1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
75 #include "coretypes.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "insn-attr.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
97 /* Number of attempts to combine instructions in this function. */
99 static int combine_attempts
;
101 /* Number of attempts that got as far as substitution in this function. */
103 static int combine_merges
;
105 /* Number of instructions combined with added SETs in this function. */
107 static int combine_extras
;
109 /* Number of instructions combined in this function. */
111 static int combine_successes
;
113 /* Totals over entire compilation. */
115 static int total_attempts
, total_merges
, total_extras
, total_successes
;
118 /* Vector mapping INSN_UIDs to cuids.
119 The cuids are like uids but increase monotonically always.
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
125 static int *uid_cuid
;
126 static int max_uid_cuid
;
128 /* Get the cuid of an insn. */
130 #define INSN_CUID(INSN) \
131 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139 /* Maximum register number, which is the size of the tables below. */
141 static unsigned int combine_max_regno
;
144 /* Record last point of death of (hard or pseudo) register n. */
147 /* Record last point of modification of (hard or pseudo) register n. */
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
156 We use an approach similar to that used by cse, but change it in the
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
163 Therefore, we maintain the following fields:
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
179 (The next two parameters are out of date).
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
193 /* Record last value assigned to (hard or pseudo) register n. */
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
200 int last_set_table_tick
;
202 /* Record the value of label_tick when the value for register n is placed in
207 /* These fields are maintained in parallel with last_set_value and are
208 used to store the mode in which the register was last set, the bits
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
212 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
213 char last_set_sign_bit_copies
;
214 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
220 char last_set_invalid
;
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
232 If an entry is zero, it means that we don't know anything special. */
234 unsigned char sign_bit_copies
;
236 unsigned HOST_WIDE_INT nonzero_bits
;
239 static struct reg_stat
*reg_stat
;
241 /* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
244 static int mem_last_set
;
246 /* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
249 static int last_call_cuid
;
251 /* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
257 static rtx subst_insn
;
259 /* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
266 static int subst_low_cuid
;
268 /* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
271 static HARD_REG_SET newpat_used_regs
;
273 /* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
277 static rtx added_links_insn
;
279 /* Basic block in which we are performing combines. */
280 static basic_block this_basic_block
;
282 /* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
284 those blocks as starting points. */
285 static sbitmap refresh_blocks
;
287 /* The following array records the insn_rtx_cost for every insn
288 in the instruction stream. */
290 static int *uid_insn_cost
;
292 /* Length of the currently allocated uid_insn_cost array. */
294 static int last_insn_cost
;
296 /* Incremented for each label. */
298 static int label_tick
;
300 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
303 static enum machine_mode nonzero_bits_mode
;
305 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
311 static int nonzero_sign_valid
;
314 /* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
322 union {rtx r
; int i
;} old_contents
;
323 union {rtx
*r
; int *i
;} where
;
326 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too. */
339 static struct undobuf undobuf
;
341 /* Number of times the pseudo being substituted for
342 was found and replaced. */
344 static int n_occurrences
;
346 static rtx
reg_nonzero_bits_for_combine (rtx
, enum machine_mode
, rtx
,
348 unsigned HOST_WIDE_INT
,
349 unsigned HOST_WIDE_INT
*);
350 static rtx
reg_num_sign_bit_copies_for_combine (rtx
, enum machine_mode
, rtx
,
352 unsigned int, unsigned int *);
353 static void do_SUBST (rtx
*, rtx
);
354 static void do_SUBST_INT (int *, int);
355 static void init_reg_last (void);
356 static void setup_incoming_promotions (void);
357 static void set_nonzero_bits_and_sign_copies (rtx
, rtx
, void *);
358 static int cant_combine_insn_p (rtx
);
359 static int can_combine_p (rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*);
360 static int combinable_i3pat (rtx
, rtx
*, rtx
, rtx
, int, rtx
*);
361 static int contains_muldiv (rtx
);
362 static rtx
try_combine (rtx
, rtx
, rtx
, int *);
363 static void undo_all (void);
364 static void undo_commit (void);
365 static rtx
*find_split_point (rtx
*, rtx
);
366 static rtx
subst (rtx
, rtx
, rtx
, int, int);
367 static rtx
combine_simplify_rtx (rtx
, enum machine_mode
, int);
368 static rtx
simplify_if_then_else (rtx
);
369 static rtx
simplify_set (rtx
);
370 static rtx
simplify_logical (rtx
);
371 static rtx
expand_compound_operation (rtx
);
372 static rtx
expand_field_assignment (rtx
);
373 static rtx
make_extraction (enum machine_mode
, rtx
, HOST_WIDE_INT
,
374 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
375 static rtx
extract_left_shift (rtx
, int);
376 static rtx
make_compound_operation (rtx
, enum rtx_code
);
377 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
378 unsigned HOST_WIDE_INT
*);
379 static rtx
force_to_mode (rtx
, enum machine_mode
,
380 unsigned HOST_WIDE_INT
, rtx
, int);
381 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
382 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
383 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
384 static rtx
make_field_assignment (rtx
);
385 static rtx
apply_distributive_law (rtx
);
386 static rtx
simplify_and_const_int (rtx
, enum machine_mode
, rtx
,
387 unsigned HOST_WIDE_INT
);
388 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
389 HOST_WIDE_INT
, enum machine_mode
, int *);
390 static rtx
simplify_shift_const (rtx
, enum rtx_code
, enum machine_mode
, rtx
,
392 static int recog_for_combine (rtx
*, rtx
, rtx
*);
393 static rtx
gen_lowpart_for_combine (enum machine_mode
, rtx
);
394 static rtx
gen_binary (enum rtx_code
, enum machine_mode
, rtx
, rtx
);
395 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
396 static void update_table_tick (rtx
);
397 static void record_value_for_reg (rtx
, rtx
, rtx
);
398 static void check_promoted_subreg (rtx
, rtx
);
399 static void record_dead_and_set_regs_1 (rtx
, rtx
, void *);
400 static void record_dead_and_set_regs (rtx
);
401 static int get_last_value_validate (rtx
*, rtx
, int, int);
402 static rtx
get_last_value (rtx
);
403 static int use_crosses_set_p (rtx
, int);
404 static void reg_dead_at_p_1 (rtx
, rtx
, void *);
405 static int reg_dead_at_p (rtx
, rtx
);
406 static void move_deaths (rtx
, rtx
, int, rtx
, rtx
*);
407 static int reg_bitfield_target_p (rtx
, rtx
);
408 static void distribute_notes (rtx
, rtx
, rtx
, rtx
);
409 static void distribute_links (rtx
);
410 static void mark_used_regs_combine (rtx
);
411 static int insn_cuid (rtx
);
412 static void record_promoted_value (rtx
, rtx
);
413 static rtx
reversed_comparison (rtx
, enum machine_mode
, rtx
, rtx
);
414 static enum rtx_code
combine_reversed_comparison_code (rtx
);
415 static int unmentioned_reg_p_1 (rtx
*, void *);
416 static bool unmentioned_reg_p (rtx
, rtx
);
419 /* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421 #undef RTL_HOOKS_GEN_LOWPART
422 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
424 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
425 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
427 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
430 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
433 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
440 do_SUBST (rtx
*into
, rtx newval
)
445 if (oldval
== newval
)
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
454 && GET_CODE (newval
) == CONST_INT
)
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
458 gcc_assert (INTVAL (newval
)
459 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
461 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
462 CONST_INT is not valid, because after the replacement, the
463 original mode would be gone. Unfortunately, we can't tell
464 when do_SUBST is called to replace the operand thereof, so we
465 perform this test on oldval instead, checking whether an
466 invalid replacement took place before we got here. */
467 gcc_assert (!(GET_CODE (oldval
) == SUBREG
468 && GET_CODE (SUBREG_REG (oldval
)) == CONST_INT
));
469 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
470 && GET_CODE (XEXP (oldval
, 0)) == CONST_INT
));
474 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
476 buf
= xmalloc (sizeof (struct undo
));
480 buf
->old_contents
.r
= oldval
;
483 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
486 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
488 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
489 for the value of a HOST_WIDE_INT value (including CONST_INT) is
493 do_SUBST_INT (int *into
, int newval
)
498 if (oldval
== newval
)
502 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
504 buf
= xmalloc (sizeof (struct undo
));
508 buf
->old_contents
.i
= oldval
;
511 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
514 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
516 /* Subroutine of try_combine. Determine whether the combine replacement
517 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
518 that the original instruction sequence I1, I2 and I3. Note that I1
519 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
520 costs of all instructions can be estimated, and the replacements are
521 more expensive than the original sequence. */
524 combine_validate_cost (rtx i1
, rtx i2
, rtx i3
, rtx newpat
, rtx newi2pat
)
526 int i1_cost
, i2_cost
, i3_cost
;
527 int new_i2_cost
, new_i3_cost
;
528 int old_cost
, new_cost
;
530 /* Lookup the original insn_rtx_costs. */
531 i2_cost
= INSN_UID (i2
) <= last_insn_cost
532 ? uid_insn_cost
[INSN_UID (i2
)] : 0;
533 i3_cost
= INSN_UID (i3
) <= last_insn_cost
534 ? uid_insn_cost
[INSN_UID (i3
)] : 0;
538 i1_cost
= INSN_UID (i1
) <= last_insn_cost
539 ? uid_insn_cost
[INSN_UID (i1
)] : 0;
540 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0)
541 ? i1_cost
+ i2_cost
+ i3_cost
: 0;
545 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
549 /* Calculate the replacement insn_rtx_costs. */
550 new_i3_cost
= insn_rtx_cost (newpat
);
553 new_i2_cost
= insn_rtx_cost (newi2pat
);
554 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
555 ? new_i2_cost
+ new_i3_cost
: 0;
559 new_cost
= new_i3_cost
;
563 if (undobuf
.other_insn
)
565 int old_other_cost
, new_other_cost
;
567 old_other_cost
= (INSN_UID (undobuf
.other_insn
) <= last_insn_cost
568 ? uid_insn_cost
[INSN_UID (undobuf
.other_insn
)] : 0);
569 new_other_cost
= insn_rtx_cost (PATTERN (undobuf
.other_insn
));
570 if (old_other_cost
> 0 && new_other_cost
> 0)
572 old_cost
+= old_other_cost
;
573 new_cost
+= new_other_cost
;
579 /* Disallow this recombination if both new_cost and old_cost are
580 greater than zero, and new_cost is greater than old cost. */
582 && new_cost
> old_cost
)
589 "rejecting combination of insns %d, %d and %d\n",
590 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
591 fprintf (dump_file
, "original costs %d + %d + %d = %d\n",
592 i1_cost
, i2_cost
, i3_cost
, old_cost
);
597 "rejecting combination of insns %d and %d\n",
598 INSN_UID (i2
), INSN_UID (i3
));
599 fprintf (dump_file
, "original costs %d + %d = %d\n",
600 i2_cost
, i3_cost
, old_cost
);
605 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
606 new_i2_cost
, new_i3_cost
, new_cost
);
609 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
615 /* Update the uid_insn_cost array with the replacement costs. */
616 uid_insn_cost
[INSN_UID (i2
)] = new_i2_cost
;
617 uid_insn_cost
[INSN_UID (i3
)] = new_i3_cost
;
619 uid_insn_cost
[INSN_UID (i1
)] = 0;
624 /* Main entry point for combiner. F is the first insn of the function.
625 NREGS is the first unused pseudo-reg number.
627 Return nonzero if the combiner has turned an indirect jump
628 instruction into a direct jump. */
630 combine_instructions (rtx f
, unsigned int nregs
)
637 rtx links
, nextlinks
;
639 int new_direct_jump_p
= 0;
641 combine_attempts
= 0;
644 combine_successes
= 0;
646 combine_max_regno
= nregs
;
648 rtl_hooks
= combine_rtl_hooks
;
650 reg_stat
= xcalloc (nregs
, sizeof (struct reg_stat
));
652 init_recog_no_volatile ();
654 /* Compute maximum uid value so uid_cuid can be allocated. */
656 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
657 if (INSN_UID (insn
) > i
)
660 uid_cuid
= xmalloc ((i
+ 1) * sizeof (int));
663 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
665 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
666 problems when, for example, we have j <<= 1 in a loop. */
668 nonzero_sign_valid
= 0;
670 /* Compute the mapping from uids to cuids.
671 Cuids are numbers assigned to insns, like uids,
672 except that cuids increase monotonically through the code.
674 Scan all SETs and see if we can deduce anything about what
675 bits are known to be zero for some registers and how many copies
676 of the sign bit are known to exist for those registers.
678 Also set any known values so that we can use it while searching
679 for what bits are known to be set. */
683 setup_incoming_promotions ();
685 refresh_blocks
= sbitmap_alloc (last_basic_block
);
686 sbitmap_zero (refresh_blocks
);
688 /* Allocate array of current insn_rtx_costs. */
689 uid_insn_cost
= xcalloc (max_uid_cuid
+ 1, sizeof (int));
690 last_insn_cost
= max_uid_cuid
;
692 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
694 uid_cuid
[INSN_UID (insn
)] = ++i
;
700 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
702 record_dead_and_set_regs (insn
);
705 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
706 if (REG_NOTE_KIND (links
) == REG_INC
)
707 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
711 /* Record the current insn_rtx_cost of this instruction. */
712 if (NONJUMP_INSN_P (insn
))
713 uid_insn_cost
[INSN_UID (insn
)] = insn_rtx_cost (PATTERN (insn
));
715 fprintf(dump_file
, "insn_cost %d: %d\n",
716 INSN_UID (insn
), uid_insn_cost
[INSN_UID (insn
)]);
723 nonzero_sign_valid
= 1;
725 /* Now scan all the insns in forward order. */
731 setup_incoming_promotions ();
733 FOR_EACH_BB (this_basic_block
)
735 for (insn
= BB_HEAD (this_basic_block
);
736 insn
!= NEXT_INSN (BB_END (this_basic_block
));
737 insn
= next
? next
: NEXT_INSN (insn
))
744 else if (INSN_P (insn
))
746 /* See if we know about function return values before this
747 insn based upon SUBREG flags. */
748 check_promoted_subreg (insn
, PATTERN (insn
));
750 /* Try this insn with each insn it links back to. */
752 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
753 if ((next
= try_combine (insn
, XEXP (links
, 0),
754 NULL_RTX
, &new_direct_jump_p
)) != 0)
757 /* Try each sequence of three linked insns ending with this one. */
759 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
761 rtx link
= XEXP (links
, 0);
763 /* If the linked insn has been replaced by a note, then there
764 is no point in pursuing this chain any further. */
768 for (nextlinks
= LOG_LINKS (link
);
770 nextlinks
= XEXP (nextlinks
, 1))
771 if ((next
= try_combine (insn
, link
,
773 &new_direct_jump_p
)) != 0)
778 /* Try to combine a jump insn that uses CC0
779 with a preceding insn that sets CC0, and maybe with its
780 logical predecessor as well.
781 This is how we make decrement-and-branch insns.
782 We need this special code because data flow connections
783 via CC0 do not get entered in LOG_LINKS. */
786 && (prev
= prev_nonnote_insn (insn
)) != 0
787 && NONJUMP_INSN_P (prev
)
788 && sets_cc0_p (PATTERN (prev
)))
790 if ((next
= try_combine (insn
, prev
,
791 NULL_RTX
, &new_direct_jump_p
)) != 0)
794 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
795 nextlinks
= XEXP (nextlinks
, 1))
796 if ((next
= try_combine (insn
, prev
,
798 &new_direct_jump_p
)) != 0)
802 /* Do the same for an insn that explicitly references CC0. */
803 if (NONJUMP_INSN_P (insn
)
804 && (prev
= prev_nonnote_insn (insn
)) != 0
805 && NONJUMP_INSN_P (prev
)
806 && sets_cc0_p (PATTERN (prev
))
807 && GET_CODE (PATTERN (insn
)) == SET
808 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
810 if ((next
= try_combine (insn
, prev
,
811 NULL_RTX
, &new_direct_jump_p
)) != 0)
814 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
815 nextlinks
= XEXP (nextlinks
, 1))
816 if ((next
= try_combine (insn
, prev
,
818 &new_direct_jump_p
)) != 0)
822 /* Finally, see if any of the insns that this insn links to
823 explicitly references CC0. If so, try this insn, that insn,
824 and its predecessor if it sets CC0. */
825 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
826 if (NONJUMP_INSN_P (XEXP (links
, 0))
827 && GET_CODE (PATTERN (XEXP (links
, 0))) == SET
828 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (XEXP (links
, 0))))
829 && (prev
= prev_nonnote_insn (XEXP (links
, 0))) != 0
830 && NONJUMP_INSN_P (prev
)
831 && sets_cc0_p (PATTERN (prev
))
832 && (next
= try_combine (insn
, XEXP (links
, 0),
833 prev
, &new_direct_jump_p
)) != 0)
837 /* Try combining an insn with two different insns whose results it
839 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
840 for (nextlinks
= XEXP (links
, 1); nextlinks
;
841 nextlinks
= XEXP (nextlinks
, 1))
842 if ((next
= try_combine (insn
, XEXP (links
, 0),
844 &new_direct_jump_p
)) != 0)
847 /* Try this insn with each REG_EQUAL note it links back to. */
848 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
851 rtx temp
= XEXP (links
, 0);
852 if ((set
= single_set (temp
)) != 0
853 && (note
= find_reg_equal_equiv_note (temp
)) != 0
854 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
855 /* Avoid using a register that may already been marked
856 dead by an earlier instruction. */
857 && ! unmentioned_reg_p (XEXP (note
, 0), SET_SRC (set
)))
859 /* Temporarily replace the set's source with the
860 contents of the REG_EQUAL note. The insn will
861 be deleted or recognized by try_combine. */
862 rtx orig
= SET_SRC (set
);
863 SET_SRC (set
) = XEXP (note
, 0);
864 next
= try_combine (insn
, temp
, NULL_RTX
,
868 SET_SRC (set
) = orig
;
873 record_dead_and_set_regs (insn
);
882 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks
, 0, i
,
883 BASIC_BLOCK (i
)->flags
|= BB_DIRTY
);
884 new_direct_jump_p
|= purge_all_dead_edges (0);
885 delete_noop_moves ();
887 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
888 PROP_DEATH_NOTES
| PROP_SCAN_DEAD_CODE
889 | PROP_KILL_DEAD_CODE
);
892 sbitmap_free (refresh_blocks
);
893 free (uid_insn_cost
);
898 struct undo
*undo
, *next
;
899 for (undo
= undobuf
.frees
; undo
; undo
= next
)
907 total_attempts
+= combine_attempts
;
908 total_merges
+= combine_merges
;
909 total_extras
+= combine_extras
;
910 total_successes
+= combine_successes
;
912 nonzero_sign_valid
= 0;
913 rtl_hooks
= general_rtl_hooks
;
915 /* Make recognizer allow volatile MEMs again. */
918 return new_direct_jump_p
;
921 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
927 for (i
= 0; i
< combine_max_regno
; i
++)
928 memset (reg_stat
+ i
, 0, offsetof (struct reg_stat
, sign_bit_copies
));
931 /* Set up any promoted values for incoming argument registers. */
934 setup_incoming_promotions (void)
938 enum machine_mode mode
;
940 rtx first
= get_insns ();
942 if (targetm
.calls
.promote_function_args (TREE_TYPE (cfun
->decl
)))
944 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
945 /* Check whether this register can hold an incoming pointer
946 argument. FUNCTION_ARG_REGNO_P tests outgoing register
947 numbers, so translate if necessary due to register windows. */
948 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno
))
949 && (reg
= promoted_input_arg (regno
, &mode
, &unsignedp
)) != 0)
952 (reg
, first
, gen_rtx_fmt_e ((unsignedp
? ZERO_EXTEND
955 gen_rtx_CLOBBER (mode
, const0_rtx
)));
960 /* Called via note_stores. If X is a pseudo that is narrower than
961 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
963 If we are setting only a portion of X and we can't figure out what
964 portion, assume all bits will be used since we don't know what will
967 Similarly, set how many bits of X are known to be copies of the sign bit
968 at all locations in the function. This is the smallest number implied
972 set_nonzero_bits_and_sign_copies (rtx x
, rtx set
,
973 void *data ATTRIBUTE_UNUSED
)
978 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
979 /* If this register is undefined at the start of the file, we can't
980 say what its contents were. */
981 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
, REGNO (x
))
982 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
984 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
986 reg_stat
[REGNO (x
)].nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
987 reg_stat
[REGNO (x
)].sign_bit_copies
= 1;
991 /* If this is a complex assignment, see if we can convert it into a
992 simple assignment. */
993 set
= expand_field_assignment (set
);
995 /* If this is a simple assignment, or we have a paradoxical SUBREG,
996 set what we know about X. */
998 if (SET_DEST (set
) == x
999 || (GET_CODE (SET_DEST (set
)) == SUBREG
1000 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set
)))
1001 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set
)))))
1002 && SUBREG_REG (SET_DEST (set
)) == x
))
1004 rtx src
= SET_SRC (set
);
1006 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1007 /* If X is narrower than a word and SRC is a non-negative
1008 constant that would appear negative in the mode of X,
1009 sign-extend it for use in reg_stat[].nonzero_bits because some
1010 machines (maybe most) will actually do the sign-extension
1011 and this is the conservative approach.
1013 ??? For 2.5, try to tighten up the MD files in this regard
1014 instead of this kludge. */
1016 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
1017 && GET_CODE (src
) == CONST_INT
1019 && 0 != (INTVAL (src
)
1020 & ((HOST_WIDE_INT
) 1
1021 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
1022 src
= GEN_INT (INTVAL (src
)
1023 | ((HOST_WIDE_INT
) (-1)
1024 << GET_MODE_BITSIZE (GET_MODE (x
))));
1027 /* Don't call nonzero_bits if it cannot change anything. */
1028 if (reg_stat
[REGNO (x
)].nonzero_bits
!= ~(unsigned HOST_WIDE_INT
) 0)
1029 reg_stat
[REGNO (x
)].nonzero_bits
1030 |= nonzero_bits (src
, nonzero_bits_mode
);
1031 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1032 if (reg_stat
[REGNO (x
)].sign_bit_copies
== 0
1033 || reg_stat
[REGNO (x
)].sign_bit_copies
> num
)
1034 reg_stat
[REGNO (x
)].sign_bit_copies
= num
;
1038 reg_stat
[REGNO (x
)].nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1039 reg_stat
[REGNO (x
)].sign_bit_copies
= 1;
1044 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1045 insns that were previously combined into I3 or that will be combined
1046 into the merger of INSN and I3.
1048 Return 0 if the combination is not allowed for any reason.
1050 If the combination is allowed, *PDEST will be set to the single
1051 destination of INSN and *PSRC to the single source, and this function
1055 can_combine_p (rtx insn
, rtx i3
, rtx pred ATTRIBUTE_UNUSED
, rtx succ
,
1056 rtx
*pdest
, rtx
*psrc
)
1059 rtx set
= 0, src
, dest
;
1064 int all_adjacent
= (succ
? (next_active_insn (insn
) == succ
1065 && next_active_insn (succ
) == i3
)
1066 : next_active_insn (insn
) == i3
);
1068 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1069 or a PARALLEL consisting of such a SET and CLOBBERs.
1071 If INSN has CLOBBER parallel parts, ignore them for our processing.
1072 By definition, these happen during the execution of the insn. When it
1073 is merged with another insn, all bets are off. If they are, in fact,
1074 needed and aren't also supplied in I3, they may be added by
1075 recog_for_combine. Otherwise, it won't match.
1077 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1080 Get the source and destination of INSN. If more than one, can't
1083 if (GET_CODE (PATTERN (insn
)) == SET
)
1084 set
= PATTERN (insn
);
1085 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1086 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1088 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1090 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1093 switch (GET_CODE (elt
))
1095 /* This is important to combine floating point insns
1096 for the SH4 port. */
1098 /* Combining an isolated USE doesn't make sense.
1099 We depend here on combinable_i3pat to reject them. */
1100 /* The code below this loop only verifies that the inputs of
1101 the SET in INSN do not change. We call reg_set_between_p
1102 to verify that the REG in the USE does not change between
1104 If the USE in INSN was for a pseudo register, the matching
1105 insn pattern will likely match any register; combining this
1106 with any other USE would only be safe if we knew that the
1107 used registers have identical values, or if there was
1108 something to tell them apart, e.g. different modes. For
1109 now, we forgo such complicated tests and simply disallow
1110 combining of USES of pseudo registers with any other USE. */
1111 if (REG_P (XEXP (elt
, 0))
1112 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1114 rtx i3pat
= PATTERN (i3
);
1115 int i
= XVECLEN (i3pat
, 0) - 1;
1116 unsigned int regno
= REGNO (XEXP (elt
, 0));
1120 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1122 if (GET_CODE (i3elt
) == USE
1123 && REG_P (XEXP (i3elt
, 0))
1124 && (REGNO (XEXP (i3elt
, 0)) == regno
1125 ? reg_set_between_p (XEXP (elt
, 0),
1126 PREV_INSN (insn
), i3
)
1127 : regno
>= FIRST_PSEUDO_REGISTER
))
1134 /* We can ignore CLOBBERs. */
1139 /* Ignore SETs whose result isn't used but not those that
1140 have side-effects. */
1141 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1142 && (!(note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
1143 || INTVAL (XEXP (note
, 0)) <= 0)
1144 && ! side_effects_p (elt
))
1147 /* If we have already found a SET, this is a second one and
1148 so we cannot combine with this insn. */
1156 /* Anything else means we can't combine. */
1162 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1163 so don't do anything with it. */
1164 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1173 set
= expand_field_assignment (set
);
1174 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1176 /* Don't eliminate a store in the stack pointer. */
1177 if (dest
== stack_pointer_rtx
1178 /* Don't combine with an insn that sets a register to itself if it has
1179 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1180 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1181 /* Can't merge an ASM_OPERANDS. */
1182 || GET_CODE (src
) == ASM_OPERANDS
1183 /* Can't merge a function call. */
1184 || GET_CODE (src
) == CALL
1185 /* Don't eliminate a function call argument. */
1187 && (find_reg_fusage (i3
, USE
, dest
)
1189 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1190 && global_regs
[REGNO (dest
)])))
1191 /* Don't substitute into an incremented register. */
1192 || FIND_REG_INC_NOTE (i3
, dest
)
1193 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1194 /* Don't substitute into a non-local goto, this confuses CFG. */
1195 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1197 /* Don't combine the end of a libcall into anything. */
1198 /* ??? This gives worse code, and appears to be unnecessary, since no
1199 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1200 use REG_RETVAL notes for noconflict blocks, but other code here
1201 makes sure that those insns don't disappear. */
1202 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
1204 /* Make sure that DEST is not used after SUCC but before I3. */
1205 || (succ
&& ! all_adjacent
1206 && reg_used_between_p (dest
, succ
, i3
))
1207 /* Make sure that the value that is to be substituted for the register
1208 does not use any registers whose values alter in between. However,
1209 If the insns are adjacent, a use can't cross a set even though we
1210 think it might (this can happen for a sequence of insns each setting
1211 the same destination; last_set of that register might point to
1212 a NOTE). If INSN has a REG_EQUIV note, the register is always
1213 equivalent to the memory so the substitution is valid even if there
1214 are intervening stores. Also, don't move a volatile asm or
1215 UNSPEC_VOLATILE across any other insns. */
1218 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1219 && use_crosses_set_p (src
, INSN_CUID (insn
)))
1220 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1221 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1222 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1223 better register allocation by not doing the combine. */
1224 || find_reg_note (i3
, REG_NO_CONFLICT
, dest
)
1225 || (succ
&& find_reg_note (succ
, REG_NO_CONFLICT
, dest
))
1226 /* Don't combine across a CALL_INSN, because that would possibly
1227 change whether the life span of some REGs crosses calls or not,
1228 and it is a pain to update that information.
1229 Exception: if source is a constant, moving it later can't hurt.
1230 Accept that special case, because it helps -fforce-addr a lot. */
1231 || (INSN_CUID (insn
) < last_call_cuid
&& ! CONSTANT_P (src
)))
1234 /* DEST must either be a REG or CC0. */
1237 /* If register alignment is being enforced for multi-word items in all
1238 cases except for parameters, it is possible to have a register copy
1239 insn referencing a hard register that is not allowed to contain the
1240 mode being copied and which would not be valid as an operand of most
1241 insns. Eliminate this problem by not combining with such an insn.
1243 Also, on some machines we don't want to extend the life of a hard
1247 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1248 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1249 /* Don't extend the life of a hard register unless it is
1250 user variable (if we have few registers) or it can't
1251 fit into the desired register (meaning something special
1253 Also avoid substituting a return register into I3, because
1254 reload can't handle a conflict with constraints of other
1256 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1257 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1260 else if (GET_CODE (dest
) != CC0
)
1264 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1265 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1266 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1268 /* Don't substitute for a register intended as a clobberable
1270 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1271 if (rtx_equal_p (reg
, dest
))
1274 /* If the clobber represents an earlyclobber operand, we must not
1275 substitute an expression containing the clobbered register.
1276 As we do not analyse the constraint strings here, we have to
1277 make the conservative assumption. However, if the register is
1278 a fixed hard reg, the clobber cannot represent any operand;
1279 we leave it up to the machine description to either accept or
1280 reject use-and-clobber patterns. */
1282 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1283 || !fixed_regs
[REGNO (reg
)])
1284 if (reg_overlap_mentioned_p (reg
, src
))
1288 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1289 or not), reject, unless nothing volatile comes between it and I3 */
1291 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1293 /* Make sure succ doesn't contain a volatile reference. */
1294 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1297 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1298 if (INSN_P (p
) && p
!= succ
&& volatile_refs_p (PATTERN (p
)))
1302 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1303 to be an explicit register variable, and was chosen for a reason. */
1305 if (GET_CODE (src
) == ASM_OPERANDS
1306 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1309 /* If there are any volatile insns between INSN and I3, reject, because
1310 they might affect machine state. */
1312 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1313 if (INSN_P (p
) && p
!= succ
&& volatile_insn_p (PATTERN (p
)))
1316 /* If INSN or I2 contains an autoincrement or autodecrement,
1317 make sure that register is not used between there and I3,
1318 and not already used in I3 either.
1319 Also insist that I3 not be a jump; if it were one
1320 and the incremented register were spilled, we would lose. */
1323 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1324 if (REG_NOTE_KIND (link
) == REG_INC
1326 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1327 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1332 /* Don't combine an insn that follows a CC0-setting insn.
1333 An insn that uses CC0 must not be separated from the one that sets it.
1334 We do, however, allow I2 to follow a CC0-setting insn if that insn
1335 is passed as I1; in that case it will be deleted also.
1336 We also allow combining in this case if all the insns are adjacent
1337 because that would leave the two CC0 insns adjacent as well.
1338 It would be more logical to test whether CC0 occurs inside I1 or I2,
1339 but that would be much slower, and this ought to be equivalent. */
1341 p
= prev_nonnote_insn (insn
);
1342 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
1347 /* If we get here, we have passed all the tests and the combination is
1356 /* LOC is the location within I3 that contains its pattern or the component
1357 of a PARALLEL of the pattern. We validate that it is valid for combining.
1359 One problem is if I3 modifies its output, as opposed to replacing it
1360 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1361 so would produce an insn that is not equivalent to the original insns.
1365 (set (reg:DI 101) (reg:DI 100))
1366 (set (subreg:SI (reg:DI 101) 0) <foo>)
1368 This is NOT equivalent to:
1370 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1371 (set (reg:DI 101) (reg:DI 100))])
1373 Not only does this modify 100 (in which case it might still be valid
1374 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1376 We can also run into a problem if I2 sets a register that I1
1377 uses and I1 gets directly substituted into I3 (not via I2). In that
1378 case, we would be getting the wrong value of I2DEST into I3, so we
1379 must reject the combination. This case occurs when I2 and I1 both
1380 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1381 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1382 of a SET must prevent combination from occurring.
1384 Before doing the above check, we first try to expand a field assignment
1385 into a set of logical operations.
1387 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1388 we place a register that is both set and used within I3. If more than one
1389 such register is detected, we fail.
1391 Return 1 if the combination is valid, zero otherwise. */
1394 combinable_i3pat (rtx i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
,
1395 int i1_not_in_src
, rtx
*pi3dest_killed
)
1399 if (GET_CODE (x
) == SET
)
1402 rtx dest
= SET_DEST (set
);
1403 rtx src
= SET_SRC (set
);
1404 rtx inner_dest
= dest
;
1406 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1407 || GET_CODE (inner_dest
) == SUBREG
1408 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1409 inner_dest
= XEXP (inner_dest
, 0);
1411 /* Check for the case where I3 modifies its output, as discussed
1412 above. We don't want to prevent pseudos from being combined
1413 into the address of a MEM, so only prevent the combination if
1414 i1 or i2 set the same MEM. */
1415 if ((inner_dest
!= dest
&&
1416 (!MEM_P (inner_dest
)
1417 || rtx_equal_p (i2dest
, inner_dest
)
1418 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
)))
1419 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
1420 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))))
1422 /* This is the same test done in can_combine_p except we can't test
1423 all_adjacent; we don't have to, since this instruction will stay
1424 in place, thus we are not considering increasing the lifetime of
1427 Also, if this insn sets a function argument, combining it with
1428 something that might need a spill could clobber a previous
1429 function argument; the all_adjacent test in can_combine_p also
1430 checks this; here, we do a more specific test for this case. */
1432 || (REG_P (inner_dest
)
1433 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1434 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
1435 GET_MODE (inner_dest
))))
1436 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
)))
1439 /* If DEST is used in I3, it is being killed in this insn,
1440 so record that for later.
1441 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1442 STACK_POINTER_REGNUM, since these are always considered to be
1443 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1444 if (pi3dest_killed
&& REG_P (dest
)
1445 && reg_referenced_p (dest
, PATTERN (i3
))
1446 && REGNO (dest
) != FRAME_POINTER_REGNUM
1447 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1448 && REGNO (dest
) != HARD_FRAME_POINTER_REGNUM
1450 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1451 && (REGNO (dest
) != ARG_POINTER_REGNUM
1452 || ! fixed_regs
[REGNO (dest
)])
1454 && REGNO (dest
) != STACK_POINTER_REGNUM
)
1456 if (*pi3dest_killed
)
1459 *pi3dest_killed
= dest
;
1463 else if (GET_CODE (x
) == PARALLEL
)
1467 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1468 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
,
1469 i1_not_in_src
, pi3dest_killed
))
1476 /* Return 1 if X is an arithmetic expression that contains a multiplication
1477 and division. We don't count multiplications by powers of two here. */
1480 contains_muldiv (rtx x
)
1482 switch (GET_CODE (x
))
1484 case MOD
: case DIV
: case UMOD
: case UDIV
:
1488 return ! (GET_CODE (XEXP (x
, 1)) == CONST_INT
1489 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0);
1492 return contains_muldiv (XEXP (x
, 0))
1493 || contains_muldiv (XEXP (x
, 1));
1496 return contains_muldiv (XEXP (x
, 0));
1502 /* Determine whether INSN can be used in a combination. Return nonzero if
1503 not. This is used in try_combine to detect early some cases where we
1504 can't perform combinations. */
1507 cant_combine_insn_p (rtx insn
)
1512 /* If this isn't really an insn, we can't do anything.
1513 This can occur when flow deletes an insn that it has merged into an
1514 auto-increment address. */
1515 if (! INSN_P (insn
))
1518 /* Never combine loads and stores involving hard regs that are likely
1519 to be spilled. The register allocator can usually handle such
1520 reg-reg moves by tying. If we allow the combiner to make
1521 substitutions of likely-spilled regs, we may abort in reload.
1522 As an exception, we allow combinations involving fixed regs; these are
1523 not available to the register allocator so there's no risk involved. */
1525 set
= single_set (insn
);
1528 src
= SET_SRC (set
);
1529 dest
= SET_DEST (set
);
1530 if (GET_CODE (src
) == SUBREG
)
1531 src
= SUBREG_REG (src
);
1532 if (GET_CODE (dest
) == SUBREG
)
1533 dest
= SUBREG_REG (dest
);
1534 if (REG_P (src
) && REG_P (dest
)
1535 && ((REGNO (src
) < FIRST_PSEUDO_REGISTER
1536 && ! fixed_regs
[REGNO (src
)]
1537 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src
))))
1538 || (REGNO (dest
) < FIRST_PSEUDO_REGISTER
1539 && ! fixed_regs
[REGNO (dest
)]
1540 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest
))))))
1546 /* Adjust INSN after we made a change to its destination.
1548 Changing the destination can invalidate notes that say something about
1549 the results of the insn and a LOG_LINK pointing to the insn. */
1552 adjust_for_new_dest (rtx insn
)
1556 /* For notes, be conservative and simply remove them. */
1557 loc
= ®_NOTES (insn
);
1560 enum reg_note kind
= REG_NOTE_KIND (*loc
);
1561 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
1562 *loc
= XEXP (*loc
, 1);
1564 loc
= &XEXP (*loc
, 1);
1567 /* The new insn will have a destination that was previously the destination
1568 of an insn just above it. Call distribute_links to make a LOG_LINK from
1569 the next use of that destination. */
1570 distribute_links (gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
));
1573 /* Try to combine the insns I1 and I2 into I3.
1574 Here I1 and I2 appear earlier than I3.
1575 I1 can be zero; then we combine just I2 into I3.
1577 If we are combining three insns and the resulting insn is not recognized,
1578 try splitting it into two insns. If that happens, I2 and I3 are retained
1579 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1582 Return 0 if the combination does not work. Then nothing is changed.
1583 If we did the combination, return the insn at which combine should
1586 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1587 new direct jump instruction. */
1590 try_combine (rtx i3
, rtx i2
, rtx i1
, int *new_direct_jump_p
)
1592 /* New patterns for I3 and I2, respectively. */
1593 rtx newpat
, newi2pat
= 0;
1594 int substed_i2
= 0, substed_i1
= 0;
1595 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1596 int added_sets_1
, added_sets_2
;
1597 /* Total number of SETs to put into I3. */
1599 /* Nonzero if I2's body now appears in I3. */
1601 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1602 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
1603 /* Contains I3 if the destination of I3 is used in its source, which means
1604 that the old life of I3 is being killed. If that usage is placed into
1605 I2 and not in I3, a REG_DEAD note must be made. */
1606 rtx i3dest_killed
= 0;
1607 /* SET_DEST and SET_SRC of I2 and I1. */
1608 rtx i2dest
, i2src
, i1dest
= 0, i1src
= 0;
1609 /* PATTERN (I2), or a copy of it in certain cases. */
1611 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1612 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
1613 int i1_feeds_i3
= 0;
1614 /* Notes that must be added to REG_NOTES in I3 and I2. */
1615 rtx new_i3_notes
, new_i2_notes
;
1616 /* Notes that we substituted I3 into I2 instead of the normal case. */
1617 int i3_subst_into_i2
= 0;
1618 /* Notes that I1, I2 or I3 is a MULT operation. */
1627 /* Exit early if one of the insns involved can't be used for
1629 if (cant_combine_insn_p (i3
)
1630 || cant_combine_insn_p (i2
)
1631 || (i1
&& cant_combine_insn_p (i1
))
1632 /* We also can't do anything if I3 has a
1633 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1636 /* ??? This gives worse code, and appears to be unnecessary, since no
1637 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1638 || find_reg_note (i3
, REG_LIBCALL
, NULL_RTX
)
1644 undobuf
.other_insn
= 0;
1646 /* Reset the hard register usage information. */
1647 CLEAR_HARD_REG_SET (newpat_used_regs
);
1649 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1650 code below, set I1 to be the earlier of the two insns. */
1651 if (i1
&& INSN_CUID (i1
) > INSN_CUID (i2
))
1652 temp
= i1
, i1
= i2
, i2
= temp
;
1654 added_links_insn
= 0;
1656 /* First check for one important special-case that the code below will
1657 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1658 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1659 we may be able to replace that destination with the destination of I3.
1660 This occurs in the common code where we compute both a quotient and
1661 remainder into a structure, in which case we want to do the computation
1662 directly into the structure to avoid register-register copies.
1664 Note that this case handles both multiple sets in I2 and also
1665 cases where I2 has a number of CLOBBER or PARALLELs.
1667 We make very conservative checks below and only try to handle the
1668 most common cases of this. For example, we only handle the case
1669 where I2 and I3 are adjacent to avoid making difficult register
1672 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
1673 && REG_P (SET_SRC (PATTERN (i3
)))
1674 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
1675 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
1676 && GET_CODE (PATTERN (i2
)) == PARALLEL
1677 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
1678 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1679 below would need to check what is inside (and reg_overlap_mentioned_p
1680 doesn't support those codes anyway). Don't allow those destinations;
1681 the resulting insn isn't likely to be recognized anyway. */
1682 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
1683 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
1684 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
1685 SET_DEST (PATTERN (i3
)))
1686 && next_real_insn (i2
) == i3
)
1688 rtx p2
= PATTERN (i2
);
1690 /* Make sure that the destination of I3,
1691 which we are going to substitute into one output of I2,
1692 is not used within another output of I2. We must avoid making this:
1693 (parallel [(set (mem (reg 69)) ...)
1694 (set (reg 69) ...)])
1695 which is not well-defined as to order of actions.
1696 (Besides, reload can't handle output reloads for this.)
