]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
re PR rtl-optimization/17825 (ICE in reg_bitfield_target_p)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
96
97 /* Number of attempts to combine instructions in this function. */
98
99 static int combine_attempts;
100
101 /* Number of attempts that got as far as substitution in this function. */
102
103 static int combine_merges;
104
105 /* Number of instructions combined with added SETs in this function. */
106
107 static int combine_extras;
108
109 /* Number of instructions combined in this function. */
110
111 static int combine_successes;
112
113 /* Totals over entire compilation. */
114
115 static int total_attempts, total_merges, total_extras, total_successes;
116
117 \f
118 /* Vector mapping INSN_UIDs to cuids.
119 The cuids are like uids but increase monotonically always.
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
124
125 static int *uid_cuid;
126 static int max_uid_cuid;
127
128 /* Get the cuid of an insn. */
129
130 #define INSN_CUID(INSN) \
131 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
132
133 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
135
136 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
138
139 /* Maximum register number, which is the size of the tables below. */
140
141 static unsigned int combine_max_regno;
142
143 struct reg_stat {
144 /* Record last point of death of (hard or pseudo) register n. */
145 rtx last_death;
146
147 /* Record last point of modification of (hard or pseudo) register n. */
148 rtx last_set;
149
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
155
156 We use an approach similar to that used by cse, but change it in the
157 following ways:
158
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
162
163 Therefore, we maintain the following fields:
164
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
172 register's value
173
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
177 table.
178
179 (The next two parameters are out of date).
180
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
183
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
188
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
192
193 /* Record last value assigned to (hard or pseudo) register n. */
194
195 rtx last_set_value;
196
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
199
200 int last_set_table_tick;
201
202 /* Record the value of label_tick when the value for register n is placed in
203 last_set_value. */
204
205 int last_set_label;
206
207 /* These fields are maintained in parallel with last_set_value and are
208 used to store the mode in which the register was last set, the bits
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
211
212 unsigned HOST_WIDE_INT last_set_nonzero_bits;
213 char last_set_sign_bit_copies;
214 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
215
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
219
220 char last_set_invalid;
221
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
226
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
230 zero.
231
232 If an entry is zero, it means that we don't know anything special. */
233
234 unsigned char sign_bit_copies;
235
236 unsigned HOST_WIDE_INT nonzero_bits;
237 };
238
239 static struct reg_stat *reg_stat;
240
241 /* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
243
244 static int mem_last_set;
245
246 /* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
248
249 static int last_call_cuid;
250
251 /* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
256
257 static rtx subst_insn;
258
259 /* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
265
266 static int subst_low_cuid;
267
268 /* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
270
271 static HARD_REG_SET newpat_used_regs;
272
273 /* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
275 that location. */
276
277 static rtx added_links_insn;
278
279 /* Basic block in which we are performing combines. */
280 static basic_block this_basic_block;
281
282 /* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
284 those blocks as starting points. */
285 static sbitmap refresh_blocks;
286 \f
287 /* The following array records the insn_rtx_cost for every insn
288 in the instruction stream. */
289
290 static int *uid_insn_cost;
291
292 /* Length of the currently allocated uid_insn_cost array. */
293
294 static int last_insn_cost;
295
296 /* Incremented for each label. */
297
298 static int label_tick;
299
300 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
302
303 static enum machine_mode nonzero_bits_mode;
304
305 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
309 in a loop. */
310
311 static int nonzero_sign_valid;
312
313 \f
314 /* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
317
318 struct undo
319 {
320 struct undo *next;
321 int is_int;
322 union {rtx r; int i;} old_contents;
323 union {rtx *r; int *i;} where;
324 };
325
326 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
328
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too. */
331
332 struct undobuf
333 {
334 struct undo *undos;
335 struct undo *frees;
336 rtx other_insn;
337 };
338
339 static struct undobuf undobuf;
340
341 /* Number of times the pseudo being substituted for
342 was found and replaced. */
343
344 static int n_occurrences;
345
346 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
347 enum machine_mode,
348 unsigned HOST_WIDE_INT,
349 unsigned HOST_WIDE_INT *);
350 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
351 enum machine_mode,
352 unsigned int, unsigned int *);
353 static void do_SUBST (rtx *, rtx);
354 static void do_SUBST_INT (int *, int);
355 static void init_reg_last (void);
356 static void setup_incoming_promotions (void);
357 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
358 static int cant_combine_insn_p (rtx);
359 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
360 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
361 static int contains_muldiv (rtx);
362 static rtx try_combine (rtx, rtx, rtx, int *);
363 static void undo_all (void);
364 static void undo_commit (void);
365 static rtx *find_split_point (rtx *, rtx);
366 static rtx subst (rtx, rtx, rtx, int, int);
367 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
368 static rtx simplify_if_then_else (rtx);
369 static rtx simplify_set (rtx);
370 static rtx simplify_logical (rtx);
371 static rtx expand_compound_operation (rtx);
372 static rtx expand_field_assignment (rtx);
373 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
374 rtx, unsigned HOST_WIDE_INT, int, int, int);
375 static rtx extract_left_shift (rtx, int);
376 static rtx make_compound_operation (rtx, enum rtx_code);
377 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx force_to_mode (rtx, enum machine_mode,
380 unsigned HOST_WIDE_INT, rtx, int);
381 static rtx if_then_else_cond (rtx, rtx *, rtx *);
382 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
383 static int rtx_equal_for_field_assignment_p (rtx, rtx);
384 static rtx make_field_assignment (rtx);
385 static rtx apply_distributive_law (rtx);
386 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
387 unsigned HOST_WIDE_INT);
388 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392 static int recog_for_combine (rtx *, rtx, rtx *);
393 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
394 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
395 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396 static void update_table_tick (rtx);
397 static void record_value_for_reg (rtx, rtx, rtx);
398 static void check_promoted_subreg (rtx, rtx);
399 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400 static void record_dead_and_set_regs (rtx);
401 static int get_last_value_validate (rtx *, rtx, int, int);
402 static rtx get_last_value (rtx);
403 static int use_crosses_set_p (rtx, int);
404 static void reg_dead_at_p_1 (rtx, rtx, void *);
405 static int reg_dead_at_p (rtx, rtx);
406 static void move_deaths (rtx, rtx, int, rtx, rtx *);
407 static int reg_bitfield_target_p (rtx, rtx);
408 static void distribute_notes (rtx, rtx, rtx, rtx);
409 static void distribute_links (rtx);
410 static void mark_used_regs_combine (rtx);
411 static int insn_cuid (rtx);
412 static void record_promoted_value (rtx, rtx);
413 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414 static enum rtx_code combine_reversed_comparison_code (rtx);
415 static int unmentioned_reg_p_1 (rtx *, void *);
416 static bool unmentioned_reg_p (rtx, rtx);
417 \f
418
419 /* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421 #undef RTL_HOOKS_GEN_LOWPART
422 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
423
424 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
425 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
426
427 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
429
430 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
431
432 \f
433 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
437 the undo table. */
438
439 static void
440 do_SUBST (rtx *into, rtx newval)
441 {
442 struct undo *buf;
443 rtx oldval = *into;
444
445 if (oldval == newval)
446 return;
447
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
454 && GET_CODE (newval) == CONST_INT)
455 {
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
458 gcc_assert (INTVAL (newval)
459 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
460
461 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
462 CONST_INT is not valid, because after the replacement, the
463 original mode would be gone. Unfortunately, we can't tell
464 when do_SUBST is called to replace the operand thereof, so we
465 perform this test on oldval instead, checking whether an
466 invalid replacement took place before we got here. */
467 gcc_assert (!(GET_CODE (oldval) == SUBREG
468 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
469 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
470 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
471 }
472
473 if (undobuf.frees)
474 buf = undobuf.frees, undobuf.frees = buf->next;
475 else
476 buf = xmalloc (sizeof (struct undo));
477
478 buf->is_int = 0;
479 buf->where.r = into;
480 buf->old_contents.r = oldval;
481 *into = newval;
482
483 buf->next = undobuf.undos, undobuf.undos = buf;
484 }
485
486 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
487
488 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
489 for the value of a HOST_WIDE_INT value (including CONST_INT) is
490 not safe. */
491
492 static void
493 do_SUBST_INT (int *into, int newval)
494 {
495 struct undo *buf;
496 int oldval = *into;
497
498 if (oldval == newval)
499 return;
500
501 if (undobuf.frees)
502 buf = undobuf.frees, undobuf.frees = buf->next;
503 else
504 buf = xmalloc (sizeof (struct undo));
505
506 buf->is_int = 1;
507 buf->where.i = into;
508 buf->old_contents.i = oldval;
509 *into = newval;
510
511 buf->next = undobuf.undos, undobuf.undos = buf;
512 }
513
514 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
515 \f
516 /* Subroutine of try_combine. Determine whether the combine replacement
517 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
518 that the original instruction sequence I1, I2 and I3. Note that I1
519 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
520 costs of all instructions can be estimated, and the replacements are
521 more expensive than the original sequence. */
522
523 static bool
524 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
525 {
526 int i1_cost, i2_cost, i3_cost;
527 int new_i2_cost, new_i3_cost;
528 int old_cost, new_cost;
529
530 /* Lookup the original insn_rtx_costs. */
531 i2_cost = INSN_UID (i2) <= last_insn_cost
532 ? uid_insn_cost[INSN_UID (i2)] : 0;
533 i3_cost = INSN_UID (i3) <= last_insn_cost
534 ? uid_insn_cost[INSN_UID (i3)] : 0;
535
536 if (i1)
537 {
538 i1_cost = INSN_UID (i1) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i1)] : 0;
540 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
541 ? i1_cost + i2_cost + i3_cost : 0;
542 }
543 else
544 {
545 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
546 i1_cost = 0;
547 }
548
549 /* Calculate the replacement insn_rtx_costs. */
550 new_i3_cost = insn_rtx_cost (newpat);
551 if (newi2pat)
552 {
553 new_i2_cost = insn_rtx_cost (newi2pat);
554 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
555 ? new_i2_cost + new_i3_cost : 0;
556 }
557 else
558 {
559 new_cost = new_i3_cost;
560 new_i2_cost = 0;
561 }
562
563 /* Disallow this recombination if both new_cost and old_cost are
564 greater than zero, and new_cost is greater than old cost. */
565 if (!undobuf.other_insn
566 && old_cost > 0
567 && new_cost > old_cost)
568 {
569 if (dump_file)
570 {
571 if (i1)
572 {
573 fprintf (dump_file,
574 "rejecting combination of insns %d, %d and %d\n",
575 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
576 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
577 i1_cost, i2_cost, i3_cost, old_cost);
578 }
579 else
580 {
581 fprintf (dump_file,
582 "rejecting combination of insns %d and %d\n",
583 INSN_UID (i2), INSN_UID (i3));
584 fprintf (dump_file, "original costs %d + %d = %d\n",
585 i2_cost, i3_cost, old_cost);
586 }
587
588 if (newi2pat)
589 {
590 fprintf (dump_file, "replacement costs %d + %d = %d\n",
591 new_i2_cost, new_i3_cost, new_cost);
592 }
593 else
594 fprintf (dump_file, "replacement cost %d\n", new_cost);
595 }
596
597 return false;
598 }
599
600 /* Update the uid_insn_cost array with the replacement costs. */
601 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
602 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
603 if (i1)
604 uid_insn_cost[INSN_UID (i1)] = 0;
605
606 return true;
607 }
608 \f
609 /* Main entry point for combiner. F is the first insn of the function.
610 NREGS is the first unused pseudo-reg number.
611
612 Return nonzero if the combiner has turned an indirect jump
613 instruction into a direct jump. */
614 int
615 combine_instructions (rtx f, unsigned int nregs)
616 {
617 rtx insn, next;
618 #ifdef HAVE_cc0
619 rtx prev;
620 #endif
621 int i;
622 rtx links, nextlinks;
623
624 int new_direct_jump_p = 0;
625
626 combine_attempts = 0;
627 combine_merges = 0;
628 combine_extras = 0;
629 combine_successes = 0;
630
631 combine_max_regno = nregs;
632
633 rtl_hooks = combine_rtl_hooks;
634
635 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
636
637 init_recog_no_volatile ();
638
639 /* Compute maximum uid value so uid_cuid can be allocated. */
640
641 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
642 if (INSN_UID (insn) > i)
643 i = INSN_UID (insn);
644
645 uid_cuid = xmalloc ((i + 1) * sizeof (int));
646 max_uid_cuid = i;
647
648 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
649
650 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
651 problems when, for example, we have j <<= 1 in a loop. */
652
653 nonzero_sign_valid = 0;
654
655 /* Compute the mapping from uids to cuids.
656 Cuids are numbers assigned to insns, like uids,
657 except that cuids increase monotonically through the code.
658
659 Scan all SETs and see if we can deduce anything about what
660 bits are known to be zero for some registers and how many copies
661 of the sign bit are known to exist for those registers.
662
663 Also set any known values so that we can use it while searching
664 for what bits are known to be set. */
665
666 label_tick = 1;
667
668 setup_incoming_promotions ();
669
670 refresh_blocks = sbitmap_alloc (last_basic_block);
671 sbitmap_zero (refresh_blocks);
672
673 /* Allocate array of current insn_rtx_costs. */
674 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
675 last_insn_cost = max_uid_cuid;
676
677 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
678 {
679 uid_cuid[INSN_UID (insn)] = ++i;
680 subst_low_cuid = i;
681 subst_insn = insn;
682
683 if (INSN_P (insn))
684 {
685 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
686 NULL);
687 record_dead_and_set_regs (insn);
688
689 #ifdef AUTO_INC_DEC
690 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
691 if (REG_NOTE_KIND (links) == REG_INC)
692 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
693 NULL);
694 #endif
695
696 /* Record the current insn_rtx_cost of this instruction. */
697 if (NONJUMP_INSN_P (insn))
698 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
699 if (dump_file)
700 fprintf(dump_file, "insn_cost %d: %d\n",
701 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
702 }
703
704 if (LABEL_P (insn))
705 label_tick++;
706 }
707
708 nonzero_sign_valid = 1;
709
710 /* Now scan all the insns in forward order. */
711
712 label_tick = 1;
713 last_call_cuid = 0;
714 mem_last_set = 0;
715 init_reg_last ();
716 setup_incoming_promotions ();
717
718 FOR_EACH_BB (this_basic_block)
719 {
720 for (insn = BB_HEAD (this_basic_block);
721 insn != NEXT_INSN (BB_END (this_basic_block));
722 insn = next ? next : NEXT_INSN (insn))
723 {
724 next = 0;
725
726 if (LABEL_P (insn))
727 label_tick++;
728
729 else if (INSN_P (insn))
730 {
731 /* See if we know about function return values before this
732 insn based upon SUBREG flags. */
733 check_promoted_subreg (insn, PATTERN (insn));
734
735 /* Try this insn with each insn it links back to. */
736
737 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
738 if ((next = try_combine (insn, XEXP (links, 0),
739 NULL_RTX, &new_direct_jump_p)) != 0)
740 goto retry;
741
742 /* Try each sequence of three linked insns ending with this one. */
743
744 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
745 {
746 rtx link = XEXP (links, 0);
747
748 /* If the linked insn has been replaced by a note, then there
749 is no point in pursuing this chain any further. */
750 if (NOTE_P (link))
751 continue;
752
753 for (nextlinks = LOG_LINKS (link);
754 nextlinks;
755 nextlinks = XEXP (nextlinks, 1))
756 if ((next = try_combine (insn, link,
757 XEXP (nextlinks, 0),
758 &new_direct_jump_p)) != 0)
759 goto retry;
760 }
761
762 #ifdef HAVE_cc0
763 /* Try to combine a jump insn that uses CC0
764 with a preceding insn that sets CC0, and maybe with its
765 logical predecessor as well.
766 This is how we make decrement-and-branch insns.
767 We need this special code because data flow connections
768 via CC0 do not get entered in LOG_LINKS. */
769
770 if (JUMP_P (insn)
771 && (prev = prev_nonnote_insn (insn)) != 0
772 && NONJUMP_INSN_P (prev)
773 && sets_cc0_p (PATTERN (prev)))
774 {
775 if ((next = try_combine (insn, prev,
776 NULL_RTX, &new_direct_jump_p)) != 0)
777 goto retry;
778
779 for (nextlinks = LOG_LINKS (prev); nextlinks;
780 nextlinks = XEXP (nextlinks, 1))
781 if ((next = try_combine (insn, prev,
782 XEXP (nextlinks, 0),
783 &new_direct_jump_p)) != 0)
784 goto retry;
785 }
786
787 /* Do the same for an insn that explicitly references CC0. */
788 if (NONJUMP_INSN_P (insn)
789 && (prev = prev_nonnote_insn (insn)) != 0
790 && NONJUMP_INSN_P (prev)
791 && sets_cc0_p (PATTERN (prev))
792 && GET_CODE (PATTERN (insn)) == SET
793 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
794 {
795 if ((next = try_combine (insn, prev,
796 NULL_RTX, &new_direct_jump_p)) != 0)
797 goto retry;
798
799 for (nextlinks = LOG_LINKS (prev); nextlinks;
800 nextlinks = XEXP (nextlinks, 1))
801 if ((next = try_combine (insn, prev,
802 XEXP (nextlinks, 0),
803 &new_direct_jump_p)) != 0)
804 goto retry;
805 }
806
807 /* Finally, see if any of the insns that this insn links to
808 explicitly references CC0. If so, try this insn, that insn,
809 and its predecessor if it sets CC0. */
810 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
811 if (NONJUMP_INSN_P (XEXP (links, 0))
812 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
813 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
814 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
815 && NONJUMP_INSN_P (prev)
816 && sets_cc0_p (PATTERN (prev))
817 && (next = try_combine (insn, XEXP (links, 0),
818 prev, &new_direct_jump_p)) != 0)
819 goto retry;
820 #endif
821
822 /* Try combining an insn with two different insns whose results it
823 uses. */
824 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
825 for (nextlinks = XEXP (links, 1); nextlinks;
826 nextlinks = XEXP (nextlinks, 1))
827 if ((next = try_combine (insn, XEXP (links, 0),
828 XEXP (nextlinks, 0),
829 &new_direct_jump_p)) != 0)
830 goto retry;
831
832 /* Try this insn with each REG_EQUAL note it links back to. */
833 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
834 {
835 rtx set, note;
836 rtx temp = XEXP (links, 0);
837 if ((set = single_set (temp)) != 0
838 && (note = find_reg_equal_equiv_note (temp)) != 0
839 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
840 /* Avoid using a register that may already been marked
841 dead by an earlier instruction. */
842 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
843 {
844 /* Temporarily replace the set's source with the
845 contents of the REG_EQUAL note. The insn will
846 be deleted or recognized by try_combine. */
847 rtx orig = SET_SRC (set);
848 SET_SRC (set) = XEXP (note, 0);
849 next = try_combine (insn, temp, NULL_RTX,
850 &new_direct_jump_p);
851 if (next)
852 goto retry;
853 SET_SRC (set) = orig;
854 }
855 }
856
857 if (!NOTE_P (insn))
858 record_dead_and_set_regs (insn);
859
860 retry:
861 ;
862 }
863 }
864 }
865 clear_bb_flags ();
866
867 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
868 BASIC_BLOCK (i)->flags |= BB_DIRTY);
869 new_direct_jump_p |= purge_all_dead_edges (0);
870 delete_noop_moves ();
871
872 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
873 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
874 | PROP_KILL_DEAD_CODE);
875
876 /* Clean up. */
877 sbitmap_free (refresh_blocks);
878 free (uid_insn_cost);
879 free (reg_stat);
880 free (uid_cuid);
881
882 {
883 struct undo *undo, *next;
884 for (undo = undobuf.frees; undo; undo = next)
885 {
886 next = undo->next;
887 free (undo);
888 }
889 undobuf.frees = 0;
890 }
891
892 total_attempts += combine_attempts;
893 total_merges += combine_merges;
894 total_extras += combine_extras;
895 total_successes += combine_successes;
896
897 nonzero_sign_valid = 0;
898 rtl_hooks = general_rtl_hooks;
899
900 /* Make recognizer allow volatile MEMs again. */
901 init_recog ();
902
903 return new_direct_jump_p;
904 }
905
906 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
907
908 static void
909 init_reg_last (void)
910 {
911 unsigned int i;
912 for (i = 0; i < combine_max_regno; i++)
913 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
914 }
915 \f
916 /* Set up any promoted values for incoming argument registers. */
917
918 static void
919 setup_incoming_promotions (void)
920 {
921 unsigned int regno;
922 rtx reg;
923 enum machine_mode mode;
924 int unsignedp;
925 rtx first = get_insns ();
926
927 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
928 {
929 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
930 /* Check whether this register can hold an incoming pointer
931 argument. FUNCTION_ARG_REGNO_P tests outgoing register
932 numbers, so translate if necessary due to register windows. */
933 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
934 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
935 {
936 record_value_for_reg
937 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
938 : SIGN_EXTEND),
939 GET_MODE (reg),
940 gen_rtx_CLOBBER (mode, const0_rtx)));
941 }
942 }
943 }
944 \f
945 /* Called via note_stores. If X is a pseudo that is narrower than
946 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
947
948 If we are setting only a portion of X and we can't figure out what
949 portion, assume all bits will be used since we don't know what will
950 be happening.
951
952 Similarly, set how many bits of X are known to be copies of the sign bit
953 at all locations in the function. This is the smallest number implied
954 by any set of X. */
955
956 static void
957 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
958 void *data ATTRIBUTE_UNUSED)
959 {
960 unsigned int num;
961
962 if (REG_P (x)
963 && REGNO (x) >= FIRST_PSEUDO_REGISTER
964 /* If this register is undefined at the start of the file, we can't
965 say what its contents were. */
966 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
967 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
968 {
969 if (set == 0 || GET_CODE (set) == CLOBBER)
970 {
971 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
972 reg_stat[REGNO (x)].sign_bit_copies = 1;
973 return;
974 }
975
976 /* If this is a complex assignment, see if we can convert it into a
977 simple assignment. */
978 set = expand_field_assignment (set);
979
980 /* If this is a simple assignment, or we have a paradoxical SUBREG,
981 set what we know about X. */
982
983 if (SET_DEST (set) == x
984 || (GET_CODE (SET_DEST (set)) == SUBREG
985 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
986 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
987 && SUBREG_REG (SET_DEST (set)) == x))
988 {
989 rtx src = SET_SRC (set);
990
991 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
992 /* If X is narrower than a word and SRC is a non-negative
993 constant that would appear negative in the mode of X,
994 sign-extend it for use in reg_stat[].nonzero_bits because some
995 machines (maybe most) will actually do the sign-extension
996 and this is the conservative approach.
997
998 ??? For 2.5, try to tighten up the MD files in this regard
999 instead of this kludge. */
1000
1001 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1002 && GET_CODE (src) == CONST_INT
1003 && INTVAL (src) > 0
1004 && 0 != (INTVAL (src)
1005 & ((HOST_WIDE_INT) 1
1006 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1007 src = GEN_INT (INTVAL (src)
1008 | ((HOST_WIDE_INT) (-1)
1009 << GET_MODE_BITSIZE (GET_MODE (x))));
1010 #endif
1011
1012 /* Don't call nonzero_bits if it cannot change anything. */
1013 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1014 reg_stat[REGNO (x)].nonzero_bits
1015 |= nonzero_bits (src, nonzero_bits_mode);
1016 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1017 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1018 || reg_stat[REGNO (x)].sign_bit_copies > num)
1019 reg_stat[REGNO (x)].sign_bit_copies = num;
1020 }
1021 else
1022 {
1023 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1024 reg_stat[REGNO (x)].sign_bit_copies = 1;
1025 }
1026 }
1027 }
1028 \f
1029 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1030 insns that were previously combined into I3 or that will be combined
1031 into the merger of INSN and I3.
1032
1033 Return 0 if the combination is not allowed for any reason.
1034
1035 If the combination is allowed, *PDEST will be set to the single
1036 destination of INSN and *PSRC to the single source, and this function
1037 will return 1. */
1038
1039 static int
1040 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1041 rtx *pdest, rtx *psrc)
1042 {
1043 int i;
1044 rtx set = 0, src, dest;
1045 rtx p;
1046 #ifdef AUTO_INC_DEC
1047 rtx link;
1048 #endif
1049 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1050 && next_active_insn (succ) == i3)
1051 : next_active_insn (insn) == i3);
1052
1053 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1054 or a PARALLEL consisting of such a SET and CLOBBERs.
1055
1056 If INSN has CLOBBER parallel parts, ignore them for our processing.
1057 By definition, these happen during the execution of the insn. When it
1058 is merged with another insn, all bets are off. If they are, in fact,
1059 needed and aren't also supplied in I3, they may be added by
1060 recog_for_combine. Otherwise, it won't match.
1061
1062 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1063 note.
1064
1065 Get the source and destination of INSN. If more than one, can't
1066 combine. */
1067
1068 if (GET_CODE (PATTERN (insn)) == SET)
1069 set = PATTERN (insn);
1070 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1071 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1072 {
1073 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1074 {
1075 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1076 rtx note;
1077
1078 switch (GET_CODE (elt))
1079 {
1080 /* This is important to combine floating point insns
1081 for the SH4 port. */
1082 case USE:
1083 /* Combining an isolated USE doesn't make sense.
1084 We depend here on combinable_i3pat to reject them. */
1085 /* The code below this loop only verifies that the inputs of
1086 the SET in INSN do not change. We call reg_set_between_p
1087 to verify that the REG in the USE does not change between
1088 I3 and INSN.
1089 If the USE in INSN was for a pseudo register, the matching
1090 insn pattern will likely match any register; combining this
1091 with any other USE would only be safe if we knew that the
1092 used registers have identical values, or if there was
1093 something to tell them apart, e.g. different modes. For
1094 now, we forgo such complicated tests and simply disallow
1095 combining of USES of pseudo registers with any other USE. */
1096 if (REG_P (XEXP (elt, 0))
1097 && GET_CODE (PATTERN (i3)) == PARALLEL)
1098 {
1099 rtx i3pat = PATTERN (i3);
1100 int i = XVECLEN (i3pat, 0) - 1;
1101 unsigned int regno = REGNO (XEXP (elt, 0));
1102
1103 do
1104 {
1105 rtx i3elt = XVECEXP (i3pat, 0, i);
1106
1107 if (GET_CODE (i3elt) == USE
1108 && REG_P (XEXP (i3elt, 0))
1109 && (REGNO (XEXP (i3elt, 0)) == regno
1110 ? reg_set_between_p (XEXP (elt, 0),
1111 PREV_INSN (insn), i3)
1112 : regno >= FIRST_PSEUDO_REGISTER))
1113 return 0;
1114 }
1115 while (--i >= 0);
1116 }
1117 break;
1118
1119 /* We can ignore CLOBBERs. */
1120 case CLOBBER:
1121 break;
1122
1123 case SET:
1124 /* Ignore SETs whose result isn't used but not those that
1125 have side-effects. */
1126 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1127 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1128 || INTVAL (XEXP (note, 0)) <= 0)
1129 && ! side_effects_p (elt))
1130 break;
1131
1132 /* If we have already found a SET, this is a second one and
1133 so we cannot combine with this insn. */
1134 if (set)
1135 return 0;
1136
1137 set = elt;
1138 break;
1139
1140 default:
1141 /* Anything else means we can't combine. */
1142 return 0;
1143 }
1144 }
1145
1146 if (set == 0
1147 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1148 so don't do anything with it. */
1149 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1150 return 0;
1151 }
1152 else
1153 return 0;
1154
1155 if (set == 0)
1156 return 0;
1157
1158 set = expand_field_assignment (set);
1159 src = SET_SRC (set), dest = SET_DEST (set);
1160
1161 /* Don't eliminate a store in the stack pointer. */
1162 if (dest == stack_pointer_rtx
1163 /* Don't combine with an insn that sets a register to itself if it has
1164 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1165 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1166 /* Can't merge an ASM_OPERANDS. */
1167 || GET_CODE (src) == ASM_OPERANDS
1168 /* Can't merge a function call. */
1169 || GET_CODE (src) == CALL
1170 /* Don't eliminate a function call argument. */
1171 || (CALL_P (i3)
1172 && (find_reg_fusage (i3, USE, dest)
1173 || (REG_P (dest)
1174 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1175 && global_regs[REGNO (dest)])))
1176 /* Don't substitute into an incremented register. */
1177 || FIND_REG_INC_NOTE (i3, dest)
1178 || (succ && FIND_REG_INC_NOTE (succ, dest))
1179 /* Don't substitute into a non-local goto, this confuses CFG. */
1180 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1181 #if 0
1182 /* Don't combine the end of a libcall into anything. */
1183 /* ??? This gives worse code, and appears to be unnecessary, since no
1184 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1185 use REG_RETVAL notes for noconflict blocks, but other code here
1186 makes sure that those insns don't disappear. */
1187 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1188 #endif
1189 /* Make sure that DEST is not used after SUCC but before I3. */
1190 || (succ && ! all_adjacent
1191 && reg_used_between_p (dest, succ, i3))
1192 /* Make sure that the value that is to be substituted for the register
1193 does not use any registers whose values alter in between. However,
1194 If the insns are adjacent, a use can't cross a set even though we
1195 think it might (this can happen for a sequence of insns each setting
1196 the same destination; last_set of that register might point to
1197 a NOTE). If INSN has a REG_EQUIV note, the register is always
1198 equivalent to the memory so the substitution is valid even if there
1199 are intervening stores. Also, don't move a volatile asm or
1200 UNSPEC_VOLATILE across any other insns. */
1201 || (! all_adjacent
1202 && (((!MEM_P (src)
1203 || ! find_reg_note (insn, REG_EQUIV, src))
1204 && use_crosses_set_p (src, INSN_CUID (insn)))
1205 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1206 || GET_CODE (src) == UNSPEC_VOLATILE))
1207 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1208 better register allocation by not doing the combine. */
1209 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1210 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1211 /* Don't combine across a CALL_INSN, because that would possibly
1212 change whether the life span of some REGs crosses calls or not,
1213 and it is a pain to update that information.
1214 Exception: if source is a constant, moving it later can't hurt.
1215 Accept that special case, because it helps -fforce-addr a lot. */
1216 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1217 return 0;
1218
1219 /* DEST must either be a REG or CC0. */
1220 if (REG_P (dest))
1221 {
1222 /* If register alignment is being enforced for multi-word items in all
1223 cases except for parameters, it is possible to have a register copy
1224 insn referencing a hard register that is not allowed to contain the
1225 mode being copied and which would not be valid as an operand of most
1226 insns. Eliminate this problem by not combining with such an insn.
1227
1228 Also, on some machines we don't want to extend the life of a hard
1229 register. */
1230
1231 if (REG_P (src)
1232 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1233 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1234 /* Don't extend the life of a hard register unless it is
1235 user variable (if we have few registers) or it can't
1236 fit into the desired register (meaning something special
1237 is going on).
1238 Also avoid substituting a return register into I3, because
1239 reload can't handle a conflict with constraints of other
1240 inputs. */
1241 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1242 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1243 return 0;
1244 }
1245 else if (GET_CODE (dest) != CC0)
1246 return 0;
1247
1248
1249 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1250 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1251 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1252 {
1253 /* Don't substitute for a register intended as a clobberable
1254 operand. */
1255 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1256 if (rtx_equal_p (reg, dest))
1257 return 0;
1258
1259 /* If the clobber represents an earlyclobber operand, we must not
1260 substitute an expression containing the clobbered register.
1261 As we do not analyse the constraint strings here, we have to
1262 make the conservative assumption. However, if the register is
1263 a fixed hard reg, the clobber cannot represent any operand;
1264 we leave it up to the machine description to either accept or
1265 reject use-and-clobber patterns. */
1266 if (!REG_P (reg)
1267 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1268 || !fixed_regs[REGNO (reg)])
1269 if (reg_overlap_mentioned_p (reg, src))
1270 return 0;
1271 }
1272
1273 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1274 or not), reject, unless nothing volatile comes between it and I3 */
1275
1276 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1277 {
1278 /* Make sure succ doesn't contain a volatile reference. */
1279 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1280 return 0;
1281
1282 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1283 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1284 return 0;
1285 }
1286
1287 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1288 to be an explicit register variable, and was chosen for a reason. */
1289
1290 if (GET_CODE (src) == ASM_OPERANDS
1291 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1292 return 0;
1293
1294 /* If there are any volatile insns between INSN and I3, reject, because
1295 they might affect machine state. */
1296
1297 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1298 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1299 return 0;
1300
1301 /* If INSN or I2 contains an autoincrement or autodecrement,
1302 make sure that register is not used between there and I3,
1303 and not already used in I3 either.
1304 Also insist that I3 not be a jump; if it were one
1305 and the incremented register were spilled, we would lose. */
1306
1307 #ifdef AUTO_INC_DEC
1308 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1309 if (REG_NOTE_KIND (link) == REG_INC
1310 && (JUMP_P (i3)
1311 || reg_used_between_p (XEXP (link, 0), insn, i3)
1312 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1313 return 0;
1314 #endif
1315
1316 #ifdef HAVE_cc0
1317 /* Don't combine an insn that follows a CC0-setting insn.
1318 An insn that uses CC0 must not be separated from the one that sets it.
1319 We do, however, allow I2 to follow a CC0-setting insn if that insn
1320 is passed as I1; in that case it will be deleted also.
1321 We also allow combining in this case if all the insns are adjacent
1322 because that would leave the two CC0 insns adjacent as well.
1323 It would be more logical to test whether CC0 occurs inside I1 or I2,
1324 but that would be much slower, and this ought to be equivalent. */
1325
1326 p = prev_nonnote_insn (insn);
1327 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1328 && ! all_adjacent)
1329 return 0;
1330 #endif
1331
1332 /* If we get here, we have passed all the tests and the combination is
1333 to be allowed. */
1334
1335 *pdest = dest;
1336 *psrc = src;
1337
1338 return 1;
1339 }
1340 \f
1341 /* LOC is the location within I3 that contains its pattern or the component
1342 of a PARALLEL of the pattern. We validate that it is valid for combining.
1343
1344 One problem is if I3 modifies its output, as opposed to replacing it
1345 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1346 so would produce an insn that is not equivalent to the original insns.
1347
1348 Consider:
1349
1350 (set (reg:DI 101) (reg:DI 100))
1351 (set (subreg:SI (reg:DI 101) 0) <foo>)
1352
1353 This is NOT equivalent to:
1354
1355 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1356 (set (reg:DI 101) (reg:DI 100))])
1357
1358 Not only does this modify 100 (in which case it might still be valid
1359 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1360
1361 We can also run into a problem if I2 sets a register that I1
1362 uses and I1 gets directly substituted into I3 (not via I2). In that
1363 case, we would be getting the wrong value of I2DEST into I3, so we
1364 must reject the combination. This case occurs when I2 and I1 both
1365 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1366 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1367 of a SET must prevent combination from occurring.
1368
1369 Before doing the above check, we first try to expand a field assignment
1370 into a set of logical operations.
1371
1372 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1373 we place a register that is both set and used within I3. If more than one
1374 such register is detected, we fail.
1375
1376 Return 1 if the combination is valid, zero otherwise. */
1377
1378 static int
1379 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1380 int i1_not_in_src, rtx *pi3dest_killed)
1381 {
1382 rtx x = *loc;
1383
1384 if (GET_CODE (x) == SET)
1385 {
1386 rtx set = x ;
1387 rtx dest = SET_DEST (set);
1388 rtx src = SET_SRC (set);
1389 rtx inner_dest = dest;
1390
1391 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1392 || GET_CODE (inner_dest) == SUBREG
1393 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1394 inner_dest = XEXP (inner_dest, 0);
1395
1396 /* Check for the case where I3 modifies its output, as discussed
1397 above. We don't want to prevent pseudos from being combined
1398 into the address of a MEM, so only prevent the combination if
1399 i1 or i2 set the same MEM. */
1400 if ((inner_dest != dest &&
1401 (!MEM_P (inner_dest)
1402 || rtx_equal_p (i2dest, inner_dest)
1403 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1404 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1405 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1406
1407 /* This is the same test done in can_combine_p except we can't test
1408 all_adjacent; we don't have to, since this instruction will stay
1409 in place, thus we are not considering increasing the lifetime of
1410 INNER_DEST.
1411
1412 Also, if this insn sets a function argument, combining it with
1413 something that might need a spill could clobber a previous
1414 function argument; the all_adjacent test in can_combine_p also
1415 checks this; here, we do a more specific test for this case. */
1416
1417 || (REG_P (inner_dest)
1418 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1419 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1420 GET_MODE (inner_dest))))
1421 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1422 return 0;
1423
1424 /* If DEST is used in I3, it is being killed in this insn,
1425 so record that for later.
1426 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1427 STACK_POINTER_REGNUM, since these are always considered to be
1428 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1429 if (pi3dest_killed && REG_P (dest)
1430 && reg_referenced_p (dest, PATTERN (i3))
1431 && REGNO (dest) != FRAME_POINTER_REGNUM
1432 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1433 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1434 #endif
1435 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1436 && (REGNO (dest) != ARG_POINTER_REGNUM
1437 || ! fixed_regs [REGNO (dest)])
1438 #endif
1439 && REGNO (dest) != STACK_POINTER_REGNUM)
1440 {
1441 if (*pi3dest_killed)
1442 return 0;
1443
1444 *pi3dest_killed = dest;
1445 }
1446 }
1447
1448 else if (GET_CODE (x) == PARALLEL)
1449 {
1450 int i;
1451
1452 for (i = 0; i < XVECLEN (x, 0); i++)
1453 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1454 i1_not_in_src, pi3dest_killed))
1455 return 0;
1456 }
1457
1458 return 1;
1459 }
1460 \f
1461 /* Return 1 if X is an arithmetic expression that contains a multiplication
1462 and division. We don't count multiplications by powers of two here. */
1463
1464 static int
1465 contains_muldiv (rtx x)
1466 {
1467 switch (GET_CODE (x))
1468 {
1469 case MOD: case DIV: case UMOD: case UDIV:
1470 return 1;
1471
1472 case MULT:
1473 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1474 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1475 default:
1476 if (BINARY_P (x))
1477 return contains_muldiv (XEXP (x, 0))
1478 || contains_muldiv (XEXP (x, 1));
1479
1480 if (UNARY_P (x))
1481 return contains_muldiv (XEXP (x, 0));
1482
1483 return 0;
1484 }
1485 }
1486 \f
1487 /* Determine whether INSN can be used in a combination. Return nonzero if
1488 not. This is used in try_combine to detect early some cases where we
1489 can't perform combinations. */
1490
1491 static int
1492 cant_combine_insn_p (rtx insn)
1493 {
1494 rtx set;
1495 rtx src, dest;
1496
1497 /* If this isn't really an insn, we can't do anything.
1498 This can occur when flow deletes an insn that it has merged into an
1499 auto-increment address. */
1500 if (! INSN_P (insn))
1501 return 1;
1502
1503 /* Never combine loads and stores involving hard regs that are likely
1504 to be spilled. The register allocator can usually handle such
1505 reg-reg moves by tying. If we allow the combiner to make
1506 substitutions of likely-spilled regs, we may abort in reload.
1507 As an exception, we allow combinations involving fixed regs; these are
1508 not available to the register allocator so there's no risk involved. */
1509
1510 set = single_set (insn);
1511 if (! set)
1512 return 0;
1513 src = SET_SRC (set);
1514 dest = SET_DEST (set);
1515 if (GET_CODE (src) == SUBREG)
1516 src = SUBREG_REG (src);
1517 if (GET_CODE (dest) == SUBREG)
1518 dest = SUBREG_REG (dest);
1519 if (REG_P (src) && REG_P (dest)
1520 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1521 && ! fixed_regs[REGNO (src)]
1522 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1523 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1524 && ! fixed_regs[REGNO (dest)]
1525 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1526 return 1;
1527
1528 return 0;
1529 }
1530
1531 /* Adjust INSN after we made a change to its destination.
1532
1533 Changing the destination can invalidate notes that say something about
1534 the results of the insn and a LOG_LINK pointing to the insn. */
1535
1536 static void
1537 adjust_for_new_dest (rtx insn)
1538 {
1539 rtx *loc;
1540
1541 /* For notes, be conservative and simply remove them. */
1542 loc = &REG_NOTES (insn);
1543 while (*loc)
1544 {
1545 enum reg_note kind = REG_NOTE_KIND (*loc);
1546 if (kind == REG_EQUAL || kind == REG_EQUIV)
1547 *loc = XEXP (*loc, 1);
1548 else
1549 loc = &XEXP (*loc, 1);
1550 }
1551
1552 /* The new insn will have a destination that was previously the destination
1553 of an insn just above it. Call distribute_links to make a LOG_LINK from
1554 the next use of that destination. */
1555 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1556 }
1557
1558 /* Try to combine the insns I1 and I2 into I3.
1559 Here I1 and I2 appear earlier than I3.
1560 I1 can be zero; then we combine just I2 into I3.
1561
1562 If we are combining three insns and the resulting insn is not recognized,
1563 try splitting it into two insns. If that happens, I2 and I3 are retained
1564 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1565 are pseudo-deleted.
1566
1567 Return 0 if the combination does not work. Then nothing is changed.
1568 If we did the combination, return the insn at which combine should
1569 resume scanning.
1570
1571 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1572 new direct jump instruction. */
1573
1574 static rtx
1575 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1576 {
1577 /* New patterns for I3 and I2, respectively. */
1578 rtx newpat, newi2pat = 0;
1579 int substed_i2 = 0, substed_i1 = 0;
1580 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1581 int added_sets_1, added_sets_2;
1582 /* Total number of SETs to put into I3. */
1583 int total_sets;
1584 /* Nonzero if I2's body now appears in I3. */
1585 int i2_is_used;
1586 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1587 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1588 /* Contains I3 if the destination of I3 is used in its source, which means
1589 that the old life of I3 is being killed. If that usage is placed into
1590 I2 and not in I3, a REG_DEAD note must be made. */
1591 rtx i3dest_killed = 0;
1592 /* SET_DEST and SET_SRC of I2 and I1. */
1593 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1594 /* PATTERN (I2), or a copy of it in certain cases. */
1595 rtx i2pat;
1596 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1597 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1598 int i1_feeds_i3 = 0;
1599 /* Notes that must be added to REG_NOTES in I3 and I2. */
1600 rtx new_i3_notes, new_i2_notes;
1601 /* Notes that we substituted I3 into I2 instead of the normal case. */
1602 int i3_subst_into_i2 = 0;
1603 /* Notes that I1, I2 or I3 is a MULT operation. */
1604 int have_mult = 0;
1605 int swap_i2i3 = 0;
1606
1607 int maxreg;
1608 rtx temp;
1609 rtx link;
1610 int i;
1611
1612 /* Exit early if one of the insns involved can't be used for
1613 combinations. */
1614 if (cant_combine_insn_p (i3)
1615 || cant_combine_insn_p (i2)
1616 || (i1 && cant_combine_insn_p (i1))
1617 /* We also can't do anything if I3 has a
1618 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1619 libcall. */
1620 #if 0
1621 /* ??? This gives worse code, and appears to be unnecessary, since no
1622 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1623 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1624 #endif
1625 )
1626 return 0;
1627
1628 combine_attempts++;
1629 undobuf.other_insn = 0;
1630
1631 /* Reset the hard register usage information. */
1632 CLEAR_HARD_REG_SET (newpat_used_regs);
1633
1634 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1635 code below, set I1 to be the earlier of the two insns. */
1636 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1637 temp = i1, i1 = i2, i2 = temp;
1638
1639 added_links_insn = 0;
1640
1641 /* First check for one important special-case that the code below will
1642 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1643 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1644 we may be able to replace that destination with the destination of I3.
1645 This occurs in the common code where we compute both a quotient and
1646 remainder into a structure, in which case we want to do the computation
1647 directly into the structure to avoid register-register copies.
1648
1649 Note that this case handles both multiple sets in I2 and also
1650 cases where I2 has a number of CLOBBER or PARALLELs.
1651
1652 We make very conservative checks below and only try to handle the
1653 most common cases of this. For example, we only handle the case
1654 where I2 and I3 are adjacent to avoid making difficult register
1655 usage tests. */
1656
1657 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1658 && REG_P (SET_SRC (PATTERN (i3)))
1659 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1660 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1661 && GET_CODE (PATTERN (i2)) == PARALLEL
1662 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1663 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1664 below would need to check what is inside (and reg_overlap_mentioned_p
1665 doesn't support those codes anyway). Don't allow those destinations;
1666 the resulting insn isn't likely to be recognized anyway. */
1667 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1668 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1669 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1670 SET_DEST (PATTERN (i3)))
1671 && next_real_insn (i2) == i3)
1672 {
1673 rtx p2 = PATTERN (i2);
1674
1675 /* Make sure that the destination of I3,
1676 which we are going to substitute into one output of I2,
1677 is not used within another output of I2. We must avoid making this:
1678 (parallel [(set (mem (reg 69)) ...)
1679 (set (reg 69) ...)])
1680 which is not well-defined as to order of actions.
1681 (Besides, reload can't handle output reloads for this.)
