]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
combine.c (simplify_logical): Only simplify logical expressions of the form ior(and...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
96 #include "params.h"
97
98 /* Number of attempts to combine instructions in this function. */
99
100 static int combine_attempts;
101
102 /* Number of attempts that got as far as substitution in this function. */
103
104 static int combine_merges;
105
106 /* Number of instructions combined with added SETs in this function. */
107
108 static int combine_extras;
109
110 /* Number of instructions combined in this function. */
111
112 static int combine_successes;
113
114 /* Totals over entire compilation. */
115
116 static int total_attempts, total_merges, total_extras, total_successes;
117
118 \f
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
125
126 static int *uid_cuid;
127 static int max_uid_cuid;
128
129 /* Get the cuid of an insn. */
130
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139
140 /* Maximum register number, which is the size of the tables below. */
141
142 static unsigned int combine_max_regno;
143
144 struct reg_stat {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
147
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
150
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
156
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
159
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
163
164 Therefore, we maintain the following fields:
165
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
174
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
179
180 (The next two parameters are out of date).
181
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
184
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
189
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
193
194 /* Record last value assigned to (hard or pseudo) register n. */
195
196 rtx last_set_value;
197
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
200
201 int last_set_table_tick;
202
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
205
206 int last_set_label;
207
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
212
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
216
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
220
221 char last_set_invalid;
222
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
227
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
232
233 If an entry is zero, it means that we don't know anything special. */
234
235 unsigned char sign_bit_copies;
236
237 unsigned HOST_WIDE_INT nonzero_bits;
238 };
239
240 static struct reg_stat *reg_stat;
241
242 /* Record the cuid of the last insn that invalidated memory
243 (anything that writes memory, and subroutine calls, but not pushes). */
244
245 static int mem_last_set;
246
247 /* Record the cuid of the last CALL_INSN
248 so we can tell whether a potential combination crosses any calls. */
249
250 static int last_call_cuid;
251
252 /* When `subst' is called, this is the insn that is being modified
253 (by combining in a previous insn). The PATTERN of this insn
254 is still the old pattern partially modified and it should not be
255 looked at, but this may be used to examine the successors of the insn
256 to judge whether a simplification is valid. */
257
258 static rtx subst_insn;
259
260 /* This is the lowest CUID that `subst' is currently dealing with.
261 get_last_value will not return a value if the register was set at or
262 after this CUID. If not for this mechanism, we could get confused if
263 I2 or I1 in try_combine were an insn that used the old value of a register
264 to obtain a new value. In that case, we might erroneously get the
265 new value of the register when we wanted the old one. */
266
267 static int subst_low_cuid;
268
269 /* This contains any hard registers that are used in newpat; reg_dead_at_p
270 must consider all these registers to be always live. */
271
272 static HARD_REG_SET newpat_used_regs;
273
274 /* This is an insn to which a LOG_LINKS entry has been added. If this
275 insn is the earlier than I2 or I3, combine should rescan starting at
276 that location. */
277
278 static rtx added_links_insn;
279
280 /* Basic block in which we are performing combines. */
281 static basic_block this_basic_block;
282
283 /* A bitmap indicating which blocks had registers go dead at entry.
284 After combine, we'll need to re-do global life analysis with
285 those blocks as starting points. */
286 static sbitmap refresh_blocks;
287 \f
288 /* The following array records the insn_rtx_cost for every insn
289 in the instruction stream. */
290
291 static int *uid_insn_cost;
292
293 /* Length of the currently allocated uid_insn_cost array. */
294
295 static int last_insn_cost;
296
297 /* Incremented for each label. */
298
299 static int label_tick;
300
301 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
302 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
303
304 static enum machine_mode nonzero_bits_mode;
305
306 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
307 be safely used. It is zero while computing them and after combine has
308 completed. This former test prevents propagating values based on
309 previously set values, which can be incorrect if a variable is modified
310 in a loop. */
311
312 static int nonzero_sign_valid;
313
314 \f
315 /* Record one modification to rtl structure
316 to be undone by storing old_contents into *where.
317 is_int is 1 if the contents are an int. */
318
319 struct undo
320 {
321 struct undo *next;
322 int is_int;
323 union {rtx r; int i;} old_contents;
324 union {rtx *r; int *i;} where;
325 };
326
327 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
328 num_undo says how many are currently recorded.
329
330 other_insn is nonzero if we have modified some other insn in the process
331 of working on subst_insn. It must be verified too. */
332
333 struct undobuf
334 {
335 struct undo *undos;
336 struct undo *frees;
337 rtx other_insn;
338 };
339
340 static struct undobuf undobuf;
341
342 /* Number of times the pseudo being substituted for
343 was found and replaced. */
344
345 static int n_occurrences;
346
347 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
348 enum machine_mode,
349 unsigned HOST_WIDE_INT,
350 unsigned HOST_WIDE_INT *);
351 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
352 enum machine_mode,
353 unsigned int, unsigned int *);
354 static void do_SUBST (rtx *, rtx);
355 static void do_SUBST_INT (int *, int);
356 static void init_reg_last (void);
357 static void setup_incoming_promotions (void);
358 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
359 static int cant_combine_insn_p (rtx);
360 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
361 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
362 static int contains_muldiv (rtx);
363 static rtx try_combine (rtx, rtx, rtx, int *);
364 static void undo_all (void);
365 static void undo_commit (void);
366 static rtx *find_split_point (rtx *, rtx);
367 static rtx subst (rtx, rtx, rtx, int, int);
368 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
369 static rtx simplify_if_then_else (rtx);
370 static rtx simplify_set (rtx);
371 static rtx simplify_logical (rtx);
372 static rtx expand_compound_operation (rtx);
373 static rtx expand_field_assignment (rtx);
374 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
375 rtx, unsigned HOST_WIDE_INT, int, int, int);
376 static rtx extract_left_shift (rtx, int);
377 static rtx make_compound_operation (rtx, enum rtx_code);
378 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
379 unsigned HOST_WIDE_INT *);
380 static rtx force_to_mode (rtx, enum machine_mode,
381 unsigned HOST_WIDE_INT, rtx, int);
382 static rtx if_then_else_cond (rtx, rtx *, rtx *);
383 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
384 static int rtx_equal_for_field_assignment_p (rtx, rtx);
385 static rtx make_field_assignment (rtx);
386 static rtx apply_distributive_law (rtx);
387 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
388 unsigned HOST_WIDE_INT);
389 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
390 HOST_WIDE_INT, enum machine_mode, int *);
391 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
392 int);
393 static int recog_for_combine (rtx *, rtx, rtx *);
394 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
395 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
396 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
397 static void update_table_tick (rtx);
398 static void record_value_for_reg (rtx, rtx, rtx);
399 static void check_promoted_subreg (rtx, rtx);
400 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
401 static void record_dead_and_set_regs (rtx);
402 static int get_last_value_validate (rtx *, rtx, int, int);
403 static rtx get_last_value (rtx);
404 static int use_crosses_set_p (rtx, int);
405 static void reg_dead_at_p_1 (rtx, rtx, void *);
406 static int reg_dead_at_p (rtx, rtx);
407 static void move_deaths (rtx, rtx, int, rtx, rtx *);
408 static int reg_bitfield_target_p (rtx, rtx);
409 static void distribute_notes (rtx, rtx, rtx, rtx);
410 static void distribute_links (rtx);
411 static void mark_used_regs_combine (rtx);
412 static int insn_cuid (rtx);
413 static void record_promoted_value (rtx, rtx);
414 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
415 static enum rtx_code combine_reversed_comparison_code (rtx);
416 static int unmentioned_reg_p_1 (rtx *, void *);
417 static bool unmentioned_reg_p (rtx, rtx);
418 \f
419
420 /* It is not safe to use ordinary gen_lowpart in combine.
421 See comments in gen_lowpart_for_combine. */
422 #undef RTL_HOOKS_GEN_LOWPART
423 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
424
425 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
426 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
427
428 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
429 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
430
431 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
432
433 \f
434 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
435 insn. The substitution can be undone by undo_all. If INTO is already
436 set to NEWVAL, do not record this change. Because computing NEWVAL might
437 also call SUBST, we have to compute it before we put anything into
438 the undo table. */
439
440 static void
441 do_SUBST (rtx *into, rtx newval)
442 {
443 struct undo *buf;
444 rtx oldval = *into;
445
446 if (oldval == newval)
447 return;
448
449 /* We'd like to catch as many invalid transformations here as
450 possible. Unfortunately, there are way too many mode changes
451 that are perfectly valid, so we'd waste too much effort for
452 little gain doing the checks here. Focus on catching invalid
453 transformations involving integer constants. */
454 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
455 && GET_CODE (newval) == CONST_INT)
456 {
457 /* Sanity check that we're replacing oldval with a CONST_INT
458 that is a valid sign-extension for the original mode. */
459 gcc_assert (INTVAL (newval)
460 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
461
462 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
463 CONST_INT is not valid, because after the replacement, the
464 original mode would be gone. Unfortunately, we can't tell
465 when do_SUBST is called to replace the operand thereof, so we
466 perform this test on oldval instead, checking whether an
467 invalid replacement took place before we got here. */
468 gcc_assert (!(GET_CODE (oldval) == SUBREG
469 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
470 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
471 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
472 }
473
474 if (undobuf.frees)
475 buf = undobuf.frees, undobuf.frees = buf->next;
476 else
477 buf = xmalloc (sizeof (struct undo));
478
479 buf->is_int = 0;
480 buf->where.r = into;
481 buf->old_contents.r = oldval;
482 *into = newval;
483
484 buf->next = undobuf.undos, undobuf.undos = buf;
485 }
486
487 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
488
489 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
490 for the value of a HOST_WIDE_INT value (including CONST_INT) is
491 not safe. */
492
493 static void
494 do_SUBST_INT (int *into, int newval)
495 {
496 struct undo *buf;
497 int oldval = *into;
498
499 if (oldval == newval)
500 return;
501
502 if (undobuf.frees)
503 buf = undobuf.frees, undobuf.frees = buf->next;
504 else
505 buf = xmalloc (sizeof (struct undo));
506
507 buf->is_int = 1;
508 buf->where.i = into;
509 buf->old_contents.i = oldval;
510 *into = newval;
511
512 buf->next = undobuf.undos, undobuf.undos = buf;
513 }
514
515 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
516 \f
517 /* Subroutine of try_combine. Determine whether the combine replacement
518 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
519 that the original instruction sequence I1, I2 and I3. Note that I1
520 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
521 costs of all instructions can be estimated, and the replacements are
522 more expensive than the original sequence. */
523
524 static bool
525 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
526 {
527 int i1_cost, i2_cost, i3_cost;
528 int new_i2_cost, new_i3_cost;
529 int old_cost, new_cost;
530
531 /* Lookup the original insn_rtx_costs. */
532 i2_cost = INSN_UID (i2) <= last_insn_cost
533 ? uid_insn_cost[INSN_UID (i2)] : 0;
534 i3_cost = INSN_UID (i3) <= last_insn_cost
535 ? uid_insn_cost[INSN_UID (i3)] : 0;
536
537 if (i1)
538 {
539 i1_cost = INSN_UID (i1) <= last_insn_cost
540 ? uid_insn_cost[INSN_UID (i1)] : 0;
541 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
542 ? i1_cost + i2_cost + i3_cost : 0;
543 }
544 else
545 {
546 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
547 i1_cost = 0;
548 }
549
550 /* Calculate the replacement insn_rtx_costs. */
551 new_i3_cost = insn_rtx_cost (newpat);
552 if (newi2pat)
553 {
554 new_i2_cost = insn_rtx_cost (newi2pat);
555 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
556 ? new_i2_cost + new_i3_cost : 0;
557 }
558 else
559 {
560 new_cost = new_i3_cost;
561 new_i2_cost = 0;
562 }
563
564 if (undobuf.other_insn)
565 {
566 int old_other_cost, new_other_cost;
567
568 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
569 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
570 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
571 if (old_other_cost > 0 && new_other_cost > 0)
572 {
573 old_cost += old_other_cost;
574 new_cost += new_other_cost;
575 }
576 else
577 old_cost = 0;
578 }
579
580 /* Disallow this recombination if both new_cost and old_cost are
581 greater than zero, and new_cost is greater than old cost. */
582 if (old_cost > 0
583 && new_cost > old_cost)
584 {
585 if (dump_file)
586 {
587 if (i1)
588 {
589 fprintf (dump_file,
590 "rejecting combination of insns %d, %d and %d\n",
591 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
592 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
593 i1_cost, i2_cost, i3_cost, old_cost);
594 }
595 else
596 {
597 fprintf (dump_file,
598 "rejecting combination of insns %d and %d\n",
599 INSN_UID (i2), INSN_UID (i3));
600 fprintf (dump_file, "original costs %d + %d = %d\n",
601 i2_cost, i3_cost, old_cost);
602 }
603
604 if (newi2pat)
605 {
606 fprintf (dump_file, "replacement costs %d + %d = %d\n",
607 new_i2_cost, new_i3_cost, new_cost);
608 }
609 else
610 fprintf (dump_file, "replacement cost %d\n", new_cost);
611 }
612
613 return false;
614 }
615
616 /* Update the uid_insn_cost array with the replacement costs. */
617 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
618 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
619 if (i1)
620 uid_insn_cost[INSN_UID (i1)] = 0;
621
622 return true;
623 }
624 \f
625 /* Main entry point for combiner. F is the first insn of the function.
626 NREGS is the first unused pseudo-reg number.
627
628 Return nonzero if the combiner has turned an indirect jump
629 instruction into a direct jump. */
630 int
631 combine_instructions (rtx f, unsigned int nregs)
632 {
633 rtx insn, next;
634 #ifdef HAVE_cc0
635 rtx prev;
636 #endif
637 int i;
638 rtx links, nextlinks;
639
640 int new_direct_jump_p = 0;
641
642 combine_attempts = 0;
643 combine_merges = 0;
644 combine_extras = 0;
645 combine_successes = 0;
646
647 combine_max_regno = nregs;
648
649 rtl_hooks = combine_rtl_hooks;
650
651 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
652
653 init_recog_no_volatile ();
654
655 /* Compute maximum uid value so uid_cuid can be allocated. */
656
657 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
658 if (INSN_UID (insn) > i)
659 i = INSN_UID (insn);
660
661 uid_cuid = xmalloc ((i + 1) * sizeof (int));
662 max_uid_cuid = i;
663
664 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
665
666 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
667 problems when, for example, we have j <<= 1 in a loop. */
668
669 nonzero_sign_valid = 0;
670
671 /* Compute the mapping from uids to cuids.
672 Cuids are numbers assigned to insns, like uids,
673 except that cuids increase monotonically through the code.
674
675 Scan all SETs and see if we can deduce anything about what
676 bits are known to be zero for some registers and how many copies
677 of the sign bit are known to exist for those registers.
678
679 Also set any known values so that we can use it while searching
680 for what bits are known to be set. */
681
682 label_tick = 1;
683
684 setup_incoming_promotions ();
685
686 refresh_blocks = sbitmap_alloc (last_basic_block);
687 sbitmap_zero (refresh_blocks);
688
689 /* Allocate array of current insn_rtx_costs. */
690 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
691 last_insn_cost = max_uid_cuid;
692
693 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
694 {
695 uid_cuid[INSN_UID (insn)] = ++i;
696 subst_low_cuid = i;
697 subst_insn = insn;
698
699 if (INSN_P (insn))
700 {
701 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
702 NULL);
703 record_dead_and_set_regs (insn);
704
705 #ifdef AUTO_INC_DEC
706 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
707 if (REG_NOTE_KIND (links) == REG_INC)
708 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
709 NULL);
710 #endif
711
712 /* Record the current insn_rtx_cost of this instruction. */
713 if (NONJUMP_INSN_P (insn))
714 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
715 if (dump_file)
716 fprintf(dump_file, "insn_cost %d: %d\n",
717 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
718 }
719
720 if (LABEL_P (insn))
721 label_tick++;
722 }
723
724 nonzero_sign_valid = 1;
725
726 /* Now scan all the insns in forward order. */
727
728 label_tick = 1;
729 last_call_cuid = 0;
730 mem_last_set = 0;
731 init_reg_last ();
732 setup_incoming_promotions ();
733
734 FOR_EACH_BB (this_basic_block)
735 {
736 for (insn = BB_HEAD (this_basic_block);
737 insn != NEXT_INSN (BB_END (this_basic_block));
738 insn = next ? next : NEXT_INSN (insn))
739 {
740 next = 0;
741
742 if (LABEL_P (insn))
743 label_tick++;
744
745 else if (INSN_P (insn))
746 {
747 /* See if we know about function return values before this
748 insn based upon SUBREG flags. */
749 check_promoted_subreg (insn, PATTERN (insn));
750
751 /* Try this insn with each insn it links back to. */
752
753 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
754 if ((next = try_combine (insn, XEXP (links, 0),
755 NULL_RTX, &new_direct_jump_p)) != 0)
756 goto retry;
757
758 /* Try each sequence of three linked insns ending with this one. */
759
760 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
761 {
762 rtx link = XEXP (links, 0);
763
764 /* If the linked insn has been replaced by a note, then there
765 is no point in pursuing this chain any further. */
766 if (NOTE_P (link))
767 continue;
768
769 for (nextlinks = LOG_LINKS (link);
770 nextlinks;
771 nextlinks = XEXP (nextlinks, 1))
772 if ((next = try_combine (insn, link,
773 XEXP (nextlinks, 0),
774 &new_direct_jump_p)) != 0)
775 goto retry;
776 }
777
778 #ifdef HAVE_cc0
779 /* Try to combine a jump insn that uses CC0
780 with a preceding insn that sets CC0, and maybe with its
781 logical predecessor as well.
782 This is how we make decrement-and-branch insns.
783 We need this special code because data flow connections
784 via CC0 do not get entered in LOG_LINKS. */
785
786 if (JUMP_P (insn)
787 && (prev = prev_nonnote_insn (insn)) != 0
788 && NONJUMP_INSN_P (prev)
789 && sets_cc0_p (PATTERN (prev)))
790 {
791 if ((next = try_combine (insn, prev,
792 NULL_RTX, &new_direct_jump_p)) != 0)
793 goto retry;
794
795 for (nextlinks = LOG_LINKS (prev); nextlinks;
796 nextlinks = XEXP (nextlinks, 1))
797 if ((next = try_combine (insn, prev,
798 XEXP (nextlinks, 0),
799 &new_direct_jump_p)) != 0)
800 goto retry;
801 }
802
803 /* Do the same for an insn that explicitly references CC0. */
804 if (NONJUMP_INSN_P (insn)
805 && (prev = prev_nonnote_insn (insn)) != 0
806 && NONJUMP_INSN_P (prev)
807 && sets_cc0_p (PATTERN (prev))
808 && GET_CODE (PATTERN (insn)) == SET
809 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
810 {
811 if ((next = try_combine (insn, prev,
812 NULL_RTX, &new_direct_jump_p)) != 0)
813 goto retry;
814
815 for (nextlinks = LOG_LINKS (prev); nextlinks;
816 nextlinks = XEXP (nextlinks, 1))
817 if ((next = try_combine (insn, prev,
818 XEXP (nextlinks, 0),
819 &new_direct_jump_p)) != 0)
820 goto retry;
821 }
822
823 /* Finally, see if any of the insns that this insn links to
824 explicitly references CC0. If so, try this insn, that insn,
825 and its predecessor if it sets CC0. */
826 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
827 if (NONJUMP_INSN_P (XEXP (links, 0))
828 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
829 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
830 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
831 && NONJUMP_INSN_P (prev)
832 && sets_cc0_p (PATTERN (prev))
833 && (next = try_combine (insn, XEXP (links, 0),
834 prev, &new_direct_jump_p)) != 0)
835 goto retry;
836 #endif
837
838 /* Try combining an insn with two different insns whose results it
839 uses. */
840 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
841 for (nextlinks = XEXP (links, 1); nextlinks;
842 nextlinks = XEXP (nextlinks, 1))
843 if ((next = try_combine (insn, XEXP (links, 0),
844 XEXP (nextlinks, 0),
845 &new_direct_jump_p)) != 0)
846 goto retry;
847
848 /* Try this insn with each REG_EQUAL note it links back to. */
849 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
850 {
851 rtx set, note;
852 rtx temp = XEXP (links, 0);
853 if ((set = single_set (temp)) != 0
854 && (note = find_reg_equal_equiv_note (temp)) != 0
855 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
856 /* Avoid using a register that may already been marked
857 dead by an earlier instruction. */
858 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
859 {
860 /* Temporarily replace the set's source with the
861 contents of the REG_EQUAL note. The insn will
862 be deleted or recognized by try_combine. */
863 rtx orig = SET_SRC (set);
864 SET_SRC (set) = XEXP (note, 0);
865 next = try_combine (insn, temp, NULL_RTX,
866 &new_direct_jump_p);
867 if (next)
868 goto retry;
869 SET_SRC (set) = orig;
870 }
871 }
872
873 if (!NOTE_P (insn))
874 record_dead_and_set_regs (insn);
875
876 retry:
877 ;
878 }
879 }
880 }
881 clear_bb_flags ();
882
883 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
884 BASIC_BLOCK (i)->flags |= BB_DIRTY);
885 new_direct_jump_p |= purge_all_dead_edges (0);
886 delete_noop_moves ();
887
888 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
889 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
890 | PROP_KILL_DEAD_CODE);
891
892 /* Clean up. */
893 sbitmap_free (refresh_blocks);
894 free (uid_insn_cost);
895 free (reg_stat);
896 free (uid_cuid);
897
898 {
899 struct undo *undo, *next;
900 for (undo = undobuf.frees; undo; undo = next)
901 {
902 next = undo->next;
903 free (undo);
904 }
905 undobuf.frees = 0;
906 }
907
908 total_attempts += combine_attempts;
909 total_merges += combine_merges;
910 total_extras += combine_extras;
911 total_successes += combine_successes;
912
913 nonzero_sign_valid = 0;
914 rtl_hooks = general_rtl_hooks;
915
916 /* Make recognizer allow volatile MEMs again. */
917 init_recog ();
918
919 return new_direct_jump_p;
920 }
921
922 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
923
924 static void
925 init_reg_last (void)
926 {
927 unsigned int i;
928 for (i = 0; i < combine_max_regno; i++)
929 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
930 }
931 \f
932 /* Set up any promoted values for incoming argument registers. */
933
934 static void
935 setup_incoming_promotions (void)
936 {
937 unsigned int regno;
938 rtx reg;
939 enum machine_mode mode;
940 int unsignedp;
941 rtx first = get_insns ();
942
943 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
944 {
945 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
946 /* Check whether this register can hold an incoming pointer
947 argument. FUNCTION_ARG_REGNO_P tests outgoing register
948 numbers, so translate if necessary due to register windows. */
949 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
950 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
951 {
952 record_value_for_reg
953 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
954 : SIGN_EXTEND),
955 GET_MODE (reg),
956 gen_rtx_CLOBBER (mode, const0_rtx)));
957 }
958 }
959 }
960 \f
961 /* Called via note_stores. If X is a pseudo that is narrower than
962 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
963
964 If we are setting only a portion of X and we can't figure out what
965 portion, assume all bits will be used since we don't know what will
966 be happening.
967
968 Similarly, set how many bits of X are known to be copies of the sign bit
969 at all locations in the function. This is the smallest number implied
970 by any set of X. */
971
972 static void
973 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
974 void *data ATTRIBUTE_UNUSED)
975 {
976 unsigned int num;
977
978 if (REG_P (x)
979 && REGNO (x) >= FIRST_PSEUDO_REGISTER
980 /* If this register is undefined at the start of the file, we can't
981 say what its contents were. */
982 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
983 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
984 {
985 if (set == 0 || GET_CODE (set) == CLOBBER)
986 {
987 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
988 reg_stat[REGNO (x)].sign_bit_copies = 1;
989 return;
990 }
991
992 /* If this is a complex assignment, see if we can convert it into a
993 simple assignment. */
994 set = expand_field_assignment (set);
995
996 /* If this is a simple assignment, or we have a paradoxical SUBREG,
997 set what we know about X. */
998
999 if (SET_DEST (set) == x
1000 || (GET_CODE (SET_DEST (set)) == SUBREG
1001 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1002 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1003 && SUBREG_REG (SET_DEST (set)) == x))
1004 {
1005 rtx src = SET_SRC (set);
1006
1007 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1008 /* If X is narrower than a word and SRC is a non-negative
1009 constant that would appear negative in the mode of X,
1010 sign-extend it for use in reg_stat[].nonzero_bits because some
1011 machines (maybe most) will actually do the sign-extension
1012 and this is the conservative approach.
1013
1014 ??? For 2.5, try to tighten up the MD files in this regard
1015 instead of this kludge. */
1016
1017 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1018 && GET_CODE (src) == CONST_INT
1019 && INTVAL (src) > 0
1020 && 0 != (INTVAL (src)
1021 & ((HOST_WIDE_INT) 1
1022 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1023 src = GEN_INT (INTVAL (src)
1024 | ((HOST_WIDE_INT) (-1)
1025 << GET_MODE_BITSIZE (GET_MODE (x))));
1026 #endif
1027
1028 /* Don't call nonzero_bits if it cannot change anything. */
1029 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1030 reg_stat[REGNO (x)].nonzero_bits
1031 |= nonzero_bits (src, nonzero_bits_mode);
1032 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1033 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1034 || reg_stat[REGNO (x)].sign_bit_copies > num)
1035 reg_stat[REGNO (x)].sign_bit_copies = num;
1036 }
1037 else
1038 {
1039 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1040 reg_stat[REGNO (x)].sign_bit_copies = 1;
1041 }
1042 }
1043 }
1044 \f
1045 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1046 insns that were previously combined into I3 or that will be combined
1047 into the merger of INSN and I3.
1048
1049 Return 0 if the combination is not allowed for any reason.
1050
1051 If the combination is allowed, *PDEST will be set to the single
1052 destination of INSN and *PSRC to the single source, and this function
1053 will return 1. */
1054
1055 static int
1056 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1057 rtx *pdest, rtx *psrc)
1058 {
1059 int i;
1060 rtx set = 0, src, dest;
1061 rtx p;
1062 #ifdef AUTO_INC_DEC
1063 rtx link;
1064 #endif
1065 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1066 && next_active_insn (succ) == i3)
1067 : next_active_insn (insn) == i3);
1068
1069 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1070 or a PARALLEL consisting of such a SET and CLOBBERs.
1071
1072 If INSN has CLOBBER parallel parts, ignore them for our processing.
1073 By definition, these happen during the execution of the insn. When it
1074 is merged with another insn, all bets are off. If they are, in fact,
1075 needed and aren't also supplied in I3, they may be added by
1076 recog_for_combine. Otherwise, it won't match.
1077
1078 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1079 note.
1080
1081 Get the source and destination of INSN. If more than one, can't
1082 combine. */
1083
1084 if (GET_CODE (PATTERN (insn)) == SET)
1085 set = PATTERN (insn);
1086 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1087 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1088 {
1089 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1090 {
1091 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1092 rtx note;
1093
1094 switch (GET_CODE (elt))
1095 {
1096 /* This is important to combine floating point insns
1097 for the SH4 port. */
1098 case USE:
1099 /* Combining an isolated USE doesn't make sense.
1100 We depend here on combinable_i3pat to reject them. */
1101 /* The code below this loop only verifies that the inputs of
1102 the SET in INSN do not change. We call reg_set_between_p
1103 to verify that the REG in the USE does not change between
1104 I3 and INSN.
1105 If the USE in INSN was for a pseudo register, the matching
1106 insn pattern will likely match any register; combining this
1107 with any other USE would only be safe if we knew that the
1108 used registers have identical values, or if there was
1109 something to tell them apart, e.g. different modes. For
1110 now, we forgo such complicated tests and simply disallow
1111 combining of USES of pseudo registers with any other USE. */
1112 if (REG_P (XEXP (elt, 0))
1113 && GET_CODE (PATTERN (i3)) == PARALLEL)
1114 {
1115 rtx i3pat = PATTERN (i3);
1116 int i = XVECLEN (i3pat, 0) - 1;
1117 unsigned int regno = REGNO (XEXP (elt, 0));
1118
1119 do
1120 {
1121 rtx i3elt = XVECEXP (i3pat, 0, i);
1122
1123 if (GET_CODE (i3elt) == USE
1124 && REG_P (XEXP (i3elt, 0))
1125 && (REGNO (XEXP (i3elt, 0)) == regno
1126 ? reg_set_between_p (XEXP (elt, 0),
1127 PREV_INSN (insn), i3)
1128 : regno >= FIRST_PSEUDO_REGISTER))
1129 return 0;
1130 }
1131 while (--i >= 0);
1132 }
1133 break;
1134
1135 /* We can ignore CLOBBERs. */
1136 case CLOBBER:
1137 break;
1138
1139 case SET:
1140 /* Ignore SETs whose result isn't used but not those that
1141 have side-effects. */
1142 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1143 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1144 || INTVAL (XEXP (note, 0)) <= 0)
1145 && ! side_effects_p (elt))
1146 break;
1147
1148 /* If we have already found a SET, this is a second one and
1149 so we cannot combine with this insn. */
1150 if (set)
1151 return 0;
1152
1153 set = elt;
1154 break;
1155
1156 default:
1157 /* Anything else means we can't combine. */
1158 return 0;
1159 }
1160 }
1161
1162 if (set == 0
1163 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1164 so don't do anything with it. */
1165 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1166 return 0;
1167 }
1168 else
1169 return 0;
1170
1171 if (set == 0)
1172 return 0;
1173
1174 set = expand_field_assignment (set);
1175 src = SET_SRC (set), dest = SET_DEST (set);
1176
1177 /* Don't eliminate a store in the stack pointer. */
1178 if (dest == stack_pointer_rtx
1179 /* Don't combine with an insn that sets a register to itself if it has
1180 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1181 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1182 /* Can't merge an ASM_OPERANDS. */
1183 || GET_CODE (src) == ASM_OPERANDS
1184 /* Can't merge a function call. */
1185 || GET_CODE (src) == CALL
1186 /* Don't eliminate a function call argument. */
1187 || (CALL_P (i3)
1188 && (find_reg_fusage (i3, USE, dest)
1189 || (REG_P (dest)
1190 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1191 && global_regs[REGNO (dest)])))
1192 /* Don't substitute into an incremented register. */
1193 || FIND_REG_INC_NOTE (i3, dest)
1194 || (succ && FIND_REG_INC_NOTE (succ, dest))
1195 /* Don't substitute into a non-local goto, this confuses CFG. */
1196 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1197 #if 0
1198 /* Don't combine the end of a libcall into anything. */
1199 /* ??? This gives worse code, and appears to be unnecessary, since no
1200 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1201 use REG_RETVAL notes for noconflict blocks, but other code here
1202 makes sure that those insns don't disappear. */
1203 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1204 #endif
1205 /* Make sure that DEST is not used after SUCC but before I3. */
1206 || (succ && ! all_adjacent
1207 && reg_used_between_p (dest, succ, i3))
1208 /* Make sure that the value that is to be substituted for the register
1209 does not use any registers whose values alter in between. However,
1210 If the insns are adjacent, a use can't cross a set even though we
1211 think it might (this can happen for a sequence of insns each setting
1212 the same destination; last_set of that register might point to
1213 a NOTE). If INSN has a REG_EQUIV note, the register is always
1214 equivalent to the memory so the substitution is valid even if there
1215 are intervening stores. Also, don't move a volatile asm or
1216 UNSPEC_VOLATILE across any other insns. */
1217 || (! all_adjacent
1218 && (((!MEM_P (src)
1219 || ! find_reg_note (insn, REG_EQUIV, src))
1220 && use_crosses_set_p (src, INSN_CUID (insn)))
1221 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1222 || GET_CODE (src) == UNSPEC_VOLATILE))
1223 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1224 better register allocation by not doing the combine. */
1225 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1226 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1227 /* Don't combine across a CALL_INSN, because that would possibly
1228 change whether the life span of some REGs crosses calls or not,
1229 and it is a pain to update that information.
1230 Exception: if source is a constant, moving it later can't hurt.
1231 Accept that special case, because it helps -fforce-addr a lot. */
1232 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1233 return 0;
1234
1235 /* DEST must either be a REG or CC0. */
1236 if (REG_P (dest))
1237 {
1238 /* If register alignment is being enforced for multi-word items in all
1239 cases except for parameters, it is possible to have a register copy
1240 insn referencing a hard register that is not allowed to contain the
1241 mode being copied and which would not be valid as an operand of most
1242 insns. Eliminate this problem by not combining with such an insn.
1243
1244 Also, on some machines we don't want to extend the life of a hard
1245 register. */
1246
1247 if (REG_P (src)
1248 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1249 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1250 /* Don't extend the life of a hard register unless it is
1251 user variable (if we have few registers) or it can't
1252 fit into the desired register (meaning something special
1253 is going on).
1254 Also avoid substituting a return register into I3, because
1255 reload can't handle a conflict with constraints of other
1256 inputs. */
1257 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1258 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1259 return 0;
1260 }
1261 else if (GET_CODE (dest) != CC0)
1262 return 0;
1263
1264
1265 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1266 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1267 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1268 {
1269 /* Don't substitute for a register intended as a clobberable
1270 operand. */
1271 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1272 if (rtx_equal_p (reg, dest))
1273 return 0;
1274
1275 /* If the clobber represents an earlyclobber operand, we must not
1276 substitute an expression containing the clobbered register.
1277 As we do not analyse the constraint strings here, we have to
1278 make the conservative assumption. However, if the register is
1279 a fixed hard reg, the clobber cannot represent any operand;
1280 we leave it up to the machine description to either accept or
1281 reject use-and-clobber patterns. */
1282 if (!REG_P (reg)
1283 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1284 || !fixed_regs[REGNO (reg)])
1285 if (reg_overlap_mentioned_p (reg, src))
1286 return 0;
1287 }
1288
1289 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1290 or not), reject, unless nothing volatile comes between it and I3 */
1291
1292 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1293 {
1294 /* Make sure succ doesn't contain a volatile reference. */
1295 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1296 return 0;
1297
1298 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1299 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1300 return 0;
1301 }
1302
1303 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1304 to be an explicit register variable, and was chosen for a reason. */
1305
1306 if (GET_CODE (src) == ASM_OPERANDS
1307 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1308 return 0;
1309
1310 /* If there are any volatile insns between INSN and I3, reject, because
1311 they might affect machine state. */
1312
1313 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1314 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1315 return 0;
1316
1317 /* If INSN or I2 contains an autoincrement or autodecrement,
1318 make sure that register is not used between there and I3,
1319 and not already used in I3 either.
1320 Also insist that I3 not be a jump; if it were one
1321 and the incremented register were spilled, we would lose. */
1322
1323 #ifdef AUTO_INC_DEC
1324 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1325 if (REG_NOTE_KIND (link) == REG_INC
1326 && (JUMP_P (i3)
1327 || reg_used_between_p (XEXP (link, 0), insn, i3)
1328 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1329 return 0;
1330 #endif
1331
1332 #ifdef HAVE_cc0
1333 /* Don't combine an insn that follows a CC0-setting insn.
1334 An insn that uses CC0 must not be separated from the one that sets it.
1335 We do, however, allow I2 to follow a CC0-setting insn if that insn
1336 is passed as I1; in that case it will be deleted also.
1337 We also allow combining in this case if all the insns are adjacent
1338 because that would leave the two CC0 insns adjacent as well.
1339 It would be more logical to test whether CC0 occurs inside I1 or I2,
1340 but that would be much slower, and this ought to be equivalent. */
1341
1342 p = prev_nonnote_insn (insn);
1343 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1344 && ! all_adjacent)
1345 return 0;
1346 #endif
1347
1348 /* If we get here, we have passed all the tests and the combination is
1349 to be allowed. */
1350
1351 *pdest = dest;
1352 *psrc = src;
1353
1354 return 1;
1355 }
1356 \f
1357 /* LOC is the location within I3 that contains its pattern or the component
1358 of a PARALLEL of the pattern. We validate that it is valid for combining.
1359
1360 One problem is if I3 modifies its output, as opposed to replacing it
1361 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1362 so would produce an insn that is not equivalent to the original insns.
1363
1364 Consider:
1365
1366 (set (reg:DI 101) (reg:DI 100))
1367 (set (subreg:SI (reg:DI 101) 0) <foo>)
1368
1369 This is NOT equivalent to:
1370
1371 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1372 (set (reg:DI 101) (reg:DI 100))])
1373
1374 Not only does this modify 100 (in which case it might still be valid
1375 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1376
1377 We can also run into a problem if I2 sets a register that I1
1378 uses and I1 gets directly substituted into I3 (not via I2). In that
1379 case, we would be getting the wrong value of I2DEST into I3, so we
1380 must reject the combination. This case occurs when I2 and I1 both
1381 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1382 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1383 of a SET must prevent combination from occurring.
1384
1385 Before doing the above check, we first try to expand a field assignment
1386 into a set of logical operations.
1387
1388 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1389 we place a register that is both set and used within I3. If more than one
1390 such register is detected, we fail.
1391
1392 Return 1 if the combination is valid, zero otherwise. */
1393
1394 static int
1395 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1396 int i1_not_in_src, rtx *pi3dest_killed)
1397 {
1398 rtx x = *loc;
1399
1400 if (GET_CODE (x) == SET)
1401 {
1402 rtx set = x ;
1403 rtx dest = SET_DEST (set);
1404 rtx src = SET_SRC (set);
1405 rtx inner_dest = dest;
1406
1407 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1408 || GET_CODE (inner_dest) == SUBREG
1409 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1410 inner_dest = XEXP (inner_dest, 0);
1411
1412 /* Check for the case where I3 modifies its output, as discussed
1413 above. We don't want to prevent pseudos from being combined
1414 into the address of a MEM, so only prevent the combination if
1415 i1 or i2 set the same MEM. */
1416 if ((inner_dest != dest &&
1417 (!MEM_P (inner_dest)
1418 || rtx_equal_p (i2dest, inner_dest)
1419 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1420 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1421 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1422
1423 /* This is the same test done in can_combine_p except we can't test
1424 all_adjacent; we don't have to, since this instruction will stay
1425 in place, thus we are not considering increasing the lifetime of
1426 INNER_DEST.
1427
1428 Also, if this insn sets a function argument, combining it with
1429 something that might need a spill could clobber a previous
1430 function argument; the all_adjacent test in can_combine_p also
1431 checks this; here, we do a more specific test for this case. */
1432
1433 || (REG_P (inner_dest)
1434 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1435 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1436 GET_MODE (inner_dest))))
1437 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1438 return 0;
1439
1440 /* If DEST is used in I3, it is being killed in this insn,
1441 so record that for later.
1442 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1443 STACK_POINTER_REGNUM, since these are always considered to be
1444 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1445 if (pi3dest_killed && REG_P (dest)
1446 && reg_referenced_p (dest, PATTERN (i3))
1447 && REGNO (dest) != FRAME_POINTER_REGNUM
1448 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1449 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1450 #endif
1451 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1452 && (REGNO (dest) != ARG_POINTER_REGNUM
1453 || ! fixed_regs [REGNO (dest)])
1454 #endif
1455 && REGNO (dest) != STACK_POINTER_REGNUM)
1456 {
1457 if (*pi3dest_killed)
1458 return 0;
1459
1460 *pi3dest_killed = dest;
1461 }
1462 }
1463
1464 else if (GET_CODE (x) == PARALLEL)
1465 {
1466 int i;
1467
1468 for (i = 0; i < XVECLEN (x, 0); i++)
1469 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1470 i1_not_in_src, pi3dest_killed))
1471 return 0;
1472 }
1473
1474 return 1;
1475 }
1476 \f
1477 /* Return 1 if X is an arithmetic expression that contains a multiplication
1478 and division. We don't count multiplications by powers of two here. */
1479
1480 static int
1481 contains_muldiv (rtx x)
1482 {
1483 switch (GET_CODE (x))
1484 {
1485 case MOD: case DIV: case UMOD: case UDIV:
1486 return 1;
1487
1488 case MULT:
1489 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1490 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1491 default:
1492 if (BINARY_P (x))
1493 return contains_muldiv (XEXP (x, 0))
1494 || contains_muldiv (XEXP (x, 1));
1495
1496 if (UNARY_P (x))
1497 return contains_muldiv (XEXP (x, 0));
1498
1499 return 0;
1500 }
1501 }
1502 \f
1503 /* Determine whether INSN can be used in a combination. Return nonzero if
1504 not. This is used in try_combine to detect early some cases where we
1505 can't perform combinations. */
1506
1507 static int
1508 cant_combine_insn_p (rtx insn)
1509 {
1510 rtx set;
1511 rtx src, dest;
1512
1513 /* If this isn't really an insn, we can't do anything.
1514 This can occur when flow deletes an insn that it has merged into an
1515 auto-increment address. */
1516 if (! INSN_P (insn))
1517 return 1;
1518
1519 /* Never combine loads and stores involving hard regs that are likely
1520 to be spilled. The register allocator can usually handle such
1521 reg-reg moves by tying. If we allow the combiner to make
1522 substitutions of likely-spilled regs, we may abort in reload.
1523 As an exception, we allow combinations involving fixed regs; these are
1524 not available to the register allocator so there's no risk involved. */
1525
1526 set = single_set (insn);
1527 if (! set)
1528 return 0;
1529 src = SET_SRC (set);
1530 dest = SET_DEST (set);
1531 if (GET_CODE (src) == SUBREG)
1532 src = SUBREG_REG (src);
1533 if (GET_CODE (dest) == SUBREG)
1534 dest = SUBREG_REG (dest);
1535 if (REG_P (src) && REG_P (dest)
1536 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1537 && ! fixed_regs[REGNO (src)]
1538 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1539 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1540 && ! fixed_regs[REGNO (dest)]
1541 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1542 return 1;
1543
1544 return 0;
1545 }
1546
1547 /* Adjust INSN after we made a change to its destination.
1548
1549 Changing the destination can invalidate notes that say something about
1550 the results of the insn and a LOG_LINK pointing to the insn. */
1551
1552 static void
1553 adjust_for_new_dest (rtx insn)
1554 {
1555 rtx *loc;
1556
1557 /* For notes, be conservative and simply remove them. */
1558 loc = &REG_NOTES (insn);
1559 while (*loc)
1560 {
1561 enum reg_note kind = REG_NOTE_KIND (*loc);
1562 if (kind == REG_EQUAL || kind == REG_EQUIV)
1563 *loc = XEXP (*loc, 1);
1564 else
1565 loc = &XEXP (*loc, 1);
1566 }
1567
1568 /* The new insn will have a destination that was previously the destination
1569 of an insn just above it. Call distribute_links to make a LOG_LINK from
1570 the next use of that destination. */
1571 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1572 }
1573
1574 /* Try to combine the insns I1 and I2 into I3.
1575 Here I1 and I2 appear earlier than I3.
1576 I1 can be zero; then we combine just I2 into I3.
1577
1578 If we are combining three insns and the resulting insn is not recognized,
1579 try splitting it into two insns. If that happens, I2 and I3 are retained
1580 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1581 are pseudo-deleted.
1582
1583 Return 0 if the combination does not work. Then nothing is changed.
1584 If we did the combination, return the insn at which combine should
1585 resume scanning.
1586
1587 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1588 new direct jump instruction. */
1589
1590 static rtx
1591 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1592 {
1593 /* New patterns for I3 and I2, respectively. */
1594 rtx newpat, newi2pat = 0;
1595 int substed_i2 = 0, substed_i1 = 0;
1596 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1597 int added_sets_1, added_sets_2;
1598 /* Total number of SETs to put into I3. */
1599 int total_sets;
1600 /* Nonzero if I2's body now appears in I3. */
1601 int i2_is_used;
1602 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1603 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1604 /* Contains I3 if the destination of I3 is used in its source, which means
1605 that the old life of I3 is being killed. If that usage is placed into
1606 I2 and not in I3, a REG_DEAD note must be made. */
1607 rtx i3dest_killed = 0;
1608 /* SET_DEST and SET_SRC of I2 and I1. */
1609 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1610 /* PATTERN (I2), or a copy of it in certain cases. */
1611 rtx i2pat;
1612 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1613 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1614 int i1_feeds_i3 = 0;
1615 /* Notes that must be added to REG_NOTES in I3 and I2. */
1616 rtx new_i3_notes, new_i2_notes;
1617 /* Notes that we substituted I3 into I2 instead of the normal case. */
1618 int i3_subst_into_i2 = 0;
1619 /* Notes that I1, I2 or I3 is a MULT operation. */
1620 int have_mult = 0;
1621 int swap_i2i3 = 0;
1622
1623 int maxreg;
1624 rtx temp;
1625 rtx link;
1626 int i;
1627
1628 /* Exit early if one of the insns involved can't be used for
1629 combinations. */
1630 if (cant_combine_insn_p (i3)
1631 || cant_combine_insn_p (i2)
1632 || (i1 && cant_combine_insn_p (i1))
1633 /* We also can't do anything if I3 has a
1634 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1635 libcall. */
1636 #if 0
1637 /* ??? This gives worse code, and appears to be unnecessary, since no
1638 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1639 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1640 #endif
1641 )
1642 return 0;
1643
1644 combine_attempts++;
1645 undobuf.other_insn = 0;
1646
1647 /* Reset the hard register usage information. */
1648 CLEAR_HARD_REG_SET (newpat_used_regs);
1649
1650 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1651 code below, set I1 to be the earlier of the two insns. */
1652 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1653 temp = i1, i1 = i2, i2 = temp;
1654
1655 added_links_insn = 0;
1656
1657 /* First check for one important special-case that the code below will
1658 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1659 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1660 we may be able to replace that destination with the destination of I3.
1661 This occurs in the common code where we compute both a quotient and
1662 remainder into a structure, in which case we want to do the computation
1663 directly into the structure to avoid register-register copies.
1664
1665 Note that this case handles both multiple sets in I2 and also
1666 cases where I2 has a number of CLOBBER or PARALLELs.
1667
1668 We make very conservative checks below and only try to handle the
1669 most common cases of this. For example, we only handle the case
1670 where I2 and I3 are adjacent to avoid making difficult register
1671 usage tests. */
1672
1673 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1674 && REG_P (SET_SRC (PATTERN (i3)))
1675 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1676 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1677 && GET_CODE (PATTERN (i2)) == PARALLEL
1678 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1679 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1680 below would need to check what is inside (and reg_overlap_mentioned_p
1681 doesn't support those codes anyway). Don't allow those destinations;
1682 the resulting insn isn't likely to be recognized anyway. */
1683 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1684 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1685 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1686 SET_DEST (PATTERN (i3)))
1687 && next_real_insn (i2) == i3)
1688 {
1689 rtx p2 = PATTERN (i2);
1690
1691 /* Make sure that the destination of I3,
1692 which we are going to substitute into one output of I2,
1693 is not used within another output of I2. We must avoid making this:
1694 (parallel [(set (mem (reg 69)) ...)
