))
747 {
748 next = 0;
749
750 if (LABEL_P (insn))
751 label_tick++;
752
753 else if (INSN_P (insn))
754 {
755 /* See if we know about function return values before this
756 insn based upon SUBREG flags. */
757 check_promoted_subreg (insn, PATTERN (insn));
758
759 /* Try this insn with each insn it links back to. */
760
761 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
762 if ((next = try_combine (insn, XEXP (links, 0),
763 NULL_RTX, &new_direct_jump_p)) != 0)
764 goto retry;
765
766 /* Try each sequence of three linked insns ending with this one. */
767
768 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
769 {
770 rtx link = XEXP (links, 0);
771
772 /* If the linked insn has been replaced by a note, then there
773 is no point in pursuing this chain any further. */
774 if (NOTE_P (link))
775 continue;
776
777 for (nextlinks = LOG_LINKS (link);
778 nextlinks;
779 nextlinks = XEXP (nextlinks, 1))
780 if ((next = try_combine (insn, link,
781 XEXP (nextlinks, 0),
782 &new_direct_jump_p)) != 0)
783 goto retry;
784 }
785
786 #ifdef HAVE_cc0
787 /* Try to combine a jump insn that uses CC0
788 with a preceding insn that sets CC0, and maybe with its
789 logical predecessor as well.
790 This is how we make decrement-and-branch insns.
791 We need this special code because data flow connections
792 via CC0 do not get entered in LOG_LINKS. */
793
794 if (JUMP_P (insn)
795 && (prev = prev_nonnote_insn (insn)) != 0
796 && NONJUMP_INSN_P (prev)
797 && sets_cc0_p (PATTERN (prev)))
798 {
799 if ((next = try_combine (insn, prev,
800 NULL_RTX, &new_direct_jump_p)) != 0)
801 goto retry;
802
803 for (nextlinks = LOG_LINKS (prev); nextlinks;
804 nextlinks = XEXP (nextlinks, 1))
805 if ((next = try_combine (insn, prev,
806 XEXP (nextlinks, 0),
807 &new_direct_jump_p)) != 0)
808 goto retry;
809 }
810
811 /* Do the same for an insn that explicitly references CC0. */
812 if (NONJUMP_INSN_P (insn)
813 && (prev = prev_nonnote_insn (insn)) != 0
814 && NONJUMP_INSN_P (prev)
815 && sets_cc0_p (PATTERN (prev))
816 && GET_CODE (PATTERN (insn)) == SET
817 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
818 {
819 if ((next = try_combine (insn, prev,
820 NULL_RTX, &new_direct_jump_p)) != 0)
821 goto retry;
822
823 for (nextlinks = LOG_LINKS (prev); nextlinks;
824 nextlinks = XEXP (nextlinks, 1))
825 if ((next = try_combine (insn, prev,
826 XEXP (nextlinks, 0),
827 &new_direct_jump_p)) != 0)
828 goto retry;
829 }
830
831 /* Finally, see if any of the insns that this insn links to
832 explicitly references CC0. If so, try this insn, that insn,
833 and its predecessor if it sets CC0. */
834 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
835 if (NONJUMP_INSN_P (XEXP (links, 0))
836 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
837 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
838 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
839 && NONJUMP_INSN_P (prev)
840 && sets_cc0_p (PATTERN (prev))
841 && (next = try_combine (insn, XEXP (links, 0),
842 prev, &new_direct_jump_p)) != 0)
843 goto retry;
844 #endif
845
846 /* Try combining an insn with two different insns whose results it
847 uses. */
848 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
849 for (nextlinks = XEXP (links, 1); nextlinks;
850 nextlinks = XEXP (nextlinks, 1))
851 if ((next = try_combine (insn, XEXP (links, 0),
852 XEXP (nextlinks, 0),
853 &new_direct_jump_p)) != 0)
854 goto retry;
855
856 /* Try this insn with each REG_EQUAL note it links back to. */
857 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
858 {
859 rtx set, note;
860 rtx temp = XEXP (links, 0);
861 if ((set = single_set (temp)) != 0
862 && (note = find_reg_equal_equiv_note (temp)) != 0
863 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
864 /* Avoid using a register that may already been marked
865 dead by an earlier instruction. */
866 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
867 {
868 /* Temporarily replace the set's source with the
869 contents of the REG_EQUAL note. The insn will
870 be deleted or recognized by try_combine. */
871 rtx orig = SET_SRC (set);
872 SET_SRC (set) = XEXP (note, 0);
873 next = try_combine (insn, temp, NULL_RTX,
874 &new_direct_jump_p);
875 if (next)
876 goto retry;
877 SET_SRC (set) = orig;
878 }
879 }
880
881 if (!NOTE_P (insn))
882 record_dead_and_set_regs (insn);
883
884 retry:
885 ;
886 }
887 }
888 }
889 clear_bb_flags ();
890
891 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
892 BASIC_BLOCK (j)->flags |= BB_DIRTY;
893 new_direct_jump_p |= purge_all_dead_edges ();
894 delete_noop_moves ();
895
896 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
897 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
898 | PROP_KILL_DEAD_CODE);
899
900 /* Clean up. */
901 sbitmap_free (refresh_blocks);
902 free (uid_insn_cost);
903 free (reg_stat);
904 free (uid_cuid);
905
906 {
907 struct undo *undo, *next;
908 for (undo = undobuf.frees; undo; undo = next)
909 {
910 next = undo->next;
911 free (undo);
912 }
913 undobuf.frees = 0;
914 }
915
916 total_attempts += combine_attempts;
917 total_merges += combine_merges;
918 total_extras += combine_extras;
919 total_successes += combine_successes;
920
921 nonzero_sign_valid = 0;
922 rtl_hooks = general_rtl_hooks;
923
924 /* Make recognizer allow volatile MEMs again. */
925 init_recog ();
926
927 return new_direct_jump_p;
928 }
929
930 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
931
932 static void
933 init_reg_last (void)
934 {
935 unsigned int i;
936 for (i = 0; i < combine_max_regno; i++)
937 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
938 }
939 \f
940 /* Set up any promoted values for incoming argument registers. */
941
942 static void
943 setup_incoming_promotions (void)
944 {
945 unsigned int regno;
946 rtx reg;
947 enum machine_mode mode;
948 int unsignedp;
949 rtx first = get_insns ();
950
951 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
952 {
953 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
954 /* Check whether this register can hold an incoming pointer
955 argument. FUNCTION_ARG_REGNO_P tests outgoing register
956 numbers, so translate if necessary due to register windows. */
957 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
958 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
959 {
960 record_value_for_reg
961 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
962 : SIGN_EXTEND),
963 GET_MODE (reg),
964 gen_rtx_CLOBBER (mode, const0_rtx)));
965 }
966 }
967 }
968 \f
969 /* Called via note_stores. If X is a pseudo that is narrower than
970 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
971
972 If we are setting only a portion of X and we can't figure out what
973 portion, assume all bits will be used since we don't know what will
974 be happening.
975
976 Similarly, set how many bits of X are known to be copies of the sign bit
977 at all locations in the function. This is the smallest number implied
978 by any set of X. */
979
980 static void
981 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
982 void *data ATTRIBUTE_UNUSED)
983 {
984 unsigned int num;
985
986 if (REG_P (x)
987 && REGNO (x) >= FIRST_PSEUDO_REGISTER
988 /* If this register is undefined at the start of the file, we can't
989 say what its contents were. */
990 && ! REGNO_REG_SET_P
991 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
992 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
993 {
994 if (set == 0 || GET_CODE (set) == CLOBBER)
995 {
996 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
997 reg_stat[REGNO (x)].sign_bit_copies = 1;
998 return;
999 }
1000
1001 /* If this is a complex assignment, see if we can convert it into a
1002 simple assignment. */
1003 set = expand_field_assignment (set);
1004
1005 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1006 set what we know about X. */
1007
1008 if (SET_DEST (set) == x
1009 || (GET_CODE (SET_DEST (set)) == SUBREG
1010 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1011 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1012 && SUBREG_REG (SET_DEST (set)) == x))
1013 {
1014 rtx src = SET_SRC (set);
1015
1016 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1017 /* If X is narrower than a word and SRC is a non-negative
1018 constant that would appear negative in the mode of X,
1019 sign-extend it for use in reg_stat[].nonzero_bits because some
1020 machines (maybe most) will actually do the sign-extension
1021 and this is the conservative approach.
1022
1023 ??? For 2.5, try to tighten up the MD files in this regard
1024 instead of this kludge. */
1025
1026 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1027 && GET_CODE (src) == CONST_INT
1028 && INTVAL (src) > 0
1029 && 0 != (INTVAL (src)
1030 & ((HOST_WIDE_INT) 1
1031 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1032 src = GEN_INT (INTVAL (src)
1033 | ((HOST_WIDE_INT) (-1)
1034 << GET_MODE_BITSIZE (GET_MODE (x))));
1035 #endif
1036
1037 /* Don't call nonzero_bits if it cannot change anything. */
1038 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1039 reg_stat[REGNO (x)].nonzero_bits
1040 |= nonzero_bits (src, nonzero_bits_mode);
1041 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1042 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1043 || reg_stat[REGNO (x)].sign_bit_copies > num)
1044 reg_stat[REGNO (x)].sign_bit_copies = num;
1045 }
1046 else
1047 {
1048 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1049 reg_stat[REGNO (x)].sign_bit_copies = 1;
1050 }
1051 }
1052 }
1053 \f
1054 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1055 insns that were previously combined into I3 or that will be combined
1056 into the merger of INSN and I3.
1057
1058 Return 0 if the combination is not allowed for any reason.
1059
1060 If the combination is allowed, *PDEST will be set to the single
1061 destination of INSN and *PSRC to the single source, and this function
1062 will return 1. */
1063
1064 static int
1065 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1066 rtx *pdest, rtx *psrc)
1067 {
1068 int i;
1069 rtx set = 0, src, dest;
1070 rtx p;
1071 #ifdef AUTO_INC_DEC
1072 rtx link;
1073 #endif
1074 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1075 && next_active_insn (succ) == i3)
1076 : next_active_insn (insn) == i3);
1077
1078 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1079 or a PARALLEL consisting of such a SET and CLOBBERs.
1080
1081 If INSN has CLOBBER parallel parts, ignore them for our processing.
1082 By definition, these happen during the execution of the insn. When it
1083 is merged with another insn, all bets are off. If they are, in fact,
1084 needed and aren't also supplied in I3, they may be added by
1085 recog_for_combine. Otherwise, it won't match.
1086
1087 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1088 note.
1089
1090 Get the source and destination of INSN. If more than one, can't
1091 combine. */
1092
1093 if (GET_CODE (PATTERN (insn)) == SET)
1094 set = PATTERN (insn);
1095 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1096 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1097 {
1098 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1099 {
1100 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1101 rtx note;
1102
1103 switch (GET_CODE (elt))
1104 {
1105 /* This is important to combine floating point insns
1106 for the SH4 port. */
1107 case USE:
1108 /* Combining an isolated USE doesn't make sense.
1109 We depend here on combinable_i3pat to reject them. */
1110 /* The code below this loop only verifies that the inputs of
1111 the SET in INSN do not change. We call reg_set_between_p
1112 to verify that the REG in the USE does not change between
1113 I3 and INSN.
1114 If the USE in INSN was for a pseudo register, the matching
1115 insn pattern will likely match any register; combining this
1116 with any other USE would only be safe if we knew that the
1117 used registers have identical values, or if there was
1118 something to tell them apart, e.g. different modes. For
1119 now, we forgo such complicated tests and simply disallow
1120 combining of USES of pseudo registers with any other USE. */
1121 if (REG_P (XEXP (elt, 0))
1122 && GET_CODE (PATTERN (i3)) == PARALLEL)
1123 {
1124 rtx i3pat = PATTERN (i3);
1125 int i = XVECLEN (i3pat, 0) - 1;
1126 unsigned int regno = REGNO (XEXP (elt, 0));
1127
1128 do
1129 {
1130 rtx i3elt = XVECEXP (i3pat, 0, i);
1131
1132 if (GET_CODE (i3elt) == USE
1133 && REG_P (XEXP (i3elt, 0))
1134 && (REGNO (XEXP (i3elt, 0)) == regno
1135 ? reg_set_between_p (XEXP (elt, 0),
1136 PREV_INSN (insn), i3)
1137 : regno >= FIRST_PSEUDO_REGISTER))
1138 return 0;
1139 }
1140 while (--i >= 0);
1141 }
1142 break;
1143
1144 /* We can ignore CLOBBERs. */
1145 case CLOBBER:
1146 break;
1147
1148 case SET:
1149 /* Ignore SETs whose result isn't used but not those that
1150 have side-effects. */
1151 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1152 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1153 || INTVAL (XEXP (note, 0)) <= 0)
1154 && ! side_effects_p (elt))
1155 break;
1156
1157 /* If we have already found a SET, this is a second one and
1158 so we cannot combine with this insn. */
1159 if (set)
1160 return 0;
1161
1162 set = elt;
1163 break;
1164
1165 default:
1166 /* Anything else means we can't combine. */
1167 return 0;
1168 }
1169 }
1170
1171 if (set == 0
1172 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1173 so don't do anything with it. */
1174 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1175 return 0;
1176 }
1177 else
1178 return 0;
1179
1180 if (set == 0)
1181 return 0;
1182
1183 set = expand_field_assignment (set);
1184 src = SET_SRC (set), dest = SET_DEST (set);
1185
1186 /* Don't eliminate a store in the stack pointer. */
1187 if (dest == stack_pointer_rtx
1188 /* Don't combine with an insn that sets a register to itself if it has
1189 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1190 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1191 /* Can't merge an ASM_OPERANDS. */
1192 || GET_CODE (src) == ASM_OPERANDS
1193 /* Can't merge a function call. */
1194 || GET_CODE (src) == CALL
1195 /* Don't eliminate a function call argument. */
1196 || (CALL_P (i3)
1197 && (find_reg_fusage (i3, USE, dest)
1198 || (REG_P (dest)
1199 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1200 && global_regs[REGNO (dest)])))
1201 /* Don't substitute into an incremented register. */
1202 || FIND_REG_INC_NOTE (i3, dest)
1203 || (succ && FIND_REG_INC_NOTE (succ, dest))
1204 /* Don't substitute into a non-local goto, this confuses CFG. */
1205 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1206 #if 0
1207 /* Don't combine the end of a libcall into anything. */
1208 /* ??? This gives worse code, and appears to be unnecessary, since no
1209 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1210 use REG_RETVAL notes for noconflict blocks, but other code here
1211 makes sure that those insns don't disappear. */
1212 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1213 #endif
1214 /* Make sure that DEST is not used after SUCC but before I3. */
1215 || (succ && ! all_adjacent
1216 && reg_used_between_p (dest, succ, i3))
1217 /* Make sure that the value that is to be substituted for the register
1218 does not use any registers whose values alter in between. However,
1219 If the insns are adjacent, a use can't cross a set even though we
1220 think it might (this can happen for a sequence of insns each setting
1221 the same destination; last_set of that register might point to
1222 a NOTE). If INSN has a REG_EQUIV note, the register is always
1223 equivalent to the memory so the substitution is valid even if there
1224 are intervening stores. Also, don't move a volatile asm or
1225 UNSPEC_VOLATILE across any other insns. */
1226 || (! all_adjacent
1227 && (((!MEM_P (src)
1228 || ! find_reg_note (insn, REG_EQUIV, src))
1229 && use_crosses_set_p (src, INSN_CUID (insn)))
1230 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1231 || GET_CODE (src) == UNSPEC_VOLATILE))
1232 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1233 better register allocation by not doing the combine. */
1234 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1235 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1236 /* Don't combine across a CALL_INSN, because that would possibly
1237 change whether the life span of some REGs crosses calls or not,
1238 and it is a pain to update that information.
1239 Exception: if source is a constant, moving it later can't hurt.
1240 Accept that special case, because it helps -fforce-addr a lot. */
1241 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1242 return 0;
1243
1244 /* DEST must either be a REG or CC0. */
1245 if (REG_P (dest))
1246 {
1247 /* If register alignment is being enforced for multi-word items in all
1248 cases except for parameters, it is possible to have a register copy
1249 insn referencing a hard register that is not allowed to contain the
1250 mode being copied and which would not be valid as an operand of most
1251 insns. Eliminate this problem by not combining with such an insn.
1252
1253 Also, on some machines we don't want to extend the life of a hard
1254 register. */
1255
1256 if (REG_P (src)
1257 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1258 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1259 /* Don't extend the life of a hard register unless it is
1260 user variable (if we have few registers) or it can't
1261 fit into the desired register (meaning something special
1262 is going on).
1263 Also avoid substituting a return register into I3, because
1264 reload can't handle a conflict with constraints of other
1265 inputs. */
1266 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1267 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1268 return 0;
1269 }
1270 else if (GET_CODE (dest) != CC0)
1271 return 0;
1272
1273
1274 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1275 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1276 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1277 {
1278 /* Don't substitute for a register intended as a clobberable
1279 operand. */
1280 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1281 if (rtx_equal_p (reg, dest))
1282 return 0;
1283
1284 /* If the clobber represents an earlyclobber operand, we must not
1285 substitute an expression containing the clobbered register.
1286 As we do not analyze the constraint strings here, we have to
1287 make the conservative assumption. However, if the register is
1288 a fixed hard reg, the clobber cannot represent any operand;
1289 we leave it up to the machine description to either accept or
1290 reject use-and-clobber patterns. */
1291 if (!REG_P (reg)
1292 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1293 || !fixed_regs[REGNO (reg)])
1294 if (reg_overlap_mentioned_p (reg, src))
1295 return 0;
1296 }
1297
1298 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1299 or not), reject, unless nothing volatile comes between it and I3 */
1300
1301 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1302 {
1303 /* Make sure succ doesn't contain a volatile reference. */
1304 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1305 return 0;
1306
1307 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1308 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1309 return 0;
1310 }
1311
1312 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1313 to be an explicit register variable, and was chosen for a reason. */
1314
1315 if (GET_CODE (src) == ASM_OPERANDS
1316 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1317 return 0;
1318
1319 /* If there are any volatile insns between INSN and I3, reject, because
1320 they might affect machine state. */
1321
1322 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1323 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1324 return 0;
1325
1326 /* If INSN contains an autoincrement or autodecrement, make sure that
1327 register is not used between there and I3, and not already used in
1328 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1329 Also insist that I3 not be a jump; if it were one
1330 and the incremented register were spilled, we would lose. */
1331
1332 #ifdef AUTO_INC_DEC
1333 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1334 if (REG_NOTE_KIND (link) == REG_INC
1335 && (JUMP_P (i3)
1336 || reg_used_between_p (XEXP (link, 0), insn, i3)
1337 || (pred != NULL_RTX
1338 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1339 || (succ != NULL_RTX
1340 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1341 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1342 return 0;
1343 #endif
1344
1345 #ifdef HAVE_cc0
1346 /* Don't combine an insn that follows a CC0-setting insn.
1347 An insn that uses CC0 must not be separated from the one that sets it.
1348 We do, however, allow I2 to follow a CC0-setting insn if that insn
1349 is passed as I1; in that case it will be deleted also.
1350 We also allow combining in this case if all the insns are adjacent
1351 because that would leave the two CC0 insns adjacent as well.
1352 It would be more logical to test whether CC0 occurs inside I1 or I2,
1353 but that would be much slower, and this ought to be equivalent. */
1354
1355 p = prev_nonnote_insn (insn);
1356 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1357 && ! all_adjacent)
1358 return 0;
1359 #endif
1360
1361 /* If we get here, we have passed all the tests and the combination is
1362 to be allowed. */
1363
1364 *pdest = dest;
1365 *psrc = src;
1366
1367 return 1;
1368 }
1369 \f
1370 /* LOC is the location within I3 that contains its pattern or the component
1371 of a PARALLEL of the pattern. We validate that it is valid for combining.
1372
1373 One problem is if I3 modifies its output, as opposed to replacing it
1374 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1375 so would produce an insn that is not equivalent to the original insns.
1376
1377 Consider:
1378
1379 (set (reg:DI 101) (reg:DI 100))
1380 (set (subreg:SI (reg:DI 101) 0) <foo>)
1381
1382 This is NOT equivalent to:
1383
1384 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1385 (set (reg:DI 101) (reg:DI 100))])
1386
1387 Not only does this modify 100 (in which case it might still be valid
1388 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1389
1390 We can also run into a problem if I2 sets a register that I1
1391 uses and I1 gets directly substituted into I3 (not via I2). In that
1392 case, we would be getting the wrong value of I2DEST into I3, so we
1393 must reject the combination. This case occurs when I2 and I1 both
1394 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1395 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1396 of a SET must prevent combination from occurring.
1397
1398 Before doing the above check, we first try to expand a field assignment
1399 into a set of logical operations.
1400
1401 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1402 we place a register that is both set and used within I3. If more than one
1403 such register is detected, we fail.
1404
1405 Return 1 if the combination is valid, zero otherwise. */
1406
1407 static int
1408 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1409 int i1_not_in_src, rtx *pi3dest_killed)
1410 {
1411 rtx x = *loc;
1412
1413 if (GET_CODE (x) == SET)
1414 {
1415 rtx set = x ;
1416 rtx dest = SET_DEST (set);
1417 rtx src = SET_SRC (set);
1418 rtx inner_dest = dest;
1419
1420 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1421 || GET_CODE (inner_dest) == SUBREG
1422 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1423 inner_dest = XEXP (inner_dest, 0);
1424
1425 /* Check for the case where I3 modifies its output, as discussed
1426 above. We don't want to prevent pseudos from being combined
1427 into the address of a MEM, so only prevent the combination if
1428 i1 or i2 set the same MEM. */
1429 if ((inner_dest != dest &&
1430 (!MEM_P (inner_dest)
1431 || rtx_equal_p (i2dest, inner_dest)
1432 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1433 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1434 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1435
1436 /* This is the same test done in can_combine_p except we can't test
1437 all_adjacent; we don't have to, since this instruction will stay
1438 in place, thus we are not considering increasing the lifetime of
1439 INNER_DEST.
1440
1441 Also, if this insn sets a function argument, combining it with
1442 something that might need a spill could clobber a previous
1443 function argument; the all_adjacent test in can_combine_p also
1444 checks this; here, we do a more specific test for this case. */
1445
1446 || (REG_P (inner_dest)
1447 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1448 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1449 GET_MODE (inner_dest))))
1450 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1451 return 0;
1452
1453 /* If DEST is used in I3, it is being killed in this insn,
1454 so record that for later.
1455 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1456 STACK_POINTER_REGNUM, since these are always considered to be
1457 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1458 if (pi3dest_killed && REG_P (dest)
1459 && reg_referenced_p (dest, PATTERN (i3))
1460 && REGNO (dest) != FRAME_POINTER_REGNUM
1461 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1462 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1463 #endif
1464 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1465 && (REGNO (dest) != ARG_POINTER_REGNUM
1466 || ! fixed_regs [REGNO (dest)])
1467 #endif
1468 && REGNO (dest) != STACK_POINTER_REGNUM)
1469 {
1470 if (*pi3dest_killed)
1471 return 0;
1472
1473 *pi3dest_killed = dest;
1474 }
1475 }
1476
1477 else if (GET_CODE (x) == PARALLEL)
1478 {
1479 int i;
1480
1481 for (i = 0; i < XVECLEN (x, 0); i++)
1482 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1483 i1_not_in_src, pi3dest_killed))
1484 return 0;
1485 }
1486
1487 return 1;
1488 }
1489 \f
1490 /* Return 1 if X is an arithmetic expression that contains a multiplication
1491 and division. We don't count multiplications by powers of two here. */
1492
1493 static int
1494 contains_muldiv (rtx x)
1495 {
1496 switch (GET_CODE (x))
1497 {
1498 case MOD: case DIV: case UMOD: case UDIV:
1499 return 1;
1500
1501 case MULT:
1502 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1503 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1504 default:
1505 if (BINARY_P (x))
1506 return contains_muldiv (XEXP (x, 0))
1507 || contains_muldiv (XEXP (x, 1));
1508
1509 if (UNARY_P (x))
1510 return contains_muldiv (XEXP (x, 0));
1511
1512 return 0;
1513 }
1514 }
1515 \f
1516 /* Determine whether INSN can be used in a combination. Return nonzero if
1517 not. This is used in try_combine to detect early some cases where we
1518 can't perform combinations. */
1519
1520 static int
1521 cant_combine_insn_p (rtx insn)
1522 {
1523 rtx set;
1524 rtx src, dest;
1525
1526 /* If this isn't really an insn, we can't do anything.
1527 This can occur when flow deletes an insn that it has merged into an
1528 auto-increment address. */
1529 if (! INSN_P (insn))
1530 return 1;
1531
1532 /* Never combine loads and stores involving hard regs that are likely
1533 to be spilled. The register allocator can usually handle such
1534 reg-reg moves by tying. If we allow the combiner to make
1535 substitutions of likely-spilled regs, reload might die.
1536 As an exception, we allow combinations involving fixed regs; these are
1537 not available to the register allocator so there's no risk involved. */
1538
1539 set = single_set (insn);
1540 if (! set)
1541 return 0;
1542 src = SET_SRC (set);
1543 dest = SET_DEST (set);
1544 if (GET_CODE (src) == SUBREG)
1545 src = SUBREG_REG (src);
1546 if (GET_CODE (dest) == SUBREG)
1547 dest = SUBREG_REG (dest);
1548 if (REG_P (src) && REG_P (dest)
1549 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1550 && ! fixed_regs[REGNO (src)]
1551 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1552 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1553 && ! fixed_regs[REGNO (dest)]
1554 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1555 return 1;
1556
1557 return 0;
1558 }
1559
1560 /* Adjust INSN after we made a change to its destination.
1561
1562 Changing the destination can invalidate notes that say something about
1563 the results of the insn and a LOG_LINK pointing to the insn. */
1564
1565 static void
1566 adjust_for_new_dest (rtx insn)
1567 {
1568 rtx *loc;
1569
1570 /* For notes, be conservative and simply remove them. */
1571 loc = &REG_NOTES (insn);
1572 while (*loc)
1573 {
1574 enum reg_note kind = REG_NOTE_KIND (*loc);
1575 if (kind == REG_EQUAL || kind == REG_EQUIV)
1576 *loc = XEXP (*loc, 1);
1577 else
1578 loc = &XEXP (*loc, 1);
1579 }
1580
1581 /* The new insn will have a destination that was previously the destination
1582 of an insn just above it. Call distribute_links to make a LOG_LINK from
1583 the next use of that destination. */
1584 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1585 }
1586
1587 /* Try to combine the insns I1 and I2 into I3.
1588 Here I1 and I2 appear earlier than I3.
1589 I1 can be zero; then we combine just I2 into I3.
1590
1591 If we are combining three insns and the resulting insn is not recognized,
1592 try splitting it into two insns. If that happens, I2 and I3 are retained
1593 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1594 are pseudo-deleted.
1595
1596 Return 0 if the combination does not work. Then nothing is changed.
1597 If we did the combination, return the insn at which combine should
1598 resume scanning.
1599
1600 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1601 new direct jump instruction. */
1602
1603 static rtx
1604 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1605 {
1606 /* New patterns for I3 and I2, respectively. */
1607 rtx newpat, newi2pat = 0;
1608 rtvec newpat_vec_with_clobbers = 0;
1609 int substed_i2 = 0, substed_i1 = 0;
1610 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1611 int added_sets_1, added_sets_2;
1612 /* Total number of SETs to put into I3. */
1613 int total_sets;
1614 /* Nonzero if I2's body now appears in I3. */
1615 int i2_is_used;
1616 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1617 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1618 /* Contains I3 if the destination of I3 is used in its source, which means
1619 that the old life of I3 is being killed. If that usage is placed into
1620 I2 and not in I3, a REG_DEAD note must be made. */
1621 rtx i3dest_killed = 0;
1622 /* SET_DEST and SET_SRC of I2 and I1. */
1623 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1624 /* PATTERN (I2), or a copy of it in certain cases. */
1625 rtx i2pat;
1626 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1627 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1628 int i1_feeds_i3 = 0;
1629 /* Notes that must be added to REG_NOTES in I3 and I2. */
1630 rtx new_i3_notes, new_i2_notes;
1631 /* Notes that we substituted I3 into I2 instead of the normal case. */
1632 int i3_subst_into_i2 = 0;
1633 /* Notes that I1, I2 or I3 is a MULT operation. */
1634 int have_mult = 0;
1635 int swap_i2i3 = 0;
1636
1637 int maxreg;
1638 rtx temp;
1639 rtx link;
1640 int i;
1641
1642 /* Exit early if one of the insns involved can't be used for
1643 combinations. */
1644 if (cant_combine_insn_p (i3)
1645 || cant_combine_insn_p (i2)
1646 || (i1 && cant_combine_insn_p (i1))
1647 /* We also can't do anything if I3 has a
1648 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1649 libcall. */
1650 #if 0
1651 /* ??? This gives worse code, and appears to be unnecessary, since no
1652 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1653 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1654 #endif
1655 )
1656 return 0;
1657
1658 combine_attempts++;
1659 undobuf.other_insn = 0;
1660
1661 /* Reset the hard register usage information. */
1662 CLEAR_HARD_REG_SET (newpat_used_regs);
1663
1664 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1665 code below, set I1 to be the earlier of the two insns. */
1666 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1667 temp = i1, i1 = i2, i2 = temp;
1668
1669 added_links_insn = 0;
1670
1671 /* First check for one important special-case that the code below will
1672 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1673 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1674 we may be able to replace that destination with the destination of I3.
1675 This occurs in the common code where we compute both a quotient and
1676 remainder into a structure, in which case we want to do the computation
1677 directly into the structure to avoid register-register copies.
1678
1679 Note that this case handles both multiple sets in I2 and also
1680 cases where I2 has a number of CLOBBER or PARALLELs.
1681
1682 We make very conservative checks below and only try to handle the
1683 most common cases of this. For example, we only handle the case
1684 where I2 and I3 are adjacent to avoid making difficult register
1685 usage tests. */
1686
1687 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1688 && REG_P (SET_SRC (PATTERN (i3)))
1689 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1690 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1691 && GET_CODE (PATTERN (i2)) == PARALLEL
1692 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1693 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1694 below would need to check what is inside (and reg_overlap_mentioned_p
1695 doesn't support those codes anyway). Don't allow those destinations;
1696 the resulting insn isn't likely to be recognized anyway. */
1697 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1698 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1699 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1700 SET_DEST (PATTERN (i3)))
1701 && next_real_insn (i2) == i3)
1702 {
1703 rtx p2 = PATTERN (i2);
1704
1705 /* Make sure that the destination of I3,
1706 which we are going to substitute into one output of I2,
1707 is not used within another output of I2. We must avoid making this:
1708 (parallel [(set (mem (reg 69)) ...)
1709 (set (reg 69) ...)])
1710 which is not well-defined as to order of actions.
1711 (Besides, reload can't handle output reloads for this.)
1712
1713 The problem can also happen if the dest of I3 is a memory ref,
1714 if another dest in I2 is an indirect memory ref. */
1715 for (i = 0; i < XVECLEN (p2, 0); i++)
1716 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1717 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1718 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1719 SET_DEST (XVECEXP (p2, 0, i))))
1720 break;
1721
1722 if (i == XVECLEN (p2, 0))
1723 for (i = 0; i < XVECLEN (p2, 0); i++)
1724 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1725 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1726 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1727 {
1728 combine_merges++;
1729
1730 subst_insn = i3;
1731 subst_low_cuid = INSN_CUID (i2);
1732
1733 added_sets_2 = added_sets_1 = 0;
1734 i2dest = SET_SRC (PATTERN (i3));
1735
1736 /* Replace the dest in I2 with our dest and make the resulting
1737 insn the new pattern for I3. Then skip to where we
1738 validate the pattern. Everything was set up above. */
1739 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1740 SET_DEST (PATTERN (i3)));
1741
1742 newpat = p2;
1743 i3_subst_into_i2 = 1;
1744 goto validate_replacement;
1745 }
1746 }
1747
1748 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1749 one of those words to another constant, merge them by making a new
1750 constant. */
1751 if (i1 == 0
1752 && (temp = single_set (i2)) != 0
1753 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1754 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1755 && REG_P (SET_DEST (temp))
1756 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1757 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1758 && GET_CODE (PATTERN (i3)) == SET
1759 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1760 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1761 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1762 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1763 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1764 {
1765 HOST_WIDE_INT lo, hi;
1766
1767 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1768 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1769 else
1770 {
1771 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1772 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1773 }
1774
1775 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1776 {
1777 /* We don't handle the case of the target word being wider
1778 than a host wide int. */
1779 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1780
1781 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1782 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1783 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1784 }
1785 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1786 hi = INTVAL (SET_SRC (PATTERN (i3)));
1787 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1788 {
1789 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1790 >> (HOST_BITS_PER_WIDE_INT - 1));
1791
1792 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1793 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1794 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1795 (INTVAL (SET_SRC (PATTERN (i3)))));
1796 if (hi == sign)
1797 hi = lo < 0 ? -1 : 0;
1798 }
1799 else
1800 /* We don't handle the case of the higher word not fitting
1801 entirely in either hi or lo. */
1802 gcc_unreachable ();
1803
1804 combine_merges++;
1805 subst_insn = i3;
1806 subst_low_cuid = INSN_CUID (i2);
1807 added_sets_2 = added_sets_1 = 0;
1808 i2dest = SET_DEST (temp);
1809
1810 SUBST (SET_SRC (temp),
1811 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1812
1813 newpat = PATTERN (i2);
1814 goto validate_replacement;
1815 }
1816
1817 #ifndef HAVE_cc0
1818 /* If we have no I1 and I2 looks like:
1819 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1820 (set Y OP)])
1821 make up a dummy I1 that is
1822 (set Y OP)
1823 and change I2 to be
1824 (set (reg:CC X) (compare:CC Y (const_int 0)))
1825
1826 (We can ignore any trailing CLOBBERs.)
1827
1828 This undoes a previous combination and allows us to match a branch-and-
1829 decrement insn. */
1830
1831 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1832 && XVECLEN (PATTERN (i2), 0) >= 2
1833 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1834 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1835 == MODE_CC)
1836 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1837 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1838 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1839 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1840 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1841 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1842 {
1843 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1844 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1845 break;
1846
1847 if (i == 1)
1848 {
1849 /* We make I1 with the same INSN_UID as I2. This gives it
1850 the same INSN_CUID for value tracking. Our fake I1 will
1851 never appear in the insn stream so giving it the same INSN_UID
1852 as I2 will not cause a problem. */
1853
1854 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1855 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1856 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1857 NULL_RTX);
1858
1859 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1860 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1861 SET_DEST (PATTERN (i1)));
1862 }
1863 }
1864 #endif
1865
1866 /* Verify that I2 and I1 are valid for combining. */
1867 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1868 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1869 {
1870 undo_all ();
1871 return 0;
1872 }
1873
1874 /* Record whether I2DEST is used in I2SRC and similarly for the other
1875 cases. Knowing this will help in register status updating below. */
1876 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1877 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1878 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1879
1880 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1881 in I2SRC. */
1882 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1883
1884 /* Ensure that I3's pattern can be the destination of combines. */
1885 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1886 i1 && i2dest_in_i1src && i1_feeds_i3,
1887 &i3dest_killed))
1888 {
1889 undo_all ();
1890 return 0;
1891 }
1892
1893 /* See if any of the insns is a MULT operation. Unless one is, we will
1894 reject a combination that is, since it must be slower. Be conservative
1895 here. */
1896 if (GET_CODE (i2src) == MULT
1897 || (i1 != 0 && GET_CODE (i1src) == MULT)
1898 || (GET_CODE (PATTERN (i3)) == SET
1899 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1900 have_mult = 1;
1901
1902 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1903 We used to do this EXCEPT in one case: I3 has a post-inc in an
1904 output operand. However, that exception can give rise to insns like
1905 mov r3,(r3)+
1906 which is a famous insn on the PDP-11 where the value of r3 used as the
1907 source was model-dependent. Avoid this sort of thing. */
1908
1909 #if 0
1910 if (!(GET_CODE (PATTERN (i3)) == SET
1911 && REG_P (SET_SRC (PATTERN (i3)))
1912 && MEM_P (SET_DEST (PATTERN (i3)))
1913 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1914 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1915 /* It's not the exception. */
1916 #endif
1917 #ifdef AUTO_INC_DEC
1918 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1919 if (REG_NOTE_KIND (link) == REG_INC
1920 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1921 || (i1 != 0
1922 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1923 {
1924 undo_all ();
1925 return 0;
1926 }
1927 #endif
1928
1929 /* See if the SETs in I1 or I2 need to be kept around in the merged
1930 instruction: whenever the value set there is still needed past I3.
1931 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1932
1933 For the SET in I1, we have two cases: If I1 and I2 independently
1934 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1935 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1936 in I1 needs to be kept around unless I1DEST dies or is set in either
1937 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1938 I1DEST. If so, we know I1 feeds into I2. */
1939
1940 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1941
1942 added_sets_1
1943 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1944 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1945
1946 /* If the set in I2 needs to be kept around, we must make a copy of
1947 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1948 PATTERN (I2), we are only substituting for the original I1DEST, not into
1949 an already-substituted copy. This also prevents making self-referential
1950 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1951 I2DEST. */
1952
1953 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1954 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1955 : PATTERN (i2));
1956
1957 if (added_sets_2)
1958 i2pat = copy_rtx (i2pat);
1959
1960 combine_merges++;
1961
1962 /* Substitute in the latest insn for the regs set by the earlier ones. */
1963
1964 maxreg = max_reg_num ();
1965
1966 subst_insn = i3;
1967
1968 /* It is possible that the source of I2 or I1 may be performing an
1969 unneeded operation, such as a ZERO_EXTEND of something that is known
1970 to have the high part zero. Handle that case by letting subst look at
1971 the innermost one of them.
1972
1973 Another way to do this would be to have a function that tries to
1974 simplify a single insn instead of merging two or more insns. We don't
1975 do this because of the potential of infinite loops and because
1976 of the potential extra memory required. However, doing it the way
1977 we are is a bit of a kludge and doesn't catch all cases.
1978
1979 But only do this if -fexpensive-optimizations since it slows things down
1980 and doesn't usually win. */
1981
1982 if (flag_expensive_optimizations)
1983 {
1984 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1985 if (i1)
1986 {
1987 subst_low_cuid = INSN_CUID (i1);
1988 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1989 }
1990 else
1991 {
1992 subst_low_cuid = INSN_CUID (i2);
1993 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1994 }
1995 }
1996
1997 #ifndef HAVE_cc0
1998 /* Many machines that don't use CC0 have insns that can both perform an
1999 arithmetic operation and set the condition code. These operations will
2000 be represented as a PARALLEL with the first element of the vector
2001 being a COMPARE of an arithmetic operation with the constant zero.
2002 The second element of the vector will set some pseudo to the result
2003 of the same arithmetic operation. If we simplify the COMPARE, we won't
2004 match such a pattern and so will generate an extra insn. Here we test
2005 for this case, where both the comparison and the operation result are
2006 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2007 I2SRC. Later we will make the PARALLEL that contains I2. */
2008
2009 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2010 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2011 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2012 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2013 {
2014 #ifdef SELECT_CC_MODE
2015 rtx *cc_use;
2016 enum machine_mode compare_mode;
2017 #endif
2018
2019 newpat = PATTERN (i3);
2020 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2021
2022 i2_is_used = 1;
2023
2024 #ifdef SELECT_CC_MODE
2025 /* See if a COMPARE with the operand we substituted in should be done
2026 with the mode that is currently being used. If not, do the same
2027 processing we do in `subst' for a SET; namely, if the destination
2028 is used only once, try to replace it with a register of the proper
2029 mode and also replace the COMPARE. */
2030 if (undobuf.other_insn == 0
2031 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2032 &undobuf.other_insn))
2033 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2034 i2src, const0_rtx))
2035 != GET_MODE (SET_DEST (newpat))))
2036 {
2037 unsigned int regno = REGNO (SET_DEST (newpat));
2038 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2039
2040 if (regno < FIRST_PSEUDO_REGISTER
2041 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2042 && ! REG_USERVAR_P (SET_DEST (newpat))))
2043 {
2044 if (regno >= FIRST_PSEUDO_REGISTER)
2045 SUBST (regno_reg_rtx[regno], new_dest);
2046
2047 SUBST (SET_DEST (newpat), new_dest);
2048 SUBST (XEXP (*cc_use, 0), new_dest);
2049 SUBST (SET_SRC (newpat),
2050 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2051 }
2052 else
2053 undobuf.other_insn = 0;
2054 }
2055 #endif
2056 }
2057 else
2058 #endif
2059 {
2060 n_occurrences = 0; /* `subst' counts here */
2061
2062 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2063 need to make a unique copy of I2SRC each time we substitute it
2064 to avoid self-referential rtl. */
2065
2066 subst_low_cuid = INSN_CUID (i2);
2067 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2068 ! i1_feeds_i3 && i1dest_in_i1src);
2069 substed_i2 = 1;
2070
2071 /* Record whether i2's body now appears within i3's body. */
2072 i2_is_used = n_occurrences;
2073 }
2074
2075 /* If we already got a failure, don't try to do more. Otherwise,
2076 try to substitute in I1 if we have it. */
2077
2078 if (i1 && GET_CODE (newpat) != CLOBBER)
2079 {
2080 /* Before we can do this substitution, we must redo the test done
2081 above (see detailed comments there) that ensures that I1DEST
2082 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2083
2084 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2085 0, (rtx*) 0))
2086 {
2087 undo_all ();
2088 return 0;
2089 }
2090
2091 n_occurrences = 0;
2092 subst_low_cuid = INSN_CUID (i1);
2093 newpat = subst (newpat, i1dest, i1src, 0, 0);
2094 substed_i1 = 1;
2095 }
2096
2097 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2098 to count all the ways that I2SRC and I1SRC can be used. */
2099 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2100 && i2_is_used + added_sets_2 > 1)
2101 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2102 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2103 > 1))
2104 /* Fail if we tried to make a new register. */
2105 || max_reg_num () != maxreg
2106 /* Fail if we couldn't do something and have a CLOBBER. */
2107 || GET_CODE (newpat) == CLOBBER
2108 /* Fail if this new pattern is a MULT and we didn't have one before
2109 at the outer level. */
2110 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2111 && ! have_mult))
2112 {
2113 undo_all ();
2114 return 0;
2115 }
2116
2117 /* If the actions of the earlier insns must be kept
2118 in addition to substituting them into the latest one,
2119 we must make a new PARALLEL for the latest insn
2120 to hold additional the SETs. */
2121
2122 if (added_sets_1 || added_sets_2)
2123 {
2124 combine_extras++;
2125
2126 if (GET_CODE (newpat) == PARALLEL)
2127 {
2128 rtvec old = XVEC (newpat, 0);
2129 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2130 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2131 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2132 sizeof (old->elem[0]) * old->num_elem);
2133 }
2134 else
2135 {
2136 rtx old = newpat;
2137 total_sets = 1 + added_sets_1 + added_sets_2;
2138 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2139 XVECEXP (newpat, 0, 0) = old;
2140 }
2141
2142 if (added_sets_1)
2143 XVECEXP (newpat, 0, --total_sets)
2144 = (GET_CODE (PATTERN (i1)) == PARALLEL
2145 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2146
2147 if (added_sets_2)
2148 {
2149 /* If there is no I1, use I2's body as is. We used to also not do
2150 the subst call below if I2 was substituted into I3,
2151 but that could lose a simplification. */
2152 if (i1 == 0)
2153 XVECEXP (newpat, 0, --total_sets) = i2pat;
2154 else
2155 /* See comment where i2pat is assigned. */
2156 XVECEXP (newpat, 0, --total_sets)
2157 = subst (i2pat, i1dest, i1src, 0, 0);
2158 }
2159 }
2160
2161 /* We come here when we are replacing a destination in I2 with the
2162 destination of I3. */
2163 validate_replacement:
2164
2165 /* Note which hard regs this insn has as inputs. */
2166 mark_used_regs_combine (newpat);
2167
2168 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2169 consider splitting this pattern, we might need these clobbers. */
2170 if (i1 && GET_CODE (newpat) == PARALLEL
2171 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2172 {
2173 int len = XVECLEN (newpat, 0);
2174
2175 newpat_vec_with_clobbers = rtvec_alloc (len);
2176 for (i = 0; i < len; i++)
2177 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2178 }
2179
2180 /* Is the result of combination a valid instruction? */
2181 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2182
2183 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2184 the second SET's destination is a register that is unused and isn't
2185 marked as an instruction that might trap in an EH region. In that case,
2186 we just need the first SET. This can occur when simplifying a divmod
2187 insn. We *must* test for this case here because the code below that
2188 splits two independent SETs doesn't handle this case correctly when it
2189 updates the register status.
