]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
sbitmap.h (sbitmap_iterator, [...]): New.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
99
100 /* Number of attempts to combine instructions in this function. */
101
102 static int combine_attempts;
103
104 /* Number of attempts that got as far as substitution in this function. */
105
106 static int combine_merges;
107
108 /* Number of instructions combined with added SETs in this function. */
109
110 static int combine_extras;
111
112 /* Number of instructions combined in this function. */
113
114 static int combine_successes;
115
116 /* Totals over entire compilation. */
117
118 static int total_attempts, total_merges, total_extras, total_successes;
119
120 \f
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
127
128 static int *uid_cuid;
129 static int max_uid_cuid;
130
131 /* Get the cuid of an insn. */
132
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
135
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
138
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
141
142 /* Maximum register number, which is the size of the tables below. */
143
144 static unsigned int combine_max_regno;
145
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240 };
241
242 static struct reg_stat *reg_stat;
243
244 /* Record the cuid of the last insn that invalidated memory
245 (anything that writes memory, and subroutine calls, but not pushes). */
246
247 static int mem_last_set;
248
249 /* Record the cuid of the last CALL_INSN
250 so we can tell whether a potential combination crosses any calls. */
251
252 static int last_call_cuid;
253
254 /* When `subst' is called, this is the insn that is being modified
255 (by combining in a previous insn). The PATTERN of this insn
256 is still the old pattern partially modified and it should not be
257 looked at, but this may be used to examine the successors of the insn
258 to judge whether a simplification is valid. */
259
260 static rtx subst_insn;
261
262 /* This is the lowest CUID that `subst' is currently dealing with.
263 get_last_value will not return a value if the register was set at or
264 after this CUID. If not for this mechanism, we could get confused if
265 I2 or I1 in try_combine were an insn that used the old value of a register
266 to obtain a new value. In that case, we might erroneously get the
267 new value of the register when we wanted the old one. */
268
269 static int subst_low_cuid;
270
271 /* This contains any hard registers that are used in newpat; reg_dead_at_p
272 must consider all these registers to be always live. */
273
274 static HARD_REG_SET newpat_used_regs;
275
276 /* This is an insn to which a LOG_LINKS entry has been added. If this
277 insn is the earlier than I2 or I3, combine should rescan starting at
278 that location. */
279
280 static rtx added_links_insn;
281
282 /* Basic block in which we are performing combines. */
283 static basic_block this_basic_block;
284
285 /* A bitmap indicating which blocks had registers go dead at entry.
286 After combine, we'll need to re-do global life analysis with
287 those blocks as starting points. */
288 static sbitmap refresh_blocks;
289 \f
290 /* The following array records the insn_rtx_cost for every insn
291 in the instruction stream. */
292
293 static int *uid_insn_cost;
294
295 /* Length of the currently allocated uid_insn_cost array. */
296
297 static int last_insn_cost;
298
299 /* Incremented for each label. */
300
301 static int label_tick;
302
303 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
304 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
305
306 static enum machine_mode nonzero_bits_mode;
307
308 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
309 be safely used. It is zero while computing them and after combine has
310 completed. This former test prevents propagating values based on
311 previously set values, which can be incorrect if a variable is modified
312 in a loop. */
313
314 static int nonzero_sign_valid;
315
316 \f
317 /* Record one modification to rtl structure
318 to be undone by storing old_contents into *where.
319 is_int is 1 if the contents are an int. */
320
321 struct undo
322 {
323 struct undo *next;
324 int is_int;
325 union {rtx r; int i;} old_contents;
326 union {rtx *r; int *i;} where;
327 };
328
329 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
330 num_undo says how many are currently recorded.
331
332 other_insn is nonzero if we have modified some other insn in the process
333 of working on subst_insn. It must be verified too. */
334
335 struct undobuf
336 {
337 struct undo *undos;
338 struct undo *frees;
339 rtx other_insn;
340 };
341
342 static struct undobuf undobuf;
343
344 /* Number of times the pseudo being substituted for
345 was found and replaced. */
346
347 static int n_occurrences;
348
349 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
350 enum machine_mode,
351 unsigned HOST_WIDE_INT,
352 unsigned HOST_WIDE_INT *);
353 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
354 enum machine_mode,
355 unsigned int, unsigned int *);
356 static void do_SUBST (rtx *, rtx);
357 static void do_SUBST_INT (int *, int);
358 static void init_reg_last (void);
359 static void setup_incoming_promotions (void);
360 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
361 static int cant_combine_insn_p (rtx);
362 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
363 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
364 static int contains_muldiv (rtx);
365 static rtx try_combine (rtx, rtx, rtx, int *);
366 static void undo_all (void);
367 static void undo_commit (void);
368 static rtx *find_split_point (rtx *, rtx);
369 static rtx subst (rtx, rtx, rtx, int, int);
370 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
371 static rtx simplify_if_then_else (rtx);
372 static rtx simplify_set (rtx);
373 static rtx simplify_logical (rtx);
374 static rtx expand_compound_operation (rtx);
375 static rtx expand_field_assignment (rtx);
376 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
377 rtx, unsigned HOST_WIDE_INT, int, int, int);
378 static rtx extract_left_shift (rtx, int);
379 static rtx make_compound_operation (rtx, enum rtx_code);
380 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
381 unsigned HOST_WIDE_INT *);
382 static rtx force_to_mode (rtx, enum machine_mode,
383 unsigned HOST_WIDE_INT, rtx, int);
384 static rtx if_then_else_cond (rtx, rtx *, rtx *);
385 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
386 static int rtx_equal_for_field_assignment_p (rtx, rtx);
387 static rtx make_field_assignment (rtx);
388 static rtx apply_distributive_law (rtx);
389 static rtx distribute_and_simplify_rtx (rtx, int);
390 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
391 unsigned HOST_WIDE_INT);
392 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
393 HOST_WIDE_INT, enum machine_mode, int *);
394 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
395 int);
396 static int recog_for_combine (rtx *, rtx, rtx *);
397 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static int unmentioned_reg_p_1 (rtx *, void *);
417 static bool unmentioned_reg_p (rtx, rtx);
418 \f
419
420 /* It is not safe to use ordinary gen_lowpart in combine.
421 See comments in gen_lowpart_for_combine. */
422 #undef RTL_HOOKS_GEN_LOWPART
423 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
424
425 /* Our implementation of gen_lowpart never emits a new pseudo. */
426 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
427 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
428
429 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
430 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
431
432 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
433 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
434
435 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
436
437 \f
438 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
439 insn. The substitution can be undone by undo_all. If INTO is already
440 set to NEWVAL, do not record this change. Because computing NEWVAL might
441 also call SUBST, we have to compute it before we put anything into
442 the undo table. */
443
444 static void
445 do_SUBST (rtx *into, rtx newval)
446 {
447 struct undo *buf;
448 rtx oldval = *into;
449
450 if (oldval == newval)
451 return;
452
453 /* We'd like to catch as many invalid transformations here as
454 possible. Unfortunately, there are way too many mode changes
455 that are perfectly valid, so we'd waste too much effort for
456 little gain doing the checks here. Focus on catching invalid
457 transformations involving integer constants. */
458 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
459 && GET_CODE (newval) == CONST_INT)
460 {
461 /* Sanity check that we're replacing oldval with a CONST_INT
462 that is a valid sign-extension for the original mode. */
463 gcc_assert (INTVAL (newval)
464 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
465
466 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
467 CONST_INT is not valid, because after the replacement, the
468 original mode would be gone. Unfortunately, we can't tell
469 when do_SUBST is called to replace the operand thereof, so we
470 perform this test on oldval instead, checking whether an
471 invalid replacement took place before we got here. */
472 gcc_assert (!(GET_CODE (oldval) == SUBREG
473 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
474 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
475 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
476 }
477
478 if (undobuf.frees)
479 buf = undobuf.frees, undobuf.frees = buf->next;
480 else
481 buf = xmalloc (sizeof (struct undo));
482
483 buf->is_int = 0;
484 buf->where.r = into;
485 buf->old_contents.r = oldval;
486 *into = newval;
487
488 buf->next = undobuf.undos, undobuf.undos = buf;
489 }
490
491 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
492
493 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
494 for the value of a HOST_WIDE_INT value (including CONST_INT) is
495 not safe. */
496
497 static void
498 do_SUBST_INT (int *into, int newval)
499 {
500 struct undo *buf;
501 int oldval = *into;
502
503 if (oldval == newval)
504 return;
505
506 if (undobuf.frees)
507 buf = undobuf.frees, undobuf.frees = buf->next;
508 else
509 buf = xmalloc (sizeof (struct undo));
510
511 buf->is_int = 1;
512 buf->where.i = into;
513 buf->old_contents.i = oldval;
514 *into = newval;
515
516 buf->next = undobuf.undos, undobuf.undos = buf;
517 }
518
519 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
520 \f
521 /* Subroutine of try_combine. Determine whether the combine replacement
522 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
523 that the original instruction sequence I1, I2 and I3. Note that I1
524 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
525 costs of all instructions can be estimated, and the replacements are
526 more expensive than the original sequence. */
527
528 static bool
529 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
530 {
531 int i1_cost, i2_cost, i3_cost;
532 int new_i2_cost, new_i3_cost;
533 int old_cost, new_cost;
534
535 /* Lookup the original insn_rtx_costs. */
536 i2_cost = INSN_UID (i2) <= last_insn_cost
537 ? uid_insn_cost[INSN_UID (i2)] : 0;
538 i3_cost = INSN_UID (i3) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i3)] : 0;
540
541 if (i1)
542 {
543 i1_cost = INSN_UID (i1) <= last_insn_cost
544 ? uid_insn_cost[INSN_UID (i1)] : 0;
545 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
546 ? i1_cost + i2_cost + i3_cost : 0;
547 }
548 else
549 {
550 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
551 i1_cost = 0;
552 }
553
554 /* Calculate the replacement insn_rtx_costs. */
555 new_i3_cost = insn_rtx_cost (newpat);
556 if (newi2pat)
557 {
558 new_i2_cost = insn_rtx_cost (newi2pat);
559 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
560 ? new_i2_cost + new_i3_cost : 0;
561 }
562 else
563 {
564 new_cost = new_i3_cost;
565 new_i2_cost = 0;
566 }
567
568 if (undobuf.other_insn)
569 {
570 int old_other_cost, new_other_cost;
571
572 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
573 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
574 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
575 if (old_other_cost > 0 && new_other_cost > 0)
576 {
577 old_cost += old_other_cost;
578 new_cost += new_other_cost;
579 }
580 else
581 old_cost = 0;
582 }
583
584 /* Disallow this recombination if both new_cost and old_cost are
585 greater than zero, and new_cost is greater than old cost. */
586 if (old_cost > 0
587 && new_cost > old_cost)
588 {
589 if (dump_file)
590 {
591 if (i1)
592 {
593 fprintf (dump_file,
594 "rejecting combination of insns %d, %d and %d\n",
595 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
596 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
597 i1_cost, i2_cost, i3_cost, old_cost);
598 }
599 else
600 {
601 fprintf (dump_file,
602 "rejecting combination of insns %d and %d\n",
603 INSN_UID (i2), INSN_UID (i3));
604 fprintf (dump_file, "original costs %d + %d = %d\n",
605 i2_cost, i3_cost, old_cost);
606 }
607
608 if (newi2pat)
609 {
610 fprintf (dump_file, "replacement costs %d + %d = %d\n",
611 new_i2_cost, new_i3_cost, new_cost);
612 }
613 else
614 fprintf (dump_file, "replacement cost %d\n", new_cost);
615 }
616
617 return false;
618 }
619
620 /* Update the uid_insn_cost array with the replacement costs. */
621 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
622 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
623 if (i1)
624 uid_insn_cost[INSN_UID (i1)] = 0;
625
626 return true;
627 }
628 \f
629 /* Main entry point for combiner. F is the first insn of the function.
630 NREGS is the first unused pseudo-reg number.
631
632 Return nonzero if the combiner has turned an indirect jump
633 instruction into a direct jump. */
634 int
635 combine_instructions (rtx f, unsigned int nregs)
636 {
637 rtx insn, next;
638 #ifdef HAVE_cc0
639 rtx prev;
640 #endif
641 int i;
642 unsigned int j;
643 rtx links, nextlinks;
644 sbitmap_iterator sbi;
645
646 int new_direct_jump_p = 0;
647
648 combine_attempts = 0;
649 combine_merges = 0;
650 combine_extras = 0;
651 combine_successes = 0;
652
653 combine_max_regno = nregs;
654
655 rtl_hooks = combine_rtl_hooks;
656
657 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
658
659 init_recog_no_volatile ();
660
661 /* Compute maximum uid value so uid_cuid can be allocated. */
662
663 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
664 if (INSN_UID (insn) > i)
665 i = INSN_UID (insn);
666
667 uid_cuid = xmalloc ((i + 1) * sizeof (int));
668 max_uid_cuid = i;
669
670 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
671
672 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
673 problems when, for example, we have j <<= 1 in a loop. */
674
675 nonzero_sign_valid = 0;
676
677 /* Compute the mapping from uids to cuids.
678 Cuids are numbers assigned to insns, like uids,
679 except that cuids increase monotonically through the code.
680
681 Scan all SETs and see if we can deduce anything about what
682 bits are known to be zero for some registers and how many copies
683 of the sign bit are known to exist for those registers.
684
685 Also set any known values so that we can use it while searching
686 for what bits are known to be set. */
687
688 label_tick = 1;
689
690 setup_incoming_promotions ();
691
692 refresh_blocks = sbitmap_alloc (last_basic_block);
693 sbitmap_zero (refresh_blocks);
694
695 /* Allocate array of current insn_rtx_costs. */
696 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
697 last_insn_cost = max_uid_cuid;
698
699 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
700 {
701 uid_cuid[INSN_UID (insn)] = ++i;
702 subst_low_cuid = i;
703 subst_insn = insn;
704
705 if (INSN_P (insn))
706 {
707 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
708 NULL);
709 record_dead_and_set_regs (insn);
710
711 #ifdef AUTO_INC_DEC
712 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
713 if (REG_NOTE_KIND (links) == REG_INC)
714 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
715 NULL);
716 #endif
717
718 /* Record the current insn_rtx_cost of this instruction. */
719 if (NONJUMP_INSN_P (insn))
720 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
721 if (dump_file)
722 fprintf(dump_file, "insn_cost %d: %d\n",
723 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
724 }
725
726 if (LABEL_P (insn))
727 label_tick++;
728 }
729
730 nonzero_sign_valid = 1;
731
732 /* Now scan all the insns in forward order. */
733
734 label_tick = 1;
735 last_call_cuid = 0;
736 mem_last_set = 0;
737 init_reg_last ();
738 setup_incoming_promotions ();
739
740 FOR_EACH_BB (this_basic_block)
741 {
742 for (insn = BB_HEAD (this_basic_block);
743 insn != NEXT_INSN (BB_END (this_basic_block));
744 insn = next ? next : NEXT_INSN (insn))
745 {
746 next = 0;
747
748 if (LABEL_P (insn))
749 label_tick++;
750
751 else if (INSN_P (insn))
752 {
753 /* See if we know about function return values before this
754 insn based upon SUBREG flags. */
755 check_promoted_subreg (insn, PATTERN (insn));
756
757 /* Try this insn with each insn it links back to. */
758
759 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
760 if ((next = try_combine (insn, XEXP (links, 0),
761 NULL_RTX, &new_direct_jump_p)) != 0)
762 goto retry;
763
764 /* Try each sequence of three linked insns ending with this one. */
765
766 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
767 {
768 rtx link = XEXP (links, 0);
769
770 /* If the linked insn has been replaced by a note, then there
771 is no point in pursuing this chain any further. */
772 if (NOTE_P (link))
773 continue;
774
775 for (nextlinks = LOG_LINKS (link);
776 nextlinks;
777 nextlinks = XEXP (nextlinks, 1))
778 if ((next = try_combine (insn, link,
779 XEXP (nextlinks, 0),
780 &new_direct_jump_p)) != 0)
781 goto retry;
782 }
783
784 #ifdef HAVE_cc0
785 /* Try to combine a jump insn that uses CC0
786 with a preceding insn that sets CC0, and maybe with its
787 logical predecessor as well.
788 This is how we make decrement-and-branch insns.
789 We need this special code because data flow connections
790 via CC0 do not get entered in LOG_LINKS. */
791
792 if (JUMP_P (insn)
793 && (prev = prev_nonnote_insn (insn)) != 0
794 && NONJUMP_INSN_P (prev)
795 && sets_cc0_p (PATTERN (prev)))
796 {
797 if ((next = try_combine (insn, prev,
798 NULL_RTX, &new_direct_jump_p)) != 0)
799 goto retry;
800
801 for (nextlinks = LOG_LINKS (prev); nextlinks;
802 nextlinks = XEXP (nextlinks, 1))
803 if ((next = try_combine (insn, prev,
804 XEXP (nextlinks, 0),
805 &new_direct_jump_p)) != 0)
806 goto retry;
807 }
808
809 /* Do the same for an insn that explicitly references CC0. */
810 if (NONJUMP_INSN_P (insn)
811 && (prev = prev_nonnote_insn (insn)) != 0
812 && NONJUMP_INSN_P (prev)
813 && sets_cc0_p (PATTERN (prev))
814 && GET_CODE (PATTERN (insn)) == SET
815 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
816 {
817 if ((next = try_combine (insn, prev,
818 NULL_RTX, &new_direct_jump_p)) != 0)
819 goto retry;
820
821 for (nextlinks = LOG_LINKS (prev); nextlinks;
822 nextlinks = XEXP (nextlinks, 1))
823 if ((next = try_combine (insn, prev,
824 XEXP (nextlinks, 0),
825 &new_direct_jump_p)) != 0)
826 goto retry;
827 }
828
829 /* Finally, see if any of the insns that this insn links to
830 explicitly references CC0. If so, try this insn, that insn,
831 and its predecessor if it sets CC0. */
832 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
833 if (NONJUMP_INSN_P (XEXP (links, 0))
834 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
835 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
836 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
837 && NONJUMP_INSN_P (prev)
838 && sets_cc0_p (PATTERN (prev))
839 && (next = try_combine (insn, XEXP (links, 0),
840 prev, &new_direct_jump_p)) != 0)
841 goto retry;
842 #endif
843
844 /* Try combining an insn with two different insns whose results it
845 uses. */
846 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
847 for (nextlinks = XEXP (links, 1); nextlinks;
848 nextlinks = XEXP (nextlinks, 1))
849 if ((next = try_combine (insn, XEXP (links, 0),
850 XEXP (nextlinks, 0),
851 &new_direct_jump_p)) != 0)
852 goto retry;
853
854 /* Try this insn with each REG_EQUAL note it links back to. */
855 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
856 {
857 rtx set, note;
858 rtx temp = XEXP (links, 0);
859 if ((set = single_set (temp)) != 0
860 && (note = find_reg_equal_equiv_note (temp)) != 0
861 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
862 /* Avoid using a register that may already been marked
863 dead by an earlier instruction. */
864 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
865 {
866 /* Temporarily replace the set's source with the
867 contents of the REG_EQUAL note. The insn will
868 be deleted or recognized by try_combine. */
869 rtx orig = SET_SRC (set);
870 SET_SRC (set) = XEXP (note, 0);
871 next = try_combine (insn, temp, NULL_RTX,
872 &new_direct_jump_p);
873 if (next)
874 goto retry;
875 SET_SRC (set) = orig;
876 }
877 }
878
879 if (!NOTE_P (insn))
880 record_dead_and_set_regs (insn);
881
882 retry:
883 ;
884 }
885 }
886 }
887 clear_bb_flags ();
888
889 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
890 BASIC_BLOCK (j)->flags |= BB_DIRTY;
891 new_direct_jump_p |= purge_all_dead_edges ();
892 delete_noop_moves ();
893
894 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
895 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
896 | PROP_KILL_DEAD_CODE);
897
898 /* Clean up. */
899 sbitmap_free (refresh_blocks);
900 free (uid_insn_cost);
901 free (reg_stat);
902 free (uid_cuid);
903
904 {
905 struct undo *undo, *next;
906 for (undo = undobuf.frees; undo; undo = next)
907 {
908 next = undo->next;
909 free (undo);
910 }
911 undobuf.frees = 0;
912 }
913
914 total_attempts += combine_attempts;
915 total_merges += combine_merges;
916 total_extras += combine_extras;
917 total_successes += combine_successes;
918
919 nonzero_sign_valid = 0;
920 rtl_hooks = general_rtl_hooks;
921
922 /* Make recognizer allow volatile MEMs again. */
923 init_recog ();
924
925 return new_direct_jump_p;
926 }
927
928 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
929
930 static void
931 init_reg_last (void)
932 {
933 unsigned int i;
934 for (i = 0; i < combine_max_regno; i++)
935 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
936 }
937 \f
938 /* Set up any promoted values for incoming argument registers. */
939
940 static void
941 setup_incoming_promotions (void)
942 {
943 unsigned int regno;
944 rtx reg;
945 enum machine_mode mode;
946 int unsignedp;
947 rtx first = get_insns ();
948
949 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
950 {
951 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
952 /* Check whether this register can hold an incoming pointer
953 argument. FUNCTION_ARG_REGNO_P tests outgoing register
954 numbers, so translate if necessary due to register windows. */
955 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
956 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
957 {
958 record_value_for_reg
959 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
960 : SIGN_EXTEND),
961 GET_MODE (reg),
962 gen_rtx_CLOBBER (mode, const0_rtx)));
963 }
964 }
965 }
966 \f
967 /* Called via note_stores. If X is a pseudo that is narrower than
968 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
969
970 If we are setting only a portion of X and we can't figure out what
971 portion, assume all bits will be used since we don't know what will
972 be happening.
973
974 Similarly, set how many bits of X are known to be copies of the sign bit
975 at all locations in the function. This is the smallest number implied
976 by any set of X. */
977
978 static void
979 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
980 void *data ATTRIBUTE_UNUSED)
981 {
982 unsigned int num;
983
984 if (REG_P (x)
985 && REGNO (x) >= FIRST_PSEUDO_REGISTER
986 /* If this register is undefined at the start of the file, we can't
987 say what its contents were. */
988 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
989 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
990 {
991 if (set == 0 || GET_CODE (set) == CLOBBER)
992 {
993 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
994 reg_stat[REGNO (x)].sign_bit_copies = 1;
995 return;
996 }
997
998 /* If this is a complex assignment, see if we can convert it into a
999 simple assignment. */
1000 set = expand_field_assignment (set);
1001
1002 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1003 set what we know about X. */
1004
1005 if (SET_DEST (set) == x
1006 || (GET_CODE (SET_DEST (set)) == SUBREG
1007 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1008 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1009 && SUBREG_REG (SET_DEST (set)) == x))
1010 {
1011 rtx src = SET_SRC (set);
1012
1013 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1014 /* If X is narrower than a word and SRC is a non-negative
1015 constant that would appear negative in the mode of X,
1016 sign-extend it for use in reg_stat[].nonzero_bits because some
1017 machines (maybe most) will actually do the sign-extension
1018 and this is the conservative approach.
1019
1020 ??? For 2.5, try to tighten up the MD files in this regard
1021 instead of this kludge. */
1022
1023 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1024 && GET_CODE (src) == CONST_INT
1025 && INTVAL (src) > 0
1026 && 0 != (INTVAL (src)
1027 & ((HOST_WIDE_INT) 1
1028 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1029 src = GEN_INT (INTVAL (src)
1030 | ((HOST_WIDE_INT) (-1)
1031 << GET_MODE_BITSIZE (GET_MODE (x))));
1032 #endif
1033
1034 /* Don't call nonzero_bits if it cannot change anything. */
1035 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1036 reg_stat[REGNO (x)].nonzero_bits
1037 |= nonzero_bits (src, nonzero_bits_mode);
1038 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1039 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1040 || reg_stat[REGNO (x)].sign_bit_copies > num)
1041 reg_stat[REGNO (x)].sign_bit_copies = num;
1042 }
1043 else
1044 {
1045 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1046 reg_stat[REGNO (x)].sign_bit_copies = 1;
1047 }
1048 }
1049 }
1050 \f
1051 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1052 insns that were previously combined into I3 or that will be combined
1053 into the merger of INSN and I3.
1054
1055 Return 0 if the combination is not allowed for any reason.
1056
1057 If the combination is allowed, *PDEST will be set to the single
1058 destination of INSN and *PSRC to the single source, and this function
1059 will return 1. */
1060
1061 static int
1062 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1063 rtx *pdest, rtx *psrc)
1064 {
1065 int i;
1066 rtx set = 0, src, dest;
1067 rtx p;
1068 #ifdef AUTO_INC_DEC
1069 rtx link;
1070 #endif
1071 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1072 && next_active_insn (succ) == i3)
1073 : next_active_insn (insn) == i3);
1074
1075 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1076 or a PARALLEL consisting of such a SET and CLOBBERs.
1077
1078 If INSN has CLOBBER parallel parts, ignore them for our processing.
1079 By definition, these happen during the execution of the insn. When it
1080 is merged with another insn, all bets are off. If they are, in fact,
1081 needed and aren't also supplied in I3, they may be added by
1082 recog_for_combine. Otherwise, it won't match.
1083
1084 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1085 note.
1086
1087 Get the source and destination of INSN. If more than one, can't
1088 combine. */
1089
1090 if (GET_CODE (PATTERN (insn)) == SET)
1091 set = PATTERN (insn);
1092 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1093 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1094 {
1095 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1096 {
1097 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1098 rtx note;
1099
1100 switch (GET_CODE (elt))
1101 {
1102 /* This is important to combine floating point insns
1103 for the SH4 port. */
1104 case USE:
1105 /* Combining an isolated USE doesn't make sense.
1106 We depend here on combinable_i3pat to reject them. */
1107 /* The code below this loop only verifies that the inputs of
1108 the SET in INSN do not change. We call reg_set_between_p
1109 to verify that the REG in the USE does not change between
1110 I3 and INSN.
1111 If the USE in INSN was for a pseudo register, the matching
1112 insn pattern will likely match any register; combining this
1113 with any other USE would only be safe if we knew that the
1114 used registers have identical values, or if there was
1115 something to tell them apart, e.g. different modes. For
1116 now, we forgo such complicated tests and simply disallow
1117 combining of USES of pseudo registers with any other USE. */
1118 if (REG_P (XEXP (elt, 0))
1119 && GET_CODE (PATTERN (i3)) == PARALLEL)
1120 {
1121 rtx i3pat = PATTERN (i3);
1122 int i = XVECLEN (i3pat, 0) - 1;
1123 unsigned int regno = REGNO (XEXP (elt, 0));
1124
1125 do
1126 {
1127 rtx i3elt = XVECEXP (i3pat, 0, i);
1128
1129 if (GET_CODE (i3elt) == USE
1130 && REG_P (XEXP (i3elt, 0))
1131 && (REGNO (XEXP (i3elt, 0)) == regno
1132 ? reg_set_between_p (XEXP (elt, 0),
1133 PREV_INSN (insn), i3)
1134 : regno >= FIRST_PSEUDO_REGISTER))
1135 return 0;
1136 }
1137 while (--i >= 0);
1138 }
1139 break;
1140
1141 /* We can ignore CLOBBERs. */
1142 case CLOBBER:
1143 break;
1144
1145 case SET:
1146 /* Ignore SETs whose result isn't used but not those that
1147 have side-effects. */
1148 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1149 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1150 || INTVAL (XEXP (note, 0)) <= 0)
1151 && ! side_effects_p (elt))
1152 break;
1153
1154 /* If we have already found a SET, this is a second one and
1155 so we cannot combine with this insn. */
1156 if (set)
1157 return 0;
1158
1159 set = elt;
1160 break;
1161
1162 default:
1163 /* Anything else means we can't combine. */
1164 return 0;
1165 }
1166 }
1167
1168 if (set == 0
1169 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1170 so don't do anything with it. */
1171 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1172 return 0;
1173 }
1174 else
1175 return 0;
1176
1177 if (set == 0)
1178 return 0;
1179
1180 set = expand_field_assignment (set);
1181 src = SET_SRC (set), dest = SET_DEST (set);
1182
1183 /* Don't eliminate a store in the stack pointer. */
1184 if (dest == stack_pointer_rtx
1185 /* Don't combine with an insn that sets a register to itself if it has
1186 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1187 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1188 /* Can't merge an ASM_OPERANDS. */
1189 || GET_CODE (src) == ASM_OPERANDS
1190 /* Can't merge a function call. */
1191 || GET_CODE (src) == CALL
1192 /* Don't eliminate a function call argument. */
1193 || (CALL_P (i3)
1194 && (find_reg_fusage (i3, USE, dest)
1195 || (REG_P (dest)
1196 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1197 && global_regs[REGNO (dest)])))
1198 /* Don't substitute into an incremented register. */
1199 || FIND_REG_INC_NOTE (i3, dest)
1200 || (succ && FIND_REG_INC_NOTE (succ, dest))
1201 /* Don't substitute into a non-local goto, this confuses CFG. */
1202 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1203 #if 0
1204 /* Don't combine the end of a libcall into anything. */
1205 /* ??? This gives worse code, and appears to be unnecessary, since no
1206 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1207 use REG_RETVAL notes for noconflict blocks, but other code here
1208 makes sure that those insns don't disappear. */
1209 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1210 #endif
1211 /* Make sure that DEST is not used after SUCC but before I3. */
1212 || (succ && ! all_adjacent
1213 && reg_used_between_p (dest, succ, i3))
1214 /* Make sure that the value that is to be substituted for the register
1215 does not use any registers whose values alter in between. However,
1216 If the insns are adjacent, a use can't cross a set even though we
1217 think it might (this can happen for a sequence of insns each setting
1218 the same destination; last_set of that register might point to
1219 a NOTE). If INSN has a REG_EQUIV note, the register is always
1220 equivalent to the memory so the substitution is valid even if there
1221 are intervening stores. Also, don't move a volatile asm or
1222 UNSPEC_VOLATILE across any other insns. */
1223 || (! all_adjacent
1224 && (((!MEM_P (src)
1225 || ! find_reg_note (insn, REG_EQUIV, src))
1226 && use_crosses_set_p (src, INSN_CUID (insn)))
1227 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1228 || GET_CODE (src) == UNSPEC_VOLATILE))
1229 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1230 better register allocation by not doing the combine. */
1231 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1232 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1233 /* Don't combine across a CALL_INSN, because that would possibly
1234 change whether the life span of some REGs crosses calls or not,
1235 and it is a pain to update that information.
1236 Exception: if source is a constant, moving it later can't hurt.
1237 Accept that special case, because it helps -fforce-addr a lot. */
1238 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1239 return 0;
1240
1241 /* DEST must either be a REG or CC0. */
1242 if (REG_P (dest))
1243 {
1244 /* If register alignment is being enforced for multi-word items in all
1245 cases except for parameters, it is possible to have a register copy
1246 insn referencing a hard register that is not allowed to contain the
1247 mode being copied and which would not be valid as an operand of most
1248 insns. Eliminate this problem by not combining with such an insn.
1249
1250 Also, on some machines we don't want to extend the life of a hard
1251 register. */
1252
1253 if (REG_P (src)
1254 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1255 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1256 /* Don't extend the life of a hard register unless it is
1257 user variable (if we have few registers) or it can't
1258 fit into the desired register (meaning something special
1259 is going on).
1260 Also avoid substituting a return register into I3, because
1261 reload can't handle a conflict with constraints of other
1262 inputs. */
1263 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1264 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1265 return 0;
1266 }
1267 else if (GET_CODE (dest) != CC0)
1268 return 0;
1269
1270
1271 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1272 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1273 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1274 {
1275 /* Don't substitute for a register intended as a clobberable
1276 operand. */
1277 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1278 if (rtx_equal_p (reg, dest))
1279 return 0;
1280
1281 /* If the clobber represents an earlyclobber operand, we must not
1282 substitute an expression containing the clobbered register.
1283 As we do not analyze the constraint strings here, we have to
1284 make the conservative assumption. However, if the register is
1285 a fixed hard reg, the clobber cannot represent any operand;
1286 we leave it up to the machine description to either accept or
1287 reject use-and-clobber patterns. */
1288 if (!REG_P (reg)
1289 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1290 || !fixed_regs[REGNO (reg)])
1291 if (reg_overlap_mentioned_p (reg, src))
1292 return 0;
1293 }
1294
1295 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1296 or not), reject, unless nothing volatile comes between it and I3 */
1297
1298 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1299 {
1300 /* Make sure succ doesn't contain a volatile reference. */
1301 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1302 return 0;
1303
1304 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1305 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1306 return 0;
1307 }
1308
1309 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1310 to be an explicit register variable, and was chosen for a reason. */
1311
1312 if (GET_CODE (src) == ASM_OPERANDS
1313 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1314 return 0;
1315
1316 /* If there are any volatile insns between INSN and I3, reject, because
1317 they might affect machine state. */
1318
1319 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1320 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1321 return 0;
1322
1323 /* If INSN contains an autoincrement or autodecrement, make sure that
1324 register is not used between there and I3, and not already used in
1325 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1326 Also insist that I3 not be a jump; if it were one
1327 and the incremented register were spilled, we would lose. */
1328
1329 #ifdef AUTO_INC_DEC
1330 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1331 if (REG_NOTE_KIND (link) == REG_INC
1332 && (JUMP_P (i3)
1333 || reg_used_between_p (XEXP (link, 0), insn, i3)
1334 || (pred != NULL_RTX
1335 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1336 || (succ != NULL_RTX
1337 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1338 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1339 return 0;
1340 #endif
1341
1342 #ifdef HAVE_cc0
1343 /* Don't combine an insn that follows a CC0-setting insn.
1344 An insn that uses CC0 must not be separated from the one that sets it.
1345 We do, however, allow I2 to follow a CC0-setting insn if that insn
1346 is passed as I1; in that case it will be deleted also.
1347 We also allow combining in this case if all the insns are adjacent
1348 because that would leave the two CC0 insns adjacent as well.
1349 It would be more logical to test whether CC0 occurs inside I1 or I2,
1350 but that would be much slower, and this ought to be equivalent. */
1351
1352 p = prev_nonnote_insn (insn);
1353 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1354 && ! all_adjacent)
1355 return 0;
1356 #endif
1357
1358 /* If we get here, we have passed all the tests and the combination is
1359 to be allowed. */
1360
1361 *pdest = dest;
1362 *psrc = src;
1363
1364 return 1;
1365 }
1366 \f
1367 /* LOC is the location within I3 that contains its pattern or the component
1368 of a PARALLEL of the pattern. We validate that it is valid for combining.
1369
1370 One problem is if I3 modifies its output, as opposed to replacing it
1371 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1372 so would produce an insn that is not equivalent to the original insns.
1373
1374 Consider:
1375
1376 (set (reg:DI 101) (reg:DI 100))
1377 (set (subreg:SI (reg:DI 101) 0) <foo>)
1378
1379 This is NOT equivalent to:
1380
1381 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1382 (set (reg:DI 101) (reg:DI 100))])
1383
1384 Not only does this modify 100 (in which case it might still be valid
1385 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1386
1387 We can also run into a problem if I2 sets a register that I1
1388 uses and I1 gets directly substituted into I3 (not via I2). In that
1389 case, we would be getting the wrong value of I2DEST into I3, so we
1390 must reject the combination. This case occurs when I2 and I1 both
1391 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1392 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1393 of a SET must prevent combination from occurring.
1394
1395 Before doing the above check, we first try to expand a field assignment
1396 into a set of logical operations.
1397
1398 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1399 we place a register that is both set and used within I3. If more than one
1400 such register is detected, we fail.
1401
1402 Return 1 if the combination is valid, zero otherwise. */
1403
1404 static int
1405 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1406 int i1_not_in_src, rtx *pi3dest_killed)
1407 {
1408 rtx x = *loc;
1409
1410 if (GET_CODE (x) == SET)
1411 {
1412 rtx set = x ;
1413 rtx dest = SET_DEST (set);
1414 rtx src = SET_SRC (set);
1415 rtx inner_dest = dest;
1416
1417 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1418 || GET_CODE (inner_dest) == SUBREG
1419 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1420 inner_dest = XEXP (inner_dest, 0);
1421
1422 /* Check for the case where I3 modifies its output, as discussed
1423 above. We don't want to prevent pseudos from being combined
1424 into the address of a MEM, so only prevent the combination if
1425 i1 or i2 set the same MEM. */
1426 if ((inner_dest != dest &&
1427 (!MEM_P (inner_dest)
1428 || rtx_equal_p (i2dest, inner_dest)
1429 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1430 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1431 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1432
1433 /* This is the same test done in can_combine_p except we can't test
1434 all_adjacent; we don't have to, since this instruction will stay
1435 in place, thus we are not considering increasing the lifetime of
1436 INNER_DEST.
1437
1438 Also, if this insn sets a function argument, combining it with
1439 something that might need a spill could clobber a previous
1440 function argument; the all_adjacent test in can_combine_p also
1441 checks this; here, we do a more specific test for this case. */
1442
1443 || (REG_P (inner_dest)
1444 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1445 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1446 GET_MODE (inner_dest))))
1447 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1448 return 0;
1449
1450 /* If DEST is used in I3, it is being killed in this insn,
1451 so record that for later.
1452 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1453 STACK_POINTER_REGNUM, since these are always considered to be
1454 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1455 if (pi3dest_killed && REG_P (dest)
1456 && reg_referenced_p (dest, PATTERN (i3))
1457 && REGNO (dest) != FRAME_POINTER_REGNUM
1458 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1459 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1460 #endif
1461 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1462 && (REGNO (dest) != ARG_POINTER_REGNUM
1463 || ! fixed_regs [REGNO (dest)])
1464 #endif
1465 && REGNO (dest) != STACK_POINTER_REGNUM)
1466 {
1467 if (*pi3dest_killed)
1468 return 0;
1469
1470 *pi3dest_killed = dest;
1471 }
1472 }
1473
1474 else if (GET_CODE (x) == PARALLEL)
1475 {
1476 int i;
1477
1478 for (i = 0; i < XVECLEN (x, 0); i++)
1479 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1480 i1_not_in_src, pi3dest_killed))
1481 return 0;
1482 }
1483
1484 return 1;
1485 }
1486 \f
1487 /* Return 1 if X is an arithmetic expression that contains a multiplication
1488 and division. We don't count multiplications by powers of two here. */
1489
1490 static int
1491 contains_muldiv (rtx x)
1492 {
1493 switch (GET_CODE (x))
1494 {
1495 case MOD: case DIV: case UMOD: case UDIV:
1496 return 1;
1497
1498 case MULT:
1499 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1500 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1501 default:
1502 if (BINARY_P (x))
1503 return contains_muldiv (XEXP (x, 0))
1504 || contains_muldiv (XEXP (x, 1));
1505
1506 if (UNARY_P (x))
1507 return contains_muldiv (XEXP (x, 0));
1508
1509 return 0;
1510 }
1511 }
1512 \f
1513 /* Determine whether INSN can be used in a combination. Return nonzero if
1514 not. This is used in try_combine to detect early some cases where we
1515 can't perform combinations. */
1516
1517 static int
1518 cant_combine_insn_p (rtx insn)
1519 {
1520 rtx set;
1521 rtx src, dest;
1522
1523 /* If this isn't really an insn, we can't do anything.
1524 This can occur when flow deletes an insn that it has merged into an
1525 auto-increment address. */
1526 if (! INSN_P (insn))
1527 return 1;
1528
1529 /* Never combine loads and stores involving hard regs that are likely
1530 to be spilled. The register allocator can usually handle such
1531 reg-reg moves by tying. If we allow the combiner to make
1532 substitutions of likely-spilled regs, reload might die.
1533 As an exception, we allow combinations involving fixed regs; these are
1534 not available to the register allocator so there's no risk involved. */
1535
1536 set = single_set (insn);
1537 if (! set)
1538 return 0;
1539 src = SET_SRC (set);
1540 dest = SET_DEST (set);
1541 if (GET_CODE (src) == SUBREG)
1542 src = SUBREG_REG (src);
1543 if (GET_CODE (dest) == SUBREG)
1544 dest = SUBREG_REG (dest);
1545 if (REG_P (src) && REG_P (dest)
1546 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1547 && ! fixed_regs[REGNO (src)]
1548 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1549 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1550 && ! fixed_regs[REGNO (dest)]
1551 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1552 return 1;
1553
1554 return 0;
1555 }
1556
1557 /* Adjust INSN after we made a change to its destination.