1698 The problem can also happen if the dest of I3 is a memory ref,
1699 if another dest in I2 is an indirect memory ref. */
1700 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1701 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1702 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1703 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
1704 SET_DEST (XVECEXP (p2
, 0, i
))))
1707 if (i
== XVECLEN (p2
, 0))
1708 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1709 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1710 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1711 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
1716 subst_low_cuid
= INSN_CUID (i2
);
1718 added_sets_2
= added_sets_1
= 0;
1719 i2dest
= SET_SRC (PATTERN (i3
));
1721 /* Replace the dest in I2 with our dest and make the resulting
1722 insn the new pattern for I3. Then skip to where we
1723 validate the pattern. Everything was set up above. */
1724 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)),
1725 SET_DEST (PATTERN (i3
)));
1728 i3_subst_into_i2
= 1;
1729 goto validate_replacement
;
1733 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1734 one of those words to another constant, merge them by making a new
1737 && (temp
= single_set (i2
)) != 0
1738 && (GET_CODE (SET_SRC (temp
)) == CONST_INT
1739 || GET_CODE (SET_SRC (temp
)) == CONST_DOUBLE
)
1740 && REG_P (SET_DEST (temp
))
1741 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp
))) == MODE_INT
1742 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp
))) == 2 * UNITS_PER_WORD
1743 && GET_CODE (PATTERN (i3
)) == SET
1744 && GET_CODE (SET_DEST (PATTERN (i3
))) == SUBREG
1745 && SUBREG_REG (SET_DEST (PATTERN (i3
))) == SET_DEST (temp
)
1746 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3
)))) == MODE_INT
1747 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3
)))) == UNITS_PER_WORD
1748 && GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_INT
)
1750 HOST_WIDE_INT lo
, hi
;
1752 if (GET_CODE (SET_SRC (temp
)) == CONST_INT
)
1753 lo
= INTVAL (SET_SRC (temp
)), hi
= lo
< 0 ? -1 : 0;
1756 lo
= CONST_DOUBLE_LOW (SET_SRC (temp
));
1757 hi
= CONST_DOUBLE_HIGH (SET_SRC (temp
));
1760 if (subreg_lowpart_p (SET_DEST (PATTERN (i3
))))
1762 /* We don't handle the case of the target word being wider
1763 than a host wide int. */
1764 gcc_assert (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
);
1766 lo
&= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1767 lo
|= (INTVAL (SET_SRC (PATTERN (i3
)))
1768 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1770 else if (HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1771 hi
= INTVAL (SET_SRC (PATTERN (i3
)));
1772 else if (HOST_BITS_PER_WIDE_INT
>= 2 * BITS_PER_WORD
)
1774 int sign
= -(int) ((unsigned HOST_WIDE_INT
) lo
1775 >> (HOST_BITS_PER_WIDE_INT
- 1));
1777 lo
&= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1778 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1779 lo
|= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1780 (INTVAL (SET_SRC (PATTERN (i3
)))));
1782 hi
= lo
< 0 ? -1 : 0;
1785 /* We don't handle the case of the higher word not fitting
1786 entirely in either hi or lo. */
1791 subst_low_cuid
= INSN_CUID (i2
);
1792 added_sets_2
= added_sets_1
= 0;
1793 i2dest
= SET_DEST (temp
);
1795 SUBST (SET_SRC (temp
),
1796 immed_double_const (lo
, hi
, GET_MODE (SET_DEST (temp
))));
1798 newpat
= PATTERN (i2
);
1799 goto validate_replacement
;
1803 /* If we have no I1 and I2 looks like:
1804 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1806 make up a dummy I1 that is
1809 (set (reg:CC X) (compare:CC Y (const_int 0)))
1811 (We can ignore any trailing CLOBBERs.)
1813 This undoes a previous combination and allows us to match a branch-and-
1816 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
1817 && XVECLEN (PATTERN (i2
), 0) >= 2
1818 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
1819 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
1821 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
1822 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
1823 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
1824 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)))
1825 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
1826 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
1828 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
1829 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
1834 /* We make I1 with the same INSN_UID as I2. This gives it
1835 the same INSN_CUID for value tracking. Our fake I1 will
1836 never appear in the insn stream so giving it the same INSN_UID
1837 as I2 will not cause a problem. */
1839 i1
= gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
1840 BLOCK_FOR_INSN (i2
), INSN_LOCATOR (i2
),
1841 XVECEXP (PATTERN (i2
), 0, 1), -1, NULL_RTX
,
1844 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
1845 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
1846 SET_DEST (PATTERN (i1
)));
1851 /* Verify that I2 and I1 are valid for combining. */
1852 if (! can_combine_p (i2
, i3
, i1
, NULL_RTX
, &i2dest
, &i2src
)
1853 || (i1
&& ! can_combine_p (i1
, i3
, NULL_RTX
, i2
, &i1dest
, &i1src
)))
1859 /* Record whether I2DEST is used in I2SRC and similarly for the other
1860 cases. Knowing this will help in register status updating below. */
1861 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
1862 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
1863 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
1865 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1867 i1_feeds_i3
= i1
&& ! reg_overlap_mentioned_p (i1dest
, i2src
);
1869 /* Ensure that I3's pattern can be the destination of combines. */
1870 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
,
1871 i1
&& i2dest_in_i1src
&& i1_feeds_i3
,
1878 /* See if any of the insns is a MULT operation. Unless one is, we will
1879 reject a combination that is, since it must be slower. Be conservative
1881 if (GET_CODE (i2src
) == MULT
1882 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
1883 || (GET_CODE (PATTERN (i3
)) == SET
1884 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
1887 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1888 We used to do this EXCEPT in one case: I3 has a post-inc in an
1889 output operand. However, that exception can give rise to insns like
1891 which is a famous insn on the PDP-11 where the value of r3 used as the
1892 source was model-dependent. Avoid this sort of thing. */
1895 if (!(GET_CODE (PATTERN (i3
)) == SET
1896 && REG_P (SET_SRC (PATTERN (i3
)))
1897 && MEM_P (SET_DEST (PATTERN (i3
)))
1898 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
1899 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
1900 /* It's not the exception. */
1903 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
1904 if (REG_NOTE_KIND (link
) == REG_INC
1905 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
1907 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
1914 /* See if the SETs in I1 or I2 need to be kept around in the merged
1915 instruction: whenever the value set there is still needed past I3.
1916 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1918 For the SET in I1, we have two cases: If I1 and I2 independently
1919 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1920 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1921 in I1 needs to be kept around unless I1DEST dies or is set in either
1922 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1923 I1DEST. If so, we know I1 feeds into I2. */
1925 added_sets_2
= ! dead_or_set_p (i3
, i2dest
);
1928 = i1
&& ! (i1_feeds_i3
? dead_or_set_p (i3
, i1dest
)
1929 : (dead_or_set_p (i3
, i1dest
) || dead_or_set_p (i2
, i1dest
)));
1931 /* If the set in I2 needs to be kept around, we must make a copy of
1932 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1933 PATTERN (I2), we are only substituting for the original I1DEST, not into
1934 an already-substituted copy. This also prevents making self-referential
1935 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1938 i2pat
= (GET_CODE (PATTERN (i2
)) == PARALLEL
1939 ? gen_rtx_SET (VOIDmode
, i2dest
, i2src
)
1943 i2pat
= copy_rtx (i2pat
);
1947 /* Substitute in the latest insn for the regs set by the earlier ones. */
1949 maxreg
= max_reg_num ();
1953 /* It is possible that the source of I2 or I1 may be performing an
1954 unneeded operation, such as a ZERO_EXTEND of something that is known
1955 to have the high part zero. Handle that case by letting subst look at
1956 the innermost one of them.
1958 Another way to do this would be to have a function that tries to
1959 simplify a single insn instead of merging two or more insns. We don't
1960 do this because of the potential of infinite loops and because
1961 of the potential extra memory required. However, doing it the way
1962 we are is a bit of a kludge and doesn't catch all cases.
1964 But only do this if -fexpensive-optimizations since it slows things down
1965 and doesn't usually win. */
1967 if (flag_expensive_optimizations
)
1969 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1972 subst_low_cuid
= INSN_CUID (i1
);
1973 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0);
1977 subst_low_cuid
= INSN_CUID (i2
);
1978 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0);
1983 /* Many machines that don't use CC0 have insns that can both perform an
1984 arithmetic operation and set the condition code. These operations will
1985 be represented as a PARALLEL with the first element of the vector
1986 being a COMPARE of an arithmetic operation with the constant zero.
1987 The second element of the vector will set some pseudo to the result
1988 of the same arithmetic operation. If we simplify the COMPARE, we won't
1989 match such a pattern and so will generate an extra insn. Here we test
1990 for this case, where both the comparison and the operation result are
1991 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1992 I2SRC. Later we will make the PARALLEL that contains I2. */
1994 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
1995 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
1996 && XEXP (SET_SRC (PATTERN (i3
)), 1) == const0_rtx
1997 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
1999 #ifdef SELECT_CC_MODE
2001 enum machine_mode compare_mode
;
2004 newpat
= PATTERN (i3
);
2005 SUBST (XEXP (SET_SRC (newpat
), 0), i2src
);
2009 #ifdef SELECT_CC_MODE
2010 /* See if a COMPARE with the operand we substituted in should be done
2011 with the mode that is currently being used. If not, do the same
2012 processing we do in `subst' for a SET; namely, if the destination
2013 is used only once, try to replace it with a register of the proper
2014 mode and also replace the COMPARE. */
2015 if (undobuf
.other_insn
== 0
2016 && (cc_use
= find_single_use (SET_DEST (newpat
), i3
,
2017 &undobuf
.other_insn
))
2018 && ((compare_mode
= SELECT_CC_MODE (GET_CODE (*cc_use
),
2020 != GET_MODE (SET_DEST (newpat
))))
2022 unsigned int regno
= REGNO (SET_DEST (newpat
));
2023 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
2025 if (regno
< FIRST_PSEUDO_REGISTER
2026 || (REG_N_SETS (regno
) == 1 && ! added_sets_2
2027 && ! REG_USERVAR_P (SET_DEST (newpat
))))
2029 if (regno
>= FIRST_PSEUDO_REGISTER
)
2030 SUBST (regno_reg_rtx
[regno
], new_dest
);
2032 SUBST (SET_DEST (newpat
), new_dest
);
2033 SUBST (XEXP (*cc_use
, 0), new_dest
);
2034 SUBST (SET_SRC (newpat
),
2035 gen_rtx_COMPARE (compare_mode
, i2src
, const0_rtx
));
2038 undobuf
.other_insn
= 0;
2045 n_occurrences
= 0; /* `subst' counts here */
2047 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2048 need to make a unique copy of I2SRC each time we substitute it
2049 to avoid self-referential rtl. */
2051 subst_low_cuid
= INSN_CUID (i2
);
2052 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0,
2053 ! i1_feeds_i3
&& i1dest_in_i1src
);
2056 /* Record whether i2's body now appears within i3's body. */
2057 i2_is_used
= n_occurrences
;
2060 /* If we already got a failure, don't try to do more. Otherwise,
2061 try to substitute in I1 if we have it. */
2063 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
2065 /* Before we can do this substitution, we must redo the test done
2066 above (see detailed comments there) that ensures that I1DEST
2067 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2069 if (! combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
,
2077 subst_low_cuid
= INSN_CUID (i1
);
2078 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0);
2082 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2083 to count all the ways that I2SRC and I1SRC can be used. */
2084 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
2085 && i2_is_used
+ added_sets_2
> 1)
2086 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
2087 && (n_occurrences
+ added_sets_1
+ (added_sets_2
&& ! i1_feeds_i3
)
2089 /* Fail if we tried to make a new register (we used to abort, but there's
2090 really no reason to). */
2091 || max_reg_num () != maxreg
2092 /* Fail if we couldn't do something and have a CLOBBER. */
2093 || GET_CODE (newpat
) == CLOBBER
2094 /* Fail if this new pattern is a MULT and we didn't have one before
2095 at the outer level. */
2096 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
2103 /* If the actions of the earlier insns must be kept
2104 in addition to substituting them into the latest one,
2105 we must make a new PARALLEL for the latest insn
2106 to hold additional the SETs. */
2108 if (added_sets_1
|| added_sets_2
)
2112 if (GET_CODE (newpat
) == PARALLEL
)
2114 rtvec old
= XVEC (newpat
, 0);
2115 total_sets
= XVECLEN (newpat
, 0) + added_sets_1
+ added_sets_2
;
2116 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2117 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
2118 sizeof (old
->elem
[0]) * old
->num_elem
);
2123 total_sets
= 1 + added_sets_1
+ added_sets_2
;
2124 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
2125 XVECEXP (newpat
, 0, 0) = old
;
2129 XVECEXP (newpat
, 0, --total_sets
)
2130 = (GET_CODE (PATTERN (i1
)) == PARALLEL
2131 ? gen_rtx_SET (VOIDmode
, i1dest
, i1src
) : PATTERN (i1
));
2135 /* If there is no I1, use I2's body as is. We used to also not do
2136 the subst call below if I2 was substituted into I3,
2137 but that could lose a simplification. */
2139 XVECEXP (newpat
, 0, --total_sets
) = i2pat
;
2141 /* See comment where i2pat is assigned. */
2142 XVECEXP (newpat
, 0, --total_sets
)
2143 = subst (i2pat
, i1dest
, i1src
, 0, 0);
2147 /* We come here when we are replacing a destination in I2 with the
2148 destination of I3. */
2149 validate_replacement
:
2151 /* Note which hard regs this insn has as inputs. */
2152 mark_used_regs_combine (newpat
);
2154 /* Is the result of combination a valid instruction? */
2155 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2157 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2158 the second SET's destination is a register that is unused and isn't
2159 marked as an instruction that might trap in an EH region. In that case,
2160 we just need the first SET. This can occur when simplifying a divmod
2161 insn. We *must* test for this case here because the code below that
2162 splits two independent SETs doesn't handle this case correctly when it
2163 updates the register status.
2165 It's pointless doing this if we originally had two sets, one from
2166 i3, and one from i2. Combining then splitting the parallel results
2167 in the original i2 again plus an invalid insn (which we delete).
2168 The net effect is only to move instructions around, which makes
2169 debug info less accurate.
2171 Also check the case where the first SET's destination is unused.
2172 That would not cause incorrect code, but does cause an unneeded
2175 if (insn_code_number
< 0
2176 && !(added_sets_2
&& i1
== 0)
2177 && GET_CODE (newpat
) == PARALLEL
2178 && XVECLEN (newpat
, 0) == 2
2179 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2180 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2181 && asm_noperands (newpat
) < 0)
2183 rtx set0
= XVECEXP (newpat
, 0, 0);
2184 rtx set1
= XVECEXP (newpat
, 0, 1);
2187 if (((REG_P (SET_DEST (set1
))
2188 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
2189 || (GET_CODE (SET_DEST (set1
)) == SUBREG
2190 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
2191 && (!(note
= find_reg_note (i3
, REG_EH_REGION
, NULL_RTX
))
2192 || INTVAL (XEXP (note
, 0)) <= 0)
2193 && ! side_effects_p (SET_SRC (set1
)))
2196 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2199 else if (((REG_P (SET_DEST (set0
))
2200 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
2201 || (GET_CODE (SET_DEST (set0
)) == SUBREG
2202 && find_reg_note (i3
, REG_UNUSED
,
2203 SUBREG_REG (SET_DEST (set0
)))))
2204 && (!(note
= find_reg_note (i3
, REG_EH_REGION
, NULL_RTX
))
2205 || INTVAL (XEXP (note
, 0)) <= 0)
2206 && ! side_effects_p (SET_SRC (set0
)))
2209 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2211 if (insn_code_number
>= 0)
2213 /* If we will be able to accept this, we have made a
2214 change to the destination of I3. This requires us to
2215 do a few adjustments. */
2217 PATTERN (i3
) = newpat
;
2218 adjust_for_new_dest (i3
);
2223 /* If we were combining three insns and the result is a simple SET
2224 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2225 insns. There are two ways to do this. It can be split using a
2226 machine-specific method (like when you have an addition of a large
2227 constant) or by combine in the function find_split_point. */
2229 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
2230 && asm_noperands (newpat
) < 0)
2232 rtx m_split
, *split
;
2233 rtx ni2dest
= i2dest
;
2235 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2236 use I2DEST as a scratch register will help. In the latter case,
2237 convert I2DEST to the mode of the source of NEWPAT if we can. */
2239 m_split
= split_insns (newpat
, i3
);
2241 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2242 inputs of NEWPAT. */
2244 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2245 possible to try that as a scratch reg. This would require adding
2246 more code to make it work though. */
2248 if (m_split
== 0 && ! reg_overlap_mentioned_p (ni2dest
, newpat
))
2250 /* If I2DEST is a hard register or the only use of a pseudo,
2251 we can change its mode. */
2252 if (GET_MODE (SET_DEST (newpat
)) != GET_MODE (i2dest
)
2253 && GET_MODE (SET_DEST (newpat
)) != VOIDmode
2255 && (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2256 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2257 && ! REG_USERVAR_P (i2dest
))))
2258 ni2dest
= gen_rtx_REG (GET_MODE (SET_DEST (newpat
)),
2261 m_split
= split_insns (gen_rtx_PARALLEL
2263 gen_rtvec (2, newpat
,
2264 gen_rtx_CLOBBER (VOIDmode
,
2267 /* If the split with the mode-changed register didn't work, try
2268 the original register. */
2269 if (! m_split
&& ni2dest
!= i2dest
)
2272 m_split
= split_insns (gen_rtx_PARALLEL
2274 gen_rtvec (2, newpat
,
2275 gen_rtx_CLOBBER (VOIDmode
,
2281 if (m_split
&& NEXT_INSN (m_split
) == NULL_RTX
)
2283 m_split
= PATTERN (m_split
);
2284 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
2285 if (insn_code_number
>= 0)
2288 else if (m_split
&& NEXT_INSN (NEXT_INSN (m_split
)) == NULL_RTX
2289 && (next_real_insn (i2
) == i3
2290 || ! use_crosses_set_p (PATTERN (m_split
), INSN_CUID (i2
))))
2293 rtx newi3pat
= PATTERN (NEXT_INSN (m_split
));
2294 newi2pat
= PATTERN (m_split
);
2296 i3set
= single_set (NEXT_INSN (m_split
));
2297 i2set
= single_set (m_split
);
2299 /* In case we changed the mode of I2DEST, replace it in the
2300 pseudo-register table here. We can't do it above in case this
2301 code doesn't get executed and we do a split the other way. */
2303 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2304 SUBST (regno_reg_rtx
[REGNO (i2dest
)], ni2dest
);
2306 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2308 /* If I2 or I3 has multiple SETs, we won't know how to track
2309 register status, so don't use these insns. If I2's destination
2310 is used between I2 and I3, we also can't use these insns. */
2312 if (i2_code_number
>= 0 && i2set
&& i3set
2313 && (next_real_insn (i2
) == i3
2314 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
2315 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
2317 if (insn_code_number
>= 0)
2320 /* It is possible that both insns now set the destination of I3.
2321 If so, we must show an extra use of it. */
2323 if (insn_code_number
>= 0)
2325 rtx new_i3_dest
= SET_DEST (i3set
);
2326 rtx new_i2_dest
= SET_DEST (i2set
);
2328 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
2329 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
2330 || GET_CODE (new_i3_dest
) == SUBREG
)
2331 new_i3_dest
= XEXP (new_i3_dest
, 0);
2333 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
2334 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
2335 || GET_CODE (new_i2_dest
) == SUBREG
)
2336 new_i2_dest
= XEXP (new_i2_dest
, 0);
2338 if (REG_P (new_i3_dest
)
2339 && REG_P (new_i2_dest
)
2340 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
2341 REG_N_SETS (REGNO (new_i2_dest
))++;
2345 /* If we can split it and use I2DEST, go ahead and see if that
2346 helps things be recognized. Verify that none of the registers
2347 are set between I2 and I3. */
2348 if (insn_code_number
< 0 && (split
= find_split_point (&newpat
, i3
)) != 0
2352 /* We need I2DEST in the proper mode. If it is a hard register
2353 or the only use of a pseudo, we can change its mode. */
2354 && (GET_MODE (*split
) == GET_MODE (i2dest
)
2355 || GET_MODE (*split
) == VOIDmode
2356 || REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2357 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2358 && ! REG_USERVAR_P (i2dest
)))
2359 && (next_real_insn (i2
) == i3
2360 || ! use_crosses_set_p (*split
, INSN_CUID (i2
)))
2361 /* We can't overwrite I2DEST if its value is still used by
2363 && ! reg_referenced_p (i2dest
, newpat
))
2365 rtx newdest
= i2dest
;
2366 enum rtx_code split_code
= GET_CODE (*split
);
2367 enum machine_mode split_mode
= GET_MODE (*split
);
2369 /* Get NEWDEST as a register in the proper mode. We have already
2370 validated that we can do this. */
2371 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
2373 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
2375 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2376 SUBST (regno_reg_rtx
[REGNO (i2dest
)], newdest
);
2379 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2380 an ASHIFT. This can occur if it was inside a PLUS and hence
2381 appeared to be a memory address. This is a kludge. */
2382 if (split_code
== MULT
2383 && GET_CODE (XEXP (*split
, 1)) == CONST_INT
2384 && INTVAL (XEXP (*split
, 1)) > 0
2385 && (i
= exact_log2 (INTVAL (XEXP (*split
, 1)))) >= 0)
2387 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
2388 XEXP (*split
, 0), GEN_INT (i
)));
2389 /* Update split_code because we may not have a multiply
2391 split_code
= GET_CODE (*split
);
2394 #ifdef INSN_SCHEDULING
2395 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2396 be written as a ZERO_EXTEND. */
2397 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
2399 #ifdef LOAD_EXTEND_OP
2400 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2401 what it really is. */
2402 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
2404 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
2405 SUBREG_REG (*split
)));
2408 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
2409 SUBREG_REG (*split
)));
2413 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
2414 SUBST (*split
, newdest
);
2415 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2417 /* If the split point was a MULT and we didn't have one before,
2418 don't use one now. */
2419 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
2420 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2424 /* Check for a case where we loaded from memory in a narrow mode and
2425 then sign extended it, but we need both registers. In that case,
2426 we have a PARALLEL with both loads from the same memory location.
2427 We can split this into a load from memory followed by a register-register
2428 copy. This saves at least one insn, more if register allocation can
2431 We cannot do this if the destination of the first assignment is a
2432 condition code register or cc0. We eliminate this case by making sure
2433 the SET_DEST and SET_SRC have the same mode.
2435 We cannot do this if the destination of the second assignment is
2436 a register that we have already assumed is zero-extended. Similarly
2437 for a SUBREG of such a register. */
2439 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2440 && GET_CODE (newpat
) == PARALLEL
2441 && XVECLEN (newpat
, 0) == 2
2442 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2443 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
2444 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
2445 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
2446 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2447 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2448 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
2449 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2451 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2452 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2453 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
2455 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
2456 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2457 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2458 && (reg_stat
[REGNO (temp
)].nonzero_bits
2459 != GET_MODE_MASK (word_mode
))))
2460 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
2461 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
2463 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
2464 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2465 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2466 && (reg_stat
[REGNO (temp
)].nonzero_bits
2467 != GET_MODE_MASK (word_mode
)))))
2468 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2469 SET_SRC (XVECEXP (newpat
, 0, 1)))
2470 && ! find_reg_note (i3
, REG_UNUSED
,
2471 SET_DEST (XVECEXP (newpat
, 0, 0))))
2475 newi2pat
= XVECEXP (newpat
, 0, 0);
2476 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
2477 newpat
= XVECEXP (newpat
, 0, 1);
2478 SUBST (SET_SRC (newpat
),
2479 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
2480 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2482 if (i2_code_number
>= 0)
2483 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2485 if (insn_code_number
>= 0)
2489 /* Similarly, check for a case where we have a PARALLEL of two independent
2490 SETs but we started with three insns. In this case, we can do the sets
2491 as two separate insns. This case occurs when some SET allows two
2492 other insns to combine, but the destination of that SET is still live. */
2494 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2495 && GET_CODE (newpat
) == PARALLEL
2496 && XVECLEN (newpat
, 0) == 2
2497 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2498 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
2499 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
2500 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2501 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2502 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2503 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2505 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2506 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != USE
2507 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != USE
2508 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2509 XVECEXP (newpat
, 0, 0))
2510 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
2511 XVECEXP (newpat
, 0, 1))
2512 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
2513 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
2515 /* Normally, it doesn't matter which of the two is done first,
2516 but it does if one references cc0. In that case, it has to
2519 if (reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0)))
2521 newi2pat
= XVECEXP (newpat
, 0, 0);
2522 newpat
= XVECEXP (newpat
, 0, 1);
2527 newi2pat
= XVECEXP (newpat
, 0, 1);
2528 newpat
= XVECEXP (newpat
, 0, 0);
2531 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2533 if (i2_code_number
>= 0)
2534 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2537 /* If it still isn't recognized, fail and change things back the way they
2539 if ((insn_code_number
< 0
2540 /* Is the result a reasonable ASM_OPERANDS? */
2541 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
2547 /* If we had to change another insn, make sure it is valid also. */
2548 if (undobuf
.other_insn
)
2550 rtx other_pat
= PATTERN (undobuf
.other_insn
);
2551 rtx new_other_notes
;
2554 CLEAR_HARD_REG_SET (newpat_used_regs
);
2556 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
2559 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
2565 PATTERN (undobuf
.other_insn
) = other_pat
;
2567 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2568 are still valid. Then add any non-duplicate notes added by
2569 recog_for_combine. */
2570 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
2572 next
= XEXP (note
, 1);
2574 if (REG_NOTE_KIND (note
) == REG_UNUSED
2575 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
2577 if (REG_P (XEXP (note
, 0)))
2578 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
2580 remove_note (undobuf
.other_insn
, note
);
2584 for (note
= new_other_notes
; note
; note
= XEXP (note
, 1))
2585 if (REG_P (XEXP (note
, 0)))
2586 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
2588 distribute_notes (new_other_notes
, undobuf
.other_insn
,
2589 undobuf
.other_insn
, NULL_RTX
);
2592 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2593 they are adjacent to each other or not. */
2595 rtx p
= prev_nonnote_insn (i3
);
2596 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
2597 && sets_cc0_p (newi2pat
))
2605 /* Only allow this combination if insn_rtx_costs reports that the
2606 replacement instructions are cheaper than the originals. */
2607 if (!combine_validate_cost (i1
, i2
, i3
, newpat
, newi2pat
))
2613 /* We now know that we can do this combination. Merge the insns and
2614 update the status of registers and LOG_LINKS. */
2622 /* I3 now uses what used to be its destination and which is now
2623 I2's destination. This requires us to do a few adjustments. */
2624 PATTERN (i3
) = newpat
;
2625 adjust_for_new_dest (i3
);
2627 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2630 However, some later insn might be using I2's dest and have
2631 a LOG_LINK pointing at I3. We must remove this link.
2632 The simplest way to remove the link is to point it at I1,
2633 which we know will be a NOTE. */
2635 /* newi2pat is usually a SET here; however, recog_for_combine might
2636 have added some clobbers. */
2637 if (GET_CODE (newi2pat
) == PARALLEL
)
2638 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
2640 ni2dest
= SET_DEST (newi2pat
);
2642 for (insn
= NEXT_INSN (i3
);
2643 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
2644 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
2645 insn
= NEXT_INSN (insn
))
2647 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
2649 for (link
= LOG_LINKS (insn
); link
;
2650 link
= XEXP (link
, 1))
2651 if (XEXP (link
, 0) == i3
)
2652 XEXP (link
, 0) = i1
;
2660 rtx i3notes
, i2notes
, i1notes
= 0;
2661 rtx i3links
, i2links
, i1links
= 0;
2665 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2667 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
2668 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
2670 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
2672 /* Ensure that we do not have something that should not be shared but
2673 occurs multiple times in the new insns. Check this by first
2674 resetting all the `used' flags and then copying anything is shared. */
2676 reset_used_flags (i3notes
);
2677 reset_used_flags (i2notes
);
2678 reset_used_flags (i1notes
);
2679 reset_used_flags (newpat
);
2680 reset_used_flags (newi2pat
);
2681 if (undobuf
.other_insn
)
2682 reset_used_flags (PATTERN (undobuf
.other_insn
));
2684 i3notes
= copy_rtx_if_shared (i3notes
);
2685 i2notes
= copy_rtx_if_shared (i2notes
);
2686 i1notes
= copy_rtx_if_shared (i1notes
);
2687 newpat
= copy_rtx_if_shared (newpat
);
2688 newi2pat
= copy_rtx_if_shared (newi2pat
);
2689 if (undobuf
.other_insn
)
2690 reset_used_flags (PATTERN (undobuf
.other_insn
));
2692 INSN_CODE (i3
) = insn_code_number
;
2693 PATTERN (i3
) = newpat
;
2695 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
2697 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
2699 reset_used_flags (call_usage
);
2700 call_usage
= copy_rtx (call_usage
);
2703 replace_rtx (call_usage
, i2dest
, i2src
);
2706 replace_rtx (call_usage
, i1dest
, i1src
);
2708 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
2711 if (undobuf
.other_insn
)
2712 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
2714 /* We had one special case above where I2 had more than one set and
2715 we replaced a destination of one of those sets with the destination
2716 of I3. In that case, we have to update LOG_LINKS of insns later
2717 in this basic block. Note that this (expensive) case is rare.
2719 Also, in this case, we must pretend that all REG_NOTEs for I2
2720 actually came from I3, so that REG_UNUSED notes from I2 will be
2721 properly handled. */
2723 if (i3_subst_into_i2
)
2725 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
2726 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != USE
2727 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
2728 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
2729 && ! find_reg_note (i2
, REG_UNUSED
,
2730 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
2731 for (temp
= NEXT_INSN (i2
);
2732 temp
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
2733 || BB_HEAD (this_basic_block
) != temp
);
2734 temp
= NEXT_INSN (temp
))
2735 if (temp
!= i3
&& INSN_P (temp
))
2736 for (link
= LOG_LINKS (temp
); link
; link
= XEXP (link
, 1))
2737 if (XEXP (link
, 0) == i2
)
2738 XEXP (link
, 0) = i3
;
2743 while (XEXP (link
, 1))
2744 link
= XEXP (link
, 1);
2745 XEXP (link
, 1) = i2notes
;
2759 INSN_CODE (i2
) = i2_code_number
;
2760 PATTERN (i2
) = newi2pat
;
2763 SET_INSN_DELETED (i2
);
2769 SET_INSN_DELETED (i1
);
2772 /* Get death notes for everything that is now used in either I3 or
2773 I2 and used to die in a previous insn. If we built two new
2774 patterns, move from I1 to I2 then I2 to I3 so that we get the
2775 proper movement on registers that I2 modifies. */
2779 move_deaths (newi2pat
, NULL_RTX
, INSN_CUID (i1
), i2
, &midnotes
);
2780 move_deaths (newpat
, newi2pat
, INSN_CUID (i1
), i3
, &midnotes
);
2783 move_deaths (newpat
, NULL_RTX
, i1
? INSN_CUID (i1
) : INSN_CUID (i2
),
2786 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2788 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
);
2790 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
);
2792 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
);
2794 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
);
2796 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2797 know these are REG_UNUSED and want them to go to the desired insn,
2798 so we always pass it as i3. We have not counted the notes in
2799 reg_n_deaths yet, so we need to do so now. */
2801 if (newi2pat
&& new_i2_notes
)
2803 for (temp
= new_i2_notes
; temp
; temp
= XEXP (temp
, 1))
2804 if (REG_P (XEXP (temp
, 0)))
2805 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2807 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
);
2812 for (temp
= new_i3_notes
; temp
; temp
= XEXP (temp
, 1))
2813 if (REG_P (XEXP (temp
, 0)))
2814 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2816 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
);
2819 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2820 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2821 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2822 in that case, it might delete I2. Similarly for I2 and I1.
2823 Show an additional death due to the REG_DEAD note we make here. If
2824 we discard it in distribute_notes, we will decrement it again. */
2828 if (REG_P (i3dest_killed
))
2829 REG_N_DEATHS (REGNO (i3dest_killed
))++;
2831 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
2832 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2834 NULL_RTX
, i2
, NULL_RTX
);
2836 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2838 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
);
2841 if (i2dest_in_i2src
)
2844 REG_N_DEATHS (REGNO (i2dest
))++;
2846 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
2847 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2848 NULL_RTX
, i2
, NULL_RTX
);
2850 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2851 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
);
2854 if (i1dest_in_i1src
)
2857 REG_N_DEATHS (REGNO (i1dest
))++;
2859 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
2860 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2861 NULL_RTX
, i2
, NULL_RTX
);
2863 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2864 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
);
2867 distribute_links (i3links
);
2868 distribute_links (i2links
);
2869 distribute_links (i1links
);
2874 rtx i2_insn
= 0, i2_val
= 0, set
;
2876 /* The insn that used to set this register doesn't exist, and
2877 this life of the register may not exist either. See if one of
2878 I3's links points to an insn that sets I2DEST. If it does,
2879 that is now the last known value for I2DEST. If we don't update
2880 this and I2 set the register to a value that depended on its old
2881 contents, we will get confused. If this insn is used, thing
2882 will be set correctly in combine_instructions. */
2884 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2885 if ((set
= single_set (XEXP (link
, 0))) != 0
2886 && rtx_equal_p (i2dest
, SET_DEST (set
)))
2887 i2_insn
= XEXP (link
, 0), i2_val
= SET_SRC (set
);
2889 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
2891 /* If the reg formerly set in I2 died only once and that was in I3,
2892 zero its use count so it won't make `reload' do any work. */
2894 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
2895 && ! i2dest_in_i2src
)
2897 regno
= REGNO (i2dest
);
2898 REG_N_SETS (regno
)--;
2902 if (i1
&& REG_P (i1dest
))
2905 rtx i1_insn
= 0, i1_val
= 0, set
;
2907 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2908 if ((set
= single_set (XEXP (link
, 0))) != 0
2909 && rtx_equal_p (i1dest
, SET_DEST (set
)))
2910 i1_insn
= XEXP (link
, 0), i1_val
= SET_SRC (set
);
2912 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
2914 regno
= REGNO (i1dest
);
2915 if (! added_sets_1
&& ! i1dest_in_i1src
)
2916 REG_N_SETS (regno
)--;
2919 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2920 been made to this insn. The order of
2921 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2922 can affect nonzero_bits of newpat */
2924 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
2925 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
2927 /* Set new_direct_jump_p if a new return or simple jump instruction
2930 If I3 is now an unconditional jump, ensure that it has a
2931 BARRIER following it since it may have initially been a
2932 conditional jump. It may also be the last nonnote insn. */
2934 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
2936 *new_direct_jump_p
= 1;
2937 mark_jump_label (PATTERN (i3
), i3
, 0);
2939 if ((temp
= next_nonnote_insn (i3
)) == NULL_RTX
2940 || !BARRIER_P (temp
))
2941 emit_barrier_after (i3
);
2944 if (undobuf
.other_insn
!= NULL_RTX
2945 && (returnjump_p (undobuf
.other_insn
)
2946 || any_uncondjump_p (undobuf
.other_insn
)))
2948 *new_direct_jump_p
= 1;
2950 if ((temp
= next_nonnote_insn (undobuf
.other_insn
)) == NULL_RTX
2951 || !BARRIER_P (temp
))
2952 emit_barrier_after (undobuf
.other_insn
);
2955 /* An NOOP jump does not need barrier, but it does need cleaning up
2957 if (GET_CODE (newpat
) == SET
2958 && SET_SRC (newpat
) == pc_rtx
2959 && SET_DEST (newpat
) == pc_rtx
)
2960 *new_direct_jump_p
= 1;
2963 combine_successes
++;
2966 if (added_links_insn
2967 && (newi2pat
== 0 || INSN_CUID (added_links_insn
) < INSN_CUID (i2
))
2968 && INSN_CUID (added_links_insn
) < INSN_CUID (i3
))
2969 return added_links_insn
;
2971 return newi2pat
? i2
: i3
;
2974 /* Undo all the modifications recorded in undobuf. */
2979 struct undo
*undo
, *next
;
2981 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2985 *undo
->where
.i
= undo
->old_contents
.i
;
2987 *undo
->where
.r
= undo
->old_contents
.r
;
2989 undo
->next
= undobuf
.frees
;
2990 undobuf
.frees
= undo
;
2996 /* We've committed to accepting the changes we made. Move all
2997 of the undos to the free list. */
3002 struct undo
*undo
, *next
;
3004 for (undo
= undobuf
.undos
; undo
; undo
= next
)
3007 undo
->next
= undobuf
.frees
;
3008 undobuf
.frees
= undo
;
3014 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3015 where we have an arithmetic expression and return that point. LOC will
3018 try_combine will call this function to see if an insn can be split into
3022 find_split_point (rtx
*loc
, rtx insn
)
3025 enum rtx_code code
= GET_CODE (x
);
3027 unsigned HOST_WIDE_INT len
= 0;
3028 HOST_WIDE_INT pos
= 0;
3030 rtx inner
= NULL_RTX
;
3032 /* First special-case some codes. */
3036 #ifdef INSN_SCHEDULING
3037 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3039 if (MEM_P (SUBREG_REG (x
)))
3042 return find_split_point (&SUBREG_REG (x
), insn
);
3046 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3047 using LO_SUM and HIGH. */
3048 if (GET_CODE (XEXP (x
, 0)) == CONST
3049 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3052 gen_rtx_LO_SUM (Pmode
,
3053 gen_rtx_HIGH (Pmode
, XEXP (x
, 0)),
3055 return &XEXP (XEXP (x
, 0), 0);
3059 /* If we have a PLUS whose second operand is a constant and the
3060 address is not valid, perhaps will can split it up using
3061 the machine-specific way to split large constants. We use
3062 the first pseudo-reg (one of the virtual regs) as a placeholder;
3063 it will not remain in the result. */
3064 if (GET_CODE (XEXP (x
, 0)) == PLUS
3065 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3066 && ! memory_address_p (GET_MODE (x
), XEXP (x
, 0)))
3068 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
3069 rtx seq
= split_insns (gen_rtx_SET (VOIDmode
, reg
, XEXP (x
, 0)),
3072 /* This should have produced two insns, each of which sets our
3073 placeholder. If the source of the second is a valid address,
3074 we can make put both sources together and make a split point
3078 && NEXT_INSN (seq
) != NULL_RTX
3079 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
3080 && NONJUMP_INSN_P (seq
)
3081 && GET_CODE (PATTERN (seq
)) == SET
3082 && SET_DEST (PATTERN (seq
)) == reg
3083 && ! reg_mentioned_p (reg
,
3084 SET_SRC (PATTERN (seq
)))
3085 && NONJUMP_INSN_P (NEXT_INSN (seq
))
3086 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
3087 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
3088 && memory_address_p (GET_MODE (x
),
3089 SET_SRC (PATTERN (NEXT_INSN (seq
)))))
3091 rtx src1
= SET_SRC (PATTERN (seq
));
3092 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
3094 /* Replace the placeholder in SRC2 with SRC1. If we can
3095 find where in SRC2 it was placed, that can become our
3096 split point and we can replace this address with SRC2.
3097 Just try two obvious places. */
3099 src2
= replace_rtx (src2
, reg
, src1
);
3101 if (XEXP (src2
, 0) == src1
)
3102 split
= &XEXP (src2
, 0);
3103 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
3104 && XEXP (XEXP (src2
, 0), 0) == src1
)
3105 split
= &XEXP (XEXP (src2
, 0), 0);
3109 SUBST (XEXP (x
, 0), src2
);
3114 /* If that didn't work, perhaps the first operand is complex and
3115 needs to be computed separately, so make a split point there.
3116 This will occur on machines that just support REG + CONST
3117 and have a constant moved through some previous computation. */
3119 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
3120 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
3121 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
3122 return &XEXP (XEXP (x
, 0), 0);
3128 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3129 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3130 we need to put the operand into a register. So split at that
3133 if (SET_DEST (x
) == cc0_rtx
3134 && GET_CODE (SET_SRC (x
)) != COMPARE
3135 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
3136 && !OBJECT_P (SET_SRC (x
))
3137 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
3138 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
3139 return &SET_SRC (x
);
3142 /* See if we can split SET_SRC as it stands. */
3143 split
= find_split_point (&SET_SRC (x
), insn
);
3144 if (split
&& split
!= &SET_SRC (x
))
3147 /* See if we can split SET_DEST as it stands. */
3148 split
= find_split_point (&SET_DEST (x
), insn
);
3149 if (split
&& split
!= &SET_DEST (x
))
3152 /* See if this is a bitfield assignment with everything constant. If
3153 so, this is an IOR of an AND, so split it into that. */
3154 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
3155 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
3156 <= HOST_BITS_PER_WIDE_INT
)
3157 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
3158 && GET_CODE (XEXP (SET_DEST (x
), 2)) == CONST_INT
3159 && GET_CODE (SET_SRC (x
)) == CONST_INT
3160 && ((INTVAL (XEXP (SET_DEST (x
), 1))
3161 + INTVAL (XEXP (SET_DEST (x
), 2)))
3162 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0))))
3163 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
3165 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
3166 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
3167 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
3168 rtx dest
= XEXP (SET_DEST (x
), 0);
3169 enum machine_mode mode
= GET_MODE (dest
);
3170 unsigned HOST_WIDE_INT mask
= ((HOST_WIDE_INT
) 1 << len
) - 1;
3172 if (BITS_BIG_ENDIAN
)
3173 pos
= GET_MODE_BITSIZE (mode
) - len
- pos
;
3177 gen_binary (IOR
, mode
, dest
, GEN_INT (src
<< pos
)));
3180 gen_binary (IOR
, mode
,
3181 gen_binary (AND
, mode
, dest
,
3182 gen_int_mode (~(mask
<< pos
),
3184 GEN_INT (src
<< pos
)));
3186 SUBST (SET_DEST (x
), dest
);
3188 split
= find_split_point (&SET_SRC (x
), insn
);
3189 if (split
&& split
!= &SET_SRC (x
))
3193 /* Otherwise, see if this is an operation that we can split into two.