1695 (set (reg 69) ...)])
1696 which is not well-defined as to order of actions.
1697 (Besides, reload can't handle output reloads for this.)
1698
1699 The problem can also happen if the dest of I3 is a memory ref,
1700 if another dest in I2 is an indirect memory ref. */
1701 for (i = 0; i < XVECLEN (p2, 0); i++)
1702 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1703 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1704 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1705 SET_DEST (XVECEXP (p2, 0, i))))
1706 break;
1707
1708 if (i == XVECLEN (p2, 0))
1709 for (i = 0; i < XVECLEN (p2, 0); i++)
1710 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1711 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1712 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1713 {
1714 combine_merges++;
1715
1716 subst_insn = i3;
1717 subst_low_cuid = INSN_CUID (i2);
1718
1719 added_sets_2 = added_sets_1 = 0;
1720 i2dest = SET_SRC (PATTERN (i3));
1721
1722 /* Replace the dest in I2 with our dest and make the resulting
1723 insn the new pattern for I3. Then skip to where we
1724 validate the pattern. Everything was set up above. */
1725 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1726 SET_DEST (PATTERN (i3)));
1727
1728 newpat = p2;
1729 i3_subst_into_i2 = 1;
1730 goto validate_replacement;
1731 }
1732 }
1733
1734 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1735 one of those words to another constant, merge them by making a new
1736 constant. */
1737 if (i1 == 0
1738 && (temp = single_set (i2)) != 0
1739 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1740 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1741 && REG_P (SET_DEST (temp))
1742 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1743 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1744 && GET_CODE (PATTERN (i3)) == SET
1745 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1746 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1747 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1748 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1749 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1750 {
1751 HOST_WIDE_INT lo, hi;
1752
1753 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1754 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1755 else
1756 {
1757 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1758 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1759 }
1760
1761 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1762 {
1763 /* We don't handle the case of the target word being wider
1764 than a host wide int. */
1765 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1766
1767 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1768 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1769 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1770 }
1771 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1772 hi = INTVAL (SET_SRC (PATTERN (i3)));
1773 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1774 {
1775 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1776 >> (HOST_BITS_PER_WIDE_INT - 1));
1777
1778 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1779 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1780 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1781 (INTVAL (SET_SRC (PATTERN (i3)))));
1782 if (hi == sign)
1783 hi = lo < 0 ? -1 : 0;
1784 }
1785 else
1786 /* We don't handle the case of the higher word not fitting
1787 entirely in either hi or lo. */
1788 gcc_unreachable ();
1789
1790 combine_merges++;
1791 subst_insn = i3;
1792 subst_low_cuid = INSN_CUID (i2);
1793 added_sets_2 = added_sets_1 = 0;
1794 i2dest = SET_DEST (temp);
1795
1796 SUBST (SET_SRC (temp),
1797 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1798
1799 newpat = PATTERN (i2);
1800 goto validate_replacement;
1801 }
1802
1803 #ifndef HAVE_cc0
1804 /* If we have no I1 and I2 looks like:
1805 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1806 (set Y OP)])
1807 make up a dummy I1 that is
1808 (set Y OP)
1809 and change I2 to be
1810 (set (reg:CC X) (compare:CC Y (const_int 0)))
1811
1812 (We can ignore any trailing CLOBBERs.)
1813
1814 This undoes a previous combination and allows us to match a branch-and-
1815 decrement insn. */
1816
1817 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1818 && XVECLEN (PATTERN (i2), 0) >= 2
1819 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1820 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1821 == MODE_CC)
1822 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1823 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1824 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1825 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1826 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1827 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1828 {
1829 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1830 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1831 break;
1832
1833 if (i == 1)
1834 {
1835 /* We make I1 with the same INSN_UID as I2. This gives it
1836 the same INSN_CUID for value tracking. Our fake I1 will
1837 never appear in the insn stream so giving it the same INSN_UID
1838 as I2 will not cause a problem. */
1839
1840 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1841 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1842 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1843 NULL_RTX);
1844
1845 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1846 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1847 SET_DEST (PATTERN (i1)));
1848 }
1849 }
1850 #endif
1851
1852 /* Verify that I2 and I1 are valid for combining. */
1853 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1854 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1855 {
1856 undo_all ();
1857 return 0;
1858 }
1859
1860 /* Record whether I2DEST is used in I2SRC and similarly for the other
1861 cases. Knowing this will help in register status updating below. */
1862 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1863 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1864 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1865
1866 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1867 in I2SRC. */
1868 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1869
1870 /* Ensure that I3's pattern can be the destination of combines. */
1871 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1872 i1 && i2dest_in_i1src && i1_feeds_i3,
1873 &i3dest_killed))
1874 {
1875 undo_all ();
1876 return 0;
1877 }
1878
1879 /* See if any of the insns is a MULT operation. Unless one is, we will
1880 reject a combination that is, since it must be slower. Be conservative
1881 here. */
1882 if (GET_CODE (i2src) == MULT
1883 || (i1 != 0 && GET_CODE (i1src) == MULT)
1884 || (GET_CODE (PATTERN (i3)) == SET
1885 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1886 have_mult = 1;
1887
1888 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1889 We used to do this EXCEPT in one case: I3 has a post-inc in an
1890 output operand. However, that exception can give rise to insns like
1891 mov r3,(r3)+
1892 which is a famous insn on the PDP-11 where the value of r3 used as the
1893 source was model-dependent. Avoid this sort of thing. */
1894
1895 #if 0
1896 if (!(GET_CODE (PATTERN (i3)) == SET
1897 && REG_P (SET_SRC (PATTERN (i3)))
1898 && MEM_P (SET_DEST (PATTERN (i3)))
1899 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1900 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1901 /* It's not the exception. */
1902 #endif
1903 #ifdef AUTO_INC_DEC
1904 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1905 if (REG_NOTE_KIND (link) == REG_INC
1906 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1907 || (i1 != 0
1908 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1909 {
1910 undo_all ();
1911 return 0;
1912 }
1913 #endif
1914
1915 /* See if the SETs in I1 or I2 need to be kept around in the merged
1916 instruction: whenever the value set there is still needed past I3.
1917 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1918
1919 For the SET in I1, we have two cases: If I1 and I2 independently
1920 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1921 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1922 in I1 needs to be kept around unless I1DEST dies or is set in either
1923 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1924 I1DEST. If so, we know I1 feeds into I2. */
1925
1926 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1927
1928 added_sets_1
1929 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1930 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1931
1932 /* If the set in I2 needs to be kept around, we must make a copy of
1933 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1934 PATTERN (I2), we are only substituting for the original I1DEST, not into
1935 an already-substituted copy. This also prevents making self-referential
1936 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1937 I2DEST. */
1938
1939 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1940 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1941 : PATTERN (i2));
1942
1943 if (added_sets_2)
1944 i2pat = copy_rtx (i2pat);
1945
1946 combine_merges++;
1947
1948 /* Substitute in the latest insn for the regs set by the earlier ones. */
1949
1950 maxreg = max_reg_num ();
1951
1952 subst_insn = i3;
1953
1954 /* It is possible that the source of I2 or I1 may be performing an
1955 unneeded operation, such as a ZERO_EXTEND of something that is known
1956 to have the high part zero. Handle that case by letting subst look at
1957 the innermost one of them.
1958
1959 Another way to do this would be to have a function that tries to
1960 simplify a single insn instead of merging two or more insns. We don't
1961 do this because of the potential of infinite loops and because
1962 of the potential extra memory required. However, doing it the way
1963 we are is a bit of a kludge and doesn't catch all cases.
1964
1965 But only do this if -fexpensive-optimizations since it slows things down
1966 and doesn't usually win. */
1967
1968 if (flag_expensive_optimizations)
1969 {
1970 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1971 if (i1)
1972 {
1973 subst_low_cuid = INSN_CUID (i1);
1974 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1975 }
1976 else
1977 {
1978 subst_low_cuid = INSN_CUID (i2);
1979 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1980 }
1981 }
1982
1983 #ifndef HAVE_cc0
1984 /* Many machines that don't use CC0 have insns that can both perform an
1985 arithmetic operation and set the condition code. These operations will
1986 be represented as a PARALLEL with the first element of the vector
1987 being a COMPARE of an arithmetic operation with the constant zero.
1988 The second element of the vector will set some pseudo to the result
1989 of the same arithmetic operation. If we simplify the COMPARE, we won't
1990 match such a pattern and so will generate an extra insn. Here we test
1991 for this case, where both the comparison and the operation result are
1992 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1993 I2SRC. Later we will make the PARALLEL that contains I2. */
1994
1995 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1996 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1997 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1998 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1999 {
2000 #ifdef SELECT_CC_MODE
2001 rtx *cc_use;
2002 enum machine_mode compare_mode;
2003 #endif
2004
2005 newpat = PATTERN (i3);
2006 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2007
2008 i2_is_used = 1;
2009
2010 #ifdef SELECT_CC_MODE
2011 /* See if a COMPARE with the operand we substituted in should be done
2012 with the mode that is currently being used. If not, do the same
2013 processing we do in `subst' for a SET; namely, if the destination
2014 is used only once, try to replace it with a register of the proper
2015 mode and also replace the COMPARE. */
2016 if (undobuf.other_insn == 0
2017 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2018 &undobuf.other_insn))
2019 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2020 i2src, const0_rtx))
2021 != GET_MODE (SET_DEST (newpat))))
2022 {
2023 unsigned int regno = REGNO (SET_DEST (newpat));
2024 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2025
2026 if (regno < FIRST_PSEUDO_REGISTER
2027 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2028 && ! REG_USERVAR_P (SET_DEST (newpat))))
2029 {
2030 if (regno >= FIRST_PSEUDO_REGISTER)
2031 SUBST (regno_reg_rtx[regno], new_dest);
2032
2033 SUBST (SET_DEST (newpat), new_dest);
2034 SUBST (XEXP (*cc_use, 0), new_dest);
2035 SUBST (SET_SRC (newpat),
2036 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2037 }
2038 else
2039 undobuf.other_insn = 0;
2040 }
2041 #endif
2042 }
2043 else
2044 #endif
2045 {
2046 n_occurrences = 0; /* `subst' counts here */
2047
2048 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2049 need to make a unique copy of I2SRC each time we substitute it
2050 to avoid self-referential rtl. */
2051
2052 subst_low_cuid = INSN_CUID (i2);
2053 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2054 ! i1_feeds_i3 && i1dest_in_i1src);
2055 substed_i2 = 1;
2056
2057 /* Record whether i2's body now appears within i3's body. */
2058 i2_is_used = n_occurrences;
2059 }
2060
2061 /* If we already got a failure, don't try to do more. Otherwise,
2062 try to substitute in I1 if we have it. */
2063
2064 if (i1 && GET_CODE (newpat) != CLOBBER)
2065 {
2066 /* Before we can do this substitution, we must redo the test done
2067 above (see detailed comments there) that ensures that I1DEST
2068 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2069
2070 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2071 0, (rtx*) 0))
2072 {
2073 undo_all ();
2074 return 0;
2075 }
2076
2077 n_occurrences = 0;
2078 subst_low_cuid = INSN_CUID (i1);
2079 newpat = subst (newpat, i1dest, i1src, 0, 0);
2080 substed_i1 = 1;
2081 }
2082
2083 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2084 to count all the ways that I2SRC and I1SRC can be used. */
2085 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2086 && i2_is_used + added_sets_2 > 1)
2087 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2088 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2089 > 1))
2090 /* Fail if we tried to make a new register (we used to abort, but there's
2091 really no reason to). */
2092 || max_reg_num () != maxreg
2093 /* Fail if we couldn't do something and have a CLOBBER. */
2094 || GET_CODE (newpat) == CLOBBER
2095 /* Fail if this new pattern is a MULT and we didn't have one before
2096 at the outer level. */
2097 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2098 && ! have_mult))
2099 {
2100 undo_all ();
2101 return 0;
2102 }
2103
2104 /* If the actions of the earlier insns must be kept
2105 in addition to substituting them into the latest one,
2106 we must make a new PARALLEL for the latest insn
2107 to hold additional the SETs. */
2108
2109 if (added_sets_1 || added_sets_2)
2110 {
2111 combine_extras++;
2112
2113 if (GET_CODE (newpat) == PARALLEL)
2114 {
2115 rtvec old = XVEC (newpat, 0);
2116 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2117 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2118 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2119 sizeof (old->elem[0]) * old->num_elem);
2120 }
2121 else
2122 {
2123 rtx old = newpat;
2124 total_sets = 1 + added_sets_1 + added_sets_2;
2125 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2126 XVECEXP (newpat, 0, 0) = old;
2127 }
2128
2129 if (added_sets_1)
2130 XVECEXP (newpat, 0, --total_sets)
2131 = (GET_CODE (PATTERN (i1)) == PARALLEL
2132 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2133
2134 if (added_sets_2)
2135 {
2136 /* If there is no I1, use I2's body as is. We used to also not do
2137 the subst call below if I2 was substituted into I3,
2138 but that could lose a simplification. */
2139 if (i1 == 0)
2140 XVECEXP (newpat, 0, --total_sets) = i2pat;
2141 else
2142 /* See comment where i2pat is assigned. */
2143 XVECEXP (newpat, 0, --total_sets)
2144 = subst (i2pat, i1dest, i1src, 0, 0);
2145 }
2146 }
2147
2148 /* We come here when we are replacing a destination in I2 with the
2149 destination of I3. */
2150 validate_replacement:
2151
2152 /* Note which hard regs this insn has as inputs. */
2153 mark_used_regs_combine (newpat);
2154
2155 /* Is the result of combination a valid instruction? */
2156 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2157
2158 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2159 the second SET's destination is a register that is unused and isn't
2160 marked as an instruction that might trap in an EH region. In that case,
2161 we just need the first SET. This can occur when simplifying a divmod
2162 insn. We *must* test for this case here because the code below that
2163 splits two independent SETs doesn't handle this case correctly when it
2164 updates the register status.
2165
2166 It's pointless doing this if we originally had two sets, one from
2167 i3, and one from i2. Combining then splitting the parallel results
2168 in the original i2 again plus an invalid insn (which we delete).
2169 The net effect is only to move instructions around, which makes
2170 debug info less accurate.
2171
2172 Also check the case where the first SET's destination is unused.
2173 That would not cause incorrect code, but does cause an unneeded
2174 insn to remain. */
2175
2176 if (insn_code_number < 0
2177 && !(added_sets_2 && i1 == 0)
2178 && GET_CODE (newpat) == PARALLEL
2179 && XVECLEN (newpat, 0) == 2
2180 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2181 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2182 && asm_noperands (newpat) < 0)
2183 {
2184 rtx set0 = XVECEXP (newpat, 0, 0);
2185 rtx set1 = XVECEXP (newpat, 0, 1);
2186 rtx note;
2187
2188 if (((REG_P (SET_DEST (set1))
2189 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2190 || (GET_CODE (SET_DEST (set1)) == SUBREG
2191 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2192 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2193 || INTVAL (XEXP (note, 0)) <= 0)
2194 && ! side_effects_p (SET_SRC (set1)))
2195 {
2196 newpat = set0;
2197 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2198 }
2199
2200 else if (((REG_P (SET_DEST (set0))
2201 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2202 || (GET_CODE (SET_DEST (set0)) == SUBREG
2203 && find_reg_note (i3, REG_UNUSED,
2204 SUBREG_REG (SET_DEST (set0)))))
2205 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2206 || INTVAL (XEXP (note, 0)) <= 0)
2207 && ! side_effects_p (SET_SRC (set0)))
2208 {
2209 newpat = set1;
2210 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2211
2212 if (insn_code_number >= 0)
2213 {
2214 /* If we will be able to accept this, we have made a
2215 change to the destination of I3. This requires us to
2216 do a few adjustments. */
2217
2218 PATTERN (i3) = newpat;
2219 adjust_for_new_dest (i3);
2220 }
2221 }
2222 }
2223
2224 /* If we were combining three insns and the result is a simple SET
2225 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2226 insns. There are two ways to do this. It can be split using a
2227 machine-specific method (like when you have an addition of a large
2228 constant) or by combine in the function find_split_point. */
2229
2230 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2231 && asm_noperands (newpat) < 0)
2232 {
2233 rtx m_split, *split;
2234 rtx ni2dest = i2dest;
2235
2236 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2237 use I2DEST as a scratch register will help. In the latter case,
2238 convert I2DEST to the mode of the source of NEWPAT if we can. */
2239
2240 m_split = split_insns (newpat, i3);
2241
2242 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2243 inputs of NEWPAT. */
2244
2245 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2246 possible to try that as a scratch reg. This would require adding
2247 more code to make it work though. */
2248
2249 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2250 {
2251 /* If I2DEST is a hard register or the only use of a pseudo,
2252 we can change its mode. */
2253 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2254 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2255 && REG_P (i2dest)
2256 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2257 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2258 && ! REG_USERVAR_P (i2dest))))
2259 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2260 REGNO (i2dest));
2261
2262 m_split = split_insns (gen_rtx_PARALLEL
2263 (VOIDmode,
2264 gen_rtvec (2, newpat,
2265 gen_rtx_CLOBBER (VOIDmode,
2266 ni2dest))),
2267 i3);
2268 /* If the split with the mode-changed register didn't work, try
2269 the original register. */
2270 if (! m_split && ni2dest != i2dest)
2271 {
2272 ni2dest = i2dest;
2273 m_split = split_insns (gen_rtx_PARALLEL
2274 (VOIDmode,
2275 gen_rtvec (2, newpat,
2276 gen_rtx_CLOBBER (VOIDmode,
2277 i2dest))),
2278 i3);
2279 }
2280 }
2281
2282 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2283 {
2284 m_split = PATTERN (m_split);
2285 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2286 if (insn_code_number >= 0)
2287 newpat = m_split;
2288 }
2289 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2290 && (next_real_insn (i2) == i3
2291 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2292 {
2293 rtx i2set, i3set;
2294 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2295 newi2pat = PATTERN (m_split);
2296
2297 i3set = single_set (NEXT_INSN (m_split));
2298 i2set = single_set (m_split);
2299
2300 /* In case we changed the mode of I2DEST, replace it in the
2301 pseudo-register table here. We can't do it above in case this
2302 code doesn't get executed and we do a split the other way. */
2303
2304 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2305 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2306
2307 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2308
2309 /* If I2 or I3 has multiple SETs, we won't know how to track
2310 register status, so don't use these insns. If I2's destination
2311 is used between I2 and I3, we also can't use these insns. */
2312
2313 if (i2_code_number >= 0 && i2set && i3set
2314 && (next_real_insn (i2) == i3
2315 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2316 insn_code_number = recog_for_combine (&newi3pat, i3,
2317 &new_i3_notes);
2318 if (insn_code_number >= 0)
2319 newpat = newi3pat;
2320
2321 /* It is possible that both insns now set the destination of I3.
2322 If so, we must show an extra use of it. */
2323
2324 if (insn_code_number >= 0)
2325 {
2326 rtx new_i3_dest = SET_DEST (i3set);
2327 rtx new_i2_dest = SET_DEST (i2set);
2328
2329 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2330 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2331 || GET_CODE (new_i3_dest) == SUBREG)
2332 new_i3_dest = XEXP (new_i3_dest, 0);
2333
2334 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2335 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2336 || GET_CODE (new_i2_dest) == SUBREG)
2337 new_i2_dest = XEXP (new_i2_dest, 0);
2338
2339 if (REG_P (new_i3_dest)
2340 && REG_P (new_i2_dest)
2341 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2342 REG_N_SETS (REGNO (new_i2_dest))++;
2343 }
2344 }
2345
2346 /* If we can split it and use I2DEST, go ahead and see if that
2347 helps things be recognized. Verify that none of the registers
2348 are set between I2 and I3. */
2349 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2350 #ifdef HAVE_cc0
2351 && REG_P (i2dest)
2352 #endif
2353 /* We need I2DEST in the proper mode. If it is a hard register
2354 or the only use of a pseudo, we can change its mode. */
2355 && (GET_MODE (*split) == GET_MODE (i2dest)
2356 || GET_MODE (*split) == VOIDmode
2357 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2358 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2359 && ! REG_USERVAR_P (i2dest)))
2360 && (next_real_insn (i2) == i3
2361 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2362 /* We can't overwrite I2DEST if its value is still used by
2363 NEWPAT. */
2364 && ! reg_referenced_p (i2dest, newpat))
2365 {
2366 rtx newdest = i2dest;
2367 enum rtx_code split_code = GET_CODE (*split);
2368 enum machine_mode split_mode = GET_MODE (*split);
2369
2370 /* Get NEWDEST as a register in the proper mode. We have already
2371 validated that we can do this. */
2372 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2373 {
2374 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2375
2376 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2377 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2378 }
2379
2380 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2381 an ASHIFT. This can occur if it was inside a PLUS and hence
2382 appeared to be a memory address. This is a kludge. */
2383 if (split_code == MULT
2384 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2385 && INTVAL (XEXP (*split, 1)) > 0
2386 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2387 {
2388 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2389 XEXP (*split, 0), GEN_INT (i)));
2390 /* Update split_code because we may not have a multiply
2391 anymore. */
2392 split_code = GET_CODE (*split);
2393 }
2394
2395 #ifdef INSN_SCHEDULING
2396 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2397 be written as a ZERO_EXTEND. */
2398 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2399 {
2400 #ifdef LOAD_EXTEND_OP
2401 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2402 what it really is. */
2403 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2404 == SIGN_EXTEND)
2405 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2406 SUBREG_REG (*split)));
2407 else
2408 #endif
2409 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2410 SUBREG_REG (*split)));
2411 }
2412 #endif
2413
2414 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2415 SUBST (*split, newdest);
2416 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2417
2418 /* If the split point was a MULT and we didn't have one before,
2419 don't use one now. */
2420 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2421 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2422 }
2423 }
2424
2425 /* Check for a case where we loaded from memory in a narrow mode and
2426 then sign extended it, but we need both registers. In that case,
2427 we have a PARALLEL with both loads from the same memory location.
2428 We can split this into a load from memory followed by a register-register
2429 copy. This saves at least one insn, more if register allocation can
2430 eliminate the copy.
2431
2432 We cannot do this if the destination of the first assignment is a
2433 condition code register or cc0. We eliminate this case by making sure
2434 the SET_DEST and SET_SRC have the same mode.
2435
2436 We cannot do this if the destination of the second assignment is
2437 a register that we have already assumed is zero-extended. Similarly
2438 for a SUBREG of such a register. */
2439
2440 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2441 && GET_CODE (newpat) == PARALLEL
2442 && XVECLEN (newpat, 0) == 2
2443 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2444 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2445 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2446 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2447 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2448 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2449 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2450 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2451 INSN_CUID (i2))
2452 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2453 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2454 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2455 (REG_P (temp)
2456 && reg_stat[REGNO (temp)].nonzero_bits != 0
2457 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2458 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2459 && (reg_stat[REGNO (temp)].nonzero_bits
2460 != GET_MODE_MASK (word_mode))))
2461 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2462 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2463 (REG_P (temp)
2464 && reg_stat[REGNO (temp)].nonzero_bits != 0
2465 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2466 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2467 && (reg_stat[REGNO (temp)].nonzero_bits
2468 != GET_MODE_MASK (word_mode)))))
2469 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2470 SET_SRC (XVECEXP (newpat, 0, 1)))
2471 && ! find_reg_note (i3, REG_UNUSED,
2472 SET_DEST (XVECEXP (newpat, 0, 0))))
2473 {
2474 rtx ni2dest;
2475
2476 newi2pat = XVECEXP (newpat, 0, 0);
2477 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2478 newpat = XVECEXP (newpat, 0, 1);
2479 SUBST (SET_SRC (newpat),
2480 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2481 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2482
2483 if (i2_code_number >= 0)
2484 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2485
2486 if (insn_code_number >= 0)
2487 swap_i2i3 = 1;
2488 }
2489
2490 /* Similarly, check for a case where we have a PARALLEL of two independent
2491 SETs but we started with three insns. In this case, we can do the sets
2492 as two separate insns. This case occurs when some SET allows two
2493 other insns to combine, but the destination of that SET is still live. */
2494
2495 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2496 && GET_CODE (newpat) == PARALLEL
2497 && XVECLEN (newpat, 0) == 2
2498 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2499 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2500 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2501 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2503 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2504 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2505 INSN_CUID (i2))
2506 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2507 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2508 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2509 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2510 XVECEXP (newpat, 0, 0))
2511 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2512 XVECEXP (newpat, 0, 1))
2513 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2514 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2515 {
2516 /* Normally, it doesn't matter which of the two is done first,
2517 but it does if one references cc0. In that case, it has to
2518 be first. */
2519 #ifdef HAVE_cc0
2520 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2521 {
2522 newi2pat = XVECEXP (newpat, 0, 0);
2523 newpat = XVECEXP (newpat, 0, 1);
2524 }
2525 else
2526 #endif
2527 {
2528 newi2pat = XVECEXP (newpat, 0, 1);
2529 newpat = XVECEXP (newpat, 0, 0);
2530 }
2531
2532 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2533
2534 if (i2_code_number >= 0)
2535 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2536 }
2537
2538 /* If it still isn't recognized, fail and change things back the way they
2539 were. */
2540 if ((insn_code_number < 0
2541 /* Is the result a reasonable ASM_OPERANDS? */
2542 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2543 {
2544 undo_all ();
2545 return 0;
2546 }
2547
2548 /* If we had to change another insn, make sure it is valid also. */
2549 if (undobuf.other_insn)
2550 {
2551 rtx other_pat = PATTERN (undobuf.other_insn);
2552 rtx new_other_notes;
2553 rtx note, next;
2554
2555 CLEAR_HARD_REG_SET (newpat_used_regs);
2556
2557 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2558 &new_other_notes);
2559
2560 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2561 {
2562 undo_all ();
2563 return 0;
2564 }
2565
2566 PATTERN (undobuf.other_insn) = other_pat;
2567
2568 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2569 are still valid. Then add any non-duplicate notes added by
2570 recog_for_combine. */
2571 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2572 {
2573 next = XEXP (note, 1);
2574
2575 if (REG_NOTE_KIND (note) == REG_UNUSED
2576 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2577 {
2578 if (REG_P (XEXP (note, 0)))
2579 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2580
2581 remove_note (undobuf.other_insn, note);
2582 }
2583 }
2584
2585 for (note = new_other_notes; note; note = XEXP (note, 1))
2586 if (REG_P (XEXP (note, 0)))
2587 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2588
2589 distribute_notes (new_other_notes, undobuf.other_insn,
2590 undobuf.other_insn, NULL_RTX);
2591 }
2592 #ifdef HAVE_cc0
2593 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2594 they are adjacent to each other or not. */
2595 {
2596 rtx p = prev_nonnote_insn (i3);
2597 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2598 && sets_cc0_p (newi2pat))
2599 {
2600 undo_all ();
2601 return 0;
2602 }
2603 }
2604 #endif
2605
2606 /* Only allow this combination if insn_rtx_costs reports that the
2607 replacement instructions are cheaper than the originals. */
2608 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2609 {
2610 undo_all ();
2611 return 0;
2612 }
2613
2614 /* We now know that we can do this combination. Merge the insns and
2615 update the status of registers and LOG_LINKS. */
2616
2617 if (swap_i2i3)
2618 {
2619 rtx insn;
2620 rtx link;
2621 rtx ni2dest;
2622
2623 /* I3 now uses what used to be its destination and which is now
2624 I2's destination. This requires us to do a few adjustments. */
2625 PATTERN (i3) = newpat;
2626 adjust_for_new_dest (i3);
2627
2628 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2629 so we still will.
2630
2631 However, some later insn might be using I2's dest and have
2632 a LOG_LINK pointing at I3. We must remove this link.
2633 The simplest way to remove the link is to point it at I1,
2634 which we know will be a NOTE. */
2635
2636 /* newi2pat is usually a SET here; however, recog_for_combine might
2637 have added some clobbers. */
2638 if (GET_CODE (newi2pat) == PARALLEL)
2639 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2640 else
2641 ni2dest = SET_DEST (newi2pat);
2642
2643 for (insn = NEXT_INSN (i3);
2644 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2645 || insn != BB_HEAD (this_basic_block->next_bb));
2646 insn = NEXT_INSN (insn))
2647 {
2648 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2649 {
2650 for (link = LOG_LINKS (insn); link;
2651 link = XEXP (link, 1))
2652 if (XEXP (link, 0) == i3)
2653 XEXP (link, 0) = i1;
2654
2655 break;
2656 }
2657 }
2658 }
2659
2660 {
2661 rtx i3notes, i2notes, i1notes = 0;
2662 rtx i3links, i2links, i1links = 0;
2663 rtx midnotes = 0;
2664 unsigned int regno;
2665
2666 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2667 clear them. */
2668 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2669 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2670 if (i1)
2671 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2672
2673 /* Ensure that we do not have something that should not be shared but
2674 occurs multiple times in the new insns. Check this by first
2675 resetting all the `used' flags and then copying anything is shared. */
2676
2677 reset_used_flags (i3notes);
2678 reset_used_flags (i2notes);
2679 reset_used_flags (i1notes);
2680 reset_used_flags (newpat);
2681 reset_used_flags (newi2pat);
2682 if (undobuf.other_insn)
2683 reset_used_flags (PATTERN (undobuf.other_insn));
2684
2685 i3notes = copy_rtx_if_shared (i3notes);
2686 i2notes = copy_rtx_if_shared (i2notes);
2687 i1notes = copy_rtx_if_shared (i1notes);
2688 newpat = copy_rtx_if_shared (newpat);
2689 newi2pat = copy_rtx_if_shared (newi2pat);
2690 if (undobuf.other_insn)
2691 reset_used_flags (PATTERN (undobuf.other_insn));
2692
2693 INSN_CODE (i3) = insn_code_number;
2694 PATTERN (i3) = newpat;
2695
2696 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2697 {
2698 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2699
2700 reset_used_flags (call_usage);
2701 call_usage = copy_rtx (call_usage);
2702
2703 if (substed_i2)
2704 replace_rtx (call_usage, i2dest, i2src);
2705
2706 if (substed_i1)
2707 replace_rtx (call_usage, i1dest, i1src);
2708
2709 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2710 }
2711
2712 if (undobuf.other_insn)
2713 INSN_CODE (undobuf.other_insn) = other_code_number;
2714
2715 /* We had one special case above where I2 had more than one set and
2716 we replaced a destination of one of those sets with the destination
2717 of I3. In that case, we have to update LOG_LINKS of insns later
2718 in this basic block. Note that this (expensive) case is rare.
2719
2720 Also, in this case, we must pretend that all REG_NOTEs for I2
2721 actually came from I3, so that REG_UNUSED notes from I2 will be
2722 properly handled. */
2723
2724 if (i3_subst_into_i2)
2725 {
2726 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2727 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2728 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2729 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2730 && ! find_reg_note (i2, REG_UNUSED,
2731 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2732 for (temp = NEXT_INSN (i2);
2733 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2734 || BB_HEAD (this_basic_block) != temp);
2735 temp = NEXT_INSN (temp))
2736 if (temp != i3 && INSN_P (temp))
2737 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2738 if (XEXP (link, 0) == i2)
2739 XEXP (link, 0) = i3;
2740
2741 if (i3notes)
2742 {
2743 rtx link = i3notes;
2744 while (XEXP (link, 1))
2745 link = XEXP (link, 1);
2746 XEXP (link, 1) = i2notes;
2747 }
2748 else
2749 i3notes = i2notes;
2750 i2notes = 0;
2751 }
2752
2753 LOG_LINKS (i3) = 0;
2754 REG_NOTES (i3) = 0;
2755 LOG_LINKS (i2) = 0;
2756 REG_NOTES (i2) = 0;
2757
2758 if (newi2pat)
2759 {
2760 INSN_CODE (i2) = i2_code_number;
2761 PATTERN (i2) = newi2pat;
2762 }
2763 else
2764 SET_INSN_DELETED (i2);
2765
2766 if (i1)
2767 {
2768 LOG_LINKS (i1) = 0;
2769 REG_NOTES (i1) = 0;
2770 SET_INSN_DELETED (i1);
2771 }
2772
2773 /* Get death notes for everything that is now used in either I3 or
2774 I2 and used to die in a previous insn. If we built two new
2775 patterns, move from I1 to I2 then I2 to I3 so that we get the
2776 proper movement on registers that I2 modifies. */
2777
2778 if (newi2pat)
2779 {
2780 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2781 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2782 }
2783 else
2784 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2785 i3, &midnotes);
2786
2787 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2788 if (i3notes)
2789 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2790 if (i2notes)
2791 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2792 if (i1notes)
2793 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2794 if (midnotes)
2795 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2796
2797 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2798 know these are REG_UNUSED and want them to go to the desired insn,
2799 so we always pass it as i3. We have not counted the notes in
2800 reg_n_deaths yet, so we need to do so now. */
2801
2802 if (newi2pat && new_i2_notes)
2803 {
2804 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2805 if (REG_P (XEXP (temp, 0)))
2806 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2807
2808 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2809 }
2810
2811 if (new_i3_notes)
2812 {
2813 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2814 if (REG_P (XEXP (temp, 0)))
2815 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2816
2817 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2818 }
2819
2820 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2821 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2822 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2823 in that case, it might delete I2. Similarly for I2 and I1.
2824 Show an additional death due to the REG_DEAD note we make here. If
2825 we discard it in distribute_notes, we will decrement it again. */
2826
2827 if (i3dest_killed)
2828 {
2829 if (REG_P (i3dest_killed))
2830 REG_N_DEATHS (REGNO (i3dest_killed))++;
2831
2832 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2833 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2834 NULL_RTX),
2835 NULL_RTX, i2, NULL_RTX);
2836 else
2837 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2838 NULL_RTX),
2839 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2840 }
2841
2842 if (i2dest_in_i2src)
2843 {
2844 if (REG_P (i2dest))
2845 REG_N_DEATHS (REGNO (i2dest))++;
2846
2847 if (newi2pat && reg_set_p (i2dest, newi2pat))
2848 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2849 NULL_RTX, i2, NULL_RTX);
2850 else
2851 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2852 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2853 }
2854
2855 if (i1dest_in_i1src)
2856 {
2857 if (REG_P (i1dest))
2858 REG_N_DEATHS (REGNO (i1dest))++;
2859
2860 if (newi2pat && reg_set_p (i1dest, newi2pat))
2861 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2862 NULL_RTX, i2, NULL_RTX);
2863 else
2864 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2865 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2866 }
2867
2868 distribute_links (i3links);
2869 distribute_links (i2links);
2870 distribute_links (i1links);
2871
2872 if (REG_P (i2dest))
2873 {
2874 rtx link;
2875 rtx i2_insn = 0, i2_val = 0, set;
2876
2877 /* The insn that used to set this register doesn't exist, and
2878 this life of the register may not exist either. See if one of
2879 I3's links points to an insn that sets I2DEST. If it does,
2880 that is now the last known value for I2DEST. If we don't update
2881 this and I2 set the register to a value that depended on its old
2882 contents, we will get confused. If this insn is used, thing
2883 will be set correctly in combine_instructions. */
2884
2885 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2886 if ((set = single_set (XEXP (link, 0))) != 0
2887 && rtx_equal_p (i2dest, SET_DEST (set)))
2888 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2889
2890 record_value_for_reg (i2dest, i2_insn, i2_val);
2891
2892 /* If the reg formerly set in I2 died only once and that was in I3,
2893 zero its use count so it won't make `reload' do any work. */
2894 if (! added_sets_2
2895 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2896 && ! i2dest_in_i2src)
2897 {
2898 regno = REGNO (i2dest);
2899 REG_N_SETS (regno)--;
2900 }
2901 }
2902
2903 if (i1 && REG_P (i1dest))
2904 {
2905 rtx link;
2906 rtx i1_insn = 0, i1_val = 0, set;
2907
2908 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2909 if ((set = single_set (XEXP (link, 0))) != 0
2910 && rtx_equal_p (i1dest, SET_DEST (set)))
2911 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2912
2913 record_value_for_reg (i1dest, i1_insn, i1_val);
2914
2915 regno = REGNO (i1dest);
2916 if (! added_sets_1 && ! i1dest_in_i1src)
2917 REG_N_SETS (regno)--;
2918 }
2919
2920 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2921 been made to this insn. The order of
2922 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2923 can affect nonzero_bits of newpat */
2924 if (newi2pat)
2925 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2926 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2927
2928 /* Set new_direct_jump_p if a new return or simple jump instruction
2929 has been created.
2930
2931 If I3 is now an unconditional jump, ensure that it has a
2932 BARRIER following it since it may have initially been a
2933 conditional jump. It may also be the last nonnote insn. */
2934
2935 if (returnjump_p (i3) || any_uncondjump_p (i3))
2936 {
2937 *new_direct_jump_p = 1;
2938 mark_jump_label (PATTERN (i3), i3, 0);
2939
2940 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2941 || !BARRIER_P (temp))
2942 emit_barrier_after (i3);
2943 }
2944
2945 if (undobuf.other_insn != NULL_RTX
2946 && (returnjump_p (undobuf.other_insn)
2947 || any_uncondjump_p (undobuf.other_insn)))
2948 {
2949 *new_direct_jump_p = 1;
2950
2951 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2952 || !BARRIER_P (temp))
2953 emit_barrier_after (undobuf.other_insn);
2954 }
2955
2956 /* An NOOP jump does not need barrier, but it does need cleaning up
2957 of CFG. */
2958 if (GET_CODE (newpat) == SET
2959 && SET_SRC (newpat) == pc_rtx
2960 && SET_DEST (newpat) == pc_rtx)
2961 *new_direct_jump_p = 1;
2962 }
2963
2964 combine_successes++;
2965 undo_commit ();
2966
2967 if (added_links_insn
2968 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2969 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2970 return added_links_insn;
2971 else
2972 return newi2pat ? i2 : i3;
2973 }
2974 \f
2975 /* Undo all the modifications recorded in undobuf. */
2976
2977 static void
2978 undo_all (void)
2979 {
2980 struct undo *undo, *next;
2981
2982 for (undo = undobuf.undos; undo; undo = next)
2983 {
2984 next = undo->next;
2985 if (undo->is_int)
2986 *undo->where.i = undo->old_contents.i;
2987 else
2988 *undo->where.r = undo->old_contents.r;
2989
2990 undo->next = undobuf.frees;
2991 undobuf.frees = undo;
2992 }
2993
2994 undobuf.undos = 0;
2995 }
2996
2997 /* We've committed to accepting the changes we made. Move all
2998 of the undos to the free list. */
2999
3000 static void
3001 undo_commit (void)
3002 {
3003 struct undo *undo, *next;
3004
3005 for (undo = undobuf.undos; undo; undo = next)
3006 {
3007 next = undo->next;
3008 undo->next = undobuf.frees;
3009 undobuf.frees = undo;
3010 }
3011 undobuf.undos = 0;
3012 }
3013
3014 \f
3015 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3016 where we have an arithmetic expression and return that point. LOC will
3017 be inside INSN.
3018
3019 try_combine will call this function to see if an insn can be split into
3020 two insns. */
3021
3022 static rtx *
3023 find_split_point (rtx *loc, rtx insn)
3024 {
3025 rtx x = *loc;
3026 enum rtx_code code = GET_CODE (x);
3027 rtx *split;
3028 unsigned HOST_WIDE_INT len = 0;
3029 HOST_WIDE_INT pos = 0;
3030 int unsignedp = 0;
3031 rtx inner = NULL_RTX;
3032
3033 /* First special-case some codes. */
3034 switch (code)
3035 {
3036 case SUBREG:
3037 #ifdef INSN_SCHEDULING
3038 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3039 point. */
3040 if (MEM_P (SUBREG_REG (x)))
3041 return loc;
3042 #endif
3043 return find_split_point (&SUBREG_REG (x), insn);
3044
3045 case MEM:
3046 #ifdef HAVE_lo_sum
3047 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3048 using LO_SUM and HIGH. */
3049 if (GET_CODE (XEXP (x, 0)) == CONST
3050 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3051 {
3052 SUBST (XEXP (x, 0),
3053 gen_rtx_LO_SUM (Pmode,
3054 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3055 XEXP (x, 0)));
3056 return &XEXP (XEXP (x, 0), 0);
3057 }
3058 #endif
3059
3060 /* If we have a PLUS whose second operand is a constant and the
3061 address is not valid, perhaps will can split it up using
3062 the machine-specific way to split large constants. We use
3063 the first pseudo-reg (one of the virtual regs) as a placeholder;
3064 it will not remain in the result. */
3065 if (GET_CODE (XEXP (x, 0)) == PLUS
3066 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3067 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3068 {
3069 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3070 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3071 subst_insn);
3072
3073 /* This should have produced two insns, each of which sets our
3074 placeholder. If the source of the second is a valid address,
3075 we can make put both sources together and make a split point
3076 in the middle. */
3077
3078 if (seq
3079 && NEXT_INSN (seq) != NULL_RTX
3080 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3081 && NONJUMP_INSN_P (seq)
3082 && GET_CODE (PATTERN (seq)) == SET
3083 && SET_DEST (PATTERN (seq)) == reg
3084 && ! reg_mentioned_p (reg,
3085 SET_SRC (PATTERN (seq)))
3086 && NONJUMP_INSN_P (NEXT_INSN (seq))
3087 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3088 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3089 && memory_address_p (GET_MODE (x),
3090 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3091 {
3092 rtx src1 = SET_SRC (PATTERN (seq));
3093 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3094
3095 /* Replace the placeholder in SRC2 with SRC1. If we can
3096 find where in SRC2 it was placed, that can become our
3097 split point and we can replace this address with SRC2.
3098 Just try two obvious places. */
3099
3100 src2 = replace_rtx (src2, reg, src1);
3101 split = 0;
3102 if (XEXP (src2, 0) == src1)
3103 split = &XEXP (src2, 0);
3104 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3105 && XEXP (XEXP (src2, 0), 0) == src1)
3106 split = &XEXP (XEXP (src2, 0), 0);
3107
3108 if (split)
3109 {
3110 SUBST (XEXP (x, 0), src2);
3111 return split;
3112 }
3113 }
3114
3115 /* If that didn't work, perhaps the first operand is complex and
3116 needs to be computed separately, so make a split point there.
3117 This will occur on machines that just support REG + CONST
3118 and have a constant moved through some previous computation. */
3119
3120 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3121 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3122 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3123 return &XEXP (XEXP (x, 0), 0);
3124 }
3125 break;
3126
3127 case SET:
3128 #ifdef HAVE_cc0
3129 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3130 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3131 we need to put the operand into a register. So split at that
3132 point. */
3133
3134 if (SET_DEST (x) == cc0_rtx
3135 && GET_CODE (SET_SRC (x)) != COMPARE
3136 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3137 && !OBJECT_P (SET_SRC (x))
3138 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3139 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3140 return &SET_SRC (x);
3141 #endif
3142
3143 /* See if we can split SET_SRC as it stands. */
3144 split = find_split_point (&SET_SRC (x), insn);
3145 if (split && split != &SET_SRC (x))
3146 return split;
3147
3148 /* See if we can split SET_DEST as it stands. */
3149 split = find_split_point (&SET_DEST (x), insn);
3150 if (split && split != &SET_DEST (x))
3151 return split;
3152
3153 /* See if this is a bitfield assignment with everything constant. If
3154 so, this is an IOR of an AND, so split it into that. */
3155 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3156 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3157 <= HOST_BITS_PER_WIDE_INT)
3158 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3159 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3160 && GET_CODE (SET_SRC (x)) == CONST_INT
3161 && ((INTVAL (XEXP (SET_DEST (x), 1))
3162 + INTVAL (XEXP (SET_DEST (x), 2)))
3163 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3164 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3165 {
3166 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3167 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3168 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3169 rtx dest = XEXP (SET_DEST (x), 0);
3170 enum machine_mode mode = GET_MODE (dest);
3171 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3172
3173 if (BITS_BIG_ENDIAN)
3174 pos = GET_MODE_BITSIZE (mode) - len - pos;
3175
3176 if (src == mask)
3177 SUBST (SET_SRC (x),
3178 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3179 else
3180 SUBST (SET_SRC (x),
3181 gen_binary (IOR, mode,
3182 gen_binary (AND, mode, dest,
3183 gen_int_mode (~(mask << pos),
3184 mode)),
3185 GEN_INT (src << pos)));
3186
3187 SUBST (SET_DEST (x), dest);
3188
3189 split = find_split_point (&SET_SRC (x), insn);
3190 if (split && split != &SET_SRC (x))
3191 return split;
3192 }
3193
3194 /* Otherwise, see if this is an operation that we can split into two.