1682
1683 The problem can also happen if the dest of I3 is a memory ref,
1684 if another dest in I2 is an indirect memory ref. */
1685 for (i = 0; i < XVECLEN (p2, 0); i++)
1686 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1687 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1688 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1689 SET_DEST (XVECEXP (p2, 0, i))))
1690 break;
1691
1692 if (i == XVECLEN (p2, 0))
1693 for (i = 0; i < XVECLEN (p2, 0); i++)
1694 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1695 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1696 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1697 {
1698 combine_merges++;
1699
1700 subst_insn = i3;
1701 subst_low_cuid = INSN_CUID (i2);
1702
1703 added_sets_2 = added_sets_1 = 0;
1704 i2dest = SET_SRC (PATTERN (i3));
1705
1706 /* Replace the dest in I2 with our dest and make the resulting
1707 insn the new pattern for I3. Then skip to where we
1708 validate the pattern. Everything was set up above. */
1709 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1710 SET_DEST (PATTERN (i3)));
1711
1712 newpat = p2;
1713 i3_subst_into_i2 = 1;
1714 goto validate_replacement;
1715 }
1716 }
1717
1718 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1719 one of those words to another constant, merge them by making a new
1720 constant. */
1721 if (i1 == 0
1722 && (temp = single_set (i2)) != 0
1723 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1724 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1725 && REG_P (SET_DEST (temp))
1726 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1727 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1728 && GET_CODE (PATTERN (i3)) == SET
1729 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1730 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1731 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1732 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1733 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1734 {
1735 HOST_WIDE_INT lo, hi;
1736
1737 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1738 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1739 else
1740 {
1741 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1742 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1743 }
1744
1745 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1746 {
1747 /* We don't handle the case of the target word being wider
1748 than a host wide int. */
1749 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1750
1751 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1752 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1753 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1754 }
1755 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1756 hi = INTVAL (SET_SRC (PATTERN (i3)));
1757 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1758 {
1759 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1760 >> (HOST_BITS_PER_WIDE_INT - 1));
1761
1762 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1763 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1764 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1765 (INTVAL (SET_SRC (PATTERN (i3)))));
1766 if (hi == sign)
1767 hi = lo < 0 ? -1 : 0;
1768 }
1769 else
1770 /* We don't handle the case of the higher word not fitting
1771 entirely in either hi or lo. */
1772 gcc_unreachable ();
1773
1774 combine_merges++;
1775 subst_insn = i3;
1776 subst_low_cuid = INSN_CUID (i2);
1777 added_sets_2 = added_sets_1 = 0;
1778 i2dest = SET_DEST (temp);
1779
1780 SUBST (SET_SRC (temp),
1781 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1782
1783 newpat = PATTERN (i2);
1784 goto validate_replacement;
1785 }
1786
1787 #ifndef HAVE_cc0
1788 /* If we have no I1 and I2 looks like:
1789 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1790 (set Y OP)])
1791 make up a dummy I1 that is
1792 (set Y OP)
1793 and change I2 to be
1794 (set (reg:CC X) (compare:CC Y (const_int 0)))
1795
1796 (We can ignore any trailing CLOBBERs.)
1797
1798 This undoes a previous combination and allows us to match a branch-and-
1799 decrement insn. */
1800
1801 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1802 && XVECLEN (PATTERN (i2), 0) >= 2
1803 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1804 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1805 == MODE_CC)
1806 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1807 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1808 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1809 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1810 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1811 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1812 {
1813 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1814 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1815 break;
1816
1817 if (i == 1)
1818 {
1819 /* We make I1 with the same INSN_UID as I2. This gives it
1820 the same INSN_CUID for value tracking. Our fake I1 will
1821 never appear in the insn stream so giving it the same INSN_UID
1822 as I2 will not cause a problem. */
1823
1824 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1825 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1826 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1827 NULL_RTX);
1828
1829 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1830 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1831 SET_DEST (PATTERN (i1)));
1832 }
1833 }
1834 #endif
1835
1836 /* Verify that I2 and I1 are valid for combining. */
1837 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1838 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1839 {
1840 undo_all ();
1841 return 0;
1842 }
1843
1844 /* Record whether I2DEST is used in I2SRC and similarly for the other
1845 cases. Knowing this will help in register status updating below. */
1846 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1847 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1848 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1849
1850 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1851 in I2SRC. */
1852 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1853
1854 /* Ensure that I3's pattern can be the destination of combines. */
1855 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1856 i1 && i2dest_in_i1src && i1_feeds_i3,
1857 &i3dest_killed))
1858 {
1859 undo_all ();
1860 return 0;
1861 }
1862
1863 /* See if any of the insns is a MULT operation. Unless one is, we will
1864 reject a combination that is, since it must be slower. Be conservative
1865 here. */
1866 if (GET_CODE (i2src) == MULT
1867 || (i1 != 0 && GET_CODE (i1src) == MULT)
1868 || (GET_CODE (PATTERN (i3)) == SET
1869 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1870 have_mult = 1;
1871
1872 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1873 We used to do this EXCEPT in one case: I3 has a post-inc in an
1874 output operand. However, that exception can give rise to insns like
1875 mov r3,(r3)+
1876 which is a famous insn on the PDP-11 where the value of r3 used as the
1877 source was model-dependent. Avoid this sort of thing. */
1878
1879 #if 0
1880 if (!(GET_CODE (PATTERN (i3)) == SET
1881 && REG_P (SET_SRC (PATTERN (i3)))
1882 && MEM_P (SET_DEST (PATTERN (i3)))
1883 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1884 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1885 /* It's not the exception. */
1886 #endif
1887 #ifdef AUTO_INC_DEC
1888 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1889 if (REG_NOTE_KIND (link) == REG_INC
1890 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1891 || (i1 != 0
1892 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1893 {
1894 undo_all ();
1895 return 0;
1896 }
1897 #endif
1898
1899 /* See if the SETs in I1 or I2 need to be kept around in the merged
1900 instruction: whenever the value set there is still needed past I3.
1901 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1902
1903 For the SET in I1, we have two cases: If I1 and I2 independently
1904 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1905 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1906 in I1 needs to be kept around unless I1DEST dies or is set in either
1907 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1908 I1DEST. If so, we know I1 feeds into I2. */
1909
1910 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1911
1912 added_sets_1
1913 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1914 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1915
1916 /* If the set in I2 needs to be kept around, we must make a copy of
1917 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1918 PATTERN (I2), we are only substituting for the original I1DEST, not into
1919 an already-substituted copy. This also prevents making self-referential
1920 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1921 I2DEST. */
1922
1923 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1924 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1925 : PATTERN (i2));
1926
1927 if (added_sets_2)
1928 i2pat = copy_rtx (i2pat);
1929
1930 combine_merges++;
1931
1932 /* Substitute in the latest insn for the regs set by the earlier ones. */
1933
1934 maxreg = max_reg_num ();
1935
1936 subst_insn = i3;
1937
1938 /* It is possible that the source of I2 or I1 may be performing an
1939 unneeded operation, such as a ZERO_EXTEND of something that is known
1940 to have the high part zero. Handle that case by letting subst look at
1941 the innermost one of them.
1942
1943 Another way to do this would be to have a function that tries to
1944 simplify a single insn instead of merging two or more insns. We don't
1945 do this because of the potential of infinite loops and because
1946 of the potential extra memory required. However, doing it the way
1947 we are is a bit of a kludge and doesn't catch all cases.
1948
1949 But only do this if -fexpensive-optimizations since it slows things down
1950 and doesn't usually win. */
1951
1952 if (flag_expensive_optimizations)
1953 {
1954 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1955 if (i1)
1956 {
1957 subst_low_cuid = INSN_CUID (i1);
1958 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1959 }
1960 else
1961 {
1962 subst_low_cuid = INSN_CUID (i2);
1963 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1964 }
1965 }
1966
1967 #ifndef HAVE_cc0
1968 /* Many machines that don't use CC0 have insns that can both perform an
1969 arithmetic operation and set the condition code. These operations will
1970 be represented as a PARALLEL with the first element of the vector
1971 being a COMPARE of an arithmetic operation with the constant zero.
1972 The second element of the vector will set some pseudo to the result
1973 of the same arithmetic operation. If we simplify the COMPARE, we won't
1974 match such a pattern and so will generate an extra insn. Here we test
1975 for this case, where both the comparison and the operation result are
1976 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1977 I2SRC. Later we will make the PARALLEL that contains I2. */
1978
1979 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1980 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1981 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1982 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1983 {
1984 #ifdef SELECT_CC_MODE
1985 rtx *cc_use;
1986 enum machine_mode compare_mode;
1987 #endif
1988
1989 newpat = PATTERN (i3);
1990 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1991
1992 i2_is_used = 1;
1993
1994 #ifdef SELECT_CC_MODE
1995 /* See if a COMPARE with the operand we substituted in should be done
1996 with the mode that is currently being used. If not, do the same
1997 processing we do in `subst' for a SET; namely, if the destination
1998 is used only once, try to replace it with a register of the proper
1999 mode and also replace the COMPARE. */
2000 if (undobuf.other_insn == 0
2001 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2002 &undobuf.other_insn))
2003 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2004 i2src, const0_rtx))
2005 != GET_MODE (SET_DEST (newpat))))
2006 {
2007 unsigned int regno = REGNO (SET_DEST (newpat));
2008 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2009
2010 if (regno < FIRST_PSEUDO_REGISTER
2011 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2012 && ! REG_USERVAR_P (SET_DEST (newpat))))
2013 {
2014 if (regno >= FIRST_PSEUDO_REGISTER)
2015 SUBST (regno_reg_rtx[regno], new_dest);
2016
2017 SUBST (SET_DEST (newpat), new_dest);
2018 SUBST (XEXP (*cc_use, 0), new_dest);
2019 SUBST (SET_SRC (newpat),
2020 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2021 }
2022 else
2023 undobuf.other_insn = 0;
2024 }
2025 #endif
2026 }
2027 else
2028 #endif
2029 {
2030 n_occurrences = 0; /* `subst' counts here */
2031
2032 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2033 need to make a unique copy of I2SRC each time we substitute it
2034 to avoid self-referential rtl. */
2035
2036 subst_low_cuid = INSN_CUID (i2);
2037 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2038 ! i1_feeds_i3 && i1dest_in_i1src);
2039 substed_i2 = 1;
2040
2041 /* Record whether i2's body now appears within i3's body. */
2042 i2_is_used = n_occurrences;
2043 }
2044
2045 /* If we already got a failure, don't try to do more. Otherwise,
2046 try to substitute in I1 if we have it. */
2047
2048 if (i1 && GET_CODE (newpat) != CLOBBER)
2049 {
2050 /* Before we can do this substitution, we must redo the test done
2051 above (see detailed comments there) that ensures that I1DEST
2052 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2053
2054 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2055 0, (rtx*) 0))
2056 {
2057 undo_all ();
2058 return 0;
2059 }
2060
2061 n_occurrences = 0;
2062 subst_low_cuid = INSN_CUID (i1);
2063 newpat = subst (newpat, i1dest, i1src, 0, 0);
2064 substed_i1 = 1;
2065 }
2066
2067 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2068 to count all the ways that I2SRC and I1SRC can be used. */
2069 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2070 && i2_is_used + added_sets_2 > 1)
2071 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2072 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2073 > 1))
2074 /* Fail if we tried to make a new register (we used to abort, but there's
2075 really no reason to). */
2076 || max_reg_num () != maxreg
2077 /* Fail if we couldn't do something and have a CLOBBER. */
2078 || GET_CODE (newpat) == CLOBBER
2079 /* Fail if this new pattern is a MULT and we didn't have one before
2080 at the outer level. */
2081 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2082 && ! have_mult))
2083 {
2084 undo_all ();
2085 return 0;
2086 }
2087
2088 /* If the actions of the earlier insns must be kept
2089 in addition to substituting them into the latest one,
2090 we must make a new PARALLEL for the latest insn
2091 to hold additional the SETs. */
2092
2093 if (added_sets_1 || added_sets_2)
2094 {
2095 combine_extras++;
2096
2097 if (GET_CODE (newpat) == PARALLEL)
2098 {
2099 rtvec old = XVEC (newpat, 0);
2100 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2101 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2102 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2103 sizeof (old->elem[0]) * old->num_elem);
2104 }
2105 else
2106 {
2107 rtx old = newpat;
2108 total_sets = 1 + added_sets_1 + added_sets_2;
2109 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2110 XVECEXP (newpat, 0, 0) = old;
2111 }
2112
2113 if (added_sets_1)
2114 XVECEXP (newpat, 0, --total_sets)
2115 = (GET_CODE (PATTERN (i1)) == PARALLEL
2116 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2117
2118 if (added_sets_2)
2119 {
2120 /* If there is no I1, use I2's body as is. We used to also not do
2121 the subst call below if I2 was substituted into I3,
2122 but that could lose a simplification. */
2123 if (i1 == 0)
2124 XVECEXP (newpat, 0, --total_sets) = i2pat;
2125 else
2126 /* See comment where i2pat is assigned. */
2127 XVECEXP (newpat, 0, --total_sets)
2128 = subst (i2pat, i1dest, i1src, 0, 0);
2129 }
2130 }
2131
2132 /* We come here when we are replacing a destination in I2 with the
2133 destination of I3. */
2134 validate_replacement:
2135
2136 /* Note which hard regs this insn has as inputs. */
2137 mark_used_regs_combine (newpat);
2138
2139 /* Is the result of combination a valid instruction? */
2140 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2141
2142 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2143 the second SET's destination is a register that is unused and isn't
2144 marked as an instruction that might trap in an EH region. In that case,
2145 we just need the first SET. This can occur when simplifying a divmod
2146 insn. We *must* test for this case here because the code below that
2147 splits two independent SETs doesn't handle this case correctly when it
2148 updates the register status.
2149
2150 It's pointless doing this if we originally had two sets, one from
2151 i3, and one from i2. Combining then splitting the parallel results
2152 in the original i2 again plus an invalid insn (which we delete).
2153 The net effect is only to move instructions around, which makes
2154 debug info less accurate.
2155
2156 Also check the case where the first SET's destination is unused.
2157 That would not cause incorrect code, but does cause an unneeded
2158 insn to remain. */
2159
2160 if (insn_code_number < 0
2161 && !(added_sets_2 && i1 == 0)
2162 && GET_CODE (newpat) == PARALLEL
2163 && XVECLEN (newpat, 0) == 2
2164 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2165 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2166 && asm_noperands (newpat) < 0)
2167 {
2168 rtx set0 = XVECEXP (newpat, 0, 0);
2169 rtx set1 = XVECEXP (newpat, 0, 1);
2170 rtx note;
2171
2172 if (((REG_P (SET_DEST (set1))
2173 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2174 || (GET_CODE (SET_DEST (set1)) == SUBREG
2175 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2176 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2177 || INTVAL (XEXP (note, 0)) <= 0)
2178 && ! side_effects_p (SET_SRC (set1)))
2179 {
2180 newpat = set0;
2181 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2182 }
2183
2184 else if (((REG_P (SET_DEST (set0))
2185 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2186 || (GET_CODE (SET_DEST (set0)) == SUBREG
2187 && find_reg_note (i3, REG_UNUSED,
2188 SUBREG_REG (SET_DEST (set0)))))
2189 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2190 || INTVAL (XEXP (note, 0)) <= 0)
2191 && ! side_effects_p (SET_SRC (set0)))
2192 {
2193 newpat = set1;
2194 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2195
2196 if (insn_code_number >= 0)
2197 {
2198 /* If we will be able to accept this, we have made a
2199 change to the destination of I3. This requires us to
2200 do a few adjustments. */
2201
2202 PATTERN (i3) = newpat;
2203 adjust_for_new_dest (i3);
2204 }
2205 }
2206 }
2207
2208 /* If we were combining three insns and the result is a simple SET
2209 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2210 insns. There are two ways to do this. It can be split using a
2211 machine-specific method (like when you have an addition of a large
2212 constant) or by combine in the function find_split_point. */
2213
2214 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2215 && asm_noperands (newpat) < 0)
2216 {
2217 rtx m_split, *split;
2218 rtx ni2dest = i2dest;
2219
2220 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2221 use I2DEST as a scratch register will help. In the latter case,
2222 convert I2DEST to the mode of the source of NEWPAT if we can. */
2223
2224 m_split = split_insns (newpat, i3);
2225
2226 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2227 inputs of NEWPAT. */
2228
2229 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2230 possible to try that as a scratch reg. This would require adding
2231 more code to make it work though. */
2232
2233 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2234 {
2235 /* If I2DEST is a hard register or the only use of a pseudo,
2236 we can change its mode. */
2237 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2238 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2239 && REG_P (i2dest)
2240 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2241 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2242 && ! REG_USERVAR_P (i2dest))))
2243 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2244 REGNO (i2dest));
2245
2246 m_split = split_insns (gen_rtx_PARALLEL
2247 (VOIDmode,
2248 gen_rtvec (2, newpat,
2249 gen_rtx_CLOBBER (VOIDmode,
2250 ni2dest))),
2251 i3);
2252 /* If the split with the mode-changed register didn't work, try
2253 the original register. */
2254 if (! m_split && ni2dest != i2dest)
2255 {
2256 ni2dest = i2dest;
2257 m_split = split_insns (gen_rtx_PARALLEL
2258 (VOIDmode,
2259 gen_rtvec (2, newpat,
2260 gen_rtx_CLOBBER (VOIDmode,
2261 i2dest))),
2262 i3);
2263 }
2264 }
2265
2266 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2267 {
2268 m_split = PATTERN (m_split);
2269 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2270 if (insn_code_number >= 0)
2271 newpat = m_split;
2272 }
2273 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2274 && (next_real_insn (i2) == i3
2275 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2276 {
2277 rtx i2set, i3set;
2278 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2279 newi2pat = PATTERN (m_split);
2280
2281 i3set = single_set (NEXT_INSN (m_split));
2282 i2set = single_set (m_split);
2283
2284 /* In case we changed the mode of I2DEST, replace it in the
2285 pseudo-register table here. We can't do it above in case this
2286 code doesn't get executed and we do a split the other way. */
2287
2288 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2289 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2290
2291 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2292
2293 /* If I2 or I3 has multiple SETs, we won't know how to track
2294 register status, so don't use these insns. If I2's destination
2295 is used between I2 and I3, we also can't use these insns. */
2296
2297 if (i2_code_number >= 0 && i2set && i3set
2298 && (next_real_insn (i2) == i3
2299 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2300 insn_code_number = recog_for_combine (&newi3pat, i3,
2301 &new_i3_notes);
2302 if (insn_code_number >= 0)
2303 newpat = newi3pat;
2304
2305 /* It is possible that both insns now set the destination of I3.
2306 If so, we must show an extra use of it. */
2307
2308 if (insn_code_number >= 0)
2309 {
2310 rtx new_i3_dest = SET_DEST (i3set);
2311 rtx new_i2_dest = SET_DEST (i2set);
2312
2313 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2314 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2315 || GET_CODE (new_i3_dest) == SUBREG)
2316 new_i3_dest = XEXP (new_i3_dest, 0);
2317
2318 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2319 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2320 || GET_CODE (new_i2_dest) == SUBREG)
2321 new_i2_dest = XEXP (new_i2_dest, 0);
2322
2323 if (REG_P (new_i3_dest)
2324 && REG_P (new_i2_dest)
2325 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2326 REG_N_SETS (REGNO (new_i2_dest))++;
2327 }
2328 }
2329
2330 /* If we can split it and use I2DEST, go ahead and see if that
2331 helps things be recognized. Verify that none of the registers
2332 are set between I2 and I3. */
2333 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2334 #ifdef HAVE_cc0
2335 && REG_P (i2dest)
2336 #endif
2337 /* We need I2DEST in the proper mode. If it is a hard register
2338 or the only use of a pseudo, we can change its mode. */
2339 && (GET_MODE (*split) == GET_MODE (i2dest)
2340 || GET_MODE (*split) == VOIDmode
2341 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2342 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2343 && ! REG_USERVAR_P (i2dest)))
2344 && (next_real_insn (i2) == i3
2345 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2346 /* We can't overwrite I2DEST if its value is still used by
2347 NEWPAT. */
2348 && ! reg_referenced_p (i2dest, newpat))
2349 {
2350 rtx newdest = i2dest;
2351 enum rtx_code split_code = GET_CODE (*split);
2352 enum machine_mode split_mode = GET_MODE (*split);
2353
2354 /* Get NEWDEST as a register in the proper mode. We have already
2355 validated that we can do this. */
2356 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2357 {
2358 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2359
2360 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2361 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2362 }
2363
2364 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2365 an ASHIFT. This can occur if it was inside a PLUS and hence
2366 appeared to be a memory address. This is a kludge. */
2367 if (split_code == MULT
2368 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2369 && INTVAL (XEXP (*split, 1)) > 0
2370 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2371 {
2372 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2373 XEXP (*split, 0), GEN_INT (i)));
2374 /* Update split_code because we may not have a multiply
2375 anymore. */
2376 split_code = GET_CODE (*split);
2377 }
2378
2379 #ifdef INSN_SCHEDULING
2380 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2381 be written as a ZERO_EXTEND. */
2382 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2383 {
2384 #ifdef LOAD_EXTEND_OP
2385 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2386 what it really is. */
2387 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2388 == SIGN_EXTEND)
2389 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2390 SUBREG_REG (*split)));
2391 else
2392 #endif
2393 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2394 SUBREG_REG (*split)));
2395 }
2396 #endif
2397
2398 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2399 SUBST (*split, newdest);
2400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2401
2402 /* If the split point was a MULT and we didn't have one before,
2403 don't use one now. */
2404 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2405 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2406 }
2407 }
2408
2409 /* Check for a case where we loaded from memory in a narrow mode and
2410 then sign extended it, but we need both registers. In that case,
2411 we have a PARALLEL with both loads from the same memory location.
2412 We can split this into a load from memory followed by a register-register
2413 copy. This saves at least one insn, more if register allocation can
2414 eliminate the copy.
2415
2416 We cannot do this if the destination of the first assignment is a
2417 condition code register or cc0. We eliminate this case by making sure
2418 the SET_DEST and SET_SRC have the same mode.
2419
2420 We cannot do this if the destination of the second assignment is
2421 a register that we have already assumed is zero-extended. Similarly
2422 for a SUBREG of such a register. */
2423
2424 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2425 && GET_CODE (newpat) == PARALLEL
2426 && XVECLEN (newpat, 0) == 2
2427 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2428 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2429 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2430 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2431 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2432 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2433 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2434 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2435 INSN_CUID (i2))
2436 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2437 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2438 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2439 (REG_P (temp)
2440 && reg_stat[REGNO (temp)].nonzero_bits != 0
2441 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2442 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2443 && (reg_stat[REGNO (temp)].nonzero_bits
2444 != GET_MODE_MASK (word_mode))))
2445 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2446 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2447 (REG_P (temp)
2448 && reg_stat[REGNO (temp)].nonzero_bits != 0
2449 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2450 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2451 && (reg_stat[REGNO (temp)].nonzero_bits
2452 != GET_MODE_MASK (word_mode)))))
2453 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2454 SET_SRC (XVECEXP (newpat, 0, 1)))
2455 && ! find_reg_note (i3, REG_UNUSED,
2456 SET_DEST (XVECEXP (newpat, 0, 0))))
2457 {
2458 rtx ni2dest;
2459
2460 newi2pat = XVECEXP (newpat, 0, 0);
2461 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2462 newpat = XVECEXP (newpat, 0, 1);
2463 SUBST (SET_SRC (newpat),
2464 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2465 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2466
2467 if (i2_code_number >= 0)
2468 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2469
2470 if (insn_code_number >= 0)
2471 swap_i2i3 = 1;
2472 }
2473
2474 /* Similarly, check for a case where we have a PARALLEL of two independent
2475 SETs but we started with three insns. In this case, we can do the sets
2476 as two separate insns. This case occurs when some SET allows two
2477 other insns to combine, but the destination of that SET is still live. */
2478
2479 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2480 && GET_CODE (newpat) == PARALLEL
2481 && XVECLEN (newpat, 0) == 2
2482 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2483 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2484 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2485 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2486 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2487 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2488 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2489 INSN_CUID (i2))
2490 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2491 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2492 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2493 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2494 XVECEXP (newpat, 0, 0))
2495 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2496 XVECEXP (newpat, 0, 1))
2497 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2498 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2499 {
2500 /* Normally, it doesn't matter which of the two is done first,
2501 but it does if one references cc0. In that case, it has to
2502 be first. */
2503 #ifdef HAVE_cc0
2504 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2505 {
2506 newi2pat = XVECEXP (newpat, 0, 0);
2507 newpat = XVECEXP (newpat, 0, 1);
2508 }
2509 else
2510 #endif
2511 {
2512 newi2pat = XVECEXP (newpat, 0, 1);
2513 newpat = XVECEXP (newpat, 0, 0);
2514 }
2515
2516 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2517
2518 if (i2_code_number >= 0)
2519 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2520 }
2521
2522 /* If it still isn't recognized, fail and change things back the way they
2523 were. */
2524 if ((insn_code_number < 0
2525 /* Is the result a reasonable ASM_OPERANDS? */
2526 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2527 {
2528 undo_all ();
2529 return 0;
2530 }
2531
2532 /* If we had to change another insn, make sure it is valid also. */
2533 if (undobuf.other_insn)
2534 {
2535 rtx other_pat = PATTERN (undobuf.other_insn);
2536 rtx new_other_notes;
2537 rtx note, next;
2538
2539 CLEAR_HARD_REG_SET (newpat_used_regs);
2540
2541 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2542 &new_other_notes);
2543
2544 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2545 {
2546 undo_all ();
2547 return 0;
2548 }
2549
2550 PATTERN (undobuf.other_insn) = other_pat;
2551
2552 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2553 are still valid. Then add any non-duplicate notes added by
2554 recog_for_combine. */
2555 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2556 {
2557 next = XEXP (note, 1);
2558
2559 if (REG_NOTE_KIND (note) == REG_UNUSED
2560 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2561 {
2562 if (REG_P (XEXP (note, 0)))
2563 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2564
2565 remove_note (undobuf.other_insn, note);
2566 }
2567 }
2568
2569 for (note = new_other_notes; note; note = XEXP (note, 1))
2570 if (REG_P (XEXP (note, 0)))
2571 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2572
2573 distribute_notes (new_other_notes, undobuf.other_insn,
2574 undobuf.other_insn, NULL_RTX);
2575 }
2576 #ifdef HAVE_cc0
2577 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2578 they are adjacent to each other or not. */
2579 {
2580 rtx p = prev_nonnote_insn (i3);
2581 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2582 && sets_cc0_p (newi2pat))
2583 {
2584 undo_all ();
2585 return 0;
2586 }
2587 }
2588 #endif
2589
2590 /* Only allow this combination if insn_rtx_costs reports that the
2591 replacement instructions are cheaper than the originals. */
2592 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2593 {
2594 undo_all ();
2595 return 0;
2596 }
2597
2598 /* We now know that we can do this combination. Merge the insns and
2599 update the status of registers and LOG_LINKS. */
2600
2601 if (swap_i2i3)
2602 {
2603 rtx insn;
2604 rtx link;
2605 rtx ni2dest;
2606
2607 /* I3 now uses what used to be its destination and which is now
2608 I2's destination. This requires us to do a few adjustments. */
2609 PATTERN (i3) = newpat;
2610 adjust_for_new_dest (i3);
2611
2612 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2613 so we still will.
2614
2615 However, some later insn might be using I2's dest and have
2616 a LOG_LINK pointing at I3. We must remove this link.
2617 The simplest way to remove the link is to point it at I1,
2618 which we know will be a NOTE. */
2619
2620 /* newi2pat is usually a SET here; however, recog_for_combine might
2621 have added some clobbers. */
2622 if (GET_CODE (newi2pat) == PARALLEL)
2623 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2624 else
2625 ni2dest = SET_DEST (newi2pat);
2626
2627 for (insn = NEXT_INSN (i3);
2628 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2629 || insn != BB_HEAD (this_basic_block->next_bb));
2630 insn = NEXT_INSN (insn))
2631 {
2632 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2633 {
2634 for (link = LOG_LINKS (insn); link;
2635 link = XEXP (link, 1))
2636 if (XEXP (link, 0) == i3)
2637 XEXP (link, 0) = i1;
2638
2639 break;
2640 }
2641 }
2642 }
2643
2644 {
2645 rtx i3notes, i2notes, i1notes = 0;
2646 rtx i3links, i2links, i1links = 0;
2647 rtx midnotes = 0;
2648 unsigned int regno;
2649
2650 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2651 clear them. */
2652 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2653 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2654 if (i1)
2655 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2656
2657 /* Ensure that we do not have something that should not be shared but
2658 occurs multiple times in the new insns. Check this by first
2659 resetting all the `used' flags and then copying anything is shared. */
2660
2661 reset_used_flags (i3notes);
2662 reset_used_flags (i2notes);
2663 reset_used_flags (i1notes);
2664 reset_used_flags (newpat);
2665 reset_used_flags (newi2pat);
2666 if (undobuf.other_insn)
2667 reset_used_flags (PATTERN (undobuf.other_insn));
2668
2669 i3notes = copy_rtx_if_shared (i3notes);
2670 i2notes = copy_rtx_if_shared (i2notes);
2671 i1notes = copy_rtx_if_shared (i1notes);
2672 newpat = copy_rtx_if_shared (newpat);
2673 newi2pat = copy_rtx_if_shared (newi2pat);
2674 if (undobuf.other_insn)
2675 reset_used_flags (PATTERN (undobuf.other_insn));
2676
2677 INSN_CODE (i3) = insn_code_number;
2678 PATTERN (i3) = newpat;
2679
2680 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2681 {
2682 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2683
2684 reset_used_flags (call_usage);
2685 call_usage = copy_rtx (call_usage);
2686
2687 if (substed_i2)
2688 replace_rtx (call_usage, i2dest, i2src);
2689
2690 if (substed_i1)
2691 replace_rtx (call_usage, i1dest, i1src);
2692
2693 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2694 }
2695
2696 if (undobuf.other_insn)
2697 INSN_CODE (undobuf.other_insn) = other_code_number;
2698
2699 /* We had one special case above where I2 had more than one set and
2700 we replaced a destination of one of those sets with the destination
2701 of I3. In that case, we have to update LOG_LINKS of insns later
2702 in this basic block. Note that this (expensive) case is rare.
2703
2704 Also, in this case, we must pretend that all REG_NOTEs for I2
2705 actually came from I3, so that REG_UNUSED notes from I2 will be
2706 properly handled. */
2707
2708 if (i3_subst_into_i2)
2709 {
2710 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2711 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2712 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2713 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2714 && ! find_reg_note (i2, REG_UNUSED,
2715 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2716 for (temp = NEXT_INSN (i2);
2717 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2718 || BB_HEAD (this_basic_block) != temp);
2719 temp = NEXT_INSN (temp))
2720 if (temp != i3 && INSN_P (temp))
2721 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2722 if (XEXP (link, 0) == i2)
2723 XEXP (link, 0) = i3;
2724
2725 if (i3notes)
2726 {
2727 rtx link = i3notes;
2728 while (XEXP (link, 1))
2729 link = XEXP (link, 1);
2730 XEXP (link, 1) = i2notes;
2731 }
2732 else
2733 i3notes = i2notes;
2734 i2notes = 0;
2735 }
2736
2737 LOG_LINKS (i3) = 0;
2738 REG_NOTES (i3) = 0;
2739 LOG_LINKS (i2) = 0;
2740 REG_NOTES (i2) = 0;
2741
2742 if (newi2pat)
2743 {
2744 INSN_CODE (i2) = i2_code_number;
2745 PATTERN (i2) = newi2pat;
2746 }
2747 else
2748 SET_INSN_DELETED (i2);
2749
2750 if (i1)
2751 {
2752 LOG_LINKS (i1) = 0;
2753 REG_NOTES (i1) = 0;
2754 SET_INSN_DELETED (i1);
2755 }
2756
2757 /* Get death notes for everything that is now used in either I3 or
2758 I2 and used to die in a previous insn. If we built two new
2759 patterns, move from I1 to I2 then I2 to I3 so that we get the
2760 proper movement on registers that I2 modifies. */
2761
2762 if (newi2pat)
2763 {
2764 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2765 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2766 }
2767 else
2768 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2769 i3, &midnotes);
2770
2771 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2772 if (i3notes)
2773 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2774 if (i2notes)
2775 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2776 if (i1notes)
2777 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2778 if (midnotes)
2779 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2780
2781 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2782 know these are REG_UNUSED and want them to go to the desired insn,
2783 so we always pass it as i3. We have not counted the notes in
2784 reg_n_deaths yet, so we need to do so now. */
2785
2786 if (newi2pat && new_i2_notes)
2787 {
2788 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2789 if (REG_P (XEXP (temp, 0)))
2790 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2791
2792 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2793 }
2794
2795 if (new_i3_notes)
2796 {
2797 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2798 if (REG_P (XEXP (temp, 0)))
2799 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2800
2801 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2802 }
2803
2804 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2805 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2806 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2807 in that case, it might delete I2. Similarly for I2 and I1.
2808 Show an additional death due to the REG_DEAD note we make here. If
2809 we discard it in distribute_notes, we will decrement it again. */
2810
2811 if (i3dest_killed)
2812 {
2813 if (REG_P (i3dest_killed))
2814 REG_N_DEATHS (REGNO (i3dest_killed))++;
2815
2816 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2817 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2818 NULL_RTX),
2819 NULL_RTX, i2, NULL_RTX);
2820 else
2821 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2822 NULL_RTX),
2823 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2824 }
2825
2826 if (i2dest_in_i2src)
2827 {
2828 if (REG_P (i2dest))
2829 REG_N_DEATHS (REGNO (i2dest))++;
2830
2831 if (newi2pat && reg_set_p (i2dest, newi2pat))
2832 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2833 NULL_RTX, i2, NULL_RTX);
2834 else
2835 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2836 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2837 }
2838
2839 if (i1dest_in_i1src)
2840 {
2841 if (REG_P (i1dest))
2842 REG_N_DEATHS (REGNO (i1dest))++;
2843
2844 if (newi2pat && reg_set_p (i1dest, newi2pat))
2845 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2846 NULL_RTX, i2, NULL_RTX);
2847 else
2848 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2849 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2850 }
2851
2852 distribute_links (i3links);
2853 distribute_links (i2links);
2854 distribute_links (i1links);
2855
2856 if (REG_P (i2dest))
2857 {
2858 rtx link;
2859 rtx i2_insn = 0, i2_val = 0, set;
2860
2861 /* The insn that used to set this register doesn't exist, and
2862 this life of the register may not exist either. See if one of
2863 I3's links points to an insn that sets I2DEST. If it does,
2864 that is now the last known value for I2DEST. If we don't update
2865 this and I2 set the register to a value that depended on its old
2866 contents, we will get confused. If this insn is used, thing
2867 will be set correctly in combine_instructions. */
2868
2869 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2870 if ((set = single_set (XEXP (link, 0))) != 0
2871 && rtx_equal_p (i2dest, SET_DEST (set)))
2872 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2873
2874 record_value_for_reg (i2dest, i2_insn, i2_val);
2875
2876 /* If the reg formerly set in I2 died only once and that was in I3,
2877 zero its use count so it won't make `reload' do any work. */
2878 if (! added_sets_2
2879 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2880 && ! i2dest_in_i2src)
2881 {
2882 regno = REGNO (i2dest);
2883 REG_N_SETS (regno)--;
2884 }
2885 }
2886
2887 if (i1 && REG_P (i1dest))
2888 {
2889 rtx link;
2890 rtx i1_insn = 0, i1_val = 0, set;
2891
2892 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2893 if ((set = single_set (XEXP (link, 0))) != 0
2894 && rtx_equal_p (i1dest, SET_DEST (set)))
2895 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2896
2897 record_value_for_reg (i1dest, i1_insn, i1_val);
2898
2899 regno = REGNO (i1dest);
2900 if (! added_sets_1 && ! i1dest_in_i1src)
2901 REG_N_SETS (regno)--;
2902 }
2903
2904 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2905 been made to this insn. The order of
2906 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2907 can affect nonzero_bits of newpat */
2908 if (newi2pat)
2909 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2910 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2911
2912 /* Set new_direct_jump_p if a new return or simple jump instruction
2913 has been created.
2914
2915 If I3 is now an unconditional jump, ensure that it has a
2916 BARRIER following it since it may have initially been a
2917 conditional jump. It may also be the last nonnote insn. */
2918
2919 if (returnjump_p (i3) || any_uncondjump_p (i3))
2920 {
2921 *new_direct_jump_p = 1;
2922 mark_jump_label (PATTERN (i3), i3, 0);
2923
2924 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2925 || !BARRIER_P (temp))
2926 emit_barrier_after (i3);
2927 }
2928
2929 if (undobuf.other_insn != NULL_RTX
2930 && (returnjump_p (undobuf.other_insn)
2931 || any_uncondjump_p (undobuf.other_insn)))
2932 {
2933 *new_direct_jump_p = 1;
2934
2935 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2936 || !BARRIER_P (temp))
2937 emit_barrier_after (undobuf.other_insn);
2938 }
2939
2940 /* An NOOP jump does not need barrier, but it does need cleaning up
2941 of CFG. */
2942 if (GET_CODE (newpat) == SET
2943 && SET_SRC (newpat) == pc_rtx
2944 && SET_DEST (newpat) == pc_rtx)
2945 *new_direct_jump_p = 1;
2946 }
2947
2948 combine_successes++;
2949 undo_commit ();
2950
2951 if (added_links_insn
2952 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2953 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2954 return added_links_insn;
2955 else
2956 return newi2pat ? i2 : i3;
2957 }
2958 \f
2959 /* Undo all the modifications recorded in undobuf. */
2960
2961 static void
2962 undo_all (void)
2963 {
2964 struct undo *undo, *next;
2965
2966 for (undo = undobuf.undos; undo; undo = next)
2967 {
2968 next = undo->next;
2969 if (undo->is_int)
2970 *undo->where.i = undo->old_contents.i;
2971 else
2972 *undo->where.r = undo->old_contents.r;
2973
2974 undo->next = undobuf.frees;
2975 undobuf.frees = undo;
2976 }
2977
2978 undobuf.undos = 0;
2979 }
2980
2981 /* We've committed to accepting the changes we made. Move all
2982 of the undos to the free list. */
2983
2984 static void
2985 undo_commit (void)
2986 {
2987 struct undo *undo, *next;
2988
2989 for (undo = undobuf.undos; undo; undo = next)
2990 {
2991 next = undo->next;
2992 undo->next = undobuf.frees;
2993 undobuf.frees = undo;
2994 }
2995 undobuf.undos = 0;
2996 }
2997
2998 \f
2999 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3000 where we have an arithmetic expression and return that point. LOC will
3001 be inside INSN.
3002
3003 try_combine will call this function to see if an insn can be split into
3004 two insns. */
3005
3006 static rtx *
3007 find_split_point (rtx *loc, rtx insn)
3008 {
3009 rtx x = *loc;
3010 enum rtx_code code = GET_CODE (x);
3011 rtx *split;
3012 unsigned HOST_WIDE_INT len = 0;
3013 HOST_WIDE_INT pos = 0;
3014 int unsignedp = 0;
3015 rtx inner = NULL_RTX;
3016
3017 /* First special-case some codes. */
3018 switch (code)
3019 {
3020 case SUBREG:
3021 #ifdef INSN_SCHEDULING
3022 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3023 point. */
3024 if (MEM_P (SUBREG_REG (x)))
3025 return loc;
3026 #endif
3027 return find_split_point (&SUBREG_REG (x), insn);
3028
3029 case MEM:
3030 #ifdef HAVE_lo_sum
3031 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3032 using LO_SUM and HIGH. */
3033 if (GET_CODE (XEXP (x, 0)) == CONST
3034 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3035 {
3036 SUBST (XEXP (x, 0),
3037 gen_rtx_LO_SUM (Pmode,
3038 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3039 XEXP (x, 0)));
3040 return &XEXP (XEXP (x, 0), 0);
3041 }
3042 #endif
3043
3044 /* If we have a PLUS whose second operand is a constant and the
3045 address is not valid, perhaps will can split it up using
3046 the machine-specific way to split large constants. We use
3047 the first pseudo-reg (one of the virtual regs) as a placeholder;
3048 it will not remain in the result. */
3049 if (GET_CODE (XEXP (x, 0)) == PLUS
3050 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3051 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3052 {
3053 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3054 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3055 subst_insn);
3056
3057 /* This should have produced two insns, each of which sets our
3058 placeholder. If the source of the second is a valid address,
3059 we can make put both sources together and make a split point
3060 in the middle. */
3061
3062 if (seq
3063 && NEXT_INSN (seq) != NULL_RTX
3064 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3065 && NONJUMP_INSN_P (seq)
3066 && GET_CODE (PATTERN (seq)) == SET
3067 && SET_DEST (PATTERN (seq)) == reg
3068 && ! reg_mentioned_p (reg,
3069 SET_SRC (PATTERN (seq)))
3070 && NONJUMP_INSN_P (NEXT_INSN (seq))
3071 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3072 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3073 && memory_address_p (GET_MODE (x),
3074 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3075 {
3076 rtx src1 = SET_SRC (PATTERN (seq));
3077 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3078
3079 /* Replace the placeholder in SRC2 with SRC1. If we can
3080 find where in SRC2 it was placed, that can become our
3081 split point and we can replace this address with SRC2.
3082 Just try two obvious places. */
3083
3084 src2 = replace_rtx (src2, reg, src1);
3085 split = 0;
3086 if (XEXP (src2, 0) == src1)
3087 split = &XEXP (src2, 0);
3088 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3089 && XEXP (XEXP (src2, 0), 0) == src1)
3090 split = &XEXP (XEXP (src2, 0), 0);
3091
3092 if (split)
3093 {
3094 SUBST (XEXP (x, 0), src2);
3095 return split;
3096 }
3097 }
3098
3099 /* If that didn't work, perhaps the first operand is complex and
3100 needs to be computed separately, so make a split point there.
3101 This will occur on machines that just support REG + CONST
3102 and have a constant moved through some previous computation. */
3103
3104 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3105 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3106 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3107 return &XEXP (XEXP (x, 0), 0);
3108 }
3109 break;
3110
3111 case SET:
3112 #ifdef HAVE_cc0
3113 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3114 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3115 we need to put the operand into a register. So split at that
3116 point. */
3117
3118 if (SET_DEST (x) == cc0_rtx
3119 && GET_CODE (SET_SRC (x)) != COMPARE
3120 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3121 && !OBJECT_P (SET_SRC (x))
3122 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3123 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3124 return &SET_SRC (x);
3125 #endif
3126
3127 /* See if we can split SET_SRC as it stands. */
3128 split = find_split_point (&SET_SRC (x), insn);
3129 if (split && split != &SET_SRC (x))
3130 return split;
3131
3132 /* See if we can split SET_DEST as it stands. */
3133 split = find_split_point (&SET_DEST (x), insn);
3134 if (split && split != &SET_DEST (x))
3135 return split;
3136
3137 /* See if this is a bitfield assignment with everything constant. If
3138 so, this is an IOR of an AND, so split it into that. */
3139 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3140 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3141 <= HOST_BITS_PER_WIDE_INT)
3142 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3143 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3144 && GET_CODE (SET_SRC (x)) == CONST_INT
3145 && ((INTVAL (XEXP (SET_DEST (x), 1))
3146 + INTVAL (XEXP (SET_DEST (x), 2)))
3147 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3148 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3149 {
3150 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3151 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3152 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3153 rtx dest = XEXP (SET_DEST (x), 0);
3154 enum machine_mode mode = GET_MODE (dest);
3155 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3156
3157 if (BITS_BIG_ENDIAN)
3158 pos = GET_MODE_BITSIZE (mode) - len - pos;
3159
3160 if (src == mask)
3161 SUBST (SET_SRC (x),
3162 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3163 else
3164 SUBST (SET_SRC (x),
3165 gen_binary (IOR, mode,
3166 gen_binary (AND, mode, dest,
3167 gen_int_mode (~(mask << pos),
3168 mode)),
3169 GEN_INT (src << pos)));
3170
3171 SUBST (SET_DEST (x), dest);
3172
3173 split = find_split_point (&SET_SRC (x), insn);
3174 if (split && split != &SET_SRC (x))
3175 return split;
3176 }
3177
3178 /* Otherwise, see if this is an operation that we can split into two.