3194 If so, try to split that. */
3195 code
= GET_CODE (SET_SRC (x
));
3200 /* If we are AND'ing with a large constant that is only a single
3201 bit and the result is only being used in a context where we
3202 need to know if it is zero or nonzero, replace it with a bit
3203 extraction. This will avoid the large constant, which might
3204 have taken more than one insn to make. If the constant were
3205 not a valid argument to the AND but took only one insn to make,
3206 this is no worse, but if it took more than one insn, it will
3209 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3210 && REG_P (XEXP (SET_SRC (x
), 0))
3211 && (pos
= exact_log2 (INTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
3212 && REG_P (SET_DEST (x
))
3213 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*) 0)) != 0
3214 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
3215 && XEXP (*split
, 0) == SET_DEST (x
)
3216 && XEXP (*split
, 1) == const0_rtx
)
3218 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
3219 XEXP (SET_SRC (x
), 0),
3220 pos
, NULL_RTX
, 1, 1, 0, 0);
3221 if (extraction
!= 0)
3223 SUBST (SET_SRC (x
), extraction
);
3224 return find_split_point (loc
, insn
);
3230 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3231 is known to be on, this can be converted into a NEG of a shift. */
3232 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
3233 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
3234 && 1 <= (pos
= exact_log2
3235 (nonzero_bits (XEXP (SET_SRC (x
), 0),
3236 GET_MODE (XEXP (SET_SRC (x
), 0))))))
3238 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
3242 gen_rtx_LSHIFTRT (mode
,
3243 XEXP (SET_SRC (x
), 0),
3246 split
= find_split_point (&SET_SRC (x
), insn
);
3247 if (split
&& split
!= &SET_SRC (x
))
3253 inner
= XEXP (SET_SRC (x
), 0);
3255 /* We can't optimize if either mode is a partial integer
3256 mode as we don't know how many bits are significant
3258 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
3259 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
3263 len
= GET_MODE_BITSIZE (GET_MODE (inner
));
3269 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3270 && GET_CODE (XEXP (SET_SRC (x
), 2)) == CONST_INT
)
3272 inner
= XEXP (SET_SRC (x
), 0);
3273 len
= INTVAL (XEXP (SET_SRC (x
), 1));
3274 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
3276 if (BITS_BIG_ENDIAN
)
3277 pos
= GET_MODE_BITSIZE (GET_MODE (inner
)) - len
- pos
;
3278 unsignedp
= (code
== ZERO_EXTRACT
);
3286 if (len
&& pos
>= 0 && pos
+ len
<= GET_MODE_BITSIZE (GET_MODE (inner
)))
3288 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
3290 /* For unsigned, we have a choice of a shift followed by an
3291 AND or two shifts. Use two shifts for field sizes where the
3292 constant might be too large. We assume here that we can
3293 always at least get 8-bit constants in an AND insn, which is
3294 true for every current RISC. */
3296 if (unsignedp
&& len
<= 8)
3301 (mode
, gen_lowpart (mode
, inner
),
3303 GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1)));
3305 split
= find_split_point (&SET_SRC (x
), insn
);
3306 if (split
&& split
!= &SET_SRC (x
))
3313 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
3314 gen_rtx_ASHIFT (mode
,
3315 gen_lowpart (mode
, inner
),
3316 GEN_INT (GET_MODE_BITSIZE (mode
)
3318 GEN_INT (GET_MODE_BITSIZE (mode
) - len
)));
3320 split
= find_split_point (&SET_SRC (x
), insn
);
3321 if (split
&& split
!= &SET_SRC (x
))
3326 /* See if this is a simple operation with a constant as the second
3327 operand. It might be that this constant is out of range and hence
3328 could be used as a split point. */
3329 if (BINARY_P (SET_SRC (x
))
3330 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
3331 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
3332 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
3333 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
3334 return &XEXP (SET_SRC (x
), 1);
3336 /* Finally, see if this is a simple operation with its first operand
3337 not in a register. The operation might require this operand in a
3338 register, so return it as a split point. We can always do this
3339 because if the first operand were another operation, we would have
3340 already found it as a split point. */
3341 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
3342 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
3343 return &XEXP (SET_SRC (x
), 0);
3349 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3350 it is better to write this as (not (ior A B)) so we can split it.
3351 Similarly for IOR. */
3352 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
3355 gen_rtx_NOT (GET_MODE (x
),
3356 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
3358 XEXP (XEXP (x
, 0), 0),
3359 XEXP (XEXP (x
, 1), 0))));
3360 return find_split_point (loc
, insn
);
3363 /* Many RISC machines have a large set of logical insns. If the
3364 second operand is a NOT, put it first so we will try to split the
3365 other operand first. */
3366 if (GET_CODE (XEXP (x
, 1)) == NOT
)
3368 rtx tem
= XEXP (x
, 0);
3369 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3370 SUBST (XEXP (x
, 1), tem
);
3378 /* Otherwise, select our actions depending on our rtx class. */
3379 switch (GET_RTX_CLASS (code
))
3381 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3383 split
= find_split_point (&XEXP (x
, 2), insn
);
3386 /* ... fall through ... */
3388 case RTX_COMM_ARITH
:
3390 case RTX_COMM_COMPARE
:
3391 split
= find_split_point (&XEXP (x
, 1), insn
);
3394 /* ... fall through ... */
3396 /* Some machines have (and (shift ...) ...) insns. If X is not
3397 an AND, but XEXP (X, 0) is, use it as our split point. */
3398 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
3399 return &XEXP (x
, 0);
3401 split
= find_split_point (&XEXP (x
, 0), insn
);
3407 /* Otherwise, we don't have a split point. */
3412 /* Throughout X, replace FROM with TO, and return the result.
3413 The result is TO if X is FROM;
3414 otherwise the result is X, but its contents may have been modified.
3415 If they were modified, a record was made in undobuf so that
3416 undo_all will (among other things) return X to its original state.
3418 If the number of changes necessary is too much to record to undo,
3419 the excess changes are not made, so the result is invalid.
3420 The changes already made can still be undone.
3421 undobuf.num_undo is incremented for such changes, so by testing that
3422 the caller can tell whether the result is valid.
3424 `n_occurrences' is incremented each time FROM is replaced.
3426 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3428 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3429 by copying if `n_occurrences' is nonzero. */
3432 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int unique_copy
)
3434 enum rtx_code code
= GET_CODE (x
);
3435 enum machine_mode op0_mode
= VOIDmode
;
3440 /* Two expressions are equal if they are identical copies of a shared
3441 RTX or if they are both registers with the same register number
3444 #define COMBINE_RTX_EQUAL_P(X,Y) \
3446 || (REG_P (X) && REG_P (Y) \
3447 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3449 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
3452 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
3455 /* If X and FROM are the same register but different modes, they will
3456 not have been seen as equal above. However, flow.c will make a
3457 LOG_LINKS entry for that case. If we do nothing, we will try to
3458 rerecognize our original insn and, when it succeeds, we will
3459 delete the feeding insn, which is incorrect.
3461 So force this insn not to match in this (rare) case. */
3462 if (! in_dest
&& code
== REG
&& REG_P (from
)
3463 && REGNO (x
) == REGNO (from
))
3464 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
3466 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3467 of which may contain things that can be combined. */
3468 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
3471 /* It is possible to have a subexpression appear twice in the insn.
3472 Suppose that FROM is a register that appears within TO.
3473 Then, after that subexpression has been scanned once by `subst',
3474 the second time it is scanned, TO may be found. If we were
3475 to scan TO here, we would find FROM within it and create a
3476 self-referent rtl structure which is completely wrong. */
3477 if (COMBINE_RTX_EQUAL_P (x
, to
))
3480 /* Parallel asm_operands need special attention because all of the
3481 inputs are shared across the arms. Furthermore, unsharing the
3482 rtl results in recognition failures. Failure to handle this case
3483 specially can result in circular rtl.
3485 Solve this by doing a normal pass across the first entry of the
3486 parallel, and only processing the SET_DESTs of the subsequent
3489 if (code
== PARALLEL
3490 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
3491 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
3493 new = subst (XVECEXP (x
, 0, 0), from
, to
, 0, unique_copy
);
3495 /* If this substitution failed, this whole thing fails. */
3496 if (GET_CODE (new) == CLOBBER
3497 && XEXP (new, 0) == const0_rtx
)
3500 SUBST (XVECEXP (x
, 0, 0), new);
3502 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
3504 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
3507 && GET_CODE (dest
) != CC0
3508 && GET_CODE (dest
) != PC
)
3510 new = subst (dest
, from
, to
, 0, unique_copy
);
3512 /* If this substitution failed, this whole thing fails. */
3513 if (GET_CODE (new) == CLOBBER
3514 && XEXP (new, 0) == const0_rtx
)
3517 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new);
3523 len
= GET_RTX_LENGTH (code
);
3524 fmt
= GET_RTX_FORMAT (code
);
3526 /* We don't need to process a SET_DEST that is a register, CC0,
3527 or PC, so set up to skip this common case. All other cases
3528 where we want to suppress replacing something inside a
3529 SET_SRC are handled via the IN_DEST operand. */
3531 && (REG_P (SET_DEST (x
))
3532 || GET_CODE (SET_DEST (x
)) == CC0
3533 || GET_CODE (SET_DEST (x
)) == PC
))
3536 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3539 op0_mode
= GET_MODE (XEXP (x
, 0));
3541 for (i
= 0; i
< len
; i
++)
3546 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3548 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
3550 new = (unique_copy
&& n_occurrences
3551 ? copy_rtx (to
) : to
);
3556 new = subst (XVECEXP (x
, i
, j
), from
, to
, 0,
3559 /* If this substitution failed, this whole thing
3561 if (GET_CODE (new) == CLOBBER
3562 && XEXP (new, 0) == const0_rtx
)
3566 SUBST (XVECEXP (x
, i
, j
), new);
3569 else if (fmt
[i
] == 'e')
3571 /* If this is a register being set, ignore it. */
3575 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
3577 || code
== STRICT_LOW_PART
))
3580 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
3582 /* In general, don't install a subreg involving two
3583 modes not tieable. It can worsen register
3584 allocation, and can even make invalid reload
3585 insns, since the reg inside may need to be copied
3586 from in the outside mode, and that may be invalid
3587 if it is an fp reg copied in integer mode.
3589 We allow two exceptions to this: It is valid if
3590 it is inside another SUBREG and the mode of that
3591 SUBREG and the mode of the inside of TO is
3592 tieable and it is valid if X is a SET that copies
3595 if (GET_CODE (to
) == SUBREG
3596 && ! MODES_TIEABLE_P (GET_MODE (to
),
3597 GET_MODE (SUBREG_REG (to
)))
3598 && ! (code
== SUBREG
3599 && MODES_TIEABLE_P (GET_MODE (x
),
3600 GET_MODE (SUBREG_REG (to
))))
3602 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
3605 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3607 #ifdef CANNOT_CHANGE_MODE_CLASS
3610 && REGNO (to
) < FIRST_PSEUDO_REGISTER
3611 && REG_CANNOT_CHANGE_MODE_P (REGNO (to
),
3614 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3617 new = (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
3621 /* If we are in a SET_DEST, suppress most cases unless we
3622 have gone inside a MEM, in which case we want to
3623 simplify the address. We assume here that things that
3624 are actually part of the destination have their inner
3625 parts in the first expression. This is true for SUBREG,
3626 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3627 things aside from REG and MEM that should appear in a
3629 new = subst (XEXP (x
, i
), from
, to
,
3631 && (code
== SUBREG
|| code
== STRICT_LOW_PART
3632 || code
== ZERO_EXTRACT
))
3634 && i
== 0), unique_copy
);
3636 /* If we found that we will have to reject this combination,
3637 indicate that by returning the CLOBBER ourselves, rather than
3638 an expression containing it. This will speed things up as
3639 well as prevent accidents where two CLOBBERs are considered
3640 to be equal, thus producing an incorrect simplification. */
3642 if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx
)
3645 if (GET_CODE (x
) == SUBREG
3646 && (GET_CODE (new) == CONST_INT
3647 || GET_CODE (new) == CONST_DOUBLE
))
3649 enum machine_mode mode
= GET_MODE (x
);
3651 x
= simplify_subreg (GET_MODE (x
), new,
3652 GET_MODE (SUBREG_REG (x
)),
3655 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
3657 else if (GET_CODE (new) == CONST_INT
3658 && GET_CODE (x
) == ZERO_EXTEND
)
3660 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
3661 new, GET_MODE (XEXP (x
, 0)));
3665 SUBST (XEXP (x
, i
), new);
3670 /* Try to simplify X. If the simplification changed the code, it is likely
3671 that further simplification will help, so loop, but limit the number
3672 of repetitions that will be performed. */
3674 for (i
= 0; i
< 4; i
++)
3676 /* If X is sufficiently simple, don't bother trying to do anything
3678 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
3679 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
);
3681 if (GET_CODE (x
) == code
)
3684 code
= GET_CODE (x
);
3686 /* We no longer know the original mode of operand 0 since we
3687 have changed the form of X) */
3688 op0_mode
= VOIDmode
;
3694 /* Simplify X, a piece of RTL. We just operate on the expression at the
3695 outer level; call `subst' to simplify recursively. Return the new
3698 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3699 if we are inside a SET_DEST. */
3702 combine_simplify_rtx (rtx x
, enum machine_mode op0_mode
, int in_dest
)
3704 enum rtx_code code
= GET_CODE (x
);
3705 enum machine_mode mode
= GET_MODE (x
);
3710 /* If this is a commutative operation, put a constant last and a complex
3711 expression first. We don't need to do this for comparisons here. */
3712 if (COMMUTATIVE_ARITH_P (x
)
3713 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
3716 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3717 SUBST (XEXP (x
, 1), temp
);
3720 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3721 sign extension of a PLUS with a constant, reverse the order of the sign
3722 extension and the addition. Note that this not the same as the original
3723 code, but overflow is undefined for signed values. Also note that the
3724 PLUS will have been partially moved "inside" the sign-extension, so that
3725 the first operand of X will really look like:
3726 (ashiftrt (plus (ashift A C4) C5) C4).
3728 (plus (ashiftrt (ashift A C4) C2) C4)
3729 and replace the first operand of X with that expression. Later parts
3730 of this function may simplify the expression further.
3732 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3733 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3734 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3736 We do this to simplify address expressions. */
3738 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
)
3739 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3740 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
3741 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == ASHIFT
3742 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1)) == CONST_INT
3743 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3744 && XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1) == XEXP (XEXP (x
, 0), 1)
3745 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
3746 && (temp
= simplify_binary_operation (ASHIFTRT
, mode
,
3747 XEXP (XEXP (XEXP (x
, 0), 0), 1),
3748 XEXP (XEXP (x
, 0), 1))) != 0)
3751 = simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
3752 XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 0),
3753 INTVAL (XEXP (XEXP (x
, 0), 1)));
3755 new = simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
, new,
3756 INTVAL (XEXP (XEXP (x
, 0), 1)));
3758 SUBST (XEXP (x
, 0), gen_binary (PLUS
, mode
, new, temp
));
3761 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3762 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3763 things. Check for cases where both arms are testing the same
3766 Don't do anything if all operands are very simple. */
3769 && ((!OBJECT_P (XEXP (x
, 0))
3770 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3771 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
3772 || (!OBJECT_P (XEXP (x
, 1))
3773 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
3774 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
3776 && (!OBJECT_P (XEXP (x
, 0))
3777 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3778 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
3780 rtx cond
, true_rtx
, false_rtx
;
3782 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
3784 /* If everything is a comparison, what we have is highly unlikely
3785 to be simpler, so don't use it. */
3786 && ! (COMPARISON_P (x
)
3787 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
3789 rtx cop1
= const0_rtx
;
3790 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
3792 if (cond_code
== NE
&& COMPARISON_P (cond
))
3795 /* Simplify the alternative arms; this may collapse the true and
3796 false arms to store-flag values. Be careful to use copy_rtx
3797 here since true_rtx or false_rtx might share RTL with x as a
3798 result of the if_then_else_cond call above. */
3799 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0);
3800 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0);
3802 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3803 is unlikely to be simpler. */
3804 if (general_operand (true_rtx
, VOIDmode
)
3805 && general_operand (false_rtx
, VOIDmode
))
3807 enum rtx_code reversed
;
3809 /* Restarting if we generate a store-flag expression will cause
3810 us to loop. Just drop through in this case. */
3812 /* If the result values are STORE_FLAG_VALUE and zero, we can
3813 just make the comparison operation. */
3814 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
3815 x
= gen_binary (cond_code
, mode
, cond
, cop1
);
3816 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
3817 && ((reversed
= reversed_comparison_code_parts
3818 (cond_code
, cond
, cop1
, NULL
))
3820 x
= gen_binary (reversed
, mode
, cond
, cop1
);
3822 /* Likewise, we can make the negate of a comparison operation
3823 if the result values are - STORE_FLAG_VALUE and zero. */
3824 else if (GET_CODE (true_rtx
) == CONST_INT
3825 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
3826 && false_rtx
== const0_rtx
)
3827 x
= simplify_gen_unary (NEG
, mode
,
3828 gen_binary (cond_code
, mode
, cond
,
3831 else if (GET_CODE (false_rtx
) == CONST_INT
3832 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
3833 && true_rtx
== const0_rtx
3834 && ((reversed
= reversed_comparison_code_parts
3835 (cond_code
, cond
, cop1
, NULL
))
3837 x
= simplify_gen_unary (NEG
, mode
,
3838 gen_binary (reversed
, mode
,
3842 return gen_rtx_IF_THEN_ELSE (mode
,
3843 gen_binary (cond_code
, VOIDmode
,
3845 true_rtx
, false_rtx
);
3847 code
= GET_CODE (x
);
3848 op0_mode
= VOIDmode
;
3853 /* Try to fold this expression in case we have constants that weren't
3856 switch (GET_RTX_CLASS (code
))
3859 if (op0_mode
== VOIDmode
)
3860 op0_mode
= GET_MODE (XEXP (x
, 0));
3861 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
3864 case RTX_COMM_COMPARE
:
3866 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
3867 if (cmp_mode
== VOIDmode
)
3869 cmp_mode
= GET_MODE (XEXP (x
, 1));
3870 if (cmp_mode
== VOIDmode
)
3871 cmp_mode
= op0_mode
;
3873 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
3874 XEXP (x
, 0), XEXP (x
, 1));
3877 case RTX_COMM_ARITH
:
3879 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
3881 case RTX_BITFIELD_OPS
:
3883 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
3884 XEXP (x
, 1), XEXP (x
, 2));
3893 code
= GET_CODE (temp
);
3894 op0_mode
= VOIDmode
;
3895 mode
= GET_MODE (temp
);
3898 /* First see if we can apply the inverse distributive law. */
3899 if (code
== PLUS
|| code
== MINUS
3900 || code
== AND
|| code
== IOR
|| code
== XOR
)
3902 x
= apply_distributive_law (x
);
3903 code
= GET_CODE (x
);
3904 op0_mode
= VOIDmode
;
3907 /* If CODE is an associative operation not otherwise handled, see if we
3908 can associate some operands. This can win if they are constants or
3909 if they are logically related (i.e. (a & b) & a). */
3910 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
3911 || code
== AND
|| code
== IOR
|| code
== XOR
3912 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
3913 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
3914 || (flag_unsafe_math_optimizations
&& FLOAT_MODE_P (mode
))))
3916 if (GET_CODE (XEXP (x
, 0)) == code
)
3918 rtx other
= XEXP (XEXP (x
, 0), 0);
3919 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
3920 rtx inner_op1
= XEXP (x
, 1);
3923 /* Make sure we pass the constant operand if any as the second
3924 one if this is a commutative operation. */
3925 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
3927 rtx tem
= inner_op0
;
3928 inner_op0
= inner_op1
;
3931 inner
= simplify_binary_operation (code
== MINUS
? PLUS
3932 : code
== DIV
? MULT
3934 mode
, inner_op0
, inner_op1
);
3936 /* For commutative operations, try the other pair if that one
3938 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
3940 other
= XEXP (XEXP (x
, 0), 1);
3941 inner
= simplify_binary_operation (code
, mode
,
3942 XEXP (XEXP (x
, 0), 0),
3947 return gen_binary (code
, mode
, other
, inner
);
3951 /* A little bit of algebraic simplification here. */
3955 /* Ensure that our address has any ASHIFTs converted to MULT in case
3956 address-recognizing predicates are called later. */
3957 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
3958 SUBST (XEXP (x
, 0), temp
);
3962 if (op0_mode
== VOIDmode
)
3963 op0_mode
= GET_MODE (SUBREG_REG (x
));
3965 /* See if this can be moved to simplify_subreg. */
3966 if (CONSTANT_P (SUBREG_REG (x
))
3967 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
3968 /* Don't call gen_lowpart if the inner mode
3969 is VOIDmode and we cannot simplify it, as SUBREG without
3970 inner mode is invalid. */
3971 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
3972 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
3973 return gen_lowpart (mode
, SUBREG_REG (x
));
3975 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
3979 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
3985 /* Don't change the mode of the MEM if that would change the meaning
3986 of the address. Similarly, don't allow widening, as that may
3987 access memory outside the defined object or using an address
3988 that is invalid for a wider mode. */
3989 if (MEM_P (SUBREG_REG (x
))
3990 && (MEM_VOLATILE_P (SUBREG_REG (x
))
3991 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0))
3992 || (GET_MODE_SIZE (mode
)
3993 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))))
3994 return gen_rtx_CLOBBER (mode
, const0_rtx
);
3996 /* Note that we cannot do any narrowing for non-constants since
3997 we might have been counting on using the fact that some bits were
3998 zero. We now do this in the SET. */
4003 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4004 && subreg_lowpart_p (XEXP (x
, 0))
4005 && (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0)))
4006 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x
, 0)))))
4007 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == ASHIFT
4008 && XEXP (SUBREG_REG (XEXP (x
, 0)), 0) == const1_rtx
)
4010 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (XEXP (x
, 0)));
4012 x
= gen_rtx_ROTATE (inner_mode
,
4013 simplify_gen_unary (NOT
, inner_mode
, const1_rtx
,
4015 XEXP (SUBREG_REG (XEXP (x
, 0)), 1));
4016 return gen_lowpart (mode
, x
);
4019 /* Apply De Morgan's laws to reduce number of patterns for machines
4020 with negating logical insns (and-not, nand, etc.). If result has
4021 only one NOT, put it first, since that is how the patterns are
4024 if (GET_CODE (XEXP (x
, 0)) == IOR
|| GET_CODE (XEXP (x
, 0)) == AND
)
4026 rtx in1
= XEXP (XEXP (x
, 0), 0), in2
= XEXP (XEXP (x
, 0), 1);
4027 enum machine_mode op_mode
;
4029 op_mode
= GET_MODE (in1
);
4030 in1
= simplify_gen_unary (NOT
, op_mode
, in1
, op_mode
);
4032 op_mode
= GET_MODE (in2
);
4033 if (op_mode
== VOIDmode
)
4035 in2
= simplify_gen_unary (NOT
, op_mode
, in2
, op_mode
);
4037 if (GET_CODE (in2
) == NOT
&& GET_CODE (in1
) != NOT
)
4040 in2
= in1
; in1
= tem
;
4043 return gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)) == IOR
? AND
: IOR
,
4049 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4050 if (GET_CODE (XEXP (x
, 0)) == XOR
4051 && XEXP (XEXP (x
, 0), 1) == const1_rtx
4052 && nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
) == 1)
4053 return gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0), constm1_rtx
);
4055 temp
= expand_compound_operation (XEXP (x
, 0));
4057 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4058 replaced by (lshiftrt X C). This will convert
4059 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4061 if (GET_CODE (temp
) == ASHIFTRT
4062 && GET_CODE (XEXP (temp
, 1)) == CONST_INT
4063 && INTVAL (XEXP (temp
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
4064 return simplify_shift_const (temp
, LSHIFTRT
, mode
, XEXP (temp
, 0),
4065 INTVAL (XEXP (temp
, 1)));
4067 /* If X has only a single bit that might be nonzero, say, bit I, convert
4068 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4069 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4070 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4071 or a SUBREG of one since we'd be making the expression more
4072 complex if it was just a register. */
4075 && ! (GET_CODE (temp
) == SUBREG
4076 && REG_P (SUBREG_REG (temp
)))
4077 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
4079 rtx temp1
= simplify_shift_const
4080 (NULL_RTX
, ASHIFTRT
, mode
,
4081 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
4082 GET_MODE_BITSIZE (mode
) - 1 - i
),
4083 GET_MODE_BITSIZE (mode
) - 1 - i
);
4085 /* If all we did was surround TEMP with the two shifts, we
4086 haven't improved anything, so don't use it. Otherwise,
4087 we are better off with TEMP1. */
4088 if (GET_CODE (temp1
) != ASHIFTRT
4089 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
4090 || XEXP (XEXP (temp1
, 0), 0) != temp
)
4096 /* We can't handle truncation to a partial integer mode here
4097 because we don't know the real bitsize of the partial
4099 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
4102 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4103 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4104 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))))
4106 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
4107 GET_MODE_MASK (mode
), NULL_RTX
, 0));
4109 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4110 if ((GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
4111 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4112 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
4113 return XEXP (XEXP (x
, 0), 0);
4115 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4116 (OP:SI foo:SI) if OP is NEG or ABS. */
4117 if ((GET_CODE (XEXP (x
, 0)) == ABS
4118 || GET_CODE (XEXP (x
, 0)) == NEG
)
4119 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SIGN_EXTEND
4120 || GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
)
4121 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4122 return simplify_gen_unary (GET_CODE (XEXP (x
, 0)), mode
,
4123 XEXP (XEXP (XEXP (x
, 0), 0), 0), mode
);
4125 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4127 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4128 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == TRUNCATE
4129 && subreg_lowpart_p (XEXP (x
, 0)))
4130 return SUBREG_REG (XEXP (x
, 0));
4132 /* If we know that the value is already truncated, we can
4133 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4134 is nonzero for the corresponding modes. But don't do this
4135 for an (LSHIFTRT (MULT ...)) since this will cause problems
4136 with the umulXi3_highpart patterns. */
4137 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4138 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
4139 && num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4140 >= (unsigned int) (GET_MODE_BITSIZE (mode
) + 1)
4141 && ! (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4142 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == MULT
))
4143 return gen_lowpart (mode
, XEXP (x
, 0));
4145 /* A truncate of a comparison can be replaced with a subreg if
4146 STORE_FLAG_VALUE permits. This is like the previous test,
4147 but it works even if the comparison is done in a mode larger
4148 than HOST_BITS_PER_WIDE_INT. */
4149 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4150 && COMPARISON_P (XEXP (x
, 0))
4151 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0)
4152 return gen_lowpart (mode
, XEXP (x
, 0));
4154 /* Similarly, a truncate of a register whose value is a
4155 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4157 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4158 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
4159 && (temp
= get_last_value (XEXP (x
, 0)))
4160 && COMPARISON_P (temp
))
4161 return gen_lowpart (mode
, XEXP (x
, 0));
4165 case FLOAT_TRUNCATE
:
4166 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4167 if (GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
4168 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
4169 return XEXP (XEXP (x
, 0), 0);
4171 /* (float_truncate:SF (float_truncate:DF foo:XF))
4172 = (float_truncate:SF foo:XF).
4173 This may eliminate double rounding, so it is unsafe.
4175 (float_truncate:SF (float_extend:XF foo:DF))
4176 = (float_truncate:SF foo:DF).
4178 (float_truncate:DF (float_extend:XF foo:SF))
4179 = (float_extend:SF foo:DF). */
4180 if ((GET_CODE (XEXP (x
, 0)) == FLOAT_TRUNCATE
4181 && flag_unsafe_math_optimizations
)
4182 || GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
)
4183 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x
, 0),
4185 > GET_MODE_SIZE (mode
)
4186 ? FLOAT_TRUNCATE
: FLOAT_EXTEND
,
4188 XEXP (XEXP (x
, 0), 0), mode
);
4190 /* (float_truncate (float x)) is (float x) */
4191 if (GET_CODE (XEXP (x
, 0)) == FLOAT
4192 && (flag_unsafe_math_optimizations
4193 || ((unsigned)significand_size (GET_MODE (XEXP (x
, 0)))
4194 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x
, 0), 0)))
4195 - num_sign_bit_copies (XEXP (XEXP (x
, 0), 0),
4196 GET_MODE (XEXP (XEXP (x
, 0), 0)))))))
4197 return simplify_gen_unary (FLOAT
, mode
,
4198 XEXP (XEXP (x
, 0), 0),
4199 GET_MODE (XEXP (XEXP (x
, 0), 0)));
4201 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4202 (OP:SF foo:SF) if OP is NEG or ABS. */
4203 if ((GET_CODE (XEXP (x
, 0)) == ABS
4204 || GET_CODE (XEXP (x
, 0)) == NEG
)
4205 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == FLOAT_EXTEND
4206 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4207 return simplify_gen_unary (GET_CODE (XEXP (x
, 0)), mode
,
4208 XEXP (XEXP (XEXP (x
, 0), 0), 0), mode
);
4210 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4211 is (float_truncate:SF x). */
4212 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4213 && subreg_lowpart_p (XEXP (x
, 0))
4214 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == FLOAT_TRUNCATE
)
4215 return SUBREG_REG (XEXP (x
, 0));
4218 /* (float_extend (float_extend x)) is (float_extend x)
4220 (float_extend (float x)) is (float x) assuming that double
4221 rounding can't happen.
4223 if (GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
4224 || (GET_CODE (XEXP (x
, 0)) == FLOAT
4225 && ((unsigned)significand_size (GET_MODE (XEXP (x
, 0)))
4226 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x
, 0), 0)))
4227 - num_sign_bit_copies (XEXP (XEXP (x
, 0), 0),
4228 GET_MODE (XEXP (XEXP (x
, 0), 0)))))))
4229 return simplify_gen_unary (GET_CODE (XEXP (x
, 0)), mode
,
4230 XEXP (XEXP (x
, 0), 0),
4231 GET_MODE (XEXP (XEXP (x
, 0), 0)));
4236 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4237 using cc0, in which case we want to leave it as a COMPARE
4238 so we can distinguish it from a register-register-copy. */
4239 if (XEXP (x
, 1) == const0_rtx
)
4242 /* x - 0 is the same as x unless x's mode has signed zeros and
4243 allows rounding towards -infinity. Under those conditions,
4245 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x
, 0)))
4246 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x
, 0))))
4247 && XEXP (x
, 1) == CONST0_RTX (GET_MODE (XEXP (x
, 0))))
4253 /* (const (const X)) can become (const X). Do it this way rather than
4254 returning the inner CONST since CONST can be shared with a
4256 if (GET_CODE (XEXP (x
, 0)) == CONST
)
4257 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4262 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4263 can add in an offset. find_split_point will split this address up
4264 again if it doesn't match. */
4265 if (GET_CODE (XEXP (x
, 0)) == HIGH
4266 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
4272 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4274 if (GET_CODE (XEXP (x
, 0)) == MULT
4275 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == NEG
)
4279 in1
= XEXP (XEXP (XEXP (x
, 0), 0), 0);
4280 in2
= XEXP (XEXP (x
, 0), 1);
4281 return gen_binary (MINUS
, mode
, XEXP (x
, 1),
4282 gen_binary (MULT
, mode
, in1
, in2
));
4285 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4286 outermost. That's because that's the way indexed addresses are
4287 supposed to appear. This code used to check many more cases, but
4288 they are now checked elsewhere. */
4289 if (GET_CODE (XEXP (x
, 0)) == PLUS
4290 && CONSTANT_ADDRESS_P (XEXP (XEXP (x
, 0), 1)))
4291 return gen_binary (PLUS
, mode
,
4292 gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0),
4294 XEXP (XEXP (x
, 0), 1));
4296 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4297 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4298 bit-field and can be replaced by either a sign_extend or a
4299 sign_extract. The `and' may be a zero_extend and the two
4300 <c>, -<c> constants may be reversed. */
4301 if (GET_CODE (XEXP (x
, 0)) == XOR
4302 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4303 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4304 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
4305 && ((i
= exact_log2 (INTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
4306 || (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
4307 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4308 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
4309 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
4310 && (INTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4311 == ((HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
4312 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
4313 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
4314 == (unsigned int) i
+ 1))))
4315 return simplify_shift_const
4316 (NULL_RTX
, ASHIFTRT
, mode
,
4317 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4318 XEXP (XEXP (XEXP (x
, 0), 0), 0),
4319 GET_MODE_BITSIZE (mode
) - (i
+ 1)),
4320 GET_MODE_BITSIZE (mode
) - (i
+ 1));
4322 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4323 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4324 is 1. This produces better code than the alternative immediately
4326 if (COMPARISON_P (XEXP (x
, 0))
4327 && ((STORE_FLAG_VALUE
== -1 && XEXP (x
, 1) == const1_rtx
)
4328 || (STORE_FLAG_VALUE
== 1 && XEXP (x
, 1) == constm1_rtx
))
4329 && (reversed
= reversed_comparison (XEXP (x
, 0), mode
,
4330 XEXP (XEXP (x
, 0), 0),
4331 XEXP (XEXP (x
, 0), 1))))
4333 simplify_gen_unary (NEG
, mode
, reversed
, mode
);
4335 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4336 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4337 the bitsize of the mode - 1. This allows simplification of
4338 "a = (b & 8) == 0;" */
4339 if (XEXP (x
, 1) == constm1_rtx
4340 && !REG_P (XEXP (x
, 0))
4341 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
4342 && REG_P (SUBREG_REG (XEXP (x
, 0))))
4343 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
4344 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
4345 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4346 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
4347 GET_MODE_BITSIZE (mode
) - 1),
4348 GET_MODE_BITSIZE (mode
) - 1);
4350 /* If we are adding two things that have no bits in common, convert
4351 the addition into an IOR. This will often be further simplified,
4352 for example in cases like ((a & 1) + (a & 2)), which can
4355 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4356 && (nonzero_bits (XEXP (x
, 0), mode
)
4357 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
4359 /* Try to simplify the expression further. */
4360 rtx tor
= gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4361 temp
= combine_simplify_rtx (tor
, mode
, in_dest
);
4363 /* If we could, great. If not, do not go ahead with the IOR
4364 replacement, since PLUS appears in many special purpose
4365 address arithmetic instructions. */
4366 if (GET_CODE (temp
) != CLOBBER
&& temp
!= tor
)
4372 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4373 by reversing the comparison code if valid. */
4374 if (STORE_FLAG_VALUE
== 1
4375 && XEXP (x
, 0) == const1_rtx
4376 && COMPARISON_P (XEXP (x
, 1))
4377 && (reversed
= reversed_comparison (XEXP (x
, 1), mode
,
4378 XEXP (XEXP (x
, 1), 0),
4379 XEXP (XEXP (x
, 1), 1))))
4382 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4383 (and <foo> (const_int pow2-1)) */
4384 if (GET_CODE (XEXP (x
, 1)) == AND
4385 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4386 && exact_log2 (-INTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
4387 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
4388 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
4389 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
4391 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4393 if (GET_CODE (XEXP (x
, 1)) == MULT
4394 && GET_CODE (XEXP (XEXP (x
, 1), 0)) == NEG
)
4398 in1
= XEXP (XEXP (XEXP (x
, 1), 0), 0);
4399 in2
= XEXP (XEXP (x
, 1), 1);
4400 return gen_binary (PLUS
, mode
, gen_binary (MULT
, mode
, in1
, in2
),
4404 /* Canonicalize (minus (neg A) (mult B C)) to
4405 (minus (mult (neg B) C) A). */
4406 if (GET_CODE (XEXP (x
, 1)) == MULT
4407 && GET_CODE (XEXP (x
, 0)) == NEG
)
4411 in1
= simplify_gen_unary (NEG
, mode
, XEXP (XEXP (x
, 1), 0), mode
);
4412 in2
= XEXP (XEXP (x
, 1), 1);
4413 return gen_binary (MINUS
, mode
, gen_binary (MULT
, mode
, in1
, in2
),
4414 XEXP (XEXP (x
, 0), 0));
4417 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4419 if (GET_CODE (XEXP (x
, 1)) == PLUS
&& INTEGRAL_MODE_P (mode
))
4420 return gen_binary (MINUS
, mode
,
4421 gen_binary (MINUS
, mode
, XEXP (x
, 0),
4422 XEXP (XEXP (x
, 1), 0)),
4423 XEXP (XEXP (x
, 1), 1));
4427 /* If we have (mult (plus A B) C), apply the distributive law and then
4428 the inverse distributive law to see if things simplify. This
4429 occurs mostly in addresses, often when unrolling loops. */
4431 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
4433 x
= apply_distributive_law
4434 (gen_binary (PLUS
, mode
,
4435 gen_binary (MULT
, mode
,
4436 XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)),
4437 gen_binary (MULT
, mode
,
4438 XEXP (XEXP (x
, 0), 1),
4439 copy_rtx (XEXP (x
, 1)))));
4441 if (GET_CODE (x
) != MULT
)
4444 /* Try simplify a*(b/c) as (a*b)/c. */
4445 if (FLOAT_MODE_P (mode
) && flag_unsafe_math_optimizations
4446 && GET_CODE (XEXP (x
, 0)) == DIV
)
4448 rtx tem
= simplify_binary_operation (MULT
, mode
,
4449 XEXP (XEXP (x
, 0), 0),
4452 return gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
4457 /* If this is a divide by a power of two, treat it as a shift if
4458 its first operand is a shift. */
4459 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4460 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0
4461 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
4462 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4463 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
4464 || GET_CODE (XEXP (x
, 0)) == ROTATE
4465 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
4466 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
4470 case GT
: case GTU
: case GE
: case GEU
:
4471 case LT
: case LTU
: case LE
: case LEU
:
4472 case UNEQ
: case LTGT
:
4473 case UNGT
: case UNGE
:
4474 case UNLT
: case UNLE
:
4475 case UNORDERED
: case ORDERED
:
4476 /* If the first operand is a condition code, we can't do anything
4478 if (GET_CODE (XEXP (x
, 0)) == COMPARE
4479 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
4480 && ! CC0_P (XEXP (x
, 0))))
4482 rtx op0
= XEXP (x
, 0);
4483 rtx op1
= XEXP (x
, 1);
4484 enum rtx_code new_code
;
4486 if (GET_CODE (op0
) == COMPARE
)
4487 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4489 /* Simplify our comparison, if possible. */
4490 new_code
= simplify_comparison (code
, &op0
, &op1
);
4492 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4493 if only the low-order bit is possibly nonzero in X (such as when
4494 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4495 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4496 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4499 Remove any ZERO_EXTRACT we made when thinking this was a
4500 comparison. It may now be simpler to use, e.g., an AND. If a
4501 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4502 the call to make_compound_operation in the SET case. */
4504 if (STORE_FLAG_VALUE
== 1
4505 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4506 && op1
== const0_rtx
4507 && mode
== GET_MODE (op0
)
4508 && nonzero_bits (op0
, mode
) == 1)
4509 return gen_lowpart (mode
,
4510 expand_compound_operation (op0
));
4512 else if (STORE_FLAG_VALUE
== 1
4513 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4514 && op1
== const0_rtx
4515 && mode
== GET_MODE (op0
)
4516 && (num_sign_bit_copies (op0
, mode
)
4517 == GET_MODE_BITSIZE (mode
)))
4519 op0
= expand_compound_operation (op0
);
4520 return simplify_gen_unary (NEG
, mode
,
4521 gen_lowpart (mode
, op0
),
4525 else if (STORE_FLAG_VALUE
== 1
4526 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4527 && op1
== const0_rtx
4528 && mode
== GET_MODE (op0
)
4529 && nonzero_bits (op0
, mode
) == 1)
4531 op0
= expand_compound_operation (op0
);
4532 return gen_binary (XOR
, mode
,
4533 gen_lowpart (mode
, op0
),
4537 else if (STORE_FLAG_VALUE
== 1
4538 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4539 && op1
== const0_rtx
4540 && mode
== GET_MODE (op0
)
4541 && (num_sign_bit_copies (op0
, mode
)
4542 == GET_MODE_BITSIZE (mode
)))
4544 op0
= expand_compound_operation (op0
);
4545 return plus_constant (gen_lowpart (mode
, op0
), 1);
4548 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4550 if (STORE_FLAG_VALUE
== -1
4551 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4552 && op1
== const0_rtx
4553 && (num_sign_bit_copies (op0
, mode
)
4554 == GET_MODE_BITSIZE (mode
)))
4555 return gen_lowpart (mode
,
4556 expand_compound_operation (op0
));
4558 else if (STORE_FLAG_VALUE
== -1
4559 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4560 && op1
== const0_rtx
4561 && mode
== GET_MODE (op0
)
4562 && nonzero_bits (op0
, mode
) == 1)
4564 op0
= expand_compound_operation (op0
);
4565 return simplify_gen_unary (NEG
, mode
,
4566 gen_lowpart (mode
, op0
),
4570 else if (STORE_FLAG_VALUE
== -1
4571 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4572 && op1
== const0_rtx
4573 && mode
== GET_MODE (op0
)
4574 && (num_sign_bit_copies (op0
, mode
)
4575 == GET_MODE_BITSIZE (mode
)))
4577 op0
= expand_compound_operation (op0
);
4578 return simplify_gen_unary (NOT
, mode
,
4579 gen_lowpart (mode
, op0
),
4583 /* If X is 0/1, (eq X 0) is X-1. */
4584 else if (STORE_FLAG_VALUE
== -1
4585 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4586 && op1
== const0_rtx
4587 && mode
== GET_MODE (op0
)
4588 && nonzero_bits (op0
, mode
) == 1)
4590 op0
= expand_compound_operation (op0
);
4591 return plus_constant (gen_lowpart (mode
, op0
), -1);
4594 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4595 one bit that might be nonzero, we can convert (ne x 0) to
4596 (ashift x c) where C puts the bit in the sign bit. Remove any
4597 AND with STORE_FLAG_VALUE when we are done, since we are only
4598 going to test the sign bit. */
4599 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4600 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4601 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
4602 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
4603 && op1
== const0_rtx
4604 && mode
== GET_MODE (op0
)
4605 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
4607 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4608 expand_compound_operation (op0
),
4609 GET_MODE_BITSIZE (mode
) - 1 - i
);
4610 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
4616 /* If the code changed, return a whole new comparison. */
4617 if (new_code
!= code
)
4618 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
4620 /* Otherwise, keep this operation, but maybe change its operands.