2190
2191 It's pointless doing this if we originally had two sets, one from
2192 i3, and one from i2. Combining then splitting the parallel results
2193 in the original i2 again plus an invalid insn (which we delete).
2194 The net effect is only to move instructions around, which makes
2195 debug info less accurate.
2196
2197 Also check the case where the first SET's destination is unused.
2198 That would not cause incorrect code, but does cause an unneeded
2199 insn to remain. */
2200
2201 if (insn_code_number < 0
2202 && !(added_sets_2 && i1 == 0)
2203 && GET_CODE (newpat) == PARALLEL
2204 && XVECLEN (newpat, 0) == 2
2205 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2206 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2207 && asm_noperands (newpat) < 0)
2208 {
2209 rtx set0 = XVECEXP (newpat, 0, 0);
2210 rtx set1 = XVECEXP (newpat, 0, 1);
2211 rtx note;
2212
2213 if (((REG_P (SET_DEST (set1))
2214 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2215 || (GET_CODE (SET_DEST (set1)) == SUBREG
2216 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2217 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2218 || INTVAL (XEXP (note, 0)) <= 0)
2219 && ! side_effects_p (SET_SRC (set1)))
2220 {
2221 newpat = set0;
2222 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2223 }
2224
2225 else if (((REG_P (SET_DEST (set0))
2226 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2227 || (GET_CODE (SET_DEST (set0)) == SUBREG
2228 && find_reg_note (i3, REG_UNUSED,
2229 SUBREG_REG (SET_DEST (set0)))))
2230 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2231 || INTVAL (XEXP (note, 0)) <= 0)
2232 && ! side_effects_p (SET_SRC (set0)))
2233 {
2234 newpat = set1;
2235 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2236
2237 if (insn_code_number >= 0)
2238 {
2239 /* If we will be able to accept this, we have made a
2240 change to the destination of I3. This requires us to
2241 do a few adjustments. */
2242
2243 PATTERN (i3) = newpat;
2244 adjust_for_new_dest (i3);
2245 }
2246 }
2247 }
2248
2249 /* If we were combining three insns and the result is a simple SET
2250 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2251 insns. There are two ways to do this. It can be split using a
2252 machine-specific method (like when you have an addition of a large
2253 constant) or by combine in the function find_split_point. */
2254
2255 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2256 && asm_noperands (newpat) < 0)
2257 {
2258 rtx m_split, *split;
2259 rtx ni2dest = i2dest;
2260
2261 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2262 use I2DEST as a scratch register will help. In the latter case,
2263 convert I2DEST to the mode of the source of NEWPAT if we can. */
2264
2265 m_split = split_insns (newpat, i3);
2266
2267 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2268 inputs of NEWPAT. */
2269
2270 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2271 possible to try that as a scratch reg. This would require adding
2272 more code to make it work though. */
2273
2274 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2275 {
2276 /* If I2DEST is a hard register or the only use of a pseudo,
2277 we can change its mode. */
2278 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2279 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2280 && REG_P (i2dest)
2281 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2282 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2283 && ! REG_USERVAR_P (i2dest))))
2284 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2285 REGNO (i2dest));
2286
2287 m_split = split_insns (gen_rtx_PARALLEL
2288 (VOIDmode,
2289 gen_rtvec (2, newpat,
2290 gen_rtx_CLOBBER (VOIDmode,
2291 ni2dest))),
2292 i3);
2293 /* If the split with the mode-changed register didn't work, try
2294 the original register. */
2295 if (! m_split && ni2dest != i2dest)
2296 {
2297 ni2dest = i2dest;
2298 m_split = split_insns (gen_rtx_PARALLEL
2299 (VOIDmode,
2300 gen_rtvec (2, newpat,
2301 gen_rtx_CLOBBER (VOIDmode,
2302 i2dest))),
2303 i3);
2304 }
2305 }
2306
2307 /* If recog_for_combine has discarded clobbers, try to use them
2308 again for the split. */
2309 if (m_split == 0 && newpat_vec_with_clobbers)
2310 m_split
2311 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2312 newpat_vec_with_clobbers), i3);
2313
2314 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2315 {
2316 m_split = PATTERN (m_split);
2317 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2318 if (insn_code_number >= 0)
2319 newpat = m_split;
2320 }
2321 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2322 && (next_real_insn (i2) == i3
2323 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2324 {
2325 rtx i2set, i3set;
2326 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2327 newi2pat = PATTERN (m_split);
2328
2329 i3set = single_set (NEXT_INSN (m_split));
2330 i2set = single_set (m_split);
2331
2332 /* In case we changed the mode of I2DEST, replace it in the
2333 pseudo-register table here. We can't do it above in case this
2334 code doesn't get executed and we do a split the other way. */
2335
2336 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2337 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2338
2339 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2340
2341 /* If I2 or I3 has multiple SETs, we won't know how to track
2342 register status, so don't use these insns. If I2's destination
2343 is used between I2 and I3, we also can't use these insns. */
2344
2345 if (i2_code_number >= 0 && i2set && i3set
2346 && (next_real_insn (i2) == i3
2347 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2348 insn_code_number = recog_for_combine (&newi3pat, i3,
2349 &new_i3_notes);
2350 if (insn_code_number >= 0)
2351 newpat = newi3pat;
2352
2353 /* It is possible that both insns now set the destination of I3.
2354 If so, we must show an extra use of it. */
2355
2356 if (insn_code_number >= 0)
2357 {
2358 rtx new_i3_dest = SET_DEST (i3set);
2359 rtx new_i2_dest = SET_DEST (i2set);
2360
2361 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2362 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2363 || GET_CODE (new_i3_dest) == SUBREG)
2364 new_i3_dest = XEXP (new_i3_dest, 0);
2365
2366 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2367 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2368 || GET_CODE (new_i2_dest) == SUBREG)
2369 new_i2_dest = XEXP (new_i2_dest, 0);
2370
2371 if (REG_P (new_i3_dest)
2372 && REG_P (new_i2_dest)
2373 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2374 REG_N_SETS (REGNO (new_i2_dest))++;
2375 }
2376 }
2377
2378 /* If we can split it and use I2DEST, go ahead and see if that
2379 helps things be recognized. Verify that none of the registers
2380 are set between I2 and I3. */
2381 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2382 #ifdef HAVE_cc0
2383 && REG_P (i2dest)
2384 #endif
2385 /* We need I2DEST in the proper mode. If it is a hard register
2386 or the only use of a pseudo, we can change its mode.
2387 Make sure we don't change a hard register to have a mode that
2388 isn't valid for it, or change the number of registers. */
2389 && (GET_MODE (*split) == GET_MODE (i2dest)
2390 || GET_MODE (*split) == VOIDmode
2391 || (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2392 && HARD_REGNO_MODE_OK (REGNO (i2dest), GET_MODE (*split))
2393 && (hard_regno_nregs[REGNO (i2dest)][GET_MODE (i2dest)]
2394 == hard_regno_nregs[REGNO (i2dest)][GET_MODE (*split)]))
2395 || (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER
2396 && REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2397 && ! REG_USERVAR_P (i2dest)))
2398 && (next_real_insn (i2) == i3
2399 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2400 /* We can't overwrite I2DEST if its value is still used by
2401 NEWPAT. */
2402 && ! reg_referenced_p (i2dest, newpat))
2403 {
2404 rtx newdest = i2dest;
2405 enum rtx_code split_code = GET_CODE (*split);
2406 enum machine_mode split_mode = GET_MODE (*split);
2407
2408 /* Get NEWDEST as a register in the proper mode. We have already
2409 validated that we can do this. */
2410 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2411 {
2412 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2413
2414 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2415 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2416 }
2417
2418 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2419 an ASHIFT. This can occur if it was inside a PLUS and hence
2420 appeared to be a memory address. This is a kludge. */
2421 if (split_code == MULT
2422 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2423 && INTVAL (XEXP (*split, 1)) > 0
2424 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2425 {
2426 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2427 XEXP (*split, 0), GEN_INT (i)));
2428 /* Update split_code because we may not have a multiply
2429 anymore. */
2430 split_code = GET_CODE (*split);
2431 }
2432
2433 #ifdef INSN_SCHEDULING
2434 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2435 be written as a ZERO_EXTEND. */
2436 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2437 {
2438 #ifdef LOAD_EXTEND_OP
2439 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2440 what it really is. */
2441 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2442 == SIGN_EXTEND)
2443 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2444 SUBREG_REG (*split)));
2445 else
2446 #endif
2447 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2448 SUBREG_REG (*split)));
2449 }
2450 #endif
2451
2452 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2453 SUBST (*split, newdest);
2454 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2455
2456 /* recog_for_combine might have added CLOBBERs to newi2pat.
2457 Make sure NEWPAT does not depend on the clobbered regs. */
2458 if (GET_CODE (newi2pat) == PARALLEL)
2459 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2460 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2461 {
2462 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2463 if (reg_overlap_mentioned_p (reg, newpat))
2464 {
2465 undo_all ();
2466 return 0;
2467 }
2468 }
2469
2470 /* If the split point was a MULT and we didn't have one before,
2471 don't use one now. */
2472 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2473 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2474 }
2475 }
2476
2477 /* Check for a case where we loaded from memory in a narrow mode and
2478 then sign extended it, but we need both registers. In that case,
2479 we have a PARALLEL with both loads from the same memory location.
2480 We can split this into a load from memory followed by a register-register
2481 copy. This saves at least one insn, more if register allocation can
2482 eliminate the copy.
2483
2484 We cannot do this if the destination of the first assignment is a
2485 condition code register or cc0. We eliminate this case by making sure
2486 the SET_DEST and SET_SRC have the same mode.
2487
2488 We cannot do this if the destination of the second assignment is
2489 a register that we have already assumed is zero-extended. Similarly
2490 for a SUBREG of such a register. */
2491
2492 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2493 && GET_CODE (newpat) == PARALLEL
2494 && XVECLEN (newpat, 0) == 2
2495 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2496 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2497 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2498 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2499 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2500 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2501 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2502 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2503 INSN_CUID (i2))
2504 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2505 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2506 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2507 (REG_P (temp)
2508 && reg_stat[REGNO (temp)].nonzero_bits != 0
2509 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2510 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2511 && (reg_stat[REGNO (temp)].nonzero_bits
2512 != GET_MODE_MASK (word_mode))))
2513 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2514 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2515 (REG_P (temp)
2516 && reg_stat[REGNO (temp)].nonzero_bits != 0
2517 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2518 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2519 && (reg_stat[REGNO (temp)].nonzero_bits
2520 != GET_MODE_MASK (word_mode)))))
2521 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2522 SET_SRC (XVECEXP (newpat, 0, 1)))
2523 && ! find_reg_note (i3, REG_UNUSED,
2524 SET_DEST (XVECEXP (newpat, 0, 0))))
2525 {
2526 rtx ni2dest;
2527
2528 newi2pat = XVECEXP (newpat, 0, 0);
2529 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2530 newpat = XVECEXP (newpat, 0, 1);
2531 SUBST (SET_SRC (newpat),
2532 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2533 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2534
2535 if (i2_code_number >= 0)
2536 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2537
2538 if (insn_code_number >= 0)
2539 swap_i2i3 = 1;
2540 }
2541
2542 /* Similarly, check for a case where we have a PARALLEL of two independent
2543 SETs but we started with three insns. In this case, we can do the sets
2544 as two separate insns. This case occurs when some SET allows two
2545 other insns to combine, but the destination of that SET is still live. */
2546
2547 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2548 && GET_CODE (newpat) == PARALLEL
2549 && XVECLEN (newpat, 0) == 2
2550 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2551 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2552 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2553 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2554 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2555 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2556 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2557 INSN_CUID (i2))
2558 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2559 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2560 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2561 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2562 XVECEXP (newpat, 0, 0))
2563 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2564 XVECEXP (newpat, 0, 1))
2565 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2566 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2567 {
2568 /* Normally, it doesn't matter which of the two is done first,
2569 but it does if one references cc0. In that case, it has to
2570 be first. */
2571 #ifdef HAVE_cc0
2572 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2573 {
2574 newi2pat = XVECEXP (newpat, 0, 0);
2575 newpat = XVECEXP (newpat, 0, 1);
2576 }
2577 else
2578 #endif
2579 {
2580 newi2pat = XVECEXP (newpat, 0, 1);
2581 newpat = XVECEXP (newpat, 0, 0);
2582 }
2583
2584 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2585
2586 if (i2_code_number >= 0)
2587 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2588 }
2589
2590 /* If it still isn't recognized, fail and change things back the way they
2591 were. */
2592 if ((insn_code_number < 0
2593 /* Is the result a reasonable ASM_OPERANDS? */
2594 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2595 {
2596 undo_all ();
2597 return 0;
2598 }
2599
2600 /* If we had to change another insn, make sure it is valid also. */
2601 if (undobuf.other_insn)
2602 {
2603 rtx other_pat = PATTERN (undobuf.other_insn);
2604 rtx new_other_notes;
2605 rtx note, next;
2606
2607 CLEAR_HARD_REG_SET (newpat_used_regs);
2608
2609 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2610 &new_other_notes);
2611
2612 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2613 {
2614 undo_all ();
2615 return 0;
2616 }
2617
2618 PATTERN (undobuf.other_insn) = other_pat;
2619
2620 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2621 are still valid. Then add any non-duplicate notes added by
2622 recog_for_combine. */
2623 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2624 {
2625 next = XEXP (note, 1);
2626
2627 if (REG_NOTE_KIND (note) == REG_UNUSED
2628 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2629 {
2630 if (REG_P (XEXP (note, 0)))
2631 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2632
2633 remove_note (undobuf.other_insn, note);
2634 }
2635 }
2636
2637 for (note = new_other_notes; note; note = XEXP (note, 1))
2638 if (REG_P (XEXP (note, 0)))
2639 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2640
2641 distribute_notes (new_other_notes, undobuf.other_insn,
2642 undobuf.other_insn, NULL_RTX);
2643 }
2644 #ifdef HAVE_cc0
2645 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2646 they are adjacent to each other or not. */
2647 {
2648 rtx p = prev_nonnote_insn (i3);
2649 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2650 && sets_cc0_p (newi2pat))
2651 {
2652 undo_all ();
2653 return 0;
2654 }
2655 }
2656 #endif
2657
2658 /* Only allow this combination if insn_rtx_costs reports that the
2659 replacement instructions are cheaper than the originals. */
2660 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2661 {
2662 undo_all ();
2663 return 0;
2664 }
2665
2666 /* We now know that we can do this combination. Merge the insns and
2667 update the status of registers and LOG_LINKS. */
2668
2669 if (swap_i2i3)
2670 {
2671 rtx insn;
2672 rtx link;
2673 rtx ni2dest;
2674
2675 /* I3 now uses what used to be its destination and which is now
2676 I2's destination. This requires us to do a few adjustments. */
2677 PATTERN (i3) = newpat;
2678 adjust_for_new_dest (i3);
2679
2680 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2681 so we still will.
2682
2683 However, some later insn might be using I2's dest and have
2684 a LOG_LINK pointing at I3. We must remove this link.
2685 The simplest way to remove the link is to point it at I1,
2686 which we know will be a NOTE. */
2687
2688 /* newi2pat is usually a SET here; however, recog_for_combine might
2689 have added some clobbers. */
2690 if (GET_CODE (newi2pat) == PARALLEL)
2691 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2692 else
2693 ni2dest = SET_DEST (newi2pat);
2694
2695 for (insn = NEXT_INSN (i3);
2696 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2697 || insn != BB_HEAD (this_basic_block->next_bb));
2698 insn = NEXT_INSN (insn))
2699 {
2700 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2701 {
2702 for (link = LOG_LINKS (insn); link;
2703 link = XEXP (link, 1))
2704 if (XEXP (link, 0) == i3)
2705 XEXP (link, 0) = i1;
2706
2707 break;
2708 }
2709 }
2710 }
2711
2712 {
2713 rtx i3notes, i2notes, i1notes = 0;
2714 rtx i3links, i2links, i1links = 0;
2715 rtx midnotes = 0;
2716 unsigned int regno;
2717
2718 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2719 clear them. */
2720 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2721 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2722 if (i1)
2723 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2724
2725 /* Ensure that we do not have something that should not be shared but
2726 occurs multiple times in the new insns. Check this by first
2727 resetting all the `used' flags and then copying anything is shared. */
2728
2729 reset_used_flags (i3notes);
2730 reset_used_flags (i2notes);
2731 reset_used_flags (i1notes);
2732 reset_used_flags (newpat);
2733 reset_used_flags (newi2pat);
2734 if (undobuf.other_insn)
2735 reset_used_flags (PATTERN (undobuf.other_insn));
2736
2737 i3notes = copy_rtx_if_shared (i3notes);
2738 i2notes = copy_rtx_if_shared (i2notes);
2739 i1notes = copy_rtx_if_shared (i1notes);
2740 newpat = copy_rtx_if_shared (newpat);
2741 newi2pat = copy_rtx_if_shared (newi2pat);
2742 if (undobuf.other_insn)
2743 reset_used_flags (PATTERN (undobuf.other_insn));
2744
2745 INSN_CODE (i3) = insn_code_number;
2746 PATTERN (i3) = newpat;
2747
2748 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2749 {
2750 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2751
2752 reset_used_flags (call_usage);
2753 call_usage = copy_rtx (call_usage);
2754
2755 if (substed_i2)
2756 replace_rtx (call_usage, i2dest, i2src);
2757
2758 if (substed_i1)
2759 replace_rtx (call_usage, i1dest, i1src);
2760
2761 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2762 }
2763
2764 if (undobuf.other_insn)
2765 INSN_CODE (undobuf.other_insn) = other_code_number;
2766
2767 /* We had one special case above where I2 had more than one set and
2768 we replaced a destination of one of those sets with the destination
2769 of I3. In that case, we have to update LOG_LINKS of insns later
2770 in this basic block. Note that this (expensive) case is rare.
2771
2772 Also, in this case, we must pretend that all REG_NOTEs for I2
2773 actually came from I3, so that REG_UNUSED notes from I2 will be
2774 properly handled. */
2775
2776 if (i3_subst_into_i2)
2777 {
2778 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2779 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2780 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2781 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2782 && ! find_reg_note (i2, REG_UNUSED,
2783 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2784 for (temp = NEXT_INSN (i2);
2785 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2786 || BB_HEAD (this_basic_block) != temp);
2787 temp = NEXT_INSN (temp))
2788 if (temp != i3 && INSN_P (temp))
2789 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2790 if (XEXP (link, 0) == i2)
2791 XEXP (link, 0) = i3;
2792
2793 if (i3notes)
2794 {
2795 rtx link = i3notes;
2796 while (XEXP (link, 1))
2797 link = XEXP (link, 1);
2798 XEXP (link, 1) = i2notes;
2799 }
2800 else
2801 i3notes = i2notes;
2802 i2notes = 0;
2803 }
2804
2805 LOG_LINKS (i3) = 0;
2806 REG_NOTES (i3) = 0;
2807 LOG_LINKS (i2) = 0;
2808 REG_NOTES (i2) = 0;
2809
2810 if (newi2pat)
2811 {
2812 INSN_CODE (i2) = i2_code_number;
2813 PATTERN (i2) = newi2pat;
2814 }
2815 else
2816 SET_INSN_DELETED (i2);
2817
2818 if (i1)
2819 {
2820 LOG_LINKS (i1) = 0;
2821 REG_NOTES (i1) = 0;
2822 SET_INSN_DELETED (i1);
2823 }
2824
2825 /* Get death notes for everything that is now used in either I3 or
2826 I2 and used to die in a previous insn. If we built two new
2827 patterns, move from I1 to I2 then I2 to I3 so that we get the
2828 proper movement on registers that I2 modifies. */
2829
2830 if (newi2pat)
2831 {
2832 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2833 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2834 }
2835 else
2836 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2837 i3, &midnotes);
2838
2839 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2840 if (i3notes)
2841 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2842 if (i2notes)
2843 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2844 if (i1notes)
2845 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2846 if (midnotes)
2847 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2848
2849 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2850 know these are REG_UNUSED and want them to go to the desired insn,
2851 so we always pass it as i3. We have not counted the notes in
2852 reg_n_deaths yet, so we need to do so now. */
2853
2854 if (newi2pat && new_i2_notes)
2855 {
2856 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2857 if (REG_P (XEXP (temp, 0)))
2858 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2859
2860 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2861 }
2862
2863 if (new_i3_notes)
2864 {
2865 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2866 if (REG_P (XEXP (temp, 0)))
2867 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2868
2869 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2870 }
2871
2872 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2873 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2874 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2875 in that case, it might delete I2. Similarly for I2 and I1.
2876 Show an additional death due to the REG_DEAD note we make here. If
2877 we discard it in distribute_notes, we will decrement it again. */
2878
2879 if (i3dest_killed)
2880 {
2881 if (REG_P (i3dest_killed))
2882 REG_N_DEATHS (REGNO (i3dest_killed))++;
2883
2884 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2885 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2886 NULL_RTX),
2887 NULL_RTX, i2, NULL_RTX);
2888 else
2889 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2890 NULL_RTX),
2891 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2892 }
2893
2894 if (i2dest_in_i2src)
2895 {
2896 if (REG_P (i2dest))
2897 REG_N_DEATHS (REGNO (i2dest))++;
2898
2899 if (newi2pat && reg_set_p (i2dest, newi2pat))
2900 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2901 NULL_RTX, i2, NULL_RTX);
2902 else
2903 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2904 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2905 }
2906
2907 if (i1dest_in_i1src)
2908 {
2909 if (REG_P (i1dest))
2910 REG_N_DEATHS (REGNO (i1dest))++;
2911
2912 if (newi2pat && reg_set_p (i1dest, newi2pat))
2913 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2914 NULL_RTX, i2, NULL_RTX);
2915 else
2916 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2917 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2918 }
2919
2920 distribute_links (i3links);
2921 distribute_links (i2links);
2922 distribute_links (i1links);
2923
2924 if (REG_P (i2dest))
2925 {
2926 rtx link;
2927 rtx i2_insn = 0, i2_val = 0, set;
2928
2929 /* The insn that used to set this register doesn't exist, and
2930 this life of the register may not exist either. See if one of
2931 I3's links points to an insn that sets I2DEST. If it does,
2932 that is now the last known value for I2DEST. If we don't update
2933 this and I2 set the register to a value that depended on its old
2934 contents, we will get confused. If this insn is used, thing
2935 will be set correctly in combine_instructions. */
2936
2937 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2938 if ((set = single_set (XEXP (link, 0))) != 0
2939 && rtx_equal_p (i2dest, SET_DEST (set)))
2940 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2941
2942 record_value_for_reg (i2dest, i2_insn, i2_val);
2943
2944 /* If the reg formerly set in I2 died only once and that was in I3,
2945 zero its use count so it won't make `reload' do any work. */
2946 if (! added_sets_2
2947 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2948 && ! i2dest_in_i2src)
2949 {
2950 regno = REGNO (i2dest);
2951 REG_N_SETS (regno)--;
2952 }
2953 }
2954
2955 if (i1 && REG_P (i1dest))
2956 {
2957 rtx link;
2958 rtx i1_insn = 0, i1_val = 0, set;
2959
2960 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2961 if ((set = single_set (XEXP (link, 0))) != 0
2962 && rtx_equal_p (i1dest, SET_DEST (set)))
2963 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2964
2965 record_value_for_reg (i1dest, i1_insn, i1_val);
2966
2967 regno = REGNO (i1dest);
2968 if (! added_sets_1 && ! i1dest_in_i1src)
2969 REG_N_SETS (regno)--;
2970 }
2971
2972 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2973 been made to this insn. The order of
2974 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2975 can affect nonzero_bits of newpat */
2976 if (newi2pat)
2977 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2978 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2979
2980 /* Set new_direct_jump_p if a new return or simple jump instruction
2981 has been created.
2982
2983 If I3 is now an unconditional jump, ensure that it has a
2984 BARRIER following it since it may have initially been a
2985 conditional jump. It may also be the last nonnote insn. */
2986
2987 if (returnjump_p (i3) || any_uncondjump_p (i3))
2988 {
2989 *new_direct_jump_p = 1;
2990 mark_jump_label (PATTERN (i3), i3, 0);
2991
2992 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2993 || !BARRIER_P (temp))
2994 emit_barrier_after (i3);
2995 }
2996
2997 if (undobuf.other_insn != NULL_RTX
2998 && (returnjump_p (undobuf.other_insn)
2999 || any_uncondjump_p (undobuf.other_insn)))
3000 {
3001 *new_direct_jump_p = 1;
3002
3003 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3004 || !BARRIER_P (temp))
3005 emit_barrier_after (undobuf.other_insn);
3006 }
3007
3008 /* An NOOP jump does not need barrier, but it does need cleaning up
3009 of CFG. */
3010 if (GET_CODE (newpat) == SET
3011 && SET_SRC (newpat) == pc_rtx
3012 && SET_DEST (newpat) == pc_rtx)
3013 *new_direct_jump_p = 1;
3014 }
3015
3016 combine_successes++;
3017 undo_commit ();
3018
3019 if (added_links_insn
3020 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3021 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3022 return added_links_insn;
3023 else
3024 return newi2pat ? i2 : i3;
3025 }
3026 \f
3027 /* Undo all the modifications recorded in undobuf. */
3028
3029 static void
3030 undo_all (void)
3031 {
3032 struct undo *undo, *next;
3033
3034 for (undo = undobuf.undos; undo; undo = next)
3035 {
3036 next = undo->next;
3037 if (undo->is_int)
3038 *undo->where.i = undo->old_contents.i;
3039 else
3040 *undo->where.r = undo->old_contents.r;
3041
3042 undo->next = undobuf.frees;
3043 undobuf.frees = undo;
3044 }
3045
3046 undobuf.undos = 0;
3047 }
3048
3049 /* We've committed to accepting the changes we made. Move all
3050 of the undos to the free list. */
3051
3052 static void
3053 undo_commit (void)
3054 {
3055 struct undo *undo, *next;
3056
3057 for (undo = undobuf.undos; undo; undo = next)
3058 {
3059 next = undo->next;
3060 undo->next = undobuf.frees;
3061 undobuf.frees = undo;
3062 }
3063 undobuf.undos = 0;
3064 }
3065
3066 \f
3067 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3068 where we have an arithmetic expression and return that point. LOC will
3069 be inside INSN.
3070
3071 try_combine will call this function to see if an insn can be split into
3072 two insns. */
3073
3074 static rtx *
3075 find_split_point (rtx *loc, rtx insn)
3076 {
3077 rtx x = *loc;
3078 enum rtx_code code = GET_CODE (x);
3079 rtx *split;
3080 unsigned HOST_WIDE_INT len = 0;
3081 HOST_WIDE_INT pos = 0;
3082 int unsignedp = 0;
3083 rtx inner = NULL_RTX;
3084
3085 /* First special-case some codes. */
3086 switch (code)
3087 {
3088 case SUBREG:
3089 #ifdef INSN_SCHEDULING
3090 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3091 point. */
3092 if (MEM_P (SUBREG_REG (x)))
3093 return loc;
3094 #endif
3095 return find_split_point (&SUBREG_REG (x), insn);
3096
3097 case MEM:
3098 #ifdef HAVE_lo_sum
3099 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3100 using LO_SUM and HIGH. */
3101 if (GET_CODE (XEXP (x, 0)) == CONST
3102 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3103 {
3104 SUBST (XEXP (x, 0),
3105 gen_rtx_LO_SUM (Pmode,
3106 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3107 XEXP (x, 0)));
3108 return &XEXP (XEXP (x, 0), 0);
3109 }
3110 #endif
3111
3112 /* If we have a PLUS whose second operand is a constant and the
3113 address is not valid, perhaps will can split it up using
3114 the machine-specific way to split large constants. We use
3115 the first pseudo-reg (one of the virtual regs) as a placeholder;
3116 it will not remain in the result. */
3117 if (GET_CODE (XEXP (x, 0)) == PLUS
3118 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3119 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3120 {
3121 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3122 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3123 subst_insn);
3124
3125 /* This should have produced two insns, each of which sets our
3126 placeholder. If the source of the second is a valid address,
3127 we can make put both sources together and make a split point
3128 in the middle. */
3129
3130 if (seq
3131 && NEXT_INSN (seq) != NULL_RTX
3132 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3133 && NONJUMP_INSN_P (seq)
3134 && GET_CODE (PATTERN (seq)) == SET
3135 && SET_DEST (PATTERN (seq)) == reg
3136 && ! reg_mentioned_p (reg,
3137 SET_SRC (PATTERN (seq)))
3138 && NONJUMP_INSN_P (NEXT_INSN (seq))
3139 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3140 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3141 && memory_address_p (GET_MODE (x),
3142 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3143 {
3144 rtx src1 = SET_SRC (PATTERN (seq));
3145 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3146
3147 /* Replace the placeholder in SRC2 with SRC1. If we can
3148 find where in SRC2 it was placed, that can become our
3149 split point and we can replace this address with SRC2.
3150 Just try two obvious places. */
3151
3152 src2 = replace_rtx (src2, reg, src1);
3153 split = 0;
3154 if (XEXP (src2, 0) == src1)
3155 split = &XEXP (src2, 0);
3156 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3157 && XEXP (XEXP (src2, 0), 0) == src1)
3158 split = &XEXP (XEXP (src2, 0), 0);
3159
3160 if (split)
3161 {
3162 SUBST (XEXP (x, 0), src2);
3163 return split;
3164 }
3165 }
3166
3167 /* If that didn't work, perhaps the first operand is complex and
3168 needs to be computed separately, so make a split point there.
3169 This will occur on machines that just support REG + CONST
3170 and have a constant moved through some previous computation. */
3171
3172 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3173 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3174 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3175 return &XEXP (XEXP (x, 0), 0);
3176 }
3177 break;
3178
3179 case SET:
3180 #ifdef HAVE_cc0
3181 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3182 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3183 we need to put the operand into a register. So split at that
3184 point. */
3185
3186 if (SET_DEST (x) == cc0_rtx
3187 && GET_CODE (SET_SRC (x)) != COMPARE
3188 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3189 && !OBJECT_P (SET_SRC (x))
3190 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3191 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3192 return &SET_SRC (x);
3193 #endif
3194
3195 /* See if we can split SET_SRC as it stands. */
3196 split = find_split_point (&SET_SRC (x), insn);
3197 if (split && split != &SET_SRC (x))
3198 return split;
3199
3200 /* See if we can split SET_DEST as it stands. */
3201 split = find_split_point (&SET_DEST (x), insn);
3202 if (split && split != &SET_DEST (x))
3203 return split;
3204
3205 /* See if this is a bitfield assignment with everything constant. If
3206 so, this is an IOR of an AND, so split it into that. */
3207 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3208 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3209 <= HOST_BITS_PER_WIDE_INT)
3210 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3211 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3212 && GET_CODE (SET_SRC (x)) == CONST_INT
3213 && ((INTVAL (XEXP (SET_DEST (x), 1))
3214 + INTVAL (XEXP (SET_DEST (x), 2)))
3215 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3216 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3217 {
3218 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3219 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3220 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3221 rtx dest = XEXP (SET_DEST (x), 0);
3222 enum machine_mode mode = GET_MODE (dest);
3223 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3224
3225 if (BITS_BIG_ENDIAN)
3226 pos = GET_MODE_BITSIZE (mode) - len - pos;
3227
3228 if (src == mask)
3229 SUBST (SET_SRC (x),
3230 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3231 else
3232 {
3233 rtx negmask = gen_int_mode (~(mask << pos), mode);
3234 SUBST (SET_SRC (x),
3235 simplify_gen_binary (IOR, mode,
3236 simplify_gen_binary (AND, mode,
3237 dest, negmask),
3238 GEN_INT (src << pos)));
3239 }
3240
3241 SUBST (SET_DEST (x), dest);
3242
3243 split = find_split_point (&SET_SRC (x), insn);
3244 if (split && split != &SET_SRC (x))
3245 return split;
3246 }
3247
3248 /* Otherwise, see if this is an operation that we can split into two.
3249 If so, try to split that. */
3250 code = GET_CODE (SET_SRC (x));
3251
3252 switch (code)
3253 {
3254 case AND:
3255 /* If we are AND'ing with a large constant that is only a single
3256 bit and the result is only being used in a context where we
3257 need to know if it is zero or nonzero, replace it with a bit
3258 extraction. This will avoid the large constant, which might
3259 have taken more than one insn to make. If the constant were
3260 not a valid argument to the AND but took only one insn to make,
3261 this is no worse, but if it took more than one insn, it will
3262 be better. */
3263
3264 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3265 && REG_P (XEXP (SET_SRC (x), 0))
3266 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3267 && REG_P (SET_DEST (x))
3268 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3269 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3270 && XEXP (*split, 0) == SET_DEST (x)
3271 && XEXP (*split, 1) == const0_rtx)
3272 {
3273 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3274 XEXP (SET_SRC (x), 0),
3275 pos, NULL_RTX, 1, 1, 0, 0);
3276 if (extraction != 0)
3277 {
3278 SUBST (SET_SRC (x), extraction);
3279 return find_split_point (loc, insn);
3280 }
3281 }
3282 break;
3283
3284 case NE:
3285 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3286 is known to be on, this can be converted into a NEG of a shift. */
3287 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3288 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3289 && 1 <= (pos = exact_log2
3290 (nonzero_bits (XEXP (SET_SRC (x), 0),
3291 GET_MODE (XEXP (SET_SRC (x), 0))))))
3292 {
3293 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3294
3295 SUBST (SET_SRC (x),
3296 gen_rtx_NEG (mode,
3297 gen_rtx_LSHIFTRT (mode,
3298 XEXP (SET_SRC (x), 0),
3299 GEN_INT (pos))));
3300
3301 split = find_split_point (&SET_SRC (x), insn);
3302 if (split && split != &SET_SRC (x))
3303 return split;
3304 }
3305 break;
3306
3307 case SIGN_EXTEND:
3308 inner = XEXP (SET_SRC (x), 0);
3309
3310 /* We can't optimize if either mode is a partial integer
3311 mode as we don't know how many bits are significant
3312 in those modes. */
3313 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3314 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3315 break;
3316
3317 pos = 0;
3318 len = GET_MODE_BITSIZE (GET_MODE (inner));
3319 unsignedp = 0;
3320 break;
3321
3322 case SIGN_EXTRACT:
3323 case ZERO_EXTRACT:
3324 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3325 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3326 {
3327 inner = XEXP (SET_SRC (x), 0);
3328 len = INTVAL (XEXP (SET_SRC (x), 1));
3329 pos = INTVAL (XEXP (SET_SRC (x), 2));
3330
3331 if (BITS_BIG_ENDIAN)
3332 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3333 unsignedp = (code == ZERO_EXTRACT);
3334 }
3335 break;
3336
3337 default:
3338 break;
3339 }
3340
3341 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3342 {
3343 enum machine_mode mode = GET_MODE (SET_SRC (x));
3344
3345 /* For unsigned, we have a choice of a shift followed by an
3346 AND or two shifts. Use two shifts for field sizes where the
3347 constant might be too large. We assume here that we can
3348 always at least get 8-bit constants in an AND insn, which is
3349 true for every current RISC. */
3350
3351 if (unsignedp && len <= 8)
3352 {
3353 SUBST (SET_SRC (x),
3354 gen_rtx_AND (mode,
3355 gen_rtx_LSHIFTRT
3356 (mode, gen_lowpart (mode, inner),
3357 GEN_INT (pos)),
3358 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3359
3360 split = find_split_point (&SET_SRC (x), insn);
3361 if (split && split != &SET_SRC (x))
3362 return split;
3363 }
3364 else
3365 {
3366 SUBST (SET_SRC (x),
3367 gen_rtx_fmt_ee
3368 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3369 gen_rtx_ASHIFT (mode,
3370 gen_lowpart (mode, inner),
3371 GEN_INT (GET_MODE_BITSIZE (mode)
3372 - len - pos)),
3373 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3374
3375 split = find_split_point (&SET_SRC (x), insn);
3376 if (split && split != &SET_SRC (x))
3377 return split;
3378 }
3379 }
3380
3381 /* See if this is a simple operation with a constant as the second
3382 operand. It might be that this constant is out of range and hence
3383 could be used as a split point. */
3384 if (BINARY_P (SET_SRC (x))
3385 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3386 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3387 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3388 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3389 return &XEXP (SET_SRC (x), 1);
3390
3391 /* Finally, see if this is a simple operation with its first operand
3392 not in a register. The operation might require this operand in a
3393 register, so return it as a split point. We can always do this
3394 because if the first operand were another operation, we would have
3395 already found it as a split point. */
3396 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3397 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3398 return &XEXP (SET_SRC (x), 0);
3399
3400 return 0;
3401
3402 case AND:
3403 case IOR:
3404 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3405 it is better to write this as (not (ior A B)) so we can split it.
3406 Similarly for IOR. */
3407 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3408 {
3409 SUBST (*loc,
3410 gen_rtx_NOT (GET_MODE (x),
3411 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3412 GET_MODE (x),
3413 XEXP (XEXP (x, 0), 0),
3414 XEXP (XEXP (x, 1), 0))));
3415 return find_split_point (loc, insn);
3416 }
3417
3418 /* Many RISC machines have a large set of logical insns. If the
3419 second operand is a NOT, put it first so we will try to split the
3420 other operand first. */
3421 if (GET_CODE (XEXP (x, 1)) == NOT)
3422 {
3423 rtx tem = XEXP (x, 0);
3424 SUBST (XEXP (x, 0), XEXP (x, 1));
3425 SUBST (XEXP (x, 1), tem);
3426 }
3427 break;
3428
3429 default:
3430 break;
3431 }
3432
3433 /* Otherwise, select our actions depending on our rtx class. */
3434 switch (GET_RTX_CLASS (code))
3435 {
3436 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3437 case RTX_TERNARY:
3438 split = find_split_point (&XEXP (x, 2), insn);
3439 if (split)
3440 return split;
3441 /* ... fall through ... */
3442 case RTX_BIN_ARITH:
3443 case RTX_COMM_ARITH:
3444 case RTX_COMPARE:
3445 case RTX_COMM_COMPARE:
3446 split = find_split_point (&XEXP (x, 1), insn);
3447 if (split)
3448 return split;
3449 /* ... fall through ... */
3450 case RTX_UNARY:
3451 /* Some machines have (and (shift ...) ...) insns. If X is not
3452 an AND, but XEXP (X, 0) is, use it as our split point. */
3453 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3454 return &XEXP (x, 0);
3455
3456 split = find_split_point (&XEXP (x, 0), insn);
3457 if (split)
3458 return split;
3459 return loc;
3460
3461 default:
3462 /* Otherwise, we don't have a split point. */
3463 return 0;
3464 }
3465 }
3466 \f
3467 /* Throughout X, replace FROM with TO, and return the result.
3468 The result is TO if X is FROM;
3469 otherwise the result is X, but its contents may have been modified.
3470 If they were modified, a record was made in undobuf so that
3471 undo_all will (among other things) return X to its original state.
3472
3473 If the number of changes necessary is too much to record to undo,
3474 the excess changes are not made, so the result is invalid.
3475 The changes already made can still be undone.
3476 undobuf.num_undo is incremented for such changes, so by testing that
3477 the caller can tell whether the result is valid.
3478
3479 `n_occurrences' is incremented each time FROM is replaced.
3480
3481 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3482
3483 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3484 by copying if `n_occurrences' is nonzero. */
3485
3486 static rtx
3487 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3488 {
3489 enum rtx_code code = GET_CODE (x);
3490 enum machine_mode op0_mode = VOIDmode;
3491 const char *fmt;
3492 int len, i;
3493 rtx new;
3494
3495 /* Two expressions are equal if they are identical copies of a shared
3496 RTX or if they are both registers with the same register number
3497 and mode. */
3498
3499 #define COMBINE_RTX_EQUAL_P(X,Y) \
3500 ((X) == (Y) \
3501 || (REG_P (X) && REG_P (Y) \
3502 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3503
3504 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3505 {
3506 n_occurrences++;
3507 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3508 }
3509
3510 /* If X and FROM are the same register but different modes, they will
3511 not have been seen as equal above. However, flow.c will make a
3512 LOG_LINKS entry for that case. If we do nothing, we will try to
3513 rerecognize our original insn and, when it succeeds, we will
3514 delete the feeding insn, which is incorrect.
3515
3516 So force this insn not to match in this (rare) case. */
3517 if (! in_dest && code == REG && REG_P (from)
3518 && REGNO (x) == REGNO (from))
3519 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3520
3521 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3522 of which may contain things that can be combined. */
3523 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3524 return x;
3525
3526 /* It is possible to have a subexpression appear twice in the insn.
3527 Suppose that FROM is a register that appears within TO.
3528 Then, after that subexpression has been scanned once by `subst',
3529 the second time it is scanned, TO may be found. If we were
3530 to scan TO here, we would find FROM within it and create a
3531 self-referent rtl structure which is completely wrong. */
3532 if (COMBINE_RTX_EQUAL_P (x, to))
3533 return to;
3534
3535 /* Parallel asm_operands need special attention because all of the
3536 inputs are shared across the arms. Furthermore, unsharing the
3537 rtl results in recognition failures. Failure to handle this case
3538 specially can result in circular rtl.
3539
3540 Solve this by doing a normal pass across the first entry of the
3541 parallel, and only processing the SET_DESTs of the subsequent
3542 entries. Ug. */
3543
3544 if (code == PARALLEL
3545 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3546 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3547 {
3548 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3549
3550 /* If this substitution failed, this whole thing fails. */
3551 if (GET_CODE (new) == CLOBBER
3552 && XEXP (new, 0) == const0_rtx)
3553 return new;
3554
3555 SUBST (XVECEXP (x, 0, 0), new);
3556
3557 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3558 {
3559 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3560
3561 if (!REG_P (dest)
3562 && GET_CODE (dest) != CC0
3563 && GET_CODE (dest) != PC)
3564 {
3565 new = subst (dest, from, to, 0, unique_copy);
3566
3567 /* If this substitution failed, this whole thing fails. */
3568 if (GET_CODE (new) == CLOBBER
3569 && XEXP (new, 0) == const0_rtx)
3570 return new;
3571
3572 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3573 }
3574 }
3575 }
3576 else
3577 {
3578 len = GET_RTX_LENGTH (code);
3579 fmt = GET_RTX_FORMAT (code);
3580
3581 /* We don't need to process a SET_DEST that is a register, CC0,
3582 or PC, so set up to skip this common case. All other cases
3583 where we want to suppress replacing something inside a
3584 SET_SRC are handled via the IN_DEST operand. */
3585 if (code == SET
3586 && (REG_P (SET_DEST (x))
3587 || GET_CODE (SET_DEST (x)) == CC0
3588 || GET_CODE (SET_DEST (x)) == PC))
3589 fmt = "ie";
3590
3591 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3592 constant. */
3593 if (fmt[0] == 'e')
3594 op0_mode = GET_MODE (XEXP (x, 0));
3595
3596 for (i = 0; i < len; i++)
3597 {
3598 if (fmt[i] == 'E')
3599 {
3600 int j;
3601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3602 {
3603 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3604 {
3605 new = (unique_copy && n_occurrences
3606 ? copy_rtx (to) : to);
3607 n_occurrences++;
3608 }
3609 else
3610 {
3611 new = subst (XVECEXP (x, i, j), from, to, 0,
3612 unique_copy);
3613
3614 /* If this substitution failed, this whole thing
3615 fails. */
3616 if (GET_CODE (new) == CLOBBER
3617 && XEXP (new, 0) == const0_rtx)
3618 return new;
3619 }
3620
3621 SUBST (XVECEXP (x, i, j), new);
3622 }
3623 }
3624 else if (fmt[i] == 'e')
3625 {
3626 /* If this is a register being set, ignore it. */
3627 new = XEXP (x, i);
3628 if (in_dest
3629 && i == 0
3630 && (((code == SUBREG || code == ZERO_EXTRACT)
3631 && REG_P (new))
3632 || code == STRICT_LOW_PART))
3633 ;
3634
3635 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3636 {
3637 /* In general, don't install a subreg involving two
3638 modes not tieable. It can worsen register
3639 allocation, and can even make invalid reload
3640 insns, since the reg inside may need to be copied
3641 from in the outside mode, and that may be invalid
3642 if it is an fp reg copied in integer mode.