3179 If so, try to split that. */
3180 code = GET_CODE (SET_SRC (x));
3181
3182 switch (code)
3183 {
3184 case AND:
3185 /* If we are AND'ing with a large constant that is only a single
3186 bit and the result is only being used in a context where we
3187 need to know if it is zero or nonzero, replace it with a bit
3188 extraction. This will avoid the large constant, which might
3189 have taken more than one insn to make. If the constant were
3190 not a valid argument to the AND but took only one insn to make,
3191 this is no worse, but if it took more than one insn, it will
3192 be better. */
3193
3194 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3195 && REG_P (XEXP (SET_SRC (x), 0))
3196 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3197 && REG_P (SET_DEST (x))
3198 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3199 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3200 && XEXP (*split, 0) == SET_DEST (x)
3201 && XEXP (*split, 1) == const0_rtx)
3202 {
3203 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3204 XEXP (SET_SRC (x), 0),
3205 pos, NULL_RTX, 1, 1, 0, 0);
3206 if (extraction != 0)
3207 {
3208 SUBST (SET_SRC (x), extraction);
3209 return find_split_point (loc, insn);
3210 }
3211 }
3212 break;
3213
3214 case NE:
3215 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3216 is known to be on, this can be converted into a NEG of a shift. */
3217 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3218 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3219 && 1 <= (pos = exact_log2
3220 (nonzero_bits (XEXP (SET_SRC (x), 0),
3221 GET_MODE (XEXP (SET_SRC (x), 0))))))
3222 {
3223 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3224
3225 SUBST (SET_SRC (x),
3226 gen_rtx_NEG (mode,
3227 gen_rtx_LSHIFTRT (mode,
3228 XEXP (SET_SRC (x), 0),
3229 GEN_INT (pos))));
3230
3231 split = find_split_point (&SET_SRC (x), insn);
3232 if (split && split != &SET_SRC (x))
3233 return split;
3234 }
3235 break;
3236
3237 case SIGN_EXTEND:
3238 inner = XEXP (SET_SRC (x), 0);
3239
3240 /* We can't optimize if either mode is a partial integer
3241 mode as we don't know how many bits are significant
3242 in those modes. */
3243 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3244 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3245 break;
3246
3247 pos = 0;
3248 len = GET_MODE_BITSIZE (GET_MODE (inner));
3249 unsignedp = 0;
3250 break;
3251
3252 case SIGN_EXTRACT:
3253 case ZERO_EXTRACT:
3254 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3255 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3256 {
3257 inner = XEXP (SET_SRC (x), 0);
3258 len = INTVAL (XEXP (SET_SRC (x), 1));
3259 pos = INTVAL (XEXP (SET_SRC (x), 2));
3260
3261 if (BITS_BIG_ENDIAN)
3262 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3263 unsignedp = (code == ZERO_EXTRACT);
3264 }
3265 break;
3266
3267 default:
3268 break;
3269 }
3270
3271 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3272 {
3273 enum machine_mode mode = GET_MODE (SET_SRC (x));
3274
3275 /* For unsigned, we have a choice of a shift followed by an
3276 AND or two shifts. Use two shifts for field sizes where the
3277 constant might be too large. We assume here that we can
3278 always at least get 8-bit constants in an AND insn, which is
3279 true for every current RISC. */
3280
3281 if (unsignedp && len <= 8)
3282 {
3283 SUBST (SET_SRC (x),
3284 gen_rtx_AND (mode,
3285 gen_rtx_LSHIFTRT
3286 (mode, gen_lowpart (mode, inner),
3287 GEN_INT (pos)),
3288 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3289
3290 split = find_split_point (&SET_SRC (x), insn);
3291 if (split && split != &SET_SRC (x))
3292 return split;
3293 }
3294 else
3295 {
3296 SUBST (SET_SRC (x),
3297 gen_rtx_fmt_ee
3298 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3299 gen_rtx_ASHIFT (mode,
3300 gen_lowpart (mode, inner),
3301 GEN_INT (GET_MODE_BITSIZE (mode)
3302 - len - pos)),
3303 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3304
3305 split = find_split_point (&SET_SRC (x), insn);
3306 if (split && split != &SET_SRC (x))
3307 return split;
3308 }
3309 }
3310
3311 /* See if this is a simple operation with a constant as the second
3312 operand. It might be that this constant is out of range and hence
3313 could be used as a split point. */
3314 if (BINARY_P (SET_SRC (x))
3315 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3316 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3317 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3318 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3319 return &XEXP (SET_SRC (x), 1);
3320
3321 /* Finally, see if this is a simple operation with its first operand
3322 not in a register. The operation might require this operand in a
3323 register, so return it as a split point. We can always do this
3324 because if the first operand were another operation, we would have
3325 already found it as a split point. */
3326 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3327 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3328 return &XEXP (SET_SRC (x), 0);
3329
3330 return 0;
3331
3332 case AND:
3333 case IOR:
3334 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3335 it is better to write this as (not (ior A B)) so we can split it.
3336 Similarly for IOR. */
3337 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3338 {
3339 SUBST (*loc,
3340 gen_rtx_NOT (GET_MODE (x),
3341 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3342 GET_MODE (x),
3343 XEXP (XEXP (x, 0), 0),
3344 XEXP (XEXP (x, 1), 0))));
3345 return find_split_point (loc, insn);
3346 }
3347
3348 /* Many RISC machines have a large set of logical insns. If the
3349 second operand is a NOT, put it first so we will try to split the
3350 other operand first. */
3351 if (GET_CODE (XEXP (x, 1)) == NOT)
3352 {
3353 rtx tem = XEXP (x, 0);
3354 SUBST (XEXP (x, 0), XEXP (x, 1));
3355 SUBST (XEXP (x, 1), tem);
3356 }
3357 break;
3358
3359 default:
3360 break;
3361 }
3362
3363 /* Otherwise, select our actions depending on our rtx class. */
3364 switch (GET_RTX_CLASS (code))
3365 {
3366 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3367 case RTX_TERNARY:
3368 split = find_split_point (&XEXP (x, 2), insn);
3369 if (split)
3370 return split;
3371 /* ... fall through ... */
3372 case RTX_BIN_ARITH:
3373 case RTX_COMM_ARITH:
3374 case RTX_COMPARE:
3375 case RTX_COMM_COMPARE:
3376 split = find_split_point (&XEXP (x, 1), insn);
3377 if (split)
3378 return split;
3379 /* ... fall through ... */
3380 case RTX_UNARY:
3381 /* Some machines have (and (shift ...) ...) insns. If X is not
3382 an AND, but XEXP (X, 0) is, use it as our split point. */
3383 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3384 return &XEXP (x, 0);
3385
3386 split = find_split_point (&XEXP (x, 0), insn);
3387 if (split)
3388 return split;
3389 return loc;
3390
3391 default:
3392 /* Otherwise, we don't have a split point. */
3393 return 0;
3394 }
3395 }
3396 \f
3397 /* Throughout X, replace FROM with TO, and return the result.
3398 The result is TO if X is FROM;
3399 otherwise the result is X, but its contents may have been modified.
3400 If they were modified, a record was made in undobuf so that
3401 undo_all will (among other things) return X to its original state.
3402
3403 If the number of changes necessary is too much to record to undo,
3404 the excess changes are not made, so the result is invalid.
3405 The changes already made can still be undone.
3406 undobuf.num_undo is incremented for such changes, so by testing that
3407 the caller can tell whether the result is valid.
3408
3409 `n_occurrences' is incremented each time FROM is replaced.
3410
3411 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3412
3413 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3414 by copying if `n_occurrences' is nonzero. */
3415
3416 static rtx
3417 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3418 {
3419 enum rtx_code code = GET_CODE (x);
3420 enum machine_mode op0_mode = VOIDmode;
3421 const char *fmt;
3422 int len, i;
3423 rtx new;
3424
3425 /* Two expressions are equal if they are identical copies of a shared
3426 RTX or if they are both registers with the same register number
3427 and mode. */
3428
3429 #define COMBINE_RTX_EQUAL_P(X,Y) \
3430 ((X) == (Y) \
3431 || (REG_P (X) && REG_P (Y) \
3432 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3433
3434 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3435 {
3436 n_occurrences++;
3437 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3438 }
3439
3440 /* If X and FROM are the same register but different modes, they will
3441 not have been seen as equal above. However, flow.c will make a
3442 LOG_LINKS entry for that case. If we do nothing, we will try to
3443 rerecognize our original insn and, when it succeeds, we will
3444 delete the feeding insn, which is incorrect.
3445
3446 So force this insn not to match in this (rare) case. */
3447 if (! in_dest && code == REG && REG_P (from)
3448 && REGNO (x) == REGNO (from))
3449 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3450
3451 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3452 of which may contain things that can be combined. */
3453 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3454 return x;
3455
3456 /* It is possible to have a subexpression appear twice in the insn.
3457 Suppose that FROM is a register that appears within TO.
3458 Then, after that subexpression has been scanned once by `subst',
3459 the second time it is scanned, TO may be found. If we were
3460 to scan TO here, we would find FROM within it and create a
3461 self-referent rtl structure which is completely wrong. */
3462 if (COMBINE_RTX_EQUAL_P (x, to))
3463 return to;
3464
3465 /* Parallel asm_operands need special attention because all of the
3466 inputs are shared across the arms. Furthermore, unsharing the
3467 rtl results in recognition failures. Failure to handle this case
3468 specially can result in circular rtl.
3469
3470 Solve this by doing a normal pass across the first entry of the
3471 parallel, and only processing the SET_DESTs of the subsequent
3472 entries. Ug. */
3473
3474 if (code == PARALLEL
3475 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3476 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3477 {
3478 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3479
3480 /* If this substitution failed, this whole thing fails. */
3481 if (GET_CODE (new) == CLOBBER
3482 && XEXP (new, 0) == const0_rtx)
3483 return new;
3484
3485 SUBST (XVECEXP (x, 0, 0), new);
3486
3487 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3488 {
3489 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3490
3491 if (!REG_P (dest)
3492 && GET_CODE (dest) != CC0
3493 && GET_CODE (dest) != PC)
3494 {
3495 new = subst (dest, from, to, 0, unique_copy);
3496
3497 /* If this substitution failed, this whole thing fails. */
3498 if (GET_CODE (new) == CLOBBER
3499 && XEXP (new, 0) == const0_rtx)
3500 return new;
3501
3502 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3503 }
3504 }
3505 }
3506 else
3507 {
3508 len = GET_RTX_LENGTH (code);
3509 fmt = GET_RTX_FORMAT (code);
3510
3511 /* We don't need to process a SET_DEST that is a register, CC0,
3512 or PC, so set up to skip this common case. All other cases
3513 where we want to suppress replacing something inside a
3514 SET_SRC are handled via the IN_DEST operand. */
3515 if (code == SET
3516 && (REG_P (SET_DEST (x))
3517 || GET_CODE (SET_DEST (x)) == CC0
3518 || GET_CODE (SET_DEST (x)) == PC))
3519 fmt = "ie";
3520
3521 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3522 constant. */
3523 if (fmt[0] == 'e')
3524 op0_mode = GET_MODE (XEXP (x, 0));
3525
3526 for (i = 0; i < len; i++)
3527 {
3528 if (fmt[i] == 'E')
3529 {
3530 int j;
3531 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3532 {
3533 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3534 {
3535 new = (unique_copy && n_occurrences
3536 ? copy_rtx (to) : to);
3537 n_occurrences++;
3538 }
3539 else
3540 {
3541 new = subst (XVECEXP (x, i, j), from, to, 0,
3542 unique_copy);
3543
3544 /* If this substitution failed, this whole thing
3545 fails. */
3546 if (GET_CODE (new) == CLOBBER
3547 && XEXP (new, 0) == const0_rtx)
3548 return new;
3549 }
3550
3551 SUBST (XVECEXP (x, i, j), new);
3552 }
3553 }
3554 else if (fmt[i] == 'e')
3555 {
3556 /* If this is a register being set, ignore it. */
3557 new = XEXP (x, i);
3558 if (in_dest
3559 && i == 0
3560 && (((code == SUBREG || code == ZERO_EXTRACT)
3561 && REG_P (new))
3562 || code == STRICT_LOW_PART))
3563 ;
3564
3565 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3566 {
3567 /* In general, don't install a subreg involving two
3568 modes not tieable. It can worsen register
3569 allocation, and can even make invalid reload
3570 insns, since the reg inside may need to be copied
3571 from in the outside mode, and that may be invalid
3572 if it is an fp reg copied in integer mode.
3573
3574 We allow two exceptions to this: It is valid if
3575 it is inside another SUBREG and the mode of that
3576 SUBREG and the mode of the inside of TO is
3577 tieable and it is valid if X is a SET that copies
3578 FROM to CC0. */
3579
3580 if (GET_CODE (to) == SUBREG
3581 && ! MODES_TIEABLE_P (GET_MODE (to),
3582 GET_MODE (SUBREG_REG (to)))
3583 && ! (code == SUBREG
3584 && MODES_TIEABLE_P (GET_MODE (x),
3585 GET_MODE (SUBREG_REG (to))))
3586 #ifdef HAVE_cc0
3587 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3588 #endif
3589 )
3590 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3591
3592 #ifdef CANNOT_CHANGE_MODE_CLASS
3593 if (code == SUBREG
3594 && REG_P (to)
3595 && REGNO (to) < FIRST_PSEUDO_REGISTER
3596 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3597 GET_MODE (to),
3598 GET_MODE (x)))
3599 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3600 #endif
3601
3602 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3603 n_occurrences++;
3604 }
3605 else
3606 /* If we are in a SET_DEST, suppress most cases unless we
3607 have gone inside a MEM, in which case we want to
3608 simplify the address. We assume here that things that
3609 are actually part of the destination have their inner
3610 parts in the first expression. This is true for SUBREG,
3611 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3612 things aside from REG and MEM that should appear in a
3613 SET_DEST. */
3614 new = subst (XEXP (x, i), from, to,
3615 (((in_dest
3616 && (code == SUBREG || code == STRICT_LOW_PART
3617 || code == ZERO_EXTRACT))
3618 || code == SET)
3619 && i == 0), unique_copy);
3620
3621 /* If we found that we will have to reject this combination,
3622 indicate that by returning the CLOBBER ourselves, rather than
3623 an expression containing it. This will speed things up as
3624 well as prevent accidents where two CLOBBERs are considered
3625 to be equal, thus producing an incorrect simplification. */
3626
3627 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3628 return new;
3629
3630 if (GET_CODE (x) == SUBREG
3631 && (GET_CODE (new) == CONST_INT
3632 || GET_CODE (new) == CONST_DOUBLE))
3633 {
3634 enum machine_mode mode = GET_MODE (x);
3635
3636 x = simplify_subreg (GET_MODE (x), new,
3637 GET_MODE (SUBREG_REG (x)),
3638 SUBREG_BYTE (x));
3639 if (! x)
3640 x = gen_rtx_CLOBBER (mode, const0_rtx);
3641 }
3642 else if (GET_CODE (new) == CONST_INT
3643 && GET_CODE (x) == ZERO_EXTEND)
3644 {
3645 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3646 new, GET_MODE (XEXP (x, 0)));
3647 gcc_assert (x);
3648 }
3649 else
3650 SUBST (XEXP (x, i), new);
3651 }
3652 }
3653 }
3654
3655 /* Try to simplify X. If the simplification changed the code, it is likely
3656 that further simplification will help, so loop, but limit the number
3657 of repetitions that will be performed. */
3658
3659 for (i = 0; i < 4; i++)
3660 {
3661 /* If X is sufficiently simple, don't bother trying to do anything
3662 with it. */
3663 if (code != CONST_INT && code != REG && code != CLOBBER)
3664 x = combine_simplify_rtx (x, op0_mode, in_dest);
3665
3666 if (GET_CODE (x) == code)
3667 break;
3668
3669 code = GET_CODE (x);
3670
3671 /* We no longer know the original mode of operand 0 since we
3672 have changed the form of X) */
3673 op0_mode = VOIDmode;
3674 }
3675
3676 return x;
3677 }
3678 \f
3679 /* Simplify X, a piece of RTL. We just operate on the expression at the
3680 outer level; call `subst' to simplify recursively. Return the new
3681 expression.
3682
3683 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3684 if we are inside a SET_DEST. */
3685
3686 static rtx
3687 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3688 {
3689 enum rtx_code code = GET_CODE (x);
3690 enum machine_mode mode = GET_MODE (x);
3691 rtx temp;
3692 rtx reversed;
3693 int i;
3694
3695 /* If this is a commutative operation, put a constant last and a complex
3696 expression first. We don't need to do this for comparisons here. */
3697 if (COMMUTATIVE_ARITH_P (x)
3698 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3699 {
3700 temp = XEXP (x, 0);
3701 SUBST (XEXP (x, 0), XEXP (x, 1));
3702 SUBST (XEXP (x, 1), temp);
3703 }
3704
3705 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3706 sign extension of a PLUS with a constant, reverse the order of the sign
3707 extension and the addition. Note that this not the same as the original
3708 code, but overflow is undefined for signed values. Also note that the
3709 PLUS will have been partially moved "inside" the sign-extension, so that
3710 the first operand of X will really look like:
3711 (ashiftrt (plus (ashift A C4) C5) C4).
3712 We convert this to
3713 (plus (ashiftrt (ashift A C4) C2) C4)
3714 and replace the first operand of X with that expression. Later parts
3715 of this function may simplify the expression further.
3716
3717 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3718 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3719 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3720
3721 We do this to simplify address expressions. */
3722
3723 if ((code == PLUS || code == MINUS || code == MULT)
3724 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3725 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3726 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3727 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3728 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3729 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3730 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3731 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3732 XEXP (XEXP (XEXP (x, 0), 0), 1),
3733 XEXP (XEXP (x, 0), 1))) != 0)
3734 {
3735 rtx new
3736 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3737 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3738 INTVAL (XEXP (XEXP (x, 0), 1)));
3739
3740 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3741 INTVAL (XEXP (XEXP (x, 0), 1)));
3742
3743 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3744 }
3745
3746 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3747 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3748 things. Check for cases where both arms are testing the same
3749 condition.
3750
3751 Don't do anything if all operands are very simple. */
3752
3753 if ((BINARY_P (x)
3754 && ((!OBJECT_P (XEXP (x, 0))
3755 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3756 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3757 || (!OBJECT_P (XEXP (x, 1))
3758 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3759 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3760 || (UNARY_P (x)
3761 && (!OBJECT_P (XEXP (x, 0))
3762 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3763 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3764 {
3765 rtx cond, true_rtx, false_rtx;
3766
3767 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3768 if (cond != 0
3769 /* If everything is a comparison, what we have is highly unlikely
3770 to be simpler, so don't use it. */
3771 && ! (COMPARISON_P (x)
3772 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3773 {
3774 rtx cop1 = const0_rtx;
3775 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3776
3777 if (cond_code == NE && COMPARISON_P (cond))
3778 return x;
3779
3780 /* Simplify the alternative arms; this may collapse the true and
3781 false arms to store-flag values. Be careful to use copy_rtx
3782 here since true_rtx or false_rtx might share RTL with x as a
3783 result of the if_then_else_cond call above. */
3784 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3785 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3786
3787 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3788 is unlikely to be simpler. */
3789 if (general_operand (true_rtx, VOIDmode)
3790 && general_operand (false_rtx, VOIDmode))
3791 {
3792 enum rtx_code reversed;
3793
3794 /* Restarting if we generate a store-flag expression will cause
3795 us to loop. Just drop through in this case. */
3796
3797 /* If the result values are STORE_FLAG_VALUE and zero, we can
3798 just make the comparison operation. */
3799 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3800 x = gen_binary (cond_code, mode, cond, cop1);
3801 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3802 && ((reversed = reversed_comparison_code_parts
3803 (cond_code, cond, cop1, NULL))
3804 != UNKNOWN))
3805 x = gen_binary (reversed, mode, cond, cop1);
3806
3807 /* Likewise, we can make the negate of a comparison operation
3808 if the result values are - STORE_FLAG_VALUE and zero. */
3809 else if (GET_CODE (true_rtx) == CONST_INT
3810 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3811 && false_rtx == const0_rtx)
3812 x = simplify_gen_unary (NEG, mode,
3813 gen_binary (cond_code, mode, cond,
3814 cop1),
3815 mode);
3816 else if (GET_CODE (false_rtx) == CONST_INT
3817 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3818 && true_rtx == const0_rtx
3819 && ((reversed = reversed_comparison_code_parts
3820 (cond_code, cond, cop1, NULL))
3821 != UNKNOWN))
3822 x = simplify_gen_unary (NEG, mode,
3823 gen_binary (reversed, mode,
3824 cond, cop1),
3825 mode);
3826 else
3827 return gen_rtx_IF_THEN_ELSE (mode,
3828 gen_binary (cond_code, VOIDmode,
3829 cond, cop1),
3830 true_rtx, false_rtx);
3831
3832 code = GET_CODE (x);
3833 op0_mode = VOIDmode;
3834 }
3835 }
3836 }
3837
3838 /* Try to fold this expression in case we have constants that weren't
3839 present before. */
3840 temp = 0;
3841 switch (GET_RTX_CLASS (code))
3842 {
3843 case RTX_UNARY:
3844 if (op0_mode == VOIDmode)
3845 op0_mode = GET_MODE (XEXP (x, 0));
3846 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3847 break;
3848 case RTX_COMPARE:
3849 case RTX_COMM_COMPARE:
3850 {
3851 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3852 if (cmp_mode == VOIDmode)
3853 {
3854 cmp_mode = GET_MODE (XEXP (x, 1));
3855 if (cmp_mode == VOIDmode)
3856 cmp_mode = op0_mode;
3857 }
3858 temp = simplify_relational_operation (code, mode, cmp_mode,
3859 XEXP (x, 0), XEXP (x, 1));
3860 }
3861 break;
3862 case RTX_COMM_ARITH:
3863 case RTX_BIN_ARITH:
3864 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3865 break;
3866 case RTX_BITFIELD_OPS:
3867 case RTX_TERNARY:
3868 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3869 XEXP (x, 1), XEXP (x, 2));
3870 break;
3871 default:
3872 break;
3873 }
3874
3875 if (temp)
3876 {
3877 x = temp;
3878 code = GET_CODE (temp);
3879 op0_mode = VOIDmode;
3880 mode = GET_MODE (temp);
3881 }
3882
3883 /* First see if we can apply the inverse distributive law. */
3884 if (code == PLUS || code == MINUS
3885 || code == AND || code == IOR || code == XOR)
3886 {
3887 x = apply_distributive_law (x);
3888 code = GET_CODE (x);
3889 op0_mode = VOIDmode;
3890 }
3891
3892 /* If CODE is an associative operation not otherwise handled, see if we
3893 can associate some operands. This can win if they are constants or
3894 if they are logically related (i.e. (a & b) & a). */
3895 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3896 || code == AND || code == IOR || code == XOR
3897 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3898 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3899 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3900 {
3901 if (GET_CODE (XEXP (x, 0)) == code)
3902 {
3903 rtx other = XEXP (XEXP (x, 0), 0);
3904 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3905 rtx inner_op1 = XEXP (x, 1);
3906 rtx inner;
3907
3908 /* Make sure we pass the constant operand if any as the second
3909 one if this is a commutative operation. */
3910 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3911 {
3912 rtx tem = inner_op0;
3913 inner_op0 = inner_op1;
3914 inner_op1 = tem;
3915 }
3916 inner = simplify_binary_operation (code == MINUS ? PLUS
3917 : code == DIV ? MULT
3918 : code,
3919 mode, inner_op0, inner_op1);
3920
3921 /* For commutative operations, try the other pair if that one
3922 didn't simplify. */
3923 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3924 {
3925 other = XEXP (XEXP (x, 0), 1);
3926 inner = simplify_binary_operation (code, mode,
3927 XEXP (XEXP (x, 0), 0),
3928 XEXP (x, 1));
3929 }
3930
3931 if (inner)
3932 return gen_binary (code, mode, other, inner);
3933 }
3934 }
3935
3936 /* A little bit of algebraic simplification here. */
3937 switch (code)
3938 {
3939 case MEM:
3940 /* Ensure that our address has any ASHIFTs converted to MULT in case
3941 address-recognizing predicates are called later. */
3942 temp = make_compound_operation (XEXP (x, 0), MEM);
3943 SUBST (XEXP (x, 0), temp);
3944 break;
3945
3946 case SUBREG:
3947 if (op0_mode == VOIDmode)
3948 op0_mode = GET_MODE (SUBREG_REG (x));
3949
3950 /* See if this can be moved to simplify_subreg. */
3951 if (CONSTANT_P (SUBREG_REG (x))
3952 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3953 /* Don't call gen_lowpart if the inner mode
3954 is VOIDmode and we cannot simplify it, as SUBREG without
3955 inner mode is invalid. */
3956 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3957 || gen_lowpart_common (mode, SUBREG_REG (x))))
3958 return gen_lowpart (mode, SUBREG_REG (x));
3959
3960 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3961 break;
3962 {
3963 rtx temp;
3964 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3965 SUBREG_BYTE (x));
3966 if (temp)
3967 return temp;
3968 }
3969
3970 /* Don't change the mode of the MEM if that would change the meaning
3971 of the address. */
3972 if (MEM_P (SUBREG_REG (x))
3973 && (MEM_VOLATILE_P (SUBREG_REG (x))
3974 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3975 return gen_rtx_CLOBBER (mode, const0_rtx);
3976
3977 /* Note that we cannot do any narrowing for non-constants since
3978 we might have been counting on using the fact that some bits were
3979 zero. We now do this in the SET. */
3980
3981 break;
3982
3983 case NOT:
3984 if (GET_CODE (XEXP (x, 0)) == SUBREG
3985 && subreg_lowpart_p (XEXP (x, 0))
3986 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3987 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3988 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3989 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3990 {
3991 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3992
3993 x = gen_rtx_ROTATE (inner_mode,
3994 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3995 inner_mode),
3996 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3997 return gen_lowpart (mode, x);
3998 }
3999
4000 /* Apply De Morgan's laws to reduce number of patterns for machines
4001 with negating logical insns (and-not, nand, etc.). If result has
4002 only one NOT, put it first, since that is how the patterns are
4003 coded. */
4004
4005 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4006 {
4007 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4008 enum machine_mode op_mode;
4009
4010 op_mode = GET_MODE (in1);
4011 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4012
4013 op_mode = GET_MODE (in2);
4014 if (op_mode == VOIDmode)
4015 op_mode = mode;
4016 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4017
4018 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4019 {
4020 rtx tem = in2;
4021 in2 = in1; in1 = tem;
4022 }
4023
4024 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4025 mode, in1, in2);
4026 }
4027 break;
4028
4029 case NEG:
4030 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4031 if (GET_CODE (XEXP (x, 0)) == XOR
4032 && XEXP (XEXP (x, 0), 1) == const1_rtx
4033 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4034 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4035
4036 temp = expand_compound_operation (XEXP (x, 0));
4037
4038 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4039 replaced by (lshiftrt X C). This will convert
4040 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4041
4042 if (GET_CODE (temp) == ASHIFTRT
4043 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4044 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4045 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4046 INTVAL (XEXP (temp, 1)));
4047
4048 /* If X has only a single bit that might be nonzero, say, bit I, convert
4049 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4050 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4051 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4052 or a SUBREG of one since we'd be making the expression more
4053 complex if it was just a register. */
4054
4055 if (!REG_P (temp)
4056 && ! (GET_CODE (temp) == SUBREG
4057 && REG_P (SUBREG_REG (temp)))
4058 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4059 {
4060 rtx temp1 = simplify_shift_const
4061 (NULL_RTX, ASHIFTRT, mode,
4062 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4063 GET_MODE_BITSIZE (mode) - 1 - i),
4064 GET_MODE_BITSIZE (mode) - 1 - i);
4065
4066 /* If all we did was surround TEMP with the two shifts, we
4067 haven't improved anything, so don't use it. Otherwise,
4068 we are better off with TEMP1. */
4069 if (GET_CODE (temp1) != ASHIFTRT
4070 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4071 || XEXP (XEXP (temp1, 0), 0) != temp)
4072 return temp1;
4073 }
4074 break;
4075
4076 case TRUNCATE:
4077 /* We can't handle truncation to a partial integer mode here
4078 because we don't know the real bitsize of the partial
4079 integer mode. */
4080 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4081 break;
4082
4083 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4084 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4085 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4086 SUBST (XEXP (x, 0),
4087 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4088 GET_MODE_MASK (mode), NULL_RTX, 0));
4089
4090 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4091 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4092 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4093 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4094 return XEXP (XEXP (x, 0), 0);
4095
4096 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4097 (OP:SI foo:SI) if OP is NEG or ABS. */
4098 if ((GET_CODE (XEXP (x, 0)) == ABS
4099 || GET_CODE (XEXP (x, 0)) == NEG)
4100 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4101 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4102 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4103 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4104 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4105
4106 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4107 (truncate:SI x). */
4108 if (GET_CODE (XEXP (x, 0)) == SUBREG
4109 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4110 && subreg_lowpart_p (XEXP (x, 0)))
4111 return SUBREG_REG (XEXP (x, 0));
4112
4113 /* If we know that the value is already truncated, we can
4114 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4115 is nonzero for the corresponding modes. But don't do this
4116 for an (LSHIFTRT (MULT ...)) since this will cause problems
4117 with the umulXi3_highpart patterns. */
4118 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4119 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4120 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4121 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4122 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4123 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4124 return gen_lowpart (mode, XEXP (x, 0));
4125
4126 /* A truncate of a comparison can be replaced with a subreg if
4127 STORE_FLAG_VALUE permits. This is like the previous test,
4128 but it works even if the comparison is done in a mode larger
4129 than HOST_BITS_PER_WIDE_INT. */
4130 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4131 && COMPARISON_P (XEXP (x, 0))
4132 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4133 return gen_lowpart (mode, XEXP (x, 0));
4134
4135 /* Similarly, a truncate of a register whose value is a
4136 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4137 permits. */
4138 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4139 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4140 && (temp = get_last_value (XEXP (x, 0)))
4141 && COMPARISON_P (temp))
4142 return gen_lowpart (mode, XEXP (x, 0));
4143
4144 break;
4145
4146 case FLOAT_TRUNCATE:
4147 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4148 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4149 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4150 return XEXP (XEXP (x, 0), 0);
4151
4152 /* (float_truncate:SF (float_truncate:DF foo:XF))
4153 = (float_truncate:SF foo:XF).
4154 This may eliminate double rounding, so it is unsafe.
4155
4156 (float_truncate:SF (float_extend:XF foo:DF))
4157 = (float_truncate:SF foo:DF).
4158
4159 (float_truncate:DF (float_extend:XF foo:SF))
4160 = (float_extend:SF foo:DF). */
4161 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4162 && flag_unsafe_math_optimizations)
4163 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4164 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4165 0)))
4166 > GET_MODE_SIZE (mode)
4167 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4168 mode,
4169 XEXP (XEXP (x, 0), 0), mode);
4170
4171 /* (float_truncate (float x)) is (float x) */
4172 if (GET_CODE (XEXP (x, 0)) == FLOAT
4173 && (flag_unsafe_math_optimizations
4174 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4175 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4176 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4177 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4178 return simplify_gen_unary (FLOAT, mode,
4179 XEXP (XEXP (x, 0), 0),
4180 GET_MODE (XEXP (XEXP (x, 0), 0)));
4181
4182 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4183 (OP:SF foo:SF) if OP is NEG or ABS. */
4184 if ((GET_CODE (XEXP (x, 0)) == ABS
4185 || GET_CODE (XEXP (x, 0)) == NEG)
4186 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4187 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4188 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4189 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4190
4191 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4192 is (float_truncate:SF x). */
4193 if (GET_CODE (XEXP (x, 0)) == SUBREG
4194 && subreg_lowpart_p (XEXP (x, 0))
4195 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4196 return SUBREG_REG (XEXP (x, 0));
4197 break;
4198 case FLOAT_EXTEND:
4199 /* (float_extend (float_extend x)) is (float_extend x)
4200
4201 (float_extend (float x)) is (float x) assuming that double
4202 rounding can't happen.
4203 */
4204 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4205 || (GET_CODE (XEXP (x, 0)) == FLOAT
4206 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4207 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4208 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4209 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4210 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4211 XEXP (XEXP (x, 0), 0),
4212 GET_MODE (XEXP (XEXP (x, 0), 0)));
4213
4214 break;
4215 #ifdef HAVE_cc0
4216 case COMPARE:
4217 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4218 using cc0, in which case we want to leave it as a COMPARE
4219 so we can distinguish it from a register-register-copy. */
4220 if (XEXP (x, 1) == const0_rtx)
4221 return XEXP (x, 0);
4222
4223 /* x - 0 is the same as x unless x's mode has signed zeros and
4224 allows rounding towards -infinity. Under those conditions,
4225 0 - 0 is -0. */
4226 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4227 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4228 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4229 return XEXP (x, 0);
4230 break;
4231 #endif
4232
4233 case CONST:
4234 /* (const (const X)) can become (const X). Do it this way rather than
4235 returning the inner CONST since CONST can be shared with a
4236 REG_EQUAL note. */
4237 if (GET_CODE (XEXP (x, 0)) == CONST)
4238 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4239 break;
4240
4241 #ifdef HAVE_lo_sum
4242 case LO_SUM:
4243 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4244 can add in an offset. find_split_point will split this address up
4245 again if it doesn't match. */
4246 if (GET_CODE (XEXP (x, 0)) == HIGH
4247 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4248 return XEXP (x, 1);
4249 break;
4250 #endif
4251
4252 case PLUS:
4253 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4254 */
4255 if (GET_CODE (XEXP (x, 0)) == MULT
4256 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4257 {
4258 rtx in1, in2;
4259
4260 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4261 in2 = XEXP (XEXP (x, 0), 1);
4262 return gen_binary (MINUS, mode, XEXP (x, 1),
4263 gen_binary (MULT, mode, in1, in2));
4264 }
4265
4266 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4267 outermost. That's because that's the way indexed addresses are
4268 supposed to appear. This code used to check many more cases, but
4269 they are now checked elsewhere. */
4270 if (GET_CODE (XEXP (x, 0)) == PLUS
4271 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4272 return gen_binary (PLUS, mode,
4273 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4274 XEXP (x, 1)),
4275 XEXP (XEXP (x, 0), 1));
4276
4277 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4278 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4279 bit-field and can be replaced by either a sign_extend or a
4280 sign_extract. The `and' may be a zero_extend and the two
4281 <c>, -<c> constants may be reversed. */
4282 if (GET_CODE (XEXP (x, 0)) == XOR
4283 && GET_CODE (XEXP (x, 1)) == CONST_INT
4284 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4285 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4286 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4287 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4288 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4289 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4290 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4291 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4292 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4293 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4294 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4295 == (unsigned int) i + 1))))
4296 return simplify_shift_const
4297 (NULL_RTX, ASHIFTRT, mode,
4298 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4299 XEXP (XEXP (XEXP (x, 0), 0), 0),
4300 GET_MODE_BITSIZE (mode) - (i + 1)),
4301 GET_MODE_BITSIZE (mode) - (i + 1));
4302
4303 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4304 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4305 is 1. This produces better code than the alternative immediately
4306 below. */
4307 if (COMPARISON_P (XEXP (x, 0))
4308 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4309 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4310 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4311 XEXP (XEXP (x, 0), 0),
4312 XEXP (XEXP (x, 0), 1))))
4313 return
4314 simplify_gen_unary (NEG, mode, reversed, mode);
4315
4316 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4317 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4318 the bitsize of the mode - 1. This allows simplification of
4319 "a = (b & 8) == 0;" */
4320 if (XEXP (x, 1) == constm1_rtx
4321 && !REG_P (XEXP (x, 0))
4322 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4323 && REG_P (SUBREG_REG (XEXP (x, 0))))
4324 && nonzero_bits (XEXP (x, 0), mode) == 1)
4325 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4326 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4327 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4328 GET_MODE_BITSIZE (mode) - 1),
4329 GET_MODE_BITSIZE (mode) - 1);
4330
4331 /* If we are adding two things that have no bits in common, convert
4332 the addition into an IOR. This will often be further simplified,
4333 for example in cases like ((a & 1) + (a & 2)), which can
4334 become a & 3. */
4335
4336 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4337 && (nonzero_bits (XEXP (x, 0), mode)
4338 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4339 {
4340 /* Try to simplify the expression further. */
4341 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4342 temp = combine_simplify_rtx (tor, mode, in_dest);
4343
4344 /* If we could, great. If not, do not go ahead with the IOR
4345 replacement, since PLUS appears in many special purpose
4346 address arithmetic instructions. */
4347 if (GET_CODE (temp) != CLOBBER && temp != tor)
4348 return temp;
4349 }
4350 break;
4351
4352 case MINUS:
4353 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4354 by reversing the comparison code if valid. */
4355 if (STORE_FLAG_VALUE == 1
4356 && XEXP (x, 0) == const1_rtx
4357 && COMPARISON_P (XEXP (x, 1))
4358 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4359 XEXP (XEXP (x, 1), 0),
4360 XEXP (XEXP (x, 1), 1))))
4361 return reversed;
4362
4363 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4364 (and <foo> (const_int pow2-1)) */
4365 if (GET_CODE (XEXP (x, 1)) == AND
4366 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4367 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4368 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4369 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4370 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4371
4372 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4373 */
4374 if (GET_CODE (XEXP (x, 1)) == MULT
4375 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4376 {
4377 rtx in1, in2;
4378
4379 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4380 in2 = XEXP (XEXP (x, 1), 1);
4381 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4382 XEXP (x, 0));
4383 }
4384
4385 /* Canonicalize (minus (neg A) (mult B C)) to
4386 (minus (mult (neg B) C) A). */
4387 if (GET_CODE (XEXP (x, 1)) == MULT
4388 && GET_CODE (XEXP (x, 0)) == NEG)
4389 {
4390 rtx in1, in2;
4391
4392 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4393 in2 = XEXP (XEXP (x, 1), 1);
4394 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4395 XEXP (XEXP (x, 0), 0));
4396 }
4397
4398 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4399 integers. */
4400 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4401 return gen_binary (MINUS, mode,
4402 gen_binary (MINUS, mode, XEXP (x, 0),
4403 XEXP (XEXP (x, 1), 0)),
4404 XEXP (XEXP (x, 1), 1));
4405 break;
4406
4407 case MULT:
4408 /* If we have (mult (plus A B) C), apply the distributive law and then
4409 the inverse distributive law to see if things simplify. This
4410 occurs mostly in addresses, often when unrolling loops. */
4411
4412 if (GET_CODE (XEXP (x, 0)) == PLUS)
4413 {
4414 x = apply_distributive_law
4415 (gen_binary (PLUS, mode,
4416 gen_binary (MULT, mode,
4417 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4418 gen_binary (MULT, mode,
4419 XEXP (XEXP (x, 0), 1),
4420 copy_rtx (XEXP (x, 1)))));
4421
4422 if (GET_CODE (x) != MULT)
4423 return x;
4424 }
4425 /* Try simplify a*(b/c) as (a*b)/c. */
4426 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4427 && GET_CODE (XEXP (x, 0)) == DIV)
4428 {
4429 rtx tem = simplify_binary_operation (MULT, mode,
4430 XEXP (XEXP (x, 0), 0),
4431 XEXP (x, 1));
4432 if (tem)
4433 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4434 }
4435 break;
4436
4437 case UDIV:
4438 /* If this is a divide by a power of two, treat it as a shift if
4439 its first operand is a shift. */
4440 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4441 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4442 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4443 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4444 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4445 || GET_CODE (XEXP (x, 0)) == ROTATE
4446 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4447 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4448 break;
4449
4450 case EQ: case NE:
4451 case GT: case GTU: case GE: case GEU:
4452 case LT: case LTU: case LE: case LEU:
4453 case UNEQ: case LTGT:
4454 case UNGT: case UNGE:
4455 case UNLT: case UNLE:
4456 case UNORDERED: case ORDERED:
4457 /* If the first operand is a condition code, we can't do anything
4458 with it. */
4459 if (GET_CODE (XEXP (x, 0)) == COMPARE
4460 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4461 && ! CC0_P (XEXP (x, 0))))
4462 {
4463 rtx op0 = XEXP (x, 0);
4464 rtx op1 = XEXP (x, 1);
4465 enum rtx_code new_code;
4466
4467 if (GET_CODE (op0) == COMPARE)
4468 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4469
4470 /* Simplify our comparison, if possible. */
4471 new_code = simplify_comparison (code, &op0, &op1);
4472
4473 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4474 if only the low-order bit is possibly nonzero in X (such as when
4475 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4476 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4477 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4478 (plus X 1).
4479
4480 Remove any ZERO_EXTRACT we made when thinking this was a
4481 comparison. It may now be simpler to use, e.g., an AND. If a
4482 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4483 the call to make_compound_operation in the SET case. */
4484
4485 if (STORE_FLAG_VALUE == 1
4486 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4487 && op1 == const0_rtx
4488 && mode == GET_MODE (op0)
4489 && nonzero_bits (op0, mode) == 1)
4490 return gen_lowpart (mode,
4491 expand_compound_operation (op0));
4492
4493 else if (STORE_FLAG_VALUE == 1
4494 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4495 && op1 == const0_rtx
4496 && mode == GET_MODE (op0)
4497 && (num_sign_bit_copies (op0, mode)
4498 == GET_MODE_BITSIZE (mode)))
4499 {
4500 op0 = expand_compound_operation (op0);
4501 return simplify_gen_unary (NEG, mode,
4502 gen_lowpart (mode, op0),
4503 mode);
4504 }
4505
4506 else if (STORE_FLAG_VALUE == 1
4507 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4508 && op1 == const0_rtx
4509 && mode == GET_MODE (op0)
4510 && nonzero_bits (op0, mode) == 1)
4511 {
4512 op0 = expand_compound_operation (op0);
4513 return gen_binary (XOR, mode,
4514 gen_lowpart (mode, op0),
4515 const1_rtx);
4516 }
4517
4518 else if (STORE_FLAG_VALUE == 1
4519 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4520 && op1 == const0_rtx
4521 && mode == GET_MODE (op0)
4522 && (num_sign_bit_copies (op0, mode)
4523 == GET_MODE_BITSIZE (mode)))
4524 {
4525 op0 = expand_compound_operation (op0);
4526 return plus_constant (gen_lowpart (mode, op0), 1);
4527 }
4528
4529 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4530 those above. */
4531 if (STORE_FLAG_VALUE == -1
4532 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4533 && op1 == const0_rtx
4534 && (num_sign_bit_copies (op0, mode)
4535 == GET_MODE_BITSIZE (mode)))
4536 return gen_lowpart (mode,
4537 expand_compound_operation (op0));
4538
4539 else if (STORE_FLAG_VALUE == -1
4540 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4541 && op1 == const0_rtx
4542 && mode == GET_MODE (op0)
4543 && nonzero_bits (op0, mode) == 1)
4544 {
4545 op0 = expand_compound_operation (op0);
4546 return simplify_gen_unary (NEG, mode,
4547 gen_lowpart (mode, op0),
4548 mode);
4549 }
4550
4551 else if (STORE_FLAG_VALUE == -1
4552 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4553 && op1 == const0_rtx
4554 && mode == GET_MODE (op0)
4555 && (num_sign_bit_copies (op0, mode)
4556 == GET_MODE_BITSIZE (mode)))
4557 {
4558 op0 = expand_compound_operation (op0);
4559 return simplify_gen_unary (NOT, mode,
4560 gen_lowpart (mode, op0),
4561 mode);
4562 }
4563
4564 /* If X is 0/1, (eq X 0) is X-1. */
4565 else if (STORE_FLAG_VALUE == -1
4566 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4567 && op1 == const0_rtx
4568 && mode == GET_MODE (op0)
4569 && nonzero_bits (op0, mode) == 1)
4570 {
4571 op0 = expand_compound_operation (op0);
4572 return plus_constant (gen_lowpart (mode, op0), -1);
4573 }
4574
4575 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4576 one bit that might be nonzero, we can convert (ne x 0) to
4577 (ashift x c) where C puts the bit in the sign bit. Remove any
4578 AND with STORE_FLAG_VALUE when we are done, since we are only
4579 going to test the sign bit. */
4580 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4581 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4582 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4583 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4584 && op1 == const0_rtx
4585 && mode == GET_MODE (op0)
4586 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4587 {
4588 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4589 expand_compound_operation (op0),
4590 GET_MODE_BITSIZE (mode) - 1 - i);
4591 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4592 return XEXP (x, 0);
4593 else
4594 return x;
4595 }
4596
4597 /* If the code changed, return a whole new comparison. */
4598 if (new_code != code)
4599 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4600
4601 /* Otherwise, keep this operation, but maybe change its operands.