4621 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4622 SUBST (XEXP (x
, 0), op0
);
4623 SUBST (XEXP (x
, 1), op1
);
4628 return simplify_if_then_else (x
);
4634 /* If we are processing SET_DEST, we are done. */
4638 return expand_compound_operation (x
);
4641 return simplify_set (x
);
4646 return simplify_logical (x
);
4649 /* (abs (neg <foo>)) -> (abs <foo>) */
4650 if (GET_CODE (XEXP (x
, 0)) == NEG
)
4651 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4653 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4655 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
4658 /* If operand is something known to be positive, ignore the ABS. */
4659 if (GET_CODE (XEXP (x
, 0)) == FFS
|| GET_CODE (XEXP (x
, 0)) == ABS
4660 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4661 <= HOST_BITS_PER_WIDE_INT
)
4662 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4663 & ((HOST_WIDE_INT
) 1
4664 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1)))
4668 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4669 if (num_sign_bit_copies (XEXP (x
, 0), mode
) == GET_MODE_BITSIZE (mode
))
4670 return gen_rtx_NEG (mode
, XEXP (x
, 0));
4675 /* (ffs (*_extend <X>)) = (ffs <X>) */
4676 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
4677 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4678 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4683 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4684 if (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4685 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4689 /* (float (sign_extend <X>)) = (float <X>). */
4690 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
4691 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4699 /* If this is a shift by a constant amount, simplify it. */
4700 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4701 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
4702 INTVAL (XEXP (x
, 1)));
4704 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
4706 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
4708 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
4715 rtx op0
= XEXP (x
, 0);
4716 rtx op1
= XEXP (x
, 1);
4719 gcc_assert (GET_CODE (op1
) == PARALLEL
);
4720 len
= XVECLEN (op1
, 0);
4722 && GET_CODE (XVECEXP (op1
, 0, 0)) == CONST_INT
4723 && GET_CODE (op0
) == VEC_CONCAT
)
4725 int offset
= INTVAL (XVECEXP (op1
, 0, 0)) * GET_MODE_SIZE (GET_MODE (x
));
4727 /* Try to find the element in the VEC_CONCAT. */
4730 if (GET_MODE (op0
) == GET_MODE (x
))
4732 if (GET_CODE (op0
) == VEC_CONCAT
)
4734 HOST_WIDE_INT op0_size
= GET_MODE_SIZE (GET_MODE (XEXP (op0
, 0)));
4735 if (op0_size
< offset
)
4736 op0
= XEXP (op0
, 0);
4740 op0
= XEXP (op0
, 1);
4758 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4761 simplify_if_then_else (rtx x
)
4763 enum machine_mode mode
= GET_MODE (x
);
4764 rtx cond
= XEXP (x
, 0);
4765 rtx true_rtx
= XEXP (x
, 1);
4766 rtx false_rtx
= XEXP (x
, 2);
4767 enum rtx_code true_code
= GET_CODE (cond
);
4768 int comparison_p
= COMPARISON_P (cond
);
4771 enum rtx_code false_code
;
4774 /* Simplify storing of the truth value. */
4775 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
4776 return gen_binary (true_code
, mode
, XEXP (cond
, 0), XEXP (cond
, 1));
4778 /* Also when the truth value has to be reversed. */
4780 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
4781 && (reversed
= reversed_comparison (cond
, mode
, XEXP (cond
, 0),
4785 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4786 in it is being compared against certain values. Get the true and false
4787 comparisons and see if that says anything about the value of each arm. */
4790 && ((false_code
= combine_reversed_comparison_code (cond
))
4792 && REG_P (XEXP (cond
, 0)))
4795 rtx from
= XEXP (cond
, 0);
4796 rtx true_val
= XEXP (cond
, 1);
4797 rtx false_val
= true_val
;
4800 /* If FALSE_CODE is EQ, swap the codes and arms. */
4802 if (false_code
== EQ
)
4804 swapped
= 1, true_code
= EQ
, false_code
= NE
;
4805 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4808 /* If we are comparing against zero and the expression being tested has
4809 only a single bit that might be nonzero, that is its value when it is
4810 not equal to zero. Similarly if it is known to be -1 or 0. */
4812 if (true_code
== EQ
&& true_val
== const0_rtx
4813 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
4814 false_code
= EQ
, false_val
= GEN_INT (nzb
);
4815 else if (true_code
== EQ
&& true_val
== const0_rtx
4816 && (num_sign_bit_copies (from
, GET_MODE (from
))
4817 == GET_MODE_BITSIZE (GET_MODE (from
))))
4818 false_code
= EQ
, false_val
= constm1_rtx
;
4820 /* Now simplify an arm if we know the value of the register in the
4821 branch and it is used in the arm. Be careful due to the potential
4822 of locally-shared RTL. */
4824 if (reg_mentioned_p (from
, true_rtx
))
4825 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
4827 pc_rtx
, pc_rtx
, 0, 0);
4828 if (reg_mentioned_p (from
, false_rtx
))
4829 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
4831 pc_rtx
, pc_rtx
, 0, 0);
4833 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
4834 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
4836 true_rtx
= XEXP (x
, 1);
4837 false_rtx
= XEXP (x
, 2);
4838 true_code
= GET_CODE (cond
);
4841 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4842 reversed, do so to avoid needing two sets of patterns for
4843 subtract-and-branch insns. Similarly if we have a constant in the true
4844 arm, the false arm is the same as the first operand of the comparison, or
4845 the false arm is more complicated than the true arm. */
4848 && combine_reversed_comparison_code (cond
) != UNKNOWN
4849 && (true_rtx
== pc_rtx
4850 || (CONSTANT_P (true_rtx
)
4851 && GET_CODE (false_rtx
) != CONST_INT
&& false_rtx
!= pc_rtx
)
4852 || true_rtx
== const0_rtx
4853 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
4854 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
4855 && !OBJECT_P (false_rtx
))
4856 || reg_mentioned_p (true_rtx
, false_rtx
)
4857 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
4859 true_code
= reversed_comparison_code (cond
, NULL
);
4861 reversed_comparison (cond
, GET_MODE (cond
), XEXP (cond
, 0),
4864 SUBST (XEXP (x
, 1), false_rtx
);
4865 SUBST (XEXP (x
, 2), true_rtx
);
4867 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
4870 /* It is possible that the conditional has been simplified out. */
4871 true_code
= GET_CODE (cond
);
4872 comparison_p
= COMPARISON_P (cond
);
4875 /* If the two arms are identical, we don't need the comparison. */
4877 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
4880 /* Convert a == b ? b : a to "a". */
4881 if (true_code
== EQ
&& ! side_effects_p (cond
)
4882 && !HONOR_NANS (mode
)
4883 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
4884 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
4886 else if (true_code
== NE
&& ! side_effects_p (cond
)
4887 && !HONOR_NANS (mode
)
4888 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4889 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
4892 /* Look for cases where we have (abs x) or (neg (abs X)). */
4894 if (GET_MODE_CLASS (mode
) == MODE_INT
4895 && GET_CODE (false_rtx
) == NEG
4896 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
4898 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
4899 && ! side_effects_p (true_rtx
))
4904 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
4908 simplify_gen_unary (NEG
, mode
,
4909 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
4915 /* Look for MIN or MAX. */
4917 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
4919 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
4920 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
4921 && ! side_effects_p (cond
))
4926 return gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
4929 return gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
4932 return gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
4935 return gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
4940 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4941 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4942 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4943 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4944 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4945 neither 1 or -1, but it isn't worth checking for. */
4947 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
4949 && GET_MODE_CLASS (mode
) == MODE_INT
4950 && ! side_effects_p (x
))
4952 rtx t
= make_compound_operation (true_rtx
, SET
);
4953 rtx f
= make_compound_operation (false_rtx
, SET
);
4954 rtx cond_op0
= XEXP (cond
, 0);
4955 rtx cond_op1
= XEXP (cond
, 1);
4956 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
4957 enum machine_mode m
= mode
;
4958 rtx z
= 0, c1
= NULL_RTX
;
4960 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
4961 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
4962 || GET_CODE (t
) == ASHIFT
4963 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
4964 && rtx_equal_p (XEXP (t
, 0), f
))
4965 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
4967 /* If an identity-zero op is commutative, check whether there
4968 would be a match if we swapped the operands. */
4969 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
4970 || GET_CODE (t
) == XOR
)
4971 && rtx_equal_p (XEXP (t
, 1), f
))
4972 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
4973 else if (GET_CODE (t
) == SIGN_EXTEND
4974 && (GET_CODE (XEXP (t
, 0)) == PLUS
4975 || GET_CODE (XEXP (t
, 0)) == MINUS
4976 || GET_CODE (XEXP (t
, 0)) == IOR
4977 || GET_CODE (XEXP (t
, 0)) == XOR
4978 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4979 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4980 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4981 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4982 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4983 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4984 && (num_sign_bit_copies (f
, GET_MODE (f
))
4986 (GET_MODE_BITSIZE (mode
)
4987 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
4989 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4990 extend_op
= SIGN_EXTEND
;
4991 m
= GET_MODE (XEXP (t
, 0));
4993 else if (GET_CODE (t
) == SIGN_EXTEND
4994 && (GET_CODE (XEXP (t
, 0)) == PLUS
4995 || GET_CODE (XEXP (t
, 0)) == IOR
4996 || GET_CODE (XEXP (t
, 0)) == XOR
)
4997 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4998 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4999 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
5000 && (num_sign_bit_copies (f
, GET_MODE (f
))
5002 (GET_MODE_BITSIZE (mode
)
5003 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
5005 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5006 extend_op
= SIGN_EXTEND
;
5007 m
= GET_MODE (XEXP (t
, 0));
5009 else if (GET_CODE (t
) == ZERO_EXTEND
5010 && (GET_CODE (XEXP (t
, 0)) == PLUS
5011 || GET_CODE (XEXP (t
, 0)) == MINUS
5012 || GET_CODE (XEXP (t
, 0)) == IOR
5013 || GET_CODE (XEXP (t
, 0)) == XOR
5014 || GET_CODE (XEXP (t
, 0)) == ASHIFT
5015 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
5016 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
5017 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
5018 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5019 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
5020 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
5021 && ((nonzero_bits (f
, GET_MODE (f
))
5022 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
5025 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5026 extend_op
= ZERO_EXTEND
;
5027 m
= GET_MODE (XEXP (t
, 0));
5029 else if (GET_CODE (t
) == ZERO_EXTEND
5030 && (GET_CODE (XEXP (t
, 0)) == PLUS
5031 || GET_CODE (XEXP (t
, 0)) == IOR
5032 || GET_CODE (XEXP (t
, 0)) == XOR
)
5033 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
5034 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5035 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
5036 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
5037 && ((nonzero_bits (f
, GET_MODE (f
))
5038 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
5041 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
5042 extend_op
= ZERO_EXTEND
;
5043 m
= GET_MODE (XEXP (t
, 0));
5048 temp
= subst (gen_binary (true_code
, m
, cond_op0
, cond_op1
),
5049 pc_rtx
, pc_rtx
, 0, 0);
5050 temp
= gen_binary (MULT
, m
, temp
,
5051 gen_binary (MULT
, m
, c1
, const_true_rtx
));
5052 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0);
5053 temp
= gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
5055 if (extend_op
!= UNKNOWN
)
5056 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
5062 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5063 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5064 negation of a single bit, we can convert this operation to a shift. We
5065 can actually do this more generally, but it doesn't seem worth it. */
5067 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
5068 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
5069 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
5070 && (i
= exact_log2 (INTVAL (true_rtx
))) >= 0)
5071 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
5072 == GET_MODE_BITSIZE (mode
))
5073 && (i
= exact_log2 (-INTVAL (true_rtx
))) >= 0)))
5075 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5076 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
5078 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5079 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
5080 && false_rtx
== const0_rtx
&& GET_CODE (true_rtx
) == CONST_INT
5081 && GET_MODE (XEXP (cond
, 0)) == mode
5082 && (INTVAL (true_rtx
) & GET_MODE_MASK (mode
))
5083 == nonzero_bits (XEXP (cond
, 0), mode
)
5084 && (i
= exact_log2 (INTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
5085 return XEXP (cond
, 0);
5090 /* Simplify X, a SET expression. Return the new expression. */
5093 simplify_set (rtx x
)
5095 rtx src
= SET_SRC (x
);
5096 rtx dest
= SET_DEST (x
);
5097 enum machine_mode mode
5098 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
5102 /* (set (pc) (return)) gets written as (return). */
5103 if (GET_CODE (dest
) == PC
&& GET_CODE (src
) == RETURN
)
5106 /* Now that we know for sure which bits of SRC we are using, see if we can
5107 simplify the expression for the object knowing that we only need the
5110 if (GET_MODE_CLASS (mode
) == MODE_INT
5111 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
5113 src
= force_to_mode (src
, mode
, ~(HOST_WIDE_INT
) 0, NULL_RTX
, 0);
5114 SUBST (SET_SRC (x
), src
);
5117 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5118 the comparison result and try to simplify it unless we already have used
5119 undobuf.other_insn. */
5120 if ((GET_MODE_CLASS (mode
) == MODE_CC
5121 || GET_CODE (src
) == COMPARE
5123 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
5124 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
5125 && COMPARISON_P (*cc_use
)
5126 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
5128 enum rtx_code old_code
= GET_CODE (*cc_use
);
5129 enum rtx_code new_code
;
5131 int other_changed
= 0;
5132 enum machine_mode compare_mode
= GET_MODE (dest
);
5134 if (GET_CODE (src
) == COMPARE
)
5135 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
5137 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
5139 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
5142 new_code
= old_code
;
5143 else if (!CONSTANT_P (tmp
))
5145 new_code
= GET_CODE (tmp
);
5146 op0
= XEXP (tmp
, 0);
5147 op1
= XEXP (tmp
, 1);
5151 rtx pat
= PATTERN (other_insn
);
5152 undobuf
.other_insn
= other_insn
;
5153 SUBST (*cc_use
, tmp
);
5155 /* Attempt to simplify CC user. */
5156 if (GET_CODE (pat
) == SET
)
5158 rtx
new = simplify_rtx (SET_SRC (pat
));
5159 if (new != NULL_RTX
)
5160 SUBST (SET_SRC (pat
), new);
5163 /* Convert X into a no-op move. */
5164 SUBST (SET_DEST (x
), pc_rtx
);
5165 SUBST (SET_SRC (x
), pc_rtx
);
5169 /* Simplify our comparison, if possible. */
5170 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
5172 #ifdef SELECT_CC_MODE
5173 /* If this machine has CC modes other than CCmode, check to see if we
5174 need to use a different CC mode here. */
5175 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5176 compare_mode
= GET_MODE (op0
);
5178 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
5181 /* If the mode changed, we have to change SET_DEST, the mode in the
5182 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5183 a hard register, just build new versions with the proper mode. If it
5184 is a pseudo, we lose unless it is only time we set the pseudo, in
5185 which case we can safely change its mode. */
5186 if (compare_mode
!= GET_MODE (dest
))
5188 unsigned int regno
= REGNO (dest
);
5189 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
5191 if (regno
< FIRST_PSEUDO_REGISTER
5192 || (REG_N_SETS (regno
) == 1 && ! REG_USERVAR_P (dest
)))
5194 if (regno
>= FIRST_PSEUDO_REGISTER
)
5195 SUBST (regno_reg_rtx
[regno
], new_dest
);
5197 SUBST (SET_DEST (x
), new_dest
);
5198 SUBST (XEXP (*cc_use
, 0), new_dest
);
5205 #endif /* SELECT_CC_MODE */
5207 /* If the code changed, we have to build a new comparison in
5208 undobuf.other_insn. */
5209 if (new_code
!= old_code
)
5211 int other_changed_previously
= other_changed
;
5212 unsigned HOST_WIDE_INT mask
;
5214 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
5218 /* If the only change we made was to change an EQ into an NE or
5219 vice versa, OP0 has only one bit that might be nonzero, and OP1
5220 is zero, check if changing the user of the condition code will
5221 produce a valid insn. If it won't, we can keep the original code
5222 in that insn by surrounding our operation with an XOR. */
5224 if (((old_code
== NE
&& new_code
== EQ
)
5225 || (old_code
== EQ
&& new_code
== NE
))
5226 && ! other_changed_previously
&& op1
== const0_rtx
5227 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
5228 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
5230 rtx pat
= PATTERN (other_insn
), note
= 0;
5232 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
5233 && ! check_asm_operands (pat
)))
5235 PUT_CODE (*cc_use
, old_code
);
5238 op0
= gen_binary (XOR
, GET_MODE (op0
), op0
, GEN_INT (mask
));
5244 undobuf
.other_insn
= other_insn
;
5247 /* If we are now comparing against zero, change our source if
5248 needed. If we do not use cc0, we always have a COMPARE. */
5249 if (op1
== const0_rtx
&& dest
== cc0_rtx
)
5251 SUBST (SET_SRC (x
), op0
);
5257 /* Otherwise, if we didn't previously have a COMPARE in the
5258 correct mode, we need one. */
5259 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
5261 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
5266 /* Otherwise, update the COMPARE if needed. */
5267 SUBST (XEXP (src
, 0), op0
);
5268 SUBST (XEXP (src
, 1), op1
);
5273 /* Get SET_SRC in a form where we have placed back any
5274 compound expressions. Then do the checks below. */
5275 src
= make_compound_operation (src
, SET
);
5276 SUBST (SET_SRC (x
), src
);
5279 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5280 and X being a REG or (subreg (reg)), we may be able to convert this to
5281 (set (subreg:m2 x) (op)).
5283 We can always do this if M1 is narrower than M2 because that means that
5284 we only care about the low bits of the result.
5286 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5287 perform a narrower operation than requested since the high-order bits will
5288 be undefined. On machine where it is defined, this transformation is safe
5289 as long as M1 and M2 have the same number of words. */
5291 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5292 && !OBJECT_P (SUBREG_REG (src
))
5293 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
5295 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
5296 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
5297 #ifndef WORD_REGISTER_OPERATIONS
5298 && (GET_MODE_SIZE (GET_MODE (src
))
5299 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5301 #ifdef CANNOT_CHANGE_MODE_CLASS
5302 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
5303 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
5304 GET_MODE (SUBREG_REG (src
)),
5308 || (GET_CODE (dest
) == SUBREG
5309 && REG_P (SUBREG_REG (dest
)))))
5311 SUBST (SET_DEST (x
),
5312 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
5314 SUBST (SET_SRC (x
), SUBREG_REG (src
));
5316 src
= SET_SRC (x
), dest
= SET_DEST (x
);
5320 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5323 && GET_CODE (src
) == SUBREG
5324 && subreg_lowpart_p (src
)
5325 && (GET_MODE_BITSIZE (GET_MODE (src
))
5326 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src
)))))
5328 rtx inner
= SUBREG_REG (src
);
5329 enum machine_mode inner_mode
= GET_MODE (inner
);
5331 /* Here we make sure that we don't have a sign bit on. */
5332 if (GET_MODE_BITSIZE (inner_mode
) <= HOST_BITS_PER_WIDE_INT
5333 && (nonzero_bits (inner
, inner_mode
)
5334 < ((unsigned HOST_WIDE_INT
) 1
5335 << (GET_MODE_BITSIZE (GET_MODE (src
)) - 1))))
5337 SUBST (SET_SRC (x
), inner
);
5343 #ifdef LOAD_EXTEND_OP
5344 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5345 would require a paradoxical subreg. Replace the subreg with a
5346 zero_extend to avoid the reload that would otherwise be required. */
5348 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
5349 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != UNKNOWN
5350 && SUBREG_BYTE (src
) == 0
5351 && (GET_MODE_SIZE (GET_MODE (src
))
5352 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
5353 && MEM_P (SUBREG_REG (src
)))
5356 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
5357 GET_MODE (src
), SUBREG_REG (src
)));
5363 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5364 are comparing an item known to be 0 or -1 against 0, use a logical
5365 operation instead. Check for one of the arms being an IOR of the other
5366 arm with some value. We compute three terms to be IOR'ed together. In
5367 practice, at most two will be nonzero. Then we do the IOR's. */
5369 if (GET_CODE (dest
) != PC
5370 && GET_CODE (src
) == IF_THEN_ELSE
5371 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
5372 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
5373 && XEXP (XEXP (src
, 0), 1) == const0_rtx
5374 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
5375 #ifdef HAVE_conditional_move
5376 && ! can_conditionally_move_p (GET_MODE (src
))
5378 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
5379 GET_MODE (XEXP (XEXP (src
, 0), 0)))
5380 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src
, 0), 0))))
5381 && ! side_effects_p (src
))
5383 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5384 ? XEXP (src
, 1) : XEXP (src
, 2));
5385 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
5386 ? XEXP (src
, 2) : XEXP (src
, 1));
5387 rtx term1
= const0_rtx
, term2
, term3
;
5389 if (GET_CODE (true_rtx
) == IOR
5390 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
5391 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
5392 else if (GET_CODE (true_rtx
) == IOR
5393 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
5394 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
5395 else if (GET_CODE (false_rtx
) == IOR
5396 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
5397 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
5398 else if (GET_CODE (false_rtx
) == IOR
5399 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
5400 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
5402 term2
= gen_binary (AND
, GET_MODE (src
),
5403 XEXP (XEXP (src
, 0), 0), true_rtx
);
5404 term3
= gen_binary (AND
, GET_MODE (src
),
5405 simplify_gen_unary (NOT
, GET_MODE (src
),
5406 XEXP (XEXP (src
, 0), 0),
5411 gen_binary (IOR
, GET_MODE (src
),
5412 gen_binary (IOR
, GET_MODE (src
), term1
, term2
),
5418 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5419 whole thing fail. */
5420 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
5422 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
5425 /* Convert this into a field assignment operation, if possible. */
5426 return make_field_assignment (x
);
5429 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5433 simplify_logical (rtx x
)
5435 enum machine_mode mode
= GET_MODE (x
);
5436 rtx op0
= XEXP (x
, 0);
5437 rtx op1
= XEXP (x
, 1);
5440 switch (GET_CODE (x
))
5443 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5444 insn (and may simplify more). */
5445 if (GET_CODE (op0
) == XOR
5446 && rtx_equal_p (XEXP (op0
, 0), op1
)
5447 && ! side_effects_p (op1
))
5448 x
= gen_binary (AND
, mode
,
5449 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 1), mode
),
5452 if (GET_CODE (op0
) == XOR
5453 && rtx_equal_p (XEXP (op0
, 1), op1
)
5454 && ! side_effects_p (op1
))
5455 x
= gen_binary (AND
, mode
,
5456 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 0), mode
),
5459 /* Similarly for (~(A ^ B)) & A. */
5460 if (GET_CODE (op0
) == NOT
5461 && GET_CODE (XEXP (op0
, 0)) == XOR
5462 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), op1
)
5463 && ! side_effects_p (op1
))
5464 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 1), op1
);
5466 if (GET_CODE (op0
) == NOT
5467 && GET_CODE (XEXP (op0
, 0)) == XOR
5468 && rtx_equal_p (XEXP (XEXP (op0
, 0), 1), op1
)
5469 && ! side_effects_p (op1
))
5470 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 0), op1
);
5472 /* We can call simplify_and_const_int only if we don't lose
5473 any (sign) bits when converting INTVAL (op1) to
5474 "unsigned HOST_WIDE_INT". */
5475 if (GET_CODE (op1
) == CONST_INT
5476 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5477 || INTVAL (op1
) > 0))
5479 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
5481 /* If we have (ior (and (X C1) C2)) and the next restart would be
5482 the last, simplify this by making C1 as small as possible
5483 and then exit. Only do this if C1 actually changes: for now
5484 this only saves memory but, should this transformation be
5485 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5486 if (GET_CODE (x
) == IOR
&& GET_CODE (op0
) == AND
5487 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5488 && GET_CODE (op1
) == CONST_INT
5489 && (INTVAL (XEXP (op0
, 1)) & INTVAL (op1
)) != 0)
5490 return gen_binary (IOR
, mode
,
5491 gen_binary (AND
, mode
, XEXP (op0
, 0),
5492 GEN_INT (INTVAL (XEXP (op0
, 1))
5493 & ~INTVAL (op1
))), op1
);
5495 if (GET_CODE (x
) != AND
)
5502 /* Convert (A | B) & A to A. */
5503 if (GET_CODE (op0
) == IOR
5504 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5505 || rtx_equal_p (XEXP (op0
, 1), op1
))
5506 && ! side_effects_p (XEXP (op0
, 0))
5507 && ! side_effects_p (XEXP (op0
, 1)))
5510 /* In the following group of tests (and those in case IOR below),
5511 we start with some combination of logical operations and apply
5512 the distributive law followed by the inverse distributive law.
5513 Most of the time, this results in no change. However, if some of
5514 the operands are the same or inverses of each other, simplifications
5517 For example, (and (ior A B) (not B)) can occur as the result of
5518 expanding a bit field assignment. When we apply the distributive
5519 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5520 which then simplifies to (and (A (not B))).
5522 If we have (and (ior A B) C), apply the distributive law and then
5523 the inverse distributive law to see if things simplify. */
5525 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
5527 x
= apply_distributive_law
5528 (gen_binary (GET_CODE (op0
), mode
,
5529 gen_binary (AND
, mode
, XEXP (op0
, 0), op1
),
5530 gen_binary (AND
, mode
, XEXP (op0
, 1),
5532 if (GET_CODE (x
) != AND
)
5536 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
5537 return apply_distributive_law
5538 (gen_binary (GET_CODE (op1
), mode
,
5539 gen_binary (AND
, mode
, XEXP (op1
, 0), op0
),
5540 gen_binary (AND
, mode
, XEXP (op1
, 1),
5543 /* Similarly, taking advantage of the fact that
5544 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5546 if (GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == XOR
)
5547 return apply_distributive_law
5548 (gen_binary (XOR
, mode
,
5549 gen_binary (IOR
, mode
, XEXP (op0
, 0), XEXP (op1
, 0)),
5550 gen_binary (IOR
, mode
, copy_rtx (XEXP (op0
, 0)),
5553 else if (GET_CODE (op1
) == NOT
&& GET_CODE (op0
) == XOR
)
5554 return apply_distributive_law
5555 (gen_binary (XOR
, mode
,
5556 gen_binary (IOR
, mode
, XEXP (op1
, 0), XEXP (op0
, 0)),
5557 gen_binary (IOR
, mode
, copy_rtx (XEXP (op1
, 0)), XEXP (op0
, 1))));
5561 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5562 if (GET_CODE (op1
) == CONST_INT
5563 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5564 && (nonzero_bits (op0
, mode
) & ~INTVAL (op1
)) == 0)
5567 /* Convert (A & B) | A to A. */
5568 if (GET_CODE (op0
) == AND
5569 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5570 || rtx_equal_p (XEXP (op0
, 1), op1
))
5571 && ! side_effects_p (XEXP (op0
, 0))
5572 && ! side_effects_p (XEXP (op0
, 1)))
5575 /* If we have (ior (and A B) C), apply the distributive law and then
5576 the inverse distributive law to see if things simplify. */
5578 if (GET_CODE (op0
) == AND
)
5580 x
= apply_distributive_law
5581 (gen_binary (AND
, mode
,
5582 gen_binary (IOR
, mode
, XEXP (op0
, 0), op1
),
5583 gen_binary (IOR
, mode
, XEXP (op0
, 1),
5586 if (GET_CODE (x
) != IOR
)
5590 if (GET_CODE (op1
) == AND
)
5592 x
= apply_distributive_law
5593 (gen_binary (AND
, mode
,
5594 gen_binary (IOR
, mode
, XEXP (op1
, 0), op0
),
5595 gen_binary (IOR
, mode
, XEXP (op1
, 1),
5598 if (GET_CODE (x
) != IOR
)
5602 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5603 mode size to (rotate A CX). */
5605 if (((GET_CODE (op0
) == ASHIFT
&& GET_CODE (op1
) == LSHIFTRT
)
5606 || (GET_CODE (op1
) == ASHIFT
&& GET_CODE (op0
) == LSHIFTRT
))
5607 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
5608 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5609 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
5610 && (INTVAL (XEXP (op0
, 1)) + INTVAL (XEXP (op1
, 1))
5611 == GET_MODE_BITSIZE (mode
)))
5612 return gen_rtx_ROTATE (mode
, XEXP (op0
, 0),
5613 (GET_CODE (op0
) == ASHIFT
5614 ? XEXP (op0
, 1) : XEXP (op1
, 1)));
5616 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5617 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5618 does not affect any of the bits in OP1, it can really be done
5619 as a PLUS and we can associate. We do this by seeing if OP1
5620 can be safely shifted left C bits. */
5621 if (GET_CODE (op1
) == CONST_INT
&& GET_CODE (op0
) == ASHIFTRT
5622 && GET_CODE (XEXP (op0
, 0)) == PLUS
5623 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
5624 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5625 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
)
5627 int count
= INTVAL (XEXP (op0
, 1));
5628 HOST_WIDE_INT mask
= INTVAL (op1
) << count
;
5630 if (mask
>> count
== INTVAL (op1
)
5631 && (mask
& nonzero_bits (XEXP (op0
, 0), mode
)) == 0)
5633 SUBST (XEXP (XEXP (op0
, 0), 1),
5634 GEN_INT (INTVAL (XEXP (XEXP (op0
, 0), 1)) | mask
));
5641 /* If we are XORing two things that have no bits in common,
5642 convert them into an IOR. This helps to detect rotation encoded
5643 using those methods and possibly other simplifications. */
5645 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5646 && (nonzero_bits (op0
, mode
)
5647 & nonzero_bits (op1
, mode
)) == 0)
5648 return (gen_binary (IOR
, mode
, op0
, op1
));
5650 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5651 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5654 int num_negated
= 0;
5656 if (GET_CODE (op0
) == NOT
)
5657 num_negated
++, op0
= XEXP (op0
, 0);
5658 if (GET_CODE (op1
) == NOT
)
5659 num_negated
++, op1
= XEXP (op1
, 0);
5661 if (num_negated
== 2)
5663 SUBST (XEXP (x
, 0), op0
);
5664 SUBST (XEXP (x
, 1), op1
);
5666 else if (num_negated
== 1)
5668 simplify_gen_unary (NOT
, mode
, gen_binary (XOR
, mode
, op0
, op1
),
5672 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5673 correspond to a machine insn or result in further simplifications
5674 if B is a constant. */
5676 if (GET_CODE (op0
) == AND
5677 && rtx_equal_p (XEXP (op0
, 1), op1
)
5678 && ! side_effects_p (op1
))
5679 return gen_binary (AND
, mode
,
5680 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 0), mode
),
5683 else if (GET_CODE (op0
) == AND
5684 && rtx_equal_p (XEXP (op0
, 0), op1
)
5685 && ! side_effects_p (op1
))
5686 return gen_binary (AND
, mode
,
5687 simplify_gen_unary (NOT
, mode
, XEXP (op0
, 1), mode
),
5690 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5691 comparison if STORE_FLAG_VALUE is 1. */
5692 if (STORE_FLAG_VALUE
== 1
5693 && op1
== const1_rtx
5694 && COMPARISON_P (op0
)
5695 && (reversed
= reversed_comparison (op0
, mode
, XEXP (op0
, 0),
5699 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5700 is (lt foo (const_int 0)), so we can perform the above
5701 simplification if STORE_FLAG_VALUE is 1. */
5703 if (STORE_FLAG_VALUE
== 1
5704 && op1
== const1_rtx
5705 && GET_CODE (op0
) == LSHIFTRT
5706 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5707 && INTVAL (XEXP (op0
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
5708 return gen_rtx_GE (mode
, XEXP (op0
, 0), const0_rtx
);
5710 /* (xor (comparison foo bar) (const_int sign-bit))
5711 when STORE_FLAG_VALUE is the sign bit. */
5712 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5713 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5714 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
5715 && op1
== const_true_rtx
5716 && COMPARISON_P (op0
)
5717 && (reversed
= reversed_comparison (op0
, mode
, XEXP (op0
, 0),
5730 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5731 operations" because they can be replaced with two more basic operations.
5732 ZERO_EXTEND is also considered "compound" because it can be replaced with
5733 an AND operation, which is simpler, though only one operation.
5735 The function expand_compound_operation is called with an rtx expression
5736 and will convert it to the appropriate shifts and AND operations,
5737 simplifying at each stage.
5739 The function make_compound_operation is called to convert an expression
5740 consisting of shifts and ANDs into the equivalent compound expression.
5741 It is the inverse of this function, loosely speaking. */
5744 expand_compound_operation (rtx x
)
5746 unsigned HOST_WIDE_INT pos
= 0, len
;
5748 unsigned int modewidth
;
5751 switch (GET_CODE (x
))
5756 /* We can't necessarily use a const_int for a multiword mode;
5757 it depends on implicitly extending the value.
5758 Since we don't know the right way to extend it,
5759 we can't tell whether the implicit way is right.
5761 Even for a mode that is no wider than a const_int,
5762 we can't win, because we need to sign extend one of its bits through
5763 the rest of it, and we don't know which bit. */
5764 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
5767 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5768 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5769 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5770 reloaded. If not for that, MEM's would very rarely be safe.
5772 Reject MODEs bigger than a word, because we might not be able
5773 to reference a two-register group starting with an arbitrary register
5774 (and currently gen_lowpart might crash for a SUBREG). */
5776 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
5779 /* Reject MODEs that aren't scalar integers because turning vector
5780 or complex modes into shifts causes problems. */
5782 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
5785 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)));
5786 /* If the inner object has VOIDmode (the only way this can happen
5787 is if it is an ASM_OPERANDS), we can't do anything since we don't
5788 know how much masking to do. */
5797 /* If the operand is a CLOBBER, just return it. */
5798 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
5801 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
5802 || GET_CODE (XEXP (x
, 2)) != CONST_INT
5803 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
5806 /* Reject MODEs that aren't scalar integers because turning vector
5807 or complex modes into shifts causes problems. */
5809 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
5812 len
= INTVAL (XEXP (x
, 1));
5813 pos
= INTVAL (XEXP (x
, 2));
5815 /* If this goes outside the object being extracted, replace the object
5816 with a (use (mem ...)) construct that only combine understands
5817 and is used only for this purpose. */
5818 if (len
+ pos
> GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
5819 SUBST (XEXP (x
, 0), gen_rtx_USE (GET_MODE (x
), XEXP (x
, 0)));
5821 if (BITS_BIG_ENDIAN
)
5822 pos
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - len
- pos
;
5829 /* Convert sign extension to zero extension, if we know that the high
5830 bit is not set, as this is easier to optimize. It will be converted
5831 back to cheaper alternative in make_extraction. */
5832 if (GET_CODE (x
) == SIGN_EXTEND
5833 && (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5834 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
5835 & ~(((unsigned HOST_WIDE_INT
)
5836 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
5840 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
5841 rtx temp2
= expand_compound_operation (temp
);
5843 /* Make sure this is a profitable operation. */
5844 if (rtx_cost (x
, SET
) > rtx_cost (temp2
, SET
))
5846 else if (rtx_cost (x
, SET
) > rtx_cost (temp
, SET
))
5852 /* We can optimize some special cases of ZERO_EXTEND. */
5853 if (GET_CODE (x
) == ZERO_EXTEND
)
5855 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5856 know that the last value didn't have any inappropriate bits
5858 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5859 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5860 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5861 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
5862 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5863 return XEXP (XEXP (x
, 0), 0);
5865 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5866 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5867 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5868 && subreg_lowpart_p (XEXP (x
, 0))
5869 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5870 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
5871 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5872 return SUBREG_REG (XEXP (x
, 0));
5874 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5875 is a comparison and STORE_FLAG_VALUE permits. This is like
5876 the first case, but it works even when GET_MODE (x) is larger
5877 than HOST_WIDE_INT. */
5878 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5879 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5880 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
5881 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5882 <= HOST_BITS_PER_WIDE_INT
)
5883 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5884 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5885 return XEXP (XEXP (x
, 0), 0);
5887 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5888 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5889 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5890 && subreg_lowpart_p (XEXP (x
, 0))
5891 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
5892 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5893 <= HOST_BITS_PER_WIDE_INT
)
5894 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5895 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5896 return SUBREG_REG (XEXP (x
, 0));
5900 /* If we reach here, we want to return a pair of shifts. The inner
5901 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5902 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5903 logical depending on the value of UNSIGNEDP.
5905 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5906 converted into an AND of a shift.
5908 We must check for the case where the left shift would have a negative
5909 count. This can happen in a case like (x >> 31) & 255 on machines
5910 that can't shift by a constant. On those machines, we would first
5911 combine the shift with the AND to produce a variable-position
5912 extraction. Then the constant of 31 would be substituted in to produce
5913 a such a position. */
5915 modewidth
= GET_MODE_BITSIZE (GET_MODE (x
));
5916 if (modewidth
+ len
>= pos
)
5917 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
5919 simplify_shift_const (NULL_RTX
, ASHIFT
,
5922 modewidth
- pos
- len
),
5925 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
5926 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
5927 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
5930 ((HOST_WIDE_INT
) 1 << len
) - 1);
5932 /* Any other cases we can't handle. */
5935 /* If we couldn't do this for some reason, return the original
5937 if (GET_CODE (tem
) == CLOBBER
)
5943 /* X is a SET which contains an assignment of one object into
5944 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5945 or certain SUBREGS). If possible, convert it into a series of
5948 We half-heartedly support variable positions, but do not at all
5949 support variable lengths. */
5952 expand_field_assignment (rtx x
)
5955 rtx pos
; /* Always counts from low bit. */
5958 enum machine_mode compute_mode
;
5960 /* Loop until we find something we can't simplify. */
5963 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
5964 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
5966 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
5967 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)));
5968 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
5970 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5971 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
)
5973 inner
= XEXP (SET_DEST (x
), 0);
5974 len
= INTVAL (XEXP (SET_DEST (x
), 1));
5975 pos
= XEXP (SET_DEST (x
), 2);
5977 /* If the position is constant and spans the width of INNER,
5978 surround INNER with a USE to indicate this. */
5979 if (GET_CODE (pos
) == CONST_INT
5980 && INTVAL (pos
) + len
> GET_MODE_BITSIZE (GET_MODE (inner
)))
5981 inner
= gen_rtx_USE (GET_MODE (SET_DEST (x
)), inner
);
5983 if (BITS_BIG_ENDIAN
)
5985 if (GET_CODE (pos
) == CONST_INT
)
5986 pos
= GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
)) - len
5988 else if (GET_CODE (pos
) == MINUS
5989 && GET_CODE (XEXP (pos
, 1)) == CONST_INT
5990 && (INTVAL (XEXP (pos
, 1))
5991 == GET_MODE_BITSIZE (GET_MODE (inner
)) - len
))
5992 /* If position is ADJUST - X, new position is X. */
5993 pos
= XEXP (pos
, 0);
5995 pos
= gen_binary (MINUS
, GET_MODE (pos
),
5996 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
))
6002 /* A SUBREG between two modes that occupy the same numbers of words
6003 can be done by moving the SUBREG to the source. */
6004 else if (GET_CODE (SET_DEST (x
)) == SUBREG
6005 /* We need SUBREGs to compute nonzero_bits properly. */
6006 && nonzero_sign_valid
6007 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
6008 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
6009 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
6010 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
6012 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
6014 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
6021 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
6022 inner
= SUBREG_REG (inner
);
6024 compute_mode
= GET_MODE (inner
);
6026 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6027 if (! SCALAR_INT_MODE_P (compute_mode
))
6029 enum machine_mode imode
;
6031 /* Don't do anything for vector or complex integral types. */
6032 if (! FLOAT_MODE_P (compute_mode
))
6035 /* Try to find an integral mode to pun with. */
6036 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
6037 if (imode
== BLKmode
)
6040 compute_mode
= imode
;
6041 inner
= gen_lowpart (imode
, inner
);
6044 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6045 if (len
< HOST_BITS_PER_WIDE_INT
)
6046 mask
= GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1);
6050 /* Now compute the equivalent expression. Make a copy of INNER
6051 for the SET_DEST in case it is a MEM into which we will substitute;
6052 we don't want shared RTL in that case. */
6054 (VOIDmode
, copy_rtx (inner
),
6055 gen_binary (IOR
, compute_mode
,
6056 gen_binary (AND
, compute_mode
,
6057 simplify_gen_unary (NOT
, compute_mode
,
6063 gen_binary (ASHIFT
, compute_mode
,
6064 gen_binary (AND
, compute_mode
,
6066 (compute_mode
, SET_SRC (x
)),
6074 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6075 it is an RTX that represents a variable starting position; otherwise,
6076 POS is the (constant) starting bit position (counted from the LSB).
6078 INNER may be a USE. This will occur when we started with a bitfield
6079 that went outside the boundary of the object in memory, which is
6080 allowed on most machines. To isolate this case, we produce a USE
6081 whose mode is wide enough and surround the MEM with it. The only
6082 code that understands the USE is this routine. If it is not removed,
6083 it will cause the resulting insn not to match.