3643
3644 We allow two exceptions to this: It is valid if
3645 it is inside another SUBREG and the mode of that
3646 SUBREG and the mode of the inside of TO is
3647 tieable and it is valid if X is a SET that copies
3648 FROM to CC0. */
3649
3650 if (GET_CODE (to) == SUBREG
3651 && ! MODES_TIEABLE_P (GET_MODE (to),
3652 GET_MODE (SUBREG_REG (to)))
3653 && ! (code == SUBREG
3654 && MODES_TIEABLE_P (GET_MODE (x),
3655 GET_MODE (SUBREG_REG (to))))
3656 #ifdef HAVE_cc0
3657 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3658 #endif
3659 )
3660 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3661
3662 #ifdef CANNOT_CHANGE_MODE_CLASS
3663 if (code == SUBREG
3664 && REG_P (to)
3665 && REGNO (to) < FIRST_PSEUDO_REGISTER
3666 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3667 GET_MODE (to),
3668 GET_MODE (x)))
3669 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3670 #endif
3671
3672 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3673 n_occurrences++;
3674 }
3675 else
3676 /* If we are in a SET_DEST, suppress most cases unless we
3677 have gone inside a MEM, in which case we want to
3678 simplify the address. We assume here that things that
3679 are actually part of the destination have their inner
3680 parts in the first expression. This is true for SUBREG,
3681 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3682 things aside from REG and MEM that should appear in a
3683 SET_DEST. */
3684 new = subst (XEXP (x, i), from, to,
3685 (((in_dest
3686 && (code == SUBREG || code == STRICT_LOW_PART
3687 || code == ZERO_EXTRACT))
3688 || code == SET)
3689 && i == 0), unique_copy);
3690
3691 /* If we found that we will have to reject this combination,
3692 indicate that by returning the CLOBBER ourselves, rather than
3693 an expression containing it. This will speed things up as
3694 well as prevent accidents where two CLOBBERs are considered
3695 to be equal, thus producing an incorrect simplification. */
3696
3697 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3698 return new;
3699
3700 if (GET_CODE (x) == SUBREG
3701 && (GET_CODE (new) == CONST_INT
3702 || GET_CODE (new) == CONST_DOUBLE))
3703 {
3704 enum machine_mode mode = GET_MODE (x);
3705
3706 x = simplify_subreg (GET_MODE (x), new,
3707 GET_MODE (SUBREG_REG (x)),
3708 SUBREG_BYTE (x));
3709 if (! x)
3710 x = gen_rtx_CLOBBER (mode, const0_rtx);
3711 }
3712 else if (GET_CODE (new) == CONST_INT
3713 && GET_CODE (x) == ZERO_EXTEND)
3714 {
3715 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3716 new, GET_MODE (XEXP (x, 0)));
3717 gcc_assert (x);
3718 }
3719 else
3720 SUBST (XEXP (x, i), new);
3721 }
3722 }
3723 }
3724
3725 /* Try to simplify X. If the simplification changed the code, it is likely
3726 that further simplification will help, so loop, but limit the number
3727 of repetitions that will be performed. */
3728
3729 for (i = 0; i < 4; i++)
3730 {
3731 /* If X is sufficiently simple, don't bother trying to do anything
3732 with it. */
3733 if (code != CONST_INT && code != REG && code != CLOBBER)
3734 x = combine_simplify_rtx (x, op0_mode, in_dest);
3735
3736 if (GET_CODE (x) == code)
3737 break;
3738
3739 code = GET_CODE (x);
3740
3741 /* We no longer know the original mode of operand 0 since we
3742 have changed the form of X) */
3743 op0_mode = VOIDmode;
3744 }
3745
3746 return x;
3747 }
3748 \f
3749 /* Simplify X, a piece of RTL. We just operate on the expression at the
3750 outer level; call `subst' to simplify recursively. Return the new
3751 expression.
3752
3753 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3754 if we are inside a SET_DEST. */
3755
3756 static rtx
3757 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3758 {
3759 enum rtx_code code = GET_CODE (x);
3760 enum machine_mode mode = GET_MODE (x);
3761 rtx temp;
3762 rtx reversed;
3763 int i;
3764
3765 /* If this is a commutative operation, put a constant last and a complex
3766 expression first. We don't need to do this for comparisons here. */
3767 if (COMMUTATIVE_ARITH_P (x)
3768 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3769 {
3770 temp = XEXP (x, 0);
3771 SUBST (XEXP (x, 0), XEXP (x, 1));
3772 SUBST (XEXP (x, 1), temp);
3773 }
3774
3775 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3776 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3777 things. Check for cases where both arms are testing the same
3778 condition.
3779
3780 Don't do anything if all operands are very simple. */
3781
3782 if ((BINARY_P (x)
3783 && ((!OBJECT_P (XEXP (x, 0))
3784 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3785 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3786 || (!OBJECT_P (XEXP (x, 1))
3787 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3788 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3789 || (UNARY_P (x)
3790 && (!OBJECT_P (XEXP (x, 0))
3791 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3792 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3793 {
3794 rtx cond, true_rtx, false_rtx;
3795
3796 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3797 if (cond != 0
3798 /* If everything is a comparison, what we have is highly unlikely
3799 to be simpler, so don't use it. */
3800 && ! (COMPARISON_P (x)
3801 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3802 {
3803 rtx cop1 = const0_rtx;
3804 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3805
3806 if (cond_code == NE && COMPARISON_P (cond))
3807 return x;
3808
3809 /* Simplify the alternative arms; this may collapse the true and
3810 false arms to store-flag values. Be careful to use copy_rtx
3811 here since true_rtx or false_rtx might share RTL with x as a
3812 result of the if_then_else_cond call above. */
3813 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3814 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3815
3816 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3817 is unlikely to be simpler. */
3818 if (general_operand (true_rtx, VOIDmode)
3819 && general_operand (false_rtx, VOIDmode))
3820 {
3821 enum rtx_code reversed;
3822
3823 /* Restarting if we generate a store-flag expression will cause
3824 us to loop. Just drop through in this case. */
3825
3826 /* If the result values are STORE_FLAG_VALUE and zero, we can
3827 just make the comparison operation. */
3828 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3829 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3830 cond, cop1);
3831 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3832 && ((reversed = reversed_comparison_code_parts
3833 (cond_code, cond, cop1, NULL))
3834 != UNKNOWN))
3835 x = simplify_gen_relational (reversed, mode, VOIDmode,
3836 cond, cop1);
3837
3838 /* Likewise, we can make the negate of a comparison operation
3839 if the result values are - STORE_FLAG_VALUE and zero. */
3840 else if (GET_CODE (true_rtx) == CONST_INT
3841 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3842 && false_rtx == const0_rtx)
3843 x = simplify_gen_unary (NEG, mode,
3844 simplify_gen_relational (cond_code,
3845 mode, VOIDmode,
3846 cond, cop1),
3847 mode);
3848 else if (GET_CODE (false_rtx) == CONST_INT
3849 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3850 && true_rtx == const0_rtx
3851 && ((reversed = reversed_comparison_code_parts
3852 (cond_code, cond, cop1, NULL))
3853 != UNKNOWN))
3854 x = simplify_gen_unary (NEG, mode,
3855 simplify_gen_relational (reversed,
3856 mode, VOIDmode,
3857 cond, cop1),
3858 mode);
3859 else
3860 return gen_rtx_IF_THEN_ELSE (mode,
3861 simplify_gen_relational (cond_code,
3862 mode,
3863 VOIDmode,
3864 cond,
3865 cop1),
3866 true_rtx, false_rtx);
3867
3868 code = GET_CODE (x);
3869 op0_mode = VOIDmode;
3870 }
3871 }
3872 }
3873
3874 /* Try to fold this expression in case we have constants that weren't
3875 present before. */
3876 temp = 0;
3877 switch (GET_RTX_CLASS (code))
3878 {
3879 case RTX_UNARY:
3880 if (op0_mode == VOIDmode)
3881 op0_mode = GET_MODE (XEXP (x, 0));
3882 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3883 break;
3884 case RTX_COMPARE:
3885 case RTX_COMM_COMPARE:
3886 {
3887 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3888 if (cmp_mode == VOIDmode)
3889 {
3890 cmp_mode = GET_MODE (XEXP (x, 1));
3891 if (cmp_mode == VOIDmode)
3892 cmp_mode = op0_mode;
3893 }
3894 temp = simplify_relational_operation (code, mode, cmp_mode,
3895 XEXP (x, 0), XEXP (x, 1));
3896 }
3897 break;
3898 case RTX_COMM_ARITH:
3899 case RTX_BIN_ARITH:
3900 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3901 break;
3902 case RTX_BITFIELD_OPS:
3903 case RTX_TERNARY:
3904 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3905 XEXP (x, 1), XEXP (x, 2));
3906 break;
3907 default:
3908 break;
3909 }
3910
3911 if (temp)
3912 {
3913 x = temp;
3914 code = GET_CODE (temp);
3915 op0_mode = VOIDmode;
3916 mode = GET_MODE (temp);
3917 }
3918
3919 /* First see if we can apply the inverse distributive law. */
3920 if (code == PLUS || code == MINUS
3921 || code == AND || code == IOR || code == XOR)
3922 {
3923 x = apply_distributive_law (x);
3924 code = GET_CODE (x);
3925 op0_mode = VOIDmode;
3926 }
3927
3928 /* If CODE is an associative operation not otherwise handled, see if we
3929 can associate some operands. This can win if they are constants or
3930 if they are logically related (i.e. (a & b) & a). */
3931 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3932 || code == AND || code == IOR || code == XOR
3933 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3934 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3935 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3936 {
3937 if (GET_CODE (XEXP (x, 0)) == code)
3938 {
3939 rtx other = XEXP (XEXP (x, 0), 0);
3940 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3941 rtx inner_op1 = XEXP (x, 1);
3942 rtx inner;
3943
3944 /* Make sure we pass the constant operand if any as the second
3945 one if this is a commutative operation. */
3946 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3947 {
3948 rtx tem = inner_op0;
3949 inner_op0 = inner_op1;
3950 inner_op1 = tem;
3951 }
3952 inner = simplify_binary_operation (code == MINUS ? PLUS
3953 : code == DIV ? MULT
3954 : code,
3955 mode, inner_op0, inner_op1);
3956
3957 /* For commutative operations, try the other pair if that one
3958 didn't simplify. */
3959 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3960 {
3961 other = XEXP (XEXP (x, 0), 1);
3962 inner = simplify_binary_operation (code, mode,
3963 XEXP (XEXP (x, 0), 0),
3964 XEXP (x, 1));
3965 }
3966
3967 if (inner)
3968 return simplify_gen_binary (code, mode, other, inner);
3969 }
3970 }
3971
3972 /* A little bit of algebraic simplification here. */
3973 switch (code)
3974 {
3975 case MEM:
3976 /* Ensure that our address has any ASHIFTs converted to MULT in case
3977 address-recognizing predicates are called later. */
3978 temp = make_compound_operation (XEXP (x, 0), MEM);
3979 SUBST (XEXP (x, 0), temp);
3980 break;
3981
3982 case SUBREG:
3983 if (op0_mode == VOIDmode)
3984 op0_mode = GET_MODE (SUBREG_REG (x));
3985
3986 /* See if this can be moved to simplify_subreg. */
3987 if (CONSTANT_P (SUBREG_REG (x))
3988 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3989 /* Don't call gen_lowpart if the inner mode
3990 is VOIDmode and we cannot simplify it, as SUBREG without
3991 inner mode is invalid. */
3992 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3993 || gen_lowpart_common (mode, SUBREG_REG (x))))
3994 return gen_lowpart (mode, SUBREG_REG (x));
3995
3996 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3997 break;
3998 {
3999 rtx temp;
4000 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4001 SUBREG_BYTE (x));
4002 if (temp)
4003 return temp;
4004 }
4005
4006 /* Don't change the mode of the MEM if that would change the meaning
4007 of the address. */
4008 if (MEM_P (SUBREG_REG (x))
4009 && (MEM_VOLATILE_P (SUBREG_REG (x))
4010 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4011 return gen_rtx_CLOBBER (mode, const0_rtx);
4012
4013 /* Note that we cannot do any narrowing for non-constants since
4014 we might have been counting on using the fact that some bits were
4015 zero. We now do this in the SET. */
4016
4017 break;
4018
4019 case NOT:
4020 if (GET_CODE (XEXP (x, 0)) == SUBREG
4021 && subreg_lowpart_p (XEXP (x, 0))
4022 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4023 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4024 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4025 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4026 {
4027 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4028
4029 x = gen_rtx_ROTATE (inner_mode,
4030 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4031 inner_mode),
4032 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4033 return gen_lowpart (mode, x);
4034 }
4035
4036 /* Apply De Morgan's laws to reduce number of patterns for machines
4037 with negating logical insns (and-not, nand, etc.). If result has
4038 only one NOT, put it first, since that is how the patterns are
4039 coded. */
4040
4041 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4042 {
4043 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4044 enum machine_mode op_mode;
4045
4046 op_mode = GET_MODE (in1);
4047 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4048
4049 op_mode = GET_MODE (in2);
4050 if (op_mode == VOIDmode)
4051 op_mode = mode;
4052 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4053
4054 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4055 {
4056 rtx tem = in2;
4057 in2 = in1; in1 = tem;
4058 }
4059
4060 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4061 mode, in1, in2);
4062 }
4063 break;
4064
4065 case NEG:
4066 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4067 if (GET_CODE (XEXP (x, 0)) == XOR
4068 && XEXP (XEXP (x, 0), 1) == const1_rtx
4069 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4070 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4071 constm1_rtx);
4072
4073 temp = expand_compound_operation (XEXP (x, 0));
4074
4075 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4076 replaced by (lshiftrt X C). This will convert
4077 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4078
4079 if (GET_CODE (temp) == ASHIFTRT
4080 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4081 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4082 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4083 INTVAL (XEXP (temp, 1)));
4084
4085 /* If X has only a single bit that might be nonzero, say, bit I, convert
4086 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4087 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4088 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4089 or a SUBREG of one since we'd be making the expression more
4090 complex if it was just a register. */
4091
4092 if (!REG_P (temp)
4093 && ! (GET_CODE (temp) == SUBREG
4094 && REG_P (SUBREG_REG (temp)))
4095 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4096 {
4097 rtx temp1 = simplify_shift_const
4098 (NULL_RTX, ASHIFTRT, mode,
4099 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4100 GET_MODE_BITSIZE (mode) - 1 - i),
4101 GET_MODE_BITSIZE (mode) - 1 - i);
4102
4103 /* If all we did was surround TEMP with the two shifts, we
4104 haven't improved anything, so don't use it. Otherwise,
4105 we are better off with TEMP1. */
4106 if (GET_CODE (temp1) != ASHIFTRT
4107 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4108 || XEXP (XEXP (temp1, 0), 0) != temp)
4109 return temp1;
4110 }
4111 break;
4112
4113 case TRUNCATE:
4114 /* We can't handle truncation to a partial integer mode here
4115 because we don't know the real bitsize of the partial
4116 integer mode. */
4117 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4118 break;
4119
4120 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4121 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4122 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4123 SUBST (XEXP (x, 0),
4124 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4125 GET_MODE_MASK (mode), NULL_RTX, 0));
4126
4127 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4128 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4129 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4130 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4131 return XEXP (XEXP (x, 0), 0);
4132
4133 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4134 (OP:SI foo:SI) if OP is NEG or ABS. */
4135 if ((GET_CODE (XEXP (x, 0)) == ABS
4136 || GET_CODE (XEXP (x, 0)) == NEG)
4137 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4138 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4139 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4140 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4141 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4142
4143 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4144 (truncate:SI x). */
4145 if (GET_CODE (XEXP (x, 0)) == SUBREG
4146 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4147 && subreg_lowpart_p (XEXP (x, 0)))
4148 return SUBREG_REG (XEXP (x, 0));
4149
4150 /* If we know that the value is already truncated, we can
4151 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4152 is nonzero for the corresponding modes. But don't do this
4153 for an (LSHIFTRT (MULT ...)) since this will cause problems
4154 with the umulXi3_highpart patterns. */
4155 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4156 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4157 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4158 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4159 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4160 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4161 return gen_lowpart (mode, XEXP (x, 0));
4162
4163 /* A truncate of a comparison can be replaced with a subreg if
4164 STORE_FLAG_VALUE permits. This is like the previous test,
4165 but it works even if the comparison is done in a mode larger
4166 than HOST_BITS_PER_WIDE_INT. */
4167 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4168 && COMPARISON_P (XEXP (x, 0))
4169 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4170 return gen_lowpart (mode, XEXP (x, 0));
4171
4172 /* Similarly, a truncate of a register whose value is a
4173 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4174 permits. */
4175 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4176 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4177 && (temp = get_last_value (XEXP (x, 0)))
4178 && COMPARISON_P (temp))
4179 return gen_lowpart (mode, XEXP (x, 0));
4180
4181 break;
4182
4183 case FLOAT_TRUNCATE:
4184 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4185 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4186 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4187 return XEXP (XEXP (x, 0), 0);
4188
4189 /* (float_truncate:SF (float_truncate:DF foo:XF))
4190 = (float_truncate:SF foo:XF).
4191 This may eliminate double rounding, so it is unsafe.
4192
4193 (float_truncate:SF (float_extend:XF foo:DF))
4194 = (float_truncate:SF foo:DF).
4195
4196 (float_truncate:DF (float_extend:XF foo:SF))
4197 = (float_extend:SF foo:DF). */
4198 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4199 && flag_unsafe_math_optimizations)
4200 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4201 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4202 0)))
4203 > GET_MODE_SIZE (mode)
4204 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4205 mode,
4206 XEXP (XEXP (x, 0), 0), mode);
4207
4208 /* (float_truncate (float x)) is (float x) */
4209 if (GET_CODE (XEXP (x, 0)) == FLOAT
4210 && (flag_unsafe_math_optimizations
4211 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4212 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4213 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4214 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4215 return simplify_gen_unary (FLOAT, mode,
4216 XEXP (XEXP (x, 0), 0),
4217 GET_MODE (XEXP (XEXP (x, 0), 0)));
4218
4219 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4220 (OP:SF foo:SF) if OP is NEG or ABS. */
4221 if ((GET_CODE (XEXP (x, 0)) == ABS
4222 || GET_CODE (XEXP (x, 0)) == NEG)
4223 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4224 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4225 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4226 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4227
4228 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4229 is (float_truncate:SF x). */
4230 if (GET_CODE (XEXP (x, 0)) == SUBREG
4231 && subreg_lowpart_p (XEXP (x, 0))
4232 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4233 return SUBREG_REG (XEXP (x, 0));
4234 break;
4235 case FLOAT_EXTEND:
4236 /* (float_extend (float_extend x)) is (float_extend x)
4237
4238 (float_extend (float x)) is (float x) assuming that double
4239 rounding can't happen.
4240 */
4241 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4242 || (GET_CODE (XEXP (x, 0)) == FLOAT
4243 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4244 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4245 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4246 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4247 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4248 XEXP (XEXP (x, 0), 0),
4249 GET_MODE (XEXP (XEXP (x, 0), 0)));
4250
4251 break;
4252 #ifdef HAVE_cc0
4253 case COMPARE:
4254 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4255 using cc0, in which case we want to leave it as a COMPARE
4256 so we can distinguish it from a register-register-copy. */
4257 if (XEXP (x, 1) == const0_rtx)
4258 return XEXP (x, 0);
4259
4260 /* x - 0 is the same as x unless x's mode has signed zeros and
4261 allows rounding towards -infinity. Under those conditions,
4262 0 - 0 is -0. */
4263 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4264 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4265 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4266 return XEXP (x, 0);
4267 break;
4268 #endif
4269
4270 case CONST:
4271 /* (const (const X)) can become (const X). Do it this way rather than
4272 returning the inner CONST since CONST can be shared with a
4273 REG_EQUAL note. */
4274 if (GET_CODE (XEXP (x, 0)) == CONST)
4275 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4276 break;
4277
4278 #ifdef HAVE_lo_sum
4279 case LO_SUM:
4280 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4281 can add in an offset. find_split_point will split this address up
4282 again if it doesn't match. */
4283 if (GET_CODE (XEXP (x, 0)) == HIGH
4284 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4285 return XEXP (x, 1);
4286 break;
4287 #endif
4288
4289 case PLUS:
4290 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4291 */
4292 if (GET_CODE (XEXP (x, 0)) == MULT
4293 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4294 {
4295 rtx in1, in2;
4296
4297 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4298 in2 = XEXP (XEXP (x, 0), 1);
4299 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4300 simplify_gen_binary (MULT, mode,
4301 in1, in2));
4302 }
4303
4304 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4305 outermost. That's because that's the way indexed addresses are
4306 supposed to appear. This code used to check many more cases, but
4307 they are now checked elsewhere. */
4308 if (GET_CODE (XEXP (x, 0)) == PLUS
4309 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4310 return simplify_gen_binary (PLUS, mode,
4311 simplify_gen_binary (PLUS, mode,
4312 XEXP (XEXP (x, 0), 0),
4313 XEXP (x, 1)),
4314 XEXP (XEXP (x, 0), 1));
4315
4316 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4317 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4318 bit-field and can be replaced by either a sign_extend or a
4319 sign_extract. The `and' may be a zero_extend and the two
4320 <c>, -<c> constants may be reversed. */
4321 if (GET_CODE (XEXP (x, 0)) == XOR
4322 && GET_CODE (XEXP (x, 1)) == CONST_INT
4323 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4324 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4325 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4326 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4327 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4328 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4329 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4330 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4331 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4332 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4333 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4334 == (unsigned int) i + 1))))
4335 return simplify_shift_const
4336 (NULL_RTX, ASHIFTRT, mode,
4337 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4338 XEXP (XEXP (XEXP (x, 0), 0), 0),
4339 GET_MODE_BITSIZE (mode) - (i + 1)),
4340 GET_MODE_BITSIZE (mode) - (i + 1));
4341
4342 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4343 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4344 is 1. This produces better code than the alternative immediately
4345 below. */
4346 if (COMPARISON_P (XEXP (x, 0))
4347 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4348 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4349 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4350 return
4351 simplify_gen_unary (NEG, mode, reversed, mode);
4352
4353 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4354 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4355 the bitsize of the mode - 1. This allows simplification of
4356 "a = (b & 8) == 0;" */
4357 if (XEXP (x, 1) == constm1_rtx
4358 && !REG_P (XEXP (x, 0))
4359 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4360 && REG_P (SUBREG_REG (XEXP (x, 0))))
4361 && nonzero_bits (XEXP (x, 0), mode) == 1)
4362 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4363 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4364 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4365 GET_MODE_BITSIZE (mode) - 1),
4366 GET_MODE_BITSIZE (mode) - 1);
4367
4368 /* If we are adding two things that have no bits in common, convert
4369 the addition into an IOR. This will often be further simplified,
4370 for example in cases like ((a & 1) + (a & 2)), which can
4371 become a & 3. */
4372
4373 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4374 && (nonzero_bits (XEXP (x, 0), mode)
4375 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4376 {
4377 /* Try to simplify the expression further. */
4378 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4379 temp = combine_simplify_rtx (tor, mode, in_dest);
4380
4381 /* If we could, great. If not, do not go ahead with the IOR
4382 replacement, since PLUS appears in many special purpose
4383 address arithmetic instructions. */
4384 if (GET_CODE (temp) != CLOBBER && temp != tor)
4385 return temp;
4386 }
4387 break;
4388
4389 case MINUS:
4390 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4391 by reversing the comparison code if valid. */
4392 if (STORE_FLAG_VALUE == 1
4393 && XEXP (x, 0) == const1_rtx
4394 && COMPARISON_P (XEXP (x, 1))
4395 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4396 return reversed;
4397
4398 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4399 (and <foo> (const_int pow2-1)) */
4400 if (GET_CODE (XEXP (x, 1)) == AND
4401 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4402 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4403 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4404 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4405 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4406
4407 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4408 */
4409 if (GET_CODE (XEXP (x, 1)) == MULT
4410 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4411 {
4412 rtx in1, in2;
4413
4414 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4415 in2 = XEXP (XEXP (x, 1), 1);
4416 return simplify_gen_binary (PLUS, mode,
4417 simplify_gen_binary (MULT, mode,
4418 in1, in2),
4419 XEXP (x, 0));
4420 }
4421
4422 /* Canonicalize (minus (neg A) (mult B C)) to
4423 (minus (mult (neg B) C) A). */
4424 if (GET_CODE (XEXP (x, 1)) == MULT
4425 && GET_CODE (XEXP (x, 0)) == NEG)
4426 {
4427 rtx in1, in2;
4428
4429 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4430 in2 = XEXP (XEXP (x, 1), 1);
4431 return simplify_gen_binary (MINUS, mode,
4432 simplify_gen_binary (MULT, mode,
4433 in1, in2),
4434 XEXP (XEXP (x, 0), 0));
4435 }
4436
4437 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4438 integers. */
4439 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4440 return simplify_gen_binary (MINUS, mode,
4441 simplify_gen_binary (MINUS, mode,
4442 XEXP (x, 0),
4443 XEXP (XEXP (x, 1), 0)),
4444 XEXP (XEXP (x, 1), 1));
4445 break;
4446
4447 case MULT:
4448 /* If we have (mult (plus A B) C), apply the distributive law and then
4449 the inverse distributive law to see if things simplify. This
4450 occurs mostly in addresses, often when unrolling loops. */
4451
4452 if (GET_CODE (XEXP (x, 0)) == PLUS)
4453 {
4454 rtx result = distribute_and_simplify_rtx (x, 0);
4455 if (result)
4456 return result;
4457 }
4458
4459 /* Try simplify a*(b/c) as (a*b)/c. */
4460 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4461 && GET_CODE (XEXP (x, 0)) == DIV)
4462 {
4463 rtx tem = simplify_binary_operation (MULT, mode,
4464 XEXP (XEXP (x, 0), 0),
4465 XEXP (x, 1));
4466 if (tem)
4467 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4468 }
4469 break;
4470
4471 case UDIV:
4472 /* If this is a divide by a power of two, treat it as a shift if
4473 its first operand is a shift. */
4474 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4475 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4476 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4477 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4478 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4479 || GET_CODE (XEXP (x, 0)) == ROTATE
4480 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4481 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4482 break;
4483
4484 case EQ: case NE:
4485 case GT: case GTU: case GE: case GEU:
4486 case LT: case LTU: case LE: case LEU:
4487 case UNEQ: case LTGT:
4488 case UNGT: case UNGE:
4489 case UNLT: case UNLE:
4490 case UNORDERED: case ORDERED:
4491 /* If the first operand is a condition code, we can't do anything
4492 with it. */
4493 if (GET_CODE (XEXP (x, 0)) == COMPARE
4494 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4495 && ! CC0_P (XEXP (x, 0))))
4496 {
4497 rtx op0 = XEXP (x, 0);
4498 rtx op1 = XEXP (x, 1);
4499 enum rtx_code new_code;
4500
4501 if (GET_CODE (op0) == COMPARE)
4502 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4503
4504 /* Simplify our comparison, if possible. */
4505 new_code = simplify_comparison (code, &op0, &op1);
4506
4507 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4508 if only the low-order bit is possibly nonzero in X (such as when
4509 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4510 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4511 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4512 (plus X 1).
4513
4514 Remove any ZERO_EXTRACT we made when thinking this was a
4515 comparison. It may now be simpler to use, e.g., an AND. If a
4516 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4517 the call to make_compound_operation in the SET case. */
4518
4519 if (STORE_FLAG_VALUE == 1
4520 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4521 && op1 == const0_rtx
4522 && mode == GET_MODE (op0)
4523 && nonzero_bits (op0, mode) == 1)
4524 return gen_lowpart (mode,
4525 expand_compound_operation (op0));
4526
4527 else if (STORE_FLAG_VALUE == 1
4528 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4529 && op1 == const0_rtx
4530 && mode == GET_MODE (op0)
4531 && (num_sign_bit_copies (op0, mode)
4532 == GET_MODE_BITSIZE (mode)))
4533 {
4534 op0 = expand_compound_operation (op0);
4535 return simplify_gen_unary (NEG, mode,
4536 gen_lowpart (mode, op0),
4537 mode);
4538 }
4539
4540 else if (STORE_FLAG_VALUE == 1
4541 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4542 && op1 == const0_rtx
4543 && mode == GET_MODE (op0)
4544 && nonzero_bits (op0, mode) == 1)
4545 {
4546 op0 = expand_compound_operation (op0);
4547 return simplify_gen_binary (XOR, mode,
4548 gen_lowpart (mode, op0),
4549 const1_rtx);
4550 }
4551
4552 else if (STORE_FLAG_VALUE == 1
4553 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4554 && op1 == const0_rtx
4555 && mode == GET_MODE (op0)
4556 && (num_sign_bit_copies (op0, mode)
4557 == GET_MODE_BITSIZE (mode)))
4558 {
4559 op0 = expand_compound_operation (op0);
4560 return plus_constant (gen_lowpart (mode, op0), 1);
4561 }
4562
4563 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4564 those above. */
4565 if (STORE_FLAG_VALUE == -1
4566 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4567 && op1 == const0_rtx
4568 && (num_sign_bit_copies (op0, mode)
4569 == GET_MODE_BITSIZE (mode)))
4570 return gen_lowpart (mode,
4571 expand_compound_operation (op0));
4572
4573 else if (STORE_FLAG_VALUE == -1
4574 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4575 && op1 == const0_rtx
4576 && mode == GET_MODE (op0)
4577 && nonzero_bits (op0, mode) == 1)
4578 {
4579 op0 = expand_compound_operation (op0);
4580 return simplify_gen_unary (NEG, mode,
4581 gen_lowpart (mode, op0),
4582 mode);
4583 }
4584
4585 else if (STORE_FLAG_VALUE == -1
4586 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4587 && op1 == const0_rtx
4588 && mode == GET_MODE (op0)
4589 && (num_sign_bit_copies (op0, mode)
4590 == GET_MODE_BITSIZE (mode)))
4591 {
4592 op0 = expand_compound_operation (op0);
4593 return simplify_gen_unary (NOT, mode,
4594 gen_lowpart (mode, op0),
4595 mode);
4596 }
4597
4598 /* If X is 0/1, (eq X 0) is X-1. */
4599 else if (STORE_FLAG_VALUE == -1
4600 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4601 && op1 == const0_rtx
4602 && mode == GET_MODE (op0)
4603 && nonzero_bits (op0, mode) == 1)
4604 {
4605 op0 = expand_compound_operation (op0);
4606 return plus_constant (gen_lowpart (mode, op0), -1);
4607 }
4608
4609 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4610 one bit that might be nonzero, we can convert (ne x 0) to
4611 (ashift x c) where C puts the bit in the sign bit. Remove any
4612 AND with STORE_FLAG_VALUE when we are done, since we are only
4613 going to test the sign bit. */
4614 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4615 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4616 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4617 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4618 && op1 == const0_rtx
4619 && mode == GET_MODE (op0)
4620 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4621 {
4622 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4623 expand_compound_operation (op0),
4624 GET_MODE_BITSIZE (mode) - 1 - i);
4625 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4626 return XEXP (x, 0);
4627 else
4628 return x;
4629 }
4630
4631 /* If the code changed, return a whole new comparison. */
4632 if (new_code != code)
4633 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4634
4635 /* Otherwise, keep this operation, but maybe change its operands.
4636 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4637 SUBST (XEXP (x, 0), op0);
4638 SUBST (XEXP (x, 1), op1);
4639 }
4640 break;
4641
4642 case IF_THEN_ELSE:
4643 return simplify_if_then_else (x);
4644
4645 case ZERO_EXTRACT:
4646 case SIGN_EXTRACT:
4647 case ZERO_EXTEND:
4648 case SIGN_EXTEND:
4649 /* If we are processing SET_DEST, we are done. */
4650 if (in_dest)
4651 return x;
4652
4653 return expand_compound_operation (x);
4654
4655 case SET:
4656 return simplify_set (x);
4657
4658 case AND:
4659 case IOR:
4660 case XOR:
4661 return simplify_logical (x);
4662
4663 case ABS:
4664 /* (abs (neg <foo>)) -> (abs <foo>) */
4665 if (GET_CODE (XEXP (x, 0)) == NEG)
4666 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4667
4668 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4669 do nothing. */
4670 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4671 break;
4672
4673 /* If operand is something known to be positive, ignore the ABS. */
4674 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4675 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4676 <= HOST_BITS_PER_WIDE_INT)
4677 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4678 & ((HOST_WIDE_INT) 1
4679 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4680 == 0)))
4681 return XEXP (x, 0);
4682
4683 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4684 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4685 return gen_rtx_NEG (mode, XEXP (x, 0));
4686
4687 break;
4688
4689 case FFS:
4690 /* (ffs (*_extend <X>)) = (ffs <X>) */
4691 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4692 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4693 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4694 break;
4695
4696 case POPCOUNT:
4697 case PARITY:
4698 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4699 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4700 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4701 break;
4702
4703 case FLOAT:
4704 /* (float (sign_extend <X>)) = (float <X>). */
4705 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4706 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4707 break;
4708
4709 case ASHIFT:
4710 case LSHIFTRT:
4711 case ASHIFTRT:
4712 case ROTATE:
4713 case ROTATERT:
4714 /* If this is a shift by a constant amount, simplify it. */
4715 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4716 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4717 INTVAL (XEXP (x, 1)));
4718
4719 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4720 SUBST (XEXP (x, 1),
4721 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4722 ((HOST_WIDE_INT) 1
4723 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4724 - 1,
4725 NULL_RTX, 0));
4726 break;
4727
4728 case VEC_SELECT:
4729 {
4730 rtx op0 = XEXP (x, 0);
4731 rtx op1 = XEXP (x, 1);
4732 int len;
4733
4734 gcc_assert (GET_CODE (op1) == PARALLEL);
4735 len = XVECLEN (op1, 0);
4736 if (len == 1
4737 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4738 && GET_CODE (op0) == VEC_CONCAT)
4739 {
4740 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4741
4742 /* Try to find the element in the VEC_CONCAT. */
4743 for (;;)
4744 {
4745 if (GET_MODE (op0) == GET_MODE (x))
4746 return op0;
4747 if (GET_CODE (op0) == VEC_CONCAT)
4748 {
4749 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4750 if (offset < op0_size)
4751 op0 = XEXP (op0, 0);
4752 else
4753 {
4754 offset -= op0_size;
4755 op0 = XEXP (op0, 1);
4756 }
4757 }
4758 else
4759 break;
4760 }
4761 }
4762 }
4763
4764 break;
4765
4766 default:
4767 break;
4768 }
4769
4770 return x;
4771 }
4772 \f
4773 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4774
4775 static rtx
4776 simplify_if_then_else (rtx x)
4777 {
4778 enum machine_mode mode = GET_MODE (x);
4779 rtx cond = XEXP (x, 0);
4780 rtx true_rtx = XEXP (x, 1);
4781 rtx false_rtx = XEXP (x, 2);
4782 enum rtx_code true_code = GET_CODE (cond);
4783 int comparison_p = COMPARISON_P (cond);
4784 rtx temp;
4785 int i;
4786 enum rtx_code false_code;
4787 rtx reversed;
4788
4789 /* Simplify storing of the truth value. */
4790 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4791 return simplify_gen_relational (true_code, mode, VOIDmode,
4792 XEXP (cond, 0), XEXP (cond, 1));
4793
4794 /* Also when the truth value has to be reversed. */
4795 if (comparison_p
4796 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4797 && (reversed = reversed_comparison (cond, mode)))
4798 return reversed;
4799
4800 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4801 in it is being compared against certain values. Get the true and false
4802 comparisons and see if that says anything about the value of each arm. */
4803
4804 if (comparison_p
4805 && ((false_code = reversed_comparison_code (cond, NULL))
4806 != UNKNOWN)
4807 && REG_P (XEXP (cond, 0)))
4808 {
4809 HOST_WIDE_INT nzb;
4810 rtx from = XEXP (cond, 0);
4811 rtx true_val = XEXP (cond, 1);
4812 rtx false_val = true_val;
4813 int swapped = 0;
4814
4815 /* If FALSE_CODE is EQ, swap the codes and arms. */
4816
4817 if (false_code == EQ)
4818 {
4819 swapped = 1, true_code = EQ, false_code = NE;
4820 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4821 }
4822
4823 /* If we are comparing against zero and the expression being tested has
4824 only a single bit that might be nonzero, that is its value when it is
4825 not equal to zero. Similarly if it is known to be -1 or 0. */
4826
4827 if (true_code == EQ && true_val == const0_rtx
4828 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4829 false_code = EQ, false_val = GEN_INT (nzb);
4830 else if (true_code == EQ && true_val == const0_rtx
4831 && (num_sign_bit_copies (from, GET_MODE (from))
4832 == GET_MODE_BITSIZE (GET_MODE (from))))
4833 false_code = EQ, false_val = constm1_rtx;
4834
4835 /* Now simplify an arm if we know the value of the register in the
4836 branch and it is used in the arm. Be careful due to the potential
4837 of locally-shared RTL. */
4838
4839 if (reg_mentioned_p (from, true_rtx))
4840 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4841 from, true_val),
4842 pc_rtx, pc_rtx, 0, 0);
4843 if (reg_mentioned_p (from, false_rtx))
4844 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4845 from, false_val),
4846 pc_rtx, pc_rtx, 0, 0);
4847
4848 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4849 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4850
4851 true_rtx = XEXP (x, 1);
4852 false_rtx = XEXP (x, 2);
4853 true_code = GET_CODE (cond);
4854 }
4855
4856 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4857 reversed, do so to avoid needing two sets of patterns for
4858 subtract-and-branch insns. Similarly if we have a constant in the true
4859 arm, the false arm is the same as the first operand of the comparison, or
4860 the false arm is more complicated than the true arm. */
4861
4862 if (comparison_p
4863 && reversed_comparison_code (cond, NULL) != UNKNOWN
4864 && (true_rtx == pc_rtx
4865 || (CONSTANT_P (true_rtx)
4866 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4867 || true_rtx == const0_rtx
4868 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4869 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4870 && !OBJECT_P (false_rtx))
4871 || reg_mentioned_p (true_rtx, false_rtx)
4872 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4873 {
4874 true_code = reversed_comparison_code (cond, NULL);
4875 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4876 SUBST (XEXP (x, 1), false_rtx);
4877 SUBST (XEXP (x, 2), true_rtx);
4878
4879 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4880 cond = XEXP (x, 0);
4881
4882 /* It is possible that the conditional has been simplified out. */
4883 true_code = GET_CODE (cond);
4884 comparison_p = COMPARISON_P (cond);
4885 }
4886
4887 /* If the two arms are identical, we don't need the comparison. */
4888
4889 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4890 return true_rtx;
4891
4892 /* Convert a == b ? b : a to "a". */
4893 if (true_code == EQ && ! side_effects_p (cond)
4894 && !HONOR_NANS (mode)
4895 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4896 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4897 return false_rtx;
4898 else if (true_code == NE && ! side_effects_p (cond)
4899 && !HONOR_NANS (mode)
4900 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4901 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4902 return true_rtx;
4903
4904 /* Look for cases where we have (abs x) or (neg (abs X)). */
4905
4906 if (GET_MODE_CLASS (mode) == MODE_INT
4907 && GET_CODE (false_rtx) == NEG
4908 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4909 && comparison_p
4910 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4911 && ! side_effects_p (true_rtx))
4912 switch (true_code)
4913 {
4914 case GT:
4915 case GE:
4916 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4917 case LT:
4918 case LE:
4919 return
4920 simplify_gen_unary (NEG, mode,
4921 simplify_gen_unary (ABS, mode, true_rtx, mode),
4922 mode);
4923 default:
4924 break;
4925 }
4926
4927 /* Look for MIN or MAX. */
4928
4929 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4930 && comparison_p
4931 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4932 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4933 && ! side_effects_p (cond))
4934 switch (true_code)
4935 {
4936 case GE:
4937 case GT:
4938 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4939 case LE:
4940 case LT:
4941 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4942 case GEU:
4943 case GTU:
4944 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4945 case LEU:
4946 case LTU:
4947 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4948 default:
4949 break;
4950 }
4951
4952 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4953 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4954 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4955 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4956 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4957 neither 1 or -1, but it isn't worth checking for. */
4958
4959 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4960 && comparison_p
4961 && GET_MODE_CLASS (mode) == MODE_INT
4962 && ! side_effects_p (x))
4963 {
4964 rtx t = make_compound_operation (true_rtx, SET);
4965 rtx f = make_compound_operation (false_rtx, SET);
4966 rtx cond_op0 = XEXP (cond, 0);
4967 rtx cond_op1 = XEXP (cond, 1);
4968 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4969 enum machine_mode m = mode;
4970 rtx z = 0, c1 = NULL_RTX;
4971
4972 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4973 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4974 || GET_CODE (t) == ASHIFT
4975 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4976 && rtx_equal_p (XEXP (t, 0), f))
4977 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4978
4979 /* If an identity-zero op is commutative, check whether there
4980 would be a match if we swapped the operands. */
4981 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4982 || GET_CODE (t) == XOR)
4983 && rtx_equal_p (XEXP (t, 1), f))
4984 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4985 else if (GET_CODE (t) == SIGN_EXTEND
4986 && (GET_CODE (XEXP (t, 0)) == PLUS
4987 || GET_CODE (XEXP (t, 0)) == MINUS
4988 || GET_CODE (XEXP (t, 0)) == IOR
4989 || GET_CODE (XEXP (t, 0)) == XOR
4990 || GET_CODE (XEXP (t, 0)) == ASHIFT
4991 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4992 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4993 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4994 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4995 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4996 && (num_sign_bit_copies (f, GET_MODE (f))
4997 > (unsigned int)
4998 (GET_MODE_BITSIZE (mode)
4999 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5000 {
5001 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5002 extend_op = SIGN_EXTEND;
5003 m = GET_MODE (XEXP (t, 0));
5004 }
5005 else if (GET_CODE (t) == SIGN_EXTEND
5006 && (GET_CODE (XEXP (t, 0)) == PLUS
5007 || GET_CODE (XEXP (t, 0)) == IOR
5008 || GET_CODE (XEXP (t, 0)) == XOR)
5009 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5010 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5011 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5012 && (num_sign_bit_copies (f, GET_MODE (f))
5013 > (unsigned int)
5014 (GET_MODE_BITSIZE (mode)
5015 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5016 {
5017 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5018 extend_op = SIGN_EXTEND;
5019 m = GET_MODE (XEXP (t, 0));
5020 }
5021 else if (GET_CODE (t) == ZERO_EXTEND
5022 && (GET_CODE (XEXP (t, 0)) == PLUS
5023 || GET_CODE (XEXP (t, 0)) == MINUS
5024 || GET_CODE (XEXP (t, 0)) == IOR
5025 || GET_CODE (XEXP (t, 0)) == XOR
5026 || GET_CODE (XEXP (t, 0)) == ASHIFT
5027 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5028 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5029 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5030 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5031 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5032 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5033 && ((nonzero_bits (f, GET_MODE (f))
5034 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5035 == 0))
5036 {
5037 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5038 extend_op = ZERO_EXTEND;
5039 m = GET_MODE (XEXP (t, 0));
5040 }
5041 else if (GET_CODE (t) == ZERO_EXTEND
5042 && (GET_CODE (XEXP (t, 0)) == PLUS
5043 || GET_CODE (XEXP (t, 0)) == IOR
5044 || GET_CODE (XEXP (t, 0)) == XOR)
5045 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5046 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5047 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5048 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5049 && ((nonzero_bits (f, GET_MODE (f))
5050 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5051 == 0))
5052 {
5053 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5054 extend_op = ZERO_EXTEND;
5055 m = GET_MODE (XEXP (t, 0));
5056 }
5057
5058 if (z)
5059 {
5060 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5061 cond_op0, cond_op1),
5062 pc_rtx, pc_rtx, 0, 0);
5063 temp = simplify_gen_binary (MULT, m, temp,
5064 simplify_gen_binary (MULT, m, c1,
5065 const_true_rtx));
5066 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5067 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5068
5069 if (extend_op != UNKNOWN)
5070 temp = simplify_gen_unary (extend_op, mode, temp, m);
5071
5072 return temp;
5073 }
5074 }
5075
5076 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5077 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5078 negation of a single bit, we can convert this operation to a shift. We
5079 can actually do this more generally, but it doesn't seem worth it. */
5080
5081 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5082 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5083 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5084 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5085 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5086 == GET_MODE_BITSIZE (mode))
5087 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5088 return
5089 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5090 gen_lowpart (mode, XEXP (cond, 0)), i);
5091
5092 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5093 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5094 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5095 && GET_MODE (XEXP (cond, 0)) == mode
5096 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5097 == nonzero_bits (XEXP (cond, 0), mode)
5098 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5099 return XEXP (cond, 0);
5100
5101 return x;
5102 }
5103 \f
5104 /* Simplify X, a SET expression. Return the new expression. */
5105
5106 static rtx
5107 simplify_set (rtx x)
5108 {
5109 rtx src = SET_SRC (x);
5110 rtx dest = SET_DEST (x);
5111 enum machine_mode mode
5112 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5113 rtx other_insn;
5114 rtx *cc_use;
5115
5116 /* (set (pc) (return)) gets written as (return). */
5117 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5118 return src;
5119
5120 /* Now that we know for sure which bits of SRC we are using, see if we can
5121 simplify the expression for the object knowing that we only need the
5122 low-order bits. */
5123
5124 if (GET_MODE_CLASS (mode) == MODE_INT
5125 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5126 {
5127 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5128 SUBST (SET_SRC (x), src);
5129 }
5130
5131 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5132 the comparison result and try to simplify it unless we already have used
5133 undobuf.other_insn. */
5134 if ((GET_MODE_CLASS (mode) == MODE_CC
5135 || GET_CODE (src) == COMPARE
5136 || CC0_P (dest))
5137 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5138 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5139 && COMPARISON_P (*cc_use)
5140 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5141 {
5142 enum rtx_code old_code = GET_CODE (*cc_use);
5143 enum rtx_code new_code;
5144 rtx op0, op1, tmp;
5145 int other_changed = 0;
5146 enum machine_mode compare_mode = GET_MODE (dest);
5147
5148 if (GET_CODE (src) == COMPARE)
5149 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5150 else
5151 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5152
5153 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5154 op0, op1);
5155 if (!tmp)
5156 new_code = old_code;
5157 else if (!CONSTANT_P (tmp))
5158 {
5159 new_code = GET_CODE (tmp);
5160 op0 = XEXP (tmp, 0);
5161 op1 = XEXP (tmp, 1);
5162 }
5163 else
5164 {
5165 rtx pat = PATTERN (other_insn);
5166 undobuf.other_insn = other_insn;
5167 SUBST (*cc_use, tmp);
5168
5169 /* Attempt to simplify CC user. */
5170 if (GET_CODE (pat) == SET)
5171 {
5172 rtx new = simplify_rtx (SET_SRC (pat));
5173 if (new != NULL_RTX)
5174 SUBST (SET_SRC (pat), new);
5175 }
5176
5177 /* Convert X into a no-op move. */
5178 SUBST (SET_DEST (x), pc_rtx);
5179 SUBST (SET_SRC (x), pc_rtx);
5180 return x;
5181 }
5182
5183 /* Simplify our comparison, if possible. */
5184 new_code = simplify_comparison (new_code, &op0, &op1);
5185
5186 #ifdef SELECT_CC_MODE
5187 /* If this machine has CC modes other than CCmode, check to see if we
5188 need to use a different CC mode here. */
5189 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5190 compare_mode = GET_MODE (op0);
5191 else
5192 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5193
5194 #ifndef HAVE_cc0
5195 /* If the mode changed, we have to change SET_DEST, the mode in the
5196 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5197 a hard register, just build new versions with the proper mode. If it
5198 is a pseudo, we lose unless it is only time we set the pseudo, in
5199 which case we can safely change its mode. */
5200 if (compare_mode != GET_MODE (dest))
5201 {
5202 unsigned int regno = REGNO (dest);
5203 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5204
5205 if (regno < FIRST_PSEUDO_REGISTER
5206 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5207 {
5208 if (regno >= FIRST_PSEUDO_REGISTER)
5209 SUBST (regno_reg_rtx[regno], new_dest);
5210
5211 SUBST (SET_DEST (x), new_dest);
5212 SUBST (XEXP (*cc_use, 0), new_dest);
5213 other_changed = 1;
5214
5215 dest = new_dest;
5216 }
5217 }
5218 #endif /* cc0 */
5219 #endif /* SELECT_CC_MODE */
5220
5221 /* If the code changed, we have to build a new comparison in
5222 undobuf.other_insn. */
5223 if (new_code != old_code)
5224 {
5225 int other_changed_previously = other_changed;
5226 unsigned HOST_WIDE_INT mask;
5227
5228 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5229 dest, const0_rtx));
5230 other_changed = 1;
5231
5232 /* If the only change we made was to change an EQ into an NE or
5233 vice versa, OP0 has only one bit that might be nonzero, and OP1
5234 is zero, check if changing the user of the condition code will
5235 produce a valid insn. If it won't, we can keep the original code
5236 in that insn by surrounding our operation with an XOR. */
5237
5238 if (((old_code == NE && new_code == EQ)
5239 || (old_code == EQ && new_code == NE))
5240 && ! other_changed_previously && op1 == const0_rtx
5241 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5242 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5243 {
5244 rtx pat = PATTERN (other_insn), note = 0;
5245
5246 if ((recog_for_combine (&pat, other_insn, &note) < 0
5247 && ! check_asm_operands (pat)))
5248 {
5249 PUT_CODE (*cc_use, old_code);
5250 other_changed = 0;
5251
5252 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5253 op0, GEN_INT (mask));
5254 }
5255 }
5256 }
5257
5258 if (other_changed)
5259 undobuf.other_insn = other_insn;
5260
5261 #ifdef HAVE_cc0
5262 /* If we are now comparing against zero, change our source if
5263 needed. If we do not use cc0, we always have a COMPARE. */
5264 if (op1 == const0_rtx && dest == cc0_rtx)
5265 {
5266 SUBST (SET_SRC (x), op0);
5267 src = op0;
5268 }
5269 else
5270 #endif
5271
5272 /* Otherwise, if we didn't previously have a COMPARE in the
5273 correct mode, we need one. */
5274 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5275 {
5276 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5277 src = SET_SRC (x);
5278 }
5279 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5280 {
5281 SUBST(SET_SRC (x), op0);
5282 src = SET_SRC (x);
5283 }
5284 else
5285 {
5286 /* Otherwise, update the COMPARE if needed. */
5287 SUBST (XEXP (src, 0), op0);
5288 SUBST (XEXP (src, 1), op1);
5289 }
5290 }
5291 else
5292 {
5293 /* Get SET_SRC in a form where we have placed back any
5294 compound expressions. Then do the checks below. */
5295 src = make_compound_operation (src, SET);
5296 SUBST (SET_SRC (x), src);
5297 }
5298
5299 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5300 and X being a REG or (subreg (reg)), we may be able to convert this to
5301 (set (subreg:m2 x) (op)).