4602 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4603 SUBST (XEXP (x, 0), op0);
4604 SUBST (XEXP (x, 1), op1);
4605 }
4606 break;
4607
4608 case IF_THEN_ELSE:
4609 return simplify_if_then_else (x);
4610
4611 case ZERO_EXTRACT:
4612 case SIGN_EXTRACT:
4613 case ZERO_EXTEND:
4614 case SIGN_EXTEND:
4615 /* If we are processing SET_DEST, we are done. */
4616 if (in_dest)
4617 return x;
4618
4619 return expand_compound_operation (x);
4620
4621 case SET:
4622 return simplify_set (x);
4623
4624 case AND:
4625 case IOR:
4626 case XOR:
4627 return simplify_logical (x);
4628
4629 case ABS:
4630 /* (abs (neg <foo>)) -> (abs <foo>) */
4631 if (GET_CODE (XEXP (x, 0)) == NEG)
4632 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4633
4634 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4635 do nothing. */
4636 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4637 break;
4638
4639 /* If operand is something known to be positive, ignore the ABS. */
4640 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4641 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4642 <= HOST_BITS_PER_WIDE_INT)
4643 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4644 & ((HOST_WIDE_INT) 1
4645 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4646 == 0)))
4647 return XEXP (x, 0);
4648
4649 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4650 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4651 return gen_rtx_NEG (mode, XEXP (x, 0));
4652
4653 break;
4654
4655 case FFS:
4656 /* (ffs (*_extend <X>)) = (ffs <X>) */
4657 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4658 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4659 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4660 break;
4661
4662 case POPCOUNT:
4663 case PARITY:
4664 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4665 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4666 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4667 break;
4668
4669 case FLOAT:
4670 /* (float (sign_extend <X>)) = (float <X>). */
4671 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4672 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4673 break;
4674
4675 case ASHIFT:
4676 case LSHIFTRT:
4677 case ASHIFTRT:
4678 case ROTATE:
4679 case ROTATERT:
4680 /* If this is a shift by a constant amount, simplify it. */
4681 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4682 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4683 INTVAL (XEXP (x, 1)));
4684
4685 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4686 SUBST (XEXP (x, 1),
4687 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4688 ((HOST_WIDE_INT) 1
4689 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4690 - 1,
4691 NULL_RTX, 0));
4692 break;
4693
4694 case VEC_SELECT:
4695 {
4696 rtx op0 = XEXP (x, 0);
4697 rtx op1 = XEXP (x, 1);
4698 int len;
4699
4700 gcc_assert (GET_CODE (op1) == PARALLEL);
4701 len = XVECLEN (op1, 0);
4702 if (len == 1
4703 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4704 && GET_CODE (op0) == VEC_CONCAT)
4705 {
4706 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4707
4708 /* Try to find the element in the VEC_CONCAT. */
4709 for (;;)
4710 {
4711 if (GET_MODE (op0) == GET_MODE (x))
4712 return op0;
4713 if (GET_CODE (op0) == VEC_CONCAT)
4714 {
4715 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4716 if (op0_size < offset)
4717 op0 = XEXP (op0, 0);
4718 else
4719 {
4720 offset -= op0_size;
4721 op0 = XEXP (op0, 1);
4722 }
4723 }
4724 else
4725 break;
4726 }
4727 }
4728 }
4729
4730 break;
4731
4732 default:
4733 break;
4734 }
4735
4736 return x;
4737 }
4738 \f
4739 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4740
4741 static rtx
4742 simplify_if_then_else (rtx x)
4743 {
4744 enum machine_mode mode = GET_MODE (x);
4745 rtx cond = XEXP (x, 0);
4746 rtx true_rtx = XEXP (x, 1);
4747 rtx false_rtx = XEXP (x, 2);
4748 enum rtx_code true_code = GET_CODE (cond);
4749 int comparison_p = COMPARISON_P (cond);
4750 rtx temp;
4751 int i;
4752 enum rtx_code false_code;
4753 rtx reversed;
4754
4755 /* Simplify storing of the truth value. */
4756 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4757 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4758
4759 /* Also when the truth value has to be reversed. */
4760 if (comparison_p
4761 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4762 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4763 XEXP (cond, 1))))
4764 return reversed;
4765
4766 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4767 in it is being compared against certain values. Get the true and false
4768 comparisons and see if that says anything about the value of each arm. */
4769
4770 if (comparison_p
4771 && ((false_code = combine_reversed_comparison_code (cond))
4772 != UNKNOWN)
4773 && REG_P (XEXP (cond, 0)))
4774 {
4775 HOST_WIDE_INT nzb;
4776 rtx from = XEXP (cond, 0);
4777 rtx true_val = XEXP (cond, 1);
4778 rtx false_val = true_val;
4779 int swapped = 0;
4780
4781 /* If FALSE_CODE is EQ, swap the codes and arms. */
4782
4783 if (false_code == EQ)
4784 {
4785 swapped = 1, true_code = EQ, false_code = NE;
4786 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4787 }
4788
4789 /* If we are comparing against zero and the expression being tested has
4790 only a single bit that might be nonzero, that is its value when it is
4791 not equal to zero. Similarly if it is known to be -1 or 0. */
4792
4793 if (true_code == EQ && true_val == const0_rtx
4794 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4795 false_code = EQ, false_val = GEN_INT (nzb);
4796 else if (true_code == EQ && true_val == const0_rtx
4797 && (num_sign_bit_copies (from, GET_MODE (from))
4798 == GET_MODE_BITSIZE (GET_MODE (from))))
4799 false_code = EQ, false_val = constm1_rtx;
4800
4801 /* Now simplify an arm if we know the value of the register in the
4802 branch and it is used in the arm. Be careful due to the potential
4803 of locally-shared RTL. */
4804
4805 if (reg_mentioned_p (from, true_rtx))
4806 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4807 from, true_val),
4808 pc_rtx, pc_rtx, 0, 0);
4809 if (reg_mentioned_p (from, false_rtx))
4810 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4811 from, false_val),
4812 pc_rtx, pc_rtx, 0, 0);
4813
4814 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4815 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4816
4817 true_rtx = XEXP (x, 1);
4818 false_rtx = XEXP (x, 2);
4819 true_code = GET_CODE (cond);
4820 }
4821
4822 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4823 reversed, do so to avoid needing two sets of patterns for
4824 subtract-and-branch insns. Similarly if we have a constant in the true
4825 arm, the false arm is the same as the first operand of the comparison, or
4826 the false arm is more complicated than the true arm. */
4827
4828 if (comparison_p
4829 && combine_reversed_comparison_code (cond) != UNKNOWN
4830 && (true_rtx == pc_rtx
4831 || (CONSTANT_P (true_rtx)
4832 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4833 || true_rtx == const0_rtx
4834 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4835 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4836 && !OBJECT_P (false_rtx))
4837 || reg_mentioned_p (true_rtx, false_rtx)
4838 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4839 {
4840 true_code = reversed_comparison_code (cond, NULL);
4841 SUBST (XEXP (x, 0),
4842 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4843 XEXP (cond, 1)));
4844
4845 SUBST (XEXP (x, 1), false_rtx);
4846 SUBST (XEXP (x, 2), true_rtx);
4847
4848 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4849 cond = XEXP (x, 0);
4850
4851 /* It is possible that the conditional has been simplified out. */
4852 true_code = GET_CODE (cond);
4853 comparison_p = COMPARISON_P (cond);
4854 }
4855
4856 /* If the two arms are identical, we don't need the comparison. */
4857
4858 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4859 return true_rtx;
4860
4861 /* Convert a == b ? b : a to "a". */
4862 if (true_code == EQ && ! side_effects_p (cond)
4863 && !HONOR_NANS (mode)
4864 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4865 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4866 return false_rtx;
4867 else if (true_code == NE && ! side_effects_p (cond)
4868 && !HONOR_NANS (mode)
4869 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4870 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4871 return true_rtx;
4872
4873 /* Look for cases where we have (abs x) or (neg (abs X)). */
4874
4875 if (GET_MODE_CLASS (mode) == MODE_INT
4876 && GET_CODE (false_rtx) == NEG
4877 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4878 && comparison_p
4879 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4880 && ! side_effects_p (true_rtx))
4881 switch (true_code)
4882 {
4883 case GT:
4884 case GE:
4885 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4886 case LT:
4887 case LE:
4888 return
4889 simplify_gen_unary (NEG, mode,
4890 simplify_gen_unary (ABS, mode, true_rtx, mode),
4891 mode);
4892 default:
4893 break;
4894 }
4895
4896 /* Look for MIN or MAX. */
4897
4898 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4899 && comparison_p
4900 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4901 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4902 && ! side_effects_p (cond))
4903 switch (true_code)
4904 {
4905 case GE:
4906 case GT:
4907 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4908 case LE:
4909 case LT:
4910 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4911 case GEU:
4912 case GTU:
4913 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4914 case LEU:
4915 case LTU:
4916 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4917 default:
4918 break;
4919 }
4920
4921 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4922 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4923 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4924 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4925 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4926 neither 1 or -1, but it isn't worth checking for. */
4927
4928 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4929 && comparison_p
4930 && GET_MODE_CLASS (mode) == MODE_INT
4931 && ! side_effects_p (x))
4932 {
4933 rtx t = make_compound_operation (true_rtx, SET);
4934 rtx f = make_compound_operation (false_rtx, SET);
4935 rtx cond_op0 = XEXP (cond, 0);
4936 rtx cond_op1 = XEXP (cond, 1);
4937 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4938 enum machine_mode m = mode;
4939 rtx z = 0, c1 = NULL_RTX;
4940
4941 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4942 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4943 || GET_CODE (t) == ASHIFT
4944 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4945 && rtx_equal_p (XEXP (t, 0), f))
4946 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4947
4948 /* If an identity-zero op is commutative, check whether there
4949 would be a match if we swapped the operands. */
4950 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4951 || GET_CODE (t) == XOR)
4952 && rtx_equal_p (XEXP (t, 1), f))
4953 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4954 else if (GET_CODE (t) == SIGN_EXTEND
4955 && (GET_CODE (XEXP (t, 0)) == PLUS
4956 || GET_CODE (XEXP (t, 0)) == MINUS
4957 || GET_CODE (XEXP (t, 0)) == IOR
4958 || GET_CODE (XEXP (t, 0)) == XOR
4959 || GET_CODE (XEXP (t, 0)) == ASHIFT
4960 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4961 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4962 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4963 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4964 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4965 && (num_sign_bit_copies (f, GET_MODE (f))
4966 > (unsigned int)
4967 (GET_MODE_BITSIZE (mode)
4968 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4969 {
4970 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4971 extend_op = SIGN_EXTEND;
4972 m = GET_MODE (XEXP (t, 0));
4973 }
4974 else if (GET_CODE (t) == SIGN_EXTEND
4975 && (GET_CODE (XEXP (t, 0)) == PLUS
4976 || GET_CODE (XEXP (t, 0)) == IOR
4977 || GET_CODE (XEXP (t, 0)) == XOR)
4978 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4979 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4980 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4981 && (num_sign_bit_copies (f, GET_MODE (f))
4982 > (unsigned int)
4983 (GET_MODE_BITSIZE (mode)
4984 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4985 {
4986 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4987 extend_op = SIGN_EXTEND;
4988 m = GET_MODE (XEXP (t, 0));
4989 }
4990 else if (GET_CODE (t) == ZERO_EXTEND
4991 && (GET_CODE (XEXP (t, 0)) == PLUS
4992 || GET_CODE (XEXP (t, 0)) == MINUS
4993 || GET_CODE (XEXP (t, 0)) == IOR
4994 || GET_CODE (XEXP (t, 0)) == XOR
4995 || GET_CODE (XEXP (t, 0)) == ASHIFT
4996 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4997 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4998 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4999 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5000 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5001 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5002 && ((nonzero_bits (f, GET_MODE (f))
5003 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5004 == 0))
5005 {
5006 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5007 extend_op = ZERO_EXTEND;
5008 m = GET_MODE (XEXP (t, 0));
5009 }
5010 else if (GET_CODE (t) == ZERO_EXTEND
5011 && (GET_CODE (XEXP (t, 0)) == PLUS
5012 || GET_CODE (XEXP (t, 0)) == IOR
5013 || GET_CODE (XEXP (t, 0)) == XOR)
5014 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5015 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5016 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5017 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5018 && ((nonzero_bits (f, GET_MODE (f))
5019 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5020 == 0))
5021 {
5022 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5023 extend_op = ZERO_EXTEND;
5024 m = GET_MODE (XEXP (t, 0));
5025 }
5026
5027 if (z)
5028 {
5029 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5030 pc_rtx, pc_rtx, 0, 0);
5031 temp = gen_binary (MULT, m, temp,
5032 gen_binary (MULT, m, c1, const_true_rtx));
5033 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5034 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5035
5036 if (extend_op != UNKNOWN)
5037 temp = simplify_gen_unary (extend_op, mode, temp, m);
5038
5039 return temp;
5040 }
5041 }
5042
5043 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5044 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5045 negation of a single bit, we can convert this operation to a shift. We
5046 can actually do this more generally, but it doesn't seem worth it. */
5047
5048 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5049 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5050 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5051 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5052 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5053 == GET_MODE_BITSIZE (mode))
5054 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5055 return
5056 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5057 gen_lowpart (mode, XEXP (cond, 0)), i);
5058
5059 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5060 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5061 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5062 && GET_MODE (XEXP (cond, 0)) == mode
5063 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5064 == nonzero_bits (XEXP (cond, 0), mode)
5065 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5066 return XEXP (cond, 0);
5067
5068 return x;
5069 }
5070 \f
5071 /* Simplify X, a SET expression. Return the new expression. */
5072
5073 static rtx
5074 simplify_set (rtx x)
5075 {
5076 rtx src = SET_SRC (x);
5077 rtx dest = SET_DEST (x);
5078 enum machine_mode mode
5079 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5080 rtx other_insn;
5081 rtx *cc_use;
5082
5083 /* (set (pc) (return)) gets written as (return). */
5084 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5085 return src;
5086
5087 /* Now that we know for sure which bits of SRC we are using, see if we can
5088 simplify the expression for the object knowing that we only need the
5089 low-order bits. */
5090
5091 if (GET_MODE_CLASS (mode) == MODE_INT
5092 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5093 {
5094 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5095 SUBST (SET_SRC (x), src);
5096 }
5097
5098 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5099 the comparison result and try to simplify it unless we already have used
5100 undobuf.other_insn. */
5101 if ((GET_MODE_CLASS (mode) == MODE_CC
5102 || GET_CODE (src) == COMPARE
5103 || CC0_P (dest))
5104 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5105 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5106 && COMPARISON_P (*cc_use)
5107 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5108 {
5109 enum rtx_code old_code = GET_CODE (*cc_use);
5110 enum rtx_code new_code;
5111 rtx op0, op1, tmp;
5112 int other_changed = 0;
5113 enum machine_mode compare_mode = GET_MODE (dest);
5114
5115 if (GET_CODE (src) == COMPARE)
5116 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5117 else
5118 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5119
5120 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5121 op0, op1);
5122 if (!tmp)
5123 new_code = old_code;
5124 else if (!CONSTANT_P (tmp))
5125 {
5126 new_code = GET_CODE (tmp);
5127 op0 = XEXP (tmp, 0);
5128 op1 = XEXP (tmp, 1);
5129 }
5130 else
5131 {
5132 rtx pat = PATTERN (other_insn);
5133 undobuf.other_insn = other_insn;
5134 SUBST (*cc_use, tmp);
5135
5136 /* Attempt to simplify CC user. */
5137 if (GET_CODE (pat) == SET)
5138 {
5139 rtx new = simplify_rtx (SET_SRC (pat));
5140 if (new != NULL_RTX)
5141 SUBST (SET_SRC (pat), new);
5142 }
5143
5144 /* Convert X into a no-op move. */
5145 SUBST (SET_DEST (x), pc_rtx);
5146 SUBST (SET_SRC (x), pc_rtx);
5147 return x;
5148 }
5149
5150 /* Simplify our comparison, if possible. */
5151 new_code = simplify_comparison (new_code, &op0, &op1);
5152
5153 #ifdef SELECT_CC_MODE
5154 /* If this machine has CC modes other than CCmode, check to see if we
5155 need to use a different CC mode here. */
5156 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5157 compare_mode = GET_MODE (op0);
5158 else
5159 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5160
5161 #ifndef HAVE_cc0
5162 /* If the mode changed, we have to change SET_DEST, the mode in the
5163 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5164 a hard register, just build new versions with the proper mode. If it
5165 is a pseudo, we lose unless it is only time we set the pseudo, in
5166 which case we can safely change its mode. */
5167 if (compare_mode != GET_MODE (dest))
5168 {
5169 unsigned int regno = REGNO (dest);
5170 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5171
5172 if (regno < FIRST_PSEUDO_REGISTER
5173 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5174 {
5175 if (regno >= FIRST_PSEUDO_REGISTER)
5176 SUBST (regno_reg_rtx[regno], new_dest);
5177
5178 SUBST (SET_DEST (x), new_dest);
5179 SUBST (XEXP (*cc_use, 0), new_dest);
5180 other_changed = 1;
5181
5182 dest = new_dest;
5183 }
5184 }
5185 #endif /* cc0 */
5186 #endif /* SELECT_CC_MODE */
5187
5188 /* If the code changed, we have to build a new comparison in
5189 undobuf.other_insn. */
5190 if (new_code != old_code)
5191 {
5192 int other_changed_previously = other_changed;
5193 unsigned HOST_WIDE_INT mask;
5194
5195 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5196 dest, const0_rtx));
5197 other_changed = 1;
5198
5199 /* If the only change we made was to change an EQ into an NE or
5200 vice versa, OP0 has only one bit that might be nonzero, and OP1
5201 is zero, check if changing the user of the condition code will
5202 produce a valid insn. If it won't, we can keep the original code
5203 in that insn by surrounding our operation with an XOR. */
5204
5205 if (((old_code == NE && new_code == EQ)
5206 || (old_code == EQ && new_code == NE))
5207 && ! other_changed_previously && op1 == const0_rtx
5208 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5209 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5210 {
5211 rtx pat = PATTERN (other_insn), note = 0;
5212
5213 if ((recog_for_combine (&pat, other_insn, &note) < 0
5214 && ! check_asm_operands (pat)))
5215 {
5216 PUT_CODE (*cc_use, old_code);
5217 other_changed = 0;
5218
5219 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5220 }
5221 }
5222 }
5223
5224 if (other_changed)
5225 undobuf.other_insn = other_insn;
5226
5227 #ifdef HAVE_cc0
5228 /* If we are now comparing against zero, change our source if
5229 needed. If we do not use cc0, we always have a COMPARE. */
5230 if (op1 == const0_rtx && dest == cc0_rtx)
5231 {
5232 SUBST (SET_SRC (x), op0);
5233 src = op0;
5234 }
5235 else
5236 #endif
5237
5238 /* Otherwise, if we didn't previously have a COMPARE in the
5239 correct mode, we need one. */
5240 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5241 {
5242 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5243 src = SET_SRC (x);
5244 }
5245 else
5246 {
5247 /* Otherwise, update the COMPARE if needed. */
5248 SUBST (XEXP (src, 0), op0);
5249 SUBST (XEXP (src, 1), op1);
5250 }
5251 }
5252 else
5253 {
5254 /* Get SET_SRC in a form where we have placed back any
5255 compound expressions. Then do the checks below. */
5256 src = make_compound_operation (src, SET);
5257 SUBST (SET_SRC (x), src);
5258 }
5259
5260 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5261 and X being a REG or (subreg (reg)), we may be able to convert this to
5262 (set (subreg:m2 x) (op)).
5263
5264 We can always do this if M1 is narrower than M2 because that means that
5265 we only care about the low bits of the result.
5266
5267 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5268 perform a narrower operation than requested since the high-order bits will
5269 be undefined. On machine where it is defined, this transformation is safe
5270 as long as M1 and M2 have the same number of words. */
5271
5272 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5273 && !OBJECT_P (SUBREG_REG (src))
5274 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5275 / UNITS_PER_WORD)
5276 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5277 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5278 #ifndef WORD_REGISTER_OPERATIONS
5279 && (GET_MODE_SIZE (GET_MODE (src))
5280 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5281 #endif
5282 #ifdef CANNOT_CHANGE_MODE_CLASS
5283 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5284 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5285 GET_MODE (SUBREG_REG (src)),
5286 GET_MODE (src)))
5287 #endif
5288 && (REG_P (dest)
5289 || (GET_CODE (dest) == SUBREG
5290 && REG_P (SUBREG_REG (dest)))))
5291 {
5292 SUBST (SET_DEST (x),
5293 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5294 dest));
5295 SUBST (SET_SRC (x), SUBREG_REG (src));
5296
5297 src = SET_SRC (x), dest = SET_DEST (x);
5298 }
5299
5300 #ifdef HAVE_cc0
5301 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5302 in SRC. */
5303 if (dest == cc0_rtx
5304 && GET_CODE (src) == SUBREG
5305 && subreg_lowpart_p (src)
5306 && (GET_MODE_BITSIZE (GET_MODE (src))
5307 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5308 {
5309 rtx inner = SUBREG_REG (src);
5310 enum machine_mode inner_mode = GET_MODE (inner);
5311
5312 /* Here we make sure that we don't have a sign bit on. */
5313 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5314 && (nonzero_bits (inner, inner_mode)
5315 < ((unsigned HOST_WIDE_INT) 1
5316 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5317 {
5318 SUBST (SET_SRC (x), inner);
5319 src = SET_SRC (x);
5320 }
5321 }
5322 #endif
5323
5324 #ifdef LOAD_EXTEND_OP
5325 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5326 would require a paradoxical subreg. Replace the subreg with a
5327 zero_extend to avoid the reload that would otherwise be required. */
5328
5329 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5330 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5331 && SUBREG_BYTE (src) == 0
5332 && (GET_MODE_SIZE (GET_MODE (src))
5333 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5334 && MEM_P (SUBREG_REG (src)))
5335 {
5336 SUBST (SET_SRC (x),
5337 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5338 GET_MODE (src), SUBREG_REG (src)));
5339
5340 src = SET_SRC (x);
5341 }
5342 #endif
5343
5344 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5345 are comparing an item known to be 0 or -1 against 0, use a logical
5346 operation instead. Check for one of the arms being an IOR of the other
5347 arm with some value. We compute three terms to be IOR'ed together. In
5348 practice, at most two will be nonzero. Then we do the IOR's. */
5349
5350 if (GET_CODE (dest) != PC
5351 && GET_CODE (src) == IF_THEN_ELSE
5352 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5353 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5354 && XEXP (XEXP (src, 0), 1) == const0_rtx
5355 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5356 #ifdef HAVE_conditional_move
5357 && ! can_conditionally_move_p (GET_MODE (src))
5358 #endif
5359 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5360 GET_MODE (XEXP (XEXP (src, 0), 0)))
5361 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5362 && ! side_effects_p (src))
5363 {
5364 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5365 ? XEXP (src, 1) : XEXP (src, 2));
5366 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5367 ? XEXP (src, 2) : XEXP (src, 1));
5368 rtx term1 = const0_rtx, term2, term3;
5369
5370 if (GET_CODE (true_rtx) == IOR
5371 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5372 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5373 else if (GET_CODE (true_rtx) == IOR
5374 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5375 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5376 else if (GET_CODE (false_rtx) == IOR
5377 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5378 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5379 else if (GET_CODE (false_rtx) == IOR
5380 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5381 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5382
5383 term2 = gen_binary (AND, GET_MODE (src),
5384 XEXP (XEXP (src, 0), 0), true_rtx);
5385 term3 = gen_binary (AND, GET_MODE (src),
5386 simplify_gen_unary (NOT, GET_MODE (src),
5387 XEXP (XEXP (src, 0), 0),
5388 GET_MODE (src)),
5389 false_rtx);
5390
5391 SUBST (SET_SRC (x),
5392 gen_binary (IOR, GET_MODE (src),
5393 gen_binary (IOR, GET_MODE (src), term1, term2),
5394 term3));
5395
5396 src = SET_SRC (x);
5397 }
5398
5399 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5400 whole thing fail. */
5401 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5402 return src;
5403 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5404 return dest;
5405 else
5406 /* Convert this into a field assignment operation, if possible. */
5407 return make_field_assignment (x);
5408 }
5409 \f
5410 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5411 result. */
5412
5413 static rtx
5414 simplify_logical (rtx x)
5415 {
5416 enum machine_mode mode = GET_MODE (x);
5417 rtx op0 = XEXP (x, 0);
5418 rtx op1 = XEXP (x, 1);
5419 rtx reversed;
5420
5421 switch (GET_CODE (x))
5422 {
5423 case AND:
5424 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5425 insn (and may simplify more). */
5426 if (GET_CODE (op0) == XOR
5427 && rtx_equal_p (XEXP (op0, 0), op1)
5428 && ! side_effects_p (op1))
5429 x = gen_binary (AND, mode,
5430 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5431 op1);
5432
5433 if (GET_CODE (op0) == XOR
5434 && rtx_equal_p (XEXP (op0, 1), op1)
5435 && ! side_effects_p (op1))
5436 x = gen_binary (AND, mode,
5437 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5438 op1);
5439
5440 /* Similarly for (~(A ^ B)) & A. */
5441 if (GET_CODE (op0) == NOT
5442 && GET_CODE (XEXP (op0, 0)) == XOR
5443 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5444 && ! side_effects_p (op1))
5445 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5446
5447 if (GET_CODE (op0) == NOT
5448 && GET_CODE (XEXP (op0, 0)) == XOR
5449 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5450 && ! side_effects_p (op1))
5451 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5452
5453 /* We can call simplify_and_const_int only if we don't lose
5454 any (sign) bits when converting INTVAL (op1) to
5455 "unsigned HOST_WIDE_INT". */
5456 if (GET_CODE (op1) == CONST_INT
5457 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5458 || INTVAL (op1) > 0))
5459 {
5460 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5461
5462 /* If we have (ior (and (X C1) C2)) and the next restart would be
5463 the last, simplify this by making C1 as small as possible
5464 and then exit. Only do this if C1 actually changes: for now
5465 this only saves memory but, should this transformation be
5466 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5467 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5468 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5469 && GET_CODE (op1) == CONST_INT
5470 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5471 return gen_binary (IOR, mode,
5472 gen_binary (AND, mode, XEXP (op0, 0),
5473 GEN_INT (INTVAL (XEXP (op0, 1))
5474 & ~INTVAL (op1))), op1);
5475
5476 if (GET_CODE (x) != AND)
5477 return x;
5478
5479 op0 = XEXP (x, 0);
5480 op1 = XEXP (x, 1);
5481 }
5482
5483 /* Convert (A | B) & A to A. */
5484 if (GET_CODE (op0) == IOR
5485 && (rtx_equal_p (XEXP (op0, 0), op1)
5486 || rtx_equal_p (XEXP (op0, 1), op1))
5487 && ! side_effects_p (XEXP (op0, 0))
5488 && ! side_effects_p (XEXP (op0, 1)))
5489 return op1;
5490
5491 /* In the following group of tests (and those in case IOR below),
5492 we start with some combination of logical operations and apply
5493 the distributive law followed by the inverse distributive law.
5494 Most of the time, this results in no change. However, if some of
5495 the operands are the same or inverses of each other, simplifications
5496 will result.
5497
5498 For example, (and (ior A B) (not B)) can occur as the result of
5499 expanding a bit field assignment. When we apply the distributive
5500 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5501 which then simplifies to (and (A (not B))).
5502
5503 If we have (and (ior A B) C), apply the distributive law and then
5504 the inverse distributive law to see if things simplify. */
5505
5506 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5507 {
5508 x = apply_distributive_law
5509 (gen_binary (GET_CODE (op0), mode,
5510 gen_binary (AND, mode, XEXP (op0, 0), op1),
5511 gen_binary (AND, mode, XEXP (op0, 1),
5512 copy_rtx (op1))));
5513 if (GET_CODE (x) != AND)
5514 return x;
5515 }
5516
5517 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5518 return apply_distributive_law
5519 (gen_binary (GET_CODE (op1), mode,
5520 gen_binary (AND, mode, XEXP (op1, 0), op0),
5521 gen_binary (AND, mode, XEXP (op1, 1),
5522 copy_rtx (op0))));
5523
5524 /* Similarly, taking advantage of the fact that
5525 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5526
5527 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5528 return apply_distributive_law
5529 (gen_binary (XOR, mode,
5530 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5531 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5532 XEXP (op1, 1))));
5533
5534 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5535 return apply_distributive_law
5536 (gen_binary (XOR, mode,
5537 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5538 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5539 break;
5540
5541 case IOR:
5542 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5543 if (GET_CODE (op1) == CONST_INT
5544 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5545 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5546 return op1;
5547
5548 /* Convert (A & B) | A to A. */
5549 if (GET_CODE (op0) == AND
5550 && (rtx_equal_p (XEXP (op0, 0), op1)
5551 || rtx_equal_p (XEXP (op0, 1), op1))
5552 && ! side_effects_p (XEXP (op0, 0))
5553 && ! side_effects_p (XEXP (op0, 1)))
5554 return op1;
5555
5556 /* If we have (ior (and A B) C), apply the distributive law and then
5557 the inverse distributive law to see if things simplify. */
5558
5559 if (GET_CODE (op0) == AND)
5560 {
5561 x = apply_distributive_law
5562 (gen_binary (AND, mode,
5563 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5564 gen_binary (IOR, mode, XEXP (op0, 1),
5565 copy_rtx (op1))));
5566
5567 if (GET_CODE (x) != IOR)
5568 return x;
5569 }
5570
5571 if (GET_CODE (op1) == AND)
5572 {
5573 x = apply_distributive_law
5574 (gen_binary (AND, mode,
5575 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5576 gen_binary (IOR, mode, XEXP (op1, 1),
5577 copy_rtx (op0))));
5578
5579 if (GET_CODE (x) != IOR)
5580 return x;
5581 }
5582
5583 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5584 mode size to (rotate A CX). */
5585
5586 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5587 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5588 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5589 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5590 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5591 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5592 == GET_MODE_BITSIZE (mode)))
5593 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5594 (GET_CODE (op0) == ASHIFT
5595 ? XEXP (op0, 1) : XEXP (op1, 1)));
5596
5597 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5598 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5599 does not affect any of the bits in OP1, it can really be done
5600 as a PLUS and we can associate. We do this by seeing if OP1
5601 can be safely shifted left C bits. */
5602 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5603 && GET_CODE (XEXP (op0, 0)) == PLUS
5604 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5605 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5606 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5607 {
5608 int count = INTVAL (XEXP (op0, 1));
5609 HOST_WIDE_INT mask = INTVAL (op1) << count;
5610
5611 if (mask >> count == INTVAL (op1)
5612 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5613 {
5614 SUBST (XEXP (XEXP (op0, 0), 1),
5615 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5616 return op0;
5617 }
5618 }
5619 break;
5620
5621 case XOR:
5622 /* If we are XORing two things that have no bits in common,
5623 convert them into an IOR. This helps to detect rotation encoded
5624 using those methods and possibly other simplifications. */
5625
5626 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5627 && (nonzero_bits (op0, mode)
5628 & nonzero_bits (op1, mode)) == 0)
5629 return (gen_binary (IOR, mode, op0, op1));
5630
5631 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5632 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5633 (NOT y). */
5634 {
5635 int num_negated = 0;
5636
5637 if (GET_CODE (op0) == NOT)
5638 num_negated++, op0 = XEXP (op0, 0);
5639 if (GET_CODE (op1) == NOT)
5640 num_negated++, op1 = XEXP (op1, 0);
5641
5642 if (num_negated == 2)
5643 {
5644 SUBST (XEXP (x, 0), op0);
5645 SUBST (XEXP (x, 1), op1);
5646 }
5647 else if (num_negated == 1)
5648 return
5649 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5650 mode);
5651 }
5652
5653 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5654 correspond to a machine insn or result in further simplifications
5655 if B is a constant. */
5656
5657 if (GET_CODE (op0) == AND
5658 && rtx_equal_p (XEXP (op0, 1), op1)
5659 && ! side_effects_p (op1))
5660 return gen_binary (AND, mode,
5661 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5662 op1);
5663
5664 else if (GET_CODE (op0) == AND
5665 && rtx_equal_p (XEXP (op0, 0), op1)
5666 && ! side_effects_p (op1))
5667 return gen_binary (AND, mode,
5668 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5669 op1);
5670
5671 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5672 comparison if STORE_FLAG_VALUE is 1. */
5673 if (STORE_FLAG_VALUE == 1
5674 && op1 == const1_rtx
5675 && COMPARISON_P (op0)
5676 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5677 XEXP (op0, 1))))
5678 return reversed;
5679
5680 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5681 is (lt foo (const_int 0)), so we can perform the above
5682 simplification if STORE_FLAG_VALUE is 1. */
5683
5684 if (STORE_FLAG_VALUE == 1
5685 && op1 == const1_rtx
5686 && GET_CODE (op0) == LSHIFTRT
5687 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5688 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5689 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5690
5691 /* (xor (comparison foo bar) (const_int sign-bit))
5692 when STORE_FLAG_VALUE is the sign bit. */
5693 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5694 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5695 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5696 && op1 == const_true_rtx
5697 && COMPARISON_P (op0)
5698 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5699 XEXP (op0, 1))))
5700 return reversed;
5701
5702 break;
5703
5704 default:
5705 gcc_unreachable ();
5706 }
5707
5708 return x;
5709 }
5710 \f
5711 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5712 operations" because they can be replaced with two more basic operations.
5713 ZERO_EXTEND is also considered "compound" because it can be replaced with
5714 an AND operation, which is simpler, though only one operation.
5715
5716 The function expand_compound_operation is called with an rtx expression
5717 and will convert it to the appropriate shifts and AND operations,
5718 simplifying at each stage.
5719
5720 The function make_compound_operation is called to convert an expression
5721 consisting of shifts and ANDs into the equivalent compound expression.
5722 It is the inverse of this function, loosely speaking. */
5723
5724 static rtx
5725 expand_compound_operation (rtx x)
5726 {
5727 unsigned HOST_WIDE_INT pos = 0, len;
5728 int unsignedp = 0;
5729 unsigned int modewidth;
5730 rtx tem;
5731
5732 switch (GET_CODE (x))
5733 {
5734 case ZERO_EXTEND:
5735 unsignedp = 1;
5736 case SIGN_EXTEND:
5737 /* We can't necessarily use a const_int for a multiword mode;
5738 it depends on implicitly extending the value.
5739 Since we don't know the right way to extend it,
5740 we can't tell whether the implicit way is right.
5741
5742 Even for a mode that is no wider than a const_int,
5743 we can't win, because we need to sign extend one of its bits through
5744 the rest of it, and we don't know which bit. */
5745 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5746 return x;
5747
5748 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5749 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5750 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5751 reloaded. If not for that, MEM's would very rarely be safe.
5752
5753 Reject MODEs bigger than a word, because we might not be able
5754 to reference a two-register group starting with an arbitrary register
5755 (and currently gen_lowpart might crash for a SUBREG). */
5756
5757 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5758 return x;
5759
5760 /* Reject MODEs that aren't scalar integers because turning vector
5761 or complex modes into shifts causes problems. */
5762
5763 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5764 return x;
5765
5766 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5767 /* If the inner object has VOIDmode (the only way this can happen
5768 is if it is an ASM_OPERANDS), we can't do anything since we don't
5769 know how much masking to do. */
5770 if (len == 0)
5771 return x;
5772
5773 break;
5774
5775 case ZERO_EXTRACT:
5776 unsignedp = 1;
5777 case SIGN_EXTRACT:
5778 /* If the operand is a CLOBBER, just return it. */
5779 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5780 return XEXP (x, 0);
5781
5782 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5783 || GET_CODE (XEXP (x, 2)) != CONST_INT
5784 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5785 return x;
5786
5787 /* Reject MODEs that aren't scalar integers because turning vector
5788 or complex modes into shifts causes problems. */
5789
5790 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5791 return x;
5792
5793 len = INTVAL (XEXP (x, 1));
5794 pos = INTVAL (XEXP (x, 2));
5795
5796 /* If this goes outside the object being extracted, replace the object
5797 with a (use (mem ...)) construct that only combine understands
5798 and is used only for this purpose. */
5799 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5800 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5801
5802 if (BITS_BIG_ENDIAN)
5803 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5804
5805 break;
5806
5807 default:
5808 return x;
5809 }
5810 /* Convert sign extension to zero extension, if we know that the high
5811 bit is not set, as this is easier to optimize. It will be converted
5812 back to cheaper alternative in make_extraction. */
5813 if (GET_CODE (x) == SIGN_EXTEND
5814 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5815 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5816 & ~(((unsigned HOST_WIDE_INT)
5817 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5818 >> 1))
5819 == 0)))
5820 {
5821 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5822 rtx temp2 = expand_compound_operation (temp);
5823
5824 /* Make sure this is a profitable operation. */
5825 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5826 return temp2;
5827 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5828 return temp;
5829 else
5830 return x;
5831 }
5832
5833 /* We can optimize some special cases of ZERO_EXTEND. */
5834 if (GET_CODE (x) == ZERO_EXTEND)
5835 {
5836 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5837 know that the last value didn't have any inappropriate bits
5838 set. */
5839 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5840 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5841 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5842 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5843 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5844 return XEXP (XEXP (x, 0), 0);
5845
5846 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5847 if (GET_CODE (XEXP (x, 0)) == SUBREG
5848 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5849 && subreg_lowpart_p (XEXP (x, 0))
5850 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5851 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5852 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5853 return SUBREG_REG (XEXP (x, 0));
5854
5855 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5856 is a comparison and STORE_FLAG_VALUE permits. This is like
5857 the first case, but it works even when GET_MODE (x) is larger
5858 than HOST_WIDE_INT. */
5859 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5860 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5861 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5862 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5863 <= HOST_BITS_PER_WIDE_INT)
5864 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5865 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5866 return XEXP (XEXP (x, 0), 0);
5867
5868 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5869 if (GET_CODE (XEXP (x, 0)) == SUBREG
5870 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5871 && subreg_lowpart_p (XEXP (x, 0))
5872 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5873 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5874 <= HOST_BITS_PER_WIDE_INT)
5875 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5876 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5877 return SUBREG_REG (XEXP (x, 0));
5878
5879 }
5880
5881 /* If we reach here, we want to return a pair of shifts. The inner
5882 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5883 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5884 logical depending on the value of UNSIGNEDP.
5885
5886 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5887 converted into an AND of a shift.
5888
5889 We must check for the case where the left shift would have a negative
5890 count. This can happen in a case like (x >> 31) & 255 on machines
5891 that can't shift by a constant. On those machines, we would first
5892 combine the shift with the AND to produce a variable-position
5893 extraction. Then the constant of 31 would be substituted in to produce
5894 a such a position. */
5895
5896 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5897 if (modewidth + len >= pos)
5898 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5899 GET_MODE (x),
5900 simplify_shift_const (NULL_RTX, ASHIFT,
5901 GET_MODE (x),
5902 XEXP (x, 0),
5903 modewidth - pos - len),
5904 modewidth - len);
5905
5906 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5907 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5908 simplify_shift_const (NULL_RTX, LSHIFTRT,
5909 GET_MODE (x),
5910 XEXP (x, 0), pos),
5911 ((HOST_WIDE_INT) 1 << len) - 1);
5912 else
5913 /* Any other cases we can't handle. */
5914 return x;
5915
5916 /* If we couldn't do this for some reason, return the original
5917 expression. */
5918 if (GET_CODE (tem) == CLOBBER)
5919 return x;
5920
5921 return tem;
5922 }
5923 \f
5924 /* X is a SET which contains an assignment of one object into
5925 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5926 or certain SUBREGS). If possible, convert it into a series of
5927 logical operations.
5928
5929 We half-heartedly support variable positions, but do not at all
5930 support variable lengths. */
5931
5932 static rtx
5933 expand_field_assignment (rtx x)
5934 {
5935 rtx inner;
5936 rtx pos; /* Always counts from low bit. */
5937 int len;
5938 rtx mask;
5939 enum machine_mode compute_mode;
5940
5941 /* Loop until we find something we can't simplify. */
5942 while (1)
5943 {
5944 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5945 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5946 {
5947 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5948 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5949 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5950 }
5951 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5952 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5953 {
5954 inner = XEXP (SET_DEST (x), 0);
5955 len = INTVAL (XEXP (SET_DEST (x), 1));
5956 pos = XEXP (SET_DEST (x), 2);
5957
5958 /* If the position is constant and spans the width of INNER,
5959 surround INNER with a USE to indicate this. */
5960 if (GET_CODE (pos) == CONST_INT
5961 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5962 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5963
5964 if (BITS_BIG_ENDIAN)
5965 {
5966 if (GET_CODE (pos) == CONST_INT)
5967 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5968 - INTVAL (pos));
5969 else if (GET_CODE (pos) == MINUS
5970 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5971 && (INTVAL (XEXP (pos, 1))
5972 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5973 /* If position is ADJUST - X, new position is X. */
5974 pos = XEXP (pos, 0);
5975 else
5976 pos = gen_binary (MINUS, GET_MODE (pos),
5977 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5978 - len),
5979 pos);
5980 }
5981 }
5982
5983 /* A SUBREG between two modes that occupy the same numbers of words
5984 can be done by moving the SUBREG to the source. */
5985 else if (GET_CODE (SET_DEST (x)) == SUBREG
5986 /* We need SUBREGs to compute nonzero_bits properly. */
5987 && nonzero_sign_valid
5988 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5989 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5990 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5991 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5992 {
5993 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5994 gen_lowpart
5995 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5996 SET_SRC (x)));
5997 continue;
5998 }
5999 else
6000 break;
6001
6002 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6003 inner = SUBREG_REG (inner);
6004
6005 compute_mode = GET_MODE (inner);
6006
6007 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6008 if (! SCALAR_INT_MODE_P (compute_mode))
6009 {
6010 enum machine_mode imode;
6011
6012 /* Don't do anything for vector or complex integral types. */
6013 if (! FLOAT_MODE_P (compute_mode))
6014 break;
6015
6016 /* Try to find an integral mode to pun with. */
6017 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6018 if (imode == BLKmode)
6019 break;
6020
6021 compute_mode = imode;
6022 inner = gen_lowpart (imode, inner);
6023 }
6024
6025 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6026 if (len < HOST_BITS_PER_WIDE_INT)
6027 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6028 else
6029 break;
6030
6031 /* Now compute the equivalent expression. Make a copy of INNER
6032 for the SET_DEST in case it is a MEM into which we will substitute;
6033 we don't want shared RTL in that case. */
6034 x = gen_rtx_SET
6035 (VOIDmode, copy_rtx (inner),
6036 gen_binary (IOR, compute_mode,
6037 gen_binary (AND, compute_mode,
6038 simplify_gen_unary (NOT, compute_mode,
6039 gen_binary (ASHIFT,
6040 compute_mode,
6041 mask, pos),
6042 compute_mode),
6043 inner),
6044 gen_binary (ASHIFT, compute_mode,
6045 gen_binary (AND, compute_mode,
6046 gen_lowpart
6047 (compute_mode, SET_SRC (x)),
6048 mask),
6049 pos)));
6050 }
6051
6052 return x;
6053 }
6054 \f
6055 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6056 it is an RTX that represents a variable starting position; otherwise,
6057 POS is the (constant) starting bit position (counted from the LSB).
6058
6059 INNER may be a USE. This will occur when we started with a bitfield
6060 that went outside the boundary of the object in memory, which is
6061 allowed on most machines. To isolate this case, we produce a USE
6062 whose mode is wide enough and surround the MEM with it. The only
6063 code that understands the USE is this routine. If it is not removed,
6064 it will cause the resulting insn not to match.
6065
6066 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6067 signed reference.
6068
6069 IN_DEST is nonzero if this is a reference in the destination of a
6070 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6071 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6072 be used.
6073
6074 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6075 ZERO_EXTRACT should be built even for bits starting at bit 0.
6076
6077 MODE is the desired mode of the result (if IN_DEST == 0).
6078
6079 The result is an RTX for the extraction or NULL_RTX if the target
6080 can't handle it. */
6081
6082 static rtx
6083 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6084 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6085 int in_dest, int in_compare)
6086 {
6087 /* This mode describes the size of the storage area
6088 to fetch the overall value from. Within that, we
6089 ignore the POS lowest bits, etc. */
6090 enum machine_mode is_mode = GET_MODE (inner);
6091 enum machine_mode inner_mode;
6092 enum machine_mode wanted_inner_mode = byte_mode;
6093 enum machine_mode wanted_inner_reg_mode = word_mode;
6094 enum machine_mode pos_mode = word_mode;
6095 enum machine_mode extraction_mode = word_mode;
6096 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6097 int spans_byte = 0;
6098 rtx new = 0;
6099 rtx orig_pos_rtx = pos_rtx;
6100 HOST_WIDE_INT orig_pos;
6101
6102 /* Get some information about INNER and get the innermost object. */
6103 if (GET_CODE (inner) == USE)
6104 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6105 /* We don't need to adjust the position because we set up the USE
6106 to pretend that it was a full-word object. */
6107 spans_byte = 1, inner = XEXP (inner, 0);
6108 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6109 {
6110 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6111 consider just the QI as the memory to extract from.
6112 The subreg adds or removes high bits; its mode is
6113 irrelevant to the meaning of this extraction,
6114 since POS and LEN count from the lsb. */
6115 if (MEM_P (SUBREG_REG (inner)))
6116 is_mode = GET_MODE (SUBREG_REG (inner));
6117 inner = SUBREG_REG (inner);
6118 }
6119 else if (GET_CODE (inner) == ASHIFT
6120 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6121 && pos_rtx == 0 && pos == 0
6122 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6123 {
6124 /* We're extracting the least significant bits of an rtx
6125 (ashift X (const_int C)), where LEN > C. Extract the
6126 least significant (LEN - C) bits of X, giving an rtx
6127 whose mode is MODE, then shift it left C times. */
6128 new = make_extraction (mode, XEXP (inner, 0),
6129 0, 0, len - INTVAL (XEXP (inner, 1)),
6130 unsignedp, in_dest, in_compare);
6131 if (new != 0)
6132 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6133 }
6134
6135 inner_mode = GET_MODE (inner);
6136
6137 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6138 pos = INTVAL (pos_rtx), pos_rtx = 0;
6139
6140 /* See if this can be done without an extraction. We never can if the
6141 width of the field is not the same as that of some integer mode. For
6142 registers, we can only avoid the extraction if the position is at the
6143 low-order bit and this is either not in the destination or we have the
6144 appropriate STRICT_LOW_PART operation available.
6145
6146 For MEM, we can avoid an extract if the field starts on an appropriate
6147 boundary and we can change the mode of the memory reference. However,
6148 we cannot directly access the MEM if we have a USE and the underlying
6149 MEM is not TMODE. This combination means that MEM was being used in a
6150 context where bits outside its mode were being referenced; that is only
6151 valid in bit-field insns. */
6152
6153 if (tmode != BLKmode
6154 && ! (spans_byte && inner_mode != tmode)
6155 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6156 && !MEM_P (inner)
6157 && (! in_dest
6158 || (REG_P (inner)
6159 && have_insn_for (STRICT_LOW_PART, tmode))))
6160 || (MEM_P (inner) && pos_rtx == 0
6161 && (pos
6162 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6163 : BITS_PER_UNIT)) == 0
6164 /* We can't do this if we are widening INNER_MODE (it
6165 may not be aligned, for one thing). */
6166 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6167 && (inner_mode == tmode
6168 || (! mode_dependent_address_p (XEXP (inner, 0))
6169 && ! MEM_VOLATILE_P (inner))))))
6170 {
6171 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6172 field. If the original and current mode are the same, we need not
6173 adjust the offset. Otherwise, we do if bytes big endian.