3195 If so, try to split that. */
3196 code = GET_CODE (SET_SRC (x));
3197
3198 switch (code)
3199 {
3200 case AND:
3201 /* If we are AND'ing with a large constant that is only a single
3202 bit and the result is only being used in a context where we
3203 need to know if it is zero or nonzero, replace it with a bit
3204 extraction. This will avoid the large constant, which might
3205 have taken more than one insn to make. If the constant were
3206 not a valid argument to the AND but took only one insn to make,
3207 this is no worse, but if it took more than one insn, it will
3208 be better. */
3209
3210 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3211 && REG_P (XEXP (SET_SRC (x), 0))
3212 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3213 && REG_P (SET_DEST (x))
3214 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3215 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3216 && XEXP (*split, 0) == SET_DEST (x)
3217 && XEXP (*split, 1) == const0_rtx)
3218 {
3219 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3220 XEXP (SET_SRC (x), 0),
3221 pos, NULL_RTX, 1, 1, 0, 0);
3222 if (extraction != 0)
3223 {
3224 SUBST (SET_SRC (x), extraction);
3225 return find_split_point (loc, insn);
3226 }
3227 }
3228 break;
3229
3230 case NE:
3231 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3232 is known to be on, this can be converted into a NEG of a shift. */
3233 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3234 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3235 && 1 <= (pos = exact_log2
3236 (nonzero_bits (XEXP (SET_SRC (x), 0),
3237 GET_MODE (XEXP (SET_SRC (x), 0))))))
3238 {
3239 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3240
3241 SUBST (SET_SRC (x),
3242 gen_rtx_NEG (mode,
3243 gen_rtx_LSHIFTRT (mode,
3244 XEXP (SET_SRC (x), 0),
3245 GEN_INT (pos))));
3246
3247 split = find_split_point (&SET_SRC (x), insn);
3248 if (split && split != &SET_SRC (x))
3249 return split;
3250 }
3251 break;
3252
3253 case SIGN_EXTEND:
3254 inner = XEXP (SET_SRC (x), 0);
3255
3256 /* We can't optimize if either mode is a partial integer
3257 mode as we don't know how many bits are significant
3258 in those modes. */
3259 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3260 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3261 break;
3262
3263 pos = 0;
3264 len = GET_MODE_BITSIZE (GET_MODE (inner));
3265 unsignedp = 0;
3266 break;
3267
3268 case SIGN_EXTRACT:
3269 case ZERO_EXTRACT:
3270 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3271 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3272 {
3273 inner = XEXP (SET_SRC (x), 0);
3274 len = INTVAL (XEXP (SET_SRC (x), 1));
3275 pos = INTVAL (XEXP (SET_SRC (x), 2));
3276
3277 if (BITS_BIG_ENDIAN)
3278 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3279 unsignedp = (code == ZERO_EXTRACT);
3280 }
3281 break;
3282
3283 default:
3284 break;
3285 }
3286
3287 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3288 {
3289 enum machine_mode mode = GET_MODE (SET_SRC (x));
3290
3291 /* For unsigned, we have a choice of a shift followed by an
3292 AND or two shifts. Use two shifts for field sizes where the
3293 constant might be too large. We assume here that we can
3294 always at least get 8-bit constants in an AND insn, which is
3295 true for every current RISC. */
3296
3297 if (unsignedp && len <= 8)
3298 {
3299 SUBST (SET_SRC (x),
3300 gen_rtx_AND (mode,
3301 gen_rtx_LSHIFTRT
3302 (mode, gen_lowpart (mode, inner),
3303 GEN_INT (pos)),
3304 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3305
3306 split = find_split_point (&SET_SRC (x), insn);
3307 if (split && split != &SET_SRC (x))
3308 return split;
3309 }
3310 else
3311 {
3312 SUBST (SET_SRC (x),
3313 gen_rtx_fmt_ee
3314 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3315 gen_rtx_ASHIFT (mode,
3316 gen_lowpart (mode, inner),
3317 GEN_INT (GET_MODE_BITSIZE (mode)
3318 - len - pos)),
3319 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3320
3321 split = find_split_point (&SET_SRC (x), insn);
3322 if (split && split != &SET_SRC (x))
3323 return split;
3324 }
3325 }
3326
3327 /* See if this is a simple operation with a constant as the second
3328 operand. It might be that this constant is out of range and hence
3329 could be used as a split point. */
3330 if (BINARY_P (SET_SRC (x))
3331 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3332 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3333 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3334 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3335 return &XEXP (SET_SRC (x), 1);
3336
3337 /* Finally, see if this is a simple operation with its first operand
3338 not in a register. The operation might require this operand in a
3339 register, so return it as a split point. We can always do this
3340 because if the first operand were another operation, we would have
3341 already found it as a split point. */
3342 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3343 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3344 return &XEXP (SET_SRC (x), 0);
3345
3346 return 0;
3347
3348 case AND:
3349 case IOR:
3350 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3351 it is better to write this as (not (ior A B)) so we can split it.
3352 Similarly for IOR. */
3353 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3354 {
3355 SUBST (*loc,
3356 gen_rtx_NOT (GET_MODE (x),
3357 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3358 GET_MODE (x),
3359 XEXP (XEXP (x, 0), 0),
3360 XEXP (XEXP (x, 1), 0))));
3361 return find_split_point (loc, insn);
3362 }
3363
3364 /* Many RISC machines have a large set of logical insns. If the
3365 second operand is a NOT, put it first so we will try to split the
3366 other operand first. */
3367 if (GET_CODE (XEXP (x, 1)) == NOT)
3368 {
3369 rtx tem = XEXP (x, 0);
3370 SUBST (XEXP (x, 0), XEXP (x, 1));
3371 SUBST (XEXP (x, 1), tem);
3372 }
3373 break;
3374
3375 default:
3376 break;
3377 }
3378
3379 /* Otherwise, select our actions depending on our rtx class. */
3380 switch (GET_RTX_CLASS (code))
3381 {
3382 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3383 case RTX_TERNARY:
3384 split = find_split_point (&XEXP (x, 2), insn);
3385 if (split)
3386 return split;
3387 /* ... fall through ... */
3388 case RTX_BIN_ARITH:
3389 case RTX_COMM_ARITH:
3390 case RTX_COMPARE:
3391 case RTX_COMM_COMPARE:
3392 split = find_split_point (&XEXP (x, 1), insn);
3393 if (split)
3394 return split;
3395 /* ... fall through ... */
3396 case RTX_UNARY:
3397 /* Some machines have (and (shift ...) ...) insns. If X is not
3398 an AND, but XEXP (X, 0) is, use it as our split point. */
3399 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3400 return &XEXP (x, 0);
3401
3402 split = find_split_point (&XEXP (x, 0), insn);
3403 if (split)
3404 return split;
3405 return loc;
3406
3407 default:
3408 /* Otherwise, we don't have a split point. */
3409 return 0;
3410 }
3411 }
3412 \f
3413 /* Throughout X, replace FROM with TO, and return the result.
3414 The result is TO if X is FROM;
3415 otherwise the result is X, but its contents may have been modified.
3416 If they were modified, a record was made in undobuf so that
3417 undo_all will (among other things) return X to its original state.
3418
3419 If the number of changes necessary is too much to record to undo,
3420 the excess changes are not made, so the result is invalid.
3421 The changes already made can still be undone.
3422 undobuf.num_undo is incremented for such changes, so by testing that
3423 the caller can tell whether the result is valid.
3424
3425 `n_occurrences' is incremented each time FROM is replaced.
3426
3427 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3428
3429 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3430 by copying if `n_occurrences' is nonzero. */
3431
3432 static rtx
3433 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3434 {
3435 enum rtx_code code = GET_CODE (x);
3436 enum machine_mode op0_mode = VOIDmode;
3437 const char *fmt;
3438 int len, i;
3439 rtx new;
3440
3441 /* Two expressions are equal if they are identical copies of a shared
3442 RTX or if they are both registers with the same register number
3443 and mode. */
3444
3445 #define COMBINE_RTX_EQUAL_P(X,Y) \
3446 ((X) == (Y) \
3447 || (REG_P (X) && REG_P (Y) \
3448 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3449
3450 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3451 {
3452 n_occurrences++;
3453 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3454 }
3455
3456 /* If X and FROM are the same register but different modes, they will
3457 not have been seen as equal above. However, flow.c will make a
3458 LOG_LINKS entry for that case. If we do nothing, we will try to
3459 rerecognize our original insn and, when it succeeds, we will
3460 delete the feeding insn, which is incorrect.
3461
3462 So force this insn not to match in this (rare) case. */
3463 if (! in_dest && code == REG && REG_P (from)
3464 && REGNO (x) == REGNO (from))
3465 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3466
3467 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3468 of which may contain things that can be combined. */
3469 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3470 return x;
3471
3472 /* It is possible to have a subexpression appear twice in the insn.
3473 Suppose that FROM is a register that appears within TO.
3474 Then, after that subexpression has been scanned once by `subst',
3475 the second time it is scanned, TO may be found. If we were
3476 to scan TO here, we would find FROM within it and create a
3477 self-referent rtl structure which is completely wrong. */
3478 if (COMBINE_RTX_EQUAL_P (x, to))
3479 return to;
3480
3481 /* Parallel asm_operands need special attention because all of the
3482 inputs are shared across the arms. Furthermore, unsharing the
3483 rtl results in recognition failures. Failure to handle this case
3484 specially can result in circular rtl.
3485
3486 Solve this by doing a normal pass across the first entry of the
3487 parallel, and only processing the SET_DESTs of the subsequent
3488 entries. Ug. */
3489
3490 if (code == PARALLEL
3491 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3492 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3493 {
3494 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3495
3496 /* If this substitution failed, this whole thing fails. */
3497 if (GET_CODE (new) == CLOBBER
3498 && XEXP (new, 0) == const0_rtx)
3499 return new;
3500
3501 SUBST (XVECEXP (x, 0, 0), new);
3502
3503 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3504 {
3505 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3506
3507 if (!REG_P (dest)
3508 && GET_CODE (dest) != CC0
3509 && GET_CODE (dest) != PC)
3510 {
3511 new = subst (dest, from, to, 0, unique_copy);
3512
3513 /* If this substitution failed, this whole thing fails. */
3514 if (GET_CODE (new) == CLOBBER
3515 && XEXP (new, 0) == const0_rtx)
3516 return new;
3517
3518 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3519 }
3520 }
3521 }
3522 else
3523 {
3524 len = GET_RTX_LENGTH (code);
3525 fmt = GET_RTX_FORMAT (code);
3526
3527 /* We don't need to process a SET_DEST that is a register, CC0,
3528 or PC, so set up to skip this common case. All other cases
3529 where we want to suppress replacing something inside a
3530 SET_SRC are handled via the IN_DEST operand. */
3531 if (code == SET
3532 && (REG_P (SET_DEST (x))
3533 || GET_CODE (SET_DEST (x)) == CC0
3534 || GET_CODE (SET_DEST (x)) == PC))
3535 fmt = "ie";
3536
3537 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3538 constant. */
3539 if (fmt[0] == 'e')
3540 op0_mode = GET_MODE (XEXP (x, 0));
3541
3542 for (i = 0; i < len; i++)
3543 {
3544 if (fmt[i] == 'E')
3545 {
3546 int j;
3547 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3548 {
3549 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3550 {
3551 new = (unique_copy && n_occurrences
3552 ? copy_rtx (to) : to);
3553 n_occurrences++;
3554 }
3555 else
3556 {
3557 new = subst (XVECEXP (x, i, j), from, to, 0,
3558 unique_copy);
3559
3560 /* If this substitution failed, this whole thing
3561 fails. */
3562 if (GET_CODE (new) == CLOBBER
3563 && XEXP (new, 0) == const0_rtx)
3564 return new;
3565 }
3566
3567 SUBST (XVECEXP (x, i, j), new);
3568 }
3569 }
3570 else if (fmt[i] == 'e')
3571 {
3572 /* If this is a register being set, ignore it. */
3573 new = XEXP (x, i);
3574 if (in_dest
3575 && i == 0
3576 && (((code == SUBREG || code == ZERO_EXTRACT)
3577 && REG_P (new))
3578 || code == STRICT_LOW_PART))
3579 ;
3580
3581 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3582 {
3583 /* In general, don't install a subreg involving two
3584 modes not tieable. It can worsen register
3585 allocation, and can even make invalid reload
3586 insns, since the reg inside may need to be copied
3587 from in the outside mode, and that may be invalid
3588 if it is an fp reg copied in integer mode.
3589
3590 We allow two exceptions to this: It is valid if
3591 it is inside another SUBREG and the mode of that
3592 SUBREG and the mode of the inside of TO is
3593 tieable and it is valid if X is a SET that copies
3594 FROM to CC0. */
3595
3596 if (GET_CODE (to) == SUBREG
3597 && ! MODES_TIEABLE_P (GET_MODE (to),
3598 GET_MODE (SUBREG_REG (to)))
3599 && ! (code == SUBREG
3600 && MODES_TIEABLE_P (GET_MODE (x),
3601 GET_MODE (SUBREG_REG (to))))
3602 #ifdef HAVE_cc0
3603 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3604 #endif
3605 )
3606 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3607
3608 #ifdef CANNOT_CHANGE_MODE_CLASS
3609 if (code == SUBREG
3610 && REG_P (to)
3611 && REGNO (to) < FIRST_PSEUDO_REGISTER
3612 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3613 GET_MODE (to),
3614 GET_MODE (x)))
3615 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3616 #endif
3617
3618 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3619 n_occurrences++;
3620 }
3621 else
3622 /* If we are in a SET_DEST, suppress most cases unless we
3623 have gone inside a MEM, in which case we want to
3624 simplify the address. We assume here that things that
3625 are actually part of the destination have their inner
3626 parts in the first expression. This is true for SUBREG,
3627 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3628 things aside from REG and MEM that should appear in a
3629 SET_DEST. */
3630 new = subst (XEXP (x, i), from, to,
3631 (((in_dest
3632 && (code == SUBREG || code == STRICT_LOW_PART
3633 || code == ZERO_EXTRACT))
3634 || code == SET)
3635 && i == 0), unique_copy);
3636
3637 /* If we found that we will have to reject this combination,
3638 indicate that by returning the CLOBBER ourselves, rather than
3639 an expression containing it. This will speed things up as
3640 well as prevent accidents where two CLOBBERs are considered
3641 to be equal, thus producing an incorrect simplification. */
3642
3643 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3644 return new;
3645
3646 if (GET_CODE (x) == SUBREG
3647 && (GET_CODE (new) == CONST_INT
3648 || GET_CODE (new) == CONST_DOUBLE))
3649 {
3650 enum machine_mode mode = GET_MODE (x);
3651
3652 x = simplify_subreg (GET_MODE (x), new,
3653 GET_MODE (SUBREG_REG (x)),
3654 SUBREG_BYTE (x));
3655 if (! x)
3656 x = gen_rtx_CLOBBER (mode, const0_rtx);
3657 }
3658 else if (GET_CODE (new) == CONST_INT
3659 && GET_CODE (x) == ZERO_EXTEND)
3660 {
3661 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3662 new, GET_MODE (XEXP (x, 0)));
3663 gcc_assert (x);
3664 }
3665 else
3666 SUBST (XEXP (x, i), new);
3667 }
3668 }
3669 }
3670
3671 /* Try to simplify X. If the simplification changed the code, it is likely
3672 that further simplification will help, so loop, but limit the number
3673 of repetitions that will be performed. */
3674
3675 for (i = 0; i < 4; i++)
3676 {
3677 /* If X is sufficiently simple, don't bother trying to do anything
3678 with it. */
3679 if (code != CONST_INT && code != REG && code != CLOBBER)
3680 x = combine_simplify_rtx (x, op0_mode, in_dest);
3681
3682 if (GET_CODE (x) == code)
3683 break;
3684
3685 code = GET_CODE (x);
3686
3687 /* We no longer know the original mode of operand 0 since we
3688 have changed the form of X) */
3689 op0_mode = VOIDmode;
3690 }
3691
3692 return x;
3693 }
3694 \f
3695 /* Simplify X, a piece of RTL. We just operate on the expression at the
3696 outer level; call `subst' to simplify recursively. Return the new
3697 expression.
3698
3699 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3700 if we are inside a SET_DEST. */
3701
3702 static rtx
3703 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3704 {
3705 enum rtx_code code = GET_CODE (x);
3706 enum machine_mode mode = GET_MODE (x);
3707 rtx temp;
3708 rtx reversed;
3709 int i;
3710
3711 /* If this is a commutative operation, put a constant last and a complex
3712 expression first. We don't need to do this for comparisons here. */
3713 if (COMMUTATIVE_ARITH_P (x)
3714 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3715 {
3716 temp = XEXP (x, 0);
3717 SUBST (XEXP (x, 0), XEXP (x, 1));
3718 SUBST (XEXP (x, 1), temp);
3719 }
3720
3721 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3722 sign extension of a PLUS with a constant, reverse the order of the sign
3723 extension and the addition. Note that this not the same as the original
3724 code, but overflow is undefined for signed values. Also note that the
3725 PLUS will have been partially moved "inside" the sign-extension, so that
3726 the first operand of X will really look like:
3727 (ashiftrt (plus (ashift A C4) C5) C4).
3728 We convert this to
3729 (plus (ashiftrt (ashift A C4) C2) C4)
3730 and replace the first operand of X with that expression. Later parts
3731 of this function may simplify the expression further.
3732
3733 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3734 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3735 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3736
3737 We do this to simplify address expressions. */
3738
3739 if ((code == PLUS || code == MINUS || code == MULT)
3740 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3741 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3742 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3743 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3744 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3745 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3746 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3747 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3748 XEXP (XEXP (XEXP (x, 0), 0), 1),
3749 XEXP (XEXP (x, 0), 1))) != 0)
3750 {
3751 rtx new
3752 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3753 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3754 INTVAL (XEXP (XEXP (x, 0), 1)));
3755
3756 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3757 INTVAL (XEXP (XEXP (x, 0), 1)));
3758
3759 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3760 }
3761
3762 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3763 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3764 things. Check for cases where both arms are testing the same
3765 condition.
3766
3767 Don't do anything if all operands are very simple. */
3768
3769 if ((BINARY_P (x)
3770 && ((!OBJECT_P (XEXP (x, 0))
3771 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3772 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3773 || (!OBJECT_P (XEXP (x, 1))
3774 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3775 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3776 || (UNARY_P (x)
3777 && (!OBJECT_P (XEXP (x, 0))
3778 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3779 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3780 {
3781 rtx cond, true_rtx, false_rtx;
3782
3783 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3784 if (cond != 0
3785 /* If everything is a comparison, what we have is highly unlikely
3786 to be simpler, so don't use it. */
3787 && ! (COMPARISON_P (x)
3788 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3789 {
3790 rtx cop1 = const0_rtx;
3791 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3792
3793 if (cond_code == NE && COMPARISON_P (cond))
3794 return x;
3795
3796 /* Simplify the alternative arms; this may collapse the true and
3797 false arms to store-flag values. Be careful to use copy_rtx
3798 here since true_rtx or false_rtx might share RTL with x as a
3799 result of the if_then_else_cond call above. */
3800 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3801 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3802
3803 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3804 is unlikely to be simpler. */
3805 if (general_operand (true_rtx, VOIDmode)
3806 && general_operand (false_rtx, VOIDmode))
3807 {
3808 enum rtx_code reversed;
3809
3810 /* Restarting if we generate a store-flag expression will cause
3811 us to loop. Just drop through in this case. */
3812
3813 /* If the result values are STORE_FLAG_VALUE and zero, we can
3814 just make the comparison operation. */
3815 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3816 x = gen_binary (cond_code, mode, cond, cop1);
3817 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3818 && ((reversed = reversed_comparison_code_parts
3819 (cond_code, cond, cop1, NULL))
3820 != UNKNOWN))
3821 x = gen_binary (reversed, mode, cond, cop1);
3822
3823 /* Likewise, we can make the negate of a comparison operation
3824 if the result values are - STORE_FLAG_VALUE and zero. */
3825 else if (GET_CODE (true_rtx) == CONST_INT
3826 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3827 && false_rtx == const0_rtx)
3828 x = simplify_gen_unary (NEG, mode,
3829 gen_binary (cond_code, mode, cond,
3830 cop1),
3831 mode);
3832 else if (GET_CODE (false_rtx) == CONST_INT
3833 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3834 && true_rtx == const0_rtx
3835 && ((reversed = reversed_comparison_code_parts
3836 (cond_code, cond, cop1, NULL))
3837 != UNKNOWN))
3838 x = simplify_gen_unary (NEG, mode,
3839 gen_binary (reversed, mode,
3840 cond, cop1),
3841 mode);
3842 else
3843 return gen_rtx_IF_THEN_ELSE (mode,
3844 gen_binary (cond_code, VOIDmode,
3845 cond, cop1),
3846 true_rtx, false_rtx);
3847
3848 code = GET_CODE (x);
3849 op0_mode = VOIDmode;
3850 }
3851 }
3852 }
3853
3854 /* Try to fold this expression in case we have constants that weren't
3855 present before. */
3856 temp = 0;
3857 switch (GET_RTX_CLASS (code))
3858 {
3859 case RTX_UNARY:
3860 if (op0_mode == VOIDmode)
3861 op0_mode = GET_MODE (XEXP (x, 0));
3862 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3863 break;
3864 case RTX_COMPARE:
3865 case RTX_COMM_COMPARE:
3866 {
3867 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3868 if (cmp_mode == VOIDmode)
3869 {
3870 cmp_mode = GET_MODE (XEXP (x, 1));
3871 if (cmp_mode == VOIDmode)
3872 cmp_mode = op0_mode;
3873 }
3874 temp = simplify_relational_operation (code, mode, cmp_mode,
3875 XEXP (x, 0), XEXP (x, 1));
3876 }
3877 break;
3878 case RTX_COMM_ARITH:
3879 case RTX_BIN_ARITH:
3880 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3881 break;
3882 case RTX_BITFIELD_OPS:
3883 case RTX_TERNARY:
3884 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3885 XEXP (x, 1), XEXP (x, 2));
3886 break;
3887 default:
3888 break;
3889 }
3890
3891 if (temp)
3892 {
3893 x = temp;
3894 code = GET_CODE (temp);
3895 op0_mode = VOIDmode;
3896 mode = GET_MODE (temp);
3897 }
3898
3899 /* First see if we can apply the inverse distributive law. */
3900 if (code == PLUS || code == MINUS
3901 || code == AND || code == IOR || code == XOR)
3902 {
3903 x = apply_distributive_law (x);
3904 code = GET_CODE (x);
3905 op0_mode = VOIDmode;
3906 }
3907
3908 /* If CODE is an associative operation not otherwise handled, see if we
3909 can associate some operands. This can win if they are constants or
3910 if they are logically related (i.e. (a & b) & a). */
3911 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3912 || code == AND || code == IOR || code == XOR
3913 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3914 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3915 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3916 {
3917 if (GET_CODE (XEXP (x, 0)) == code)
3918 {
3919 rtx other = XEXP (XEXP (x, 0), 0);
3920 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3921 rtx inner_op1 = XEXP (x, 1);
3922 rtx inner;
3923
3924 /* Make sure we pass the constant operand if any as the second
3925 one if this is a commutative operation. */
3926 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3927 {
3928 rtx tem = inner_op0;
3929 inner_op0 = inner_op1;
3930 inner_op1 = tem;
3931 }
3932 inner = simplify_binary_operation (code == MINUS ? PLUS
3933 : code == DIV ? MULT
3934 : code,
3935 mode, inner_op0, inner_op1);
3936
3937 /* For commutative operations, try the other pair if that one
3938 didn't simplify. */
3939 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3940 {
3941 other = XEXP (XEXP (x, 0), 1);
3942 inner = simplify_binary_operation (code, mode,
3943 XEXP (XEXP (x, 0), 0),
3944 XEXP (x, 1));
3945 }
3946
3947 if (inner)
3948 return gen_binary (code, mode, other, inner);
3949 }
3950 }
3951
3952 /* A little bit of algebraic simplification here. */
3953 switch (code)
3954 {
3955 case MEM:
3956 /* Ensure that our address has any ASHIFTs converted to MULT in case
3957 address-recognizing predicates are called later. */
3958 temp = make_compound_operation (XEXP (x, 0), MEM);
3959 SUBST (XEXP (x, 0), temp);
3960 break;
3961
3962 case SUBREG:
3963 if (op0_mode == VOIDmode)
3964 op0_mode = GET_MODE (SUBREG_REG (x));
3965
3966 /* See if this can be moved to simplify_subreg. */
3967 if (CONSTANT_P (SUBREG_REG (x))
3968 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3969 /* Don't call gen_lowpart if the inner mode
3970 is VOIDmode and we cannot simplify it, as SUBREG without
3971 inner mode is invalid. */
3972 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3973 || gen_lowpart_common (mode, SUBREG_REG (x))))
3974 return gen_lowpart (mode, SUBREG_REG (x));
3975
3976 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3977 break;
3978 {
3979 rtx temp;
3980 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3981 SUBREG_BYTE (x));
3982 if (temp)
3983 return temp;
3984 }
3985
3986 /* Don't change the mode of the MEM if that would change the meaning
3987 of the address. */
3988 if (MEM_P (SUBREG_REG (x))
3989 && (MEM_VOLATILE_P (SUBREG_REG (x))
3990 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3991 return gen_rtx_CLOBBER (mode, const0_rtx);
3992
3993 /* Note that we cannot do any narrowing for non-constants since
3994 we might have been counting on using the fact that some bits were
3995 zero. We now do this in the SET. */
3996
3997 break;
3998
3999 case NOT:
4000 if (GET_CODE (XEXP (x, 0)) == SUBREG
4001 && subreg_lowpart_p (XEXP (x, 0))
4002 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4003 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4004 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4005 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4006 {
4007 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4008
4009 x = gen_rtx_ROTATE (inner_mode,
4010 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4011 inner_mode),
4012 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4013 return gen_lowpart (mode, x);
4014 }
4015
4016 /* Apply De Morgan's laws to reduce number of patterns for machines
4017 with negating logical insns (and-not, nand, etc.). If result has
4018 only one NOT, put it first, since that is how the patterns are
4019 coded. */
4020
4021 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4022 {
4023 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4024 enum machine_mode op_mode;
4025
4026 op_mode = GET_MODE (in1);
4027 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4028
4029 op_mode = GET_MODE (in2);
4030 if (op_mode == VOIDmode)
4031 op_mode = mode;
4032 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4033
4034 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4035 {
4036 rtx tem = in2;
4037 in2 = in1; in1 = tem;
4038 }
4039
4040 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4041 mode, in1, in2);
4042 }
4043 break;
4044
4045 case NEG:
4046 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4047 if (GET_CODE (XEXP (x, 0)) == XOR
4048 && XEXP (XEXP (x, 0), 1) == const1_rtx
4049 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4050 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4051
4052 temp = expand_compound_operation (XEXP (x, 0));
4053
4054 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4055 replaced by (lshiftrt X C). This will convert
4056 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4057
4058 if (GET_CODE (temp) == ASHIFTRT
4059 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4060 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4061 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4062 INTVAL (XEXP (temp, 1)));
4063
4064 /* If X has only a single bit that might be nonzero, say, bit I, convert
4065 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4066 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4067 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4068 or a SUBREG of one since we'd be making the expression more
4069 complex if it was just a register. */
4070
4071 if (!REG_P (temp)
4072 && ! (GET_CODE (temp) == SUBREG
4073 && REG_P (SUBREG_REG (temp)))
4074 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4075 {
4076 rtx temp1 = simplify_shift_const
4077 (NULL_RTX, ASHIFTRT, mode,
4078 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4079 GET_MODE_BITSIZE (mode) - 1 - i),
4080 GET_MODE_BITSIZE (mode) - 1 - i);
4081
4082 /* If all we did was surround TEMP with the two shifts, we
4083 haven't improved anything, so don't use it. Otherwise,
4084 we are better off with TEMP1. */
4085 if (GET_CODE (temp1) != ASHIFTRT
4086 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4087 || XEXP (XEXP (temp1, 0), 0) != temp)
4088 return temp1;
4089 }
4090 break;
4091
4092 case TRUNCATE:
4093 /* We can't handle truncation to a partial integer mode here
4094 because we don't know the real bitsize of the partial
4095 integer mode. */
4096 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4097 break;
4098
4099 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4100 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4101 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4102 SUBST (XEXP (x, 0),
4103 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4104 GET_MODE_MASK (mode), NULL_RTX, 0));
4105
4106 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4107 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4108 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4109 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4110 return XEXP (XEXP (x, 0), 0);
4111
4112 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4113 (OP:SI foo:SI) if OP is NEG or ABS. */
4114 if ((GET_CODE (XEXP (x, 0)) == ABS
4115 || GET_CODE (XEXP (x, 0)) == NEG)
4116 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4117 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4118 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4119 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4120 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4121
4122 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4123 (truncate:SI x). */
4124 if (GET_CODE (XEXP (x, 0)) == SUBREG
4125 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4126 && subreg_lowpart_p (XEXP (x, 0)))
4127 return SUBREG_REG (XEXP (x, 0));
4128
4129 /* If we know that the value is already truncated, we can
4130 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4131 is nonzero for the corresponding modes. But don't do this
4132 for an (LSHIFTRT (MULT ...)) since this will cause problems
4133 with the umulXi3_highpart patterns. */
4134 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4135 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4136 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4137 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4138 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4139 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4140 return gen_lowpart (mode, XEXP (x, 0));
4141
4142 /* A truncate of a comparison can be replaced with a subreg if
4143 STORE_FLAG_VALUE permits. This is like the previous test,
4144 but it works even if the comparison is done in a mode larger
4145 than HOST_BITS_PER_WIDE_INT. */
4146 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4147 && COMPARISON_P (XEXP (x, 0))
4148 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4149 return gen_lowpart (mode, XEXP (x, 0));
4150
4151 /* Similarly, a truncate of a register whose value is a
4152 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4153 permits. */
4154 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4155 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4156 && (temp = get_last_value (XEXP (x, 0)))
4157 && COMPARISON_P (temp))
4158 return gen_lowpart (mode, XEXP (x, 0));
4159
4160 break;
4161
4162 case FLOAT_TRUNCATE:
4163 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4164 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4165 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4166 return XEXP (XEXP (x, 0), 0);
4167
4168 /* (float_truncate:SF (float_truncate:DF foo:XF))
4169 = (float_truncate:SF foo:XF).
4170 This may eliminate double rounding, so it is unsafe.
4171
4172 (float_truncate:SF (float_extend:XF foo:DF))
4173 = (float_truncate:SF foo:DF).
4174
4175 (float_truncate:DF (float_extend:XF foo:SF))
4176 = (float_extend:SF foo:DF). */
4177 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4178 && flag_unsafe_math_optimizations)
4179 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4180 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4181 0)))
4182 > GET_MODE_SIZE (mode)
4183 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4184 mode,
4185 XEXP (XEXP (x, 0), 0), mode);
4186
4187 /* (float_truncate (float x)) is (float x) */
4188 if (GET_CODE (XEXP (x, 0)) == FLOAT
4189 && (flag_unsafe_math_optimizations
4190 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4191 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4192 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4193 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4194 return simplify_gen_unary (FLOAT, mode,
4195 XEXP (XEXP (x, 0), 0),
4196 GET_MODE (XEXP (XEXP (x, 0), 0)));
4197
4198 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4199 (OP:SF foo:SF) if OP is NEG or ABS. */
4200 if ((GET_CODE (XEXP (x, 0)) == ABS
4201 || GET_CODE (XEXP (x, 0)) == NEG)
4202 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4203 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4204 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4205 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4206
4207 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4208 is (float_truncate:SF x). */
4209 if (GET_CODE (XEXP (x, 0)) == SUBREG
4210 && subreg_lowpart_p (XEXP (x, 0))
4211 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4212 return SUBREG_REG (XEXP (x, 0));
4213 break;
4214 case FLOAT_EXTEND:
4215 /* (float_extend (float_extend x)) is (float_extend x)
4216
4217 (float_extend (float x)) is (float x) assuming that double
4218 rounding can't happen.
4219 */
4220 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4221 || (GET_CODE (XEXP (x, 0)) == FLOAT
4222 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4223 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4224 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4225 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4226 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4227 XEXP (XEXP (x, 0), 0),
4228 GET_MODE (XEXP (XEXP (x, 0), 0)));
4229
4230 break;
4231 #ifdef HAVE_cc0
4232 case COMPARE:
4233 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4234 using cc0, in which case we want to leave it as a COMPARE
4235 so we can distinguish it from a register-register-copy. */
4236 if (XEXP (x, 1) == const0_rtx)
4237 return XEXP (x, 0);
4238
4239 /* x - 0 is the same as x unless x's mode has signed zeros and
4240 allows rounding towards -infinity. Under those conditions,
4241 0 - 0 is -0. */
4242 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4243 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4244 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4245 return XEXP (x, 0);
4246 break;
4247 #endif
4248
4249 case CONST:
4250 /* (const (const X)) can become (const X). Do it this way rather than
4251 returning the inner CONST since CONST can be shared with a
4252 REG_EQUAL note. */
4253 if (GET_CODE (XEXP (x, 0)) == CONST)
4254 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4255 break;
4256
4257 #ifdef HAVE_lo_sum
4258 case LO_SUM:
4259 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4260 can add in an offset. find_split_point will split this address up
4261 again if it doesn't match. */
4262 if (GET_CODE (XEXP (x, 0)) == HIGH
4263 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4264 return XEXP (x, 1);
4265 break;
4266 #endif
4267
4268 case PLUS:
4269 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4270 */
4271 if (GET_CODE (XEXP (x, 0)) == MULT
4272 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4273 {
4274 rtx in1, in2;
4275
4276 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4277 in2 = XEXP (XEXP (x, 0), 1);
4278 return gen_binary (MINUS, mode, XEXP (x, 1),
4279 gen_binary (MULT, mode, in1, in2));
4280 }
4281
4282 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4283 outermost. That's because that's the way indexed addresses are
4284 supposed to appear. This code used to check many more cases, but
4285 they are now checked elsewhere. */
4286 if (GET_CODE (XEXP (x, 0)) == PLUS
4287 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4288 return gen_binary (PLUS, mode,
4289 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4290 XEXP (x, 1)),
4291 XEXP (XEXP (x, 0), 1));
4292
4293 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4294 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4295 bit-field and can be replaced by either a sign_extend or a
4296 sign_extract. The `and' may be a zero_extend and the two
4297 <c>, -<c> constants may be reversed. */
4298 if (GET_CODE (XEXP (x, 0)) == XOR
4299 && GET_CODE (XEXP (x, 1)) == CONST_INT
4300 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4301 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4302 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4303 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4304 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4305 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4306 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4307 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4308 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4309 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4310 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4311 == (unsigned int) i + 1))))
4312 return simplify_shift_const
4313 (NULL_RTX, ASHIFTRT, mode,
4314 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4315 XEXP (XEXP (XEXP (x, 0), 0), 0),
4316 GET_MODE_BITSIZE (mode) - (i + 1)),
4317 GET_MODE_BITSIZE (mode) - (i + 1));
4318
4319 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4320 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4321 is 1. This produces better code than the alternative immediately
4322 below. */
4323 if (COMPARISON_P (XEXP (x, 0))
4324 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4325 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4326 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4327 XEXP (XEXP (x, 0), 0),
4328 XEXP (XEXP (x, 0), 1))))
4329 return
4330 simplify_gen_unary (NEG, mode, reversed, mode);
4331
4332 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4333 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4334 the bitsize of the mode - 1. This allows simplification of
4335 "a = (b & 8) == 0;" */
4336 if (XEXP (x, 1) == constm1_rtx
4337 && !REG_P (XEXP (x, 0))
4338 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4339 && REG_P (SUBREG_REG (XEXP (x, 0))))
4340 && nonzero_bits (XEXP (x, 0), mode) == 1)
4341 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4342 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4343 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4344 GET_MODE_BITSIZE (mode) - 1),
4345 GET_MODE_BITSIZE (mode) - 1);
4346
4347 /* If we are adding two things that have no bits in common, convert
4348 the addition into an IOR. This will often be further simplified,
4349 for example in cases like ((a & 1) + (a & 2)), which can
4350 become a & 3. */
4351
4352 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4353 && (nonzero_bits (XEXP (x, 0), mode)
4354 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4355 {
4356 /* Try to simplify the expression further. */
4357 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4358 temp = combine_simplify_rtx (tor, mode, in_dest);
4359
4360 /* If we could, great. If not, do not go ahead with the IOR
4361 replacement, since PLUS appears in many special purpose
4362 address arithmetic instructions. */
4363 if (GET_CODE (temp) != CLOBBER && temp != tor)
4364 return temp;
4365 }
4366 break;
4367
4368 case MINUS:
4369 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4370 by reversing the comparison code if valid. */
4371 if (STORE_FLAG_VALUE == 1
4372 && XEXP (x, 0) == const1_rtx
4373 && COMPARISON_P (XEXP (x, 1))
4374 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4375 XEXP (XEXP (x, 1), 0),
4376 XEXP (XEXP (x, 1), 1))))
4377 return reversed;
4378
4379 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4380 (and <foo> (const_int pow2-1)) */
4381 if (GET_CODE (XEXP (x, 1)) == AND
4382 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4383 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4384 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4385 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4386 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4387
4388 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4389 */
4390 if (GET_CODE (XEXP (x, 1)) == MULT
4391 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4392 {
4393 rtx in1, in2;
4394
4395 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4396 in2 = XEXP (XEXP (x, 1), 1);
4397 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4398 XEXP (x, 0));
4399 }
4400
4401 /* Canonicalize (minus (neg A) (mult B C)) to
4402 (minus (mult (neg B) C) A). */
4403 if (GET_CODE (XEXP (x, 1)) == MULT
4404 && GET_CODE (XEXP (x, 0)) == NEG)
4405 {
4406 rtx in1, in2;
4407
4408 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4409 in2 = XEXP (XEXP (x, 1), 1);
4410 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4411 XEXP (XEXP (x, 0), 0));
4412 }
4413
4414 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4415 integers. */
4416 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4417 return gen_binary (MINUS, mode,
4418 gen_binary (MINUS, mode, XEXP (x, 0),
4419 XEXP (XEXP (x, 1), 0)),
4420 XEXP (XEXP (x, 1), 1));
4421 break;
4422
4423 case MULT:
4424 /* If we have (mult (plus A B) C), apply the distributive law and then
4425 the inverse distributive law to see if things simplify. This
4426 occurs mostly in addresses, often when unrolling loops. */
4427
4428 if (GET_CODE (XEXP (x, 0)) == PLUS)
4429 {
4430 x = apply_distributive_law
4431 (gen_binary (PLUS, mode,
4432 gen_binary (MULT, mode,
4433 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4434 gen_binary (MULT, mode,
4435 XEXP (XEXP (x, 0), 1),
4436 copy_rtx (XEXP (x, 1)))));
4437
4438 if (GET_CODE (x) != MULT)
4439 return x;
4440 }
4441 /* Try simplify a*(b/c) as (a*b)/c. */
4442 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4443 && GET_CODE (XEXP (x, 0)) == DIV)
4444 {
4445 rtx tem = simplify_binary_operation (MULT, mode,
4446 XEXP (XEXP (x, 0), 0),
4447 XEXP (x, 1));
4448 if (tem)
4449 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4450 }
4451 break;
4452
4453 case UDIV:
4454 /* If this is a divide by a power of two, treat it as a shift if
4455 its first operand is a shift. */
4456 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4457 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4458 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4459 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4460 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4461 || GET_CODE (XEXP (x, 0)) == ROTATE
4462 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4463 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4464 break;
4465
4466 case EQ: case NE:
4467 case GT: case GTU: case GE: case GEU:
4468 case LT: case LTU: case LE: case LEU:
4469 case UNEQ: case LTGT:
4470 case UNGT: case UNGE:
4471 case UNLT: case UNLE:
4472 case UNORDERED: case ORDERED:
4473 /* If the first operand is a condition code, we can't do anything
4474 with it. */
4475 if (GET_CODE (XEXP (x, 0)) == COMPARE
4476 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4477 && ! CC0_P (XEXP (x, 0))))
4478 {
4479 rtx op0 = XEXP (x, 0);
4480 rtx op1 = XEXP (x, 1);
4481 enum rtx_code new_code;
4482
4483 if (GET_CODE (op0) == COMPARE)
4484 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4485
4486 /* Simplify our comparison, if possible. */
4487 new_code = simplify_comparison (code, &op0, &op1);
4488
4489 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4490 if only the low-order bit is possibly nonzero in X (such as when
4491 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4492 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4493 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4494 (plus X 1).
4495
4496 Remove any ZERO_EXTRACT we made when thinking this was a
4497 comparison. It may now be simpler to use, e.g., an AND. If a
4498 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4499 the call to make_compound_operation in the SET case. */
4500
4501 if (STORE_FLAG_VALUE == 1
4502 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4503 && op1 == const0_rtx
4504 && mode == GET_MODE (op0)
4505 && nonzero_bits (op0, mode) == 1)
4506 return gen_lowpart (mode,
4507 expand_compound_operation (op0));
4508
4509 else if (STORE_FLAG_VALUE == 1
4510 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4511 && op1 == const0_rtx
4512 && mode == GET_MODE (op0)
4513 && (num_sign_bit_copies (op0, mode)
4514 == GET_MODE_BITSIZE (mode)))
4515 {
4516 op0 = expand_compound_operation (op0);
4517 return simplify_gen_unary (NEG, mode,
4518 gen_lowpart (mode, op0),
4519 mode);
4520 }
4521
4522 else if (STORE_FLAG_VALUE == 1
4523 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4524 && op1 == const0_rtx
4525 && mode == GET_MODE (op0)
4526 && nonzero_bits (op0, mode) == 1)
4527 {
4528 op0 = expand_compound_operation (op0);
4529 return gen_binary (XOR, mode,
4530 gen_lowpart (mode, op0),
4531 const1_rtx);
4532 }
4533
4534 else if (STORE_FLAG_VALUE == 1
4535 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4536 && op1 == const0_rtx
4537 && mode == GET_MODE (op0)
4538 && (num_sign_bit_copies (op0, mode)
4539 == GET_MODE_BITSIZE (mode)))
4540 {
4541 op0 = expand_compound_operation (op0);
4542 return plus_constant (gen_lowpart (mode, op0), 1);
4543 }
4544
4545 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4546 those above. */
4547 if (STORE_FLAG_VALUE == -1
4548 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4549 && op1 == const0_rtx
4550 && (num_sign_bit_copies (op0, mode)
4551 == GET_MODE_BITSIZE (mode)))
4552 return gen_lowpart (mode,
4553 expand_compound_operation (op0));
4554
4555 else if (STORE_FLAG_VALUE == -1
4556 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4557 && op1 == const0_rtx
4558 && mode == GET_MODE (op0)
4559 && nonzero_bits (op0, mode) == 1)
4560 {
4561 op0 = expand_compound_operation (op0);
4562 return simplify_gen_unary (NEG, mode,
4563 gen_lowpart (mode, op0),
4564 mode);
4565 }
4566
4567 else if (STORE_FLAG_VALUE == -1
4568 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4569 && op1 == const0_rtx
4570 && mode == GET_MODE (op0)
4571 && (num_sign_bit_copies (op0, mode)
4572 == GET_MODE_BITSIZE (mode)))
4573 {
4574 op0 = expand_compound_operation (op0);
4575 return simplify_gen_unary (NOT, mode,
4576 gen_lowpart (mode, op0),
4577 mode);
4578 }
4579
4580 /* If X is 0/1, (eq X 0) is X-1. */
4581 else if (STORE_FLAG_VALUE == -1
4582 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4583 && op1 == const0_rtx
4584 && mode == GET_MODE (op0)
4585 && nonzero_bits (op0, mode) == 1)
4586 {
4587 op0 = expand_compound_operation (op0);
4588 return plus_constant (gen_lowpart (mode, op0), -1);
4589 }
4590
4591 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4592 one bit that might be nonzero, we can convert (ne x 0) to
4593 (ashift x c) where C puts the bit in the sign bit. Remove any
4594 AND with STORE_FLAG_VALUE when we are done, since we are only
4595 going to test the sign bit. */
4596 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4597 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4598 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4599 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4600 && op1 == const0_rtx
4601 && mode == GET_MODE (op0)
4602 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4603 {
4604 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4605 expand_compound_operation (op0),
4606 GET_MODE_BITSIZE (mode) - 1 - i);
4607 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4608 return XEXP (x, 0);
4609 else
4610 return x;
4611 }
4612
4613 /* If the code changed, return a whole new comparison. */
4614 if (new_code != code)
4615 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4616
4617 /* Otherwise, keep this operation, but maybe change its operands.