1558
1559 Changing the destination can invalidate notes that say something about
1560 the results of the insn and a LOG_LINK pointing to the insn. */
1561
1562 static void
1563 adjust_for_new_dest (rtx insn)
1564 {
1565 rtx *loc;
1566
1567 /* For notes, be conservative and simply remove them. */
1568 loc = &REG_NOTES (insn);
1569 while (*loc)
1570 {
1571 enum reg_note kind = REG_NOTE_KIND (*loc);
1572 if (kind == REG_EQUAL || kind == REG_EQUIV)
1573 *loc = XEXP (*loc, 1);
1574 else
1575 loc = &XEXP (*loc, 1);
1576 }
1577
1578 /* The new insn will have a destination that was previously the destination
1579 of an insn just above it. Call distribute_links to make a LOG_LINK from
1580 the next use of that destination. */
1581 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1582 }
1583
1584 /* Try to combine the insns I1 and I2 into I3.
1585 Here I1 and I2 appear earlier than I3.
1586 I1 can be zero; then we combine just I2 into I3.
1587
1588 If we are combining three insns and the resulting insn is not recognized,
1589 try splitting it into two insns. If that happens, I2 and I3 are retained
1590 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1591 are pseudo-deleted.
1592
1593 Return 0 if the combination does not work. Then nothing is changed.
1594 If we did the combination, return the insn at which combine should
1595 resume scanning.
1596
1597 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1598 new direct jump instruction. */
1599
1600 static rtx
1601 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1602 {
1603 /* New patterns for I3 and I2, respectively. */
1604 rtx newpat, newi2pat = 0;
1605 rtvec newpat_vec_with_clobbers = 0;
1606 int substed_i2 = 0, substed_i1 = 0;
1607 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1608 int added_sets_1, added_sets_2;
1609 /* Total number of SETs to put into I3. */
1610 int total_sets;
1611 /* Nonzero if I2's body now appears in I3. */
1612 int i2_is_used;
1613 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1614 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1615 /* Contains I3 if the destination of I3 is used in its source, which means
1616 that the old life of I3 is being killed. If that usage is placed into
1617 I2 and not in I3, a REG_DEAD note must be made. */
1618 rtx i3dest_killed = 0;
1619 /* SET_DEST and SET_SRC of I2 and I1. */
1620 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1621 /* PATTERN (I2), or a copy of it in certain cases. */
1622 rtx i2pat;
1623 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1624 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1625 int i1_feeds_i3 = 0;
1626 /* Notes that must be added to REG_NOTES in I3 and I2. */
1627 rtx new_i3_notes, new_i2_notes;
1628 /* Notes that we substituted I3 into I2 instead of the normal case. */
1629 int i3_subst_into_i2 = 0;
1630 /* Notes that I1, I2 or I3 is a MULT operation. */
1631 int have_mult = 0;
1632 int swap_i2i3 = 0;
1633
1634 int maxreg;
1635 rtx temp;
1636 rtx link;
1637 int i;
1638
1639 /* Exit early if one of the insns involved can't be used for
1640 combinations. */
1641 if (cant_combine_insn_p (i3)
1642 || cant_combine_insn_p (i2)
1643 || (i1 && cant_combine_insn_p (i1))
1644 /* We also can't do anything if I3 has a
1645 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1646 libcall. */
1647 #if 0
1648 /* ??? This gives worse code, and appears to be unnecessary, since no
1649 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1650 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1651 #endif
1652 )
1653 return 0;
1654
1655 combine_attempts++;
1656 undobuf.other_insn = 0;
1657
1658 /* Reset the hard register usage information. */
1659 CLEAR_HARD_REG_SET (newpat_used_regs);
1660
1661 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1662 code below, set I1 to be the earlier of the two insns. */
1663 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1664 temp = i1, i1 = i2, i2 = temp;
1665
1666 added_links_insn = 0;
1667
1668 /* First check for one important special-case that the code below will
1669 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1670 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1671 we may be able to replace that destination with the destination of I3.
1672 This occurs in the common code where we compute both a quotient and
1673 remainder into a structure, in which case we want to do the computation
1674 directly into the structure to avoid register-register copies.
1675
1676 Note that this case handles both multiple sets in I2 and also
1677 cases where I2 has a number of CLOBBER or PARALLELs.
1678
1679 We make very conservative checks below and only try to handle the
1680 most common cases of this. For example, we only handle the case
1681 where I2 and I3 are adjacent to avoid making difficult register
1682 usage tests. */
1683
1684 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1685 && REG_P (SET_SRC (PATTERN (i3)))
1686 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1687 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1688 && GET_CODE (PATTERN (i2)) == PARALLEL
1689 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1690 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1691 below would need to check what is inside (and reg_overlap_mentioned_p
1692 doesn't support those codes anyway). Don't allow those destinations;
1693 the resulting insn isn't likely to be recognized anyway. */
1694 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1695 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1696 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1697 SET_DEST (PATTERN (i3)))
1698 && next_real_insn (i2) == i3)
1699 {
1700 rtx p2 = PATTERN (i2);
1701
1702 /* Make sure that the destination of I3,
1703 which we are going to substitute into one output of I2,
1704 is not used within another output of I2. We must avoid making this:
1705 (parallel [(set (mem (reg 69)) ...)
1706 (set (reg 69) ...)])
1707 which is not well-defined as to order of actions.
1708 (Besides, reload can't handle output reloads for this.)
1709
1710 The problem can also happen if the dest of I3 is a memory ref,
1711 if another dest in I2 is an indirect memory ref. */
1712 for (i = 0; i < XVECLEN (p2, 0); i++)
1713 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1714 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1715 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1716 SET_DEST (XVECEXP (p2, 0, i))))
1717 break;
1718
1719 if (i == XVECLEN (p2, 0))
1720 for (i = 0; i < XVECLEN (p2, 0); i++)
1721 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1722 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1723 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1724 {
1725 combine_merges++;
1726
1727 subst_insn = i3;
1728 subst_low_cuid = INSN_CUID (i2);
1729
1730 added_sets_2 = added_sets_1 = 0;
1731 i2dest = SET_SRC (PATTERN (i3));
1732
1733 /* Replace the dest in I2 with our dest and make the resulting
1734 insn the new pattern for I3. Then skip to where we
1735 validate the pattern. Everything was set up above. */
1736 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1737 SET_DEST (PATTERN (i3)));
1738
1739 newpat = p2;
1740 i3_subst_into_i2 = 1;
1741 goto validate_replacement;
1742 }
1743 }
1744
1745 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1746 one of those words to another constant, merge them by making a new
1747 constant. */
1748 if (i1 == 0
1749 && (temp = single_set (i2)) != 0
1750 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1751 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1752 && REG_P (SET_DEST (temp))
1753 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1754 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1755 && GET_CODE (PATTERN (i3)) == SET
1756 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1757 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1758 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1759 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1760 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1761 {
1762 HOST_WIDE_INT lo, hi;
1763
1764 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1765 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1766 else
1767 {
1768 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1769 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1770 }
1771
1772 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1773 {
1774 /* We don't handle the case of the target word being wider
1775 than a host wide int. */
1776 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1777
1778 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1779 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1780 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1781 }
1782 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1783 hi = INTVAL (SET_SRC (PATTERN (i3)));
1784 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1785 {
1786 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1787 >> (HOST_BITS_PER_WIDE_INT - 1));
1788
1789 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1790 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1791 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1792 (INTVAL (SET_SRC (PATTERN (i3)))));
1793 if (hi == sign)
1794 hi = lo < 0 ? -1 : 0;
1795 }
1796 else
1797 /* We don't handle the case of the higher word not fitting
1798 entirely in either hi or lo. */
1799 gcc_unreachable ();
1800
1801 combine_merges++;
1802 subst_insn = i3;
1803 subst_low_cuid = INSN_CUID (i2);
1804 added_sets_2 = added_sets_1 = 0;
1805 i2dest = SET_DEST (temp);
1806
1807 SUBST (SET_SRC (temp),
1808 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1809
1810 newpat = PATTERN (i2);
1811 goto validate_replacement;
1812 }
1813
1814 #ifndef HAVE_cc0
1815 /* If we have no I1 and I2 looks like:
1816 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1817 (set Y OP)])
1818 make up a dummy I1 that is
1819 (set Y OP)
1820 and change I2 to be
1821 (set (reg:CC X) (compare:CC Y (const_int 0)))
1822
1823 (We can ignore any trailing CLOBBERs.)
1824
1825 This undoes a previous combination and allows us to match a branch-and-
1826 decrement insn. */
1827
1828 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1829 && XVECLEN (PATTERN (i2), 0) >= 2
1830 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1831 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1832 == MODE_CC)
1833 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1834 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1835 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1836 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1837 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1838 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1839 {
1840 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1841 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1842 break;
1843
1844 if (i == 1)
1845 {
1846 /* We make I1 with the same INSN_UID as I2. This gives it
1847 the same INSN_CUID for value tracking. Our fake I1 will
1848 never appear in the insn stream so giving it the same INSN_UID
1849 as I2 will not cause a problem. */
1850
1851 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1852 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1853 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1854 NULL_RTX);
1855
1856 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1857 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1858 SET_DEST (PATTERN (i1)));
1859 }
1860 }
1861 #endif
1862
1863 /* Verify that I2 and I1 are valid for combining. */
1864 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1865 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1866 {
1867 undo_all ();
1868 return 0;
1869 }
1870
1871 /* Record whether I2DEST is used in I2SRC and similarly for the other
1872 cases. Knowing this will help in register status updating below. */
1873 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1874 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1875 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1876
1877 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1878 in I2SRC. */
1879 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1880
1881 /* Ensure that I3's pattern can be the destination of combines. */
1882 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1883 i1 && i2dest_in_i1src && i1_feeds_i3,
1884 &i3dest_killed))
1885 {
1886 undo_all ();
1887 return 0;
1888 }
1889
1890 /* See if any of the insns is a MULT operation. Unless one is, we will
1891 reject a combination that is, since it must be slower. Be conservative
1892 here. */
1893 if (GET_CODE (i2src) == MULT
1894 || (i1 != 0 && GET_CODE (i1src) == MULT)
1895 || (GET_CODE (PATTERN (i3)) == SET
1896 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1897 have_mult = 1;
1898
1899 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1900 We used to do this EXCEPT in one case: I3 has a post-inc in an
1901 output operand. However, that exception can give rise to insns like
1902 mov r3,(r3)+
1903 which is a famous insn on the PDP-11 where the value of r3 used as the
1904 source was model-dependent. Avoid this sort of thing. */
1905
1906 #if 0
1907 if (!(GET_CODE (PATTERN (i3)) == SET
1908 && REG_P (SET_SRC (PATTERN (i3)))
1909 && MEM_P (SET_DEST (PATTERN (i3)))
1910 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1911 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1912 /* It's not the exception. */
1913 #endif
1914 #ifdef AUTO_INC_DEC
1915 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1916 if (REG_NOTE_KIND (link) == REG_INC
1917 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1918 || (i1 != 0
1919 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1920 {
1921 undo_all ();
1922 return 0;
1923 }
1924 #endif
1925
1926 /* See if the SETs in I1 or I2 need to be kept around in the merged
1927 instruction: whenever the value set there is still needed past I3.
1928 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1929
1930 For the SET in I1, we have two cases: If I1 and I2 independently
1931 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1932 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1933 in I1 needs to be kept around unless I1DEST dies or is set in either
1934 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1935 I1DEST. If so, we know I1 feeds into I2. */
1936
1937 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1938
1939 added_sets_1
1940 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1941 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1942
1943 /* If the set in I2 needs to be kept around, we must make a copy of
1944 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1945 PATTERN (I2), we are only substituting for the original I1DEST, not into
1946 an already-substituted copy. This also prevents making self-referential
1947 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1948 I2DEST. */
1949
1950 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1951 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1952 : PATTERN (i2));
1953
1954 if (added_sets_2)
1955 i2pat = copy_rtx (i2pat);
1956
1957 combine_merges++;
1958
1959 /* Substitute in the latest insn for the regs set by the earlier ones. */
1960
1961 maxreg = max_reg_num ();
1962
1963 subst_insn = i3;
1964
1965 /* It is possible that the source of I2 or I1 may be performing an
1966 unneeded operation, such as a ZERO_EXTEND of something that is known
1967 to have the high part zero. Handle that case by letting subst look at
1968 the innermost one of them.
1969
1970 Another way to do this would be to have a function that tries to
1971 simplify a single insn instead of merging two or more insns. We don't
1972 do this because of the potential of infinite loops and because
1973 of the potential extra memory required. However, doing it the way
1974 we are is a bit of a kludge and doesn't catch all cases.
1975
1976 But only do this if -fexpensive-optimizations since it slows things down
1977 and doesn't usually win. */
1978
1979 if (flag_expensive_optimizations)
1980 {
1981 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1982 if (i1)
1983 {
1984 subst_low_cuid = INSN_CUID (i1);
1985 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1986 }
1987 else
1988 {
1989 subst_low_cuid = INSN_CUID (i2);
1990 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1991 }
1992 }
1993
1994 #ifndef HAVE_cc0
1995 /* Many machines that don't use CC0 have insns that can both perform an
1996 arithmetic operation and set the condition code. These operations will
1997 be represented as a PARALLEL with the first element of the vector
1998 being a COMPARE of an arithmetic operation with the constant zero.
1999 The second element of the vector will set some pseudo to the result
2000 of the same arithmetic operation. If we simplify the COMPARE, we won't
2001 match such a pattern and so will generate an extra insn. Here we test
2002 for this case, where both the comparison and the operation result are
2003 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2004 I2SRC. Later we will make the PARALLEL that contains I2. */
2005
2006 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2007 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2008 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2009 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2010 {
2011 #ifdef SELECT_CC_MODE
2012 rtx *cc_use;
2013 enum machine_mode compare_mode;
2014 #endif
2015
2016 newpat = PATTERN (i3);
2017 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2018
2019 i2_is_used = 1;
2020
2021 #ifdef SELECT_CC_MODE
2022 /* See if a COMPARE with the operand we substituted in should be done
2023 with the mode that is currently being used. If not, do the same
2024 processing we do in `subst' for a SET; namely, if the destination
2025 is used only once, try to replace it with a register of the proper
2026 mode and also replace the COMPARE. */
2027 if (undobuf.other_insn == 0
2028 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2029 &undobuf.other_insn))
2030 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2031 i2src, const0_rtx))
2032 != GET_MODE (SET_DEST (newpat))))
2033 {
2034 unsigned int regno = REGNO (SET_DEST (newpat));
2035 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2036
2037 if (regno < FIRST_PSEUDO_REGISTER
2038 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2039 && ! REG_USERVAR_P (SET_DEST (newpat))))
2040 {
2041 if (regno >= FIRST_PSEUDO_REGISTER)
2042 SUBST (regno_reg_rtx[regno], new_dest);
2043
2044 SUBST (SET_DEST (newpat), new_dest);
2045 SUBST (XEXP (*cc_use, 0), new_dest);
2046 SUBST (SET_SRC (newpat),
2047 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2048 }
2049 else
2050 undobuf.other_insn = 0;
2051 }
2052 #endif
2053 }
2054 else
2055 #endif
2056 {
2057 n_occurrences = 0; /* `subst' counts here */
2058
2059 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2060 need to make a unique copy of I2SRC each time we substitute it
2061 to avoid self-referential rtl. */
2062
2063 subst_low_cuid = INSN_CUID (i2);
2064 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2065 ! i1_feeds_i3 && i1dest_in_i1src);
2066 substed_i2 = 1;
2067
2068 /* Record whether i2's body now appears within i3's body. */
2069 i2_is_used = n_occurrences;
2070 }
2071
2072 /* If we already got a failure, don't try to do more. Otherwise,
2073 try to substitute in I1 if we have it. */
2074
2075 if (i1 && GET_CODE (newpat) != CLOBBER)
2076 {
2077 /* Before we can do this substitution, we must redo the test done
2078 above (see detailed comments there) that ensures that I1DEST
2079 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2080
2081 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2082 0, (rtx*) 0))
2083 {
2084 undo_all ();
2085 return 0;
2086 }
2087
2088 n_occurrences = 0;
2089 subst_low_cuid = INSN_CUID (i1);
2090 newpat = subst (newpat, i1dest, i1src, 0, 0);
2091 substed_i1 = 1;
2092 }
2093
2094 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2095 to count all the ways that I2SRC and I1SRC can be used. */
2096 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2097 && i2_is_used + added_sets_2 > 1)
2098 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2099 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2100 > 1))
2101 /* Fail if we tried to make a new register. */
2102 || max_reg_num () != maxreg
2103 /* Fail if we couldn't do something and have a CLOBBER. */
2104 || GET_CODE (newpat) == CLOBBER
2105 /* Fail if this new pattern is a MULT and we didn't have one before
2106 at the outer level. */
2107 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2108 && ! have_mult))
2109 {
2110 undo_all ();
2111 return 0;
2112 }
2113
2114 /* If the actions of the earlier insns must be kept
2115 in addition to substituting them into the latest one,
2116 we must make a new PARALLEL for the latest insn
2117 to hold additional the SETs. */
2118
2119 if (added_sets_1 || added_sets_2)
2120 {
2121 combine_extras++;
2122
2123 if (GET_CODE (newpat) == PARALLEL)
2124 {
2125 rtvec old = XVEC (newpat, 0);
2126 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2127 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2128 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2129 sizeof (old->elem[0]) * old->num_elem);
2130 }
2131 else
2132 {
2133 rtx old = newpat;
2134 total_sets = 1 + added_sets_1 + added_sets_2;
2135 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2136 XVECEXP (newpat, 0, 0) = old;
2137 }
2138
2139 if (added_sets_1)
2140 XVECEXP (newpat, 0, --total_sets)
2141 = (GET_CODE (PATTERN (i1)) == PARALLEL
2142 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2143
2144 if (added_sets_2)
2145 {
2146 /* If there is no I1, use I2's body as is. We used to also not do
2147 the subst call below if I2 was substituted into I3,
2148 but that could lose a simplification. */
2149 if (i1 == 0)
2150 XVECEXP (newpat, 0, --total_sets) = i2pat;
2151 else
2152 /* See comment where i2pat is assigned. */
2153 XVECEXP (newpat, 0, --total_sets)
2154 = subst (i2pat, i1dest, i1src, 0, 0);
2155 }
2156 }
2157
2158 /* We come here when we are replacing a destination in I2 with the
2159 destination of I3. */
2160 validate_replacement:
2161
2162 /* Note which hard regs this insn has as inputs. */
2163 mark_used_regs_combine (newpat);
2164
2165 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2166 consider splitting this pattern, we might need these clobbers. */
2167 if (i1 && GET_CODE (newpat) == PARALLEL
2168 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2169 {
2170 int len = XVECLEN (newpat, 0);
2171
2172 newpat_vec_with_clobbers = rtvec_alloc (len);
2173 for (i = 0; i < len; i++)
2174 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2175 }
2176
2177 /* Is the result of combination a valid instruction? */
2178 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2179
2180 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2181 the second SET's destination is a register that is unused and isn't
2182 marked as an instruction that might trap in an EH region. In that case,
2183 we just need the first SET. This can occur when simplifying a divmod
2184 insn. We *must* test for this case here because the code below that
2185 splits two independent SETs doesn't handle this case correctly when it
2186 updates the register status.
2187
2188 It's pointless doing this if we originally had two sets, one from
2189 i3, and one from i2. Combining then splitting the parallel results
2190 in the original i2 again plus an invalid insn (which we delete).
2191 The net effect is only to move instructions around, which makes
2192 debug info less accurate.
2193
2194 Also check the case where the first SET's destination is unused.
2195 That would not cause incorrect code, but does cause an unneeded
2196 insn to remain. */
2197
2198 if (insn_code_number < 0
2199 && !(added_sets_2 && i1 == 0)
2200 && GET_CODE (newpat) == PARALLEL
2201 && XVECLEN (newpat, 0) == 2
2202 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2203 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2204 && asm_noperands (newpat) < 0)
2205 {
2206 rtx set0 = XVECEXP (newpat, 0, 0);
2207 rtx set1 = XVECEXP (newpat, 0, 1);
2208 rtx note;
2209
2210 if (((REG_P (SET_DEST (set1))
2211 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2212 || (GET_CODE (SET_DEST (set1)) == SUBREG
2213 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2214 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2215 || INTVAL (XEXP (note, 0)) <= 0)
2216 && ! side_effects_p (SET_SRC (set1)))
2217 {
2218 newpat = set0;
2219 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2220 }
2221
2222 else if (((REG_P (SET_DEST (set0))
2223 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2224 || (GET_CODE (SET_DEST (set0)) == SUBREG
2225 && find_reg_note (i3, REG_UNUSED,
2226 SUBREG_REG (SET_DEST (set0)))))
2227 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2228 || INTVAL (XEXP (note, 0)) <= 0)
2229 && ! side_effects_p (SET_SRC (set0)))
2230 {
2231 newpat = set1;
2232 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2233
2234 if (insn_code_number >= 0)
2235 {
2236 /* If we will be able to accept this, we have made a
2237 change to the destination of I3. This requires us to
2238 do a few adjustments. */
2239
2240 PATTERN (i3) = newpat;
2241 adjust_for_new_dest (i3);
2242 }
2243 }
2244 }
2245
2246 /* If we were combining three insns and the result is a simple SET
2247 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2248 insns. There are two ways to do this. It can be split using a
2249 machine-specific method (like when you have an addition of a large
2250 constant) or by combine in the function find_split_point. */
2251
2252 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2253 && asm_noperands (newpat) < 0)
2254 {
2255 rtx m_split, *split;
2256 rtx ni2dest = i2dest;
2257
2258 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2259 use I2DEST as a scratch register will help. In the latter case,
2260 convert I2DEST to the mode of the source of NEWPAT if we can. */
2261
2262 m_split = split_insns (newpat, i3);
2263
2264 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2265 inputs of NEWPAT. */
2266
2267 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2268 possible to try that as a scratch reg. This would require adding
2269 more code to make it work though. */
2270
2271 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2272 {
2273 /* If I2DEST is a hard register or the only use of a pseudo,
2274 we can change its mode. */
2275 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2276 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2277 && REG_P (i2dest)
2278 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2279 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2280 && ! REG_USERVAR_P (i2dest))))
2281 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2282 REGNO (i2dest));
2283
2284 m_split = split_insns (gen_rtx_PARALLEL
2285 (VOIDmode,
2286 gen_rtvec (2, newpat,
2287 gen_rtx_CLOBBER (VOIDmode,
2288 ni2dest))),
2289 i3);
2290 /* If the split with the mode-changed register didn't work, try
2291 the original register. */
2292 if (! m_split && ni2dest != i2dest)
2293 {
2294 ni2dest = i2dest;
2295 m_split = split_insns (gen_rtx_PARALLEL
2296 (VOIDmode,
2297 gen_rtvec (2, newpat,
2298 gen_rtx_CLOBBER (VOIDmode,
2299 i2dest))),
2300 i3);
2301 }
2302 }
2303
2304 /* If recog_for_combine has discarded clobbers, try to use them
2305 again for the split. */
2306 if (m_split == 0 && newpat_vec_with_clobbers)
2307 m_split
2308 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2309 newpat_vec_with_clobbers), i3);
2310
2311 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2312 {
2313 m_split = PATTERN (m_split);
2314 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2315 if (insn_code_number >= 0)
2316 newpat = m_split;
2317 }
2318 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2319 && (next_real_insn (i2) == i3
2320 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2321 {
2322 rtx i2set, i3set;
2323 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2324 newi2pat = PATTERN (m_split);
2325
2326 i3set = single_set (NEXT_INSN (m_split));
2327 i2set = single_set (m_split);
2328
2329 /* In case we changed the mode of I2DEST, replace it in the
2330 pseudo-register table here. We can't do it above in case this
2331 code doesn't get executed and we do a split the other way. */
2332
2333 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2334 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2335
2336 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2337
2338 /* If I2 or I3 has multiple SETs, we won't know how to track
2339 register status, so don't use these insns. If I2's destination
2340 is used between I2 and I3, we also can't use these insns. */
2341
2342 if (i2_code_number >= 0 && i2set && i3set
2343 && (next_real_insn (i2) == i3
2344 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2345 insn_code_number = recog_for_combine (&newi3pat, i3,
2346 &new_i3_notes);
2347 if (insn_code_number >= 0)
2348 newpat = newi3pat;
2349
2350 /* It is possible that both insns now set the destination of I3.
2351 If so, we must show an extra use of it. */
2352
2353 if (insn_code_number >= 0)
2354 {
2355 rtx new_i3_dest = SET_DEST (i3set);
2356 rtx new_i2_dest = SET_DEST (i2set);
2357
2358 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2359 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2360 || GET_CODE (new_i3_dest) == SUBREG)
2361 new_i3_dest = XEXP (new_i3_dest, 0);
2362
2363 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2364 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2365 || GET_CODE (new_i2_dest) == SUBREG)
2366 new_i2_dest = XEXP (new_i2_dest, 0);
2367
2368 if (REG_P (new_i3_dest)
2369 && REG_P (new_i2_dest)
2370 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2371 REG_N_SETS (REGNO (new_i2_dest))++;
2372 }
2373 }
2374
2375 /* If we can split it and use I2DEST, go ahead and see if that
2376 helps things be recognized. Verify that none of the registers
2377 are set between I2 and I3. */
2378 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2379 #ifdef HAVE_cc0
2380 && REG_P (i2dest)
2381 #endif
2382 /* We need I2DEST in the proper mode. If it is a hard register
2383 or the only use of a pseudo, we can change its mode.
2384 Make sure we don't change a hard register to have a mode that
2385 isn't valid for it, or change the number of registers. */
2386 && (GET_MODE (*split) == GET_MODE (i2dest)
2387 || GET_MODE (*split) == VOIDmode
2388 || (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2389 && HARD_REGNO_MODE_OK (REGNO (i2dest), GET_MODE (*split))
2390 && (hard_regno_nregs[REGNO (i2dest)][GET_MODE (i2dest)]
2391 == hard_regno_nregs[REGNO (i2dest)][GET_MODE (*split)]))
2392 || (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER
2393 && REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2394 && ! REG_USERVAR_P (i2dest)))
2395 && (next_real_insn (i2) == i3
2396 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2397 /* We can't overwrite I2DEST if its value is still used by
2398 NEWPAT. */
2399 && ! reg_referenced_p (i2dest, newpat))
2400 {
2401 rtx newdest = i2dest;
2402 enum rtx_code split_code = GET_CODE (*split);
2403 enum machine_mode split_mode = GET_MODE (*split);
2404
2405 /* Get NEWDEST as a register in the proper mode. We have already
2406 validated that we can do this. */
2407 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2408 {
2409 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2410
2411 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2412 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2413 }
2414
2415 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2416 an ASHIFT. This can occur if it was inside a PLUS and hence
2417 appeared to be a memory address. This is a kludge. */
2418 if (split_code == MULT
2419 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2420 && INTVAL (XEXP (*split, 1)) > 0
2421 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2422 {
2423 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2424 XEXP (*split, 0), GEN_INT (i)));
2425 /* Update split_code because we may not have a multiply
2426 anymore. */
2427 split_code = GET_CODE (*split);
2428 }
2429
2430 #ifdef INSN_SCHEDULING
2431 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2432 be written as a ZERO_EXTEND. */
2433 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2434 {
2435 #ifdef LOAD_EXTEND_OP
2436 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2437 what it really is. */
2438 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2439 == SIGN_EXTEND)
2440 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2441 SUBREG_REG (*split)));
2442 else
2443 #endif
2444 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2445 SUBREG_REG (*split)));
2446 }
2447 #endif
2448
2449 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2450 SUBST (*split, newdest);
2451 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2452
2453 /* recog_for_combine might have added CLOBBERs to newi2pat.
2454 Make sure NEWPAT does not depend on the clobbered regs. */
2455 if (GET_CODE (newi2pat) == PARALLEL)
2456 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2457 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2458 {
2459 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2460 if (reg_overlap_mentioned_p (reg, newpat))
2461 {
2462 undo_all ();
2463 return 0;
2464 }
2465 }
2466
2467 /* If the split point was a MULT and we didn't have one before,
2468 don't use one now. */
2469 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2470 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2471 }
2472 }
2473
2474 /* Check for a case where we loaded from memory in a narrow mode and
2475 then sign extended it, but we need both registers. In that case,
2476 we have a PARALLEL with both loads from the same memory location.
2477 We can split this into a load from memory followed by a register-register
2478 copy. This saves at least one insn, more if register allocation can
2479 eliminate the copy.
2480
2481 We cannot do this if the destination of the first assignment is a
2482 condition code register or cc0. We eliminate this case by making sure
2483 the SET_DEST and SET_SRC have the same mode.
2484
2485 We cannot do this if the destination of the second assignment is
2486 a register that we have already assumed is zero-extended. Similarly
2487 for a SUBREG of such a register. */
2488
2489 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2490 && GET_CODE (newpat) == PARALLEL
2491 && XVECLEN (newpat, 0) == 2
2492 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2493 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2494 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2495 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2496 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2497 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2498 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2499 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2500 INSN_CUID (i2))
2501 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2503 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2504 (REG_P (temp)
2505 && reg_stat[REGNO (temp)].nonzero_bits != 0
2506 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2507 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2508 && (reg_stat[REGNO (temp)].nonzero_bits
2509 != GET_MODE_MASK (word_mode))))
2510 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2511 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2512 (REG_P (temp)
2513 && reg_stat[REGNO (temp)].nonzero_bits != 0
2514 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2515 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2516 && (reg_stat[REGNO (temp)].nonzero_bits
2517 != GET_MODE_MASK (word_mode)))))
2518 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2519 SET_SRC (XVECEXP (newpat, 0, 1)))
2520 && ! find_reg_note (i3, REG_UNUSED,
2521 SET_DEST (XVECEXP (newpat, 0, 0))))
2522 {
2523 rtx ni2dest;
2524
2525 newi2pat = XVECEXP (newpat, 0, 0);
2526 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2527 newpat = XVECEXP (newpat, 0, 1);
2528 SUBST (SET_SRC (newpat),
2529 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2530 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2531
2532 if (i2_code_number >= 0)
2533 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2534
2535 if (insn_code_number >= 0)
2536 swap_i2i3 = 1;
2537 }
2538
2539 /* Similarly, check for a case where we have a PARALLEL of two independent
2540 SETs but we started with three insns. In this case, we can do the sets
2541 as two separate insns. This case occurs when some SET allows two
2542 other insns to combine, but the destination of that SET is still live. */
2543
2544 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2545 && GET_CODE (newpat) == PARALLEL
2546 && XVECLEN (newpat, 0) == 2
2547 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2548 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2549 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2550 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2551 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2552 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2553 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2554 INSN_CUID (i2))
2555 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2556 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2557 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2558 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2559 XVECEXP (newpat, 0, 0))
2560 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2561 XVECEXP (newpat, 0, 1))
2562 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2563 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2564 {
2565 /* Normally, it doesn't matter which of the two is done first,
2566 but it does if one references cc0. In that case, it has to
2567 be first. */
2568 #ifdef HAVE_cc0
2569 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2570 {
2571 newi2pat = XVECEXP (newpat, 0, 0);
2572 newpat = XVECEXP (newpat, 0, 1);
2573 }
2574 else
2575 #endif
2576 {
2577 newi2pat = XVECEXP (newpat, 0, 1);
2578 newpat = XVECEXP (newpat, 0, 0);
2579 }
2580
2581 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2582
2583 if (i2_code_number >= 0)
2584 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2585 }
2586
2587 /* If it still isn't recognized, fail and change things back the way they
2588 were. */
2589 if ((insn_code_number < 0
2590 /* Is the result a reasonable ASM_OPERANDS? */
2591 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2592 {
2593 undo_all ();
2594 return 0;
2595 }
2596
2597 /* If we had to change another insn, make sure it is valid also. */
2598 if (undobuf.other_insn)
2599 {
2600 rtx other_pat = PATTERN (undobuf.other_insn);
2601 rtx new_other_notes;
2602 rtx note, next;
2603
2604 CLEAR_HARD_REG_SET (newpat_used_regs);
2605
2606 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2607 &new_other_notes);
2608
2609 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2610 {
2611 undo_all ();
2612 return 0;
2613 }
2614
2615 PATTERN (undobuf.other_insn) = other_pat;
2616
2617 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2618 are still valid. Then add any non-duplicate notes added by
2619 recog_for_combine. */
2620 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2621 {
2622 next = XEXP (note, 1);
2623
2624 if (REG_NOTE_KIND (note) == REG_UNUSED
2625 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2626 {
2627 if (REG_P (XEXP (note, 0)))
2628 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2629
2630 remove_note (undobuf.other_insn, note);
2631 }
2632 }
2633
2634 for (note = new_other_notes; note; note = XEXP (note, 1))
2635 if (REG_P (XEXP (note, 0)))
2636 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2637
2638 distribute_notes (new_other_notes, undobuf.other_insn,
2639 undobuf.other_insn, NULL_RTX);
2640 }
2641 #ifdef HAVE_cc0
2642 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2643 they are adjacent to each other or not. */
2644 {
2645 rtx p = prev_nonnote_insn (i3);
2646 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2647 && sets_cc0_p (newi2pat))
2648 {
2649 undo_all ();
2650 return 0;
2651 }
2652 }
2653 #endif
2654
2655 /* Only allow this combination if insn_rtx_costs reports that the
2656 replacement instructions are cheaper than the originals. */
2657 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2658 {
2659 undo_all ();
2660 return 0;
2661 }
2662
2663 /* We now know that we can do this combination. Merge the insns and
2664 update the status of registers and LOG_LINKS. */
2665
2666 if (swap_i2i3)
2667 {
2668 rtx insn;
2669 rtx link;
2670 rtx ni2dest;
2671
2672 /* I3 now uses what used to be its destination and which is now
2673 I2's destination. This requires us to do a few adjustments. */
2674 PATTERN (i3) = newpat;
2675 adjust_for_new_dest (i3);
2676
2677 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2678 so we still will.
2679
2680 However, some later insn might be using I2's dest and have
2681 a LOG_LINK pointing at I3. We must remove this link.
2682 The simplest way to remove the link is to point it at I1,
2683 which we know will be a NOTE. */
2684
2685 /* newi2pat is usually a SET here; however, recog_for_combine might
2686 have added some clobbers. */
2687 if (GET_CODE (newi2pat) == PARALLEL)
2688 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2689 else
2690 ni2dest = SET_DEST (newi2pat);
2691
2692 for (insn = NEXT_INSN (i3);
2693 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2694 || insn != BB_HEAD (this_basic_block->next_bb));
2695 insn = NEXT_INSN (insn))
2696 {
2697 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2698 {
2699 for (link = LOG_LINKS (insn); link;
2700 link = XEXP (link, 1))
2701 if (XEXP (link, 0) == i3)
2702 XEXP (link, 0) = i1;
2703
2704 break;
2705 }
2706 }
2707 }
2708
2709 {
2710 rtx i3notes, i2notes, i1notes = 0;
2711 rtx i3links, i2links, i1links = 0;
2712 rtx midnotes = 0;
2713 unsigned int regno;
2714
2715 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2716 clear them. */
2717 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2718 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2719 if (i1)
2720 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2721
2722 /* Ensure that we do not have something that should not be shared but
2723 occurs multiple times in the new insns. Check this by first
2724 resetting all the `used' flags and then copying anything is shared. */
2725
2726 reset_used_flags (i3notes);
2727 reset_used_flags (i2notes);
2728 reset_used_flags (i1notes);
2729 reset_used_flags (newpat);
2730 reset_used_flags (newi2pat);
2731 if (undobuf.other_insn)
2732 reset_used_flags (PATTERN (undobuf.other_insn));
2733
2734 i3notes = copy_rtx_if_shared (i3notes);
2735 i2notes = copy_rtx_if_shared (i2notes);
2736 i1notes = copy_rtx_if_shared (i1notes);
2737 newpat = copy_rtx_if_shared (newpat);
2738 newi2pat = copy_rtx_if_shared (newi2pat);
2739 if (undobuf.other_insn)
2740 reset_used_flags (PATTERN (undobuf.other_insn));
2741
2742 INSN_CODE (i3) = insn_code_number;
2743 PATTERN (i3) = newpat;
2744
2745 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2746 {
2747 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2748
2749 reset_used_flags (call_usage);
2750 call_usage = copy_rtx (call_usage);
2751
2752 if (substed_i2)
2753 replace_rtx (call_usage, i2dest, i2src);
2754
2755 if (substed_i1)
2756 replace_rtx (call_usage, i1dest, i1src);
2757
2758 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2759 }
2760
2761 if (undobuf.other_insn)
2762 INSN_CODE (undobuf.other_insn) = other_code_number;
2763
2764 /* We had one special case above where I2 had more than one set and
2765 we replaced a destination of one of those sets with the destination
2766 of I3. In that case, we have to update LOG_LINKS of insns later
2767 in this basic block. Note that this (expensive) case is rare.
2768
2769 Also, in this case, we must pretend that all REG_NOTEs for I2
2770 actually came from I3, so that REG_UNUSED notes from I2 will be
2771 properly handled. */
2772
2773 if (i3_subst_into_i2)
2774 {
2775 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2776 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2777 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2778 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2779 && ! find_reg_note (i2, REG_UNUSED,
2780 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2781 for (temp = NEXT_INSN (i2);
2782 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2783 || BB_HEAD (this_basic_block) != temp);
2784 temp = NEXT_INSN (temp))
2785 if (temp != i3 && INSN_P (temp))
2786 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2787 if (XEXP (link, 0) == i2)
2788 XEXP (link, 0) = i3;
2789
2790 if (i3notes)
2791 {
2792 rtx link = i3notes;
2793 while (XEXP (link, 1))
2794 link = XEXP (link, 1);
2795 XEXP (link, 1) = i2notes;
2796 }
2797 else
2798 i3notes = i2notes;
2799 i2notes = 0;
2800 }
2801
2802 LOG_LINKS (i3) = 0;
2803 REG_NOTES (i3) = 0;
2804 LOG_LINKS (i2) = 0;
2805 REG_NOTES (i2) = 0;
2806
2807 if (newi2pat)
2808 {
2809 INSN_CODE (i2) = i2_code_number;
2810 PATTERN (i2) = newi2pat;
2811 }
2812 else
2813 SET_INSN_DELETED (i2);
2814
2815 if (i1)
2816 {
2817 LOG_LINKS (i1) = 0;
2818 REG_NOTES (i1) = 0;
2819 SET_INSN_DELETED (i1);
2820 }
2821
2822 /* Get death notes for everything that is now used in either I3 or
2823 I2 and used to die in a previous insn. If we built two new
2824 patterns, move from I1 to I2 then I2 to I3 so that we get the
2825 proper movement on registers that I2 modifies. */
2826
2827 if (newi2pat)
2828 {
2829 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2830 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2831 }
2832 else
2833 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2834 i3, &midnotes);
2835
2836 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2837 if (i3notes)
2838 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2839 if (i2notes)
2840 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2841 if (i1notes)
2842 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2843 if (midnotes)
2844 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2845
2846 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2847 know these are REG_UNUSED and want them to go to the desired insn,
2848 so we always pass it as i3. We have not counted the notes in
2849 reg_n_deaths yet, so we need to do so now. */
2850
2851 if (newi2pat && new_i2_notes)
2852 {
2853 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2854 if (REG_P (XEXP (temp, 0)))
2855 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2856
2857 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2858 }
2859
2860 if (new_i3_notes)
2861 {
2862 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2863 if (REG_P (XEXP (temp, 0)))
2864 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2865
2866 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2867 }
2868
2869 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2870 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2871 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2872 in that case, it might delete I2. Similarly for I2 and I1.