6174
6175 If INNER is not a MEM, get a piece consisting of just the field
6176 of interest (in this case POS % BITS_PER_WORD must be 0). */
6177
6178 if (MEM_P (inner))
6179 {
6180 HOST_WIDE_INT offset;
6181
6182 /* POS counts from lsb, but make OFFSET count in memory order. */
6183 if (BYTES_BIG_ENDIAN)
6184 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6185 else
6186 offset = pos / BITS_PER_UNIT;
6187
6188 new = adjust_address_nv (inner, tmode, offset);
6189 }
6190 else if (REG_P (inner))
6191 {
6192 if (tmode != inner_mode)
6193 {
6194 /* We can't call gen_lowpart in a DEST since we
6195 always want a SUBREG (see below) and it would sometimes
6196 return a new hard register. */
6197 if (pos || in_dest)
6198 {
6199 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6200
6201 if (WORDS_BIG_ENDIAN
6202 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6203 final_word = ((GET_MODE_SIZE (inner_mode)
6204 - GET_MODE_SIZE (tmode))
6205 / UNITS_PER_WORD) - final_word;
6206
6207 final_word *= UNITS_PER_WORD;
6208 if (BYTES_BIG_ENDIAN &&
6209 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6210 final_word += (GET_MODE_SIZE (inner_mode)
6211 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6212
6213 /* Avoid creating invalid subregs, for example when
6214 simplifying (x>>32)&255. */
6215 if (final_word >= GET_MODE_SIZE (inner_mode))
6216 return NULL_RTX;
6217
6218 new = gen_rtx_SUBREG (tmode, inner, final_word);
6219 }
6220 else
6221 new = gen_lowpart (tmode, inner);
6222 }
6223 else
6224 new = inner;
6225 }
6226 else
6227 new = force_to_mode (inner, tmode,
6228 len >= HOST_BITS_PER_WIDE_INT
6229 ? ~(unsigned HOST_WIDE_INT) 0
6230 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6231 NULL_RTX, 0);
6232
6233 /* If this extraction is going into the destination of a SET,
6234 make a STRICT_LOW_PART unless we made a MEM. */
6235
6236 if (in_dest)
6237 return (MEM_P (new) ? new
6238 : (GET_CODE (new) != SUBREG
6239 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6240 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6241
6242 if (mode == tmode)
6243 return new;
6244
6245 if (GET_CODE (new) == CONST_INT)
6246 return gen_int_mode (INTVAL (new), mode);
6247
6248 /* If we know that no extraneous bits are set, and that the high
6249 bit is not set, convert the extraction to the cheaper of
6250 sign and zero extension, that are equivalent in these cases. */
6251 if (flag_expensive_optimizations
6252 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6253 && ((nonzero_bits (new, tmode)
6254 & ~(((unsigned HOST_WIDE_INT)
6255 GET_MODE_MASK (tmode))
6256 >> 1))
6257 == 0)))
6258 {
6259 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6260 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6261
6262 /* Prefer ZERO_EXTENSION, since it gives more information to
6263 backends. */
6264 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6265 return temp;
6266 return temp1;
6267 }
6268
6269 /* Otherwise, sign- or zero-extend unless we already are in the
6270 proper mode. */
6271
6272 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6273 mode, new));
6274 }
6275
6276 /* Unless this is a COMPARE or we have a funny memory reference,
6277 don't do anything with zero-extending field extracts starting at
6278 the low-order bit since they are simple AND operations. */
6279 if (pos_rtx == 0 && pos == 0 && ! in_dest
6280 && ! in_compare && ! spans_byte && unsignedp)
6281 return 0;
6282
6283 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6284 we would be spanning bytes or if the position is not a constant and the
6285 length is not 1. In all other cases, we would only be going outside
6286 our object in cases when an original shift would have been
6287 undefined. */
6288 if (! spans_byte && MEM_P (inner)
6289 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6290 || (pos_rtx != 0 && len != 1)))
6291 return 0;
6292
6293 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6294 and the mode for the result. */
6295 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6296 {
6297 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6298 pos_mode = mode_for_extraction (EP_insv, 2);
6299 extraction_mode = mode_for_extraction (EP_insv, 3);
6300 }
6301
6302 if (! in_dest && unsignedp
6303 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6304 {
6305 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6306 pos_mode = mode_for_extraction (EP_extzv, 3);
6307 extraction_mode = mode_for_extraction (EP_extzv, 0);
6308 }
6309
6310 if (! in_dest && ! unsignedp
6311 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6312 {
6313 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6314 pos_mode = mode_for_extraction (EP_extv, 3);
6315 extraction_mode = mode_for_extraction (EP_extv, 0);
6316 }
6317
6318 /* Never narrow an object, since that might not be safe. */
6319
6320 if (mode != VOIDmode
6321 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6322 extraction_mode = mode;
6323
6324 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6325 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6326 pos_mode = GET_MODE (pos_rtx);
6327
6328 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6329 if we have to change the mode of memory and cannot, the desired mode is
6330 EXTRACTION_MODE. */
6331 if (!MEM_P (inner))
6332 wanted_inner_mode = wanted_inner_reg_mode;
6333 else if (inner_mode != wanted_inner_mode
6334 && (mode_dependent_address_p (XEXP (inner, 0))
6335 || MEM_VOLATILE_P (inner)))
6336 wanted_inner_mode = extraction_mode;
6337
6338 orig_pos = pos;
6339
6340 if (BITS_BIG_ENDIAN)
6341 {
6342 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6343 BITS_BIG_ENDIAN style. If position is constant, compute new
6344 position. Otherwise, build subtraction.
6345 Note that POS is relative to the mode of the original argument.
6346 If it's a MEM we need to recompute POS relative to that.
6347 However, if we're extracting from (or inserting into) a register,
6348 we want to recompute POS relative to wanted_inner_mode. */
6349 int width = (MEM_P (inner)
6350 ? GET_MODE_BITSIZE (is_mode)
6351 : GET_MODE_BITSIZE (wanted_inner_mode));
6352
6353 if (pos_rtx == 0)
6354 pos = width - len - pos;
6355 else
6356 pos_rtx
6357 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6358 /* POS may be less than 0 now, but we check for that below.
6359 Note that it can only be less than 0 if !MEM_P (inner). */
6360 }
6361
6362 /* If INNER has a wider mode, make it smaller. If this is a constant
6363 extract, try to adjust the byte to point to the byte containing
6364 the value. */
6365 if (wanted_inner_mode != VOIDmode
6366 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6367 && ((MEM_P (inner)
6368 && (inner_mode == wanted_inner_mode
6369 || (! mode_dependent_address_p (XEXP (inner, 0))
6370 && ! MEM_VOLATILE_P (inner))))))
6371 {
6372 int offset = 0;
6373
6374 /* The computations below will be correct if the machine is big
6375 endian in both bits and bytes or little endian in bits and bytes.
6376 If it is mixed, we must adjust. */
6377
6378 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6379 adjust OFFSET to compensate. */
6380 if (BYTES_BIG_ENDIAN
6381 && ! spans_byte
6382 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6383 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6384
6385 /* If this is a constant position, we can move to the desired byte. */
6386 if (pos_rtx == 0)
6387 {
6388 offset += pos / BITS_PER_UNIT;
6389 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6390 }
6391
6392 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6393 && ! spans_byte
6394 && is_mode != wanted_inner_mode)
6395 offset = (GET_MODE_SIZE (is_mode)
6396 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6397
6398 if (offset != 0 || inner_mode != wanted_inner_mode)
6399 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6400 }
6401
6402 /* If INNER is not memory, we can always get it into the proper mode. If we
6403 are changing its mode, POS must be a constant and smaller than the size
6404 of the new mode. */
6405 else if (!MEM_P (inner))
6406 {
6407 if (GET_MODE (inner) != wanted_inner_mode
6408 && (pos_rtx != 0
6409 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6410 return 0;
6411
6412 inner = force_to_mode (inner, wanted_inner_mode,
6413 pos_rtx
6414 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6415 ? ~(unsigned HOST_WIDE_INT) 0
6416 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6417 << orig_pos),
6418 NULL_RTX, 0);
6419 }
6420
6421 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6422 have to zero extend. Otherwise, we can just use a SUBREG. */
6423 if (pos_rtx != 0
6424 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6425 {
6426 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6427
6428 /* If we know that no extraneous bits are set, and that the high
6429 bit is not set, convert extraction to cheaper one - either
6430 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6431 cases. */
6432 if (flag_expensive_optimizations
6433 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6434 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6435 & ~(((unsigned HOST_WIDE_INT)
6436 GET_MODE_MASK (GET_MODE (pos_rtx)))
6437 >> 1))
6438 == 0)))
6439 {
6440 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6441
6442 /* Prefer ZERO_EXTENSION, since it gives more information to
6443 backends. */
6444 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6445 temp = temp1;
6446 }
6447 pos_rtx = temp;
6448 }
6449 else if (pos_rtx != 0
6450 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6451 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6452
6453 /* Make POS_RTX unless we already have it and it is correct. If we don't
6454 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6455 be a CONST_INT. */
6456 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6457 pos_rtx = orig_pos_rtx;
6458
6459 else if (pos_rtx == 0)
6460 pos_rtx = GEN_INT (pos);
6461
6462 /* Make the required operation. See if we can use existing rtx. */
6463 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6464 extraction_mode, inner, GEN_INT (len), pos_rtx);
6465 if (! in_dest)
6466 new = gen_lowpart (mode, new);
6467
6468 return new;
6469 }
6470 \f
6471 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6472 with any other operations in X. Return X without that shift if so. */
6473
6474 static rtx
6475 extract_left_shift (rtx x, int count)
6476 {
6477 enum rtx_code code = GET_CODE (x);
6478 enum machine_mode mode = GET_MODE (x);
6479 rtx tem;
6480
6481 switch (code)
6482 {
6483 case ASHIFT:
6484 /* This is the shift itself. If it is wide enough, we will return
6485 either the value being shifted if the shift count is equal to
6486 COUNT or a shift for the difference. */
6487 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6488 && INTVAL (XEXP (x, 1)) >= count)
6489 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6490 INTVAL (XEXP (x, 1)) - count);
6491 break;
6492
6493 case NEG: case NOT:
6494 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6495 return simplify_gen_unary (code, mode, tem, mode);
6496
6497 break;
6498
6499 case PLUS: case IOR: case XOR: case AND:
6500 /* If we can safely shift this constant and we find the inner shift,
6501 make a new operation. */
6502 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6503 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6504 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6505 return gen_binary (code, mode, tem,
6506 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6507
6508 break;
6509
6510 default:
6511 break;
6512 }
6513
6514 return 0;
6515 }
6516 \f
6517 /* Look at the expression rooted at X. Look for expressions
6518 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6519 Form these expressions.
6520
6521 Return the new rtx, usually just X.
6522
6523 Also, for machines like the VAX that don't have logical shift insns,
6524 try to convert logical to arithmetic shift operations in cases where
6525 they are equivalent. This undoes the canonicalizations to logical
6526 shifts done elsewhere.
6527
6528 We try, as much as possible, to re-use rtl expressions to save memory.
6529
6530 IN_CODE says what kind of expression we are processing. Normally, it is
6531 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6532 being kludges), it is MEM. When processing the arguments of a comparison
6533 or a COMPARE against zero, it is COMPARE. */
6534
6535 static rtx
6536 make_compound_operation (rtx x, enum rtx_code in_code)
6537 {
6538 enum rtx_code code = GET_CODE (x);
6539 enum machine_mode mode = GET_MODE (x);
6540 int mode_width = GET_MODE_BITSIZE (mode);
6541 rtx rhs, lhs;
6542 enum rtx_code next_code;
6543 int i;
6544 rtx new = 0;
6545 rtx tem;
6546 const char *fmt;
6547
6548 /* Select the code to be used in recursive calls. Once we are inside an
6549 address, we stay there. If we have a comparison, set to COMPARE,
6550 but once inside, go back to our default of SET. */
6551
6552 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6553 : ((code == COMPARE || COMPARISON_P (x))
6554 && XEXP (x, 1) == const0_rtx) ? COMPARE
6555 : in_code == COMPARE ? SET : in_code);
6556
6557 /* Process depending on the code of this operation. If NEW is set
6558 nonzero, it will be returned. */
6559
6560 switch (code)
6561 {
6562 case ASHIFT:
6563 /* Convert shifts by constants into multiplications if inside
6564 an address. */
6565 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6566 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6567 && INTVAL (XEXP (x, 1)) >= 0)
6568 {
6569 new = make_compound_operation (XEXP (x, 0), next_code);
6570 new = gen_rtx_MULT (mode, new,
6571 GEN_INT ((HOST_WIDE_INT) 1
6572 << INTVAL (XEXP (x, 1))));
6573 }
6574 break;
6575
6576 case AND:
6577 /* If the second operand is not a constant, we can't do anything
6578 with it. */
6579 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6580 break;
6581
6582 /* If the constant is a power of two minus one and the first operand
6583 is a logical right shift, make an extraction. */
6584 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6585 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6586 {
6587 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6588 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6589 0, in_code == COMPARE);
6590 }
6591
6592 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6593 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6594 && subreg_lowpart_p (XEXP (x, 0))
6595 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6596 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6597 {
6598 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6599 next_code);
6600 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6601 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6602 0, in_code == COMPARE);
6603 }
6604 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6605 else if ((GET_CODE (XEXP (x, 0)) == XOR
6606 || GET_CODE (XEXP (x, 0)) == IOR)
6607 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6608 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6609 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6610 {
6611 /* Apply the distributive law, and then try to make extractions. */
6612 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6613 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6614 XEXP (x, 1)),
6615 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6616 XEXP (x, 1)));
6617 new = make_compound_operation (new, in_code);
6618 }
6619
6620 /* If we are have (and (rotate X C) M) and C is larger than the number
6621 of bits in M, this is an extraction. */
6622
6623 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6624 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6625 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6626 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6627 {
6628 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6629 new = make_extraction (mode, new,
6630 (GET_MODE_BITSIZE (mode)
6631 - INTVAL (XEXP (XEXP (x, 0), 1))),
6632 NULL_RTX, i, 1, 0, in_code == COMPARE);
6633 }
6634
6635 /* On machines without logical shifts, if the operand of the AND is
6636 a logical shift and our mask turns off all the propagated sign
6637 bits, we can replace the logical shift with an arithmetic shift. */
6638 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6639 && !have_insn_for (LSHIFTRT, mode)
6640 && have_insn_for (ASHIFTRT, mode)
6641 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6642 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6643 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6644 && mode_width <= HOST_BITS_PER_WIDE_INT)
6645 {
6646 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6647
6648 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6649 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6650 SUBST (XEXP (x, 0),
6651 gen_rtx_ASHIFTRT (mode,
6652 make_compound_operation
6653 (XEXP (XEXP (x, 0), 0), next_code),
6654 XEXP (XEXP (x, 0), 1)));
6655 }
6656
6657 /* If the constant is one less than a power of two, this might be
6658 representable by an extraction even if no shift is present.
6659 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6660 we are in a COMPARE. */
6661 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6662 new = make_extraction (mode,
6663 make_compound_operation (XEXP (x, 0),
6664 next_code),
6665 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6666
6667 /* If we are in a comparison and this is an AND with a power of two,
6668 convert this into the appropriate bit extract. */
6669 else if (in_code == COMPARE
6670 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6671 new = make_extraction (mode,
6672 make_compound_operation (XEXP (x, 0),
6673 next_code),
6674 i, NULL_RTX, 1, 1, 0, 1);
6675
6676 break;
6677
6678 case LSHIFTRT:
6679 /* If the sign bit is known to be zero, replace this with an
6680 arithmetic shift. */
6681 if (have_insn_for (ASHIFTRT, mode)
6682 && ! have_insn_for (LSHIFTRT, mode)
6683 && mode_width <= HOST_BITS_PER_WIDE_INT
6684 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6685 {
6686 new = gen_rtx_ASHIFTRT (mode,
6687 make_compound_operation (XEXP (x, 0),
6688 next_code),
6689 XEXP (x, 1));
6690 break;
6691 }
6692
6693 /* ... fall through ... */
6694
6695 case ASHIFTRT:
6696 lhs = XEXP (x, 0);
6697 rhs = XEXP (x, 1);
6698
6699 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6700 this is a SIGN_EXTRACT. */
6701 if (GET_CODE (rhs) == CONST_INT
6702 && GET_CODE (lhs) == ASHIFT
6703 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6704 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6705 {
6706 new = make_compound_operation (XEXP (lhs, 0), next_code);
6707 new = make_extraction (mode, new,
6708 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6709 NULL_RTX, mode_width - INTVAL (rhs),
6710 code == LSHIFTRT, 0, in_code == COMPARE);
6711 break;
6712 }
6713
6714 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6715 If so, try to merge the shifts into a SIGN_EXTEND. We could
6716 also do this for some cases of SIGN_EXTRACT, but it doesn't
6717 seem worth the effort; the case checked for occurs on Alpha. */
6718
6719 if (!OBJECT_P (lhs)
6720 && ! (GET_CODE (lhs) == SUBREG
6721 && (OBJECT_P (SUBREG_REG (lhs))))
6722 && GET_CODE (rhs) == CONST_INT
6723 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6724 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6725 new = make_extraction (mode, make_compound_operation (new, next_code),
6726 0, NULL_RTX, mode_width - INTVAL (rhs),
6727 code == LSHIFTRT, 0, in_code == COMPARE);
6728
6729 break;
6730
6731 case SUBREG:
6732 /* Call ourselves recursively on the inner expression. If we are
6733 narrowing the object and it has a different RTL code from
6734 what it originally did, do this SUBREG as a force_to_mode. */
6735
6736 tem = make_compound_operation (SUBREG_REG (x), in_code);
6737 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6738 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6739 && subreg_lowpart_p (x))
6740 {
6741 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6742 NULL_RTX, 0);
6743
6744 /* If we have something other than a SUBREG, we might have
6745 done an expansion, so rerun ourselves. */
6746 if (GET_CODE (newer) != SUBREG)
6747 newer = make_compound_operation (newer, in_code);
6748
6749 return newer;
6750 }
6751
6752 /* If this is a paradoxical subreg, and the new code is a sign or
6753 zero extension, omit the subreg and widen the extension. If it
6754 is a regular subreg, we can still get rid of the subreg by not
6755 widening so much, or in fact removing the extension entirely. */
6756 if ((GET_CODE (tem) == SIGN_EXTEND
6757 || GET_CODE (tem) == ZERO_EXTEND)
6758 && subreg_lowpart_p (x))
6759 {
6760 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6761 || (GET_MODE_SIZE (mode) >
6762 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6763 {
6764 if (! SCALAR_INT_MODE_P (mode))
6765 break;
6766 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6767 }
6768 else
6769 tem = gen_lowpart (mode, XEXP (tem, 0));
6770 return tem;
6771 }
6772 break;
6773
6774 default:
6775 break;
6776 }
6777
6778 if (new)
6779 {
6780 x = gen_lowpart (mode, new);
6781 code = GET_CODE (x);
6782 }
6783
6784 /* Now recursively process each operand of this operation. */
6785 fmt = GET_RTX_FORMAT (code);
6786 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6787 if (fmt[i] == 'e')
6788 {
6789 new = make_compound_operation (XEXP (x, i), next_code);
6790 SUBST (XEXP (x, i), new);
6791 }
6792
6793 return x;
6794 }
6795 \f
6796 /* Given M see if it is a value that would select a field of bits
6797 within an item, but not the entire word. Return -1 if not.
6798 Otherwise, return the starting position of the field, where 0 is the
6799 low-order bit.
6800
6801 *PLEN is set to the length of the field. */
6802
6803 static int
6804 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6805 {
6806 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6807 int pos = exact_log2 (m & -m);
6808 int len = 0;
6809
6810 if (pos >= 0)
6811 /* Now shift off the low-order zero bits and see if we have a
6812 power of two minus 1. */
6813 len = exact_log2 ((m >> pos) + 1);
6814
6815 if (len <= 0)
6816 pos = -1;
6817
6818 *plen = len;
6819 return pos;
6820 }
6821 \f
6822 /* See if X can be simplified knowing that we will only refer to it in
6823 MODE and will only refer to those bits that are nonzero in MASK.
6824 If other bits are being computed or if masking operations are done
6825 that select a superset of the bits in MASK, they can sometimes be
6826 ignored.
6827
6828 Return a possibly simplified expression, but always convert X to
6829 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6830
6831 Also, if REG is nonzero and X is a register equal in value to REG,
6832 replace X with REG.
6833
6834 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6835 are all off in X. This is used when X will be complemented, by either
6836 NOT, NEG, or XOR. */
6837
6838 static rtx
6839 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6840 rtx reg, int just_select)
6841 {
6842 enum rtx_code code = GET_CODE (x);
6843 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6844 enum machine_mode op_mode;
6845 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6846 rtx op0, op1, temp;
6847
6848 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6849 code below will do the wrong thing since the mode of such an
6850 expression is VOIDmode.
6851
6852 Also do nothing if X is a CLOBBER; this can happen if X was
6853 the return value from a call to gen_lowpart. */
6854 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6855 return x;
6856
6857 /* We want to perform the operation is its present mode unless we know
6858 that the operation is valid in MODE, in which case we do the operation
6859 in MODE. */
6860 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6861 && have_insn_for (code, mode))
6862 ? mode : GET_MODE (x));
6863
6864 /* It is not valid to do a right-shift in a narrower mode
6865 than the one it came in with. */
6866 if ((code == LSHIFTRT || code == ASHIFTRT)
6867 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6868 op_mode = GET_MODE (x);
6869
6870 /* Truncate MASK to fit OP_MODE. */
6871 if (op_mode)
6872 mask &= GET_MODE_MASK (op_mode);
6873
6874 /* When we have an arithmetic operation, or a shift whose count we
6875 do not know, we need to assume that all bits up to the highest-order
6876 bit in MASK will be needed. This is how we form such a mask. */
6877 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6878 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6879 else
6880 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6881 - 1);
6882
6883 /* Determine what bits of X are guaranteed to be (non)zero. */
6884 nonzero = nonzero_bits (x, mode);
6885
6886 /* If none of the bits in X are needed, return a zero. */
6887 if (! just_select && (nonzero & mask) == 0)
6888 x = const0_rtx;
6889
6890 /* If X is a CONST_INT, return a new one. Do this here since the
6891 test below will fail. */
6892 if (GET_CODE (x) == CONST_INT)
6893 {
6894 if (SCALAR_INT_MODE_P (mode))
6895 return gen_int_mode (INTVAL (x) & mask, mode);
6896 else
6897 {
6898 x = GEN_INT (INTVAL (x) & mask);
6899 return gen_lowpart_common (mode, x);
6900 }
6901 }
6902
6903 /* If X is narrower than MODE and we want all the bits in X's mode, just
6904 get X in the proper mode. */
6905 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6906 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6907 return gen_lowpart (mode, x);
6908
6909 switch (code)
6910 {
6911 case CLOBBER:
6912 /* If X is a (clobber (const_int)), return it since we know we are
6913 generating something that won't match. */
6914 return x;
6915
6916 case USE:
6917 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6918 spanned the boundary of the MEM. If we are now masking so it is
6919 within that boundary, we don't need the USE any more. */
6920 if (! BITS_BIG_ENDIAN
6921 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6922 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6923 break;
6924
6925 case SIGN_EXTEND:
6926 case ZERO_EXTEND:
6927 case ZERO_EXTRACT:
6928 case SIGN_EXTRACT:
6929 x = expand_compound_operation (x);
6930 if (GET_CODE (x) != code)
6931 return force_to_mode (x, mode, mask, reg, next_select);
6932 break;
6933
6934 case REG:
6935 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6936 || rtx_equal_p (reg, get_last_value (x))))
6937 x = reg;
6938 break;
6939
6940 case SUBREG:
6941 if (subreg_lowpart_p (x)
6942 /* We can ignore the effect of this SUBREG if it narrows the mode or
6943 if the constant masks to zero all the bits the mode doesn't
6944 have. */
6945 && ((GET_MODE_SIZE (GET_MODE (x))
6946 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6947 || (0 == (mask
6948 & GET_MODE_MASK (GET_MODE (x))
6949 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6950 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6951 break;
6952
6953 case AND:
6954 /* If this is an AND with a constant, convert it into an AND
6955 whose constant is the AND of that constant with MASK. If it
6956 remains an AND of MASK, delete it since it is redundant. */
6957
6958 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6959 {
6960 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6961 mask & INTVAL (XEXP (x, 1)));
6962
6963 /* If X is still an AND, see if it is an AND with a mask that
6964 is just some low-order bits. If so, and it is MASK, we don't
6965 need it. */
6966
6967 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6968 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6969 == mask))
6970 x = XEXP (x, 0);
6971
6972 /* If it remains an AND, try making another AND with the bits
6973 in the mode mask that aren't in MASK turned on. If the
6974 constant in the AND is wide enough, this might make a
6975 cheaper constant. */
6976
6977 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6978 && GET_MODE_MASK (GET_MODE (x)) != mask
6979 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6980 {
6981 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6982 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6983 int width = GET_MODE_BITSIZE (GET_MODE (x));
6984 rtx y;
6985
6986 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6987 number, sign extend it. */
6988 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6989 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6990 cval |= (HOST_WIDE_INT) -1 << width;
6991
6992 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6993 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6994 x = y;
6995 }
6996
6997 break;
6998 }
6999
7000 goto binop;
7001
7002 case PLUS:
7003 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7004 low-order bits (as in an alignment operation) and FOO is already
7005 aligned to that boundary, mask C1 to that boundary as well.
7006 This may eliminate that PLUS and, later, the AND. */
7007
7008 {
7009 unsigned int width = GET_MODE_BITSIZE (mode);
7010 unsigned HOST_WIDE_INT smask = mask;
7011
7012 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7013 number, sign extend it. */
7014
7015 if (width < HOST_BITS_PER_WIDE_INT
7016 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7017 smask |= (HOST_WIDE_INT) -1 << width;
7018
7019 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7020 && exact_log2 (- smask) >= 0
7021 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7022 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7023 return force_to_mode (plus_constant (XEXP (x, 0),
7024 (INTVAL (XEXP (x, 1)) & smask)),
7025 mode, smask, reg, next_select);
7026 }
7027
7028 /* ... fall through ... */
7029
7030 case MULT:
7031 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7032 most significant bit in MASK since carries from those bits will
7033 affect the bits we are interested in. */
7034 mask = fuller_mask;
7035 goto binop;
7036
7037 case MINUS:
7038 /* If X is (minus C Y) where C's least set bit is larger than any bit
7039 in the mask, then we may replace with (neg Y). */
7040 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7041 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7042 & -INTVAL (XEXP (x, 0))))
7043 > mask))
7044 {
7045 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7046 GET_MODE (x));
7047 return force_to_mode (x, mode, mask, reg, next_select);
7048 }
7049
7050 /* Similarly, if C contains every bit in the fuller_mask, then we may
7051 replace with (not Y). */
7052 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7053 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7054 == INTVAL (XEXP (x, 0))))
7055 {
7056 x = simplify_gen_unary (NOT, GET_MODE (x),
7057 XEXP (x, 1), GET_MODE (x));
7058 return force_to_mode (x, mode, mask, reg, next_select);
7059 }
7060
7061 mask = fuller_mask;
7062 goto binop;
7063
7064 case IOR:
7065 case XOR:
7066 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7067 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7068 operation which may be a bitfield extraction. Ensure that the
7069 constant we form is not wider than the mode of X. */
7070
7071 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7072 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7073 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7074 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7075 && GET_CODE (XEXP (x, 1)) == CONST_INT
7076 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7077 + floor_log2 (INTVAL (XEXP (x, 1))))
7078 < GET_MODE_BITSIZE (GET_MODE (x)))
7079 && (INTVAL (XEXP (x, 1))
7080 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7081 {
7082 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7083 << INTVAL (XEXP (XEXP (x, 0), 1)));
7084 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7085 XEXP (XEXP (x, 0), 0), temp);
7086 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7087 XEXP (XEXP (x, 0), 1));
7088 return force_to_mode (x, mode, mask, reg, next_select);
7089 }
7090
7091 binop:
7092 /* For most binary operations, just propagate into the operation and
7093 change the mode if we have an operation of that mode. */
7094
7095 op0 = gen_lowpart (op_mode,
7096 force_to_mode (XEXP (x, 0), mode, mask,
7097 reg, next_select));
7098 op1 = gen_lowpart (op_mode,
7099 force_to_mode (XEXP (x, 1), mode, mask,
7100 reg, next_select));
7101
7102 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7103 x = gen_binary (code, op_mode, op0, op1);
7104 break;
7105
7106 case ASHIFT:
7107 /* For left shifts, do the same, but just for the first operand.
7108 However, we cannot do anything with shifts where we cannot
7109 guarantee that the counts are smaller than the size of the mode
7110 because such a count will have a different meaning in a
7111 wider mode. */
7112
7113 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7114 && INTVAL (XEXP (x, 1)) >= 0
7115 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7116 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7117 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7118 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7119 break;
7120
7121 /* If the shift count is a constant and we can do arithmetic in
7122 the mode of the shift, refine which bits we need. Otherwise, use the
7123 conservative form of the mask. */
7124 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7125 && INTVAL (XEXP (x, 1)) >= 0
7126 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7127 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7128 mask >>= INTVAL (XEXP (x, 1));
7129 else
7130 mask = fuller_mask;
7131
7132 op0 = gen_lowpart (op_mode,
7133 force_to_mode (XEXP (x, 0), op_mode,
7134 mask, reg, next_select));
7135
7136 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7137 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7138 break;
7139
7140 case LSHIFTRT:
7141 /* Here we can only do something if the shift count is a constant,
7142 this shift constant is valid for the host, and we can do arithmetic
7143 in OP_MODE. */
7144
7145 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7146 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7147 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7148 {
7149 rtx inner = XEXP (x, 0);
7150 unsigned HOST_WIDE_INT inner_mask;
7151
7152 /* Select the mask of the bits we need for the shift operand. */
7153 inner_mask = mask << INTVAL (XEXP (x, 1));
7154
7155 /* We can only change the mode of the shift if we can do arithmetic
7156 in the mode of the shift and INNER_MASK is no wider than the
7157 width of X's mode. */
7158 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7159 op_mode = GET_MODE (x);
7160
7161 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7162
7163 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7164 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7165 }
7166
7167 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7168 shift and AND produces only copies of the sign bit (C2 is one less
7169 than a power of two), we can do this with just a shift. */
7170
7171 if (GET_CODE (x) == LSHIFTRT
7172 && GET_CODE (XEXP (x, 1)) == CONST_INT
7173 /* The shift puts one of the sign bit copies in the least significant
7174 bit. */
7175 && ((INTVAL (XEXP (x, 1))
7176 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7177 >= GET_MODE_BITSIZE (GET_MODE (x)))
7178 && exact_log2 (mask + 1) >= 0
7179 /* Number of bits left after the shift must be more than the mask
7180 needs. */
7181 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7182 <= GET_MODE_BITSIZE (GET_MODE (x)))
7183 /* Must be more sign bit copies than the mask needs. */
7184 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7185 >= exact_log2 (mask + 1)))
7186 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7187 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7188 - exact_log2 (mask + 1)));
7189
7190 goto shiftrt;
7191
7192 case ASHIFTRT:
7193 /* If we are just looking for the sign bit, we don't need this shift at
7194 all, even if it has a variable count. */
7195 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7196 && (mask == ((unsigned HOST_WIDE_INT) 1
7197 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7198 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7199
7200 /* If this is a shift by a constant, get a mask that contains those bits
7201 that are not copies of the sign bit. We then have two cases: If
7202 MASK only includes those bits, this can be a logical shift, which may
7203 allow simplifications. If MASK is a single-bit field not within
7204 those bits, we are requesting a copy of the sign bit and hence can
7205 shift the sign bit to the appropriate location. */
7206
7207 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7208 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7209 {
7210 int i = -1;
7211
7212 /* If the considered data is wider than HOST_WIDE_INT, we can't
7213 represent a mask for all its bits in a single scalar.
7214 But we only care about the lower bits, so calculate these. */
7215
7216 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7217 {
7218 nonzero = ~(HOST_WIDE_INT) 0;
7219
7220 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7221 is the number of bits a full-width mask would have set.
7222 We need only shift if these are fewer than nonzero can
7223 hold. If not, we must keep all bits set in nonzero. */
7224
7225 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7226 < HOST_BITS_PER_WIDE_INT)
7227 nonzero >>= INTVAL (XEXP (x, 1))
7228 + HOST_BITS_PER_WIDE_INT
7229 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7230 }
7231 else
7232 {
7233 nonzero = GET_MODE_MASK (GET_MODE (x));
7234 nonzero >>= INTVAL (XEXP (x, 1));
7235 }
7236
7237 if ((mask & ~nonzero) == 0
7238 || (i = exact_log2 (mask)) >= 0)
7239 {
7240 x = simplify_shift_const
7241 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7242 i < 0 ? INTVAL (XEXP (x, 1))
7243 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7244
7245 if (GET_CODE (x) != ASHIFTRT)
7246 return force_to_mode (x, mode, mask, reg, next_select);
7247 }
7248 }
7249
7250 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7251 even if the shift count isn't a constant. */
7252 if (mask == 1)
7253 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7254
7255 shiftrt:
7256
7257 /* If this is a zero- or sign-extension operation that just affects bits
7258 we don't care about, remove it. Be sure the call above returned
7259 something that is still a shift. */
7260
7261 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7262 && GET_CODE (XEXP (x, 1)) == CONST_INT
7263 && INTVAL (XEXP (x, 1)) >= 0
7264 && (INTVAL (XEXP (x, 1))
7265 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7266 && GET_CODE (XEXP (x, 0)) == ASHIFT
7267 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7268 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7269 reg, next_select);
7270
7271 break;
7272
7273 case ROTATE:
7274 case ROTATERT:
7275 /* If the shift count is constant and we can do computations
7276 in the mode of X, compute where the bits we care about are.
7277 Otherwise, we can't do anything. Don't change the mode of
7278 the shift or propagate MODE into the shift, though. */
7279 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7280 && INTVAL (XEXP (x, 1)) >= 0)
7281 {
7282 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7283 GET_MODE (x), GEN_INT (mask),
7284 XEXP (x, 1));
7285 if (temp && GET_CODE (temp) == CONST_INT)
7286 SUBST (XEXP (x, 0),
7287 force_to_mode (XEXP (x, 0), GET_MODE (x),
7288 INTVAL (temp), reg, next_select));
7289 }
7290 break;
7291
7292 case NEG:
7293 /* If we just want the low-order bit, the NEG isn't needed since it
7294 won't change the low-order bit. */
7295 if (mask == 1)
7296 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7297
7298 /* We need any bits less significant than the most significant bit in
7299 MASK since carries from those bits will affect the bits we are
7300 interested in. */
7301 mask = fuller_mask;
7302 goto unop;
7303
7304 case NOT:
7305 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7306 same as the XOR case above. Ensure that the constant we form is not
7307 wider than the mode of X. */
7308
7309 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7310 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7311 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7312 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7313 < GET_MODE_BITSIZE (GET_MODE (x)))
7314 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7315 {
7316 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7317 GET_MODE (x));
7318 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7319 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7320
7321 return force_to_mode (x, mode, mask, reg, next_select);
7322 }
7323
7324 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7325 use the full mask inside the NOT. */
7326 mask = fuller_mask;
7327
7328 unop:
7329 op0 = gen_lowpart (op_mode,
7330 force_to_mode (XEXP (x, 0), mode, mask,
7331 reg, next_select));
7332 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7333 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7334 break;
7335
7336 case NE:
7337 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7338 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7339 which is equal to STORE_FLAG_VALUE. */
7340 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7341 && GET_MODE (XEXP (x, 0)) == mode
7342 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7343 && (nonzero_bits (XEXP (x, 0), mode)
7344 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7345 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7346
7347 break;
7348
7349 case IF_THEN_ELSE:
7350 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7351 written in a narrower mode. We play it safe and do not do so. */
7352
7353 SUBST (XEXP (x, 1),
7354 gen_lowpart (GET_MODE (x),
7355 force_to_mode (XEXP (x, 1), mode,
7356 mask, reg, next_select)));
7357 SUBST (XEXP (x, 2),
7358 gen_lowpart (GET_MODE (x),
7359 force_to_mode (XEXP (x, 2), mode,
7360 mask, reg, next_select)));
7361 break;
7362
7363 default:
7364 break;
7365 }
7366
7367 /* Ensure we return a value of the proper mode. */
7368 return gen_lowpart (mode, x);
7369 }
7370 \f
7371 /* Return nonzero if X is an expression that has one of two values depending on
7372 whether some other value is zero or nonzero. In that case, we return the
7373 value that is being tested, *PTRUE is set to the value if the rtx being
7374 returned has a nonzero value, and *PFALSE is set to the other alternative.
7375
7376 If we return zero, we set *PTRUE and *PFALSE to X. */
7377
7378 static rtx
7379 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7380 {
7381 enum machine_mode mode = GET_MODE (x);
7382 enum rtx_code code = GET_CODE (x);
7383 rtx cond0, cond1, true0, true1, false0, false1;
7384 unsigned HOST_WIDE_INT nz;
7385
7386 /* If we are comparing a value against zero, we are done. */
7387 if ((code == NE || code == EQ)
7388 && XEXP (x, 1) == const0_rtx)
7389 {
7390 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7391 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7392 return XEXP (x, 0);
7393 }
7394
7395 /* If this is a unary operation whose operand has one of two values, apply
7396 our opcode to compute those values. */
7397 else if (UNARY_P (x)
7398 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7399 {
7400 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7401 *pfalse = simplify_gen_unary (code, mode, false0,
7402 GET_MODE (XEXP (x, 0)));
7403 return cond0;
7404 }
7405
7406 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7407 make can't possibly match and would suppress other optimizations. */
7408 else if (code == COMPARE)
7409 ;
7410
7411 /* If this is a binary operation, see if either side has only one of two
7412 values. If either one does or if both do and they are conditional on
7413 the same value, compute the new true and false values. */
7414 else if (BINARY_P (x))
7415 {
7416 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7417 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7418
7419 if ((cond0 != 0 || cond1 != 0)
7420 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7421 {
7422 /* If if_then_else_cond returned zero, then true/false are the
7423 same rtl. We must copy one of them to prevent invalid rtl
7424 sharing. */
7425 if (cond0 == 0)
7426 true0 = copy_rtx (true0);
7427 else if (cond1 == 0)
7428 true1 = copy_rtx (true1);
7429
7430 *ptrue = gen_binary (code, mode, true0, true1);
7431 *pfalse = gen_binary (code, mode, false0, false1);
7432 return cond0 ? cond0 : cond1;
7433 }
7434
7435 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7436 operands is zero when the other is nonzero, and vice-versa,
7437 and STORE_FLAG_VALUE is 1 or -1. */
7438
7439 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7440 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7441 || code == UMAX)
7442 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7443 {
7444 rtx op0 = XEXP (XEXP (x, 0), 1);
7445 rtx op1 = XEXP (XEXP (x, 1), 1);
7446
7447 cond0 = XEXP (XEXP (x, 0), 0);
7448 cond1 = XEXP (XEXP (x, 1), 0);
7449
7450 if (COMPARISON_P (cond0)
7451 && COMPARISON_P (cond1)
7452 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7453 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7454 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7455 || ((swap_condition (GET_CODE (cond0))
7456 == combine_reversed_comparison_code (cond1))
7457 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7458 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7459 && ! side_effects_p (x))
7460 {
7461 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7462 *pfalse = gen_binary (MULT, mode,
7463 (code == MINUS
7464 ? simplify_gen_unary (NEG, mode, op1,
7465 mode)
7466 : op1),
7467 const_true_rtx);
7468 return cond0;
7469 }
7470 }
7471
7472 /* Similarly for MULT, AND and UMIN, except that for these the result
7473 is always zero. */
7474 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7475 && (code == MULT || code == AND || code == UMIN)
7476 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7477 {
7478 cond0 = XEXP (XEXP (x, 0), 0);
7479 cond1 = XEXP (XEXP (x, 1), 0);
7480
7481 if (COMPARISON_P (cond0)
7482 && COMPARISON_P (cond1)
7483 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7484 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7485 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7486 || ((swap_condition (GET_CODE (cond0))
7487 == combine_reversed_comparison_code (cond1))
7488 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7489 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7490 && ! side_effects_p (x))
7491 {
7492 *ptrue = *pfalse = const0_rtx;
7493 return cond0;
7494 }
7495 }
7496 }
7497
7498 else if (code == IF_THEN_ELSE)
7499 {
7500 /* If we have IF_THEN_ELSE already, extract the condition and
7501 canonicalize it if it is NE or EQ. */
7502 cond0 = XEXP (x, 0);
7503 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7504 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7505 return XEXP (cond0, 0);
7506 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7507 {
7508 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7509 return XEXP (cond0, 0);
7510 }
7511 else
7512 return cond0;
7513 }
7514
7515 /* If X is a SUBREG, we can narrow both the true and false values
7516 if the inner expression, if there is a condition. */
7517 else if (code == SUBREG
7518 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7519 &true0, &false0)))
7520 {
7521 true0 = simplify_gen_subreg (mode, true0,
7522 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7523 false0 = simplify_gen_subreg (mode, false0,
7524 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7525 if (true0 && false0)
7526 {
7527 *ptrue = true0;
7528 *pfalse = false0;
7529 return cond0;
7530 }
7531 }
7532
7533 /* If X is a constant, this isn't special and will cause confusions
7534 if we treat it as such. Likewise if it is equivalent to a constant. */
7535 else if (CONSTANT_P (x)
7536 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7537 ;
7538
7539 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7540 will be least confusing to the rest of the compiler. */
7541 else if (mode == BImode)
7542 {
7543 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7544 return x;
7545 }
7546
7547 /* If X is known to be either 0 or -1, those are the true and
7548 false values when testing X. */
7549 else if (x == constm1_rtx || x == const0_rtx
7550 || (mode != VOIDmode
7551 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7552 {
7553 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7554 return x;
7555 }
7556
7557 /* Likewise for 0 or a single bit. */
7558 else if (SCALAR_INT_MODE_P (mode)
7559 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7560 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7561 {
7562 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7563 return x;
7564 }
7565
7566 /* Otherwise fail; show no condition with true and false values the same. */
7567 *ptrue = *pfalse = x;
7568 return 0;
7569 }
7570 \f
7571 /* Return the value of expression X given the fact that condition COND
7572 is known to be true when applied to REG as its first operand and VAL
7573 as its second. X is known to not be shared and so can be modified in
7574 place.
7575
7576 We only handle the simplest cases, and specifically those cases that
7577 arise with IF_THEN_ELSE expressions. */
7578
7579 static rtx
7580 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7581 {
7582 enum rtx_code code = GET_CODE (x);
7583 rtx temp;
7584 const char *fmt;
7585 int i, j;
7586
7587 if (side_effects_p (x))
7588 return x;
7589
7590 /* If either operand of the condition is a floating point value,
7591 then we have to avoid collapsing an EQ comparison. */
7592 if (cond == EQ
7593 && rtx_equal_p (x, reg)
7594 && ! FLOAT_MODE_P (GET_MODE (x))
7595 && ! FLOAT_MODE_P (GET_MODE (val)))
7596 return val;
7597
7598 if (cond == UNEQ && rtx_equal_p (x, reg))
7599 return val;
7600
7601 /* If X is (abs REG) and we know something about REG's relationship
7602 with zero, we may be able to simplify this. */
7603
7604 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7605 switch (cond)
7606 {
7607 case GE: case GT: case EQ:
7608 return XEXP (x, 0);
7609 case LT: case LE:
7610 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7611 XEXP (x, 0),
7612 GET_MODE (XEXP (x, 0)));
7613 default:
7614 break;
7615 }
7616
7617 /* The only other cases we handle are MIN, MAX, and comparisons if the
7618 operands are the same as REG and VAL. */
7619
7620 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7621 {
7622 if (rtx_equal_p (XEXP (x, 0), val))
7623 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7624
7625 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7626 {
7627 if (COMPARISON_P (x))
7628 {
7629 if (comparison_dominates_p (cond, code))
7630 return const_true_rtx;
7631
7632 code = combine_reversed_comparison_code (x);
7633 if (code != UNKNOWN
7634 && comparison_dominates_p (cond, code))
7635 return const0_rtx;
7636 else
7637 return x;
7638 }
7639 else if (code == SMAX || code == SMIN
7640 || code == UMIN || code == UMAX)
7641 {
7642 int unsignedp = (code == UMIN || code == UMAX);
7643
7644 /* Do not reverse the condition when it is NE or EQ.
7645 This is because we cannot conclude anything about
7646 the value of 'SMAX (x, y)' when x is not equal to y,
7647 but we can when x equals y. */
7648 if ((code == SMAX || code == UMAX)
7649 && ! (cond == EQ || cond == NE))
7650 cond = reverse_condition (cond);
7651
7652 switch (cond)
7653 {
7654 case GE: case GT:
7655 return unsignedp ? x : XEXP (x, 1);
7656 case LE: case LT:
7657 return unsignedp ? x : XEXP (x, 0);
7658 case GEU: case GTU:
7659 return unsignedp ? XEXP (x, 1) : x;
7660 case LEU: case LTU:
7661 return unsignedp ? XEXP (x, 0) : x;
7662 default:
7663 break;
7664 }
7665 }
7666 }
7667 }
7668 else if (code == SUBREG)
7669 {
7670 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7671 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7672
7673 if (SUBREG_REG (x) != r)
7674 {
7675 /* We must simplify subreg here, before we lose track of the
7676 original inner_mode. */
7677 new = simplify_subreg (GET_MODE (x), r,
7678 inner_mode, SUBREG_BYTE (x));
7679 if (new)
7680 return new;
7681 else
7682 SUBST (SUBREG_REG (x), r);
7683 }
7684
7685 return x;
7686 }
7687 /* We don't have to handle SIGN_EXTEND here, because even in the
7688 case of replacing something with a modeless CONST_INT, a
7689 CONST_INT is already (supposed to be) a valid sign extension for
7690 its narrower mode, which implies it's already properly
7691 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7692 story is different. */
7693 else if (code == ZERO_EXTEND)
7694 {
7695 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7696 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7697
7698 if (XEXP (x, 0) != r)
7699 {
7700 /* We must simplify the zero_extend here, before we lose
7701 track of the original inner_mode. */
7702 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7703 r, inner_mode);
7704 if (new)
7705 return new;
7706 else
7707 SUBST (XEXP (x, 0), r);
7708 }
7709
7710 return x;
7711 }
7712
7713 fmt = GET_RTX_FORMAT (code);
7714 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7715 {
7716 if (fmt[i] == 'e')
7717 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7718 else if (fmt[i] == 'E')
7719 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7720 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7721 cond, reg, val));
7722 }
7723
7724 return x;
7725 }
7726 \f
7727 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7728 assignment as a field assignment. */
7729
7730 static int
7731 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7732 {
7733 if (x == y || rtx_equal_p (x, y))
7734 return 1;
7735
7736 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7737 return 0;
7738
7739 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7740 Note that all SUBREGs of MEM are paradoxical; otherwise they
7741 would have been rewritten. */
7742 if (MEM_P (x) && GET_CODE (y) == SUBREG
7743 && MEM_P (SUBREG_REG (y))
7744 && rtx_equal_p (SUBREG_REG (y),
7745 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7746 return 1;
7747
7748 if (MEM_P (y) && GET_CODE (x) == SUBREG
7749 && MEM_P (SUBREG_REG (x))
7750 && rtx_equal_p (SUBREG_REG (x),
7751 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7752 return 1;
7753
7754 /* We used to see if get_last_value of X and Y were the same but that's
7755 not correct. In one direction, we'll cause the assignment to have
7756 the wrong destination and in the case, we'll import a register into this
7757 insn that might have already have been dead. So fail if none of the
7758 above cases are true. */
7759 return 0;
7760 }
7761 \f
7762 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7763 Return that assignment if so.