5302
5303 We can always do this if M1 is narrower than M2 because that means that
5304 we only care about the low bits of the result.
5305
5306 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5307 perform a narrower operation than requested since the high-order bits will
5308 be undefined. On machine where it is defined, this transformation is safe
5309 as long as M1 and M2 have the same number of words. */
5310
5311 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5312 && !OBJECT_P (SUBREG_REG (src))
5313 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5314 / UNITS_PER_WORD)
5315 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5316 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5317 #ifndef WORD_REGISTER_OPERATIONS
5318 && (GET_MODE_SIZE (GET_MODE (src))
5319 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5320 #endif
5321 #ifdef CANNOT_CHANGE_MODE_CLASS
5322 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5323 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5324 GET_MODE (SUBREG_REG (src)),
5325 GET_MODE (src)))
5326 #endif
5327 && (REG_P (dest)
5328 || (GET_CODE (dest) == SUBREG
5329 && REG_P (SUBREG_REG (dest)))))
5330 {
5331 SUBST (SET_DEST (x),
5332 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5333 dest));
5334 SUBST (SET_SRC (x), SUBREG_REG (src));
5335
5336 src = SET_SRC (x), dest = SET_DEST (x);
5337 }
5338
5339 #ifdef HAVE_cc0
5340 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5341 in SRC. */
5342 if (dest == cc0_rtx
5343 && GET_CODE (src) == SUBREG
5344 && subreg_lowpart_p (src)
5345 && (GET_MODE_BITSIZE (GET_MODE (src))
5346 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5347 {
5348 rtx inner = SUBREG_REG (src);
5349 enum machine_mode inner_mode = GET_MODE (inner);
5350
5351 /* Here we make sure that we don't have a sign bit on. */
5352 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5353 && (nonzero_bits (inner, inner_mode)
5354 < ((unsigned HOST_WIDE_INT) 1
5355 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5356 {
5357 SUBST (SET_SRC (x), inner);
5358 src = SET_SRC (x);
5359 }
5360 }
5361 #endif
5362
5363 #ifdef LOAD_EXTEND_OP
5364 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5365 would require a paradoxical subreg. Replace the subreg with a
5366 zero_extend to avoid the reload that would otherwise be required. */
5367
5368 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5369 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5370 && SUBREG_BYTE (src) == 0
5371 && (GET_MODE_SIZE (GET_MODE (src))
5372 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5373 && MEM_P (SUBREG_REG (src)))
5374 {
5375 SUBST (SET_SRC (x),
5376 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5377 GET_MODE (src), SUBREG_REG (src)));
5378
5379 src = SET_SRC (x);
5380 }
5381 #endif
5382
5383 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5384 are comparing an item known to be 0 or -1 against 0, use a logical
5385 operation instead. Check for one of the arms being an IOR of the other
5386 arm with some value. We compute three terms to be IOR'ed together. In
5387 practice, at most two will be nonzero. Then we do the IOR's. */
5388
5389 if (GET_CODE (dest) != PC
5390 && GET_CODE (src) == IF_THEN_ELSE
5391 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5392 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5393 && XEXP (XEXP (src, 0), 1) == const0_rtx
5394 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5395 #ifdef HAVE_conditional_move
5396 && ! can_conditionally_move_p (GET_MODE (src))
5397 #endif
5398 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5399 GET_MODE (XEXP (XEXP (src, 0), 0)))
5400 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5401 && ! side_effects_p (src))
5402 {
5403 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5404 ? XEXP (src, 1) : XEXP (src, 2));
5405 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5406 ? XEXP (src, 2) : XEXP (src, 1));
5407 rtx term1 = const0_rtx, term2, term3;
5408
5409 if (GET_CODE (true_rtx) == IOR
5410 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5411 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5412 else if (GET_CODE (true_rtx) == IOR
5413 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5414 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5415 else if (GET_CODE (false_rtx) == IOR
5416 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5417 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5418 else if (GET_CODE (false_rtx) == IOR
5419 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5420 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5421
5422 term2 = simplify_gen_binary (AND, GET_MODE (src),
5423 XEXP (XEXP (src, 0), 0), true_rtx);
5424 term3 = simplify_gen_binary (AND, GET_MODE (src),
5425 simplify_gen_unary (NOT, GET_MODE (src),
5426 XEXP (XEXP (src, 0), 0),
5427 GET_MODE (src)),
5428 false_rtx);
5429
5430 SUBST (SET_SRC (x),
5431 simplify_gen_binary (IOR, GET_MODE (src),
5432 simplify_gen_binary (IOR, GET_MODE (src),
5433 term1, term2),
5434 term3));
5435
5436 src = SET_SRC (x);
5437 }
5438
5439 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5440 whole thing fail. */
5441 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5442 return src;
5443 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5444 return dest;
5445 else
5446 /* Convert this into a field assignment operation, if possible. */
5447 return make_field_assignment (x);
5448 }
5449 \f
5450 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5451 result. */
5452
5453 static rtx
5454 simplify_logical (rtx x)
5455 {
5456 enum machine_mode mode = GET_MODE (x);
5457 rtx op0 = XEXP (x, 0);
5458 rtx op1 = XEXP (x, 1);
5459 rtx reversed;
5460
5461 switch (GET_CODE (x))
5462 {
5463 case AND:
5464 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5465 insn (and may simplify more). */
5466 if (GET_CODE (op0) == XOR
5467 && rtx_equal_p (XEXP (op0, 0), op1)
5468 && ! side_effects_p (op1))
5469 x = simplify_gen_binary (AND, mode,
5470 simplify_gen_unary (NOT, mode,
5471 XEXP (op0, 1), mode),
5472 op1);
5473
5474 if (GET_CODE (op0) == XOR
5475 && rtx_equal_p (XEXP (op0, 1), op1)
5476 && ! side_effects_p (op1))
5477 x = simplify_gen_binary (AND, mode,
5478 simplify_gen_unary (NOT, mode,
5479 XEXP (op0, 0), mode),
5480 op1);
5481
5482 /* Similarly for (~(A ^ B)) & A. */
5483 if (GET_CODE (op0) == NOT
5484 && GET_CODE (XEXP (op0, 0)) == XOR
5485 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5486 && ! side_effects_p (op1))
5487 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5488
5489 if (GET_CODE (op0) == NOT
5490 && GET_CODE (XEXP (op0, 0)) == XOR
5491 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5492 && ! side_effects_p (op1))
5493 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5494
5495 /* We can call simplify_and_const_int only if we don't lose
5496 any (sign) bits when converting INTVAL (op1) to
5497 "unsigned HOST_WIDE_INT". */
5498 if (GET_CODE (op1) == CONST_INT
5499 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5500 || INTVAL (op1) > 0))
5501 {
5502 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5503
5504 /* If we have (ior (and (X C1) C2)) and the next restart would be
5505 the last, simplify this by making C1 as small as possible
5506 and then exit. Only do this if C1 actually changes: for now
5507 this only saves memory but, should this transformation be
5508 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5509 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5510 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5511 && GET_CODE (op1) == CONST_INT
5512 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5513 return simplify_gen_binary (IOR, mode,
5514 simplify_gen_binary
5515 (AND, mode, XEXP (op0, 0),
5516 GEN_INT (INTVAL (XEXP (op0, 1))
5517 & ~INTVAL (op1))), op1);
5518
5519 if (GET_CODE (x) != AND)
5520 return x;
5521
5522 op0 = XEXP (x, 0);
5523 op1 = XEXP (x, 1);
5524 }
5525
5526 /* Convert (A | B) & A to A. */
5527 if (GET_CODE (op0) == IOR
5528 && (rtx_equal_p (XEXP (op0, 0), op1)
5529 || rtx_equal_p (XEXP (op0, 1), op1))
5530 && ! side_effects_p (XEXP (op0, 0))
5531 && ! side_effects_p (XEXP (op0, 1)))
5532 return op1;
5533
5534 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5535 apply the distributive law and then the inverse distributive
5536 law to see if things simplify. */
5537 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5538 {
5539 rtx result = distribute_and_simplify_rtx (x, 0);
5540 if (result)
5541 return result;
5542 }
5543 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5544 {
5545 rtx result = distribute_and_simplify_rtx (x, 1);
5546 if (result)
5547 return result;
5548 }
5549 break;
5550
5551 case IOR:
5552 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5553 if (GET_CODE (op1) == CONST_INT
5554 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5555 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5556 return op1;
5557
5558 /* Convert (A & B) | A to A. */
5559 if (GET_CODE (op0) == AND
5560 && (rtx_equal_p (XEXP (op0, 0), op1)
5561 || rtx_equal_p (XEXP (op0, 1), op1))
5562 && ! side_effects_p (XEXP (op0, 0))
5563 && ! side_effects_p (XEXP (op0, 1)))
5564 return op1;
5565
5566 /* If we have (ior (and A B) C), apply the distributive law and then
5567 the inverse distributive law to see if things simplify. */
5568
5569 if (GET_CODE (op0) == AND)
5570 {
5571 rtx result = distribute_and_simplify_rtx (x, 0);
5572 if (result)
5573 return result;
5574 }
5575
5576 if (GET_CODE (op1) == AND)
5577 {
5578 rtx result = distribute_and_simplify_rtx (x, 1);
5579 if (result)
5580 return result;
5581 }
5582
5583 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5584 mode size to (rotate A CX). */
5585
5586 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5587 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5588 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5589 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5590 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5591 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5592 == GET_MODE_BITSIZE (mode)))
5593 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5594 (GET_CODE (op0) == ASHIFT
5595 ? XEXP (op0, 1) : XEXP (op1, 1)));
5596
5597 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5598 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5599 does not affect any of the bits in OP1, it can really be done
5600 as a PLUS and we can associate. We do this by seeing if OP1
5601 can be safely shifted left C bits. */
5602 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5603 && GET_CODE (XEXP (op0, 0)) == PLUS
5604 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5605 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5606 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5607 {
5608 int count = INTVAL (XEXP (op0, 1));
5609 HOST_WIDE_INT mask = INTVAL (op1) << count;
5610
5611 if (mask >> count == INTVAL (op1)
5612 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5613 {
5614 SUBST (XEXP (XEXP (op0, 0), 1),
5615 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5616 return op0;
5617 }
5618 }
5619 break;
5620
5621 case XOR:
5622 /* If we are XORing two things that have no bits in common,
5623 convert them into an IOR. This helps to detect rotation encoded
5624 using those methods and possibly other simplifications. */
5625
5626 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5627 && (nonzero_bits (op0, mode)
5628 & nonzero_bits (op1, mode)) == 0)
5629 return (simplify_gen_binary (IOR, mode, op0, op1));
5630
5631 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5632 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5633 (NOT y). */
5634 {
5635 int num_negated = 0;
5636
5637 if (GET_CODE (op0) == NOT)
5638 num_negated++, op0 = XEXP (op0, 0);
5639 if (GET_CODE (op1) == NOT)
5640 num_negated++, op1 = XEXP (op1, 0);
5641
5642 if (num_negated == 2)
5643 {
5644 SUBST (XEXP (x, 0), op0);
5645 SUBST (XEXP (x, 1), op1);
5646 }
5647 else if (num_negated == 1)
5648 return
5649 simplify_gen_unary (NOT, mode,
5650 simplify_gen_binary (XOR, mode, op0, op1),
5651 mode);
5652 }
5653
5654 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5655 correspond to a machine insn or result in further simplifications
5656 if B is a constant. */
5657
5658 if (GET_CODE (op0) == AND
5659 && rtx_equal_p (XEXP (op0, 1), op1)
5660 && ! side_effects_p (op1))
5661 return simplify_gen_binary (AND, mode,
5662 simplify_gen_unary (NOT, mode,
5663 XEXP (op0, 0), mode),
5664 op1);
5665
5666 else if (GET_CODE (op0) == AND
5667 && rtx_equal_p (XEXP (op0, 0), op1)
5668 && ! side_effects_p (op1))
5669 return simplify_gen_binary (AND, mode,
5670 simplify_gen_unary (NOT, mode,
5671 XEXP (op0, 1), mode),
5672 op1);
5673
5674 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5675 comparison if STORE_FLAG_VALUE is 1. */
5676 if (STORE_FLAG_VALUE == 1
5677 && op1 == const1_rtx
5678 && COMPARISON_P (op0)
5679 && (reversed = reversed_comparison (op0, mode)))
5680 return reversed;
5681
5682 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5683 is (lt foo (const_int 0)), so we can perform the above
5684 simplification if STORE_FLAG_VALUE is 1. */
5685
5686 if (STORE_FLAG_VALUE == 1
5687 && op1 == const1_rtx
5688 && GET_CODE (op0) == LSHIFTRT
5689 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5690 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5691 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5692
5693 /* (xor (comparison foo bar) (const_int sign-bit))
5694 when STORE_FLAG_VALUE is the sign bit. */
5695 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5696 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5697 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5698 && op1 == const_true_rtx
5699 && COMPARISON_P (op0)
5700 && (reversed = reversed_comparison (op0, mode)))
5701 return reversed;
5702
5703 break;
5704
5705 default:
5706 gcc_unreachable ();
5707 }
5708
5709 return x;
5710 }
5711 \f
5712 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5713 operations" because they can be replaced with two more basic operations.
5714 ZERO_EXTEND is also considered "compound" because it can be replaced with
5715 an AND operation, which is simpler, though only one operation.
5716
5717 The function expand_compound_operation is called with an rtx expression
5718 and will convert it to the appropriate shifts and AND operations,
5719 simplifying at each stage.
5720
5721 The function make_compound_operation is called to convert an expression
5722 consisting of shifts and ANDs into the equivalent compound expression.
5723 It is the inverse of this function, loosely speaking. */
5724
5725 static rtx
5726 expand_compound_operation (rtx x)
5727 {
5728 unsigned HOST_WIDE_INT pos = 0, len;
5729 int unsignedp = 0;
5730 unsigned int modewidth;
5731 rtx tem;
5732
5733 switch (GET_CODE (x))
5734 {
5735 case ZERO_EXTEND:
5736 unsignedp = 1;
5737 case SIGN_EXTEND:
5738 /* We can't necessarily use a const_int for a multiword mode;
5739 it depends on implicitly extending the value.
5740 Since we don't know the right way to extend it,
5741 we can't tell whether the implicit way is right.
5742
5743 Even for a mode that is no wider than a const_int,
5744 we can't win, because we need to sign extend one of its bits through
5745 the rest of it, and we don't know which bit. */
5746 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5747 return x;
5748
5749 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5750 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5751 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5752 reloaded. If not for that, MEM's would very rarely be safe.
5753
5754 Reject MODEs bigger than a word, because we might not be able
5755 to reference a two-register group starting with an arbitrary register
5756 (and currently gen_lowpart might crash for a SUBREG). */
5757
5758 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5759 return x;
5760
5761 /* Reject MODEs that aren't scalar integers because turning vector
5762 or complex modes into shifts causes problems. */
5763
5764 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5765 return x;
5766
5767 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5768 /* If the inner object has VOIDmode (the only way this can happen
5769 is if it is an ASM_OPERANDS), we can't do anything since we don't
5770 know how much masking to do. */
5771 if (len == 0)
5772 return x;
5773
5774 break;
5775
5776 case ZERO_EXTRACT:
5777 unsignedp = 1;
5778
5779 /* ... fall through ... */
5780
5781 case SIGN_EXTRACT:
5782 /* If the operand is a CLOBBER, just return it. */
5783 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5784 return XEXP (x, 0);
5785
5786 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5787 || GET_CODE (XEXP (x, 2)) != CONST_INT
5788 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5789 return x;
5790
5791 /* Reject MODEs that aren't scalar integers because turning vector
5792 or complex modes into shifts causes problems. */
5793
5794 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5795 return x;
5796
5797 len = INTVAL (XEXP (x, 1));
5798 pos = INTVAL (XEXP (x, 2));
5799
5800 /* If this goes outside the object being extracted, replace the object
5801 with a (use (mem ...)) construct that only combine understands
5802 and is used only for this purpose. */
5803 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5804 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5805
5806 if (BITS_BIG_ENDIAN)
5807 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5808
5809 break;
5810
5811 default:
5812 return x;
5813 }
5814 /* Convert sign extension to zero extension, if we know that the high
5815 bit is not set, as this is easier to optimize. It will be converted
5816 back to cheaper alternative in make_extraction. */
5817 if (GET_CODE (x) == SIGN_EXTEND
5818 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5819 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5820 & ~(((unsigned HOST_WIDE_INT)
5821 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5822 >> 1))
5823 == 0)))
5824 {
5825 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5826 rtx temp2 = expand_compound_operation (temp);
5827
5828 /* Make sure this is a profitable operation. */
5829 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5830 return temp2;
5831 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5832 return temp;
5833 else
5834 return x;
5835 }
5836
5837 /* We can optimize some special cases of ZERO_EXTEND. */
5838 if (GET_CODE (x) == ZERO_EXTEND)
5839 {
5840 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5841 know that the last value didn't have any inappropriate bits
5842 set. */
5843 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5844 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5845 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5846 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5847 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5848 return XEXP (XEXP (x, 0), 0);
5849
5850 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5851 if (GET_CODE (XEXP (x, 0)) == SUBREG
5852 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5853 && subreg_lowpart_p (XEXP (x, 0))
5854 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5855 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5856 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5857 return SUBREG_REG (XEXP (x, 0));
5858
5859 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5860 is a comparison and STORE_FLAG_VALUE permits. This is like
5861 the first case, but it works even when GET_MODE (x) is larger
5862 than HOST_WIDE_INT. */
5863 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5864 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5865 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5866 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5867 <= HOST_BITS_PER_WIDE_INT)
5868 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5869 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5870 return XEXP (XEXP (x, 0), 0);
5871
5872 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5873 if (GET_CODE (XEXP (x, 0)) == SUBREG
5874 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5875 && subreg_lowpart_p (XEXP (x, 0))
5876 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5877 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5878 <= HOST_BITS_PER_WIDE_INT)
5879 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5880 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5881 return SUBREG_REG (XEXP (x, 0));
5882
5883 }
5884
5885 /* If we reach here, we want to return a pair of shifts. The inner
5886 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5887 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5888 logical depending on the value of UNSIGNEDP.
5889
5890 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5891 converted into an AND of a shift.
5892
5893 We must check for the case where the left shift would have a negative
5894 count. This can happen in a case like (x >> 31) & 255 on machines
5895 that can't shift by a constant. On those machines, we would first
5896 combine the shift with the AND to produce a variable-position
5897 extraction. Then the constant of 31 would be substituted in to produce
5898 a such a position. */
5899
5900 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5901 if (modewidth + len >= pos)
5902 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5903 GET_MODE (x),
5904 simplify_shift_const (NULL_RTX, ASHIFT,
5905 GET_MODE (x),
5906 XEXP (x, 0),
5907 modewidth - pos - len),
5908 modewidth - len);
5909
5910 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5911 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5912 simplify_shift_const (NULL_RTX, LSHIFTRT,
5913 GET_MODE (x),
5914 XEXP (x, 0), pos),
5915 ((HOST_WIDE_INT) 1 << len) - 1);
5916 else
5917 /* Any other cases we can't handle. */
5918 return x;
5919
5920 /* If we couldn't do this for some reason, return the original
5921 expression. */
5922 if (GET_CODE (tem) == CLOBBER)
5923 return x;
5924
5925 return tem;
5926 }
5927 \f
5928 /* X is a SET which contains an assignment of one object into
5929 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5930 or certain SUBREGS). If possible, convert it into a series of
5931 logical operations.
5932
5933 We half-heartedly support variable positions, but do not at all
5934 support variable lengths. */
5935
5936 static rtx
5937 expand_field_assignment (rtx x)
5938 {
5939 rtx inner;
5940 rtx pos; /* Always counts from low bit. */
5941 int len;
5942 rtx mask, cleared, masked;
5943 enum machine_mode compute_mode;
5944
5945 /* Loop until we find something we can't simplify. */
5946 while (1)
5947 {
5948 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5949 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5950 {
5951 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5952 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5953 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5954 }
5955 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5956 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5957 {
5958 inner = XEXP (SET_DEST (x), 0);
5959 len = INTVAL (XEXP (SET_DEST (x), 1));
5960 pos = XEXP (SET_DEST (x), 2);
5961
5962 /* If the position is constant and spans the width of INNER,
5963 surround INNER with a USE to indicate this. */
5964 if (GET_CODE (pos) == CONST_INT
5965 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5966 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5967
5968 if (BITS_BIG_ENDIAN)
5969 {
5970 if (GET_CODE (pos) == CONST_INT)
5971 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5972 - INTVAL (pos));
5973 else if (GET_CODE (pos) == MINUS
5974 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5975 && (INTVAL (XEXP (pos, 1))
5976 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5977 /* If position is ADJUST - X, new position is X. */
5978 pos = XEXP (pos, 0);
5979 else
5980 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5981 GEN_INT (GET_MODE_BITSIZE (
5982 GET_MODE (inner))
5983 - len),
5984 pos);
5985 }
5986 }
5987
5988 /* A SUBREG between two modes that occupy the same numbers of words
5989 can be done by moving the SUBREG to the source. */
5990 else if (GET_CODE (SET_DEST (x)) == SUBREG
5991 /* We need SUBREGs to compute nonzero_bits properly. */
5992 && nonzero_sign_valid
5993 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5994 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5995 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5996 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5997 {
5998 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5999 gen_lowpart
6000 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6001 SET_SRC (x)));
6002 continue;
6003 }
6004 else
6005 break;
6006
6007 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6008 inner = SUBREG_REG (inner);
6009
6010 compute_mode = GET_MODE (inner);
6011
6012 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6013 if (! SCALAR_INT_MODE_P (compute_mode))
6014 {
6015 enum machine_mode imode;
6016
6017 /* Don't do anything for vector or complex integral types. */
6018 if (! FLOAT_MODE_P (compute_mode))
6019 break;
6020
6021 /* Try to find an integral mode to pun with. */
6022 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6023 if (imode == BLKmode)
6024 break;
6025
6026 compute_mode = imode;
6027 inner = gen_lowpart (imode, inner);
6028 }
6029
6030 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6031 if (len >= HOST_BITS_PER_WIDE_INT)
6032 break;
6033
6034 /* Now compute the equivalent expression. Make a copy of INNER
6035 for the SET_DEST in case it is a MEM into which we will substitute;
6036 we don't want shared RTL in that case. */
6037 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6038 cleared = simplify_gen_binary (AND, compute_mode,
6039 simplify_gen_unary (NOT, compute_mode,
6040 simplify_gen_binary (ASHIFT,
6041 compute_mode,
6042 mask, pos),
6043 compute_mode),
6044 inner);
6045 masked = simplify_gen_binary (ASHIFT, compute_mode,
6046 simplify_gen_binary (
6047 AND, compute_mode,
6048 gen_lowpart (compute_mode, SET_SRC (x)),
6049 mask),
6050 pos);
6051
6052 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6053 simplify_gen_binary (IOR, compute_mode,
6054 cleared, masked));
6055 }
6056
6057 return x;
6058 }
6059 \f
6060 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6061 it is an RTX that represents a variable starting position; otherwise,
6062 POS is the (constant) starting bit position (counted from the LSB).
6063
6064 INNER may be a USE. This will occur when we started with a bitfield
6065 that went outside the boundary of the object in memory, which is
6066 allowed on most machines. To isolate this case, we produce a USE
6067 whose mode is wide enough and surround the MEM with it. The only
6068 code that understands the USE is this routine. If it is not removed,
6069 it will cause the resulting insn not to match.
6070
6071 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6072 signed reference.
6073
6074 IN_DEST is nonzero if this is a reference in the destination of a
6075 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6076 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6077 be used.
6078
6079 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6080 ZERO_EXTRACT should be built even for bits starting at bit 0.
6081
6082 MODE is the desired mode of the result (if IN_DEST == 0).
6083
6084 The result is an RTX for the extraction or NULL_RTX if the target
6085 can't handle it. */
6086
6087 static rtx
6088 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6089 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6090 int in_dest, int in_compare)
6091 {
6092 /* This mode describes the size of the storage area
6093 to fetch the overall value from. Within that, we
6094 ignore the POS lowest bits, etc. */
6095 enum machine_mode is_mode = GET_MODE (inner);
6096 enum machine_mode inner_mode;
6097 enum machine_mode wanted_inner_mode = byte_mode;
6098 enum machine_mode wanted_inner_reg_mode = word_mode;
6099 enum machine_mode pos_mode = word_mode;
6100 enum machine_mode extraction_mode = word_mode;
6101 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6102 int spans_byte = 0;
6103 rtx new = 0;
6104 rtx orig_pos_rtx = pos_rtx;
6105 HOST_WIDE_INT orig_pos;
6106
6107 /* Get some information about INNER and get the innermost object. */
6108 if (GET_CODE (inner) == USE)
6109 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6110 /* We don't need to adjust the position because we set up the USE
6111 to pretend that it was a full-word object. */
6112 spans_byte = 1, inner = XEXP (inner, 0);
6113 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6114 {
6115 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6116 consider just the QI as the memory to extract from.
6117 The subreg adds or removes high bits; its mode is
6118 irrelevant to the meaning of this extraction,
6119 since POS and LEN count from the lsb. */
6120 if (MEM_P (SUBREG_REG (inner)))
6121 is_mode = GET_MODE (SUBREG_REG (inner));
6122 inner = SUBREG_REG (inner);
6123 }
6124 else if (GET_CODE (inner) == ASHIFT
6125 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6126 && pos_rtx == 0 && pos == 0
6127 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6128 {
6129 /* We're extracting the least significant bits of an rtx
6130 (ashift X (const_int C)), where LEN > C. Extract the
6131 least significant (LEN - C) bits of X, giving an rtx
6132 whose mode is MODE, then shift it left C times. */
6133 new = make_extraction (mode, XEXP (inner, 0),
6134 0, 0, len - INTVAL (XEXP (inner, 1)),
6135 unsignedp, in_dest, in_compare);
6136 if (new != 0)
6137 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6138 }
6139
6140 inner_mode = GET_MODE (inner);
6141
6142 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6143 pos = INTVAL (pos_rtx), pos_rtx = 0;
6144
6145 /* See if this can be done without an extraction. We never can if the
6146 width of the field is not the same as that of some integer mode. For
6147 registers, we can only avoid the extraction if the position is at the
6148 low-order bit and this is either not in the destination or we have the
6149 appropriate STRICT_LOW_PART operation available.
6150
6151 For MEM, we can avoid an extract if the field starts on an appropriate
6152 boundary and we can change the mode of the memory reference. However,
6153 we cannot directly access the MEM if we have a USE and the underlying
6154 MEM is not TMODE. This combination means that MEM was being used in a
6155 context where bits outside its mode were being referenced; that is only
6156 valid in bit-field insns. */
6157
6158 if (tmode != BLKmode
6159 && ! (spans_byte && inner_mode != tmode)
6160 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6161 && !MEM_P (inner)
6162 && (! in_dest
6163 || (REG_P (inner)
6164 && have_insn_for (STRICT_LOW_PART, tmode))))
6165 || (MEM_P (inner) && pos_rtx == 0
6166 && (pos
6167 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6168 : BITS_PER_UNIT)) == 0
6169 /* We can't do this if we are widening INNER_MODE (it
6170 may not be aligned, for one thing). */
6171 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6172 && (inner_mode == tmode
6173 || (! mode_dependent_address_p (XEXP (inner, 0))
6174 && ! MEM_VOLATILE_P (inner))))))
6175 {
6176 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6177 field. If the original and current mode are the same, we need not
6178 adjust the offset. Otherwise, we do if bytes big endian.
6179
6180 If INNER is not a MEM, get a piece consisting of just the field
6181 of interest (in this case POS % BITS_PER_WORD must be 0). */
6182
6183 if (MEM_P (inner))
6184 {
6185 HOST_WIDE_INT offset;
6186
6187 /* POS counts from lsb, but make OFFSET count in memory order. */
6188 if (BYTES_BIG_ENDIAN)
6189 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6190 else
6191 offset = pos / BITS_PER_UNIT;
6192
6193 new = adjust_address_nv (inner, tmode, offset);
6194 }
6195 else if (REG_P (inner))
6196 {
6197 if (tmode != inner_mode)
6198 {
6199 /* We can't call gen_lowpart in a DEST since we
6200 always want a SUBREG (see below) and it would sometimes
6201 return a new hard register. */
6202 if (pos || in_dest)
6203 {
6204 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6205
6206 if (WORDS_BIG_ENDIAN
6207 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6208 final_word = ((GET_MODE_SIZE (inner_mode)
6209 - GET_MODE_SIZE (tmode))
6210 / UNITS_PER_WORD) - final_word;
6211
6212 final_word *= UNITS_PER_WORD;
6213 if (BYTES_BIG_ENDIAN &&
6214 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6215 final_word += (GET_MODE_SIZE (inner_mode)
6216 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6217
6218 /* Avoid creating invalid subregs, for example when
6219 simplifying (x>>32)&255. */
6220 if (final_word >= GET_MODE_SIZE (inner_mode))
6221 return NULL_RTX;
6222
6223 new = gen_rtx_SUBREG (tmode, inner, final_word);
6224 }
6225 else
6226 new = gen_lowpart (tmode, inner);
6227 }
6228 else
6229 new = inner;
6230 }
6231 else
6232 new = force_to_mode (inner, tmode,
6233 len >= HOST_BITS_PER_WIDE_INT
6234 ? ~(unsigned HOST_WIDE_INT) 0
6235 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6236 NULL_RTX, 0);
6237
6238 /* If this extraction is going into the destination of a SET,
6239 make a STRICT_LOW_PART unless we made a MEM. */
6240
6241 if (in_dest)
6242 return (MEM_P (new) ? new
6243 : (GET_CODE (new) != SUBREG
6244 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6245 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6246
6247 if (mode == tmode)
6248 return new;
6249
6250 if (GET_CODE (new) == CONST_INT)
6251 return gen_int_mode (INTVAL (new), mode);
6252
6253 /* If we know that no extraneous bits are set, and that the high
6254 bit is not set, convert the extraction to the cheaper of
6255 sign and zero extension, that are equivalent in these cases. */
6256 if (flag_expensive_optimizations
6257 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6258 && ((nonzero_bits (new, tmode)
6259 & ~(((unsigned HOST_WIDE_INT)
6260 GET_MODE_MASK (tmode))
6261 >> 1))
6262 == 0)))
6263 {
6264 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6265 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6266
6267 /* Prefer ZERO_EXTENSION, since it gives more information to
6268 backends. */
6269 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6270 return temp;
6271 return temp1;
6272 }
6273
6274 /* Otherwise, sign- or zero-extend unless we already are in the
6275 proper mode. */
6276
6277 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6278 mode, new));
6279 }
6280
6281 /* Unless this is a COMPARE or we have a funny memory reference,
6282 don't do anything with zero-extending field extracts starting at
6283 the low-order bit since they are simple AND operations. */
6284 if (pos_rtx == 0 && pos == 0 && ! in_dest
6285 && ! in_compare && ! spans_byte && unsignedp)
6286 return 0;
6287
6288 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6289 we would be spanning bytes or if the position is not a constant and the
6290 length is not 1. In all other cases, we would only be going outside
6291 our object in cases when an original shift would have been
6292 undefined. */
6293 if (! spans_byte && MEM_P (inner)
6294 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6295 || (pos_rtx != 0 && len != 1)))
6296 return 0;
6297
6298 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6299 and the mode for the result. */
6300 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6301 {
6302 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6303 pos_mode = mode_for_extraction (EP_insv, 2);
6304 extraction_mode = mode_for_extraction (EP_insv, 3);
6305 }
6306
6307 if (! in_dest && unsignedp
6308 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6309 {
6310 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6311 pos_mode = mode_for_extraction (EP_extzv, 3);
6312 extraction_mode = mode_for_extraction (EP_extzv, 0);
6313 }
6314
6315 if (! in_dest && ! unsignedp
6316 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6317 {
6318 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6319 pos_mode = mode_for_extraction (EP_extv, 3);
6320 extraction_mode = mode_for_extraction (EP_extv, 0);
6321 }
6322
6323 /* Never narrow an object, since that might not be safe. */
6324
6325 if (mode != VOIDmode
6326 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6327 extraction_mode = mode;
6328
6329 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6330 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6331 pos_mode = GET_MODE (pos_rtx);
6332
6333 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6334 if we have to change the mode of memory and cannot, the desired mode is
6335 EXTRACTION_MODE. */
6336 if (!MEM_P (inner))
6337 wanted_inner_mode = wanted_inner_reg_mode;
6338 else if (inner_mode != wanted_inner_mode
6339 && (mode_dependent_address_p (XEXP (inner, 0))
6340 || MEM_VOLATILE_P (inner)))
6341 wanted_inner_mode = extraction_mode;
6342
6343 orig_pos = pos;
6344
6345 if (BITS_BIG_ENDIAN)
6346 {
6347 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6348 BITS_BIG_ENDIAN style. If position is constant, compute new
6349 position. Otherwise, build subtraction.
6350 Note that POS is relative to the mode of the original argument.
6351 If it's a MEM we need to recompute POS relative to that.
6352 However, if we're extracting from (or inserting into) a register,
6353 we want to recompute POS relative to wanted_inner_mode. */
6354 int width = (MEM_P (inner)
6355 ? GET_MODE_BITSIZE (is_mode)
6356 : GET_MODE_BITSIZE (wanted_inner_mode));
6357
6358 if (pos_rtx == 0)
6359 pos = width - len - pos;
6360 else
6361 pos_rtx
6362 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6363 /* POS may be less than 0 now, but we check for that below.
6364 Note that it can only be less than 0 if !MEM_P (inner). */
6365 }
6366
6367 /* If INNER has a wider mode, make it smaller. If this is a constant
6368 extract, try to adjust the byte to point to the byte containing
6369 the value. */
6370 if (wanted_inner_mode != VOIDmode
6371 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6372 && ((MEM_P (inner)
6373 && (inner_mode == wanted_inner_mode
6374 || (! mode_dependent_address_p (XEXP (inner, 0))
6375 && ! MEM_VOLATILE_P (inner))))))
6376 {
6377 int offset = 0;
6378
6379 /* The computations below will be correct if the machine is big
6380 endian in both bits and bytes or little endian in bits and bytes.
6381 If it is mixed, we must adjust. */
6382
6383 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6384 adjust OFFSET to compensate. */
6385 if (BYTES_BIG_ENDIAN
6386 && ! spans_byte
6387 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6388 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6389
6390 /* If this is a constant position, we can move to the desired byte. */
6391 if (pos_rtx == 0)
6392 {
6393 offset += pos / BITS_PER_UNIT;
6394 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6395 }
6396
6397 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6398 && ! spans_byte
6399 && is_mode != wanted_inner_mode)
6400 offset = (GET_MODE_SIZE (is_mode)
6401 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6402
6403 if (offset != 0 || inner_mode != wanted_inner_mode)
6404 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6405 }
6406
6407 /* If INNER is not memory, we can always get it into the proper mode. If we
6408 are changing its mode, POS must be a constant and smaller than the size
6409 of the new mode. */
6410 else if (!MEM_P (inner))
6411 {
6412 if (GET_MODE (inner) != wanted_inner_mode
6413 && (pos_rtx != 0
6414 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6415 return 0;
6416
6417 inner = force_to_mode (inner, wanted_inner_mode,
6418 pos_rtx
6419 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6420 ? ~(unsigned HOST_WIDE_INT) 0
6421 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6422 << orig_pos),
6423 NULL_RTX, 0);
6424 }
6425
6426 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6427 have to zero extend. Otherwise, we can just use a SUBREG. */
6428 if (pos_rtx != 0
6429 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6430 {
6431 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6432
6433 /* If we know that no extraneous bits are set, and that the high
6434 bit is not set, convert extraction to cheaper one - either
6435 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6436 cases. */
6437 if (flag_expensive_optimizations
6438 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6439 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6440 & ~(((unsigned HOST_WIDE_INT)
6441 GET_MODE_MASK (GET_MODE (pos_rtx)))
6442 >> 1))
6443 == 0)))
6444 {
6445 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6446
6447 /* Prefer ZERO_EXTENSION, since it gives more information to
6448 backends. */
6449 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6450 temp = temp1;
6451 }
6452 pos_rtx = temp;
6453 }
6454 else if (pos_rtx != 0
6455 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6456 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6457
6458 /* Make POS_RTX unless we already have it and it is correct. If we don't
6459 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6460 be a CONST_INT. */
6461 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6462 pos_rtx = orig_pos_rtx;
6463
6464 else if (pos_rtx == 0)
6465 pos_rtx = GEN_INT (pos);
6466
6467 /* Make the required operation. See if we can use existing rtx. */
6468 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6469 extraction_mode, inner, GEN_INT (len), pos_rtx);
6470 if (! in_dest)
6471 new = gen_lowpart (mode, new);
6472
6473 return new;
6474 }
6475 \f
6476 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6477 with any other operations in X. Return X without that shift if so. */
6478
6479 static rtx
6480 extract_left_shift (rtx x, int count)
6481 {
6482 enum rtx_code code = GET_CODE (x);
6483 enum machine_mode mode = GET_MODE (x);
6484 rtx tem;
6485
6486 switch (code)
6487 {
6488 case ASHIFT:
6489 /* This is the shift itself. If it is wide enough, we will return
6490 either the value being shifted if the shift count is equal to
6491 COUNT or a shift for the difference. */
6492 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6493 && INTVAL (XEXP (x, 1)) >= count)
6494 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6495 INTVAL (XEXP (x, 1)) - count);
6496 break;
6497
6498 case NEG: case NOT:
6499 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6500 return simplify_gen_unary (code, mode, tem, mode);
6501
6502 break;
6503
6504 case PLUS: case IOR: case XOR: case AND:
6505 /* If we can safely shift this constant and we find the inner shift,
6506 make a new operation. */
6507 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6508 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6509 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6510 return simplify_gen_binary (code, mode, tem,
6511 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6512
6513 break;
6514
6515 default:
6516 break;
6517 }
6518
6519 return 0;
6520 }
6521 \f
6522 /* Look at the expression rooted at X. Look for expressions
6523 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6524 Form these expressions.
6525
6526 Return the new rtx, usually just X.
6527
6528 Also, for machines like the VAX that don't have logical shift insns,
6529 try to convert logical to arithmetic shift operations in cases where
6530 they are equivalent. This undoes the canonicalizations to logical
6531 shifts done elsewhere.