2873 Show an additional death due to the REG_DEAD note we make here. If
2874 we discard it in distribute_notes, we will decrement it again. */
2875
2876 if (i3dest_killed)
2877 {
2878 if (REG_P (i3dest_killed))
2879 REG_N_DEATHS (REGNO (i3dest_killed))++;
2880
2881 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2882 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2883 NULL_RTX),
2884 NULL_RTX, i2, NULL_RTX);
2885 else
2886 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2887 NULL_RTX),
2888 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2889 }
2890
2891 if (i2dest_in_i2src)
2892 {
2893 if (REG_P (i2dest))
2894 REG_N_DEATHS (REGNO (i2dest))++;
2895
2896 if (newi2pat && reg_set_p (i2dest, newi2pat))
2897 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2898 NULL_RTX, i2, NULL_RTX);
2899 else
2900 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2901 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2902 }
2903
2904 if (i1dest_in_i1src)
2905 {
2906 if (REG_P (i1dest))
2907 REG_N_DEATHS (REGNO (i1dest))++;
2908
2909 if (newi2pat && reg_set_p (i1dest, newi2pat))
2910 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2911 NULL_RTX, i2, NULL_RTX);
2912 else
2913 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2914 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2915 }
2916
2917 distribute_links (i3links);
2918 distribute_links (i2links);
2919 distribute_links (i1links);
2920
2921 if (REG_P (i2dest))
2922 {
2923 rtx link;
2924 rtx i2_insn = 0, i2_val = 0, set;
2925
2926 /* The insn that used to set this register doesn't exist, and
2927 this life of the register may not exist either. See if one of
2928 I3's links points to an insn that sets I2DEST. If it does,
2929 that is now the last known value for I2DEST. If we don't update
2930 this and I2 set the register to a value that depended on its old
2931 contents, we will get confused. If this insn is used, thing
2932 will be set correctly in combine_instructions. */
2933
2934 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2935 if ((set = single_set (XEXP (link, 0))) != 0
2936 && rtx_equal_p (i2dest, SET_DEST (set)))
2937 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2938
2939 record_value_for_reg (i2dest, i2_insn, i2_val);
2940
2941 /* If the reg formerly set in I2 died only once and that was in I3,
2942 zero its use count so it won't make `reload' do any work. */
2943 if (! added_sets_2
2944 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2945 && ! i2dest_in_i2src)
2946 {
2947 regno = REGNO (i2dest);
2948 REG_N_SETS (regno)--;
2949 }
2950 }
2951
2952 if (i1 && REG_P (i1dest))
2953 {
2954 rtx link;
2955 rtx i1_insn = 0, i1_val = 0, set;
2956
2957 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2958 if ((set = single_set (XEXP (link, 0))) != 0
2959 && rtx_equal_p (i1dest, SET_DEST (set)))
2960 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2961
2962 record_value_for_reg (i1dest, i1_insn, i1_val);
2963
2964 regno = REGNO (i1dest);
2965 if (! added_sets_1 && ! i1dest_in_i1src)
2966 REG_N_SETS (regno)--;
2967 }
2968
2969 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2970 been made to this insn. The order of
2971 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2972 can affect nonzero_bits of newpat */
2973 if (newi2pat)
2974 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2975 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2976
2977 /* Set new_direct_jump_p if a new return or simple jump instruction
2978 has been created.
2979
2980 If I3 is now an unconditional jump, ensure that it has a
2981 BARRIER following it since it may have initially been a
2982 conditional jump. It may also be the last nonnote insn. */
2983
2984 if (returnjump_p (i3) || any_uncondjump_p (i3))
2985 {
2986 *new_direct_jump_p = 1;
2987 mark_jump_label (PATTERN (i3), i3, 0);
2988
2989 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2990 || !BARRIER_P (temp))
2991 emit_barrier_after (i3);
2992 }
2993
2994 if (undobuf.other_insn != NULL_RTX
2995 && (returnjump_p (undobuf.other_insn)
2996 || any_uncondjump_p (undobuf.other_insn)))
2997 {
2998 *new_direct_jump_p = 1;
2999
3000 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3001 || !BARRIER_P (temp))
3002 emit_barrier_after (undobuf.other_insn);
3003 }
3004
3005 /* An NOOP jump does not need barrier, but it does need cleaning up
3006 of CFG. */
3007 if (GET_CODE (newpat) == SET
3008 && SET_SRC (newpat) == pc_rtx
3009 && SET_DEST (newpat) == pc_rtx)
3010 *new_direct_jump_p = 1;
3011 }
3012
3013 combine_successes++;
3014 undo_commit ();
3015
3016 if (added_links_insn
3017 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3018 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3019 return added_links_insn;
3020 else
3021 return newi2pat ? i2 : i3;
3022 }
3023 \f
3024 /* Undo all the modifications recorded in undobuf. */
3025
3026 static void
3027 undo_all (void)
3028 {
3029 struct undo *undo, *next;
3030
3031 for (undo = undobuf.undos; undo; undo = next)
3032 {
3033 next = undo->next;
3034 if (undo->is_int)
3035 *undo->where.i = undo->old_contents.i;
3036 else
3037 *undo->where.r = undo->old_contents.r;
3038
3039 undo->next = undobuf.frees;
3040 undobuf.frees = undo;
3041 }
3042
3043 undobuf.undos = 0;
3044 }
3045
3046 /* We've committed to accepting the changes we made. Move all
3047 of the undos to the free list. */
3048
3049 static void
3050 undo_commit (void)
3051 {
3052 struct undo *undo, *next;
3053
3054 for (undo = undobuf.undos; undo; undo = next)
3055 {
3056 next = undo->next;
3057 undo->next = undobuf.frees;
3058 undobuf.frees = undo;
3059 }
3060 undobuf.undos = 0;
3061 }
3062
3063 \f
3064 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3065 where we have an arithmetic expression and return that point. LOC will
3066 be inside INSN.
3067
3068 try_combine will call this function to see if an insn can be split into
3069 two insns. */
3070
3071 static rtx *
3072 find_split_point (rtx *loc, rtx insn)
3073 {
3074 rtx x = *loc;
3075 enum rtx_code code = GET_CODE (x);
3076 rtx *split;
3077 unsigned HOST_WIDE_INT len = 0;
3078 HOST_WIDE_INT pos = 0;
3079 int unsignedp = 0;
3080 rtx inner = NULL_RTX;
3081
3082 /* First special-case some codes. */
3083 switch (code)
3084 {
3085 case SUBREG:
3086 #ifdef INSN_SCHEDULING
3087 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3088 point. */
3089 if (MEM_P (SUBREG_REG (x)))
3090 return loc;
3091 #endif
3092 return find_split_point (&SUBREG_REG (x), insn);
3093
3094 case MEM:
3095 #ifdef HAVE_lo_sum
3096 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3097 using LO_SUM and HIGH. */
3098 if (GET_CODE (XEXP (x, 0)) == CONST
3099 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3100 {
3101 SUBST (XEXP (x, 0),
3102 gen_rtx_LO_SUM (Pmode,
3103 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3104 XEXP (x, 0)));
3105 return &XEXP (XEXP (x, 0), 0);
3106 }
3107 #endif
3108
3109 /* If we have a PLUS whose second operand is a constant and the
3110 address is not valid, perhaps will can split it up using
3111 the machine-specific way to split large constants. We use
3112 the first pseudo-reg (one of the virtual regs) as a placeholder;
3113 it will not remain in the result. */
3114 if (GET_CODE (XEXP (x, 0)) == PLUS
3115 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3116 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3117 {
3118 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3119 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3120 subst_insn);
3121
3122 /* This should have produced two insns, each of which sets our
3123 placeholder. If the source of the second is a valid address,
3124 we can make put both sources together and make a split point
3125 in the middle. */
3126
3127 if (seq
3128 && NEXT_INSN (seq) != NULL_RTX
3129 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3130 && NONJUMP_INSN_P (seq)
3131 && GET_CODE (PATTERN (seq)) == SET
3132 && SET_DEST (PATTERN (seq)) == reg
3133 && ! reg_mentioned_p (reg,
3134 SET_SRC (PATTERN (seq)))
3135 && NONJUMP_INSN_P (NEXT_INSN (seq))
3136 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3137 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3138 && memory_address_p (GET_MODE (x),
3139 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3140 {
3141 rtx src1 = SET_SRC (PATTERN (seq));
3142 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3143
3144 /* Replace the placeholder in SRC2 with SRC1. If we can
3145 find where in SRC2 it was placed, that can become our
3146 split point and we can replace this address with SRC2.
3147 Just try two obvious places. */
3148
3149 src2 = replace_rtx (src2, reg, src1);
3150 split = 0;
3151 if (XEXP (src2, 0) == src1)
3152 split = &XEXP (src2, 0);
3153 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3154 && XEXP (XEXP (src2, 0), 0) == src1)
3155 split = &XEXP (XEXP (src2, 0), 0);
3156
3157 if (split)
3158 {
3159 SUBST (XEXP (x, 0), src2);
3160 return split;
3161 }
3162 }
3163
3164 /* If that didn't work, perhaps the first operand is complex and
3165 needs to be computed separately, so make a split point there.
3166 This will occur on machines that just support REG + CONST
3167 and have a constant moved through some previous computation. */
3168
3169 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3170 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3171 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3172 return &XEXP (XEXP (x, 0), 0);
3173 }
3174 break;
3175
3176 case SET:
3177 #ifdef HAVE_cc0
3178 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3179 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3180 we need to put the operand into a register. So split at that
3181 point. */
3182
3183 if (SET_DEST (x) == cc0_rtx
3184 && GET_CODE (SET_SRC (x)) != COMPARE
3185 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3186 && !OBJECT_P (SET_SRC (x))
3187 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3188 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3189 return &SET_SRC (x);
3190 #endif
3191
3192 /* See if we can split SET_SRC as it stands. */
3193 split = find_split_point (&SET_SRC (x), insn);
3194 if (split && split != &SET_SRC (x))
3195 return split;
3196
3197 /* See if we can split SET_DEST as it stands. */
3198 split = find_split_point (&SET_DEST (x), insn);
3199 if (split && split != &SET_DEST (x))
3200 return split;
3201
3202 /* See if this is a bitfield assignment with everything constant. If
3203 so, this is an IOR of an AND, so split it into that. */
3204 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3205 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3206 <= HOST_BITS_PER_WIDE_INT)
3207 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3208 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3209 && GET_CODE (SET_SRC (x)) == CONST_INT
3210 && ((INTVAL (XEXP (SET_DEST (x), 1))
3211 + INTVAL (XEXP (SET_DEST (x), 2)))
3212 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3213 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3214 {
3215 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3216 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3217 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3218 rtx dest = XEXP (SET_DEST (x), 0);
3219 enum machine_mode mode = GET_MODE (dest);
3220 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3221
3222 if (BITS_BIG_ENDIAN)
3223 pos = GET_MODE_BITSIZE (mode) - len - pos;
3224
3225 if (src == mask)
3226 SUBST (SET_SRC (x),
3227 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3228 else
3229 {
3230 rtx negmask = gen_int_mode (~(mask << pos), mode);
3231 SUBST (SET_SRC (x),
3232 simplify_gen_binary (IOR, mode,
3233 simplify_gen_binary (AND, mode,
3234 dest, negmask),
3235 GEN_INT (src << pos)));
3236 }
3237
3238 SUBST (SET_DEST (x), dest);
3239
3240 split = find_split_point (&SET_SRC (x), insn);
3241 if (split && split != &SET_SRC (x))
3242 return split;
3243 }
3244
3245 /* Otherwise, see if this is an operation that we can split into two.
3246 If so, try to split that. */
3247 code = GET_CODE (SET_SRC (x));
3248
3249 switch (code)
3250 {
3251 case AND:
3252 /* If we are AND'ing with a large constant that is only a single
3253 bit and the result is only being used in a context where we
3254 need to know if it is zero or nonzero, replace it with a bit
3255 extraction. This will avoid the large constant, which might
3256 have taken more than one insn to make. If the constant were
3257 not a valid argument to the AND but took only one insn to make,
3258 this is no worse, but if it took more than one insn, it will
3259 be better. */
3260
3261 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3262 && REG_P (XEXP (SET_SRC (x), 0))
3263 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3264 && REG_P (SET_DEST (x))
3265 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3266 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3267 && XEXP (*split, 0) == SET_DEST (x)
3268 && XEXP (*split, 1) == const0_rtx)
3269 {
3270 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3271 XEXP (SET_SRC (x), 0),
3272 pos, NULL_RTX, 1, 1, 0, 0);
3273 if (extraction != 0)
3274 {
3275 SUBST (SET_SRC (x), extraction);
3276 return find_split_point (loc, insn);
3277 }
3278 }
3279 break;
3280
3281 case NE:
3282 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3283 is known to be on, this can be converted into a NEG of a shift. */
3284 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3285 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3286 && 1 <= (pos = exact_log2
3287 (nonzero_bits (XEXP (SET_SRC (x), 0),
3288 GET_MODE (XEXP (SET_SRC (x), 0))))))
3289 {
3290 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3291
3292 SUBST (SET_SRC (x),
3293 gen_rtx_NEG (mode,
3294 gen_rtx_LSHIFTRT (mode,
3295 XEXP (SET_SRC (x), 0),
3296 GEN_INT (pos))));
3297
3298 split = find_split_point (&SET_SRC (x), insn);
3299 if (split && split != &SET_SRC (x))
3300 return split;
3301 }
3302 break;
3303
3304 case SIGN_EXTEND:
3305 inner = XEXP (SET_SRC (x), 0);
3306
3307 /* We can't optimize if either mode is a partial integer
3308 mode as we don't know how many bits are significant
3309 in those modes. */
3310 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3311 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3312 break;
3313
3314 pos = 0;
3315 len = GET_MODE_BITSIZE (GET_MODE (inner));
3316 unsignedp = 0;
3317 break;
3318
3319 case SIGN_EXTRACT:
3320 case ZERO_EXTRACT:
3321 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3322 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3323 {
3324 inner = XEXP (SET_SRC (x), 0);
3325 len = INTVAL (XEXP (SET_SRC (x), 1));
3326 pos = INTVAL (XEXP (SET_SRC (x), 2));
3327
3328 if (BITS_BIG_ENDIAN)
3329 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3330 unsignedp = (code == ZERO_EXTRACT);
3331 }
3332 break;
3333
3334 default:
3335 break;
3336 }
3337
3338 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3339 {
3340 enum machine_mode mode = GET_MODE (SET_SRC (x));
3341
3342 /* For unsigned, we have a choice of a shift followed by an
3343 AND or two shifts. Use two shifts for field sizes where the
3344 constant might be too large. We assume here that we can
3345 always at least get 8-bit constants in an AND insn, which is
3346 true for every current RISC. */
3347
3348 if (unsignedp && len <= 8)
3349 {
3350 SUBST (SET_SRC (x),
3351 gen_rtx_AND (mode,
3352 gen_rtx_LSHIFTRT
3353 (mode, gen_lowpart (mode, inner),
3354 GEN_INT (pos)),
3355 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3356
3357 split = find_split_point (&SET_SRC (x), insn);
3358 if (split && split != &SET_SRC (x))
3359 return split;
3360 }
3361 else
3362 {
3363 SUBST (SET_SRC (x),
3364 gen_rtx_fmt_ee
3365 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3366 gen_rtx_ASHIFT (mode,
3367 gen_lowpart (mode, inner),
3368 GEN_INT (GET_MODE_BITSIZE (mode)
3369 - len - pos)),
3370 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3371
3372 split = find_split_point (&SET_SRC (x), insn);
3373 if (split && split != &SET_SRC (x))
3374 return split;
3375 }
3376 }
3377
3378 /* See if this is a simple operation with a constant as the second
3379 operand. It might be that this constant is out of range and hence
3380 could be used as a split point. */
3381 if (BINARY_P (SET_SRC (x))
3382 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3383 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3384 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3385 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3386 return &XEXP (SET_SRC (x), 1);
3387
3388 /* Finally, see if this is a simple operation with its first operand
3389 not in a register. The operation might require this operand in a
3390 register, so return it as a split point. We can always do this
3391 because if the first operand were another operation, we would have
3392 already found it as a split point. */
3393 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3394 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3395 return &XEXP (SET_SRC (x), 0);
3396
3397 return 0;
3398
3399 case AND:
3400 case IOR:
3401 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3402 it is better to write this as (not (ior A B)) so we can split it.
3403 Similarly for IOR. */
3404 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3405 {
3406 SUBST (*loc,
3407 gen_rtx_NOT (GET_MODE (x),
3408 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3409 GET_MODE (x),
3410 XEXP (XEXP (x, 0), 0),
3411 XEXP (XEXP (x, 1), 0))));
3412 return find_split_point (loc, insn);
3413 }
3414
3415 /* Many RISC machines have a large set of logical insns. If the
3416 second operand is a NOT, put it first so we will try to split the
3417 other operand first. */
3418 if (GET_CODE (XEXP (x, 1)) == NOT)
3419 {
3420 rtx tem = XEXP (x, 0);
3421 SUBST (XEXP (x, 0), XEXP (x, 1));
3422 SUBST (XEXP (x, 1), tem);
3423 }
3424 break;
3425
3426 default:
3427 break;
3428 }
3429
3430 /* Otherwise, select our actions depending on our rtx class. */
3431 switch (GET_RTX_CLASS (code))
3432 {
3433 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3434 case RTX_TERNARY:
3435 split = find_split_point (&XEXP (x, 2), insn);
3436 if (split)
3437 return split;
3438 /* ... fall through ... */
3439 case RTX_BIN_ARITH:
3440 case RTX_COMM_ARITH:
3441 case RTX_COMPARE:
3442 case RTX_COMM_COMPARE:
3443 split = find_split_point (&XEXP (x, 1), insn);
3444 if (split)
3445 return split;
3446 /* ... fall through ... */
3447 case RTX_UNARY:
3448 /* Some machines have (and (shift ...) ...) insns. If X is not
3449 an AND, but XEXP (X, 0) is, use it as our split point. */
3450 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3451 return &XEXP (x, 0);
3452
3453 split = find_split_point (&XEXP (x, 0), insn);
3454 if (split)
3455 return split;
3456 return loc;
3457
3458 default:
3459 /* Otherwise, we don't have a split point. */
3460 return 0;
3461 }
3462 }
3463 \f
3464 /* Throughout X, replace FROM with TO, and return the result.
3465 The result is TO if X is FROM;
3466 otherwise the result is X, but its contents may have been modified.
3467 If they were modified, a record was made in undobuf so that
3468 undo_all will (among other things) return X to its original state.
3469
3470 If the number of changes necessary is too much to record to undo,
3471 the excess changes are not made, so the result is invalid.
3472 The changes already made can still be undone.
3473 undobuf.num_undo is incremented for such changes, so by testing that
3474 the caller can tell whether the result is valid.
3475
3476 `n_occurrences' is incremented each time FROM is replaced.
3477
3478 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3479
3480 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3481 by copying if `n_occurrences' is nonzero. */
3482
3483 static rtx
3484 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3485 {
3486 enum rtx_code code = GET_CODE (x);
3487 enum machine_mode op0_mode = VOIDmode;
3488 const char *fmt;
3489 int len, i;
3490 rtx new;
3491
3492 /* Two expressions are equal if they are identical copies of a shared
3493 RTX or if they are both registers with the same register number
3494 and mode. */
3495
3496 #define COMBINE_RTX_EQUAL_P(X,Y) \
3497 ((X) == (Y) \
3498 || (REG_P (X) && REG_P (Y) \
3499 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3500
3501 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3502 {
3503 n_occurrences++;
3504 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3505 }
3506
3507 /* If X and FROM are the same register but different modes, they will
3508 not have been seen as equal above. However, flow.c will make a
3509 LOG_LINKS entry for that case. If we do nothing, we will try to
3510 rerecognize our original insn and, when it succeeds, we will
3511 delete the feeding insn, which is incorrect.
3512
3513 So force this insn not to match in this (rare) case. */
3514 if (! in_dest && code == REG && REG_P (from)
3515 && REGNO (x) == REGNO (from))
3516 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3517
3518 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3519 of which may contain things that can be combined. */
3520 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3521 return x;
3522
3523 /* It is possible to have a subexpression appear twice in the insn.
3524 Suppose that FROM is a register that appears within TO.
3525 Then, after that subexpression has been scanned once by `subst',
3526 the second time it is scanned, TO may be found. If we were
3527 to scan TO here, we would find FROM within it and create a
3528 self-referent rtl structure which is completely wrong. */
3529 if (COMBINE_RTX_EQUAL_P (x, to))
3530 return to;
3531
3532 /* Parallel asm_operands need special attention because all of the
3533 inputs are shared across the arms. Furthermore, unsharing the
3534 rtl results in recognition failures. Failure to handle this case
3535 specially can result in circular rtl.
3536
3537 Solve this by doing a normal pass across the first entry of the
3538 parallel, and only processing the SET_DESTs of the subsequent
3539 entries. Ug. */
3540
3541 if (code == PARALLEL
3542 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3543 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3544 {
3545 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3546
3547 /* If this substitution failed, this whole thing fails. */
3548 if (GET_CODE (new) == CLOBBER
3549 && XEXP (new, 0) == const0_rtx)
3550 return new;
3551
3552 SUBST (XVECEXP (x, 0, 0), new);
3553
3554 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3555 {
3556 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3557
3558 if (!REG_P (dest)
3559 && GET_CODE (dest) != CC0
3560 && GET_CODE (dest) != PC)
3561 {
3562 new = subst (dest, from, to, 0, unique_copy);
3563
3564 /* If this substitution failed, this whole thing fails. */
3565 if (GET_CODE (new) == CLOBBER
3566 && XEXP (new, 0) == const0_rtx)
3567 return new;
3568
3569 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3570 }
3571 }
3572 }
3573 else
3574 {
3575 len = GET_RTX_LENGTH (code);
3576 fmt = GET_RTX_FORMAT (code);
3577
3578 /* We don't need to process a SET_DEST that is a register, CC0,
3579 or PC, so set up to skip this common case. All other cases
3580 where we want to suppress replacing something inside a
3581 SET_SRC are handled via the IN_DEST operand. */
3582 if (code == SET
3583 && (REG_P (SET_DEST (x))
3584 || GET_CODE (SET_DEST (x)) == CC0
3585 || GET_CODE (SET_DEST (x)) == PC))
3586 fmt = "ie";
3587
3588 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3589 constant. */
3590 if (fmt[0] == 'e')
3591 op0_mode = GET_MODE (XEXP (x, 0));
3592
3593 for (i = 0; i < len; i++)
3594 {
3595 if (fmt[i] == 'E')
3596 {
3597 int j;
3598 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3599 {
3600 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3601 {
3602 new = (unique_copy && n_occurrences
3603 ? copy_rtx (to) : to);
3604 n_occurrences++;
3605 }
3606 else
3607 {
3608 new = subst (XVECEXP (x, i, j), from, to, 0,
3609 unique_copy);
3610
3611 /* If this substitution failed, this whole thing
3612 fails. */
3613 if (GET_CODE (new) == CLOBBER
3614 && XEXP (new, 0) == const0_rtx)
3615 return new;
3616 }
3617
3618 SUBST (XVECEXP (x, i, j), new);
3619 }
3620 }
3621 else if (fmt[i] == 'e')
3622 {
3623 /* If this is a register being set, ignore it. */
3624 new = XEXP (x, i);
3625 if (in_dest
3626 && i == 0
3627 && (((code == SUBREG || code == ZERO_EXTRACT)
3628 && REG_P (new))
3629 || code == STRICT_LOW_PART))
3630 ;
3631
3632 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3633 {
3634 /* In general, don't install a subreg involving two
3635 modes not tieable. It can worsen register
3636 allocation, and can even make invalid reload
3637 insns, since the reg inside may need to be copied
3638 from in the outside mode, and that may be invalid
3639 if it is an fp reg copied in integer mode.
3640
3641 We allow two exceptions to this: It is valid if
3642 it is inside another SUBREG and the mode of that
3643 SUBREG and the mode of the inside of TO is
3644 tieable and it is valid if X is a SET that copies
3645 FROM to CC0. */
3646
3647 if (GET_CODE (to) == SUBREG
3648 && ! MODES_TIEABLE_P (GET_MODE (to),
3649 GET_MODE (SUBREG_REG (to)))
3650 && ! (code == SUBREG
3651 && MODES_TIEABLE_P (GET_MODE (x),
3652 GET_MODE (SUBREG_REG (to))))
3653 #ifdef HAVE_cc0
3654 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3655 #endif
3656 )
3657 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3658
3659 #ifdef CANNOT_CHANGE_MODE_CLASS
3660 if (code == SUBREG
3661 && REG_P (to)
3662 && REGNO (to) < FIRST_PSEUDO_REGISTER
3663 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3664 GET_MODE (to),
3665 GET_MODE (x)))
3666 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3667 #endif
3668
3669 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3670 n_occurrences++;
3671 }
3672 else
3673 /* If we are in a SET_DEST, suppress most cases unless we
3674 have gone inside a MEM, in which case we want to
3675 simplify the address. We assume here that things that
3676 are actually part of the destination have their inner
3677 parts in the first expression. This is true for SUBREG,
3678 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3679 things aside from REG and MEM that should appear in a
3680 SET_DEST. */
3681 new = subst (XEXP (x, i), from, to,
3682 (((in_dest
3683 && (code == SUBREG || code == STRICT_LOW_PART
3684 || code == ZERO_EXTRACT))
3685 || code == SET)
3686 && i == 0), unique_copy);
3687
3688 /* If we found that we will have to reject this combination,
3689 indicate that by returning the CLOBBER ourselves, rather than
3690 an expression containing it. This will speed things up as
3691 well as prevent accidents where two CLOBBERs are considered
3692 to be equal, thus producing an incorrect simplification. */
3693
3694 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3695 return new;
3696
3697 if (GET_CODE (x) == SUBREG
3698 && (GET_CODE (new) == CONST_INT
3699 || GET_CODE (new) == CONST_DOUBLE))
3700 {
3701 enum machine_mode mode = GET_MODE (x);
3702
3703 x = simplify_subreg (GET_MODE (x), new,
3704 GET_MODE (SUBREG_REG (x)),
3705 SUBREG_BYTE (x));
3706 if (! x)
3707 x = gen_rtx_CLOBBER (mode, const0_rtx);
3708 }
3709 else if (GET_CODE (new) == CONST_INT
3710 && GET_CODE (x) == ZERO_EXTEND)
3711 {
3712 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3713 new, GET_MODE (XEXP (x, 0)));
3714 gcc_assert (x);
3715 }
3716 else
3717 SUBST (XEXP (x, i), new);
3718 }
3719 }
3720 }
3721
3722 /* Try to simplify X. If the simplification changed the code, it is likely
3723 that further simplification will help, so loop, but limit the number
3724 of repetitions that will be performed. */
3725
3726 for (i = 0; i < 4; i++)
3727 {
3728 /* If X is sufficiently simple, don't bother trying to do anything
3729 with it. */
3730 if (code != CONST_INT && code != REG && code != CLOBBER)
3731 x = combine_simplify_rtx (x, op0_mode, in_dest);
3732
3733 if (GET_CODE (x) == code)
3734 break;
3735
3736 code = GET_CODE (x);
3737
3738 /* We no longer know the original mode of operand 0 since we
3739 have changed the form of X) */
3740 op0_mode = VOIDmode;
3741 }
3742
3743 return x;
3744 }
3745 \f
3746 /* Simplify X, a piece of RTL. We just operate on the expression at the
3747 outer level; call `subst' to simplify recursively. Return the new
3748 expression.
3749
3750 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3751 if we are inside a SET_DEST. */
3752
3753 static rtx
3754 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3755 {
3756 enum rtx_code code = GET_CODE (x);
3757 enum machine_mode mode = GET_MODE (x);
3758 rtx temp;
3759 rtx reversed;
3760 int i;
3761
3762 /* If this is a commutative operation, put a constant last and a complex
3763 expression first. We don't need to do this for comparisons here. */
3764 if (COMMUTATIVE_ARITH_P (x)
3765 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3766 {
3767 temp = XEXP (x, 0);
3768 SUBST (XEXP (x, 0), XEXP (x, 1));
3769 SUBST (XEXP (x, 1), temp);
3770 }
3771
3772 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3773 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3774 things. Check for cases where both arms are testing the same
3775 condition.
3776
3777 Don't do anything if all operands are very simple. */
3778
3779 if ((BINARY_P (x)
3780 && ((!OBJECT_P (XEXP (x, 0))
3781 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3782 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3783 || (!OBJECT_P (XEXP (x, 1))
3784 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3785 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3786 || (UNARY_P (x)
3787 && (!OBJECT_P (XEXP (x, 0))
3788 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3789 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3790 {
3791 rtx cond, true_rtx, false_rtx;
3792
3793 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3794 if (cond != 0
3795 /* If everything is a comparison, what we have is highly unlikely
3796 to be simpler, so don't use it. */
3797 && ! (COMPARISON_P (x)
3798 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3799 {
3800 rtx cop1 = const0_rtx;
3801 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3802
3803 if (cond_code == NE && COMPARISON_P (cond))
3804 return x;
3805
3806 /* Simplify the alternative arms; this may collapse the true and
3807 false arms to store-flag values. Be careful to use copy_rtx
3808 here since true_rtx or false_rtx might share RTL with x as a
3809 result of the if_then_else_cond call above. */
3810 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3811 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3812
3813 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3814 is unlikely to be simpler. */
3815 if (general_operand (true_rtx, VOIDmode)
3816 && general_operand (false_rtx, VOIDmode))
3817 {
3818 enum rtx_code reversed;
3819
3820 /* Restarting if we generate a store-flag expression will cause
3821 us to loop. Just drop through in this case. */
3822
3823 /* If the result values are STORE_FLAG_VALUE and zero, we can
3824 just make the comparison operation. */
3825 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3826 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3827 cond, cop1);
3828 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3829 && ((reversed = reversed_comparison_code_parts
3830 (cond_code, cond, cop1, NULL))
3831 != UNKNOWN))
3832 x = simplify_gen_relational (reversed, mode, VOIDmode,
3833 cond, cop1);
3834
3835 /* Likewise, we can make the negate of a comparison operation
3836 if the result values are - STORE_FLAG_VALUE and zero. */
3837 else if (GET_CODE (true_rtx) == CONST_INT
3838 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3839 && false_rtx == const0_rtx)
3840 x = simplify_gen_unary (NEG, mode,
3841 simplify_gen_relational (cond_code,
3842 mode, VOIDmode,
3843 cond, cop1),
3844 mode);
3845 else if (GET_CODE (false_rtx) == CONST_INT
3846 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3847 && true_rtx == const0_rtx
3848 && ((reversed = reversed_comparison_code_parts
3849 (cond_code, cond, cop1, NULL))
3850 != UNKNOWN))
3851 x = simplify_gen_unary (NEG, mode,
3852 simplify_gen_relational (reversed,
3853 mode, VOIDmode,
3854 cond, cop1),
3855 mode);
3856 else
3857 return gen_rtx_IF_THEN_ELSE (mode,
3858 simplify_gen_relational (cond_code,
3859 mode,
3860 VOIDmode,
3861 cond,
3862 cop1),
3863 true_rtx, false_rtx);
3864
3865 code = GET_CODE (x);
3866 op0_mode = VOIDmode;
3867 }
3868 }
3869 }
3870
3871 /* Try to fold this expression in case we have constants that weren't
3872 present before. */
3873 temp = 0;
3874 switch (GET_RTX_CLASS (code))
3875 {
3876 case RTX_UNARY:
3877 if (op0_mode == VOIDmode)
3878 op0_mode = GET_MODE (XEXP (x, 0));
3879 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3880 break;
3881 case RTX_COMPARE:
3882 case RTX_COMM_COMPARE:
3883 {
3884 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3885 if (cmp_mode == VOIDmode)
3886 {
3887 cmp_mode = GET_MODE (XEXP (x, 1));
3888 if (cmp_mode == VOIDmode)
3889 cmp_mode = op0_mode;
3890 }
3891 temp = simplify_relational_operation (code, mode, cmp_mode,
3892 XEXP (x, 0), XEXP (x, 1));
3893 }
3894 break;
3895 case RTX_COMM_ARITH:
3896 case RTX_BIN_ARITH:
3897 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3898 break;
3899 case RTX_BITFIELD_OPS:
3900 case RTX_TERNARY:
3901 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3902 XEXP (x, 1), XEXP (x, 2));
3903 break;
3904 default:
3905 break;
3906 }
3907
3908 if (temp)
3909 {
3910 x = temp;
3911 code = GET_CODE (temp);
3912 op0_mode = VOIDmode;
3913 mode = GET_MODE (temp);
3914 }
3915
3916 /* First see if we can apply the inverse distributive law. */
3917 if (code == PLUS || code == MINUS
3918 || code == AND || code == IOR || code == XOR)
3919 {
3920 x = apply_distributive_law (x);
3921 code = GET_CODE (x);
3922 op0_mode = VOIDmode;
3923 }
3924
3925 /* If CODE is an associative operation not otherwise handled, see if we
3926 can associate some operands. This can win if they are constants or
3927 if they are logically related (i.e. (a & b) & a). */
3928 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3929 || code == AND || code == IOR || code == XOR
3930 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3931 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3932 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3933 {
3934 if (GET_CODE (XEXP (x, 0)) == code)
3935 {
3936 rtx other = XEXP (XEXP (x, 0), 0);
3937 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3938 rtx inner_op1 = XEXP (x, 1);
3939 rtx inner;
3940
3941 /* Make sure we pass the constant operand if any as the second
3942 one if this is a commutative operation. */
3943 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3944 {
3945 rtx tem = inner_op0;
3946 inner_op0 = inner_op1;
3947 inner_op1 = tem;
3948 }
3949 inner = simplify_binary_operation (code == MINUS ? PLUS
3950 : code == DIV ? MULT
3951 : code,
3952 mode, inner_op0, inner_op1);
3953
3954 /* For commutative operations, try the other pair if that one
3955 didn't simplify. */
3956 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3957 {
3958 other = XEXP (XEXP (x, 0), 1);
3959 inner = simplify_binary_operation (code, mode,
3960 XEXP (XEXP (x, 0), 0),
3961 XEXP (x, 1));
3962 }
3963
3964 if (inner)
3965 return simplify_gen_binary (code, mode, other, inner);
3966 }
3967 }
3968
3969 /* A little bit of algebraic simplification here. */
3970 switch (code)
3971 {
3972 case MEM:
3973 /* Ensure that our address has any ASHIFTs converted to MULT in case
3974 address-recognizing predicates are called later. */
3975 temp = make_compound_operation (XEXP (x, 0), MEM);
3976 SUBST (XEXP (x, 0), temp);
3977 break;
3978
3979 case SUBREG:
3980 if (op0_mode == VOIDmode)
3981 op0_mode = GET_MODE (SUBREG_REG (x));
3982
3983 /* See if this can be moved to simplify_subreg. */
3984 if (CONSTANT_P (SUBREG_REG (x))
3985 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3986 /* Don't call gen_lowpart if the inner mode
3987 is VOIDmode and we cannot simplify it, as SUBREG without
3988 inner mode is invalid. */
3989 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3990 || gen_lowpart_common (mode, SUBREG_REG (x))))
3991 return gen_lowpart (mode, SUBREG_REG (x));
3992
3993 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3994 break;
3995 {
3996 rtx temp;
3997 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3998 SUBREG_BYTE (x));
3999 if (temp)
4000 return temp;
4001 }
4002
4003 /* Don't change the mode of the MEM if that would change the meaning
4004 of the address. */
4005 if (MEM_P (SUBREG_REG (x))
4006 && (MEM_VOLATILE_P (SUBREG_REG (x))
4007 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4008 return gen_rtx_CLOBBER (mode, const0_rtx);
4009
4010 /* Note that we cannot do any narrowing for non-constants since
4011 we might have been counting on using the fact that some bits were
4012 zero. We now do this in the SET. */
4013
4014 break;
4015
4016 case NOT:
4017 if (GET_CODE (XEXP (x, 0)) == SUBREG
4018 && subreg_lowpart_p (XEXP (x, 0))
4019 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4020 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4021 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4022 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4023 {
4024 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4025
4026 x = gen_rtx_ROTATE (inner_mode,
4027 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4028 inner_mode),
4029 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4030 return gen_lowpart (mode, x);
4031 }
4032
4033 /* Apply De Morgan's laws to reduce number of patterns for machines
4034 with negating logical insns (and-not, nand, etc.). If result has
4035 only one NOT, put it first, since that is how the patterns are
4036 coded. */
4037
4038 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4039 {
4040 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4041 enum machine_mode op_mode;
4042
4043 op_mode = GET_MODE (in1);
4044 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4045
4046 op_mode = GET_MODE (in2);
4047 if (op_mode == VOIDmode)
4048 op_mode = mode;
4049 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4050
4051 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4052 {
4053 rtx tem = in2;
4054 in2 = in1; in1 = tem;
4055 }
4056
4057 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4058 mode, in1, in2);
4059 }
4060 break;
4061
4062 case NEG:
4063 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4064 if (GET_CODE (XEXP (x, 0)) == XOR
4065 && XEXP (XEXP (x, 0), 1) == const1_rtx
4066 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4067 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4068 constm1_rtx);
4069
4070 temp = expand_compound_operation (XEXP (x, 0));
4071
4072 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4073 replaced by (lshiftrt X C). This will convert
4074 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4075
4076 if (GET_CODE (temp) == ASHIFTRT
4077 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4078 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4079 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4080 INTVAL (XEXP (temp, 1)));
4081
4082 /* If X has only a single bit that might be nonzero, say, bit I, convert
4083 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4084 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4085 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4086 or a SUBREG of one since we'd be making the expression more
4087 complex if it was just a register. */
4088
4089 if (!REG_P (temp)
4090 && ! (GET_CODE (temp) == SUBREG
4091 && REG_P (SUBREG_REG (temp)))
4092 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4093 {
4094 rtx temp1 = simplify_shift_const
4095 (NULL_RTX, ASHIFTRT, mode,
4096 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4097 GET_MODE_BITSIZE (mode) - 1 - i),
4098 GET_MODE_BITSIZE (mode) - 1 - i);
4099
4100 /* If all we did was surround TEMP with the two shifts, we
4101 haven't improved anything, so don't use it. Otherwise,
4102 we are better off with TEMP1. */
4103 if (GET_CODE (temp1) != ASHIFTRT
4104 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4105 || XEXP (XEXP (temp1, 0), 0) != temp)
4106 return temp1;
4107 }
4108 break;
4109
4110 case TRUNCATE:
4111 /* We can't handle truncation to a partial integer mode here
4112 because we don't know the real bitsize of the partial
4113 integer mode. */
4114 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4115 break;
4116
4117 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4118 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4119 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4120 SUBST (XEXP (x, 0),
4121 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4122 GET_MODE_MASK (mode), NULL_RTX, 0));
4123
4124 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4125 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4126 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4127 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4128 return XEXP (XEXP (x, 0), 0);
4129
4130 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4131 (OP:SI foo:SI) if OP is NEG or ABS. */
4132 if ((GET_CODE (XEXP (x, 0)) == ABS
4133 || GET_CODE (XEXP (x, 0)) == NEG)
4134 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4135 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4136 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4137 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4138 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4139
4140 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4141 (truncate:SI x). */
4142 if (GET_CODE (XEXP (x, 0)) == SUBREG
4143 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4144 && subreg_lowpart_p (XEXP (x, 0)))
4145 return SUBREG_REG (XEXP (x, 0));
4146
4147 /* If we know that the value is already truncated, we can
4148 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4149 is nonzero for the corresponding modes. But don't do this
4150 for an (LSHIFTRT (MULT ...)) since this will cause problems
4151 with the umulXi3_highpart patterns. */
4152 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4153 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4154 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4155 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4156 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4157 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4158 return gen_lowpart (mode, XEXP (x, 0));
4159
4160 /* A truncate of a comparison can be replaced with a subreg if
4161 STORE_FLAG_VALUE permits. This is like the previous test,
4162 but it works even if the comparison is done in a mode larger
4163 than HOST_BITS_PER_WIDE_INT. */
4164 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4165 && COMPARISON_P (XEXP (x, 0))
4166 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4167 return gen_lowpart (mode, XEXP (x, 0));
4168
4169 /* Similarly, a truncate of a register whose value is a
4170 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4171 permits. */
4172 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4173 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4174 && (temp = get_last_value (XEXP (x, 0)))
4175 && COMPARISON_P (temp))
4176 return gen_lowpart (mode, XEXP (x, 0));
4177
4178 break;
4179
4180 case FLOAT_TRUNCATE:
4181 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4182 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4183 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4184 return XEXP (XEXP (x, 0), 0);
4185
4186 /* (float_truncate:SF (float_truncate:DF foo:XF))
4187 = (float_truncate:SF foo:XF).
4188 This may eliminate double rounding, so it is unsafe.
4189
4190 (float_truncate:SF (float_extend:XF foo:DF))
4191 = (float_truncate:SF foo:DF).