4618 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4619 SUBST (XEXP (x, 0), op0);
4620 SUBST (XEXP (x, 1), op1);
4621 }
4622 break;
4623
4624 case IF_THEN_ELSE:
4625 return simplify_if_then_else (x);
4626
4627 case ZERO_EXTRACT:
4628 case SIGN_EXTRACT:
4629 case ZERO_EXTEND:
4630 case SIGN_EXTEND:
4631 /* If we are processing SET_DEST, we are done. */
4632 if (in_dest)
4633 return x;
4634
4635 return expand_compound_operation (x);
4636
4637 case SET:
4638 return simplify_set (x);
4639
4640 case AND:
4641 case IOR:
4642 case XOR:
4643 return simplify_logical (x);
4644
4645 case ABS:
4646 /* (abs (neg <foo>)) -> (abs <foo>) */
4647 if (GET_CODE (XEXP (x, 0)) == NEG)
4648 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4649
4650 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4651 do nothing. */
4652 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4653 break;
4654
4655 /* If operand is something known to be positive, ignore the ABS. */
4656 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4657 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4658 <= HOST_BITS_PER_WIDE_INT)
4659 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4660 & ((HOST_WIDE_INT) 1
4661 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4662 == 0)))
4663 return XEXP (x, 0);
4664
4665 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4666 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4667 return gen_rtx_NEG (mode, XEXP (x, 0));
4668
4669 break;
4670
4671 case FFS:
4672 /* (ffs (*_extend <X>)) = (ffs <X>) */
4673 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4674 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4675 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4676 break;
4677
4678 case POPCOUNT:
4679 case PARITY:
4680 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4681 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4682 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4683 break;
4684
4685 case FLOAT:
4686 /* (float (sign_extend <X>)) = (float <X>). */
4687 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4688 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4689 break;
4690
4691 case ASHIFT:
4692 case LSHIFTRT:
4693 case ASHIFTRT:
4694 case ROTATE:
4695 case ROTATERT:
4696 /* If this is a shift by a constant amount, simplify it. */
4697 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4698 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4699 INTVAL (XEXP (x, 1)));
4700
4701 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4702 SUBST (XEXP (x, 1),
4703 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4704 ((HOST_WIDE_INT) 1
4705 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4706 - 1,
4707 NULL_RTX, 0));
4708 break;
4709
4710 case VEC_SELECT:
4711 {
4712 rtx op0 = XEXP (x, 0);
4713 rtx op1 = XEXP (x, 1);
4714 int len;
4715
4716 gcc_assert (GET_CODE (op1) == PARALLEL);
4717 len = XVECLEN (op1, 0);
4718 if (len == 1
4719 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4720 && GET_CODE (op0) == VEC_CONCAT)
4721 {
4722 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4723
4724 /* Try to find the element in the VEC_CONCAT. */
4725 for (;;)
4726 {
4727 if (GET_MODE (op0) == GET_MODE (x))
4728 return op0;
4729 if (GET_CODE (op0) == VEC_CONCAT)
4730 {
4731 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4732 if (op0_size < offset)
4733 op0 = XEXP (op0, 0);
4734 else
4735 {
4736 offset -= op0_size;
4737 op0 = XEXP (op0, 1);
4738 }
4739 }
4740 else
4741 break;
4742 }
4743 }
4744 }
4745
4746 break;
4747
4748 default:
4749 break;
4750 }
4751
4752 return x;
4753 }
4754 \f
4755 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4756
4757 static rtx
4758 simplify_if_then_else (rtx x)
4759 {
4760 enum machine_mode mode = GET_MODE (x);
4761 rtx cond = XEXP (x, 0);
4762 rtx true_rtx = XEXP (x, 1);
4763 rtx false_rtx = XEXP (x, 2);
4764 enum rtx_code true_code = GET_CODE (cond);
4765 int comparison_p = COMPARISON_P (cond);
4766 rtx temp;
4767 int i;
4768 enum rtx_code false_code;
4769 rtx reversed;
4770
4771 /* Simplify storing of the truth value. */
4772 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4773 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4774
4775 /* Also when the truth value has to be reversed. */
4776 if (comparison_p
4777 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4778 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4779 XEXP (cond, 1))))
4780 return reversed;
4781
4782 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4783 in it is being compared against certain values. Get the true and false
4784 comparisons and see if that says anything about the value of each arm. */
4785
4786 if (comparison_p
4787 && ((false_code = combine_reversed_comparison_code (cond))
4788 != UNKNOWN)
4789 && REG_P (XEXP (cond, 0)))
4790 {
4791 HOST_WIDE_INT nzb;
4792 rtx from = XEXP (cond, 0);
4793 rtx true_val = XEXP (cond, 1);
4794 rtx false_val = true_val;
4795 int swapped = 0;
4796
4797 /* If FALSE_CODE is EQ, swap the codes and arms. */
4798
4799 if (false_code == EQ)
4800 {
4801 swapped = 1, true_code = EQ, false_code = NE;
4802 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4803 }
4804
4805 /* If we are comparing against zero and the expression being tested has
4806 only a single bit that might be nonzero, that is its value when it is
4807 not equal to zero. Similarly if it is known to be -1 or 0. */
4808
4809 if (true_code == EQ && true_val == const0_rtx
4810 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4811 false_code = EQ, false_val = GEN_INT (nzb);
4812 else if (true_code == EQ && true_val == const0_rtx
4813 && (num_sign_bit_copies (from, GET_MODE (from))
4814 == GET_MODE_BITSIZE (GET_MODE (from))))
4815 false_code = EQ, false_val = constm1_rtx;
4816
4817 /* Now simplify an arm if we know the value of the register in the
4818 branch and it is used in the arm. Be careful due to the potential
4819 of locally-shared RTL. */
4820
4821 if (reg_mentioned_p (from, true_rtx))
4822 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4823 from, true_val),
4824 pc_rtx, pc_rtx, 0, 0);
4825 if (reg_mentioned_p (from, false_rtx))
4826 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4827 from, false_val),
4828 pc_rtx, pc_rtx, 0, 0);
4829
4830 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4831 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4832
4833 true_rtx = XEXP (x, 1);
4834 false_rtx = XEXP (x, 2);
4835 true_code = GET_CODE (cond);
4836 }
4837
4838 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4839 reversed, do so to avoid needing two sets of patterns for
4840 subtract-and-branch insns. Similarly if we have a constant in the true
4841 arm, the false arm is the same as the first operand of the comparison, or
4842 the false arm is more complicated than the true arm. */
4843
4844 if (comparison_p
4845 && combine_reversed_comparison_code (cond) != UNKNOWN
4846 && (true_rtx == pc_rtx
4847 || (CONSTANT_P (true_rtx)
4848 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4849 || true_rtx == const0_rtx
4850 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4851 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4852 && !OBJECT_P (false_rtx))
4853 || reg_mentioned_p (true_rtx, false_rtx)
4854 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4855 {
4856 true_code = reversed_comparison_code (cond, NULL);
4857 SUBST (XEXP (x, 0),
4858 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4859 XEXP (cond, 1)));
4860
4861 SUBST (XEXP (x, 1), false_rtx);
4862 SUBST (XEXP (x, 2), true_rtx);
4863
4864 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4865 cond = XEXP (x, 0);
4866
4867 /* It is possible that the conditional has been simplified out. */
4868 true_code = GET_CODE (cond);
4869 comparison_p = COMPARISON_P (cond);
4870 }
4871
4872 /* If the two arms are identical, we don't need the comparison. */
4873
4874 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4875 return true_rtx;
4876
4877 /* Convert a == b ? b : a to "a". */
4878 if (true_code == EQ && ! side_effects_p (cond)
4879 && !HONOR_NANS (mode)
4880 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4881 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4882 return false_rtx;
4883 else if (true_code == NE && ! side_effects_p (cond)
4884 && !HONOR_NANS (mode)
4885 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4886 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4887 return true_rtx;
4888
4889 /* Look for cases where we have (abs x) or (neg (abs X)). */
4890
4891 if (GET_MODE_CLASS (mode) == MODE_INT
4892 && GET_CODE (false_rtx) == NEG
4893 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4894 && comparison_p
4895 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4896 && ! side_effects_p (true_rtx))
4897 switch (true_code)
4898 {
4899 case GT:
4900 case GE:
4901 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4902 case LT:
4903 case LE:
4904 return
4905 simplify_gen_unary (NEG, mode,
4906 simplify_gen_unary (ABS, mode, true_rtx, mode),
4907 mode);
4908 default:
4909 break;
4910 }
4911
4912 /* Look for MIN or MAX. */
4913
4914 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4915 && comparison_p
4916 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4917 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4918 && ! side_effects_p (cond))
4919 switch (true_code)
4920 {
4921 case GE:
4922 case GT:
4923 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4924 case LE:
4925 case LT:
4926 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4927 case GEU:
4928 case GTU:
4929 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4930 case LEU:
4931 case LTU:
4932 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4933 default:
4934 break;
4935 }
4936
4937 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4938 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4939 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4940 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4941 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4942 neither 1 or -1, but it isn't worth checking for. */
4943
4944 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4945 && comparison_p
4946 && GET_MODE_CLASS (mode) == MODE_INT
4947 && ! side_effects_p (x))
4948 {
4949 rtx t = make_compound_operation (true_rtx, SET);
4950 rtx f = make_compound_operation (false_rtx, SET);
4951 rtx cond_op0 = XEXP (cond, 0);
4952 rtx cond_op1 = XEXP (cond, 1);
4953 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4954 enum machine_mode m = mode;
4955 rtx z = 0, c1 = NULL_RTX;
4956
4957 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4958 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4959 || GET_CODE (t) == ASHIFT
4960 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4961 && rtx_equal_p (XEXP (t, 0), f))
4962 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4963
4964 /* If an identity-zero op is commutative, check whether there
4965 would be a match if we swapped the operands. */
4966 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4967 || GET_CODE (t) == XOR)
4968 && rtx_equal_p (XEXP (t, 1), f))
4969 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4970 else if (GET_CODE (t) == SIGN_EXTEND
4971 && (GET_CODE (XEXP (t, 0)) == PLUS
4972 || GET_CODE (XEXP (t, 0)) == MINUS
4973 || GET_CODE (XEXP (t, 0)) == IOR
4974 || GET_CODE (XEXP (t, 0)) == XOR
4975 || GET_CODE (XEXP (t, 0)) == ASHIFT
4976 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4977 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4978 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4979 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4980 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4981 && (num_sign_bit_copies (f, GET_MODE (f))
4982 > (unsigned int)
4983 (GET_MODE_BITSIZE (mode)
4984 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4985 {
4986 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4987 extend_op = SIGN_EXTEND;
4988 m = GET_MODE (XEXP (t, 0));
4989 }
4990 else if (GET_CODE (t) == SIGN_EXTEND
4991 && (GET_CODE (XEXP (t, 0)) == PLUS
4992 || GET_CODE (XEXP (t, 0)) == IOR
4993 || GET_CODE (XEXP (t, 0)) == XOR)
4994 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4995 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4996 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4997 && (num_sign_bit_copies (f, GET_MODE (f))
4998 > (unsigned int)
4999 (GET_MODE_BITSIZE (mode)
5000 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5001 {
5002 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5003 extend_op = SIGN_EXTEND;
5004 m = GET_MODE (XEXP (t, 0));
5005 }
5006 else if (GET_CODE (t) == ZERO_EXTEND
5007 && (GET_CODE (XEXP (t, 0)) == PLUS
5008 || GET_CODE (XEXP (t, 0)) == MINUS
5009 || GET_CODE (XEXP (t, 0)) == IOR
5010 || GET_CODE (XEXP (t, 0)) == XOR
5011 || GET_CODE (XEXP (t, 0)) == ASHIFT
5012 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5013 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5014 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5015 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5016 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5017 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5018 && ((nonzero_bits (f, GET_MODE (f))
5019 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5020 == 0))
5021 {
5022 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5023 extend_op = ZERO_EXTEND;
5024 m = GET_MODE (XEXP (t, 0));
5025 }
5026 else if (GET_CODE (t) == ZERO_EXTEND
5027 && (GET_CODE (XEXP (t, 0)) == PLUS
5028 || GET_CODE (XEXP (t, 0)) == IOR
5029 || GET_CODE (XEXP (t, 0)) == XOR)
5030 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5031 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5032 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5033 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5034 && ((nonzero_bits (f, GET_MODE (f))
5035 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5036 == 0))
5037 {
5038 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5039 extend_op = ZERO_EXTEND;
5040 m = GET_MODE (XEXP (t, 0));
5041 }
5042
5043 if (z)
5044 {
5045 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5046 pc_rtx, pc_rtx, 0, 0);
5047 temp = gen_binary (MULT, m, temp,
5048 gen_binary (MULT, m, c1, const_true_rtx));
5049 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5050 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5051
5052 if (extend_op != UNKNOWN)
5053 temp = simplify_gen_unary (extend_op, mode, temp, m);
5054
5055 return temp;
5056 }
5057 }
5058
5059 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5060 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5061 negation of a single bit, we can convert this operation to a shift. We
5062 can actually do this more generally, but it doesn't seem worth it. */
5063
5064 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5065 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5066 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5067 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5068 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5069 == GET_MODE_BITSIZE (mode))
5070 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5071 return
5072 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5073 gen_lowpart (mode, XEXP (cond, 0)), i);
5074
5075 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5076 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5077 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5078 && GET_MODE (XEXP (cond, 0)) == mode
5079 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5080 == nonzero_bits (XEXP (cond, 0), mode)
5081 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5082 return XEXP (cond, 0);
5083
5084 return x;
5085 }
5086 \f
5087 /* Simplify X, a SET expression. Return the new expression. */
5088
5089 static rtx
5090 simplify_set (rtx x)
5091 {
5092 rtx src = SET_SRC (x);
5093 rtx dest = SET_DEST (x);
5094 enum machine_mode mode
5095 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5096 rtx other_insn;
5097 rtx *cc_use;
5098
5099 /* (set (pc) (return)) gets written as (return). */
5100 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5101 return src;
5102
5103 /* Now that we know for sure which bits of SRC we are using, see if we can
5104 simplify the expression for the object knowing that we only need the
5105 low-order bits. */
5106
5107 if (GET_MODE_CLASS (mode) == MODE_INT
5108 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5109 {
5110 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5111 SUBST (SET_SRC (x), src);
5112 }
5113
5114 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5115 the comparison result and try to simplify it unless we already have used
5116 undobuf.other_insn. */
5117 if ((GET_MODE_CLASS (mode) == MODE_CC
5118 || GET_CODE (src) == COMPARE
5119 || CC0_P (dest))
5120 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5121 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5122 && COMPARISON_P (*cc_use)
5123 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5124 {
5125 enum rtx_code old_code = GET_CODE (*cc_use);
5126 enum rtx_code new_code;
5127 rtx op0, op1, tmp;
5128 int other_changed = 0;
5129 enum machine_mode compare_mode = GET_MODE (dest);
5130
5131 if (GET_CODE (src) == COMPARE)
5132 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5133 else
5134 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5135
5136 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5137 op0, op1);
5138 if (!tmp)
5139 new_code = old_code;
5140 else if (!CONSTANT_P (tmp))
5141 {
5142 new_code = GET_CODE (tmp);
5143 op0 = XEXP (tmp, 0);
5144 op1 = XEXP (tmp, 1);
5145 }
5146 else
5147 {
5148 rtx pat = PATTERN (other_insn);
5149 undobuf.other_insn = other_insn;
5150 SUBST (*cc_use, tmp);
5151
5152 /* Attempt to simplify CC user. */
5153 if (GET_CODE (pat) == SET)
5154 {
5155 rtx new = simplify_rtx (SET_SRC (pat));
5156 if (new != NULL_RTX)
5157 SUBST (SET_SRC (pat), new);
5158 }
5159
5160 /* Convert X into a no-op move. */
5161 SUBST (SET_DEST (x), pc_rtx);
5162 SUBST (SET_SRC (x), pc_rtx);
5163 return x;
5164 }
5165
5166 /* Simplify our comparison, if possible. */
5167 new_code = simplify_comparison (new_code, &op0, &op1);
5168
5169 #ifdef SELECT_CC_MODE
5170 /* If this machine has CC modes other than CCmode, check to see if we
5171 need to use a different CC mode here. */
5172 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5173 compare_mode = GET_MODE (op0);
5174 else
5175 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5176
5177 #ifndef HAVE_cc0
5178 /* If the mode changed, we have to change SET_DEST, the mode in the
5179 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5180 a hard register, just build new versions with the proper mode. If it
5181 is a pseudo, we lose unless it is only time we set the pseudo, in
5182 which case we can safely change its mode. */
5183 if (compare_mode != GET_MODE (dest))
5184 {
5185 unsigned int regno = REGNO (dest);
5186 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5187
5188 if (regno < FIRST_PSEUDO_REGISTER
5189 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5190 {
5191 if (regno >= FIRST_PSEUDO_REGISTER)
5192 SUBST (regno_reg_rtx[regno], new_dest);
5193
5194 SUBST (SET_DEST (x), new_dest);
5195 SUBST (XEXP (*cc_use, 0), new_dest);
5196 other_changed = 1;
5197
5198 dest = new_dest;
5199 }
5200 }
5201 #endif /* cc0 */
5202 #endif /* SELECT_CC_MODE */
5203
5204 /* If the code changed, we have to build a new comparison in
5205 undobuf.other_insn. */
5206 if (new_code != old_code)
5207 {
5208 int other_changed_previously = other_changed;
5209 unsigned HOST_WIDE_INT mask;
5210
5211 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5212 dest, const0_rtx));
5213 other_changed = 1;
5214
5215 /* If the only change we made was to change an EQ into an NE or
5216 vice versa, OP0 has only one bit that might be nonzero, and OP1
5217 is zero, check if changing the user of the condition code will
5218 produce a valid insn. If it won't, we can keep the original code
5219 in that insn by surrounding our operation with an XOR. */
5220
5221 if (((old_code == NE && new_code == EQ)
5222 || (old_code == EQ && new_code == NE))
5223 && ! other_changed_previously && op1 == const0_rtx
5224 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5225 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5226 {
5227 rtx pat = PATTERN (other_insn), note = 0;
5228
5229 if ((recog_for_combine (&pat, other_insn, &note) < 0
5230 && ! check_asm_operands (pat)))
5231 {
5232 PUT_CODE (*cc_use, old_code);
5233 other_changed = 0;
5234
5235 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5236 }
5237 }
5238 }
5239
5240 if (other_changed)
5241 undobuf.other_insn = other_insn;
5242
5243 #ifdef HAVE_cc0
5244 /* If we are now comparing against zero, change our source if
5245 needed. If we do not use cc0, we always have a COMPARE. */
5246 if (op1 == const0_rtx && dest == cc0_rtx)
5247 {
5248 SUBST (SET_SRC (x), op0);
5249 src = op0;
5250 }
5251 else
5252 #endif
5253
5254 /* Otherwise, if we didn't previously have a COMPARE in the
5255 correct mode, we need one. */
5256 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5257 {
5258 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5259 src = SET_SRC (x);
5260 }
5261 else
5262 {
5263 /* Otherwise, update the COMPARE if needed. */
5264 SUBST (XEXP (src, 0), op0);
5265 SUBST (XEXP (src, 1), op1);
5266 }
5267 }
5268 else
5269 {
5270 /* Get SET_SRC in a form where we have placed back any
5271 compound expressions. Then do the checks below. */
5272 src = make_compound_operation (src, SET);
5273 SUBST (SET_SRC (x), src);
5274 }
5275
5276 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5277 and X being a REG or (subreg (reg)), we may be able to convert this to
5278 (set (subreg:m2 x) (op)).
5279
5280 We can always do this if M1 is narrower than M2 because that means that
5281 we only care about the low bits of the result.
5282
5283 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5284 perform a narrower operation than requested since the high-order bits will
5285 be undefined. On machine where it is defined, this transformation is safe
5286 as long as M1 and M2 have the same number of words. */
5287
5288 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5289 && !OBJECT_P (SUBREG_REG (src))
5290 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5291 / UNITS_PER_WORD)
5292 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5293 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5294 #ifndef WORD_REGISTER_OPERATIONS
5295 && (GET_MODE_SIZE (GET_MODE (src))
5296 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5297 #endif
5298 #ifdef CANNOT_CHANGE_MODE_CLASS
5299 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5300 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5301 GET_MODE (SUBREG_REG (src)),
5302 GET_MODE (src)))
5303 #endif
5304 && (REG_P (dest)
5305 || (GET_CODE (dest) == SUBREG
5306 && REG_P (SUBREG_REG (dest)))))
5307 {
5308 SUBST (SET_DEST (x),
5309 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5310 dest));
5311 SUBST (SET_SRC (x), SUBREG_REG (src));
5312
5313 src = SET_SRC (x), dest = SET_DEST (x);
5314 }
5315
5316 #ifdef HAVE_cc0
5317 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5318 in SRC. */
5319 if (dest == cc0_rtx
5320 && GET_CODE (src) == SUBREG
5321 && subreg_lowpart_p (src)
5322 && (GET_MODE_BITSIZE (GET_MODE (src))
5323 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5324 {
5325 rtx inner = SUBREG_REG (src);
5326 enum machine_mode inner_mode = GET_MODE (inner);
5327
5328 /* Here we make sure that we don't have a sign bit on. */
5329 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5330 && (nonzero_bits (inner, inner_mode)
5331 < ((unsigned HOST_WIDE_INT) 1
5332 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5333 {
5334 SUBST (SET_SRC (x), inner);
5335 src = SET_SRC (x);
5336 }
5337 }
5338 #endif
5339
5340 #ifdef LOAD_EXTEND_OP
5341 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5342 would require a paradoxical subreg. Replace the subreg with a
5343 zero_extend to avoid the reload that would otherwise be required. */
5344
5345 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5346 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5347 && SUBREG_BYTE (src) == 0
5348 && (GET_MODE_SIZE (GET_MODE (src))
5349 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5350 && MEM_P (SUBREG_REG (src)))
5351 {
5352 SUBST (SET_SRC (x),
5353 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5354 GET_MODE (src), SUBREG_REG (src)));
5355
5356 src = SET_SRC (x);
5357 }
5358 #endif
5359
5360 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5361 are comparing an item known to be 0 or -1 against 0, use a logical
5362 operation instead. Check for one of the arms being an IOR of the other
5363 arm with some value. We compute three terms to be IOR'ed together. In
5364 practice, at most two will be nonzero. Then we do the IOR's. */
5365
5366 if (GET_CODE (dest) != PC
5367 && GET_CODE (src) == IF_THEN_ELSE
5368 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5369 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5370 && XEXP (XEXP (src, 0), 1) == const0_rtx
5371 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5372 #ifdef HAVE_conditional_move
5373 && ! can_conditionally_move_p (GET_MODE (src))
5374 #endif
5375 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5376 GET_MODE (XEXP (XEXP (src, 0), 0)))
5377 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5378 && ! side_effects_p (src))
5379 {
5380 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5381 ? XEXP (src, 1) : XEXP (src, 2));
5382 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5383 ? XEXP (src, 2) : XEXP (src, 1));
5384 rtx term1 = const0_rtx, term2, term3;
5385
5386 if (GET_CODE (true_rtx) == IOR
5387 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5388 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5389 else if (GET_CODE (true_rtx) == IOR
5390 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5391 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5392 else if (GET_CODE (false_rtx) == IOR
5393 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5394 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5395 else if (GET_CODE (false_rtx) == IOR
5396 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5397 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5398
5399 term2 = gen_binary (AND, GET_MODE (src),
5400 XEXP (XEXP (src, 0), 0), true_rtx);
5401 term3 = gen_binary (AND, GET_MODE (src),
5402 simplify_gen_unary (NOT, GET_MODE (src),
5403 XEXP (XEXP (src, 0), 0),
5404 GET_MODE (src)),
5405 false_rtx);
5406
5407 SUBST (SET_SRC (x),
5408 gen_binary (IOR, GET_MODE (src),
5409 gen_binary (IOR, GET_MODE (src), term1, term2),
5410 term3));
5411
5412 src = SET_SRC (x);
5413 }
5414
5415 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5416 whole thing fail. */
5417 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5418 return src;
5419 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5420 return dest;
5421 else
5422 /* Convert this into a field assignment operation, if possible. */
5423 return make_field_assignment (x);
5424 }
5425 \f
5426 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5427 result. */
5428
5429 static rtx
5430 simplify_logical (rtx x)
5431 {
5432 enum machine_mode mode = GET_MODE (x);
5433 rtx op0 = XEXP (x, 0);
5434 rtx op1 = XEXP (x, 1);
5435 rtx reversed;
5436
5437 switch (GET_CODE (x))
5438 {
5439 case AND:
5440 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5441 insn (and may simplify more). */
5442 if (GET_CODE (op0) == XOR
5443 && rtx_equal_p (XEXP (op0, 0), op1)
5444 && ! side_effects_p (op1))
5445 x = gen_binary (AND, mode,
5446 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5447 op1);
5448
5449 if (GET_CODE (op0) == XOR
5450 && rtx_equal_p (XEXP (op0, 1), op1)
5451 && ! side_effects_p (op1))
5452 x = gen_binary (AND, mode,
5453 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5454 op1);
5455
5456 /* Similarly for (~(A ^ B)) & A. */
5457 if (GET_CODE (op0) == NOT
5458 && GET_CODE (XEXP (op0, 0)) == XOR
5459 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5460 && ! side_effects_p (op1))
5461 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5462
5463 if (GET_CODE (op0) == NOT
5464 && GET_CODE (XEXP (op0, 0)) == XOR
5465 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5466 && ! side_effects_p (op1))
5467 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5468
5469 /* We can call simplify_and_const_int only if we don't lose
5470 any (sign) bits when converting INTVAL (op1) to
5471 "unsigned HOST_WIDE_INT". */
5472 if (GET_CODE (op1) == CONST_INT
5473 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5474 || INTVAL (op1) > 0))
5475 {
5476 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5477
5478 /* If we have (ior (and (X C1) C2)) and the next restart would be
5479 the last, simplify this by making C1 as small as possible
5480 and then exit. Only do this if C1 actually changes: for now
5481 this only saves memory but, should this transformation be
5482 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5483 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5484 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5485 && GET_CODE (op1) == CONST_INT
5486 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5487 return gen_binary (IOR, mode,
5488 gen_binary (AND, mode, XEXP (op0, 0),
5489 GEN_INT (INTVAL (XEXP (op0, 1))
5490 & ~INTVAL (op1))), op1);
5491
5492 if (GET_CODE (x) != AND)
5493 return x;
5494
5495 op0 = XEXP (x, 0);
5496 op1 = XEXP (x, 1);
5497 }
5498
5499 /* Convert (A | B) & A to A. */
5500 if (GET_CODE (op0) == IOR
5501 && (rtx_equal_p (XEXP (op0, 0), op1)
5502 || rtx_equal_p (XEXP (op0, 1), op1))
5503 && ! side_effects_p (XEXP (op0, 0))
5504 && ! side_effects_p (XEXP (op0, 1)))
5505 return op1;
5506
5507 /* In the following group of tests (and those in case IOR below),
5508 we start with some combination of logical operations and apply
5509 the distributive law followed by the inverse distributive law.
5510 Most of the time, this results in no change. However, if some of
5511 the operands are the same or inverses of each other, simplifications
5512 will result.
5513
5514 For example, (and (ior A B) (not B)) can occur as the result of
5515 expanding a bit field assignment. When we apply the distributive
5516 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5517 which then simplifies to (and (A (not B))).
5518
5519 If we have (and (ior A B) C), apply the distributive law and then
5520 the inverse distributive law to see if things simplify. */
5521
5522 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5523 {
5524 x = apply_distributive_law
5525 (gen_binary (GET_CODE (op0), mode,
5526 gen_binary (AND, mode, XEXP (op0, 0), op1),
5527 gen_binary (AND, mode, XEXP (op0, 1),
5528 copy_rtx (op1))));
5529 if (GET_CODE (x) != AND)
5530 return x;
5531 }
5532
5533 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5534 return apply_distributive_law
5535 (gen_binary (GET_CODE (op1), mode,
5536 gen_binary (AND, mode, XEXP (op1, 0), op0),
5537 gen_binary (AND, mode, XEXP (op1, 1),
5538 copy_rtx (op0))));
5539
5540 /* Similarly, taking advantage of the fact that
5541 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5542
5543 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5544 return apply_distributive_law
5545 (gen_binary (XOR, mode,
5546 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5547 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5548 XEXP (op1, 1))));
5549
5550 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5551 return apply_distributive_law
5552 (gen_binary (XOR, mode,
5553 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5554 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5555 break;
5556
5557 case IOR:
5558 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5559 if (GET_CODE (op1) == CONST_INT
5560 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5561 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5562 return op1;
5563
5564 /* Convert (A & B) | A to A. */
5565 if (GET_CODE (op0) == AND
5566 && (rtx_equal_p (XEXP (op0, 0), op1)
5567 || rtx_equal_p (XEXP (op0, 1), op1))
5568 && ! side_effects_p (XEXP (op0, 0))
5569 && ! side_effects_p (XEXP (op0, 1)))
5570 return op1;
5571
5572 /* If we have (ior (and A B) C), apply the distributive law and then
5573 the inverse distributive law to see if things simplify. */
5574
5575 if (GET_CODE (op0) == AND)
5576 {
5577 rtx tmp = apply_distributive_law
5578 (gen_binary (AND, mode,
5579 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5580 gen_binary (IOR, mode, XEXP (op0, 1),
5581 copy_rtx (op1))));
5582
5583 if (GET_CODE (tmp) != IOR
5584 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
5585 return tmp;
5586 }
5587
5588 if (GET_CODE (op1) == AND)
5589 {
5590 rtx tmp = apply_distributive_law
5591 (gen_binary (AND, mode,
5592 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5593 gen_binary (IOR, mode, XEXP (op1, 1),
5594 copy_rtx (op0))));
5595
5596 if (GET_CODE (tmp) != IOR
5597 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
5598 return tmp;
5599 }
5600
5601 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5602 mode size to (rotate A CX). */
5603
5604 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5605 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5606 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5607 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5608 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5609 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5610 == GET_MODE_BITSIZE (mode)))
5611 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5612 (GET_CODE (op0) == ASHIFT
5613 ? XEXP (op0, 1) : XEXP (op1, 1)));
5614
5615 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5616 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5617 does not affect any of the bits in OP1, it can really be done
5618 as a PLUS and we can associate. We do this by seeing if OP1
5619 can be safely shifted left C bits. */
5620 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5621 && GET_CODE (XEXP (op0, 0)) == PLUS
5622 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5623 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5624 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5625 {
5626 int count = INTVAL (XEXP (op0, 1));
5627 HOST_WIDE_INT mask = INTVAL (op1) << count;
5628
5629 if (mask >> count == INTVAL (op1)
5630 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5631 {
5632 SUBST (XEXP (XEXP (op0, 0), 1),
5633 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5634 return op0;
5635 }
5636 }
5637 break;
5638
5639 case XOR:
5640 /* If we are XORing two things that have no bits in common,
5641 convert them into an IOR. This helps to detect rotation encoded
5642 using those methods and possibly other simplifications. */
5643
5644 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5645 && (nonzero_bits (op0, mode)
5646 & nonzero_bits (op1, mode)) == 0)
5647 return (gen_binary (IOR, mode, op0, op1));
5648
5649 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5650 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5651 (NOT y). */
5652 {
5653 int num_negated = 0;
5654
5655 if (GET_CODE (op0) == NOT)
5656 num_negated++, op0 = XEXP (op0, 0);
5657 if (GET_CODE (op1) == NOT)
5658 num_negated++, op1 = XEXP (op1, 0);
5659
5660 if (num_negated == 2)
5661 {
5662 SUBST (XEXP (x, 0), op0);
5663 SUBST (XEXP (x, 1), op1);
5664 }
5665 else if (num_negated == 1)
5666 return
5667 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5668 mode);
5669 }
5670
5671 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5672 correspond to a machine insn or result in further simplifications
5673 if B is a constant. */
5674
5675 if (GET_CODE (op0) == AND
5676 && rtx_equal_p (XEXP (op0, 1), op1)
5677 && ! side_effects_p (op1))
5678 return gen_binary (AND, mode,
5679 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5680 op1);
5681
5682 else if (GET_CODE (op0) == AND
5683 && rtx_equal_p (XEXP (op0, 0), op1)
5684 && ! side_effects_p (op1))
5685 return gen_binary (AND, mode,
5686 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5687 op1);
5688
5689 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5690 comparison if STORE_FLAG_VALUE is 1. */
5691 if (STORE_FLAG_VALUE == 1
5692 && op1 == const1_rtx
5693 && COMPARISON_P (op0)
5694 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5695 XEXP (op0, 1))))
5696 return reversed;
5697
5698 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5699 is (lt foo (const_int 0)), so we can perform the above
5700 simplification if STORE_FLAG_VALUE is 1. */
5701
5702 if (STORE_FLAG_VALUE == 1
5703 && op1 == const1_rtx
5704 && GET_CODE (op0) == LSHIFTRT
5705 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5706 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5707 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5708
5709 /* (xor (comparison foo bar) (const_int sign-bit))
5710 when STORE_FLAG_VALUE is the sign bit. */
5711 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5712 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5713 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5714 && op1 == const_true_rtx
5715 && COMPARISON_P (op0)
5716 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5717 XEXP (op0, 1))))
5718 return reversed;
5719
5720 break;
5721
5722 default:
5723 gcc_unreachable ();
5724 }
5725
5726 return x;
5727 }
5728 \f
5729 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5730 operations" because they can be replaced with two more basic operations.
5731 ZERO_EXTEND is also considered "compound" because it can be replaced with
5732 an AND operation, which is simpler, though only one operation.
5733
5734 The function expand_compound_operation is called with an rtx expression
5735 and will convert it to the appropriate shifts and AND operations,
5736 simplifying at each stage.
5737
5738 The function make_compound_operation is called to convert an expression
5739 consisting of shifts and ANDs into the equivalent compound expression.
5740 It is the inverse of this function, loosely speaking. */
5741
5742 static rtx
5743 expand_compound_operation (rtx x)
5744 {
5745 unsigned HOST_WIDE_INT pos = 0, len;
5746 int unsignedp = 0;
5747 unsigned int modewidth;
5748 rtx tem;
5749
5750 switch (GET_CODE (x))
5751 {
5752 case ZERO_EXTEND:
5753 unsignedp = 1;
5754 case SIGN_EXTEND:
5755 /* We can't necessarily use a const_int for a multiword mode;
5756 it depends on implicitly extending the value.
5757 Since we don't know the right way to extend it,
5758 we can't tell whether the implicit way is right.
5759
5760 Even for a mode that is no wider than a const_int,
5761 we can't win, because we need to sign extend one of its bits through
5762 the rest of it, and we don't know which bit. */
5763 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5764 return x;
5765
5766 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5767 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5768 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5769 reloaded. If not for that, MEM's would very rarely be safe.
5770
5771 Reject MODEs bigger than a word, because we might not be able
5772 to reference a two-register group starting with an arbitrary register
5773 (and currently gen_lowpart might crash for a SUBREG). */
5774
5775 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5776 return x;
5777
5778 /* Reject MODEs that aren't scalar integers because turning vector
5779 or complex modes into shifts causes problems. */
5780
5781 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5782 return x;
5783
5784 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5785 /* If the inner object has VOIDmode (the only way this can happen
5786 is if it is an ASM_OPERANDS), we can't do anything since we don't
5787 know how much masking to do. */
5788 if (len == 0)
5789 return x;
5790
5791 break;
5792
5793 case ZERO_EXTRACT:
5794 unsignedp = 1;
5795
5796 /* ... fall through ... */
5797
5798 case SIGN_EXTRACT:
5799 /* If the operand is a CLOBBER, just return it. */
5800 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5801 return XEXP (x, 0);
5802
5803 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5804 || GET_CODE (XEXP (x, 2)) != CONST_INT
5805 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5806 return x;
5807
5808 /* Reject MODEs that aren't scalar integers because turning vector
5809 or complex modes into shifts causes problems. */
5810
5811 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5812 return x;
5813
5814 len = INTVAL (XEXP (x, 1));
5815 pos = INTVAL (XEXP (x, 2));
5816
5817 /* If this goes outside the object being extracted, replace the object
5818 with a (use (mem ...)) construct that only combine understands
5819 and is used only for this purpose. */
5820 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5821 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5822
5823 if (BITS_BIG_ENDIAN)
5824 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5825
5826 break;
5827
5828 default:
5829 return x;
5830 }
5831 /* Convert sign extension to zero extension, if we know that the high
5832 bit is not set, as this is easier to optimize. It will be converted
5833 back to cheaper alternative in make_extraction. */
5834 if (GET_CODE (x) == SIGN_EXTEND
5835 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5836 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5837 & ~(((unsigned HOST_WIDE_INT)
5838 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5839 >> 1))
5840 == 0)))
5841 {
5842 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5843 rtx temp2 = expand_compound_operation (temp);
5844
5845 /* Make sure this is a profitable operation. */
5846 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5847 return temp2;
5848 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5849 return temp;
5850 else
5851 return x;
5852 }
5853
5854 /* We can optimize some special cases of ZERO_EXTEND. */
5855 if (GET_CODE (x) == ZERO_EXTEND)
5856 {
5857 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5858 know that the last value didn't have any inappropriate bits
5859 set. */
5860 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5861 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5862 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5863 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5864 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5865 return XEXP (XEXP (x, 0), 0);
5866
5867 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5868 if (GET_CODE (XEXP (x, 0)) == SUBREG
5869 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5870 && subreg_lowpart_p (XEXP (x, 0))
5871 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5872 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5873 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5874 return SUBREG_REG (XEXP (x, 0));
5875
5876 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5877 is a comparison and STORE_FLAG_VALUE permits. This is like
5878 the first case, but it works even when GET_MODE (x) is larger
5879 than HOST_WIDE_INT. */
5880 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5881 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5882 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5883 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5884 <= HOST_BITS_PER_WIDE_INT)
5885 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5886 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5887 return XEXP (XEXP (x, 0), 0);
5888
5889 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5890 if (GET_CODE (XEXP (x, 0)) == SUBREG
5891 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5892 && subreg_lowpart_p (XEXP (x, 0))
5893 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5894 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5895 <= HOST_BITS_PER_WIDE_INT)
5896 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5897 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5898 return SUBREG_REG (XEXP (x, 0));
5899
5900 }
5901
5902 /* If we reach here, we want to return a pair of shifts. The inner
5903 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5904 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5905 logical depending on the value of UNSIGNEDP.
5906
5907 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5908 converted into an AND of a shift.
5909
5910 We must check for the case where the left shift would have a negative
5911 count. This can happen in a case like (x >> 31) & 255 on machines
5912 that can't shift by a constant. On those machines, we would first
5913 combine the shift with the AND to produce a variable-position
5914 extraction. Then the constant of 31 would be substituted in to produce
5915 a such a position. */
5916
5917 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5918 if (modewidth + len >= pos)
5919 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5920 GET_MODE (x),
5921 simplify_shift_const (NULL_RTX, ASHIFT,
5922 GET_MODE (x),
5923 XEXP (x, 0),
5924 modewidth - pos - len),
5925 modewidth - len);
5926
5927 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5928 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5929 simplify_shift_const (NULL_RTX, LSHIFTRT,
5930 GET_MODE (x),
5931 XEXP (x, 0), pos),
5932 ((HOST_WIDE_INT) 1 << len) - 1);
5933 else
5934 /* Any other cases we can't handle. */
5935 return x;
5936
5937 /* If we couldn't do this for some reason, return the original
5938 expression. */
5939 if (GET_CODE (tem) == CLOBBER)
5940 return x;
5941
5942 return tem;
5943 }
5944 \f
5945 /* X is a SET which contains an assignment of one object into
5946 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5947 or certain SUBREGS). If possible, convert it into a series of
5948 logical operations.
5949
5950 We half-heartedly support variable positions, but do not at all
5951 support variable lengths. */
5952
5953 static rtx
5954 expand_field_assignment (rtx x)
5955 {
5956 rtx inner;
5957 rtx pos; /* Always counts from low bit. */
5958 int len;
5959 rtx mask;
5960 enum machine_mode compute_mode;
5961
5962 /* Loop until we find something we can't simplify. */
5963 while (1)
5964 {
5965 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5966 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5967 {
5968 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5969 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5970 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5971 }
5972 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5973 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5974 {
5975 inner = XEXP (SET_DEST (x), 0);
5976 len = INTVAL (XEXP (SET_DEST (x), 1));
5977 pos = XEXP (SET_DEST (x), 2);
5978
5979 /* If the position is constant and spans the width of INNER,
5980 surround INNER with a USE to indicate this. */
5981 if (GET_CODE (pos) == CONST_INT
5982 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5983 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5984
5985 if (BITS_BIG_ENDIAN)
5986 {
5987 if (GET_CODE (pos) == CONST_INT)
5988 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5989 - INTVAL (pos));
5990 else if (GET_CODE (pos) == MINUS
5991 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5992 && (INTVAL (XEXP (pos, 1))
5993 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5994 /* If position is ADJUST - X, new position is X. */
5995 pos = XEXP (pos, 0);
5996 else
5997 pos = gen_binary (MINUS, GET_MODE (pos),
5998 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5999 - len),
6000 pos);
6001 }
6002 }
6003
6004 /* A SUBREG between two modes that occupy the same numbers of words
6005 can be done by moving the SUBREG to the source. */
6006 else if (GET_CODE (SET_DEST (x)) == SUBREG
6007 /* We need SUBREGs to compute nonzero_bits properly. */
6008 && nonzero_sign_valid
6009 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6010 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6011 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6012 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6013 {
6014 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6015 gen_lowpart
6016 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6017 SET_SRC (x)));
6018 continue;
6019 }
6020 else
6021 break;
6022
6023 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6024 inner = SUBREG_REG (inner);
6025
6026 compute_mode = GET_MODE (inner);
6027
6028 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6029 if (! SCALAR_INT_MODE_P (compute_mode))
6030 {
6031 enum machine_mode imode;
6032
6033 /* Don't do anything for vector or complex integral types. */
6034 if (! FLOAT_MODE_P (compute_mode))
6035 break;
6036
6037 /* Try to find an integral mode to pun with. */
6038 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6039 if (imode == BLKmode)
6040 break;
6041
6042 compute_mode = imode;
6043 inner = gen_lowpart (imode, inner);
6044 }
6045
6046 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6047 if (len < HOST_BITS_PER_WIDE_INT)
6048 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6049 else
6050 break;
6051
6052 /* Now compute the equivalent expression. Make a copy of INNER
6053 for the SET_DEST in case it is a MEM into which we will substitute;
6054 we don't want shared RTL in that case. */
6055 x = gen_rtx_SET
6056 (VOIDmode, copy_rtx (inner),
6057 gen_binary (IOR, compute_mode,
6058 gen_binary (AND, compute_mode,
6059 simplify_gen_unary (NOT, compute_mode,
6060 gen_binary (ASHIFT,
6061 compute_mode,
6062 mask, pos),
6063 compute_mode),
6064 inner),
6065 gen_binary (ASHIFT, compute_mode,
6066 gen_binary (AND, compute_mode,
6067 gen_lowpart
6068 (compute_mode, SET_SRC (x)),
6069 mask),
6070 pos)));
6071 }
6072
6073 return x;
6074 }
6075 \f
6076 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6077 it is an RTX that represents a variable starting position; otherwise,
6078 POS is the (constant) starting bit position (counted from the LSB).
6079
6080 INNER may be a USE. This will occur when we started with a bitfield
6081 that went outside the boundary of the object in memory, which is
6082 allowed on most machines. To isolate this case, we produce a USE
6083 whose mode is wide enough and surround the MEM with it. The only
6084 code that understands the USE is this routine. If it is not removed,
6085 it will cause the resulting insn not to match.
6086
6087 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6088 signed reference.
6089
6090 IN_DEST is nonzero if this is a reference in the destination of a
6091 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6092 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6093 be used.
6094
6095 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6096 ZERO_EXTRACT should be built even for bits starting at bit 0.
6097
6098 MODE is the desired mode of the result (if IN_DEST == 0).
6099
6100 The result is an RTX for the extraction or NULL_RTX if the target
6101 can't handle it. */
6102
6103 static rtx
6104 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6105 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6106 int in_dest, int in_compare)
6107 {
6108 /* This mode describes the size of the storage area
6109 to fetch the overall value from. Within that, we
6110 ignore the POS lowest bits, etc. */
6111 enum machine_mode is_mode = GET_MODE (inner);
6112 enum machine_mode inner_mode;
6113 enum machine_mode wanted_inner_mode = byte_mode;
6114 enum machine_mode wanted_inner_reg_mode = word_mode;
6115 enum machine_mode pos_mode = word_mode;
6116 enum machine_mode extraction_mode = word_mode;
6117 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6118 int spans_byte = 0;
6119 rtx new = 0;
6120 rtx orig_pos_rtx = pos_rtx;
6121 HOST_WIDE_INT orig_pos;
6122
6123 /* Get some information about INNER and get the innermost object. */
6124 if (GET_CODE (inner) == USE)
6125 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6126 /* We don't need to adjust the position because we set up the USE
6127 to pretend that it was a full-word object. */
6128 spans_byte = 1, inner = XEXP (inner, 0);
6129 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6130 {
6131 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6132 consider just the QI as the memory to extract from.
6133 The subreg adds or removes high bits; its mode is
6134 irrelevant to the meaning of this extraction,
6135 since POS and LEN count from the lsb. */
6136 if (MEM_P (SUBREG_REG (inner)))
6137 is_mode = GET_MODE (SUBREG_REG (inner));
6138 inner = SUBREG_REG (inner);
6139 }
6140 else if (GET_CODE (inner) == ASHIFT
6141 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6142 && pos_rtx == 0 && pos == 0
6143 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6144 {
6145 /* We're extracting the least significant bits of an rtx
6146 (ashift X (const_int C)), where LEN > C. Extract the
6147 least significant (LEN - C) bits of X, giving an rtx
6148 whose mode is MODE, then shift it left C times. */
6149 new = make_extraction (mode, XEXP (inner, 0),
6150 0, 0, len - INTVAL (XEXP (inner, 1)),
6151 unsignedp, in_dest, in_compare);
6152 if (new != 0)
6153 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6154 }
6155
6156 inner_mode = GET_MODE (inner);
6157
6158 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6159 pos = INTVAL (pos_rtx), pos_rtx = 0;
6160
6161 /* See if this can be done without an extraction. We never can if the
6162 width of the field is not the same as that of some integer mode. For
6163 registers, we can only avoid the extraction if the position is at the
6164 low-order bit and this is either not in the destination or we have the
6165 appropriate STRICT_LOW_PART operation available.
6166
6167 For MEM, we can avoid an extract if the field starts on an appropriate
6168 boundary and we can change the mode of the memory reference. However,
6169 we cannot directly access the MEM if we have a USE and the underlying
6170 MEM is not TMODE. This combination means that MEM was being used in a
6171 context where bits outside its mode were being referenced; that is only
6172 valid in bit-field insns. */
6173
6174 if (tmode != BLKmode
6175 && ! (spans_byte && inner_mode != tmode)
6176 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6177 && !MEM_P (inner)
6178 && (! in_dest
6179 || (REG_P (inner)
6180 && have_insn_for (STRICT_LOW_PART, tmode))))
6181 || (MEM_P (inner) && pos_rtx == 0
6182 && (pos
6183 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6184 : BITS_PER_UNIT)) == 0
6185 /* We can't do this if we are widening INNER_MODE (it
6186 may not be aligned, for one thing). */
6187 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6188 && (inner_mode == tmode
6189 || (! mode_dependent_address_p (XEXP (inner, 0))
6190 && ! MEM_VOLATILE_P (inner))))))
6191 {
6192 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6193 field. If the original and current mode are the same, we need not
6194 adjust the offset. Otherwise, we do if bytes big endian.