6532
6533 We try, as much as possible, to re-use rtl expressions to save memory.
6534
6535 IN_CODE says what kind of expression we are processing. Normally, it is
6536 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6537 being kludges), it is MEM. When processing the arguments of a comparison
6538 or a COMPARE against zero, it is COMPARE. */
6539
6540 static rtx
6541 make_compound_operation (rtx x, enum rtx_code in_code)
6542 {
6543 enum rtx_code code = GET_CODE (x);
6544 enum machine_mode mode = GET_MODE (x);
6545 int mode_width = GET_MODE_BITSIZE (mode);
6546 rtx rhs, lhs;
6547 enum rtx_code next_code;
6548 int i;
6549 rtx new = 0;
6550 rtx tem;
6551 const char *fmt;
6552
6553 /* Select the code to be used in recursive calls. Once we are inside an
6554 address, we stay there. If we have a comparison, set to COMPARE,
6555 but once inside, go back to our default of SET. */
6556
6557 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6558 : ((code == COMPARE || COMPARISON_P (x))
6559 && XEXP (x, 1) == const0_rtx) ? COMPARE
6560 : in_code == COMPARE ? SET : in_code);
6561
6562 /* Process depending on the code of this operation. If NEW is set
6563 nonzero, it will be returned. */
6564
6565 switch (code)
6566 {
6567 case ASHIFT:
6568 /* Convert shifts by constants into multiplications if inside
6569 an address. */
6570 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6571 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6572 && INTVAL (XEXP (x, 1)) >= 0)
6573 {
6574 new = make_compound_operation (XEXP (x, 0), next_code);
6575 new = gen_rtx_MULT (mode, new,
6576 GEN_INT ((HOST_WIDE_INT) 1
6577 << INTVAL (XEXP (x, 1))));
6578 }
6579 break;
6580
6581 case AND:
6582 /* If the second operand is not a constant, we can't do anything
6583 with it. */
6584 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6585 break;
6586
6587 /* If the constant is a power of two minus one and the first operand
6588 is a logical right shift, make an extraction. */
6589 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6590 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6591 {
6592 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6593 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6594 0, in_code == COMPARE);
6595 }
6596
6597 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6598 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6599 && subreg_lowpart_p (XEXP (x, 0))
6600 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6601 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6602 {
6603 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6604 next_code);
6605 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6606 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6607 0, in_code == COMPARE);
6608 }
6609 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6610 else if ((GET_CODE (XEXP (x, 0)) == XOR
6611 || GET_CODE (XEXP (x, 0)) == IOR)
6612 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6613 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6614 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6615 {
6616 /* Apply the distributive law, and then try to make extractions. */
6617 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6618 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6619 XEXP (x, 1)),
6620 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6621 XEXP (x, 1)));
6622 new = make_compound_operation (new, in_code);
6623 }
6624
6625 /* If we are have (and (rotate X C) M) and C is larger than the number
6626 of bits in M, this is an extraction. */
6627
6628 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6629 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6630 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6631 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6632 {
6633 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6634 new = make_extraction (mode, new,
6635 (GET_MODE_BITSIZE (mode)
6636 - INTVAL (XEXP (XEXP (x, 0), 1))),
6637 NULL_RTX, i, 1, 0, in_code == COMPARE);
6638 }
6639
6640 /* On machines without logical shifts, if the operand of the AND is
6641 a logical shift and our mask turns off all the propagated sign
6642 bits, we can replace the logical shift with an arithmetic shift. */
6643 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6644 && !have_insn_for (LSHIFTRT, mode)
6645 && have_insn_for (ASHIFTRT, mode)
6646 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6647 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6648 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6649 && mode_width <= HOST_BITS_PER_WIDE_INT)
6650 {
6651 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6652
6653 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6654 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6655 SUBST (XEXP (x, 0),
6656 gen_rtx_ASHIFTRT (mode,
6657 make_compound_operation
6658 (XEXP (XEXP (x, 0), 0), next_code),
6659 XEXP (XEXP (x, 0), 1)));
6660 }
6661
6662 /* If the constant is one less than a power of two, this might be
6663 representable by an extraction even if no shift is present.
6664 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6665 we are in a COMPARE. */
6666 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6667 new = make_extraction (mode,
6668 make_compound_operation (XEXP (x, 0),
6669 next_code),
6670 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6671
6672 /* If we are in a comparison and this is an AND with a power of two,
6673 convert this into the appropriate bit extract. */
6674 else if (in_code == COMPARE
6675 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6676 new = make_extraction (mode,
6677 make_compound_operation (XEXP (x, 0),
6678 next_code),
6679 i, NULL_RTX, 1, 1, 0, 1);
6680
6681 break;
6682
6683 case LSHIFTRT:
6684 /* If the sign bit is known to be zero, replace this with an
6685 arithmetic shift. */
6686 if (have_insn_for (ASHIFTRT, mode)
6687 && ! have_insn_for (LSHIFTRT, mode)
6688 && mode_width <= HOST_BITS_PER_WIDE_INT
6689 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6690 {
6691 new = gen_rtx_ASHIFTRT (mode,
6692 make_compound_operation (XEXP (x, 0),
6693 next_code),
6694 XEXP (x, 1));
6695 break;
6696 }
6697
6698 /* ... fall through ... */
6699
6700 case ASHIFTRT:
6701 lhs = XEXP (x, 0);
6702 rhs = XEXP (x, 1);
6703
6704 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6705 this is a SIGN_EXTRACT. */
6706 if (GET_CODE (rhs) == CONST_INT
6707 && GET_CODE (lhs) == ASHIFT
6708 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6709 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6710 {
6711 new = make_compound_operation (XEXP (lhs, 0), next_code);
6712 new = make_extraction (mode, new,
6713 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6714 NULL_RTX, mode_width - INTVAL (rhs),
6715 code == LSHIFTRT, 0, in_code == COMPARE);
6716 break;
6717 }
6718
6719 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6720 If so, try to merge the shifts into a SIGN_EXTEND. We could
6721 also do this for some cases of SIGN_EXTRACT, but it doesn't
6722 seem worth the effort; the case checked for occurs on Alpha. */
6723
6724 if (!OBJECT_P (lhs)
6725 && ! (GET_CODE (lhs) == SUBREG
6726 && (OBJECT_P (SUBREG_REG (lhs))))
6727 && GET_CODE (rhs) == CONST_INT
6728 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6729 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6730 new = make_extraction (mode, make_compound_operation (new, next_code),
6731 0, NULL_RTX, mode_width - INTVAL (rhs),
6732 code == LSHIFTRT, 0, in_code == COMPARE);
6733
6734 break;
6735
6736 case SUBREG:
6737 /* Call ourselves recursively on the inner expression. If we are
6738 narrowing the object and it has a different RTL code from
6739 what it originally did, do this SUBREG as a force_to_mode. */
6740
6741 tem = make_compound_operation (SUBREG_REG (x), in_code);
6742
6743 {
6744 rtx simplified;
6745 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6746 SUBREG_BYTE (x));
6747
6748 if (simplified)
6749 tem = simplified;
6750
6751 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6752 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6753 && subreg_lowpart_p (x))
6754 {
6755 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6756 NULL_RTX, 0);
6757
6758 /* If we have something other than a SUBREG, we might have
6759 done an expansion, so rerun ourselves. */
6760 if (GET_CODE (newer) != SUBREG)
6761 newer = make_compound_operation (newer, in_code);
6762
6763 return newer;
6764 }
6765
6766 if (simplified)
6767 return tem;
6768 }
6769 break;
6770
6771 default:
6772 break;
6773 }
6774
6775 if (new)
6776 {
6777 x = gen_lowpart (mode, new);
6778 code = GET_CODE (x);
6779 }
6780
6781 /* Now recursively process each operand of this operation. */
6782 fmt = GET_RTX_FORMAT (code);
6783 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6784 if (fmt[i] == 'e')
6785 {
6786 new = make_compound_operation (XEXP (x, i), next_code);
6787 SUBST (XEXP (x, i), new);
6788 }
6789
6790 return x;
6791 }
6792 \f
6793 /* Given M see if it is a value that would select a field of bits
6794 within an item, but not the entire word. Return -1 if not.
6795 Otherwise, return the starting position of the field, where 0 is the
6796 low-order bit.
6797
6798 *PLEN is set to the length of the field. */
6799
6800 static int
6801 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6802 {
6803 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6804 int pos = exact_log2 (m & -m);
6805 int len = 0;
6806
6807 if (pos >= 0)
6808 /* Now shift off the low-order zero bits and see if we have a
6809 power of two minus 1. */
6810 len = exact_log2 ((m >> pos) + 1);
6811
6812 if (len <= 0)
6813 pos = -1;
6814
6815 *plen = len;
6816 return pos;
6817 }
6818 \f
6819 /* See if X can be simplified knowing that we will only refer to it in
6820 MODE and will only refer to those bits that are nonzero in MASK.
6821 If other bits are being computed or if masking operations are done
6822 that select a superset of the bits in MASK, they can sometimes be
6823 ignored.
6824
6825 Return a possibly simplified expression, but always convert X to
6826 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6827
6828 Also, if REG is nonzero and X is a register equal in value to REG,
6829 replace X with REG.
6830
6831 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6832 are all off in X. This is used when X will be complemented, by either
6833 NOT, NEG, or XOR. */
6834
6835 static rtx
6836 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6837 rtx reg, int just_select)
6838 {
6839 enum rtx_code code = GET_CODE (x);
6840 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6841 enum machine_mode op_mode;
6842 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6843 rtx op0, op1, temp;
6844
6845 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6846 code below will do the wrong thing since the mode of such an
6847 expression is VOIDmode.
6848
6849 Also do nothing if X is a CLOBBER; this can happen if X was
6850 the return value from a call to gen_lowpart. */
6851 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6852 return x;
6853
6854 /* We want to perform the operation is its present mode unless we know
6855 that the operation is valid in MODE, in which case we do the operation
6856 in MODE. */
6857 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6858 && have_insn_for (code, mode))
6859 ? mode : GET_MODE (x));
6860
6861 /* It is not valid to do a right-shift in a narrower mode
6862 than the one it came in with. */
6863 if ((code == LSHIFTRT || code == ASHIFTRT)
6864 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6865 op_mode = GET_MODE (x);
6866
6867 /* Truncate MASK to fit OP_MODE. */
6868 if (op_mode)
6869 mask &= GET_MODE_MASK (op_mode);
6870
6871 /* When we have an arithmetic operation, or a shift whose count we
6872 do not know, we need to assume that all bits up to the highest-order
6873 bit in MASK will be needed. This is how we form such a mask. */
6874 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6875 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6876 else
6877 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6878 - 1);
6879
6880 /* Determine what bits of X are guaranteed to be (non)zero. */
6881 nonzero = nonzero_bits (x, mode);
6882
6883 /* If none of the bits in X are needed, return a zero. */
6884 if (! just_select && (nonzero & mask) == 0)
6885 x = const0_rtx;
6886
6887 /* If X is a CONST_INT, return a new one. Do this here since the
6888 test below will fail. */
6889 if (GET_CODE (x) == CONST_INT)
6890 {
6891 if (SCALAR_INT_MODE_P (mode))
6892 return gen_int_mode (INTVAL (x) & mask, mode);
6893 else
6894 {
6895 x = GEN_INT (INTVAL (x) & mask);
6896 return gen_lowpart_common (mode, x);
6897 }
6898 }
6899
6900 /* If X is narrower than MODE and we want all the bits in X's mode, just
6901 get X in the proper mode. */
6902 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6903 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6904 return gen_lowpart (mode, x);
6905
6906 switch (code)
6907 {
6908 case CLOBBER:
6909 /* If X is a (clobber (const_int)), return it since we know we are
6910 generating something that won't match. */
6911 return x;
6912
6913 case USE:
6914 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6915 spanned the boundary of the MEM. If we are now masking so it is
6916 within that boundary, we don't need the USE any more. */
6917 if (! BITS_BIG_ENDIAN
6918 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6919 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6920 break;
6921
6922 case SIGN_EXTEND:
6923 case ZERO_EXTEND:
6924 case ZERO_EXTRACT:
6925 case SIGN_EXTRACT:
6926 x = expand_compound_operation (x);
6927 if (GET_CODE (x) != code)
6928 return force_to_mode (x, mode, mask, reg, next_select);
6929 break;
6930
6931 case REG:
6932 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6933 || rtx_equal_p (reg, get_last_value (x))))
6934 x = reg;
6935 break;
6936
6937 case SUBREG:
6938 if (subreg_lowpart_p (x)
6939 /* We can ignore the effect of this SUBREG if it narrows the mode or
6940 if the constant masks to zero all the bits the mode doesn't
6941 have. */
6942 && ((GET_MODE_SIZE (GET_MODE (x))
6943 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6944 || (0 == (mask
6945 & GET_MODE_MASK (GET_MODE (x))
6946 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6947 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6948 break;
6949
6950 case AND:
6951 /* If this is an AND with a constant, convert it into an AND
6952 whose constant is the AND of that constant with MASK. If it
6953 remains an AND of MASK, delete it since it is redundant. */
6954
6955 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6956 {
6957 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6958 mask & INTVAL (XEXP (x, 1)));
6959
6960 /* If X is still an AND, see if it is an AND with a mask that
6961 is just some low-order bits. If so, and it is MASK, we don't
6962 need it. */
6963
6964 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6965 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6966 == mask))
6967 x = XEXP (x, 0);
6968
6969 /* If it remains an AND, try making another AND with the bits
6970 in the mode mask that aren't in MASK turned on. If the
6971 constant in the AND is wide enough, this might make a
6972 cheaper constant. */
6973
6974 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6975 && GET_MODE_MASK (GET_MODE (x)) != mask
6976 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6977 {
6978 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6979 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6980 int width = GET_MODE_BITSIZE (GET_MODE (x));
6981 rtx y;
6982
6983 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6984 number, sign extend it. */
6985 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6986 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6987 cval |= (HOST_WIDE_INT) -1 << width;
6988
6989 y = simplify_gen_binary (AND, GET_MODE (x),
6990 XEXP (x, 0), GEN_INT (cval));
6991 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6992 x = y;
6993 }
6994
6995 break;
6996 }
6997
6998 goto binop;
6999
7000 case PLUS:
7001 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7002 low-order bits (as in an alignment operation) and FOO is already
7003 aligned to that boundary, mask C1 to that boundary as well.
7004 This may eliminate that PLUS and, later, the AND. */
7005
7006 {
7007 unsigned int width = GET_MODE_BITSIZE (mode);
7008 unsigned HOST_WIDE_INT smask = mask;
7009
7010 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7011 number, sign extend it. */
7012
7013 if (width < HOST_BITS_PER_WIDE_INT
7014 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7015 smask |= (HOST_WIDE_INT) -1 << width;
7016
7017 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7018 && exact_log2 (- smask) >= 0
7019 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7020 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7021 return force_to_mode (plus_constant (XEXP (x, 0),
7022 (INTVAL (XEXP (x, 1)) & smask)),
7023 mode, smask, reg, next_select);
7024 }
7025
7026 /* ... fall through ... */
7027
7028 case MULT:
7029 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7030 most significant bit in MASK since carries from those bits will
7031 affect the bits we are interested in. */
7032 mask = fuller_mask;
7033 goto binop;
7034
7035 case MINUS:
7036 /* If X is (minus C Y) where C's least set bit is larger than any bit
7037 in the mask, then we may replace with (neg Y). */
7038 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7039 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7040 & -INTVAL (XEXP (x, 0))))
7041 > mask))
7042 {
7043 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7044 GET_MODE (x));
7045 return force_to_mode (x, mode, mask, reg, next_select);
7046 }
7047
7048 /* Similarly, if C contains every bit in the fuller_mask, then we may
7049 replace with (not Y). */
7050 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7051 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7052 == INTVAL (XEXP (x, 0))))
7053 {
7054 x = simplify_gen_unary (NOT, GET_MODE (x),
7055 XEXP (x, 1), GET_MODE (x));
7056 return force_to_mode (x, mode, mask, reg, next_select);
7057 }
7058
7059 mask = fuller_mask;
7060 goto binop;
7061
7062 case IOR:
7063 case XOR:
7064 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7065 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7066 operation which may be a bitfield extraction. Ensure that the
7067 constant we form is not wider than the mode of X. */
7068
7069 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7070 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7071 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7072 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7073 && GET_CODE (XEXP (x, 1)) == CONST_INT
7074 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7075 + floor_log2 (INTVAL (XEXP (x, 1))))
7076 < GET_MODE_BITSIZE (GET_MODE (x)))
7077 && (INTVAL (XEXP (x, 1))
7078 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7079 {
7080 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7081 << INTVAL (XEXP (XEXP (x, 0), 1)));
7082 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7083 XEXP (XEXP (x, 0), 0), temp);
7084 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7085 XEXP (XEXP (x, 0), 1));
7086 return force_to_mode (x, mode, mask, reg, next_select);
7087 }
7088
7089 binop:
7090 /* For most binary operations, just propagate into the operation and
7091 change the mode if we have an operation of that mode. */
7092
7093 op0 = gen_lowpart (op_mode,
7094 force_to_mode (XEXP (x, 0), mode, mask,
7095 reg, next_select));
7096 op1 = gen_lowpart (op_mode,
7097 force_to_mode (XEXP (x, 1), mode, mask,
7098 reg, next_select));
7099
7100 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7101 x = simplify_gen_binary (code, op_mode, op0, op1);
7102 break;
7103
7104 case ASHIFT:
7105 /* For left shifts, do the same, but just for the first operand.
7106 However, we cannot do anything with shifts where we cannot
7107 guarantee that the counts are smaller than the size of the mode
7108 because such a count will have a different meaning in a
7109 wider mode. */
7110
7111 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7112 && INTVAL (XEXP (x, 1)) >= 0
7113 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7114 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7115 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7116 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7117 break;
7118
7119 /* If the shift count is a constant and we can do arithmetic in
7120 the mode of the shift, refine which bits we need. Otherwise, use the
7121 conservative form of the mask. */
7122 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7123 && INTVAL (XEXP (x, 1)) >= 0
7124 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7125 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7126 mask >>= INTVAL (XEXP (x, 1));
7127 else
7128 mask = fuller_mask;
7129
7130 op0 = gen_lowpart (op_mode,
7131 force_to_mode (XEXP (x, 0), op_mode,
7132 mask, reg, next_select));
7133
7134 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7135 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7136 break;
7137
7138 case LSHIFTRT:
7139 /* Here we can only do something if the shift count is a constant,
7140 this shift constant is valid for the host, and we can do arithmetic
7141 in OP_MODE. */
7142
7143 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7144 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7145 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7146 {
7147 rtx inner = XEXP (x, 0);
7148 unsigned HOST_WIDE_INT inner_mask;
7149
7150 /* Select the mask of the bits we need for the shift operand. */
7151 inner_mask = mask << INTVAL (XEXP (x, 1));
7152
7153 /* We can only change the mode of the shift if we can do arithmetic
7154 in the mode of the shift and INNER_MASK is no wider than the
7155 width of X's mode. */
7156 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7157 op_mode = GET_MODE (x);
7158
7159 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7160
7161 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7162 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7163 }
7164
7165 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7166 shift and AND produces only copies of the sign bit (C2 is one less
7167 than a power of two), we can do this with just a shift. */
7168
7169 if (GET_CODE (x) == LSHIFTRT
7170 && GET_CODE (XEXP (x, 1)) == CONST_INT
7171 /* The shift puts one of the sign bit copies in the least significant
7172 bit. */
7173 && ((INTVAL (XEXP (x, 1))
7174 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7175 >= GET_MODE_BITSIZE (GET_MODE (x)))
7176 && exact_log2 (mask + 1) >= 0
7177 /* Number of bits left after the shift must be more than the mask
7178 needs. */
7179 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7180 <= GET_MODE_BITSIZE (GET_MODE (x)))
7181 /* Must be more sign bit copies than the mask needs. */
7182 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7183 >= exact_log2 (mask + 1)))
7184 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7185 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7186 - exact_log2 (mask + 1)));
7187
7188 goto shiftrt;
7189
7190 case ASHIFTRT:
7191 /* If we are just looking for the sign bit, we don't need this shift at
7192 all, even if it has a variable count. */
7193 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7194 && (mask == ((unsigned HOST_WIDE_INT) 1
7195 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7196 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7197
7198 /* If this is a shift by a constant, get a mask that contains those bits
7199 that are not copies of the sign bit. We then have two cases: If
7200 MASK only includes those bits, this can be a logical shift, which may
7201 allow simplifications. If MASK is a single-bit field not within
7202 those bits, we are requesting a copy of the sign bit and hence can
7203 shift the sign bit to the appropriate location. */
7204
7205 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7206 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7207 {
7208 int i = -1;
7209
7210 /* If the considered data is wider than HOST_WIDE_INT, we can't
7211 represent a mask for all its bits in a single scalar.
7212 But we only care about the lower bits, so calculate these. */
7213
7214 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7215 {
7216 nonzero = ~(HOST_WIDE_INT) 0;
7217
7218 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7219 is the number of bits a full-width mask would have set.
7220 We need only shift if these are fewer than nonzero can
7221 hold. If not, we must keep all bits set in nonzero. */
7222
7223 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7224 < HOST_BITS_PER_WIDE_INT)
7225 nonzero >>= INTVAL (XEXP (x, 1))
7226 + HOST_BITS_PER_WIDE_INT
7227 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7228 }
7229 else
7230 {
7231 nonzero = GET_MODE_MASK (GET_MODE (x));
7232 nonzero >>= INTVAL (XEXP (x, 1));
7233 }
7234
7235 if ((mask & ~nonzero) == 0
7236 || (i = exact_log2 (mask)) >= 0)
7237 {
7238 x = simplify_shift_const
7239 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7240 i < 0 ? INTVAL (XEXP (x, 1))
7241 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7242
7243 if (GET_CODE (x) != ASHIFTRT)
7244 return force_to_mode (x, mode, mask, reg, next_select);
7245 }
7246 }
7247
7248 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7249 even if the shift count isn't a constant. */
7250 if (mask == 1)
7251 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7252 XEXP (x, 0), XEXP (x, 1));
7253
7254 shiftrt:
7255
7256 /* If this is a zero- or sign-extension operation that just affects bits
7257 we don't care about, remove it. Be sure the call above returned
7258 something that is still a shift. */
7259
7260 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7261 && GET_CODE (XEXP (x, 1)) == CONST_INT
7262 && INTVAL (XEXP (x, 1)) >= 0
7263 && (INTVAL (XEXP (x, 1))
7264 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7265 && GET_CODE (XEXP (x, 0)) == ASHIFT
7266 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7267 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7268 reg, next_select);
7269
7270 break;
7271
7272 case ROTATE:
7273 case ROTATERT:
7274 /* If the shift count is constant and we can do computations
7275 in the mode of X, compute where the bits we care about are.
7276 Otherwise, we can't do anything. Don't change the mode of
7277 the shift or propagate MODE into the shift, though. */
7278 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7279 && INTVAL (XEXP (x, 1)) >= 0)
7280 {
7281 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7282 GET_MODE (x), GEN_INT (mask),
7283 XEXP (x, 1));
7284 if (temp && GET_CODE (temp) == CONST_INT)
7285 SUBST (XEXP (x, 0),
7286 force_to_mode (XEXP (x, 0), GET_MODE (x),
7287 INTVAL (temp), reg, next_select));
7288 }
7289 break;
7290
7291 case NEG:
7292 /* If we just want the low-order bit, the NEG isn't needed since it
7293 won't change the low-order bit. */
7294 if (mask == 1)
7295 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7296
7297 /* We need any bits less significant than the most significant bit in
7298 MASK since carries from those bits will affect the bits we are
7299 interested in. */
7300 mask = fuller_mask;
7301 goto unop;
7302
7303 case NOT:
7304 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7305 same as the XOR case above. Ensure that the constant we form is not
7306 wider than the mode of X. */
7307
7308 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7309 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7310 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7311 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7312 < GET_MODE_BITSIZE (GET_MODE (x)))
7313 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7314 {
7315 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7316 GET_MODE (x));
7317 temp = simplify_gen_binary (XOR, GET_MODE (x),
7318 XEXP (XEXP (x, 0), 0), temp);
7319 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7320 temp, XEXP (XEXP (x, 0), 1));
7321
7322 return force_to_mode (x, mode, mask, reg, next_select);
7323 }
7324
7325 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7326 use the full mask inside the NOT. */
7327 mask = fuller_mask;
7328
7329 unop:
7330 op0 = gen_lowpart (op_mode,
7331 force_to_mode (XEXP (x, 0), mode, mask,
7332 reg, next_select));
7333 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7334 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7335 break;
7336
7337 case NE:
7338 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7339 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7340 which is equal to STORE_FLAG_VALUE. */
7341 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7342 && GET_MODE (XEXP (x, 0)) == mode
7343 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7344 && (nonzero_bits (XEXP (x, 0), mode)
7345 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7346 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7347
7348 break;
7349
7350 case IF_THEN_ELSE:
7351 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7352 written in a narrower mode. We play it safe and do not do so. */
7353
7354 SUBST (XEXP (x, 1),
7355 gen_lowpart (GET_MODE (x),
7356 force_to_mode (XEXP (x, 1), mode,
7357 mask, reg, next_select)));
7358 SUBST (XEXP (x, 2),
7359 gen_lowpart (GET_MODE (x),
7360 force_to_mode (XEXP (x, 2), mode,
7361 mask, reg, next_select)));
7362 break;
7363
7364 default:
7365 break;
7366 }
7367
7368 /* Ensure we return a value of the proper mode. */
7369 return gen_lowpart (mode, x);
7370 }
7371 \f
7372 /* Return nonzero if X is an expression that has one of two values depending on
7373 whether some other value is zero or nonzero. In that case, we return the
7374 value that is being tested, *PTRUE is set to the value if the rtx being
7375 returned has a nonzero value, and *PFALSE is set to the other alternative.
7376
7377 If we return zero, we set *PTRUE and *PFALSE to X. */
7378
7379 static rtx
7380 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7381 {
7382 enum machine_mode mode = GET_MODE (x);
7383 enum rtx_code code = GET_CODE (x);
7384 rtx cond0, cond1, true0, true1, false0, false1;
7385 unsigned HOST_WIDE_INT nz;
7386
7387 /* If we are comparing a value against zero, we are done. */
7388 if ((code == NE || code == EQ)
7389 && XEXP (x, 1) == const0_rtx)
7390 {
7391 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7392 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7393 return XEXP (x, 0);
7394 }
7395
7396 /* If this is a unary operation whose operand has one of two values, apply
7397 our opcode to compute those values. */
7398 else if (UNARY_P (x)
7399 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7400 {
7401 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7402 *pfalse = simplify_gen_unary (code, mode, false0,
7403 GET_MODE (XEXP (x, 0)));
7404 return cond0;
7405 }
7406
7407 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7408 make can't possibly match and would suppress other optimizations. */
7409 else if (code == COMPARE)
7410 ;
7411
7412 /* If this is a binary operation, see if either side has only one of two
7413 values. If either one does or if both do and they are conditional on
7414 the same value, compute the new true and false values. */
7415 else if (BINARY_P (x))
7416 {
7417 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7418 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7419
7420 if ((cond0 != 0 || cond1 != 0)
7421 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7422 {
7423 /* If if_then_else_cond returned zero, then true/false are the
7424 same rtl. We must copy one of them to prevent invalid rtl
7425 sharing. */
7426 if (cond0 == 0)
7427 true0 = copy_rtx (true0);
7428 else if (cond1 == 0)
7429 true1 = copy_rtx (true1);
7430
7431 if (COMPARISON_P (x))
7432 {
7433 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7434 true0, true1);
7435 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7436 false0, false1);
7437 }
7438 else
7439 {
7440 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7441 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7442 }
7443
7444 return cond0 ? cond0 : cond1;
7445 }
7446
7447 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7448 operands is zero when the other is nonzero, and vice-versa,
7449 and STORE_FLAG_VALUE is 1 or -1. */
7450
7451 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7452 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7453 || code == UMAX)
7454 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7455 {
7456 rtx op0 = XEXP (XEXP (x, 0), 1);
7457 rtx op1 = XEXP (XEXP (x, 1), 1);
7458
7459 cond0 = XEXP (XEXP (x, 0), 0);
7460 cond1 = XEXP (XEXP (x, 1), 0);
7461
7462 if (COMPARISON_P (cond0)
7463 && COMPARISON_P (cond1)
7464 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7465 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7466 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7467 || ((swap_condition (GET_CODE (cond0))
7468 == reversed_comparison_code (cond1, NULL))
7469 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7470 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7471 && ! side_effects_p (x))
7472 {
7473 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7474 *pfalse = simplify_gen_binary (MULT, mode,
7475 (code == MINUS
7476 ? simplify_gen_unary (NEG, mode,
7477 op1, mode)
7478 : op1),
7479 const_true_rtx);
7480 return cond0;
7481 }
7482 }
7483
7484 /* Similarly for MULT, AND and UMIN, except that for these the result
7485 is always zero. */
7486 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7487 && (code == MULT || code == AND || code == UMIN)
7488 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7489 {
7490 cond0 = XEXP (XEXP (x, 0), 0);
7491 cond1 = XEXP (XEXP (x, 1), 0);
7492
7493 if (COMPARISON_P (cond0)
7494 && COMPARISON_P (cond1)
7495 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7496 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7497 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7498 || ((swap_condition (GET_CODE (cond0))
7499 == reversed_comparison_code (cond1, NULL))
7500 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7501 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7502 && ! side_effects_p (x))
7503 {
7504 *ptrue = *pfalse = const0_rtx;
7505 return cond0;
7506 }
7507 }
7508 }
7509
7510 else if (code == IF_THEN_ELSE)
7511 {
7512 /* If we have IF_THEN_ELSE already, extract the condition and
7513 canonicalize it if it is NE or EQ. */
7514 cond0 = XEXP (x, 0);
7515 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7516 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7517 return XEXP (cond0, 0);
7518 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7519 {
7520 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7521 return XEXP (cond0, 0);
7522 }
7523 else
7524 return cond0;
7525 }
7526
7527 /* If X is a SUBREG, we can narrow both the true and false values
7528 if the inner expression, if there is a condition. */
7529 else if (code == SUBREG
7530 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7531 &true0, &false0)))
7532 {
7533 true0 = simplify_gen_subreg (mode, true0,
7534 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7535 false0 = simplify_gen_subreg (mode, false0,
7536 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7537 if (true0 && false0)
7538 {
7539 *ptrue = true0;
7540 *pfalse = false0;
7541 return cond0;
7542 }
7543 }
7544
7545 /* If X is a constant, this isn't special and will cause confusions
7546 if we treat it as such. Likewise if it is equivalent to a constant. */
7547 else if (CONSTANT_P (x)
7548 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7549 ;
7550
7551 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7552 will be least confusing to the rest of the compiler. */
7553 else if (mode == BImode)
7554 {
7555 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7556 return x;
7557 }
7558
7559 /* If X is known to be either 0 or -1, those are the true and
7560 false values when testing X. */
7561 else if (x == constm1_rtx || x == const0_rtx
7562 || (mode != VOIDmode
7563 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7564 {
7565 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7566 return x;
7567 }
7568
7569 /* Likewise for 0 or a single bit. */
7570 else if (SCALAR_INT_MODE_P (mode)
7571 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7572 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7573 {
7574 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7575 return x;
7576 }
7577
7578 /* Otherwise fail; show no condition with true and false values the same. */
7579 *ptrue = *pfalse = x;
7580 return 0;
7581 }
7582 \f
7583 /* Return the value of expression X given the fact that condition COND
7584 is known to be true when applied to REG as its first operand and VAL
7585 as its second. X is known to not be shared and so can be modified in
7586 place.
7587
7588 We only handle the simplest cases, and specifically those cases that
7589 arise with IF_THEN_ELSE expressions. */
7590
7591 static rtx
7592 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7593 {
7594 enum rtx_code code = GET_CODE (x);
7595 rtx temp;
7596 const char *fmt;
7597 int i, j;
7598
7599 if (side_effects_p (x))
7600 return x;
7601
7602 /* If either operand of the condition is a floating point value,
7603 then we have to avoid collapsing an EQ comparison. */
7604 if (cond == EQ
7605 && rtx_equal_p (x, reg)
7606 && ! FLOAT_MODE_P (GET_MODE (x))
7607 && ! FLOAT_MODE_P (GET_MODE (val)))
7608 return val;
7609
7610 if (cond == UNEQ && rtx_equal_p (x, reg))
7611 return val;
7612
7613 /* If X is (abs REG) and we know something about REG's relationship
7614 with zero, we may be able to simplify this. */
7615
7616 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7617 switch (cond)
7618 {
7619 case GE: case GT: case EQ:
7620 return XEXP (x, 0);
7621 case LT: case LE:
7622 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7623 XEXP (x, 0),
7624 GET_MODE (XEXP (x, 0)));
7625 default:
7626 break;
7627 }
7628
7629 /* The only other cases we handle are MIN, MAX, and comparisons if the
7630 operands are the same as REG and VAL. */
7631
7632 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7633 {
7634 if (rtx_equal_p (XEXP (x, 0), val))
7635 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7636
7637 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7638 {
7639 if (COMPARISON_P (x))
7640 {
7641 if (comparison_dominates_p (cond, code))
7642 return const_true_rtx;
7643
7644 code = reversed_comparison_code (x, NULL);
7645 if (code != UNKNOWN
7646 && comparison_dominates_p (cond, code))
7647 return const0_rtx;
7648 else
7649 return x;
7650 }
7651 else if (code == SMAX || code == SMIN
7652 || code == UMIN || code == UMAX)
7653 {
7654 int unsignedp = (code == UMIN || code == UMAX);
7655
7656 /* Do not reverse the condition when it is NE or EQ.
7657 This is because we cannot conclude anything about
7658 the value of 'SMAX (x, y)' when x is not equal to y,
7659 but we can when x equals y. */
7660 if ((code == SMAX || code == UMAX)
7661 && ! (cond == EQ || cond == NE))
7662 cond = reverse_condition (cond);
7663
7664 switch (cond)
7665 {
7666 case GE: case GT:
7667 return unsignedp ? x : XEXP (x, 1);
7668 case LE: case LT:
7669 return unsignedp ? x : XEXP (x, 0);
7670 case GEU: case GTU:
7671 return unsignedp ? XEXP (x, 1) : x;
7672 case LEU: case LTU:
7673 return unsignedp ? XEXP (x, 0) : x;
7674 default:
7675 break;
7676 }
7677 }
7678 }
7679 }
7680 else if (code == SUBREG)
7681 {
7682 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7683 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7684
7685 if (SUBREG_REG (x) != r)
7686 {
7687 /* We must simplify subreg here, before we lose track of the
7688 original inner_mode. */
7689 new = simplify_subreg (GET_MODE (x), r,
7690 inner_mode, SUBREG_BYTE (x));
7691 if (new)
7692 return new;
7693 else
7694 SUBST (SUBREG_REG (x), r);
7695 }
7696
7697 return x;
7698 }
7699 /* We don't have to handle SIGN_EXTEND here, because even in the
7700 case of replacing something with a modeless CONST_INT, a
7701 CONST_INT is already (supposed to be) a valid sign extension for
7702 its narrower mode, which implies it's already properly
7703 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7704 story is different. */
7705 else if (code == ZERO_EXTEND)
7706 {
7707 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7708 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7709
7710 if (XEXP (x, 0) != r)
7711 {
7712 /* We must simplify the zero_extend here, before we lose
7713 track of the original inner_mode. */
7714 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7715 r, inner_mode);
7716 if (new)
7717 return new;
7718 else
7719 SUBST (XEXP (x, 0), r);
7720 }
7721
7722 return x;
7723 }
7724
7725 fmt = GET_RTX_FORMAT (code);
7726 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7727 {
7728 if (fmt[i] == 'e')
7729 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7730 else if (fmt[i] == 'E')
7731 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7732 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7733 cond, reg, val));
7734 }
7735
7736 return x;
7737 }
7738 \f
7739 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7740 assignment as a field assignment. */
7741
7742 static int
7743 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7744 {
7745 if (x == y || rtx_equal_p (x, y))
7746 return 1;
7747
7748 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7749 return 0;
7750
7751 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7752 Note that all SUBREGs of MEM are paradoxical; otherwise they
7753 would have been rewritten. */
7754 if (MEM_P (x) && GET_CODE (y) == SUBREG
7755 && MEM_P (SUBREG_REG (y))
7756 && rtx_equal_p (SUBREG_REG (y),
7757 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7758 return 1;
7759
7760 if (MEM_P (y) && GET_CODE (x) == SUBREG
7761 && MEM_P (SUBREG_REG (x))
7762 && rtx_equal_p (SUBREG_REG (x),
7763 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7764 return 1;
7765
7766 /* We used to see if get_last_value of X and Y were the same but that's
7767 not correct. In one direction, we'll cause the assignment to have
7768 the wrong destination and in the case, we'll import a register into this
7769 insn that might have already have been dead. So fail if none of the
7770 above cases are true. */
7771 return 0;
7772 }
7773 \f
7774 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7775 Return that assignment if so.
7776
7777 We only handle the most common cases. */
7778
7779 static rtx
7780 make_field_assignment (rtx x)
7781 {
7782 rtx dest = SET_DEST (x);
7783 rtx src = SET_SRC (x);
7784 rtx assign;
7785 rtx rhs, lhs;
7786 HOST_WIDE_INT c1;
7787 HOST_WIDE_INT pos;
7788 unsigned HOST_WIDE_INT len;
7789 rtx other;
7790 enum machine_mode mode;
7791
7792 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7793 a clear of a one-bit field. We will have changed it to
7794 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7795 for a SUBREG. */
7796
7797 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7798 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7799 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7800 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7801 {
7802 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7803 1, 1, 1, 0);
7804 if (assign != 0)
7805 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7806 return x;
7807 }
7808
7809 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7810 && subreg_lowpart_p (XEXP (src, 0))
7811 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7812 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7813 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7814 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7815 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7816 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7817 {
7818 assign = make_extraction (VOIDmode, dest, 0,
7819 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7820 1, 1, 1, 0);
7821 if (assign != 0)
7822 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7823 return x;
7824 }
7825
7826 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7827 one-bit field. */
7828 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7829 && XEXP (XEXP (src, 0), 0) == const1_rtx
7830 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7831 {
7832 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7833 1, 1, 1, 0);
7834 if (assign != 0)
7835 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7836 return x;
7837 }
7838
7839 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7840 SRC is an AND with all bits of that field set, then we can discard
7841 the AND. */
7842 if (GET_CODE (dest) == ZERO_EXTRACT
7843 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7844 && GET_CODE (src) == AND
7845 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7846 {
7847 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7848 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7849 unsigned HOST_WIDE_INT ze_mask;
7850
7851 if (width >= HOST_BITS_PER_WIDE_INT)
7852 ze_mask = -1;
7853 else
7854 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7855
7856 /* Complete overlap. We can remove the source AND. */
7857 if ((and_mask & ze_mask) == ze_mask)
7858 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7859
7860 /* Partial overlap. We can reduce the source AND. */
7861 if ((and_mask & ze_mask) != and_mask)
7862 {
7863 mode = GET_MODE (src);
7864 src = gen_rtx_AND (mode, XEXP (src, 0),
7865 gen_int_mode (and_mask & ze_mask, mode));
7866 return gen_rtx_SET (VOIDmode, dest, src);
7867 }
7868 }
7869
7870 /* The other case we handle is assignments into a constant-position
7871 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7872 a mask that has all one bits except for a group of zero bits and
7873 OTHER is known to have zeros where C1 has ones, this is such an
7874 assignment. Compute the position and length from C1. Shift OTHER
7875 to the appropriate position, force it to the required mode, and
7876 make the extraction. Check for the AND in both operands. */
7877
7878 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7879 return x;
7880
7881 rhs = expand_compound_operation (XEXP (src, 0));
7882 lhs = expand_compound_operation (XEXP (src, 1));
7883
7884 if (GET_CODE (rhs) == AND
7885 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7886 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7887 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7888 else if (GET_CODE (lhs) == AND
7889 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7890 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7891 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7892 else
7893 return x;
7894
7895 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7896 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7897 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7898 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7899 return x;
7900
7901 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7902 if (assign == 0)
7903 return x;
7904
7905 /* The mode to use for the source is the mode of the assignment, or of
7906 what is inside a possible STRICT_LOW_PART. */
7907 mode = (GET_CODE (assign) == STRICT_LOW_PART
7908 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7909
7910 /* Shift OTHER right POS places and make it the source, restricting it
7911 to the proper length and mode. */
7912
7913 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7914 GET_MODE (src), other, pos),
7915 mode,
7916 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7917 ? ~(unsigned HOST_WIDE_INT) 0
7918 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7919 dest, 0);
7920
7921 /* If SRC is masked by an AND that does not make a difference in
7922 the value being stored, strip it. */
7923 if (GET_CODE (assign) == ZERO_EXTRACT
7924 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7925 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7926 && GET_CODE (src) == AND
7927 && GET_CODE (XEXP (src, 1)) == CONST_INT
7928 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7929 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7930 src = XEXP (src, 0);
7931
7932 return gen_rtx_SET (VOIDmode, assign, src);
7933 }
7934 \f
7935 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7936 if so. */
7937
7938 static rtx
7939 apply_distributive_law (rtx x)
7940 {
7941 enum rtx_code code = GET_CODE (x);
7942 enum rtx_code inner_code;
7943 rtx lhs, rhs, other;
7944 rtx tem;
7945
7946 /* Distributivity is not true for floating point as it can change the
7947 value. So we don't do it unless -funsafe-math-optimizations. */
7948 if (FLOAT_MODE_P (GET_MODE (x))
7949 && ! flag_unsafe_math_optimizations)
7950 return x;
7951
7952 /* The outer operation can only be one of the following: */
7953 if (code != IOR && code != AND && code != XOR
7954 && code != PLUS && code != MINUS)
7955 return x;
7956
7957 lhs = XEXP (x, 0);
7958 rhs = XEXP (x, 1);
7959
7960 /* If either operand is a primitive we can't do anything, so get out
7961 fast. */
7962 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7963 return x;
7964
7965 lhs = expand_compound_operation (lhs);
7966 rhs = expand_compound_operation (rhs);
7967 inner_code = GET_CODE (lhs);
7968 if (inner_code != GET_CODE (rhs))
7969 return x;
7970
7971 /* See if the inner and outer operations distribute. */
7972 switch (inner_code)
7973 {
7974 case LSHIFTRT:
7975 case ASHIFTRT:
7976 case AND:
7977 case IOR:
7978 /* These all distribute except over PLUS. */
7979 if (code == PLUS || code == MINUS)
7980 return x;
7981 break;
7982
7983 case MULT:
7984 if (code != PLUS && code != MINUS)
7985 return x;
7986 break;
7987
7988 case ASHIFT:
7989 /* This is also a multiply, so it distributes over everything. */
7990 break;
7991
7992 case SUBREG:
7993 /* Non-paradoxical SUBREGs distributes over all operations, provided
7994 the inner modes and byte offsets are the same, this is an extraction
7995 of a low-order part, we don't convert an fp operation to int or
7996 vice versa, and we would not be converting a single-word
7997 operation into a multi-word operation. The latter test is not
7998 required, but it prevents generating unneeded multi-word operations.
7999 Some of the previous tests are redundant given the latter test, but
8000 are retained because they are required for correctness.
8001
8002 We produce the result slightly differently in this case. */
8003
8004 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8005 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8006 || ! subreg_lowpart_p (lhs)
8007 || (GET_MODE_CLASS (GET_MODE (lhs))
8008 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8009 || (GET_MODE_SIZE (GET_MODE (lhs))
8010 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8011 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8012 return x;
8013
8014 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8015 SUBREG_REG (lhs), SUBREG_REG (rhs));
8016 return gen_lowpart (GET_MODE (x), tem);
8017
8018 default:
8019 return x;
8020 }
8021
8022 /* Set LHS and RHS to the inner operands (A and B in the example
8023 above) and set OTHER to the common operand (C in the example).
8024 There is only one way to do this unless the inner operation is
8025 commutative. */
8026 if (COMMUTATIVE_ARITH_P (lhs)
8027 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8028 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8029 else if (COMMUTATIVE_ARITH_P (lhs)
8030 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8031 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8032 else if (COMMUTATIVE_ARITH_P (lhs)
8033 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8034 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8035 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8036 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8037 else
8038 return x;
8039
8040 /* Form the new inner operation, seeing if it simplifies first. */
8041 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8042
8043 /* There is one exception to the general way of distributing:
8044 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8045 if (code == XOR && inner_code == IOR)
8046 {
8047 inner_code = AND;
8048 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8049 }
8050
8051 /* We may be able to continuing distributing the result, so call
8052 ourselves recursively on the inner operation before forming the
8053 outer operation, which we return. */
8054 return simplify_gen_binary (inner_code, GET_MODE (x),
8055 apply_distributive_law (tem), other);
8056 }
8057
8058 /* See if X is of the form (* (+ A B) C), and if so convert to
8059 (+ (* A C) (* B C)) and try to simplify.
8060
8061 Most of the time, this results in no change. However, if some of
8062 the operands are the same or inverses of each other, simplifications
8063 will result.
8064
8065 For example, (and (ior A B) (not B)) can occur as the result of
8066 expanding a bit field assignment. When we apply the distributive
8067 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8068 which then simplifies to (and (A (not B))).
8069
8070 Note that no checks happen on the validity of applying the inverse
8071 distributive law. This is pointless since we can do it in the
8072 few places where this routine is called.