4192
4193 (float_truncate:DF (float_extend:XF foo:SF))
4194 = (float_extend:SF foo:DF). */
4195 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4196 && flag_unsafe_math_optimizations)
4197 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4198 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4199 0)))
4200 > GET_MODE_SIZE (mode)
4201 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4202 mode,
4203 XEXP (XEXP (x, 0), 0), mode);
4204
4205 /* (float_truncate (float x)) is (float x) */
4206 if (GET_CODE (XEXP (x, 0)) == FLOAT
4207 && (flag_unsafe_math_optimizations
4208 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4209 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4210 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4211 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4212 return simplify_gen_unary (FLOAT, mode,
4213 XEXP (XEXP (x, 0), 0),
4214 GET_MODE (XEXP (XEXP (x, 0), 0)));
4215
4216 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4217 (OP:SF foo:SF) if OP is NEG or ABS. */
4218 if ((GET_CODE (XEXP (x, 0)) == ABS
4219 || GET_CODE (XEXP (x, 0)) == NEG)
4220 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4221 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4222 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4223 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4224
4225 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4226 is (float_truncate:SF x). */
4227 if (GET_CODE (XEXP (x, 0)) == SUBREG
4228 && subreg_lowpart_p (XEXP (x, 0))
4229 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4230 return SUBREG_REG (XEXP (x, 0));
4231 break;
4232 case FLOAT_EXTEND:
4233 /* (float_extend (float_extend x)) is (float_extend x)
4234
4235 (float_extend (float x)) is (float x) assuming that double
4236 rounding can't happen.
4237 */
4238 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4239 || (GET_CODE (XEXP (x, 0)) == FLOAT
4240 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4241 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4242 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4243 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4244 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4245 XEXP (XEXP (x, 0), 0),
4246 GET_MODE (XEXP (XEXP (x, 0), 0)));
4247
4248 break;
4249 #ifdef HAVE_cc0
4250 case COMPARE:
4251 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4252 using cc0, in which case we want to leave it as a COMPARE
4253 so we can distinguish it from a register-register-copy. */
4254 if (XEXP (x, 1) == const0_rtx)
4255 return XEXP (x, 0);
4256
4257 /* x - 0 is the same as x unless x's mode has signed zeros and
4258 allows rounding towards -infinity. Under those conditions,
4259 0 - 0 is -0. */
4260 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4261 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4262 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4263 return XEXP (x, 0);
4264 break;
4265 #endif
4266
4267 case CONST:
4268 /* (const (const X)) can become (const X). Do it this way rather than
4269 returning the inner CONST since CONST can be shared with a
4270 REG_EQUAL note. */
4271 if (GET_CODE (XEXP (x, 0)) == CONST)
4272 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4273 break;
4274
4275 #ifdef HAVE_lo_sum
4276 case LO_SUM:
4277 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4278 can add in an offset. find_split_point will split this address up
4279 again if it doesn't match. */
4280 if (GET_CODE (XEXP (x, 0)) == HIGH
4281 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4282 return XEXP (x, 1);
4283 break;
4284 #endif
4285
4286 case PLUS:
4287 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4288 */
4289 if (GET_CODE (XEXP (x, 0)) == MULT
4290 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4291 {
4292 rtx in1, in2;
4293
4294 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4295 in2 = XEXP (XEXP (x, 0), 1);
4296 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4297 simplify_gen_binary (MULT, mode,
4298 in1, in2));
4299 }
4300
4301 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4302 outermost. That's because that's the way indexed addresses are
4303 supposed to appear. This code used to check many more cases, but
4304 they are now checked elsewhere. */
4305 if (GET_CODE (XEXP (x, 0)) == PLUS
4306 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4307 return simplify_gen_binary (PLUS, mode,
4308 simplify_gen_binary (PLUS, mode,
4309 XEXP (XEXP (x, 0), 0),
4310 XEXP (x, 1)),
4311 XEXP (XEXP (x, 0), 1));
4312
4313 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4314 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4315 bit-field and can be replaced by either a sign_extend or a
4316 sign_extract. The `and' may be a zero_extend and the two
4317 <c>, -<c> constants may be reversed. */
4318 if (GET_CODE (XEXP (x, 0)) == XOR
4319 && GET_CODE (XEXP (x, 1)) == CONST_INT
4320 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4321 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4322 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4323 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4324 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4325 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4326 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4327 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4328 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4329 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4330 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4331 == (unsigned int) i + 1))))
4332 return simplify_shift_const
4333 (NULL_RTX, ASHIFTRT, mode,
4334 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4335 XEXP (XEXP (XEXP (x, 0), 0), 0),
4336 GET_MODE_BITSIZE (mode) - (i + 1)),
4337 GET_MODE_BITSIZE (mode) - (i + 1));
4338
4339 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4340 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4341 is 1. This produces better code than the alternative immediately
4342 below. */
4343 if (COMPARISON_P (XEXP (x, 0))
4344 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4345 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4346 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4347 return
4348 simplify_gen_unary (NEG, mode, reversed, mode);
4349
4350 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4351 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4352 the bitsize of the mode - 1. This allows simplification of
4353 "a = (b & 8) == 0;" */
4354 if (XEXP (x, 1) == constm1_rtx
4355 && !REG_P (XEXP (x, 0))
4356 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4357 && REG_P (SUBREG_REG (XEXP (x, 0))))
4358 && nonzero_bits (XEXP (x, 0), mode) == 1)
4359 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4360 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4361 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4362 GET_MODE_BITSIZE (mode) - 1),
4363 GET_MODE_BITSIZE (mode) - 1);
4364
4365 /* If we are adding two things that have no bits in common, convert
4366 the addition into an IOR. This will often be further simplified,
4367 for example in cases like ((a & 1) + (a & 2)), which can
4368 become a & 3. */
4369
4370 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4371 && (nonzero_bits (XEXP (x, 0), mode)
4372 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4373 {
4374 /* Try to simplify the expression further. */
4375 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4376 temp = combine_simplify_rtx (tor, mode, in_dest);
4377
4378 /* If we could, great. If not, do not go ahead with the IOR
4379 replacement, since PLUS appears in many special purpose
4380 address arithmetic instructions. */
4381 if (GET_CODE (temp) != CLOBBER && temp != tor)
4382 return temp;
4383 }
4384 break;
4385
4386 case MINUS:
4387 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4388 by reversing the comparison code if valid. */
4389 if (STORE_FLAG_VALUE == 1
4390 && XEXP (x, 0) == const1_rtx
4391 && COMPARISON_P (XEXP (x, 1))
4392 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4393 return reversed;
4394
4395 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4396 (and <foo> (const_int pow2-1)) */
4397 if (GET_CODE (XEXP (x, 1)) == AND
4398 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4399 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4400 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4401 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4402 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4403
4404 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4405 */
4406 if (GET_CODE (XEXP (x, 1)) == MULT
4407 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4408 {
4409 rtx in1, in2;
4410
4411 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4412 in2 = XEXP (XEXP (x, 1), 1);
4413 return simplify_gen_binary (PLUS, mode,
4414 simplify_gen_binary (MULT, mode,
4415 in1, in2),
4416 XEXP (x, 0));
4417 }
4418
4419 /* Canonicalize (minus (neg A) (mult B C)) to
4420 (minus (mult (neg B) C) A). */
4421 if (GET_CODE (XEXP (x, 1)) == MULT
4422 && GET_CODE (XEXP (x, 0)) == NEG)
4423 {
4424 rtx in1, in2;
4425
4426 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4427 in2 = XEXP (XEXP (x, 1), 1);
4428 return simplify_gen_binary (MINUS, mode,
4429 simplify_gen_binary (MULT, mode,
4430 in1, in2),
4431 XEXP (XEXP (x, 0), 0));
4432 }
4433
4434 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4435 integers. */
4436 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4437 return simplify_gen_binary (MINUS, mode,
4438 simplify_gen_binary (MINUS, mode,
4439 XEXP (x, 0),
4440 XEXP (XEXP (x, 1), 0)),
4441 XEXP (XEXP (x, 1), 1));
4442 break;
4443
4444 case MULT:
4445 /* If we have (mult (plus A B) C), apply the distributive law and then
4446 the inverse distributive law to see if things simplify. This
4447 occurs mostly in addresses, often when unrolling loops. */
4448
4449 if (GET_CODE (XEXP (x, 0)) == PLUS)
4450 {
4451 rtx result = distribute_and_simplify_rtx (x, 0);
4452 if (result)
4453 return result;
4454 }
4455
4456 /* Try simplify a*(b/c) as (a*b)/c. */
4457 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4458 && GET_CODE (XEXP (x, 0)) == DIV)
4459 {
4460 rtx tem = simplify_binary_operation (MULT, mode,
4461 XEXP (XEXP (x, 0), 0),
4462 XEXP (x, 1));
4463 if (tem)
4464 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4465 }
4466 break;
4467
4468 case UDIV:
4469 /* If this is a divide by a power of two, treat it as a shift if
4470 its first operand is a shift. */
4471 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4472 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4473 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4474 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4475 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4476 || GET_CODE (XEXP (x, 0)) == ROTATE
4477 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4478 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4479 break;
4480
4481 case EQ: case NE:
4482 case GT: case GTU: case GE: case GEU:
4483 case LT: case LTU: case LE: case LEU:
4484 case UNEQ: case LTGT:
4485 case UNGT: case UNGE:
4486 case UNLT: case UNLE:
4487 case UNORDERED: case ORDERED:
4488 /* If the first operand is a condition code, we can't do anything
4489 with it. */
4490 if (GET_CODE (XEXP (x, 0)) == COMPARE
4491 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4492 && ! CC0_P (XEXP (x, 0))))
4493 {
4494 rtx op0 = XEXP (x, 0);
4495 rtx op1 = XEXP (x, 1);
4496 enum rtx_code new_code;
4497
4498 if (GET_CODE (op0) == COMPARE)
4499 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4500
4501 /* Simplify our comparison, if possible. */
4502 new_code = simplify_comparison (code, &op0, &op1);
4503
4504 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4505 if only the low-order bit is possibly nonzero in X (such as when
4506 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4507 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4508 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4509 (plus X 1).
4510
4511 Remove any ZERO_EXTRACT we made when thinking this was a
4512 comparison. It may now be simpler to use, e.g., an AND. If a
4513 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4514 the call to make_compound_operation in the SET case. */
4515
4516 if (STORE_FLAG_VALUE == 1
4517 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4518 && op1 == const0_rtx
4519 && mode == GET_MODE (op0)
4520 && nonzero_bits (op0, mode) == 1)
4521 return gen_lowpart (mode,
4522 expand_compound_operation (op0));
4523
4524 else if (STORE_FLAG_VALUE == 1
4525 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4526 && op1 == const0_rtx
4527 && mode == GET_MODE (op0)
4528 && (num_sign_bit_copies (op0, mode)
4529 == GET_MODE_BITSIZE (mode)))
4530 {
4531 op0 = expand_compound_operation (op0);
4532 return simplify_gen_unary (NEG, mode,
4533 gen_lowpart (mode, op0),
4534 mode);
4535 }
4536
4537 else if (STORE_FLAG_VALUE == 1
4538 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4539 && op1 == const0_rtx
4540 && mode == GET_MODE (op0)
4541 && nonzero_bits (op0, mode) == 1)
4542 {
4543 op0 = expand_compound_operation (op0);
4544 return simplify_gen_binary (XOR, mode,
4545 gen_lowpart (mode, op0),
4546 const1_rtx);
4547 }
4548
4549 else if (STORE_FLAG_VALUE == 1
4550 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4551 && op1 == const0_rtx
4552 && mode == GET_MODE (op0)
4553 && (num_sign_bit_copies (op0, mode)
4554 == GET_MODE_BITSIZE (mode)))
4555 {
4556 op0 = expand_compound_operation (op0);
4557 return plus_constant (gen_lowpart (mode, op0), 1);
4558 }
4559
4560 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4561 those above. */
4562 if (STORE_FLAG_VALUE == -1
4563 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4564 && op1 == const0_rtx
4565 && (num_sign_bit_copies (op0, mode)
4566 == GET_MODE_BITSIZE (mode)))
4567 return gen_lowpart (mode,
4568 expand_compound_operation (op0));
4569
4570 else if (STORE_FLAG_VALUE == -1
4571 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4572 && op1 == const0_rtx
4573 && mode == GET_MODE (op0)
4574 && nonzero_bits (op0, mode) == 1)
4575 {
4576 op0 = expand_compound_operation (op0);
4577 return simplify_gen_unary (NEG, mode,
4578 gen_lowpart (mode, op0),
4579 mode);
4580 }
4581
4582 else if (STORE_FLAG_VALUE == -1
4583 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4584 && op1 == const0_rtx
4585 && mode == GET_MODE (op0)
4586 && (num_sign_bit_copies (op0, mode)
4587 == GET_MODE_BITSIZE (mode)))
4588 {
4589 op0 = expand_compound_operation (op0);
4590 return simplify_gen_unary (NOT, mode,
4591 gen_lowpart (mode, op0),
4592 mode);
4593 }
4594
4595 /* If X is 0/1, (eq X 0) is X-1. */
4596 else if (STORE_FLAG_VALUE == -1
4597 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4598 && op1 == const0_rtx
4599 && mode == GET_MODE (op0)
4600 && nonzero_bits (op0, mode) == 1)
4601 {
4602 op0 = expand_compound_operation (op0);
4603 return plus_constant (gen_lowpart (mode, op0), -1);
4604 }
4605
4606 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4607 one bit that might be nonzero, we can convert (ne x 0) to
4608 (ashift x c) where C puts the bit in the sign bit. Remove any
4609 AND with STORE_FLAG_VALUE when we are done, since we are only
4610 going to test the sign bit. */
4611 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4612 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4613 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4614 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4615 && op1 == const0_rtx
4616 && mode == GET_MODE (op0)
4617 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4618 {
4619 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4620 expand_compound_operation (op0),
4621 GET_MODE_BITSIZE (mode) - 1 - i);
4622 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4623 return XEXP (x, 0);
4624 else
4625 return x;
4626 }
4627
4628 /* If the code changed, return a whole new comparison. */
4629 if (new_code != code)
4630 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4631
4632 /* Otherwise, keep this operation, but maybe change its operands.
4633 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4634 SUBST (XEXP (x, 0), op0);
4635 SUBST (XEXP (x, 1), op1);
4636 }
4637 break;
4638
4639 case IF_THEN_ELSE:
4640 return simplify_if_then_else (x);
4641
4642 case ZERO_EXTRACT:
4643 case SIGN_EXTRACT:
4644 case ZERO_EXTEND:
4645 case SIGN_EXTEND:
4646 /* If we are processing SET_DEST, we are done. */
4647 if (in_dest)
4648 return x;
4649
4650 return expand_compound_operation (x);
4651
4652 case SET:
4653 return simplify_set (x);
4654
4655 case AND:
4656 case IOR:
4657 case XOR:
4658 return simplify_logical (x);
4659
4660 case ABS:
4661 /* (abs (neg <foo>)) -> (abs <foo>) */
4662 if (GET_CODE (XEXP (x, 0)) == NEG)
4663 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4664
4665 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4666 do nothing. */
4667 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4668 break;
4669
4670 /* If operand is something known to be positive, ignore the ABS. */
4671 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4672 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4673 <= HOST_BITS_PER_WIDE_INT)
4674 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4675 & ((HOST_WIDE_INT) 1
4676 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4677 == 0)))
4678 return XEXP (x, 0);
4679
4680 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4681 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4682 return gen_rtx_NEG (mode, XEXP (x, 0));
4683
4684 break;
4685
4686 case FFS:
4687 /* (ffs (*_extend <X>)) = (ffs <X>) */
4688 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4689 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4690 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4691 break;
4692
4693 case POPCOUNT:
4694 case PARITY:
4695 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4696 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4697 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4698 break;
4699
4700 case FLOAT:
4701 /* (float (sign_extend <X>)) = (float <X>). */
4702 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4703 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4704 break;
4705
4706 case ASHIFT:
4707 case LSHIFTRT:
4708 case ASHIFTRT:
4709 case ROTATE:
4710 case ROTATERT:
4711 /* If this is a shift by a constant amount, simplify it. */
4712 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4713 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4714 INTVAL (XEXP (x, 1)));
4715
4716 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4717 SUBST (XEXP (x, 1),
4718 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4719 ((HOST_WIDE_INT) 1
4720 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4721 - 1,
4722 NULL_RTX, 0));
4723 break;
4724
4725 case VEC_SELECT:
4726 {
4727 rtx op0 = XEXP (x, 0);
4728 rtx op1 = XEXP (x, 1);
4729 int len;
4730
4731 gcc_assert (GET_CODE (op1) == PARALLEL);
4732 len = XVECLEN (op1, 0);
4733 if (len == 1
4734 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4735 && GET_CODE (op0) == VEC_CONCAT)
4736 {
4737 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4738
4739 /* Try to find the element in the VEC_CONCAT. */
4740 for (;;)
4741 {
4742 if (GET_MODE (op0) == GET_MODE (x))
4743 return op0;
4744 if (GET_CODE (op0) == VEC_CONCAT)
4745 {
4746 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4747 if (offset < op0_size)
4748 op0 = XEXP (op0, 0);
4749 else
4750 {
4751 offset -= op0_size;
4752 op0 = XEXP (op0, 1);
4753 }
4754 }
4755 else
4756 break;
4757 }
4758 }
4759 }
4760
4761 break;
4762
4763 default:
4764 break;
4765 }
4766
4767 return x;
4768 }
4769 \f
4770 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4771
4772 static rtx
4773 simplify_if_then_else (rtx x)
4774 {
4775 enum machine_mode mode = GET_MODE (x);
4776 rtx cond = XEXP (x, 0);
4777 rtx true_rtx = XEXP (x, 1);
4778 rtx false_rtx = XEXP (x, 2);
4779 enum rtx_code true_code = GET_CODE (cond);
4780 int comparison_p = COMPARISON_P (cond);
4781 rtx temp;
4782 int i;
4783 enum rtx_code false_code;
4784 rtx reversed;
4785
4786 /* Simplify storing of the truth value. */
4787 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4788 return simplify_gen_relational (true_code, mode, VOIDmode,
4789 XEXP (cond, 0), XEXP (cond, 1));
4790
4791 /* Also when the truth value has to be reversed. */
4792 if (comparison_p
4793 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4794 && (reversed = reversed_comparison (cond, mode)))
4795 return reversed;
4796
4797 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4798 in it is being compared against certain values. Get the true and false
4799 comparisons and see if that says anything about the value of each arm. */
4800
4801 if (comparison_p
4802 && ((false_code = reversed_comparison_code (cond, NULL))
4803 != UNKNOWN)
4804 && REG_P (XEXP (cond, 0)))
4805 {
4806 HOST_WIDE_INT nzb;
4807 rtx from = XEXP (cond, 0);
4808 rtx true_val = XEXP (cond, 1);
4809 rtx false_val = true_val;
4810 int swapped = 0;
4811
4812 /* If FALSE_CODE is EQ, swap the codes and arms. */
4813
4814 if (false_code == EQ)
4815 {
4816 swapped = 1, true_code = EQ, false_code = NE;
4817 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4818 }
4819
4820 /* If we are comparing against zero and the expression being tested has
4821 only a single bit that might be nonzero, that is its value when it is
4822 not equal to zero. Similarly if it is known to be -1 or 0. */
4823
4824 if (true_code == EQ && true_val == const0_rtx
4825 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4826 false_code = EQ, false_val = GEN_INT (nzb);
4827 else if (true_code == EQ && true_val == const0_rtx
4828 && (num_sign_bit_copies (from, GET_MODE (from))
4829 == GET_MODE_BITSIZE (GET_MODE (from))))
4830 false_code = EQ, false_val = constm1_rtx;
4831
4832 /* Now simplify an arm if we know the value of the register in the
4833 branch and it is used in the arm. Be careful due to the potential
4834 of locally-shared RTL. */
4835
4836 if (reg_mentioned_p (from, true_rtx))
4837 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4838 from, true_val),
4839 pc_rtx, pc_rtx, 0, 0);
4840 if (reg_mentioned_p (from, false_rtx))
4841 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4842 from, false_val),
4843 pc_rtx, pc_rtx, 0, 0);
4844
4845 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4846 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4847
4848 true_rtx = XEXP (x, 1);
4849 false_rtx = XEXP (x, 2);
4850 true_code = GET_CODE (cond);
4851 }
4852
4853 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4854 reversed, do so to avoid needing two sets of patterns for
4855 subtract-and-branch insns. Similarly if we have a constant in the true
4856 arm, the false arm is the same as the first operand of the comparison, or
4857 the false arm is more complicated than the true arm. */
4858
4859 if (comparison_p
4860 && reversed_comparison_code (cond, NULL) != UNKNOWN
4861 && (true_rtx == pc_rtx
4862 || (CONSTANT_P (true_rtx)
4863 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4864 || true_rtx == const0_rtx
4865 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4866 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4867 && !OBJECT_P (false_rtx))
4868 || reg_mentioned_p (true_rtx, false_rtx)
4869 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4870 {
4871 true_code = reversed_comparison_code (cond, NULL);
4872 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4873 SUBST (XEXP (x, 1), false_rtx);
4874 SUBST (XEXP (x, 2), true_rtx);
4875
4876 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4877 cond = XEXP (x, 0);
4878
4879 /* It is possible that the conditional has been simplified out. */
4880 true_code = GET_CODE (cond);
4881 comparison_p = COMPARISON_P (cond);
4882 }
4883
4884 /* If the two arms are identical, we don't need the comparison. */
4885
4886 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4887 return true_rtx;
4888
4889 /* Convert a == b ? b : a to "a". */
4890 if (true_code == EQ && ! side_effects_p (cond)
4891 && !HONOR_NANS (mode)
4892 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4893 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4894 return false_rtx;
4895 else if (true_code == NE && ! side_effects_p (cond)
4896 && !HONOR_NANS (mode)
4897 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4898 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4899 return true_rtx;
4900
4901 /* Look for cases where we have (abs x) or (neg (abs X)). */
4902
4903 if (GET_MODE_CLASS (mode) == MODE_INT
4904 && GET_CODE (false_rtx) == NEG
4905 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4906 && comparison_p
4907 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4908 && ! side_effects_p (true_rtx))
4909 switch (true_code)
4910 {
4911 case GT:
4912 case GE:
4913 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4914 case LT:
4915 case LE:
4916 return
4917 simplify_gen_unary (NEG, mode,
4918 simplify_gen_unary (ABS, mode, true_rtx, mode),
4919 mode);
4920 default:
4921 break;
4922 }
4923
4924 /* Look for MIN or MAX. */
4925
4926 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4927 && comparison_p
4928 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4929 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4930 && ! side_effects_p (cond))
4931 switch (true_code)
4932 {
4933 case GE:
4934 case GT:
4935 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4936 case LE:
4937 case LT:
4938 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4939 case GEU:
4940 case GTU:
4941 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4942 case LEU:
4943 case LTU:
4944 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4945 default:
4946 break;
4947 }
4948
4949 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4950 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4951 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4952 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4953 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4954 neither 1 or -1, but it isn't worth checking for. */
4955
4956 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4957 && comparison_p
4958 && GET_MODE_CLASS (mode) == MODE_INT
4959 && ! side_effects_p (x))
4960 {
4961 rtx t = make_compound_operation (true_rtx, SET);
4962 rtx f = make_compound_operation (false_rtx, SET);
4963 rtx cond_op0 = XEXP (cond, 0);
4964 rtx cond_op1 = XEXP (cond, 1);
4965 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4966 enum machine_mode m = mode;
4967 rtx z = 0, c1 = NULL_RTX;
4968
4969 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4970 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4971 || GET_CODE (t) == ASHIFT
4972 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4973 && rtx_equal_p (XEXP (t, 0), f))
4974 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4975
4976 /* If an identity-zero op is commutative, check whether there
4977 would be a match if we swapped the operands. */
4978 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4979 || GET_CODE (t) == XOR)
4980 && rtx_equal_p (XEXP (t, 1), f))
4981 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4982 else if (GET_CODE (t) == SIGN_EXTEND
4983 && (GET_CODE (XEXP (t, 0)) == PLUS
4984 || GET_CODE (XEXP (t, 0)) == MINUS
4985 || GET_CODE (XEXP (t, 0)) == IOR
4986 || GET_CODE (XEXP (t, 0)) == XOR
4987 || GET_CODE (XEXP (t, 0)) == ASHIFT
4988 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4989 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4990 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4991 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4992 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4993 && (num_sign_bit_copies (f, GET_MODE (f))
4994 > (unsigned int)
4995 (GET_MODE_BITSIZE (mode)
4996 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4997 {
4998 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4999 extend_op = SIGN_EXTEND;
5000 m = GET_MODE (XEXP (t, 0));
5001 }
5002 else if (GET_CODE (t) == SIGN_EXTEND
5003 && (GET_CODE (XEXP (t, 0)) == PLUS
5004 || GET_CODE (XEXP (t, 0)) == IOR
5005 || GET_CODE (XEXP (t, 0)) == XOR)
5006 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5007 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5008 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5009 && (num_sign_bit_copies (f, GET_MODE (f))
5010 > (unsigned int)
5011 (GET_MODE_BITSIZE (mode)
5012 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5013 {
5014 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5015 extend_op = SIGN_EXTEND;
5016 m = GET_MODE (XEXP (t, 0));
5017 }
5018 else if (GET_CODE (t) == ZERO_EXTEND
5019 && (GET_CODE (XEXP (t, 0)) == PLUS
5020 || GET_CODE (XEXP (t, 0)) == MINUS
5021 || GET_CODE (XEXP (t, 0)) == IOR
5022 || GET_CODE (XEXP (t, 0)) == XOR
5023 || GET_CODE (XEXP (t, 0)) == ASHIFT
5024 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5025 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5026 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5027 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5028 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5029 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5030 && ((nonzero_bits (f, GET_MODE (f))
5031 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5032 == 0))
5033 {
5034 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5035 extend_op = ZERO_EXTEND;
5036 m = GET_MODE (XEXP (t, 0));
5037 }
5038 else if (GET_CODE (t) == ZERO_EXTEND
5039 && (GET_CODE (XEXP (t, 0)) == PLUS
5040 || GET_CODE (XEXP (t, 0)) == IOR
5041 || GET_CODE (XEXP (t, 0)) == XOR)
5042 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5043 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5044 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5045 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5046 && ((nonzero_bits (f, GET_MODE (f))
5047 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5048 == 0))
5049 {
5050 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5051 extend_op = ZERO_EXTEND;
5052 m = GET_MODE (XEXP (t, 0));
5053 }
5054
5055 if (z)
5056 {
5057 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5058 cond_op0, cond_op1),
5059 pc_rtx, pc_rtx, 0, 0);
5060 temp = simplify_gen_binary (MULT, m, temp,
5061 simplify_gen_binary (MULT, m, c1,
5062 const_true_rtx));
5063 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5064 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5065
5066 if (extend_op != UNKNOWN)
5067 temp = simplify_gen_unary (extend_op, mode, temp, m);
5068
5069 return temp;
5070 }
5071 }
5072
5073 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5074 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5075 negation of a single bit, we can convert this operation to a shift. We
5076 can actually do this more generally, but it doesn't seem worth it. */
5077
5078 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5079 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5080 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5081 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5082 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5083 == GET_MODE_BITSIZE (mode))
5084 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5085 return
5086 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5087 gen_lowpart (mode, XEXP (cond, 0)), i);
5088
5089 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5090 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5091 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5092 && GET_MODE (XEXP (cond, 0)) == mode
5093 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5094 == nonzero_bits (XEXP (cond, 0), mode)
5095 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5096 return XEXP (cond, 0);
5097
5098 return x;
5099 }
5100 \f
5101 /* Simplify X, a SET expression. Return the new expression. */
5102
5103 static rtx
5104 simplify_set (rtx x)
5105 {
5106 rtx src = SET_SRC (x);
5107 rtx dest = SET_DEST (x);
5108 enum machine_mode mode
5109 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5110 rtx other_insn;
5111 rtx *cc_use;
5112
5113 /* (set (pc) (return)) gets written as (return). */
5114 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5115 return src;
5116
5117 /* Now that we know for sure which bits of SRC we are using, see if we can
5118 simplify the expression for the object knowing that we only need the
5119 low-order bits. */
5120
5121 if (GET_MODE_CLASS (mode) == MODE_INT
5122 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5123 {
5124 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5125 SUBST (SET_SRC (x), src);
5126 }
5127
5128 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5129 the comparison result and try to simplify it unless we already have used
5130 undobuf.other_insn. */
5131 if ((GET_MODE_CLASS (mode) == MODE_CC
5132 || GET_CODE (src) == COMPARE
5133 || CC0_P (dest))
5134 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5135 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5136 && COMPARISON_P (*cc_use)
5137 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5138 {
5139 enum rtx_code old_code = GET_CODE (*cc_use);
5140 enum rtx_code new_code;
5141 rtx op0, op1, tmp;
5142 int other_changed = 0;
5143 enum machine_mode compare_mode = GET_MODE (dest);
5144
5145 if (GET_CODE (src) == COMPARE)
5146 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5147 else
5148 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5149
5150 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5151 op0, op1);
5152 if (!tmp)
5153 new_code = old_code;
5154 else if (!CONSTANT_P (tmp))
5155 {
5156 new_code = GET_CODE (tmp);
5157 op0 = XEXP (tmp, 0);
5158 op1 = XEXP (tmp, 1);
5159 }
5160 else
5161 {
5162 rtx pat = PATTERN (other_insn);
5163 undobuf.other_insn = other_insn;
5164 SUBST (*cc_use, tmp);
5165
5166 /* Attempt to simplify CC user. */
5167 if (GET_CODE (pat) == SET)
5168 {
5169 rtx new = simplify_rtx (SET_SRC (pat));
5170 if (new != NULL_RTX)
5171 SUBST (SET_SRC (pat), new);
5172 }
5173
5174 /* Convert X into a no-op move. */
5175 SUBST (SET_DEST (x), pc_rtx);
5176 SUBST (SET_SRC (x), pc_rtx);
5177 return x;
5178 }
5179
5180 /* Simplify our comparison, if possible. */
5181 new_code = simplify_comparison (new_code, &op0, &op1);
5182
5183 #ifdef SELECT_CC_MODE
5184 /* If this machine has CC modes other than CCmode, check to see if we
5185 need to use a different CC mode here. */
5186 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5187 compare_mode = GET_MODE (op0);
5188 else
5189 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5190
5191 #ifndef HAVE_cc0
5192 /* If the mode changed, we have to change SET_DEST, the mode in the
5193 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5194 a hard register, just build new versions with the proper mode. If it
5195 is a pseudo, we lose unless it is only time we set the pseudo, in
5196 which case we can safely change its mode. */
5197 if (compare_mode != GET_MODE (dest))
5198 {
5199 unsigned int regno = REGNO (dest);
5200 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5201
5202 if (regno < FIRST_PSEUDO_REGISTER
5203 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5204 {
5205 if (regno >= FIRST_PSEUDO_REGISTER)
5206 SUBST (regno_reg_rtx[regno], new_dest);
5207
5208 SUBST (SET_DEST (x), new_dest);
5209 SUBST (XEXP (*cc_use, 0), new_dest);
5210 other_changed = 1;
5211
5212 dest = new_dest;
5213 }
5214 }
5215 #endif /* cc0 */
5216 #endif /* SELECT_CC_MODE */
5217
5218 /* If the code changed, we have to build a new comparison in
5219 undobuf.other_insn. */
5220 if (new_code != old_code)
5221 {
5222 int other_changed_previously = other_changed;
5223 unsigned HOST_WIDE_INT mask;
5224
5225 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5226 dest, const0_rtx));
5227 other_changed = 1;
5228
5229 /* If the only change we made was to change an EQ into an NE or
5230 vice versa, OP0 has only one bit that might be nonzero, and OP1
5231 is zero, check if changing the user of the condition code will
5232 produce a valid insn. If it won't, we can keep the original code
5233 in that insn by surrounding our operation with an XOR. */
5234
5235 if (((old_code == NE && new_code == EQ)
5236 || (old_code == EQ && new_code == NE))
5237 && ! other_changed_previously && op1 == const0_rtx
5238 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5239 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5240 {
5241 rtx pat = PATTERN (other_insn), note = 0;
5242
5243 if ((recog_for_combine (&pat, other_insn, &note) < 0
5244 && ! check_asm_operands (pat)))
5245 {
5246 PUT_CODE (*cc_use, old_code);
5247 other_changed = 0;
5248
5249 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5250 op0, GEN_INT (mask));
5251 }
5252 }
5253 }
5254
5255 if (other_changed)
5256 undobuf.other_insn = other_insn;
5257
5258 #ifdef HAVE_cc0
5259 /* If we are now comparing against zero, change our source if
5260 needed. If we do not use cc0, we always have a COMPARE. */
5261 if (op1 == const0_rtx && dest == cc0_rtx)
5262 {
5263 SUBST (SET_SRC (x), op0);
5264 src = op0;
5265 }
5266 else
5267 #endif
5268
5269 /* Otherwise, if we didn't previously have a COMPARE in the
5270 correct mode, we need one. */
5271 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5272 {
5273 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5274 src = SET_SRC (x);
5275 }
5276 else
5277 {
5278 /* Otherwise, update the COMPARE if needed. */
5279 SUBST (XEXP (src, 0), op0);
5280 SUBST (XEXP (src, 1), op1);
5281 }
5282 }
5283 else
5284 {
5285 /* Get SET_SRC in a form where we have placed back any
5286 compound expressions. Then do the checks below. */
5287 src = make_compound_operation (src, SET);
5288 SUBST (SET_SRC (x), src);
5289 }
5290
5291 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5292 and X being a REG or (subreg (reg)), we may be able to convert this to
5293 (set (subreg:m2 x) (op)).
5294
5295 We can always do this if M1 is narrower than M2 because that means that
5296 we only care about the low bits of the result.
5297
5298 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5299 perform a narrower operation than requested since the high-order bits will
5300 be undefined. On machine where it is defined, this transformation is safe
5301 as long as M1 and M2 have the same number of words. */
5302
5303 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5304 && !OBJECT_P (SUBREG_REG (src))
5305 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5306 / UNITS_PER_WORD)
5307 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5308 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5309 #ifndef WORD_REGISTER_OPERATIONS
5310 && (GET_MODE_SIZE (GET_MODE (src))
5311 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5312 #endif
5313 #ifdef CANNOT_CHANGE_MODE_CLASS
5314 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5315 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5316 GET_MODE (SUBREG_REG (src)),
5317 GET_MODE (src)))
5318 #endif
5319 && (REG_P (dest)
5320 || (GET_CODE (dest) == SUBREG
5321 && REG_P (SUBREG_REG (dest)))))
5322 {
5323 SUBST (SET_DEST (x),
5324 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5325 dest));
5326 SUBST (SET_SRC (x), SUBREG_REG (src));
5327
5328 src = SET_SRC (x), dest = SET_DEST (x);
5329 }
5330
5331 #ifdef HAVE_cc0
5332 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5333 in SRC. */
5334 if (dest == cc0_rtx
5335 && GET_CODE (src) == SUBREG
5336 && subreg_lowpart_p (src)
5337 && (GET_MODE_BITSIZE (GET_MODE (src))
5338 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5339 {
5340 rtx inner = SUBREG_REG (src);
5341 enum machine_mode inner_mode = GET_MODE (inner);
5342
5343 /* Here we make sure that we don't have a sign bit on. */
5344 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5345 && (nonzero_bits (inner, inner_mode)
5346 < ((unsigned HOST_WIDE_INT) 1
5347 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5348 {
5349 SUBST (SET_SRC (x), inner);
5350 src = SET_SRC (x);
5351 }
5352 }
5353 #endif
5354
5355 #ifdef LOAD_EXTEND_OP
5356 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5357 would require a paradoxical subreg. Replace the subreg with a
5358 zero_extend to avoid the reload that would otherwise be required. */
5359
5360 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5361 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5362 && SUBREG_BYTE (src) == 0
5363 && (GET_MODE_SIZE (GET_MODE (src))
5364 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5365 && MEM_P (SUBREG_REG (src)))
5366 {
5367 SUBST (SET_SRC (x),
5368 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5369 GET_MODE (src), SUBREG_REG (src)));
5370
5371 src = SET_SRC (x);
5372 }
5373 #endif
5374
5375 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5376 are comparing an item known to be 0 or -1 against 0, use a logical
5377 operation instead. Check for one of the arms being an IOR of the other
5378 arm with some value. We compute three terms to be IOR'ed together. In
5379 practice, at most two will be nonzero. Then we do the IOR's. */
5380
5381 if (GET_CODE (dest) != PC
5382 && GET_CODE (src) == IF_THEN_ELSE
5383 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5384 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5385 && XEXP (XEXP (src, 0), 1) == const0_rtx
5386 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5387 #ifdef HAVE_conditional_move
5388 && ! can_conditionally_move_p (GET_MODE (src))
5389 #endif
5390 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5391 GET_MODE (XEXP (XEXP (src, 0), 0)))
5392 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5393 && ! side_effects_p (src))
5394 {
5395 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5396 ? XEXP (src, 1) : XEXP (src, 2));
5397 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5398 ? XEXP (src, 2) : XEXP (src, 1));
5399 rtx term1 = const0_rtx, term2, term3;
5400
5401 if (GET_CODE (true_rtx) == IOR
5402 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5403 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5404 else if (GET_CODE (true_rtx) == IOR
5405 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5406 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5407 else if (GET_CODE (false_rtx) == IOR
5408 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5409 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5410 else if (GET_CODE (false_rtx) == IOR
5411 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5412 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5413
5414 term2 = simplify_gen_binary (AND, GET_MODE (src),
5415 XEXP (XEXP (src, 0), 0), true_rtx);
5416 term3 = simplify_gen_binary (AND, GET_MODE (src),
5417 simplify_gen_unary (NOT, GET_MODE (src),
5418 XEXP (XEXP (src, 0), 0),
5419 GET_MODE (src)),
5420 false_rtx);
5421
5422 SUBST (SET_SRC (x),
5423 simplify_gen_binary (IOR, GET_MODE (src),
5424 simplify_gen_binary (IOR, GET_MODE (src),
5425 term1, term2),
5426 term3));
5427
5428 src = SET_SRC (x);
5429 }
5430
5431 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5432 whole thing fail. */
5433 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5434 return src;
5435 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5436 return dest;
5437 else
5438 /* Convert this into a field assignment operation, if possible. */
5439 return make_field_assignment (x);
5440 }
5441 \f
5442 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5443 result. */
5444
5445 static rtx
5446 simplify_logical (rtx x)
5447 {
5448 enum machine_mode mode = GET_MODE (x);
5449 rtx op0 = XEXP (x, 0);
5450 rtx op1 = XEXP (x, 1);
5451 rtx reversed;
5452
5453 switch (GET_CODE (x))
5454 {
5455 case AND:
5456 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5457 insn (and may simplify more). */
5458 if (GET_CODE (op0) == XOR
5459 && rtx_equal_p (XEXP (op0, 0), op1)
5460 && ! side_effects_p (op1))
5461 x = simplify_gen_binary (AND, mode,
5462 simplify_gen_unary (NOT, mode,
5463 XEXP (op0, 1), mode),
5464 op1);
5465
5466 if (GET_CODE (op0) == XOR
5467 && rtx_equal_p (XEXP (op0, 1), op1)
5468 && ! side_effects_p (op1))
5469 x = simplify_gen_binary (AND, mode,
5470 simplify_gen_unary (NOT, mode,
5471 XEXP (op0, 0), mode),
5472 op1);
5473
5474 /* Similarly for (~(A ^ B)) & A. */
5475 if (GET_CODE (op0) == NOT
5476 && GET_CODE (XEXP (op0, 0)) == XOR
5477 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5478 && ! side_effects_p (op1))
5479 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5480
5481 if (GET_CODE (op0) == NOT
5482 && GET_CODE (XEXP (op0, 0)) == XOR
5483 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5484 && ! side_effects_p (op1))
5485 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5486
5487 /* We can call simplify_and_const_int only if we don't lose
5488 any (sign) bits when converting INTVAL (op1) to
5489 "unsigned HOST_WIDE_INT". */
5490 if (GET_CODE (op1) == CONST_INT
5491 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5492 || INTVAL (op1) > 0))
5493 {
5494 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5495
5496 /* If we have (ior (and (X C1) C2)) and the next restart would be
5497 the last, simplify this by making C1 as small as possible
5498 and then exit. Only do this if C1 actually changes: for now
5499 this only saves memory but, should this transformation be
5500 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5501 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5502 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5503 && GET_CODE (op1) == CONST_INT
5504 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5505 return simplify_gen_binary (IOR, mode,
5506 simplify_gen_binary
5507 (AND, mode, XEXP (op0, 0),
5508 GEN_INT (INTVAL (XEXP (op0, 1))
5509 & ~INTVAL (op1))), op1);
5510
5511 if (GET_CODE (x) != AND)
5512 return x;
5513
5514 op0 = XEXP (x, 0);
5515 op1 = XEXP (x, 1);
5516 }
5517
5518 /* Convert (A | B) & A to A. */
5519 if (GET_CODE (op0) == IOR
5520 && (rtx_equal_p (XEXP (op0, 0), op1)
5521 || rtx_equal_p (XEXP (op0, 1), op1))
5522 && ! side_effects_p (XEXP (op0, 0))
5523 && ! side_effects_p (XEXP (op0, 1)))
5524 return op1;
5525
5526 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5527 apply the distributive law and then the inverse distributive
5528 law to see if things simplify. */
5529 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5530 {
5531 rtx result = distribute_and_simplify_rtx (x, 0);
5532 if (result)
5533 return result;
5534 }
5535 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5536 {
5537 rtx result = distribute_and_simplify_rtx (x, 1);
5538 if (result)
5539 return result;
5540 }
5541 break;
5542
5543 case IOR:
5544 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5545 if (GET_CODE (op1) == CONST_INT
5546 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5547 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5548 return op1;
5549
5550 /* Convert (A & B) | A to A. */
5551 if (GET_CODE (op0) == AND
5552 && (rtx_equal_p (XEXP (op0, 0), op1)
5553 || rtx_equal_p (XEXP (op0, 1), op1))
5554 && ! side_effects_p (XEXP (op0, 0))
5555 && ! side_effects_p (XEXP (op0, 1)))
5556 return op1;
5557
5558 /* If we have (ior (and A B) C), apply the distributive law and then
5559 the inverse distributive law to see if things simplify. */
5560
5561 if (GET_CODE (op0) == AND)
5562 {
5563 rtx result = distribute_and_simplify_rtx (x, 0);
5564 if (result)
5565 return result;
5566 }
5567
5568 if (GET_CODE (op1) == AND)
5569 {
5570 rtx result = distribute_and_simplify_rtx (x, 1);
5571 if (result)
5572 return result;
5573 }
5574
5575 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5576 mode size to (rotate A CX). */
5577
5578 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5579 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5580 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5581 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5582 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5583 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5584 == GET_MODE_BITSIZE (mode)))
5585 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5586 (GET_CODE (op0) == ASHIFT
5587 ? XEXP (op0, 1) : XEXP (op1, 1)));
5588
5589 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5590 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5591 does not affect any of the bits in OP1, it can really be done
5592 as a PLUS and we can associate. We do this by seeing if OP1
5593 can be safely shifted left C bits. */
5594 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5595 && GET_CODE (XEXP (op0, 0)) == PLUS
5596 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5597 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5598 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5599 {
5600 int count = INTVAL (XEXP (op0, 1));
5601 HOST_WIDE_INT mask = INTVAL (op1) << count;
5602
5603 if (mask >> count == INTVAL (op1)
5604 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5605 {
5606 SUBST (XEXP (XEXP (op0, 0), 1),
5607 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5608 return op0;
5609 }
5610 }
5611 break;
5612
5613 case XOR:
5614 /* If we are XORing two things that have no bits in common,
5615 convert them into an IOR. This helps to detect rotation encoded
5616 using those methods and possibly other simplifications. */
5617
5618 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5619 && (nonzero_bits (op0, mode)
5620 & nonzero_bits (op1, mode)) == 0)
5621 return (simplify_gen_binary (IOR, mode, op0, op1));
5622
5623 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5624 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5625 (NOT y). */
5626 {
5627 int num_negated = 0;
5628
5629 if (GET_CODE (op0) == NOT)
5630 num_negated++, op0 = XEXP (op0, 0);
5631 if (GET_CODE (op1) == NOT)
5632 num_negated++, op1 = XEXP (op1, 0);
5633
5634 if (num_negated == 2)
5635 {
5636 SUBST (XEXP (x, 0), op0);
5637 SUBST (XEXP (x, 1), op1);
5638 }
5639 else if (num_negated == 1)
5640 return
5641 simplify_gen_unary (NOT, mode,
5642 simplify_gen_binary (XOR, mode, op0, op1),
5643 mode);
5644 }
5645
5646 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5647 correspond to a machine insn or result in further simplifications
5648 if B is a constant. */
5649
5650 if (GET_CODE (op0) == AND
5651 && rtx_equal_p (XEXP (op0, 1), op1)
5652 && ! side_effects_p (op1))
5653 return simplify_gen_binary (AND, mode,
5654 simplify_gen_unary (NOT, mode,
5655 XEXP (op0, 0), mode),
5656 op1);
5657
5658 else if (GET_CODE (op0) == AND
5659 && rtx_equal_p (XEXP (op0, 0), op1)
5660 && ! side_effects_p (op1))
5661 return simplify_gen_binary (AND, mode,
5662 simplify_gen_unary (NOT, mode,
5663 XEXP (op0, 1), mode),
5664 op1);
5665
5666 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5667 comparison if STORE_FLAG_VALUE is 1. */
5668 if (STORE_FLAG_VALUE == 1
5669 && op1 == const1_rtx
5670 && COMPARISON_P (op0)
5671 && (reversed = reversed_comparison (op0, mode)))
5672 return reversed;
5673
5674 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5675 is (lt foo (const_int 0)), so we can perform the above
5676 simplification if STORE_FLAG_VALUE is 1. */
5677
5678 if (STORE_FLAG_VALUE == 1
5679 && op1 == const1_rtx
5680 && GET_CODE (op0) == LSHIFTRT
5681 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5682 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5683 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5684
5685 /* (xor (comparison foo bar) (const_int sign-bit))
5686 when STORE_FLAG_VALUE is the sign bit. */
5687 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5688 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5689 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5690 && op1 == const_true_rtx
5691 && COMPARISON_P (op0)
5692 && (reversed = reversed_comparison (op0, mode)))
5693 return reversed;
5694
5695 break;
5696
5697 default:
5698 gcc_unreachable ();
5699 }
5700
5701 return x;
5702 }
5703 \f
5704 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5705 operations" because they can be replaced with two more basic operations.