6195
6196 If INNER is not a MEM, get a piece consisting of just the field
6197 of interest (in this case POS % BITS_PER_WORD must be 0). */
6198
6199 if (MEM_P (inner))
6200 {
6201 HOST_WIDE_INT offset;
6202
6203 /* POS counts from lsb, but make OFFSET count in memory order. */
6204 if (BYTES_BIG_ENDIAN)
6205 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6206 else
6207 offset = pos / BITS_PER_UNIT;
6208
6209 new = adjust_address_nv (inner, tmode, offset);
6210 }
6211 else if (REG_P (inner))
6212 {
6213 if (tmode != inner_mode)
6214 {
6215 /* We can't call gen_lowpart in a DEST since we
6216 always want a SUBREG (see below) and it would sometimes
6217 return a new hard register. */
6218 if (pos || in_dest)
6219 {
6220 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6221
6222 if (WORDS_BIG_ENDIAN
6223 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6224 final_word = ((GET_MODE_SIZE (inner_mode)
6225 - GET_MODE_SIZE (tmode))
6226 / UNITS_PER_WORD) - final_word;
6227
6228 final_word *= UNITS_PER_WORD;
6229 if (BYTES_BIG_ENDIAN &&
6230 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6231 final_word += (GET_MODE_SIZE (inner_mode)
6232 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6233
6234 /* Avoid creating invalid subregs, for example when
6235 simplifying (x>>32)&255. */
6236 if (final_word >= GET_MODE_SIZE (inner_mode))
6237 return NULL_RTX;
6238
6239 new = gen_rtx_SUBREG (tmode, inner, final_word);
6240 }
6241 else
6242 new = gen_lowpart (tmode, inner);
6243 }
6244 else
6245 new = inner;
6246 }
6247 else
6248 new = force_to_mode (inner, tmode,
6249 len >= HOST_BITS_PER_WIDE_INT
6250 ? ~(unsigned HOST_WIDE_INT) 0
6251 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6252 NULL_RTX, 0);
6253
6254 /* If this extraction is going into the destination of a SET,
6255 make a STRICT_LOW_PART unless we made a MEM. */
6256
6257 if (in_dest)
6258 return (MEM_P (new) ? new
6259 : (GET_CODE (new) != SUBREG
6260 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6261 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6262
6263 if (mode == tmode)
6264 return new;
6265
6266 if (GET_CODE (new) == CONST_INT)
6267 return gen_int_mode (INTVAL (new), mode);
6268
6269 /* If we know that no extraneous bits are set, and that the high
6270 bit is not set, convert the extraction to the cheaper of
6271 sign and zero extension, that are equivalent in these cases. */
6272 if (flag_expensive_optimizations
6273 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6274 && ((nonzero_bits (new, tmode)
6275 & ~(((unsigned HOST_WIDE_INT)
6276 GET_MODE_MASK (tmode))
6277 >> 1))
6278 == 0)))
6279 {
6280 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6281 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6282
6283 /* Prefer ZERO_EXTENSION, since it gives more information to
6284 backends. */
6285 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6286 return temp;
6287 return temp1;
6288 }
6289
6290 /* Otherwise, sign- or zero-extend unless we already are in the
6291 proper mode. */
6292
6293 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6294 mode, new));
6295 }
6296
6297 /* Unless this is a COMPARE or we have a funny memory reference,
6298 don't do anything with zero-extending field extracts starting at
6299 the low-order bit since they are simple AND operations. */
6300 if (pos_rtx == 0 && pos == 0 && ! in_dest
6301 && ! in_compare && ! spans_byte && unsignedp)
6302 return 0;
6303
6304 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6305 we would be spanning bytes or if the position is not a constant and the
6306 length is not 1. In all other cases, we would only be going outside
6307 our object in cases when an original shift would have been
6308 undefined. */
6309 if (! spans_byte && MEM_P (inner)
6310 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6311 || (pos_rtx != 0 && len != 1)))
6312 return 0;
6313
6314 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6315 and the mode for the result. */
6316 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6317 {
6318 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6319 pos_mode = mode_for_extraction (EP_insv, 2);
6320 extraction_mode = mode_for_extraction (EP_insv, 3);
6321 }
6322
6323 if (! in_dest && unsignedp
6324 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6325 {
6326 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6327 pos_mode = mode_for_extraction (EP_extzv, 3);
6328 extraction_mode = mode_for_extraction (EP_extzv, 0);
6329 }
6330
6331 if (! in_dest && ! unsignedp
6332 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6333 {
6334 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6335 pos_mode = mode_for_extraction (EP_extv, 3);
6336 extraction_mode = mode_for_extraction (EP_extv, 0);
6337 }
6338
6339 /* Never narrow an object, since that might not be safe. */
6340
6341 if (mode != VOIDmode
6342 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6343 extraction_mode = mode;
6344
6345 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6346 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6347 pos_mode = GET_MODE (pos_rtx);
6348
6349 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6350 if we have to change the mode of memory and cannot, the desired mode is
6351 EXTRACTION_MODE. */
6352 if (!MEM_P (inner))
6353 wanted_inner_mode = wanted_inner_reg_mode;
6354 else if (inner_mode != wanted_inner_mode
6355 && (mode_dependent_address_p (XEXP (inner, 0))
6356 || MEM_VOLATILE_P (inner)))
6357 wanted_inner_mode = extraction_mode;
6358
6359 orig_pos = pos;
6360
6361 if (BITS_BIG_ENDIAN)
6362 {
6363 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6364 BITS_BIG_ENDIAN style. If position is constant, compute new
6365 position. Otherwise, build subtraction.
6366 Note that POS is relative to the mode of the original argument.
6367 If it's a MEM we need to recompute POS relative to that.
6368 However, if we're extracting from (or inserting into) a register,
6369 we want to recompute POS relative to wanted_inner_mode. */
6370 int width = (MEM_P (inner)
6371 ? GET_MODE_BITSIZE (is_mode)
6372 : GET_MODE_BITSIZE (wanted_inner_mode));
6373
6374 if (pos_rtx == 0)
6375 pos = width - len - pos;
6376 else
6377 pos_rtx
6378 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6379 /* POS may be less than 0 now, but we check for that below.
6380 Note that it can only be less than 0 if !MEM_P (inner). */
6381 }
6382
6383 /* If INNER has a wider mode, make it smaller. If this is a constant
6384 extract, try to adjust the byte to point to the byte containing
6385 the value. */
6386 if (wanted_inner_mode != VOIDmode
6387 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6388 && ((MEM_P (inner)
6389 && (inner_mode == wanted_inner_mode
6390 || (! mode_dependent_address_p (XEXP (inner, 0))
6391 && ! MEM_VOLATILE_P (inner))))))
6392 {
6393 int offset = 0;
6394
6395 /* The computations below will be correct if the machine is big
6396 endian in both bits and bytes or little endian in bits and bytes.
6397 If it is mixed, we must adjust. */
6398
6399 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6400 adjust OFFSET to compensate. */
6401 if (BYTES_BIG_ENDIAN
6402 && ! spans_byte
6403 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6404 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6405
6406 /* If this is a constant position, we can move to the desired byte. */
6407 if (pos_rtx == 0)
6408 {
6409 offset += pos / BITS_PER_UNIT;
6410 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6411 }
6412
6413 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6414 && ! spans_byte
6415 && is_mode != wanted_inner_mode)
6416 offset = (GET_MODE_SIZE (is_mode)
6417 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6418
6419 if (offset != 0 || inner_mode != wanted_inner_mode)
6420 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6421 }
6422
6423 /* If INNER is not memory, we can always get it into the proper mode. If we
6424 are changing its mode, POS must be a constant and smaller than the size
6425 of the new mode. */
6426 else if (!MEM_P (inner))
6427 {
6428 if (GET_MODE (inner) != wanted_inner_mode
6429 && (pos_rtx != 0
6430 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6431 return 0;
6432
6433 inner = force_to_mode (inner, wanted_inner_mode,
6434 pos_rtx
6435 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6436 ? ~(unsigned HOST_WIDE_INT) 0
6437 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6438 << orig_pos),
6439 NULL_RTX, 0);
6440 }
6441
6442 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6443 have to zero extend. Otherwise, we can just use a SUBREG. */
6444 if (pos_rtx != 0
6445 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6446 {
6447 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6448
6449 /* If we know that no extraneous bits are set, and that the high
6450 bit is not set, convert extraction to cheaper one - either
6451 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6452 cases. */
6453 if (flag_expensive_optimizations
6454 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6455 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6456 & ~(((unsigned HOST_WIDE_INT)
6457 GET_MODE_MASK (GET_MODE (pos_rtx)))
6458 >> 1))
6459 == 0)))
6460 {
6461 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6462
6463 /* Prefer ZERO_EXTENSION, since it gives more information to
6464 backends. */
6465 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6466 temp = temp1;
6467 }
6468 pos_rtx = temp;
6469 }
6470 else if (pos_rtx != 0
6471 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6472 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6473
6474 /* Make POS_RTX unless we already have it and it is correct. If we don't
6475 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6476 be a CONST_INT. */
6477 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6478 pos_rtx = orig_pos_rtx;
6479
6480 else if (pos_rtx == 0)
6481 pos_rtx = GEN_INT (pos);
6482
6483 /* Make the required operation. See if we can use existing rtx. */
6484 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6485 extraction_mode, inner, GEN_INT (len), pos_rtx);
6486 if (! in_dest)
6487 new = gen_lowpart (mode, new);
6488
6489 return new;
6490 }
6491 \f
6492 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6493 with any other operations in X. Return X without that shift if so. */
6494
6495 static rtx
6496 extract_left_shift (rtx x, int count)
6497 {
6498 enum rtx_code code = GET_CODE (x);
6499 enum machine_mode mode = GET_MODE (x);
6500 rtx tem;
6501
6502 switch (code)
6503 {
6504 case ASHIFT:
6505 /* This is the shift itself. If it is wide enough, we will return
6506 either the value being shifted if the shift count is equal to
6507 COUNT or a shift for the difference. */
6508 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6509 && INTVAL (XEXP (x, 1)) >= count)
6510 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6511 INTVAL (XEXP (x, 1)) - count);
6512 break;
6513
6514 case NEG: case NOT:
6515 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6516 return simplify_gen_unary (code, mode, tem, mode);
6517
6518 break;
6519
6520 case PLUS: case IOR: case XOR: case AND:
6521 /* If we can safely shift this constant and we find the inner shift,
6522 make a new operation. */
6523 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6524 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6525 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6526 return gen_binary (code, mode, tem,
6527 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6528
6529 break;
6530
6531 default:
6532 break;
6533 }
6534
6535 return 0;
6536 }
6537 \f
6538 /* Look at the expression rooted at X. Look for expressions
6539 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6540 Form these expressions.
6541
6542 Return the new rtx, usually just X.
6543
6544 Also, for machines like the VAX that don't have logical shift insns,
6545 try to convert logical to arithmetic shift operations in cases where
6546 they are equivalent. This undoes the canonicalizations to logical
6547 shifts done elsewhere.
6548
6549 We try, as much as possible, to re-use rtl expressions to save memory.
6550
6551 IN_CODE says what kind of expression we are processing. Normally, it is
6552 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6553 being kludges), it is MEM. When processing the arguments of a comparison
6554 or a COMPARE against zero, it is COMPARE. */
6555
6556 static rtx
6557 make_compound_operation (rtx x, enum rtx_code in_code)
6558 {
6559 enum rtx_code code = GET_CODE (x);
6560 enum machine_mode mode = GET_MODE (x);
6561 int mode_width = GET_MODE_BITSIZE (mode);
6562 rtx rhs, lhs;
6563 enum rtx_code next_code;
6564 int i;
6565 rtx new = 0;
6566 rtx tem;
6567 const char *fmt;
6568
6569 /* Select the code to be used in recursive calls. Once we are inside an
6570 address, we stay there. If we have a comparison, set to COMPARE,
6571 but once inside, go back to our default of SET. */
6572
6573 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6574 : ((code == COMPARE || COMPARISON_P (x))
6575 && XEXP (x, 1) == const0_rtx) ? COMPARE
6576 : in_code == COMPARE ? SET : in_code);
6577
6578 /* Process depending on the code of this operation. If NEW is set
6579 nonzero, it will be returned. */
6580
6581 switch (code)
6582 {
6583 case ASHIFT:
6584 /* Convert shifts by constants into multiplications if inside
6585 an address. */
6586 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6587 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6588 && INTVAL (XEXP (x, 1)) >= 0)
6589 {
6590 new = make_compound_operation (XEXP (x, 0), next_code);
6591 new = gen_rtx_MULT (mode, new,
6592 GEN_INT ((HOST_WIDE_INT) 1
6593 << INTVAL (XEXP (x, 1))));
6594 }
6595 break;
6596
6597 case AND:
6598 /* If the second operand is not a constant, we can't do anything
6599 with it. */
6600 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6601 break;
6602
6603 /* If the constant is a power of two minus one and the first operand
6604 is a logical right shift, make an extraction. */
6605 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6606 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6607 {
6608 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6609 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6610 0, in_code == COMPARE);
6611 }
6612
6613 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6614 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6615 && subreg_lowpart_p (XEXP (x, 0))
6616 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6617 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6618 {
6619 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6620 next_code);
6621 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6622 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6623 0, in_code == COMPARE);
6624 }
6625 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6626 else if ((GET_CODE (XEXP (x, 0)) == XOR
6627 || GET_CODE (XEXP (x, 0)) == IOR)
6628 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6629 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6630 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6631 {
6632 /* Apply the distributive law, and then try to make extractions. */
6633 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6634 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6635 XEXP (x, 1)),
6636 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6637 XEXP (x, 1)));
6638 new = make_compound_operation (new, in_code);
6639 }
6640
6641 /* If we are have (and (rotate X C) M) and C is larger than the number
6642 of bits in M, this is an extraction. */
6643
6644 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6645 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6646 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6647 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6648 {
6649 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6650 new = make_extraction (mode, new,
6651 (GET_MODE_BITSIZE (mode)
6652 - INTVAL (XEXP (XEXP (x, 0), 1))),
6653 NULL_RTX, i, 1, 0, in_code == COMPARE);
6654 }
6655
6656 /* On machines without logical shifts, if the operand of the AND is
6657 a logical shift and our mask turns off all the propagated sign
6658 bits, we can replace the logical shift with an arithmetic shift. */
6659 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6660 && !have_insn_for (LSHIFTRT, mode)
6661 && have_insn_for (ASHIFTRT, mode)
6662 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6663 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6664 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6665 && mode_width <= HOST_BITS_PER_WIDE_INT)
6666 {
6667 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6668
6669 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6670 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6671 SUBST (XEXP (x, 0),
6672 gen_rtx_ASHIFTRT (mode,
6673 make_compound_operation
6674 (XEXP (XEXP (x, 0), 0), next_code),
6675 XEXP (XEXP (x, 0), 1)));
6676 }
6677
6678 /* If the constant is one less than a power of two, this might be
6679 representable by an extraction even if no shift is present.
6680 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6681 we are in a COMPARE. */
6682 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6683 new = make_extraction (mode,
6684 make_compound_operation (XEXP (x, 0),
6685 next_code),
6686 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6687
6688 /* If we are in a comparison and this is an AND with a power of two,
6689 convert this into the appropriate bit extract. */
6690 else if (in_code == COMPARE
6691 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6692 new = make_extraction (mode,
6693 make_compound_operation (XEXP (x, 0),
6694 next_code),
6695 i, NULL_RTX, 1, 1, 0, 1);
6696
6697 break;
6698
6699 case LSHIFTRT:
6700 /* If the sign bit is known to be zero, replace this with an
6701 arithmetic shift. */
6702 if (have_insn_for (ASHIFTRT, mode)
6703 && ! have_insn_for (LSHIFTRT, mode)
6704 && mode_width <= HOST_BITS_PER_WIDE_INT
6705 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6706 {
6707 new = gen_rtx_ASHIFTRT (mode,
6708 make_compound_operation (XEXP (x, 0),
6709 next_code),
6710 XEXP (x, 1));
6711 break;
6712 }
6713
6714 /* ... fall through ... */
6715
6716 case ASHIFTRT:
6717 lhs = XEXP (x, 0);
6718 rhs = XEXP (x, 1);
6719
6720 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6721 this is a SIGN_EXTRACT. */
6722 if (GET_CODE (rhs) == CONST_INT
6723 && GET_CODE (lhs) == ASHIFT
6724 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6725 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6726 {
6727 new = make_compound_operation (XEXP (lhs, 0), next_code);
6728 new = make_extraction (mode, new,
6729 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6730 NULL_RTX, mode_width - INTVAL (rhs),
6731 code == LSHIFTRT, 0, in_code == COMPARE);
6732 break;
6733 }
6734
6735 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6736 If so, try to merge the shifts into a SIGN_EXTEND. We could
6737 also do this for some cases of SIGN_EXTRACT, but it doesn't
6738 seem worth the effort; the case checked for occurs on Alpha. */
6739
6740 if (!OBJECT_P (lhs)
6741 && ! (GET_CODE (lhs) == SUBREG
6742 && (OBJECT_P (SUBREG_REG (lhs))))
6743 && GET_CODE (rhs) == CONST_INT
6744 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6745 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6746 new = make_extraction (mode, make_compound_operation (new, next_code),
6747 0, NULL_RTX, mode_width - INTVAL (rhs),
6748 code == LSHIFTRT, 0, in_code == COMPARE);
6749
6750 break;
6751
6752 case SUBREG:
6753 /* Call ourselves recursively on the inner expression. If we are
6754 narrowing the object and it has a different RTL code from
6755 what it originally did, do this SUBREG as a force_to_mode. */
6756
6757 tem = make_compound_operation (SUBREG_REG (x), in_code);
6758 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6759 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6760 && subreg_lowpart_p (x))
6761 {
6762 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6763 NULL_RTX, 0);
6764
6765 /* If we have something other than a SUBREG, we might have
6766 done an expansion, so rerun ourselves. */
6767 if (GET_CODE (newer) != SUBREG)
6768 newer = make_compound_operation (newer, in_code);
6769
6770 return newer;
6771 }
6772
6773 /* If this is a paradoxical subreg, and the new code is a sign or
6774 zero extension, omit the subreg and widen the extension. If it
6775 is a regular subreg, we can still get rid of the subreg by not
6776 widening so much, or in fact removing the extension entirely. */
6777 if ((GET_CODE (tem) == SIGN_EXTEND
6778 || GET_CODE (tem) == ZERO_EXTEND)
6779 && subreg_lowpart_p (x))
6780 {
6781 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6782 || (GET_MODE_SIZE (mode) >
6783 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6784 {
6785 if (! SCALAR_INT_MODE_P (mode))
6786 break;
6787 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6788 }
6789 else
6790 tem = gen_lowpart (mode, XEXP (tem, 0));
6791 return tem;
6792 }
6793 break;
6794
6795 default:
6796 break;
6797 }
6798
6799 if (new)
6800 {
6801 x = gen_lowpart (mode, new);
6802 code = GET_CODE (x);
6803 }
6804
6805 /* Now recursively process each operand of this operation. */
6806 fmt = GET_RTX_FORMAT (code);
6807 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6808 if (fmt[i] == 'e')
6809 {
6810 new = make_compound_operation (XEXP (x, i), next_code);
6811 SUBST (XEXP (x, i), new);
6812 }
6813
6814 return x;
6815 }
6816 \f
6817 /* Given M see if it is a value that would select a field of bits
6818 within an item, but not the entire word. Return -1 if not.
6819 Otherwise, return the starting position of the field, where 0 is the
6820 low-order bit.
6821
6822 *PLEN is set to the length of the field. */
6823
6824 static int
6825 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6826 {
6827 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6828 int pos = exact_log2 (m & -m);
6829 int len = 0;
6830
6831 if (pos >= 0)
6832 /* Now shift off the low-order zero bits and see if we have a
6833 power of two minus 1. */
6834 len = exact_log2 ((m >> pos) + 1);
6835
6836 if (len <= 0)
6837 pos = -1;
6838
6839 *plen = len;
6840 return pos;
6841 }
6842 \f
6843 /* See if X can be simplified knowing that we will only refer to it in
6844 MODE and will only refer to those bits that are nonzero in MASK.
6845 If other bits are being computed or if masking operations are done
6846 that select a superset of the bits in MASK, they can sometimes be
6847 ignored.
6848
6849 Return a possibly simplified expression, but always convert X to
6850 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6851
6852 Also, if REG is nonzero and X is a register equal in value to REG,
6853 replace X with REG.
6854
6855 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6856 are all off in X. This is used when X will be complemented, by either
6857 NOT, NEG, or XOR. */
6858
6859 static rtx
6860 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6861 rtx reg, int just_select)
6862 {
6863 enum rtx_code code = GET_CODE (x);
6864 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6865 enum machine_mode op_mode;
6866 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6867 rtx op0, op1, temp;
6868
6869 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6870 code below will do the wrong thing since the mode of such an
6871 expression is VOIDmode.
6872
6873 Also do nothing if X is a CLOBBER; this can happen if X was
6874 the return value from a call to gen_lowpart. */
6875 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6876 return x;
6877
6878 /* We want to perform the operation is its present mode unless we know
6879 that the operation is valid in MODE, in which case we do the operation
6880 in MODE. */
6881 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6882 && have_insn_for (code, mode))
6883 ? mode : GET_MODE (x));
6884
6885 /* It is not valid to do a right-shift in a narrower mode
6886 than the one it came in with. */
6887 if ((code == LSHIFTRT || code == ASHIFTRT)
6888 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6889 op_mode = GET_MODE (x);
6890
6891 /* Truncate MASK to fit OP_MODE. */
6892 if (op_mode)
6893 mask &= GET_MODE_MASK (op_mode);
6894
6895 /* When we have an arithmetic operation, or a shift whose count we
6896 do not know, we need to assume that all bits up to the highest-order
6897 bit in MASK will be needed. This is how we form such a mask. */
6898 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6899 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6900 else
6901 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6902 - 1);
6903
6904 /* Determine what bits of X are guaranteed to be (non)zero. */
6905 nonzero = nonzero_bits (x, mode);
6906
6907 /* If none of the bits in X are needed, return a zero. */
6908 if (! just_select && (nonzero & mask) == 0)
6909 x = const0_rtx;
6910
6911 /* If X is a CONST_INT, return a new one. Do this here since the
6912 test below will fail. */
6913 if (GET_CODE (x) == CONST_INT)
6914 {
6915 if (SCALAR_INT_MODE_P (mode))
6916 return gen_int_mode (INTVAL (x) & mask, mode);
6917 else
6918 {
6919 x = GEN_INT (INTVAL (x) & mask);
6920 return gen_lowpart_common (mode, x);
6921 }
6922 }
6923
6924 /* If X is narrower than MODE and we want all the bits in X's mode, just
6925 get X in the proper mode. */
6926 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6927 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6928 return gen_lowpart (mode, x);
6929
6930 switch (code)
6931 {
6932 case CLOBBER:
6933 /* If X is a (clobber (const_int)), return it since we know we are
6934 generating something that won't match. */
6935 return x;
6936
6937 case USE:
6938 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6939 spanned the boundary of the MEM. If we are now masking so it is
6940 within that boundary, we don't need the USE any more. */
6941 if (! BITS_BIG_ENDIAN
6942 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6943 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6944 break;
6945
6946 case SIGN_EXTEND:
6947 case ZERO_EXTEND:
6948 case ZERO_EXTRACT:
6949 case SIGN_EXTRACT:
6950 x = expand_compound_operation (x);
6951 if (GET_CODE (x) != code)
6952 return force_to_mode (x, mode, mask, reg, next_select);
6953 break;
6954
6955 case REG:
6956 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6957 || rtx_equal_p (reg, get_last_value (x))))
6958 x = reg;
6959 break;
6960
6961 case SUBREG:
6962 if (subreg_lowpart_p (x)
6963 /* We can ignore the effect of this SUBREG if it narrows the mode or
6964 if the constant masks to zero all the bits the mode doesn't
6965 have. */
6966 && ((GET_MODE_SIZE (GET_MODE (x))
6967 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6968 || (0 == (mask
6969 & GET_MODE_MASK (GET_MODE (x))
6970 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6971 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6972 break;
6973
6974 case AND:
6975 /* If this is an AND with a constant, convert it into an AND
6976 whose constant is the AND of that constant with MASK. If it
6977 remains an AND of MASK, delete it since it is redundant. */
6978
6979 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6980 {
6981 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6982 mask & INTVAL (XEXP (x, 1)));
6983
6984 /* If X is still an AND, see if it is an AND with a mask that
6985 is just some low-order bits. If so, and it is MASK, we don't
6986 need it. */
6987
6988 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6989 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6990 == mask))
6991 x = XEXP (x, 0);
6992
6993 /* If it remains an AND, try making another AND with the bits
6994 in the mode mask that aren't in MASK turned on. If the
6995 constant in the AND is wide enough, this might make a
6996 cheaper constant. */
6997
6998 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6999 && GET_MODE_MASK (GET_MODE (x)) != mask
7000 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7001 {
7002 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7003 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7004 int width = GET_MODE_BITSIZE (GET_MODE (x));
7005 rtx y;
7006
7007 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7008 number, sign extend it. */
7009 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7010 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7011 cval |= (HOST_WIDE_INT) -1 << width;
7012
7013 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
7014 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7015 x = y;
7016 }
7017
7018 break;
7019 }
7020
7021 goto binop;
7022
7023 case PLUS:
7024 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7025 low-order bits (as in an alignment operation) and FOO is already
7026 aligned to that boundary, mask C1 to that boundary as well.
7027 This may eliminate that PLUS and, later, the AND. */
7028
7029 {
7030 unsigned int width = GET_MODE_BITSIZE (mode);
7031 unsigned HOST_WIDE_INT smask = mask;
7032
7033 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7034 number, sign extend it. */
7035
7036 if (width < HOST_BITS_PER_WIDE_INT
7037 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7038 smask |= (HOST_WIDE_INT) -1 << width;
7039
7040 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7041 && exact_log2 (- smask) >= 0
7042 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7043 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7044 return force_to_mode (plus_constant (XEXP (x, 0),
7045 (INTVAL (XEXP (x, 1)) & smask)),
7046 mode, smask, reg, next_select);
7047 }
7048
7049 /* ... fall through ... */
7050
7051 case MULT:
7052 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7053 most significant bit in MASK since carries from those bits will
7054 affect the bits we are interested in. */
7055 mask = fuller_mask;
7056 goto binop;
7057
7058 case MINUS:
7059 /* If X is (minus C Y) where C's least set bit is larger than any bit
7060 in the mask, then we may replace with (neg Y). */
7061 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7062 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7063 & -INTVAL (XEXP (x, 0))))
7064 > mask))
7065 {
7066 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7067 GET_MODE (x));
7068 return force_to_mode (x, mode, mask, reg, next_select);
7069 }
7070
7071 /* Similarly, if C contains every bit in the fuller_mask, then we may
7072 replace with (not Y). */
7073 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7074 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7075 == INTVAL (XEXP (x, 0))))
7076 {
7077 x = simplify_gen_unary (NOT, GET_MODE (x),
7078 XEXP (x, 1), GET_MODE (x));
7079 return force_to_mode (x, mode, mask, reg, next_select);
7080 }
7081
7082 mask = fuller_mask;
7083 goto binop;
7084
7085 case IOR:
7086 case XOR:
7087 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7088 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7089 operation which may be a bitfield extraction. Ensure that the
7090 constant we form is not wider than the mode of X. */
7091
7092 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7093 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7094 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7095 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7096 && GET_CODE (XEXP (x, 1)) == CONST_INT
7097 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7098 + floor_log2 (INTVAL (XEXP (x, 1))))
7099 < GET_MODE_BITSIZE (GET_MODE (x)))
7100 && (INTVAL (XEXP (x, 1))
7101 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7102 {
7103 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7104 << INTVAL (XEXP (XEXP (x, 0), 1)));
7105 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7106 XEXP (XEXP (x, 0), 0), temp);
7107 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7108 XEXP (XEXP (x, 0), 1));
7109 return force_to_mode (x, mode, mask, reg, next_select);
7110 }
7111
7112 binop:
7113 /* For most binary operations, just propagate into the operation and
7114 change the mode if we have an operation of that mode. */
7115
7116 op0 = gen_lowpart (op_mode,
7117 force_to_mode (XEXP (x, 0), mode, mask,
7118 reg, next_select));
7119 op1 = gen_lowpart (op_mode,
7120 force_to_mode (XEXP (x, 1), mode, mask,
7121 reg, next_select));
7122
7123 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7124 x = gen_binary (code, op_mode, op0, op1);
7125 break;
7126
7127 case ASHIFT:
7128 /* For left shifts, do the same, but just for the first operand.
7129 However, we cannot do anything with shifts where we cannot
7130 guarantee that the counts are smaller than the size of the mode
7131 because such a count will have a different meaning in a
7132 wider mode. */
7133
7134 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7135 && INTVAL (XEXP (x, 1)) >= 0
7136 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7137 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7138 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7139 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7140 break;
7141
7142 /* If the shift count is a constant and we can do arithmetic in
7143 the mode of the shift, refine which bits we need. Otherwise, use the
7144 conservative form of the mask. */
7145 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7146 && INTVAL (XEXP (x, 1)) >= 0
7147 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7148 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7149 mask >>= INTVAL (XEXP (x, 1));
7150 else
7151 mask = fuller_mask;
7152
7153 op0 = gen_lowpart (op_mode,
7154 force_to_mode (XEXP (x, 0), op_mode,
7155 mask, reg, next_select));
7156
7157 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7158 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7159 break;
7160
7161 case LSHIFTRT:
7162 /* Here we can only do something if the shift count is a constant,
7163 this shift constant is valid for the host, and we can do arithmetic
7164 in OP_MODE. */
7165
7166 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7167 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7168 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7169 {
7170 rtx inner = XEXP (x, 0);
7171 unsigned HOST_WIDE_INT inner_mask;
7172
7173 /* Select the mask of the bits we need for the shift operand. */
7174 inner_mask = mask << INTVAL (XEXP (x, 1));
7175
7176 /* We can only change the mode of the shift if we can do arithmetic
7177 in the mode of the shift and INNER_MASK is no wider than the
7178 width of X's mode. */
7179 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7180 op_mode = GET_MODE (x);
7181
7182 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7183
7184 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7185 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7186 }
7187
7188 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7189 shift and AND produces only copies of the sign bit (C2 is one less
7190 than a power of two), we can do this with just a shift. */
7191
7192 if (GET_CODE (x) == LSHIFTRT
7193 && GET_CODE (XEXP (x, 1)) == CONST_INT
7194 /* The shift puts one of the sign bit copies in the least significant
7195 bit. */
7196 && ((INTVAL (XEXP (x, 1))
7197 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7198 >= GET_MODE_BITSIZE (GET_MODE (x)))
7199 && exact_log2 (mask + 1) >= 0
7200 /* Number of bits left after the shift must be more than the mask
7201 needs. */
7202 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7203 <= GET_MODE_BITSIZE (GET_MODE (x)))
7204 /* Must be more sign bit copies than the mask needs. */
7205 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7206 >= exact_log2 (mask + 1)))
7207 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7208 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7209 - exact_log2 (mask + 1)));
7210
7211 goto shiftrt;
7212
7213 case ASHIFTRT:
7214 /* If we are just looking for the sign bit, we don't need this shift at
7215 all, even if it has a variable count. */
7216 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7217 && (mask == ((unsigned HOST_WIDE_INT) 1
7218 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7219 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7220
7221 /* If this is a shift by a constant, get a mask that contains those bits
7222 that are not copies of the sign bit. We then have two cases: If
7223 MASK only includes those bits, this can be a logical shift, which may
7224 allow simplifications. If MASK is a single-bit field not within
7225 those bits, we are requesting a copy of the sign bit and hence can
7226 shift the sign bit to the appropriate location. */
7227
7228 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7229 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7230 {
7231 int i = -1;
7232
7233 /* If the considered data is wider than HOST_WIDE_INT, we can't
7234 represent a mask for all its bits in a single scalar.
7235 But we only care about the lower bits, so calculate these. */
7236
7237 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7238 {
7239 nonzero = ~(HOST_WIDE_INT) 0;
7240
7241 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7242 is the number of bits a full-width mask would have set.
7243 We need only shift if these are fewer than nonzero can
7244 hold. If not, we must keep all bits set in nonzero. */
7245
7246 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7247 < HOST_BITS_PER_WIDE_INT)
7248 nonzero >>= INTVAL (XEXP (x, 1))
7249 + HOST_BITS_PER_WIDE_INT
7250 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7251 }
7252 else
7253 {
7254 nonzero = GET_MODE_MASK (GET_MODE (x));
7255 nonzero >>= INTVAL (XEXP (x, 1));
7256 }
7257
7258 if ((mask & ~nonzero) == 0
7259 || (i = exact_log2 (mask)) >= 0)
7260 {
7261 x = simplify_shift_const
7262 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7263 i < 0 ? INTVAL (XEXP (x, 1))
7264 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7265
7266 if (GET_CODE (x) != ASHIFTRT)
7267 return force_to_mode (x, mode, mask, reg, next_select);
7268 }
7269 }
7270
7271 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7272 even if the shift count isn't a constant. */
7273 if (mask == 1)
7274 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7275
7276 shiftrt:
7277
7278 /* If this is a zero- or sign-extension operation that just affects bits
7279 we don't care about, remove it. Be sure the call above returned
7280 something that is still a shift. */
7281
7282 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7283 && GET_CODE (XEXP (x, 1)) == CONST_INT
7284 && INTVAL (XEXP (x, 1)) >= 0
7285 && (INTVAL (XEXP (x, 1))
7286 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7287 && GET_CODE (XEXP (x, 0)) == ASHIFT
7288 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7289 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7290 reg, next_select);
7291
7292 break;
7293
7294 case ROTATE:
7295 case ROTATERT:
7296 /* If the shift count is constant and we can do computations
7297 in the mode of X, compute where the bits we care about are.
7298 Otherwise, we can't do anything. Don't change the mode of
7299 the shift or propagate MODE into the shift, though. */
7300 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7301 && INTVAL (XEXP (x, 1)) >= 0)
7302 {
7303 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7304 GET_MODE (x), GEN_INT (mask),
7305 XEXP (x, 1));
7306 if (temp && GET_CODE (temp) == CONST_INT)
7307 SUBST (XEXP (x, 0),
7308 force_to_mode (XEXP (x, 0), GET_MODE (x),
7309 INTVAL (temp), reg, next_select));
7310 }
7311 break;
7312
7313 case NEG:
7314 /* If we just want the low-order bit, the NEG isn't needed since it
7315 won't change the low-order bit. */
7316 if (mask == 1)
7317 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7318
7319 /* We need any bits less significant than the most significant bit in
7320 MASK since carries from those bits will affect the bits we are
7321 interested in. */
7322 mask = fuller_mask;
7323 goto unop;
7324
7325 case NOT:
7326 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7327 same as the XOR case above. Ensure that the constant we form is not
7328 wider than the mode of X. */
7329
7330 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7331 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7332 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7333 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7334 < GET_MODE_BITSIZE (GET_MODE (x)))
7335 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7336 {
7337 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7338 GET_MODE (x));
7339 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7340 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7341
7342 return force_to_mode (x, mode, mask, reg, next_select);
7343 }
7344
7345 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7346 use the full mask inside the NOT. */
7347 mask = fuller_mask;
7348
7349 unop:
7350 op0 = gen_lowpart (op_mode,
7351 force_to_mode (XEXP (x, 0), mode, mask,
7352 reg, next_select));
7353 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7354 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7355 break;
7356
7357 case NE:
7358 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7359 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7360 which is equal to STORE_FLAG_VALUE. */
7361 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7362 && GET_MODE (XEXP (x, 0)) == mode
7363 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7364 && (nonzero_bits (XEXP (x, 0), mode)
7365 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7366 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7367
7368 break;
7369
7370 case IF_THEN_ELSE:
7371 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7372 written in a narrower mode. We play it safe and do not do so. */
7373
7374 SUBST (XEXP (x, 1),
7375 gen_lowpart (GET_MODE (x),
7376 force_to_mode (XEXP (x, 1), mode,
7377 mask, reg, next_select)));
7378 SUBST (XEXP (x, 2),
7379 gen_lowpart (GET_MODE (x),
7380 force_to_mode (XEXP (x, 2), mode,
7381 mask, reg, next_select)));
7382 break;
7383
7384 default:
7385 break;
7386 }
7387
7388 /* Ensure we return a value of the proper mode. */
7389 return gen_lowpart (mode, x);
7390 }
7391 \f
7392 /* Return nonzero if X is an expression that has one of two values depending on
7393 whether some other value is zero or nonzero. In that case, we return the
7394 value that is being tested, *PTRUE is set to the value if the rtx being
7395 returned has a nonzero value, and *PFALSE is set to the other alternative.
7396
7397 If we return zero, we set *PTRUE and *PFALSE to X. */
7398
7399 static rtx
7400 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7401 {
7402 enum machine_mode mode = GET_MODE (x);
7403 enum rtx_code code = GET_CODE (x);
7404 rtx cond0, cond1, true0, true1, false0, false1;
7405 unsigned HOST_WIDE_INT nz;
7406
7407 /* If we are comparing a value against zero, we are done. */
7408 if ((code == NE || code == EQ)
7409 && XEXP (x, 1) == const0_rtx)
7410 {
7411 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7412 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7413 return XEXP (x, 0);
7414 }
7415
7416 /* If this is a unary operation whose operand has one of two values, apply
7417 our opcode to compute those values. */
7418 else if (UNARY_P (x)
7419 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7420 {
7421 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7422 *pfalse = simplify_gen_unary (code, mode, false0,
7423 GET_MODE (XEXP (x, 0)));
7424 return cond0;
7425 }
7426
7427 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7428 make can't possibly match and would suppress other optimizations. */
7429 else if (code == COMPARE)
7430 ;
7431
7432 /* If this is a binary operation, see if either side has only one of two
7433 values. If either one does or if both do and they are conditional on
7434 the same value, compute the new true and false values. */
7435 else if (BINARY_P (x))
7436 {
7437 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7438 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7439
7440 if ((cond0 != 0 || cond1 != 0)
7441 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7442 {
7443 /* If if_then_else_cond returned zero, then true/false are the
7444 same rtl. We must copy one of them to prevent invalid rtl
7445 sharing. */
7446 if (cond0 == 0)
7447 true0 = copy_rtx (true0);
7448 else if (cond1 == 0)
7449 true1 = copy_rtx (true1);
7450
7451 *ptrue = gen_binary (code, mode, true0, true1);
7452 *pfalse = gen_binary (code, mode, false0, false1);
7453 return cond0 ? cond0 : cond1;
7454 }
7455
7456 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7457 operands is zero when the other is nonzero, and vice-versa,
7458 and STORE_FLAG_VALUE is 1 or -1. */
7459
7460 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7461 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7462 || code == UMAX)
7463 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7464 {
7465 rtx op0 = XEXP (XEXP (x, 0), 1);
7466 rtx op1 = XEXP (XEXP (x, 1), 1);
7467
7468 cond0 = XEXP (XEXP (x, 0), 0);
7469 cond1 = XEXP (XEXP (x, 1), 0);
7470
7471 if (COMPARISON_P (cond0)
7472 && COMPARISON_P (cond1)
7473 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7474 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7475 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7476 || ((swap_condition (GET_CODE (cond0))
7477 == combine_reversed_comparison_code (cond1))
7478 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7479 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7480 && ! side_effects_p (x))
7481 {
7482 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7483 *pfalse = gen_binary (MULT, mode,
7484 (code == MINUS
7485 ? simplify_gen_unary (NEG, mode, op1,
7486 mode)
7487 : op1),
7488 const_true_rtx);
7489 return cond0;
7490 }
7491 }
7492
7493 /* Similarly for MULT, AND and UMIN, except that for these the result
7494 is always zero. */
7495 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7496 && (code == MULT || code == AND || code == UMIN)
7497 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7498 {
7499 cond0 = XEXP (XEXP (x, 0), 0);
7500 cond1 = XEXP (XEXP (x, 1), 0);
7501
7502 if (COMPARISON_P (cond0)
7503 && COMPARISON_P (cond1)
7504 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7505 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7506 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7507 || ((swap_condition (GET_CODE (cond0))
7508 == combine_reversed_comparison_code (cond1))
7509 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7510 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7511 && ! side_effects_p (x))
7512 {
7513 *ptrue = *pfalse = const0_rtx;
7514 return cond0;
7515 }
7516 }
7517 }
7518
7519 else if (code == IF_THEN_ELSE)
7520 {
7521 /* If we have IF_THEN_ELSE already, extract the condition and
7522 canonicalize it if it is NE or EQ. */
7523 cond0 = XEXP (x, 0);
7524 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7525 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7526 return XEXP (cond0, 0);
7527 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7528 {
7529 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7530 return XEXP (cond0, 0);
7531 }
7532 else
7533 return cond0;
7534 }
7535
7536 /* If X is a SUBREG, we can narrow both the true and false values
7537 if the inner expression, if there is a condition. */
7538 else if (code == SUBREG
7539 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7540 &true0, &false0)))
7541 {
7542 true0 = simplify_gen_subreg (mode, true0,
7543 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7544 false0 = simplify_gen_subreg (mode, false0,
7545 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7546 if (true0 && false0)
7547 {
7548 *ptrue = true0;
7549 *pfalse = false0;
7550 return cond0;
7551 }
7552 }
7553
7554 /* If X is a constant, this isn't special and will cause confusions
7555 if we treat it as such. Likewise if it is equivalent to a constant. */
7556 else if (CONSTANT_P (x)
7557 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7558 ;
7559
7560 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7561 will be least confusing to the rest of the compiler. */
7562 else if (mode == BImode)
7563 {
7564 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7565 return x;
7566 }
7567
7568 /* If X is known to be either 0 or -1, those are the true and
7569 false values when testing X. */
7570 else if (x == constm1_rtx || x == const0_rtx
7571 || (mode != VOIDmode
7572 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7573 {
7574 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7575 return x;
7576 }
7577
7578 /* Likewise for 0 or a single bit. */
7579 else if (SCALAR_INT_MODE_P (mode)
7580 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7581 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7582 {
7583 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7584 return x;
7585 }
7586
7587 /* Otherwise fail; show no condition with true and false values the same. */
7588 *ptrue = *pfalse = x;
7589 return 0;
7590 }
7591 \f
7592 /* Return the value of expression X given the fact that condition COND
7593 is known to be true when applied to REG as its first operand and VAL
7594 as its second. X is known to not be shared and so can be modified in
7595 place.
7596
7597 We only handle the simplest cases, and specifically those cases that
7598 arise with IF_THEN_ELSE expressions. */
7599
7600 static rtx
7601 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7602 {
7603 enum rtx_code code = GET_CODE (x);
7604 rtx temp;
7605 const char *fmt;
7606 int i, j;
7607
7608 if (side_effects_p (x))
7609 return x;
7610
7611 /* If either operand of the condition is a floating point value,
7612 then we have to avoid collapsing an EQ comparison. */
7613 if (cond == EQ
7614 && rtx_equal_p (x, reg)
7615 && ! FLOAT_MODE_P (GET_MODE (x))
7616 && ! FLOAT_MODE_P (GET_MODE (val)))
7617 return val;
7618
7619 if (cond == UNEQ && rtx_equal_p (x, reg))
7620 return val;
7621
7622 /* If X is (abs REG) and we know something about REG's relationship
7623 with zero, we may be able to simplify this. */
7624
7625 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7626 switch (cond)
7627 {
7628 case GE: case GT: case EQ:
7629 return XEXP (x, 0);
7630 case LT: case LE:
7631 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7632 XEXP (x, 0),
7633 GET_MODE (XEXP (x, 0)));
7634 default:
7635 break;
7636 }
7637
7638 /* The only other cases we handle are MIN, MAX, and comparisons if the
7639 operands are the same as REG and VAL. */
7640
7641 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7642 {
7643 if (rtx_equal_p (XEXP (x, 0), val))
7644 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7645
7646 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7647 {
7648 if (COMPARISON_P (x))
7649 {
7650 if (comparison_dominates_p (cond, code))
7651 return const_true_rtx;
7652
7653 code = combine_reversed_comparison_code (x);
7654 if (code != UNKNOWN
7655 && comparison_dominates_p (cond, code))
7656 return const0_rtx;
7657 else
7658 return x;
7659 }
7660 else if (code == SMAX || code == SMIN
7661 || code == UMIN || code == UMAX)
7662 {
7663 int unsignedp = (code == UMIN || code == UMAX);
7664
7665 /* Do not reverse the condition when it is NE or EQ.
7666 This is because we cannot conclude anything about
7667 the value of 'SMAX (x, y)' when x is not equal to y,
7668 but we can when x equals y. */
7669 if ((code == SMAX || code == UMAX)
7670 && ! (cond == EQ || cond == NE))
7671 cond = reverse_condition (cond);
7672
7673 switch (cond)
7674 {
7675 case GE: case GT:
7676 return unsignedp ? x : XEXP (x, 1);
7677 case LE: case LT:
7678 return unsignedp ? x : XEXP (x, 0);
7679 case GEU: case GTU:
7680 return unsignedp ? XEXP (x, 1) : x;
7681 case LEU: case LTU:
7682 return unsignedp ? XEXP (x, 0) : x;
7683 default:
7684 break;
7685 }
7686 }
7687 }
7688 }
7689 else if (code == SUBREG)
7690 {
7691 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7692 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7693
7694 if (SUBREG_REG (x) != r)
7695 {
7696 /* We must simplify subreg here, before we lose track of the
7697 original inner_mode. */
7698 new = simplify_subreg (GET_MODE (x), r,
7699 inner_mode, SUBREG_BYTE (x));
7700 if (new)
7701 return new;
7702 else
7703 SUBST (SUBREG_REG (x), r);
7704 }
7705
7706 return x;
7707 }
7708 /* We don't have to handle SIGN_EXTEND here, because even in the
7709 case of replacing something with a modeless CONST_INT, a
7710 CONST_INT is already (supposed to be) a valid sign extension for
7711 its narrower mode, which implies it's already properly
7712 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7713 story is different. */
7714 else if (code == ZERO_EXTEND)
7715 {
7716 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7717 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7718
7719 if (XEXP (x, 0) != r)
7720 {
7721 /* We must simplify the zero_extend here, before we lose
7722 track of the original inner_mode. */
7723 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7724 r, inner_mode);
7725 if (new)
7726 return new;
7727 else
7728 SUBST (XEXP (x, 0), r);
7729 }
7730
7731 return x;
7732 }
7733
7734 fmt = GET_RTX_FORMAT (code);
7735 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7736 {
7737 if (fmt[i] == 'e')
7738 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7739 else if (fmt[i] == 'E')
7740 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7741 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7742 cond, reg, val));
7743 }
7744
7745 return x;
7746 }
7747 \f
7748 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7749 assignment as a field assignment. */
7750
7751 static int
7752 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7753 {
7754 if (x == y || rtx_equal_p (x, y))
7755 return 1;
7756
7757 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7758 return 0;
7759
7760 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7761 Note that all SUBREGs of MEM are paradoxical; otherwise they
7762 would have been rewritten. */
7763 if (MEM_P (x) && GET_CODE (y) == SUBREG
7764 && MEM_P (SUBREG_REG (y))
7765 && rtx_equal_p (SUBREG_REG (y),
7766 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7767 return 1;
7768
7769 if (MEM_P (y) && GET_CODE (x) == SUBREG
7770 && MEM_P (SUBREG_REG (x))
7771 && rtx_equal_p (SUBREG_REG (x),
7772 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7773 return 1;
7774
7775 /* We used to see if get_last_value of X and Y were the same but that's
7776 not correct. In one direction, we'll cause the assignment to have
7777 the wrong destination and in the case, we'll import a register into this
7778 insn that might have already have been dead. So fail if none of the
7779 above cases are true. */
7780 return 0;
7781 }
7782 \f
7783 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7784 Return that assignment if so.