8073
8074 N is the index of the term that is decomposed (the arithmetic operation,
8075 i.e. (+ A B) in the first example above). !N is the index of the term that
8076 is distributed, i.e. of C in the first example above. */
8077 static rtx
8078 distribute_and_simplify_rtx (rtx x, int n)
8079 {
8080 enum machine_mode mode;
8081 enum rtx_code outer_code, inner_code;
8082 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8083
8084 decomposed = XEXP (x, n);
8085 if (!ARITHMETIC_P (decomposed))
8086 return NULL_RTX;
8087
8088 mode = GET_MODE (x);
8089 outer_code = GET_CODE (x);
8090 distributed = XEXP (x, !n);
8091
8092 inner_code = GET_CODE (decomposed);
8093 inner_op0 = XEXP (decomposed, 0);
8094 inner_op1 = XEXP (decomposed, 1);
8095
8096 /* Special case (and (xor B C) (not A)), which is equivalent to
8097 (xor (ior A B) (ior A C)) */
8098 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8099 {
8100 distributed = XEXP (distributed, 0);
8101 outer_code = IOR;
8102 }
8103
8104 if (n == 0)
8105 {
8106 /* Distribute the second term. */
8107 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8108 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8109 }
8110 else
8111 {
8112 /* Distribute the first term. */
8113 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8114 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8115 }
8116
8117 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8118 new_op0, new_op1));
8119 if (GET_CODE (tmp) != outer_code
8120 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8121 return tmp;
8122
8123 return NULL_RTX;
8124 }
8125 \f
8126 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8127 in MODE.
8128
8129 Return an equivalent form, if different from X. Otherwise, return X. If
8130 X is zero, we are to always construct the equivalent form. */
8131
8132 static rtx
8133 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8134 unsigned HOST_WIDE_INT constop)
8135 {
8136 unsigned HOST_WIDE_INT nonzero;
8137 int i;
8138
8139 /* Simplify VAROP knowing that we will be only looking at some of the
8140 bits in it.
8141
8142 Note by passing in CONSTOP, we guarantee that the bits not set in
8143 CONSTOP are not significant and will never be examined. We must
8144 ensure that is the case by explicitly masking out those bits
8145 before returning. */
8146 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8147
8148 /* If VAROP is a CLOBBER, we will fail so return it. */
8149 if (GET_CODE (varop) == CLOBBER)
8150 return varop;
8151
8152 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8153 to VAROP and return the new constant. */
8154 if (GET_CODE (varop) == CONST_INT)
8155 return gen_int_mode (INTVAL (varop) & constop, mode);
8156
8157 /* See what bits may be nonzero in VAROP. Unlike the general case of
8158 a call to nonzero_bits, here we don't care about bits outside
8159 MODE. */
8160
8161 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8162
8163 /* Turn off all bits in the constant that are known to already be zero.
8164 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8165 which is tested below. */
8166
8167 constop &= nonzero;
8168
8169 /* If we don't have any bits left, return zero. */
8170 if (constop == 0)
8171 return const0_rtx;
8172
8173 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8174 a power of two, we can replace this with an ASHIFT. */
8175 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8176 && (i = exact_log2 (constop)) >= 0)
8177 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8178
8179 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8180 or XOR, then try to apply the distributive law. This may eliminate
8181 operations if either branch can be simplified because of the AND.
8182 It may also make some cases more complex, but those cases probably
8183 won't match a pattern either with or without this. */
8184
8185 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8186 return
8187 gen_lowpart
8188 (mode,
8189 apply_distributive_law
8190 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8191 simplify_and_const_int (NULL_RTX,
8192 GET_MODE (varop),
8193 XEXP (varop, 0),
8194 constop),
8195 simplify_and_const_int (NULL_RTX,
8196 GET_MODE (varop),
8197 XEXP (varop, 1),
8198 constop))));
8199
8200 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8201 the AND and see if one of the operands simplifies to zero. If so, we
8202 may eliminate it. */
8203
8204 if (GET_CODE (varop) == PLUS
8205 && exact_log2 (constop + 1) >= 0)
8206 {
8207 rtx o0, o1;
8208
8209 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8210 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8211 if (o0 == const0_rtx)
8212 return o1;
8213 if (o1 == const0_rtx)
8214 return o0;
8215 }
8216
8217 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8218 if we already had one (just check for the simplest cases). */
8219 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8220 && GET_MODE (XEXP (x, 0)) == mode
8221 && SUBREG_REG (XEXP (x, 0)) == varop)
8222 varop = XEXP (x, 0);
8223 else
8224 varop = gen_lowpart (mode, varop);
8225
8226 /* If we can't make the SUBREG, try to return what we were given. */
8227 if (GET_CODE (varop) == CLOBBER)
8228 return x ? x : varop;
8229
8230 /* If we are only masking insignificant bits, return VAROP. */
8231 if (constop == nonzero)
8232 x = varop;
8233 else
8234 {
8235 /* Otherwise, return an AND. */
8236 constop = trunc_int_for_mode (constop, mode);
8237 /* See how much, if any, of X we can use. */
8238 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8239 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8240
8241 else
8242 {
8243 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8244 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8245 SUBST (XEXP (x, 1), GEN_INT (constop));
8246
8247 SUBST (XEXP (x, 0), varop);
8248 }
8249 }
8250
8251 return x;
8252 }
8253 \f
8254 /* Given a REG, X, compute which bits in X can be nonzero.
8255 We don't care about bits outside of those defined in MODE.
8256
8257 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8258 a shift, AND, or zero_extract, we can do better. */
8259
8260 static rtx
8261 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8262 rtx known_x ATTRIBUTE_UNUSED,
8263 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8264 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8265 unsigned HOST_WIDE_INT *nonzero)
8266 {
8267 rtx tem;
8268
8269 /* If X is a register whose nonzero bits value is current, use it.
8270 Otherwise, if X is a register whose value we can find, use that
8271 value. Otherwise, use the previously-computed global nonzero bits
8272 for this register. */
8273
8274 if (reg_stat[REGNO (x)].last_set_value != 0
8275 && (reg_stat[REGNO (x)].last_set_mode == mode
8276 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8277 && GET_MODE_CLASS (mode) == MODE_INT))
8278 && (reg_stat[REGNO (x)].last_set_label == label_tick
8279 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8280 && REG_N_SETS (REGNO (x)) == 1
8281 && ! REGNO_REG_SET_P
8282 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8283 REGNO (x))))
8284 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8285 {
8286 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8287 return NULL;
8288 }
8289
8290 tem = get_last_value (x);
8291
8292 if (tem)
8293 {
8294 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8295 /* If X is narrower than MODE and TEM is a non-negative
8296 constant that would appear negative in the mode of X,
8297 sign-extend it for use in reg_nonzero_bits because some
8298 machines (maybe most) will actually do the sign-extension
8299 and this is the conservative approach.
8300
8301 ??? For 2.5, try to tighten up the MD files in this regard
8302 instead of this kludge. */
8303
8304 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8305 && GET_CODE (tem) == CONST_INT
8306 && INTVAL (tem) > 0
8307 && 0 != (INTVAL (tem)
8308 & ((HOST_WIDE_INT) 1
8309 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8310 tem = GEN_INT (INTVAL (tem)
8311 | ((HOST_WIDE_INT) (-1)
8312 << GET_MODE_BITSIZE (GET_MODE (x))));
8313 #endif
8314 return tem;
8315 }
8316 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8317 {
8318 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8319
8320 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8321 /* We don't know anything about the upper bits. */
8322 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8323 *nonzero &= mask;
8324 }
8325
8326 return NULL;
8327 }
8328
8329 /* Return the number of bits at the high-order end of X that are known to
8330 be equal to the sign bit. X will be used in mode MODE; if MODE is
8331 VOIDmode, X will be used in its own mode. The returned value will always
8332 be between 1 and the number of bits in MODE. */
8333
8334 static rtx
8335 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8336 rtx known_x ATTRIBUTE_UNUSED,
8337 enum machine_mode known_mode
8338 ATTRIBUTE_UNUSED,
8339 unsigned int known_ret ATTRIBUTE_UNUSED,
8340 unsigned int *result)
8341 {
8342 rtx tem;
8343
8344 if (reg_stat[REGNO (x)].last_set_value != 0
8345 && reg_stat[REGNO (x)].last_set_mode == mode
8346 && (reg_stat[REGNO (x)].last_set_label == label_tick
8347 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8348 && REG_N_SETS (REGNO (x)) == 1
8349 && ! REGNO_REG_SET_P
8350 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8351 REGNO (x))))
8352 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8353 {
8354 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8355 return NULL;
8356 }
8357
8358 tem = get_last_value (x);
8359 if (tem != 0)
8360 return tem;
8361
8362 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8363 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8364 *result = reg_stat[REGNO (x)].sign_bit_copies;
8365
8366 return NULL;
8367 }
8368 \f
8369 /* Return the number of "extended" bits there are in X, when interpreted
8370 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8371 unsigned quantities, this is the number of high-order zero bits.
8372 For signed quantities, this is the number of copies of the sign bit
8373 minus 1. In both case, this function returns the number of "spare"
8374 bits. For example, if two quantities for which this function returns
8375 at least 1 are added, the addition is known not to overflow.
8376
8377 This function will always return 0 unless called during combine, which
8378 implies that it must be called from a define_split. */
8379
8380 unsigned int
8381 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8382 {
8383 if (nonzero_sign_valid == 0)
8384 return 0;
8385
8386 return (unsignedp
8387 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8388 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8389 - floor_log2 (nonzero_bits (x, mode)))
8390 : 0)
8391 : num_sign_bit_copies (x, mode) - 1);
8392 }
8393 \f
8394 /* This function is called from `simplify_shift_const' to merge two
8395 outer operations. Specifically, we have already found that we need
8396 to perform operation *POP0 with constant *PCONST0 at the outermost
8397 position. We would now like to also perform OP1 with constant CONST1
8398 (with *POP0 being done last).
8399
8400 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8401 the resulting operation. *PCOMP_P is set to 1 if we would need to
8402 complement the innermost operand, otherwise it is unchanged.
8403
8404 MODE is the mode in which the operation will be done. No bits outside
8405 the width of this mode matter. It is assumed that the width of this mode
8406 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8407
8408 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8409 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8410 result is simply *PCONST0.
8411
8412 If the resulting operation cannot be expressed as one operation, we
8413 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8414
8415 static int
8416 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8417 {
8418 enum rtx_code op0 = *pop0;
8419 HOST_WIDE_INT const0 = *pconst0;
8420
8421 const0 &= GET_MODE_MASK (mode);
8422 const1 &= GET_MODE_MASK (mode);
8423
8424 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8425 if (op0 == AND)
8426 const1 &= const0;
8427
8428 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8429 if OP0 is SET. */
8430
8431 if (op1 == UNKNOWN || op0 == SET)
8432 return 1;
8433
8434 else if (op0 == UNKNOWN)
8435 op0 = op1, const0 = const1;
8436
8437 else if (op0 == op1)
8438 {
8439 switch (op0)
8440 {
8441 case AND:
8442 const0 &= const1;
8443 break;
8444 case IOR:
8445 const0 |= const1;
8446 break;
8447 case XOR:
8448 const0 ^= const1;
8449 break;
8450 case PLUS:
8451 const0 += const1;
8452 break;
8453 case NEG:
8454 op0 = UNKNOWN;
8455 break;
8456 default:
8457 break;
8458 }
8459 }
8460
8461 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8462 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8463 return 0;
8464
8465 /* If the two constants aren't the same, we can't do anything. The
8466 remaining six cases can all be done. */
8467 else if (const0 != const1)
8468 return 0;
8469
8470 else
8471 switch (op0)
8472 {
8473 case IOR:
8474 if (op1 == AND)
8475 /* (a & b) | b == b */
8476 op0 = SET;
8477 else /* op1 == XOR */
8478 /* (a ^ b) | b == a | b */
8479 {;}
8480 break;
8481
8482 case XOR:
8483 if (op1 == AND)
8484 /* (a & b) ^ b == (~a) & b */
8485 op0 = AND, *pcomp_p = 1;
8486 else /* op1 == IOR */
8487 /* (a | b) ^ b == a & ~b */
8488 op0 = AND, const0 = ~const0;
8489 break;
8490
8491 case AND:
8492 if (op1 == IOR)
8493 /* (a | b) & b == b */
8494 op0 = SET;
8495 else /* op1 == XOR */
8496 /* (a ^ b) & b) == (~a) & b */
8497 *pcomp_p = 1;
8498 break;
8499 default:
8500 break;
8501 }
8502
8503 /* Check for NO-OP cases. */
8504 const0 &= GET_MODE_MASK (mode);
8505 if (const0 == 0
8506 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8507 op0 = UNKNOWN;
8508 else if (const0 == 0 && op0 == AND)
8509 op0 = SET;
8510 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8511 && op0 == AND)
8512 op0 = UNKNOWN;
8513
8514 /* ??? Slightly redundant with the above mask, but not entirely.
8515 Moving this above means we'd have to sign-extend the mode mask
8516 for the final test. */
8517 const0 = trunc_int_for_mode (const0, mode);
8518
8519 *pop0 = op0;
8520 *pconst0 = const0;
8521
8522 return 1;
8523 }
8524 \f
8525 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8526 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8527 that we started with.
8528
8529 The shift is normally computed in the widest mode we find in VAROP, as
8530 long as it isn't a different number of words than RESULT_MODE. Exceptions
8531 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8532
8533 static rtx
8534 simplify_shift_const (rtx x, enum rtx_code code,
8535 enum machine_mode result_mode, rtx varop,
8536 int orig_count)
8537 {
8538 enum rtx_code orig_code = code;
8539 unsigned int count;
8540 int signed_count;
8541 enum machine_mode mode = result_mode;
8542 enum machine_mode shift_mode, tmode;
8543 unsigned int mode_words
8544 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8545 /* We form (outer_op (code varop count) (outer_const)). */
8546 enum rtx_code outer_op = UNKNOWN;
8547 HOST_WIDE_INT outer_const = 0;
8548 rtx const_rtx;
8549 int complement_p = 0;
8550 rtx new;
8551
8552 /* Make sure and truncate the "natural" shift on the way in. We don't
8553 want to do this inside the loop as it makes it more difficult to
8554 combine shifts. */
8555 if (SHIFT_COUNT_TRUNCATED)
8556 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8557
8558 /* If we were given an invalid count, don't do anything except exactly
8559 what was requested. */
8560
8561 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8562 {
8563 if (x)
8564 return x;
8565
8566 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8567 }
8568
8569 count = orig_count;
8570
8571 /* Unless one of the branches of the `if' in this loop does a `continue',
8572 we will `break' the loop after the `if'. */
8573
8574 while (count != 0)
8575 {
8576 /* If we have an operand of (clobber (const_int 0)), just return that
8577 value. */
8578 if (GET_CODE (varop) == CLOBBER)
8579 return varop;
8580
8581 /* If we discovered we had to complement VAROP, leave. Making a NOT
8582 here would cause an infinite loop. */
8583 if (complement_p)
8584 break;
8585
8586 /* Convert ROTATERT to ROTATE. */
8587 if (code == ROTATERT)
8588 {
8589 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8590 code = ROTATE;
8591 if (VECTOR_MODE_P (result_mode))
8592 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8593 else
8594 count = bitsize - count;
8595 }
8596
8597 /* We need to determine what mode we will do the shift in. If the
8598 shift is a right shift or a ROTATE, we must always do it in the mode
8599 it was originally done in. Otherwise, we can do it in MODE, the
8600 widest mode encountered. */
8601 shift_mode
8602 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8603 ? result_mode : mode);
8604
8605 /* Handle cases where the count is greater than the size of the mode
8606 minus 1. For ASHIFT, use the size minus one as the count (this can
8607 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8608 take the count modulo the size. For other shifts, the result is
8609 zero.
8610
8611 Since these shifts are being produced by the compiler by combining
8612 multiple operations, each of which are defined, we know what the
8613 result is supposed to be. */
8614
8615 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8616 {
8617 if (code == ASHIFTRT)
8618 count = GET_MODE_BITSIZE (shift_mode) - 1;
8619 else if (code == ROTATE || code == ROTATERT)
8620 count %= GET_MODE_BITSIZE (shift_mode);
8621 else
8622 {
8623 /* We can't simply return zero because there may be an
8624 outer op. */
8625 varop = const0_rtx;
8626 count = 0;
8627 break;
8628 }
8629 }
8630
8631 /* An arithmetic right shift of a quantity known to be -1 or 0
8632 is a no-op. */
8633 if (code == ASHIFTRT
8634 && (num_sign_bit_copies (varop, shift_mode)
8635 == GET_MODE_BITSIZE (shift_mode)))
8636 {
8637 count = 0;
8638 break;
8639 }
8640
8641 /* If we are doing an arithmetic right shift and discarding all but
8642 the sign bit copies, this is equivalent to doing a shift by the
8643 bitsize minus one. Convert it into that shift because it will often
8644 allow other simplifications. */
8645
8646 if (code == ASHIFTRT
8647 && (count + num_sign_bit_copies (varop, shift_mode)
8648 >= GET_MODE_BITSIZE (shift_mode)))
8649 count = GET_MODE_BITSIZE (shift_mode) - 1;
8650
8651 /* We simplify the tests below and elsewhere by converting
8652 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8653 `make_compound_operation' will convert it to an ASHIFTRT for
8654 those machines (such as VAX) that don't have an LSHIFTRT. */
8655 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8656 && code == ASHIFTRT
8657 && ((nonzero_bits (varop, shift_mode)
8658 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8659 == 0))
8660 code = LSHIFTRT;
8661
8662 if (code == LSHIFTRT
8663 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8664 && !(nonzero_bits (varop, shift_mode) >> count))
8665 varop = const0_rtx;
8666 if (code == ASHIFT
8667 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8668 && !((nonzero_bits (varop, shift_mode) << count)
8669 & GET_MODE_MASK (shift_mode)))
8670 varop = const0_rtx;
8671
8672 switch (GET_CODE (varop))
8673 {
8674 case SIGN_EXTEND:
8675 case ZERO_EXTEND:
8676 case SIGN_EXTRACT:
8677 case ZERO_EXTRACT:
8678 new = expand_compound_operation (varop);
8679 if (new != varop)
8680 {
8681 varop = new;
8682 continue;
8683 }
8684 break;
8685
8686 case MEM:
8687 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8688 minus the width of a smaller mode, we can do this with a
8689 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8690 if ((code == ASHIFTRT || code == LSHIFTRT)
8691 && ! mode_dependent_address_p (XEXP (varop, 0))
8692 && ! MEM_VOLATILE_P (varop)
8693 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8694 MODE_INT, 1)) != BLKmode)
8695 {
8696 new = adjust_address_nv (varop, tmode,
8697 BYTES_BIG_ENDIAN ? 0
8698 : count / BITS_PER_UNIT);
8699
8700 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8701 : ZERO_EXTEND, mode, new);
8702 count = 0;
8703 continue;
8704 }
8705 break;
8706
8707 case USE:
8708 /* Similar to the case above, except that we can only do this if
8709 the resulting mode is the same as that of the underlying
8710 MEM and adjust the address depending on the *bits* endianness
8711 because of the way that bit-field extract insns are defined. */
8712 if ((code == ASHIFTRT || code == LSHIFTRT)
8713 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8714 MODE_INT, 1)) != BLKmode
8715 && tmode == GET_MODE (XEXP (varop, 0)))
8716 {
8717 if (BITS_BIG_ENDIAN)
8718 new = XEXP (varop, 0);
8719 else
8720 {
8721 new = copy_rtx (XEXP (varop, 0));
8722 SUBST (XEXP (new, 0),
8723 plus_constant (XEXP (new, 0),
8724 count / BITS_PER_UNIT));
8725 }
8726
8727 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8728 : ZERO_EXTEND, mode, new);
8729 count = 0;
8730 continue;
8731 }
8732 break;
8733
8734 case SUBREG:
8735 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8736 the same number of words as what we've seen so far. Then store
8737 the widest mode in MODE. */
8738 if (subreg_lowpart_p (varop)
8739 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8740 > GET_MODE_SIZE (GET_MODE (varop)))
8741 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8742 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8743 == mode_words)
8744 {
8745 varop = SUBREG_REG (varop);
8746 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8747 mode = GET_MODE (varop);
8748 continue;
8749 }
8750 break;
8751
8752 case MULT:
8753 /* Some machines use MULT instead of ASHIFT because MULT
8754 is cheaper. But it is still better on those machines to
8755 merge two shifts into one. */
8756 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8757 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8758 {
8759 varop
8760 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8761 XEXP (varop, 0),
8762 GEN_INT (exact_log2 (
8763 INTVAL (XEXP (varop, 1)))));
8764 continue;
8765 }
8766 break;
8767
8768 case UDIV:
8769 /* Similar, for when divides are cheaper. */
8770 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8771 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8772 {
8773 varop
8774 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8775 XEXP (varop, 0),
8776 GEN_INT (exact_log2 (
8777 INTVAL (XEXP (varop, 1)))));
8778 continue;
8779 }
8780 break;
8781
8782 case ASHIFTRT:
8783 /* If we are extracting just the sign bit of an arithmetic
8784 right shift, that shift is not needed. However, the sign
8785 bit of a wider mode may be different from what would be
8786 interpreted as the sign bit in a narrower mode, so, if
8787 the result is narrower, don't discard the shift. */
8788 if (code == LSHIFTRT
8789 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8790 && (GET_MODE_BITSIZE (result_mode)
8791 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8792 {
8793 varop = XEXP (varop, 0);
8794 continue;
8795 }
8796
8797 /* ... fall through ... */
8798
8799 case LSHIFTRT:
8800 case ASHIFT:
8801 case ROTATE:
8802 /* Here we have two nested shifts. The result is usually the
8803 AND of a new shift with a mask. We compute the result below. */
8804 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8805 && INTVAL (XEXP (varop, 1)) >= 0
8806 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8807 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8808 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8809 {
8810 enum rtx_code first_code = GET_CODE (varop);
8811 unsigned int first_count = INTVAL (XEXP (varop, 1));
8812 unsigned HOST_WIDE_INT mask;
8813 rtx mask_rtx;
8814
8815 /* We have one common special case. We can't do any merging if
8816 the inner code is an ASHIFTRT of a smaller mode. However, if
8817 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8818 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8819 we can convert it to
8820 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8821 This simplifies certain SIGN_EXTEND operations. */
8822 if (code == ASHIFT && first_code == ASHIFTRT
8823 && count == (unsigned int)
8824 (GET_MODE_BITSIZE (result_mode)
8825 - GET_MODE_BITSIZE (GET_MODE (varop))))
8826 {
8827 /* C3 has the low-order C1 bits zero. */
8828
8829 mask = (GET_MODE_MASK (mode)
8830 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8831
8832 varop = simplify_and_const_int (NULL_RTX, result_mode,
8833 XEXP (varop, 0), mask);
8834 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8835 varop, count);
8836 count = first_count;
8837 code = ASHIFTRT;
8838 continue;
8839 }
8840
8841 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8842 than C1 high-order bits equal to the sign bit, we can convert
8843 this to either an ASHIFT or an ASHIFTRT depending on the
8844 two counts.
8845
8846 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8847
8848 if (code == ASHIFTRT && first_code == ASHIFT
8849 && GET_MODE (varop) == shift_mode
8850 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8851 > first_count))
8852 {
8853 varop = XEXP (varop, 0);
8854
8855 signed_count = count - first_count;
8856 if (signed_count < 0)
8857 count = -signed_count, code = ASHIFT;
8858 else
8859 count = signed_count;
8860
8861 continue;
8862 }
8863
8864 /* There are some cases we can't do. If CODE is ASHIFTRT,
8865 we can only do this if FIRST_CODE is also ASHIFTRT.
8866
8867 We can't do the case when CODE is ROTATE and FIRST_CODE is
8868 ASHIFTRT.
8869
8870 If the mode of this shift is not the mode of the outer shift,
8871 we can't do this if either shift is a right shift or ROTATE.
8872
8873 Finally, we can't do any of these if the mode is too wide
8874 unless the codes are the same.
8875
8876 Handle the case where the shift codes are the same
8877 first. */
8878
8879 if (code == first_code)
8880 {
8881 if (GET_MODE (varop) != result_mode
8882 && (code == ASHIFTRT || code == LSHIFTRT
8883 || code == ROTATE))
8884 break;
8885
8886 count += first_count;
8887 varop = XEXP (varop, 0);
8888 continue;
8889 }
8890
8891 if (code == ASHIFTRT
8892 || (code == ROTATE && first_code == ASHIFTRT)
8893 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8894 || (GET_MODE (varop) != result_mode
8895 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8896 || first_code == ROTATE
8897 || code == ROTATE)))
8898 break;
8899
8900 /* To compute the mask to apply after the shift, shift the
8901 nonzero bits of the inner shift the same way the
8902 outer shift will. */
8903
8904 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8905
8906 mask_rtx
8907 = simplify_binary_operation (code, result_mode, mask_rtx,
8908 GEN_INT (count));
8909
8910 /* Give up if we can't compute an outer operation to use. */
8911 if (mask_rtx == 0
8912 || GET_CODE (mask_rtx) != CONST_INT
8913 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8914 INTVAL (mask_rtx),
8915 result_mode, &complement_p))
8916 break;
8917
8918 /* If the shifts are in the same direction, we add the
8919 counts. Otherwise, we subtract them. */
8920 signed_count = count;
8921 if ((code == ASHIFTRT || code == LSHIFTRT)
8922 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8923 signed_count += first_count;
8924 else
8925 signed_count -= first_count;
8926
8927 /* If COUNT is positive, the new shift is usually CODE,
8928 except for the two exceptions below, in which case it is
8929 FIRST_CODE. If the count is negative, FIRST_CODE should
8930 always be used */
8931 if (signed_count > 0
8932 && ((first_code == ROTATE && code == ASHIFT)
8933 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8934 code = first_code, count = signed_count;
8935 else if (signed_count < 0)
8936 code = first_code, count = -signed_count;
8937 else
8938 count = signed_count;
8939
8940 varop = XEXP (varop, 0);
8941 continue;
8942 }
8943
8944 /* If we have (A << B << C) for any shift, we can convert this to
8945 (A << C << B). This wins if A is a constant. Only try this if
8946 B is not a constant. */
8947
8948 else if (GET_CODE (varop) == code
8949 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8950 && 0 != (new
8951 = simplify_binary_operation (code, mode,
8952 XEXP (varop, 0),
8953 GEN_INT (count))))
8954 {
8955 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8956 count = 0;
8957 continue;
8958 }
8959 break;
8960
8961 case NOT:
8962 /* Make this fit the case below. */
8963 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8964 GEN_INT (GET_MODE_MASK (mode)));
8965 continue;
8966
8967 case IOR:
8968 case AND:
8969 case XOR:
8970 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8971 with C the size of VAROP - 1 and the shift is logical if
8972 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8973 we have an (le X 0) operation. If we have an arithmetic shift
8974 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8975 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8976
8977 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8978 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8979 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8980 && (code == LSHIFTRT || code == ASHIFTRT)
8981 && count == (unsigned int)
8982 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8983 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8984 {
8985 count = 0;
8986 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8987 const0_rtx);
8988
8989 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8990 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8991
8992 continue;
8993 }
8994
8995 /* If we have (shift (logical)), move the logical to the outside
8996 to allow it to possibly combine with another logical and the
8997 shift to combine with another shift. This also canonicalizes to
8998 what a ZERO_EXTRACT looks like. Also, some machines have
8999 (and (shift)) insns. */
9000
9001 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9002 /* We can't do this if we have (ashiftrt (xor)) and the
9003 constant has its sign bit set in shift_mode. */
9004 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9005 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9006 shift_mode))
9007 && (new = simplify_binary_operation (code, result_mode,
9008 XEXP (varop, 1),
9009 GEN_INT (count))) != 0
9010 && GET_CODE (new) == CONST_INT
9011 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9012 INTVAL (new), result_mode, &complement_p))
9013 {
9014 varop = XEXP (varop, 0);
9015 continue;
9016 }
9017
9018 /* If we can't do that, try to simplify the shift in each arm of the
9019 logical expression, make a new logical expression, and apply
9020 the inverse distributive law. This also can't be done
9021 for some (ashiftrt (xor)). */
9022 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9023 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9024 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9025 shift_mode)))
9026 {
9027 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9028 XEXP (varop, 0), count);
9029 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9030 XEXP (varop, 1), count);
9031
9032 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9033 lhs, rhs);
9034 varop = apply_distributive_law (varop);
9035
9036 count = 0;
9037 continue;
9038 }
9039 break;
9040
9041 case EQ:
9042 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9043 says that the sign bit can be tested, FOO has mode MODE, C is
9044 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9045 that may be nonzero. */
9046 if (code == LSHIFTRT
9047 && XEXP (varop, 1) == const0_rtx
9048 && GET_MODE (XEXP (varop, 0)) == result_mode
9049 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9050 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9051 && ((STORE_FLAG_VALUE
9052 & ((HOST_WIDE_INT) 1
9053 < (GET_MODE_BITSIZE (result_mode) - 1))))
9054 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9055 && merge_outer_ops (&outer_op, &outer_const, XOR,
9056 (HOST_WIDE_INT) 1, result_mode,
9057 &complement_p))
9058 {
9059 varop = XEXP (varop, 0);
9060 count = 0;
9061 continue;
9062 }
9063 break;
9064
9065 case NEG:
9066 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9067 than the number of bits in the mode is equivalent to A. */
9068 if (code == LSHIFTRT
9069 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9070 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9071 {
9072 varop = XEXP (varop, 0);
9073 count = 0;
9074 continue;
9075 }
9076
9077 /* NEG commutes with ASHIFT since it is multiplication. Move the
9078 NEG outside to allow shifts to combine. */
9079 if (code == ASHIFT
9080 && merge_outer_ops (&outer_op, &outer_const, NEG,
9081 (HOST_WIDE_INT) 0, result_mode,
9082 &complement_p))
9083 {
9084 varop = XEXP (varop, 0);
9085 continue;
9086 }
9087 break;
9088
9089 case PLUS:
9090 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9091 is one less than the number of bits in the mode is
9092 equivalent to (xor A 1). */
9093 if (code == LSHIFTRT
9094 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9095 && XEXP (varop, 1) == constm1_rtx
9096 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9097 && merge_outer_ops (&outer_op, &outer_const, XOR,
9098 (HOST_WIDE_INT) 1, result_mode,
9099 &complement_p))
9100 {
9101 count = 0;
9102 varop = XEXP (varop, 0);
9103 continue;
9104 }
9105
9106 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9107 that might be nonzero in BAR are those being shifted out and those
9108 bits are known zero in FOO, we can replace the PLUS with FOO.
9109 Similarly in the other operand order. This code occurs when
9110 we are computing the size of a variable-size array. */
9111
9112 if ((code == ASHIFTRT || code == LSHIFTRT)
9113 && count < HOST_BITS_PER_WIDE_INT
9114 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9115 && (nonzero_bits (XEXP (varop, 1), result_mode)
9116 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9117 {
9118 varop = XEXP (varop, 0);
9119 continue;
9120 }
9121 else if ((code == ASHIFTRT || code == LSHIFTRT)
9122 && count < HOST_BITS_PER_WIDE_INT
9123 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9124 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9125 >> count)
9126 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9127 & nonzero_bits (XEXP (varop, 1),
9128 result_mode)))
9129 {
9130 varop = XEXP (varop, 1);
9131 continue;
9132 }
9133
9134 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9135 if (code == ASHIFT
9136 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9137 && (new = simplify_binary_operation (ASHIFT, result_mode,
9138 XEXP (varop, 1),
9139 GEN_INT (count))) != 0
9140 && GET_CODE (new) == CONST_INT
9141 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9142 INTVAL (new), result_mode, &complement_p))
9143 {
9144 varop = XEXP (varop, 0);
9145 continue;
9146 }
9147
9148 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9149 signbit', and attempt to change the PLUS to an XOR and move it to
9150 the outer operation as is done above in the AND/IOR/XOR case
9151 leg for shift(logical). See details in logical handling above
9152 for reasoning in doing so. */
9153 if (code == LSHIFTRT
9154 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9155 && mode_signbit_p (result_mode, XEXP (varop, 1))
9156 && (new = simplify_binary_operation (code, result_mode,
9157 XEXP (varop, 1),
9158 GEN_INT (count))) != 0
9159 && GET_CODE (new) == CONST_INT
9160 && merge_outer_ops (&outer_op, &outer_const, XOR,
9161 INTVAL (new), result_mode, &complement_p))
9162 {
9163 varop = XEXP (varop, 0);
9164 continue;
9165 }
9166
9167 break;
9168
9169 case MINUS:
9170 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9171 with C the size of VAROP - 1 and the shift is logical if
9172 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9173 we have a (gt X 0) operation. If the shift is arithmetic with
9174 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9175 we have a (neg (gt X 0)) operation. */
9176
9177 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9178 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9179 && count == (unsigned int)
9180 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9181 && (code == LSHIFTRT || code == ASHIFTRT)
9182 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9183 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9184 == count
9185 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9186 {
9187 count = 0;
9188 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9189 const0_rtx);
9190
9191 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9192 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9193
9194 continue;
9195 }
9196 break;
9197
9198 case TRUNCATE:
9199 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9200 if the truncate does not affect the value. */
9201 if (code == LSHIFTRT
9202 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9203 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9204 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9205 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9206 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9207 {
9208 rtx varop_inner = XEXP (varop, 0);
9209
9210 varop_inner
9211 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9212 XEXP (varop_inner, 0),
9213 GEN_INT
9214 (count + INTVAL (XEXP (varop_inner, 1))));
9215 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9216 count = 0;
9217 continue;
9218 }
9219 break;
9220
9221 default:
9222 break;
9223 }
9224
9225 break;
9226 }
9227
9228 /* We need to determine what mode to do the shift in. If the shift is
9229 a right shift or ROTATE, we must always do it in the mode it was
9230 originally done in. Otherwise, we can do it in MODE, the widest mode
9231 encountered. The code we care about is that of the shift that will
9232 actually be done, not the shift that was originally requested. */
9233 shift_mode
9234 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9235 ? result_mode : mode);
9236
9237 /* We have now finished analyzing the shift. The result should be
9238 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9239 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9240 to the result of the shift. OUTER_CONST is the relevant constant,
9241 but we must turn off all bits turned off in the shift.
9242
9243 If we were passed a value for X, see if we can use any pieces of
9244 it. If not, make new rtx. */
9245
9246 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9247 && GET_CODE (XEXP (x, 1)) == CONST_INT
9248 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9249 const_rtx = XEXP (x, 1);
9250 else
9251 const_rtx = GEN_INT (count);
9252
9253 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9254 && GET_MODE (XEXP (x, 0)) == shift_mode
9255 && SUBREG_REG (XEXP (x, 0)) == varop)
9256 varop = XEXP (x, 0);
9257 else if (GET_MODE (varop) != shift_mode)
9258 varop = gen_lowpart (shift_mode, varop);
9259
9260 /* If we can't make the SUBREG, try to return what we were given. */
9261 if (GET_CODE (varop) == CLOBBER)
9262 return x ? x : varop;
9263
9264 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9265 if (new != 0)
9266 x = new;
9267 else
9268 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9269
9270 /* If we have an outer operation and we just made a shift, it is
9271 possible that we could have simplified the shift were it not
9272 for the outer operation. So try to do the simplification
9273 recursively. */
9274
9275 if (outer_op != UNKNOWN && GET_CODE (x) == code
9276 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9277 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9278 INTVAL (XEXP (x, 1)));
9279
9280 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9281 turn off all the bits that the shift would have turned off. */
9282 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9283 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9284 GET_MODE_MASK (result_mode) >> orig_count);
9285
9286 /* Do the remainder of the processing in RESULT_MODE. */
9287 x = gen_lowpart (result_mode, x);
9288
9289 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9290 operation. */
9291 if (complement_p)
9292 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9293
9294 if (outer_op != UNKNOWN)
9295 {
9296 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9297 outer_const = trunc_int_for_mode (outer_const, result_mode);
9298
9299 if (outer_op == AND)
9300 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9301 else if (outer_op == SET)
9302 /* This means that we have determined that the result is
9303 equivalent to a constant. This should be rare. */
9304 x = GEN_INT (outer_const);
9305 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9306 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9307 else
9308 x = simplify_gen_binary (outer_op, result_mode, x,
9309 GEN_INT (outer_const));
9310 }
9311
9312 return x;
9313 }
9314 \f
9315 /* Like recog, but we receive the address of a pointer to a new pattern.
9316 We try to match the rtx that the pointer points to.
9317 If that fails, we may try to modify or replace the pattern,
9318 storing the replacement into the same pointer object.
9319
9320 Modifications include deletion or addition of CLOBBERs.
9321
9322 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9323 the CLOBBERs are placed.
9324
9325 The value is the final insn code from the pattern ultimately matched,
9326 or -1. */
9327
9328 static int
9329 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9330 {
9331 rtx pat = *pnewpat;
9332 int insn_code_number;
9333 int num_clobbers_to_add = 0;
9334 int i;
9335 rtx notes = 0;
9336 rtx old_notes, old_pat;
9337
9338 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9339 we use to indicate that something didn't match. If we find such a
9340 thing, force rejection. */
9341 if (GET_CODE (pat) == PARALLEL)
9342 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9343 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9344 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9345 return -1;
9346
9347 old_pat = PATTERN (insn);
9348 old_notes = REG_NOTES (insn);
9349 PATTERN (insn) = pat;
9350 REG_NOTES (insn) = 0;
9351
9352 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9353
9354 /* If it isn't, there is the possibility that we previously had an insn
9355 that clobbered some register as a side effect, but the combined
9356 insn doesn't need to do that. So try once more without the clobbers
9357 unless this represents an ASM insn. */
9358
9359 if (insn_code_number < 0 && ! check_asm_operands (pat)
9360 && GET_CODE (pat) == PARALLEL)
9361 {
9362 int pos;
9363
9364 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9365 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9366 {
9367 if (i != pos)
9368 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9369 pos++;
9370 }
9371
9372 SUBST_INT (XVECLEN (pat, 0), pos);
9373
9374 if (pos == 1)
9375 pat = XVECEXP (pat, 0, 0);
9376
9377 PATTERN (insn) = pat;
9378 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9379 }
9380 PATTERN (insn) = old_pat;
9381 REG_NOTES (insn) = old_notes;
9382
9383 /* Recognize all noop sets, these will be killed by followup pass. */
9384 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9385 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9386
9387 /* If we had any clobbers to add, make a new pattern than contains
9388 them. Then check to make sure that all of them are dead. */
9389 if (num_clobbers_to_add)
9390 {
9391 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9392 rtvec_alloc (GET_CODE (pat) == PARALLEL
9393 ? (XVECLEN (pat, 0)
9394 + num_clobbers_to_add)
9395 : num_clobbers_to_add + 1));
9396
9397 if (GET_CODE (pat) == PARALLEL)
9398 for (i = 0; i < XVECLEN (pat, 0); i++)
9399 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9400 else
9401 XVECEXP (newpat, 0, 0) = pat;
9402
9403 add_clobbers (newpat, insn_code_number);
9404
9405 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9406 i < XVECLEN (newpat, 0); i++)
9407 {
9408 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9409 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9410 return -1;
9411 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9412 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9413 }
9414 pat = newpat;
9415 }
9416
9417 *pnewpat = pat;
9418 *pnotes = notes;
9419
9420 return insn_code_number;
9421 }
9422 \f
9423 /* Like gen_lowpart_general but for use by combine. In combine it
9424 is not possible to create any new pseudoregs. However, it is
9425 safe to create invalid memory addresses, because combine will
9426 try to recognize them and all they will do is make the combine
9427 attempt fail.
9428
9429 If for some reason this cannot do its job, an rtx
9430 (clobber (const_int 0)) is returned.
9431 An insn containing that will not be recognized. */
9432
9433 static rtx
9434 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9435 {
9436 enum machine_mode imode = GET_MODE (x);
9437 unsigned int osize = GET_MODE_SIZE (omode);
9438 unsigned int isize = GET_MODE_SIZE (imode);
9439 rtx result;
9440
9441 if (omode == imode)
9442 return x;
9443
9444 /* Return identity if this is a CONST or symbolic reference. */
9445 if (omode == Pmode
9446 && (GET_CODE (x) == CONST
9447 || GET_CODE (x) == SYMBOL_REF
9448 || GET_CODE (x) == LABEL_REF))
9449 return x;
9450
9451 /* We can only support MODE being wider than a word if X is a
9452 constant integer or has a mode the same size. */
9453 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9454 && ! ((imode == VOIDmode
9455 && (GET_CODE (x) == CONST_INT
9456 || GET_CODE (x) == CONST_DOUBLE))
9457 || isize == osize))
9458 goto fail;
9459
9460 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9461 won't know what to do. So we will strip off the SUBREG here and
9462 process normally. */
9463 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9464 {
9465 x = SUBREG_REG (x);
9466
9467 /* For use in case we fall down into the address adjustments
9468 further below, we need to adjust the known mode and size of
9469 x; imode and isize, since we just adjusted x. */
9470 imode = GET_MODE (x);
9471
9472 if (imode == omode)
9473 return x;
9474
9475 isize = GET_MODE_SIZE (imode);
9476 }
9477
9478 result = gen_lowpart_common (omode, x);
9479
9480 #ifdef CANNOT_CHANGE_MODE_CLASS
9481 if (result != 0 && GET_CODE (result) == SUBREG)
9482 record_subregs_of_mode (result);
9483 #endif
9484
9485 if (result)
9486 return result;
9487
9488 if (MEM_P (x))
9489 {
9490 int offset = 0;
9491
9492 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9493 address. */
9494 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9495 goto fail;
9496
9497 /* If we want to refer to something bigger than the original memref,
9498 generate a paradoxical subreg instead. That will force a reload
9499 of the original memref X. */
9500 if (isize < osize)
9501 return gen_rtx_SUBREG (omode, x, 0);
9502
9503 if (WORDS_BIG_ENDIAN)
9504 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9505
9506 /* Adjust the address so that the address-after-the-data is
9507 unchanged. */
9508 if (BYTES_BIG_ENDIAN)
9509 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9510
9511 return adjust_address_nv (x, omode, offset);
9512 }
9513
9514 /* If X is a comparison operator, rewrite it in a new mode. This
9515 probably won't match, but may allow further simplifications. */
9516 else if (COMPARISON_P (x))
9517 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9518
9519 /* If we couldn't simplify X any other way, just enclose it in a
9520 SUBREG. Normally, this SUBREG won't match, but some patterns may
9521 include an explicit SUBREG or we may simplify it further in combine. */
9522 else
9523 {
9524 int offset = 0;
9525 rtx res;
9526
9527 offset = subreg_lowpart_offset (omode, imode);
9528 if (imode == VOIDmode)
9529 {
9530 imode = int_mode_for_mode (omode);
9531 x = gen_lowpart_common (imode, x);
9532 if (x == NULL)
9533 goto fail;
9534 }
9535 res = simplify_gen_subreg (omode, x, imode, offset);
9536 if (res)
9537 return res;
9538 }
9539
9540 fail:
9541 return gen_rtx_CLOBBER (imode, const0_rtx);
9542 }
9543 \f
9544 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9545 comparison code that will be tested.
9546
9547 The result is a possibly different comparison code to use. *POP0 and
9548 *POP1 may be updated.