7764
7765 We only handle the most common cases. */
7766
7767 static rtx
7768 make_field_assignment (rtx x)
7769 {
7770 rtx dest = SET_DEST (x);
7771 rtx src = SET_SRC (x);
7772 rtx assign;
7773 rtx rhs, lhs;
7774 HOST_WIDE_INT c1;
7775 HOST_WIDE_INT pos;
7776 unsigned HOST_WIDE_INT len;
7777 rtx other;
7778 enum machine_mode mode;
7779
7780 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7781 a clear of a one-bit field. We will have changed it to
7782 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7783 for a SUBREG. */
7784
7785 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7786 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7787 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7788 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7789 {
7790 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7791 1, 1, 1, 0);
7792 if (assign != 0)
7793 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7794 return x;
7795 }
7796
7797 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7798 && subreg_lowpart_p (XEXP (src, 0))
7799 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7800 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7801 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7802 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7803 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7804 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7805 {
7806 assign = make_extraction (VOIDmode, dest, 0,
7807 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7808 1, 1, 1, 0);
7809 if (assign != 0)
7810 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7811 return x;
7812 }
7813
7814 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7815 one-bit field. */
7816 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7817 && XEXP (XEXP (src, 0), 0) == const1_rtx
7818 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7819 {
7820 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7821 1, 1, 1, 0);
7822 if (assign != 0)
7823 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7824 return x;
7825 }
7826
7827 /* The other case we handle is assignments into a constant-position
7828 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7829 a mask that has all one bits except for a group of zero bits and
7830 OTHER is known to have zeros where C1 has ones, this is such an
7831 assignment. Compute the position and length from C1. Shift OTHER
7832 to the appropriate position, force it to the required mode, and
7833 make the extraction. Check for the AND in both operands. */
7834
7835 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7836 return x;
7837
7838 rhs = expand_compound_operation (XEXP (src, 0));
7839 lhs = expand_compound_operation (XEXP (src, 1));
7840
7841 if (GET_CODE (rhs) == AND
7842 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7843 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7844 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7845 else if (GET_CODE (lhs) == AND
7846 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7847 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7848 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7849 else
7850 return x;
7851
7852 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7853 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7854 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7855 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7856 return x;
7857
7858 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7859 if (assign == 0)
7860 return x;
7861
7862 /* The mode to use for the source is the mode of the assignment, or of
7863 what is inside a possible STRICT_LOW_PART. */
7864 mode = (GET_CODE (assign) == STRICT_LOW_PART
7865 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7866
7867 /* Shift OTHER right POS places and make it the source, restricting it
7868 to the proper length and mode. */
7869
7870 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7871 GET_MODE (src), other, pos),
7872 mode,
7873 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7874 ? ~(unsigned HOST_WIDE_INT) 0
7875 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7876 dest, 0);
7877
7878 /* If SRC is masked by an AND that does not make a difference in
7879 the value being stored, strip it. */
7880 if (GET_CODE (assign) == ZERO_EXTRACT
7881 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7882 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7883 && GET_CODE (src) == AND
7884 && GET_CODE (XEXP (src, 1)) == CONST_INT
7885 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7886 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7887 src = XEXP (src, 0);
7888
7889 return gen_rtx_SET (VOIDmode, assign, src);
7890 }
7891 \f
7892 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7893 if so. */
7894
7895 static rtx
7896 apply_distributive_law (rtx x)
7897 {
7898 enum rtx_code code = GET_CODE (x);
7899 enum rtx_code inner_code;
7900 rtx lhs, rhs, other;
7901 rtx tem;
7902
7903 /* Distributivity is not true for floating point as it can change the
7904 value. So we don't do it unless -funsafe-math-optimizations. */
7905 if (FLOAT_MODE_P (GET_MODE (x))
7906 && ! flag_unsafe_math_optimizations)
7907 return x;
7908
7909 /* The outer operation can only be one of the following: */
7910 if (code != IOR && code != AND && code != XOR
7911 && code != PLUS && code != MINUS)
7912 return x;
7913
7914 lhs = XEXP (x, 0);
7915 rhs = XEXP (x, 1);
7916
7917 /* If either operand is a primitive we can't do anything, so get out
7918 fast. */
7919 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7920 return x;
7921
7922 lhs = expand_compound_operation (lhs);
7923 rhs = expand_compound_operation (rhs);
7924 inner_code = GET_CODE (lhs);
7925 if (inner_code != GET_CODE (rhs))
7926 return x;
7927
7928 /* See if the inner and outer operations distribute. */
7929 switch (inner_code)
7930 {
7931 case LSHIFTRT:
7932 case ASHIFTRT:
7933 case AND:
7934 case IOR:
7935 /* These all distribute except over PLUS. */
7936 if (code == PLUS || code == MINUS)
7937 return x;
7938 break;
7939
7940 case MULT:
7941 if (code != PLUS && code != MINUS)
7942 return x;
7943 break;
7944
7945 case ASHIFT:
7946 /* This is also a multiply, so it distributes over everything. */
7947 break;
7948
7949 case SUBREG:
7950 /* Non-paradoxical SUBREGs distributes over all operations, provided
7951 the inner modes and byte offsets are the same, this is an extraction
7952 of a low-order part, we don't convert an fp operation to int or
7953 vice versa, and we would not be converting a single-word
7954 operation into a multi-word operation. The latter test is not
7955 required, but it prevents generating unneeded multi-word operations.
7956 Some of the previous tests are redundant given the latter test, but
7957 are retained because they are required for correctness.
7958
7959 We produce the result slightly differently in this case. */
7960
7961 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7962 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7963 || ! subreg_lowpart_p (lhs)
7964 || (GET_MODE_CLASS (GET_MODE (lhs))
7965 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7966 || (GET_MODE_SIZE (GET_MODE (lhs))
7967 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7968 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7969 return x;
7970
7971 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7972 SUBREG_REG (lhs), SUBREG_REG (rhs));
7973 return gen_lowpart (GET_MODE (x), tem);
7974
7975 default:
7976 return x;
7977 }
7978
7979 /* Set LHS and RHS to the inner operands (A and B in the example
7980 above) and set OTHER to the common operand (C in the example).
7981 There is only one way to do this unless the inner operation is
7982 commutative. */
7983 if (COMMUTATIVE_ARITH_P (lhs)
7984 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7985 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7986 else if (COMMUTATIVE_ARITH_P (lhs)
7987 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7988 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7989 else if (COMMUTATIVE_ARITH_P (lhs)
7990 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7991 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7992 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7993 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7994 else
7995 return x;
7996
7997 /* Form the new inner operation, seeing if it simplifies first. */
7998 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7999
8000 /* There is one exception to the general way of distributing:
8001 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8002 if (code == XOR && inner_code == IOR)
8003 {
8004 inner_code = AND;
8005 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8006 }
8007
8008 /* We may be able to continuing distributing the result, so call
8009 ourselves recursively on the inner operation before forming the
8010 outer operation, which we return. */
8011 return gen_binary (inner_code, GET_MODE (x),
8012 apply_distributive_law (tem), other);
8013 }
8014 \f
8015 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8016 in MODE.
8017
8018 Return an equivalent form, if different from X. Otherwise, return X. If
8019 X is zero, we are to always construct the equivalent form. */
8020
8021 static rtx
8022 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8023 unsigned HOST_WIDE_INT constop)
8024 {
8025 unsigned HOST_WIDE_INT nonzero;
8026 int i;
8027
8028 /* Simplify VAROP knowing that we will be only looking at some of the
8029 bits in it.
8030
8031 Note by passing in CONSTOP, we guarantee that the bits not set in
8032 CONSTOP are not significant and will never be examined. We must
8033 ensure that is the case by explicitly masking out those bits
8034 before returning. */
8035 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8036
8037 /* If VAROP is a CLOBBER, we will fail so return it. */
8038 if (GET_CODE (varop) == CLOBBER)
8039 return varop;
8040
8041 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8042 to VAROP and return the new constant. */
8043 if (GET_CODE (varop) == CONST_INT)
8044 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8045
8046 /* See what bits may be nonzero in VAROP. Unlike the general case of
8047 a call to nonzero_bits, here we don't care about bits outside
8048 MODE. */
8049
8050 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8051
8052 /* Turn off all bits in the constant that are known to already be zero.
8053 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8054 which is tested below. */
8055
8056 constop &= nonzero;
8057
8058 /* If we don't have any bits left, return zero. */
8059 if (constop == 0)
8060 return const0_rtx;
8061
8062 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8063 a power of two, we can replace this with an ASHIFT. */
8064 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8065 && (i = exact_log2 (constop)) >= 0)
8066 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8067
8068 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8069 or XOR, then try to apply the distributive law. This may eliminate
8070 operations if either branch can be simplified because of the AND.
8071 It may also make some cases more complex, but those cases probably
8072 won't match a pattern either with or without this. */
8073
8074 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8075 return
8076 gen_lowpart
8077 (mode,
8078 apply_distributive_law
8079 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8080 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8081 XEXP (varop, 0), constop),
8082 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8083 XEXP (varop, 1), constop))));
8084
8085 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8086 the AND and see if one of the operands simplifies to zero. If so, we
8087 may eliminate it. */
8088
8089 if (GET_CODE (varop) == PLUS
8090 && exact_log2 (constop + 1) >= 0)
8091 {
8092 rtx o0, o1;
8093
8094 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8095 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8096 if (o0 == const0_rtx)
8097 return o1;
8098 if (o1 == const0_rtx)
8099 return o0;
8100 }
8101
8102 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8103 if we already had one (just check for the simplest cases). */
8104 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8105 && GET_MODE (XEXP (x, 0)) == mode
8106 && SUBREG_REG (XEXP (x, 0)) == varop)
8107 varop = XEXP (x, 0);
8108 else
8109 varop = gen_lowpart (mode, varop);
8110
8111 /* If we can't make the SUBREG, try to return what we were given. */
8112 if (GET_CODE (varop) == CLOBBER)
8113 return x ? x : varop;
8114
8115 /* If we are only masking insignificant bits, return VAROP. */
8116 if (constop == nonzero)
8117 x = varop;
8118 else
8119 {
8120 /* Otherwise, return an AND. */
8121 constop = trunc_int_for_mode (constop, mode);
8122 /* See how much, if any, of X we can use. */
8123 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8124 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8125
8126 else
8127 {
8128 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8129 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8130 SUBST (XEXP (x, 1), GEN_INT (constop));
8131
8132 SUBST (XEXP (x, 0), varop);
8133 }
8134 }
8135
8136 return x;
8137 }
8138 \f
8139 /* Given a REG, X, compute which bits in X can be nonzero.
8140 We don't care about bits outside of those defined in MODE.
8141
8142 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8143 a shift, AND, or zero_extract, we can do better. */
8144
8145 static rtx
8146 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8147 rtx known_x ATTRIBUTE_UNUSED,
8148 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8149 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8150 unsigned HOST_WIDE_INT *nonzero)
8151 {
8152 rtx tem;
8153
8154 /* If X is a register whose nonzero bits value is current, use it.
8155 Otherwise, if X is a register whose value we can find, use that
8156 value. Otherwise, use the previously-computed global nonzero bits
8157 for this register. */
8158
8159 if (reg_stat[REGNO (x)].last_set_value != 0
8160 && (reg_stat[REGNO (x)].last_set_mode == mode
8161 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8162 && GET_MODE_CLASS (mode) == MODE_INT))
8163 && (reg_stat[REGNO (x)].last_set_label == label_tick
8164 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8165 && REG_N_SETS (REGNO (x)) == 1
8166 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8167 REGNO (x))))
8168 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8169 {
8170 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8171 return NULL;
8172 }
8173
8174 tem = get_last_value (x);
8175
8176 if (tem)
8177 {
8178 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8179 /* If X is narrower than MODE and TEM is a non-negative
8180 constant that would appear negative in the mode of X,
8181 sign-extend it for use in reg_nonzero_bits because some
8182 machines (maybe most) will actually do the sign-extension
8183 and this is the conservative approach.
8184
8185 ??? For 2.5, try to tighten up the MD files in this regard
8186 instead of this kludge. */
8187
8188 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8189 && GET_CODE (tem) == CONST_INT
8190 && INTVAL (tem) > 0
8191 && 0 != (INTVAL (tem)
8192 & ((HOST_WIDE_INT) 1
8193 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8194 tem = GEN_INT (INTVAL (tem)
8195 | ((HOST_WIDE_INT) (-1)
8196 << GET_MODE_BITSIZE (GET_MODE (x))));
8197 #endif
8198 return tem;
8199 }
8200 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8201 {
8202 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8203
8204 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8205 /* We don't know anything about the upper bits. */
8206 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8207 *nonzero &= mask;
8208 }
8209
8210 return NULL;
8211 }
8212
8213 /* Return the number of bits at the high-order end of X that are known to
8214 be equal to the sign bit. X will be used in mode MODE; if MODE is
8215 VOIDmode, X will be used in its own mode. The returned value will always
8216 be between 1 and the number of bits in MODE. */
8217
8218 static rtx
8219 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8220 rtx known_x ATTRIBUTE_UNUSED,
8221 enum machine_mode known_mode
8222 ATTRIBUTE_UNUSED,
8223 unsigned int known_ret ATTRIBUTE_UNUSED,
8224 unsigned int *result)
8225 {
8226 rtx tem;
8227
8228 if (reg_stat[REGNO (x)].last_set_value != 0
8229 && reg_stat[REGNO (x)].last_set_mode == mode
8230 && (reg_stat[REGNO (x)].last_set_label == label_tick
8231 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8232 && REG_N_SETS (REGNO (x)) == 1
8233 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8234 REGNO (x))))
8235 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8236 {
8237 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8238 return NULL;
8239 }
8240
8241 tem = get_last_value (x);
8242 if (tem != 0)
8243 return tem;
8244
8245 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8246 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8247 *result = reg_stat[REGNO (x)].sign_bit_copies;
8248
8249 return NULL;
8250 }
8251 \f
8252 /* Return the number of "extended" bits there are in X, when interpreted
8253 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8254 unsigned quantities, this is the number of high-order zero bits.
8255 For signed quantities, this is the number of copies of the sign bit
8256 minus 1. In both case, this function returns the number of "spare"
8257 bits. For example, if two quantities for which this function returns
8258 at least 1 are added, the addition is known not to overflow.
8259
8260 This function will always return 0 unless called during combine, which
8261 implies that it must be called from a define_split. */
8262
8263 unsigned int
8264 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8265 {
8266 if (nonzero_sign_valid == 0)
8267 return 0;
8268
8269 return (unsignedp
8270 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8271 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8272 - floor_log2 (nonzero_bits (x, mode)))
8273 : 0)
8274 : num_sign_bit_copies (x, mode) - 1);
8275 }
8276 \f
8277 /* This function is called from `simplify_shift_const' to merge two
8278 outer operations. Specifically, we have already found that we need
8279 to perform operation *POP0 with constant *PCONST0 at the outermost
8280 position. We would now like to also perform OP1 with constant CONST1
8281 (with *POP0 being done last).
8282
8283 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8284 the resulting operation. *PCOMP_P is set to 1 if we would need to
8285 complement the innermost operand, otherwise it is unchanged.
8286
8287 MODE is the mode in which the operation will be done. No bits outside
8288 the width of this mode matter. It is assumed that the width of this mode
8289 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8290
8291 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8292 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8293 result is simply *PCONST0.
8294
8295 If the resulting operation cannot be expressed as one operation, we
8296 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8297
8298 static int
8299 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8300 {
8301 enum rtx_code op0 = *pop0;
8302 HOST_WIDE_INT const0 = *pconst0;
8303
8304 const0 &= GET_MODE_MASK (mode);
8305 const1 &= GET_MODE_MASK (mode);
8306
8307 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8308 if (op0 == AND)
8309 const1 &= const0;
8310
8311 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8312 if OP0 is SET. */
8313
8314 if (op1 == UNKNOWN || op0 == SET)
8315 return 1;
8316
8317 else if (op0 == UNKNOWN)
8318 op0 = op1, const0 = const1;
8319
8320 else if (op0 == op1)
8321 {
8322 switch (op0)
8323 {
8324 case AND:
8325 const0 &= const1;
8326 break;
8327 case IOR:
8328 const0 |= const1;
8329 break;
8330 case XOR:
8331 const0 ^= const1;
8332 break;
8333 case PLUS:
8334 const0 += const1;
8335 break;
8336 case NEG:
8337 op0 = UNKNOWN;
8338 break;
8339 default:
8340 break;
8341 }
8342 }
8343
8344 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8345 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8346 return 0;
8347
8348 /* If the two constants aren't the same, we can't do anything. The
8349 remaining six cases can all be done. */
8350 else if (const0 != const1)
8351 return 0;
8352
8353 else
8354 switch (op0)
8355 {
8356 case IOR:
8357 if (op1 == AND)
8358 /* (a & b) | b == b */
8359 op0 = SET;
8360 else /* op1 == XOR */
8361 /* (a ^ b) | b == a | b */
8362 {;}
8363 break;
8364
8365 case XOR:
8366 if (op1 == AND)
8367 /* (a & b) ^ b == (~a) & b */
8368 op0 = AND, *pcomp_p = 1;
8369 else /* op1 == IOR */
8370 /* (a | b) ^ b == a & ~b */
8371 op0 = AND, const0 = ~const0;
8372 break;
8373
8374 case AND:
8375 if (op1 == IOR)
8376 /* (a | b) & b == b */
8377 op0 = SET;
8378 else /* op1 == XOR */
8379 /* (a ^ b) & b) == (~a) & b */
8380 *pcomp_p = 1;
8381 break;
8382 default:
8383 break;
8384 }
8385
8386 /* Check for NO-OP cases. */
8387 const0 &= GET_MODE_MASK (mode);
8388 if (const0 == 0
8389 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8390 op0 = UNKNOWN;
8391 else if (const0 == 0 && op0 == AND)
8392 op0 = SET;
8393 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8394 && op0 == AND)
8395 op0 = UNKNOWN;
8396
8397 /* ??? Slightly redundant with the above mask, but not entirely.
8398 Moving this above means we'd have to sign-extend the mode mask
8399 for the final test. */
8400 const0 = trunc_int_for_mode (const0, mode);
8401
8402 *pop0 = op0;
8403 *pconst0 = const0;
8404
8405 return 1;
8406 }
8407 \f
8408 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8409 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8410 that we started with.
8411
8412 The shift is normally computed in the widest mode we find in VAROP, as
8413 long as it isn't a different number of words than RESULT_MODE. Exceptions
8414 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8415
8416 static rtx
8417 simplify_shift_const (rtx x, enum rtx_code code,
8418 enum machine_mode result_mode, rtx varop,
8419 int orig_count)
8420 {
8421 enum rtx_code orig_code = code;
8422 unsigned int count;
8423 int signed_count;
8424 enum machine_mode mode = result_mode;
8425 enum machine_mode shift_mode, tmode;
8426 unsigned int mode_words
8427 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8428 /* We form (outer_op (code varop count) (outer_const)). */
8429 enum rtx_code outer_op = UNKNOWN;
8430 HOST_WIDE_INT outer_const = 0;
8431 rtx const_rtx;
8432 int complement_p = 0;
8433 rtx new;
8434
8435 /* Make sure and truncate the "natural" shift on the way in. We don't
8436 want to do this inside the loop as it makes it more difficult to
8437 combine shifts. */
8438 if (SHIFT_COUNT_TRUNCATED)
8439 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8440
8441 /* If we were given an invalid count, don't do anything except exactly
8442 what was requested. */
8443
8444 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8445 {
8446 if (x)
8447 return x;
8448
8449 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8450 }
8451
8452 count = orig_count;
8453
8454 /* Unless one of the branches of the `if' in this loop does a `continue',
8455 we will `break' the loop after the `if'. */
8456
8457 while (count != 0)
8458 {
8459 /* If we have an operand of (clobber (const_int 0)), just return that
8460 value. */
8461 if (GET_CODE (varop) == CLOBBER)
8462 return varop;
8463
8464 /* If we discovered we had to complement VAROP, leave. Making a NOT
8465 here would cause an infinite loop. */
8466 if (complement_p)
8467 break;
8468
8469 /* Convert ROTATERT to ROTATE. */
8470 if (code == ROTATERT)
8471 {
8472 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8473 code = ROTATE;
8474 if (VECTOR_MODE_P (result_mode))
8475 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8476 else
8477 count = bitsize - count;
8478 }
8479
8480 /* We need to determine what mode we will do the shift in. If the
8481 shift is a right shift or a ROTATE, we must always do it in the mode
8482 it was originally done in. Otherwise, we can do it in MODE, the
8483 widest mode encountered. */
8484 shift_mode
8485 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8486 ? result_mode : mode);
8487
8488 /* Handle cases where the count is greater than the size of the mode
8489 minus 1. For ASHIFT, use the size minus one as the count (this can
8490 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8491 take the count modulo the size. For other shifts, the result is
8492 zero.
8493
8494 Since these shifts are being produced by the compiler by combining
8495 multiple operations, each of which are defined, we know what the
8496 result is supposed to be. */
8497
8498 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8499 {
8500 if (code == ASHIFTRT)
8501 count = GET_MODE_BITSIZE (shift_mode) - 1;
8502 else if (code == ROTATE || code == ROTATERT)
8503 count %= GET_MODE_BITSIZE (shift_mode);
8504 else
8505 {
8506 /* We can't simply return zero because there may be an
8507 outer op. */
8508 varop = const0_rtx;
8509 count = 0;
8510 break;
8511 }
8512 }
8513
8514 /* An arithmetic right shift of a quantity known to be -1 or 0
8515 is a no-op. */
8516 if (code == ASHIFTRT
8517 && (num_sign_bit_copies (varop, shift_mode)
8518 == GET_MODE_BITSIZE (shift_mode)))
8519 {
8520 count = 0;
8521 break;
8522 }
8523
8524 /* If we are doing an arithmetic right shift and discarding all but
8525 the sign bit copies, this is equivalent to doing a shift by the
8526 bitsize minus one. Convert it into that shift because it will often
8527 allow other simplifications. */
8528
8529 if (code == ASHIFTRT
8530 && (count + num_sign_bit_copies (varop, shift_mode)
8531 >= GET_MODE_BITSIZE (shift_mode)))
8532 count = GET_MODE_BITSIZE (shift_mode) - 1;
8533
8534 /* We simplify the tests below and elsewhere by converting
8535 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8536 `make_compound_operation' will convert it to an ASHIFTRT for
8537 those machines (such as VAX) that don't have an LSHIFTRT. */
8538 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8539 && code == ASHIFTRT
8540 && ((nonzero_bits (varop, shift_mode)
8541 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8542 == 0))
8543 code = LSHIFTRT;
8544
8545 if (code == LSHIFTRT
8546 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8547 && !(nonzero_bits (varop, shift_mode) >> count))
8548 varop = const0_rtx;
8549 if (code == ASHIFT
8550 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8551 && !((nonzero_bits (varop, shift_mode) << count)
8552 & GET_MODE_MASK (shift_mode)))
8553 varop = const0_rtx;
8554
8555 switch (GET_CODE (varop))
8556 {
8557 case SIGN_EXTEND:
8558 case ZERO_EXTEND:
8559 case SIGN_EXTRACT:
8560 case ZERO_EXTRACT:
8561 new = expand_compound_operation (varop);
8562 if (new != varop)
8563 {
8564 varop = new;
8565 continue;
8566 }
8567 break;
8568
8569 case MEM:
8570 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8571 minus the width of a smaller mode, we can do this with a
8572 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8573 if ((code == ASHIFTRT || code == LSHIFTRT)
8574 && ! mode_dependent_address_p (XEXP (varop, 0))
8575 && ! MEM_VOLATILE_P (varop)
8576 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8577 MODE_INT, 1)) != BLKmode)
8578 {
8579 new = adjust_address_nv (varop, tmode,
8580 BYTES_BIG_ENDIAN ? 0
8581 : count / BITS_PER_UNIT);
8582
8583 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8584 : ZERO_EXTEND, mode, new);
8585 count = 0;
8586 continue;
8587 }
8588 break;
8589
8590 case USE:
8591 /* Similar to the case above, except that we can only do this if
8592 the resulting mode is the same as that of the underlying
8593 MEM and adjust the address depending on the *bits* endianness
8594 because of the way that bit-field extract insns are defined. */
8595 if ((code == ASHIFTRT || code == LSHIFTRT)
8596 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8597 MODE_INT, 1)) != BLKmode
8598 && tmode == GET_MODE (XEXP (varop, 0)))
8599 {
8600 if (BITS_BIG_ENDIAN)
8601 new = XEXP (varop, 0);
8602 else
8603 {
8604 new = copy_rtx (XEXP (varop, 0));
8605 SUBST (XEXP (new, 0),
8606 plus_constant (XEXP (new, 0),
8607 count / BITS_PER_UNIT));
8608 }
8609
8610 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8611 : ZERO_EXTEND, mode, new);
8612 count = 0;
8613 continue;
8614 }
8615 break;
8616
8617 case SUBREG:
8618 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8619 the same number of words as what we've seen so far. Then store
8620 the widest mode in MODE. */
8621 if (subreg_lowpart_p (varop)
8622 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8623 > GET_MODE_SIZE (GET_MODE (varop)))
8624 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8625 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8626 == mode_words)
8627 {
8628 varop = SUBREG_REG (varop);
8629 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8630 mode = GET_MODE (varop);
8631 continue;
8632 }
8633 break;
8634
8635 case MULT:
8636 /* Some machines use MULT instead of ASHIFT because MULT
8637 is cheaper. But it is still better on those machines to
8638 merge two shifts into one. */
8639 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8640 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8641 {
8642 varop
8643 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8644 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8645 continue;
8646 }
8647 break;
8648
8649 case UDIV:
8650 /* Similar, for when divides are cheaper. */
8651 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8652 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8653 {
8654 varop
8655 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8656 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8657 continue;
8658 }
8659 break;
8660
8661 case ASHIFTRT:
8662 /* If we are extracting just the sign bit of an arithmetic
8663 right shift, that shift is not needed. However, the sign
8664 bit of a wider mode may be different from what would be
8665 interpreted as the sign bit in a narrower mode, so, if
8666 the result is narrower, don't discard the shift. */
8667 if (code == LSHIFTRT
8668 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8669 && (GET_MODE_BITSIZE (result_mode)
8670 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8671 {
8672 varop = XEXP (varop, 0);
8673 continue;
8674 }
8675
8676 /* ... fall through ... */
8677
8678 case LSHIFTRT:
8679 case ASHIFT:
8680 case ROTATE:
8681 /* Here we have two nested shifts. The result is usually the
8682 AND of a new shift with a mask. We compute the result below. */
8683 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8684 && INTVAL (XEXP (varop, 1)) >= 0
8685 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8686 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8687 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8688 {
8689 enum rtx_code first_code = GET_CODE (varop);
8690 unsigned int first_count = INTVAL (XEXP (varop, 1));
8691 unsigned HOST_WIDE_INT mask;
8692 rtx mask_rtx;
8693
8694 /* We have one common special case. We can't do any merging if
8695 the inner code is an ASHIFTRT of a smaller mode. However, if
8696 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8697 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8698 we can convert it to
8699 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8700 This simplifies certain SIGN_EXTEND operations. */
8701 if (code == ASHIFT && first_code == ASHIFTRT
8702 && count == (unsigned int)
8703 (GET_MODE_BITSIZE (result_mode)
8704 - GET_MODE_BITSIZE (GET_MODE (varop))))
8705 {
8706 /* C3 has the low-order C1 bits zero. */
8707
8708 mask = (GET_MODE_MASK (mode)
8709 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8710
8711 varop = simplify_and_const_int (NULL_RTX, result_mode,
8712 XEXP (varop, 0), mask);
8713 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8714 varop, count);
8715 count = first_count;
8716 code = ASHIFTRT;
8717 continue;
8718 }
8719
8720 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8721 than C1 high-order bits equal to the sign bit, we can convert
8722 this to either an ASHIFT or an ASHIFTRT depending on the
8723 two counts.
8724
8725 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8726
8727 if (code == ASHIFTRT && first_code == ASHIFT
8728 && GET_MODE (varop) == shift_mode
8729 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8730 > first_count))
8731 {
8732 varop = XEXP (varop, 0);
8733
8734 signed_count = count - first_count;
8735 if (signed_count < 0)
8736 count = -signed_count, code = ASHIFT;
8737 else
8738 count = signed_count;
8739
8740 continue;
8741 }
8742
8743 /* There are some cases we can't do. If CODE is ASHIFTRT,
8744 we can only do this if FIRST_CODE is also ASHIFTRT.
8745
8746 We can't do the case when CODE is ROTATE and FIRST_CODE is
8747 ASHIFTRT.
8748
8749 If the mode of this shift is not the mode of the outer shift,
8750 we can't do this if either shift is a right shift or ROTATE.
8751
8752 Finally, we can't do any of these if the mode is too wide
8753 unless the codes are the same.
8754
8755 Handle the case where the shift codes are the same
8756 first. */
8757
8758 if (code == first_code)
8759 {
8760 if (GET_MODE (varop) != result_mode
8761 && (code == ASHIFTRT || code == LSHIFTRT
8762 || code == ROTATE))
8763 break;
8764
8765 count += first_count;
8766 varop = XEXP (varop, 0);
8767 continue;
8768 }
8769
8770 if (code == ASHIFTRT
8771 || (code == ROTATE && first_code == ASHIFTRT)
8772 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8773 || (GET_MODE (varop) != result_mode
8774 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8775 || first_code == ROTATE
8776 || code == ROTATE)))
8777 break;
8778
8779 /* To compute the mask to apply after the shift, shift the
8780 nonzero bits of the inner shift the same way the
8781 outer shift will. */
8782
8783 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8784
8785 mask_rtx
8786 = simplify_binary_operation (code, result_mode, mask_rtx,
8787 GEN_INT (count));
8788
8789 /* Give up if we can't compute an outer operation to use. */
8790 if (mask_rtx == 0
8791 || GET_CODE (mask_rtx) != CONST_INT
8792 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8793 INTVAL (mask_rtx),
8794 result_mode, &complement_p))
8795 break;
8796
8797 /* If the shifts are in the same direction, we add the
8798 counts. Otherwise, we subtract them. */
8799 signed_count = count;
8800 if ((code == ASHIFTRT || code == LSHIFTRT)
8801 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8802 signed_count += first_count;
8803 else
8804 signed_count -= first_count;
8805
8806 /* If COUNT is positive, the new shift is usually CODE,
8807 except for the two exceptions below, in which case it is
8808 FIRST_CODE. If the count is negative, FIRST_CODE should
8809 always be used */
8810 if (signed_count > 0
8811 && ((first_code == ROTATE && code == ASHIFT)
8812 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8813 code = first_code, count = signed_count;
8814 else if (signed_count < 0)
8815 code = first_code, count = -signed_count;
8816 else
8817 count = signed_count;
8818
8819 varop = XEXP (varop, 0);
8820 continue;
8821 }
8822
8823 /* If we have (A << B << C) for any shift, we can convert this to
8824 (A << C << B). This wins if A is a constant. Only try this if
8825 B is not a constant. */
8826
8827 else if (GET_CODE (varop) == code
8828 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8829 && 0 != (new
8830 = simplify_binary_operation (code, mode,
8831 XEXP (varop, 0),
8832 GEN_INT (count))))
8833 {
8834 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8835 count = 0;
8836 continue;
8837 }
8838 break;
8839
8840 case NOT:
8841 /* Make this fit the case below. */
8842 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8843 GEN_INT (GET_MODE_MASK (mode)));
8844 continue;
8845
8846 case IOR:
8847 case AND:
8848 case XOR:
8849 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8850 with C the size of VAROP - 1 and the shift is logical if
8851 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8852 we have an (le X 0) operation. If we have an arithmetic shift
8853 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8854 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8855
8856 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8857 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8858 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8859 && (code == LSHIFTRT || code == ASHIFTRT)
8860 && count == (unsigned int)
8861 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8862 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8863 {
8864 count = 0;
8865 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8866 const0_rtx);
8867
8868 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8869 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8870
8871 continue;
8872 }
8873
8874 /* If we have (shift (logical)), move the logical to the outside
8875 to allow it to possibly combine with another logical and the
8876 shift to combine with another shift. This also canonicalizes to
8877 what a ZERO_EXTRACT looks like. Also, some machines have
8878 (and (shift)) insns. */
8879
8880 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8881 /* We can't do this if we have (ashiftrt (xor)) and the
8882 constant has its sign bit set in shift_mode. */
8883 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8884 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8885 shift_mode))
8886 && (new = simplify_binary_operation (code, result_mode,
8887 XEXP (varop, 1),
8888 GEN_INT (count))) != 0
8889 && GET_CODE (new) == CONST_INT
8890 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8891 INTVAL (new), result_mode, &complement_p))
8892 {
8893 varop = XEXP (varop, 0);
8894 continue;
8895 }
8896
8897 /* If we can't do that, try to simplify the shift in each arm of the
8898 logical expression, make a new logical expression, and apply
8899 the inverse distributive law. This also can't be done
8900 for some (ashiftrt (xor)). */
8901 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8902 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8903 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8904 shift_mode)))
8905 {
8906 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8907 XEXP (varop, 0), count);
8908 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8909 XEXP (varop, 1), count);
8910
8911 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8912 varop = apply_distributive_law (varop);
8913
8914 count = 0;
8915 continue;
8916 }
8917 break;
8918
8919 case EQ:
8920 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8921 says that the sign bit can be tested, FOO has mode MODE, C is
8922 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8923 that may be nonzero. */
8924 if (code == LSHIFTRT
8925 && XEXP (varop, 1) == const0_rtx
8926 && GET_MODE (XEXP (varop, 0)) == result_mode
8927 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8928 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8929 && ((STORE_FLAG_VALUE
8930 & ((HOST_WIDE_INT) 1
8931 < (GET_MODE_BITSIZE (result_mode) - 1))))
8932 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8933 && merge_outer_ops (&outer_op, &outer_const, XOR,
8934 (HOST_WIDE_INT) 1, result_mode,
8935 &complement_p))
8936 {
8937 varop = XEXP (varop, 0);
8938 count = 0;
8939 continue;
8940 }
8941 break;
8942
8943 case NEG:
8944 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8945 than the number of bits in the mode is equivalent to A. */
8946 if (code == LSHIFTRT
8947 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8948 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8949 {
8950 varop = XEXP (varop, 0);
8951 count = 0;
8952 continue;
8953 }
8954
8955 /* NEG commutes with ASHIFT since it is multiplication. Move the
8956 NEG outside to allow shifts to combine. */
8957 if (code == ASHIFT
8958 && merge_outer_ops (&outer_op, &outer_const, NEG,
8959 (HOST_WIDE_INT) 0, result_mode,
8960 &complement_p))
8961 {
8962 varop = XEXP (varop, 0);
8963 continue;
8964 }
8965 break;
8966
8967 case PLUS:
8968 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8969 is one less than the number of bits in the mode is
8970 equivalent to (xor A 1). */
8971 if (code == LSHIFTRT
8972 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8973 && XEXP (varop, 1) == constm1_rtx
8974 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8975 && merge_outer_ops (&outer_op, &outer_const, XOR,
8976 (HOST_WIDE_INT) 1, result_mode,
8977 &complement_p))
8978 {
8979 count = 0;
8980 varop = XEXP (varop, 0);
8981 continue;
8982 }
8983
8984 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8985 that might be nonzero in BAR are those being shifted out and those
8986 bits are known zero in FOO, we can replace the PLUS with FOO.
8987 Similarly in the other operand order. This code occurs when
8988 we are computing the size of a variable-size array. */
8989
8990 if ((code == ASHIFTRT || code == LSHIFTRT)
8991 && count < HOST_BITS_PER_WIDE_INT
8992 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8993 && (nonzero_bits (XEXP (varop, 1), result_mode)
8994 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8995 {
8996 varop = XEXP (varop, 0);
8997 continue;
8998 }
8999 else if ((code == ASHIFTRT || code == LSHIFTRT)
9000 && count < HOST_BITS_PER_WIDE_INT
9001 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9002 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9003 >> count)
9004 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9005 & nonzero_bits (XEXP (varop, 1),
9006 result_mode)))
9007 {
9008 varop = XEXP (varop, 1);
9009 continue;
9010 }
9011
9012 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9013 if (code == ASHIFT
9014 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9015 && (new = simplify_binary_operation (ASHIFT, result_mode,
9016 XEXP (varop, 1),
9017 GEN_INT (count))) != 0
9018 && GET_CODE (new) == CONST_INT
9019 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9020 INTVAL (new), result_mode, &complement_p))
9021 {
9022 varop = XEXP (varop, 0);
9023 continue;
9024 }
9025
9026 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9027 signbit', and attempt to change the PLUS to an XOR and move it to
9028 the outer operation as is done above in the AND/IOR/XOR case
9029 leg for shift(logical). See details in logical handling above
9030 for reasoning in doing so. */
9031 if (code == LSHIFTRT
9032 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9033 && mode_signbit_p (result_mode, XEXP (varop, 1))
9034 && (new = simplify_binary_operation (code, result_mode,
9035 XEXP (varop, 1),
9036 GEN_INT (count))) != 0
9037 && GET_CODE (new) == CONST_INT
9038 && merge_outer_ops (&outer_op, &outer_const, XOR,
9039 INTVAL (new), result_mode, &complement_p))
9040 {
9041 varop = XEXP (varop, 0);
9042 continue;
9043 }
9044
9045 break;
9046
9047 case MINUS:
9048 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9049 with C the size of VAROP - 1 and the shift is logical if
9050 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9051 we have a (gt X 0) operation. If the shift is arithmetic with
9052 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9053 we have a (neg (gt X 0)) operation. */
9054
9055 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9056 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9057 && count == (unsigned int)
9058 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9059 && (code == LSHIFTRT || code == ASHIFTRT)
9060 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9061 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9062 == count
9063 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9064 {
9065 count = 0;
9066 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9067 const0_rtx);
9068
9069 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9070 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9071
9072 continue;
9073 }
9074 break;
9075
9076 case TRUNCATE:
9077 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9078 if the truncate does not affect the value. */
9079 if (code == LSHIFTRT
9080 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9081 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9082 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9083 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9084 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9085 {
9086 rtx varop_inner = XEXP (varop, 0);
9087
9088 varop_inner
9089 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9090 XEXP (varop_inner, 0),
9091 GEN_INT
9092 (count + INTVAL (XEXP (varop_inner, 1))));
9093 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9094 count = 0;
9095 continue;
9096 }
9097 break;
9098
9099 default:
9100 break;
9101 }
9102
9103 break;
9104 }
9105
9106 /* We need to determine what mode to do the shift in. If the shift is
9107 a right shift or ROTATE, we must always do it in the mode it was
9108 originally done in. Otherwise, we can do it in MODE, the widest mode
9109 encountered. The code we care about is that of the shift that will
9110 actually be done, not the shift that was originally requested. */
9111 shift_mode
9112 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9113 ? result_mode : mode);
9114
9115 /* We have now finished analyzing the shift. The result should be
9116 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9117 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9118 to the result of the shift. OUTER_CONST is the relevant constant,
9119 but we must turn off all bits turned off in the shift.
9120
9121 If we were passed a value for X, see if we can use any pieces of
9122 it. If not, make new rtx. */
9123
9124 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9125 && GET_CODE (XEXP (x, 1)) == CONST_INT
9126 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9127 const_rtx = XEXP (x, 1);
9128 else
9129 const_rtx = GEN_INT (count);
9130
9131 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9132 && GET_MODE (XEXP (x, 0)) == shift_mode
9133 && SUBREG_REG (XEXP (x, 0)) == varop)
9134 varop = XEXP (x, 0);
9135 else if (GET_MODE (varop) != shift_mode)
9136 varop = gen_lowpart (shift_mode, varop);
9137
9138 /* If we can't make the SUBREG, try to return what we were given. */
9139 if (GET_CODE (varop) == CLOBBER)
9140 return x ? x : varop;
9141
9142 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9143 if (new != 0)
9144 x = new;
9145 else
9146 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9147
9148 /* If we have an outer operation and we just made a shift, it is
9149 possible that we could have simplified the shift were it not
9150 for the outer operation. So try to do the simplification
9151 recursively. */
9152
9153 if (outer_op != UNKNOWN && GET_CODE (x) == code
9154 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9155 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9156 INTVAL (XEXP (x, 1)));
9157
9158 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9159 turn off all the bits that the shift would have turned off. */
9160 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9161 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9162 GET_MODE_MASK (result_mode) >> orig_count);
9163
9164 /* Do the remainder of the processing in RESULT_MODE. */
9165 x = gen_lowpart (result_mode, x);
9166
9167 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9168 operation. */
9169 if (complement_p)
9170 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9171
9172 if (outer_op != UNKNOWN)
9173 {
9174 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9175 outer_const = trunc_int_for_mode (outer_const, result_mode);
9176
9177 if (outer_op == AND)
9178 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9179 else if (outer_op == SET)
9180 /* This means that we have determined that the result is
9181 equivalent to a constant. This should be rare. */
9182 x = GEN_INT (outer_const);
9183 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9184 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9185 else
9186 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9187 }
9188
9189 return x;
9190 }
9191 \f
9192 /* Like recog, but we receive the address of a pointer to a new pattern.
9193 We try to match the rtx that the pointer points to.
9194 If that fails, we may try to modify or replace the pattern,
9195 storing the replacement into the same pointer object.
9196
9197 Modifications include deletion or addition of CLOBBERs.
9198
9199 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9200 the CLOBBERs are placed.
9201
9202 The value is the final insn code from the pattern ultimately matched,
9203 or -1. */
9204
9205 static int
9206 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9207 {
9208 rtx pat = *pnewpat;
9209 int insn_code_number;
9210 int num_clobbers_to_add = 0;
9211 int i;
9212 rtx notes = 0;
9213 rtx old_notes, old_pat;
9214
9215 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9216 we use to indicate that something didn't match. If we find such a
9217 thing, force rejection. */
9218 if (GET_CODE (pat) == PARALLEL)
9219 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9220 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9221 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9222 return -1;
9223
9224 old_pat = PATTERN (insn);
9225 old_notes = REG_NOTES (insn);
9226 PATTERN (insn) = pat;
9227 REG_NOTES (insn) = 0;
9228
9229 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9230
9231 /* If it isn't, there is the possibility that we previously had an insn
9232 that clobbered some register as a side effect, but the combined
9233 insn doesn't need to do that. So try once more without the clobbers
9234 unless this represents an ASM insn. */
9235
9236 if (insn_code_number < 0 && ! check_asm_operands (pat)
9237 && GET_CODE (pat) == PARALLEL)
9238 {
9239 int pos;
9240
9241 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9242 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9243 {
9244 if (i != pos)
9245 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9246 pos++;
9247 }
9248
9249 SUBST_INT (XVECLEN (pat, 0), pos);
9250
9251 if (pos == 1)
9252 pat = XVECEXP (pat, 0, 0);
9253
9254 PATTERN (insn) = pat;
9255 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9256 }
9257 PATTERN (insn) = old_pat;
9258 REG_NOTES (insn) = old_notes;
9259
9260 /* Recognize all noop sets, these will be killed by followup pass. */
9261 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9262 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9263
9264 /* If we had any clobbers to add, make a new pattern than contains
9265 them. Then check to make sure that all of them are dead. */
9266 if (num_clobbers_to_add)
9267 {
9268 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9269 rtvec_alloc (GET_CODE (pat) == PARALLEL
9270 ? (XVECLEN (pat, 0)
9271 + num_clobbers_to_add)
9272 : num_clobbers_to_add + 1));
9273
9274 if (GET_CODE (pat) == PARALLEL)
9275 for (i = 0; i < XVECLEN (pat, 0); i++)
9276 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9277 else
9278 XVECEXP (newpat, 0, 0) = pat;
9279
9280 add_clobbers (newpat, insn_code_number);
9281
9282 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9283 i < XVECLEN (newpat, 0); i++)
9284 {
9285 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9286 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9287 return -1;
9288 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9289 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9290 }
9291 pat = newpat;
9292 }
9293
9294 *pnewpat = pat;
9295 *pnotes = notes;
9296
9297 return insn_code_number;
9298 }
9299 \f
9300 /* Like gen_lowpart_general but for use by combine. In combine it
9301 is not possible to create any new pseudoregs. However, it is
9302 safe to create invalid memory addresses, because combine will
9303 try to recognize them and all they will do is make the combine
9304 attempt fail.
9305
9306 If for some reason this cannot do its job, an rtx
9307 (clobber (const_int 0)) is returned.