5706 ZERO_EXTEND is also considered "compound" because it can be replaced with
5707 an AND operation, which is simpler, though only one operation.
5708
5709 The function expand_compound_operation is called with an rtx expression
5710 and will convert it to the appropriate shifts and AND operations,
5711 simplifying at each stage.
5712
5713 The function make_compound_operation is called to convert an expression
5714 consisting of shifts and ANDs into the equivalent compound expression.
5715 It is the inverse of this function, loosely speaking. */
5716
5717 static rtx
5718 expand_compound_operation (rtx x)
5719 {
5720 unsigned HOST_WIDE_INT pos = 0, len;
5721 int unsignedp = 0;
5722 unsigned int modewidth;
5723 rtx tem;
5724
5725 switch (GET_CODE (x))
5726 {
5727 case ZERO_EXTEND:
5728 unsignedp = 1;
5729 case SIGN_EXTEND:
5730 /* We can't necessarily use a const_int for a multiword mode;
5731 it depends on implicitly extending the value.
5732 Since we don't know the right way to extend it,
5733 we can't tell whether the implicit way is right.
5734
5735 Even for a mode that is no wider than a const_int,
5736 we can't win, because we need to sign extend one of its bits through
5737 the rest of it, and we don't know which bit. */
5738 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5739 return x;
5740
5741 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5742 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5743 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5744 reloaded. If not for that, MEM's would very rarely be safe.
5745
5746 Reject MODEs bigger than a word, because we might not be able
5747 to reference a two-register group starting with an arbitrary register
5748 (and currently gen_lowpart might crash for a SUBREG). */
5749
5750 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5751 return x;
5752
5753 /* Reject MODEs that aren't scalar integers because turning vector
5754 or complex modes into shifts causes problems. */
5755
5756 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5757 return x;
5758
5759 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5760 /* If the inner object has VOIDmode (the only way this can happen
5761 is if it is an ASM_OPERANDS), we can't do anything since we don't
5762 know how much masking to do. */
5763 if (len == 0)
5764 return x;
5765
5766 break;
5767
5768 case ZERO_EXTRACT:
5769 unsignedp = 1;
5770
5771 /* ... fall through ... */
5772
5773 case SIGN_EXTRACT:
5774 /* If the operand is a CLOBBER, just return it. */
5775 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5776 return XEXP (x, 0);
5777
5778 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5779 || GET_CODE (XEXP (x, 2)) != CONST_INT
5780 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5781 return x;
5782
5783 /* Reject MODEs that aren't scalar integers because turning vector
5784 or complex modes into shifts causes problems. */
5785
5786 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5787 return x;
5788
5789 len = INTVAL (XEXP (x, 1));
5790 pos = INTVAL (XEXP (x, 2));
5791
5792 /* If this goes outside the object being extracted, replace the object
5793 with a (use (mem ...)) construct that only combine understands
5794 and is used only for this purpose. */
5795 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5796 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5797
5798 if (BITS_BIG_ENDIAN)
5799 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5800
5801 break;
5802
5803 default:
5804 return x;
5805 }
5806 /* Convert sign extension to zero extension, if we know that the high
5807 bit is not set, as this is easier to optimize. It will be converted
5808 back to cheaper alternative in make_extraction. */
5809 if (GET_CODE (x) == SIGN_EXTEND
5810 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5811 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5812 & ~(((unsigned HOST_WIDE_INT)
5813 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5814 >> 1))
5815 == 0)))
5816 {
5817 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5818 rtx temp2 = expand_compound_operation (temp);
5819
5820 /* Make sure this is a profitable operation. */
5821 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5822 return temp2;
5823 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5824 return temp;
5825 else
5826 return x;
5827 }
5828
5829 /* We can optimize some special cases of ZERO_EXTEND. */
5830 if (GET_CODE (x) == ZERO_EXTEND)
5831 {
5832 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5833 know that the last value didn't have any inappropriate bits
5834 set. */
5835 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5836 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5837 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5838 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5839 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5840 return XEXP (XEXP (x, 0), 0);
5841
5842 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5843 if (GET_CODE (XEXP (x, 0)) == SUBREG
5844 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5845 && subreg_lowpart_p (XEXP (x, 0))
5846 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5847 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5848 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5849 return SUBREG_REG (XEXP (x, 0));
5850
5851 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5852 is a comparison and STORE_FLAG_VALUE permits. This is like
5853 the first case, but it works even when GET_MODE (x) is larger
5854 than HOST_WIDE_INT. */
5855 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5856 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5857 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5858 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5859 <= HOST_BITS_PER_WIDE_INT)
5860 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5861 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5862 return XEXP (XEXP (x, 0), 0);
5863
5864 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5865 if (GET_CODE (XEXP (x, 0)) == SUBREG
5866 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5867 && subreg_lowpart_p (XEXP (x, 0))
5868 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5869 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5870 <= HOST_BITS_PER_WIDE_INT)
5871 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5872 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5873 return SUBREG_REG (XEXP (x, 0));
5874
5875 }
5876
5877 /* If we reach here, we want to return a pair of shifts. The inner
5878 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5879 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5880 logical depending on the value of UNSIGNEDP.
5881
5882 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5883 converted into an AND of a shift.
5884
5885 We must check for the case where the left shift would have a negative
5886 count. This can happen in a case like (x >> 31) & 255 on machines
5887 that can't shift by a constant. On those machines, we would first
5888 combine the shift with the AND to produce a variable-position
5889 extraction. Then the constant of 31 would be substituted in to produce
5890 a such a position. */
5891
5892 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5893 if (modewidth + len >= pos)
5894 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5895 GET_MODE (x),
5896 simplify_shift_const (NULL_RTX, ASHIFT,
5897 GET_MODE (x),
5898 XEXP (x, 0),
5899 modewidth - pos - len),
5900 modewidth - len);
5901
5902 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5903 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5904 simplify_shift_const (NULL_RTX, LSHIFTRT,
5905 GET_MODE (x),
5906 XEXP (x, 0), pos),
5907 ((HOST_WIDE_INT) 1 << len) - 1);
5908 else
5909 /* Any other cases we can't handle. */
5910 return x;
5911
5912 /* If we couldn't do this for some reason, return the original
5913 expression. */
5914 if (GET_CODE (tem) == CLOBBER)
5915 return x;
5916
5917 return tem;
5918 }
5919 \f
5920 /* X is a SET which contains an assignment of one object into
5921 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5922 or certain SUBREGS). If possible, convert it into a series of
5923 logical operations.
5924
5925 We half-heartedly support variable positions, but do not at all
5926 support variable lengths. */
5927
5928 static rtx
5929 expand_field_assignment (rtx x)
5930 {
5931 rtx inner;
5932 rtx pos; /* Always counts from low bit. */
5933 int len;
5934 rtx mask, cleared, masked;
5935 enum machine_mode compute_mode;
5936
5937 /* Loop until we find something we can't simplify. */
5938 while (1)
5939 {
5940 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5941 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5942 {
5943 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5944 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5945 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5946 }
5947 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5948 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5949 {
5950 inner = XEXP (SET_DEST (x), 0);
5951 len = INTVAL (XEXP (SET_DEST (x), 1));
5952 pos = XEXP (SET_DEST (x), 2);
5953
5954 /* If the position is constant and spans the width of INNER,
5955 surround INNER with a USE to indicate this. */
5956 if (GET_CODE (pos) == CONST_INT
5957 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5958 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5959
5960 if (BITS_BIG_ENDIAN)
5961 {
5962 if (GET_CODE (pos) == CONST_INT)
5963 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5964 - INTVAL (pos));
5965 else if (GET_CODE (pos) == MINUS
5966 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5967 && (INTVAL (XEXP (pos, 1))
5968 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5969 /* If position is ADJUST - X, new position is X. */
5970 pos = XEXP (pos, 0);
5971 else
5972 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5973 GEN_INT (GET_MODE_BITSIZE (
5974 GET_MODE (inner))
5975 - len),
5976 pos);
5977 }
5978 }
5979
5980 /* A SUBREG between two modes that occupy the same numbers of words
5981 can be done by moving the SUBREG to the source. */
5982 else if (GET_CODE (SET_DEST (x)) == SUBREG
5983 /* We need SUBREGs to compute nonzero_bits properly. */
5984 && nonzero_sign_valid
5985 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5986 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5987 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5988 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5989 {
5990 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5991 gen_lowpart
5992 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5993 SET_SRC (x)));
5994 continue;
5995 }
5996 else
5997 break;
5998
5999 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6000 inner = SUBREG_REG (inner);
6001
6002 compute_mode = GET_MODE (inner);
6003
6004 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6005 if (! SCALAR_INT_MODE_P (compute_mode))
6006 {
6007 enum machine_mode imode;
6008
6009 /* Don't do anything for vector or complex integral types. */
6010 if (! FLOAT_MODE_P (compute_mode))
6011 break;
6012
6013 /* Try to find an integral mode to pun with. */
6014 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6015 if (imode == BLKmode)
6016 break;
6017
6018 compute_mode = imode;
6019 inner = gen_lowpart (imode, inner);
6020 }
6021
6022 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6023 if (len >= HOST_BITS_PER_WIDE_INT)
6024 break;
6025
6026 /* Now compute the equivalent expression. Make a copy of INNER
6027 for the SET_DEST in case it is a MEM into which we will substitute;
6028 we don't want shared RTL in that case. */
6029 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6030 cleared = simplify_gen_binary (AND, compute_mode,
6031 simplify_gen_unary (NOT, compute_mode,
6032 simplify_gen_binary (ASHIFT,
6033 compute_mode,
6034 mask, pos),
6035 compute_mode),
6036 inner);
6037 masked = simplify_gen_binary (ASHIFT, compute_mode,
6038 simplify_gen_binary (
6039 AND, compute_mode,
6040 gen_lowpart (compute_mode, SET_SRC (x)),
6041 mask),
6042 pos);
6043
6044 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6045 simplify_gen_binary (IOR, compute_mode,
6046 cleared, masked));
6047 }
6048
6049 return x;
6050 }
6051 \f
6052 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6053 it is an RTX that represents a variable starting position; otherwise,
6054 POS is the (constant) starting bit position (counted from the LSB).
6055
6056 INNER may be a USE. This will occur when we started with a bitfield
6057 that went outside the boundary of the object in memory, which is
6058 allowed on most machines. To isolate this case, we produce a USE
6059 whose mode is wide enough and surround the MEM with it. The only
6060 code that understands the USE is this routine. If it is not removed,
6061 it will cause the resulting insn not to match.
6062
6063 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6064 signed reference.
6065
6066 IN_DEST is nonzero if this is a reference in the destination of a
6067 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6068 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6069 be used.
6070
6071 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6072 ZERO_EXTRACT should be built even for bits starting at bit 0.
6073
6074 MODE is the desired mode of the result (if IN_DEST == 0).
6075
6076 The result is an RTX for the extraction or NULL_RTX if the target
6077 can't handle it. */
6078
6079 static rtx
6080 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6081 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6082 int in_dest, int in_compare)
6083 {
6084 /* This mode describes the size of the storage area
6085 to fetch the overall value from. Within that, we
6086 ignore the POS lowest bits, etc. */
6087 enum machine_mode is_mode = GET_MODE (inner);
6088 enum machine_mode inner_mode;
6089 enum machine_mode wanted_inner_mode = byte_mode;
6090 enum machine_mode wanted_inner_reg_mode = word_mode;
6091 enum machine_mode pos_mode = word_mode;
6092 enum machine_mode extraction_mode = word_mode;
6093 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6094 int spans_byte = 0;
6095 rtx new = 0;
6096 rtx orig_pos_rtx = pos_rtx;
6097 HOST_WIDE_INT orig_pos;
6098
6099 /* Get some information about INNER and get the innermost object. */
6100 if (GET_CODE (inner) == USE)
6101 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6102 /* We don't need to adjust the position because we set up the USE
6103 to pretend that it was a full-word object. */
6104 spans_byte = 1, inner = XEXP (inner, 0);
6105 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6106 {
6107 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6108 consider just the QI as the memory to extract from.
6109 The subreg adds or removes high bits; its mode is
6110 irrelevant to the meaning of this extraction,
6111 since POS and LEN count from the lsb. */
6112 if (MEM_P (SUBREG_REG (inner)))
6113 is_mode = GET_MODE (SUBREG_REG (inner));
6114 inner = SUBREG_REG (inner);
6115 }
6116 else if (GET_CODE (inner) == ASHIFT
6117 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6118 && pos_rtx == 0 && pos == 0
6119 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6120 {
6121 /* We're extracting the least significant bits of an rtx
6122 (ashift X (const_int C)), where LEN > C. Extract the
6123 least significant (LEN - C) bits of X, giving an rtx
6124 whose mode is MODE, then shift it left C times. */
6125 new = make_extraction (mode, XEXP (inner, 0),
6126 0, 0, len - INTVAL (XEXP (inner, 1)),
6127 unsignedp, in_dest, in_compare);
6128 if (new != 0)
6129 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6130 }
6131
6132 inner_mode = GET_MODE (inner);
6133
6134 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6135 pos = INTVAL (pos_rtx), pos_rtx = 0;
6136
6137 /* See if this can be done without an extraction. We never can if the
6138 width of the field is not the same as that of some integer mode. For
6139 registers, we can only avoid the extraction if the position is at the
6140 low-order bit and this is either not in the destination or we have the
6141 appropriate STRICT_LOW_PART operation available.
6142
6143 For MEM, we can avoid an extract if the field starts on an appropriate
6144 boundary and we can change the mode of the memory reference. However,
6145 we cannot directly access the MEM if we have a USE and the underlying
6146 MEM is not TMODE. This combination means that MEM was being used in a
6147 context where bits outside its mode were being referenced; that is only
6148 valid in bit-field insns. */
6149
6150 if (tmode != BLKmode
6151 && ! (spans_byte && inner_mode != tmode)
6152 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6153 && !MEM_P (inner)
6154 && (! in_dest
6155 || (REG_P (inner)
6156 && have_insn_for (STRICT_LOW_PART, tmode))))
6157 || (MEM_P (inner) && pos_rtx == 0
6158 && (pos
6159 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6160 : BITS_PER_UNIT)) == 0
6161 /* We can't do this if we are widening INNER_MODE (it
6162 may not be aligned, for one thing). */
6163 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6164 && (inner_mode == tmode
6165 || (! mode_dependent_address_p (XEXP (inner, 0))
6166 && ! MEM_VOLATILE_P (inner))))))
6167 {
6168 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6169 field. If the original and current mode are the same, we need not
6170 adjust the offset. Otherwise, we do if bytes big endian.
6171
6172 If INNER is not a MEM, get a piece consisting of just the field
6173 of interest (in this case POS % BITS_PER_WORD must be 0). */
6174
6175 if (MEM_P (inner))
6176 {
6177 HOST_WIDE_INT offset;
6178
6179 /* POS counts from lsb, but make OFFSET count in memory order. */
6180 if (BYTES_BIG_ENDIAN)
6181 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6182 else
6183 offset = pos / BITS_PER_UNIT;
6184
6185 new = adjust_address_nv (inner, tmode, offset);
6186 }
6187 else if (REG_P (inner))
6188 {
6189 if (tmode != inner_mode)
6190 {
6191 /* We can't call gen_lowpart in a DEST since we
6192 always want a SUBREG (see below) and it would sometimes
6193 return a new hard register. */
6194 if (pos || in_dest)
6195 {
6196 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6197
6198 if (WORDS_BIG_ENDIAN
6199 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6200 final_word = ((GET_MODE_SIZE (inner_mode)
6201 - GET_MODE_SIZE (tmode))
6202 / UNITS_PER_WORD) - final_word;
6203
6204 final_word *= UNITS_PER_WORD;
6205 if (BYTES_BIG_ENDIAN &&
6206 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6207 final_word += (GET_MODE_SIZE (inner_mode)
6208 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6209
6210 /* Avoid creating invalid subregs, for example when
6211 simplifying (x>>32)&255. */
6212 if (final_word >= GET_MODE_SIZE (inner_mode))
6213 return NULL_RTX;
6214
6215 new = gen_rtx_SUBREG (tmode, inner, final_word);
6216 }
6217 else
6218 new = gen_lowpart (tmode, inner);
6219 }
6220 else
6221 new = inner;
6222 }
6223 else
6224 new = force_to_mode (inner, tmode,
6225 len >= HOST_BITS_PER_WIDE_INT
6226 ? ~(unsigned HOST_WIDE_INT) 0
6227 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6228 NULL_RTX, 0);
6229
6230 /* If this extraction is going into the destination of a SET,
6231 make a STRICT_LOW_PART unless we made a MEM. */
6232
6233 if (in_dest)
6234 return (MEM_P (new) ? new
6235 : (GET_CODE (new) != SUBREG
6236 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6237 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6238
6239 if (mode == tmode)
6240 return new;
6241
6242 if (GET_CODE (new) == CONST_INT)
6243 return gen_int_mode (INTVAL (new), mode);
6244
6245 /* If we know that no extraneous bits are set, and that the high
6246 bit is not set, convert the extraction to the cheaper of
6247 sign and zero extension, that are equivalent in these cases. */
6248 if (flag_expensive_optimizations
6249 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6250 && ((nonzero_bits (new, tmode)
6251 & ~(((unsigned HOST_WIDE_INT)
6252 GET_MODE_MASK (tmode))
6253 >> 1))
6254 == 0)))
6255 {
6256 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6257 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6258
6259 /* Prefer ZERO_EXTENSION, since it gives more information to
6260 backends. */
6261 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6262 return temp;
6263 return temp1;
6264 }
6265
6266 /* Otherwise, sign- or zero-extend unless we already are in the
6267 proper mode. */
6268
6269 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6270 mode, new));
6271 }
6272
6273 /* Unless this is a COMPARE or we have a funny memory reference,
6274 don't do anything with zero-extending field extracts starting at
6275 the low-order bit since they are simple AND operations. */
6276 if (pos_rtx == 0 && pos == 0 && ! in_dest
6277 && ! in_compare && ! spans_byte && unsignedp)
6278 return 0;
6279
6280 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6281 we would be spanning bytes or if the position is not a constant and the
6282 length is not 1. In all other cases, we would only be going outside
6283 our object in cases when an original shift would have been
6284 undefined. */
6285 if (! spans_byte && MEM_P (inner)
6286 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6287 || (pos_rtx != 0 && len != 1)))
6288 return 0;
6289
6290 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6291 and the mode for the result. */
6292 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6293 {
6294 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6295 pos_mode = mode_for_extraction (EP_insv, 2);
6296 extraction_mode = mode_for_extraction (EP_insv, 3);
6297 }
6298
6299 if (! in_dest && unsignedp
6300 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6301 {
6302 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6303 pos_mode = mode_for_extraction (EP_extzv, 3);
6304 extraction_mode = mode_for_extraction (EP_extzv, 0);
6305 }
6306
6307 if (! in_dest && ! unsignedp
6308 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6309 {
6310 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6311 pos_mode = mode_for_extraction (EP_extv, 3);
6312 extraction_mode = mode_for_extraction (EP_extv, 0);
6313 }
6314
6315 /* Never narrow an object, since that might not be safe. */
6316
6317 if (mode != VOIDmode
6318 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6319 extraction_mode = mode;
6320
6321 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6322 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6323 pos_mode = GET_MODE (pos_rtx);
6324
6325 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6326 if we have to change the mode of memory and cannot, the desired mode is
6327 EXTRACTION_MODE. */
6328 if (!MEM_P (inner))
6329 wanted_inner_mode = wanted_inner_reg_mode;
6330 else if (inner_mode != wanted_inner_mode
6331 && (mode_dependent_address_p (XEXP (inner, 0))
6332 || MEM_VOLATILE_P (inner)))
6333 wanted_inner_mode = extraction_mode;
6334
6335 orig_pos = pos;
6336
6337 if (BITS_BIG_ENDIAN)
6338 {
6339 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6340 BITS_BIG_ENDIAN style. If position is constant, compute new
6341 position. Otherwise, build subtraction.
6342 Note that POS is relative to the mode of the original argument.
6343 If it's a MEM we need to recompute POS relative to that.
6344 However, if we're extracting from (or inserting into) a register,
6345 we want to recompute POS relative to wanted_inner_mode. */
6346 int width = (MEM_P (inner)
6347 ? GET_MODE_BITSIZE (is_mode)
6348 : GET_MODE_BITSIZE (wanted_inner_mode));
6349
6350 if (pos_rtx == 0)
6351 pos = width - len - pos;
6352 else
6353 pos_rtx
6354 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6355 /* POS may be less than 0 now, but we check for that below.
6356 Note that it can only be less than 0 if !MEM_P (inner). */
6357 }
6358
6359 /* If INNER has a wider mode, make it smaller. If this is a constant
6360 extract, try to adjust the byte to point to the byte containing
6361 the value. */
6362 if (wanted_inner_mode != VOIDmode
6363 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6364 && ((MEM_P (inner)
6365 && (inner_mode == wanted_inner_mode
6366 || (! mode_dependent_address_p (XEXP (inner, 0))
6367 && ! MEM_VOLATILE_P (inner))))))
6368 {
6369 int offset = 0;
6370
6371 /* The computations below will be correct if the machine is big
6372 endian in both bits and bytes or little endian in bits and bytes.
6373 If it is mixed, we must adjust. */
6374
6375 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6376 adjust OFFSET to compensate. */
6377 if (BYTES_BIG_ENDIAN
6378 && ! spans_byte
6379 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6380 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6381
6382 /* If this is a constant position, we can move to the desired byte. */
6383 if (pos_rtx == 0)
6384 {
6385 offset += pos / BITS_PER_UNIT;
6386 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6387 }
6388
6389 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6390 && ! spans_byte
6391 && is_mode != wanted_inner_mode)
6392 offset = (GET_MODE_SIZE (is_mode)
6393 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6394
6395 if (offset != 0 || inner_mode != wanted_inner_mode)
6396 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6397 }
6398
6399 /* If INNER is not memory, we can always get it into the proper mode. If we
6400 are changing its mode, POS must be a constant and smaller than the size
6401 of the new mode. */
6402 else if (!MEM_P (inner))
6403 {
6404 if (GET_MODE (inner) != wanted_inner_mode
6405 && (pos_rtx != 0
6406 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6407 return 0;
6408
6409 inner = force_to_mode (inner, wanted_inner_mode,
6410 pos_rtx
6411 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6412 ? ~(unsigned HOST_WIDE_INT) 0
6413 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6414 << orig_pos),
6415 NULL_RTX, 0);
6416 }
6417
6418 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6419 have to zero extend. Otherwise, we can just use a SUBREG. */
6420 if (pos_rtx != 0
6421 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6422 {
6423 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6424
6425 /* If we know that no extraneous bits are set, and that the high
6426 bit is not set, convert extraction to cheaper one - either
6427 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6428 cases. */
6429 if (flag_expensive_optimizations
6430 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6431 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6432 & ~(((unsigned HOST_WIDE_INT)
6433 GET_MODE_MASK (GET_MODE (pos_rtx)))
6434 >> 1))
6435 == 0)))
6436 {
6437 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6438
6439 /* Prefer ZERO_EXTENSION, since it gives more information to
6440 backends. */
6441 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6442 temp = temp1;
6443 }
6444 pos_rtx = temp;
6445 }
6446 else if (pos_rtx != 0
6447 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6448 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6449
6450 /* Make POS_RTX unless we already have it and it is correct. If we don't
6451 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6452 be a CONST_INT. */
6453 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6454 pos_rtx = orig_pos_rtx;
6455
6456 else if (pos_rtx == 0)
6457 pos_rtx = GEN_INT (pos);
6458
6459 /* Make the required operation. See if we can use existing rtx. */
6460 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6461 extraction_mode, inner, GEN_INT (len), pos_rtx);
6462 if (! in_dest)
6463 new = gen_lowpart (mode, new);
6464
6465 return new;
6466 }
6467 \f
6468 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6469 with any other operations in X. Return X without that shift if so. */
6470
6471 static rtx
6472 extract_left_shift (rtx x, int count)
6473 {
6474 enum rtx_code code = GET_CODE (x);
6475 enum machine_mode mode = GET_MODE (x);
6476 rtx tem;
6477
6478 switch (code)
6479 {
6480 case ASHIFT:
6481 /* This is the shift itself. If it is wide enough, we will return
6482 either the value being shifted if the shift count is equal to
6483 COUNT or a shift for the difference. */
6484 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6485 && INTVAL (XEXP (x, 1)) >= count)
6486 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6487 INTVAL (XEXP (x, 1)) - count);
6488 break;
6489
6490 case NEG: case NOT:
6491 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6492 return simplify_gen_unary (code, mode, tem, mode);
6493
6494 break;
6495
6496 case PLUS: case IOR: case XOR: case AND:
6497 /* If we can safely shift this constant and we find the inner shift,
6498 make a new operation. */
6499 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6500 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6501 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6502 return simplify_gen_binary (code, mode, tem,
6503 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6504
6505 break;
6506
6507 default:
6508 break;
6509 }
6510
6511 return 0;
6512 }
6513 \f
6514 /* Look at the expression rooted at X. Look for expressions
6515 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6516 Form these expressions.
6517
6518 Return the new rtx, usually just X.
6519
6520 Also, for machines like the VAX that don't have logical shift insns,
6521 try to convert logical to arithmetic shift operations in cases where
6522 they are equivalent. This undoes the canonicalizations to logical
6523 shifts done elsewhere.
6524
6525 We try, as much as possible, to re-use rtl expressions to save memory.
6526
6527 IN_CODE says what kind of expression we are processing. Normally, it is
6528 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6529 being kludges), it is MEM. When processing the arguments of a comparison
6530 or a COMPARE against zero, it is COMPARE. */
6531
6532 static rtx
6533 make_compound_operation (rtx x, enum rtx_code in_code)
6534 {
6535 enum rtx_code code = GET_CODE (x);
6536 enum machine_mode mode = GET_MODE (x);
6537 int mode_width = GET_MODE_BITSIZE (mode);
6538 rtx rhs, lhs;
6539 enum rtx_code next_code;
6540 int i;
6541 rtx new = 0;
6542 rtx tem;
6543 const char *fmt;
6544
6545 /* Select the code to be used in recursive calls. Once we are inside an
6546 address, we stay there. If we have a comparison, set to COMPARE,
6547 but once inside, go back to our default of SET. */
6548
6549 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6550 : ((code == COMPARE || COMPARISON_P (x))
6551 && XEXP (x, 1) == const0_rtx) ? COMPARE
6552 : in_code == COMPARE ? SET : in_code);
6553
6554 /* Process depending on the code of this operation. If NEW is set
6555 nonzero, it will be returned. */
6556
6557 switch (code)
6558 {
6559 case ASHIFT:
6560 /* Convert shifts by constants into multiplications if inside
6561 an address. */
6562 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6563 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6564 && INTVAL (XEXP (x, 1)) >= 0)
6565 {
6566 new = make_compound_operation (XEXP (x, 0), next_code);
6567 new = gen_rtx_MULT (mode, new,
6568 GEN_INT ((HOST_WIDE_INT) 1
6569 << INTVAL (XEXP (x, 1))));
6570 }
6571 break;
6572
6573 case AND:
6574 /* If the second operand is not a constant, we can't do anything
6575 with it. */
6576 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6577 break;
6578
6579 /* If the constant is a power of two minus one and the first operand
6580 is a logical right shift, make an extraction. */
6581 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6582 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6583 {
6584 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6585 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6586 0, in_code == COMPARE);
6587 }
6588
6589 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6590 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6591 && subreg_lowpart_p (XEXP (x, 0))
6592 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6593 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6594 {
6595 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6596 next_code);
6597 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6598 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6599 0, in_code == COMPARE);
6600 }
6601 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6602 else if ((GET_CODE (XEXP (x, 0)) == XOR
6603 || GET_CODE (XEXP (x, 0)) == IOR)
6604 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6605 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6606 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6607 {
6608 /* Apply the distributive law, and then try to make extractions. */
6609 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6610 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6611 XEXP (x, 1)),
6612 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6613 XEXP (x, 1)));
6614 new = make_compound_operation (new, in_code);
6615 }
6616
6617 /* If we are have (and (rotate X C) M) and C is larger than the number
6618 of bits in M, this is an extraction. */
6619
6620 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6621 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6622 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6623 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6624 {
6625 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6626 new = make_extraction (mode, new,
6627 (GET_MODE_BITSIZE (mode)
6628 - INTVAL (XEXP (XEXP (x, 0), 1))),
6629 NULL_RTX, i, 1, 0, in_code == COMPARE);
6630 }
6631
6632 /* On machines without logical shifts, if the operand of the AND is
6633 a logical shift and our mask turns off all the propagated sign
6634 bits, we can replace the logical shift with an arithmetic shift. */
6635 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6636 && !have_insn_for (LSHIFTRT, mode)
6637 && have_insn_for (ASHIFTRT, mode)
6638 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6639 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6640 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6641 && mode_width <= HOST_BITS_PER_WIDE_INT)
6642 {
6643 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6644
6645 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6646 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6647 SUBST (XEXP (x, 0),
6648 gen_rtx_ASHIFTRT (mode,
6649 make_compound_operation
6650 (XEXP (XEXP (x, 0), 0), next_code),
6651 XEXP (XEXP (x, 0), 1)));
6652 }
6653
6654 /* If the constant is one less than a power of two, this might be
6655 representable by an extraction even if no shift is present.
6656 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6657 we are in a COMPARE. */
6658 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6659 new = make_extraction (mode,
6660 make_compound_operation (XEXP (x, 0),
6661 next_code),
6662 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6663
6664 /* If we are in a comparison and this is an AND with a power of two,
6665 convert this into the appropriate bit extract. */
6666 else if (in_code == COMPARE
6667 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6668 new = make_extraction (mode,
6669 make_compound_operation (XEXP (x, 0),
6670 next_code),
6671 i, NULL_RTX, 1, 1, 0, 1);
6672
6673 break;
6674
6675 case LSHIFTRT:
6676 /* If the sign bit is known to be zero, replace this with an
6677 arithmetic shift. */
6678 if (have_insn_for (ASHIFTRT, mode)
6679 && ! have_insn_for (LSHIFTRT, mode)
6680 && mode_width <= HOST_BITS_PER_WIDE_INT
6681 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6682 {
6683 new = gen_rtx_ASHIFTRT (mode,
6684 make_compound_operation (XEXP (x, 0),
6685 next_code),
6686 XEXP (x, 1));
6687 break;
6688 }
6689
6690 /* ... fall through ... */
6691
6692 case ASHIFTRT:
6693 lhs = XEXP (x, 0);
6694 rhs = XEXP (x, 1);
6695
6696 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6697 this is a SIGN_EXTRACT. */
6698 if (GET_CODE (rhs) == CONST_INT
6699 && GET_CODE (lhs) == ASHIFT
6700 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6701 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6702 {
6703 new = make_compound_operation (XEXP (lhs, 0), next_code);
6704 new = make_extraction (mode, new,
6705 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6706 NULL_RTX, mode_width - INTVAL (rhs),
6707 code == LSHIFTRT, 0, in_code == COMPARE);
6708 break;
6709 }
6710
6711 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6712 If so, try to merge the shifts into a SIGN_EXTEND. We could
6713 also do this for some cases of SIGN_EXTRACT, but it doesn't
6714 seem worth the effort; the case checked for occurs on Alpha. */
6715
6716 if (!OBJECT_P (lhs)
6717 && ! (GET_CODE (lhs) == SUBREG
6718 && (OBJECT_P (SUBREG_REG (lhs))))
6719 && GET_CODE (rhs) == CONST_INT
6720 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6721 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6722 new = make_extraction (mode, make_compound_operation (new, next_code),
6723 0, NULL_RTX, mode_width - INTVAL (rhs),
6724 code == LSHIFTRT, 0, in_code == COMPARE);
6725
6726 break;
6727
6728 case SUBREG:
6729 /* Call ourselves recursively on the inner expression. If we are
6730 narrowing the object and it has a different RTL code from
6731 what it originally did, do this SUBREG as a force_to_mode. */
6732
6733 tem = make_compound_operation (SUBREG_REG (x), in_code);
6734 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6735 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6736 && subreg_lowpart_p (x))
6737 {
6738 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6739 NULL_RTX, 0);
6740
6741 /* If we have something other than a SUBREG, we might have
6742 done an expansion, so rerun ourselves. */
6743 if (GET_CODE (newer) != SUBREG)
6744 newer = make_compound_operation (newer, in_code);
6745
6746 return newer;
6747 }
6748
6749 /* If this is a paradoxical subreg, and the new code is a sign or
6750 zero extension, omit the subreg and widen the extension. If it
6751 is a regular subreg, we can still get rid of the subreg by not
6752 widening so much, or in fact removing the extension entirely. */
6753 if ((GET_CODE (tem) == SIGN_EXTEND
6754 || GET_CODE (tem) == ZERO_EXTEND)
6755 && subreg_lowpart_p (x))
6756 {
6757 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6758 || (GET_MODE_SIZE (mode) >
6759 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6760 {
6761 if (! SCALAR_INT_MODE_P (mode))
6762 break;
6763 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6764 }
6765 else
6766 tem = gen_lowpart (mode, XEXP (tem, 0));
6767 return tem;
6768 }
6769 break;
6770
6771 default:
6772 break;
6773 }
6774
6775 if (new)
6776 {
6777 x = gen_lowpart (mode, new);
6778 code = GET_CODE (x);
6779 }
6780
6781 /* Now recursively process each operand of this operation. */
6782 fmt = GET_RTX_FORMAT (code);
6783 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6784 if (fmt[i] == 'e')
6785 {
6786 new = make_compound_operation (XEXP (x, i), next_code);
6787 SUBST (XEXP (x, i), new);
6788 }
6789
6790 return x;
6791 }
6792 \f
6793 /* Given M see if it is a value that would select a field of bits
6794 within an item, but not the entire word. Return -1 if not.
6795 Otherwise, return the starting position of the field, where 0 is the
6796 low-order bit.