7785
7786 We only handle the most common cases. */
7787
7788 static rtx
7789 make_field_assignment (rtx x)
7790 {
7791 rtx dest = SET_DEST (x);
7792 rtx src = SET_SRC (x);
7793 rtx assign;
7794 rtx rhs, lhs;
7795 HOST_WIDE_INT c1;
7796 HOST_WIDE_INT pos;
7797 unsigned HOST_WIDE_INT len;
7798 rtx other;
7799 enum machine_mode mode;
7800
7801 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7802 a clear of a one-bit field. We will have changed it to
7803 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7804 for a SUBREG. */
7805
7806 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7807 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7808 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7809 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7810 {
7811 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7812 1, 1, 1, 0);
7813 if (assign != 0)
7814 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7815 return x;
7816 }
7817
7818 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7819 && subreg_lowpart_p (XEXP (src, 0))
7820 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7821 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7822 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7823 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7824 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7825 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7826 {
7827 assign = make_extraction (VOIDmode, dest, 0,
7828 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7829 1, 1, 1, 0);
7830 if (assign != 0)
7831 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7832 return x;
7833 }
7834
7835 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7836 one-bit field. */
7837 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7838 && XEXP (XEXP (src, 0), 0) == const1_rtx
7839 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7840 {
7841 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7842 1, 1, 1, 0);
7843 if (assign != 0)
7844 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7845 return x;
7846 }
7847
7848 /* The other case we handle is assignments into a constant-position
7849 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7850 a mask that has all one bits except for a group of zero bits and
7851 OTHER is known to have zeros where C1 has ones, this is such an
7852 assignment. Compute the position and length from C1. Shift OTHER
7853 to the appropriate position, force it to the required mode, and
7854 make the extraction. Check for the AND in both operands. */
7855
7856 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7857 return x;
7858
7859 rhs = expand_compound_operation (XEXP (src, 0));
7860 lhs = expand_compound_operation (XEXP (src, 1));
7861
7862 if (GET_CODE (rhs) == AND
7863 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7864 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7865 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7866 else if (GET_CODE (lhs) == AND
7867 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7868 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7869 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7870 else
7871 return x;
7872
7873 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7874 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7875 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7876 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7877 return x;
7878
7879 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7880 if (assign == 0)
7881 return x;
7882
7883 /* The mode to use for the source is the mode of the assignment, or of
7884 what is inside a possible STRICT_LOW_PART. */
7885 mode = (GET_CODE (assign) == STRICT_LOW_PART
7886 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7887
7888 /* Shift OTHER right POS places and make it the source, restricting it
7889 to the proper length and mode. */
7890
7891 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7892 GET_MODE (src), other, pos),
7893 mode,
7894 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7895 ? ~(unsigned HOST_WIDE_INT) 0
7896 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7897 dest, 0);
7898
7899 /* If SRC is masked by an AND that does not make a difference in
7900 the value being stored, strip it. */
7901 if (GET_CODE (assign) == ZERO_EXTRACT
7902 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7903 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7904 && GET_CODE (src) == AND
7905 && GET_CODE (XEXP (src, 1)) == CONST_INT
7906 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7907 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7908 src = XEXP (src, 0);
7909
7910 return gen_rtx_SET (VOIDmode, assign, src);
7911 }
7912 \f
7913 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7914 if so. */
7915
7916 static rtx
7917 apply_distributive_law (rtx x)
7918 {
7919 enum rtx_code code = GET_CODE (x);
7920 enum rtx_code inner_code;
7921 rtx lhs, rhs, other;
7922 rtx tem;
7923
7924 /* Distributivity is not true for floating point as it can change the
7925 value. So we don't do it unless -funsafe-math-optimizations. */
7926 if (FLOAT_MODE_P (GET_MODE (x))
7927 && ! flag_unsafe_math_optimizations)
7928 return x;
7929
7930 /* The outer operation can only be one of the following: */
7931 if (code != IOR && code != AND && code != XOR
7932 && code != PLUS && code != MINUS)
7933 return x;
7934
7935 lhs = XEXP (x, 0);
7936 rhs = XEXP (x, 1);
7937
7938 /* If either operand is a primitive we can't do anything, so get out
7939 fast. */
7940 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7941 return x;
7942
7943 lhs = expand_compound_operation (lhs);
7944 rhs = expand_compound_operation (rhs);
7945 inner_code = GET_CODE (lhs);
7946 if (inner_code != GET_CODE (rhs))
7947 return x;
7948
7949 /* See if the inner and outer operations distribute. */
7950 switch (inner_code)
7951 {
7952 case LSHIFTRT:
7953 case ASHIFTRT:
7954 case AND:
7955 case IOR:
7956 /* These all distribute except over PLUS. */
7957 if (code == PLUS || code == MINUS)
7958 return x;
7959 break;
7960
7961 case MULT:
7962 if (code != PLUS && code != MINUS)
7963 return x;
7964 break;
7965
7966 case ASHIFT:
7967 /* This is also a multiply, so it distributes over everything. */
7968 break;
7969
7970 case SUBREG:
7971 /* Non-paradoxical SUBREGs distributes over all operations, provided
7972 the inner modes and byte offsets are the same, this is an extraction
7973 of a low-order part, we don't convert an fp operation to int or
7974 vice versa, and we would not be converting a single-word
7975 operation into a multi-word operation. The latter test is not
7976 required, but it prevents generating unneeded multi-word operations.
7977 Some of the previous tests are redundant given the latter test, but
7978 are retained because they are required for correctness.
7979
7980 We produce the result slightly differently in this case. */
7981
7982 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7983 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7984 || ! subreg_lowpart_p (lhs)
7985 || (GET_MODE_CLASS (GET_MODE (lhs))
7986 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7987 || (GET_MODE_SIZE (GET_MODE (lhs))
7988 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7989 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7990 return x;
7991
7992 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7993 SUBREG_REG (lhs), SUBREG_REG (rhs));
7994 return gen_lowpart (GET_MODE (x), tem);
7995
7996 default:
7997 return x;
7998 }
7999
8000 /* Set LHS and RHS to the inner operands (A and B in the example
8001 above) and set OTHER to the common operand (C in the example).
8002 There is only one way to do this unless the inner operation is
8003 commutative. */
8004 if (COMMUTATIVE_ARITH_P (lhs)
8005 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8006 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8007 else if (COMMUTATIVE_ARITH_P (lhs)
8008 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8009 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8010 else if (COMMUTATIVE_ARITH_P (lhs)
8011 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8012 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8013 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8014 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8015 else
8016 return x;
8017
8018 /* Form the new inner operation, seeing if it simplifies first. */
8019 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8020
8021 /* There is one exception to the general way of distributing:
8022 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8023 if (code == XOR && inner_code == IOR)
8024 {
8025 inner_code = AND;
8026 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8027 }
8028
8029 /* We may be able to continuing distributing the result, so call
8030 ourselves recursively on the inner operation before forming the
8031 outer operation, which we return. */
8032 return gen_binary (inner_code, GET_MODE (x),
8033 apply_distributive_law (tem), other);
8034 }
8035 \f
8036 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8037 in MODE.
8038
8039 Return an equivalent form, if different from X. Otherwise, return X. If
8040 X is zero, we are to always construct the equivalent form. */
8041
8042 static rtx
8043 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8044 unsigned HOST_WIDE_INT constop)
8045 {
8046 unsigned HOST_WIDE_INT nonzero;
8047 int i;
8048
8049 /* Simplify VAROP knowing that we will be only looking at some of the
8050 bits in it.
8051
8052 Note by passing in CONSTOP, we guarantee that the bits not set in
8053 CONSTOP are not significant and will never be examined. We must
8054 ensure that is the case by explicitly masking out those bits
8055 before returning. */
8056 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8057
8058 /* If VAROP is a CLOBBER, we will fail so return it. */
8059 if (GET_CODE (varop) == CLOBBER)
8060 return varop;
8061
8062 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8063 to VAROP and return the new constant. */
8064 if (GET_CODE (varop) == CONST_INT)
8065 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8066
8067 /* See what bits may be nonzero in VAROP. Unlike the general case of
8068 a call to nonzero_bits, here we don't care about bits outside
8069 MODE. */
8070
8071 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8072
8073 /* Turn off all bits in the constant that are known to already be zero.
8074 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8075 which is tested below. */
8076
8077 constop &= nonzero;
8078
8079 /* If we don't have any bits left, return zero. */
8080 if (constop == 0)
8081 return const0_rtx;
8082
8083 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8084 a power of two, we can replace this with an ASHIFT. */
8085 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8086 && (i = exact_log2 (constop)) >= 0)
8087 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8088
8089 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8090 or XOR, then try to apply the distributive law. This may eliminate
8091 operations if either branch can be simplified because of the AND.
8092 It may also make some cases more complex, but those cases probably
8093 won't match a pattern either with or without this. */
8094
8095 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8096 return
8097 gen_lowpart
8098 (mode,
8099 apply_distributive_law
8100 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8101 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8102 XEXP (varop, 0), constop),
8103 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8104 XEXP (varop, 1), constop))));
8105
8106 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8107 the AND and see if one of the operands simplifies to zero. If so, we
8108 may eliminate it. */
8109
8110 if (GET_CODE (varop) == PLUS
8111 && exact_log2 (constop + 1) >= 0)
8112 {
8113 rtx o0, o1;
8114
8115 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8116 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8117 if (o0 == const0_rtx)
8118 return o1;
8119 if (o1 == const0_rtx)
8120 return o0;
8121 }
8122
8123 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8124 if we already had one (just check for the simplest cases). */
8125 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8126 && GET_MODE (XEXP (x, 0)) == mode
8127 && SUBREG_REG (XEXP (x, 0)) == varop)
8128 varop = XEXP (x, 0);
8129 else
8130 varop = gen_lowpart (mode, varop);
8131
8132 /* If we can't make the SUBREG, try to return what we were given. */
8133 if (GET_CODE (varop) == CLOBBER)
8134 return x ? x : varop;
8135
8136 /* If we are only masking insignificant bits, return VAROP. */
8137 if (constop == nonzero)
8138 x = varop;
8139 else
8140 {
8141 /* Otherwise, return an AND. */
8142 constop = trunc_int_for_mode (constop, mode);
8143 /* See how much, if any, of X we can use. */
8144 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8145 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8146
8147 else
8148 {
8149 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8150 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8151 SUBST (XEXP (x, 1), GEN_INT (constop));
8152
8153 SUBST (XEXP (x, 0), varop);
8154 }
8155 }
8156
8157 return x;
8158 }
8159 \f
8160 /* Given a REG, X, compute which bits in X can be nonzero.
8161 We don't care about bits outside of those defined in MODE.
8162
8163 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8164 a shift, AND, or zero_extract, we can do better. */
8165
8166 static rtx
8167 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8168 rtx known_x ATTRIBUTE_UNUSED,
8169 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8170 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8171 unsigned HOST_WIDE_INT *nonzero)
8172 {
8173 rtx tem;
8174
8175 /* If X is a register whose nonzero bits value is current, use it.
8176 Otherwise, if X is a register whose value we can find, use that
8177 value. Otherwise, use the previously-computed global nonzero bits
8178 for this register. */
8179
8180 if (reg_stat[REGNO (x)].last_set_value != 0
8181 && (reg_stat[REGNO (x)].last_set_mode == mode
8182 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8183 && GET_MODE_CLASS (mode) == MODE_INT))
8184 && (reg_stat[REGNO (x)].last_set_label == label_tick
8185 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8186 && REG_N_SETS (REGNO (x)) == 1
8187 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8188 REGNO (x))))
8189 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8190 {
8191 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8192 return NULL;
8193 }
8194
8195 tem = get_last_value (x);
8196
8197 if (tem)
8198 {
8199 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8200 /* If X is narrower than MODE and TEM is a non-negative
8201 constant that would appear negative in the mode of X,
8202 sign-extend it for use in reg_nonzero_bits because some
8203 machines (maybe most) will actually do the sign-extension
8204 and this is the conservative approach.
8205
8206 ??? For 2.5, try to tighten up the MD files in this regard
8207 instead of this kludge. */
8208
8209 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8210 && GET_CODE (tem) == CONST_INT
8211 && INTVAL (tem) > 0
8212 && 0 != (INTVAL (tem)
8213 & ((HOST_WIDE_INT) 1
8214 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8215 tem = GEN_INT (INTVAL (tem)
8216 | ((HOST_WIDE_INT) (-1)
8217 << GET_MODE_BITSIZE (GET_MODE (x))));
8218 #endif
8219 return tem;
8220 }
8221 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8222 {
8223 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8224
8225 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8226 /* We don't know anything about the upper bits. */
8227 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8228 *nonzero &= mask;
8229 }
8230
8231 return NULL;
8232 }
8233
8234 /* Return the number of bits at the high-order end of X that are known to
8235 be equal to the sign bit. X will be used in mode MODE; if MODE is
8236 VOIDmode, X will be used in its own mode. The returned value will always
8237 be between 1 and the number of bits in MODE. */
8238
8239 static rtx
8240 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8241 rtx known_x ATTRIBUTE_UNUSED,
8242 enum machine_mode known_mode
8243 ATTRIBUTE_UNUSED,
8244 unsigned int known_ret ATTRIBUTE_UNUSED,
8245 unsigned int *result)
8246 {
8247 rtx tem;
8248
8249 if (reg_stat[REGNO (x)].last_set_value != 0
8250 && reg_stat[REGNO (x)].last_set_mode == mode
8251 && (reg_stat[REGNO (x)].last_set_label == label_tick
8252 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8253 && REG_N_SETS (REGNO (x)) == 1
8254 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8255 REGNO (x))))
8256 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8257 {
8258 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8259 return NULL;
8260 }
8261
8262 tem = get_last_value (x);
8263 if (tem != 0)
8264 return tem;
8265
8266 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8267 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8268 *result = reg_stat[REGNO (x)].sign_bit_copies;
8269
8270 return NULL;
8271 }
8272 \f
8273 /* Return the number of "extended" bits there are in X, when interpreted
8274 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8275 unsigned quantities, this is the number of high-order zero bits.
8276 For signed quantities, this is the number of copies of the sign bit
8277 minus 1. In both case, this function returns the number of "spare"
8278 bits. For example, if two quantities for which this function returns
8279 at least 1 are added, the addition is known not to overflow.
8280
8281 This function will always return 0 unless called during combine, which
8282 implies that it must be called from a define_split. */
8283
8284 unsigned int
8285 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8286 {
8287 if (nonzero_sign_valid == 0)
8288 return 0;
8289
8290 return (unsignedp
8291 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8292 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8293 - floor_log2 (nonzero_bits (x, mode)))
8294 : 0)
8295 : num_sign_bit_copies (x, mode) - 1);
8296 }
8297 \f
8298 /* This function is called from `simplify_shift_const' to merge two
8299 outer operations. Specifically, we have already found that we need
8300 to perform operation *POP0 with constant *PCONST0 at the outermost
8301 position. We would now like to also perform OP1 with constant CONST1
8302 (with *POP0 being done last).
8303
8304 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8305 the resulting operation. *PCOMP_P is set to 1 if we would need to
8306 complement the innermost operand, otherwise it is unchanged.
8307
8308 MODE is the mode in which the operation will be done. No bits outside
8309 the width of this mode matter. It is assumed that the width of this mode
8310 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8311
8312 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8313 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8314 result is simply *PCONST0.
8315
8316 If the resulting operation cannot be expressed as one operation, we
8317 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8318
8319 static int
8320 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8321 {
8322 enum rtx_code op0 = *pop0;
8323 HOST_WIDE_INT const0 = *pconst0;
8324
8325 const0 &= GET_MODE_MASK (mode);
8326 const1 &= GET_MODE_MASK (mode);
8327
8328 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8329 if (op0 == AND)
8330 const1 &= const0;
8331
8332 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8333 if OP0 is SET. */
8334
8335 if (op1 == UNKNOWN || op0 == SET)
8336 return 1;
8337
8338 else if (op0 == UNKNOWN)
8339 op0 = op1, const0 = const1;
8340
8341 else if (op0 == op1)
8342 {
8343 switch (op0)
8344 {
8345 case AND:
8346 const0 &= const1;
8347 break;
8348 case IOR:
8349 const0 |= const1;
8350 break;
8351 case XOR:
8352 const0 ^= const1;
8353 break;
8354 case PLUS:
8355 const0 += const1;
8356 break;
8357 case NEG:
8358 op0 = UNKNOWN;
8359 break;
8360 default:
8361 break;
8362 }
8363 }
8364
8365 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8366 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8367 return 0;
8368
8369 /* If the two constants aren't the same, we can't do anything. The
8370 remaining six cases can all be done. */
8371 else if (const0 != const1)
8372 return 0;
8373
8374 else
8375 switch (op0)
8376 {
8377 case IOR:
8378 if (op1 == AND)
8379 /* (a & b) | b == b */
8380 op0 = SET;
8381 else /* op1 == XOR */
8382 /* (a ^ b) | b == a | b */
8383 {;}
8384 break;
8385
8386 case XOR:
8387 if (op1 == AND)
8388 /* (a & b) ^ b == (~a) & b */
8389 op0 = AND, *pcomp_p = 1;
8390 else /* op1 == IOR */
8391 /* (a | b) ^ b == a & ~b */
8392 op0 = AND, const0 = ~const0;
8393 break;
8394
8395 case AND:
8396 if (op1 == IOR)
8397 /* (a | b) & b == b */
8398 op0 = SET;
8399 else /* op1 == XOR */
8400 /* (a ^ b) & b) == (~a) & b */
8401 *pcomp_p = 1;
8402 break;
8403 default:
8404 break;
8405 }
8406
8407 /* Check for NO-OP cases. */
8408 const0 &= GET_MODE_MASK (mode);
8409 if (const0 == 0
8410 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8411 op0 = UNKNOWN;
8412 else if (const0 == 0 && op0 == AND)
8413 op0 = SET;
8414 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8415 && op0 == AND)
8416 op0 = UNKNOWN;
8417
8418 /* ??? Slightly redundant with the above mask, but not entirely.
8419 Moving this above means we'd have to sign-extend the mode mask
8420 for the final test. */
8421 const0 = trunc_int_for_mode (const0, mode);
8422
8423 *pop0 = op0;
8424 *pconst0 = const0;
8425
8426 return 1;
8427 }
8428 \f
8429 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8430 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8431 that we started with.
8432
8433 The shift is normally computed in the widest mode we find in VAROP, as
8434 long as it isn't a different number of words than RESULT_MODE. Exceptions
8435 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8436
8437 static rtx
8438 simplify_shift_const (rtx x, enum rtx_code code,
8439 enum machine_mode result_mode, rtx varop,
8440 int orig_count)
8441 {
8442 enum rtx_code orig_code = code;
8443 unsigned int count;
8444 int signed_count;
8445 enum machine_mode mode = result_mode;
8446 enum machine_mode shift_mode, tmode;
8447 unsigned int mode_words
8448 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8449 /* We form (outer_op (code varop count) (outer_const)). */
8450 enum rtx_code outer_op = UNKNOWN;
8451 HOST_WIDE_INT outer_const = 0;
8452 rtx const_rtx;
8453 int complement_p = 0;
8454 rtx new;
8455
8456 /* Make sure and truncate the "natural" shift on the way in. We don't
8457 want to do this inside the loop as it makes it more difficult to
8458 combine shifts. */
8459 if (SHIFT_COUNT_TRUNCATED)
8460 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8461
8462 /* If we were given an invalid count, don't do anything except exactly
8463 what was requested. */
8464
8465 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8466 {
8467 if (x)
8468 return x;
8469
8470 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8471 }
8472
8473 count = orig_count;
8474
8475 /* Unless one of the branches of the `if' in this loop does a `continue',
8476 we will `break' the loop after the `if'. */
8477
8478 while (count != 0)
8479 {
8480 /* If we have an operand of (clobber (const_int 0)), just return that
8481 value. */
8482 if (GET_CODE (varop) == CLOBBER)
8483 return varop;
8484
8485 /* If we discovered we had to complement VAROP, leave. Making a NOT
8486 here would cause an infinite loop. */
8487 if (complement_p)
8488 break;
8489
8490 /* Convert ROTATERT to ROTATE. */
8491 if (code == ROTATERT)
8492 {
8493 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8494 code = ROTATE;
8495 if (VECTOR_MODE_P (result_mode))
8496 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8497 else
8498 count = bitsize - count;
8499 }
8500
8501 /* We need to determine what mode we will do the shift in. If the
8502 shift is a right shift or a ROTATE, we must always do it in the mode
8503 it was originally done in. Otherwise, we can do it in MODE, the
8504 widest mode encountered. */
8505 shift_mode
8506 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8507 ? result_mode : mode);
8508
8509 /* Handle cases where the count is greater than the size of the mode
8510 minus 1. For ASHIFT, use the size minus one as the count (this can
8511 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8512 take the count modulo the size. For other shifts, the result is
8513 zero.
8514
8515 Since these shifts are being produced by the compiler by combining
8516 multiple operations, each of which are defined, we know what the
8517 result is supposed to be. */
8518
8519 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8520 {
8521 if (code == ASHIFTRT)
8522 count = GET_MODE_BITSIZE (shift_mode) - 1;
8523 else if (code == ROTATE || code == ROTATERT)
8524 count %= GET_MODE_BITSIZE (shift_mode);
8525 else
8526 {
8527 /* We can't simply return zero because there may be an
8528 outer op. */
8529 varop = const0_rtx;
8530 count = 0;
8531 break;
8532 }
8533 }
8534
8535 /* An arithmetic right shift of a quantity known to be -1 or 0
8536 is a no-op. */
8537 if (code == ASHIFTRT
8538 && (num_sign_bit_copies (varop, shift_mode)
8539 == GET_MODE_BITSIZE (shift_mode)))
8540 {
8541 count = 0;
8542 break;
8543 }
8544
8545 /* If we are doing an arithmetic right shift and discarding all but
8546 the sign bit copies, this is equivalent to doing a shift by the
8547 bitsize minus one. Convert it into that shift because it will often
8548 allow other simplifications. */
8549
8550 if (code == ASHIFTRT
8551 && (count + num_sign_bit_copies (varop, shift_mode)
8552 >= GET_MODE_BITSIZE (shift_mode)))
8553 count = GET_MODE_BITSIZE (shift_mode) - 1;
8554
8555 /* We simplify the tests below and elsewhere by converting
8556 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8557 `make_compound_operation' will convert it to an ASHIFTRT for
8558 those machines (such as VAX) that don't have an LSHIFTRT. */
8559 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8560 && code == ASHIFTRT
8561 && ((nonzero_bits (varop, shift_mode)
8562 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8563 == 0))
8564 code = LSHIFTRT;
8565
8566 if (code == LSHIFTRT
8567 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8568 && !(nonzero_bits (varop, shift_mode) >> count))
8569 varop = const0_rtx;
8570 if (code == ASHIFT
8571 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8572 && !((nonzero_bits (varop, shift_mode) << count)
8573 & GET_MODE_MASK (shift_mode)))
8574 varop = const0_rtx;
8575
8576 switch (GET_CODE (varop))
8577 {
8578 case SIGN_EXTEND:
8579 case ZERO_EXTEND:
8580 case SIGN_EXTRACT:
8581 case ZERO_EXTRACT:
8582 new = expand_compound_operation (varop);
8583 if (new != varop)
8584 {
8585 varop = new;
8586 continue;
8587 }
8588 break;
8589
8590 case MEM:
8591 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8592 minus the width of a smaller mode, we can do this with a
8593 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8594 if ((code == ASHIFTRT || code == LSHIFTRT)
8595 && ! mode_dependent_address_p (XEXP (varop, 0))
8596 && ! MEM_VOLATILE_P (varop)
8597 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8598 MODE_INT, 1)) != BLKmode)
8599 {
8600 new = adjust_address_nv (varop, tmode,
8601 BYTES_BIG_ENDIAN ? 0
8602 : count / BITS_PER_UNIT);
8603
8604 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8605 : ZERO_EXTEND, mode, new);
8606 count = 0;
8607 continue;
8608 }
8609 break;
8610
8611 case USE:
8612 /* Similar to the case above, except that we can only do this if
8613 the resulting mode is the same as that of the underlying
8614 MEM and adjust the address depending on the *bits* endianness
8615 because of the way that bit-field extract insns are defined. */
8616 if ((code == ASHIFTRT || code == LSHIFTRT)
8617 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8618 MODE_INT, 1)) != BLKmode
8619 && tmode == GET_MODE (XEXP (varop, 0)))
8620 {
8621 if (BITS_BIG_ENDIAN)
8622 new = XEXP (varop, 0);
8623 else
8624 {
8625 new = copy_rtx (XEXP (varop, 0));
8626 SUBST (XEXP (new, 0),
8627 plus_constant (XEXP (new, 0),
8628 count / BITS_PER_UNIT));
8629 }
8630
8631 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8632 : ZERO_EXTEND, mode, new);
8633 count = 0;
8634 continue;
8635 }
8636 break;
8637
8638 case SUBREG:
8639 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8640 the same number of words as what we've seen so far. Then store
8641 the widest mode in MODE. */
8642 if (subreg_lowpart_p (varop)
8643 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8644 > GET_MODE_SIZE (GET_MODE (varop)))
8645 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8646 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8647 == mode_words)
8648 {
8649 varop = SUBREG_REG (varop);
8650 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8651 mode = GET_MODE (varop);
8652 continue;
8653 }
8654 break;
8655
8656 case MULT:
8657 /* Some machines use MULT instead of ASHIFT because MULT
8658 is cheaper. But it is still better on those machines to
8659 merge two shifts into one. */
8660 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8661 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8662 {
8663 varop
8664 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8665 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8666 continue;
8667 }
8668 break;
8669
8670 case UDIV:
8671 /* Similar, for when divides are cheaper. */
8672 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8673 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8674 {
8675 varop
8676 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8677 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8678 continue;
8679 }
8680 break;
8681
8682 case ASHIFTRT:
8683 /* If we are extracting just the sign bit of an arithmetic
8684 right shift, that shift is not needed. However, the sign
8685 bit of a wider mode may be different from what would be
8686 interpreted as the sign bit in a narrower mode, so, if
8687 the result is narrower, don't discard the shift. */
8688 if (code == LSHIFTRT
8689 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8690 && (GET_MODE_BITSIZE (result_mode)
8691 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8692 {
8693 varop = XEXP (varop, 0);
8694 continue;
8695 }
8696
8697 /* ... fall through ... */
8698
8699 case LSHIFTRT:
8700 case ASHIFT:
8701 case ROTATE:
8702 /* Here we have two nested shifts. The result is usually the
8703 AND of a new shift with a mask. We compute the result below. */
8704 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8705 && INTVAL (XEXP (varop, 1)) >= 0
8706 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8707 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8708 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8709 {
8710 enum rtx_code first_code = GET_CODE (varop);
8711 unsigned int first_count = INTVAL (XEXP (varop, 1));
8712 unsigned HOST_WIDE_INT mask;
8713 rtx mask_rtx;
8714
8715 /* We have one common special case. We can't do any merging if
8716 the inner code is an ASHIFTRT of a smaller mode. However, if
8717 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8718 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8719 we can convert it to
8720 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8721 This simplifies certain SIGN_EXTEND operations. */
8722 if (code == ASHIFT && first_code == ASHIFTRT
8723 && count == (unsigned int)
8724 (GET_MODE_BITSIZE (result_mode)
8725 - GET_MODE_BITSIZE (GET_MODE (varop))))
8726 {
8727 /* C3 has the low-order C1 bits zero. */
8728
8729 mask = (GET_MODE_MASK (mode)
8730 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8731
8732 varop = simplify_and_const_int (NULL_RTX, result_mode,
8733 XEXP (varop, 0), mask);
8734 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8735 varop, count);
8736 count = first_count;
8737 code = ASHIFTRT;
8738 continue;
8739 }
8740
8741 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8742 than C1 high-order bits equal to the sign bit, we can convert
8743 this to either an ASHIFT or an ASHIFTRT depending on the
8744 two counts.
8745
8746 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8747
8748 if (code == ASHIFTRT && first_code == ASHIFT
8749 && GET_MODE (varop) == shift_mode
8750 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8751 > first_count))
8752 {
8753 varop = XEXP (varop, 0);
8754
8755 signed_count = count - first_count;
8756 if (signed_count < 0)
8757 count = -signed_count, code = ASHIFT;
8758 else
8759 count = signed_count;
8760
8761 continue;
8762 }
8763
8764 /* There are some cases we can't do. If CODE is ASHIFTRT,
8765 we can only do this if FIRST_CODE is also ASHIFTRT.
8766
8767 We can't do the case when CODE is ROTATE and FIRST_CODE is
8768 ASHIFTRT.
8769
8770 If the mode of this shift is not the mode of the outer shift,
8771 we can't do this if either shift is a right shift or ROTATE.
8772
8773 Finally, we can't do any of these if the mode is too wide
8774 unless the codes are the same.
8775
8776 Handle the case where the shift codes are the same
8777 first. */
8778
8779 if (code == first_code)
8780 {
8781 if (GET_MODE (varop) != result_mode
8782 && (code == ASHIFTRT || code == LSHIFTRT
8783 || code == ROTATE))
8784 break;
8785
8786 count += first_count;
8787 varop = XEXP (varop, 0);
8788 continue;
8789 }
8790
8791 if (code == ASHIFTRT
8792 || (code == ROTATE && first_code == ASHIFTRT)
8793 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8794 || (GET_MODE (varop) != result_mode
8795 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8796 || first_code == ROTATE
8797 || code == ROTATE)))
8798 break;
8799
8800 /* To compute the mask to apply after the shift, shift the
8801 nonzero bits of the inner shift the same way the
8802 outer shift will. */
8803
8804 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8805
8806 mask_rtx
8807 = simplify_binary_operation (code, result_mode, mask_rtx,
8808 GEN_INT (count));
8809
8810 /* Give up if we can't compute an outer operation to use. */
8811 if (mask_rtx == 0
8812 || GET_CODE (mask_rtx) != CONST_INT
8813 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8814 INTVAL (mask_rtx),
8815 result_mode, &complement_p))
8816 break;
8817
8818 /* If the shifts are in the same direction, we add the
8819 counts. Otherwise, we subtract them. */
8820 signed_count = count;
8821 if ((code == ASHIFTRT || code == LSHIFTRT)
8822 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8823 signed_count += first_count;
8824 else
8825 signed_count -= first_count;
8826
8827 /* If COUNT is positive, the new shift is usually CODE,
8828 except for the two exceptions below, in which case it is
8829 FIRST_CODE. If the count is negative, FIRST_CODE should
8830 always be used */
8831 if (signed_count > 0
8832 && ((first_code == ROTATE && code == ASHIFT)
8833 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8834 code = first_code, count = signed_count;
8835 else if (signed_count < 0)
8836 code = first_code, count = -signed_count;
8837 else
8838 count = signed_count;
8839
8840 varop = XEXP (varop, 0);
8841 continue;
8842 }
8843
8844 /* If we have (A << B << C) for any shift, we can convert this to
8845 (A << C << B). This wins if A is a constant. Only try this if
8846 B is not a constant. */
8847
8848 else if (GET_CODE (varop) == code
8849 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8850 && 0 != (new
8851 = simplify_binary_operation (code, mode,
8852 XEXP (varop, 0),
8853 GEN_INT (count))))
8854 {
8855 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8856 count = 0;
8857 continue;
8858 }
8859 break;
8860
8861 case NOT:
8862 /* Make this fit the case below. */
8863 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8864 GEN_INT (GET_MODE_MASK (mode)));
8865 continue;
8866
8867 case IOR:
8868 case AND:
8869 case XOR:
8870 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8871 with C the size of VAROP - 1 and the shift is logical if
8872 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8873 we have an (le X 0) operation. If we have an arithmetic shift
8874 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8875 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8876
8877 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8878 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8879 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8880 && (code == LSHIFTRT || code == ASHIFTRT)
8881 && count == (unsigned int)
8882 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8883 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8884 {
8885 count = 0;
8886 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8887 const0_rtx);
8888
8889 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8890 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8891
8892 continue;
8893 }
8894
8895 /* If we have (shift (logical)), move the logical to the outside
8896 to allow it to possibly combine with another logical and the
8897 shift to combine with another shift. This also canonicalizes to
8898 what a ZERO_EXTRACT looks like. Also, some machines have
8899 (and (shift)) insns. */
8900
8901 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8902 /* We can't do this if we have (ashiftrt (xor)) and the
8903 constant has its sign bit set in shift_mode. */
8904 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8905 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8906 shift_mode))
8907 && (new = simplify_binary_operation (code, result_mode,
8908 XEXP (varop, 1),
8909 GEN_INT (count))) != 0
8910 && GET_CODE (new) == CONST_INT
8911 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8912 INTVAL (new), result_mode, &complement_p))
8913 {
8914 varop = XEXP (varop, 0);
8915 continue;
8916 }
8917
8918 /* If we can't do that, try to simplify the shift in each arm of the
8919 logical expression, make a new logical expression, and apply
8920 the inverse distributive law. This also can't be done
8921 for some (ashiftrt (xor)). */
8922 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8923 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8924 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8925 shift_mode)))
8926 {
8927 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8928 XEXP (varop, 0), count);
8929 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8930 XEXP (varop, 1), count);
8931
8932 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8933 varop = apply_distributive_law (varop);
8934
8935 count = 0;
8936 continue;
8937 }
8938 break;
8939
8940 case EQ:
8941 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8942 says that the sign bit can be tested, FOO has mode MODE, C is
8943 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8944 that may be nonzero. */
8945 if (code == LSHIFTRT
8946 && XEXP (varop, 1) == const0_rtx
8947 && GET_MODE (XEXP (varop, 0)) == result_mode
8948 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8949 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8950 && ((STORE_FLAG_VALUE
8951 & ((HOST_WIDE_INT) 1
8952 < (GET_MODE_BITSIZE (result_mode) - 1))))
8953 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8954 && merge_outer_ops (&outer_op, &outer_const, XOR,
8955 (HOST_WIDE_INT) 1, result_mode,
8956 &complement_p))
8957 {
8958 varop = XEXP (varop, 0);
8959 count = 0;
8960 continue;
8961 }
8962 break;
8963
8964 case NEG:
8965 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8966 than the number of bits in the mode is equivalent to A. */
8967 if (code == LSHIFTRT
8968 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8969 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8970 {
8971 varop = XEXP (varop, 0);
8972 count = 0;
8973 continue;
8974 }
8975
8976 /* NEG commutes with ASHIFT since it is multiplication. Move the
8977 NEG outside to allow shifts to combine. */
8978 if (code == ASHIFT
8979 && merge_outer_ops (&outer_op, &outer_const, NEG,
8980 (HOST_WIDE_INT) 0, result_mode,
8981 &complement_p))
8982 {
8983 varop = XEXP (varop, 0);
8984 continue;
8985 }
8986 break;
8987
8988 case PLUS:
8989 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8990 is one less than the number of bits in the mode is
8991 equivalent to (xor A 1). */
8992 if (code == LSHIFTRT
8993 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8994 && XEXP (varop, 1) == constm1_rtx
8995 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8996 && merge_outer_ops (&outer_op, &outer_const, XOR,
8997 (HOST_WIDE_INT) 1, result_mode,
8998 &complement_p))
8999 {
9000 count = 0;
9001 varop = XEXP (varop, 0);
9002 continue;
9003 }
9004
9005 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9006 that might be nonzero in BAR are those being shifted out and those
9007 bits are known zero in FOO, we can replace the PLUS with FOO.
9008 Similarly in the other operand order. This code occurs when
9009 we are computing the size of a variable-size array. */
9010
9011 if ((code == ASHIFTRT || code == LSHIFTRT)
9012 && count < HOST_BITS_PER_WIDE_INT
9013 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9014 && (nonzero_bits (XEXP (varop, 1), result_mode)
9015 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9016 {
9017 varop = XEXP (varop, 0);
9018 continue;
9019 }
9020 else if ((code == ASHIFTRT || code == LSHIFTRT)
9021 && count < HOST_BITS_PER_WIDE_INT
9022 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9023 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9024 >> count)
9025 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9026 & nonzero_bits (XEXP (varop, 1),
9027 result_mode)))
9028 {
9029 varop = XEXP (varop, 1);
9030 continue;
9031 }
9032
9033 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9034 if (code == ASHIFT
9035 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9036 && (new = simplify_binary_operation (ASHIFT, result_mode,
9037 XEXP (varop, 1),
9038 GEN_INT (count))) != 0
9039 && GET_CODE (new) == CONST_INT
9040 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9041 INTVAL (new), result_mode, &complement_p))
9042 {
9043 varop = XEXP (varop, 0);
9044 continue;
9045 }
9046
9047 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9048 signbit', and attempt to change the PLUS to an XOR and move it to
9049 the outer operation as is done above in the AND/IOR/XOR case
9050 leg for shift(logical). See details in logical handling above
9051 for reasoning in doing so. */
9052 if (code == LSHIFTRT
9053 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9054 && mode_signbit_p (result_mode, XEXP (varop, 1))
9055 && (new = simplify_binary_operation (code, result_mode,
9056 XEXP (varop, 1),
9057 GEN_INT (count))) != 0
9058 && GET_CODE (new) == CONST_INT
9059 && merge_outer_ops (&outer_op, &outer_const, XOR,
9060 INTVAL (new), result_mode, &complement_p))
9061 {
9062 varop = XEXP (varop, 0);
9063 continue;
9064 }
9065
9066 break;
9067
9068 case MINUS:
9069 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9070 with C the size of VAROP - 1 and the shift is logical if
9071 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9072 we have a (gt X 0) operation. If the shift is arithmetic with
9073 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9074 we have a (neg (gt X 0)) operation. */
9075
9076 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9077 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9078 && count == (unsigned int)
9079 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9080 && (code == LSHIFTRT || code == ASHIFTRT)
9081 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9082 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9083 == count
9084 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9085 {
9086 count = 0;
9087 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9088 const0_rtx);
9089
9090 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9091 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9092
9093 continue;
9094 }
9095 break;
9096
9097 case TRUNCATE:
9098 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9099 if the truncate does not affect the value. */
9100 if (code == LSHIFTRT
9101 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9102 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9103 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9104 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9105 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9106 {
9107 rtx varop_inner = XEXP (varop, 0);
9108
9109 varop_inner
9110 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9111 XEXP (varop_inner, 0),
9112 GEN_INT
9113 (count + INTVAL (XEXP (varop_inner, 1))));
9114 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9115 count = 0;
9116 continue;
9117 }
9118 break;
9119
9120 default:
9121 break;
9122 }
9123
9124 break;
9125 }
9126
9127 /* We need to determine what mode to do the shift in. If the shift is
9128 a right shift or ROTATE, we must always do it in the mode it was
9129 originally done in. Otherwise, we can do it in MODE, the widest mode
9130 encountered. The code we care about is that of the shift that will
9131 actually be done, not the shift that was originally requested. */
9132 shift_mode
9133 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9134 ? result_mode : mode);
9135
9136 /* We have now finished analyzing the shift. The result should be
9137 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9138 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9139 to the result of the shift. OUTER_CONST is the relevant constant,
9140 but we must turn off all bits turned off in the shift.
9141
9142 If we were passed a value for X, see if we can use any pieces of
9143 it. If not, make new rtx. */
9144
9145 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9146 && GET_CODE (XEXP (x, 1)) == CONST_INT
9147 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9148 const_rtx = XEXP (x, 1);
9149 else
9150 const_rtx = GEN_INT (count);
9151
9152 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9153 && GET_MODE (XEXP (x, 0)) == shift_mode
9154 && SUBREG_REG (XEXP (x, 0)) == varop)
9155 varop = XEXP (x, 0);
9156 else if (GET_MODE (varop) != shift_mode)
9157 varop = gen_lowpart (shift_mode, varop);
9158
9159 /* If we can't make the SUBREG, try to return what we were given. */
9160 if (GET_CODE (varop) == CLOBBER)
9161 return x ? x : varop;
9162
9163 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9164 if (new != 0)
9165 x = new;
9166 else
9167 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9168
9169 /* If we have an outer operation and we just made a shift, it is
9170 possible that we could have simplified the shift were it not
9171 for the outer operation. So try to do the simplification
9172 recursively. */
9173
9174 if (outer_op != UNKNOWN && GET_CODE (x) == code
9175 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9176 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9177 INTVAL (XEXP (x, 1)));
9178
9179 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9180 turn off all the bits that the shift would have turned off. */
9181 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9182 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9183 GET_MODE_MASK (result_mode) >> orig_count);
9184
9185 /* Do the remainder of the processing in RESULT_MODE. */
9186 x = gen_lowpart (result_mode, x);
9187
9188 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9189 operation. */
9190 if (complement_p)
9191 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9192
9193 if (outer_op != UNKNOWN)
9194 {
9195 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9196 outer_const = trunc_int_for_mode (outer_const, result_mode);
9197
9198 if (outer_op == AND)
9199 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9200 else if (outer_op == SET)
9201 /* This means that we have determined that the result is
9202 equivalent to a constant. This should be rare. */
9203 x = GEN_INT (outer_const);
9204 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9205 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9206 else
9207 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9208 }
9209
9210 return x;
9211 }
9212 \f
9213 /* Like recog, but we receive the address of a pointer to a new pattern.
9214 We try to match the rtx that the pointer points to.
9215 If that fails, we may try to modify or replace the pattern,
9216 storing the replacement into the same pointer object.
9217
9218 Modifications include deletion or addition of CLOBBERs.
9219
9220 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9221 the CLOBBERs are placed.
9222
9223 The value is the final insn code from the pattern ultimately matched,
9224 or -1. */
9225
9226 static int
9227 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9228 {
9229 rtx pat = *pnewpat;
9230 int insn_code_number;
9231 int num_clobbers_to_add = 0;
9232 int i;
9233 rtx notes = 0;
9234 rtx old_notes, old_pat;
9235
9236 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9237 we use to indicate that something didn't match. If we find such a
9238 thing, force rejection. */
9239 if (GET_CODE (pat) == PARALLEL)
9240 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9241 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9242 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9243 return -1;
9244
9245 old_pat = PATTERN (insn);
9246 old_notes = REG_NOTES (insn);
9247 PATTERN (insn) = pat;
9248 REG_NOTES (insn) = 0;
9249
9250 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9251
9252 /* If it isn't, there is the possibility that we previously had an insn
9253 that clobbered some register as a side effect, but the combined
9254 insn doesn't need to do that. So try once more without the clobbers
9255 unless this represents an ASM insn. */
9256
9257 if (insn_code_number < 0 && ! check_asm_operands (pat)
9258 && GET_CODE (pat) == PARALLEL)
9259 {
9260 int pos;
9261
9262 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9263 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9264 {
9265 if (i != pos)
9266 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9267 pos++;
9268 }
9269
9270 SUBST_INT (XVECLEN (pat, 0), pos);
9271
9272 if (pos == 1)
9273 pat = XVECEXP (pat, 0, 0);
9274
9275 PATTERN (insn) = pat;
9276 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9277 }
9278 PATTERN (insn) = old_pat;
9279 REG_NOTES (insn) = old_notes;
9280
9281 /* Recognize all noop sets, these will be killed by followup pass. */
9282 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9283 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9284
9285 /* If we had any clobbers to add, make a new pattern than contains
9286 them. Then check to make sure that all of them are dead. */
9287 if (num_clobbers_to_add)
9288 {
9289 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9290 rtvec_alloc (GET_CODE (pat) == PARALLEL
9291 ? (XVECLEN (pat, 0)
9292 + num_clobbers_to_add)
9293 : num_clobbers_to_add + 1));
9294
9295 if (GET_CODE (pat) == PARALLEL)
9296 for (i = 0; i < XVECLEN (pat, 0); i++)
9297 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9298 else
9299 XVECEXP (newpat, 0, 0) = pat;
9300
9301 add_clobbers (newpat, insn_code_number);
9302
9303 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9304 i < XVECLEN (newpat, 0); i++)
9305 {
9306 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9307 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9308 return -1;
9309 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9310 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9311 }
9312 pat = newpat;
9313 }
9314
9315 *pnewpat = pat;
9316 *pnotes = notes;
9317
9318 return insn_code_number;
9319 }
9320 \f
9321 /* Like gen_lowpart_general but for use by combine. In combine it
9322 is not possible to create any new pseudoregs. However, it is
9323 safe to create invalid memory addresses, because combine will
9324 try to recognize them and all they will do is make the combine
9325 attempt fail.
9326
9327 If for some reason this cannot do its job, an rtx
9328 (clobber (const_int 0)) is returned.