6085 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6088 IN_DEST is nonzero if this is a reference in the destination of a
6089 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6090 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6093 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6094 ZERO_EXTRACT should be built even for bits starting at bit 0.
6096 MODE is the desired mode of the result (if IN_DEST == 0).
6098 The result is an RTX for the extraction or NULL_RTX if the target
6102 make_extraction (enum machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
6103 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
6104 int in_dest
, int in_compare
)
6106 /* This mode describes the size of the storage area
6107 to fetch the overall value from. Within that, we
6108 ignore the POS lowest bits, etc. */
6109 enum machine_mode is_mode
= GET_MODE (inner
);
6110 enum machine_mode inner_mode
;
6111 enum machine_mode wanted_inner_mode
= byte_mode
;
6112 enum machine_mode wanted_inner_reg_mode
= word_mode
;
6113 enum machine_mode pos_mode
= word_mode
;
6114 enum machine_mode extraction_mode
= word_mode
;
6115 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
6118 rtx orig_pos_rtx
= pos_rtx
;
6119 HOST_WIDE_INT orig_pos
;
6121 /* Get some information about INNER and get the innermost object. */
6122 if (GET_CODE (inner
) == USE
)
6123 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6124 /* We don't need to adjust the position because we set up the USE
6125 to pretend that it was a full-word object. */
6126 spans_byte
= 1, inner
= XEXP (inner
, 0);
6127 else if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
6129 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6130 consider just the QI as the memory to extract from.
6131 The subreg adds or removes high bits; its mode is
6132 irrelevant to the meaning of this extraction,
6133 since POS and LEN count from the lsb. */
6134 if (MEM_P (SUBREG_REG (inner
)))
6135 is_mode
= GET_MODE (SUBREG_REG (inner
));
6136 inner
= SUBREG_REG (inner
);
6138 else if (GET_CODE (inner
) == ASHIFT
6139 && GET_CODE (XEXP (inner
, 1)) == CONST_INT
6140 && pos_rtx
== 0 && pos
== 0
6141 && len
> (unsigned HOST_WIDE_INT
) INTVAL (XEXP (inner
, 1)))
6143 /* We're extracting the least significant bits of an rtx
6144 (ashift X (const_int C)), where LEN > C. Extract the
6145 least significant (LEN - C) bits of X, giving an rtx
6146 whose mode is MODE, then shift it left C times. */
6147 new = make_extraction (mode
, XEXP (inner
, 0),
6148 0, 0, len
- INTVAL (XEXP (inner
, 1)),
6149 unsignedp
, in_dest
, in_compare
);
6151 return gen_rtx_ASHIFT (mode
, new, XEXP (inner
, 1));
6154 inner_mode
= GET_MODE (inner
);
6156 if (pos_rtx
&& GET_CODE (pos_rtx
) == CONST_INT
)
6157 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
6159 /* See if this can be done without an extraction. We never can if the
6160 width of the field is not the same as that of some integer mode. For
6161 registers, we can only avoid the extraction if the position is at the
6162 low-order bit and this is either not in the destination or we have the
6163 appropriate STRICT_LOW_PART operation available.
6165 For MEM, we can avoid an extract if the field starts on an appropriate
6166 boundary and we can change the mode of the memory reference. However,
6167 we cannot directly access the MEM if we have a USE and the underlying
6168 MEM is not TMODE. This combination means that MEM was being used in a
6169 context where bits outside its mode were being referenced; that is only
6170 valid in bit-field insns. */
6172 if (tmode
!= BLKmode
6173 && ! (spans_byte
&& inner_mode
!= tmode
)
6174 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
6178 && have_insn_for (STRICT_LOW_PART
, tmode
))))
6179 || (MEM_P (inner
) && pos_rtx
== 0
6181 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
6182 : BITS_PER_UNIT
)) == 0
6183 /* We can't do this if we are widening INNER_MODE (it
6184 may not be aligned, for one thing). */
6185 && GET_MODE_BITSIZE (inner_mode
) >= GET_MODE_BITSIZE (tmode
)
6186 && (inner_mode
== tmode
6187 || (! mode_dependent_address_p (XEXP (inner
, 0))
6188 && ! MEM_VOLATILE_P (inner
))))))
6190 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6191 field. If the original and current mode are the same, we need not
6192 adjust the offset. Otherwise, we do if bytes big endian.
6194 If INNER is not a MEM, get a piece consisting of just the field
6195 of interest (in this case POS % BITS_PER_WORD must be 0). */
6199 HOST_WIDE_INT offset
;
6201 /* POS counts from lsb, but make OFFSET count in memory order. */
6202 if (BYTES_BIG_ENDIAN
)
6203 offset
= (GET_MODE_BITSIZE (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
6205 offset
= pos
/ BITS_PER_UNIT
;
6207 new = adjust_address_nv (inner
, tmode
, offset
);
6209 else if (REG_P (inner
))
6211 if (tmode
!= inner_mode
)
6213 /* We can't call gen_lowpart in a DEST since we
6214 always want a SUBREG (see below) and it would sometimes
6215 return a new hard register. */
6218 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
6220 if (WORDS_BIG_ENDIAN
6221 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
6222 final_word
= ((GET_MODE_SIZE (inner_mode
)
6223 - GET_MODE_SIZE (tmode
))
6224 / UNITS_PER_WORD
) - final_word
;
6226 final_word
*= UNITS_PER_WORD
;
6227 if (BYTES_BIG_ENDIAN
&&
6228 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
6229 final_word
+= (GET_MODE_SIZE (inner_mode
)
6230 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
6232 /* Avoid creating invalid subregs, for example when
6233 simplifying (x>>32)&255. */
6234 if (final_word
>= GET_MODE_SIZE (inner_mode
))
6237 new = gen_rtx_SUBREG (tmode
, inner
, final_word
);
6240 new = gen_lowpart (tmode
, inner
);
6246 new = force_to_mode (inner
, tmode
,
6247 len
>= HOST_BITS_PER_WIDE_INT
6248 ? ~(unsigned HOST_WIDE_INT
) 0
6249 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
6252 /* If this extraction is going into the destination of a SET,
6253 make a STRICT_LOW_PART unless we made a MEM. */
6256 return (MEM_P (new) ? new
6257 : (GET_CODE (new) != SUBREG
6258 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
6259 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new)));
6264 if (GET_CODE (new) == CONST_INT
)
6265 return gen_int_mode (INTVAL (new), mode
);
6267 /* If we know that no extraneous bits are set, and that the high
6268 bit is not set, convert the extraction to the cheaper of
6269 sign and zero extension, that are equivalent in these cases. */
6270 if (flag_expensive_optimizations
6271 && (GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
6272 && ((nonzero_bits (new, tmode
)
6273 & ~(((unsigned HOST_WIDE_INT
)
6274 GET_MODE_MASK (tmode
))
6278 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new);
6279 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new);
6281 /* Prefer ZERO_EXTENSION, since it gives more information to
6283 if (rtx_cost (temp
, SET
) <= rtx_cost (temp1
, SET
))
6288 /* Otherwise, sign- or zero-extend unless we already are in the
6291 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
6295 /* Unless this is a COMPARE or we have a funny memory reference,
6296 don't do anything with zero-extending field extracts starting at
6297 the low-order bit since they are simple AND operations. */
6298 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
6299 && ! in_compare
&& ! spans_byte
&& unsignedp
)
6302 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6303 we would be spanning bytes or if the position is not a constant and the
6304 length is not 1. In all other cases, we would only be going outside
6305 our object in cases when an original shift would have been
6307 if (! spans_byte
&& MEM_P (inner
)
6308 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_BITSIZE (is_mode
))
6309 || (pos_rtx
!= 0 && len
!= 1)))
6312 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6313 and the mode for the result. */
6314 if (in_dest
&& mode_for_extraction (EP_insv
, -1) != MAX_MACHINE_MODE
)
6316 wanted_inner_reg_mode
= mode_for_extraction (EP_insv
, 0);
6317 pos_mode
= mode_for_extraction (EP_insv
, 2);
6318 extraction_mode
= mode_for_extraction (EP_insv
, 3);
6321 if (! in_dest
&& unsignedp
6322 && mode_for_extraction (EP_extzv
, -1) != MAX_MACHINE_MODE
)
6324 wanted_inner_reg_mode
= mode_for_extraction (EP_extzv
, 1);
6325 pos_mode
= mode_for_extraction (EP_extzv
, 3);
6326 extraction_mode
= mode_for_extraction (EP_extzv
, 0);
6329 if (! in_dest
&& ! unsignedp
6330 && mode_for_extraction (EP_extv
, -1) != MAX_MACHINE_MODE
)
6332 wanted_inner_reg_mode
= mode_for_extraction (EP_extv
, 1);
6333 pos_mode
= mode_for_extraction (EP_extv
, 3);
6334 extraction_mode
= mode_for_extraction (EP_extv
, 0);
6337 /* Never narrow an object, since that might not be safe. */
6339 if (mode
!= VOIDmode
6340 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
6341 extraction_mode
= mode
;
6343 if (pos_rtx
&& GET_MODE (pos_rtx
) != VOIDmode
6344 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6345 pos_mode
= GET_MODE (pos_rtx
);
6347 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6348 if we have to change the mode of memory and cannot, the desired mode is
6351 wanted_inner_mode
= wanted_inner_reg_mode
;
6352 else if (inner_mode
!= wanted_inner_mode
6353 && (mode_dependent_address_p (XEXP (inner
, 0))
6354 || MEM_VOLATILE_P (inner
)))
6355 wanted_inner_mode
= extraction_mode
;
6359 if (BITS_BIG_ENDIAN
)
6361 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6362 BITS_BIG_ENDIAN style. If position is constant, compute new
6363 position. Otherwise, build subtraction.
6364 Note that POS is relative to the mode of the original argument.
6365 If it's a MEM we need to recompute POS relative to that.
6366 However, if we're extracting from (or inserting into) a register,
6367 we want to recompute POS relative to wanted_inner_mode. */
6368 int width
= (MEM_P (inner
)
6369 ? GET_MODE_BITSIZE (is_mode
)
6370 : GET_MODE_BITSIZE (wanted_inner_mode
));
6373 pos
= width
- len
- pos
;
6376 = gen_rtx_MINUS (GET_MODE (pos_rtx
), GEN_INT (width
- len
), pos_rtx
);
6377 /* POS may be less than 0 now, but we check for that below.
6378 Note that it can only be less than 0 if !MEM_P (inner). */
6381 /* If INNER has a wider mode, make it smaller. If this is a constant
6382 extract, try to adjust the byte to point to the byte containing
6384 if (wanted_inner_mode
!= VOIDmode
6385 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
6387 && (inner_mode
== wanted_inner_mode
6388 || (! mode_dependent_address_p (XEXP (inner
, 0))
6389 && ! MEM_VOLATILE_P (inner
))))))
6393 /* The computations below will be correct if the machine is big
6394 endian in both bits and bytes or little endian in bits and bytes.
6395 If it is mixed, we must adjust. */
6397 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6398 adjust OFFSET to compensate. */
6399 if (BYTES_BIG_ENDIAN
6401 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
6402 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
6404 /* If this is a constant position, we can move to the desired byte. */
6407 offset
+= pos
/ BITS_PER_UNIT
;
6408 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
6411 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
6413 && is_mode
!= wanted_inner_mode
)
6414 offset
= (GET_MODE_SIZE (is_mode
)
6415 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
6417 if (offset
!= 0 || inner_mode
!= wanted_inner_mode
)
6418 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
6421 /* If INNER is not memory, we can always get it into the proper mode. If we
6422 are changing its mode, POS must be a constant and smaller than the size
6424 else if (!MEM_P (inner
))
6426 if (GET_MODE (inner
) != wanted_inner_mode
6428 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
6431 inner
= force_to_mode (inner
, wanted_inner_mode
,
6433 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
6434 ? ~(unsigned HOST_WIDE_INT
) 0
6435 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
6440 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6441 have to zero extend. Otherwise, we can just use a SUBREG. */
6443 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6445 rtx temp
= gen_rtx_ZERO_EXTEND (pos_mode
, pos_rtx
);
6447 /* If we know that no extraneous bits are set, and that the high
6448 bit is not set, convert extraction to cheaper one - either
6449 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6451 if (flag_expensive_optimizations
6452 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx
)) <= HOST_BITS_PER_WIDE_INT
6453 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
6454 & ~(((unsigned HOST_WIDE_INT
)
6455 GET_MODE_MASK (GET_MODE (pos_rtx
)))
6459 rtx temp1
= gen_rtx_SIGN_EXTEND (pos_mode
, pos_rtx
);
6461 /* Prefer ZERO_EXTENSION, since it gives more information to
6463 if (rtx_cost (temp1
, SET
) < rtx_cost (temp
, SET
))
6468 else if (pos_rtx
!= 0
6469 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6470 pos_rtx
= gen_lowpart (pos_mode
, pos_rtx
);
6472 /* Make POS_RTX unless we already have it and it is correct. If we don't
6473 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6475 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
6476 pos_rtx
= orig_pos_rtx
;
6478 else if (pos_rtx
== 0)
6479 pos_rtx
= GEN_INT (pos
);
6481 /* Make the required operation. See if we can use existing rtx. */
6482 new = gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
6483 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
6485 new = gen_lowpart (mode
, new);
6490 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6491 with any other operations in X. Return X without that shift if so. */
6494 extract_left_shift (rtx x
, int count
)
6496 enum rtx_code code
= GET_CODE (x
);
6497 enum machine_mode mode
= GET_MODE (x
);
6503 /* This is the shift itself. If it is wide enough, we will return
6504 either the value being shifted if the shift count is equal to
6505 COUNT or a shift for the difference. */
6506 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6507 && INTVAL (XEXP (x
, 1)) >= count
)
6508 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
6509 INTVAL (XEXP (x
, 1)) - count
);
6513 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6514 return simplify_gen_unary (code
, mode
, tem
, mode
);
6518 case PLUS
: case IOR
: case XOR
: case AND
:
6519 /* If we can safely shift this constant and we find the inner shift,
6520 make a new operation. */
6521 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6522 && (INTVAL (XEXP (x
, 1)) & ((((HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
6523 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6524 return gen_binary (code
, mode
, tem
,
6525 GEN_INT (INTVAL (XEXP (x
, 1)) >> count
));
6536 /* Look at the expression rooted at X. Look for expressions
6537 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6538 Form these expressions.
6540 Return the new rtx, usually just X.
6542 Also, for machines like the VAX that don't have logical shift insns,
6543 try to convert logical to arithmetic shift operations in cases where
6544 they are equivalent. This undoes the canonicalizations to logical
6545 shifts done elsewhere.
6547 We try, as much as possible, to re-use rtl expressions to save memory.
6549 IN_CODE says what kind of expression we are processing. Normally, it is
6550 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6551 being kludges), it is MEM. When processing the arguments of a comparison
6552 or a COMPARE against zero, it is COMPARE. */
6555 make_compound_operation (rtx x
, enum rtx_code in_code
)
6557 enum rtx_code code
= GET_CODE (x
);
6558 enum machine_mode mode
= GET_MODE (x
);
6559 int mode_width
= GET_MODE_BITSIZE (mode
);
6561 enum rtx_code next_code
;
6567 /* Select the code to be used in recursive calls. Once we are inside an
6568 address, we stay there. If we have a comparison, set to COMPARE,
6569 but once inside, go back to our default of SET. */
6571 next_code
= (code
== MEM
|| code
== PLUS
|| code
== MINUS
? MEM
6572 : ((code
== COMPARE
|| COMPARISON_P (x
))
6573 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
6574 : in_code
== COMPARE
? SET
: in_code
);
6576 /* Process depending on the code of this operation. If NEW is set
6577 nonzero, it will be returned. */
6582 /* Convert shifts by constants into multiplications if inside
6584 if (in_code
== MEM
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6585 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6586 && INTVAL (XEXP (x
, 1)) >= 0)
6588 new = make_compound_operation (XEXP (x
, 0), next_code
);
6589 new = gen_rtx_MULT (mode
, new,
6590 GEN_INT ((HOST_WIDE_INT
) 1
6591 << INTVAL (XEXP (x
, 1))));
6596 /* If the second operand is not a constant, we can't do anything
6598 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6601 /* If the constant is a power of two minus one and the first operand
6602 is a logical right shift, make an extraction. */
6603 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6604 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6606 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6607 new = make_extraction (mode
, new, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
6608 0, in_code
== COMPARE
);
6611 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6612 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
6613 && subreg_lowpart_p (XEXP (x
, 0))
6614 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
6615 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6617 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
6619 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new, 0,
6620 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
6621 0, in_code
== COMPARE
);
6623 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6624 else if ((GET_CODE (XEXP (x
, 0)) == XOR
6625 || GET_CODE (XEXP (x
, 0)) == IOR
)
6626 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
6627 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
6628 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6630 /* Apply the distributive law, and then try to make extractions. */
6631 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
6632 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
6634 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
6636 new = make_compound_operation (new, in_code
);
6639 /* If we are have (and (rotate X C) M) and C is larger than the number
6640 of bits in M, this is an extraction. */
6642 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
6643 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6644 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0
6645 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
6647 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6648 new = make_extraction (mode
, new,
6649 (GET_MODE_BITSIZE (mode
)
6650 - INTVAL (XEXP (XEXP (x
, 0), 1))),
6651 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6654 /* On machines without logical shifts, if the operand of the AND is
6655 a logical shift and our mask turns off all the propagated sign
6656 bits, we can replace the logical shift with an arithmetic shift. */
6657 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6658 && !have_insn_for (LSHIFTRT
, mode
)
6659 && have_insn_for (ASHIFTRT
, mode
)
6660 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6661 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6662 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6663 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
6665 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
6667 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
6668 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
6670 gen_rtx_ASHIFTRT (mode
,
6671 make_compound_operation
6672 (XEXP (XEXP (x
, 0), 0), next_code
),
6673 XEXP (XEXP (x
, 0), 1)));
6676 /* If the constant is one less than a power of two, this might be
6677 representable by an extraction even if no shift is present.
6678 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6679 we are in a COMPARE. */
6680 else if ((i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6681 new = make_extraction (mode
,
6682 make_compound_operation (XEXP (x
, 0),
6684 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6686 /* If we are in a comparison and this is an AND with a power of two,
6687 convert this into the appropriate bit extract. */
6688 else if (in_code
== COMPARE
6689 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
6690 new = make_extraction (mode
,
6691 make_compound_operation (XEXP (x
, 0),
6693 i
, NULL_RTX
, 1, 1, 0, 1);
6698 /* If the sign bit is known to be zero, replace this with an
6699 arithmetic shift. */
6700 if (have_insn_for (ASHIFTRT
, mode
)
6701 && ! have_insn_for (LSHIFTRT
, mode
)
6702 && mode_width
<= HOST_BITS_PER_WIDE_INT
6703 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
6705 new = gen_rtx_ASHIFTRT (mode
,
6706 make_compound_operation (XEXP (x
, 0),
6712 /* ... fall through ... */
6718 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6719 this is a SIGN_EXTRACT. */
6720 if (GET_CODE (rhs
) == CONST_INT
6721 && GET_CODE (lhs
) == ASHIFT
6722 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
6723 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1)))
6725 new = make_compound_operation (XEXP (lhs
, 0), next_code
);
6726 new = make_extraction (mode
, new,
6727 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
6728 NULL_RTX
, mode_width
- INTVAL (rhs
),
6729 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6733 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6734 If so, try to merge the shifts into a SIGN_EXTEND. We could
6735 also do this for some cases of SIGN_EXTRACT, but it doesn't
6736 seem worth the effort; the case checked for occurs on Alpha. */
6739 && ! (GET_CODE (lhs
) == SUBREG
6740 && (OBJECT_P (SUBREG_REG (lhs
))))
6741 && GET_CODE (rhs
) == CONST_INT
6742 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
6743 && (new = extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
6744 new = make_extraction (mode
, make_compound_operation (new, next_code
),
6745 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
6746 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6751 /* Call ourselves recursively on the inner expression. If we are
6752 narrowing the object and it has a different RTL code from
6753 what it originally did, do this SUBREG as a force_to_mode. */
6755 tem
= make_compound_operation (SUBREG_REG (x
), in_code
);
6756 if (GET_CODE (tem
) != GET_CODE (SUBREG_REG (x
))
6757 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (tem
))
6758 && subreg_lowpart_p (x
))
6760 rtx newer
= force_to_mode (tem
, mode
, ~(HOST_WIDE_INT
) 0,
6763 /* If we have something other than a SUBREG, we might have
6764 done an expansion, so rerun ourselves. */
6765 if (GET_CODE (newer
) != SUBREG
)
6766 newer
= make_compound_operation (newer
, in_code
);
6771 /* If this is a paradoxical subreg, and the new code is a sign or
6772 zero extension, omit the subreg and widen the extension. If it
6773 is a regular subreg, we can still get rid of the subreg by not
6774 widening so much, or in fact removing the extension entirely. */
6775 if ((GET_CODE (tem
) == SIGN_EXTEND
6776 || GET_CODE (tem
) == ZERO_EXTEND
)
6777 && subreg_lowpart_p (x
))
6779 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (tem
))
6780 || (GET_MODE_SIZE (mode
) >
6781 GET_MODE_SIZE (GET_MODE (XEXP (tem
, 0)))))
6783 if (! SCALAR_INT_MODE_P (mode
))
6785 tem
= gen_rtx_fmt_e (GET_CODE (tem
), mode
, XEXP (tem
, 0));
6788 tem
= gen_lowpart (mode
, XEXP (tem
, 0));
6799 x
= gen_lowpart (mode
, new);
6800 code
= GET_CODE (x
);
6803 /* Now recursively process each operand of this operation. */
6804 fmt
= GET_RTX_FORMAT (code
);
6805 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6808 new = make_compound_operation (XEXP (x
, i
), next_code
);
6809 SUBST (XEXP (x
, i
), new);
6815 /* Given M see if it is a value that would select a field of bits
6816 within an item, but not the entire word. Return -1 if not.
6817 Otherwise, return the starting position of the field, where 0 is the
6820 *PLEN is set to the length of the field. */
6823 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
6825 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6826 int pos
= exact_log2 (m
& -m
);
6830 /* Now shift off the low-order zero bits and see if we have a
6831 power of two minus 1. */
6832 len
= exact_log2 ((m
>> pos
) + 1);
6841 /* See if X can be simplified knowing that we will only refer to it in
6842 MODE and will only refer to those bits that are nonzero in MASK.
6843 If other bits are being computed or if masking operations are done
6844 that select a superset of the bits in MASK, they can sometimes be
6847 Return a possibly simplified expression, but always convert X to
6848 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6850 Also, if REG is nonzero and X is a register equal in value to REG,
6853 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6854 are all off in X. This is used when X will be complemented, by either
6855 NOT, NEG, or XOR. */
6858 force_to_mode (rtx x
, enum machine_mode mode
, unsigned HOST_WIDE_INT mask
,
6859 rtx reg
, int just_select
)
6861 enum rtx_code code
= GET_CODE (x
);
6862 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
6863 enum machine_mode op_mode
;
6864 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
6867 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6868 code below will do the wrong thing since the mode of such an
6869 expression is VOIDmode.
6871 Also do nothing if X is a CLOBBER; this can happen if X was
6872 the return value from a call to gen_lowpart. */
6873 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
6876 /* We want to perform the operation is its present mode unless we know
6877 that the operation is valid in MODE, in which case we do the operation
6879 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
6880 && have_insn_for (code
, mode
))
6881 ? mode
: GET_MODE (x
));
6883 /* It is not valid to do a right-shift in a narrower mode
6884 than the one it came in with. */
6885 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
6886 && GET_MODE_BITSIZE (mode
) < GET_MODE_BITSIZE (GET_MODE (x
)))
6887 op_mode
= GET_MODE (x
);
6889 /* Truncate MASK to fit OP_MODE. */
6891 mask
&= GET_MODE_MASK (op_mode
);
6893 /* When we have an arithmetic operation, or a shift whose count we
6894 do not know, we need to assume that all bits up to the highest-order
6895 bit in MASK will be needed. This is how we form such a mask. */
6896 if (mask
& ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
6897 fuller_mask
= ~(unsigned HOST_WIDE_INT
) 0;
6899 fuller_mask
= (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
6902 /* Determine what bits of X are guaranteed to be (non)zero. */
6903 nonzero
= nonzero_bits (x
, mode
);
6905 /* If none of the bits in X are needed, return a zero. */
6906 if (! just_select
&& (nonzero
& mask
) == 0)
6909 /* If X is a CONST_INT, return a new one. Do this here since the
6910 test below will fail. */
6911 if (GET_CODE (x
) == CONST_INT
)
6913 if (SCALAR_INT_MODE_P (mode
))
6914 return gen_int_mode (INTVAL (x
) & mask
, mode
);
6917 x
= GEN_INT (INTVAL (x
) & mask
);
6918 return gen_lowpart_common (mode
, x
);
6922 /* If X is narrower than MODE and we want all the bits in X's mode, just
6923 get X in the proper mode. */
6924 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
6925 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
6926 return gen_lowpart (mode
, x
);
6931 /* If X is a (clobber (const_int)), return it since we know we are
6932 generating something that won't match. */
6936 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6937 spanned the boundary of the MEM. If we are now masking so it is
6938 within that boundary, we don't need the USE any more. */
6939 if (! BITS_BIG_ENDIAN
6940 && (mask
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6941 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
6948 x
= expand_compound_operation (x
);
6949 if (GET_CODE (x
) != code
)
6950 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6954 if (reg
!= 0 && (rtx_equal_p (get_last_value (reg
), x
)
6955 || rtx_equal_p (reg
, get_last_value (x
))))
6960 if (subreg_lowpart_p (x
)
6961 /* We can ignore the effect of this SUBREG if it narrows the mode or
6962 if the constant masks to zero all the bits the mode doesn't
6964 && ((GET_MODE_SIZE (GET_MODE (x
))
6965 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
6967 & GET_MODE_MASK (GET_MODE (x
))
6968 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
6969 return force_to_mode (SUBREG_REG (x
), mode
, mask
, reg
, next_select
);
6973 /* If this is an AND with a constant, convert it into an AND
6974 whose constant is the AND of that constant with MASK. If it
6975 remains an AND of MASK, delete it since it is redundant. */
6977 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6979 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
6980 mask
& INTVAL (XEXP (x
, 1)));
6982 /* If X is still an AND, see if it is an AND with a mask that
6983 is just some low-order bits. If so, and it is MASK, we don't
6986 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6987 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
6991 /* If it remains an AND, try making another AND with the bits
6992 in the mode mask that aren't in MASK turned on. If the
6993 constant in the AND is wide enough, this might make a
6994 cheaper constant. */
6996 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6997 && GET_MODE_MASK (GET_MODE (x
)) != mask
6998 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
7000 HOST_WIDE_INT cval
= (INTVAL (XEXP (x
, 1))
7001 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
));
7002 int width
= GET_MODE_BITSIZE (GET_MODE (x
));
7005 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7006 number, sign extend it. */
7007 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
7008 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
7009 cval
|= (HOST_WIDE_INT
) -1 << width
;
7011 y
= gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0), GEN_INT (cval
));
7012 if (rtx_cost (y
, SET
) < rtx_cost (x
, SET
))
7022 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7023 low-order bits (as in an alignment operation) and FOO is already
7024 aligned to that boundary, mask C1 to that boundary as well.
7025 This may eliminate that PLUS and, later, the AND. */
7028 unsigned int width
= GET_MODE_BITSIZE (mode
);
7029 unsigned HOST_WIDE_INT smask
= mask
;
7031 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7032 number, sign extend it. */
7034 if (width
< HOST_BITS_PER_WIDE_INT
7035 && (smask
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
7036 smask
|= (HOST_WIDE_INT
) -1 << width
;
7038 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7039 && exact_log2 (- smask
) >= 0
7040 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
7041 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
7042 return force_to_mode (plus_constant (XEXP (x
, 0),
7043 (INTVAL (XEXP (x
, 1)) & smask
)),
7044 mode
, smask
, reg
, next_select
);
7047 /* ... fall through ... */
7050 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7051 most significant bit in MASK since carries from those bits will
7052 affect the bits we are interested in. */
7057 /* If X is (minus C Y) where C's least set bit is larger than any bit
7058 in the mask, then we may replace with (neg Y). */
7059 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
7060 && (((unsigned HOST_WIDE_INT
) (INTVAL (XEXP (x
, 0))
7061 & -INTVAL (XEXP (x
, 0))))
7064 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
7066 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7069 /* Similarly, if C contains every bit in the fuller_mask, then we may
7070 replace with (not Y). */
7071 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
7072 && ((INTVAL (XEXP (x
, 0)) | (HOST_WIDE_INT
) fuller_mask
)
7073 == INTVAL (XEXP (x
, 0))))
7075 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
7076 XEXP (x
, 1), GET_MODE (x
));
7077 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7085 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7086 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7087 operation which may be a bitfield extraction. Ensure that the
7088 constant we form is not wider than the mode of X. */
7090 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7091 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7092 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7093 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7094 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7095 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
7096 + floor_log2 (INTVAL (XEXP (x
, 1))))
7097 < GET_MODE_BITSIZE (GET_MODE (x
)))
7098 && (INTVAL (XEXP (x
, 1))
7099 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
7101 temp
= GEN_INT ((INTVAL (XEXP (x
, 1)) & mask
)
7102 << INTVAL (XEXP (XEXP (x
, 0), 1)));
7103 temp
= gen_binary (GET_CODE (x
), GET_MODE (x
),
7104 XEXP (XEXP (x
, 0), 0), temp
);
7105 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
7106 XEXP (XEXP (x
, 0), 1));
7107 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7111 /* For most binary operations, just propagate into the operation and
7112 change the mode if we have an operation of that mode. */
7114 op0
= gen_lowpart (op_mode
,
7115 force_to_mode (XEXP (x
, 0), mode
, mask
,
7117 op1
= gen_lowpart (op_mode
,
7118 force_to_mode (XEXP (x
, 1), mode
, mask
,
7121 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7122 x
= gen_binary (code
, op_mode
, op0
, op1
);
7126 /* For left shifts, do the same, but just for the first operand.
7127 However, we cannot do anything with shifts where we cannot
7128 guarantee that the counts are smaller than the size of the mode
7129 because such a count will have a different meaning in a
7132 if (! (GET_CODE (XEXP (x
, 1)) == CONST_INT
7133 && INTVAL (XEXP (x
, 1)) >= 0
7134 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (mode
))
7135 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
7136 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
7137 < (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
))))
7140 /* If the shift count is a constant and we can do arithmetic in
7141 the mode of the shift, refine which bits we need. Otherwise, use the
7142 conservative form of the mask. */
7143 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7144 && INTVAL (XEXP (x
, 1)) >= 0
7145 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (op_mode
)
7146 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7147 mask
>>= INTVAL (XEXP (x
, 1));
7151 op0
= gen_lowpart (op_mode
,
7152 force_to_mode (XEXP (x
, 0), op_mode
,
7153 mask
, reg
, next_select
));
7155 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7156 x
= gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
7160 /* Here we can only do something if the shift count is a constant,
7161 this shift constant is valid for the host, and we can do arithmetic
7164 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7165 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7166 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
7168 rtx inner
= XEXP (x
, 0);
7169 unsigned HOST_WIDE_INT inner_mask
;
7171 /* Select the mask of the bits we need for the shift operand. */
7172 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
7174 /* We can only change the mode of the shift if we can do arithmetic
7175 in the mode of the shift and INNER_MASK is no wider than the
7176 width of X's mode. */
7177 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
7178 op_mode
= GET_MODE (x
);
7180 inner
= force_to_mode (inner
, op_mode
, inner_mask
, reg
, next_select
);
7182 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
7183 x
= gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
7186 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7187 shift and AND produces only copies of the sign bit (C2 is one less
7188 than a power of two), we can do this with just a shift. */
7190 if (GET_CODE (x
) == LSHIFTRT
7191 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7192 /* The shift puts one of the sign bit copies in the least significant
7194 && ((INTVAL (XEXP (x
, 1))
7195 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
7196 >= GET_MODE_BITSIZE (GET_MODE (x
)))
7197 && exact_log2 (mask
+ 1) >= 0
7198 /* Number of bits left after the shift must be more than the mask
7200 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
7201 <= GET_MODE_BITSIZE (GET_MODE (x
)))
7202 /* Must be more sign bit copies than the mask needs. */
7203 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
7204 >= exact_log2 (mask
+ 1)))
7205 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7206 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x
))
7207 - exact_log2 (mask
+ 1)));
7212 /* If we are just looking for the sign bit, we don't need this shift at
7213 all, even if it has a variable count. */
7214 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
7215 && (mask
== ((unsigned HOST_WIDE_INT
) 1
7216 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
7217 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
7219 /* If this is a shift by a constant, get a mask that contains those bits
7220 that are not copies of the sign bit. We then have two cases: If
7221 MASK only includes those bits, this can be a logical shift, which may
7222 allow simplifications. If MASK is a single-bit field not within
7223 those bits, we are requesting a copy of the sign bit and hence can
7224 shift the sign bit to the appropriate location. */
7226 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0
7227 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
7231 /* If the considered data is wider than HOST_WIDE_INT, we can't
7232 represent a mask for all its bits in a single scalar.
7233 But we only care about the lower bits, so calculate these. */
7235 if (GET_MODE_BITSIZE (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
7237 nonzero
= ~(HOST_WIDE_INT
) 0;
7239 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7240 is the number of bits a full-width mask would have set.
7241 We need only shift if these are fewer than nonzero can
7242 hold. If not, we must keep all bits set in nonzero. */
7244 if (GET_MODE_BITSIZE (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
7245 < HOST_BITS_PER_WIDE_INT
)
7246 nonzero
>>= INTVAL (XEXP (x
, 1))
7247 + HOST_BITS_PER_WIDE_INT
7248 - GET_MODE_BITSIZE (GET_MODE (x
)) ;
7252 nonzero
= GET_MODE_MASK (GET_MODE (x
));
7253 nonzero
>>= INTVAL (XEXP (x
, 1));
7256 if ((mask
& ~nonzero
) == 0
7257 || (i
= exact_log2 (mask
)) >= 0)
7259 x
= simplify_shift_const
7260 (x
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
7261 i
< 0 ? INTVAL (XEXP (x
, 1))
7262 : GET_MODE_BITSIZE (GET_MODE (x
)) - 1 - i
);
7264 if (GET_CODE (x
) != ASHIFTRT
)
7265 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7269 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7270 even if the shift count isn't a constant. */
7272 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1));
7276 /* If this is a zero- or sign-extension operation that just affects bits
7277 we don't care about, remove it. Be sure the call above returned
7278 something that is still a shift. */
7280 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
7281 && GET_CODE (XEXP (x
, 1)) == CONST_INT
7282 && INTVAL (XEXP (x
, 1)) >= 0
7283 && (INTVAL (XEXP (x
, 1))
7284 <= GET_MODE_BITSIZE (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
7285 && GET_CODE (XEXP (x
, 0)) == ASHIFT
7286 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
7287 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
7294 /* If the shift count is constant and we can do computations
7295 in the mode of X, compute where the bits we care about are.
7296 Otherwise, we can't do anything. Don't change the mode of
7297 the shift or propagate MODE into the shift, though. */
7298 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
7299 && INTVAL (XEXP (x
, 1)) >= 0)
7301 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
7302 GET_MODE (x
), GEN_INT (mask
),
7304 if (temp
&& GET_CODE (temp
) == CONST_INT
)
7306 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
7307 INTVAL (temp
), reg
, next_select
));
7312 /* If we just want the low-order bit, the NEG isn't needed since it
7313 won't change the low-order bit. */
7315 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, just_select
);
7317 /* We need any bits less significant than the most significant bit in
7318 MASK since carries from those bits will affect the bits we are
7324 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7325 same as the XOR case above. Ensure that the constant we form is not
7326 wider than the mode of X. */
7328 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7329 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7330 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7331 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
7332 < GET_MODE_BITSIZE (GET_MODE (x
)))
7333 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
7335 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
7337 temp
= gen_binary (XOR
, GET_MODE (x
), XEXP (XEXP (x
, 0), 0), temp
);
7338 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
, XEXP (XEXP (x
, 0), 1));
7340 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7343 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7344 use the full mask inside the NOT. */
7348 op0
= gen_lowpart (op_mode
,
7349 force_to_mode (XEXP (x
, 0), mode
, mask
,
7351 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7352 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
7356 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7357 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7358 which is equal to STORE_FLAG_VALUE. */
7359 if ((mask
& ~STORE_FLAG_VALUE
) == 0 && XEXP (x
, 1) == const0_rtx
7360 && GET_MODE (XEXP (x
, 0)) == mode
7361 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
7362 && (nonzero_bits (XEXP (x
, 0), mode
)
7363 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
7364 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
7369 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7370 written in a narrower mode. We play it safe and do not do so. */
7373 gen_lowpart (GET_MODE (x
),
7374 force_to_mode (XEXP (x
, 1), mode
,
7375 mask
, reg
, next_select
)));
7377 gen_lowpart (GET_MODE (x
),
7378 force_to_mode (XEXP (x
, 2), mode
,
7379 mask
, reg
, next_select
)));
7386 /* Ensure we return a value of the proper mode. */
7387 return gen_lowpart (mode
, x
);
7390 /* Return nonzero if X is an expression that has one of two values depending on
7391 whether some other value is zero or nonzero. In that case, we return the
7392 value that is being tested, *PTRUE is set to the value if the rtx being
7393 returned has a nonzero value, and *PFALSE is set to the other alternative.
7395 If we return zero, we set *PTRUE and *PFALSE to X. */
7398 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
7400 enum machine_mode mode
= GET_MODE (x
);
7401 enum rtx_code code
= GET_CODE (x
);
7402 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
7403 unsigned HOST_WIDE_INT nz
;
7405 /* If we are comparing a value against zero, we are done. */
7406 if ((code
== NE
|| code
== EQ
)
7407 && XEXP (x
, 1) == const0_rtx
)
7409 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
7410 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
7414 /* If this is a unary operation whose operand has one of two values, apply
7415 our opcode to compute those values. */
7416 else if (UNARY_P (x
)
7417 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
7419 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
7420 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
7421 GET_MODE (XEXP (x
, 0)));
7425 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7426 make can't possibly match and would suppress other optimizations. */
7427 else if (code
== COMPARE
)
7430 /* If this is a binary operation, see if either side has only one of two
7431 values. If either one does or if both do and they are conditional on
7432 the same value, compute the new true and false values. */
7433 else if (BINARY_P (x
))
7435 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
7436 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
7438 if ((cond0
!= 0 || cond1
!= 0)
7439 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
7441 /* If if_then_else_cond returned zero, then true/false are the
7442 same rtl. We must copy one of them to prevent invalid rtl
7445 true0
= copy_rtx (true0
);
7446 else if (cond1
== 0)
7447 true1
= copy_rtx (true1
);
7449 *ptrue
= gen_binary (code
, mode
, true0
, true1
);
7450 *pfalse
= gen_binary (code
, mode
, false0
, false1
);
7451 return cond0
? cond0
: cond1
;
7454 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7455 operands is zero when the other is nonzero, and vice-versa,
7456 and STORE_FLAG_VALUE is 1 or -1. */
7458 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7459 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
7461 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7463 rtx op0
= XEXP (XEXP (x
, 0), 1);
7464 rtx op1
= XEXP (XEXP (x
, 1), 1);
7466 cond0
= XEXP (XEXP (x
, 0), 0);
7467 cond1
= XEXP (XEXP (x
, 1), 0);
7469 if (COMPARISON_P (cond0
)
7470 && COMPARISON_P (cond1
)
7471 && ((GET_CODE (cond0
) == combine_reversed_comparison_code (cond1
)
7472 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7473 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7474 || ((swap_condition (GET_CODE (cond0
))
7475 == combine_reversed_comparison_code (cond1
))
7476 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7477 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7478 && ! side_effects_p (x
))
7480 *ptrue
= gen_binary (MULT
, mode
, op0
, const_true_rtx
);
7481 *pfalse
= gen_binary (MULT
, mode
,
7483 ? simplify_gen_unary (NEG
, mode
, op1
,
7491 /* Similarly for MULT, AND and UMIN, except that for these the result
7493 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7494 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
7495 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7497 cond0
= XEXP (XEXP (x
, 0), 0);
7498 cond1
= XEXP (XEXP (x
, 1), 0);
7500 if (COMPARISON_P (cond0
)
7501 && COMPARISON_P (cond1
)
7502 && ((GET_CODE (cond0
) == combine_reversed_comparison_code (cond1
)
7503 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7504 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7505 || ((swap_condition (GET_CODE (cond0
))
7506 == combine_reversed_comparison_code (cond1
))
7507 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7508 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7509 && ! side_effects_p (x
))
7511 *ptrue
= *pfalse
= const0_rtx
;
7517 else if (code
== IF_THEN_ELSE
)
7519 /* If we have IF_THEN_ELSE already, extract the condition and
7520 canonicalize it if it is NE or EQ. */
7521 cond0
= XEXP (x
, 0);
7522 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
7523 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
7524 return XEXP (cond0
, 0);
7525 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
7527 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
7528 return XEXP (cond0
, 0);
7534 /* If X is a SUBREG, we can narrow both the true and false values
7535 if the inner expression, if there is a condition. */
7536 else if (code
== SUBREG
7537 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
7540 true0
= simplify_gen_subreg (mode
, true0
,
7541 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7542 false0
= simplify_gen_subreg (mode
, false0
,
7543 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
7544 if (true0
&& false0
)
7552 /* If X is a constant, this isn't special and will cause confusions
7553 if we treat it as such. Likewise if it is equivalent to a constant. */
7554 else if (CONSTANT_P (x
)
7555 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
7558 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7559 will be least confusing to the rest of the compiler. */
7560 else if (mode
== BImode
)
7562 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
7566 /* If X is known to be either 0 or -1, those are the true and
7567 false values when testing X. */
7568 else if (x
== constm1_rtx
|| x
== const0_rtx
7569 || (mode
!= VOIDmode
7570 && num_sign_bit_copies (x
, mode
) == GET_MODE_BITSIZE (mode
)))
7572 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
7576 /* Likewise for 0 or a single bit. */
7577 else if (SCALAR_INT_MODE_P (mode
)
7578 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7579 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
7581 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
7585 /* Otherwise fail; show no condition with true and false values the same. */
7586 *ptrue
= *pfalse
= x
;
7590 /* Return the value of expression X given the fact that condition COND
7591 is known to be true when applied to REG as its first operand and VAL
7592 as its second. X is known to not be shared and so can be modified in
7595 We only handle the simplest cases, and specifically those cases that
7596 arise with IF_THEN_ELSE expressions. */
7599 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
7601 enum rtx_code code
= GET_CODE (x
);
7606 if (side_effects_p (x
))
7609 /* If either operand of the condition is a floating point value,
7610 then we have to avoid collapsing an EQ comparison. */
7612 && rtx_equal_p (x
, reg
)
7613 && ! FLOAT_MODE_P (GET_MODE (x
))
7614 && ! FLOAT_MODE_P (GET_MODE (val
)))
7617 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
7620 /* If X is (abs REG) and we know something about REG's relationship
7621 with zero, we may be able to simplify this. */
7623 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
7626 case GE
: case GT
: case EQ
:
7629 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
7631 GET_MODE (XEXP (x
, 0)));
7636 /* The only other cases we handle are MIN, MAX, and comparisons if the
7637 operands are the same as REG and VAL. */
7639 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
7641 if (rtx_equal_p (XEXP (x
, 0), val
))
7642 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
7644 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
7646 if (COMPARISON_P (x
))
7648 if (comparison_dominates_p (cond
, code
))
7649 return const_true_rtx
;
7651 code
= combine_reversed_comparison_code (x
);
7653 && comparison_dominates_p (cond
, code
))
7658 else if (code
== SMAX
|| code
== SMIN
7659 || code
== UMIN
|| code
== UMAX
)
7661 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
7663 /* Do not reverse the condition when it is NE or EQ.