6797
6798 *PLEN is set to the length of the field. */
6799
6800 static int
6801 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6802 {
6803 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6804 int pos = exact_log2 (m & -m);
6805 int len = 0;
6806
6807 if (pos >= 0)
6808 /* Now shift off the low-order zero bits and see if we have a
6809 power of two minus 1. */
6810 len = exact_log2 ((m >> pos) + 1);
6811
6812 if (len <= 0)
6813 pos = -1;
6814
6815 *plen = len;
6816 return pos;
6817 }
6818 \f
6819 /* See if X can be simplified knowing that we will only refer to it in
6820 MODE and will only refer to those bits that are nonzero in MASK.
6821 If other bits are being computed or if masking operations are done
6822 that select a superset of the bits in MASK, they can sometimes be
6823 ignored.
6824
6825 Return a possibly simplified expression, but always convert X to
6826 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6827
6828 Also, if REG is nonzero and X is a register equal in value to REG,
6829 replace X with REG.
6830
6831 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6832 are all off in X. This is used when X will be complemented, by either
6833 NOT, NEG, or XOR. */
6834
6835 static rtx
6836 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6837 rtx reg, int just_select)
6838 {
6839 enum rtx_code code = GET_CODE (x);
6840 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6841 enum machine_mode op_mode;
6842 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6843 rtx op0, op1, temp;
6844
6845 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6846 code below will do the wrong thing since the mode of such an
6847 expression is VOIDmode.
6848
6849 Also do nothing if X is a CLOBBER; this can happen if X was
6850 the return value from a call to gen_lowpart. */
6851 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6852 return x;
6853
6854 /* We want to perform the operation is its present mode unless we know
6855 that the operation is valid in MODE, in which case we do the operation
6856 in MODE. */
6857 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6858 && have_insn_for (code, mode))
6859 ? mode : GET_MODE (x));
6860
6861 /* It is not valid to do a right-shift in a narrower mode
6862 than the one it came in with. */
6863 if ((code == LSHIFTRT || code == ASHIFTRT)
6864 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6865 op_mode = GET_MODE (x);
6866
6867 /* Truncate MASK to fit OP_MODE. */
6868 if (op_mode)
6869 mask &= GET_MODE_MASK (op_mode);
6870
6871 /* When we have an arithmetic operation, or a shift whose count we
6872 do not know, we need to assume that all bits up to the highest-order
6873 bit in MASK will be needed. This is how we form such a mask. */
6874 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6875 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6876 else
6877 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6878 - 1);
6879
6880 /* Determine what bits of X are guaranteed to be (non)zero. */
6881 nonzero = nonzero_bits (x, mode);
6882
6883 /* If none of the bits in X are needed, return a zero. */
6884 if (! just_select && (nonzero & mask) == 0)
6885 x = const0_rtx;
6886
6887 /* If X is a CONST_INT, return a new one. Do this here since the
6888 test below will fail. */
6889 if (GET_CODE (x) == CONST_INT)
6890 {
6891 if (SCALAR_INT_MODE_P (mode))
6892 return gen_int_mode (INTVAL (x) & mask, mode);
6893 else
6894 {
6895 x = GEN_INT (INTVAL (x) & mask);
6896 return gen_lowpart_common (mode, x);
6897 }
6898 }
6899
6900 /* If X is narrower than MODE and we want all the bits in X's mode, just
6901 get X in the proper mode. */
6902 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6903 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6904 return gen_lowpart (mode, x);
6905
6906 switch (code)
6907 {
6908 case CLOBBER:
6909 /* If X is a (clobber (const_int)), return it since we know we are
6910 generating something that won't match. */
6911 return x;
6912
6913 case USE:
6914 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6915 spanned the boundary of the MEM. If we are now masking so it is
6916 within that boundary, we don't need the USE any more. */
6917 if (! BITS_BIG_ENDIAN
6918 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6919 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6920 break;
6921
6922 case SIGN_EXTEND:
6923 case ZERO_EXTEND:
6924 case ZERO_EXTRACT:
6925 case SIGN_EXTRACT:
6926 x = expand_compound_operation (x);
6927 if (GET_CODE (x) != code)
6928 return force_to_mode (x, mode, mask, reg, next_select);
6929 break;
6930
6931 case REG:
6932 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6933 || rtx_equal_p (reg, get_last_value (x))))
6934 x = reg;
6935 break;
6936
6937 case SUBREG:
6938 if (subreg_lowpart_p (x)
6939 /* We can ignore the effect of this SUBREG if it narrows the mode or
6940 if the constant masks to zero all the bits the mode doesn't
6941 have. */
6942 && ((GET_MODE_SIZE (GET_MODE (x))
6943 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6944 || (0 == (mask
6945 & GET_MODE_MASK (GET_MODE (x))
6946 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6947 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6948 break;
6949
6950 case AND:
6951 /* If this is an AND with a constant, convert it into an AND
6952 whose constant is the AND of that constant with MASK. If it
6953 remains an AND of MASK, delete it since it is redundant. */
6954
6955 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6956 {
6957 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6958 mask & INTVAL (XEXP (x, 1)));
6959
6960 /* If X is still an AND, see if it is an AND with a mask that
6961 is just some low-order bits. If so, and it is MASK, we don't
6962 need it. */
6963
6964 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6965 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6966 == mask))
6967 x = XEXP (x, 0);
6968
6969 /* If it remains an AND, try making another AND with the bits
6970 in the mode mask that aren't in MASK turned on. If the
6971 constant in the AND is wide enough, this might make a
6972 cheaper constant. */
6973
6974 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6975 && GET_MODE_MASK (GET_MODE (x)) != mask
6976 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6977 {
6978 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6979 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6980 int width = GET_MODE_BITSIZE (GET_MODE (x));
6981 rtx y;
6982
6983 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6984 number, sign extend it. */
6985 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6986 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6987 cval |= (HOST_WIDE_INT) -1 << width;
6988
6989 y = simplify_gen_binary (AND, GET_MODE (x),
6990 XEXP (x, 0), GEN_INT (cval));
6991 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6992 x = y;
6993 }
6994
6995 break;
6996 }
6997
6998 goto binop;
6999
7000 case PLUS:
7001 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7002 low-order bits (as in an alignment operation) and FOO is already
7003 aligned to that boundary, mask C1 to that boundary as well.
7004 This may eliminate that PLUS and, later, the AND. */
7005
7006 {
7007 unsigned int width = GET_MODE_BITSIZE (mode);
7008 unsigned HOST_WIDE_INT smask = mask;
7009
7010 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7011 number, sign extend it. */
7012
7013 if (width < HOST_BITS_PER_WIDE_INT
7014 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7015 smask |= (HOST_WIDE_INT) -1 << width;
7016
7017 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7018 && exact_log2 (- smask) >= 0
7019 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7020 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7021 return force_to_mode (plus_constant (XEXP (x, 0),
7022 (INTVAL (XEXP (x, 1)) & smask)),
7023 mode, smask, reg, next_select);
7024 }
7025
7026 /* ... fall through ... */
7027
7028 case MULT:
7029 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7030 most significant bit in MASK since carries from those bits will
7031 affect the bits we are interested in. */
7032 mask = fuller_mask;
7033 goto binop;
7034
7035 case MINUS:
7036 /* If X is (minus C Y) where C's least set bit is larger than any bit
7037 in the mask, then we may replace with (neg Y). */
7038 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7039 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7040 & -INTVAL (XEXP (x, 0))))
7041 > mask))
7042 {
7043 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7044 GET_MODE (x));
7045 return force_to_mode (x, mode, mask, reg, next_select);
7046 }
7047
7048 /* Similarly, if C contains every bit in the fuller_mask, then we may
7049 replace with (not Y). */
7050 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7051 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7052 == INTVAL (XEXP (x, 0))))
7053 {
7054 x = simplify_gen_unary (NOT, GET_MODE (x),
7055 XEXP (x, 1), GET_MODE (x));
7056 return force_to_mode (x, mode, mask, reg, next_select);
7057 }
7058
7059 mask = fuller_mask;
7060 goto binop;
7061
7062 case IOR:
7063 case XOR:
7064 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7065 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7066 operation which may be a bitfield extraction. Ensure that the
7067 constant we form is not wider than the mode of X. */
7068
7069 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7070 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7071 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7072 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7073 && GET_CODE (XEXP (x, 1)) == CONST_INT
7074 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7075 + floor_log2 (INTVAL (XEXP (x, 1))))
7076 < GET_MODE_BITSIZE (GET_MODE (x)))
7077 && (INTVAL (XEXP (x, 1))
7078 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7079 {
7080 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7081 << INTVAL (XEXP (XEXP (x, 0), 1)));
7082 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7083 XEXP (XEXP (x, 0), 0), temp);
7084 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7085 XEXP (XEXP (x, 0), 1));
7086 return force_to_mode (x, mode, mask, reg, next_select);
7087 }
7088
7089 binop:
7090 /* For most binary operations, just propagate into the operation and
7091 change the mode if we have an operation of that mode. */
7092
7093 op0 = gen_lowpart (op_mode,
7094 force_to_mode (XEXP (x, 0), mode, mask,
7095 reg, next_select));
7096 op1 = gen_lowpart (op_mode,
7097 force_to_mode (XEXP (x, 1), mode, mask,
7098 reg, next_select));
7099
7100 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7101 x = simplify_gen_binary (code, op_mode, op0, op1);
7102 break;
7103
7104 case ASHIFT:
7105 /* For left shifts, do the same, but just for the first operand.
7106 However, we cannot do anything with shifts where we cannot
7107 guarantee that the counts are smaller than the size of the mode
7108 because such a count will have a different meaning in a
7109 wider mode. */
7110
7111 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7112 && INTVAL (XEXP (x, 1)) >= 0
7113 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7114 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7115 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7116 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7117 break;
7118
7119 /* If the shift count is a constant and we can do arithmetic in
7120 the mode of the shift, refine which bits we need. Otherwise, use the
7121 conservative form of the mask. */
7122 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7123 && INTVAL (XEXP (x, 1)) >= 0
7124 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7125 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7126 mask >>= INTVAL (XEXP (x, 1));
7127 else
7128 mask = fuller_mask;
7129
7130 op0 = gen_lowpart (op_mode,
7131 force_to_mode (XEXP (x, 0), op_mode,
7132 mask, reg, next_select));
7133
7134 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7135 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7136 break;
7137
7138 case LSHIFTRT:
7139 /* Here we can only do something if the shift count is a constant,
7140 this shift constant is valid for the host, and we can do arithmetic
7141 in OP_MODE. */
7142
7143 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7144 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7145 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7146 {
7147 rtx inner = XEXP (x, 0);
7148 unsigned HOST_WIDE_INT inner_mask;
7149
7150 /* Select the mask of the bits we need for the shift operand. */
7151 inner_mask = mask << INTVAL (XEXP (x, 1));
7152
7153 /* We can only change the mode of the shift if we can do arithmetic
7154 in the mode of the shift and INNER_MASK is no wider than the
7155 width of X's mode. */
7156 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7157 op_mode = GET_MODE (x);
7158
7159 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7160
7161 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7162 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7163 }
7164
7165 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7166 shift and AND produces only copies of the sign bit (C2 is one less
7167 than a power of two), we can do this with just a shift. */
7168
7169 if (GET_CODE (x) == LSHIFTRT
7170 && GET_CODE (XEXP (x, 1)) == CONST_INT
7171 /* The shift puts one of the sign bit copies in the least significant
7172 bit. */
7173 && ((INTVAL (XEXP (x, 1))
7174 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7175 >= GET_MODE_BITSIZE (GET_MODE (x)))
7176 && exact_log2 (mask + 1) >= 0
7177 /* Number of bits left after the shift must be more than the mask
7178 needs. */
7179 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7180 <= GET_MODE_BITSIZE (GET_MODE (x)))
7181 /* Must be more sign bit copies than the mask needs. */
7182 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7183 >= exact_log2 (mask + 1)))
7184 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7185 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7186 - exact_log2 (mask + 1)));
7187
7188 goto shiftrt;
7189
7190 case ASHIFTRT:
7191 /* If we are just looking for the sign bit, we don't need this shift at
7192 all, even if it has a variable count. */
7193 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7194 && (mask == ((unsigned HOST_WIDE_INT) 1
7195 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7196 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7197
7198 /* If this is a shift by a constant, get a mask that contains those bits
7199 that are not copies of the sign bit. We then have two cases: If
7200 MASK only includes those bits, this can be a logical shift, which may
7201 allow simplifications. If MASK is a single-bit field not within
7202 those bits, we are requesting a copy of the sign bit and hence can
7203 shift the sign bit to the appropriate location. */
7204
7205 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7206 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7207 {
7208 int i = -1;
7209
7210 /* If the considered data is wider than HOST_WIDE_INT, we can't
7211 represent a mask for all its bits in a single scalar.
7212 But we only care about the lower bits, so calculate these. */
7213
7214 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7215 {
7216 nonzero = ~(HOST_WIDE_INT) 0;
7217
7218 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7219 is the number of bits a full-width mask would have set.
7220 We need only shift if these are fewer than nonzero can
7221 hold. If not, we must keep all bits set in nonzero. */
7222
7223 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7224 < HOST_BITS_PER_WIDE_INT)
7225 nonzero >>= INTVAL (XEXP (x, 1))
7226 + HOST_BITS_PER_WIDE_INT
7227 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7228 }
7229 else
7230 {
7231 nonzero = GET_MODE_MASK (GET_MODE (x));
7232 nonzero >>= INTVAL (XEXP (x, 1));
7233 }
7234
7235 if ((mask & ~nonzero) == 0
7236 || (i = exact_log2 (mask)) >= 0)
7237 {
7238 x = simplify_shift_const
7239 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7240 i < 0 ? INTVAL (XEXP (x, 1))
7241 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7242
7243 if (GET_CODE (x) != ASHIFTRT)
7244 return force_to_mode (x, mode, mask, reg, next_select);
7245 }
7246 }
7247
7248 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7249 even if the shift count isn't a constant. */
7250 if (mask == 1)
7251 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7252 XEXP (x, 0), XEXP (x, 1));
7253
7254 shiftrt:
7255
7256 /* If this is a zero- or sign-extension operation that just affects bits
7257 we don't care about, remove it. Be sure the call above returned
7258 something that is still a shift. */
7259
7260 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7261 && GET_CODE (XEXP (x, 1)) == CONST_INT
7262 && INTVAL (XEXP (x, 1)) >= 0
7263 && (INTVAL (XEXP (x, 1))
7264 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7265 && GET_CODE (XEXP (x, 0)) == ASHIFT
7266 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7267 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7268 reg, next_select);
7269
7270 break;
7271
7272 case ROTATE:
7273 case ROTATERT:
7274 /* If the shift count is constant and we can do computations
7275 in the mode of X, compute where the bits we care about are.
7276 Otherwise, we can't do anything. Don't change the mode of
7277 the shift or propagate MODE into the shift, though. */
7278 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7279 && INTVAL (XEXP (x, 1)) >= 0)
7280 {
7281 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7282 GET_MODE (x), GEN_INT (mask),
7283 XEXP (x, 1));
7284 if (temp && GET_CODE (temp) == CONST_INT)
7285 SUBST (XEXP (x, 0),
7286 force_to_mode (XEXP (x, 0), GET_MODE (x),
7287 INTVAL (temp), reg, next_select));
7288 }
7289 break;
7290
7291 case NEG:
7292 /* If we just want the low-order bit, the NEG isn't needed since it
7293 won't change the low-order bit. */
7294 if (mask == 1)
7295 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7296
7297 /* We need any bits less significant than the most significant bit in
7298 MASK since carries from those bits will affect the bits we are
7299 interested in. */
7300 mask = fuller_mask;
7301 goto unop;
7302
7303 case NOT:
7304 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7305 same as the XOR case above. Ensure that the constant we form is not
7306 wider than the mode of X. */
7307
7308 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7309 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7310 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7311 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7312 < GET_MODE_BITSIZE (GET_MODE (x)))
7313 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7314 {
7315 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7316 GET_MODE (x));
7317 temp = simplify_gen_binary (XOR, GET_MODE (x),
7318 XEXP (XEXP (x, 0), 0), temp);
7319 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7320 temp, XEXP (XEXP (x, 0), 1));
7321
7322 return force_to_mode (x, mode, mask, reg, next_select);
7323 }
7324
7325 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7326 use the full mask inside the NOT. */
7327 mask = fuller_mask;
7328
7329 unop:
7330 op0 = gen_lowpart (op_mode,
7331 force_to_mode (XEXP (x, 0), mode, mask,
7332 reg, next_select));
7333 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7334 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7335 break;
7336
7337 case NE:
7338 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7339 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7340 which is equal to STORE_FLAG_VALUE. */
7341 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7342 && GET_MODE (XEXP (x, 0)) == mode
7343 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7344 && (nonzero_bits (XEXP (x, 0), mode)
7345 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7346 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7347
7348 break;
7349
7350 case IF_THEN_ELSE:
7351 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7352 written in a narrower mode. We play it safe and do not do so. */
7353
7354 SUBST (XEXP (x, 1),
7355 gen_lowpart (GET_MODE (x),
7356 force_to_mode (XEXP (x, 1), mode,
7357 mask, reg, next_select)));
7358 SUBST (XEXP (x, 2),
7359 gen_lowpart (GET_MODE (x),
7360 force_to_mode (XEXP (x, 2), mode,
7361 mask, reg, next_select)));
7362 break;
7363
7364 default:
7365 break;
7366 }
7367
7368 /* Ensure we return a value of the proper mode. */
7369 return gen_lowpart (mode, x);
7370 }
7371 \f
7372 /* Return nonzero if X is an expression that has one of two values depending on
7373 whether some other value is zero or nonzero. In that case, we return the
7374 value that is being tested, *PTRUE is set to the value if the rtx being
7375 returned has a nonzero value, and *PFALSE is set to the other alternative.
7376
7377 If we return zero, we set *PTRUE and *PFALSE to X. */
7378
7379 static rtx
7380 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7381 {
7382 enum machine_mode mode = GET_MODE (x);
7383 enum rtx_code code = GET_CODE (x);
7384 rtx cond0, cond1, true0, true1, false0, false1;
7385 unsigned HOST_WIDE_INT nz;
7386
7387 /* If we are comparing a value against zero, we are done. */
7388 if ((code == NE || code == EQ)
7389 && XEXP (x, 1) == const0_rtx)
7390 {
7391 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7392 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7393 return XEXP (x, 0);
7394 }
7395
7396 /* If this is a unary operation whose operand has one of two values, apply
7397 our opcode to compute those values. */
7398 else if (UNARY_P (x)
7399 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7400 {
7401 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7402 *pfalse = simplify_gen_unary (code, mode, false0,
7403 GET_MODE (XEXP (x, 0)));
7404 return cond0;
7405 }
7406
7407 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7408 make can't possibly match and would suppress other optimizations. */
7409 else if (code == COMPARE)
7410 ;
7411
7412 /* If this is a binary operation, see if either side has only one of two
7413 values. If either one does or if both do and they are conditional on
7414 the same value, compute the new true and false values. */
7415 else if (BINARY_P (x))
7416 {
7417 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7418 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7419
7420 if ((cond0 != 0 || cond1 != 0)
7421 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7422 {
7423 /* If if_then_else_cond returned zero, then true/false are the
7424 same rtl. We must copy one of them to prevent invalid rtl
7425 sharing. */
7426 if (cond0 == 0)
7427 true0 = copy_rtx (true0);
7428 else if (cond1 == 0)
7429 true1 = copy_rtx (true1);
7430
7431 if (COMPARISON_P (x))
7432 {
7433 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7434 true0, true1);
7435 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7436 false0, false1);
7437 }
7438 else
7439 {
7440 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7441 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7442 }
7443
7444 return cond0 ? cond0 : cond1;
7445 }
7446
7447 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7448 operands is zero when the other is nonzero, and vice-versa,
7449 and STORE_FLAG_VALUE is 1 or -1. */
7450
7451 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7452 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7453 || code == UMAX)
7454 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7455 {
7456 rtx op0 = XEXP (XEXP (x, 0), 1);
7457 rtx op1 = XEXP (XEXP (x, 1), 1);
7458
7459 cond0 = XEXP (XEXP (x, 0), 0);
7460 cond1 = XEXP (XEXP (x, 1), 0);
7461
7462 if (COMPARISON_P (cond0)
7463 && COMPARISON_P (cond1)
7464 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7465 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7466 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7467 || ((swap_condition (GET_CODE (cond0))
7468 == reversed_comparison_code (cond1, NULL))
7469 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7470 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7471 && ! side_effects_p (x))
7472 {
7473 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7474 *pfalse = simplify_gen_binary (MULT, mode,
7475 (code == MINUS
7476 ? simplify_gen_unary (NEG, mode,
7477 op1, mode)
7478 : op1),
7479 const_true_rtx);
7480 return cond0;
7481 }
7482 }
7483
7484 /* Similarly for MULT, AND and UMIN, except that for these the result
7485 is always zero. */
7486 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7487 && (code == MULT || code == AND || code == UMIN)
7488 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7489 {
7490 cond0 = XEXP (XEXP (x, 0), 0);
7491 cond1 = XEXP (XEXP (x, 1), 0);
7492
7493 if (COMPARISON_P (cond0)
7494 && COMPARISON_P (cond1)
7495 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7496 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7497 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7498 || ((swap_condition (GET_CODE (cond0))
7499 == reversed_comparison_code (cond1, NULL))
7500 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7501 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7502 && ! side_effects_p (x))
7503 {
7504 *ptrue = *pfalse = const0_rtx;
7505 return cond0;
7506 }
7507 }
7508 }
7509
7510 else if (code == IF_THEN_ELSE)
7511 {
7512 /* If we have IF_THEN_ELSE already, extract the condition and
7513 canonicalize it if it is NE or EQ. */
7514 cond0 = XEXP (x, 0);
7515 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7516 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7517 return XEXP (cond0, 0);
7518 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7519 {
7520 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7521 return XEXP (cond0, 0);
7522 }
7523 else
7524 return cond0;
7525 }
7526
7527 /* If X is a SUBREG, we can narrow both the true and false values
7528 if the inner expression, if there is a condition. */
7529 else if (code == SUBREG
7530 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7531 &true0, &false0)))
7532 {
7533 true0 = simplify_gen_subreg (mode, true0,
7534 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7535 false0 = simplify_gen_subreg (mode, false0,
7536 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7537 if (true0 && false0)
7538 {
7539 *ptrue = true0;
7540 *pfalse = false0;
7541 return cond0;
7542 }
7543 }
7544
7545 /* If X is a constant, this isn't special and will cause confusions
7546 if we treat it as such. Likewise if it is equivalent to a constant. */
7547 else if (CONSTANT_P (x)
7548 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7549 ;
7550
7551 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7552 will be least confusing to the rest of the compiler. */
7553 else if (mode == BImode)
7554 {
7555 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7556 return x;
7557 }
7558
7559 /* If X is known to be either 0 or -1, those are the true and
7560 false values when testing X. */
7561 else if (x == constm1_rtx || x == const0_rtx
7562 || (mode != VOIDmode
7563 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7564 {
7565 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7566 return x;
7567 }
7568
7569 /* Likewise for 0 or a single bit. */
7570 else if (SCALAR_INT_MODE_P (mode)
7571 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7572 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7573 {
7574 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7575 return x;
7576 }
7577
7578 /* Otherwise fail; show no condition with true and false values the same. */
7579 *ptrue = *pfalse = x;
7580 return 0;
7581 }
7582 \f
7583 /* Return the value of expression X given the fact that condition COND
7584 is known to be true when applied to REG as its first operand and VAL
7585 as its second. X is known to not be shared and so can be modified in
7586 place.
7587
7588 We only handle the simplest cases, and specifically those cases that
7589 arise with IF_THEN_ELSE expressions. */
7590
7591 static rtx
7592 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7593 {
7594 enum rtx_code code = GET_CODE (x);
7595 rtx temp;
7596 const char *fmt;
7597 int i, j;
7598
7599 if (side_effects_p (x))
7600 return x;
7601
7602 /* If either operand of the condition is a floating point value,
7603 then we have to avoid collapsing an EQ comparison. */
7604 if (cond == EQ
7605 && rtx_equal_p (x, reg)
7606 && ! FLOAT_MODE_P (GET_MODE (x))
7607 && ! FLOAT_MODE_P (GET_MODE (val)))
7608 return val;
7609
7610 if (cond == UNEQ && rtx_equal_p (x, reg))
7611 return val;
7612
7613 /* If X is (abs REG) and we know something about REG's relationship
7614 with zero, we may be able to simplify this. */
7615
7616 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7617 switch (cond)
7618 {
7619 case GE: case GT: case EQ:
7620 return XEXP (x, 0);
7621 case LT: case LE:
7622 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7623 XEXP (x, 0),
7624 GET_MODE (XEXP (x, 0)));
7625 default:
7626 break;
7627 }
7628
7629 /* The only other cases we handle are MIN, MAX, and comparisons if the
7630 operands are the same as REG and VAL. */
7631
7632 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7633 {
7634 if (rtx_equal_p (XEXP (x, 0), val))
7635 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7636
7637 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7638 {
7639 if (COMPARISON_P (x))
7640 {
7641 if (comparison_dominates_p (cond, code))
7642 return const_true_rtx;
7643
7644 code = reversed_comparison_code (x, NULL);
7645 if (code != UNKNOWN
7646 && comparison_dominates_p (cond, code))
7647 return const0_rtx;
7648 else
7649 return x;
7650 }
7651 else if (code == SMAX || code == SMIN
7652 || code == UMIN || code == UMAX)
7653 {
7654 int unsignedp = (code == UMIN || code == UMAX);
7655
7656 /* Do not reverse the condition when it is NE or EQ.
7657 This is because we cannot conclude anything about
7658 the value of 'SMAX (x, y)' when x is not equal to y,
7659 but we can when x equals y. */
7660 if ((code == SMAX || code == UMAX)
7661 && ! (cond == EQ || cond == NE))
7662 cond = reverse_condition (cond);
7663
7664 switch (cond)
7665 {
7666 case GE: case GT:
7667 return unsignedp ? x : XEXP (x, 1);
7668 case LE: case LT:
7669 return unsignedp ? x : XEXP (x, 0);
7670 case GEU: case GTU:
7671 return unsignedp ? XEXP (x, 1) : x;
7672 case LEU: case LTU:
7673 return unsignedp ? XEXP (x, 0) : x;
7674 default:
7675 break;
7676 }
7677 }
7678 }
7679 }
7680 else if (code == SUBREG)
7681 {
7682 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7683 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7684
7685 if (SUBREG_REG (x) != r)
7686 {
7687 /* We must simplify subreg here, before we lose track of the
7688 original inner_mode. */
7689 new = simplify_subreg (GET_MODE (x), r,
7690 inner_mode, SUBREG_BYTE (x));
7691 if (new)
7692 return new;
7693 else
7694 SUBST (SUBREG_REG (x), r);
7695 }
7696
7697 return x;
7698 }
7699 /* We don't have to handle SIGN_EXTEND here, because even in the
7700 case of replacing something with a modeless CONST_INT, a
7701 CONST_INT is already (supposed to be) a valid sign extension for
7702 its narrower mode, which implies it's already properly
7703 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7704 story is different. */
7705 else if (code == ZERO_EXTEND)
7706 {
7707 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7708 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7709
7710 if (XEXP (x, 0) != r)
7711 {
7712 /* We must simplify the zero_extend here, before we lose
7713 track of the original inner_mode. */
7714 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7715 r, inner_mode);
7716 if (new)
7717 return new;
7718 else
7719 SUBST (XEXP (x, 0), r);
7720 }
7721
7722 return x;
7723 }
7724
7725 fmt = GET_RTX_FORMAT (code);
7726 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7727 {
7728 if (fmt[i] == 'e')
7729 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7730 else if (fmt[i] == 'E')
7731 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7732 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7733 cond, reg, val));
7734 }
7735
7736 return x;
7737 }
7738 \f
7739 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7740 assignment as a field assignment. */
7741
7742 static int
7743 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7744 {
7745 if (x == y || rtx_equal_p (x, y))
7746 return 1;
7747
7748 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7749 return 0;
7750
7751 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7752 Note that all SUBREGs of MEM are paradoxical; otherwise they
7753 would have been rewritten. */
7754 if (MEM_P (x) && GET_CODE (y) == SUBREG
7755 && MEM_P (SUBREG_REG (y))
7756 && rtx_equal_p (SUBREG_REG (y),
7757 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7758 return 1;
7759
7760 if (MEM_P (y) && GET_CODE (x) == SUBREG
7761 && MEM_P (SUBREG_REG (x))
7762 && rtx_equal_p (SUBREG_REG (x),
7763 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7764 return 1;
7765
7766 /* We used to see if get_last_value of X and Y were the same but that's
7767 not correct. In one direction, we'll cause the assignment to have
7768 the wrong destination and in the case, we'll import a register into this
7769 insn that might have already have been dead. So fail if none of the
7770 above cases are true. */
7771 return 0;
7772 }
7773 \f
7774 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7775 Return that assignment if so.
7776
7777 We only handle the most common cases. */
7778
7779 static rtx
7780 make_field_assignment (rtx x)
7781 {
7782 rtx dest = SET_DEST (x);
7783 rtx src = SET_SRC (x);
7784 rtx assign;
7785 rtx rhs, lhs;
7786 HOST_WIDE_INT c1;
7787 HOST_WIDE_INT pos;
7788 unsigned HOST_WIDE_INT len;
7789 rtx other;
7790 enum machine_mode mode;
7791
7792 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7793 a clear of a one-bit field. We will have changed it to
7794 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7795 for a SUBREG. */
7796
7797 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7798 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7799 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7800 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7801 {
7802 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7803 1, 1, 1, 0);
7804 if (assign != 0)
7805 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7806 return x;
7807 }
7808
7809 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7810 && subreg_lowpart_p (XEXP (src, 0))
7811 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7812 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7813 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7814 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7815 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7816 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7817 {
7818 assign = make_extraction (VOIDmode, dest, 0,
7819 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7820 1, 1, 1, 0);
7821 if (assign != 0)
7822 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7823 return x;
7824 }
7825
7826 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7827 one-bit field. */
7828 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7829 && XEXP (XEXP (src, 0), 0) == const1_rtx
7830 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7831 {
7832 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7833 1, 1, 1, 0);
7834 if (assign != 0)
7835 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7836 return x;
7837 }
7838
7839 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7840 SRC is an AND with all bits of that field set, then we can discard
7841 the AND. */
7842 if (GET_CODE (dest) == ZERO_EXTRACT
7843 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7844 && GET_CODE (src) == AND
7845 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7846 {
7847 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7848 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7849 unsigned HOST_WIDE_INT ze_mask;
7850
7851 if (width >= HOST_BITS_PER_WIDE_INT)
7852 ze_mask = -1;
7853 else
7854 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7855
7856 /* Complete overlap. We can remove the source AND. */
7857 if ((and_mask & ze_mask) == ze_mask)
7858 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7859
7860 /* Partial overlap. We can reduce the source AND. */
7861 if ((and_mask & ze_mask) != and_mask)
7862 {
7863 mode = GET_MODE (src);
7864 src = gen_rtx_AND (mode, XEXP (src, 0),
7865 gen_int_mode (and_mask & ze_mask, mode));
7866 return gen_rtx_SET (VOIDmode, dest, src);
7867 }
7868 }
7869
7870 /* The other case we handle is assignments into a constant-position
7871 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7872 a mask that has all one bits except for a group of zero bits and
7873 OTHER is known to have zeros where C1 has ones, this is such an
7874 assignment. Compute the position and length from C1. Shift OTHER
7875 to the appropriate position, force it to the required mode, and
7876 make the extraction. Check for the AND in both operands. */
7877
7878 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7879 return x;
7880
7881 rhs = expand_compound_operation (XEXP (src, 0));
7882 lhs = expand_compound_operation (XEXP (src, 1));
7883
7884 if (GET_CODE (rhs) == AND
7885 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7886 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7887 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7888 else if (GET_CODE (lhs) == AND
7889 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7890 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7891 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7892 else
7893 return x;
7894
7895 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7896 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7897 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7898 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7899 return x;
7900
7901 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7902 if (assign == 0)
7903 return x;
7904
7905 /* The mode to use for the source is the mode of the assignment, or of
7906 what is inside a possible STRICT_LOW_PART. */
7907 mode = (GET_CODE (assign) == STRICT_LOW_PART
7908 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7909
7910 /* Shift OTHER right POS places and make it the source, restricting it
7911 to the proper length and mode. */
7912
7913 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7914 GET_MODE (src), other, pos),
7915 mode,
7916 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7917 ? ~(unsigned HOST_WIDE_INT) 0
7918 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7919 dest, 0);
7920
7921 /* If SRC is masked by an AND that does not make a difference in
7922 the value being stored, strip it. */
7923 if (GET_CODE (assign) == ZERO_EXTRACT
7924 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7925 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7926 && GET_CODE (src) == AND
7927 && GET_CODE (XEXP (src, 1)) == CONST_INT
7928 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7929 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7930 src = XEXP (src, 0);
7931
7932 return gen_rtx_SET (VOIDmode, assign, src);
7933 }
7934 \f
7935 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7936 if so. */
7937
7938 static rtx
7939 apply_distributive_law (rtx x)
7940 {
7941 enum rtx_code code = GET_CODE (x);
7942 enum rtx_code inner_code;
7943 rtx lhs, rhs, other;
7944 rtx tem;
7945
7946 /* Distributivity is not true for floating point as it can change the
7947 value. So we don't do it unless -funsafe-math-optimizations. */
7948 if (FLOAT_MODE_P (GET_MODE (x))
7949 && ! flag_unsafe_math_optimizations)
7950 return x;
7951
7952 /* The outer operation can only be one of the following: */
7953 if (code != IOR && code != AND && code != XOR
7954 && code != PLUS && code != MINUS)
7955 return x;
7956
7957 lhs = XEXP (x, 0);
7958 rhs = XEXP (x, 1);
7959
7960 /* If either operand is a primitive we can't do anything, so get out
7961 fast. */
7962 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7963 return x;
7964
7965 lhs = expand_compound_operation (lhs);
7966 rhs = expand_compound_operation (rhs);
7967 inner_code = GET_CODE (lhs);
7968 if (inner_code != GET_CODE (rhs))
7969 return x;
7970
7971 /* See if the inner and outer operations distribute. */
7972 switch (inner_code)
7973 {
7974 case LSHIFTRT:
7975 case ASHIFTRT:
7976 case AND:
7977 case IOR:
7978 /* These all distribute except over PLUS. */
7979 if (code == PLUS || code == MINUS)
7980 return x;
7981 break;
7982
7983 case MULT:
7984 if (code != PLUS && code != MINUS)
7985 return x;
7986 break;
7987
7988 case ASHIFT:
7989 /* This is also a multiply, so it distributes over everything. */
7990 break;
7991
7992 case SUBREG:
7993 /* Non-paradoxical SUBREGs distributes over all operations, provided
7994 the inner modes and byte offsets are the same, this is an extraction
7995 of a low-order part, we don't convert an fp operation to int or
7996 vice versa, and we would not be converting a single-word
7997 operation into a multi-word operation. The latter test is not
7998 required, but it prevents generating unneeded multi-word operations.
7999 Some of the previous tests are redundant given the latter test, but
8000 are retained because they are required for correctness.
8001
8002 We produce the result slightly differently in this case. */
8003
8004 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8005 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8006 || ! subreg_lowpart_p (lhs)
8007 || (GET_MODE_CLASS (GET_MODE (lhs))
8008 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8009 || (GET_MODE_SIZE (GET_MODE (lhs))
8010 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8011 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8012 return x;
8013
8014 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8015 SUBREG_REG (lhs), SUBREG_REG (rhs));
8016 return gen_lowpart (GET_MODE (x), tem);
8017
8018 default:
8019 return x;
8020 }
8021
8022 /* Set LHS and RHS to the inner operands (A and B in the example
8023 above) and set OTHER to the common operand (C in the example).
8024 There is only one way to do this unless the inner operation is
8025 commutative. */
8026 if (COMMUTATIVE_ARITH_P (lhs)
8027 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8028 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8029 else if (COMMUTATIVE_ARITH_P (lhs)
8030 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8031 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8032 else if (COMMUTATIVE_ARITH_P (lhs)
8033 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8034 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8035 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8036 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8037 else
8038 return x;
8039
8040 /* Form the new inner operation, seeing if it simplifies first. */
8041 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8042
8043 /* There is one exception to the general way of distributing:
8044 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8045 if (code == XOR && inner_code == IOR)
8046 {
8047 inner_code = AND;
8048 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8049 }
8050
8051 /* We may be able to continuing distributing the result, so call
8052 ourselves recursively on the inner operation before forming the
8053 outer operation, which we return. */
8054 return simplify_gen_binary (inner_code, GET_MODE (x),
8055 apply_distributive_law (tem), other);
8056 }
8057
8058 /* See if X is of the form (* (+ A B) C), and if so convert to
8059 (+ (* A C) (* B C)) and try to simplify.
8060
8061 Most of the time, this results in no change. However, if some of
8062 the operands are the same or inverses of each other, simplifications
8063 will result.
8064
8065 For example, (and (ior A B) (not B)) can occur as the result of
8066 expanding a bit field assignment. When we apply the distributive
8067 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8068 which then simplifies to (and (A (not B))).
8069
8070 Note that no checks happen on the validity of applying the inverse
8071 distributive law. This is pointless since we can do it in the
8072 few places where this routine is called.
8073
8074 N is the index of the term that is decomposed (the arithmetic operation,
8075 i.e. (+ A B) in the first example above). !N is the index of the term that
8076 is distributed, i.e. of C in the first example above. */
8077 static rtx
8078 distribute_and_simplify_rtx (rtx x, int n)
8079 {
8080 enum machine_mode mode;
8081 enum rtx_code outer_code, inner_code;
8082 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8083
8084 decomposed = XEXP (x, n);
8085 if (!ARITHMETIC_P (decomposed))
8086 return NULL_RTX;
8087
8088 mode = GET_MODE (x);
8089 outer_code = GET_CODE (x);
8090 distributed = XEXP (x, !n);
8091
8092 inner_code = GET_CODE (decomposed);
8093 inner_op0 = XEXP (decomposed, 0);
8094 inner_op1 = XEXP (decomposed, 1);
8095
8096 /* Special case (and (xor B C) (not A)), which is equivalent to
8097 (xor (ior A B) (ior A C)) */
8098 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8099 {
8100 distributed = XEXP (distributed, 0);
8101 outer_code = IOR;
8102 }
8103
8104 if (n == 0)
8105 {
8106 /* Distribute the second term. */
8107 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8108 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8109 }
8110 else
8111 {
8112 /* Distribute the first term. */
8113 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8114 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8115 }
8116
8117 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8118 new_op0, new_op1));
8119 if (GET_CODE (tmp) != outer_code
8120 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8121 return tmp;
8122
8123 return NULL_RTX;
8124 }
8125 \f
8126 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8127 in MODE.
8128
8129 Return an equivalent form, if different from X. Otherwise, return X. If
8130 X is zero, we are to always construct the equivalent form. */
8131
8132 static rtx
8133 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8134 unsigned HOST_WIDE_INT constop)
8135 {
8136 unsigned HOST_WIDE_INT nonzero;
8137 int i;
8138
8139 /* Simplify VAROP knowing that we will be only looking at some of the
8140 bits in it.
8141
8142 Note by passing in CONSTOP, we guarantee that the bits not set in
8143 CONSTOP are not significant and will never be examined. We must
8144 ensure that is the case by explicitly masking out those bits
8145 before returning. */
8146 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8147
8148 /* If VAROP is a CLOBBER, we will fail so return it. */
8149 if (GET_CODE (varop) == CLOBBER)
8150 return varop;
8151
8152 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8153 to VAROP and return the new constant. */
8154 if (GET_CODE (varop) == CONST_INT)
8155 return gen_int_mode (INTVAL (varop) & constop, mode);
8156
8157 /* See what bits may be nonzero in VAROP. Unlike the general case of
8158 a call to nonzero_bits, here we don't care about bits outside
8159 MODE. */
8160
8161 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8162
8163 /* Turn off all bits in the constant that are known to already be zero.
8164 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8165 which is tested below. */
8166
8167 constop &= nonzero;
8168
8169 /* If we don't have any bits left, return zero. */
8170 if (constop == 0)
8171 return const0_rtx;
8172
8173 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8174 a power of two, we can replace this with an ASHIFT. */
8175 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8176 && (i = exact_log2 (constop)) >= 0)
8177 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8178
8179 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8180 or XOR, then try to apply the distributive law. This may eliminate
8181 operations if either branch can be simplified because of the AND.