9308 An insn containing that will not be recognized. */
9309
9310 static rtx
9311 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9312 {
9313 enum machine_mode imode = GET_MODE (x);
9314 unsigned int osize = GET_MODE_SIZE (omode);
9315 unsigned int isize = GET_MODE_SIZE (imode);
9316 rtx result;
9317
9318 if (omode == imode)
9319 return x;
9320
9321 /* Return identity if this is a CONST or symbolic reference. */
9322 if (omode == Pmode
9323 && (GET_CODE (x) == CONST
9324 || GET_CODE (x) == SYMBOL_REF
9325 || GET_CODE (x) == LABEL_REF))
9326 return x;
9327
9328 /* We can only support MODE being wider than a word if X is a
9329 constant integer or has a mode the same size. */
9330 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9331 && ! ((imode == VOIDmode
9332 && (GET_CODE (x) == CONST_INT
9333 || GET_CODE (x) == CONST_DOUBLE))
9334 || isize == osize))
9335 goto fail;
9336
9337 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9338 won't know what to do. So we will strip off the SUBREG here and
9339 process normally. */
9340 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9341 {
9342 x = SUBREG_REG (x);
9343 if (GET_MODE (x) == omode)
9344 return x;
9345 }
9346
9347 result = gen_lowpart_common (omode, x);
9348
9349 #ifdef CANNOT_CHANGE_MODE_CLASS
9350 if (result != 0 && GET_CODE (result) == SUBREG)
9351 record_subregs_of_mode (result);
9352 #endif
9353
9354 if (result)
9355 return result;
9356
9357 if (MEM_P (x))
9358 {
9359 int offset = 0;
9360
9361 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9362 address. */
9363 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9364 goto fail;
9365
9366 /* If we want to refer to something bigger than the original memref,
9367 generate a paradoxical subreg instead. That will force a reload
9368 of the original memref X. */
9369 if (isize < osize)
9370 return gen_rtx_SUBREG (omode, x, 0);
9371
9372 if (WORDS_BIG_ENDIAN)
9373 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9374
9375 /* Adjust the address so that the address-after-the-data is unchanged. */
9376 if (BYTES_BIG_ENDIAN)
9377 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9378
9379 return adjust_address_nv (x, omode, offset);
9380 }
9381
9382 /* If X is a comparison operator, rewrite it in a new mode. This
9383 probably won't match, but may allow further simplifications. */
9384 else if (COMPARISON_P (x))
9385 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9386
9387 /* If we couldn't simplify X any other way, just enclose it in a
9388 SUBREG. Normally, this SUBREG won't match, but some patterns may
9389 include an explicit SUBREG or we may simplify it further in combine. */
9390 else
9391 {
9392 int offset = 0;
9393 rtx res;
9394
9395 offset = subreg_lowpart_offset (omode, imode);
9396 if (imode == VOIDmode)
9397 {
9398 imode = int_mode_for_mode (omode);
9399 x = gen_lowpart_common (imode, x);
9400 if (x == NULL)
9401 goto fail;
9402 }
9403 res = simplify_gen_subreg (omode, x, imode, offset);
9404 if (res)
9405 return res;
9406 }
9407
9408 fail:
9409 return gen_rtx_CLOBBER (imode, const0_rtx);
9410 }
9411 \f
9412 /* These routines make binary and unary operations by first seeing if they
9413 fold; if not, a new expression is allocated. */
9414
9415 static rtx
9416 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9417 {
9418 rtx result;
9419 rtx tem;
9420
9421 if (GET_CODE (op0) == CLOBBER)
9422 return op0;
9423 else if (GET_CODE (op1) == CLOBBER)
9424 return op1;
9425
9426 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9427 && swap_commutative_operands_p (op0, op1))
9428 tem = op0, op0 = op1, op1 = tem;
9429
9430 if (GET_RTX_CLASS (code) == RTX_COMPARE
9431 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9432 {
9433 enum machine_mode op_mode = GET_MODE (op0);
9434
9435 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9436 just (REL_OP X Y). */
9437 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9438 {
9439 op1 = XEXP (op0, 1);
9440 op0 = XEXP (op0, 0);
9441 op_mode = GET_MODE (op0);
9442 }
9443
9444 if (op_mode == VOIDmode)
9445 op_mode = GET_MODE (op1);
9446 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9447 }
9448 else
9449 result = simplify_binary_operation (code, mode, op0, op1);
9450
9451 if (result)
9452 return result;
9453
9454 /* Put complex operands first and constants second. */
9455 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9456 && swap_commutative_operands_p (op0, op1))
9457 return gen_rtx_fmt_ee (code, mode, op1, op0);
9458
9459 /* If we are turning off bits already known off in OP0, we need not do
9460 an AND. */
9461 else if (code == AND && GET_CODE (op1) == CONST_INT
9462 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9463 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9464 return op0;
9465
9466 return gen_rtx_fmt_ee (code, mode, op0, op1);
9467 }
9468 \f
9469 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9470 comparison code that will be tested.
9471
9472 The result is a possibly different comparison code to use. *POP0 and
9473 *POP1 may be updated.
9474
9475 It is possible that we might detect that a comparison is either always
9476 true or always false. However, we do not perform general constant
9477 folding in combine, so this knowledge isn't useful. Such tautologies
9478 should have been detected earlier. Hence we ignore all such cases. */
9479
9480 static enum rtx_code
9481 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9482 {
9483 rtx op0 = *pop0;
9484 rtx op1 = *pop1;
9485 rtx tem, tem1;
9486 int i;
9487 enum machine_mode mode, tmode;
9488
9489 /* Try a few ways of applying the same transformation to both operands. */
9490 while (1)
9491 {
9492 #ifndef WORD_REGISTER_OPERATIONS
9493 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9494 so check specially. */
9495 if (code != GTU && code != GEU && code != LTU && code != LEU
9496 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9497 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9498 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9499 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9500 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9501 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9502 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9503 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9504 && XEXP (op0, 1) == XEXP (op1, 1)
9505 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9506 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9507 && (INTVAL (XEXP (op0, 1))
9508 == (GET_MODE_BITSIZE (GET_MODE (op0))
9509 - (GET_MODE_BITSIZE
9510 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9511 {
9512 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9513 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9514 }
9515 #endif
9516
9517 /* If both operands are the same constant shift, see if we can ignore the
9518 shift. We can if the shift is a rotate or if the bits shifted out of
9519 this shift are known to be zero for both inputs and if the type of
9520 comparison is compatible with the shift. */
9521 if (GET_CODE (op0) == GET_CODE (op1)
9522 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9523 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9524 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9525 && (code != GT && code != LT && code != GE && code != LE))
9526 || (GET_CODE (op0) == ASHIFTRT
9527 && (code != GTU && code != LTU
9528 && code != GEU && code != LEU)))
9529 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9530 && INTVAL (XEXP (op0, 1)) >= 0
9531 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9532 && XEXP (op0, 1) == XEXP (op1, 1))
9533 {
9534 enum machine_mode mode = GET_MODE (op0);
9535 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9536 int shift_count = INTVAL (XEXP (op0, 1));
9537
9538 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9539 mask &= (mask >> shift_count) << shift_count;
9540 else if (GET_CODE (op0) == ASHIFT)
9541 mask = (mask & (mask << shift_count)) >> shift_count;
9542
9543 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9544 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9545 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9546 else
9547 break;
9548 }
9549
9550 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9551 SUBREGs are of the same mode, and, in both cases, the AND would
9552 be redundant if the comparison was done in the narrower mode,
9553 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9554 and the operand's possibly nonzero bits are 0xffffff01; in that case
9555 if we only care about QImode, we don't need the AND). This case
9556 occurs if the output mode of an scc insn is not SImode and
9557 STORE_FLAG_VALUE == 1 (e.g., the 386).
9558
9559 Similarly, check for a case where the AND's are ZERO_EXTEND
9560 operations from some narrower mode even though a SUBREG is not
9561 present. */
9562
9563 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9564 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9565 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9566 {
9567 rtx inner_op0 = XEXP (op0, 0);
9568 rtx inner_op1 = XEXP (op1, 0);
9569 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9570 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9571 int changed = 0;
9572
9573 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9574 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9575 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9576 && (GET_MODE (SUBREG_REG (inner_op0))
9577 == GET_MODE (SUBREG_REG (inner_op1)))
9578 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9579 <= HOST_BITS_PER_WIDE_INT)
9580 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9581 GET_MODE (SUBREG_REG (inner_op0)))))
9582 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9583 GET_MODE (SUBREG_REG (inner_op1))))))
9584 {
9585 op0 = SUBREG_REG (inner_op0);
9586 op1 = SUBREG_REG (inner_op1);
9587
9588 /* The resulting comparison is always unsigned since we masked
9589 off the original sign bit. */
9590 code = unsigned_condition (code);
9591
9592 changed = 1;
9593 }
9594
9595 else if (c0 == c1)
9596 for (tmode = GET_CLASS_NARROWEST_MODE
9597 (GET_MODE_CLASS (GET_MODE (op0)));
9598 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9599 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9600 {
9601 op0 = gen_lowpart (tmode, inner_op0);
9602 op1 = gen_lowpart (tmode, inner_op1);
9603 code = unsigned_condition (code);
9604 changed = 1;
9605 break;
9606 }
9607
9608 if (! changed)
9609 break;
9610 }
9611
9612 /* If both operands are NOT, we can strip off the outer operation
9613 and adjust the comparison code for swapped operands; similarly for
9614 NEG, except that this must be an equality comparison. */
9615 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9616 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9617 && (code == EQ || code == NE)))
9618 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9619
9620 else
9621 break;
9622 }
9623
9624 /* If the first operand is a constant, swap the operands and adjust the
9625 comparison code appropriately, but don't do this if the second operand
9626 is already a constant integer. */
9627 if (swap_commutative_operands_p (op0, op1))
9628 {
9629 tem = op0, op0 = op1, op1 = tem;
9630 code = swap_condition (code);
9631 }
9632
9633 /* We now enter a loop during which we will try to simplify the comparison.
9634 For the most part, we only are concerned with comparisons with zero,
9635 but some things may really be comparisons with zero but not start
9636 out looking that way. */
9637
9638 while (GET_CODE (op1) == CONST_INT)
9639 {
9640 enum machine_mode mode = GET_MODE (op0);
9641 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9642 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9643 int equality_comparison_p;
9644 int sign_bit_comparison_p;
9645 int unsigned_comparison_p;
9646 HOST_WIDE_INT const_op;
9647
9648 /* We only want to handle integral modes. This catches VOIDmode,
9649 CCmode, and the floating-point modes. An exception is that we
9650 can handle VOIDmode if OP0 is a COMPARE or a comparison
9651 operation. */
9652
9653 if (GET_MODE_CLASS (mode) != MODE_INT
9654 && ! (mode == VOIDmode
9655 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9656 break;
9657
9658 /* Get the constant we are comparing against and turn off all bits
9659 not on in our mode. */
9660 const_op = INTVAL (op1);
9661 if (mode != VOIDmode)
9662 const_op = trunc_int_for_mode (const_op, mode);
9663 op1 = GEN_INT (const_op);
9664
9665 /* If we are comparing against a constant power of two and the value
9666 being compared can only have that single bit nonzero (e.g., it was
9667 `and'ed with that bit), we can replace this with a comparison
9668 with zero. */
9669 if (const_op
9670 && (code == EQ || code == NE || code == GE || code == GEU
9671 || code == LT || code == LTU)
9672 && mode_width <= HOST_BITS_PER_WIDE_INT
9673 && exact_log2 (const_op) >= 0
9674 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9675 {
9676 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9677 op1 = const0_rtx, const_op = 0;
9678 }
9679
9680 /* Similarly, if we are comparing a value known to be either -1 or
9681 0 with -1, change it to the opposite comparison against zero. */
9682
9683 if (const_op == -1
9684 && (code == EQ || code == NE || code == GT || code == LE
9685 || code == GEU || code == LTU)
9686 && num_sign_bit_copies (op0, mode) == mode_width)
9687 {
9688 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9689 op1 = const0_rtx, const_op = 0;
9690 }
9691
9692 /* Do some canonicalizations based on the comparison code. We prefer
9693 comparisons against zero and then prefer equality comparisons.
9694 If we can reduce the size of a constant, we will do that too. */
9695
9696 switch (code)
9697 {
9698 case LT:
9699 /* < C is equivalent to <= (C - 1) */
9700 if (const_op > 0)
9701 {
9702 const_op -= 1;
9703 op1 = GEN_INT (const_op);
9704 code = LE;
9705 /* ... fall through to LE case below. */
9706 }
9707 else
9708 break;
9709
9710 case LE:
9711 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9712 if (const_op < 0)
9713 {
9714 const_op += 1;
9715 op1 = GEN_INT (const_op);
9716 code = LT;
9717 }
9718
9719 /* If we are doing a <= 0 comparison on a value known to have
9720 a zero sign bit, we can replace this with == 0. */
9721 else if (const_op == 0
9722 && mode_width <= HOST_BITS_PER_WIDE_INT
9723 && (nonzero_bits (op0, mode)
9724 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9725 code = EQ;
9726 break;
9727
9728 case GE:
9729 /* >= C is equivalent to > (C - 1). */
9730 if (const_op > 0)
9731 {
9732 const_op -= 1;
9733 op1 = GEN_INT (const_op);
9734 code = GT;
9735 /* ... fall through to GT below. */
9736 }
9737 else
9738 break;
9739
9740 case GT:
9741 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9742 if (const_op < 0)
9743 {
9744 const_op += 1;
9745 op1 = GEN_INT (const_op);
9746 code = GE;
9747 }
9748
9749 /* If we are doing a > 0 comparison on a value known to have
9750 a zero sign bit, we can replace this with != 0. */
9751 else if (const_op == 0
9752 && mode_width <= HOST_BITS_PER_WIDE_INT
9753 && (nonzero_bits (op0, mode)
9754 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9755 code = NE;
9756 break;
9757
9758 case LTU:
9759 /* < C is equivalent to <= (C - 1). */
9760 if (const_op > 0)
9761 {
9762 const_op -= 1;
9763 op1 = GEN_INT (const_op);
9764 code = LEU;
9765 /* ... fall through ... */
9766 }
9767
9768 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9769 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9770 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9771 {
9772 const_op = 0, op1 = const0_rtx;
9773 code = GE;
9774 break;
9775 }
9776 else
9777 break;
9778
9779 case LEU:
9780 /* unsigned <= 0 is equivalent to == 0 */
9781 if (const_op == 0)
9782 code = EQ;
9783
9784 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9785 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9786 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9787 {
9788 const_op = 0, op1 = const0_rtx;
9789 code = GE;
9790 }
9791 break;
9792
9793 case GEU:
9794 /* >= C is equivalent to > (C - 1). */
9795 if (const_op > 1)
9796 {
9797 const_op -= 1;
9798 op1 = GEN_INT (const_op);
9799 code = GTU;
9800 /* ... fall through ... */
9801 }
9802
9803 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9804 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9805 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9806 {
9807 const_op = 0, op1 = const0_rtx;
9808 code = LT;
9809 break;
9810 }
9811 else
9812 break;
9813
9814 case GTU:
9815 /* unsigned > 0 is equivalent to != 0 */
9816 if (const_op == 0)
9817 code = NE;
9818
9819 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9820 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9821 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9822 {
9823 const_op = 0, op1 = const0_rtx;
9824 code = LT;
9825 }
9826 break;
9827
9828 default:
9829 break;
9830 }
9831
9832 /* Compute some predicates to simplify code below. */
9833
9834 equality_comparison_p = (code == EQ || code == NE);
9835 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9836 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9837 || code == GEU);
9838
9839 /* If this is a sign bit comparison and we can do arithmetic in
9840 MODE, say that we will only be needing the sign bit of OP0. */
9841 if (sign_bit_comparison_p
9842 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9843 op0 = force_to_mode (op0, mode,
9844 ((HOST_WIDE_INT) 1
9845 << (GET_MODE_BITSIZE (mode) - 1)),
9846 NULL_RTX, 0);
9847
9848 /* Now try cases based on the opcode of OP0. If none of the cases
9849 does a "continue", we exit this loop immediately after the
9850 switch. */
9851
9852 switch (GET_CODE (op0))
9853 {
9854 case ZERO_EXTRACT:
9855 /* If we are extracting a single bit from a variable position in
9856 a constant that has only a single bit set and are comparing it
9857 with zero, we can convert this into an equality comparison
9858 between the position and the location of the single bit. */
9859 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9860 have already reduced the shift count modulo the word size. */
9861 if (!SHIFT_COUNT_TRUNCATED
9862 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9863 && XEXP (op0, 1) == const1_rtx
9864 && equality_comparison_p && const_op == 0
9865 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9866 {
9867 if (BITS_BIG_ENDIAN)
9868 {
9869 enum machine_mode new_mode
9870 = mode_for_extraction (EP_extzv, 1);
9871 if (new_mode == MAX_MACHINE_MODE)
9872 i = BITS_PER_WORD - 1 - i;
9873 else
9874 {
9875 mode = new_mode;
9876 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9877 }
9878 }
9879
9880 op0 = XEXP (op0, 2);
9881 op1 = GEN_INT (i);
9882 const_op = i;
9883
9884 /* Result is nonzero iff shift count is equal to I. */
9885 code = reverse_condition (code);
9886 continue;
9887 }
9888
9889 /* ... fall through ... */
9890
9891 case SIGN_EXTRACT:
9892 tem = expand_compound_operation (op0);
9893 if (tem != op0)
9894 {
9895 op0 = tem;
9896 continue;
9897 }
9898 break;
9899
9900 case NOT:
9901 /* If testing for equality, we can take the NOT of the constant. */
9902 if (equality_comparison_p
9903 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9904 {
9905 op0 = XEXP (op0, 0);
9906 op1 = tem;
9907 continue;
9908 }
9909
9910 /* If just looking at the sign bit, reverse the sense of the
9911 comparison. */
9912 if (sign_bit_comparison_p)
9913 {
9914 op0 = XEXP (op0, 0);
9915 code = (code == GE ? LT : GE);
9916 continue;
9917 }
9918 break;
9919
9920 case NEG:
9921 /* If testing for equality, we can take the NEG of the constant. */
9922 if (equality_comparison_p
9923 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9924 {
9925 op0 = XEXP (op0, 0);
9926 op1 = tem;
9927 continue;
9928 }
9929
9930 /* The remaining cases only apply to comparisons with zero. */
9931 if (const_op != 0)
9932 break;
9933
9934 /* When X is ABS or is known positive,
9935 (neg X) is < 0 if and only if X != 0. */
9936
9937 if (sign_bit_comparison_p
9938 && (GET_CODE (XEXP (op0, 0)) == ABS
9939 || (mode_width <= HOST_BITS_PER_WIDE_INT
9940 && (nonzero_bits (XEXP (op0, 0), mode)
9941 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9942 {
9943 op0 = XEXP (op0, 0);
9944 code = (code == LT ? NE : EQ);
9945 continue;
9946 }
9947
9948 /* If we have NEG of something whose two high-order bits are the
9949 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9950 if (num_sign_bit_copies (op0, mode) >= 2)
9951 {
9952 op0 = XEXP (op0, 0);
9953 code = swap_condition (code);
9954 continue;
9955 }
9956 break;
9957
9958 case ROTATE:
9959 /* If we are testing equality and our count is a constant, we
9960 can perform the inverse operation on our RHS. */
9961 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9962 && (tem = simplify_binary_operation (ROTATERT, mode,
9963 op1, XEXP (op0, 1))) != 0)
9964 {
9965 op0 = XEXP (op0, 0);
9966 op1 = tem;
9967 continue;
9968 }
9969
9970 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9971 a particular bit. Convert it to an AND of a constant of that
9972 bit. This will be converted into a ZERO_EXTRACT. */
9973 if (const_op == 0 && sign_bit_comparison_p
9974 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9975 && mode_width <= HOST_BITS_PER_WIDE_INT)
9976 {
9977 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9978 ((HOST_WIDE_INT) 1
9979 << (mode_width - 1
9980 - INTVAL (XEXP (op0, 1)))));
9981 code = (code == LT ? NE : EQ);
9982 continue;
9983 }
9984
9985 /* Fall through. */
9986
9987 case ABS:
9988 /* ABS is ignorable inside an equality comparison with zero. */
9989 if (const_op == 0 && equality_comparison_p)
9990 {
9991 op0 = XEXP (op0, 0);
9992 continue;
9993 }
9994 break;
9995
9996 case SIGN_EXTEND:
9997 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9998 to (compare FOO CONST) if CONST fits in FOO's mode and we
9999 are either testing inequality or have an unsigned comparison
10000 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10001 if (! unsigned_comparison_p
10002 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10003 <= HOST_BITS_PER_WIDE_INT)
10004 && ((unsigned HOST_WIDE_INT) const_op
10005 < (((unsigned HOST_WIDE_INT) 1
10006 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10007 {
10008 op0 = XEXP (op0, 0);
10009 continue;
10010 }
10011 break;
10012
10013 case SUBREG:
10014 /* Check for the case where we are comparing A - C1 with C2,
10015 both constants are smaller than 1/2 the maximum positive
10016 value in MODE, and the comparison is equality or unsigned.
10017 In that case, if A is either zero-extended to MODE or has
10018 sufficient sign bits so that the high-order bit in MODE
10019 is a copy of the sign in the inner mode, we can prove that it is
10020 safe to do the operation in the wider mode. This simplifies
10021 many range checks. */
10022
10023 if (mode_width <= HOST_BITS_PER_WIDE_INT
10024 && subreg_lowpart_p (op0)
10025 && GET_CODE (SUBREG_REG (op0)) == PLUS
10026 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10027 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10028 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10029 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10030 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10031 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10032 GET_MODE (SUBREG_REG (op0)))
10033 & ~GET_MODE_MASK (mode))
10034 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10035 GET_MODE (SUBREG_REG (op0)))
10036 > (unsigned int)
10037 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10038 - GET_MODE_BITSIZE (mode)))))
10039 {
10040 op0 = SUBREG_REG (op0);
10041 continue;
10042 }
10043
10044 /* If the inner mode is narrower and we are extracting the low part,
10045 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10046 if (subreg_lowpart_p (op0)
10047 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10048 /* Fall through */ ;
10049 else
10050 break;
10051
10052 /* ... fall through ... */
10053
10054 case ZERO_EXTEND:
10055 if ((unsigned_comparison_p || equality_comparison_p)
10056 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10057 <= HOST_BITS_PER_WIDE_INT)
10058 && ((unsigned HOST_WIDE_INT) const_op
10059 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10060 {
10061 op0 = XEXP (op0, 0);
10062 continue;
10063 }
10064 break;
10065
10066 case PLUS:
10067 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10068 this for equality comparisons due to pathological cases involving
10069 overflows. */
10070 if (equality_comparison_p
10071 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10072 op1, XEXP (op0, 1))))
10073 {
10074 op0 = XEXP (op0, 0);
10075 op1 = tem;
10076 continue;
10077 }
10078
10079 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10080 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10081 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10082 {
10083 op0 = XEXP (XEXP (op0, 0), 0);
10084 code = (code == LT ? EQ : NE);
10085 continue;
10086 }
10087 break;
10088
10089 case MINUS:
10090 /* We used to optimize signed comparisons against zero, but that
10091 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10092 arrive here as equality comparisons, or (GEU, LTU) are
10093 optimized away. No need to special-case them. */
10094
10095 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10096 (eq B (minus A C)), whichever simplifies. We can only do
10097 this for equality comparisons due to pathological cases involving
10098 overflows. */
10099 if (equality_comparison_p
10100 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10101 XEXP (op0, 1), op1)))
10102 {
10103 op0 = XEXP (op0, 0);
10104 op1 = tem;
10105 continue;
10106 }
10107
10108 if (equality_comparison_p
10109 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10110 XEXP (op0, 0), op1)))
10111 {
10112 op0 = XEXP (op0, 1);
10113 op1 = tem;
10114 continue;
10115 }
10116
10117 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10118 of bits in X minus 1, is one iff X > 0. */
10119 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10120 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10121 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10122 == mode_width - 1
10123 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10124 {
10125 op0 = XEXP (op0, 1);
10126 code = (code == GE ? LE : GT);
10127 continue;
10128 }
10129 break;
10130
10131 case XOR:
10132 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10133 if C is zero or B is a constant. */
10134 if (equality_comparison_p
10135 && 0 != (tem = simplify_binary_operation (XOR, mode,
10136 XEXP (op0, 1), op1)))
10137 {
10138 op0 = XEXP (op0, 0);
10139 op1 = tem;
10140 continue;
10141 }
10142 break;
10143
10144 case EQ: case NE:
10145 case UNEQ: case LTGT:
10146 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10147 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10148 case UNORDERED: case ORDERED:
10149 /* We can't do anything if OP0 is a condition code value, rather
10150 than an actual data value. */
10151 if (const_op != 0
10152 || CC0_P (XEXP (op0, 0))
10153 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10154 break;
10155
10156 /* Get the two operands being compared. */
10157 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10158 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10159 else
10160 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10161
10162 /* Check for the cases where we simply want the result of the
10163 earlier test or the opposite of that result. */
10164 if (code == NE || code == EQ
10165 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10166 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10167 && (STORE_FLAG_VALUE
10168 & (((HOST_WIDE_INT) 1
10169 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10170 && (code == LT || code == GE)))
10171 {
10172 enum rtx_code new_code;
10173 if (code == LT || code == NE)
10174 new_code = GET_CODE (op0);
10175 else
10176 new_code = combine_reversed_comparison_code (op0);
10177
10178 if (new_code != UNKNOWN)
10179 {
10180 code = new_code;
10181 op0 = tem;
10182 op1 = tem1;
10183 continue;
10184 }
10185 }
10186 break;
10187
10188 case IOR:
10189 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10190 iff X <= 0. */
10191 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10192 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10193 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10194 {
10195 op0 = XEXP (op0, 1);
10196 code = (code == GE ? GT : LE);
10197 continue;
10198 }
10199 break;
10200
10201 case AND:
10202 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10203 will be converted to a ZERO_EXTRACT later. */
10204 if (const_op == 0 && equality_comparison_p
10205 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10206 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10207 {
10208 op0 = simplify_and_const_int
10209 (op0, mode, gen_rtx_LSHIFTRT (mode,
10210 XEXP (op0, 1),
10211 XEXP (XEXP (op0, 0), 1)),
10212 (HOST_WIDE_INT) 1);
10213 continue;
10214 }
10215
10216 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10217 zero and X is a comparison and C1 and C2 describe only bits set
10218 in STORE_FLAG_VALUE, we can compare with X. */
10219 if (const_op == 0 && equality_comparison_p
10220 && mode_width <= HOST_BITS_PER_WIDE_INT
10221 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10222 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10223 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10224 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10225 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10226 {
10227 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10228 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10229 if ((~STORE_FLAG_VALUE & mask) == 0
10230 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10231 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10232 && COMPARISON_P (tem))))
10233 {
10234 op0 = XEXP (XEXP (op0, 0), 0);
10235 continue;
10236 }
10237 }
10238
10239 /* If we are doing an equality comparison of an AND of a bit equal
10240 to the sign bit, replace this with a LT or GE comparison of
10241 the underlying value. */
10242 if (equality_comparison_p
10243 && const_op == 0
10244 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10245 && mode_width <= HOST_BITS_PER_WIDE_INT
10246 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10247 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10248 {
10249 op0 = XEXP (op0, 0);
10250 code = (code == EQ ? GE : LT);
10251 continue;
10252 }
10253
10254 /* If this AND operation is really a ZERO_EXTEND from a narrower
10255 mode, the constant fits within that mode, and this is either an
10256 equality or unsigned comparison, try to do this comparison in
10257 the narrower mode. */
10258 if ((equality_comparison_p || unsigned_comparison_p)
10259 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10260 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10261 & GET_MODE_MASK (mode))
10262 + 1)) >= 0
10263 && const_op >> i == 0
10264 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10265 {
10266 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10267 continue;
10268 }
10269
10270 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10271 fits in both M1 and M2 and the SUBREG is either paradoxical
10272 or represents the low part, permute the SUBREG and the AND
10273 and try again. */
10274 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10275 {
10276 unsigned HOST_WIDE_INT c1;
10277 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10278 /* Require an integral mode, to avoid creating something like
10279 (AND:SF ...). */
10280 if (SCALAR_INT_MODE_P (tmode)
10281 /* It is unsafe to commute the AND into the SUBREG if the
10282 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10283 not defined. As originally written the upper bits
10284 have a defined value due to the AND operation.
10285 However, if we commute the AND inside the SUBREG then
10286 they no longer have defined values and the meaning of
10287 the code has been changed. */
10288 && (0
10289 #ifdef WORD_REGISTER_OPERATIONS
10290 || (mode_width > GET_MODE_BITSIZE (tmode)
10291 && mode_width <= BITS_PER_WORD)
10292 #endif
10293 || (mode_width <= GET_MODE_BITSIZE (tmode)
10294 && subreg_lowpart_p (XEXP (op0, 0))))
10295 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10296 && mode_width <= HOST_BITS_PER_WIDE_INT
10297 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10298 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10299 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10300 && c1 != mask
10301 && c1 != GET_MODE_MASK (tmode))
10302 {
10303 op0 = gen_binary (AND, tmode,
10304 SUBREG_REG (XEXP (op0, 0)),
10305 gen_int_mode (c1, tmode));
10306 op0 = gen_lowpart (mode, op0);
10307 continue;
10308 }
10309 }
10310
10311 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10312 if (const_op == 0 && equality_comparison_p
10313 && XEXP (op0, 1) == const1_rtx
10314 && GET_CODE (XEXP (op0, 0)) == NOT)
10315 {
10316 op0 = simplify_and_const_int
10317 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10318 code = (code == NE ? EQ : NE);
10319 continue;
10320 }
10321
10322 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10323 (eq (and (lshiftrt X) 1) 0).
10324 Also handle the case where (not X) is expressed using xor. */
10325 if (const_op == 0 && equality_comparison_p
10326 && XEXP (op0, 1) == const1_rtx
10327 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10328 {
10329 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10330 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10331
10332 if (GET_CODE (shift_op) == NOT
10333 || (GET_CODE (shift_op) == XOR
10334 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10335 && GET_CODE (shift_count) == CONST_INT
10336 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10337 && (INTVAL (XEXP (shift_op, 1))
10338 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10339 {
10340 op0 = simplify_and_const_int
10341 (NULL_RTX, mode,
10342 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10343 (HOST_WIDE_INT) 1);
10344 code = (code == NE ? EQ : NE);
10345 continue;
10346 }
10347 }
10348 break;
10349
10350 case ASHIFT:
10351 /* If we have (compare (ashift FOO N) (const_int C)) and
10352 the high order N bits of FOO (N+1 if an inequality comparison)
10353 are known to be zero, we can do this by comparing FOO with C
10354 shifted right N bits so long as the low-order N bits of C are
10355 zero. */
10356 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10357 && INTVAL (XEXP (op0, 1)) >= 0
10358 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10359 < HOST_BITS_PER_WIDE_INT)
10360 && ((const_op
10361 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10362 && mode_width <= HOST_BITS_PER_WIDE_INT
10363 && (nonzero_bits (XEXP (op0, 0), mode)
10364 & ~(mask >> (INTVAL (XEXP (op0, 1))
10365 + ! equality_comparison_p))) == 0)
10366 {
10367 /* We must perform a logical shift, not an arithmetic one,
10368 as we want the top N bits of C to be zero. */
10369 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10370
10371 temp >>= INTVAL (XEXP (op0, 1));
10372 op1 = gen_int_mode (temp, mode);
10373 op0 = XEXP (op0, 0);
10374 continue;
10375 }
10376
10377 /* If we are doing a sign bit comparison, it means we are testing
10378 a particular bit. Convert it to the appropriate AND. */
10379 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10380 && mode_width <= HOST_BITS_PER_WIDE_INT)
10381 {
10382 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10383 ((HOST_WIDE_INT) 1
10384 << (mode_width - 1
10385 - INTVAL (XEXP (op0, 1)))));
10386 code = (code == LT ? NE : EQ);
10387 continue;
10388 }
10389
10390 /* If this an equality comparison with zero and we are shifting
10391 the low bit to the sign bit, we can convert this to an AND of the
10392 low-order bit. */
10393 if (const_op == 0 && equality_comparison_p
10394 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10395 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10396 == mode_width - 1)
10397 {
10398 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10399 (HOST_WIDE_INT) 1);
10400 continue;
10401 }
10402 break;
10403
10404 case ASHIFTRT:
10405 /* If this is an equality comparison with zero, we can do this
10406 as a logical shift, which might be much simpler. */
10407 if (equality_comparison_p && const_op == 0
10408 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10409 {
10410 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10411 XEXP (op0, 0),
10412 INTVAL (XEXP (op0, 1)));
10413 continue;
10414 }
10415
10416 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10417 do the comparison in a narrower mode. */
10418 if (! unsigned_comparison_p
10419 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10420 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10421 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10422 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10423 MODE_INT, 1)) != BLKmode
10424 && (((unsigned HOST_WIDE_INT) const_op
10425 + (GET_MODE_MASK (tmode) >> 1) + 1)
10426 <= GET_MODE_MASK (tmode)))
10427 {
10428 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10429 continue;
10430 }
10431
10432 /* Likewise if OP0 is a PLUS of a sign extension with a
10433 constant, which is usually represented with the PLUS
10434 between the shifts. */
10435 if (! unsigned_comparison_p
10436 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10437 && GET_CODE (XEXP (op0, 0)) == PLUS
10438 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10439 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10440 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10441 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10442 MODE_INT, 1)) != BLKmode
10443 && (((unsigned HOST_WIDE_INT) const_op
10444 + (GET_MODE_MASK (tmode) >> 1) + 1)
10445 <= GET_MODE_MASK (tmode)))
10446 {
10447 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10448 rtx add_const = XEXP (XEXP (op0, 0), 1);
10449 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10450 XEXP (op0, 1));
10451
10452 op0 = gen_binary (PLUS, tmode,
10453 gen_lowpart (tmode, inner),
10454 new_const);
10455 continue;
10456 }
10457
10458 /* ... fall through ... */
10459 case LSHIFTRT:
10460 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10461 the low order N bits of FOO are known to be zero, we can do this
10462 by comparing FOO with C shifted left N bits so long as no
10463 overflow occurs. */
10464 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10465 && INTVAL (XEXP (op0, 1)) >= 0
10466 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10467 && mode_width <= HOST_BITS_PER_WIDE_INT
10468 && (nonzero_bits (XEXP (op0, 0), mode)
10469 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10470 && (((unsigned HOST_WIDE_INT) const_op
10471 + (GET_CODE (op0) != LSHIFTRT
10472 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10473 + 1)
10474 : 0))
10475 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10476 {
10477 /* If the shift was logical, then we must make the condition
10478 unsigned. */
10479 if (GET_CODE (op0) == LSHIFTRT)
10480 code = unsigned_condition (code);
10481
10482 const_op <<= INTVAL (XEXP (op0, 1));
10483 op1 = GEN_INT (const_op);
10484 op0 = XEXP (op0, 0);
10485 continue;
10486 }
10487
10488 /* If we are using this shift to extract just the sign bit, we
10489 can replace this with an LT or GE comparison. */
10490 if (const_op == 0
10491 && (equality_comparison_p || sign_bit_comparison_p)
10492 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10493 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10494 == mode_width - 1)
10495 {
10496 op0 = XEXP (op0, 0);
10497 code = (code == NE || code == GT ? LT : GE);
10498 continue;
10499 }
10500 break;
10501
10502 default:
10503 break;
10504 }
10505
10506 break;
10507 }
10508
10509 /* Now make any compound operations involved in this comparison. Then,
10510 check for an outmost SUBREG on OP0 that is not doing anything or is
10511 paradoxical. The latter transformation must only be performed when
10512 it is known that the "extra" bits will be the same in op0 and op1 or
10513 that they don't matter. There are three cases to consider:
10514
10515 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10516 care bits and we can assume they have any convenient value. So
10517 making the transformation is safe.
10518
10519 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10520 In this case the upper bits of op0 are undefined. We should not make
10521 the simplification in that case as we do not know the contents of
10522 those bits.
10523
10524 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10525 UNKNOWN. In that case we know those bits are zeros or ones. We must
10526 also be sure that they are the same as the upper bits of op1.
10527
10528 We can never remove a SUBREG for a non-equality comparison because
10529 the sign bit is in a different place in the underlying object. */
10530
10531 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10532 op1 = make_compound_operation (op1, SET);
10533
10534 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10535 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10536 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10537 && (code == NE || code == EQ))
10538 {
10539 if (GET_MODE_SIZE (GET_MODE (op0))
10540 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10541 {
10542 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10543 implemented. */
10544 if (REG_P (SUBREG_REG (op0)))
10545 {
10546 op0 = SUBREG_REG (op0);
10547 op1 = gen_lowpart (GET_MODE (op0), op1);
10548 }
10549 }
10550 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10551 <= HOST_BITS_PER_WIDE_INT)
10552 && (nonzero_bits (SUBREG_REG (op0),
10553 GET_MODE (SUBREG_REG (op0)))
10554 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10555 {
10556 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10557
10558 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10559 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10560 op0 = SUBREG_REG (op0), op1 = tem;
10561 }
10562 }
10563
10564 /* We now do the opposite procedure: Some machines don't have compare
10565 insns in all modes. If OP0's mode is an integer mode smaller than a
10566 word and we can't do a compare in that mode, see if there is a larger
10567 mode for which we can do the compare. There are a number of cases in
10568 which we can use the wider mode. */
10569
10570 mode = GET_MODE (op0);
10571 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10572 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10573 && ! have_insn_for (COMPARE, mode))
10574 for (tmode = GET_MODE_WIDER_MODE (mode);
10575 (tmode != VOIDmode
10576 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10577 tmode = GET_MODE_WIDER_MODE (tmode))
10578 if (have_insn_for (COMPARE, tmode))
10579 {
10580 int zero_extended;
10581
10582 /* If the only nonzero bits in OP0 and OP1 are those in the
10583 narrower mode and this is an equality or unsigned comparison,
10584 we can use the wider mode. Similarly for sign-extended
10585 values, in which case it is true for all comparisons. */
10586 zero_extended = ((code == EQ || code == NE
10587 || code == GEU || code == GTU
10588 || code == LEU || code == LTU)
10589 && (nonzero_bits (op0, tmode)
10590 & ~GET_MODE_MASK (mode)) == 0
10591 && ((GET_CODE (op1) == CONST_INT
10592 || (nonzero_bits (op1, tmode)
10593 & ~GET_MODE_MASK (mode)) == 0)));
10594
10595 if (zero_extended
10596 || ((num_sign_bit_copies (op0, tmode)
10597 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10598 - GET_MODE_BITSIZE (mode)))
10599 && (num_sign_bit_copies (op1, tmode)
10600 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10601 - GET_MODE_BITSIZE (mode)))))
10602 {
10603 /* If OP0 is an AND and we don't have an AND in MODE either,
10604 make a new AND in the proper mode. */
10605 if (GET_CODE (op0) == AND
10606 && !have_insn_for (AND, mode))
10607 op0 = gen_binary (AND, tmode,
10608 gen_lowpart (tmode,
10609 XEXP (op0, 0)),
10610 gen_lowpart (tmode,
10611 XEXP (op0, 1)));
10612
10613 op0 = gen_lowpart (tmode, op0);
10614 if (zero_extended && GET_CODE (op1) == CONST_INT)
10615 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10616 op1 = gen_lowpart (tmode, op1);
10617 break;
10618 }
10619
10620 /* If this is a test for negative, we can make an explicit
10621 test of the sign bit. */
10622
10623 if (op1 == const0_rtx && (code == LT || code == GE)
10624 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10625 {
10626 op0 = gen_binary (AND, tmode,
10627 gen_lowpart (tmode, op0),
10628 GEN_INT ((HOST_WIDE_INT) 1
10629 << (GET_MODE_BITSIZE (mode) - 1)));
10630 code = (code == LT) ? NE : EQ;
10631 break;
10632 }
10633 }
10634
10635 #ifdef CANONICALIZE_COMPARISON
10636 /* If this machine only supports a subset of valid comparisons, see if we
10637 can convert an unsupported one into a supported one. */
10638 CANONICALIZE_COMPARISON (code, op0, op1);
10639 #endif
10640
10641 *pop0 = op0;
10642 *pop1 = op1;
10643
10644 return code;
10645 }
10646 \f
10647 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10648 searching backward. */
10649 static enum rtx_code
10650 combine_reversed_comparison_code (rtx exp)
10651 {
10652 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10653 rtx x;
10654
10655 if (code1 != UNKNOWN
10656 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10657 return code1;
10658 /* Otherwise try and find where the condition codes were last set and
10659 use that. */
10660 x = get_last_value (XEXP (exp, 0));
10661 if (!x || GET_CODE (x) != COMPARE)
10662 return UNKNOWN;
10663 return reversed_comparison_code_parts (GET_CODE (exp),
10664 XEXP (x, 0), XEXP (x, 1), NULL);
10665 }
10666
10667 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10668 Return NULL_RTX in case we fail to do the reversal. */
10669 static rtx
10670 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10671 {
10672 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10673 if (reversed_code == UNKNOWN)
10674 return NULL_RTX;
10675 else
10676 return gen_binary (reversed_code, mode, op0, op1);
10677 }
10678 \f
10679 /* Utility function for following routine. Called when X is part of a value
10680 being stored into last_set_value. Sets last_set_table_tick
10681 for each register mentioned. Similar to mention_regs in cse.c */
10682
10683 static void
10684 update_table_tick (rtx x)
10685 {
10686 enum rtx_code code = GET_CODE (x);
10687 const char *fmt = GET_RTX_FORMAT (code);
10688 int i;
10689
10690 if (code == REG)
10691 {
10692 unsigned int regno = REGNO (x);
10693 unsigned int endregno
10694 = regno + (regno < FIRST_PSEUDO_REGISTER
10695 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10696 unsigned int r;
10697
10698 for (r = regno; r < endregno; r++)
10699 reg_stat[r].last_set_table_tick = label_tick;
10700
10701 return;
10702 }
10703
10704 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10705 /* Note that we can't have an "E" in values stored; see
10706 get_last_value_validate. */
10707 if (fmt[i] == 'e')
10708 {
10709 /* Check for identical subexpressions. If x contains
10710 identical subexpression we only have to traverse one of
10711 them. */
10712 if (i == 0 && ARITHMETIC_P (x))
10713 {
10714 /* Note that at this point x1 has already been
10715 processed. */
10716 rtx x0 = XEXP (x, 0);
10717 rtx x1 = XEXP (x, 1);
10718
10719 /* If x0 and x1 are identical then there is no need to
10720 process x0. */
10721 if (x0 == x1)
10722 break;
10723
10724 /* If x0 is identical to a subexpression of x1 then while
10725 processing x1, x0 has already been processed. Thus we
10726 are done with x. */
10727 if (ARITHMETIC_P (x1)
10728 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10729 break;
10730
10731 /* If x1 is identical to a subexpression of x0 then we
10732 still have to process the rest of x0. */
10733 if (ARITHMETIC_P (x0)
10734 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10735 {
10736 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10737 break;
10738 }
10739 }
10740
10741 update_table_tick (XEXP (x, i));
10742 }
10743 }
10744
10745 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10746 are saying that the register is clobbered and we no longer know its
10747 value. If INSN is zero, don't update reg_stat[].last_set; this is
10748 only permitted with VALUE also zero and is used to invalidate the
10749 register. */
10750
10751 static void
10752 record_value_for_reg (rtx reg, rtx insn, rtx value)
10753 {
10754 unsigned int regno = REGNO (reg);
10755 unsigned int endregno
10756 = regno + (regno < FIRST_PSEUDO_REGISTER
10757 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10758 unsigned int i;
10759
10760 /* If VALUE contains REG and we have a previous value for REG, substitute
10761 the previous value. */
10762 if (value && insn && reg_overlap_mentioned_p (reg, value))
10763 {
10764 rtx tem;
10765
10766 /* Set things up so get_last_value is allowed to see anything set up to
10767 our insn. */
10768 subst_low_cuid = INSN_CUID (insn);
10769 tem = get_last_value (reg);
10770
10771 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10772 it isn't going to be useful and will take a lot of time to process,
10773 so just use the CLOBBER. */
10774
10775 if (tem)
10776 {
10777 if (ARITHMETIC_P (tem)
10778 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10779 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10780 tem = XEXP (tem, 0);
10781
10782 value = replace_rtx (copy_rtx (value), reg, tem);
10783 }
10784 }
10785
10786 /* For each register modified, show we don't know its value, that
10787 we don't know about its bitwise content, that its value has been
10788 updated, and that we don't know the location of the death of the
10789 register. */
10790 for (i = regno; i < endregno; i++)
10791 {
10792 if (insn)
10793 reg_stat[i].last_set = insn;
10794
10795 reg_stat[i].last_set_value = 0;
10796 reg_stat[i].last_set_mode = 0;
10797 reg_stat[i].last_set_nonzero_bits = 0;
10798 reg_stat[i].last_set_sign_bit_copies = 0;
10799 reg_stat[i].last_death = 0;
10800 }
10801
10802 /* Mark registers that are being referenced in this value. */
10803 if (value)
10804 update_table_tick (value);
10805
10806 /* Now update the status of each register being set.