9329 An insn containing that will not be recognized. */
9330
9331 static rtx
9332 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9333 {
9334 enum machine_mode imode = GET_MODE (x);
9335 unsigned int osize = GET_MODE_SIZE (omode);
9336 unsigned int isize = GET_MODE_SIZE (imode);
9337 rtx result;
9338
9339 if (omode == imode)
9340 return x;
9341
9342 /* Return identity if this is a CONST or symbolic reference. */
9343 if (omode == Pmode
9344 && (GET_CODE (x) == CONST
9345 || GET_CODE (x) == SYMBOL_REF
9346 || GET_CODE (x) == LABEL_REF))
9347 return x;
9348
9349 /* We can only support MODE being wider than a word if X is a
9350 constant integer or has a mode the same size. */
9351 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9352 && ! ((imode == VOIDmode
9353 && (GET_CODE (x) == CONST_INT
9354 || GET_CODE (x) == CONST_DOUBLE))
9355 || isize == osize))
9356 goto fail;
9357
9358 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9359 won't know what to do. So we will strip off the SUBREG here and
9360 process normally. */
9361 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9362 {
9363 x = SUBREG_REG (x);
9364
9365 /* For use in case we fall down into the address adjustments
9366 further below, we need to adjust the known mode and size of
9367 x; imode and isize, since we just adjusted x. */
9368 imode = GET_MODE (x);
9369
9370 if (imode == omode)
9371 return x;
9372
9373 isize = GET_MODE_SIZE (imode);
9374 }
9375
9376 result = gen_lowpart_common (omode, x);
9377
9378 #ifdef CANNOT_CHANGE_MODE_CLASS
9379 if (result != 0 && GET_CODE (result) == SUBREG)
9380 record_subregs_of_mode (result);
9381 #endif
9382
9383 if (result)
9384 return result;
9385
9386 if (MEM_P (x))
9387 {
9388 int offset = 0;
9389
9390 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9391 address. */
9392 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9393 goto fail;
9394
9395 /* If we want to refer to something bigger than the original memref,
9396 generate a paradoxical subreg instead. That will force a reload
9397 of the original memref X. */
9398 if (isize < osize)
9399 return gen_rtx_SUBREG (omode, x, 0);
9400
9401 if (WORDS_BIG_ENDIAN)
9402 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9403
9404 /* Adjust the address so that the address-after-the-data is unchanged. */
9405 if (BYTES_BIG_ENDIAN)
9406 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9407
9408 return adjust_address_nv (x, omode, offset);
9409 }
9410
9411 /* If X is a comparison operator, rewrite it in a new mode. This
9412 probably won't match, but may allow further simplifications. */
9413 else if (COMPARISON_P (x))
9414 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9415
9416 /* If we couldn't simplify X any other way, just enclose it in a
9417 SUBREG. Normally, this SUBREG won't match, but some patterns may
9418 include an explicit SUBREG or we may simplify it further in combine. */
9419 else
9420 {
9421 int offset = 0;
9422 rtx res;
9423
9424 offset = subreg_lowpart_offset (omode, imode);
9425 if (imode == VOIDmode)
9426 {
9427 imode = int_mode_for_mode (omode);
9428 x = gen_lowpart_common (imode, x);
9429 if (x == NULL)
9430 goto fail;
9431 }
9432 res = simplify_gen_subreg (omode, x, imode, offset);
9433 if (res)
9434 return res;
9435 }
9436
9437 fail:
9438 return gen_rtx_CLOBBER (imode, const0_rtx);
9439 }
9440 \f
9441 /* These routines make binary and unary operations by first seeing if they
9442 fold; if not, a new expression is allocated. */
9443
9444 static rtx
9445 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9446 {
9447 rtx result;
9448 rtx tem;
9449
9450 if (GET_CODE (op0) == CLOBBER)
9451 return op0;
9452 else if (GET_CODE (op1) == CLOBBER)
9453 return op1;
9454
9455 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9456 && swap_commutative_operands_p (op0, op1))
9457 tem = op0, op0 = op1, op1 = tem;
9458
9459 if (GET_RTX_CLASS (code) == RTX_COMPARE
9460 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9461 {
9462 enum machine_mode op_mode = GET_MODE (op0);
9463
9464 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9465 just (REL_OP X Y). */
9466 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9467 {
9468 op1 = XEXP (op0, 1);
9469 op0 = XEXP (op0, 0);
9470 op_mode = GET_MODE (op0);
9471 }
9472
9473 if (op_mode == VOIDmode)
9474 op_mode = GET_MODE (op1);
9475 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9476 }
9477 else
9478 result = simplify_binary_operation (code, mode, op0, op1);
9479
9480 if (result)
9481 return result;
9482
9483 /* Put complex operands first and constants second. */
9484 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9485 && swap_commutative_operands_p (op0, op1))
9486 return gen_rtx_fmt_ee (code, mode, op1, op0);
9487
9488 /* If we are turning off bits already known off in OP0, we need not do
9489 an AND. */
9490 else if (code == AND && GET_CODE (op1) == CONST_INT
9491 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9492 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9493 return op0;
9494
9495 return gen_rtx_fmt_ee (code, mode, op0, op1);
9496 }
9497 \f
9498 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9499 comparison code that will be tested.
9500
9501 The result is a possibly different comparison code to use. *POP0 and
9502 *POP1 may be updated.
9503
9504 It is possible that we might detect that a comparison is either always
9505 true or always false. However, we do not perform general constant
9506 folding in combine, so this knowledge isn't useful. Such tautologies
9507 should have been detected earlier. Hence we ignore all such cases. */
9508
9509 static enum rtx_code
9510 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9511 {
9512 rtx op0 = *pop0;
9513 rtx op1 = *pop1;
9514 rtx tem, tem1;
9515 int i;
9516 enum machine_mode mode, tmode;
9517
9518 /* Try a few ways of applying the same transformation to both operands. */
9519 while (1)
9520 {
9521 #ifndef WORD_REGISTER_OPERATIONS
9522 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9523 so check specially. */
9524 if (code != GTU && code != GEU && code != LTU && code != LEU
9525 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9526 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9527 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9528 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9529 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9530 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9531 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9532 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9533 && XEXP (op0, 1) == XEXP (op1, 1)
9534 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9535 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9536 && (INTVAL (XEXP (op0, 1))
9537 == (GET_MODE_BITSIZE (GET_MODE (op0))
9538 - (GET_MODE_BITSIZE
9539 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9540 {
9541 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9542 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9543 }
9544 #endif
9545
9546 /* If both operands are the same constant shift, see if we can ignore the
9547 shift. We can if the shift is a rotate or if the bits shifted out of
9548 this shift are known to be zero for both inputs and if the type of
9549 comparison is compatible with the shift. */
9550 if (GET_CODE (op0) == GET_CODE (op1)
9551 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9552 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9553 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9554 && (code != GT && code != LT && code != GE && code != LE))
9555 || (GET_CODE (op0) == ASHIFTRT
9556 && (code != GTU && code != LTU
9557 && code != GEU && code != LEU)))
9558 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9559 && INTVAL (XEXP (op0, 1)) >= 0
9560 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9561 && XEXP (op0, 1) == XEXP (op1, 1))
9562 {
9563 enum machine_mode mode = GET_MODE (op0);
9564 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9565 int shift_count = INTVAL (XEXP (op0, 1));
9566
9567 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9568 mask &= (mask >> shift_count) << shift_count;
9569 else if (GET_CODE (op0) == ASHIFT)
9570 mask = (mask & (mask << shift_count)) >> shift_count;
9571
9572 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9573 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9574 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9575 else
9576 break;
9577 }
9578
9579 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9580 SUBREGs are of the same mode, and, in both cases, the AND would
9581 be redundant if the comparison was done in the narrower mode,
9582 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9583 and the operand's possibly nonzero bits are 0xffffff01; in that case
9584 if we only care about QImode, we don't need the AND). This case
9585 occurs if the output mode of an scc insn is not SImode and
9586 STORE_FLAG_VALUE == 1 (e.g., the 386).
9587
9588 Similarly, check for a case where the AND's are ZERO_EXTEND
9589 operations from some narrower mode even though a SUBREG is not
9590 present. */
9591
9592 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9593 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9594 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9595 {
9596 rtx inner_op0 = XEXP (op0, 0);
9597 rtx inner_op1 = XEXP (op1, 0);
9598 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9599 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9600 int changed = 0;
9601
9602 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9603 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9604 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9605 && (GET_MODE (SUBREG_REG (inner_op0))
9606 == GET_MODE (SUBREG_REG (inner_op1)))
9607 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9608 <= HOST_BITS_PER_WIDE_INT)
9609 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9610 GET_MODE (SUBREG_REG (inner_op0)))))
9611 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9612 GET_MODE (SUBREG_REG (inner_op1))))))
9613 {
9614 op0 = SUBREG_REG (inner_op0);
9615 op1 = SUBREG_REG (inner_op1);
9616
9617 /* The resulting comparison is always unsigned since we masked
9618 off the original sign bit. */
9619 code = unsigned_condition (code);
9620
9621 changed = 1;
9622 }
9623
9624 else if (c0 == c1)
9625 for (tmode = GET_CLASS_NARROWEST_MODE
9626 (GET_MODE_CLASS (GET_MODE (op0)));
9627 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9628 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9629 {
9630 op0 = gen_lowpart (tmode, inner_op0);
9631 op1 = gen_lowpart (tmode, inner_op1);
9632 code = unsigned_condition (code);
9633 changed = 1;
9634 break;
9635 }
9636
9637 if (! changed)
9638 break;
9639 }
9640
9641 /* If both operands are NOT, we can strip off the outer operation
9642 and adjust the comparison code for swapped operands; similarly for
9643 NEG, except that this must be an equality comparison. */
9644 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9645 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9646 && (code == EQ || code == NE)))
9647 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9648
9649 else
9650 break;
9651 }
9652
9653 /* If the first operand is a constant, swap the operands and adjust the
9654 comparison code appropriately, but don't do this if the second operand
9655 is already a constant integer. */
9656 if (swap_commutative_operands_p (op0, op1))
9657 {
9658 tem = op0, op0 = op1, op1 = tem;
9659 code = swap_condition (code);
9660 }
9661
9662 /* We now enter a loop during which we will try to simplify the comparison.
9663 For the most part, we only are concerned with comparisons with zero,
9664 but some things may really be comparisons with zero but not start
9665 out looking that way. */
9666
9667 while (GET_CODE (op1) == CONST_INT)
9668 {
9669 enum machine_mode mode = GET_MODE (op0);
9670 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9671 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9672 int equality_comparison_p;
9673 int sign_bit_comparison_p;
9674 int unsigned_comparison_p;
9675 HOST_WIDE_INT const_op;
9676
9677 /* We only want to handle integral modes. This catches VOIDmode,
9678 CCmode, and the floating-point modes. An exception is that we
9679 can handle VOIDmode if OP0 is a COMPARE or a comparison
9680 operation. */
9681
9682 if (GET_MODE_CLASS (mode) != MODE_INT
9683 && ! (mode == VOIDmode
9684 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9685 break;
9686
9687 /* Get the constant we are comparing against and turn off all bits
9688 not on in our mode. */
9689 const_op = INTVAL (op1);
9690 if (mode != VOIDmode)
9691 const_op = trunc_int_for_mode (const_op, mode);
9692 op1 = GEN_INT (const_op);
9693
9694 /* If we are comparing against a constant power of two and the value
9695 being compared can only have that single bit nonzero (e.g., it was
9696 `and'ed with that bit), we can replace this with a comparison
9697 with zero. */
9698 if (const_op
9699 && (code == EQ || code == NE || code == GE || code == GEU
9700 || code == LT || code == LTU)
9701 && mode_width <= HOST_BITS_PER_WIDE_INT
9702 && exact_log2 (const_op) >= 0
9703 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9704 {
9705 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9706 op1 = const0_rtx, const_op = 0;
9707 }
9708
9709 /* Similarly, if we are comparing a value known to be either -1 or
9710 0 with -1, change it to the opposite comparison against zero. */
9711
9712 if (const_op == -1
9713 && (code == EQ || code == NE || code == GT || code == LE
9714 || code == GEU || code == LTU)
9715 && num_sign_bit_copies (op0, mode) == mode_width)
9716 {
9717 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9718 op1 = const0_rtx, const_op = 0;
9719 }
9720
9721 /* Do some canonicalizations based on the comparison code. We prefer
9722 comparisons against zero and then prefer equality comparisons.
9723 If we can reduce the size of a constant, we will do that too. */
9724
9725 switch (code)
9726 {
9727 case LT:
9728 /* < C is equivalent to <= (C - 1) */
9729 if (const_op > 0)
9730 {
9731 const_op -= 1;
9732 op1 = GEN_INT (const_op);
9733 code = LE;
9734 /* ... fall through to LE case below. */
9735 }
9736 else
9737 break;
9738
9739 case LE:
9740 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9741 if (const_op < 0)
9742 {
9743 const_op += 1;
9744 op1 = GEN_INT (const_op);
9745 code = LT;
9746 }
9747
9748 /* If we are doing a <= 0 comparison on a value known to have
9749 a zero sign bit, we can replace this with == 0. */
9750 else if (const_op == 0
9751 && mode_width <= HOST_BITS_PER_WIDE_INT
9752 && (nonzero_bits (op0, mode)
9753 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9754 code = EQ;
9755 break;
9756
9757 case GE:
9758 /* >= C is equivalent to > (C - 1). */
9759 if (const_op > 0)
9760 {
9761 const_op -= 1;
9762 op1 = GEN_INT (const_op);
9763 code = GT;
9764 /* ... fall through to GT below. */
9765 }
9766 else
9767 break;
9768
9769 case GT:
9770 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9771 if (const_op < 0)
9772 {
9773 const_op += 1;
9774 op1 = GEN_INT (const_op);
9775 code = GE;
9776 }
9777
9778 /* If we are doing a > 0 comparison on a value known to have
9779 a zero sign bit, we can replace this with != 0. */
9780 else if (const_op == 0
9781 && mode_width <= HOST_BITS_PER_WIDE_INT
9782 && (nonzero_bits (op0, mode)
9783 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9784 code = NE;
9785 break;
9786
9787 case LTU:
9788 /* < C is equivalent to <= (C - 1). */
9789 if (const_op > 0)
9790 {
9791 const_op -= 1;
9792 op1 = GEN_INT (const_op);
9793 code = LEU;
9794 /* ... fall through ... */
9795 }
9796
9797 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9798 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9799 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9800 {
9801 const_op = 0, op1 = const0_rtx;
9802 code = GE;
9803 break;
9804 }
9805 else
9806 break;
9807
9808 case LEU:
9809 /* unsigned <= 0 is equivalent to == 0 */
9810 if (const_op == 0)
9811 code = EQ;
9812
9813 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9814 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9815 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9816 {
9817 const_op = 0, op1 = const0_rtx;
9818 code = GE;
9819 }
9820 break;
9821
9822 case GEU:
9823 /* >= C is equivalent to > (C - 1). */
9824 if (const_op > 1)
9825 {
9826 const_op -= 1;
9827 op1 = GEN_INT (const_op);
9828 code = GTU;
9829 /* ... fall through ... */
9830 }
9831
9832 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9833 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9834 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9835 {
9836 const_op = 0, op1 = const0_rtx;
9837 code = LT;
9838 break;
9839 }
9840 else
9841 break;
9842
9843 case GTU:
9844 /* unsigned > 0 is equivalent to != 0 */
9845 if (const_op == 0)
9846 code = NE;
9847
9848 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9849 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9850 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9851 {
9852 const_op = 0, op1 = const0_rtx;
9853 code = LT;
9854 }
9855 break;
9856
9857 default:
9858 break;
9859 }
9860
9861 /* Compute some predicates to simplify code below. */
9862
9863 equality_comparison_p = (code == EQ || code == NE);
9864 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9865 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9866 || code == GEU);
9867
9868 /* If this is a sign bit comparison and we can do arithmetic in
9869 MODE, say that we will only be needing the sign bit of OP0. */
9870 if (sign_bit_comparison_p
9871 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9872 op0 = force_to_mode (op0, mode,
9873 ((HOST_WIDE_INT) 1
9874 << (GET_MODE_BITSIZE (mode) - 1)),
9875 NULL_RTX, 0);
9876
9877 /* Now try cases based on the opcode of OP0. If none of the cases
9878 does a "continue", we exit this loop immediately after the
9879 switch. */
9880
9881 switch (GET_CODE (op0))
9882 {
9883 case ZERO_EXTRACT:
9884 /* If we are extracting a single bit from a variable position in
9885 a constant that has only a single bit set and are comparing it
9886 with zero, we can convert this into an equality comparison
9887 between the position and the location of the single bit. */
9888 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9889 have already reduced the shift count modulo the word size. */
9890 if (!SHIFT_COUNT_TRUNCATED
9891 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9892 && XEXP (op0, 1) == const1_rtx
9893 && equality_comparison_p && const_op == 0
9894 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9895 {
9896 if (BITS_BIG_ENDIAN)
9897 {
9898 enum machine_mode new_mode
9899 = mode_for_extraction (EP_extzv, 1);
9900 if (new_mode == MAX_MACHINE_MODE)
9901 i = BITS_PER_WORD - 1 - i;
9902 else
9903 {
9904 mode = new_mode;
9905 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9906 }
9907 }
9908
9909 op0 = XEXP (op0, 2);
9910 op1 = GEN_INT (i);
9911 const_op = i;
9912
9913 /* Result is nonzero iff shift count is equal to I. */
9914 code = reverse_condition (code);
9915 continue;
9916 }
9917
9918 /* ... fall through ... */
9919
9920 case SIGN_EXTRACT:
9921 tem = expand_compound_operation (op0);
9922 if (tem != op0)
9923 {
9924 op0 = tem;
9925 continue;
9926 }
9927 break;
9928
9929 case NOT:
9930 /* If testing for equality, we can take the NOT of the constant. */
9931 if (equality_comparison_p
9932 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9933 {
9934 op0 = XEXP (op0, 0);
9935 op1 = tem;
9936 continue;
9937 }
9938
9939 /* If just looking at the sign bit, reverse the sense of the
9940 comparison. */
9941 if (sign_bit_comparison_p)
9942 {
9943 op0 = XEXP (op0, 0);
9944 code = (code == GE ? LT : GE);
9945 continue;
9946 }
9947 break;
9948
9949 case NEG:
9950 /* If testing for equality, we can take the NEG of the constant. */
9951 if (equality_comparison_p
9952 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9953 {
9954 op0 = XEXP (op0, 0);
9955 op1 = tem;
9956 continue;
9957 }
9958
9959 /* The remaining cases only apply to comparisons with zero. */
9960 if (const_op != 0)
9961 break;
9962
9963 /* When X is ABS or is known positive,
9964 (neg X) is < 0 if and only if X != 0. */
9965
9966 if (sign_bit_comparison_p
9967 && (GET_CODE (XEXP (op0, 0)) == ABS
9968 || (mode_width <= HOST_BITS_PER_WIDE_INT
9969 && (nonzero_bits (XEXP (op0, 0), mode)
9970 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9971 {
9972 op0 = XEXP (op0, 0);
9973 code = (code == LT ? NE : EQ);
9974 continue;
9975 }
9976
9977 /* If we have NEG of something whose two high-order bits are the
9978 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9979 if (num_sign_bit_copies (op0, mode) >= 2)
9980 {
9981 op0 = XEXP (op0, 0);
9982 code = swap_condition (code);
9983 continue;
9984 }
9985 break;
9986
9987 case ROTATE:
9988 /* If we are testing equality and our count is a constant, we
9989 can perform the inverse operation on our RHS. */
9990 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9991 && (tem = simplify_binary_operation (ROTATERT, mode,
9992 op1, XEXP (op0, 1))) != 0)
9993 {
9994 op0 = XEXP (op0, 0);
9995 op1 = tem;
9996 continue;
9997 }
9998
9999 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10000 a particular bit. Convert it to an AND of a constant of that
10001 bit. This will be converted into a ZERO_EXTRACT. */
10002 if (const_op == 0 && sign_bit_comparison_p
10003 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10004 && mode_width <= HOST_BITS_PER_WIDE_INT)
10005 {
10006 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10007 ((HOST_WIDE_INT) 1
10008 << (mode_width - 1
10009 - INTVAL (XEXP (op0, 1)))));
10010 code = (code == LT ? NE : EQ);
10011 continue;
10012 }
10013
10014 /* Fall through. */
10015
10016 case ABS:
10017 /* ABS is ignorable inside an equality comparison with zero. */
10018 if (const_op == 0 && equality_comparison_p)
10019 {
10020 op0 = XEXP (op0, 0);
10021 continue;
10022 }
10023 break;
10024
10025 case SIGN_EXTEND:
10026 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10027 to (compare FOO CONST) if CONST fits in FOO's mode and we
10028 are either testing inequality or have an unsigned comparison
10029 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10030 if (! unsigned_comparison_p
10031 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10032 <= HOST_BITS_PER_WIDE_INT)
10033 && ((unsigned HOST_WIDE_INT) const_op
10034 < (((unsigned HOST_WIDE_INT) 1
10035 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10036 {
10037 op0 = XEXP (op0, 0);
10038 continue;
10039 }
10040 break;
10041
10042 case SUBREG:
10043 /* Check for the case where we are comparing A - C1 with C2, that is
10044
10045 (subreg:MODE (plus (A) (-C1))) op (C2)
10046
10047 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10048 comparison in the wider mode. One of the following two conditions
10049 must be true in order for this to be valid:
10050
10051 1. The mode extension results in the same bit pattern being added
10052 on both sides and the comparison is equality or unsigned. As
10053 C2 has been truncated to fit in MODE, the pattern can only be
10054 all 0s or all 1s.
10055
10056 2. The mode extension results in the sign bit being copied on
10057 each side.
10058
10059 The difficulty here is that we have predicates for A but not for
10060 (A - C1) so we need to check that C1 is within proper bounds so
10061 as to perturbate A as little as possible. */
10062
10063 if (mode_width <= HOST_BITS_PER_WIDE_INT
10064 && subreg_lowpart_p (op0)
10065 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10066 && GET_CODE (SUBREG_REG (op0)) == PLUS
10067 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10068 {
10069 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10070 rtx a = XEXP (SUBREG_REG (op0), 0);
10071 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10072
10073 if ((c1 > 0
10074 && (unsigned HOST_WIDE_INT) c1
10075 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10076 && (equality_comparison_p || unsigned_comparison_p)
10077 /* (A - C1) zero-extends if it is positive and sign-extends
10078 if it is negative, C2 both zero- and sign-extends. */
10079 && ((0 == (nonzero_bits (a, inner_mode)
10080 & ~GET_MODE_MASK (mode))
10081 && const_op >= 0)
10082 /* (A - C1) sign-extends if it is positive and 1-extends
10083 if it is negative, C2 both sign- and 1-extends. */
10084 || (num_sign_bit_copies (a, inner_mode)
10085 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10086 - mode_width)
10087 && const_op < 0)))
10088 || ((unsigned HOST_WIDE_INT) c1
10089 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10090 /* (A - C1) always sign-extends, like C2. */
10091 && num_sign_bit_copies (a, inner_mode)
10092 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10093 - mode_width - 1)))
10094 {
10095 op0 = SUBREG_REG (op0);
10096 continue;
10097 }
10098 }
10099
10100 /* If the inner mode is narrower and we are extracting the low part,
10101 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10102 if (subreg_lowpart_p (op0)
10103 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10104 /* Fall through */ ;
10105 else
10106 break;
10107
10108 /* ... fall through ... */
10109
10110 case ZERO_EXTEND:
10111 if ((unsigned_comparison_p || equality_comparison_p)
10112 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10113 <= HOST_BITS_PER_WIDE_INT)
10114 && ((unsigned HOST_WIDE_INT) const_op
10115 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10116 {
10117 op0 = XEXP (op0, 0);
10118 continue;
10119 }
10120 break;
10121
10122 case PLUS:
10123 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10124 this for equality comparisons due to pathological cases involving
10125 overflows. */
10126 if (equality_comparison_p
10127 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10128 op1, XEXP (op0, 1))))
10129 {
10130 op0 = XEXP (op0, 0);
10131 op1 = tem;
10132 continue;
10133 }
10134
10135 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10136 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10137 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10138 {
10139 op0 = XEXP (XEXP (op0, 0), 0);
10140 code = (code == LT ? EQ : NE);
10141 continue;
10142 }
10143 break;
10144
10145 case MINUS:
10146 /* We used to optimize signed comparisons against zero, but that
10147 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10148 arrive here as equality comparisons, or (GEU, LTU) are
10149 optimized away. No need to special-case them. */
10150
10151 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10152 (eq B (minus A C)), whichever simplifies. We can only do
10153 this for equality comparisons due to pathological cases involving
10154 overflows. */
10155 if (equality_comparison_p
10156 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10157 XEXP (op0, 1), op1)))
10158 {
10159 op0 = XEXP (op0, 0);
10160 op1 = tem;
10161 continue;
10162 }
10163
10164 if (equality_comparison_p
10165 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10166 XEXP (op0, 0), op1)))
10167 {
10168 op0 = XEXP (op0, 1);
10169 op1 = tem;
10170 continue;
10171 }
10172
10173 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10174 of bits in X minus 1, is one iff X > 0. */
10175 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10176 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10177 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10178 == mode_width - 1
10179 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10180 {
10181 op0 = XEXP (op0, 1);
10182 code = (code == GE ? LE : GT);
10183 continue;
10184 }
10185 break;
10186
10187 case XOR:
10188 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10189 if C is zero or B is a constant. */
10190 if (equality_comparison_p
10191 && 0 != (tem = simplify_binary_operation (XOR, mode,
10192 XEXP (op0, 1), op1)))
10193 {
10194 op0 = XEXP (op0, 0);
10195 op1 = tem;
10196 continue;
10197 }
10198 break;
10199
10200 case EQ: case NE:
10201 case UNEQ: case LTGT:
10202 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10203 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10204 case UNORDERED: case ORDERED:
10205 /* We can't do anything if OP0 is a condition code value, rather
10206 than an actual data value. */
10207 if (const_op != 0
10208 || CC0_P (XEXP (op0, 0))
10209 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10210 break;
10211
10212 /* Get the two operands being compared. */
10213 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10214 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10215 else
10216 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10217
10218 /* Check for the cases where we simply want the result of the
10219 earlier test or the opposite of that result. */
10220 if (code == NE || code == EQ
10221 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10222 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10223 && (STORE_FLAG_VALUE
10224 & (((HOST_WIDE_INT) 1
10225 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10226 && (code == LT || code == GE)))
10227 {
10228 enum rtx_code new_code;
10229 if (code == LT || code == NE)
10230 new_code = GET_CODE (op0);
10231 else
10232 new_code = combine_reversed_comparison_code (op0);
10233
10234 if (new_code != UNKNOWN)
10235 {
10236 code = new_code;
10237 op0 = tem;
10238 op1 = tem1;
10239 continue;
10240 }
10241 }
10242 break;
10243
10244 case IOR:
10245 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10246 iff X <= 0. */
10247 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10248 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10249 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10250 {
10251 op0 = XEXP (op0, 1);
10252 code = (code == GE ? GT : LE);
10253 continue;
10254 }
10255 break;
10256
10257 case AND:
10258 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10259 will be converted to a ZERO_EXTRACT later. */
10260 if (const_op == 0 && equality_comparison_p
10261 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10262 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10263 {
10264 op0 = simplify_and_const_int
10265 (op0, mode, gen_rtx_LSHIFTRT (mode,
10266 XEXP (op0, 1),
10267 XEXP (XEXP (op0, 0), 1)),
10268 (HOST_WIDE_INT) 1);
10269 continue;
10270 }
10271
10272 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10273 zero and X is a comparison and C1 and C2 describe only bits set
10274 in STORE_FLAG_VALUE, we can compare with X. */
10275 if (const_op == 0 && equality_comparison_p
10276 && mode_width <= HOST_BITS_PER_WIDE_INT
10277 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10278 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10279 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10280 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10281 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10282 {
10283 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10284 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10285 if ((~STORE_FLAG_VALUE & mask) == 0
10286 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10287 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10288 && COMPARISON_P (tem))))
10289 {
10290 op0 = XEXP (XEXP (op0, 0), 0);
10291 continue;
10292 }
10293 }
10294
10295 /* If we are doing an equality comparison of an AND of a bit equal
10296 to the sign bit, replace this with a LT or GE comparison of
10297 the underlying value. */
10298 if (equality_comparison_p
10299 && const_op == 0
10300 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10301 && mode_width <= HOST_BITS_PER_WIDE_INT
10302 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10303 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10304 {
10305 op0 = XEXP (op0, 0);
10306 code = (code == EQ ? GE : LT);
10307 continue;
10308 }
10309
10310 /* If this AND operation is really a ZERO_EXTEND from a narrower
10311 mode, the constant fits within that mode, and this is either an
10312 equality or unsigned comparison, try to do this comparison in
10313 the narrower mode. */
10314 if ((equality_comparison_p || unsigned_comparison_p)
10315 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10316 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10317 & GET_MODE_MASK (mode))
10318 + 1)) >= 0
10319 && const_op >> i == 0
10320 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10321 {
10322 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10323 continue;
10324 }
10325
10326 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10327 fits in both M1 and M2 and the SUBREG is either paradoxical
10328 or represents the low part, permute the SUBREG and the AND
10329 and try again. */
10330 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10331 {
10332 unsigned HOST_WIDE_INT c1;
10333 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10334 /* Require an integral mode, to avoid creating something like
10335 (AND:SF ...). */
10336 if (SCALAR_INT_MODE_P (tmode)
10337 /* It is unsafe to commute the AND into the SUBREG if the
10338 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10339 not defined. As originally written the upper bits
10340 have a defined value due to the AND operation.
10341 However, if we commute the AND inside the SUBREG then
10342 they no longer have defined values and the meaning of
10343 the code has been changed. */
10344 && (0
10345 #ifdef WORD_REGISTER_OPERATIONS
10346 || (mode_width > GET_MODE_BITSIZE (tmode)
10347 && mode_width <= BITS_PER_WORD)
10348 #endif
10349 || (mode_width <= GET_MODE_BITSIZE (tmode)
10350 && subreg_lowpart_p (XEXP (op0, 0))))
10351 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10352 && mode_width <= HOST_BITS_PER_WIDE_INT
10353 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10354 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10355 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10356 && c1 != mask
10357 && c1 != GET_MODE_MASK (tmode))
10358 {
10359 op0 = gen_binary (AND, tmode,
10360 SUBREG_REG (XEXP (op0, 0)),
10361 gen_int_mode (c1, tmode));
10362 op0 = gen_lowpart (mode, op0);
10363 continue;
10364 }
10365 }
10366
10367 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10368 if (const_op == 0 && equality_comparison_p
10369 && XEXP (op0, 1) == const1_rtx
10370 && GET_CODE (XEXP (op0, 0)) == NOT)
10371 {
10372 op0 = simplify_and_const_int
10373 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10374 code = (code == NE ? EQ : NE);
10375 continue;
10376 }
10377
10378 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10379 (eq (and (lshiftrt X) 1) 0).
10380 Also handle the case where (not X) is expressed using xor. */
10381 if (const_op == 0 && equality_comparison_p
10382 && XEXP (op0, 1) == const1_rtx
10383 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10384 {
10385 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10386 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10387
10388 if (GET_CODE (shift_op) == NOT
10389 || (GET_CODE (shift_op) == XOR
10390 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10391 && GET_CODE (shift_count) == CONST_INT
10392 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10393 && (INTVAL (XEXP (shift_op, 1))
10394 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10395 {
10396 op0 = simplify_and_const_int
10397 (NULL_RTX, mode,
10398 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10399 (HOST_WIDE_INT) 1);
10400 code = (code == NE ? EQ : NE);
10401 continue;
10402 }
10403 }
10404 break;
10405
10406 case ASHIFT:
10407 /* If we have (compare (ashift FOO N) (const_int C)) and
10408 the high order N bits of FOO (N+1 if an inequality comparison)
10409 are known to be zero, we can do this by comparing FOO with C
10410 shifted right N bits so long as the low-order N bits of C are
10411 zero. */
10412 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10413 && INTVAL (XEXP (op0, 1)) >= 0
10414 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10415 < HOST_BITS_PER_WIDE_INT)
10416 && ((const_op
10417 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10418 && mode_width <= HOST_BITS_PER_WIDE_INT
10419 && (nonzero_bits (XEXP (op0, 0), mode)
10420 & ~(mask >> (INTVAL (XEXP (op0, 1))
10421 + ! equality_comparison_p))) == 0)
10422 {
10423 /* We must perform a logical shift, not an arithmetic one,
10424 as we want the top N bits of C to be zero. */
10425 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10426
10427 temp >>= INTVAL (XEXP (op0, 1));
10428 op1 = gen_int_mode (temp, mode);
10429 op0 = XEXP (op0, 0);
10430 continue;
10431 }
10432
10433 /* If we are doing a sign bit comparison, it means we are testing
10434 a particular bit. Convert it to the appropriate AND. */
10435 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10436 && mode_width <= HOST_BITS_PER_WIDE_INT)
10437 {
10438 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10439 ((HOST_WIDE_INT) 1
10440 << (mode_width - 1
10441 - INTVAL (XEXP (op0, 1)))));
10442 code = (code == LT ? NE : EQ);
10443 continue;
10444 }
10445
10446 /* If this an equality comparison with zero and we are shifting
10447 the low bit to the sign bit, we can convert this to an AND of the
10448 low-order bit. */
10449 if (const_op == 0 && equality_comparison_p
10450 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10451 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10452 == mode_width - 1)
10453 {
10454 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10455 (HOST_WIDE_INT) 1);
10456 continue;
10457 }
10458 break;
10459
10460 case ASHIFTRT:
10461 /* If this is an equality comparison with zero, we can do this
10462 as a logical shift, which might be much simpler. */
10463 if (equality_comparison_p && const_op == 0
10464 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10465 {
10466 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10467 XEXP (op0, 0),
10468 INTVAL (XEXP (op0, 1)));
10469 continue;
10470 }
10471
10472 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10473 do the comparison in a narrower mode. */
10474 if (! unsigned_comparison_p
10475 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10476 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10477 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10478 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10479 MODE_INT, 1)) != BLKmode
10480 && (((unsigned HOST_WIDE_INT) const_op
10481 + (GET_MODE_MASK (tmode) >> 1) + 1)
10482 <= GET_MODE_MASK (tmode)))
10483 {
10484 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10485 continue;
10486 }
10487
10488 /* Likewise if OP0 is a PLUS of a sign extension with a
10489 constant, which is usually represented with the PLUS
10490 between the shifts. */
10491 if (! unsigned_comparison_p
10492 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10493 && GET_CODE (XEXP (op0, 0)) == PLUS
10494 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10495 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10496 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10497 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10498 MODE_INT, 1)) != BLKmode
10499 && (((unsigned HOST_WIDE_INT) const_op
10500 + (GET_MODE_MASK (tmode) >> 1) + 1)
10501 <= GET_MODE_MASK (tmode)))
10502 {
10503 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10504 rtx add_const = XEXP (XEXP (op0, 0), 1);
10505 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10506 XEXP (op0, 1));
10507
10508 op0 = gen_binary (PLUS, tmode,
10509 gen_lowpart (tmode, inner),
10510 new_const);
10511 continue;
10512 }
10513
10514 /* ... fall through ... */
10515 case LSHIFTRT:
10516 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10517 the low order N bits of FOO are known to be zero, we can do this
10518 by comparing FOO with C shifted left N bits so long as no
10519 overflow occurs. */
10520 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10521 && INTVAL (XEXP (op0, 1)) >= 0
10522 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10523 && mode_width <= HOST_BITS_PER_WIDE_INT
10524 && (nonzero_bits (XEXP (op0, 0), mode)
10525 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10526 && (((unsigned HOST_WIDE_INT) const_op
10527 + (GET_CODE (op0) != LSHIFTRT
10528 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10529 + 1)
10530 : 0))
10531 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10532 {
10533 /* If the shift was logical, then we must make the condition
10534 unsigned. */
10535 if (GET_CODE (op0) == LSHIFTRT)
10536 code = unsigned_condition (code);
10537
10538 const_op <<= INTVAL (XEXP (op0, 1));
10539 op1 = GEN_INT (const_op);
10540 op0 = XEXP (op0, 0);
10541 continue;
10542 }
10543
10544 /* If we are using this shift to extract just the sign bit, we
10545 can replace this with an LT or GE comparison. */
10546 if (const_op == 0
10547 && (equality_comparison_p || sign_bit_comparison_p)
10548 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10549 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10550 == mode_width - 1)
10551 {
10552 op0 = XEXP (op0, 0);
10553 code = (code == NE || code == GT ? LT : GE);
10554 continue;
10555 }
10556 break;
10557
10558 default:
10559 break;
10560 }
10561
10562 break;
10563 }
10564
10565 /* Now make any compound operations involved in this comparison. Then,
10566 check for an outmost SUBREG on OP0 that is not doing anything or is
10567 paradoxical. The latter transformation must only be performed when
10568 it is known that the "extra" bits will be the same in op0 and op1 or
10569 that they don't matter. There are three cases to consider:
10570
10571 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10572 care bits and we can assume they have any convenient value. So
10573 making the transformation is safe.
10574
10575 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10576 In this case the upper bits of op0 are undefined. We should not make
10577 the simplification in that case as we do not know the contents of
10578 those bits.
10579
10580 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10581 UNKNOWN. In that case we know those bits are zeros or ones. We must
10582 also be sure that they are the same as the upper bits of op1.
10583
10584 We can never remove a SUBREG for a non-equality comparison because
10585 the sign bit is in a different place in the underlying object. */
10586
10587 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10588 op1 = make_compound_operation (op1, SET);
10589
10590 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10591 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10592 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10593 && (code == NE || code == EQ))
10594 {
10595 if (GET_MODE_SIZE (GET_MODE (op0))
10596 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10597 {
10598 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10599 implemented. */
10600 if (REG_P (SUBREG_REG (op0)))
10601 {
10602 op0 = SUBREG_REG (op0);
10603 op1 = gen_lowpart (GET_MODE (op0), op1);
10604 }
10605 }
10606 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10607 <= HOST_BITS_PER_WIDE_INT)
10608 && (nonzero_bits (SUBREG_REG (op0),
10609 GET_MODE (SUBREG_REG (op0)))
10610 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10611 {
10612 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10613
10614 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10615 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10616 op0 = SUBREG_REG (op0), op1 = tem;
10617 }
10618 }
10619
10620 /* We now do the opposite procedure: Some machines don't have compare
10621 insns in all modes. If OP0's mode is an integer mode smaller than a
10622 word and we can't do a compare in that mode, see if there is a larger
10623 mode for which we can do the compare. There are a number of cases in
10624 which we can use the wider mode. */
10625
10626 mode = GET_MODE (op0);
10627 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10628 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10629 && ! have_insn_for (COMPARE, mode))
10630 for (tmode = GET_MODE_WIDER_MODE (mode);
10631 (tmode != VOIDmode
10632 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10633 tmode = GET_MODE_WIDER_MODE (tmode))
10634 if (have_insn_for (COMPARE, tmode))
10635 {
10636 int zero_extended;
10637
10638 /* If the only nonzero bits in OP0 and OP1 are those in the
10639 narrower mode and this is an equality or unsigned comparison,
10640 we can use the wider mode. Similarly for sign-extended
10641 values, in which case it is true for all comparisons. */
10642 zero_extended = ((code == EQ || code == NE
10643 || code == GEU || code == GTU
10644 || code == LEU || code == LTU)
10645 && (nonzero_bits (op0, tmode)
10646 & ~GET_MODE_MASK (mode)) == 0
10647 && ((GET_CODE (op1) == CONST_INT
10648 || (nonzero_bits (op1, tmode)
10649 & ~GET_MODE_MASK (mode)) == 0)));
10650
10651 if (zero_extended
10652 || ((num_sign_bit_copies (op0, tmode)
10653 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10654 - GET_MODE_BITSIZE (mode)))
10655 && (num_sign_bit_copies (op1, tmode)
10656 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10657 - GET_MODE_BITSIZE (mode)))))
10658 {
10659 /* If OP0 is an AND and we don't have an AND in MODE either,
10660 make a new AND in the proper mode. */
10661 if (GET_CODE (op0) == AND
10662 && !have_insn_for (AND, mode))
10663 op0 = gen_binary (AND, tmode,
10664 gen_lowpart (tmode,
10665 XEXP (op0, 0)),
10666 gen_lowpart (tmode,
10667 XEXP (op0, 1)));
10668
10669 op0 = gen_lowpart (tmode, op0);
10670 if (zero_extended && GET_CODE (op1) == CONST_INT)
10671 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10672 op1 = gen_lowpart (tmode, op1);
10673 break;
10674 }
10675
10676 /* If this is a test for negative, we can make an explicit
10677 test of the sign bit. */
10678
10679 if (op1 == const0_rtx && (code == LT || code == GE)
10680 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10681 {
10682 op0 = gen_binary (AND, tmode,
10683 gen_lowpart (tmode, op0),
10684 GEN_INT ((HOST_WIDE_INT) 1
10685 << (GET_MODE_BITSIZE (mode) - 1)));
10686 code = (code == LT) ? NE : EQ;
10687 break;
10688 }
10689 }
10690
10691 #ifdef CANONICALIZE_COMPARISON
10692 /* If this machine only supports a subset of valid comparisons, see if we
10693 can convert an unsupported one into a supported one. */
10694 CANONICALIZE_COMPARISON (code, op0, op1);
10695 #endif
10696
10697 *pop0 = op0;
10698 *pop1 = op1;
10699
10700 return code;
10701 }
10702 \f
10703 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10704 searching backward. */
10705 static enum rtx_code
10706 combine_reversed_comparison_code (rtx exp)
10707 {
10708 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10709 rtx x;
10710
10711 if (code1 != UNKNOWN
10712 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10713 return code1;
10714 /* Otherwise try and find where the condition codes were last set and
10715 use that. */
10716 x = get_last_value (XEXP (exp, 0));
10717 if (!x || GET_CODE (x) != COMPARE)
10718 return UNKNOWN;
10719 return reversed_comparison_code_parts (GET_CODE (exp),
10720 XEXP (x, 0), XEXP (x, 1), NULL);
10721 }
10722
10723 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10724 Return NULL_RTX in case we fail to do the reversal. */
10725 static rtx
10726 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10727 {
10728 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10729 if (reversed_code == UNKNOWN)
10730 return NULL_RTX;
10731 else
10732 return gen_binary (reversed_code, mode, op0, op1);
10733 }
10734 \f
10735 /* Utility function for record_value_for_reg. Count number of
10736 rtxs in X. */
10737 static int
10738 count_rtxs (rtx x)
10739 {
10740 enum rtx_code code = GET_CODE (x);
10741 const char *fmt;
10742 int i, ret = 1;
10743
10744 if (GET_RTX_CLASS (code) == '2'
10745 || GET_RTX_CLASS (code) == 'c')
10746 {
10747 rtx x0 = XEXP (x, 0);
10748 rtx x1 = XEXP (x, 1);
10749
10750 if (x0 == x1)
10751 return 1 + 2 * count_rtxs (x0);
10752
10753 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10754 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10755 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10756 return 2 + 2 * count_rtxs (x0)
10757 + count_rtxs (x == XEXP (x1, 0)
10758 ? XEXP (x1, 1) : XEXP (x1, 0));
10759
10760 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10761 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10762 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10763 return 2 + 2 * count_rtxs (x1)
10764 + count_rtxs (x == XEXP (x0, 0)
10765 ? XEXP (x0, 1) : XEXP (x0, 0));
10766 }
10767
10768 fmt = GET_RTX_FORMAT (code);
10769 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10770 if (fmt[i] == 'e')
10771 ret += count_rtxs (XEXP (x, i));
10772
10773 return ret;
10774 }
10775 \f
10776 /* Utility function for following routine. Called when X is part of a value
10777 being stored into last_set_value. Sets last_set_table_tick
10778 for each register mentioned. Similar to mention_regs in cse.c */
10779
10780 static void
10781 update_table_tick (rtx x)
10782 {
10783 enum rtx_code code = GET_CODE (x);
10784 const char *fmt = GET_RTX_FORMAT (code);
10785 int i;
10786
10787 if (code == REG)
10788 {
10789 unsigned int regno = REGNO (x);
10790 unsigned int endregno
10791 = regno + (regno < FIRST_PSEUDO_REGISTER
10792 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10793 unsigned int r;
10794
10795 for (r = regno; r < endregno; r++)
10796 reg_stat[r].last_set_table_tick = label_tick;
10797
10798 return;
10799 }
10800
10801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10802 /* Note that we can't have an "E" in values stored; see
10803 get_last_value_validate. */
10804 if (fmt[i] == 'e')
10805 {
10806 /* Check for identical subexpressions. If x contains
10807 identical subexpression we only have to traverse one of
10808 them. */
10809 if (i == 0 && ARITHMETIC_P (x))
10810 {
10811 /* Note that at this point x1 has already been
10812 processed. */
10813 rtx x0 = XEXP (x, 0);
10814 rtx x1 = XEXP (x, 1);
10815
10816 /* If x0 and x1 are identical then there is no need to
10817 process x0. */
10818 if (x0 == x1)
10819 break;
10820
10821 /* If x0 is identical to a subexpression of x1 then while
10822 processing x1, x0 has already been processed. Thus we
10823 are done with x. */
10824 if (ARITHMETIC_P (x1)
10825 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10826 break;
10827
10828 /* If x1 is identical to a subexpression of x0 then we
10829 still have to process the rest of x0. */
10830 if (ARITHMETIC_P (x0)
10831 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10832 {
10833 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10834 break;
10835 }
10836 }
10837
10838 update_table_tick (XEXP (x, i));
10839 }
10840 }
10841
10842 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10843 are saying that the register is clobbered and we no longer know its
10844 value. If INSN is zero, don't update reg_stat[].last_set; this is
10845 only permitted with VALUE also zero and is used to invalidate the
10846 register. */
10847
10848 static void
10849 record_value_for_reg (rtx reg, rtx insn, rtx value)
10850 {
10851 unsigned int regno = REGNO (reg);
10852 unsigned int endregno
10853 = regno + (regno < FIRST_PSEUDO_REGISTER
10854 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10855 unsigned int i;
10856
10857 /* If VALUE contains REG and we have a previous value for REG, substitute
10858 the previous value. */
10859 if (value && insn && reg_overlap_mentioned_p (reg, value))
10860 {
10861 rtx tem;
10862
10863 /* Set things up so get_last_value is allowed to see anything set up to
10864 our insn. */
10865 subst_low_cuid = INSN_CUID (insn);
10866 tem = get_last_value (reg);
10867
10868 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10869 it isn't going to be useful and will take a lot of time to process,
10870 so just use the CLOBBER. */
10871
10872 if (tem)
10873 {
10874 if (ARITHMETIC_P (tem)
10875 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10876 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10877 tem = XEXP (tem, 0);
10878 else if (count_occurrences (value, reg, 1) >= 2)
10879 {
10880 /* If there are two or more occurrences of REG in VALUE,
10881 prevent the value from growing too much. */
10882 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10883 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10884 }
10885
10886 value = replace_rtx (copy_rtx (value), reg, tem);
10887 }
10888 }
10889
10890 /* For each register modified, show we don't know its value, that
10891 we don't know about its bitwise content, that its value has been
10892 updated, and that we don't know the location of the death of the
10893 register. */
10894 for (i = regno; i < endregno; i++)
10895 {
10896 if (insn)
10897 reg_stat[i].last_set = insn;
10898
10899 reg_stat[i].last_set_value = 0;
10900 reg_stat[i].last_set_mode = 0;
10901 reg_stat[i].last_set_nonzero_bits = 0;
10902 reg_stat[i].last_set_sign_bit_copies = 0;
10903 reg_stat[i].last_death = 0;
10904 }
10905
10906 /* Mark registers that are being referenced in this value. */
10907 if (value)
10908 update_table_tick (value);
10909
10910 /* Now update the status of each register being set.