7664 This is because we cannot conclude anything about
7665 the value of 'SMAX (x, y)' when x is not equal to y,
7666 but we can when x equals y. */
7667 if ((code
== SMAX
|| code
== UMAX
)
7668 && ! (cond
== EQ
|| cond
== NE
))
7669 cond
= reverse_condition (cond
);
7674 return unsignedp
? x
: XEXP (x
, 1);
7676 return unsignedp
? x
: XEXP (x
, 0);
7678 return unsignedp
? XEXP (x
, 1) : x
;
7680 return unsignedp
? XEXP (x
, 0) : x
;
7687 else if (code
== SUBREG
)
7689 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
7690 rtx
new, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
7692 if (SUBREG_REG (x
) != r
)
7694 /* We must simplify subreg here, before we lose track of the
7695 original inner_mode. */
7696 new = simplify_subreg (GET_MODE (x
), r
,
7697 inner_mode
, SUBREG_BYTE (x
));
7701 SUBST (SUBREG_REG (x
), r
);
7706 /* We don't have to handle SIGN_EXTEND here, because even in the
7707 case of replacing something with a modeless CONST_INT, a
7708 CONST_INT is already (supposed to be) a valid sign extension for
7709 its narrower mode, which implies it's already properly
7710 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7711 story is different. */
7712 else if (code
== ZERO_EXTEND
)
7714 enum machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
7715 rtx
new, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
7717 if (XEXP (x
, 0) != r
)
7719 /* We must simplify the zero_extend here, before we lose
7720 track of the original inner_mode. */
7721 new = simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7726 SUBST (XEXP (x
, 0), r
);
7732 fmt
= GET_RTX_FORMAT (code
);
7733 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7736 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
7737 else if (fmt
[i
] == 'E')
7738 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7739 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
7746 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7747 assignment as a field assignment. */
7750 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
7752 if (x
== y
|| rtx_equal_p (x
, y
))
7755 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
7758 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7759 Note that all SUBREGs of MEM are paradoxical; otherwise they
7760 would have been rewritten. */
7761 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
7762 && MEM_P (SUBREG_REG (y
))
7763 && rtx_equal_p (SUBREG_REG (y
),
7764 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
7767 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
7768 && MEM_P (SUBREG_REG (x
))
7769 && rtx_equal_p (SUBREG_REG (x
),
7770 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
7773 /* We used to see if get_last_value of X and Y were the same but that's
7774 not correct. In one direction, we'll cause the assignment to have
7775 the wrong destination and in the case, we'll import a register into this
7776 insn that might have already have been dead. So fail if none of the
7777 above cases are true. */
7781 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7782 Return that assignment if so.
7784 We only handle the most common cases. */
7787 make_field_assignment (rtx x
)
7789 rtx dest
= SET_DEST (x
);
7790 rtx src
= SET_SRC (x
);
7795 unsigned HOST_WIDE_INT len
;
7797 enum machine_mode mode
;
7799 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7800 a clear of a one-bit field. We will have changed it to
7801 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7804 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
7805 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == CONST_INT
7806 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
7807 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7809 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7812 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7816 else if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
7817 && subreg_lowpart_p (XEXP (src
, 0))
7818 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
7819 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
7820 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
7821 && GET_CODE (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == CONST_INT
7822 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
7823 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7825 assign
= make_extraction (VOIDmode
, dest
, 0,
7826 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
7829 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7833 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7835 else if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
7836 && XEXP (XEXP (src
, 0), 0) == const1_rtx
7837 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7839 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7842 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
7846 /* The other case we handle is assignments into a constant-position
7847 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7848 a mask that has all one bits except for a group of zero bits and
7849 OTHER is known to have zeros where C1 has ones, this is such an
7850 assignment. Compute the position and length from C1. Shift OTHER
7851 to the appropriate position, force it to the required mode, and
7852 make the extraction. Check for the AND in both operands. */
7854 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
7857 rhs
= expand_compound_operation (XEXP (src
, 0));
7858 lhs
= expand_compound_operation (XEXP (src
, 1));
7860 if (GET_CODE (rhs
) == AND
7861 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
7862 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
7863 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
7864 else if (GET_CODE (lhs
) == AND
7865 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
7866 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
7867 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
7871 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
7872 if (pos
< 0 || pos
+ len
> GET_MODE_BITSIZE (GET_MODE (dest
))
7873 || GET_MODE_BITSIZE (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
7874 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
7877 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
7881 /* The mode to use for the source is the mode of the assignment, or of
7882 what is inside a possible STRICT_LOW_PART. */
7883 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
7884 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
7886 /* Shift OTHER right POS places and make it the source, restricting it
7887 to the proper length and mode. */
7889 src
= force_to_mode (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7890 GET_MODE (src
), other
, pos
),
7892 GET_MODE_BITSIZE (mode
) >= HOST_BITS_PER_WIDE_INT
7893 ? ~(unsigned HOST_WIDE_INT
) 0
7894 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7897 /* If SRC is masked by an AND that does not make a difference in
7898 the value being stored, strip it. */
7899 if (GET_CODE (assign
) == ZERO_EXTRACT
7900 && GET_CODE (XEXP (assign
, 1)) == CONST_INT
7901 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
7902 && GET_CODE (src
) == AND
7903 && GET_CODE (XEXP (src
, 1)) == CONST_INT
7904 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (src
, 1))
7905 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1))
7906 src
= XEXP (src
, 0);
7908 return gen_rtx_SET (VOIDmode
, assign
, src
);
7911 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7915 apply_distributive_law (rtx x
)
7917 enum rtx_code code
= GET_CODE (x
);
7918 enum rtx_code inner_code
;
7919 rtx lhs
, rhs
, other
;
7922 /* Distributivity is not true for floating point as it can change the
7923 value. So we don't do it unless -funsafe-math-optimizations. */
7924 if (FLOAT_MODE_P (GET_MODE (x
))
7925 && ! flag_unsafe_math_optimizations
)
7928 /* The outer operation can only be one of the following: */
7929 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
7930 && code
!= PLUS
&& code
!= MINUS
)
7936 /* If either operand is a primitive we can't do anything, so get out
7938 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
7941 lhs
= expand_compound_operation (lhs
);
7942 rhs
= expand_compound_operation (rhs
);
7943 inner_code
= GET_CODE (lhs
);
7944 if (inner_code
!= GET_CODE (rhs
))
7947 /* See if the inner and outer operations distribute. */
7954 /* These all distribute except over PLUS. */
7955 if (code
== PLUS
|| code
== MINUS
)
7960 if (code
!= PLUS
&& code
!= MINUS
)
7965 /* This is also a multiply, so it distributes over everything. */
7969 /* Non-paradoxical SUBREGs distributes over all operations, provided
7970 the inner modes and byte offsets are the same, this is an extraction
7971 of a low-order part, we don't convert an fp operation to int or
7972 vice versa, and we would not be converting a single-word
7973 operation into a multi-word operation. The latter test is not
7974 required, but it prevents generating unneeded multi-word operations.
7975 Some of the previous tests are redundant given the latter test, but
7976 are retained because they are required for correctness.
7978 We produce the result slightly differently in this case. */
7980 if (GET_MODE (SUBREG_REG (lhs
)) != GET_MODE (SUBREG_REG (rhs
))
7981 || SUBREG_BYTE (lhs
) != SUBREG_BYTE (rhs
)
7982 || ! subreg_lowpart_p (lhs
)
7983 || (GET_MODE_CLASS (GET_MODE (lhs
))
7984 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs
))))
7985 || (GET_MODE_SIZE (GET_MODE (lhs
))
7986 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))))
7987 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))) > UNITS_PER_WORD
)
7990 tem
= gen_binary (code
, GET_MODE (SUBREG_REG (lhs
)),
7991 SUBREG_REG (lhs
), SUBREG_REG (rhs
));
7992 return gen_lowpart (GET_MODE (x
), tem
);
7998 /* Set LHS and RHS to the inner operands (A and B in the example
7999 above) and set OTHER to the common operand (C in the example).
8000 There is only one way to do this unless the inner operation is
8002 if (COMMUTATIVE_ARITH_P (lhs
)
8003 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
8004 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
8005 else if (COMMUTATIVE_ARITH_P (lhs
)
8006 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
8007 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
8008 else if (COMMUTATIVE_ARITH_P (lhs
)
8009 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
8010 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
8011 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
8012 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
8016 /* Form the new inner operation, seeing if it simplifies first. */
8017 tem
= gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
8019 /* There is one exception to the general way of distributing:
8020 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8021 if (code
== XOR
&& inner_code
== IOR
)
8024 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
8027 /* We may be able to continuing distributing the result, so call
8028 ourselves recursively on the inner operation before forming the
8029 outer operation, which we return. */
8030 return gen_binary (inner_code
, GET_MODE (x
),
8031 apply_distributive_law (tem
), other
);
8034 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8037 Return an equivalent form, if different from X. Otherwise, return X. If
8038 X is zero, we are to always construct the equivalent form. */
8041 simplify_and_const_int (rtx x
, enum machine_mode mode
, rtx varop
,
8042 unsigned HOST_WIDE_INT constop
)
8044 unsigned HOST_WIDE_INT nonzero
;
8047 /* Simplify VAROP knowing that we will be only looking at some of the
8050 Note by passing in CONSTOP, we guarantee that the bits not set in
8051 CONSTOP are not significant and will never be examined. We must
8052 ensure that is the case by explicitly masking out those bits
8053 before returning. */
8054 varop
= force_to_mode (varop
, mode
, constop
, NULL_RTX
, 0);
8056 /* If VAROP is a CLOBBER, we will fail so return it. */
8057 if (GET_CODE (varop
) == CLOBBER
)
8060 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8061 to VAROP and return the new constant. */
8062 if (GET_CODE (varop
) == CONST_INT
)
8063 return GEN_INT (trunc_int_for_mode (INTVAL (varop
) & constop
, mode
));
8065 /* See what bits may be nonzero in VAROP. Unlike the general case of
8066 a call to nonzero_bits, here we don't care about bits outside
8069 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
8071 /* Turn off all bits in the constant that are known to already be zero.
8072 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8073 which is tested below. */
8077 /* If we don't have any bits left, return zero. */
8081 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8082 a power of two, we can replace this with an ASHIFT. */
8083 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
8084 && (i
= exact_log2 (constop
)) >= 0)
8085 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
8087 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8088 or XOR, then try to apply the distributive law. This may eliminate
8089 operations if either branch can be simplified because of the AND.
8090 It may also make some cases more complex, but those cases probably
8091 won't match a pattern either with or without this. */
8093 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
8097 apply_distributive_law
8098 (gen_binary (GET_CODE (varop
), GET_MODE (varop
),
8099 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
8100 XEXP (varop
, 0), constop
),
8101 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
8102 XEXP (varop
, 1), constop
))));
8104 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8105 the AND and see if one of the operands simplifies to zero. If so, we
8106 may eliminate it. */
8108 if (GET_CODE (varop
) == PLUS
8109 && exact_log2 (constop
+ 1) >= 0)
8113 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
8114 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
8115 if (o0
== const0_rtx
)
8117 if (o1
== const0_rtx
)
8121 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8122 if we already had one (just check for the simplest cases). */
8123 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
8124 && GET_MODE (XEXP (x
, 0)) == mode
8125 && SUBREG_REG (XEXP (x
, 0)) == varop
)
8126 varop
= XEXP (x
, 0);
8128 varop
= gen_lowpart (mode
, varop
);
8130 /* If we can't make the SUBREG, try to return what we were given. */
8131 if (GET_CODE (varop
) == CLOBBER
)
8132 return x
? x
: varop
;
8134 /* If we are only masking insignificant bits, return VAROP. */
8135 if (constop
== nonzero
)
8139 /* Otherwise, return an AND. */
8140 constop
= trunc_int_for_mode (constop
, mode
);
8141 /* See how much, if any, of X we can use. */
8142 if (x
== 0 || GET_CODE (x
) != AND
|| GET_MODE (x
) != mode
)
8143 x
= gen_binary (AND
, mode
, varop
, GEN_INT (constop
));
8147 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
8148 || (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) != constop
)
8149 SUBST (XEXP (x
, 1), GEN_INT (constop
));
8151 SUBST (XEXP (x
, 0), varop
);
8158 /* Given a REG, X, compute which bits in X can be nonzero.
8159 We don't care about bits outside of those defined in MODE.
8161 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8162 a shift, AND, or zero_extract, we can do better. */
8165 reg_nonzero_bits_for_combine (rtx x
, enum machine_mode mode
,
8166 rtx known_x ATTRIBUTE_UNUSED
,
8167 enum machine_mode known_mode ATTRIBUTE_UNUSED
,
8168 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
8169 unsigned HOST_WIDE_INT
*nonzero
)
8173 /* If X is a register whose nonzero bits value is current, use it.
8174 Otherwise, if X is a register whose value we can find, use that
8175 value. Otherwise, use the previously-computed global nonzero bits
8176 for this register. */
8178 if (reg_stat
[REGNO (x
)].last_set_value
!= 0
8179 && (reg_stat
[REGNO (x
)].last_set_mode
== mode
8180 || (GET_MODE_CLASS (reg_stat
[REGNO (x
)].last_set_mode
) == MODE_INT
8181 && GET_MODE_CLASS (mode
) == MODE_INT
))
8182 && (reg_stat
[REGNO (x
)].last_set_label
== label_tick
8183 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8184 && REG_N_SETS (REGNO (x
)) == 1
8185 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
,
8187 && INSN_CUID (reg_stat
[REGNO (x
)].last_set
) < subst_low_cuid
)
8189 *nonzero
&= reg_stat
[REGNO (x
)].last_set_nonzero_bits
;
8193 tem
= get_last_value (x
);
8197 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8198 /* If X is narrower than MODE and TEM is a non-negative
8199 constant that would appear negative in the mode of X,
8200 sign-extend it for use in reg_nonzero_bits because some
8201 machines (maybe most) will actually do the sign-extension
8202 and this is the conservative approach.
8204 ??? For 2.5, try to tighten up the MD files in this regard
8205 instead of this kludge. */
8207 if (GET_MODE_BITSIZE (GET_MODE (x
)) < GET_MODE_BITSIZE (mode
)
8208 && GET_CODE (tem
) == CONST_INT
8210 && 0 != (INTVAL (tem
)
8211 & ((HOST_WIDE_INT
) 1
8212 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
8213 tem
= GEN_INT (INTVAL (tem
)
8214 | ((HOST_WIDE_INT
) (-1)
8215 << GET_MODE_BITSIZE (GET_MODE (x
))));
8219 else if (nonzero_sign_valid
&& reg_stat
[REGNO (x
)].nonzero_bits
)
8221 unsigned HOST_WIDE_INT mask
= reg_stat
[REGNO (x
)].nonzero_bits
;
8223 if (GET_MODE_BITSIZE (GET_MODE (x
)) < GET_MODE_BITSIZE (mode
))
8224 /* We don't know anything about the upper bits. */
8225 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
8232 /* Return the number of bits at the high-order end of X that are known to
8233 be equal to the sign bit. X will be used in mode MODE; if MODE is
8234 VOIDmode, X will be used in its own mode. The returned value will always
8235 be between 1 and the number of bits in MODE. */
8238 reg_num_sign_bit_copies_for_combine (rtx x
, enum machine_mode mode
,
8239 rtx known_x ATTRIBUTE_UNUSED
,
8240 enum machine_mode known_mode
8242 unsigned int known_ret ATTRIBUTE_UNUSED
,
8243 unsigned int *result
)
8247 if (reg_stat
[REGNO (x
)].last_set_value
!= 0
8248 && reg_stat
[REGNO (x
)].last_set_mode
== mode
8249 && (reg_stat
[REGNO (x
)].last_set_label
== label_tick
8250 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8251 && REG_N_SETS (REGNO (x
)) == 1
8252 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
,
8254 && INSN_CUID (reg_stat
[REGNO (x
)].last_set
) < subst_low_cuid
)
8256 *result
= reg_stat
[REGNO (x
)].last_set_sign_bit_copies
;
8260 tem
= get_last_value (x
);
8264 if (nonzero_sign_valid
&& reg_stat
[REGNO (x
)].sign_bit_copies
!= 0
8265 && GET_MODE_BITSIZE (GET_MODE (x
)) == GET_MODE_BITSIZE (mode
))
8266 *result
= reg_stat
[REGNO (x
)].sign_bit_copies
;
8271 /* Return the number of "extended" bits there are in X, when interpreted
8272 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8273 unsigned quantities, this is the number of high-order zero bits.
8274 For signed quantities, this is the number of copies of the sign bit
8275 minus 1. In both case, this function returns the number of "spare"
8276 bits. For example, if two quantities for which this function returns
8277 at least 1 are added, the addition is known not to overflow.
8279 This function will always return 0 unless called during combine, which
8280 implies that it must be called from a define_split. */
8283 extended_count (rtx x
, enum machine_mode mode
, int unsignedp
)
8285 if (nonzero_sign_valid
== 0)
8289 ? (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8290 ? (unsigned int) (GET_MODE_BITSIZE (mode
) - 1
8291 - floor_log2 (nonzero_bits (x
, mode
)))
8293 : num_sign_bit_copies (x
, mode
) - 1);
8296 /* This function is called from `simplify_shift_const' to merge two
8297 outer operations. Specifically, we have already found that we need
8298 to perform operation *POP0 with constant *PCONST0 at the outermost
8299 position. We would now like to also perform OP1 with constant CONST1
8300 (with *POP0 being done last).
8302 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8303 the resulting operation. *PCOMP_P is set to 1 if we would need to
8304 complement the innermost operand, otherwise it is unchanged.
8306 MODE is the mode in which the operation will be done. No bits outside
8307 the width of this mode matter. It is assumed that the width of this mode
8308 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8310 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8311 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8312 result is simply *PCONST0.
8314 If the resulting operation cannot be expressed as one operation, we
8315 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8318 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, enum machine_mode mode
, int *pcomp_p
)
8320 enum rtx_code op0
= *pop0
;
8321 HOST_WIDE_INT const0
= *pconst0
;
8323 const0
&= GET_MODE_MASK (mode
);
8324 const1
&= GET_MODE_MASK (mode
);
8326 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8330 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8333 if (op1
== UNKNOWN
|| op0
== SET
)
8336 else if (op0
== UNKNOWN
)
8337 op0
= op1
, const0
= const1
;
8339 else if (op0
== op1
)
8363 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8364 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
8367 /* If the two constants aren't the same, we can't do anything. The
8368 remaining six cases can all be done. */
8369 else if (const0
!= const1
)
8377 /* (a & b) | b == b */
8379 else /* op1 == XOR */
8380 /* (a ^ b) | b == a | b */
8386 /* (a & b) ^ b == (~a) & b */
8387 op0
= AND
, *pcomp_p
= 1;
8388 else /* op1 == IOR */
8389 /* (a | b) ^ b == a & ~b */
8390 op0
= AND
, const0
= ~const0
;
8395 /* (a | b) & b == b */
8397 else /* op1 == XOR */
8398 /* (a ^ b) & b) == (~a) & b */
8405 /* Check for NO-OP cases. */
8406 const0
&= GET_MODE_MASK (mode
);
8408 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
8410 else if (const0
== 0 && op0
== AND
)
8412 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
8416 /* ??? Slightly redundant with the above mask, but not entirely.
8417 Moving this above means we'd have to sign-extend the mode mask
8418 for the final test. */
8419 const0
= trunc_int_for_mode (const0
, mode
);
8427 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8428 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8429 that we started with.
8431 The shift is normally computed in the widest mode we find in VAROP, as
8432 long as it isn't a different number of words than RESULT_MODE. Exceptions
8433 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8436 simplify_shift_const (rtx x
, enum rtx_code code
,
8437 enum machine_mode result_mode
, rtx varop
,
8440 enum rtx_code orig_code
= code
;
8443 enum machine_mode mode
= result_mode
;
8444 enum machine_mode shift_mode
, tmode
;
8445 unsigned int mode_words
8446 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
8447 /* We form (outer_op (code varop count) (outer_const)). */
8448 enum rtx_code outer_op
= UNKNOWN
;
8449 HOST_WIDE_INT outer_const
= 0;
8451 int complement_p
= 0;
8454 /* Make sure and truncate the "natural" shift on the way in. We don't
8455 want to do this inside the loop as it makes it more difficult to
8457 if (SHIFT_COUNT_TRUNCATED
)
8458 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
8460 /* If we were given an invalid count, don't do anything except exactly
8461 what was requested. */
8463 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_BITSIZE (mode
))
8468 return gen_rtx_fmt_ee (code
, mode
, varop
, GEN_INT (orig_count
));
8473 /* Unless one of the branches of the `if' in this loop does a `continue',
8474 we will `break' the loop after the `if'. */
8478 /* If we have an operand of (clobber (const_int 0)), just return that
8480 if (GET_CODE (varop
) == CLOBBER
)
8483 /* If we discovered we had to complement VAROP, leave. Making a NOT
8484 here would cause an infinite loop. */
8488 /* Convert ROTATERT to ROTATE. */
8489 if (code
== ROTATERT
)
8491 unsigned int bitsize
= GET_MODE_BITSIZE (result_mode
);;
8493 if (VECTOR_MODE_P (result_mode
))
8494 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
8496 count
= bitsize
- count
;
8499 /* We need to determine what mode we will do the shift in. If the
8500 shift is a right shift or a ROTATE, we must always do it in the mode
8501 it was originally done in. Otherwise, we can do it in MODE, the
8502 widest mode encountered. */
8504 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
8505 ? result_mode
: mode
);
8507 /* Handle cases where the count is greater than the size of the mode
8508 minus 1. For ASHIFT, use the size minus one as the count (this can
8509 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8510 take the count modulo the size. For other shifts, the result is
8513 Since these shifts are being produced by the compiler by combining
8514 multiple operations, each of which are defined, we know what the
8515 result is supposed to be. */
8517 if (count
> (unsigned int) (GET_MODE_BITSIZE (shift_mode
) - 1))
8519 if (code
== ASHIFTRT
)
8520 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8521 else if (code
== ROTATE
|| code
== ROTATERT
)
8522 count
%= GET_MODE_BITSIZE (shift_mode
);
8525 /* We can't simply return zero because there may be an
8533 /* An arithmetic right shift of a quantity known to be -1 or 0
8535 if (code
== ASHIFTRT
8536 && (num_sign_bit_copies (varop
, shift_mode
)
8537 == GET_MODE_BITSIZE (shift_mode
)))
8543 /* If we are doing an arithmetic right shift and discarding all but
8544 the sign bit copies, this is equivalent to doing a shift by the
8545 bitsize minus one. Convert it into that shift because it will often
8546 allow other simplifications. */
8548 if (code
== ASHIFTRT
8549 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
8550 >= GET_MODE_BITSIZE (shift_mode
)))
8551 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8553 /* We simplify the tests below and elsewhere by converting
8554 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8555 `make_compound_operation' will convert it to an ASHIFTRT for
8556 those machines (such as VAX) that don't have an LSHIFTRT. */
8557 if (GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8559 && ((nonzero_bits (varop
, shift_mode
)
8560 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (shift_mode
) - 1)))
8564 if (code
== LSHIFTRT
8565 && GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8566 && !(nonzero_bits (varop
, shift_mode
) >> count
))
8569 && GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8570 && !((nonzero_bits (varop
, shift_mode
) << count
)
8571 & GET_MODE_MASK (shift_mode
)))
8574 switch (GET_CODE (varop
))
8580 new = expand_compound_operation (varop
);
8589 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8590 minus the width of a smaller mode, we can do this with a
8591 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8592 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8593 && ! mode_dependent_address_p (XEXP (varop
, 0))
8594 && ! MEM_VOLATILE_P (varop
)
8595 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
8596 MODE_INT
, 1)) != BLKmode
)
8598 new = adjust_address_nv (varop
, tmode
,
8599 BYTES_BIG_ENDIAN
? 0
8600 : count
/ BITS_PER_UNIT
);
8602 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
8603 : ZERO_EXTEND
, mode
, new);
8610 /* Similar to the case above, except that we can only do this if
8611 the resulting mode is the same as that of the underlying
8612 MEM and adjust the address depending on the *bits* endianness
8613 because of the way that bit-field extract insns are defined. */
8614 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8615 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
8616 MODE_INT
, 1)) != BLKmode
8617 && tmode
== GET_MODE (XEXP (varop
, 0)))
8619 if (BITS_BIG_ENDIAN
)
8620 new = XEXP (varop
, 0);
8623 new = copy_rtx (XEXP (varop
, 0));
8624 SUBST (XEXP (new, 0),
8625 plus_constant (XEXP (new, 0),
8626 count
/ BITS_PER_UNIT
));
8629 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
8630 : ZERO_EXTEND
, mode
, new);
8637 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8638 the same number of words as what we've seen so far. Then store
8639 the widest mode in MODE. */
8640 if (subreg_lowpart_p (varop
)
8641 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
8642 > GET_MODE_SIZE (GET_MODE (varop
)))
8643 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
8644 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
8647 varop
= SUBREG_REG (varop
);
8648 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
8649 mode
= GET_MODE (varop
);
8655 /* Some machines use MULT instead of ASHIFT because MULT
8656 is cheaper. But it is still better on those machines to
8657 merge two shifts into one. */
8658 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8659 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
8662 = gen_binary (ASHIFT
, GET_MODE (varop
), XEXP (varop
, 0),
8663 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
8669 /* Similar, for when divides are cheaper. */
8670 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8671 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
8674 = gen_binary (LSHIFTRT
, GET_MODE (varop
), XEXP (varop
, 0),
8675 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
8681 /* If we are extracting just the sign bit of an arithmetic
8682 right shift, that shift is not needed. However, the sign
8683 bit of a wider mode may be different from what would be
8684 interpreted as the sign bit in a narrower mode, so, if
8685 the result is narrower, don't discard the shift. */
8686 if (code
== LSHIFTRT
8687 && count
== (unsigned int) (GET_MODE_BITSIZE (result_mode
) - 1)
8688 && (GET_MODE_BITSIZE (result_mode
)
8689 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
8691 varop
= XEXP (varop
, 0);
8695 /* ... fall through ... */
8700 /* Here we have two nested shifts. The result is usually the
8701 AND of a new shift with a mask. We compute the result below. */
8702 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8703 && INTVAL (XEXP (varop
, 1)) >= 0
8704 && INTVAL (XEXP (varop
, 1)) < GET_MODE_BITSIZE (GET_MODE (varop
))
8705 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
8706 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
8708 enum rtx_code first_code
= GET_CODE (varop
);
8709 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
8710 unsigned HOST_WIDE_INT mask
;
8713 /* We have one common special case. We can't do any merging if
8714 the inner code is an ASHIFTRT of a smaller mode. However, if
8715 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8716 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8717 we can convert it to
8718 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8719 This simplifies certain SIGN_EXTEND operations. */
8720 if (code
== ASHIFT
&& first_code
== ASHIFTRT
8721 && count
== (unsigned int)
8722 (GET_MODE_BITSIZE (result_mode
)
8723 - GET_MODE_BITSIZE (GET_MODE (varop
))))
8725 /* C3 has the low-order C1 bits zero. */
8727 mask
= (GET_MODE_MASK (mode
)
8728 & ~(((HOST_WIDE_INT
) 1 << first_count
) - 1));
8730 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
8731 XEXP (varop
, 0), mask
);
8732 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
8734 count
= first_count
;
8739 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8740 than C1 high-order bits equal to the sign bit, we can convert
8741 this to either an ASHIFT or an ASHIFTRT depending on the
8744 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8746 if (code
== ASHIFTRT
&& first_code
== ASHIFT
8747 && GET_MODE (varop
) == shift_mode
8748 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
8751 varop
= XEXP (varop
, 0);
8753 signed_count
= count
- first_count
;
8754 if (signed_count
< 0)
8755 count
= -signed_count
, code
= ASHIFT
;
8757 count
= signed_count
;
8762 /* There are some cases we can't do. If CODE is ASHIFTRT,
8763 we can only do this if FIRST_CODE is also ASHIFTRT.
8765 We can't do the case when CODE is ROTATE and FIRST_CODE is
8768 If the mode of this shift is not the mode of the outer shift,
8769 we can't do this if either shift is a right shift or ROTATE.
8771 Finally, we can't do any of these if the mode is too wide
8772 unless the codes are the same.
8774 Handle the case where the shift codes are the same
8777 if (code
== first_code
)
8779 if (GET_MODE (varop
) != result_mode
8780 && (code
== ASHIFTRT
|| code
== LSHIFTRT
8784 count
+= first_count
;
8785 varop
= XEXP (varop
, 0);
8789 if (code
== ASHIFTRT
8790 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
8791 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
8792 || (GET_MODE (varop
) != result_mode
8793 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
8794 || first_code
== ROTATE
8795 || code
== ROTATE
)))
8798 /* To compute the mask to apply after the shift, shift the
8799 nonzero bits of the inner shift the same way the
8800 outer shift will. */
8802 mask_rtx
= GEN_INT (nonzero_bits (varop
, GET_MODE (varop
)));
8805 = simplify_binary_operation (code
, result_mode
, mask_rtx
,
8808 /* Give up if we can't compute an outer operation to use. */
8810 || GET_CODE (mask_rtx
) != CONST_INT
8811 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
8813 result_mode
, &complement_p
))
8816 /* If the shifts are in the same direction, we add the
8817 counts. Otherwise, we subtract them. */
8818 signed_count
= count
;
8819 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8820 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
8821 signed_count
+= first_count
;
8823 signed_count
-= first_count
;
8825 /* If COUNT is positive, the new shift is usually CODE,
8826 except for the two exceptions below, in which case it is
8827 FIRST_CODE. If the count is negative, FIRST_CODE should
8829 if (signed_count
> 0
8830 && ((first_code
== ROTATE
&& code
== ASHIFT
)
8831 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
8832 code
= first_code
, count
= signed_count
;
8833 else if (signed_count
< 0)
8834 code
= first_code
, count
= -signed_count
;
8836 count
= signed_count
;
8838 varop
= XEXP (varop
, 0);
8842 /* If we have (A << B << C) for any shift, we can convert this to
8843 (A << C << B). This wins if A is a constant. Only try this if
8844 B is not a constant. */
8846 else if (GET_CODE (varop
) == code
8847 && GET_CODE (XEXP (varop
, 1)) != CONST_INT
8849 = simplify_binary_operation (code
, mode
,
8853 varop
= gen_rtx_fmt_ee (code
, mode
, new, XEXP (varop
, 1));
8860 /* Make this fit the case below. */
8861 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0),
8862 GEN_INT (GET_MODE_MASK (mode
)));
8868 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8869 with C the size of VAROP - 1 and the shift is logical if
8870 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8871 we have an (le X 0) operation. If we have an arithmetic shift
8872 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8873 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8875 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
8876 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
8877 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8878 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
8879 && count
== (unsigned int)
8880 (GET_MODE_BITSIZE (GET_MODE (varop
)) - 1)
8881 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
8884 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
8887 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
8888 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
8893 /* If we have (shift (logical)), move the logical to the outside
8894 to allow it to possibly combine with another logical and the
8895 shift to combine with another shift. This also canonicalizes to
8896 what a ZERO_EXTRACT looks like. Also, some machines have
8897 (and (shift)) insns. */
8899 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8900 /* We can't do this if we have (ashiftrt (xor)) and the
8901 constant has its sign bit set in shift_mode. */
8902 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
8903 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
8905 && (new = simplify_binary_operation (code
, result_mode
,
8907 GEN_INT (count
))) != 0
8908 && GET_CODE (new) == CONST_INT
8909 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
8910 INTVAL (new), result_mode
, &complement_p
))
8912 varop
= XEXP (varop
, 0);
8916 /* If we can't do that, try to simplify the shift in each arm of the
8917 logical expression, make a new logical expression, and apply
8918 the inverse distributive law. This also can't be done
8919 for some (ashiftrt (xor)). */
8920 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8921 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
8922 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
8925 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
8926 XEXP (varop
, 0), count
);
8927 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
8928 XEXP (varop
, 1), count
);
8930 varop
= gen_binary (GET_CODE (varop
), shift_mode
, lhs
, rhs
);
8931 varop
= apply_distributive_law (varop
);
8939 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8940 says that the sign bit can be tested, FOO has mode MODE, C is
8941 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8942 that may be nonzero. */
8943 if (code
== LSHIFTRT
8944 && XEXP (varop
, 1) == const0_rtx
8945 && GET_MODE (XEXP (varop
, 0)) == result_mode
8946 && count
== (unsigned int) (GET_MODE_BITSIZE (result_mode
) - 1)
8947 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
8948 && ((STORE_FLAG_VALUE
8949 & ((HOST_WIDE_INT
) 1
8950 < (GET_MODE_BITSIZE (result_mode
) - 1))))
8951 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
8952 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
8953 (HOST_WIDE_INT
) 1, result_mode
,
8956 varop
= XEXP (varop
, 0);
8963 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8964 than the number of bits in the mode is equivalent to A. */
8965 if (code
== LSHIFTRT
8966 && count
== (unsigned int) (GET_MODE_BITSIZE (result_mode
) - 1)
8967 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
8969 varop
= XEXP (varop
, 0);
8974 /* NEG commutes with ASHIFT since it is multiplication. Move the
8975 NEG outside to allow shifts to combine. */
8977 && merge_outer_ops (&outer_op
, &outer_const
, NEG
,
8978 (HOST_WIDE_INT
) 0, result_mode
,
8981 varop
= XEXP (varop
, 0);
8987 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8988 is one less than the number of bits in the mode is
8989 equivalent to (xor A 1). */
8990 if (code
== LSHIFTRT
8991 && count
== (unsigned int) (GET_MODE_BITSIZE (result_mode
) - 1)
8992 && XEXP (varop
, 1) == constm1_rtx
8993 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
8994 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
8995 (HOST_WIDE_INT
) 1, result_mode
,
8999 varop
= XEXP (varop
, 0);
9003 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9004 that might be nonzero in BAR are those being shifted out and those
9005 bits are known zero in FOO, we can replace the PLUS with FOO.
9006 Similarly in the other operand order. This code occurs when
9007 we are computing the size of a variable-size array. */
9009 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9010 && count
< HOST_BITS_PER_WIDE_INT
9011 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
9012 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
9013 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
9015 varop
= XEXP (varop
, 0);
9018 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9019 && count
< HOST_BITS_PER_WIDE_INT
9020 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9021 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9023 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9024 & nonzero_bits (XEXP (varop
, 1),
9027 varop
= XEXP (varop
, 1);
9031 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9033 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9034 && (new = simplify_binary_operation (ASHIFT
, result_mode
,
9036 GEN_INT (count
))) != 0
9037 && GET_CODE (new) == CONST_INT
9038 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
9039 INTVAL (new), result_mode
, &complement_p
))
9041 varop
= XEXP (varop
, 0);
9045 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9046 signbit', and attempt to change the PLUS to an XOR and move it to
9047 the outer operation as is done above in the AND/IOR/XOR case
9048 leg for shift(logical). See details in logical handling above
9049 for reasoning in doing so. */
9050 if (code
== LSHIFTRT
9051 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9052 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
9053 && (new = simplify_binary_operation (code
, result_mode
,
9055 GEN_INT (count
))) != 0
9056 && GET_CODE (new) == CONST_INT
9057 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9058 INTVAL (new), result_mode
, &complement_p
))
9060 varop
= XEXP (varop
, 0);
9067 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9068 with C the size of VAROP - 1 and the shift is logical if
9069 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9070 we have a (gt X 0) operation. If the shift is arithmetic with
9071 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9072 we have a (neg (gt X 0)) operation. */
9074 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9075 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
9076 && count
== (unsigned int)
9077 (GET_MODE_BITSIZE (GET_MODE (varop
)) - 1)
9078 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9079 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9080 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (XEXP (varop
, 0), 1))
9082 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9085 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
9088 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9089 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
9096 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9097 if the truncate does not affect the value. */
9098 if (code
== LSHIFTRT
9099 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
9100 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9101 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
9102 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop
, 0)))
9103 - GET_MODE_BITSIZE (GET_MODE (varop
)))))
9105 rtx varop_inner
= XEXP (varop
, 0);
9108 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
9109 XEXP (varop_inner
, 0),
9111 (count
+ INTVAL (XEXP (varop_inner
, 1))));
9112 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
9125 /* We need to determine what mode to do the shift in. If the shift is
9126 a right shift or ROTATE, we must always do it in the mode it was
9127 originally done in. Otherwise, we can do it in MODE, the widest mode
9128 encountered. The code we care about is that of the shift that will
9129 actually be done, not the shift that was originally requested. */
9131 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
9132 ? result_mode
: mode
);
9134 /* We have now finished analyzing the shift. The result should be
9135 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9136 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9137 to the result of the shift. OUTER_CONST is the relevant constant,
9138 but we must turn off all bits turned off in the shift.
9140 If we were passed a value for X, see if we can use any pieces of
9141 it. If not, make new rtx. */
9143 if (x
&& GET_RTX_CLASS (GET_CODE (x
)) == RTX_BIN_ARITH
9144 && GET_CODE (XEXP (x
, 1)) == CONST_INT
9145 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) == count
)
9146 const_rtx
= XEXP (x
, 1);
9148 const_rtx
= GEN_INT (count
);
9150 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
9151 && GET_MODE (XEXP (x
, 0)) == shift_mode
9152 && SUBREG_REG (XEXP (x
, 0)) == varop
)
9153 varop
= XEXP (x
, 0);
9154 else if (GET_MODE (varop
) != shift_mode
)
9155 varop
= gen_lowpart (shift_mode
, varop
);
9157 /* If we can't make the SUBREG, try to return what we were given. */
9158 if (GET_CODE (varop
) == CLOBBER
)
9159 return x
? x
: varop
;
9161 new = simplify_binary_operation (code
, shift_mode
, varop
, const_rtx
);
9165 x
= gen_rtx_fmt_ee (code
, shift_mode
, varop
, const_rtx
);
9167 /* If we have an outer operation and we just made a shift, it is
9168 possible that we could have simplified the shift were it not
9169 for the outer operation. So try to do the simplification
9172 if (outer_op
!= UNKNOWN
&& GET_CODE (x
) == code
9173 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
9174 x
= simplify_shift_const (x
, code
, shift_mode
, XEXP (x
, 0),
9175 INTVAL (XEXP (x
, 1)));
9177 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9178 turn off all the bits that the shift would have turned off. */
9179 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
9180 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
9181 GET_MODE_MASK (result_mode
) >> orig_count
);
9183 /* Do the remainder of the processing in RESULT_MODE. */
9184 x
= gen_lowpart (result_mode
, x
);
9186 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9189 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
9191 if (outer_op
!= UNKNOWN
)
9193 if (GET_MODE_BITSIZE (result_mode
) < HOST_BITS_PER_WIDE_INT
)
9194 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
9196 if (outer_op
== AND
)
9197 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
9198 else if (outer_op
== SET
)
9199 /* This means that we have determined that the result is
9200 equivalent to a constant. This should be rare. */
9201 x
= GEN_INT (outer_const
);
9202 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
9203 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
9205 x
= gen_binary (outer_op
, result_mode
, x
, GEN_INT (outer_const
));
9211 /* Like recog, but we receive the address of a pointer to a new pattern.