8182 It may also make some cases more complex, but those cases probably
8183 won't match a pattern either with or without this. */
8184
8185 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8186 return
8187 gen_lowpart
8188 (mode,
8189 apply_distributive_law
8190 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8191 simplify_and_const_int (NULL_RTX,
8192 GET_MODE (varop),
8193 XEXP (varop, 0),
8194 constop),
8195 simplify_and_const_int (NULL_RTX,
8196 GET_MODE (varop),
8197 XEXP (varop, 1),
8198 constop))));
8199
8200 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8201 the AND and see if one of the operands simplifies to zero. If so, we
8202 may eliminate it. */
8203
8204 if (GET_CODE (varop) == PLUS
8205 && exact_log2 (constop + 1) >= 0)
8206 {
8207 rtx o0, o1;
8208
8209 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8210 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8211 if (o0 == const0_rtx)
8212 return o1;
8213 if (o1 == const0_rtx)
8214 return o0;
8215 }
8216
8217 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8218 if we already had one (just check for the simplest cases). */
8219 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8220 && GET_MODE (XEXP (x, 0)) == mode
8221 && SUBREG_REG (XEXP (x, 0)) == varop)
8222 varop = XEXP (x, 0);
8223 else
8224 varop = gen_lowpart (mode, varop);
8225
8226 /* If we can't make the SUBREG, try to return what we were given. */
8227 if (GET_CODE (varop) == CLOBBER)
8228 return x ? x : varop;
8229
8230 /* If we are only masking insignificant bits, return VAROP. */
8231 if (constop == nonzero)
8232 x = varop;
8233 else
8234 {
8235 /* Otherwise, return an AND. */
8236 constop = trunc_int_for_mode (constop, mode);
8237 /* See how much, if any, of X we can use. */
8238 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8239 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8240
8241 else
8242 {
8243 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8244 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8245 SUBST (XEXP (x, 1), GEN_INT (constop));
8246
8247 SUBST (XEXP (x, 0), varop);
8248 }
8249 }
8250
8251 return x;
8252 }
8253 \f
8254 /* Given a REG, X, compute which bits in X can be nonzero.
8255 We don't care about bits outside of those defined in MODE.
8256
8257 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8258 a shift, AND, or zero_extract, we can do better. */
8259
8260 static rtx
8261 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8262 rtx known_x ATTRIBUTE_UNUSED,
8263 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8264 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8265 unsigned HOST_WIDE_INT *nonzero)
8266 {
8267 rtx tem;
8268
8269 /* If X is a register whose nonzero bits value is current, use it.
8270 Otherwise, if X is a register whose value we can find, use that
8271 value. Otherwise, use the previously-computed global nonzero bits
8272 for this register. */
8273
8274 if (reg_stat[REGNO (x)].last_set_value != 0
8275 && (reg_stat[REGNO (x)].last_set_mode == mode
8276 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8277 && GET_MODE_CLASS (mode) == MODE_INT))
8278 && (reg_stat[REGNO (x)].last_set_label == label_tick
8279 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8280 && REG_N_SETS (REGNO (x)) == 1
8281 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8282 REGNO (x))))
8283 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8284 {
8285 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8286 return NULL;
8287 }
8288
8289 tem = get_last_value (x);
8290
8291 if (tem)
8292 {
8293 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8294 /* If X is narrower than MODE and TEM is a non-negative
8295 constant that would appear negative in the mode of X,
8296 sign-extend it for use in reg_nonzero_bits because some
8297 machines (maybe most) will actually do the sign-extension
8298 and this is the conservative approach.
8299
8300 ??? For 2.5, try to tighten up the MD files in this regard
8301 instead of this kludge. */
8302
8303 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8304 && GET_CODE (tem) == CONST_INT
8305 && INTVAL (tem) > 0
8306 && 0 != (INTVAL (tem)
8307 & ((HOST_WIDE_INT) 1
8308 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8309 tem = GEN_INT (INTVAL (tem)
8310 | ((HOST_WIDE_INT) (-1)
8311 << GET_MODE_BITSIZE (GET_MODE (x))));
8312 #endif
8313 return tem;
8314 }
8315 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8316 {
8317 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8318
8319 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8320 /* We don't know anything about the upper bits. */
8321 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8322 *nonzero &= mask;
8323 }
8324
8325 return NULL;
8326 }
8327
8328 /* Return the number of bits at the high-order end of X that are known to
8329 be equal to the sign bit. X will be used in mode MODE; if MODE is
8330 VOIDmode, X will be used in its own mode. The returned value will always
8331 be between 1 and the number of bits in MODE. */
8332
8333 static rtx
8334 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8335 rtx known_x ATTRIBUTE_UNUSED,
8336 enum machine_mode known_mode
8337 ATTRIBUTE_UNUSED,
8338 unsigned int known_ret ATTRIBUTE_UNUSED,
8339 unsigned int *result)
8340 {
8341 rtx tem;
8342
8343 if (reg_stat[REGNO (x)].last_set_value != 0
8344 && reg_stat[REGNO (x)].last_set_mode == mode
8345 && (reg_stat[REGNO (x)].last_set_label == label_tick
8346 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8347 && REG_N_SETS (REGNO (x)) == 1
8348 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8349 REGNO (x))))
8350 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8351 {
8352 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8353 return NULL;
8354 }
8355
8356 tem = get_last_value (x);
8357 if (tem != 0)
8358 return tem;
8359
8360 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8361 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8362 *result = reg_stat[REGNO (x)].sign_bit_copies;
8363
8364 return NULL;
8365 }
8366 \f
8367 /* Return the number of "extended" bits there are in X, when interpreted
8368 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8369 unsigned quantities, this is the number of high-order zero bits.
8370 For signed quantities, this is the number of copies of the sign bit
8371 minus 1. In both case, this function returns the number of "spare"
8372 bits. For example, if two quantities for which this function returns
8373 at least 1 are added, the addition is known not to overflow.
8374
8375 This function will always return 0 unless called during combine, which
8376 implies that it must be called from a define_split. */
8377
8378 unsigned int
8379 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8380 {
8381 if (nonzero_sign_valid == 0)
8382 return 0;
8383
8384 return (unsignedp
8385 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8386 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8387 - floor_log2 (nonzero_bits (x, mode)))
8388 : 0)
8389 : num_sign_bit_copies (x, mode) - 1);
8390 }
8391 \f
8392 /* This function is called from `simplify_shift_const' to merge two
8393 outer operations. Specifically, we have already found that we need
8394 to perform operation *POP0 with constant *PCONST0 at the outermost
8395 position. We would now like to also perform OP1 with constant CONST1
8396 (with *POP0 being done last).
8397
8398 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8399 the resulting operation. *PCOMP_P is set to 1 if we would need to
8400 complement the innermost operand, otherwise it is unchanged.
8401
8402 MODE is the mode in which the operation will be done. No bits outside
8403 the width of this mode matter. It is assumed that the width of this mode
8404 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8405
8406 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8407 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8408 result is simply *PCONST0.
8409
8410 If the resulting operation cannot be expressed as one operation, we
8411 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8412
8413 static int
8414 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8415 {
8416 enum rtx_code op0 = *pop0;
8417 HOST_WIDE_INT const0 = *pconst0;
8418
8419 const0 &= GET_MODE_MASK (mode);
8420 const1 &= GET_MODE_MASK (mode);
8421
8422 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8423 if (op0 == AND)
8424 const1 &= const0;
8425
8426 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8427 if OP0 is SET. */
8428
8429 if (op1 == UNKNOWN || op0 == SET)
8430 return 1;
8431
8432 else if (op0 == UNKNOWN)
8433 op0 = op1, const0 = const1;
8434
8435 else if (op0 == op1)
8436 {
8437 switch (op0)
8438 {
8439 case AND:
8440 const0 &= const1;
8441 break;
8442 case IOR:
8443 const0 |= const1;
8444 break;
8445 case XOR:
8446 const0 ^= const1;
8447 break;
8448 case PLUS:
8449 const0 += const1;
8450 break;
8451 case NEG:
8452 op0 = UNKNOWN;
8453 break;
8454 default:
8455 break;
8456 }
8457 }
8458
8459 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8460 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8461 return 0;
8462
8463 /* If the two constants aren't the same, we can't do anything. The
8464 remaining six cases can all be done. */
8465 else if (const0 != const1)
8466 return 0;
8467
8468 else
8469 switch (op0)
8470 {
8471 case IOR:
8472 if (op1 == AND)
8473 /* (a & b) | b == b */
8474 op0 = SET;
8475 else /* op1 == XOR */
8476 /* (a ^ b) | b == a | b */
8477 {;}
8478 break;
8479
8480 case XOR:
8481 if (op1 == AND)
8482 /* (a & b) ^ b == (~a) & b */
8483 op0 = AND, *pcomp_p = 1;
8484 else /* op1 == IOR */
8485 /* (a | b) ^ b == a & ~b */
8486 op0 = AND, const0 = ~const0;
8487 break;
8488
8489 case AND:
8490 if (op1 == IOR)
8491 /* (a | b) & b == b */
8492 op0 = SET;
8493 else /* op1 == XOR */
8494 /* (a ^ b) & b) == (~a) & b */
8495 *pcomp_p = 1;
8496 break;
8497 default:
8498 break;
8499 }
8500
8501 /* Check for NO-OP cases. */
8502 const0 &= GET_MODE_MASK (mode);
8503 if (const0 == 0
8504 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8505 op0 = UNKNOWN;
8506 else if (const0 == 0 && op0 == AND)
8507 op0 = SET;
8508 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8509 && op0 == AND)
8510 op0 = UNKNOWN;
8511
8512 /* ??? Slightly redundant with the above mask, but not entirely.
8513 Moving this above means we'd have to sign-extend the mode mask
8514 for the final test. */
8515 const0 = trunc_int_for_mode (const0, mode);
8516
8517 *pop0 = op0;
8518 *pconst0 = const0;
8519
8520 return 1;
8521 }
8522 \f
8523 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8524 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8525 that we started with.
8526
8527 The shift is normally computed in the widest mode we find in VAROP, as
8528 long as it isn't a different number of words than RESULT_MODE. Exceptions
8529 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8530
8531 static rtx
8532 simplify_shift_const (rtx x, enum rtx_code code,
8533 enum machine_mode result_mode, rtx varop,
8534 int orig_count)
8535 {
8536 enum rtx_code orig_code = code;
8537 unsigned int count;
8538 int signed_count;
8539 enum machine_mode mode = result_mode;
8540 enum machine_mode shift_mode, tmode;
8541 unsigned int mode_words
8542 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8543 /* We form (outer_op (code varop count) (outer_const)). */
8544 enum rtx_code outer_op = UNKNOWN;
8545 HOST_WIDE_INT outer_const = 0;
8546 rtx const_rtx;
8547 int complement_p = 0;
8548 rtx new;
8549
8550 /* Make sure and truncate the "natural" shift on the way in. We don't
8551 want to do this inside the loop as it makes it more difficult to
8552 combine shifts. */
8553 if (SHIFT_COUNT_TRUNCATED)
8554 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8555
8556 /* If we were given an invalid count, don't do anything except exactly
8557 what was requested. */
8558
8559 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8560 {
8561 if (x)
8562 return x;
8563
8564 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8565 }
8566
8567 count = orig_count;
8568
8569 /* Unless one of the branches of the `if' in this loop does a `continue',
8570 we will `break' the loop after the `if'. */
8571
8572 while (count != 0)
8573 {
8574 /* If we have an operand of (clobber (const_int 0)), just return that
8575 value. */
8576 if (GET_CODE (varop) == CLOBBER)
8577 return varop;
8578
8579 /* If we discovered we had to complement VAROP, leave. Making a NOT
8580 here would cause an infinite loop. */
8581 if (complement_p)
8582 break;
8583
8584 /* Convert ROTATERT to ROTATE. */
8585 if (code == ROTATERT)
8586 {
8587 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8588 code = ROTATE;
8589 if (VECTOR_MODE_P (result_mode))
8590 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8591 else
8592 count = bitsize - count;
8593 }
8594
8595 /* We need to determine what mode we will do the shift in. If the
8596 shift is a right shift or a ROTATE, we must always do it in the mode
8597 it was originally done in. Otherwise, we can do it in MODE, the
8598 widest mode encountered. */
8599 shift_mode
8600 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8601 ? result_mode : mode);
8602
8603 /* Handle cases where the count is greater than the size of the mode
8604 minus 1. For ASHIFT, use the size minus one as the count (this can
8605 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8606 take the count modulo the size. For other shifts, the result is
8607 zero.
8608
8609 Since these shifts are being produced by the compiler by combining
8610 multiple operations, each of which are defined, we know what the
8611 result is supposed to be. */
8612
8613 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8614 {
8615 if (code == ASHIFTRT)
8616 count = GET_MODE_BITSIZE (shift_mode) - 1;
8617 else if (code == ROTATE || code == ROTATERT)
8618 count %= GET_MODE_BITSIZE (shift_mode);
8619 else
8620 {
8621 /* We can't simply return zero because there may be an
8622 outer op. */
8623 varop = const0_rtx;
8624 count = 0;
8625 break;
8626 }
8627 }
8628
8629 /* An arithmetic right shift of a quantity known to be -1 or 0
8630 is a no-op. */
8631 if (code == ASHIFTRT
8632 && (num_sign_bit_copies (varop, shift_mode)
8633 == GET_MODE_BITSIZE (shift_mode)))
8634 {
8635 count = 0;
8636 break;
8637 }
8638
8639 /* If we are doing an arithmetic right shift and discarding all but
8640 the sign bit copies, this is equivalent to doing a shift by the
8641 bitsize minus one. Convert it into that shift because it will often
8642 allow other simplifications. */
8643
8644 if (code == ASHIFTRT
8645 && (count + num_sign_bit_copies (varop, shift_mode)
8646 >= GET_MODE_BITSIZE (shift_mode)))
8647 count = GET_MODE_BITSIZE (shift_mode) - 1;
8648
8649 /* We simplify the tests below and elsewhere by converting
8650 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8651 `make_compound_operation' will convert it to an ASHIFTRT for
8652 those machines (such as VAX) that don't have an LSHIFTRT. */
8653 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8654 && code == ASHIFTRT
8655 && ((nonzero_bits (varop, shift_mode)
8656 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8657 == 0))
8658 code = LSHIFTRT;
8659
8660 if (code == LSHIFTRT
8661 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8662 && !(nonzero_bits (varop, shift_mode) >> count))
8663 varop = const0_rtx;
8664 if (code == ASHIFT
8665 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8666 && !((nonzero_bits (varop, shift_mode) << count)
8667 & GET_MODE_MASK (shift_mode)))
8668 varop = const0_rtx;
8669
8670 switch (GET_CODE (varop))
8671 {
8672 case SIGN_EXTEND:
8673 case ZERO_EXTEND:
8674 case SIGN_EXTRACT:
8675 case ZERO_EXTRACT:
8676 new = expand_compound_operation (varop);
8677 if (new != varop)
8678 {
8679 varop = new;
8680 continue;
8681 }
8682 break;
8683
8684 case MEM:
8685 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8686 minus the width of a smaller mode, we can do this with a
8687 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8688 if ((code == ASHIFTRT || code == LSHIFTRT)
8689 && ! mode_dependent_address_p (XEXP (varop, 0))
8690 && ! MEM_VOLATILE_P (varop)
8691 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8692 MODE_INT, 1)) != BLKmode)
8693 {
8694 new = adjust_address_nv (varop, tmode,
8695 BYTES_BIG_ENDIAN ? 0
8696 : count / BITS_PER_UNIT);
8697
8698 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8699 : ZERO_EXTEND, mode, new);
8700 count = 0;
8701 continue;
8702 }
8703 break;
8704
8705 case USE:
8706 /* Similar to the case above, except that we can only do this if
8707 the resulting mode is the same as that of the underlying
8708 MEM and adjust the address depending on the *bits* endianness
8709 because of the way that bit-field extract insns are defined. */
8710 if ((code == ASHIFTRT || code == LSHIFTRT)
8711 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8712 MODE_INT, 1)) != BLKmode
8713 && tmode == GET_MODE (XEXP (varop, 0)))
8714 {
8715 if (BITS_BIG_ENDIAN)
8716 new = XEXP (varop, 0);
8717 else
8718 {
8719 new = copy_rtx (XEXP (varop, 0));
8720 SUBST (XEXP (new, 0),
8721 plus_constant (XEXP (new, 0),
8722 count / BITS_PER_UNIT));
8723 }
8724
8725 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8726 : ZERO_EXTEND, mode, new);
8727 count = 0;
8728 continue;
8729 }
8730 break;
8731
8732 case SUBREG:
8733 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8734 the same number of words as what we've seen so far. Then store
8735 the widest mode in MODE. */
8736 if (subreg_lowpart_p (varop)
8737 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8738 > GET_MODE_SIZE (GET_MODE (varop)))
8739 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8740 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8741 == mode_words)
8742 {
8743 varop = SUBREG_REG (varop);
8744 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8745 mode = GET_MODE (varop);
8746 continue;
8747 }
8748 break;
8749
8750 case MULT:
8751 /* Some machines use MULT instead of ASHIFT because MULT
8752 is cheaper. But it is still better on those machines to
8753 merge two shifts into one. */
8754 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8755 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8756 {
8757 varop
8758 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8759 XEXP (varop, 0),
8760 GEN_INT (exact_log2 (
8761 INTVAL (XEXP (varop, 1)))));
8762 continue;
8763 }
8764 break;
8765
8766 case UDIV:
8767 /* Similar, for when divides are cheaper. */
8768 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8769 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8770 {
8771 varop
8772 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8773 XEXP (varop, 0),
8774 GEN_INT (exact_log2 (
8775 INTVAL (XEXP (varop, 1)))));
8776 continue;
8777 }
8778 break;
8779
8780 case ASHIFTRT:
8781 /* If we are extracting just the sign bit of an arithmetic
8782 right shift, that shift is not needed. However, the sign
8783 bit of a wider mode may be different from what would be
8784 interpreted as the sign bit in a narrower mode, so, if
8785 the result is narrower, don't discard the shift. */
8786 if (code == LSHIFTRT
8787 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8788 && (GET_MODE_BITSIZE (result_mode)
8789 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8790 {
8791 varop = XEXP (varop, 0);
8792 continue;
8793 }
8794
8795 /* ... fall through ... */
8796
8797 case LSHIFTRT:
8798 case ASHIFT:
8799 case ROTATE:
8800 /* Here we have two nested shifts. The result is usually the
8801 AND of a new shift with a mask. We compute the result below. */
8802 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8803 && INTVAL (XEXP (varop, 1)) >= 0
8804 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8805 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8806 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8807 {
8808 enum rtx_code first_code = GET_CODE (varop);
8809 unsigned int first_count = INTVAL (XEXP (varop, 1));
8810 unsigned HOST_WIDE_INT mask;
8811 rtx mask_rtx;
8812
8813 /* We have one common special case. We can't do any merging if
8814 the inner code is an ASHIFTRT of a smaller mode. However, if
8815 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8816 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8817 we can convert it to
8818 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8819 This simplifies certain SIGN_EXTEND operations. */
8820 if (code == ASHIFT && first_code == ASHIFTRT
8821 && count == (unsigned int)
8822 (GET_MODE_BITSIZE (result_mode)
8823 - GET_MODE_BITSIZE (GET_MODE (varop))))
8824 {
8825 /* C3 has the low-order C1 bits zero. */
8826
8827 mask = (GET_MODE_MASK (mode)
8828 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8829
8830 varop = simplify_and_const_int (NULL_RTX, result_mode,
8831 XEXP (varop, 0), mask);
8832 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8833 varop, count);
8834 count = first_count;
8835 code = ASHIFTRT;
8836 continue;
8837 }
8838
8839 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8840 than C1 high-order bits equal to the sign bit, we can convert
8841 this to either an ASHIFT or an ASHIFTRT depending on the
8842 two counts.
8843
8844 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8845
8846 if (code == ASHIFTRT && first_code == ASHIFT
8847 && GET_MODE (varop) == shift_mode
8848 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8849 > first_count))
8850 {
8851 varop = XEXP (varop, 0);
8852
8853 signed_count = count - first_count;
8854 if (signed_count < 0)
8855 count = -signed_count, code = ASHIFT;
8856 else
8857 count = signed_count;
8858
8859 continue;
8860 }
8861
8862 /* There are some cases we can't do. If CODE is ASHIFTRT,
8863 we can only do this if FIRST_CODE is also ASHIFTRT.
8864
8865 We can't do the case when CODE is ROTATE and FIRST_CODE is
8866 ASHIFTRT.
8867
8868 If the mode of this shift is not the mode of the outer shift,
8869 we can't do this if either shift is a right shift or ROTATE.
8870
8871 Finally, we can't do any of these if the mode is too wide
8872 unless the codes are the same.
8873
8874 Handle the case where the shift codes are the same
8875 first. */
8876
8877 if (code == first_code)
8878 {
8879 if (GET_MODE (varop) != result_mode
8880 && (code == ASHIFTRT || code == LSHIFTRT
8881 || code == ROTATE))
8882 break;
8883
8884 count += first_count;
8885 varop = XEXP (varop, 0);
8886 continue;
8887 }
8888
8889 if (code == ASHIFTRT
8890 || (code == ROTATE && first_code == ASHIFTRT)
8891 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8892 || (GET_MODE (varop) != result_mode
8893 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8894 || first_code == ROTATE
8895 || code == ROTATE)))
8896 break;
8897
8898 /* To compute the mask to apply after the shift, shift the
8899 nonzero bits of the inner shift the same way the
8900 outer shift will. */
8901
8902 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8903
8904 mask_rtx
8905 = simplify_binary_operation (code, result_mode, mask_rtx,
8906 GEN_INT (count));
8907
8908 /* Give up if we can't compute an outer operation to use. */
8909 if (mask_rtx == 0
8910 || GET_CODE (mask_rtx) != CONST_INT
8911 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8912 INTVAL (mask_rtx),
8913 result_mode, &complement_p))
8914 break;
8915
8916 /* If the shifts are in the same direction, we add the
8917 counts. Otherwise, we subtract them. */
8918 signed_count = count;
8919 if ((code == ASHIFTRT || code == LSHIFTRT)
8920 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8921 signed_count += first_count;
8922 else
8923 signed_count -= first_count;
8924
8925 /* If COUNT is positive, the new shift is usually CODE,
8926 except for the two exceptions below, in which case it is
8927 FIRST_CODE. If the count is negative, FIRST_CODE should
8928 always be used */
8929 if (signed_count > 0
8930 && ((first_code == ROTATE && code == ASHIFT)
8931 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8932 code = first_code, count = signed_count;
8933 else if (signed_count < 0)
8934 code = first_code, count = -signed_count;
8935 else
8936 count = signed_count;
8937
8938 varop = XEXP (varop, 0);
8939 continue;
8940 }
8941
8942 /* If we have (A << B << C) for any shift, we can convert this to
8943 (A << C << B). This wins if A is a constant. Only try this if
8944 B is not a constant. */
8945
8946 else if (GET_CODE (varop) == code
8947 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8948 && 0 != (new
8949 = simplify_binary_operation (code, mode,
8950 XEXP (varop, 0),
8951 GEN_INT (count))))
8952 {
8953 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8954 count = 0;
8955 continue;
8956 }
8957 break;
8958
8959 case NOT:
8960 /* Make this fit the case below. */
8961 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8962 GEN_INT (GET_MODE_MASK (mode)));
8963 continue;
8964
8965 case IOR:
8966 case AND:
8967 case XOR:
8968 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8969 with C the size of VAROP - 1 and the shift is logical if
8970 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8971 we have an (le X 0) operation. If we have an arithmetic shift
8972 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8973 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8974
8975 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8976 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8977 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8978 && (code == LSHIFTRT || code == ASHIFTRT)
8979 && count == (unsigned int)
8980 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8981 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8982 {
8983 count = 0;
8984 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8985 const0_rtx);
8986
8987 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8988 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8989
8990 continue;
8991 }
8992
8993 /* If we have (shift (logical)), move the logical to the outside
8994 to allow it to possibly combine with another logical and the
8995 shift to combine with another shift. This also canonicalizes to
8996 what a ZERO_EXTRACT looks like. Also, some machines have
8997 (and (shift)) insns. */
8998
8999 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9000 /* We can't do this if we have (ashiftrt (xor)) and the
9001 constant has its sign bit set in shift_mode. */
9002 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9003 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9004 shift_mode))
9005 && (new = simplify_binary_operation (code, result_mode,
9006 XEXP (varop, 1),
9007 GEN_INT (count))) != 0
9008 && GET_CODE (new) == CONST_INT
9009 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9010 INTVAL (new), result_mode, &complement_p))
9011 {
9012 varop = XEXP (varop, 0);
9013 continue;
9014 }
9015
9016 /* If we can't do that, try to simplify the shift in each arm of the
9017 logical expression, make a new logical expression, and apply
9018 the inverse distributive law. This also can't be done
9019 for some (ashiftrt (xor)). */
9020 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9021 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9022 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9023 shift_mode)))
9024 {
9025 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9026 XEXP (varop, 0), count);
9027 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9028 XEXP (varop, 1), count);
9029
9030 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9031 lhs, rhs);
9032 varop = apply_distributive_law (varop);
9033
9034 count = 0;
9035 continue;
9036 }
9037 break;
9038
9039 case EQ:
9040 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9041 says that the sign bit can be tested, FOO has mode MODE, C is
9042 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9043 that may be nonzero. */
9044 if (code == LSHIFTRT
9045 && XEXP (varop, 1) == const0_rtx
9046 && GET_MODE (XEXP (varop, 0)) == result_mode
9047 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9048 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9049 && ((STORE_FLAG_VALUE
9050 & ((HOST_WIDE_INT) 1
9051 < (GET_MODE_BITSIZE (result_mode) - 1))))
9052 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9053 && merge_outer_ops (&outer_op, &outer_const, XOR,
9054 (HOST_WIDE_INT) 1, result_mode,
9055 &complement_p))
9056 {
9057 varop = XEXP (varop, 0);
9058 count = 0;
9059 continue;
9060 }
9061 break;
9062
9063 case NEG:
9064 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9065 than the number of bits in the mode is equivalent to A. */
9066 if (code == LSHIFTRT
9067 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9068 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9069 {
9070 varop = XEXP (varop, 0);
9071 count = 0;
9072 continue;
9073 }
9074
9075 /* NEG commutes with ASHIFT since it is multiplication. Move the
9076 NEG outside to allow shifts to combine. */
9077 if (code == ASHIFT
9078 && merge_outer_ops (&outer_op, &outer_const, NEG,
9079 (HOST_WIDE_INT) 0, result_mode,
9080 &complement_p))
9081 {
9082 varop = XEXP (varop, 0);
9083 continue;
9084 }
9085 break;
9086
9087 case PLUS:
9088 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9089 is one less than the number of bits in the mode is
9090 equivalent to (xor A 1). */
9091 if (code == LSHIFTRT
9092 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9093 && XEXP (varop, 1) == constm1_rtx
9094 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9095 && merge_outer_ops (&outer_op, &outer_const, XOR,
9096 (HOST_WIDE_INT) 1, result_mode,
9097 &complement_p))
9098 {
9099 count = 0;
9100 varop = XEXP (varop, 0);
9101 continue;
9102 }
9103
9104 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9105 that might be nonzero in BAR are those being shifted out and those
9106 bits are known zero in FOO, we can replace the PLUS with FOO.
9107 Similarly in the other operand order. This code occurs when
9108 we are computing the size of a variable-size array. */
9109
9110 if ((code == ASHIFTRT || code == LSHIFTRT)
9111 && count < HOST_BITS_PER_WIDE_INT
9112 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9113 && (nonzero_bits (XEXP (varop, 1), result_mode)
9114 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9115 {
9116 varop = XEXP (varop, 0);
9117 continue;
9118 }
9119 else if ((code == ASHIFTRT || code == LSHIFTRT)
9120 && count < HOST_BITS_PER_WIDE_INT
9121 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9122 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9123 >> count)
9124 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9125 & nonzero_bits (XEXP (varop, 1),
9126 result_mode)))
9127 {
9128 varop = XEXP (varop, 1);
9129 continue;
9130 }
9131
9132 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9133 if (code == ASHIFT
9134 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9135 && (new = simplify_binary_operation (ASHIFT, result_mode,
9136 XEXP (varop, 1),
9137 GEN_INT (count))) != 0
9138 && GET_CODE (new) == CONST_INT
9139 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9140 INTVAL (new), result_mode, &complement_p))
9141 {
9142 varop = XEXP (varop, 0);
9143 continue;
9144 }
9145
9146 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9147 signbit', and attempt to change the PLUS to an XOR and move it to
9148 the outer operation as is done above in the AND/IOR/XOR case
9149 leg for shift(logical). See details in logical handling above
9150 for reasoning in doing so. */
9151 if (code == LSHIFTRT
9152 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9153 && mode_signbit_p (result_mode, XEXP (varop, 1))
9154 && (new = simplify_binary_operation (code, result_mode,
9155 XEXP (varop, 1),
9156 GEN_INT (count))) != 0
9157 && GET_CODE (new) == CONST_INT
9158 && merge_outer_ops (&outer_op, &outer_const, XOR,
9159 INTVAL (new), result_mode, &complement_p))
9160 {
9161 varop = XEXP (varop, 0);
9162 continue;
9163 }
9164
9165 break;
9166
9167 case MINUS:
9168 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9169 with C the size of VAROP - 1 and the shift is logical if
9170 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9171 we have a (gt X 0) operation. If the shift is arithmetic with
9172 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9173 we have a (neg (gt X 0)) operation. */
9174
9175 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9176 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9177 && count == (unsigned int)
9178 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9179 && (code == LSHIFTRT || code == ASHIFTRT)
9180 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9181 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9182 == count
9183 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9184 {
9185 count = 0;
9186 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9187 const0_rtx);
9188
9189 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9190 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9191
9192 continue;
9193 }
9194 break;
9195
9196 case TRUNCATE:
9197 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9198 if the truncate does not affect the value. */
9199 if (code == LSHIFTRT
9200 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9201 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9202 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9203 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9204 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9205 {
9206 rtx varop_inner = XEXP (varop, 0);
9207
9208 varop_inner
9209 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9210 XEXP (varop_inner, 0),
9211 GEN_INT
9212 (count + INTVAL (XEXP (varop_inner, 1))));
9213 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9214 count = 0;
9215 continue;
9216 }
9217 break;
9218
9219 default:
9220 break;
9221 }
9222
9223 break;
9224 }
9225
9226 /* We need to determine what mode to do the shift in. If the shift is
9227 a right shift or ROTATE, we must always do it in the mode it was
9228 originally done in. Otherwise, we can do it in MODE, the widest mode
9229 encountered. The code we care about is that of the shift that will
9230 actually be done, not the shift that was originally requested. */
9231 shift_mode
9232 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9233 ? result_mode : mode);
9234
9235 /* We have now finished analyzing the shift. The result should be
9236 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9237 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9238 to the result of the shift. OUTER_CONST is the relevant constant,
9239 but we must turn off all bits turned off in the shift.
9240
9241 If we were passed a value for X, see if we can use any pieces of
9242 it. If not, make new rtx. */
9243
9244 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9245 && GET_CODE (XEXP (x, 1)) == CONST_INT
9246 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9247 const_rtx = XEXP (x, 1);
9248 else
9249 const_rtx = GEN_INT (count);
9250
9251 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9252 && GET_MODE (XEXP (x, 0)) == shift_mode
9253 && SUBREG_REG (XEXP (x, 0)) == varop)
9254 varop = XEXP (x, 0);
9255 else if (GET_MODE (varop) != shift_mode)
9256 varop = gen_lowpart (shift_mode, varop);
9257
9258 /* If we can't make the SUBREG, try to return what we were given. */
9259 if (GET_CODE (varop) == CLOBBER)
9260 return x ? x : varop;
9261
9262 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9263 if (new != 0)
9264 x = new;
9265 else
9266 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9267
9268 /* If we have an outer operation and we just made a shift, it is
9269 possible that we could have simplified the shift were it not
9270 for the outer operation. So try to do the simplification
9271 recursively. */
9272
9273 if (outer_op != UNKNOWN && GET_CODE (x) == code
9274 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9275 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9276 INTVAL (XEXP (x, 1)));
9277
9278 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9279 turn off all the bits that the shift would have turned off. */
9280 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9281 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9282 GET_MODE_MASK (result_mode) >> orig_count);
9283
9284 /* Do the remainder of the processing in RESULT_MODE. */
9285 x = gen_lowpart (result_mode, x);
9286
9287 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9288 operation. */
9289 if (complement_p)
9290 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9291
9292 if (outer_op != UNKNOWN)
9293 {
9294 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9295 outer_const = trunc_int_for_mode (outer_const, result_mode);
9296
9297 if (outer_op == AND)
9298 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9299 else if (outer_op == SET)
9300 /* This means that we have determined that the result is
9301 equivalent to a constant. This should be rare. */
9302 x = GEN_INT (outer_const);
9303 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9304 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9305 else
9306 x = simplify_gen_binary (outer_op, result_mode, x,
9307 GEN_INT (outer_const));
9308 }
9309
9310 return x;
9311 }
9312 \f
9313 /* Like recog, but we receive the address of a pointer to a new pattern.
9314 We try to match the rtx that the pointer points to.
9315 If that fails, we may try to modify or replace the pattern,
9316 storing the replacement into the same pointer object.
9317
9318 Modifications include deletion or addition of CLOBBERs.
9319
9320 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9321 the CLOBBERs are placed.
9322
9323 The value is the final insn code from the pattern ultimately matched,
9324 or -1. */
9325
9326 static int
9327 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9328 {
9329 rtx pat = *pnewpat;
9330 int insn_code_number;
9331 int num_clobbers_to_add = 0;
9332 int i;
9333 rtx notes = 0;
9334 rtx old_notes, old_pat;
9335
9336 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9337 we use to indicate that something didn't match. If we find such a
9338 thing, force rejection. */
9339 if (GET_CODE (pat) == PARALLEL)
9340 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9341 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9342 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9343 return -1;
9344
9345 old_pat = PATTERN (insn);
9346 old_notes = REG_NOTES (insn);
9347 PATTERN (insn) = pat;
9348 REG_NOTES (insn) = 0;
9349
9350 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9351
9352 /* If it isn't, there is the possibility that we previously had an insn
9353 that clobbered some register as a side effect, but the combined
9354 insn doesn't need to do that. So try once more without the clobbers
9355 unless this represents an ASM insn. */
9356
9357 if (insn_code_number < 0 && ! check_asm_operands (pat)
9358 && GET_CODE (pat) == PARALLEL)
9359 {
9360 int pos;
9361
9362 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9363 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9364 {
9365 if (i != pos)
9366 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9367 pos++;
9368 }
9369
9370 SUBST_INT (XVECLEN (pat, 0), pos);
9371
9372 if (pos == 1)
9373 pat = XVECEXP (pat, 0, 0);
9374
9375 PATTERN (insn) = pat;
9376 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9377 }
9378 PATTERN (insn) = old_pat;
9379 REG_NOTES (insn) = old_notes;
9380
9381 /* Recognize all noop sets, these will be killed by followup pass. */
9382 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9383 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9384
9385 /* If we had any clobbers to add, make a new pattern than contains
9386 them. Then check to make sure that all of them are dead. */
9387 if (num_clobbers_to_add)
9388 {
9389 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9390 rtvec_alloc (GET_CODE (pat) == PARALLEL
9391 ? (XVECLEN (pat, 0)
9392 + num_clobbers_to_add)
9393 : num_clobbers_to_add + 1));
9394
9395 if (GET_CODE (pat) == PARALLEL)
9396 for (i = 0; i < XVECLEN (pat, 0); i++)
9397 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9398 else
9399 XVECEXP (newpat, 0, 0) = pat;
9400
9401 add_clobbers (newpat, insn_code_number);
9402
9403 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9404 i < XVECLEN (newpat, 0); i++)
9405 {
9406 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9407 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9408 return -1;
9409 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9410 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9411 }
9412 pat = newpat;
9413 }
9414
9415 *pnewpat = pat;
9416 *pnotes = notes;
9417
9418 return insn_code_number;
9419 }
9420 \f
9421 /* Like gen_lowpart_general but for use by combine. In combine it
9422 is not possible to create any new pseudoregs. However, it is
9423 safe to create invalid memory addresses, because combine will
9424 try to recognize them and all they will do is make the combine
9425 attempt fail.
9426
9427 If for some reason this cannot do its job, an rtx
9428 (clobber (const_int 0)) is returned.
9429 An insn containing that will not be recognized. */
9430
9431 static rtx
9432 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9433 {
9434 enum machine_mode imode = GET_MODE (x);
9435 unsigned int osize = GET_MODE_SIZE (omode);
9436 unsigned int isize = GET_MODE_SIZE (imode);
9437 rtx result;
9438
9439 if (omode == imode)
9440 return x;
9441
9442 /* Return identity if this is a CONST or symbolic reference. */
9443 if (omode == Pmode
9444 && (GET_CODE (x) == CONST
9445 || GET_CODE (x) == SYMBOL_REF
9446 || GET_CODE (x) == LABEL_REF))
9447 return x;
9448
9449 /* We can only support MODE being wider than a word if X is a
9450 constant integer or has a mode the same size. */
9451 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9452 && ! ((imode == VOIDmode
9453 && (GET_CODE (x) == CONST_INT
9454 || GET_CODE (x) == CONST_DOUBLE))
9455 || isize == osize))
9456 goto fail;
9457
9458 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9459 won't know what to do. So we will strip off the SUBREG here and
9460 process normally. */
9461 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9462 {
9463 x = SUBREG_REG (x);
9464
9465 /* For use in case we fall down into the address adjustments
9466 further below, we need to adjust the known mode and size of
9467 x; imode and isize, since we just adjusted x. */
9468 imode = GET_MODE (x);
9469
9470 if (imode == omode)
9471 return x;
9472
9473 isize = GET_MODE_SIZE (imode);
9474 }
9475
9476 result = gen_lowpart_common (omode, x);
9477
9478 #ifdef CANNOT_CHANGE_MODE_CLASS
9479 if (result != 0 && GET_CODE (result) == SUBREG)
9480 record_subregs_of_mode (result);
9481 #endif
9482
9483 if (result)
9484 return result;
9485
9486 if (MEM_P (x))
9487 {
9488 int offset = 0;
9489
9490 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9491 address. */
9492 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9493 goto fail;
9494
9495 /* If we want to refer to something bigger than the original memref,
9496 generate a paradoxical subreg instead. That will force a reload
9497 of the original memref X. */
9498 if (isize < osize)
9499 return gen_rtx_SUBREG (omode, x, 0);
9500
9501 if (WORDS_BIG_ENDIAN)
9502 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9503
9504 /* Adjust the address so that the address-after-the-data is
9505 unchanged. */
9506 if (BYTES_BIG_ENDIAN)
9507 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9508
9509 return adjust_address_nv (x, omode, offset);
9510 }
9511
9512 /* If X is a comparison operator, rewrite it in a new mode. This
9513 probably won't match, but may allow further simplifications. */
9514 else if (COMPARISON_P (x))
9515 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9516
9517 /* If we couldn't simplify X any other way, just enclose it in a
9518 SUBREG. Normally, this SUBREG won't match, but some patterns may
9519 include an explicit SUBREG or we may simplify it further in combine. */
9520 else
9521 {
9522 int offset = 0;
9523 rtx res;
9524
9525 offset = subreg_lowpart_offset (omode, imode);
9526 if (imode == VOIDmode)
9527 {
9528 imode = int_mode_for_mode (omode);
9529 x = gen_lowpart_common (imode, x);
9530 if (x == NULL)
9531 goto fail;
9532 }
9533 res = simplify_gen_subreg (omode, x, imode, offset);
9534 if (res)
9535 return res;
9536 }
9537
9538 fail:
9539 return gen_rtx_CLOBBER (imode, const0_rtx);
9540 }
9541 \f
9542 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9543 comparison code that will be tested.
9544
9545 The result is a possibly different comparison code to use. *POP0 and
9546 *POP1 may be updated.