10807 If someone is using this register in this block, set this register
10808 to invalid since we will get confused between the two lives in this
10809 basic block. This makes using this register always invalid. In cse, we
10810 scan the table to invalidate all entries using this register, but this
10811 is too much work for us. */
10812
10813 for (i = regno; i < endregno; i++)
10814 {
10815 reg_stat[i].last_set_label = label_tick;
10816 if (value && reg_stat[i].last_set_table_tick == label_tick)
10817 reg_stat[i].last_set_invalid = 1;
10818 else
10819 reg_stat[i].last_set_invalid = 0;
10820 }
10821
10822 /* The value being assigned might refer to X (like in "x++;"). In that
10823 case, we must replace it with (clobber (const_int 0)) to prevent
10824 infinite loops. */
10825 if (value && ! get_last_value_validate (&value, insn,
10826 reg_stat[regno].last_set_label, 0))
10827 {
10828 value = copy_rtx (value);
10829 if (! get_last_value_validate (&value, insn,
10830 reg_stat[regno].last_set_label, 1))
10831 value = 0;
10832 }
10833
10834 /* For the main register being modified, update the value, the mode, the
10835 nonzero bits, and the number of sign bit copies. */
10836
10837 reg_stat[regno].last_set_value = value;
10838
10839 if (value)
10840 {
10841 enum machine_mode mode = GET_MODE (reg);
10842 subst_low_cuid = INSN_CUID (insn);
10843 reg_stat[regno].last_set_mode = mode;
10844 if (GET_MODE_CLASS (mode) == MODE_INT
10845 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10846 mode = nonzero_bits_mode;
10847 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10848 reg_stat[regno].last_set_sign_bit_copies
10849 = num_sign_bit_copies (value, GET_MODE (reg));
10850 }
10851 }
10852
10853 /* Called via note_stores from record_dead_and_set_regs to handle one
10854 SET or CLOBBER in an insn. DATA is the instruction in which the
10855 set is occurring. */
10856
10857 static void
10858 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10859 {
10860 rtx record_dead_insn = (rtx) data;
10861
10862 if (GET_CODE (dest) == SUBREG)
10863 dest = SUBREG_REG (dest);
10864
10865 if (REG_P (dest))
10866 {
10867 /* If we are setting the whole register, we know its value. Otherwise
10868 show that we don't know the value. We can handle SUBREG in
10869 some cases. */
10870 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10871 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10872 else if (GET_CODE (setter) == SET
10873 && GET_CODE (SET_DEST (setter)) == SUBREG
10874 && SUBREG_REG (SET_DEST (setter)) == dest
10875 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10876 && subreg_lowpart_p (SET_DEST (setter)))
10877 record_value_for_reg (dest, record_dead_insn,
10878 gen_lowpart (GET_MODE (dest),
10879 SET_SRC (setter)));
10880 else
10881 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10882 }
10883 else if (MEM_P (dest)
10884 /* Ignore pushes, they clobber nothing. */
10885 && ! push_operand (dest, GET_MODE (dest)))
10886 mem_last_set = INSN_CUID (record_dead_insn);
10887 }
10888
10889 /* Update the records of when each REG was most recently set or killed
10890 for the things done by INSN. This is the last thing done in processing
10891 INSN in the combiner loop.
10892
10893 We update reg_stat[], in particular fields last_set, last_set_value,
10894 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10895 last_death, and also the similar information mem_last_set (which insn
10896 most recently modified memory) and last_call_cuid (which insn was the
10897 most recent subroutine call). */
10898
10899 static void
10900 record_dead_and_set_regs (rtx insn)
10901 {
10902 rtx link;
10903 unsigned int i;
10904
10905 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10906 {
10907 if (REG_NOTE_KIND (link) == REG_DEAD
10908 && REG_P (XEXP (link, 0)))
10909 {
10910 unsigned int regno = REGNO (XEXP (link, 0));
10911 unsigned int endregno
10912 = regno + (regno < FIRST_PSEUDO_REGISTER
10913 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10914 : 1);
10915
10916 for (i = regno; i < endregno; i++)
10917 reg_stat[i].last_death = insn;
10918 }
10919 else if (REG_NOTE_KIND (link) == REG_INC)
10920 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10921 }
10922
10923 if (CALL_P (insn))
10924 {
10925 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10926 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
10927 {
10928 reg_stat[i].last_set_value = 0;
10929 reg_stat[i].last_set_mode = 0;
10930 reg_stat[i].last_set_nonzero_bits = 0;
10931 reg_stat[i].last_set_sign_bit_copies = 0;
10932 reg_stat[i].last_death = 0;
10933 }
10934
10935 last_call_cuid = mem_last_set = INSN_CUID (insn);
10936
10937 /* Don't bother recording what this insn does. It might set the
10938 return value register, but we can't combine into a call
10939 pattern anyway, so there's no point trying (and it may cause
10940 a crash, if e.g. we wind up asking for last_set_value of a
10941 SUBREG of the return value register). */
10942 return;
10943 }
10944
10945 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
10946 }
10947
10948 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10949 register present in the SUBREG, so for each such SUBREG go back and
10950 adjust nonzero and sign bit information of the registers that are
10951 known to have some zero/sign bits set.
10952
10953 This is needed because when combine blows the SUBREGs away, the
10954 information on zero/sign bits is lost and further combines can be
10955 missed because of that. */
10956
10957 static void
10958 record_promoted_value (rtx insn, rtx subreg)
10959 {
10960 rtx links, set;
10961 unsigned int regno = REGNO (SUBREG_REG (subreg));
10962 enum machine_mode mode = GET_MODE (subreg);
10963
10964 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
10965 return;
10966
10967 for (links = LOG_LINKS (insn); links;)
10968 {
10969 insn = XEXP (links, 0);
10970 set = single_set (insn);
10971
10972 if (! set || !REG_P (SET_DEST (set))
10973 || REGNO (SET_DEST (set)) != regno
10974 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
10975 {
10976 links = XEXP (links, 1);
10977 continue;
10978 }
10979
10980 if (reg_stat[regno].last_set == insn)
10981 {
10982 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
10983 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
10984 }
10985
10986 if (REG_P (SET_SRC (set)))
10987 {
10988 regno = REGNO (SET_SRC (set));
10989 links = LOG_LINKS (insn);
10990 }
10991 else
10992 break;
10993 }
10994 }
10995
10996 /* Scan X for promoted SUBREGs. For each one found,
10997 note what it implies to the registers used in it. */
10998
10999 static void
11000 check_promoted_subreg (rtx insn, rtx x)
11001 {
11002 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11003 && REG_P (SUBREG_REG (x)))
11004 record_promoted_value (insn, x);
11005 else
11006 {
11007 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11008 int i, j;
11009
11010 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11011 switch (format[i])
11012 {
11013 case 'e':
11014 check_promoted_subreg (insn, XEXP (x, i));
11015 break;
11016 case 'V':
11017 case 'E':
11018 if (XVEC (x, i) != 0)
11019 for (j = 0; j < XVECLEN (x, i); j++)
11020 check_promoted_subreg (insn, XVECEXP (x, i, j));
11021 break;
11022 }
11023 }
11024 }
11025 \f
11026 /* Utility routine for the following function. Verify that all the registers
11027 mentioned in *LOC are valid when *LOC was part of a value set when
11028 label_tick == TICK. Return 0 if some are not.
11029
11030 If REPLACE is nonzero, replace the invalid reference with
11031 (clobber (const_int 0)) and return 1. This replacement is useful because
11032 we often can get useful information about the form of a value (e.g., if
11033 it was produced by a shift that always produces -1 or 0) even though
11034 we don't know exactly what registers it was produced from. */
11035
11036 static int
11037 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11038 {
11039 rtx x = *loc;
11040 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11041 int len = GET_RTX_LENGTH (GET_CODE (x));
11042 int i;
11043
11044 if (REG_P (x))
11045 {
11046 unsigned int regno = REGNO (x);
11047 unsigned int endregno
11048 = regno + (regno < FIRST_PSEUDO_REGISTER
11049 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11050 unsigned int j;
11051
11052 for (j = regno; j < endregno; j++)
11053 if (reg_stat[j].last_set_invalid
11054 /* If this is a pseudo-register that was only set once and not
11055 live at the beginning of the function, it is always valid. */
11056 || (! (regno >= FIRST_PSEUDO_REGISTER
11057 && REG_N_SETS (regno) == 1
11058 && (! REGNO_REG_SET_P
11059 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11060 && reg_stat[j].last_set_label > tick))
11061 {
11062 if (replace)
11063 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11064 return replace;
11065 }
11066
11067 return 1;
11068 }
11069 /* If this is a memory reference, make sure that there were
11070 no stores after it that might have clobbered the value. We don't
11071 have alias info, so we assume any store invalidates it. */
11072 else if (MEM_P (x) && !MEM_READONLY_P (x)
11073 && INSN_CUID (insn) <= mem_last_set)
11074 {
11075 if (replace)
11076 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11077 return replace;
11078 }
11079
11080 for (i = 0; i < len; i++)
11081 {
11082 if (fmt[i] == 'e')
11083 {
11084 /* Check for identical subexpressions. If x contains
11085 identical subexpression we only have to traverse one of
11086 them. */
11087 if (i == 1 && ARITHMETIC_P (x))
11088 {
11089 /* Note that at this point x0 has already been checked
11090 and found valid. */
11091 rtx x0 = XEXP (x, 0);
11092 rtx x1 = XEXP (x, 1);
11093
11094 /* If x0 and x1 are identical then x is also valid. */
11095 if (x0 == x1)
11096 return 1;
11097
11098 /* If x1 is identical to a subexpression of x0 then
11099 while checking x0, x1 has already been checked. Thus
11100 it is valid and so as x. */
11101 if (ARITHMETIC_P (x0)
11102 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11103 return 1;
11104
11105 /* If x0 is identical to a subexpression of x1 then x is
11106 valid iff the rest of x1 is valid. */
11107 if (ARITHMETIC_P (x1)
11108 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11109 return
11110 get_last_value_validate (&XEXP (x1,
11111 x0 == XEXP (x1, 0) ? 1 : 0),
11112 insn, tick, replace);
11113 }
11114
11115 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11116 replace) == 0)
11117 return 0;
11118 }
11119 /* Don't bother with these. They shouldn't occur anyway. */
11120 else if (fmt[i] == 'E')
11121 return 0;
11122 }
11123
11124 /* If we haven't found a reason for it to be invalid, it is valid. */
11125 return 1;
11126 }
11127
11128 /* Get the last value assigned to X, if known. Some registers
11129 in the value may be replaced with (clobber (const_int 0)) if their value
11130 is known longer known reliably. */
11131
11132 static rtx
11133 get_last_value (rtx x)
11134 {
11135 unsigned int regno;
11136 rtx value;
11137
11138 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11139 then convert it to the desired mode. If this is a paradoxical SUBREG,
11140 we cannot predict what values the "extra" bits might have. */
11141 if (GET_CODE (x) == SUBREG
11142 && subreg_lowpart_p (x)
11143 && (GET_MODE_SIZE (GET_MODE (x))
11144 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11145 && (value = get_last_value (SUBREG_REG (x))) != 0)
11146 return gen_lowpart (GET_MODE (x), value);
11147
11148 if (!REG_P (x))
11149 return 0;
11150
11151 regno = REGNO (x);
11152 value = reg_stat[regno].last_set_value;
11153
11154 /* If we don't have a value, or if it isn't for this basic block and
11155 it's either a hard register, set more than once, or it's a live
11156 at the beginning of the function, return 0.
11157
11158 Because if it's not live at the beginning of the function then the reg
11159 is always set before being used (is never used without being set).
11160 And, if it's set only once, and it's always set before use, then all
11161 uses must have the same last value, even if it's not from this basic
11162 block. */
11163
11164 if (value == 0
11165 || (reg_stat[regno].last_set_label != label_tick
11166 && (regno < FIRST_PSEUDO_REGISTER
11167 || REG_N_SETS (regno) != 1
11168 || (REGNO_REG_SET_P
11169 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11170 return 0;
11171
11172 /* If the value was set in a later insn than the ones we are processing,
11173 we can't use it even if the register was only set once. */
11174 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11175 return 0;
11176
11177 /* If the value has all its registers valid, return it. */
11178 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11179 reg_stat[regno].last_set_label, 0))
11180 return value;
11181
11182 /* Otherwise, make a copy and replace any invalid register with
11183 (clobber (const_int 0)). If that fails for some reason, return 0. */
11184
11185 value = copy_rtx (value);
11186 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11187 reg_stat[regno].last_set_label, 1))
11188 return value;
11189
11190 return 0;
11191 }
11192 \f
11193 /* Return nonzero if expression X refers to a REG or to memory
11194 that is set in an instruction more recent than FROM_CUID. */
11195
11196 static int
11197 use_crosses_set_p (rtx x, int from_cuid)
11198 {
11199 const char *fmt;
11200 int i;
11201 enum rtx_code code = GET_CODE (x);
11202
11203 if (code == REG)
11204 {
11205 unsigned int regno = REGNO (x);
11206 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11207 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11208
11209 #ifdef PUSH_ROUNDING
11210 /* Don't allow uses of the stack pointer to be moved,
11211 because we don't know whether the move crosses a push insn. */
11212 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11213 return 1;
11214 #endif
11215 for (; regno < endreg; regno++)
11216 if (reg_stat[regno].last_set
11217 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11218 return 1;
11219 return 0;
11220 }
11221
11222 if (code == MEM && mem_last_set > from_cuid)
11223 return 1;
11224
11225 fmt = GET_RTX_FORMAT (code);
11226
11227 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11228 {
11229 if (fmt[i] == 'E')
11230 {
11231 int j;
11232 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11233 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11234 return 1;
11235 }
11236 else if (fmt[i] == 'e'
11237 && use_crosses_set_p (XEXP (x, i), from_cuid))
11238 return 1;
11239 }
11240 return 0;
11241 }
11242 \f
11243 /* Define three variables used for communication between the following
11244 routines. */
11245
11246 static unsigned int reg_dead_regno, reg_dead_endregno;
11247 static int reg_dead_flag;
11248
11249 /* Function called via note_stores from reg_dead_at_p.
11250
11251 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11252 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11253
11254 static void
11255 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11256 {
11257 unsigned int regno, endregno;
11258
11259 if (!REG_P (dest))
11260 return;
11261
11262 regno = REGNO (dest);
11263 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11264 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11265
11266 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11267 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11268 }
11269
11270 /* Return nonzero if REG is known to be dead at INSN.
11271
11272 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11273 referencing REG, it is dead. If we hit a SET referencing REG, it is
11274 live. Otherwise, see if it is live or dead at the start of the basic
11275 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11276 must be assumed to be always live. */
11277
11278 static int
11279 reg_dead_at_p (rtx reg, rtx insn)
11280 {
11281 basic_block block;
11282 unsigned int i;
11283
11284 /* Set variables for reg_dead_at_p_1. */
11285 reg_dead_regno = REGNO (reg);
11286 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11287 ? hard_regno_nregs[reg_dead_regno]
11288 [GET_MODE (reg)]
11289 : 1);
11290
11291 reg_dead_flag = 0;
11292
11293 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11294 we allow the machine description to decide whether use-and-clobber
11295 patterns are OK. */
11296 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11297 {
11298 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11299 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11300 return 0;
11301 }
11302
11303 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11304 beginning of function. */
11305 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11306 insn = prev_nonnote_insn (insn))
11307 {
11308 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11309 if (reg_dead_flag)
11310 return reg_dead_flag == 1 ? 1 : 0;
11311
11312 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11313 return 1;
11314 }
11315
11316 /* Get the basic block that we were in. */
11317 if (insn == 0)
11318 block = ENTRY_BLOCK_PTR->next_bb;
11319 else
11320 {
11321 FOR_EACH_BB (block)
11322 if (insn == BB_HEAD (block))
11323 break;
11324
11325 if (block == EXIT_BLOCK_PTR)
11326 return 0;
11327 }
11328
11329 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11330 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11331 return 0;
11332
11333 return 1;
11334 }
11335 \f
11336 /* Note hard registers in X that are used. This code is similar to
11337 that in flow.c, but much simpler since we don't care about pseudos. */
11338
11339 static void
11340 mark_used_regs_combine (rtx x)
11341 {
11342 RTX_CODE code = GET_CODE (x);
11343 unsigned int regno;
11344 int i;
11345
11346 switch (code)
11347 {
11348 case LABEL_REF:
11349 case SYMBOL_REF:
11350 case CONST_INT:
11351 case CONST:
11352 case CONST_DOUBLE:
11353 case CONST_VECTOR:
11354 case PC:
11355 case ADDR_VEC:
11356 case ADDR_DIFF_VEC:
11357 case ASM_INPUT:
11358 #ifdef HAVE_cc0
11359 /* CC0 must die in the insn after it is set, so we don't need to take
11360 special note of it here. */
11361 case CC0:
11362 #endif
11363 return;
11364
11365 case CLOBBER:
11366 /* If we are clobbering a MEM, mark any hard registers inside the
11367 address as used. */
11368 if (MEM_P (XEXP (x, 0)))
11369 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11370 return;
11371
11372 case REG:
11373 regno = REGNO (x);
11374 /* A hard reg in a wide mode may really be multiple registers.
11375 If so, mark all of them just like the first. */
11376 if (regno < FIRST_PSEUDO_REGISTER)
11377 {
11378 unsigned int endregno, r;
11379
11380 /* None of this applies to the stack, frame or arg pointers. */
11381 if (regno == STACK_POINTER_REGNUM
11382 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11383 || regno == HARD_FRAME_POINTER_REGNUM
11384 #endif
11385 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11386 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11387 #endif
11388 || regno == FRAME_POINTER_REGNUM)
11389 return;
11390
11391 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11392 for (r = regno; r < endregno; r++)
11393 SET_HARD_REG_BIT (newpat_used_regs, r);
11394 }
11395 return;
11396
11397 case SET:
11398 {
11399 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11400 the address. */
11401 rtx testreg = SET_DEST (x);
11402
11403 while (GET_CODE (testreg) == SUBREG
11404 || GET_CODE (testreg) == ZERO_EXTRACT
11405 || GET_CODE (testreg) == SIGN_EXTRACT
11406 || GET_CODE (testreg) == STRICT_LOW_PART)
11407 testreg = XEXP (testreg, 0);
11408
11409 if (MEM_P (testreg))
11410 mark_used_regs_combine (XEXP (testreg, 0));
11411
11412 mark_used_regs_combine (SET_SRC (x));
11413 }
11414 return;
11415
11416 default:
11417 break;
11418 }
11419
11420 /* Recursively scan the operands of this expression. */
11421
11422 {
11423 const char *fmt = GET_RTX_FORMAT (code);
11424
11425 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11426 {
11427 if (fmt[i] == 'e')
11428 mark_used_regs_combine (XEXP (x, i));
11429 else if (fmt[i] == 'E')
11430 {
11431 int j;
11432
11433 for (j = 0; j < XVECLEN (x, i); j++)
11434 mark_used_regs_combine (XVECEXP (x, i, j));
11435 }
11436 }
11437 }
11438 }
11439 \f
11440 /* Remove register number REGNO from the dead registers list of INSN.
11441
11442 Return the note used to record the death, if there was one. */
11443
11444 rtx
11445 remove_death (unsigned int regno, rtx insn)
11446 {
11447 rtx note = find_regno_note (insn, REG_DEAD, regno);
11448
11449 if (note)
11450 {
11451 REG_N_DEATHS (regno)--;
11452 remove_note (insn, note);
11453 }
11454
11455 return note;
11456 }
11457
11458 /* For each register (hardware or pseudo) used within expression X, if its
11459 death is in an instruction with cuid between FROM_CUID (inclusive) and
11460 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11461 list headed by PNOTES.
11462
11463 That said, don't move registers killed by maybe_kill_insn.
11464
11465 This is done when X is being merged by combination into TO_INSN. These
11466 notes will then be distributed as needed. */
11467
11468 static void
11469 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11470 rtx *pnotes)
11471 {
11472 const char *fmt;
11473 int len, i;
11474 enum rtx_code code = GET_CODE (x);
11475
11476 if (code == REG)
11477 {
11478 unsigned int regno = REGNO (x);
11479 rtx where_dead = reg_stat[regno].last_death;
11480 rtx before_dead, after_dead;
11481
11482 /* Don't move the register if it gets killed in between from and to. */
11483 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11484 && ! reg_referenced_p (x, maybe_kill_insn))
11485 return;
11486
11487 /* WHERE_DEAD could be a USE insn made by combine, so first we
11488 make sure that we have insns with valid INSN_CUID values. */
11489 before_dead = where_dead;
11490 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11491 before_dead = PREV_INSN (before_dead);
11492
11493 after_dead = where_dead;
11494 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11495 after_dead = NEXT_INSN (after_dead);
11496
11497 if (before_dead && after_dead
11498 && INSN_CUID (before_dead) >= from_cuid
11499 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11500 || (where_dead != after_dead
11501 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11502 {
11503 rtx note = remove_death (regno, where_dead);
11504
11505 /* It is possible for the call above to return 0. This can occur
11506 when last_death points to I2 or I1 that we combined with.
11507 In that case make a new note.
11508
11509 We must also check for the case where X is a hard register
11510 and NOTE is a death note for a range of hard registers
11511 including X. In that case, we must put REG_DEAD notes for
11512 the remaining registers in place of NOTE. */
11513
11514 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11515 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11516 > GET_MODE_SIZE (GET_MODE (x))))
11517 {
11518 unsigned int deadregno = REGNO (XEXP (note, 0));
11519 unsigned int deadend
11520 = (deadregno + hard_regno_nregs[deadregno]
11521 [GET_MODE (XEXP (note, 0))]);
11522 unsigned int ourend
11523 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11524 unsigned int i;
11525
11526 for (i = deadregno; i < deadend; i++)
11527 if (i < regno || i >= ourend)
11528 REG_NOTES (where_dead)
11529 = gen_rtx_EXPR_LIST (REG_DEAD,
11530 regno_reg_rtx[i],
11531 REG_NOTES (where_dead));
11532 }
11533
11534 /* If we didn't find any note, or if we found a REG_DEAD note that
11535 covers only part of the given reg, and we have a multi-reg hard
11536 register, then to be safe we must check for REG_DEAD notes
11537 for each register other than the first. They could have
11538 their own REG_DEAD notes lying around. */
11539 else if ((note == 0
11540 || (note != 0
11541 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11542 < GET_MODE_SIZE (GET_MODE (x)))))
11543 && regno < FIRST_PSEUDO_REGISTER
11544 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11545 {
11546 unsigned int ourend
11547 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11548 unsigned int i, offset;
11549 rtx oldnotes = 0;
11550
11551 if (note)
11552 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11553 else
11554 offset = 1;
11555
11556 for (i = regno + offset; i < ourend; i++)
11557 move_deaths (regno_reg_rtx[i],
11558 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11559 }
11560
11561 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11562 {
11563 XEXP (note, 1) = *pnotes;
11564 *pnotes = note;
11565 }
11566 else
11567 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11568
11569 REG_N_DEATHS (regno)++;
11570 }
11571
11572 return;
11573 }
11574
11575 else if (GET_CODE (x) == SET)
11576 {
11577 rtx dest = SET_DEST (x);
11578
11579 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11580
11581 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11582 that accesses one word of a multi-word item, some
11583 piece of everything register in the expression is used by
11584 this insn, so remove any old death. */
11585 /* ??? So why do we test for equality of the sizes? */
11586
11587 if (GET_CODE (dest) == ZERO_EXTRACT
11588 || GET_CODE (dest) == STRICT_LOW_PART
11589 || (GET_CODE (dest) == SUBREG
11590 && (((GET_MODE_SIZE (GET_MODE (dest))
11591 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11592 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11593 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11594 {
11595 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11596 return;
11597 }
11598
11599 /* If this is some other SUBREG, we know it replaces the entire
11600 value, so use that as the destination. */
11601 if (GET_CODE (dest) == SUBREG)
11602 dest = SUBREG_REG (dest);
11603
11604 /* If this is a MEM, adjust deaths of anything used in the address.
11605 For a REG (the only other possibility), the entire value is
11606 being replaced so the old value is not used in this insn. */
11607
11608 if (MEM_P (dest))
11609 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11610 to_insn, pnotes);
11611 return;
11612 }
11613
11614 else if (GET_CODE (x) == CLOBBER)
11615 return;
11616
11617 len = GET_RTX_LENGTH (code);
11618 fmt = GET_RTX_FORMAT (code);
11619
11620 for (i = 0; i < len; i++)
11621 {
11622 if (fmt[i] == 'E')
11623 {
11624 int j;
11625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11626 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11627 to_insn, pnotes);
11628 }
11629 else if (fmt[i] == 'e')
11630 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11631 }
11632 }
11633 \f
11634 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11635 pattern of an insn. X must be a REG. */
11636
11637 static int
11638 reg_bitfield_target_p (rtx x, rtx body)
11639 {
11640 int i;
11641
11642 if (GET_CODE (body) == SET)
11643 {
11644 rtx dest = SET_DEST (body);
11645 rtx target;
11646 unsigned int regno, tregno, endregno, endtregno;
11647
11648 if (GET_CODE (dest) == ZERO_EXTRACT)
11649 target = XEXP (dest, 0);
11650 else if (GET_CODE (dest) == STRICT_LOW_PART)
11651 target = SUBREG_REG (XEXP (dest, 0));
11652 else
11653 return 0;
11654
11655 if (GET_CODE (target) == SUBREG)
11656 target = SUBREG_REG (target);
11657
11658 if (!REG_P (target))
11659 return 0;
11660
11661 tregno = REGNO (target), regno = REGNO (x);
11662 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11663 return target == x;
11664
11665 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11666 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11667
11668 return endregno > tregno && regno < endtregno;
11669 }
11670
11671 else if (GET_CODE (body) == PARALLEL)
11672 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11673 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11674 return 1;
11675
11676 return 0;
11677 }
11678 \f
11679 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11680 as appropriate. I3 and I2 are the insns resulting from the combination
11681 insns including FROM (I2 may be zero).
11682
11683 Each note in the list is either ignored or placed on some insns, depending
11684 on the type of note. */
11685
11686 static void
11687 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11688 {
11689 rtx note, next_note;
11690 rtx tem;
11691
11692 for (note = notes; note; note = next_note)
11693 {
11694 rtx place = 0, place2 = 0;
11695
11696 /* If this NOTE references a pseudo register, ensure it references
11697 the latest copy of that register. */
11698 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11699 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11700 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11701
11702 next_note = XEXP (note, 1);
11703 switch (REG_NOTE_KIND (note))
11704 {
11705 case REG_BR_PROB:
11706 case REG_BR_PRED:
11707 /* Doesn't matter much where we put this, as long as it's somewhere.
11708 It is preferable to keep these notes on branches, which is most
11709 likely to be i3. */
11710 place = i3;
11711 break;
11712
11713 case REG_VALUE_PROFILE:
11714 /* Just get rid of this note, as it is unused later anyway. */
11715 break;
11716
11717 case REG_NON_LOCAL_GOTO:
11718 if (JUMP_P (i3))
11719 place = i3;
11720 else
11721 {
11722 gcc_assert (i2 && JUMP_P (i2));
11723 place = i2;
11724 }
11725 break;
11726
11727 case REG_EH_REGION:
11728 /* These notes must remain with the call or trapping instruction. */
11729 if (CALL_P (i3))
11730 place = i3;
11731 else if (i2 && CALL_P (i2))
11732 place = i2;
11733 else
11734 {
11735 gcc_assert (flag_non_call_exceptions);
11736 if (may_trap_p (i3))
11737 place = i3;
11738 else if (i2 && may_trap_p (i2))
11739 place = i2;
11740 /* ??? Otherwise assume we've combined things such that we
11741 can now prove that the instructions can't trap. Drop the
11742 note in this case. */
11743 }
11744 break;
11745
11746 case REG_ALWAYS_RETURN:
11747 case REG_NORETURN:
11748 case REG_SETJMP:
11749 /* These notes must remain with the call. It should not be
11750 possible for both I2 and I3 to be a call. */
11751 if (CALL_P (i3))
11752 place = i3;
11753 else
11754 {
11755 gcc_assert (i2 && CALL_P (i2));
11756 place = i2;
11757 }
11758 break;
11759
11760 case REG_UNUSED:
11761 /* Any clobbers for i3 may still exist, and so we must process
11762 REG_UNUSED notes from that insn.
11763
11764 Any clobbers from i2 or i1 can only exist if they were added by
11765 recog_for_combine. In that case, recog_for_combine created the
11766 necessary REG_UNUSED notes. Trying to keep any original
11767 REG_UNUSED notes from these insns can cause incorrect output
11768 if it is for the same register as the original i3 dest.
11769 In that case, we will notice that the register is set in i3,
11770 and then add a REG_UNUSED note for the destination of i3, which
11771 is wrong. However, it is possible to have REG_UNUSED notes from
11772 i2 or i1 for register which were both used and clobbered, so
11773 we keep notes from i2 or i1 if they will turn into REG_DEAD
11774 notes. */
11775
11776 /* If this register is set or clobbered in I3, put the note there
11777 unless there is one already. */
11778 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11779 {
11780 if (from_insn != i3)
11781 break;
11782
11783 if (! (REG_P (XEXP (note, 0))
11784 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11785 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11786 place = i3;
11787 }
11788 /* Otherwise, if this register is used by I3, then this register
11789 now dies here, so we must put a REG_DEAD note here unless there
11790 is one already. */
11791 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11792 && ! (REG_P (XEXP (note, 0))
11793 ? find_regno_note (i3, REG_DEAD,
11794 REGNO (XEXP (note, 0)))
11795 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11796 {
11797 PUT_REG_NOTE_KIND (note, REG_DEAD);
11798 place = i3;
11799 }
11800 break;
11801
11802 case REG_EQUAL:
11803 case REG_EQUIV:
11804 case REG_NOALIAS:
11805 /* These notes say something about results of an insn. We can
11806 only support them if they used to be on I3 in which case they
11807 remain on I3. Otherwise they are ignored.
11808
11809 If the note refers to an expression that is not a constant, we
11810 must also ignore the note since we cannot tell whether the
11811 equivalence is still true. It might be possible to do
11812 slightly better than this (we only have a problem if I2DEST
11813 or I1DEST is present in the expression), but it doesn't
11814 seem worth the trouble. */
11815
11816 if (from_insn == i3
11817 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11818 place = i3;
11819 break;
11820
11821 case REG_INC:
11822 case REG_NO_CONFLICT:
11823 /* These notes say something about how a register is used. They must
11824 be present on any use of the register in I2 or I3. */
11825 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11826 place = i3;
11827
11828 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11829 {
11830 if (place)
11831 place2 = i2;
11832 else
11833 place = i2;
11834 }
11835 break;
11836
11837 case REG_LABEL:
11838 /* This can show up in several ways -- either directly in the
11839 pattern, or hidden off in the constant pool with (or without?)
11840 a REG_EQUAL note. */
11841 /* ??? Ignore the without-reg_equal-note problem for now. */
11842 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11843 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11844 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11845 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11846 place = i3;
11847
11848 if (i2
11849 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11850 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11851 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11852 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11853 {
11854 if (place)
11855 place2 = i2;
11856 else
11857 place = i2;
11858 }
11859
11860 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11861 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11862 if (place && JUMP_P (place))
11863 {
11864 rtx label = JUMP_LABEL (place);
11865
11866 if (!label)
11867 JUMP_LABEL (place) = XEXP (note, 0);
11868 else
11869 {
11870 gcc_assert (label == XEXP (note, 0));
11871 if (LABEL_P (label))
11872 LABEL_NUSES (label)--;
11873 }
11874 place = 0;
11875 }
11876 if (place2 && JUMP_P (place2))
11877 {
11878 rtx label = JUMP_LABEL (place2);
11879
11880 if (!label)
11881 JUMP_LABEL (place2) = XEXP (note, 0);
11882 else
11883 {
11884 gcc_assert (label == XEXP (note, 0));
11885 if (LABEL_P (label))
11886 LABEL_NUSES (label)--;
11887 }
11888 place2 = 0;
11889 }
11890 break;
11891
11892 case REG_NONNEG:
11893 /* This note says something about the value of a register prior
11894 to the execution of an insn. It is too much trouble to see
11895 if the note is still correct in all situations. It is better
11896 to simply delete it. */
11897 break;
11898
11899 case REG_RETVAL:
11900 /* If the insn previously containing this note still exists,
11901 put it back where it was. Otherwise move it to the previous
11902 insn. Adjust the corresponding REG_LIBCALL note. */
11903 if (!NOTE_P (from_insn))
11904 place = from_insn;
11905 else
11906 {
11907 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11908 place = prev_real_insn (from_insn);
11909 if (tem && place)
11910 XEXP (tem, 0) = place;
11911 /* If we're deleting the last remaining instruction of a
11912 libcall sequence, don't add the notes. */
11913 else if (XEXP (note, 0) == from_insn)
11914 tem = place = 0;
11915 /* Don't add the dangling REG_RETVAL note. */
11916 else if (! tem)
11917 place = 0;
11918 }
11919 break;
11920
11921 case REG_LIBCALL:
11922 /* This is handled similarly to REG_RETVAL. */
11923 if (!NOTE_P (from_insn))
11924 place = from_insn;
11925 else
11926 {
11927 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11928 place = next_real_insn (from_insn);
11929 if (tem && place)
11930 XEXP (tem, 0) = place;
11931 /* If we're deleting the last remaining instruction of a
11932 libcall sequence, don't add the notes. */
11933 else if (XEXP (note, 0) == from_insn)
11934 tem = place = 0;
11935 /* Don't add the dangling REG_LIBCALL note. */
11936 else if (! tem)
11937 place = 0;
11938 }
11939 break;
11940
11941 case REG_DEAD:
11942 /* If the register is used as an input in I3, it dies there.
11943 Similarly for I2, if it is nonzero and adjacent to I3.
11944
11945 If the register is not used as an input in either I3 or I2
11946 and it is not one of the registers we were supposed to eliminate,
11947 there are two possibilities. We might have a non-adjacent I2
11948 or we might have somehow eliminated an additional register
11949 from a computation. For example, we might have had A & B where
11950 we discover that B will always be zero. In this case we will
11951 eliminate the reference to A.
11952
11953 In both cases, we must search to see if we can find a previous
11954 use of A and put the death note there. */
11955
11956 if (from_insn
11957 && CALL_P (from_insn)
11958 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11959 place = from_insn;
11960 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11961 place = i3;
11962 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11963 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11964 place = i2;
11965
11966 if (place == 0)
11967 {
11968 basic_block bb = this_basic_block;
11969
11970 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
11971 {
11972 if (! INSN_P (tem))
11973 {
11974 if (tem == BB_HEAD (bb))
11975 break;
11976 continue;
11977 }
11978
11979 /* If the register is being set at TEM, see if that is all
11980 TEM is doing. If so, delete TEM. Otherwise, make this
11981 into a REG_UNUSED note instead. Don't delete sets to
11982 global register vars. */
11983 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
11984 || !global_regs[REGNO (XEXP (note, 0))])
11985 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
11986 {
11987 rtx set = single_set (tem);
11988 rtx inner_dest = 0;
11989 #ifdef HAVE_cc0
11990 rtx cc0_setter = NULL_RTX;
11991 #endif
11992
11993 if (set != 0)
11994 for (inner_dest = SET_DEST (set);
11995 (GET_CODE (inner_dest) == STRICT_LOW_PART
11996 || GET_CODE (inner_dest) == SUBREG
11997 || GET_CODE (inner_dest) == ZERO_EXTRACT);
11998 inner_dest = XEXP (inner_dest, 0))
11999 ;
12000
12001 /* Verify that it was the set, and not a clobber that
12002 modified the register.
12003
12004 CC0 targets must be careful to maintain setter/user
12005 pairs. If we cannot delete the setter due to side
12006 effects, mark the user with an UNUSED note instead
12007 of deleting it. */
12008
12009 if (set != 0 && ! side_effects_p (SET_SRC (set))
12010 && rtx_equal_p (XEXP (note, 0), inner_dest)
12011 #ifdef HAVE_cc0
12012 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12013 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12014 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12015 #endif
12016 )
12017 {
12018 /* Move the notes and links of TEM elsewhere.
12019 This might delete other dead insns recursively.
12020 First set the pattern to something that won't use
12021 any register. */
12022 rtx old_notes = REG_NOTES (tem);
12023
12024 PATTERN (tem) = pc_rtx;
12025 REG_NOTES (tem) = NULL;
12026
12027 distribute_notes (old_notes, tem, tem, NULL_RTX);
12028 distribute_links (LOG_LINKS (tem));
12029
12030 SET_INSN_DELETED (tem);
12031
12032 #ifdef HAVE_cc0
12033 /* Delete the setter too. */
12034 if (cc0_setter)
12035 {
12036 PATTERN (cc0_setter) = pc_rtx;
12037 old_notes = REG_NOTES (cc0_setter);
12038 REG_NOTES (cc0_setter) = NULL;
12039
12040 distribute_notes (old_notes, cc0_setter,
12041 cc0_setter, NULL_RTX);
12042 distribute_links (LOG_LINKS (cc0_setter));
12043
12044 SET_INSN_DELETED (cc0_setter);
12045 }
12046 #endif
12047 }
12048 else
12049 {
12050 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12051
12052 /* If there isn't already a REG_UNUSED note, put one
12053 here. Do not place a REG_DEAD note, even if
12054 the register is also used here; that would not
12055 match the algorithm used in lifetime analysis
12056 and can cause the consistency check in the
12057 scheduler to fail. */
12058 if (! find_regno_note (tem, REG_UNUSED,
12059 REGNO (XEXP (note, 0))))
12060 place = tem;
12061 break;
12062 }
12063 }
12064 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12065 || (CALL_P (tem)
12066 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12067 {
12068 place = tem;
12069
12070 /* If we are doing a 3->2 combination, and we have a
12071 register which formerly died in i3 and was not used
12072 by i2, which now no longer dies in i3 and is used in
12073 i2 but does not die in i2, and place is between i2
12074 and i3, then we may need to move a link from place to
12075 i2. */
12076 if (i2 && INSN_UID (place) <= max_uid_cuid
12077 && INSN_CUID (place) > INSN_CUID (i2)
12078 && from_insn
12079 && INSN_CUID (from_insn) > INSN_CUID (i2)
12080 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12081 {
12082 rtx links = LOG_LINKS (place);
12083 LOG_LINKS (place) = 0;
12084 distribute_links (links);
12085 }
12086 break;
12087 }
12088
12089 if (tem == BB_HEAD (bb))
12090 break;
12091 }
12092
12093 /* We haven't found an insn for the death note and it
12094 is still a REG_DEAD note, but we have hit the beginning
12095 of the block. If the existing life info says the reg
12096 was dead, there's nothing left to do. Otherwise, we'll
12097 need to do a global life update after combine. */
12098 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12099 && REGNO_REG_SET_P (bb->global_live_at_start,
12100 REGNO (XEXP (note, 0))))
12101 SET_BIT (refresh_blocks, this_basic_block->index);
12102 }
12103
12104 /* If the register is set or already dead at PLACE, we needn't do
12105 anything with this note if it is still a REG_DEAD note.
12106 We check here if it is set at all, not if is it totally replaced,
12107 which is what `dead_or_set_p' checks, so also check for it being
12108 set partially. */
12109
12110 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12111 {
12112 unsigned int regno = REGNO (XEXP (note, 0));
12113
12114 /* Similarly, if the instruction on which we want to place
12115 the note is a noop, we'll need do a global live update
12116 after we remove them in delete_noop_moves. */
12117 if (noop_move_p (place))
12118 SET_BIT (refresh_blocks, this_basic_block->index);
12119
12120 if (dead_or_set_p (place, XEXP (note, 0))
12121 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12122 {
12123 /* Unless the register previously died in PLACE, clear
12124 last_death. [I no longer understand why this is
12125 being done.] */
12126 if (reg_stat[regno].last_death != place)
12127 reg_stat[regno].last_death = 0;
12128 place = 0;
12129 }
12130 else
12131 reg_stat[regno].last_death = place;
12132
12133 /* If this is a death note for a hard reg that is occupying
12134 multiple registers, ensure that we are still using all
12135 parts of the object. If we find a piece of the object
12136 that is unused, we must arrange for an appropriate REG_DEAD
12137 note to be added for it. However, we can't just emit a USE
12138 and tag the note to it, since the register might actually
12139 be dead; so we recourse, and the recursive call then finds
12140 the previous insn that used this register. */
12141
12142 if (place && regno < FIRST_PSEUDO_REGISTER
12143 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12144 {
12145 unsigned int endregno
12146 = regno + hard_regno_nregs[regno]
12147 [GET_MODE (XEXP (note, 0))];
12148 int all_used = 1;
12149 unsigned int i;
12150
12151 for (i = regno; i < endregno; i++)
12152 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12153 && ! find_regno_fusage (place, USE, i))
12154 || dead_or_set_regno_p (place, i))
12155 all_used = 0;
12156
12157 if (! all_used)
12158 {
12159 /* Put only REG_DEAD notes for pieces that are
12160 not already dead or set. */
12161
12162 for (i = regno; i < endregno;
12163 i += hard_regno_nregs[i][reg_raw_mode[i]])
12164 {
12165 rtx piece = regno_reg_rtx[i];
12166 basic_block bb = this_basic_block;
12167
12168 if (! dead_or_set_p (place, piece)
12169 && ! reg_bitfield_target_p (piece,
12170 PATTERN (place)))
12171 {
12172 rtx new_note
12173 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12174
12175 distribute_notes (new_note, place, place,
12176 NULL_RTX);
12177 }
12178 else if (! refers_to_regno_p (i, i + 1,
12179 PATTERN (place), 0)
12180 && ! find_regno_fusage (place, USE, i))
12181 for (tem = PREV_INSN (place); ;
12182 tem = PREV_INSN (tem))
12183 {
12184 if (! INSN_P (tem))
12185 {
12186 if (tem == BB_HEAD (bb))
12187 {
12188 SET_BIT (refresh_blocks,
12189 this_basic_block->index);
12190 break;
12191 }
12192 continue;
12193 }
12194 if (dead_or_set_p (tem, piece)
12195 || reg_bitfield_target_p (piece,
12196 PATTERN (tem)))
12197 {
12198 REG_NOTES (tem)
12199 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12200 REG_NOTES (tem));
12201 break;
12202 }
12203 }
12204
12205 }
12206
12207 place = 0;
12208 }
12209 }
12210 }
12211 break;
12212
12213 default:
12214 /* Any other notes should not be present at this point in the
12215 compilation. */
12216 gcc_unreachable ();
12217 }
12218
12219 if (place)
12220 {
12221 XEXP (note, 1) = REG_NOTES (place);
12222 REG_NOTES (place) = note;
12223 }
12224 else if ((REG_NOTE_KIND (note) == REG_DEAD
12225 || REG_NOTE_KIND (note) == REG_UNUSED)
12226 && REG_P (XEXP (note, 0)))
12227 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12228
12229 if (place2)
12230 {
12231 if ((REG_NOTE_KIND (note) == REG_DEAD
12232 || REG_NOTE_KIND (note) == REG_UNUSED)
12233 && REG_P (XEXP (note, 0)))
12234 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12235
12236 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12237 REG_NOTE_KIND (note),
12238 XEXP (note, 0),
12239 REG_NOTES (place2));
12240 }
12241 }
12242 }
12243 \f
12244 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12245 I3, I2, and I1 to new locations. This is also called to add a link
12246 pointing at I3 when I3's destination is changed. */
12247
12248 static void
12249 distribute_links (rtx links)
12250 {
12251 rtx link, next_link;
12252
12253 for (link = links; link; link = next_link)
12254 {
12255 rtx place = 0;
12256 rtx insn;
12257 rtx set, reg;
12258
12259 next_link = XEXP (link, 1);
12260
12261 /* If the insn that this link points to is a NOTE or isn't a single
12262 set, ignore it. In the latter case, it isn't clear what we
12263 can do other than ignore the link, since we can't tell which
12264 register it was for. Such links wouldn't be used by combine
12265 anyway.
12266
12267 It is not possible for the destination of the target of the link to
12268 have been changed by combine. The only potential of this is if we
12269 replace I3, I2, and I1 by I3 and I2. But in that case the
12270 destination of I2 also remains unchanged. */
12271
12272 if (NOTE_P (XEXP (link, 0))
12273 || (set = single_set (XEXP (link, 0))) == 0)
12274 continue;
12275
12276 reg = SET_DEST (set);
12277 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12278 || GET_CODE (reg) == SIGN_EXTRACT
12279 || GET_CODE (reg) == STRICT_LOW_PART)
12280 reg = XEXP (reg, 0);
12281
12282 /* A LOG_LINK is defined as being placed on the first insn that uses
12283 a register and points to the insn that sets the register. Start
12284 searching at the next insn after the target of the link and stop
12285 when we reach a set of the register or the end of the basic block.
12286
12287 Note that this correctly handles the link that used to point from
12288 I3 to I2. Also note that not much searching is typically done here
12289 since most links don't point very far away. */
12290
12291 for (insn = NEXT_INSN (XEXP (link, 0));
12292 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12293 || BB_HEAD (this_basic_block->next_bb) != insn));
12294 insn = NEXT_INSN (insn))
12295 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12296 {
12297 if (reg_referenced_p (reg, PATTERN (insn)))
12298 place = insn;
12299 break;
12300 }
12301 else if (CALL_P (insn)
12302 && find_reg_fusage (insn, USE, reg))
12303 {
12304 place = insn;
12305 break;
12306 }
12307 else if (INSN_P (insn) && reg_set_p (reg, insn))
12308 break;
12309
12310 /* If we found a place to put the link, place it there unless there
12311 is already a link to the same insn as LINK at that point. */
12312
12313 if (place)
12314 {
12315 rtx link2;
12316
12317 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12318 if (XEXP (link2, 0) == XEXP (link, 0))
12319 break;
12320
12321 if (link2 == 0)
12322 {
12323 XEXP (link, 1) = LOG_LINKS (place);
12324 LOG_LINKS (place) = link;
12325
12326 /* Set added_links_insn to the earliest insn we added a
12327 link to. */
12328 if (added_links_insn == 0
12329 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12330 added_links_insn = place;
12331 }
12332 }
12333 }
12334 }
12335 \f
12336 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12337 Check whether the expression pointer to by LOC is a register or
12338 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12339 Otherwise return zero. */
12340
12341 static int
12342 unmentioned_reg_p_1 (rtx *loc, void *expr)
12343 {
12344 rtx x = *loc;
12345
12346 if (x != NULL_RTX
12347 && (REG_P (x) || MEM_P (x))
12348 && ! reg_mentioned_p (x, (rtx) expr))
12349 return 1;
12350 return 0;
12351 }
12352
12353 /* Check for any register or memory mentioned in EQUIV that is not
12354 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12355 of EXPR where some registers may have been replaced by constants. */
12356
12357 static bool
12358 unmentioned_reg_p (rtx equiv, rtx expr)
12359 {
12360 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12361 }
12362 \f
12363 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12364
12365 static int
12366 insn_cuid (rtx insn)
12367 {
12368 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12369 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12370 insn = NEXT_INSN (insn);
12371
12372 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12373
12374 return INSN_CUID (insn);
12375 }
12376 \f
12377 void
12378 dump_combine_stats (FILE *file)
12379 {
12380 fnotice
12381 (file,
12382 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12383 combine_attempts, combine_merges, combine_extras, combine_successes);
12384 }
12385
12386 void
12387 dump_combine_total_stats (FILE *file)
12388 {
12389 fnotice
12390 (file,
12391 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12392 total_attempts, total_merges, total_extras, total_successes);
12393 }
This page took 0.638198 seconds and 6 git commands to generate.