9549
9550 It is possible that we might detect that a comparison is either always
9551 true or always false. However, we do not perform general constant
9552 folding in combine, so this knowledge isn't useful. Such tautologies
9553 should have been detected earlier. Hence we ignore all such cases. */
9554
9555 static enum rtx_code
9556 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9557 {
9558 rtx op0 = *pop0;
9559 rtx op1 = *pop1;
9560 rtx tem, tem1;
9561 int i;
9562 enum machine_mode mode, tmode;
9563
9564 /* Try a few ways of applying the same transformation to both operands. */
9565 while (1)
9566 {
9567 #ifndef WORD_REGISTER_OPERATIONS
9568 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9569 so check specially. */
9570 if (code != GTU && code != GEU && code != LTU && code != LEU
9571 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9572 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9573 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9574 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9575 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9576 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9577 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9578 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9579 && XEXP (op0, 1) == XEXP (op1, 1)
9580 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9581 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9582 && (INTVAL (XEXP (op0, 1))
9583 == (GET_MODE_BITSIZE (GET_MODE (op0))
9584 - (GET_MODE_BITSIZE
9585 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9586 {
9587 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9588 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9589 }
9590 #endif
9591
9592 /* If both operands are the same constant shift, see if we can ignore the
9593 shift. We can if the shift is a rotate or if the bits shifted out of
9594 this shift are known to be zero for both inputs and if the type of
9595 comparison is compatible with the shift. */
9596 if (GET_CODE (op0) == GET_CODE (op1)
9597 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9598 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9599 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9600 && (code != GT && code != LT && code != GE && code != LE))
9601 || (GET_CODE (op0) == ASHIFTRT
9602 && (code != GTU && code != LTU
9603 && code != GEU && code != LEU)))
9604 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9605 && INTVAL (XEXP (op0, 1)) >= 0
9606 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9607 && XEXP (op0, 1) == XEXP (op1, 1))
9608 {
9609 enum machine_mode mode = GET_MODE (op0);
9610 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9611 int shift_count = INTVAL (XEXP (op0, 1));
9612
9613 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9614 mask &= (mask >> shift_count) << shift_count;
9615 else if (GET_CODE (op0) == ASHIFT)
9616 mask = (mask & (mask << shift_count)) >> shift_count;
9617
9618 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9619 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9620 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9621 else
9622 break;
9623 }
9624
9625 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9626 SUBREGs are of the same mode, and, in both cases, the AND would
9627 be redundant if the comparison was done in the narrower mode,
9628 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9629 and the operand's possibly nonzero bits are 0xffffff01; in that case
9630 if we only care about QImode, we don't need the AND). This case
9631 occurs if the output mode of an scc insn is not SImode and
9632 STORE_FLAG_VALUE == 1 (e.g., the 386).
9633
9634 Similarly, check for a case where the AND's are ZERO_EXTEND
9635 operations from some narrower mode even though a SUBREG is not
9636 present. */
9637
9638 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9639 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9640 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9641 {
9642 rtx inner_op0 = XEXP (op0, 0);
9643 rtx inner_op1 = XEXP (op1, 0);
9644 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9645 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9646 int changed = 0;
9647
9648 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9649 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9650 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9651 && (GET_MODE (SUBREG_REG (inner_op0))
9652 == GET_MODE (SUBREG_REG (inner_op1)))
9653 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9654 <= HOST_BITS_PER_WIDE_INT)
9655 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9656 GET_MODE (SUBREG_REG (inner_op0)))))
9657 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9658 GET_MODE (SUBREG_REG (inner_op1))))))
9659 {
9660 op0 = SUBREG_REG (inner_op0);
9661 op1 = SUBREG_REG (inner_op1);
9662
9663 /* The resulting comparison is always unsigned since we masked
9664 off the original sign bit. */
9665 code = unsigned_condition (code);
9666
9667 changed = 1;
9668 }
9669
9670 else if (c0 == c1)
9671 for (tmode = GET_CLASS_NARROWEST_MODE
9672 (GET_MODE_CLASS (GET_MODE (op0)));
9673 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9674 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9675 {
9676 op0 = gen_lowpart (tmode, inner_op0);
9677 op1 = gen_lowpart (tmode, inner_op1);
9678 code = unsigned_condition (code);
9679 changed = 1;
9680 break;
9681 }
9682
9683 if (! changed)
9684 break;
9685 }
9686
9687 /* If both operands are NOT, we can strip off the outer operation
9688 and adjust the comparison code for swapped operands; similarly for
9689 NEG, except that this must be an equality comparison. */
9690 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9691 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9692 && (code == EQ || code == NE)))
9693 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9694
9695 else
9696 break;
9697 }
9698
9699 /* If the first operand is a constant, swap the operands and adjust the
9700 comparison code appropriately, but don't do this if the second operand
9701 is already a constant integer. */
9702 if (swap_commutative_operands_p (op0, op1))
9703 {
9704 tem = op0, op0 = op1, op1 = tem;
9705 code = swap_condition (code);
9706 }
9707
9708 /* We now enter a loop during which we will try to simplify the comparison.
9709 For the most part, we only are concerned with comparisons with zero,
9710 but some things may really be comparisons with zero but not start
9711 out looking that way. */
9712
9713 while (GET_CODE (op1) == CONST_INT)
9714 {
9715 enum machine_mode mode = GET_MODE (op0);
9716 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9717 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9718 int equality_comparison_p;
9719 int sign_bit_comparison_p;
9720 int unsigned_comparison_p;
9721 HOST_WIDE_INT const_op;
9722
9723 /* We only want to handle integral modes. This catches VOIDmode,
9724 CCmode, and the floating-point modes. An exception is that we
9725 can handle VOIDmode if OP0 is a COMPARE or a comparison
9726 operation. */
9727
9728 if (GET_MODE_CLASS (mode) != MODE_INT
9729 && ! (mode == VOIDmode
9730 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9731 break;
9732
9733 /* Get the constant we are comparing against and turn off all bits
9734 not on in our mode. */
9735 const_op = INTVAL (op1);
9736 if (mode != VOIDmode)
9737 const_op = trunc_int_for_mode (const_op, mode);
9738 op1 = GEN_INT (const_op);
9739
9740 /* If we are comparing against a constant power of two and the value
9741 being compared can only have that single bit nonzero (e.g., it was
9742 `and'ed with that bit), we can replace this with a comparison
9743 with zero. */
9744 if (const_op
9745 && (code == EQ || code == NE || code == GE || code == GEU
9746 || code == LT || code == LTU)
9747 && mode_width <= HOST_BITS_PER_WIDE_INT
9748 && exact_log2 (const_op) >= 0
9749 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9750 {
9751 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9752 op1 = const0_rtx, const_op = 0;
9753 }
9754
9755 /* Similarly, if we are comparing a value known to be either -1 or
9756 0 with -1, change it to the opposite comparison against zero. */
9757
9758 if (const_op == -1
9759 && (code == EQ || code == NE || code == GT || code == LE
9760 || code == GEU || code == LTU)
9761 && num_sign_bit_copies (op0, mode) == mode_width)
9762 {
9763 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9764 op1 = const0_rtx, const_op = 0;
9765 }
9766
9767 /* Do some canonicalizations based on the comparison code. We prefer
9768 comparisons against zero and then prefer equality comparisons.
9769 If we can reduce the size of a constant, we will do that too. */
9770
9771 switch (code)
9772 {
9773 case LT:
9774 /* < C is equivalent to <= (C - 1) */
9775 if (const_op > 0)
9776 {
9777 const_op -= 1;
9778 op1 = GEN_INT (const_op);
9779 code = LE;
9780 /* ... fall through to LE case below. */
9781 }
9782 else
9783 break;
9784
9785 case LE:
9786 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9787 if (const_op < 0)
9788 {
9789 const_op += 1;
9790 op1 = GEN_INT (const_op);
9791 code = LT;
9792 }
9793
9794 /* If we are doing a <= 0 comparison on a value known to have
9795 a zero sign bit, we can replace this with == 0. */
9796 else if (const_op == 0
9797 && mode_width <= HOST_BITS_PER_WIDE_INT
9798 && (nonzero_bits (op0, mode)
9799 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9800 code = EQ;
9801 break;
9802
9803 case GE:
9804 /* >= C is equivalent to > (C - 1). */
9805 if (const_op > 0)
9806 {
9807 const_op -= 1;
9808 op1 = GEN_INT (const_op);
9809 code = GT;
9810 /* ... fall through to GT below. */
9811 }
9812 else
9813 break;
9814
9815 case GT:
9816 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9817 if (const_op < 0)
9818 {
9819 const_op += 1;
9820 op1 = GEN_INT (const_op);
9821 code = GE;
9822 }
9823
9824 /* If we are doing a > 0 comparison on a value known to have
9825 a zero sign bit, we can replace this with != 0. */
9826 else if (const_op == 0
9827 && mode_width <= HOST_BITS_PER_WIDE_INT
9828 && (nonzero_bits (op0, mode)
9829 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9830 code = NE;
9831 break;
9832
9833 case LTU:
9834 /* < C is equivalent to <= (C - 1). */
9835 if (const_op > 0)
9836 {
9837 const_op -= 1;
9838 op1 = GEN_INT (const_op);
9839 code = LEU;
9840 /* ... fall through ... */
9841 }
9842
9843 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9844 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9845 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9846 {
9847 const_op = 0, op1 = const0_rtx;
9848 code = GE;
9849 break;
9850 }
9851 else
9852 break;
9853
9854 case LEU:
9855 /* unsigned <= 0 is equivalent to == 0 */
9856 if (const_op == 0)
9857 code = EQ;
9858
9859 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9860 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9861 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9862 {
9863 const_op = 0, op1 = const0_rtx;
9864 code = GE;
9865 }
9866 break;
9867
9868 case GEU:
9869 /* >= C is equivalent to > (C - 1). */
9870 if (const_op > 1)
9871 {
9872 const_op -= 1;
9873 op1 = GEN_INT (const_op);
9874 code = GTU;
9875 /* ... fall through ... */
9876 }
9877
9878 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9879 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9880 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9881 {
9882 const_op = 0, op1 = const0_rtx;
9883 code = LT;
9884 break;
9885 }
9886 else
9887 break;
9888
9889 case GTU:
9890 /* unsigned > 0 is equivalent to != 0 */
9891 if (const_op == 0)
9892 code = NE;
9893
9894 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9895 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9896 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9897 {
9898 const_op = 0, op1 = const0_rtx;
9899 code = LT;
9900 }
9901 break;
9902
9903 default:
9904 break;
9905 }
9906
9907 /* Compute some predicates to simplify code below. */
9908
9909 equality_comparison_p = (code == EQ || code == NE);
9910 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9911 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9912 || code == GEU);
9913
9914 /* If this is a sign bit comparison and we can do arithmetic in
9915 MODE, say that we will only be needing the sign bit of OP0. */
9916 if (sign_bit_comparison_p
9917 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9918 op0 = force_to_mode (op0, mode,
9919 ((HOST_WIDE_INT) 1
9920 << (GET_MODE_BITSIZE (mode) - 1)),
9921 NULL_RTX, 0);
9922
9923 /* Now try cases based on the opcode of OP0. If none of the cases
9924 does a "continue", we exit this loop immediately after the
9925 switch. */
9926
9927 switch (GET_CODE (op0))
9928 {
9929 case ZERO_EXTRACT:
9930 /* If we are extracting a single bit from a variable position in
9931 a constant that has only a single bit set and are comparing it
9932 with zero, we can convert this into an equality comparison
9933 between the position and the location of the single bit. */
9934 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9935 have already reduced the shift count modulo the word size. */
9936 if (!SHIFT_COUNT_TRUNCATED
9937 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9938 && XEXP (op0, 1) == const1_rtx
9939 && equality_comparison_p && const_op == 0
9940 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9941 {
9942 if (BITS_BIG_ENDIAN)
9943 {
9944 enum machine_mode new_mode
9945 = mode_for_extraction (EP_extzv, 1);
9946 if (new_mode == MAX_MACHINE_MODE)
9947 i = BITS_PER_WORD - 1 - i;
9948 else
9949 {
9950 mode = new_mode;
9951 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9952 }
9953 }
9954
9955 op0 = XEXP (op0, 2);
9956 op1 = GEN_INT (i);
9957 const_op = i;
9958
9959 /* Result is nonzero iff shift count is equal to I. */
9960 code = reverse_condition (code);
9961 continue;
9962 }
9963
9964 /* ... fall through ... */
9965
9966 case SIGN_EXTRACT:
9967 tem = expand_compound_operation (op0);
9968 if (tem != op0)
9969 {
9970 op0 = tem;
9971 continue;
9972 }
9973 break;
9974
9975 case NOT:
9976 /* If testing for equality, we can take the NOT of the constant. */
9977 if (equality_comparison_p
9978 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9979 {
9980 op0 = XEXP (op0, 0);
9981 op1 = tem;
9982 continue;
9983 }
9984
9985 /* If just looking at the sign bit, reverse the sense of the
9986 comparison. */
9987 if (sign_bit_comparison_p)
9988 {
9989 op0 = XEXP (op0, 0);
9990 code = (code == GE ? LT : GE);
9991 continue;
9992 }
9993 break;
9994
9995 case NEG:
9996 /* If testing for equality, we can take the NEG of the constant. */
9997 if (equality_comparison_p
9998 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9999 {
10000 op0 = XEXP (op0, 0);
10001 op1 = tem;
10002 continue;
10003 }
10004
10005 /* The remaining cases only apply to comparisons with zero. */
10006 if (const_op != 0)
10007 break;
10008
10009 /* When X is ABS or is known positive,
10010 (neg X) is < 0 if and only if X != 0. */
10011
10012 if (sign_bit_comparison_p
10013 && (GET_CODE (XEXP (op0, 0)) == ABS
10014 || (mode_width <= HOST_BITS_PER_WIDE_INT
10015 && (nonzero_bits (XEXP (op0, 0), mode)
10016 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10017 {
10018 op0 = XEXP (op0, 0);
10019 code = (code == LT ? NE : EQ);
10020 continue;
10021 }
10022
10023 /* If we have NEG of something whose two high-order bits are the
10024 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10025 if (num_sign_bit_copies (op0, mode) >= 2)
10026 {
10027 op0 = XEXP (op0, 0);
10028 code = swap_condition (code);
10029 continue;
10030 }
10031 break;
10032
10033 case ROTATE:
10034 /* If we are testing equality and our count is a constant, we
10035 can perform the inverse operation on our RHS. */
10036 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10037 && (tem = simplify_binary_operation (ROTATERT, mode,
10038 op1, XEXP (op0, 1))) != 0)
10039 {
10040 op0 = XEXP (op0, 0);
10041 op1 = tem;
10042 continue;
10043 }
10044
10045 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10046 a particular bit. Convert it to an AND of a constant of that
10047 bit. This will be converted into a ZERO_EXTRACT. */
10048 if (const_op == 0 && sign_bit_comparison_p
10049 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10050 && mode_width <= HOST_BITS_PER_WIDE_INT)
10051 {
10052 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10053 ((HOST_WIDE_INT) 1
10054 << (mode_width - 1
10055 - INTVAL (XEXP (op0, 1)))));
10056 code = (code == LT ? NE : EQ);
10057 continue;
10058 }
10059
10060 /* Fall through. */
10061
10062 case ABS:
10063 /* ABS is ignorable inside an equality comparison with zero. */
10064 if (const_op == 0 && equality_comparison_p)
10065 {
10066 op0 = XEXP (op0, 0);
10067 continue;
10068 }
10069 break;
10070
10071 case SIGN_EXTEND:
10072 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10073 (compare FOO CONST) if CONST fits in FOO's mode and we
10074 are either testing inequality or have an unsigned
10075 comparison with ZERO_EXTEND or a signed comparison with
10076 SIGN_EXTEND. But don't do it if we don't have a compare
10077 insn of the given mode, since we'd have to revert it
10078 later on, and then we wouldn't know whether to sign- or
10079 zero-extend. */
10080 mode = GET_MODE (XEXP (op0, 0));
10081 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10082 && ! unsigned_comparison_p
10083 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10084 && ((unsigned HOST_WIDE_INT) const_op
10085 < (((unsigned HOST_WIDE_INT) 1
10086 << (GET_MODE_BITSIZE (mode) - 1))))
10087 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10088 {
10089 op0 = XEXP (op0, 0);
10090 continue;
10091 }
10092 break;
10093
10094 case SUBREG:
10095 /* Check for the case where we are comparing A - C1 with C2, that is
10096
10097 (subreg:MODE (plus (A) (-C1))) op (C2)
10098
10099 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10100 comparison in the wider mode. One of the following two conditions
10101 must be true in order for this to be valid:
10102
10103 1. The mode extension results in the same bit pattern being added
10104 on both sides and the comparison is equality or unsigned. As
10105 C2 has been truncated to fit in MODE, the pattern can only be
10106 all 0s or all 1s.
10107
10108 2. The mode extension results in the sign bit being copied on
10109 each side.
10110
10111 The difficulty here is that we have predicates for A but not for
10112 (A - C1) so we need to check that C1 is within proper bounds so
10113 as to perturbate A as little as possible. */
10114
10115 if (mode_width <= HOST_BITS_PER_WIDE_INT
10116 && subreg_lowpart_p (op0)
10117 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10118 && GET_CODE (SUBREG_REG (op0)) == PLUS
10119 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10120 {
10121 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10122 rtx a = XEXP (SUBREG_REG (op0), 0);
10123 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10124
10125 if ((c1 > 0
10126 && (unsigned HOST_WIDE_INT) c1
10127 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10128 && (equality_comparison_p || unsigned_comparison_p)
10129 /* (A - C1) zero-extends if it is positive and sign-extends
10130 if it is negative, C2 both zero- and sign-extends. */
10131 && ((0 == (nonzero_bits (a, inner_mode)
10132 & ~GET_MODE_MASK (mode))
10133 && const_op >= 0)
10134 /* (A - C1) sign-extends if it is positive and 1-extends
10135 if it is negative, C2 both sign- and 1-extends. */
10136 || (num_sign_bit_copies (a, inner_mode)
10137 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10138 - mode_width)
10139 && const_op < 0)))
10140 || ((unsigned HOST_WIDE_INT) c1
10141 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10142 /* (A - C1) always sign-extends, like C2. */
10143 && num_sign_bit_copies (a, inner_mode)
10144 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10145 - mode_width - 1)))
10146 {
10147 op0 = SUBREG_REG (op0);
10148 continue;
10149 }
10150 }
10151
10152 /* If the inner mode is narrower and we are extracting the low part,
10153 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10154 if (subreg_lowpart_p (op0)
10155 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10156 /* Fall through */ ;
10157 else
10158 break;
10159
10160 /* ... fall through ... */
10161
10162 case ZERO_EXTEND:
10163 mode = GET_MODE (XEXP (op0, 0));
10164 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10165 && (unsigned_comparison_p || equality_comparison_p)
10166 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10167 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10168 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10169 {
10170 op0 = XEXP (op0, 0);
10171 continue;
10172 }
10173 break;
10174
10175 case PLUS:
10176 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10177 this for equality comparisons due to pathological cases involving
10178 overflows. */
10179 if (equality_comparison_p
10180 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10181 op1, XEXP (op0, 1))))
10182 {
10183 op0 = XEXP (op0, 0);
10184 op1 = tem;
10185 continue;
10186 }
10187
10188 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10189 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10190 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10191 {
10192 op0 = XEXP (XEXP (op0, 0), 0);
10193 code = (code == LT ? EQ : NE);
10194 continue;
10195 }
10196 break;
10197
10198 case MINUS:
10199 /* We used to optimize signed comparisons against zero, but that
10200 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10201 arrive here as equality comparisons, or (GEU, LTU) are
10202 optimized away. No need to special-case them. */
10203
10204 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10205 (eq B (minus A C)), whichever simplifies. We can only do
10206 this for equality comparisons due to pathological cases involving
10207 overflows. */
10208 if (equality_comparison_p
10209 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10210 XEXP (op0, 1), op1)))
10211 {
10212 op0 = XEXP (op0, 0);
10213 op1 = tem;
10214 continue;
10215 }
10216
10217 if (equality_comparison_p
10218 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10219 XEXP (op0, 0), op1)))
10220 {
10221 op0 = XEXP (op0, 1);
10222 op1 = tem;
10223 continue;
10224 }
10225
10226 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10227 of bits in X minus 1, is one iff X > 0. */
10228 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10229 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10230 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10231 == mode_width - 1
10232 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10233 {
10234 op0 = XEXP (op0, 1);
10235 code = (code == GE ? LE : GT);
10236 continue;
10237 }
10238 break;
10239
10240 case XOR:
10241 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10242 if C is zero or B is a constant. */
10243 if (equality_comparison_p
10244 && 0 != (tem = simplify_binary_operation (XOR, mode,
10245 XEXP (op0, 1), op1)))
10246 {
10247 op0 = XEXP (op0, 0);
10248 op1 = tem;
10249 continue;
10250 }
10251 break;
10252
10253 case EQ: case NE:
10254 case UNEQ: case LTGT:
10255 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10256 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10257 case UNORDERED: case ORDERED:
10258 /* We can't do anything if OP0 is a condition code value, rather
10259 than an actual data value. */
10260 if (const_op != 0
10261 || CC0_P (XEXP (op0, 0))
10262 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10263 break;
10264
10265 /* Get the two operands being compared. */
10266 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10267 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10268 else
10269 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10270
10271 /* Check for the cases where we simply want the result of the
10272 earlier test or the opposite of that result. */
10273 if (code == NE || code == EQ
10274 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10275 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10276 && (STORE_FLAG_VALUE
10277 & (((HOST_WIDE_INT) 1
10278 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10279 && (code == LT || code == GE)))
10280 {
10281 enum rtx_code new_code;
10282 if (code == LT || code == NE)
10283 new_code = GET_CODE (op0);
10284 else
10285 new_code = reversed_comparison_code (op0, NULL);
10286
10287 if (new_code != UNKNOWN)
10288 {
10289 code = new_code;
10290 op0 = tem;
10291 op1 = tem1;
10292 continue;
10293 }
10294 }
10295 break;
10296
10297 case IOR:
10298 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10299 iff X <= 0. */
10300 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10301 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10302 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10303 {
10304 op0 = XEXP (op0, 1);
10305 code = (code == GE ? GT : LE);
10306 continue;
10307 }
10308 break;
10309
10310 case AND:
10311 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10312 will be converted to a ZERO_EXTRACT later. */
10313 if (const_op == 0 && equality_comparison_p
10314 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10315 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10316 {
10317 op0 = simplify_and_const_int
10318 (op0, mode, gen_rtx_LSHIFTRT (mode,
10319 XEXP (op0, 1),
10320 XEXP (XEXP (op0, 0), 1)),
10321 (HOST_WIDE_INT) 1);
10322 continue;
10323 }
10324
10325 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10326 zero and X is a comparison and C1 and C2 describe only bits set
10327 in STORE_FLAG_VALUE, we can compare with X. */
10328 if (const_op == 0 && equality_comparison_p
10329 && mode_width <= HOST_BITS_PER_WIDE_INT
10330 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10331 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10332 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10333 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10334 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10335 {
10336 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10337 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10338 if ((~STORE_FLAG_VALUE & mask) == 0
10339 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10340 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10341 && COMPARISON_P (tem))))
10342 {
10343 op0 = XEXP (XEXP (op0, 0), 0);
10344 continue;
10345 }
10346 }
10347
10348 /* If we are doing an equality comparison of an AND of a bit equal
10349 to the sign bit, replace this with a LT or GE comparison of
10350 the underlying value. */
10351 if (equality_comparison_p
10352 && const_op == 0
10353 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10354 && mode_width <= HOST_BITS_PER_WIDE_INT
10355 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10356 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10357 {
10358 op0 = XEXP (op0, 0);
10359 code = (code == EQ ? GE : LT);
10360 continue;
10361 }
10362
10363 /* If this AND operation is really a ZERO_EXTEND from a narrower
10364 mode, the constant fits within that mode, and this is either an
10365 equality or unsigned comparison, try to do this comparison in
10366 the narrower mode. */
10367 if ((equality_comparison_p || unsigned_comparison_p)
10368 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10369 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10370 & GET_MODE_MASK (mode))
10371 + 1)) >= 0
10372 && const_op >> i == 0
10373 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10374 {
10375 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10376 continue;
10377 }
10378
10379 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10380 fits in both M1 and M2 and the SUBREG is either paradoxical
10381 or represents the low part, permute the SUBREG and the AND
10382 and try again. */
10383 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10384 {
10385 unsigned HOST_WIDE_INT c1;
10386 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10387 /* Require an integral mode, to avoid creating something like
10388 (AND:SF ...). */
10389 if (SCALAR_INT_MODE_P (tmode)
10390 /* It is unsafe to commute the AND into the SUBREG if the
10391 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10392 not defined. As originally written the upper bits
10393 have a defined value due to the AND operation.
10394 However, if we commute the AND inside the SUBREG then
10395 they no longer have defined values and the meaning of
10396 the code has been changed. */
10397 && (0
10398 #ifdef WORD_REGISTER_OPERATIONS
10399 || (mode_width > GET_MODE_BITSIZE (tmode)
10400 && mode_width <= BITS_PER_WORD)
10401 #endif
10402 || (mode_width <= GET_MODE_BITSIZE (tmode)
10403 && subreg_lowpart_p (XEXP (op0, 0))))
10404 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10405 && mode_width <= HOST_BITS_PER_WIDE_INT
10406 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10407 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10408 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10409 && c1 != mask
10410 && c1 != GET_MODE_MASK (tmode))
10411 {
10412 op0 = simplify_gen_binary (AND, tmode,
10413 SUBREG_REG (XEXP (op0, 0)),
10414 gen_int_mode (c1, tmode));
10415 op0 = gen_lowpart (mode, op0);
10416 continue;
10417 }
10418 }
10419
10420 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10421 if (const_op == 0 && equality_comparison_p
10422 && XEXP (op0, 1) == const1_rtx
10423 && GET_CODE (XEXP (op0, 0)) == NOT)
10424 {
10425 op0 = simplify_and_const_int
10426 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10427 code = (code == NE ? EQ : NE);
10428 continue;
10429 }
10430
10431 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10432 (eq (and (lshiftrt X) 1) 0).
10433 Also handle the case where (not X) is expressed using xor. */
10434 if (const_op == 0 && equality_comparison_p
10435 && XEXP (op0, 1) == const1_rtx
10436 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10437 {
10438 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10439 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10440
10441 if (GET_CODE (shift_op) == NOT
10442 || (GET_CODE (shift_op) == XOR
10443 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10444 && GET_CODE (shift_count) == CONST_INT
10445 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10446 && (INTVAL (XEXP (shift_op, 1))
10447 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10448 {
10449 op0 = simplify_and_const_int
10450 (NULL_RTX, mode,
10451 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10452 (HOST_WIDE_INT) 1);
10453 code = (code == NE ? EQ : NE);
10454 continue;
10455 }
10456 }
10457 break;
10458
10459 case ASHIFT:
10460 /* If we have (compare (ashift FOO N) (const_int C)) and
10461 the high order N bits of FOO (N+1 if an inequality comparison)
10462 are known to be zero, we can do this by comparing FOO with C
10463 shifted right N bits so long as the low-order N bits of C are
10464 zero. */
10465 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10466 && INTVAL (XEXP (op0, 1)) >= 0
10467 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10468 < HOST_BITS_PER_WIDE_INT)
10469 && ((const_op
10470 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10471 && mode_width <= HOST_BITS_PER_WIDE_INT
10472 && (nonzero_bits (XEXP (op0, 0), mode)
10473 & ~(mask >> (INTVAL (XEXP (op0, 1))
10474 + ! equality_comparison_p))) == 0)
10475 {
10476 /* We must perform a logical shift, not an arithmetic one,
10477 as we want the top N bits of C to be zero. */
10478 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10479
10480 temp >>= INTVAL (XEXP (op0, 1));
10481 op1 = gen_int_mode (temp, mode);
10482 op0 = XEXP (op0, 0);
10483 continue;
10484 }
10485
10486 /* If we are doing a sign bit comparison, it means we are testing
10487 a particular bit. Convert it to the appropriate AND. */
10488 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10489 && mode_width <= HOST_BITS_PER_WIDE_INT)
10490 {
10491 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10492 ((HOST_WIDE_INT) 1
10493 << (mode_width - 1
10494 - INTVAL (XEXP (op0, 1)))));
10495 code = (code == LT ? NE : EQ);
10496 continue;
10497 }
10498
10499 /* If this an equality comparison with zero and we are shifting
10500 the low bit to the sign bit, we can convert this to an AND of the
10501 low-order bit. */
10502 if (const_op == 0 && equality_comparison_p
10503 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10504 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10505 == mode_width - 1)
10506 {
10507 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10508 (HOST_WIDE_INT) 1);
10509 continue;
10510 }
10511 break;
10512
10513 case ASHIFTRT:
10514 /* If this is an equality comparison with zero, we can do this
10515 as a logical shift, which might be much simpler. */
10516 if (equality_comparison_p && const_op == 0
10517 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10518 {
10519 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10520 XEXP (op0, 0),
10521 INTVAL (XEXP (op0, 1)));
10522 continue;
10523 }
10524
10525 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10526 do the comparison in a narrower mode. */
10527 if (! unsigned_comparison_p
10528 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10529 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10530 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10531 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10532 MODE_INT, 1)) != BLKmode
10533 && (((unsigned HOST_WIDE_INT) const_op
10534 + (GET_MODE_MASK (tmode) >> 1) + 1)
10535 <= GET_MODE_MASK (tmode)))
10536 {
10537 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10538 continue;
10539 }
10540
10541 /* Likewise if OP0 is a PLUS of a sign extension with a
10542 constant, which is usually represented with the PLUS
10543 between the shifts. */
10544 if (! unsigned_comparison_p
10545 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10546 && GET_CODE (XEXP (op0, 0)) == PLUS
10547 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10548 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10549 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10550 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10551 MODE_INT, 1)) != BLKmode
10552 && (((unsigned HOST_WIDE_INT) const_op
10553 + (GET_MODE_MASK (tmode) >> 1) + 1)
10554 <= GET_MODE_MASK (tmode)))
10555 {
10556 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10557 rtx add_const = XEXP (XEXP (op0, 0), 1);
10558 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10559 add_const, XEXP (op0, 1));
10560
10561 op0 = simplify_gen_binary (PLUS, tmode,
10562 gen_lowpart (tmode, inner),
10563 new_const);
10564 continue;
10565 }
10566
10567 /* ... fall through ... */
10568 case LSHIFTRT:
10569 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10570 the low order N bits of FOO are known to be zero, we can do this
10571 by comparing FOO with C shifted left N bits so long as no
10572 overflow occurs. */
10573 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10574 && INTVAL (XEXP (op0, 1)) >= 0
10575 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10576 && mode_width <= HOST_BITS_PER_WIDE_INT
10577 && (nonzero_bits (XEXP (op0, 0), mode)
10578 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10579 && (((unsigned HOST_WIDE_INT) const_op
10580 + (GET_CODE (op0) != LSHIFTRT
10581 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10582 + 1)
10583 : 0))
10584 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10585 {
10586 /* If the shift was logical, then we must make the condition
10587 unsigned. */
10588 if (GET_CODE (op0) == LSHIFTRT)
10589 code = unsigned_condition (code);
10590
10591 const_op <<= INTVAL (XEXP (op0, 1));
10592 op1 = GEN_INT (const_op);
10593 op0 = XEXP (op0, 0);
10594 continue;
10595 }
10596
10597 /* If we are using this shift to extract just the sign bit, we
10598 can replace this with an LT or GE comparison. */
10599 if (const_op == 0
10600 && (equality_comparison_p || sign_bit_comparison_p)
10601 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10602 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10603 == mode_width - 1)
10604 {
10605 op0 = XEXP (op0, 0);
10606 code = (code == NE || code == GT ? LT : GE);
10607 continue;
10608 }
10609 break;
10610
10611 default:
10612 break;
10613 }
10614
10615 break;
10616 }
10617
10618 /* Now make any compound operations involved in this comparison. Then,
10619 check for an outmost SUBREG on OP0 that is not doing anything or is
10620 paradoxical. The latter transformation must only be performed when
10621 it is known that the "extra" bits will be the same in op0 and op1 or
10622 that they don't matter. There are three cases to consider:
10623
10624 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10625 care bits and we can assume they have any convenient value. So
10626 making the transformation is safe.
10627
10628 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10629 In this case the upper bits of op0 are undefined. We should not make
10630 the simplification in that case as we do not know the contents of
10631 those bits.
10632
10633 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10634 UNKNOWN. In that case we know those bits are zeros or ones. We must
10635 also be sure that they are the same as the upper bits of op1.
10636
10637 We can never remove a SUBREG for a non-equality comparison because
10638 the sign bit is in a different place in the underlying object. */
10639
10640 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10641 op1 = make_compound_operation (op1, SET);
10642
10643 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10644 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10645 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10646 && (code == NE || code == EQ))
10647 {
10648 if (GET_MODE_SIZE (GET_MODE (op0))
10649 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10650 {
10651 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10652 implemented. */
10653 if (REG_P (SUBREG_REG (op0)))
10654 {
10655 op0 = SUBREG_REG (op0);
10656 op1 = gen_lowpart (GET_MODE (op0), op1);
10657 }
10658 }
10659 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10660 <= HOST_BITS_PER_WIDE_INT)
10661 && (nonzero_bits (SUBREG_REG (op0),
10662 GET_MODE (SUBREG_REG (op0)))
10663 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10664 {
10665 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10666
10667 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10668 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10669 op0 = SUBREG_REG (op0), op1 = tem;
10670 }
10671 }
10672
10673 /* We now do the opposite procedure: Some machines don't have compare
10674 insns in all modes. If OP0's mode is an integer mode smaller than a
10675 word and we can't do a compare in that mode, see if there is a larger
10676 mode for which we can do the compare. There are a number of cases in
10677 which we can use the wider mode. */
10678
10679 mode = GET_MODE (op0);
10680 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10681 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10682 && ! have_insn_for (COMPARE, mode))
10683 for (tmode = GET_MODE_WIDER_MODE (mode);
10684 (tmode != VOIDmode
10685 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10686 tmode = GET_MODE_WIDER_MODE (tmode))
10687 if (have_insn_for (COMPARE, tmode))
10688 {
10689 int zero_extended;
10690
10691 /* If the only nonzero bits in OP0 and OP1 are those in the
10692 narrower mode and this is an equality or unsigned comparison,
10693 we can use the wider mode. Similarly for sign-extended
10694 values, in which case it is true for all comparisons. */
10695 zero_extended = ((code == EQ || code == NE
10696 || code == GEU || code == GTU
10697 || code == LEU || code == LTU)
10698 && (nonzero_bits (op0, tmode)
10699 & ~GET_MODE_MASK (mode)) == 0
10700 && ((GET_CODE (op1) == CONST_INT
10701 || (nonzero_bits (op1, tmode)
10702 & ~GET_MODE_MASK (mode)) == 0)));
10703
10704 if (zero_extended
10705 || ((num_sign_bit_copies (op0, tmode)
10706 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10707 - GET_MODE_BITSIZE (mode)))
10708 && (num_sign_bit_copies (op1, tmode)
10709 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10710 - GET_MODE_BITSIZE (mode)))))
10711 {
10712 /* If OP0 is an AND and we don't have an AND in MODE either,
10713 make a new AND in the proper mode. */
10714 if (GET_CODE (op0) == AND
10715 && !have_insn_for (AND, mode))
10716 op0 = simplify_gen_binary (AND, tmode,
10717 gen_lowpart (tmode,
10718 XEXP (op0, 0)),
10719 gen_lowpart (tmode,
10720 XEXP (op0, 1)));
10721
10722 op0 = gen_lowpart (tmode, op0);
10723 if (zero_extended && GET_CODE (op1) == CONST_INT)
10724 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10725 op1 = gen_lowpart (tmode, op1);
10726 break;
10727 }
10728
10729 /* If this is a test for negative, we can make an explicit
10730 test of the sign bit. */
10731
10732 if (op1 == const0_rtx && (code == LT || code == GE)
10733 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10734 {
10735 op0 = simplify_gen_binary (AND, tmode,
10736 gen_lowpart (tmode, op0),
10737 GEN_INT ((HOST_WIDE_INT) 1
10738 << (GET_MODE_BITSIZE (mode)
10739 - 1)));
10740 code = (code == LT) ? NE : EQ;
10741 break;
10742 }
10743 }
10744
10745 #ifdef CANONICALIZE_COMPARISON
10746 /* If this machine only supports a subset of valid comparisons, see if we
10747 can convert an unsupported one into a supported one. */
10748 CANONICALIZE_COMPARISON (code, op0, op1);
10749 #endif
10750
10751 *pop0 = op0;
10752 *pop1 = op1;
10753
10754 return code;
10755 }
10756 \f
10757 /* Utility function for record_value_for_reg. Count number of
10758 rtxs in X. */
10759 static int
10760 count_rtxs (rtx x)
10761 {
10762 enum rtx_code code = GET_CODE (x);
10763 const char *fmt;
10764 int i, ret = 1;
10765
10766 if (GET_RTX_CLASS (code) == '2'
10767 || GET_RTX_CLASS (code) == 'c')
10768 {
10769 rtx x0 = XEXP (x, 0);
10770 rtx x1 = XEXP (x, 1);
10771
10772 if (x0 == x1)
10773 return 1 + 2 * count_rtxs (x0);
10774
10775 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10776 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10777 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10778 return 2 + 2 * count_rtxs (x0)
10779 + count_rtxs (x == XEXP (x1, 0)
10780 ? XEXP (x1, 1) : XEXP (x1, 0));
10781
10782 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10783 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10784 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10785 return 2 + 2 * count_rtxs (x1)
10786 + count_rtxs (x == XEXP (x0, 0)
10787 ? XEXP (x0, 1) : XEXP (x0, 0));
10788 }
10789
10790 fmt = GET_RTX_FORMAT (code);
10791 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10792 if (fmt[i] == 'e')
10793 ret += count_rtxs (XEXP (x, i));
10794
10795 return ret;
10796 }
10797 \f
10798 /* Utility function for following routine. Called when X is part of a value
10799 being stored into last_set_value. Sets last_set_table_tick
10800 for each register mentioned. Similar to mention_regs in cse.c */
10801
10802 static void
10803 update_table_tick (rtx x)
10804 {
10805 enum rtx_code code = GET_CODE (x);
10806 const char *fmt = GET_RTX_FORMAT (code);
10807 int i;
10808
10809 if (code == REG)
10810 {
10811 unsigned int regno = REGNO (x);
10812 unsigned int endregno
10813 = regno + (regno < FIRST_PSEUDO_REGISTER
10814 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10815 unsigned int r;
10816
10817 for (r = regno; r < endregno; r++)
10818 reg_stat[r].last_set_table_tick = label_tick;
10819
10820 return;
10821 }
10822
10823 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10824 /* Note that we can't have an "E" in values stored; see
10825 get_last_value_validate. */
10826 if (fmt[i] == 'e')
10827 {
10828 /* Check for identical subexpressions. If x contains
10829 identical subexpression we only have to traverse one of
10830 them. */
10831 if (i == 0 && ARITHMETIC_P (x))
10832 {
10833 /* Note that at this point x1 has already been
10834 processed. */
10835 rtx x0 = XEXP (x, 0);
10836 rtx x1 = XEXP (x, 1);
10837
10838 /* If x0 and x1 are identical then there is no need to
10839 process x0. */
10840 if (x0 == x1)
10841 break;
10842
10843 /* If x0 is identical to a subexpression of x1 then while
10844 processing x1, x0 has already been processed. Thus we
10845 are done with x. */
10846 if (ARITHMETIC_P (x1)
10847 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10848 break;
10849
10850 /* If x1 is identical to a subexpression of x0 then we
10851 still have to process the rest of x0. */
10852 if (ARITHMETIC_P (x0)
10853 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10854 {
10855 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10856 break;
10857 }
10858 }
10859
10860 update_table_tick (XEXP (x, i));
10861 }
10862 }
10863
10864 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10865 are saying that the register is clobbered and we no longer know its
10866 value. If INSN is zero, don't update reg_stat[].last_set; this is
10867 only permitted with VALUE also zero and is used to invalidate the
10868 register. */
10869
10870 static void
10871 record_value_for_reg (rtx reg, rtx insn, rtx value)
10872 {
10873 unsigned int regno = REGNO (reg);
10874 unsigned int endregno
10875 = regno + (regno < FIRST_PSEUDO_REGISTER
10876 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10877 unsigned int i;
10878
10879 /* If VALUE contains REG and we have a previous value for REG, substitute
10880 the previous value. */
10881 if (value && insn && reg_overlap_mentioned_p (reg, value))
10882 {
10883 rtx tem;
10884
10885 /* Set things up so get_last_value is allowed to see anything set up to
10886 our insn. */
10887 subst_low_cuid = INSN_CUID (insn);
10888 tem = get_last_value (reg);
10889
10890 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10891 it isn't going to be useful and will take a lot of time to process,
10892 so just use the CLOBBER. */
10893
10894 if (tem)
10895 {
10896 if (ARITHMETIC_P (tem)
10897 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10898 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10899 tem = XEXP (tem, 0);
10900 else if (count_occurrences (value, reg, 1) >= 2)
10901 {
10902 /* If there are two or more occurrences of REG in VALUE,
10903 prevent the value from growing too much. */
10904 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10905 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10906 }
10907
10908 value = replace_rtx (copy_rtx (value), reg, tem);
10909 }
10910 }
10911
10912 /* For each register modified, show we don't know its value, that
10913 we don't know about its bitwise content, that its value has been
10914 updated, and that we don't know the location of the death of the
10915 register. */
10916 for (i = regno; i < endregno; i++)
10917 {
10918 if (insn)
10919 reg_stat[i].last_set = insn;
10920
10921 reg_stat[i].last_set_value = 0;
10922 reg_stat[i].last_set_mode = 0;
10923 reg_stat[i].last_set_nonzero_bits = 0;
10924 reg_stat[i].last_set_sign_bit_copies = 0;
10925 reg_stat[i].last_death = 0;
10926 }
10927
10928 /* Mark registers that are being referenced in this value. */
10929 if (value)
10930 update_table_tick (value);
10931
10932 /* Now update the status of each register being set.
10933 If someone is using this register in this block, set this register
10934 to invalid since we will get confused between the two lives in this
10935 basic block. This makes using this register always invalid. In cse, we
10936 scan the table to invalidate all entries using this register, but this
10937 is too much work for us. */
10938
10939 for (i = regno; i < endregno; i++)
10940 {
10941 reg_stat[i].last_set_label = label_tick;
10942 if (value && reg_stat[i].last_set_table_tick == label_tick)
10943 reg_stat[i].last_set_invalid = 1;
10944 else
10945 reg_stat[i].last_set_invalid = 0;
10946 }
10947
10948 /* The value being assigned might refer to X (like in "x++;"). In that
10949 case, we must replace it with (clobber (const_int 0)) to prevent
10950 infinite loops. */
10951 if (value && ! get_last_value_validate (&value, insn,
10952 reg_stat[regno].last_set_label, 0))
10953 {
10954 value = copy_rtx (value);
10955 if (! get_last_value_validate (&value, insn,
10956 reg_stat[regno].last_set_label, 1))
10957 value = 0;
10958 }
10959
10960 /* For the main register being modified, update the value, the mode, the
10961 nonzero bits, and the number of sign bit copies. */
10962
10963 reg_stat[regno].last_set_value = value;
10964
10965 if (value)
10966 {
10967 enum machine_mode mode = GET_MODE (reg);
10968 subst_low_cuid = INSN_CUID (insn);
10969 reg_stat[regno].last_set_mode = mode;
10970 if (GET_MODE_CLASS (mode) == MODE_INT
10971 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10972 mode = nonzero_bits_mode;
10973 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10974 reg_stat[regno].last_set_sign_bit_copies
10975 = num_sign_bit_copies (value, GET_MODE (reg));
10976 }
10977 }
10978
10979 /* Called via note_stores from record_dead_and_set_regs to handle one
10980 SET or CLOBBER in an insn. DATA is the instruction in which the
10981 set is occurring. */
10982
10983 static void
10984 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10985 {
10986 rtx record_dead_insn = (rtx) data;
10987
10988 if (GET_CODE (dest) == SUBREG)
10989 dest = SUBREG_REG (dest);
10990
10991 if (REG_P (dest))
10992 {
10993 /* If we are setting the whole register, we know its value. Otherwise
10994 show that we don't know the value. We can handle SUBREG in
10995 some cases. */
10996 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10997 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10998 else if (GET_CODE (setter) == SET
10999 && GET_CODE (SET_DEST (setter)) == SUBREG
11000 && SUBREG_REG (SET_DEST (setter)) == dest
11001 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11002 && subreg_lowpart_p (SET_DEST (setter)))
11003 record_value_for_reg (dest, record_dead_insn,
11004 gen_lowpart (GET_MODE (dest),
11005 SET_SRC (setter)));
11006 else
11007 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11008 }
11009 else if (MEM_P (dest)
11010 /* Ignore pushes, they clobber nothing. */
11011 && ! push_operand (dest, GET_MODE (dest)))
11012 mem_last_set = INSN_CUID (record_dead_insn);
11013 }
11014
11015 /* Update the records of when each REG was most recently set or killed
11016 for the things done by INSN. This is the last thing done in processing
11017 INSN in the combiner loop.
11018
11019 We update reg_stat[], in particular fields last_set, last_set_value,
11020 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11021 last_death, and also the similar information mem_last_set (which insn
11022 most recently modified memory) and last_call_cuid (which insn was the
11023 most recent subroutine call). */
11024
11025 static void
11026 record_dead_and_set_regs (rtx insn)
11027 {
11028 rtx link;
11029 unsigned int i;
11030
11031 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11032 {
11033 if (REG_NOTE_KIND (link) == REG_DEAD
11034 && REG_P (XEXP (link, 0)))
11035 {
11036 unsigned int regno = REGNO (XEXP (link, 0));
11037 unsigned int endregno
11038 = regno + (regno < FIRST_PSEUDO_REGISTER
11039 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11040 : 1);
11041
11042 for (i = regno; i < endregno; i++)
11043 reg_stat[i].last_death = insn;
11044 }
11045 else if (REG_NOTE_KIND (link) == REG_INC)
11046 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11047 }
11048
11049 if (CALL_P (insn))
11050 {
11051 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11052 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11053 {
11054 reg_stat[i].last_set_value = 0;
11055 reg_stat[i].last_set_mode = 0;
11056 reg_stat[i].last_set_nonzero_bits = 0;
11057 reg_stat[i].last_set_sign_bit_copies = 0;
11058 reg_stat[i].last_death = 0;
11059 }
11060
11061 last_call_cuid = mem_last_set = INSN_CUID (insn);
11062
11063 /* Don't bother recording what this insn does. It might set the
11064 return value register, but we can't combine into a call
11065 pattern anyway, so there's no point trying (and it may cause
11066 a crash, if e.g. we wind up asking for last_set_value of a
11067 SUBREG of the return value register). */
11068 return;
11069 }
11070
11071 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11072 }
11073
11074 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11075 register present in the SUBREG, so for each such SUBREG go back and
11076 adjust nonzero and sign bit information of the registers that are
11077 known to have some zero/sign bits set.