9212 We try to match the rtx that the pointer points to.
9213 If that fails, we may try to modify or replace the pattern,
9214 storing the replacement into the same pointer object.
9216 Modifications include deletion or addition of CLOBBERs.
9218 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9219 the CLOBBERs are placed.
9221 The value is the final insn code from the pattern ultimately matched,
9225 recog_for_combine (rtx
*pnewpat
, rtx insn
, rtx
*pnotes
)
9228 int insn_code_number
;
9229 int num_clobbers_to_add
= 0;
9232 rtx old_notes
, old_pat
;
9234 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9235 we use to indicate that something didn't match. If we find such a
9236 thing, force rejection. */
9237 if (GET_CODE (pat
) == PARALLEL
)
9238 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
9239 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
9240 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
9243 old_pat
= PATTERN (insn
);
9244 old_notes
= REG_NOTES (insn
);
9245 PATTERN (insn
) = pat
;
9246 REG_NOTES (insn
) = 0;
9248 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9250 /* If it isn't, there is the possibility that we previously had an insn
9251 that clobbered some register as a side effect, but the combined
9252 insn doesn't need to do that. So try once more without the clobbers
9253 unless this represents an ASM insn. */
9255 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
9256 && GET_CODE (pat
) == PARALLEL
)
9260 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
9261 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
9264 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
9268 SUBST_INT (XVECLEN (pat
, 0), pos
);
9271 pat
= XVECEXP (pat
, 0, 0);
9273 PATTERN (insn
) = pat
;
9274 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9276 PATTERN (insn
) = old_pat
;
9277 REG_NOTES (insn
) = old_notes
;
9279 /* Recognize all noop sets, these will be killed by followup pass. */
9280 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
9281 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
9283 /* If we had any clobbers to add, make a new pattern than contains
9284 them. Then check to make sure that all of them are dead. */
9285 if (num_clobbers_to_add
)
9287 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
9288 rtvec_alloc (GET_CODE (pat
) == PARALLEL
9290 + num_clobbers_to_add
)
9291 : num_clobbers_to_add
+ 1));
9293 if (GET_CODE (pat
) == PARALLEL
)
9294 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
9295 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
9297 XVECEXP (newpat
, 0, 0) = pat
;
9299 add_clobbers (newpat
, insn_code_number
);
9301 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
9302 i
< XVECLEN (newpat
, 0); i
++)
9304 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
9305 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
9307 notes
= gen_rtx_EXPR_LIST (REG_UNUSED
,
9308 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
9316 return insn_code_number
;
9319 /* Like gen_lowpart_general but for use by combine. In combine it
9320 is not possible to create any new pseudoregs. However, it is
9321 safe to create invalid memory addresses, because combine will
9322 try to recognize them and all they will do is make the combine
9325 If for some reason this cannot do its job, an rtx
9326 (clobber (const_int 0)) is returned.
9327 An insn containing that will not be recognized. */
9330 gen_lowpart_for_combine (enum machine_mode omode
, rtx x
)
9332 enum machine_mode imode
= GET_MODE (x
);
9333 unsigned int osize
= GET_MODE_SIZE (omode
);
9334 unsigned int isize
= GET_MODE_SIZE (imode
);
9340 /* Return identity if this is a CONST or symbolic reference. */
9342 && (GET_CODE (x
) == CONST
9343 || GET_CODE (x
) == SYMBOL_REF
9344 || GET_CODE (x
) == LABEL_REF
))
9347 /* We can only support MODE being wider than a word if X is a
9348 constant integer or has a mode the same size. */
9349 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
9350 && ! ((imode
== VOIDmode
9351 && (GET_CODE (x
) == CONST_INT
9352 || GET_CODE (x
) == CONST_DOUBLE
))
9356 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9357 won't know what to do. So we will strip off the SUBREG here and
9358 process normally. */
9359 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
9363 /* For use in case we fall down into the address adjustments
9364 further below, we need to adjust the known mode and size of
9365 x; imode and isize, since we just adjusted x. */
9366 imode
= GET_MODE (x
);
9371 isize
= GET_MODE_SIZE (imode
);
9374 result
= gen_lowpart_common (omode
, x
);
9376 #ifdef CANNOT_CHANGE_MODE_CLASS
9377 if (result
!= 0 && GET_CODE (result
) == SUBREG
)
9378 record_subregs_of_mode (result
);
9388 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9390 if (MEM_VOLATILE_P (x
) || mode_dependent_address_p (XEXP (x
, 0)))
9393 /* If we want to refer to something bigger than the original memref,
9394 generate a paradoxical subreg instead. That will force a reload
9395 of the original memref X. */
9397 return gen_rtx_SUBREG (omode
, x
, 0);
9399 if (WORDS_BIG_ENDIAN
)
9400 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
9402 /* Adjust the address so that the address-after-the-data is unchanged. */
9403 if (BYTES_BIG_ENDIAN
)
9404 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
9406 return adjust_address_nv (x
, omode
, offset
);
9409 /* If X is a comparison operator, rewrite it in a new mode. This
9410 probably won't match, but may allow further simplifications. */
9411 else if (COMPARISON_P (x
))
9412 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
9414 /* If we couldn't simplify X any other way, just enclose it in a
9415 SUBREG. Normally, this SUBREG won't match, but some patterns may
9416 include an explicit SUBREG or we may simplify it further in combine. */
9422 offset
= subreg_lowpart_offset (omode
, imode
);
9423 if (imode
== VOIDmode
)
9425 imode
= int_mode_for_mode (omode
);
9426 x
= gen_lowpart_common (imode
, x
);
9430 res
= simplify_gen_subreg (omode
, x
, imode
, offset
);
9436 return gen_rtx_CLOBBER (imode
, const0_rtx
);
9439 /* These routines make binary and unary operations by first seeing if they
9440 fold; if not, a new expression is allocated. */
9443 gen_binary (enum rtx_code code
, enum machine_mode mode
, rtx op0
, rtx op1
)
9448 if (GET_CODE (op0
) == CLOBBER
)
9450 else if (GET_CODE (op1
) == CLOBBER
)
9453 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
9454 && swap_commutative_operands_p (op0
, op1
))
9455 tem
= op0
, op0
= op1
, op1
= tem
;
9457 if (GET_RTX_CLASS (code
) == RTX_COMPARE
9458 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
9460 enum machine_mode op_mode
= GET_MODE (op0
);
9462 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9463 just (REL_OP X Y). */
9464 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
9466 op1
= XEXP (op0
, 1);
9467 op0
= XEXP (op0
, 0);
9468 op_mode
= GET_MODE (op0
);
9471 if (op_mode
== VOIDmode
)
9472 op_mode
= GET_MODE (op1
);
9473 result
= simplify_relational_operation (code
, mode
, op_mode
, op0
, op1
);
9476 result
= simplify_binary_operation (code
, mode
, op0
, op1
);
9481 /* Put complex operands first and constants second. */
9482 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
9483 && swap_commutative_operands_p (op0
, op1
))
9484 return gen_rtx_fmt_ee (code
, mode
, op1
, op0
);
9486 /* If we are turning off bits already known off in OP0, we need not do
9488 else if (code
== AND
&& GET_CODE (op1
) == CONST_INT
9489 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
9490 && (nonzero_bits (op0
, mode
) & ~INTVAL (op1
)) == 0)
9493 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
9496 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9497 comparison code that will be tested.
9499 The result is a possibly different comparison code to use. *POP0 and
9500 *POP1 may be updated.
9502 It is possible that we might detect that a comparison is either always
9503 true or always false. However, we do not perform general constant
9504 folding in combine, so this knowledge isn't useful. Such tautologies
9505 should have been detected earlier. Hence we ignore all such cases. */
9507 static enum rtx_code
9508 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
9514 enum machine_mode mode
, tmode
;
9516 /* Try a few ways of applying the same transformation to both operands. */
9519 #ifndef WORD_REGISTER_OPERATIONS
9520 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9521 so check specially. */
9522 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
9523 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
9524 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
9525 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
9526 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
9527 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
9528 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
9529 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
9530 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9531 && XEXP (op0
, 1) == XEXP (op1
, 1)
9532 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
9533 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
9534 && (INTVAL (XEXP (op0
, 1))
9535 == (GET_MODE_BITSIZE (GET_MODE (op0
))
9537 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
9539 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
9540 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
9544 /* If both operands are the same constant shift, see if we can ignore the
9545 shift. We can if the shift is a rotate or if the bits shifted out of
9546 this shift are known to be zero for both inputs and if the type of
9547 comparison is compatible with the shift. */
9548 if (GET_CODE (op0
) == GET_CODE (op1
)
9549 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
9550 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
9551 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
9552 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
9553 || (GET_CODE (op0
) == ASHIFTRT
9554 && (code
!= GTU
&& code
!= LTU
9555 && code
!= GEU
&& code
!= LEU
)))
9556 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9557 && INTVAL (XEXP (op0
, 1)) >= 0
9558 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
9559 && XEXP (op0
, 1) == XEXP (op1
, 1))
9561 enum machine_mode mode
= GET_MODE (op0
);
9562 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9563 int shift_count
= INTVAL (XEXP (op0
, 1));
9565 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
9566 mask
&= (mask
>> shift_count
) << shift_count
;
9567 else if (GET_CODE (op0
) == ASHIFT
)
9568 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
9570 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
9571 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
9572 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
9577 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9578 SUBREGs are of the same mode, and, in both cases, the AND would
9579 be redundant if the comparison was done in the narrower mode,
9580 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9581 and the operand's possibly nonzero bits are 0xffffff01; in that case
9582 if we only care about QImode, we don't need the AND). This case
9583 occurs if the output mode of an scc insn is not SImode and
9584 STORE_FLAG_VALUE == 1 (e.g., the 386).
9586 Similarly, check for a case where the AND's are ZERO_EXTEND
9587 operations from some narrower mode even though a SUBREG is not
9590 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
9591 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9592 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
)
9594 rtx inner_op0
= XEXP (op0
, 0);
9595 rtx inner_op1
= XEXP (op1
, 0);
9596 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
9597 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
9600 if (GET_CODE (inner_op0
) == SUBREG
&& GET_CODE (inner_op1
) == SUBREG
9601 && (GET_MODE_SIZE (GET_MODE (inner_op0
))
9602 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0
))))
9603 && (GET_MODE (SUBREG_REG (inner_op0
))
9604 == GET_MODE (SUBREG_REG (inner_op1
)))
9605 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0
)))
9606 <= HOST_BITS_PER_WIDE_INT
)
9607 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
9608 GET_MODE (SUBREG_REG (inner_op0
)))))
9609 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
9610 GET_MODE (SUBREG_REG (inner_op1
))))))
9612 op0
= SUBREG_REG (inner_op0
);
9613 op1
= SUBREG_REG (inner_op1
);
9615 /* The resulting comparison is always unsigned since we masked
9616 off the original sign bit. */
9617 code
= unsigned_condition (code
);
9623 for (tmode
= GET_CLASS_NARROWEST_MODE
9624 (GET_MODE_CLASS (GET_MODE (op0
)));
9625 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
9626 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
9628 op0
= gen_lowpart (tmode
, inner_op0
);
9629 op1
= gen_lowpart (tmode
, inner_op1
);
9630 code
= unsigned_condition (code
);
9639 /* If both operands are NOT, we can strip off the outer operation
9640 and adjust the comparison code for swapped operands; similarly for
9641 NEG, except that this must be an equality comparison. */
9642 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
9643 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
9644 && (code
== EQ
|| code
== NE
)))
9645 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
9651 /* If the first operand is a constant, swap the operands and adjust the
9652 comparison code appropriately, but don't do this if the second operand
9653 is already a constant integer. */
9654 if (swap_commutative_operands_p (op0
, op1
))
9656 tem
= op0
, op0
= op1
, op1
= tem
;
9657 code
= swap_condition (code
);
9660 /* We now enter a loop during which we will try to simplify the comparison.
9661 For the most part, we only are concerned with comparisons with zero,
9662 but some things may really be comparisons with zero but not start
9663 out looking that way. */
9665 while (GET_CODE (op1
) == CONST_INT
)
9667 enum machine_mode mode
= GET_MODE (op0
);
9668 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
9669 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9670 int equality_comparison_p
;
9671 int sign_bit_comparison_p
;
9672 int unsigned_comparison_p
;
9673 HOST_WIDE_INT const_op
;
9675 /* We only want to handle integral modes. This catches VOIDmode,
9676 CCmode, and the floating-point modes. An exception is that we
9677 can handle VOIDmode if OP0 is a COMPARE or a comparison
9680 if (GET_MODE_CLASS (mode
) != MODE_INT
9681 && ! (mode
== VOIDmode
9682 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
9685 /* Get the constant we are comparing against and turn off all bits
9686 not on in our mode. */
9687 const_op
= INTVAL (op1
);
9688 if (mode
!= VOIDmode
)
9689 const_op
= trunc_int_for_mode (const_op
, mode
);
9690 op1
= GEN_INT (const_op
);
9692 /* If we are comparing against a constant power of two and the value
9693 being compared can only have that single bit nonzero (e.g., it was
9694 `and'ed with that bit), we can replace this with a comparison
9697 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
9698 || code
== LT
|| code
== LTU
)
9699 && mode_width
<= HOST_BITS_PER_WIDE_INT
9700 && exact_log2 (const_op
) >= 0
9701 && nonzero_bits (op0
, mode
) == (unsigned HOST_WIDE_INT
) const_op
)
9703 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
9704 op1
= const0_rtx
, const_op
= 0;
9707 /* Similarly, if we are comparing a value known to be either -1 or
9708 0 with -1, change it to the opposite comparison against zero. */
9711 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
9712 || code
== GEU
|| code
== LTU
)
9713 && num_sign_bit_copies (op0
, mode
) == mode_width
)
9715 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
9716 op1
= const0_rtx
, const_op
= 0;
9719 /* Do some canonicalizations based on the comparison code. We prefer
9720 comparisons against zero and then prefer equality comparisons.
9721 If we can reduce the size of a constant, we will do that too. */
9726 /* < C is equivalent to <= (C - 1) */
9730 op1
= GEN_INT (const_op
);
9732 /* ... fall through to LE case below. */
9738 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9742 op1
= GEN_INT (const_op
);
9746 /* If we are doing a <= 0 comparison on a value known to have
9747 a zero sign bit, we can replace this with == 0. */
9748 else if (const_op
== 0
9749 && mode_width
<= HOST_BITS_PER_WIDE_INT
9750 && (nonzero_bits (op0
, mode
)
9751 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
9756 /* >= C is equivalent to > (C - 1). */
9760 op1
= GEN_INT (const_op
);
9762 /* ... fall through to GT below. */
9768 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9772 op1
= GEN_INT (const_op
);
9776 /* If we are doing a > 0 comparison on a value known to have
9777 a zero sign bit, we can replace this with != 0. */
9778 else if (const_op
== 0
9779 && mode_width
<= HOST_BITS_PER_WIDE_INT
9780 && (nonzero_bits (op0
, mode
)
9781 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
9786 /* < C is equivalent to <= (C - 1). */
9790 op1
= GEN_INT (const_op
);
9792 /* ... fall through ... */
9795 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9796 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9797 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
9799 const_op
= 0, op1
= const0_rtx
;
9807 /* unsigned <= 0 is equivalent to == 0 */
9811 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9812 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9813 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
9815 const_op
= 0, op1
= const0_rtx
;
9821 /* >= C is equivalent to > (C - 1). */
9825 op1
= GEN_INT (const_op
);
9827 /* ... fall through ... */
9830 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9831 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9832 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
9834 const_op
= 0, op1
= const0_rtx
;
9842 /* unsigned > 0 is equivalent to != 0 */
9846 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9847 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
9848 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
9850 const_op
= 0, op1
= const0_rtx
;
9859 /* Compute some predicates to simplify code below. */
9861 equality_comparison_p
= (code
== EQ
|| code
== NE
);
9862 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
9863 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
9866 /* If this is a sign bit comparison and we can do arithmetic in
9867 MODE, say that we will only be needing the sign bit of OP0. */
9868 if (sign_bit_comparison_p
9869 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
9870 op0
= force_to_mode (op0
, mode
,
9872 << (GET_MODE_BITSIZE (mode
) - 1)),
9875 /* Now try cases based on the opcode of OP0. If none of the cases
9876 does a "continue", we exit this loop immediately after the
9879 switch (GET_CODE (op0
))
9882 /* If we are extracting a single bit from a variable position in
9883 a constant that has only a single bit set and are comparing it
9884 with zero, we can convert this into an equality comparison
9885 between the position and the location of the single bit. */
9886 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9887 have already reduced the shift count modulo the word size. */
9888 if (!SHIFT_COUNT_TRUNCATED
9889 && GET_CODE (XEXP (op0
, 0)) == CONST_INT
9890 && XEXP (op0
, 1) == const1_rtx
9891 && equality_comparison_p
&& const_op
== 0
9892 && (i
= exact_log2 (INTVAL (XEXP (op0
, 0)))) >= 0)
9894 if (BITS_BIG_ENDIAN
)
9896 enum machine_mode new_mode
9897 = mode_for_extraction (EP_extzv
, 1);
9898 if (new_mode
== MAX_MACHINE_MODE
)
9899 i
= BITS_PER_WORD
- 1 - i
;
9903 i
= (GET_MODE_BITSIZE (mode
) - 1 - i
);
9907 op0
= XEXP (op0
, 2);
9911 /* Result is nonzero iff shift count is equal to I. */
9912 code
= reverse_condition (code
);
9916 /* ... fall through ... */
9919 tem
= expand_compound_operation (op0
);
9928 /* If testing for equality, we can take the NOT of the constant. */
9929 if (equality_comparison_p
9930 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
9932 op0
= XEXP (op0
, 0);
9937 /* If just looking at the sign bit, reverse the sense of the
9939 if (sign_bit_comparison_p
)
9941 op0
= XEXP (op0
, 0);
9942 code
= (code
== GE
? LT
: GE
);
9948 /* If testing for equality, we can take the NEG of the constant. */
9949 if (equality_comparison_p
9950 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
9952 op0
= XEXP (op0
, 0);
9957 /* The remaining cases only apply to comparisons with zero. */
9961 /* When X is ABS or is known positive,
9962 (neg X) is < 0 if and only if X != 0. */
9964 if (sign_bit_comparison_p
9965 && (GET_CODE (XEXP (op0
, 0)) == ABS
9966 || (mode_width
<= HOST_BITS_PER_WIDE_INT
9967 && (nonzero_bits (XEXP (op0
, 0), mode
)
9968 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)))
9970 op0
= XEXP (op0
, 0);
9971 code
= (code
== LT
? NE
: EQ
);
9975 /* If we have NEG of something whose two high-order bits are the
9976 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9977 if (num_sign_bit_copies (op0
, mode
) >= 2)
9979 op0
= XEXP (op0
, 0);
9980 code
= swap_condition (code
);
9986 /* If we are testing equality and our count is a constant, we
9987 can perform the inverse operation on our RHS. */
9988 if (equality_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
9989 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
9990 op1
, XEXP (op0
, 1))) != 0)
9992 op0
= XEXP (op0
, 0);
9997 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9998 a particular bit. Convert it to an AND of a constant of that
9999 bit. This will be converted into a ZERO_EXTRACT. */
10000 if (const_op
== 0 && sign_bit_comparison_p
10001 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10002 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10004 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10007 - INTVAL (XEXP (op0
, 1)))));
10008 code
= (code
== LT
? NE
: EQ
);
10012 /* Fall through. */
10015 /* ABS is ignorable inside an equality comparison with zero. */
10016 if (const_op
== 0 && equality_comparison_p
)
10018 op0
= XEXP (op0
, 0);
10024 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10025 to (compare FOO CONST) if CONST fits in FOO's mode and we
10026 are either testing inequality or have an unsigned comparison
10027 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10028 if (! unsigned_comparison_p
10029 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10030 <= HOST_BITS_PER_WIDE_INT
)
10031 && ((unsigned HOST_WIDE_INT
) const_op
10032 < (((unsigned HOST_WIDE_INT
) 1
10033 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))) - 1)))))
10035 op0
= XEXP (op0
, 0);
10041 /* Check for the case where we are comparing A - C1 with C2,
10042 both constants are smaller than 1/2 the maximum positive
10043 value in MODE, and the comparison is equality or unsigned.
10044 In that case, if A is either zero-extended to MODE or has
10045 sufficient sign bits so that the high-order bit in MODE
10046 is a copy of the sign in the inner mode, we can prove that it is
10047 safe to do the operation in the wider mode. This simplifies
10048 many range checks. */
10050 if (mode_width
<= HOST_BITS_PER_WIDE_INT
10051 && subreg_lowpart_p (op0
)
10052 && GET_CODE (SUBREG_REG (op0
)) == PLUS
10053 && GET_CODE (XEXP (SUBREG_REG (op0
), 1)) == CONST_INT
10054 && INTVAL (XEXP (SUBREG_REG (op0
), 1)) < 0
10055 && (-INTVAL (XEXP (SUBREG_REG (op0
), 1))
10056 < (HOST_WIDE_INT
) (GET_MODE_MASK (mode
) / 2))
10057 && (unsigned HOST_WIDE_INT
) const_op
< GET_MODE_MASK (mode
) / 2
10058 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0
), 0),
10059 GET_MODE (SUBREG_REG (op0
)))
10060 & ~GET_MODE_MASK (mode
))
10061 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0
), 0),
10062 GET_MODE (SUBREG_REG (op0
)))
10064 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10065 - GET_MODE_BITSIZE (mode
)))))
10067 op0
= SUBREG_REG (op0
);
10071 /* If the inner mode is narrower and we are extracting the low part,
10072 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10073 if (subreg_lowpart_p (op0
)
10074 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
10075 /* Fall through */ ;
10079 /* ... fall through ... */
10082 if ((unsigned_comparison_p
|| equality_comparison_p
)
10083 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10084 <= HOST_BITS_PER_WIDE_INT
)
10085 && ((unsigned HOST_WIDE_INT
) const_op
10086 < GET_MODE_MASK (GET_MODE (XEXP (op0
, 0)))))
10088 op0
= XEXP (op0
, 0);
10094 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10095 this for equality comparisons due to pathological cases involving
10097 if (equality_comparison_p
10098 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10099 op1
, XEXP (op0
, 1))))
10101 op0
= XEXP (op0
, 0);
10106 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10107 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
10108 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
10110 op0
= XEXP (XEXP (op0
, 0), 0);
10111 code
= (code
== LT
? EQ
: NE
);
10117 /* We used to optimize signed comparisons against zero, but that
10118 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10119 arrive here as equality comparisons, or (GEU, LTU) are
10120 optimized away. No need to special-case them. */
10122 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10123 (eq B (minus A C)), whichever simplifies. We can only do
10124 this for equality comparisons due to pathological cases involving
10126 if (equality_comparison_p
10127 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
10128 XEXP (op0
, 1), op1
)))
10130 op0
= XEXP (op0
, 0);
10135 if (equality_comparison_p
10136 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10137 XEXP (op0
, 0), op1
)))
10139 op0
= XEXP (op0
, 1);
10144 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10145 of bits in X minus 1, is one iff X > 0. */
10146 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
10147 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10148 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (XEXP (op0
, 0), 1))
10150 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10152 op0
= XEXP (op0
, 1);
10153 code
= (code
== GE
? LE
: GT
);
10159 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10160 if C is zero or B is a constant. */
10161 if (equality_comparison_p
10162 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
10163 XEXP (op0
, 1), op1
)))
10165 op0
= XEXP (op0
, 0);
10172 case UNEQ
: case LTGT
:
10173 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
10174 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
10175 case UNORDERED
: case ORDERED
:
10176 /* We can't do anything if OP0 is a condition code value, rather
10177 than an actual data value. */
10179 || CC0_P (XEXP (op0
, 0))
10180 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
10183 /* Get the two operands being compared. */
10184 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
10185 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
10187 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
10189 /* Check for the cases where we simply want the result of the
10190 earlier test or the opposite of that result. */
10191 if (code
== NE
|| code
== EQ
10192 || (GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10193 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10194 && (STORE_FLAG_VALUE
10195 & (((HOST_WIDE_INT
) 1
10196 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
10197 && (code
== LT
|| code
== GE
)))
10199 enum rtx_code new_code
;
10200 if (code
== LT
|| code
== NE
)
10201 new_code
= GET_CODE (op0
);
10203 new_code
= combine_reversed_comparison_code (op0
);
10205 if (new_code
!= UNKNOWN
)
10216 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10218 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
10219 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
10220 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10222 op0
= XEXP (op0
, 1);
10223 code
= (code
== GE
? GT
: LE
);
10229 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10230 will be converted to a ZERO_EXTRACT later. */
10231 if (const_op
== 0 && equality_comparison_p
10232 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10233 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
10235 op0
= simplify_and_const_int
10236 (op0
, mode
, gen_rtx_LSHIFTRT (mode
,
10238 XEXP (XEXP (op0
, 0), 1)),
10239 (HOST_WIDE_INT
) 1);
10243 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10244 zero and X is a comparison and C1 and C2 describe only bits set
10245 in STORE_FLAG_VALUE, we can compare with X. */
10246 if (const_op
== 0 && equality_comparison_p
10247 && mode_width
<= HOST_BITS_PER_WIDE_INT
10248 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10249 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10250 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10251 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
10252 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
10254 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10255 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
10256 if ((~STORE_FLAG_VALUE
& mask
) == 0
10257 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
10258 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
10259 && COMPARISON_P (tem
))))
10261 op0
= XEXP (XEXP (op0
, 0), 0);
10266 /* If we are doing an equality comparison of an AND of a bit equal
10267 to the sign bit, replace this with a LT or GE comparison of
10268 the underlying value. */
10269 if (equality_comparison_p
10271 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10272 && mode_width
<= HOST_BITS_PER_WIDE_INT
10273 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10274 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10276 op0
= XEXP (op0
, 0);
10277 code
= (code
== EQ
? GE
: LT
);
10281 /* If this AND operation is really a ZERO_EXTEND from a narrower
10282 mode, the constant fits within that mode, and this is either an
10283 equality or unsigned comparison, try to do this comparison in
10284 the narrower mode. */
10285 if ((equality_comparison_p
|| unsigned_comparison_p
)
10286 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10287 && (i
= exact_log2 ((INTVAL (XEXP (op0
, 1))
10288 & GET_MODE_MASK (mode
))
10290 && const_op
>> i
== 0
10291 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
)
10293 op0
= gen_lowpart (tmode
, XEXP (op0
, 0));
10297 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10298 fits in both M1 and M2 and the SUBREG is either paradoxical
10299 or represents the low part, permute the SUBREG and the AND
10301 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
10303 unsigned HOST_WIDE_INT c1
;
10304 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
10305 /* Require an integral mode, to avoid creating something like
10307 if (SCALAR_INT_MODE_P (tmode
)
10308 /* It is unsafe to commute the AND into the SUBREG if the
10309 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10310 not defined. As originally written the upper bits
10311 have a defined value due to the AND operation.
10312 However, if we commute the AND inside the SUBREG then
10313 they no longer have defined values and the meaning of
10314 the code has been changed. */
10316 #ifdef WORD_REGISTER_OPERATIONS
10317 || (mode_width
> GET_MODE_BITSIZE (tmode
)
10318 && mode_width
<= BITS_PER_WORD
)
10320 || (mode_width
<= GET_MODE_BITSIZE (tmode
)
10321 && subreg_lowpart_p (XEXP (op0
, 0))))
10322 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10323 && mode_width
<= HOST_BITS_PER_WIDE_INT
10324 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
10325 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
10326 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
10328 && c1
!= GET_MODE_MASK (tmode
))
10330 op0
= gen_binary (AND
, tmode
,
10331 SUBREG_REG (XEXP (op0
, 0)),
10332 gen_int_mode (c1
, tmode
));
10333 op0
= gen_lowpart (mode
, op0
);
10338 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10339 if (const_op
== 0 && equality_comparison_p
10340 && XEXP (op0
, 1) == const1_rtx
10341 && GET_CODE (XEXP (op0
, 0)) == NOT
)
10343 op0
= simplify_and_const_int
10344 (NULL_RTX
, mode
, XEXP (XEXP (op0
, 0), 0), (HOST_WIDE_INT
) 1);
10345 code
= (code
== NE
? EQ
: NE
);
10349 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10350 (eq (and (lshiftrt X) 1) 0).
10351 Also handle the case where (not X) is expressed using xor. */
10352 if (const_op
== 0 && equality_comparison_p
10353 && XEXP (op0
, 1) == const1_rtx
10354 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
10356 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
10357 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
10359 if (GET_CODE (shift_op
) == NOT
10360 || (GET_CODE (shift_op
) == XOR
10361 && GET_CODE (XEXP (shift_op
, 1)) == CONST_INT
10362 && GET_CODE (shift_count
) == CONST_INT
10363 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
10364 && (INTVAL (XEXP (shift_op
, 1))
10365 == (HOST_WIDE_INT
) 1 << INTVAL (shift_count
))))
10367 op0
= simplify_and_const_int
10369 gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
),
10370 (HOST_WIDE_INT
) 1);
10371 code
= (code
== NE
? EQ
: NE
);
10378 /* If we have (compare (ashift FOO N) (const_int C)) and
10379 the high order N bits of FOO (N+1 if an inequality comparison)
10380 are known to be zero, we can do this by comparing FOO with C
10381 shifted right N bits so long as the low-order N bits of C are
10383 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10384 && INTVAL (XEXP (op0
, 1)) >= 0
10385 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
10386 < HOST_BITS_PER_WIDE_INT
)
10388 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0)
10389 && mode_width
<= HOST_BITS_PER_WIDE_INT
10390 && (nonzero_bits (XEXP (op0
, 0), mode
)
10391 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
10392 + ! equality_comparison_p
))) == 0)
10394 /* We must perform a logical shift, not an arithmetic one,
10395 as we want the top N bits of C to be zero. */
10396 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
10398 temp
>>= INTVAL (XEXP (op0
, 1));
10399 op1
= gen_int_mode (temp
, mode
);
10400 op0
= XEXP (op0
, 0);
10404 /* If we are doing a sign bit comparison, it means we are testing
10405 a particular bit. Convert it to the appropriate AND. */
10406 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10407 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10409 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10412 - INTVAL (XEXP (op0
, 1)))));
10413 code
= (code
== LT
? NE
: EQ
);
10417 /* If this an equality comparison with zero and we are shifting
10418 the low bit to the sign bit, we can convert this to an AND of the
10420 if (const_op
== 0 && equality_comparison_p
10421 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10422 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10425 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10426 (HOST_WIDE_INT
) 1);
10432 /* If this is an equality comparison with zero, we can do this
10433 as a logical shift, which might be much simpler. */
10434 if (equality_comparison_p
&& const_op
== 0
10435 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
)
10437 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
10439 INTVAL (XEXP (op0
, 1)));
10443 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10444 do the comparison in a narrower mode. */
10445 if (! unsigned_comparison_p
10446 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10447 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10448 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
10449 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10450 MODE_INT
, 1)) != BLKmode
10451 && (((unsigned HOST_WIDE_INT
) const_op
10452 + (GET_MODE_MASK (tmode
) >> 1) + 1)
10453 <= GET_MODE_MASK (tmode
)))
10455 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
10459 /* Likewise if OP0 is a PLUS of a sign extension with a
10460 constant, which is usually represented with the PLUS
10461 between the shifts. */
10462 if (! unsigned_comparison_p
10463 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10464 && GET_CODE (XEXP (op0
, 0)) == PLUS
10465 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10466 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
10467 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
10468 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10469 MODE_INT
, 1)) != BLKmode
10470 && (((unsigned HOST_WIDE_INT
) const_op
10471 + (GET_MODE_MASK (tmode
) >> 1) + 1)
10472 <= GET_MODE_MASK (tmode
)))
10474 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
10475 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
10476 rtx new_const
= gen_binary (ASHIFTRT
, GET_MODE (op0
), add_const
,
10479 op0
= gen_binary (PLUS
, tmode
,
10480 gen_lowpart (tmode
, inner
),
10485 /* ... fall through ... */
10487 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10488 the low order N bits of FOO are known to be zero, we can do this
10489 by comparing FOO with C shifted left N bits so long as no
10490 overflow occurs. */
10491 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10492 && INTVAL (XEXP (op0
, 1)) >= 0
10493 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
10494 && mode_width
<= HOST_BITS_PER_WIDE_INT
10495 && (nonzero_bits (XEXP (op0
, 0), mode
)
10496 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0
10497 && (((unsigned HOST_WIDE_INT
) const_op
10498 + (GET_CODE (op0
) != LSHIFTRT
10499 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
10502 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
10504 /* If the shift was logical, then we must make the condition
10506 if (GET_CODE (op0
) == LSHIFTRT
)
10507 code
= unsigned_condition (code
);
10509 const_op
<<= INTVAL (XEXP (op0
, 1));
10510 op1
= GEN_INT (const_op
);
10511 op0
= XEXP (op0
, 0);
10515 /* If we are using this shift to extract just the sign bit, we
10516 can replace this with an LT or GE comparison. */
10518 && (equality_comparison_p
|| sign_bit_comparison_p
)
10519 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10520 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10523 op0
= XEXP (op0
, 0);
10524 code
= (code
== NE
|| code
== GT
? LT
: GE
);
10536 /* Now make any compound operations involved in this comparison. Then,
10537 check for an outmost SUBREG on OP0 that is not doing anything or is
10538 paradoxical. The latter transformation must only be performed when
10539 it is known that the "extra" bits will be the same in op0 and op1 or
10540 that they don't matter. There are three cases to consider:
10542 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10543 care bits and we can assume they have any convenient value. So
10544 making the transformation is safe.
10546 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10547 In this case the upper bits of op0 are undefined. We should not make
10548 the simplification in that case as we do not know the contents of
10551 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10552 UNKNOWN. In that case we know those bits are zeros or ones. We must
10553 also be sure that they are the same as the upper bits of op1.
10555 We can never remove a SUBREG for a non-equality comparison because
10556 the sign bit is in a different place in the underlying object. */
10558 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
10559 op1
= make_compound_operation (op1
, SET
);
10561 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
10562 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10563 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
10564 && (code
== NE
|| code
== EQ
))
10566 if (GET_MODE_SIZE (GET_MODE (op0
))
10567 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))
10569 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10571 if (REG_P (SUBREG_REG (op0
)))
10573 op0
= SUBREG_REG (op0
);
10574 op1
= gen_lowpart (GET_MODE (op0
), op1
);
10577 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10578 <= HOST_BITS_PER_WIDE_INT
)
10579 && (nonzero_bits (SUBREG_REG (op0
),
10580 GET_MODE (SUBREG_REG (op0
)))
10581 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
10583 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
10585 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
10586 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
10587 op0
= SUBREG_REG (op0
), op1
= tem
;
10591 /* We now do the opposite procedure: Some machines don't have compare
10592 insns in all modes. If OP0's mode is an integer mode smaller than a
10593 word and we can't do a compare in that mode, see if there is a larger
10594 mode for which we can do the compare. There are a number of cases in
10595 which we can use the wider mode. */
10597 mode
= GET_MODE (op0
);
10598 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10599 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
10600 && ! have_insn_for (COMPARE
, mode
))
10601 for (tmode
= GET_MODE_WIDER_MODE (mode
);
10603 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
);
10604 tmode
= GET_MODE_WIDER_MODE (tmode
))
10605 if (have_insn_for (COMPARE
, tmode
))
10609 /* If the only nonzero bits in OP0 and OP1 are those in the
10610 narrower mode and this is an equality or unsigned comparison,
10611 we can use the wider mode. Similarly for sign-extended
10612 values, in which case it is true for all comparisons. */
10613 zero_extended
= ((code
== EQ
|| code
== NE
10614 || code
== GEU
|| code
== GTU
10615 || code
== LEU
|| code
== LTU
)
10616 && (nonzero_bits (op0
, tmode
)
10617 & ~GET_MODE_MASK (mode
)) == 0
10618 && ((GET_CODE (op1
) == CONST_INT
10619 || (nonzero_bits (op1
, tmode
)
10620 & ~GET_MODE_MASK (mode
)) == 0)));
10623 || ((num_sign_bit_copies (op0
, tmode
)
10624 > (unsigned int) (GET_MODE_BITSIZE (tmode
)
10625 - GET_MODE_BITSIZE (mode
)))
10626 && (num_sign_bit_copies (op1
, tmode
)
10627 > (unsigned int) (GET_MODE_BITSIZE (tmode
)
10628 - GET_MODE_BITSIZE (mode
)))))
10630 /* If OP0 is an AND and we don't have an AND in MODE either,
10631 make a new AND in the proper mode. */
10632 if (GET_CODE (op0
) == AND
10633 && !have_insn_for (AND
, mode
))
10634 op0
= gen_binary (AND
, tmode
,
10635 gen_lowpart (tmode
,
10637 gen_lowpart (tmode
,
10640 op0
= gen_lowpart (tmode
, op0
);
10641 if (zero_extended
&& GET_CODE (op1
) == CONST_INT
)
10642 op1
= GEN_INT (INTVAL (op1
) & GET_MODE_MASK (mode
));
10643 op1
= gen_lowpart (tmode
, op1
);
10647 /* If this is a test for negative, we can make an explicit
10648 test of the sign bit. */
10650 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
10651 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10653 op0
= gen_binary (AND
, tmode
,
10654 gen_lowpart (tmode
, op0
),
10655 GEN_INT ((HOST_WIDE_INT
) 1
10656 << (GET_MODE_BITSIZE (mode
) - 1)));
10657 code
= (code
== LT
) ? NE
: EQ
;
10662 #ifdef CANONICALIZE_COMPARISON
10663 /* If this machine only supports a subset of valid comparisons, see if we
10664 can convert an unsupported one into a supported one. */
10665 CANONICALIZE_COMPARISON (code
, op0
, op1
);
10674 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10675 searching backward. */
10676 static enum rtx_code
10677 combine_reversed_comparison_code (rtx exp
)
10679 enum rtx_code code1
= reversed_comparison_code (exp
, NULL
);
10682 if (code1
!= UNKNOWN
10683 || GET_MODE_CLASS (GET_MODE (XEXP (exp
, 0))) != MODE_CC
)
10685 /* Otherwise try and find where the condition codes were last set and
10687 x
= get_last_value (XEXP (exp
, 0));
10688 if (!x
|| GET_CODE (x
) != COMPARE
)
10690 return reversed_comparison_code_parts (GET_CODE (exp
),
10691 XEXP (x
, 0), XEXP (x
, 1), NULL
);
10694 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10695 Return NULL_RTX in case we fail to do the reversal. */
10697 reversed_comparison (rtx exp
, enum machine_mode mode
, rtx op0
, rtx op1
)
10699 enum rtx_code reversed_code
= combine_reversed_comparison_code (exp
);
10700 if (reversed_code
== UNKNOWN
)
10703 return gen_binary (reversed_code
, mode
, op0
, op1
);
10706 /* Utility function for following routine. Called when X is part of a value
10707 being stored into last_set_value. Sets last_set_table_tick
10708 for each register mentioned. Similar to mention_regs in cse.c */
10711 update_table_tick (rtx x
)
10713 enum rtx_code code
= GET_CODE (x
);
10714 const char *fmt
= GET_RTX_FORMAT (code
);
10719 unsigned int regno
= REGNO (x
);
10720 unsigned int endregno
10721 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10722 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
10725 for (r
= regno
; r
< endregno
; r
++)
10726 reg_stat
[r
].last_set_table_tick
= label_tick
;
10731 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
10732 /* Note that we can't have an "E" in values stored; see
10733 get_last_value_validate. */
10736 /* Check for identical subexpressions. If x contains
10737 identical subexpression we only have to traverse one of
10739 if (i
== 0 && ARITHMETIC_P (x
))
10741 /* Note that at this point x1 has already been
10743 rtx x0
= XEXP (x
, 0);
10744 rtx x1
= XEXP (x
, 1);
10746 /* If x0 and x1 are identical then there is no need to
10751 /* If x0 is identical to a subexpression of x1 then while
10752 processing x1, x0 has already been processed. Thus we
10753 are done with x. */
10754 if (ARITHMETIC_P (x1
)
10755 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
10758 /* If x1 is identical to a subexpression of x0 then we
10759 still have to process the rest of x0. */
10760 if (ARITHMETIC_P (x0
)
10761 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
10763 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
10768 update_table_tick (XEXP (x
, i
));
10772 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10773 are saying that the register is clobbered and we no longer know its
10774 value. If INSN is zero, don't update reg_stat[].last_set; this is
10775 only permitted with VALUE also zero and is used to invalidate the
10779 record_value_for_reg (rtx reg
, rtx insn
, rtx value
)
10781 unsigned int regno
= REGNO (reg
);
10782 unsigned int endregno
10783 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10784 ? hard_regno_nregs
[regno
][GET_MODE (reg
)] : 1);
10787 /* If VALUE contains REG and we have a previous value for REG, substitute
10788 the previous value. */
10789 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
10793 /* Set things up so get_last_value is allowed to see anything set up to
10795 subst_low_cuid
= INSN_CUID (insn
);
10796 tem
= get_last_value (reg
);
10798 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10799 it isn't going to be useful and will take a lot of time to process,
10800 so just use the CLOBBER. */
10804 if (ARITHMETIC_P (tem
)
10805 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
10806 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
10807 tem
= XEXP (tem
, 0);
10809 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
10813 /* For each register modified, show we don't know its value, that
10814 we don't know about its bitwise content, that its value has been
10815 updated, and that we don't know the location of the death of the
10817 for (i
= regno
; i
< endregno
; i
++)
10820 reg_stat
[i
].last_set
= insn
;
10822 reg_stat
[i
].last_set_value
= 0;
10823 reg_stat
[i
].last_set_mode
= 0;
10824 reg_stat
[i
].last_set_nonzero_bits
= 0;
10825 reg_stat
[i
].last_set_sign_bit_copies
= 0;
10826 reg_stat
[i
].last_death
= 0;
10829 /* Mark registers that are being referenced in this value. */
10831 update_table_tick (value
);
10833 /* Now update the status of each register being set.