10911 If someone is using this register in this block, set this register
10912 to invalid since we will get confused between the two lives in this
10913 basic block. This makes using this register always invalid. In cse, we
10914 scan the table to invalidate all entries using this register, but this
10915 is too much work for us. */
10916
10917 for (i = regno; i < endregno; i++)
10918 {
10919 reg_stat[i].last_set_label = label_tick;
10920 if (value && reg_stat[i].last_set_table_tick == label_tick)
10921 reg_stat[i].last_set_invalid = 1;
10922 else
10923 reg_stat[i].last_set_invalid = 0;
10924 }
10925
10926 /* The value being assigned might refer to X (like in "x++;"). In that
10927 case, we must replace it with (clobber (const_int 0)) to prevent
10928 infinite loops. */
10929 if (value && ! get_last_value_validate (&value, insn,
10930 reg_stat[regno].last_set_label, 0))
10931 {
10932 value = copy_rtx (value);
10933 if (! get_last_value_validate (&value, insn,
10934 reg_stat[regno].last_set_label, 1))
10935 value = 0;
10936 }
10937
10938 /* For the main register being modified, update the value, the mode, the
10939 nonzero bits, and the number of sign bit copies. */
10940
10941 reg_stat[regno].last_set_value = value;
10942
10943 if (value)
10944 {
10945 enum machine_mode mode = GET_MODE (reg);
10946 subst_low_cuid = INSN_CUID (insn);
10947 reg_stat[regno].last_set_mode = mode;
10948 if (GET_MODE_CLASS (mode) == MODE_INT
10949 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10950 mode = nonzero_bits_mode;
10951 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10952 reg_stat[regno].last_set_sign_bit_copies
10953 = num_sign_bit_copies (value, GET_MODE (reg));
10954 }
10955 }
10956
10957 /* Called via note_stores from record_dead_and_set_regs to handle one
10958 SET or CLOBBER in an insn. DATA is the instruction in which the
10959 set is occurring. */
10960
10961 static void
10962 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10963 {
10964 rtx record_dead_insn = (rtx) data;
10965
10966 if (GET_CODE (dest) == SUBREG)
10967 dest = SUBREG_REG (dest);
10968
10969 if (REG_P (dest))
10970 {
10971 /* If we are setting the whole register, we know its value. Otherwise
10972 show that we don't know the value. We can handle SUBREG in
10973 some cases. */
10974 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10975 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10976 else if (GET_CODE (setter) == SET
10977 && GET_CODE (SET_DEST (setter)) == SUBREG
10978 && SUBREG_REG (SET_DEST (setter)) == dest
10979 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10980 && subreg_lowpart_p (SET_DEST (setter)))
10981 record_value_for_reg (dest, record_dead_insn,
10982 gen_lowpart (GET_MODE (dest),
10983 SET_SRC (setter)));
10984 else
10985 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10986 }
10987 else if (MEM_P (dest)
10988 /* Ignore pushes, they clobber nothing. */
10989 && ! push_operand (dest, GET_MODE (dest)))
10990 mem_last_set = INSN_CUID (record_dead_insn);
10991 }
10992
10993 /* Update the records of when each REG was most recently set or killed
10994 for the things done by INSN. This is the last thing done in processing
10995 INSN in the combiner loop.
10996
10997 We update reg_stat[], in particular fields last_set, last_set_value,
10998 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10999 last_death, and also the similar information mem_last_set (which insn
11000 most recently modified memory) and last_call_cuid (which insn was the
11001 most recent subroutine call). */
11002
11003 static void
11004 record_dead_and_set_regs (rtx insn)
11005 {
11006 rtx link;
11007 unsigned int i;
11008
11009 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11010 {
11011 if (REG_NOTE_KIND (link) == REG_DEAD
11012 && REG_P (XEXP (link, 0)))
11013 {
11014 unsigned int regno = REGNO (XEXP (link, 0));
11015 unsigned int endregno
11016 = regno + (regno < FIRST_PSEUDO_REGISTER
11017 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11018 : 1);
11019
11020 for (i = regno; i < endregno; i++)
11021 reg_stat[i].last_death = insn;
11022 }
11023 else if (REG_NOTE_KIND (link) == REG_INC)
11024 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11025 }
11026
11027 if (CALL_P (insn))
11028 {
11029 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11030 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11031 {
11032 reg_stat[i].last_set_value = 0;
11033 reg_stat[i].last_set_mode = 0;
11034 reg_stat[i].last_set_nonzero_bits = 0;
11035 reg_stat[i].last_set_sign_bit_copies = 0;
11036 reg_stat[i].last_death = 0;
11037 }
11038
11039 last_call_cuid = mem_last_set = INSN_CUID (insn);
11040
11041 /* Don't bother recording what this insn does. It might set the
11042 return value register, but we can't combine into a call
11043 pattern anyway, so there's no point trying (and it may cause
11044 a crash, if e.g. we wind up asking for last_set_value of a
11045 SUBREG of the return value register). */
11046 return;
11047 }
11048
11049 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11050 }
11051
11052 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11053 register present in the SUBREG, so for each such SUBREG go back and
11054 adjust nonzero and sign bit information of the registers that are
11055 known to have some zero/sign bits set.
11056
11057 This is needed because when combine blows the SUBREGs away, the
11058 information on zero/sign bits is lost and further combines can be
11059 missed because of that. */
11060
11061 static void
11062 record_promoted_value (rtx insn, rtx subreg)
11063 {
11064 rtx links, set;
11065 unsigned int regno = REGNO (SUBREG_REG (subreg));
11066 enum machine_mode mode = GET_MODE (subreg);
11067
11068 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11069 return;
11070
11071 for (links = LOG_LINKS (insn); links;)
11072 {
11073 insn = XEXP (links, 0);
11074 set = single_set (insn);
11075
11076 if (! set || !REG_P (SET_DEST (set))
11077 || REGNO (SET_DEST (set)) != regno
11078 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11079 {
11080 links = XEXP (links, 1);
11081 continue;
11082 }
11083
11084 if (reg_stat[regno].last_set == insn)
11085 {
11086 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11087 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11088 }
11089
11090 if (REG_P (SET_SRC (set)))
11091 {
11092 regno = REGNO (SET_SRC (set));
11093 links = LOG_LINKS (insn);
11094 }
11095 else
11096 break;
11097 }
11098 }
11099
11100 /* Scan X for promoted SUBREGs. For each one found,
11101 note what it implies to the registers used in it. */
11102
11103 static void
11104 check_promoted_subreg (rtx insn, rtx x)
11105 {
11106 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11107 && REG_P (SUBREG_REG (x)))
11108 record_promoted_value (insn, x);
11109 else
11110 {
11111 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11112 int i, j;
11113
11114 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11115 switch (format[i])
11116 {
11117 case 'e':
11118 check_promoted_subreg (insn, XEXP (x, i));
11119 break;
11120 case 'V':
11121 case 'E':
11122 if (XVEC (x, i) != 0)
11123 for (j = 0; j < XVECLEN (x, i); j++)
11124 check_promoted_subreg (insn, XVECEXP (x, i, j));
11125 break;
11126 }
11127 }
11128 }
11129 \f
11130 /* Utility routine for the following function. Verify that all the registers
11131 mentioned in *LOC are valid when *LOC was part of a value set when
11132 label_tick == TICK. Return 0 if some are not.
11133
11134 If REPLACE is nonzero, replace the invalid reference with
11135 (clobber (const_int 0)) and return 1. This replacement is useful because
11136 we often can get useful information about the form of a value (e.g., if
11137 it was produced by a shift that always produces -1 or 0) even though
11138 we don't know exactly what registers it was produced from. */
11139
11140 static int
11141 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11142 {
11143 rtx x = *loc;
11144 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11145 int len = GET_RTX_LENGTH (GET_CODE (x));
11146 int i;
11147
11148 if (REG_P (x))
11149 {
11150 unsigned int regno = REGNO (x);
11151 unsigned int endregno
11152 = regno + (regno < FIRST_PSEUDO_REGISTER
11153 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11154 unsigned int j;
11155
11156 for (j = regno; j < endregno; j++)
11157 if (reg_stat[j].last_set_invalid
11158 /* If this is a pseudo-register that was only set once and not
11159 live at the beginning of the function, it is always valid. */
11160 || (! (regno >= FIRST_PSEUDO_REGISTER
11161 && REG_N_SETS (regno) == 1
11162 && (! REGNO_REG_SET_P
11163 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11164 && reg_stat[j].last_set_label > tick))
11165 {
11166 if (replace)
11167 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11168 return replace;
11169 }
11170
11171 return 1;
11172 }
11173 /* If this is a memory reference, make sure that there were
11174 no stores after it that might have clobbered the value. We don't
11175 have alias info, so we assume any store invalidates it. */
11176 else if (MEM_P (x) && !MEM_READONLY_P (x)
11177 && INSN_CUID (insn) <= mem_last_set)
11178 {
11179 if (replace)
11180 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11181 return replace;
11182 }
11183
11184 for (i = 0; i < len; i++)
11185 {
11186 if (fmt[i] == 'e')
11187 {
11188 /* Check for identical subexpressions. If x contains
11189 identical subexpression we only have to traverse one of
11190 them. */
11191 if (i == 1 && ARITHMETIC_P (x))
11192 {
11193 /* Note that at this point x0 has already been checked
11194 and found valid. */
11195 rtx x0 = XEXP (x, 0);
11196 rtx x1 = XEXP (x, 1);
11197
11198 /* If x0 and x1 are identical then x is also valid. */
11199 if (x0 == x1)
11200 return 1;
11201
11202 /* If x1 is identical to a subexpression of x0 then
11203 while checking x0, x1 has already been checked. Thus
11204 it is valid and so as x. */
11205 if (ARITHMETIC_P (x0)
11206 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11207 return 1;
11208
11209 /* If x0 is identical to a subexpression of x1 then x is
11210 valid iff the rest of x1 is valid. */
11211 if (ARITHMETIC_P (x1)
11212 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11213 return
11214 get_last_value_validate (&XEXP (x1,
11215 x0 == XEXP (x1, 0) ? 1 : 0),
11216 insn, tick, replace);
11217 }
11218
11219 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11220 replace) == 0)
11221 return 0;
11222 }
11223 /* Don't bother with these. They shouldn't occur anyway. */
11224 else if (fmt[i] == 'E')
11225 return 0;
11226 }
11227
11228 /* If we haven't found a reason for it to be invalid, it is valid. */
11229 return 1;
11230 }
11231
11232 /* Get the last value assigned to X, if known. Some registers
11233 in the value may be replaced with (clobber (const_int 0)) if their value
11234 is known longer known reliably. */
11235
11236 static rtx
11237 get_last_value (rtx x)
11238 {
11239 unsigned int regno;
11240 rtx value;
11241
11242 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11243 then convert it to the desired mode. If this is a paradoxical SUBREG,
11244 we cannot predict what values the "extra" bits might have. */
11245 if (GET_CODE (x) == SUBREG
11246 && subreg_lowpart_p (x)
11247 && (GET_MODE_SIZE (GET_MODE (x))
11248 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11249 && (value = get_last_value (SUBREG_REG (x))) != 0)
11250 return gen_lowpart (GET_MODE (x), value);
11251
11252 if (!REG_P (x))
11253 return 0;
11254
11255 regno = REGNO (x);
11256 value = reg_stat[regno].last_set_value;
11257
11258 /* If we don't have a value, or if it isn't for this basic block and
11259 it's either a hard register, set more than once, or it's a live
11260 at the beginning of the function, return 0.
11261
11262 Because if it's not live at the beginning of the function then the reg
11263 is always set before being used (is never used without being set).
11264 And, if it's set only once, and it's always set before use, then all
11265 uses must have the same last value, even if it's not from this basic
11266 block. */
11267
11268 if (value == 0
11269 || (reg_stat[regno].last_set_label != label_tick
11270 && (regno < FIRST_PSEUDO_REGISTER
11271 || REG_N_SETS (regno) != 1
11272 || (REGNO_REG_SET_P
11273 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11274 return 0;
11275
11276 /* If the value was set in a later insn than the ones we are processing,
11277 we can't use it even if the register was only set once. */
11278 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11279 return 0;
11280
11281 /* If the value has all its registers valid, return it. */
11282 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11283 reg_stat[regno].last_set_label, 0))
11284 return value;
11285
11286 /* Otherwise, make a copy and replace any invalid register with
11287 (clobber (const_int 0)). If that fails for some reason, return 0. */
11288
11289 value = copy_rtx (value);
11290 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11291 reg_stat[regno].last_set_label, 1))
11292 return value;
11293
11294 return 0;
11295 }
11296 \f
11297 /* Return nonzero if expression X refers to a REG or to memory
11298 that is set in an instruction more recent than FROM_CUID. */
11299
11300 static int
11301 use_crosses_set_p (rtx x, int from_cuid)
11302 {
11303 const char *fmt;
11304 int i;
11305 enum rtx_code code = GET_CODE (x);
11306
11307 if (code == REG)
11308 {
11309 unsigned int regno = REGNO (x);
11310 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11311 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11312
11313 #ifdef PUSH_ROUNDING
11314 /* Don't allow uses of the stack pointer to be moved,
11315 because we don't know whether the move crosses a push insn. */
11316 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11317 return 1;
11318 #endif
11319 for (; regno < endreg; regno++)
11320 if (reg_stat[regno].last_set
11321 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11322 return 1;
11323 return 0;
11324 }
11325
11326 if (code == MEM && mem_last_set > from_cuid)
11327 return 1;
11328
11329 fmt = GET_RTX_FORMAT (code);
11330
11331 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11332 {
11333 if (fmt[i] == 'E')
11334 {
11335 int j;
11336 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11337 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11338 return 1;
11339 }
11340 else if (fmt[i] == 'e'
11341 && use_crosses_set_p (XEXP (x, i), from_cuid))
11342 return 1;
11343 }
11344 return 0;
11345 }
11346 \f
11347 /* Define three variables used for communication between the following
11348 routines. */
11349
11350 static unsigned int reg_dead_regno, reg_dead_endregno;
11351 static int reg_dead_flag;
11352
11353 /* Function called via note_stores from reg_dead_at_p.
11354
11355 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11356 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11357
11358 static void
11359 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11360 {
11361 unsigned int regno, endregno;
11362
11363 if (!REG_P (dest))
11364 return;
11365
11366 regno = REGNO (dest);
11367 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11368 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11369
11370 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11371 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11372 }
11373
11374 /* Return nonzero if REG is known to be dead at INSN.
11375
11376 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11377 referencing REG, it is dead. If we hit a SET referencing REG, it is
11378 live. Otherwise, see if it is live or dead at the start of the basic
11379 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11380 must be assumed to be always live. */
11381
11382 static int
11383 reg_dead_at_p (rtx reg, rtx insn)
11384 {
11385 basic_block block;
11386 unsigned int i;
11387
11388 /* Set variables for reg_dead_at_p_1. */
11389 reg_dead_regno = REGNO (reg);
11390 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11391 ? hard_regno_nregs[reg_dead_regno]
11392 [GET_MODE (reg)]
11393 : 1);
11394
11395 reg_dead_flag = 0;
11396
11397 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11398 we allow the machine description to decide whether use-and-clobber
11399 patterns are OK. */
11400 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11401 {
11402 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11403 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11404 return 0;
11405 }
11406
11407 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11408 beginning of function. */
11409 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11410 insn = prev_nonnote_insn (insn))
11411 {
11412 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11413 if (reg_dead_flag)
11414 return reg_dead_flag == 1 ? 1 : 0;
11415
11416 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11417 return 1;
11418 }
11419
11420 /* Get the basic block that we were in. */
11421 if (insn == 0)
11422 block = ENTRY_BLOCK_PTR->next_bb;
11423 else
11424 {
11425 FOR_EACH_BB (block)
11426 if (insn == BB_HEAD (block))
11427 break;
11428
11429 if (block == EXIT_BLOCK_PTR)
11430 return 0;
11431 }
11432
11433 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11434 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11435 return 0;
11436
11437 return 1;
11438 }
11439 \f
11440 /* Note hard registers in X that are used. This code is similar to
11441 that in flow.c, but much simpler since we don't care about pseudos. */
11442
11443 static void
11444 mark_used_regs_combine (rtx x)
11445 {
11446 RTX_CODE code = GET_CODE (x);
11447 unsigned int regno;
11448 int i;
11449
11450 switch (code)
11451 {
11452 case LABEL_REF:
11453 case SYMBOL_REF:
11454 case CONST_INT:
11455 case CONST:
11456 case CONST_DOUBLE:
11457 case CONST_VECTOR:
11458 case PC:
11459 case ADDR_VEC:
11460 case ADDR_DIFF_VEC:
11461 case ASM_INPUT:
11462 #ifdef HAVE_cc0
11463 /* CC0 must die in the insn after it is set, so we don't need to take
11464 special note of it here. */
11465 case CC0:
11466 #endif
11467 return;
11468
11469 case CLOBBER:
11470 /* If we are clobbering a MEM, mark any hard registers inside the
11471 address as used. */
11472 if (MEM_P (XEXP (x, 0)))
11473 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11474 return;
11475
11476 case REG:
11477 regno = REGNO (x);
11478 /* A hard reg in a wide mode may really be multiple registers.
11479 If so, mark all of them just like the first. */
11480 if (regno < FIRST_PSEUDO_REGISTER)
11481 {
11482 unsigned int endregno, r;
11483
11484 /* None of this applies to the stack, frame or arg pointers. */
11485 if (regno == STACK_POINTER_REGNUM
11486 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11487 || regno == HARD_FRAME_POINTER_REGNUM
11488 #endif
11489 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11490 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11491 #endif
11492 || regno == FRAME_POINTER_REGNUM)
11493 return;
11494
11495 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11496 for (r = regno; r < endregno; r++)
11497 SET_HARD_REG_BIT (newpat_used_regs, r);
11498 }
11499 return;
11500
11501 case SET:
11502 {
11503 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11504 the address. */
11505 rtx testreg = SET_DEST (x);
11506
11507 while (GET_CODE (testreg) == SUBREG
11508 || GET_CODE (testreg) == ZERO_EXTRACT
11509 || GET_CODE (testreg) == STRICT_LOW_PART)
11510 testreg = XEXP (testreg, 0);
11511
11512 if (MEM_P (testreg))
11513 mark_used_regs_combine (XEXP (testreg, 0));
11514
11515 mark_used_regs_combine (SET_SRC (x));
11516 }
11517 return;
11518
11519 default:
11520 break;
11521 }
11522
11523 /* Recursively scan the operands of this expression. */
11524
11525 {
11526 const char *fmt = GET_RTX_FORMAT (code);
11527
11528 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11529 {
11530 if (fmt[i] == 'e')
11531 mark_used_regs_combine (XEXP (x, i));
11532 else if (fmt[i] == 'E')
11533 {
11534 int j;
11535
11536 for (j = 0; j < XVECLEN (x, i); j++)
11537 mark_used_regs_combine (XVECEXP (x, i, j));
11538 }
11539 }
11540 }
11541 }
11542 \f
11543 /* Remove register number REGNO from the dead registers list of INSN.
11544
11545 Return the note used to record the death, if there was one. */
11546
11547 rtx
11548 remove_death (unsigned int regno, rtx insn)
11549 {
11550 rtx note = find_regno_note (insn, REG_DEAD, regno);
11551
11552 if (note)
11553 {
11554 REG_N_DEATHS (regno)--;
11555 remove_note (insn, note);
11556 }
11557
11558 return note;
11559 }
11560
11561 /* For each register (hardware or pseudo) used within expression X, if its
11562 death is in an instruction with cuid between FROM_CUID (inclusive) and
11563 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11564 list headed by PNOTES.
11565
11566 That said, don't move registers killed by maybe_kill_insn.
11567
11568 This is done when X is being merged by combination into TO_INSN. These
11569 notes will then be distributed as needed. */
11570
11571 static void
11572 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11573 rtx *pnotes)
11574 {
11575 const char *fmt;
11576 int len, i;
11577 enum rtx_code code = GET_CODE (x);
11578
11579 if (code == REG)
11580 {
11581 unsigned int regno = REGNO (x);
11582 rtx where_dead = reg_stat[regno].last_death;
11583 rtx before_dead, after_dead;
11584
11585 /* Don't move the register if it gets killed in between from and to. */
11586 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11587 && ! reg_referenced_p (x, maybe_kill_insn))
11588 return;
11589
11590 /* WHERE_DEAD could be a USE insn made by combine, so first we
11591 make sure that we have insns with valid INSN_CUID values. */
11592 before_dead = where_dead;
11593 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11594 before_dead = PREV_INSN (before_dead);
11595
11596 after_dead = where_dead;
11597 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11598 after_dead = NEXT_INSN (after_dead);
11599
11600 if (before_dead && after_dead
11601 && INSN_CUID (before_dead) >= from_cuid
11602 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11603 || (where_dead != after_dead
11604 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11605 {
11606 rtx note = remove_death (regno, where_dead);
11607
11608 /* It is possible for the call above to return 0. This can occur
11609 when last_death points to I2 or I1 that we combined with.
11610 In that case make a new note.
11611
11612 We must also check for the case where X is a hard register
11613 and NOTE is a death note for a range of hard registers
11614 including X. In that case, we must put REG_DEAD notes for
11615 the remaining registers in place of NOTE. */
11616
11617 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11618 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11619 > GET_MODE_SIZE (GET_MODE (x))))
11620 {
11621 unsigned int deadregno = REGNO (XEXP (note, 0));
11622 unsigned int deadend
11623 = (deadregno + hard_regno_nregs[deadregno]
11624 [GET_MODE (XEXP (note, 0))]);
11625 unsigned int ourend
11626 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11627 unsigned int i;
11628
11629 for (i = deadregno; i < deadend; i++)
11630 if (i < regno || i >= ourend)
11631 REG_NOTES (where_dead)
11632 = gen_rtx_EXPR_LIST (REG_DEAD,
11633 regno_reg_rtx[i],
11634 REG_NOTES (where_dead));
11635 }
11636
11637 /* If we didn't find any note, or if we found a REG_DEAD note that
11638 covers only part of the given reg, and we have a multi-reg hard
11639 register, then to be safe we must check for REG_DEAD notes
11640 for each register other than the first. They could have
11641 their own REG_DEAD notes lying around. */
11642 else if ((note == 0
11643 || (note != 0
11644 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11645 < GET_MODE_SIZE (GET_MODE (x)))))
11646 && regno < FIRST_PSEUDO_REGISTER
11647 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11648 {
11649 unsigned int ourend
11650 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11651 unsigned int i, offset;
11652 rtx oldnotes = 0;
11653
11654 if (note)
11655 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11656 else
11657 offset = 1;
11658
11659 for (i = regno + offset; i < ourend; i++)
11660 move_deaths (regno_reg_rtx[i],
11661 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11662 }
11663
11664 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11665 {
11666 XEXP (note, 1) = *pnotes;
11667 *pnotes = note;
11668 }
11669 else
11670 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11671
11672 REG_N_DEATHS (regno)++;
11673 }
11674
11675 return;
11676 }
11677
11678 else if (GET_CODE (x) == SET)
11679 {
11680 rtx dest = SET_DEST (x);
11681
11682 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11683
11684 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11685 that accesses one word of a multi-word item, some
11686 piece of everything register in the expression is used by
11687 this insn, so remove any old death. */
11688 /* ??? So why do we test for equality of the sizes? */
11689
11690 if (GET_CODE (dest) == ZERO_EXTRACT
11691 || GET_CODE (dest) == STRICT_LOW_PART
11692 || (GET_CODE (dest) == SUBREG
11693 && (((GET_MODE_SIZE (GET_MODE (dest))
11694 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11695 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11696 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11697 {
11698 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11699 return;
11700 }
11701
11702 /* If this is some other SUBREG, we know it replaces the entire
11703 value, so use that as the destination. */
11704 if (GET_CODE (dest) == SUBREG)
11705 dest = SUBREG_REG (dest);
11706
11707 /* If this is a MEM, adjust deaths of anything used in the address.
11708 For a REG (the only other possibility), the entire value is
11709 being replaced so the old value is not used in this insn. */
11710
11711 if (MEM_P (dest))
11712 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11713 to_insn, pnotes);
11714 return;
11715 }
11716
11717 else if (GET_CODE (x) == CLOBBER)
11718 return;
11719
11720 len = GET_RTX_LENGTH (code);
11721 fmt = GET_RTX_FORMAT (code);
11722
11723 for (i = 0; i < len; i++)
11724 {
11725 if (fmt[i] == 'E')
11726 {
11727 int j;
11728 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11729 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11730 to_insn, pnotes);
11731 }
11732 else if (fmt[i] == 'e')
11733 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11734 }
11735 }
11736 \f
11737 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11738 pattern of an insn. X must be a REG. */
11739
11740 static int
11741 reg_bitfield_target_p (rtx x, rtx body)
11742 {
11743 int i;
11744
11745 if (GET_CODE (body) == SET)
11746 {
11747 rtx dest = SET_DEST (body);
11748 rtx target;
11749 unsigned int regno, tregno, endregno, endtregno;
11750
11751 if (GET_CODE (dest) == ZERO_EXTRACT)
11752 target = XEXP (dest, 0);
11753 else if (GET_CODE (dest) == STRICT_LOW_PART)
11754 target = SUBREG_REG (XEXP (dest, 0));
11755 else
11756 return 0;
11757
11758 if (GET_CODE (target) == SUBREG)
11759 target = SUBREG_REG (target);
11760
11761 if (!REG_P (target))
11762 return 0;
11763
11764 tregno = REGNO (target), regno = REGNO (x);
11765 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11766 return target == x;
11767
11768 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11769 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11770
11771 return endregno > tregno && regno < endtregno;
11772 }
11773
11774 else if (GET_CODE (body) == PARALLEL)
11775 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11776 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11777 return 1;
11778
11779 return 0;
11780 }
11781 \f
11782 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11783 as appropriate. I3 and I2 are the insns resulting from the combination
11784 insns including FROM (I2 may be zero).
11785
11786 Each note in the list is either ignored or placed on some insns, depending
11787 on the type of note. */
11788
11789 static void
11790 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11791 {
11792 rtx note, next_note;
11793 rtx tem;
11794
11795 for (note = notes; note; note = next_note)
11796 {
11797 rtx place = 0, place2 = 0;
11798
11799 /* If this NOTE references a pseudo register, ensure it references
11800 the latest copy of that register. */
11801 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11802 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11803 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11804
11805 next_note = XEXP (note, 1);
11806 switch (REG_NOTE_KIND (note))
11807 {
11808 case REG_BR_PROB:
11809 case REG_BR_PRED:
11810 /* Doesn't matter much where we put this, as long as it's somewhere.
11811 It is preferable to keep these notes on branches, which is most
11812 likely to be i3. */
11813 place = i3;
11814 break;
11815
11816 case REG_VALUE_PROFILE:
11817 /* Just get rid of this note, as it is unused later anyway. */
11818 break;
11819
11820 case REG_NON_LOCAL_GOTO:
11821 if (JUMP_P (i3))
11822 place = i3;
11823 else
11824 {
11825 gcc_assert (i2 && JUMP_P (i2));
11826 place = i2;
11827 }
11828 break;
11829
11830 case REG_EH_REGION:
11831 /* These notes must remain with the call or trapping instruction. */
11832 if (CALL_P (i3))
11833 place = i3;
11834 else if (i2 && CALL_P (i2))
11835 place = i2;
11836 else
11837 {
11838 gcc_assert (flag_non_call_exceptions);
11839 if (may_trap_p (i3))
11840 place = i3;
11841 else if (i2 && may_trap_p (i2))
11842 place = i2;
11843 /* ??? Otherwise assume we've combined things such that we
11844 can now prove that the instructions can't trap. Drop the
11845 note in this case. */
11846 }
11847 break;
11848
11849 case REG_ALWAYS_RETURN:
11850 case REG_NORETURN:
11851 case REG_SETJMP:
11852 /* These notes must remain with the call. It should not be
11853 possible for both I2 and I3 to be a call. */
11854 if (CALL_P (i3))
11855 place = i3;
11856 else
11857 {
11858 gcc_assert (i2 && CALL_P (i2));
11859 place = i2;
11860 }
11861 break;
11862
11863 case REG_UNUSED:
11864 /* Any clobbers for i3 may still exist, and so we must process
11865 REG_UNUSED notes from that insn.
11866
11867 Any clobbers from i2 or i1 can only exist if they were added by
11868 recog_for_combine. In that case, recog_for_combine created the
11869 necessary REG_UNUSED notes. Trying to keep any original
11870 REG_UNUSED notes from these insns can cause incorrect output
11871 if it is for the same register as the original i3 dest.
11872 In that case, we will notice that the register is set in i3,
11873 and then add a REG_UNUSED note for the destination of i3, which
11874 is wrong. However, it is possible to have REG_UNUSED notes from
11875 i2 or i1 for register which were both used and clobbered, so
11876 we keep notes from i2 or i1 if they will turn into REG_DEAD
11877 notes. */
11878
11879 /* If this register is set or clobbered in I3, put the note there
11880 unless there is one already. */
11881 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11882 {
11883 if (from_insn != i3)
11884 break;
11885
11886 if (! (REG_P (XEXP (note, 0))
11887 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11888 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11889 place = i3;
11890 }
11891 /* Otherwise, if this register is used by I3, then this register
11892 now dies here, so we must put a REG_DEAD note here unless there
11893 is one already. */
11894 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11895 && ! (REG_P (XEXP (note, 0))
11896 ? find_regno_note (i3, REG_DEAD,
11897 REGNO (XEXP (note, 0)))
11898 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11899 {
11900 PUT_REG_NOTE_KIND (note, REG_DEAD);
11901 place = i3;
11902 }
11903 break;
11904
11905 case REG_EQUAL:
11906 case REG_EQUIV:
11907 case REG_NOALIAS:
11908 /* These notes say something about results of an insn. We can
11909 only support them if they used to be on I3 in which case they
11910 remain on I3. Otherwise they are ignored.
11911
11912 If the note refers to an expression that is not a constant, we
11913 must also ignore the note since we cannot tell whether the
11914 equivalence is still true. It might be possible to do
11915 slightly better than this (we only have a problem if I2DEST
11916 or I1DEST is present in the expression), but it doesn't
11917 seem worth the trouble. */
11918
11919 if (from_insn == i3
11920 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11921 place = i3;
11922 break;
11923
11924 case REG_INC:
11925 case REG_NO_CONFLICT:
11926 /* These notes say something about how a register is used. They must
11927 be present on any use of the register in I2 or I3. */
11928 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11929 place = i3;
11930
11931 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11932 {
11933 if (place)
11934 place2 = i2;
11935 else
11936 place = i2;
11937 }
11938 break;
11939
11940 case REG_LABEL:
11941 /* This can show up in several ways -- either directly in the
11942 pattern, or hidden off in the constant pool with (or without?)
11943 a REG_EQUAL note. */
11944 /* ??? Ignore the without-reg_equal-note problem for now. */
11945 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11946 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11947 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11948 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11949 place = i3;
11950
11951 if (i2
11952 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11953 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11954 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11955 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11956 {
11957 if (place)
11958 place2 = i2;
11959 else
11960 place = i2;
11961 }
11962
11963 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11964 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11965 if (place && JUMP_P (place))
11966 {
11967 rtx label = JUMP_LABEL (place);
11968
11969 if (!label)
11970 JUMP_LABEL (place) = XEXP (note, 0);
11971 else
11972 {
11973 gcc_assert (label == XEXP (note, 0));
11974 if (LABEL_P (label))
11975 LABEL_NUSES (label)--;
11976 }
11977 place = 0;
11978 }
11979 if (place2 && JUMP_P (place2))
11980 {
11981 rtx label = JUMP_LABEL (place2);
11982
11983 if (!label)
11984 JUMP_LABEL (place2) = XEXP (note, 0);
11985 else
11986 {
11987 gcc_assert (label == XEXP (note, 0));
11988 if (LABEL_P (label))
11989 LABEL_NUSES (label)--;
11990 }
11991 place2 = 0;
11992 }
11993 break;
11994
11995 case REG_NONNEG:
11996 /* This note says something about the value of a register prior
11997 to the execution of an insn. It is too much trouble to see
11998 if the note is still correct in all situations. It is better
11999 to simply delete it. */
12000 break;
12001
12002 case REG_RETVAL:
12003 /* If the insn previously containing this note still exists,
12004 put it back where it was. Otherwise move it to the previous
12005 insn. Adjust the corresponding REG_LIBCALL note. */
12006 if (!NOTE_P (from_insn))
12007 place = from_insn;
12008 else
12009 {
12010 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12011 place = prev_real_insn (from_insn);
12012 if (tem && place)
12013 XEXP (tem, 0) = place;
12014 /* If we're deleting the last remaining instruction of a
12015 libcall sequence, don't add the notes. */
12016 else if (XEXP (note, 0) == from_insn)
12017 tem = place = 0;
12018 /* Don't add the dangling REG_RETVAL note. */
12019 else if (! tem)
12020 place = 0;
12021 }
12022 break;
12023
12024 case REG_LIBCALL:
12025 /* This is handled similarly to REG_RETVAL. */
12026 if (!NOTE_P (from_insn))
12027 place = from_insn;
12028 else
12029 {
12030 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12031 place = next_real_insn (from_insn);
12032 if (tem && place)
12033 XEXP (tem, 0) = place;
12034 /* If we're deleting the last remaining instruction of a
12035 libcall sequence, don't add the notes. */
12036 else if (XEXP (note, 0) == from_insn)
12037 tem = place = 0;
12038 /* Don't add the dangling REG_LIBCALL note. */
12039 else if (! tem)
12040 place = 0;
12041 }
12042 break;
12043
12044 case REG_DEAD:
12045 /* If the register is used as an input in I3, it dies there.
12046 Similarly for I2, if it is nonzero and adjacent to I3.
12047
12048 If the register is not used as an input in either I3 or I2
12049 and it is not one of the registers we were supposed to eliminate,
12050 there are two possibilities. We might have a non-adjacent I2
12051 or we might have somehow eliminated an additional register
12052 from a computation. For example, we might have had A & B where
12053 we discover that B will always be zero. In this case we will
12054 eliminate the reference to A.
12055
12056 In both cases, we must search to see if we can find a previous
12057 use of A and put the death note there. */
12058
12059 if (from_insn
12060 && CALL_P (from_insn)
12061 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12062 place = from_insn;
12063 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12064 place = i3;
12065 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12066 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12067 place = i2;
12068
12069 if (place == 0)
12070 {
12071 basic_block bb = this_basic_block;
12072
12073 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12074 {
12075 if (! INSN_P (tem))
12076 {
12077 if (tem == BB_HEAD (bb))
12078 break;
12079 continue;
12080 }
12081
12082 /* If the register is being set at TEM, see if that is all
12083 TEM is doing. If so, delete TEM. Otherwise, make this
12084 into a REG_UNUSED note instead. Don't delete sets to
12085 global register vars. */
12086 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12087 || !global_regs[REGNO (XEXP (note, 0))])
12088 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12089 {
12090 rtx set = single_set (tem);
12091 rtx inner_dest = 0;
12092 #ifdef HAVE_cc0
12093 rtx cc0_setter = NULL_RTX;
12094 #endif
12095
12096 if (set != 0)
12097 for (inner_dest = SET_DEST (set);
12098 (GET_CODE (inner_dest) == STRICT_LOW_PART
12099 || GET_CODE (inner_dest) == SUBREG
12100 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12101 inner_dest = XEXP (inner_dest, 0))
12102 ;
12103
12104 /* Verify that it was the set, and not a clobber that
12105 modified the register.
12106
12107 CC0 targets must be careful to maintain setter/user
12108 pairs. If we cannot delete the setter due to side
12109 effects, mark the user with an UNUSED note instead
12110 of deleting it. */
12111
12112 if (set != 0 && ! side_effects_p (SET_SRC (set))
12113 && rtx_equal_p (XEXP (note, 0), inner_dest)
12114 #ifdef HAVE_cc0
12115 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12116 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12117 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12118 #endif
12119 )
12120 {
12121 /* Move the notes and links of TEM elsewhere.
12122 This might delete other dead insns recursively.
12123 First set the pattern to something that won't use
12124 any register. */
12125 rtx old_notes = REG_NOTES (tem);
12126
12127 PATTERN (tem) = pc_rtx;
12128 REG_NOTES (tem) = NULL;
12129
12130 distribute_notes (old_notes, tem, tem, NULL_RTX);
12131 distribute_links (LOG_LINKS (tem));
12132
12133 SET_INSN_DELETED (tem);
12134
12135 #ifdef HAVE_cc0
12136 /* Delete the setter too. */
12137 if (cc0_setter)
12138 {
12139 PATTERN (cc0_setter) = pc_rtx;
12140 old_notes = REG_NOTES (cc0_setter);
12141 REG_NOTES (cc0_setter) = NULL;
12142
12143 distribute_notes (old_notes, cc0_setter,
12144 cc0_setter, NULL_RTX);
12145 distribute_links (LOG_LINKS (cc0_setter));
12146
12147 SET_INSN_DELETED (cc0_setter);
12148 }
12149 #endif
12150 }
12151 else
12152 {
12153 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12154
12155 /* If there isn't already a REG_UNUSED note, put one
12156 here. Do not place a REG_DEAD note, even if
12157 the register is also used here; that would not
12158 match the algorithm used in lifetime analysis
12159 and can cause the consistency check in the
12160 scheduler to fail. */
12161 if (! find_regno_note (tem, REG_UNUSED,
12162 REGNO (XEXP (note, 0))))
12163 place = tem;
12164 break;
12165 }
12166 }
12167 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12168 || (CALL_P (tem)
12169 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12170 {
12171 place = tem;
12172
12173 /* If we are doing a 3->2 combination, and we have a
12174 register which formerly died in i3 and was not used
12175 by i2, which now no longer dies in i3 and is used in
12176 i2 but does not die in i2, and place is between i2
12177 and i3, then we may need to move a link from place to
12178 i2. */
12179 if (i2 && INSN_UID (place) <= max_uid_cuid
12180 && INSN_CUID (place) > INSN_CUID (i2)
12181 && from_insn
12182 && INSN_CUID (from_insn) > INSN_CUID (i2)
12183 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12184 {
12185 rtx links = LOG_LINKS (place);
12186 LOG_LINKS (place) = 0;
12187 distribute_links (links);
12188 }
12189 break;
12190 }
12191
12192 if (tem == BB_HEAD (bb))
12193 break;
12194 }
12195
12196 /* We haven't found an insn for the death note and it
12197 is still a REG_DEAD note, but we have hit the beginning
12198 of the block. If the existing life info says the reg
12199 was dead, there's nothing left to do. Otherwise, we'll
12200 need to do a global life update after combine. */
12201 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12202 && REGNO_REG_SET_P (bb->global_live_at_start,
12203 REGNO (XEXP (note, 0))))
12204 SET_BIT (refresh_blocks, this_basic_block->index);
12205 }
12206
12207 /* If the register is set or already dead at PLACE, we needn't do
12208 anything with this note if it is still a REG_DEAD note.
12209 We check here if it is set at all, not if is it totally replaced,
12210 which is what `dead_or_set_p' checks, so also check for it being
12211 set partially. */
12212
12213 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12214 {
12215 unsigned int regno = REGNO (XEXP (note, 0));
12216
12217 /* Similarly, if the instruction on which we want to place
12218 the note is a noop, we'll need do a global live update
12219 after we remove them in delete_noop_moves. */
12220 if (noop_move_p (place))
12221 SET_BIT (refresh_blocks, this_basic_block->index);
12222
12223 if (dead_or_set_p (place, XEXP (note, 0))
12224 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12225 {
12226 /* Unless the register previously died in PLACE, clear
12227 last_death. [I no longer understand why this is
12228 being done.] */
12229 if (reg_stat[regno].last_death != place)
12230 reg_stat[regno].last_death = 0;
12231 place = 0;
12232 }
12233 else
12234 reg_stat[regno].last_death = place;
12235
12236 /* If this is a death note for a hard reg that is occupying
12237 multiple registers, ensure that we are still using all
12238 parts of the object. If we find a piece of the object
12239 that is unused, we must arrange for an appropriate REG_DEAD
12240 note to be added for it. However, we can't just emit a USE
12241 and tag the note to it, since the register might actually
12242 be dead; so we recourse, and the recursive call then finds
12243 the previous insn that used this register. */
12244
12245 if (place && regno < FIRST_PSEUDO_REGISTER
12246 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12247 {
12248 unsigned int endregno
12249 = regno + hard_regno_nregs[regno]
12250 [GET_MODE (XEXP (note, 0))];
12251 int all_used = 1;
12252 unsigned int i;
12253
12254 for (i = regno; i < endregno; i++)
12255 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12256 && ! find_regno_fusage (place, USE, i))
12257 || dead_or_set_regno_p (place, i))
12258 all_used = 0;
12259
12260 if (! all_used)
12261 {
12262 /* Put only REG_DEAD notes for pieces that are
12263 not already dead or set. */
12264
12265 for (i = regno; i < endregno;
12266 i += hard_regno_nregs[i][reg_raw_mode[i]])
12267 {
12268 rtx piece = regno_reg_rtx[i];
12269 basic_block bb = this_basic_block;
12270
12271 if (! dead_or_set_p (place, piece)
12272 && ! reg_bitfield_target_p (piece,
12273 PATTERN (place)))
12274 {
12275 rtx new_note
12276 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12277
12278 distribute_notes (new_note, place, place,
12279 NULL_RTX);
12280 }
12281 else if (! refers_to_regno_p (i, i + 1,
12282 PATTERN (place), 0)
12283 && ! find_regno_fusage (place, USE, i))
12284 for (tem = PREV_INSN (place); ;
12285 tem = PREV_INSN (tem))
12286 {
12287 if (! INSN_P (tem))
12288 {
12289 if (tem == BB_HEAD (bb))
12290 {
12291 SET_BIT (refresh_blocks,
12292 this_basic_block->index);
12293 break;
12294 }
12295 continue;
12296 }
12297 if (dead_or_set_p (tem, piece)
12298 || reg_bitfield_target_p (piece,
12299 PATTERN (tem)))
12300 {
12301 REG_NOTES (tem)
12302 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12303 REG_NOTES (tem));
12304 break;
12305 }
12306 }
12307
12308 }
12309
12310 place = 0;
12311 }
12312 }
12313 }
12314 break;
12315
12316 default:
12317 /* Any other notes should not be present at this point in the
12318 compilation. */
12319 gcc_unreachable ();
12320 }
12321
12322 if (place)
12323 {
12324 XEXP (note, 1) = REG_NOTES (place);
12325 REG_NOTES (place) = note;
12326 }
12327 else if ((REG_NOTE_KIND (note) == REG_DEAD
12328 || REG_NOTE_KIND (note) == REG_UNUSED)
12329 && REG_P (XEXP (note, 0)))
12330 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12331
12332 if (place2)
12333 {
12334 if ((REG_NOTE_KIND (note) == REG_DEAD
12335 || REG_NOTE_KIND (note) == REG_UNUSED)
12336 && REG_P (XEXP (note, 0)))
12337 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12338
12339 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12340 REG_NOTE_KIND (note),
12341 XEXP (note, 0),
12342 REG_NOTES (place2));
12343 }
12344 }
12345 }
12346 \f
12347 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12348 I3, I2, and I1 to new locations. This is also called to add a link
12349 pointing at I3 when I3's destination is changed. */
12350
12351 static void
12352 distribute_links (rtx links)
12353 {
12354 rtx link, next_link;
12355
12356 for (link = links; link; link = next_link)
12357 {
12358 rtx place = 0;
12359 rtx insn;
12360 rtx set, reg;
12361
12362 next_link = XEXP (link, 1);
12363
12364 /* If the insn that this link points to is a NOTE or isn't a single
12365 set, ignore it. In the latter case, it isn't clear what we
12366 can do other than ignore the link, since we can't tell which
12367 register it was for. Such links wouldn't be used by combine
12368 anyway.
12369
12370 It is not possible for the destination of the target of the link to
12371 have been changed by combine. The only potential of this is if we
12372 replace I3, I2, and I1 by I3 and I2. But in that case the
12373 destination of I2 also remains unchanged. */
12374
12375 if (NOTE_P (XEXP (link, 0))
12376 || (set = single_set (XEXP (link, 0))) == 0)
12377 continue;
12378
12379 reg = SET_DEST (set);
12380 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12381 || GET_CODE (reg) == STRICT_LOW_PART)
12382 reg = XEXP (reg, 0);
12383
12384 /* A LOG_LINK is defined as being placed on the first insn that uses
12385 a register and points to the insn that sets the register. Start
12386 searching at the next insn after the target of the link and stop
12387 when we reach a set of the register or the end of the basic block.
12388
12389 Note that this correctly handles the link that used to point from
12390 I3 to I2. Also note that not much searching is typically done here
12391 since most links don't point very far away. */
12392
12393 for (insn = NEXT_INSN (XEXP (link, 0));
12394 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12395 || BB_HEAD (this_basic_block->next_bb) != insn));
12396 insn = NEXT_INSN (insn))
12397 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12398 {
12399 if (reg_referenced_p (reg, PATTERN (insn)))
12400 place = insn;
12401 break;
12402 }
12403 else if (CALL_P (insn)
12404 && find_reg_fusage (insn, USE, reg))
12405 {
12406 place = insn;
12407 break;
12408 }
12409 else if (INSN_P (insn) && reg_set_p (reg, insn))
12410 break;
12411
12412 /* If we found a place to put the link, place it there unless there
12413 is already a link to the same insn as LINK at that point. */
12414
12415 if (place)
12416 {
12417 rtx link2;
12418
12419 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12420 if (XEXP (link2, 0) == XEXP (link, 0))
12421 break;
12422
12423 if (link2 == 0)
12424 {
12425 XEXP (link, 1) = LOG_LINKS (place);
12426 LOG_LINKS (place) = link;
12427
12428 /* Set added_links_insn to the earliest insn we added a
12429 link to. */
12430 if (added_links_insn == 0
12431 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12432 added_links_insn = place;
12433 }
12434 }
12435 }
12436 }
12437 \f
12438 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12439 Check whether the expression pointer to by LOC is a register or
12440 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12441 Otherwise return zero. */
12442
12443 static int
12444 unmentioned_reg_p_1 (rtx *loc, void *expr)
12445 {
12446 rtx x = *loc;
12447
12448 if (x != NULL_RTX
12449 && (REG_P (x) || MEM_P (x))
12450 && ! reg_mentioned_p (x, (rtx) expr))
12451 return 1;
12452 return 0;
12453 }
12454
12455 /* Check for any register or memory mentioned in EQUIV that is not
12456 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12457 of EXPR where some registers may have been replaced by constants. */
12458
12459 static bool
12460 unmentioned_reg_p (rtx equiv, rtx expr)
12461 {
12462 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12463 }
12464 \f
12465 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12466
12467 static int
12468 insn_cuid (rtx insn)
12469 {
12470 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12471 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12472 insn = NEXT_INSN (insn);
12473
12474 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12475
12476 return INSN_CUID (insn);
12477 }
12478 \f
12479 void
12480 dump_combine_stats (FILE *file)
12481 {
12482 fnotice
12483 (file,
12484 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12485 combine_attempts, combine_merges, combine_extras, combine_successes);
12486 }
12487
12488 void
12489 dump_combine_total_stats (FILE *file)
12490 {
12491 fnotice
12492 (file,
12493 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12494 total_attempts, total_merges, total_extras, total_successes);
12495 }
This page took 0.670422 seconds and 6 git commands to generate.