11078
11079 This is needed because when combine blows the SUBREGs away, the
11080 information on zero/sign bits is lost and further combines can be
11081 missed because of that. */
11082
11083 static void
11084 record_promoted_value (rtx insn, rtx subreg)
11085 {
11086 rtx links, set;
11087 unsigned int regno = REGNO (SUBREG_REG (subreg));
11088 enum machine_mode mode = GET_MODE (subreg);
11089
11090 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11091 return;
11092
11093 for (links = LOG_LINKS (insn); links;)
11094 {
11095 insn = XEXP (links, 0);
11096 set = single_set (insn);
11097
11098 if (! set || !REG_P (SET_DEST (set))
11099 || REGNO (SET_DEST (set)) != regno
11100 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11101 {
11102 links = XEXP (links, 1);
11103 continue;
11104 }
11105
11106 if (reg_stat[regno].last_set == insn)
11107 {
11108 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11109 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11110 }
11111
11112 if (REG_P (SET_SRC (set)))
11113 {
11114 regno = REGNO (SET_SRC (set));
11115 links = LOG_LINKS (insn);
11116 }
11117 else
11118 break;
11119 }
11120 }
11121
11122 /* Scan X for promoted SUBREGs. For each one found,
11123 note what it implies to the registers used in it. */
11124
11125 static void
11126 check_promoted_subreg (rtx insn, rtx x)
11127 {
11128 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11129 && REG_P (SUBREG_REG (x)))
11130 record_promoted_value (insn, x);
11131 else
11132 {
11133 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11134 int i, j;
11135
11136 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11137 switch (format[i])
11138 {
11139 case 'e':
11140 check_promoted_subreg (insn, XEXP (x, i));
11141 break;
11142 case 'V':
11143 case 'E':
11144 if (XVEC (x, i) != 0)
11145 for (j = 0; j < XVECLEN (x, i); j++)
11146 check_promoted_subreg (insn, XVECEXP (x, i, j));
11147 break;
11148 }
11149 }
11150 }
11151 \f
11152 /* Utility routine for the following function. Verify that all the registers
11153 mentioned in *LOC are valid when *LOC was part of a value set when
11154 label_tick == TICK. Return 0 if some are not.
11155
11156 If REPLACE is nonzero, replace the invalid reference with
11157 (clobber (const_int 0)) and return 1. This replacement is useful because
11158 we often can get useful information about the form of a value (e.g., if
11159 it was produced by a shift that always produces -1 or 0) even though
11160 we don't know exactly what registers it was produced from. */
11161
11162 static int
11163 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11164 {
11165 rtx x = *loc;
11166 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11167 int len = GET_RTX_LENGTH (GET_CODE (x));
11168 int i;
11169
11170 if (REG_P (x))
11171 {
11172 unsigned int regno = REGNO (x);
11173 unsigned int endregno
11174 = regno + (regno < FIRST_PSEUDO_REGISTER
11175 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11176 unsigned int j;
11177
11178 for (j = regno; j < endregno; j++)
11179 if (reg_stat[j].last_set_invalid
11180 /* If this is a pseudo-register that was only set once and not
11181 live at the beginning of the function, it is always valid. */
11182 || (! (regno >= FIRST_PSEUDO_REGISTER
11183 && REG_N_SETS (regno) == 1
11184 && (! REGNO_REG_SET_P
11185 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11186 regno)))
11187 && reg_stat[j].last_set_label > tick))
11188 {
11189 if (replace)
11190 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11191 return replace;
11192 }
11193
11194 return 1;
11195 }
11196 /* If this is a memory reference, make sure that there were
11197 no stores after it that might have clobbered the value. We don't
11198 have alias info, so we assume any store invalidates it. */
11199 else if (MEM_P (x) && !MEM_READONLY_P (x)
11200 && INSN_CUID (insn) <= mem_last_set)
11201 {
11202 if (replace)
11203 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11204 return replace;
11205 }
11206
11207 for (i = 0; i < len; i++)
11208 {
11209 if (fmt[i] == 'e')
11210 {
11211 /* Check for identical subexpressions. If x contains
11212 identical subexpression we only have to traverse one of
11213 them. */
11214 if (i == 1 && ARITHMETIC_P (x))
11215 {
11216 /* Note that at this point x0 has already been checked
11217 and found valid. */
11218 rtx x0 = XEXP (x, 0);
11219 rtx x1 = XEXP (x, 1);
11220
11221 /* If x0 and x1 are identical then x is also valid. */
11222 if (x0 == x1)
11223 return 1;
11224
11225 /* If x1 is identical to a subexpression of x0 then
11226 while checking x0, x1 has already been checked. Thus
11227 it is valid and so as x. */
11228 if (ARITHMETIC_P (x0)
11229 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11230 return 1;
11231
11232 /* If x0 is identical to a subexpression of x1 then x is
11233 valid iff the rest of x1 is valid. */
11234 if (ARITHMETIC_P (x1)
11235 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11236 return
11237 get_last_value_validate (&XEXP (x1,
11238 x0 == XEXP (x1, 0) ? 1 : 0),
11239 insn, tick, replace);
11240 }
11241
11242 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11243 replace) == 0)
11244 return 0;
11245 }
11246 /* Don't bother with these. They shouldn't occur anyway. */
11247 else if (fmt[i] == 'E')
11248 return 0;
11249 }
11250
11251 /* If we haven't found a reason for it to be invalid, it is valid. */
11252 return 1;
11253 }
11254
11255 /* Get the last value assigned to X, if known. Some registers
11256 in the value may be replaced with (clobber (const_int 0)) if their value
11257 is known longer known reliably. */
11258
11259 static rtx
11260 get_last_value (rtx x)
11261 {
11262 unsigned int regno;
11263 rtx value;
11264
11265 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11266 then convert it to the desired mode. If this is a paradoxical SUBREG,
11267 we cannot predict what values the "extra" bits might have. */
11268 if (GET_CODE (x) == SUBREG
11269 && subreg_lowpart_p (x)
11270 && (GET_MODE_SIZE (GET_MODE (x))
11271 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11272 && (value = get_last_value (SUBREG_REG (x))) != 0)
11273 return gen_lowpart (GET_MODE (x), value);
11274
11275 if (!REG_P (x))
11276 return 0;
11277
11278 regno = REGNO (x);
11279 value = reg_stat[regno].last_set_value;
11280
11281 /* If we don't have a value, or if it isn't for this basic block and
11282 it's either a hard register, set more than once, or it's a live
11283 at the beginning of the function, return 0.
11284
11285 Because if it's not live at the beginning of the function then the reg
11286 is always set before being used (is never used without being set).
11287 And, if it's set only once, and it's always set before use, then all
11288 uses must have the same last value, even if it's not from this basic
11289 block. */
11290
11291 if (value == 0
11292 || (reg_stat[regno].last_set_label != label_tick
11293 && (regno < FIRST_PSEUDO_REGISTER
11294 || REG_N_SETS (regno) != 1
11295 || (REGNO_REG_SET_P
11296 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11297 regno)))))
11298 return 0;
11299
11300 /* If the value was set in a later insn than the ones we are processing,
11301 we can't use it even if the register was only set once. */
11302 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11303 return 0;
11304
11305 /* If the value has all its registers valid, return it. */
11306 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11307 reg_stat[regno].last_set_label, 0))
11308 return value;
11309
11310 /* Otherwise, make a copy and replace any invalid register with
11311 (clobber (const_int 0)). If that fails for some reason, return 0. */
11312
11313 value = copy_rtx (value);
11314 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11315 reg_stat[regno].last_set_label, 1))
11316 return value;
11317
11318 return 0;
11319 }
11320 \f
11321 /* Return nonzero if expression X refers to a REG or to memory
11322 that is set in an instruction more recent than FROM_CUID. */
11323
11324 static int
11325 use_crosses_set_p (rtx x, int from_cuid)
11326 {
11327 const char *fmt;
11328 int i;
11329 enum rtx_code code = GET_CODE (x);
11330
11331 if (code == REG)
11332 {
11333 unsigned int regno = REGNO (x);
11334 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11335 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11336
11337 #ifdef PUSH_ROUNDING
11338 /* Don't allow uses of the stack pointer to be moved,
11339 because we don't know whether the move crosses a push insn. */
11340 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11341 return 1;
11342 #endif
11343 for (; regno < endreg; regno++)
11344 if (reg_stat[regno].last_set
11345 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11346 return 1;
11347 return 0;
11348 }
11349
11350 if (code == MEM && mem_last_set > from_cuid)
11351 return 1;
11352
11353 fmt = GET_RTX_FORMAT (code);
11354
11355 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11356 {
11357 if (fmt[i] == 'E')
11358 {
11359 int j;
11360 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11361 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11362 return 1;
11363 }
11364 else if (fmt[i] == 'e'
11365 && use_crosses_set_p (XEXP (x, i), from_cuid))
11366 return 1;
11367 }
11368 return 0;
11369 }
11370 \f
11371 /* Define three variables used for communication between the following
11372 routines. */
11373
11374 static unsigned int reg_dead_regno, reg_dead_endregno;
11375 static int reg_dead_flag;
11376
11377 /* Function called via note_stores from reg_dead_at_p.
11378
11379 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11380 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11381
11382 static void
11383 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11384 {
11385 unsigned int regno, endregno;
11386
11387 if (!REG_P (dest))
11388 return;
11389
11390 regno = REGNO (dest);
11391 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11392 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11393
11394 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11395 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11396 }
11397
11398 /* Return nonzero if REG is known to be dead at INSN.
11399
11400 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11401 referencing REG, it is dead. If we hit a SET referencing REG, it is
11402 live. Otherwise, see if it is live or dead at the start of the basic
11403 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11404 must be assumed to be always live. */
11405
11406 static int
11407 reg_dead_at_p (rtx reg, rtx insn)
11408 {
11409 basic_block block;
11410 unsigned int i;
11411
11412 /* Set variables for reg_dead_at_p_1. */
11413 reg_dead_regno = REGNO (reg);
11414 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11415 ? hard_regno_nregs[reg_dead_regno]
11416 [GET_MODE (reg)]
11417 : 1);
11418
11419 reg_dead_flag = 0;
11420
11421 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11422 we allow the machine description to decide whether use-and-clobber
11423 patterns are OK. */
11424 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11425 {
11426 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11427 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11428 return 0;
11429 }
11430
11431 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11432 beginning of function. */
11433 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11434 insn = prev_nonnote_insn (insn))
11435 {
11436 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11437 if (reg_dead_flag)
11438 return reg_dead_flag == 1 ? 1 : 0;
11439
11440 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11441 return 1;
11442 }
11443
11444 /* Get the basic block that we were in. */
11445 if (insn == 0)
11446 block = ENTRY_BLOCK_PTR->next_bb;
11447 else
11448 {
11449 FOR_EACH_BB (block)
11450 if (insn == BB_HEAD (block))
11451 break;
11452
11453 if (block == EXIT_BLOCK_PTR)
11454 return 0;
11455 }
11456
11457 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11458 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11459 return 0;
11460
11461 return 1;
11462 }
11463 \f
11464 /* Note hard registers in X that are used. This code is similar to
11465 that in flow.c, but much simpler since we don't care about pseudos. */
11466
11467 static void
11468 mark_used_regs_combine (rtx x)
11469 {
11470 RTX_CODE code = GET_CODE (x);
11471 unsigned int regno;
11472 int i;
11473
11474 switch (code)
11475 {
11476 case LABEL_REF:
11477 case SYMBOL_REF:
11478 case CONST_INT:
11479 case CONST:
11480 case CONST_DOUBLE:
11481 case CONST_VECTOR:
11482 case PC:
11483 case ADDR_VEC:
11484 case ADDR_DIFF_VEC:
11485 case ASM_INPUT:
11486 #ifdef HAVE_cc0
11487 /* CC0 must die in the insn after it is set, so we don't need to take
11488 special note of it here. */
11489 case CC0:
11490 #endif
11491 return;
11492
11493 case CLOBBER:
11494 /* If we are clobbering a MEM, mark any hard registers inside the
11495 address as used. */
11496 if (MEM_P (XEXP (x, 0)))
11497 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11498 return;
11499
11500 case REG:
11501 regno = REGNO (x);
11502 /* A hard reg in a wide mode may really be multiple registers.
11503 If so, mark all of them just like the first. */
11504 if (regno < FIRST_PSEUDO_REGISTER)
11505 {
11506 unsigned int endregno, r;
11507
11508 /* None of this applies to the stack, frame or arg pointers. */
11509 if (regno == STACK_POINTER_REGNUM
11510 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11511 || regno == HARD_FRAME_POINTER_REGNUM
11512 #endif
11513 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11514 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11515 #endif
11516 || regno == FRAME_POINTER_REGNUM)
11517 return;
11518
11519 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11520 for (r = regno; r < endregno; r++)
11521 SET_HARD_REG_BIT (newpat_used_regs, r);
11522 }
11523 return;
11524
11525 case SET:
11526 {
11527 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11528 the address. */
11529 rtx testreg = SET_DEST (x);
11530
11531 while (GET_CODE (testreg) == SUBREG
11532 || GET_CODE (testreg) == ZERO_EXTRACT
11533 || GET_CODE (testreg) == STRICT_LOW_PART)
11534 testreg = XEXP (testreg, 0);
11535
11536 if (MEM_P (testreg))
11537 mark_used_regs_combine (XEXP (testreg, 0));
11538
11539 mark_used_regs_combine (SET_SRC (x));
11540 }
11541 return;
11542
11543 default:
11544 break;
11545 }
11546
11547 /* Recursively scan the operands of this expression. */
11548
11549 {
11550 const char *fmt = GET_RTX_FORMAT (code);
11551
11552 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11553 {
11554 if (fmt[i] == 'e')
11555 mark_used_regs_combine (XEXP (x, i));
11556 else if (fmt[i] == 'E')
11557 {
11558 int j;
11559
11560 for (j = 0; j < XVECLEN (x, i); j++)
11561 mark_used_regs_combine (XVECEXP (x, i, j));
11562 }
11563 }
11564 }
11565 }
11566 \f
11567 /* Remove register number REGNO from the dead registers list of INSN.
11568
11569 Return the note used to record the death, if there was one. */
11570
11571 rtx
11572 remove_death (unsigned int regno, rtx insn)
11573 {
11574 rtx note = find_regno_note (insn, REG_DEAD, regno);
11575
11576 if (note)
11577 {
11578 REG_N_DEATHS (regno)--;
11579 remove_note (insn, note);
11580 }
11581
11582 return note;
11583 }
11584
11585 /* For each register (hardware or pseudo) used within expression X, if its
11586 death is in an instruction with cuid between FROM_CUID (inclusive) and
11587 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11588 list headed by PNOTES.
11589
11590 That said, don't move registers killed by maybe_kill_insn.
11591
11592 This is done when X is being merged by combination into TO_INSN. These
11593 notes will then be distributed as needed. */
11594
11595 static void
11596 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11597 rtx *pnotes)
11598 {
11599 const char *fmt;
11600 int len, i;
11601 enum rtx_code code = GET_CODE (x);
11602
11603 if (code == REG)
11604 {
11605 unsigned int regno = REGNO (x);
11606 rtx where_dead = reg_stat[regno].last_death;
11607 rtx before_dead, after_dead;
11608
11609 /* Don't move the register if it gets killed in between from and to. */
11610 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11611 && ! reg_referenced_p (x, maybe_kill_insn))
11612 return;
11613
11614 /* WHERE_DEAD could be a USE insn made by combine, so first we
11615 make sure that we have insns with valid INSN_CUID values. */
11616 before_dead = where_dead;
11617 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11618 before_dead = PREV_INSN (before_dead);
11619
11620 after_dead = where_dead;
11621 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11622 after_dead = NEXT_INSN (after_dead);
11623
11624 if (before_dead && after_dead
11625 && INSN_CUID (before_dead) >= from_cuid
11626 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11627 || (where_dead != after_dead
11628 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11629 {
11630 rtx note = remove_death (regno, where_dead);
11631
11632 /* It is possible for the call above to return 0. This can occur
11633 when last_death points to I2 or I1 that we combined with.
11634 In that case make a new note.
11635
11636 We must also check for the case where X is a hard register
11637 and NOTE is a death note for a range of hard registers
11638 including X. In that case, we must put REG_DEAD notes for
11639 the remaining registers in place of NOTE. */
11640
11641 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11642 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11643 > GET_MODE_SIZE (GET_MODE (x))))
11644 {
11645 unsigned int deadregno = REGNO (XEXP (note, 0));
11646 unsigned int deadend
11647 = (deadregno + hard_regno_nregs[deadregno]
11648 [GET_MODE (XEXP (note, 0))]);
11649 unsigned int ourend
11650 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11651 unsigned int i;
11652
11653 for (i = deadregno; i < deadend; i++)
11654 if (i < regno || i >= ourend)
11655 REG_NOTES (where_dead)
11656 = gen_rtx_EXPR_LIST (REG_DEAD,
11657 regno_reg_rtx[i],
11658 REG_NOTES (where_dead));
11659 }
11660
11661 /* If we didn't find any note, or if we found a REG_DEAD note that
11662 covers only part of the given reg, and we have a multi-reg hard
11663 register, then to be safe we must check for REG_DEAD notes
11664 for each register other than the first. They could have
11665 their own REG_DEAD notes lying around. */
11666 else if ((note == 0
11667 || (note != 0
11668 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11669 < GET_MODE_SIZE (GET_MODE (x)))))
11670 && regno < FIRST_PSEUDO_REGISTER
11671 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11672 {
11673 unsigned int ourend
11674 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11675 unsigned int i, offset;
11676 rtx oldnotes = 0;
11677
11678 if (note)
11679 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11680 else
11681 offset = 1;
11682
11683 for (i = regno + offset; i < ourend; i++)
11684 move_deaths (regno_reg_rtx[i],
11685 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11686 }
11687
11688 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11689 {
11690 XEXP (note, 1) = *pnotes;
11691 *pnotes = note;
11692 }
11693 else
11694 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11695
11696 REG_N_DEATHS (regno)++;
11697 }
11698
11699 return;
11700 }
11701
11702 else if (GET_CODE (x) == SET)
11703 {
11704 rtx dest = SET_DEST (x);
11705
11706 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11707
11708 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11709 that accesses one word of a multi-word item, some
11710 piece of everything register in the expression is used by
11711 this insn, so remove any old death. */
11712 /* ??? So why do we test for equality of the sizes? */
11713
11714 if (GET_CODE (dest) == ZERO_EXTRACT
11715 || GET_CODE (dest) == STRICT_LOW_PART
11716 || (GET_CODE (dest) == SUBREG
11717 && (((GET_MODE_SIZE (GET_MODE (dest))
11718 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11719 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11720 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11721 {
11722 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11723 return;
11724 }
11725
11726 /* If this is some other SUBREG, we know it replaces the entire
11727 value, so use that as the destination. */
11728 if (GET_CODE (dest) == SUBREG)
11729 dest = SUBREG_REG (dest);
11730
11731 /* If this is a MEM, adjust deaths of anything used in the address.
11732 For a REG (the only other possibility), the entire value is
11733 being replaced so the old value is not used in this insn. */
11734
11735 if (MEM_P (dest))
11736 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11737 to_insn, pnotes);
11738 return;
11739 }
11740
11741 else if (GET_CODE (x) == CLOBBER)
11742 return;
11743
11744 len = GET_RTX_LENGTH (code);
11745 fmt = GET_RTX_FORMAT (code);
11746
11747 for (i = 0; i < len; i++)
11748 {
11749 if (fmt[i] == 'E')
11750 {
11751 int j;
11752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11753 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11754 to_insn, pnotes);
11755 }
11756 else if (fmt[i] == 'e')
11757 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11758 }
11759 }
11760 \f
11761 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11762 pattern of an insn. X must be a REG. */
11763
11764 static int
11765 reg_bitfield_target_p (rtx x, rtx body)
11766 {
11767 int i;
11768
11769 if (GET_CODE (body) == SET)
11770 {
11771 rtx dest = SET_DEST (body);
11772 rtx target;
11773 unsigned int regno, tregno, endregno, endtregno;
11774
11775 if (GET_CODE (dest) == ZERO_EXTRACT)
11776 target = XEXP (dest, 0);
11777 else if (GET_CODE (dest) == STRICT_LOW_PART)
11778 target = SUBREG_REG (XEXP (dest, 0));
11779 else
11780 return 0;
11781
11782 if (GET_CODE (target) == SUBREG)
11783 target = SUBREG_REG (target);
11784
11785 if (!REG_P (target))
11786 return 0;
11787
11788 tregno = REGNO (target), regno = REGNO (x);
11789 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11790 return target == x;
11791
11792 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11793 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11794
11795 return endregno > tregno && regno < endtregno;
11796 }
11797
11798 else if (GET_CODE (body) == PARALLEL)
11799 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11800 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11801 return 1;
11802
11803 return 0;
11804 }
11805 \f
11806 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11807 as appropriate. I3 and I2 are the insns resulting from the combination
11808 insns including FROM (I2 may be zero).
11809
11810 Each note in the list is either ignored or placed on some insns, depending
11811 on the type of note. */
11812
11813 static void
11814 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11815 {
11816 rtx note, next_note;
11817 rtx tem;
11818
11819 for (note = notes; note; note = next_note)
11820 {
11821 rtx place = 0, place2 = 0;
11822
11823 /* If this NOTE references a pseudo register, ensure it references
11824 the latest copy of that register. */
11825 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11826 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11827 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11828
11829 next_note = XEXP (note, 1);
11830 switch (REG_NOTE_KIND (note))
11831 {
11832 case REG_BR_PROB:
11833 case REG_BR_PRED:
11834 /* Doesn't matter much where we put this, as long as it's somewhere.
11835 It is preferable to keep these notes on branches, which is most
11836 likely to be i3. */
11837 place = i3;
11838 break;
11839
11840 case REG_VALUE_PROFILE:
11841 /* Just get rid of this note, as it is unused later anyway. */
11842 break;
11843
11844 case REG_NON_LOCAL_GOTO:
11845 if (JUMP_P (i3))
11846 place = i3;
11847 else
11848 {
11849 gcc_assert (i2 && JUMP_P (i2));
11850 place = i2;
11851 }
11852 break;
11853
11854 case REG_EH_REGION:
11855 /* These notes must remain with the call or trapping instruction. */
11856 if (CALL_P (i3))
11857 place = i3;
11858 else if (i2 && CALL_P (i2))
11859 place = i2;
11860 else
11861 {
11862 gcc_assert (flag_non_call_exceptions);
11863 if (may_trap_p (i3))
11864 place = i3;
11865 else if (i2 && may_trap_p (i2))
11866 place = i2;
11867 /* ??? Otherwise assume we've combined things such that we
11868 can now prove that the instructions can't trap. Drop the
11869 note in this case. */
11870 }
11871 break;
11872
11873 case REG_NORETURN:
11874 case REG_SETJMP:
11875 /* These notes must remain with the call. It should not be
11876 possible for both I2 and I3 to be a call. */
11877 if (CALL_P (i3))
11878 place = i3;
11879 else
11880 {
11881 gcc_assert (i2 && CALL_P (i2));
11882 place = i2;
11883 }
11884 break;
11885
11886 case REG_UNUSED:
11887 /* Any clobbers for i3 may still exist, and so we must process
11888 REG_UNUSED notes from that insn.
11889
11890 Any clobbers from i2 or i1 can only exist if they were added by
11891 recog_for_combine. In that case, recog_for_combine created the
11892 necessary REG_UNUSED notes. Trying to keep any original
11893 REG_UNUSED notes from these insns can cause incorrect output
11894 if it is for the same register as the original i3 dest.
11895 In that case, we will notice that the register is set in i3,
11896 and then add a REG_UNUSED note for the destination of i3, which
11897 is wrong. However, it is possible to have REG_UNUSED notes from
11898 i2 or i1 for register which were both used and clobbered, so
11899 we keep notes from i2 or i1 if they will turn into REG_DEAD
11900 notes. */
11901
11902 /* If this register is set or clobbered in I3, put the note there
11903 unless there is one already. */
11904 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11905 {
11906 if (from_insn != i3)
11907 break;
11908
11909 if (! (REG_P (XEXP (note, 0))
11910 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11911 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11912 place = i3;
11913 }
11914 /* Otherwise, if this register is used by I3, then this register
11915 now dies here, so we must put a REG_DEAD note here unless there
11916 is one already. */
11917 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11918 && ! (REG_P (XEXP (note, 0))
11919 ? find_regno_note (i3, REG_DEAD,
11920 REGNO (XEXP (note, 0)))
11921 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11922 {
11923 PUT_REG_NOTE_KIND (note, REG_DEAD);
11924 place = i3;
11925 }
11926 break;
11927
11928 case REG_EQUAL:
11929 case REG_EQUIV:
11930 case REG_NOALIAS:
11931 /* These notes say something about results of an insn. We can
11932 only support them if they used to be on I3 in which case they
11933 remain on I3. Otherwise they are ignored.
11934
11935 If the note refers to an expression that is not a constant, we
11936 must also ignore the note since we cannot tell whether the
11937 equivalence is still true. It might be possible to do
11938 slightly better than this (we only have a problem if I2DEST
11939 or I1DEST is present in the expression), but it doesn't
11940 seem worth the trouble. */
11941
11942 if (from_insn == i3
11943 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11944 place = i3;
11945 break;
11946
11947 case REG_INC:
11948 case REG_NO_CONFLICT:
11949 /* These notes say something about how a register is used. They must
11950 be present on any use of the register in I2 or I3. */
11951 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11952 place = i3;
11953
11954 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11955 {
11956 if (place)
11957 place2 = i2;
11958 else
11959 place = i2;
11960 }
11961 break;
11962
11963 case REG_LABEL:
11964 /* This can show up in several ways -- either directly in the
11965 pattern, or hidden off in the constant pool with (or without?)
11966 a REG_EQUAL note. */
11967 /* ??? Ignore the without-reg_equal-note problem for now. */
11968 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11969 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11970 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11971 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11972 place = i3;
11973
11974 if (i2
11975 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11976 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11977 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11978 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11979 {
11980 if (place)
11981 place2 = i2;
11982 else
11983 place = i2;
11984 }
11985
11986 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11987 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11988 if (place && JUMP_P (place))
11989 {
11990 rtx label = JUMP_LABEL (place);
11991
11992 if (!label)
11993 JUMP_LABEL (place) = XEXP (note, 0);
11994 else
11995 {
11996 gcc_assert (label == XEXP (note, 0));
11997 if (LABEL_P (label))
11998 LABEL_NUSES (label)--;
11999 }
12000 place = 0;
12001 }
12002 if (place2 && JUMP_P (place2))
12003 {
12004 rtx label = JUMP_LABEL (place2);
12005
12006 if (!label)
12007 JUMP_LABEL (place2) = XEXP (note, 0);
12008 else
12009 {
12010 gcc_assert (label == XEXP (note, 0));
12011 if (LABEL_P (label))
12012 LABEL_NUSES (label)--;
12013 }
12014 place2 = 0;
12015 }
12016 break;
12017
12018 case REG_NONNEG:
12019 /* This note says something about the value of a register prior
12020 to the execution of an insn. It is too much trouble to see
12021 if the note is still correct in all situations. It is better
12022 to simply delete it. */
12023 break;
12024
12025 case REG_RETVAL:
12026 /* If the insn previously containing this note still exists,
12027 put it back where it was. Otherwise move it to the previous
12028 insn. Adjust the corresponding REG_LIBCALL note. */
12029 if (!NOTE_P (from_insn))
12030 place = from_insn;
12031 else
12032 {
12033 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12034 place = prev_real_insn (from_insn);
12035 if (tem && place)
12036 XEXP (tem, 0) = place;
12037 /* If we're deleting the last remaining instruction of a
12038 libcall sequence, don't add the notes. */
12039 else if (XEXP (note, 0) == from_insn)
12040 tem = place = 0;
12041 /* Don't add the dangling REG_RETVAL note. */
12042 else if (! tem)
12043 place = 0;
12044 }
12045 break;
12046
12047 case REG_LIBCALL:
12048 /* This is handled similarly to REG_RETVAL. */
12049 if (!NOTE_P (from_insn))
12050 place = from_insn;
12051 else
12052 {
12053 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12054 place = next_real_insn (from_insn);
12055 if (tem && place)
12056 XEXP (tem, 0) = place;
12057 /* If we're deleting the last remaining instruction of a
12058 libcall sequence, don't add the notes. */
12059 else if (XEXP (note, 0) == from_insn)
12060 tem = place = 0;
12061 /* Don't add the dangling REG_LIBCALL note. */
12062 else if (! tem)
12063 place = 0;
12064 }
12065 break;
12066
12067 case REG_DEAD:
12068 /* If the register is used as an input in I3, it dies there.
12069 Similarly for I2, if it is nonzero and adjacent to I3.
12070
12071 If the register is not used as an input in either I3 or I2
12072 and it is not one of the registers we were supposed to eliminate,
12073 there are two possibilities. We might have a non-adjacent I2
12074 or we might have somehow eliminated an additional register
12075 from a computation. For example, we might have had A & B where
12076 we discover that B will always be zero. In this case we will
12077 eliminate the reference to A.
12078
12079 In both cases, we must search to see if we can find a previous
12080 use of A and put the death note there. */
12081
12082 if (from_insn
12083 && CALL_P (from_insn)
12084 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12085 place = from_insn;
12086 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12087 place = i3;
12088 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12089 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12090 place = i2;
12091
12092 if (place == 0)
12093 {
12094 basic_block bb = this_basic_block;
12095
12096 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12097 {
12098 if (! INSN_P (tem))
12099 {
12100 if (tem == BB_HEAD (bb))
12101 break;
12102 continue;
12103 }
12104
12105 /* If the register is being set at TEM, see if that is all
12106 TEM is doing. If so, delete TEM. Otherwise, make this
12107 into a REG_UNUSED note instead. Don't delete sets to
12108 global register vars. */
12109 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12110 || !global_regs[REGNO (XEXP (note, 0))])
12111 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12112 {
12113 rtx set = single_set (tem);
12114 rtx inner_dest = 0;
12115 #ifdef HAVE_cc0
12116 rtx cc0_setter = NULL_RTX;
12117 #endif
12118
12119 if (set != 0)
12120 for (inner_dest = SET_DEST (set);
12121 (GET_CODE (inner_dest) == STRICT_LOW_PART
12122 || GET_CODE (inner_dest) == SUBREG
12123 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12124 inner_dest = XEXP (inner_dest, 0))
12125 ;
12126
12127 /* Verify that it was the set, and not a clobber that
12128 modified the register.
12129
12130 CC0 targets must be careful to maintain setter/user
12131 pairs. If we cannot delete the setter due to side
12132 effects, mark the user with an UNUSED note instead
12133 of deleting it. */
12134
12135 if (set != 0 && ! side_effects_p (SET_SRC (set))
12136 && rtx_equal_p (XEXP (note, 0), inner_dest)
12137 #ifdef HAVE_cc0
12138 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12139 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12140 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12141 #endif
12142 )
12143 {
12144 /* Move the notes and links of TEM elsewhere.
12145 This might delete other dead insns recursively.
12146 First set the pattern to something that won't use
12147 any register. */
12148 rtx old_notes = REG_NOTES (tem);
12149
12150 PATTERN (tem) = pc_rtx;
12151 REG_NOTES (tem) = NULL;
12152
12153 distribute_notes (old_notes, tem, tem, NULL_RTX);
12154 distribute_links (LOG_LINKS (tem));
12155
12156 SET_INSN_DELETED (tem);
12157
12158 #ifdef HAVE_cc0
12159 /* Delete the setter too. */
12160 if (cc0_setter)
12161 {
12162 PATTERN (cc0_setter) = pc_rtx;
12163 old_notes = REG_NOTES (cc0_setter);
12164 REG_NOTES (cc0_setter) = NULL;
12165
12166 distribute_notes (old_notes, cc0_setter,
12167 cc0_setter, NULL_RTX);
12168 distribute_links (LOG_LINKS (cc0_setter));
12169
12170 SET_INSN_DELETED (cc0_setter);
12171 }
12172 #endif
12173 }
12174 else
12175 {
12176 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12177
12178 /* If there isn't already a REG_UNUSED note, put one
12179 here. Do not place a REG_DEAD note, even if
12180 the register is also used here; that would not
12181 match the algorithm used in lifetime analysis
12182 and can cause the consistency check in the
12183 scheduler to fail. */
12184 if (! find_regno_note (tem, REG_UNUSED,
12185 REGNO (XEXP (note, 0))))
12186 place = tem;
12187 break;
12188 }
12189 }
12190 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12191 || (CALL_P (tem)
12192 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12193 {
12194 place = tem;
12195
12196 /* If we are doing a 3->2 combination, and we have a
12197 register which formerly died in i3 and was not used
12198 by i2, which now no longer dies in i3 and is used in
12199 i2 but does not die in i2, and place is between i2
12200 and i3, then we may need to move a link from place to
12201 i2. */
12202 if (i2 && INSN_UID (place) <= max_uid_cuid
12203 && INSN_CUID (place) > INSN_CUID (i2)
12204 && from_insn
12205 && INSN_CUID (from_insn) > INSN_CUID (i2)
12206 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12207 {
12208 rtx links = LOG_LINKS (place);
12209 LOG_LINKS (place) = 0;
12210 distribute_links (links);
12211 }
12212 break;
12213 }
12214
12215 if (tem == BB_HEAD (bb))
12216 break;
12217 }
12218
12219 /* We haven't found an insn for the death note and it
12220 is still a REG_DEAD note, but we have hit the beginning
12221 of the block. If the existing life info says the reg
12222 was dead, there's nothing left to do. Otherwise, we'll
12223 need to do a global life update after combine. */
12224 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12225 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12226 REGNO (XEXP (note, 0))))
12227 SET_BIT (refresh_blocks, this_basic_block->index);
12228 }
12229
12230 /* If the register is set or already dead at PLACE, we needn't do
12231 anything with this note if it is still a REG_DEAD note.
12232 We check here if it is set at all, not if is it totally replaced,
12233 which is what `dead_or_set_p' checks, so also check for it being
12234 set partially. */
12235
12236 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12237 {
12238 unsigned int regno = REGNO (XEXP (note, 0));
12239
12240 /* Similarly, if the instruction on which we want to place
12241 the note is a noop, we'll need do a global live update
12242 after we remove them in delete_noop_moves. */
12243 if (noop_move_p (place))
12244 SET_BIT (refresh_blocks, this_basic_block->index);
12245
12246 if (dead_or_set_p (place, XEXP (note, 0))
12247 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12248 {
12249 /* Unless the register previously died in PLACE, clear
12250 last_death. [I no longer understand why this is
12251 being done.] */
12252 if (reg_stat[regno].last_death != place)
12253 reg_stat[regno].last_death = 0;
12254 place = 0;
12255 }
12256 else
12257 reg_stat[regno].last_death = place;
12258
12259 /* If this is a death note for a hard reg that is occupying
12260 multiple registers, ensure that we are still using all
12261 parts of the object. If we find a piece of the object
12262 that is unused, we must arrange for an appropriate REG_DEAD
12263 note to be added for it. However, we can't just emit a USE
12264 and tag the note to it, since the register might actually
12265 be dead; so we recourse, and the recursive call then finds
12266 the previous insn that used this register. */
12267
12268 if (place && regno < FIRST_PSEUDO_REGISTER
12269 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12270 {
12271 unsigned int endregno
12272 = regno + hard_regno_nregs[regno]
12273 [GET_MODE (XEXP (note, 0))];
12274 int all_used = 1;
12275 unsigned int i;
12276
12277 for (i = regno; i < endregno; i++)
12278 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12279 && ! find_regno_fusage (place, USE, i))
12280 || dead_or_set_regno_p (place, i))
12281 all_used = 0;
12282
12283 if (! all_used)
12284 {
12285 /* Put only REG_DEAD notes for pieces that are
12286 not already dead or set. */
12287
12288 for (i = regno; i < endregno;
12289 i += hard_regno_nregs[i][reg_raw_mode[i]])
12290 {
12291 rtx piece = regno_reg_rtx[i];
12292 basic_block bb = this_basic_block;
12293
12294 if (! dead_or_set_p (place, piece)
12295 && ! reg_bitfield_target_p (piece,
12296 PATTERN (place)))
12297 {
12298 rtx new_note
12299 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12300
12301 distribute_notes (new_note, place, place,
12302 NULL_RTX);
12303 }
12304 else if (! refers_to_regno_p (i, i + 1,
12305 PATTERN (place), 0)
12306 && ! find_regno_fusage (place, USE, i))
12307 for (tem = PREV_INSN (place); ;
12308 tem = PREV_INSN (tem))
12309 {
12310 if (! INSN_P (tem))
12311 {
12312 if (tem == BB_HEAD (bb))
12313 {
12314 SET_BIT (refresh_blocks,
12315 this_basic_block->index);
12316 break;
12317 }
12318 continue;
12319 }
12320 if (dead_or_set_p (tem, piece)
12321 || reg_bitfield_target_p (piece,
12322 PATTERN (tem)))
12323 {
12324 REG_NOTES (tem)
12325 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12326 REG_NOTES (tem));
12327 break;
12328 }
12329 }
12330
12331 }
12332
12333 place = 0;
12334 }
12335 }
12336 }
12337 break;
12338
12339 default:
12340 /* Any other notes should not be present at this point in the
12341 compilation. */
12342 gcc_unreachable ();
12343 }
12344
12345 if (place)
12346 {
12347 XEXP (note, 1) = REG_NOTES (place);
12348 REG_NOTES (place) = note;
12349 }
12350 else if ((REG_NOTE_KIND (note) == REG_DEAD
12351 || REG_NOTE_KIND (note) == REG_UNUSED)
12352 && REG_P (XEXP (note, 0)))
12353 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12354
12355 if (place2)
12356 {
12357 if ((REG_NOTE_KIND (note) == REG_DEAD
12358 || REG_NOTE_KIND (note) == REG_UNUSED)
12359 && REG_P (XEXP (note, 0)))
12360 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12361
12362 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12363 REG_NOTE_KIND (note),
12364 XEXP (note, 0),
12365 REG_NOTES (place2));
12366 }
12367 }
12368 }
12369 \f
12370 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12371 I3, I2, and I1 to new locations. This is also called to add a link
12372 pointing at I3 when I3's destination is changed. */
12373
12374 static void
12375 distribute_links (rtx links)
12376 {
12377 rtx link, next_link;
12378
12379 for (link = links; link; link = next_link)
12380 {
12381 rtx place = 0;
12382 rtx insn;
12383 rtx set, reg;
12384
12385 next_link = XEXP (link, 1);
12386
12387 /* If the insn that this link points to is a NOTE or isn't a single
12388 set, ignore it. In the latter case, it isn't clear what we
12389 can do other than ignore the link, since we can't tell which
12390 register it was for. Such links wouldn't be used by combine
12391 anyway.
12392
12393 It is not possible for the destination of the target of the link to
12394 have been changed by combine. The only potential of this is if we
12395 replace I3, I2, and I1 by I3 and I2. But in that case the
12396 destination of I2 also remains unchanged. */
12397
12398 if (NOTE_P (XEXP (link, 0))
12399 || (set = single_set (XEXP (link, 0))) == 0)
12400 continue;
12401
12402 reg = SET_DEST (set);
12403 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12404 || GET_CODE (reg) == STRICT_LOW_PART)
12405 reg = XEXP (reg, 0);
12406
12407 /* A LOG_LINK is defined as being placed on the first insn that uses
12408 a register and points to the insn that sets the register. Start
12409 searching at the next insn after the target of the link and stop
12410 when we reach a set of the register or the end of the basic block.
12411
12412 Note that this correctly handles the link that used to point from
12413 I3 to I2. Also note that not much searching is typically done here
12414 since most links don't point very far away. */
12415
12416 for (insn = NEXT_INSN (XEXP (link, 0));
12417 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12418 || BB_HEAD (this_basic_block->next_bb) != insn));
12419 insn = NEXT_INSN (insn))
12420 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12421 {
12422 if (reg_referenced_p (reg, PATTERN (insn)))
12423 place = insn;
12424 break;
12425 }
12426 else if (CALL_P (insn)
12427 && find_reg_fusage (insn, USE, reg))
12428 {
12429 place = insn;
12430 break;
12431 }
12432 else if (INSN_P (insn) && reg_set_p (reg, insn))
12433 break;
12434
12435 /* If we found a place to put the link, place it there unless there
12436 is already a link to the same insn as LINK at that point. */
12437
12438 if (place)
12439 {
12440 rtx link2;
12441
12442 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12443 if (XEXP (link2, 0) == XEXP (link, 0))
12444 break;
12445
12446 if (link2 == 0)
12447 {
12448 XEXP (link, 1) = LOG_LINKS (place);
12449 LOG_LINKS (place) = link;
12450
12451 /* Set added_links_insn to the earliest insn we added a
12452 link to. */
12453 if (added_links_insn == 0
12454 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12455 added_links_insn = place;
12456 }
12457 }
12458 }
12459 }
12460 \f
12461 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12462 Check whether the expression pointer to by LOC is a register or
12463 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12464 Otherwise return zero. */
12465
12466 static int
12467 unmentioned_reg_p_1 (rtx *loc, void *expr)
12468 {
12469 rtx x = *loc;
12470
12471 if (x != NULL_RTX
12472 && (REG_P (x) || MEM_P (x))
12473 && ! reg_mentioned_p (x, (rtx) expr))
12474 return 1;
12475 return 0;
12476 }
12477
12478 /* Check for any register or memory mentioned in EQUIV that is not
12479 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12480 of EXPR where some registers may have been replaced by constants. */
12481
12482 static bool
12483 unmentioned_reg_p (rtx equiv, rtx expr)
12484 {
12485 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12486 }
12487 \f
12488 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12489
12490 static int
12491 insn_cuid (rtx insn)
12492 {
12493 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12494 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12495 insn = NEXT_INSN (insn);
12496
12497 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12498
12499 return INSN_CUID (insn);
12500 }
12501 \f
12502 void
12503 dump_combine_stats (FILE *file)
12504 {
12505 fprintf
12506 (file,
12507 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12508 combine_attempts, combine_merges, combine_extras, combine_successes);
12509 }
12510
12511 void
12512 dump_combine_total_stats (FILE *file)
12513 {
12514 fprintf
12515 (file,
12516 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12517 total_attempts, total_merges, total_extras, total_successes);
12518 }
12519 \f
12520
12521 static bool
12522 gate_handle_combine (void)
12523 {
12524 return (optimize > 0);
12525 }
12526
12527 /* Try combining insns through substitution. */
12528 static void
12529 rest_of_handle_combine (void)
12530 {
12531 int rebuild_jump_labels_after_combine
12532 = combine_instructions (get_insns (), max_reg_num ());
12533
12534 /* Combining insns may have turned an indirect jump into a
12535 direct jump. Rebuild the JUMP_LABEL fields of jumping
12536 instructions. */
12537 if (rebuild_jump_labels_after_combine)
12538 {
12539 timevar_push (TV_JUMP);
12540 rebuild_jump_labels (get_insns ());
12541 timevar_pop (TV_JUMP);
12542
12543 delete_dead_jumptables ();
12544 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12545 }
12546 }
12547
12548 struct tree_opt_pass pass_combine =
12549 {
12550 "combine", /* name */
12551 gate_handle_combine, /* gate */
12552 rest_of_handle_combine, /* execute */
12553 NULL, /* sub */
12554 NULL, /* next */
12555 0, /* static_pass_number */
12556 TV_COMBINE, /* tv_id */
12557 0, /* properties_required */
12558 0, /* properties_provided */
12559 0, /* properties_destroyed */
12560 0, /* todo_flags_start */
12561 TODO_dump_func |
12562 TODO_ggc_collect, /* todo_flags_finish */
12563 'c' /* letter */
12564 };
12565
This page took 0.672533 seconds and 6 git commands to generate.