10834 If someone is using this register in this block, set this register
10835 to invalid since we will get confused between the two lives in this
10836 basic block. This makes using this register always invalid. In cse, we
10837 scan the table to invalidate all entries using this register, but this
10838 is too much work for us. */
10840 for (i
= regno
; i
< endregno
; i
++)
10842 reg_stat
[i
].last_set_label
= label_tick
;
10843 if (value
&& reg_stat
[i
].last_set_table_tick
== label_tick
)
10844 reg_stat
[i
].last_set_invalid
= 1;
10846 reg_stat
[i
].last_set_invalid
= 0;
10849 /* The value being assigned might refer to X (like in "x++;"). In that
10850 case, we must replace it with (clobber (const_int 0)) to prevent
10852 if (value
&& ! get_last_value_validate (&value
, insn
,
10853 reg_stat
[regno
].last_set_label
, 0))
10855 value
= copy_rtx (value
);
10856 if (! get_last_value_validate (&value
, insn
,
10857 reg_stat
[regno
].last_set_label
, 1))
10861 /* For the main register being modified, update the value, the mode, the
10862 nonzero bits, and the number of sign bit copies. */
10864 reg_stat
[regno
].last_set_value
= value
;
10868 enum machine_mode mode
= GET_MODE (reg
);
10869 subst_low_cuid
= INSN_CUID (insn
);
10870 reg_stat
[regno
].last_set_mode
= mode
;
10871 if (GET_MODE_CLASS (mode
) == MODE_INT
10872 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10873 mode
= nonzero_bits_mode
;
10874 reg_stat
[regno
].last_set_nonzero_bits
= nonzero_bits (value
, mode
);
10875 reg_stat
[regno
].last_set_sign_bit_copies
10876 = num_sign_bit_copies (value
, GET_MODE (reg
));
10880 /* Called via note_stores from record_dead_and_set_regs to handle one
10881 SET or CLOBBER in an insn. DATA is the instruction in which the
10882 set is occurring. */
10885 record_dead_and_set_regs_1 (rtx dest
, rtx setter
, void *data
)
10887 rtx record_dead_insn
= (rtx
) data
;
10889 if (GET_CODE (dest
) == SUBREG
)
10890 dest
= SUBREG_REG (dest
);
10894 /* If we are setting the whole register, we know its value. Otherwise
10895 show that we don't know the value. We can handle SUBREG in
10897 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
10898 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
10899 else if (GET_CODE (setter
) == SET
10900 && GET_CODE (SET_DEST (setter
)) == SUBREG
10901 && SUBREG_REG (SET_DEST (setter
)) == dest
10902 && GET_MODE_BITSIZE (GET_MODE (dest
)) <= BITS_PER_WORD
10903 && subreg_lowpart_p (SET_DEST (setter
)))
10904 record_value_for_reg (dest
, record_dead_insn
,
10905 gen_lowpart (GET_MODE (dest
),
10906 SET_SRC (setter
)));
10908 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
10910 else if (MEM_P (dest
)
10911 /* Ignore pushes, they clobber nothing. */
10912 && ! push_operand (dest
, GET_MODE (dest
)))
10913 mem_last_set
= INSN_CUID (record_dead_insn
);
10916 /* Update the records of when each REG was most recently set or killed
10917 for the things done by INSN. This is the last thing done in processing
10918 INSN in the combiner loop.
10920 We update reg_stat[], in particular fields last_set, last_set_value,
10921 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10922 last_death, and also the similar information mem_last_set (which insn
10923 most recently modified memory) and last_call_cuid (which insn was the
10924 most recent subroutine call). */
10927 record_dead_and_set_regs (rtx insn
)
10932 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
10934 if (REG_NOTE_KIND (link
) == REG_DEAD
10935 && REG_P (XEXP (link
, 0)))
10937 unsigned int regno
= REGNO (XEXP (link
, 0));
10938 unsigned int endregno
10939 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
10940 ? hard_regno_nregs
[regno
][GET_MODE (XEXP (link
, 0))]
10943 for (i
= regno
; i
< endregno
; i
++)
10944 reg_stat
[i
].last_death
= insn
;
10946 else if (REG_NOTE_KIND (link
) == REG_INC
)
10947 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
10952 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
10953 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
10955 reg_stat
[i
].last_set_value
= 0;
10956 reg_stat
[i
].last_set_mode
= 0;
10957 reg_stat
[i
].last_set_nonzero_bits
= 0;
10958 reg_stat
[i
].last_set_sign_bit_copies
= 0;
10959 reg_stat
[i
].last_death
= 0;
10962 last_call_cuid
= mem_last_set
= INSN_CUID (insn
);
10964 /* Don't bother recording what this insn does. It might set the
10965 return value register, but we can't combine into a call
10966 pattern anyway, so there's no point trying (and it may cause
10967 a crash, if e.g. we wind up asking for last_set_value of a
10968 SUBREG of the return value register). */
10972 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
10975 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10976 register present in the SUBREG, so for each such SUBREG go back and
10977 adjust nonzero and sign bit information of the registers that are
10978 known to have some zero/sign bits set.
10980 This is needed because when combine blows the SUBREGs away, the
10981 information on zero/sign bits is lost and further combines can be
10982 missed because of that. */
10985 record_promoted_value (rtx insn
, rtx subreg
)
10988 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
10989 enum machine_mode mode
= GET_MODE (subreg
);
10991 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
10994 for (links
= LOG_LINKS (insn
); links
;)
10996 insn
= XEXP (links
, 0);
10997 set
= single_set (insn
);
10999 if (! set
|| !REG_P (SET_DEST (set
))
11000 || REGNO (SET_DEST (set
)) != regno
11001 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
11003 links
= XEXP (links
, 1);
11007 if (reg_stat
[regno
].last_set
== insn
)
11009 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
) > 0)
11010 reg_stat
[regno
].last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
11013 if (REG_P (SET_SRC (set
)))
11015 regno
= REGNO (SET_SRC (set
));
11016 links
= LOG_LINKS (insn
);
11023 /* Scan X for promoted SUBREGs. For each one found,
11024 note what it implies to the registers used in it. */
11027 check_promoted_subreg (rtx insn
, rtx x
)
11029 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
11030 && REG_P (SUBREG_REG (x
)))
11031 record_promoted_value (insn
, x
);
11034 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
11037 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
11041 check_promoted_subreg (insn
, XEXP (x
, i
));
11045 if (XVEC (x
, i
) != 0)
11046 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11047 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
11053 /* Utility routine for the following function. Verify that all the registers
11054 mentioned in *LOC are valid when *LOC was part of a value set when
11055 label_tick == TICK. Return 0 if some are not.
11057 If REPLACE is nonzero, replace the invalid reference with
11058 (clobber (const_int 0)) and return 1. This replacement is useful because
11059 we often can get useful information about the form of a value (e.g., if
11060 it was produced by a shift that always produces -1 or 0) even though
11061 we don't know exactly what registers it was produced from. */
11064 get_last_value_validate (rtx
*loc
, rtx insn
, int tick
, int replace
)
11067 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
11068 int len
= GET_RTX_LENGTH (GET_CODE (x
));
11073 unsigned int regno
= REGNO (x
);
11074 unsigned int endregno
11075 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11076 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
11079 for (j
= regno
; j
< endregno
; j
++)
11080 if (reg_stat
[j
].last_set_invalid
11081 /* If this is a pseudo-register that was only set once and not
11082 live at the beginning of the function, it is always valid. */
11083 || (! (regno
>= FIRST_PSEUDO_REGISTER
11084 && REG_N_SETS (regno
) == 1
11085 && (! REGNO_REG_SET_P
11086 (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
, regno
)))
11087 && reg_stat
[j
].last_set_label
> tick
))
11090 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11096 /* If this is a memory reference, make sure that there were
11097 no stores after it that might have clobbered the value. We don't
11098 have alias info, so we assume any store invalidates it. */
11099 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
11100 && INSN_CUID (insn
) <= mem_last_set
)
11103 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11107 for (i
= 0; i
< len
; i
++)
11111 /* Check for identical subexpressions. If x contains
11112 identical subexpression we only have to traverse one of
11114 if (i
== 1 && ARITHMETIC_P (x
))
11116 /* Note that at this point x0 has already been checked
11117 and found valid. */
11118 rtx x0
= XEXP (x
, 0);
11119 rtx x1
= XEXP (x
, 1);
11121 /* If x0 and x1 are identical then x is also valid. */
11125 /* If x1 is identical to a subexpression of x0 then
11126 while checking x0, x1 has already been checked. Thus
11127 it is valid and so as x. */
11128 if (ARITHMETIC_P (x0
)
11129 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
11132 /* If x0 is identical to a subexpression of x1 then x is
11133 valid iff the rest of x1 is valid. */
11134 if (ARITHMETIC_P (x1
)
11135 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
11137 get_last_value_validate (&XEXP (x1
,
11138 x0
== XEXP (x1
, 0) ? 1 : 0),
11139 insn
, tick
, replace
);
11142 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
11146 /* Don't bother with these. They shouldn't occur anyway. */
11147 else if (fmt
[i
] == 'E')
11151 /* If we haven't found a reason for it to be invalid, it is valid. */
11155 /* Get the last value assigned to X, if known. Some registers
11156 in the value may be replaced with (clobber (const_int 0)) if their value
11157 is known longer known reliably. */
11160 get_last_value (rtx x
)
11162 unsigned int regno
;
11165 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11166 then convert it to the desired mode. If this is a paradoxical SUBREG,
11167 we cannot predict what values the "extra" bits might have. */
11168 if (GET_CODE (x
) == SUBREG
11169 && subreg_lowpart_p (x
)
11170 && (GET_MODE_SIZE (GET_MODE (x
))
11171 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
11172 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
11173 return gen_lowpart (GET_MODE (x
), value
);
11179 value
= reg_stat
[regno
].last_set_value
;
11181 /* If we don't have a value, or if it isn't for this basic block and
11182 it's either a hard register, set more than once, or it's a live
11183 at the beginning of the function, return 0.
11185 Because if it's not live at the beginning of the function then the reg
11186 is always set before being used (is never used without being set).
11187 And, if it's set only once, and it's always set before use, then all
11188 uses must have the same last value, even if it's not from this basic
11192 || (reg_stat
[regno
].last_set_label
!= label_tick
11193 && (regno
< FIRST_PSEUDO_REGISTER
11194 || REG_N_SETS (regno
) != 1
11195 || (REGNO_REG_SET_P
11196 (ENTRY_BLOCK_PTR
->next_bb
->global_live_at_start
, regno
)))))
11199 /* If the value was set in a later insn than the ones we are processing,
11200 we can't use it even if the register was only set once. */
11201 if (INSN_CUID (reg_stat
[regno
].last_set
) >= subst_low_cuid
)
11204 /* If the value has all its registers valid, return it. */
11205 if (get_last_value_validate (&value
, reg_stat
[regno
].last_set
,
11206 reg_stat
[regno
].last_set_label
, 0))
11209 /* Otherwise, make a copy and replace any invalid register with
11210 (clobber (const_int 0)). If that fails for some reason, return 0. */
11212 value
= copy_rtx (value
);
11213 if (get_last_value_validate (&value
, reg_stat
[regno
].last_set
,
11214 reg_stat
[regno
].last_set_label
, 1))
11220 /* Return nonzero if expression X refers to a REG or to memory
11221 that is set in an instruction more recent than FROM_CUID. */
11224 use_crosses_set_p (rtx x
, int from_cuid
)
11228 enum rtx_code code
= GET_CODE (x
);
11232 unsigned int regno
= REGNO (x
);
11233 unsigned endreg
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11234 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
11236 #ifdef PUSH_ROUNDING
11237 /* Don't allow uses of the stack pointer to be moved,
11238 because we don't know whether the move crosses a push insn. */
11239 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
11242 for (; regno
< endreg
; regno
++)
11243 if (reg_stat
[regno
].last_set
11244 && INSN_CUID (reg_stat
[regno
].last_set
) > from_cuid
)
11249 if (code
== MEM
&& mem_last_set
> from_cuid
)
11252 fmt
= GET_RTX_FORMAT (code
);
11254 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11259 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11260 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_cuid
))
11263 else if (fmt
[i
] == 'e'
11264 && use_crosses_set_p (XEXP (x
, i
), from_cuid
))
11270 /* Define three variables used for communication between the following
11273 static unsigned int reg_dead_regno
, reg_dead_endregno
;
11274 static int reg_dead_flag
;
11276 /* Function called via note_stores from reg_dead_at_p.
11278 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11279 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11282 reg_dead_at_p_1 (rtx dest
, rtx x
, void *data ATTRIBUTE_UNUSED
)
11284 unsigned int regno
, endregno
;
11289 regno
= REGNO (dest
);
11290 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11291 ? hard_regno_nregs
[regno
][GET_MODE (dest
)] : 1);
11293 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
11294 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
11297 /* Return nonzero if REG is known to be dead at INSN.
11299 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11300 referencing REG, it is dead. If we hit a SET referencing REG, it is
11301 live. Otherwise, see if it is live or dead at the start of the basic
11302 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11303 must be assumed to be always live. */
11306 reg_dead_at_p (rtx reg
, rtx insn
)
11311 /* Set variables for reg_dead_at_p_1. */
11312 reg_dead_regno
= REGNO (reg
);
11313 reg_dead_endregno
= reg_dead_regno
+ (reg_dead_regno
< FIRST_PSEUDO_REGISTER
11314 ? hard_regno_nregs
[reg_dead_regno
]
11320 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11321 we allow the machine description to decide whether use-and-clobber
11322 patterns are OK. */
11323 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
11325 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11326 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
11330 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11331 beginning of function. */
11332 for (; insn
&& !LABEL_P (insn
) && !BARRIER_P (insn
);
11333 insn
= prev_nonnote_insn (insn
))
11335 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
11337 return reg_dead_flag
== 1 ? 1 : 0;
11339 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
11343 /* Get the basic block that we were in. */
11345 block
= ENTRY_BLOCK_PTR
->next_bb
;
11348 FOR_EACH_BB (block
)
11349 if (insn
== BB_HEAD (block
))
11352 if (block
== EXIT_BLOCK_PTR
)
11356 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11357 if (REGNO_REG_SET_P (block
->global_live_at_start
, i
))
11363 /* Note hard registers in X that are used. This code is similar to
11364 that in flow.c, but much simpler since we don't care about pseudos. */
11367 mark_used_regs_combine (rtx x
)
11369 RTX_CODE code
= GET_CODE (x
);
11370 unsigned int regno
;
11383 case ADDR_DIFF_VEC
:
11386 /* CC0 must die in the insn after it is set, so we don't need to take
11387 special note of it here. */
11393 /* If we are clobbering a MEM, mark any hard registers inside the
11394 address as used. */
11395 if (MEM_P (XEXP (x
, 0)))
11396 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
11401 /* A hard reg in a wide mode may really be multiple registers.
11402 If so, mark all of them just like the first. */
11403 if (regno
< FIRST_PSEUDO_REGISTER
)
11405 unsigned int endregno
, r
;
11407 /* None of this applies to the stack, frame or arg pointers. */
11408 if (regno
== STACK_POINTER_REGNUM
11409 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11410 || regno
== HARD_FRAME_POINTER_REGNUM
11412 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11413 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
11415 || regno
== FRAME_POINTER_REGNUM
)
11418 endregno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11419 for (r
= regno
; r
< endregno
; r
++)
11420 SET_HARD_REG_BIT (newpat_used_regs
, r
);
11426 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11428 rtx testreg
= SET_DEST (x
);
11430 while (GET_CODE (testreg
) == SUBREG
11431 || GET_CODE (testreg
) == ZERO_EXTRACT
11432 || GET_CODE (testreg
) == SIGN_EXTRACT
11433 || GET_CODE (testreg
) == STRICT_LOW_PART
)
11434 testreg
= XEXP (testreg
, 0);
11436 if (MEM_P (testreg
))
11437 mark_used_regs_combine (XEXP (testreg
, 0));
11439 mark_used_regs_combine (SET_SRC (x
));
11447 /* Recursively scan the operands of this expression. */
11450 const char *fmt
= GET_RTX_FORMAT (code
);
11452 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11455 mark_used_regs_combine (XEXP (x
, i
));
11456 else if (fmt
[i
] == 'E')
11460 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11461 mark_used_regs_combine (XVECEXP (x
, i
, j
));
11467 /* Remove register number REGNO from the dead registers list of INSN.
11469 Return the note used to record the death, if there was one. */
11472 remove_death (unsigned int regno
, rtx insn
)
11474 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
11478 REG_N_DEATHS (regno
)--;
11479 remove_note (insn
, note
);
11485 /* For each register (hardware or pseudo) used within expression X, if its
11486 death is in an instruction with cuid between FROM_CUID (inclusive) and
11487 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11488 list headed by PNOTES.
11490 That said, don't move registers killed by maybe_kill_insn.
11492 This is done when X is being merged by combination into TO_INSN. These
11493 notes will then be distributed as needed. */
11496 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_cuid
, rtx to_insn
,
11501 enum rtx_code code
= GET_CODE (x
);
11505 unsigned int regno
= REGNO (x
);
11506 rtx where_dead
= reg_stat
[regno
].last_death
;
11507 rtx before_dead
, after_dead
;
11509 /* Don't move the register if it gets killed in between from and to. */
11510 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
11511 && ! reg_referenced_p (x
, maybe_kill_insn
))
11514 /* WHERE_DEAD could be a USE insn made by combine, so first we
11515 make sure that we have insns with valid INSN_CUID values. */
11516 before_dead
= where_dead
;
11517 while (before_dead
&& INSN_UID (before_dead
) > max_uid_cuid
)
11518 before_dead
= PREV_INSN (before_dead
);
11520 after_dead
= where_dead
;
11521 while (after_dead
&& INSN_UID (after_dead
) > max_uid_cuid
)
11522 after_dead
= NEXT_INSN (after_dead
);
11524 if (before_dead
&& after_dead
11525 && INSN_CUID (before_dead
) >= from_cuid
11526 && (INSN_CUID (after_dead
) < INSN_CUID (to_insn
)
11527 || (where_dead
!= after_dead
11528 && INSN_CUID (after_dead
) == INSN_CUID (to_insn
))))
11530 rtx note
= remove_death (regno
, where_dead
);
11532 /* It is possible for the call above to return 0. This can occur
11533 when last_death points to I2 or I1 that we combined with.
11534 In that case make a new note.
11536 We must also check for the case where X is a hard register
11537 and NOTE is a death note for a range of hard registers
11538 including X. In that case, we must put REG_DEAD notes for
11539 the remaining registers in place of NOTE. */
11541 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
11542 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11543 > GET_MODE_SIZE (GET_MODE (x
))))
11545 unsigned int deadregno
= REGNO (XEXP (note
, 0));
11546 unsigned int deadend
11547 = (deadregno
+ hard_regno_nregs
[deadregno
]
11548 [GET_MODE (XEXP (note
, 0))]);
11549 unsigned int ourend
11550 = regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11553 for (i
= deadregno
; i
< deadend
; i
++)
11554 if (i
< regno
|| i
>= ourend
)
11555 REG_NOTES (where_dead
)
11556 = gen_rtx_EXPR_LIST (REG_DEAD
,
11558 REG_NOTES (where_dead
));
11561 /* If we didn't find any note, or if we found a REG_DEAD note that
11562 covers only part of the given reg, and we have a multi-reg hard
11563 register, then to be safe we must check for REG_DEAD notes
11564 for each register other than the first. They could have
11565 their own REG_DEAD notes lying around. */
11566 else if ((note
== 0
11568 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11569 < GET_MODE_SIZE (GET_MODE (x
)))))
11570 && regno
< FIRST_PSEUDO_REGISTER
11571 && hard_regno_nregs
[regno
][GET_MODE (x
)] > 1)
11573 unsigned int ourend
11574 = regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11575 unsigned int i
, offset
;
11579 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
11583 for (i
= regno
+ offset
; i
< ourend
; i
++)
11584 move_deaths (regno_reg_rtx
[i
],
11585 maybe_kill_insn
, from_cuid
, to_insn
, &oldnotes
);
11588 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
11590 XEXP (note
, 1) = *pnotes
;
11594 *pnotes
= gen_rtx_EXPR_LIST (REG_DEAD
, x
, *pnotes
);
11596 REG_N_DEATHS (regno
)++;
11602 else if (GET_CODE (x
) == SET
)
11604 rtx dest
= SET_DEST (x
);
11606 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11608 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11609 that accesses one word of a multi-word item, some
11610 piece of everything register in the expression is used by
11611 this insn, so remove any old death. */
11612 /* ??? So why do we test for equality of the sizes? */
11614 if (GET_CODE (dest
) == ZERO_EXTRACT
11615 || GET_CODE (dest
) == STRICT_LOW_PART
11616 || (GET_CODE (dest
) == SUBREG
11617 && (((GET_MODE_SIZE (GET_MODE (dest
))
11618 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
11619 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
11620 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
11622 move_deaths (dest
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11626 /* If this is some other SUBREG, we know it replaces the entire
11627 value, so use that as the destination. */
11628 if (GET_CODE (dest
) == SUBREG
)
11629 dest
= SUBREG_REG (dest
);
11631 /* If this is a MEM, adjust deaths of anything used in the address.
11632 For a REG (the only other possibility), the entire value is
11633 being replaced so the old value is not used in this insn. */
11636 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_cuid
,
11641 else if (GET_CODE (x
) == CLOBBER
)
11644 len
= GET_RTX_LENGTH (code
);
11645 fmt
= GET_RTX_FORMAT (code
);
11647 for (i
= 0; i
< len
; i
++)
11652 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11653 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_cuid
,
11656 else if (fmt
[i
] == 'e')
11657 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11661 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11662 pattern of an insn. X must be a REG. */
11665 reg_bitfield_target_p (rtx x
, rtx body
)
11669 if (GET_CODE (body
) == SET
)
11671 rtx dest
= SET_DEST (body
);
11673 unsigned int regno
, tregno
, endregno
, endtregno
;
11675 if (GET_CODE (dest
) == ZERO_EXTRACT
)
11676 target
= XEXP (dest
, 0);
11677 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
11678 target
= SUBREG_REG (XEXP (dest
, 0));
11682 if (GET_CODE (target
) == SUBREG
)
11683 target
= SUBREG_REG (target
);
11685 if (!REG_P (target
))
11688 tregno
= REGNO (target
), regno
= REGNO (x
);
11689 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
11690 return target
== x
;
11692 endtregno
= tregno
+ hard_regno_nregs
[tregno
][GET_MODE (target
)];
11693 endregno
= regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)];
11695 return endregno
> tregno
&& regno
< endtregno
;
11698 else if (GET_CODE (body
) == PARALLEL
)
11699 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
11700 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
11706 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11707 as appropriate. I3 and I2 are the insns resulting from the combination
11708 insns including FROM (I2 may be zero).
11710 Each note in the list is either ignored or placed on some insns, depending
11711 on the type of note. */
11714 distribute_notes (rtx notes
, rtx from_insn
, rtx i3
, rtx i2
)
11716 rtx note
, next_note
;
11719 for (note
= notes
; note
; note
= next_note
)
11721 rtx place
= 0, place2
= 0;
11723 /* If this NOTE references a pseudo register, ensure it references
11724 the latest copy of that register. */
11725 if (XEXP (note
, 0) && REG_P (XEXP (note
, 0))
11726 && REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
)
11727 XEXP (note
, 0) = regno_reg_rtx
[REGNO (XEXP (note
, 0))];
11729 next_note
= XEXP (note
, 1);
11730 switch (REG_NOTE_KIND (note
))
11734 /* Doesn't matter much where we put this, as long as it's somewhere.
11735 It is preferable to keep these notes on branches, which is most
11736 likely to be i3. */
11740 case REG_VALUE_PROFILE
:
11741 /* Just get rid of this note, as it is unused later anyway. */
11744 case REG_NON_LOCAL_GOTO
:
11749 gcc_assert (i2
&& JUMP_P (i2
));
11754 case REG_EH_REGION
:
11755 /* These notes must remain with the call or trapping instruction. */
11758 else if (i2
&& CALL_P (i2
))
11762 gcc_assert (flag_non_call_exceptions
);
11763 if (may_trap_p (i3
))
11765 else if (i2
&& may_trap_p (i2
))
11767 /* ??? Otherwise assume we've combined things such that we
11768 can now prove that the instructions can't trap. Drop the
11769 note in this case. */
11773 case REG_ALWAYS_RETURN
:
11776 /* These notes must remain with the call. It should not be
11777 possible for both I2 and I3 to be a call. */
11782 gcc_assert (i2
&& CALL_P (i2
));
11788 /* Any clobbers for i3 may still exist, and so we must process
11789 REG_UNUSED notes from that insn.
11791 Any clobbers from i2 or i1 can only exist if they were added by
11792 recog_for_combine. In that case, recog_for_combine created the
11793 necessary REG_UNUSED notes. Trying to keep any original
11794 REG_UNUSED notes from these insns can cause incorrect output
11795 if it is for the same register as the original i3 dest.
11796 In that case, we will notice that the register is set in i3,
11797 and then add a REG_UNUSED note for the destination of i3, which
11798 is wrong. However, it is possible to have REG_UNUSED notes from
11799 i2 or i1 for register which were both used and clobbered, so
11800 we keep notes from i2 or i1 if they will turn into REG_DEAD
11803 /* If this register is set or clobbered in I3, put the note there
11804 unless there is one already. */
11805 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
11807 if (from_insn
!= i3
)
11810 if (! (REG_P (XEXP (note
, 0))
11811 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
11812 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
11815 /* Otherwise, if this register is used by I3, then this register
11816 now dies here, so we must put a REG_DEAD note here unless there
11818 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
11819 && ! (REG_P (XEXP (note
, 0))
11820 ? find_regno_note (i3
, REG_DEAD
,
11821 REGNO (XEXP (note
, 0)))
11822 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
11824 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
11832 /* These notes say something about results of an insn. We can
11833 only support them if they used to be on I3 in which case they
11834 remain on I3. Otherwise they are ignored.
11836 If the note refers to an expression that is not a constant, we
11837 must also ignore the note since we cannot tell whether the
11838 equivalence is still true. It might be possible to do
11839 slightly better than this (we only have a problem if I2DEST
11840 or I1DEST is present in the expression), but it doesn't
11841 seem worth the trouble. */
11843 if (from_insn
== i3
11844 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
11849 case REG_NO_CONFLICT
:
11850 /* These notes say something about how a register is used. They must
11851 be present on any use of the register in I2 or I3. */
11852 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
11855 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
11865 /* This can show up in several ways -- either directly in the
11866 pattern, or hidden off in the constant pool with (or without?)
11867 a REG_EQUAL note. */
11868 /* ??? Ignore the without-reg_equal-note problem for now. */
11869 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
11870 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
11871 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
11872 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
11876 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
11877 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
11878 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
11879 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
11887 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11888 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11889 if (place
&& JUMP_P (place
))
11891 rtx label
= JUMP_LABEL (place
);
11894 JUMP_LABEL (place
) = XEXP (note
, 0);
11897 gcc_assert (label
== XEXP (note
, 0));
11898 if (LABEL_P (label
))
11899 LABEL_NUSES (label
)--;
11903 if (place2
&& JUMP_P (place2
))
11905 rtx label
= JUMP_LABEL (place2
);
11908 JUMP_LABEL (place2
) = XEXP (note
, 0);
11911 gcc_assert (label
== XEXP (note
, 0));
11912 if (LABEL_P (label
))
11913 LABEL_NUSES (label
)--;
11920 /* This note says something about the value of a register prior
11921 to the execution of an insn. It is too much trouble to see
11922 if the note is still correct in all situations. It is better
11923 to simply delete it. */
11927 /* If the insn previously containing this note still exists,
11928 put it back where it was. Otherwise move it to the previous
11929 insn. Adjust the corresponding REG_LIBCALL note. */
11930 if (!NOTE_P (from_insn
))
11934 tem
= find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
11935 place
= prev_real_insn (from_insn
);
11937 XEXP (tem
, 0) = place
;
11938 /* If we're deleting the last remaining instruction of a
11939 libcall sequence, don't add the notes. */
11940 else if (XEXP (note
, 0) == from_insn
)
11942 /* Don't add the dangling REG_RETVAL note. */
11949 /* This is handled similarly to REG_RETVAL. */
11950 if (!NOTE_P (from_insn
))
11954 tem
= find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
11955 place
= next_real_insn (from_insn
);
11957 XEXP (tem
, 0) = place
;
11958 /* If we're deleting the last remaining instruction of a
11959 libcall sequence, don't add the notes. */
11960 else if (XEXP (note
, 0) == from_insn
)
11962 /* Don't add the dangling REG_LIBCALL note. */
11969 /* If the register is used as an input in I3, it dies there.
11970 Similarly for I2, if it is nonzero and adjacent to I3.
11972 If the register is not used as an input in either I3 or I2
11973 and it is not one of the registers we were supposed to eliminate,
11974 there are two possibilities. We might have a non-adjacent I2
11975 or we might have somehow eliminated an additional register
11976 from a computation. For example, we might have had A & B where
11977 we discover that B will always be zero. In this case we will
11978 eliminate the reference to A.
11980 In both cases, we must search to see if we can find a previous
11981 use of A and put the death note there. */
11984 && CALL_P (from_insn
)
11985 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
11987 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
11989 else if (i2
!= 0 && next_nonnote_insn (i2
) == i3
11990 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
11995 basic_block bb
= this_basic_block
;
11997 for (tem
= PREV_INSN (i3
); place
== 0; tem
= PREV_INSN (tem
))
11999 if (! INSN_P (tem
))
12001 if (tem
== BB_HEAD (bb
))
12006 /* If the register is being set at TEM, see if that is all
12007 TEM is doing. If so, delete TEM. Otherwise, make this
12008 into a REG_UNUSED note instead. Don't delete sets to
12009 global register vars. */
12010 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
12011 || !global_regs
[REGNO (XEXP (note
, 0))])
12012 && reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
12014 rtx set
= single_set (tem
);
12015 rtx inner_dest
= 0;
12017 rtx cc0_setter
= NULL_RTX
;
12021 for (inner_dest
= SET_DEST (set
);
12022 (GET_CODE (inner_dest
) == STRICT_LOW_PART
12023 || GET_CODE (inner_dest
) == SUBREG
12024 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
12025 inner_dest
= XEXP (inner_dest
, 0))
12028 /* Verify that it was the set, and not a clobber that
12029 modified the register.
12031 CC0 targets must be careful to maintain setter/user
12032 pairs. If we cannot delete the setter due to side
12033 effects, mark the user with an UNUSED note instead
12036 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
12037 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
12039 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
12040 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
12041 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
12045 /* Move the notes and links of TEM elsewhere.
12046 This might delete other dead insns recursively.
12047 First set the pattern to something that won't use
12049 rtx old_notes
= REG_NOTES (tem
);
12051 PATTERN (tem
) = pc_rtx
;
12052 REG_NOTES (tem
) = NULL
;
12054 distribute_notes (old_notes
, tem
, tem
, NULL_RTX
);
12055 distribute_links (LOG_LINKS (tem
));
12057 SET_INSN_DELETED (tem
);
12060 /* Delete the setter too. */
12063 PATTERN (cc0_setter
) = pc_rtx
;
12064 old_notes
= REG_NOTES (cc0_setter
);
12065 REG_NOTES (cc0_setter
) = NULL
;
12067 distribute_notes (old_notes
, cc0_setter
,
12068 cc0_setter
, NULL_RTX
);
12069 distribute_links (LOG_LINKS (cc0_setter
));
12071 SET_INSN_DELETED (cc0_setter
);
12077 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
12079 /* If there isn't already a REG_UNUSED note, put one
12080 here. Do not place a REG_DEAD note, even if
12081 the register is also used here; that would not
12082 match the algorithm used in lifetime analysis
12083 and can cause the consistency check in the
12084 scheduler to fail. */
12085 if (! find_regno_note (tem
, REG_UNUSED
,
12086 REGNO (XEXP (note
, 0))))
12091 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
12093 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
12097 /* If we are doing a 3->2 combination, and we have a
12098 register which formerly died in i3 and was not used
12099 by i2, which now no longer dies in i3 and is used in
12100 i2 but does not die in i2, and place is between i2
12101 and i3, then we may need to move a link from place to
12103 if (i2
&& INSN_UID (place
) <= max_uid_cuid
12104 && INSN_CUID (place
) > INSN_CUID (i2
)
12106 && INSN_CUID (from_insn
) > INSN_CUID (i2
)
12107 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12109 rtx links
= LOG_LINKS (place
);
12110 LOG_LINKS (place
) = 0;
12111 distribute_links (links
);
12116 if (tem
== BB_HEAD (bb
))
12120 /* We haven't found an insn for the death note and it
12121 is still a REG_DEAD note, but we have hit the beginning
12122 of the block. If the existing life info says the reg
12123 was dead, there's nothing left to do. Otherwise, we'll
12124 need to do a global life update after combine. */
12125 if (REG_NOTE_KIND (note
) == REG_DEAD
&& place
== 0
12126 && REGNO_REG_SET_P (bb
->global_live_at_start
,
12127 REGNO (XEXP (note
, 0))))
12128 SET_BIT (refresh_blocks
, this_basic_block
->index
);
12131 /* If the register is set or already dead at PLACE, we needn't do
12132 anything with this note if it is still a REG_DEAD note.
12133 We check here if it is set at all, not if is it totally replaced,
12134 which is what `dead_or_set_p' checks, so also check for it being
12137 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
12139 unsigned int regno
= REGNO (XEXP (note
, 0));
12141 /* Similarly, if the instruction on which we want to place
12142 the note is a noop, we'll need do a global live update
12143 after we remove them in delete_noop_moves. */
12144 if (noop_move_p (place
))
12145 SET_BIT (refresh_blocks
, this_basic_block
->index
);
12147 if (dead_or_set_p (place
, XEXP (note
, 0))
12148 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
12150 /* Unless the register previously died in PLACE, clear
12151 last_death. [I no longer understand why this is
12153 if (reg_stat
[regno
].last_death
!= place
)
12154 reg_stat
[regno
].last_death
= 0;
12158 reg_stat
[regno
].last_death
= place
;
12160 /* If this is a death note for a hard reg that is occupying
12161 multiple registers, ensure that we are still using all
12162 parts of the object. If we find a piece of the object
12163 that is unused, we must arrange for an appropriate REG_DEAD
12164 note to be added for it. However, we can't just emit a USE
12165 and tag the note to it, since the register might actually
12166 be dead; so we recourse, and the recursive call then finds
12167 the previous insn that used this register. */
12169 if (place
&& regno
< FIRST_PSEUDO_REGISTER
12170 && hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))] > 1)
12172 unsigned int endregno
12173 = regno
+ hard_regno_nregs
[regno
]
12174 [GET_MODE (XEXP (note
, 0))];
12178 for (i
= regno
; i
< endregno
; i
++)
12179 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
12180 && ! find_regno_fusage (place
, USE
, i
))
12181 || dead_or_set_regno_p (place
, i
))
12186 /* Put only REG_DEAD notes for pieces that are
12187 not already dead or set. */
12189 for (i
= regno
; i
< endregno
;
12190 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
12192 rtx piece
= regno_reg_rtx
[i
];
12193 basic_block bb
= this_basic_block
;
12195 if (! dead_or_set_p (place
, piece
)
12196 && ! reg_bitfield_target_p (piece
,
12200 = gen_rtx_EXPR_LIST (REG_DEAD
, piece
, NULL_RTX
);
12202 distribute_notes (new_note
, place
, place
,
12205 else if (! refers_to_regno_p (i
, i
+ 1,
12206 PATTERN (place
), 0)
12207 && ! find_regno_fusage (place
, USE
, i
))
12208 for (tem
= PREV_INSN (place
); ;
12209 tem
= PREV_INSN (tem
))
12211 if (! INSN_P (tem
))
12213 if (tem
== BB_HEAD (bb
))
12215 SET_BIT (refresh_blocks
,
12216 this_basic_block
->index
);
12221 if (dead_or_set_p (tem
, piece
)
12222 || reg_bitfield_target_p (piece
,
12226 = gen_rtx_EXPR_LIST (REG_UNUSED
, piece
,
12241 /* Any other notes should not be present at this point in the
12243 gcc_unreachable ();
12248 XEXP (note
, 1) = REG_NOTES (place
);
12249 REG_NOTES (place
) = note
;
12251 else if ((REG_NOTE_KIND (note
) == REG_DEAD
12252 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12253 && REG_P (XEXP (note
, 0)))
12254 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
12258 if ((REG_NOTE_KIND (note
) == REG_DEAD
12259 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12260 && REG_P (XEXP (note
, 0)))
12261 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
12263 REG_NOTES (place2
) = gen_rtx_fmt_ee (GET_CODE (note
),
12264 REG_NOTE_KIND (note
),
12266 REG_NOTES (place2
));
12271 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12272 I3, I2, and I1 to new locations. This is also called to add a link
12273 pointing at I3 when I3's destination is changed. */
12276 distribute_links (rtx links
)
12278 rtx link
, next_link
;
12280 for (link
= links
; link
; link
= next_link
)
12286 next_link
= XEXP (link
, 1);
12288 /* If the insn that this link points to is a NOTE or isn't a single
12289 set, ignore it. In the latter case, it isn't clear what we
12290 can do other than ignore the link, since we can't tell which
12291 register it was for. Such links wouldn't be used by combine
12294 It is not possible for the destination of the target of the link to
12295 have been changed by combine. The only potential of this is if we
12296 replace I3, I2, and I1 by I3 and I2. But in that case the
12297 destination of I2 also remains unchanged. */
12299 if (NOTE_P (XEXP (link
, 0))
12300 || (set
= single_set (XEXP (link
, 0))) == 0)
12303 reg
= SET_DEST (set
);
12304 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
12305 || GET_CODE (reg
) == SIGN_EXTRACT
12306 || GET_CODE (reg
) == STRICT_LOW_PART
)
12307 reg
= XEXP (reg
, 0);
12309 /* A LOG_LINK is defined as being placed on the first insn that uses
12310 a register and points to the insn that sets the register. Start
12311 searching at the next insn after the target of the link and stop
12312 when we reach a set of the register or the end of the basic block.
12314 Note that this correctly handles the link that used to point from
12315 I3 to I2. Also note that not much searching is typically done here
12316 since most links don't point very far away. */
12318 for (insn
= NEXT_INSN (XEXP (link
, 0));
12319 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR
12320 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
12321 insn
= NEXT_INSN (insn
))
12322 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
12324 if (reg_referenced_p (reg
, PATTERN (insn
)))
12328 else if (CALL_P (insn
)
12329 && find_reg_fusage (insn
, USE
, reg
))
12334 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
12337 /* If we found a place to put the link, place it there unless there
12338 is already a link to the same insn as LINK at that point. */
12344 for (link2
= LOG_LINKS (place
); link2
; link2
= XEXP (link2
, 1))
12345 if (XEXP (link2
, 0) == XEXP (link
, 0))
12350 XEXP (link
, 1) = LOG_LINKS (place
);
12351 LOG_LINKS (place
) = link
;
12353 /* Set added_links_insn to the earliest insn we added a
12355 if (added_links_insn
== 0
12356 || INSN_CUID (added_links_insn
) > INSN_CUID (place
))
12357 added_links_insn
= place
;
12363 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12364 Check whether the expression pointer to by LOC is a register or
12365 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12366 Otherwise return zero. */
12369 unmentioned_reg_p_1 (rtx
*loc
, void *expr
)
12374 && (REG_P (x
) || MEM_P (x
))
12375 && ! reg_mentioned_p (x
, (rtx
) expr
))
12380 /* Check for any register or memory mentioned in EQUIV that is not
12381 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12382 of EXPR where some registers may have been replaced by constants. */
12385 unmentioned_reg_p (rtx equiv
, rtx expr
)
12387 return for_each_rtx (&equiv
, unmentioned_reg_p_1
, expr
);
12390 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12393 insn_cuid (rtx insn
)
12395 while (insn
!= 0 && INSN_UID (insn
) > max_uid_cuid
12396 && NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == USE
)
12397 insn
= NEXT_INSN (insn
);
12399 gcc_assert (INSN_UID (insn
) <= max_uid_cuid
);
12401 return INSN_CUID (insn
);
12405 dump_combine_stats (FILE *file
)
12409 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12410 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
12414 dump_combine_total_stats (FILE *file
)
12418 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12419 total_attempts
, total_merges
, total_extras
, total_successes
);