9547
9548 It is possible that we might detect that a comparison is either always
9549 true or always false. However, we do not perform general constant
9550 folding in combine, so this knowledge isn't useful. Such tautologies
9551 should have been detected earlier. Hence we ignore all such cases. */
9552
9553 static enum rtx_code
9554 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9555 {
9556 rtx op0 = *pop0;
9557 rtx op1 = *pop1;
9558 rtx tem, tem1;
9559 int i;
9560 enum machine_mode mode, tmode;
9561
9562 /* Try a few ways of applying the same transformation to both operands. */
9563 while (1)
9564 {
9565 #ifndef WORD_REGISTER_OPERATIONS
9566 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9567 so check specially. */
9568 if (code != GTU && code != GEU && code != LTU && code != LEU
9569 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9570 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9571 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9572 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9573 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9574 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9575 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9576 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9577 && XEXP (op0, 1) == XEXP (op1, 1)
9578 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9579 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9580 && (INTVAL (XEXP (op0, 1))
9581 == (GET_MODE_BITSIZE (GET_MODE (op0))
9582 - (GET_MODE_BITSIZE
9583 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9584 {
9585 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9586 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9587 }
9588 #endif
9589
9590 /* If both operands are the same constant shift, see if we can ignore the
9591 shift. We can if the shift is a rotate or if the bits shifted out of
9592 this shift are known to be zero for both inputs and if the type of
9593 comparison is compatible with the shift. */
9594 if (GET_CODE (op0) == GET_CODE (op1)
9595 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9596 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9597 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9598 && (code != GT && code != LT && code != GE && code != LE))
9599 || (GET_CODE (op0) == ASHIFTRT
9600 && (code != GTU && code != LTU
9601 && code != GEU && code != LEU)))
9602 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9603 && INTVAL (XEXP (op0, 1)) >= 0
9604 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9605 && XEXP (op0, 1) == XEXP (op1, 1))
9606 {
9607 enum machine_mode mode = GET_MODE (op0);
9608 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9609 int shift_count = INTVAL (XEXP (op0, 1));
9610
9611 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9612 mask &= (mask >> shift_count) << shift_count;
9613 else if (GET_CODE (op0) == ASHIFT)
9614 mask = (mask & (mask << shift_count)) >> shift_count;
9615
9616 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9617 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9618 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9619 else
9620 break;
9621 }
9622
9623 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9624 SUBREGs are of the same mode, and, in both cases, the AND would
9625 be redundant if the comparison was done in the narrower mode,
9626 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9627 and the operand's possibly nonzero bits are 0xffffff01; in that case
9628 if we only care about QImode, we don't need the AND). This case
9629 occurs if the output mode of an scc insn is not SImode and
9630 STORE_FLAG_VALUE == 1 (e.g., the 386).
9631
9632 Similarly, check for a case where the AND's are ZERO_EXTEND
9633 operations from some narrower mode even though a SUBREG is not
9634 present. */
9635
9636 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9637 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9638 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9639 {
9640 rtx inner_op0 = XEXP (op0, 0);
9641 rtx inner_op1 = XEXP (op1, 0);
9642 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9643 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9644 int changed = 0;
9645
9646 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9647 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9648 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9649 && (GET_MODE (SUBREG_REG (inner_op0))
9650 == GET_MODE (SUBREG_REG (inner_op1)))
9651 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9652 <= HOST_BITS_PER_WIDE_INT)
9653 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9654 GET_MODE (SUBREG_REG (inner_op0)))))
9655 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9656 GET_MODE (SUBREG_REG (inner_op1))))))
9657 {
9658 op0 = SUBREG_REG (inner_op0);
9659 op1 = SUBREG_REG (inner_op1);
9660
9661 /* The resulting comparison is always unsigned since we masked
9662 off the original sign bit. */
9663 code = unsigned_condition (code);
9664
9665 changed = 1;
9666 }
9667
9668 else if (c0 == c1)
9669 for (tmode = GET_CLASS_NARROWEST_MODE
9670 (GET_MODE_CLASS (GET_MODE (op0)));
9671 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9672 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9673 {
9674 op0 = gen_lowpart (tmode, inner_op0);
9675 op1 = gen_lowpart (tmode, inner_op1);
9676 code = unsigned_condition (code);
9677 changed = 1;
9678 break;
9679 }
9680
9681 if (! changed)
9682 break;
9683 }
9684
9685 /* If both operands are NOT, we can strip off the outer operation
9686 and adjust the comparison code for swapped operands; similarly for
9687 NEG, except that this must be an equality comparison. */
9688 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9689 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9690 && (code == EQ || code == NE)))
9691 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9692
9693 else
9694 break;
9695 }
9696
9697 /* If the first operand is a constant, swap the operands and adjust the
9698 comparison code appropriately, but don't do this if the second operand
9699 is already a constant integer. */
9700 if (swap_commutative_operands_p (op0, op1))
9701 {
9702 tem = op0, op0 = op1, op1 = tem;
9703 code = swap_condition (code);
9704 }
9705
9706 /* We now enter a loop during which we will try to simplify the comparison.
9707 For the most part, we only are concerned with comparisons with zero,
9708 but some things may really be comparisons with zero but not start
9709 out looking that way. */
9710
9711 while (GET_CODE (op1) == CONST_INT)
9712 {
9713 enum machine_mode mode = GET_MODE (op0);
9714 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9715 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9716 int equality_comparison_p;
9717 int sign_bit_comparison_p;
9718 int unsigned_comparison_p;
9719 HOST_WIDE_INT const_op;
9720
9721 /* We only want to handle integral modes. This catches VOIDmode,
9722 CCmode, and the floating-point modes. An exception is that we
9723 can handle VOIDmode if OP0 is a COMPARE or a comparison
9724 operation. */
9725
9726 if (GET_MODE_CLASS (mode) != MODE_INT
9727 && ! (mode == VOIDmode
9728 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9729 break;
9730
9731 /* Get the constant we are comparing against and turn off all bits
9732 not on in our mode. */
9733 const_op = INTVAL (op1);
9734 if (mode != VOIDmode)
9735 const_op = trunc_int_for_mode (const_op, mode);
9736 op1 = GEN_INT (const_op);
9737
9738 /* If we are comparing against a constant power of two and the value
9739 being compared can only have that single bit nonzero (e.g., it was
9740 `and'ed with that bit), we can replace this with a comparison
9741 with zero. */
9742 if (const_op
9743 && (code == EQ || code == NE || code == GE || code == GEU
9744 || code == LT || code == LTU)
9745 && mode_width <= HOST_BITS_PER_WIDE_INT
9746 && exact_log2 (const_op) >= 0
9747 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9748 {
9749 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9750 op1 = const0_rtx, const_op = 0;
9751 }
9752
9753 /* Similarly, if we are comparing a value known to be either -1 or
9754 0 with -1, change it to the opposite comparison against zero. */
9755
9756 if (const_op == -1
9757 && (code == EQ || code == NE || code == GT || code == LE
9758 || code == GEU || code == LTU)
9759 && num_sign_bit_copies (op0, mode) == mode_width)
9760 {
9761 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9762 op1 = const0_rtx, const_op = 0;
9763 }
9764
9765 /* Do some canonicalizations based on the comparison code. We prefer
9766 comparisons against zero and then prefer equality comparisons.
9767 If we can reduce the size of a constant, we will do that too. */
9768
9769 switch (code)
9770 {
9771 case LT:
9772 /* < C is equivalent to <= (C - 1) */
9773 if (const_op > 0)
9774 {
9775 const_op -= 1;
9776 op1 = GEN_INT (const_op);
9777 code = LE;
9778 /* ... fall through to LE case below. */
9779 }
9780 else
9781 break;
9782
9783 case LE:
9784 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9785 if (const_op < 0)
9786 {
9787 const_op += 1;
9788 op1 = GEN_INT (const_op);
9789 code = LT;
9790 }
9791
9792 /* If we are doing a <= 0 comparison on a value known to have
9793 a zero sign bit, we can replace this with == 0. */
9794 else if (const_op == 0
9795 && mode_width <= HOST_BITS_PER_WIDE_INT
9796 && (nonzero_bits (op0, mode)
9797 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9798 code = EQ;
9799 break;
9800
9801 case GE:
9802 /* >= C is equivalent to > (C - 1). */
9803 if (const_op > 0)
9804 {
9805 const_op -= 1;
9806 op1 = GEN_INT (const_op);
9807 code = GT;
9808 /* ... fall through to GT below. */
9809 }
9810 else
9811 break;
9812
9813 case GT:
9814 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9815 if (const_op < 0)
9816 {
9817 const_op += 1;
9818 op1 = GEN_INT (const_op);
9819 code = GE;
9820 }
9821
9822 /* If we are doing a > 0 comparison on a value known to have
9823 a zero sign bit, we can replace this with != 0. */
9824 else if (const_op == 0
9825 && mode_width <= HOST_BITS_PER_WIDE_INT
9826 && (nonzero_bits (op0, mode)
9827 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9828 code = NE;
9829 break;
9830
9831 case LTU:
9832 /* < C is equivalent to <= (C - 1). */
9833 if (const_op > 0)
9834 {
9835 const_op -= 1;
9836 op1 = GEN_INT (const_op);
9837 code = LEU;
9838 /* ... fall through ... */
9839 }
9840
9841 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9842 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9843 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9844 {
9845 const_op = 0, op1 = const0_rtx;
9846 code = GE;
9847 break;
9848 }
9849 else
9850 break;
9851
9852 case LEU:
9853 /* unsigned <= 0 is equivalent to == 0 */
9854 if (const_op == 0)
9855 code = EQ;
9856
9857 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9858 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9859 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9860 {
9861 const_op = 0, op1 = const0_rtx;
9862 code = GE;
9863 }
9864 break;
9865
9866 case GEU:
9867 /* >= C is equivalent to > (C - 1). */
9868 if (const_op > 1)
9869 {
9870 const_op -= 1;
9871 op1 = GEN_INT (const_op);
9872 code = GTU;
9873 /* ... fall through ... */
9874 }
9875
9876 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9877 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9878 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9879 {
9880 const_op = 0, op1 = const0_rtx;
9881 code = LT;
9882 break;
9883 }
9884 else
9885 break;
9886
9887 case GTU:
9888 /* unsigned > 0 is equivalent to != 0 */
9889 if (const_op == 0)
9890 code = NE;
9891
9892 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9893 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9894 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9895 {
9896 const_op = 0, op1 = const0_rtx;
9897 code = LT;
9898 }
9899 break;
9900
9901 default:
9902 break;
9903 }
9904
9905 /* Compute some predicates to simplify code below. */
9906
9907 equality_comparison_p = (code == EQ || code == NE);
9908 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9909 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9910 || code == GEU);
9911
9912 /* If this is a sign bit comparison and we can do arithmetic in
9913 MODE, say that we will only be needing the sign bit of OP0. */
9914 if (sign_bit_comparison_p
9915 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9916 op0 = force_to_mode (op0, mode,
9917 ((HOST_WIDE_INT) 1
9918 << (GET_MODE_BITSIZE (mode) - 1)),
9919 NULL_RTX, 0);
9920
9921 /* Now try cases based on the opcode of OP0. If none of the cases
9922 does a "continue", we exit this loop immediately after the
9923 switch. */
9924
9925 switch (GET_CODE (op0))
9926 {
9927 case ZERO_EXTRACT:
9928 /* If we are extracting a single bit from a variable position in
9929 a constant that has only a single bit set and are comparing it
9930 with zero, we can convert this into an equality comparison
9931 between the position and the location of the single bit. */
9932 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9933 have already reduced the shift count modulo the word size. */
9934 if (!SHIFT_COUNT_TRUNCATED
9935 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9936 && XEXP (op0, 1) == const1_rtx
9937 && equality_comparison_p && const_op == 0
9938 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9939 {
9940 if (BITS_BIG_ENDIAN)
9941 {
9942 enum machine_mode new_mode
9943 = mode_for_extraction (EP_extzv, 1);
9944 if (new_mode == MAX_MACHINE_MODE)
9945 i = BITS_PER_WORD - 1 - i;
9946 else
9947 {
9948 mode = new_mode;
9949 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9950 }
9951 }
9952
9953 op0 = XEXP (op0, 2);
9954 op1 = GEN_INT (i);
9955 const_op = i;
9956
9957 /* Result is nonzero iff shift count is equal to I. */
9958 code = reverse_condition (code);
9959 continue;
9960 }
9961
9962 /* ... fall through ... */
9963
9964 case SIGN_EXTRACT:
9965 tem = expand_compound_operation (op0);
9966 if (tem != op0)
9967 {
9968 op0 = tem;
9969 continue;
9970 }
9971 break;
9972
9973 case NOT:
9974 /* If testing for equality, we can take the NOT of the constant. */
9975 if (equality_comparison_p
9976 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9977 {
9978 op0 = XEXP (op0, 0);
9979 op1 = tem;
9980 continue;
9981 }
9982
9983 /* If just looking at the sign bit, reverse the sense of the
9984 comparison. */
9985 if (sign_bit_comparison_p)
9986 {
9987 op0 = XEXP (op0, 0);
9988 code = (code == GE ? LT : GE);
9989 continue;
9990 }
9991 break;
9992
9993 case NEG:
9994 /* If testing for equality, we can take the NEG of the constant. */
9995 if (equality_comparison_p
9996 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9997 {
9998 op0 = XEXP (op0, 0);
9999 op1 = tem;
10000 continue;
10001 }
10002
10003 /* The remaining cases only apply to comparisons with zero. */
10004 if (const_op != 0)
10005 break;
10006
10007 /* When X is ABS or is known positive,
10008 (neg X) is < 0 if and only if X != 0. */
10009
10010 if (sign_bit_comparison_p
10011 && (GET_CODE (XEXP (op0, 0)) == ABS
10012 || (mode_width <= HOST_BITS_PER_WIDE_INT
10013 && (nonzero_bits (XEXP (op0, 0), mode)
10014 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10015 {
10016 op0 = XEXP (op0, 0);
10017 code = (code == LT ? NE : EQ);
10018 continue;
10019 }
10020
10021 /* If we have NEG of something whose two high-order bits are the
10022 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10023 if (num_sign_bit_copies (op0, mode) >= 2)
10024 {
10025 op0 = XEXP (op0, 0);
10026 code = swap_condition (code);
10027 continue;
10028 }
10029 break;
10030
10031 case ROTATE:
10032 /* If we are testing equality and our count is a constant, we
10033 can perform the inverse operation on our RHS. */
10034 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10035 && (tem = simplify_binary_operation (ROTATERT, mode,
10036 op1, XEXP (op0, 1))) != 0)
10037 {
10038 op0 = XEXP (op0, 0);
10039 op1 = tem;
10040 continue;
10041 }
10042
10043 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10044 a particular bit. Convert it to an AND of a constant of that
10045 bit. This will be converted into a ZERO_EXTRACT. */
10046 if (const_op == 0 && sign_bit_comparison_p
10047 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10048 && mode_width <= HOST_BITS_PER_WIDE_INT)
10049 {
10050 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10051 ((HOST_WIDE_INT) 1
10052 << (mode_width - 1
10053 - INTVAL (XEXP (op0, 1)))));
10054 code = (code == LT ? NE : EQ);
10055 continue;
10056 }
10057
10058 /* Fall through. */
10059
10060 case ABS:
10061 /* ABS is ignorable inside an equality comparison with zero. */
10062 if (const_op == 0 && equality_comparison_p)
10063 {
10064 op0 = XEXP (op0, 0);
10065 continue;
10066 }
10067 break;
10068
10069 case SIGN_EXTEND:
10070 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10071 (compare FOO CONST) if CONST fits in FOO's mode and we
10072 are either testing inequality or have an unsigned
10073 comparison with ZERO_EXTEND or a signed comparison with
10074 SIGN_EXTEND. But don't do it if we don't have a compare
10075 insn of the given mode, since we'd have to revert it
10076 later on, and then we wouldn't know whether to sign- or
10077 zero-extend. */
10078 mode = GET_MODE (XEXP (op0, 0));
10079 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10080 && ! unsigned_comparison_p
10081 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10082 && ((unsigned HOST_WIDE_INT) const_op
10083 < (((unsigned HOST_WIDE_INT) 1
10084 << (GET_MODE_BITSIZE (mode) - 1))))
10085 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10086 {
10087 op0 = XEXP (op0, 0);
10088 continue;
10089 }
10090 break;
10091
10092 case SUBREG:
10093 /* Check for the case where we are comparing A - C1 with C2, that is
10094
10095 (subreg:MODE (plus (A) (-C1))) op (C2)
10096
10097 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10098 comparison in the wider mode. One of the following two conditions
10099 must be true in order for this to be valid:
10100
10101 1. The mode extension results in the same bit pattern being added
10102 on both sides and the comparison is equality or unsigned. As
10103 C2 has been truncated to fit in MODE, the pattern can only be
10104 all 0s or all 1s.
10105
10106 2. The mode extension results in the sign bit being copied on
10107 each side.
10108
10109 The difficulty here is that we have predicates for A but not for
10110 (A - C1) so we need to check that C1 is within proper bounds so
10111 as to perturbate A as little as possible. */
10112
10113 if (mode_width <= HOST_BITS_PER_WIDE_INT
10114 && subreg_lowpart_p (op0)
10115 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10116 && GET_CODE (SUBREG_REG (op0)) == PLUS
10117 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10118 {
10119 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10120 rtx a = XEXP (SUBREG_REG (op0), 0);
10121 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10122
10123 if ((c1 > 0
10124 && (unsigned HOST_WIDE_INT) c1
10125 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10126 && (equality_comparison_p || unsigned_comparison_p)
10127 /* (A - C1) zero-extends if it is positive and sign-extends
10128 if it is negative, C2 both zero- and sign-extends. */
10129 && ((0 == (nonzero_bits (a, inner_mode)
10130 & ~GET_MODE_MASK (mode))
10131 && const_op >= 0)
10132 /* (A - C1) sign-extends if it is positive and 1-extends
10133 if it is negative, C2 both sign- and 1-extends. */
10134 || (num_sign_bit_copies (a, inner_mode)
10135 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10136 - mode_width)
10137 && const_op < 0)))
10138 || ((unsigned HOST_WIDE_INT) c1
10139 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10140 /* (A - C1) always sign-extends, like C2. */
10141 && num_sign_bit_copies (a, inner_mode)
10142 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10143 - mode_width - 1)))
10144 {
10145 op0 = SUBREG_REG (op0);
10146 continue;
10147 }
10148 }
10149
10150 /* If the inner mode is narrower and we are extracting the low part,
10151 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10152 if (subreg_lowpart_p (op0)
10153 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10154 /* Fall through */ ;
10155 else
10156 break;
10157
10158 /* ... fall through ... */
10159
10160 case ZERO_EXTEND:
10161 mode = GET_MODE (XEXP (op0, 0));
10162 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10163 && (unsigned_comparison_p || equality_comparison_p)
10164 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10165 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10166 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10167 {
10168 op0 = XEXP (op0, 0);
10169 continue;
10170 }
10171 break;
10172
10173 case PLUS:
10174 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10175 this for equality comparisons due to pathological cases involving
10176 overflows. */
10177 if (equality_comparison_p
10178 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10179 op1, XEXP (op0, 1))))
10180 {
10181 op0 = XEXP (op0, 0);
10182 op1 = tem;
10183 continue;
10184 }
10185
10186 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10187 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10188 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10189 {
10190 op0 = XEXP (XEXP (op0, 0), 0);
10191 code = (code == LT ? EQ : NE);
10192 continue;
10193 }
10194 break;
10195
10196 case MINUS:
10197 /* We used to optimize signed comparisons against zero, but that
10198 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10199 arrive here as equality comparisons, or (GEU, LTU) are
10200 optimized away. No need to special-case them. */
10201
10202 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10203 (eq B (minus A C)), whichever simplifies. We can only do
10204 this for equality comparisons due to pathological cases involving
10205 overflows. */
10206 if (equality_comparison_p
10207 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10208 XEXP (op0, 1), op1)))
10209 {
10210 op0 = XEXP (op0, 0);
10211 op1 = tem;
10212 continue;
10213 }
10214
10215 if (equality_comparison_p
10216 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10217 XEXP (op0, 0), op1)))
10218 {
10219 op0 = XEXP (op0, 1);
10220 op1 = tem;
10221 continue;
10222 }
10223
10224 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10225 of bits in X minus 1, is one iff X > 0. */
10226 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10227 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10228 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10229 == mode_width - 1
10230 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10231 {
10232 op0 = XEXP (op0, 1);
10233 code = (code == GE ? LE : GT);
10234 continue;
10235 }
10236 break;
10237
10238 case XOR:
10239 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10240 if C is zero or B is a constant. */
10241 if (equality_comparison_p
10242 && 0 != (tem = simplify_binary_operation (XOR, mode,
10243 XEXP (op0, 1), op1)))
10244 {
10245 op0 = XEXP (op0, 0);
10246 op1 = tem;
10247 continue;
10248 }
10249 break;
10250
10251 case EQ: case NE:
10252 case UNEQ: case LTGT:
10253 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10254 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10255 case UNORDERED: case ORDERED:
10256 /* We can't do anything if OP0 is a condition code value, rather
10257 than an actual data value. */
10258 if (const_op != 0
10259 || CC0_P (XEXP (op0, 0))
10260 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10261 break;
10262
10263 /* Get the two operands being compared. */
10264 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10265 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10266 else
10267 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10268
10269 /* Check for the cases where we simply want the result of the
10270 earlier test or the opposite of that result. */
10271 if (code == NE || code == EQ
10272 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10273 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10274 && (STORE_FLAG_VALUE
10275 & (((HOST_WIDE_INT) 1
10276 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10277 && (code == LT || code == GE)))
10278 {
10279 enum rtx_code new_code;
10280 if (code == LT || code == NE)
10281 new_code = GET_CODE (op0);
10282 else
10283 new_code = reversed_comparison_code (op0, NULL);
10284
10285 if (new_code != UNKNOWN)
10286 {
10287 code = new_code;
10288 op0 = tem;
10289 op1 = tem1;
10290 continue;
10291 }
10292 }
10293 break;
10294
10295 case IOR:
10296 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10297 iff X <= 0. */
10298 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10299 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10300 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10301 {
10302 op0 = XEXP (op0, 1);
10303 code = (code == GE ? GT : LE);
10304 continue;
10305 }
10306 break;
10307
10308 case AND:
10309 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10310 will be converted to a ZERO_EXTRACT later. */
10311 if (const_op == 0 && equality_comparison_p
10312 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10313 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10314 {
10315 op0 = simplify_and_const_int
10316 (op0, mode, gen_rtx_LSHIFTRT (mode,
10317 XEXP (op0, 1),
10318 XEXP (XEXP (op0, 0), 1)),
10319 (HOST_WIDE_INT) 1);
10320 continue;
10321 }
10322
10323 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10324 zero and X is a comparison and C1 and C2 describe only bits set
10325 in STORE_FLAG_VALUE, we can compare with X. */
10326 if (const_op == 0 && equality_comparison_p
10327 && mode_width <= HOST_BITS_PER_WIDE_INT
10328 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10329 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10330 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10331 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10332 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10333 {
10334 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10335 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10336 if ((~STORE_FLAG_VALUE & mask) == 0
10337 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10338 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10339 && COMPARISON_P (tem))))
10340 {
10341 op0 = XEXP (XEXP (op0, 0), 0);
10342 continue;
10343 }
10344 }
10345
10346 /* If we are doing an equality comparison of an AND of a bit equal
10347 to the sign bit, replace this with a LT or GE comparison of
10348 the underlying value. */
10349 if (equality_comparison_p
10350 && const_op == 0
10351 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10352 && mode_width <= HOST_BITS_PER_WIDE_INT
10353 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10354 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10355 {
10356 op0 = XEXP (op0, 0);
10357 code = (code == EQ ? GE : LT);
10358 continue;
10359 }
10360
10361 /* If this AND operation is really a ZERO_EXTEND from a narrower
10362 mode, the constant fits within that mode, and this is either an
10363 equality or unsigned comparison, try to do this comparison in
10364 the narrower mode. */
10365 if ((equality_comparison_p || unsigned_comparison_p)
10366 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10367 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10368 & GET_MODE_MASK (mode))
10369 + 1)) >= 0
10370 && const_op >> i == 0
10371 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10372 {
10373 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10374 continue;
10375 }
10376
10377 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10378 fits in both M1 and M2 and the SUBREG is either paradoxical
10379 or represents the low part, permute the SUBREG and the AND
10380 and try again. */
10381 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10382 {
10383 unsigned HOST_WIDE_INT c1;
10384 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10385 /* Require an integral mode, to avoid creating something like
10386 (AND:SF ...). */
10387 if (SCALAR_INT_MODE_P (tmode)
10388 /* It is unsafe to commute the AND into the SUBREG if the
10389 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10390 not defined. As originally written the upper bits
10391 have a defined value due to the AND operation.
10392 However, if we commute the AND inside the SUBREG then
10393 they no longer have defined values and the meaning of
10394 the code has been changed. */
10395 && (0
10396 #ifdef WORD_REGISTER_OPERATIONS
10397 || (mode_width > GET_MODE_BITSIZE (tmode)
10398 && mode_width <= BITS_PER_WORD)
10399 #endif
10400 || (mode_width <= GET_MODE_BITSIZE (tmode)
10401 && subreg_lowpart_p (XEXP (op0, 0))))
10402 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10403 && mode_width <= HOST_BITS_PER_WIDE_INT
10404 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10405 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10406 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10407 && c1 != mask
10408 && c1 != GET_MODE_MASK (tmode))
10409 {
10410 op0 = simplify_gen_binary (AND, tmode,
10411 SUBREG_REG (XEXP (op0, 0)),
10412 gen_int_mode (c1, tmode));
10413 op0 = gen_lowpart (mode, op0);
10414 continue;
10415 }
10416 }
10417
10418 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10419 if (const_op == 0 && equality_comparison_p
10420 && XEXP (op0, 1) == const1_rtx
10421 && GET_CODE (XEXP (op0, 0)) == NOT)
10422 {
10423 op0 = simplify_and_const_int
10424 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10425 code = (code == NE ? EQ : NE);
10426 continue;
10427 }
10428
10429 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10430 (eq (and (lshiftrt X) 1) 0).
10431 Also handle the case where (not X) is expressed using xor. */
10432 if (const_op == 0 && equality_comparison_p
10433 && XEXP (op0, 1) == const1_rtx
10434 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10435 {
10436 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10437 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10438
10439 if (GET_CODE (shift_op) == NOT
10440 || (GET_CODE (shift_op) == XOR
10441 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10442 && GET_CODE (shift_count) == CONST_INT
10443 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10444 && (INTVAL (XEXP (shift_op, 1))
10445 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10446 {
10447 op0 = simplify_and_const_int
10448 (NULL_RTX, mode,
10449 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10450 (HOST_WIDE_INT) 1);
10451 code = (code == NE ? EQ : NE);
10452 continue;
10453 }
10454 }
10455 break;
10456
10457 case ASHIFT:
10458 /* If we have (compare (ashift FOO N) (const_int C)) and
10459 the high order N bits of FOO (N+1 if an inequality comparison)
10460 are known to be zero, we can do this by comparing FOO with C
10461 shifted right N bits so long as the low-order N bits of C are
10462 zero. */
10463 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10464 && INTVAL (XEXP (op0, 1)) >= 0
10465 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10466 < HOST_BITS_PER_WIDE_INT)
10467 && ((const_op
10468 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10469 && mode_width <= HOST_BITS_PER_WIDE_INT
10470 && (nonzero_bits (XEXP (op0, 0), mode)
10471 & ~(mask >> (INTVAL (XEXP (op0, 1))
10472 + ! equality_comparison_p))) == 0)
10473 {
10474 /* We must perform a logical shift, not an arithmetic one,
10475 as we want the top N bits of C to be zero. */
10476 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10477
10478 temp >>= INTVAL (XEXP (op0, 1));
10479 op1 = gen_int_mode (temp, mode);
10480 op0 = XEXP (op0, 0);
10481 continue;
10482 }
10483
10484 /* If we are doing a sign bit comparison, it means we are testing
10485 a particular bit. Convert it to the appropriate AND. */
10486 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10487 && mode_width <= HOST_BITS_PER_WIDE_INT)
10488 {
10489 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10490 ((HOST_WIDE_INT) 1
10491 << (mode_width - 1
10492 - INTVAL (XEXP (op0, 1)))));
10493 code = (code == LT ? NE : EQ);
10494 continue;
10495 }
10496
10497 /* If this an equality comparison with zero and we are shifting
10498 the low bit to the sign bit, we can convert this to an AND of the
10499 low-order bit. */
10500 if (const_op == 0 && equality_comparison_p
10501 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10502 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10503 == mode_width - 1)
10504 {
10505 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10506 (HOST_WIDE_INT) 1);
10507 continue;
10508 }
10509 break;
10510
10511 case ASHIFTRT:
10512 /* If this is an equality comparison with zero, we can do this
10513 as a logical shift, which might be much simpler. */
10514 if (equality_comparison_p && const_op == 0
10515 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10516 {
10517 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10518 XEXP (op0, 0),
10519 INTVAL (XEXP (op0, 1)));
10520 continue;
10521 }
10522
10523 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10524 do the comparison in a narrower mode. */
10525 if (! unsigned_comparison_p
10526 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10527 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10528 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10529 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10530 MODE_INT, 1)) != BLKmode
10531 && (((unsigned HOST_WIDE_INT) const_op
10532 + (GET_MODE_MASK (tmode) >> 1) + 1)
10533 <= GET_MODE_MASK (tmode)))
10534 {
10535 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10536 continue;
10537 }
10538
10539 /* Likewise if OP0 is a PLUS of a sign extension with a
10540 constant, which is usually represented with the PLUS
10541 between the shifts. */
10542 if (! unsigned_comparison_p
10543 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10544 && GET_CODE (XEXP (op0, 0)) == PLUS
10545 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10546 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10547 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10548 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10549 MODE_INT, 1)) != BLKmode
10550 && (((unsigned HOST_WIDE_INT) const_op
10551 + (GET_MODE_MASK (tmode) >> 1) + 1)
10552 <= GET_MODE_MASK (tmode)))
10553 {
10554 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10555 rtx add_const = XEXP (XEXP (op0, 0), 1);
10556 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10557 add_const, XEXP (op0, 1));
10558
10559 op0 = simplify_gen_binary (PLUS, tmode,
10560 gen_lowpart (tmode, inner),
10561 new_const);
10562 continue;
10563 }
10564
10565 /* ... fall through ... */
10566 case LSHIFTRT:
10567 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10568 the low order N bits of FOO are known to be zero, we can do this
10569 by comparing FOO with C shifted left N bits so long as no
10570 overflow occurs. */
10571 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10572 && INTVAL (XEXP (op0, 1)) >= 0
10573 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10574 && mode_width <= HOST_BITS_PER_WIDE_INT
10575 && (nonzero_bits (XEXP (op0, 0), mode)
10576 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10577 && (((unsigned HOST_WIDE_INT) const_op
10578 + (GET_CODE (op0) != LSHIFTRT
10579 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10580 + 1)
10581 : 0))
10582 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10583 {
10584 /* If the shift was logical, then we must make the condition
10585 unsigned. */
10586 if (GET_CODE (op0) == LSHIFTRT)
10587 code = unsigned_condition (code);
10588
10589 const_op <<= INTVAL (XEXP (op0, 1));
10590 op1 = GEN_INT (const_op);
10591 op0 = XEXP (op0, 0);
10592 continue;
10593 }
10594
10595 /* If we are using this shift to extract just the sign bit, we
10596 can replace this with an LT or GE comparison. */
10597 if (const_op == 0
10598 && (equality_comparison_p || sign_bit_comparison_p)
10599 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10600 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10601 == mode_width - 1)
10602 {
10603 op0 = XEXP (op0, 0);
10604 code = (code == NE || code == GT ? LT : GE);
10605 continue;
10606 }
10607 break;
10608
10609 default:
10610 break;
10611 }
10612
10613 break;
10614 }
10615
10616 /* Now make any compound operations involved in this comparison. Then,
10617 check for an outmost SUBREG on OP0 that is not doing anything or is
10618 paradoxical. The latter transformation must only be performed when
10619 it is known that the "extra" bits will be the same in op0 and op1 or
10620 that they don't matter. There are three cases to consider:
10621
10622 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10623 care bits and we can assume they have any convenient value. So
10624 making the transformation is safe.
10625
10626 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10627 In this case the upper bits of op0 are undefined. We should not make
10628 the simplification in that case as we do not know the contents of
10629 those bits.
10630
10631 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10632 UNKNOWN. In that case we know those bits are zeros or ones. We must
10633 also be sure that they are the same as the upper bits of op1.
10634
10635 We can never remove a SUBREG for a non-equality comparison because
10636 the sign bit is in a different place in the underlying object. */
10637
10638 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10639 op1 = make_compound_operation (op1, SET);
10640
10641 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10642 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10643 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10644 && (code == NE || code == EQ))
10645 {
10646 if (GET_MODE_SIZE (GET_MODE (op0))
10647 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10648 {
10649 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10650 implemented. */
10651 if (REG_P (SUBREG_REG (op0)))
10652 {
10653 op0 = SUBREG_REG (op0);
10654 op1 = gen_lowpart (GET_MODE (op0), op1);
10655 }
10656 }
10657 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10658 <= HOST_BITS_PER_WIDE_INT)
10659 && (nonzero_bits (SUBREG_REG (op0),
10660 GET_MODE (SUBREG_REG (op0)))
10661 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10662 {
10663 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10664
10665 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10666 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10667 op0 = SUBREG_REG (op0), op1 = tem;
10668 }
10669 }
10670
10671 /* We now do the opposite procedure: Some machines don't have compare
10672 insns in all modes. If OP0's mode is an integer mode smaller than a
10673 word and we can't do a compare in that mode, see if there is a larger
10674 mode for which we can do the compare. There are a number of cases in
10675 which we can use the wider mode. */
10676
10677 mode = GET_MODE (op0);
10678 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10679 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10680 && ! have_insn_for (COMPARE, mode))
10681 for (tmode = GET_MODE_WIDER_MODE (mode);
10682 (tmode != VOIDmode
10683 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10684 tmode = GET_MODE_WIDER_MODE (tmode))
10685 if (have_insn_for (COMPARE, tmode))
10686 {
10687 int zero_extended;
10688
10689 /* If the only nonzero bits in OP0 and OP1 are those in the
10690 narrower mode and this is an equality or unsigned comparison,
10691 we can use the wider mode. Similarly for sign-extended
10692 values, in which case it is true for all comparisons. */
10693 zero_extended = ((code == EQ || code == NE
10694 || code == GEU || code == GTU
10695 || code == LEU || code == LTU)
10696 && (nonzero_bits (op0, tmode)
10697 & ~GET_MODE_MASK (mode)) == 0
10698 && ((GET_CODE (op1) == CONST_INT
10699 || (nonzero_bits (op1, tmode)
10700 & ~GET_MODE_MASK (mode)) == 0)));
10701
10702 if (zero_extended
10703 || ((num_sign_bit_copies (op0, tmode)
10704 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10705 - GET_MODE_BITSIZE (mode)))
10706 && (num_sign_bit_copies (op1, tmode)
10707 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10708 - GET_MODE_BITSIZE (mode)))))
10709 {
10710 /* If OP0 is an AND and we don't have an AND in MODE either,
10711 make a new AND in the proper mode. */
10712 if (GET_CODE (op0) == AND
10713 && !have_insn_for (AND, mode))
10714 op0 = simplify_gen_binary (AND, tmode,
10715 gen_lowpart (tmode,
10716 XEXP (op0, 0)),
10717 gen_lowpart (tmode,
10718 XEXP (op0, 1)));
10719
10720 op0 = gen_lowpart (tmode, op0);
10721 if (zero_extended && GET_CODE (op1) == CONST_INT)
10722 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10723 op1 = gen_lowpart (tmode, op1);
10724 break;
10725 }
10726
10727 /* If this is a test for negative, we can make an explicit
10728 test of the sign bit. */
10729
10730 if (op1 == const0_rtx && (code == LT || code == GE)
10731 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10732 {
10733 op0 = simplify_gen_binary (AND, tmode,
10734 gen_lowpart (tmode, op0),
10735 GEN_INT ((HOST_WIDE_INT) 1
10736 << (GET_MODE_BITSIZE (mode)
10737 - 1)));
10738 code = (code == LT) ? NE : EQ;
10739 break;
10740 }
10741 }
10742
10743 #ifdef CANONICALIZE_COMPARISON
10744 /* If this machine only supports a subset of valid comparisons, see if we
10745 can convert an unsupported one into a supported one. */
10746 CANONICALIZE_COMPARISON (code, op0, op1);
10747 #endif
10748
10749 *pop0 = op0;
10750 *pop1 = op1;
10751
10752 return code;
10753 }
10754 \f
10755 /* Utility function for record_value_for_reg. Count number of
10756 rtxs in X. */
10757 static int
10758 count_rtxs (rtx x)
10759 {
10760 enum rtx_code code = GET_CODE (x);
10761 const char *fmt;
10762 int i, ret = 1;
10763
10764 if (GET_RTX_CLASS (code) == '2'
10765 || GET_RTX_CLASS (code) == 'c')
10766 {
10767 rtx x0 = XEXP (x, 0);
10768 rtx x1 = XEXP (x, 1);
10769
10770 if (x0 == x1)
10771 return 1 + 2 * count_rtxs (x0);
10772
10773 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10774 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10775 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10776 return 2 + 2 * count_rtxs (x0)
10777 + count_rtxs (x == XEXP (x1, 0)
10778 ? XEXP (x1, 1) : XEXP (x1, 0));
10779
10780 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10781 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10782 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10783 return 2 + 2 * count_rtxs (x1)
10784 + count_rtxs (x == XEXP (x0, 0)
10785 ? XEXP (x0, 1) : XEXP (x0, 0));
10786 }
10787
10788 fmt = GET_RTX_FORMAT (code);
10789 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10790 if (fmt[i] == 'e')
10791 ret += count_rtxs (XEXP (x, i));
10792
10793 return ret;
10794 }
10795 \f
10796 /* Utility function for following routine. Called when X is part of a value
10797 being stored into last_set_value. Sets last_set_table_tick
10798 for each register mentioned. Similar to mention_regs in cse.c */
10799
10800 static void
10801 update_table_tick (rtx x)
10802 {
10803 enum rtx_code code = GET_CODE (x);
10804 const char *fmt = GET_RTX_FORMAT (code);
10805 int i;
10806
10807 if (code == REG)
10808 {
10809 unsigned int regno = REGNO (x);
10810 unsigned int endregno
10811 = regno + (regno < FIRST_PSEUDO_REGISTER
10812 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10813 unsigned int r;
10814
10815 for (r = regno; r < endregno; r++)
10816 reg_stat[r].last_set_table_tick = label_tick;
10817
10818 return;
10819 }
10820
10821 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10822 /* Note that we can't have an "E" in values stored; see
10823 get_last_value_validate. */
10824 if (fmt[i] == 'e')
10825 {
10826 /* Check for identical subexpressions. If x contains
10827 identical subexpression we only have to traverse one of
10828 them. */
10829 if (i == 0 && ARITHMETIC_P (x))
10830 {
10831 /* Note that at this point x1 has already been
10832 processed. */
10833 rtx x0 = XEXP (x, 0);
10834 rtx x1 = XEXP (x, 1);
10835
10836 /* If x0 and x1 are identical then there is no need to
10837 process x0. */
10838 if (x0 == x1)
10839 break;
10840
10841 /* If x0 is identical to a subexpression of x1 then while
10842 processing x1, x0 has already been processed. Thus we
10843 are done with x. */
10844 if (ARITHMETIC_P (x1)
10845 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10846 break;
10847
10848 /* If x1 is identical to a subexpression of x0 then we
10849 still have to process the rest of x0. */
10850 if (ARITHMETIC_P (x0)
10851 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10852 {
10853 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10854 break;
10855 }
10856 }
10857
10858 update_table_tick (XEXP (x, i));
10859 }
10860 }
10861
10862 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10863 are saying that the register is clobbered and we no longer know its
10864 value. If INSN is zero, don't update reg_stat[].last_set; this is
10865 only permitted with VALUE also zero and is used to invalidate the
10866 register. */
10867
10868 static void
10869 record_value_for_reg (rtx reg, rtx insn, rtx value)
10870 {
10871 unsigned int regno = REGNO (reg);
10872 unsigned int endregno
10873 = regno + (regno < FIRST_PSEUDO_REGISTER
10874 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10875 unsigned int i;
10876
10877 /* If VALUE contains REG and we have a previous value for REG, substitute
10878 the previous value. */
10879 if (value && insn && reg_overlap_mentioned_p (reg, value))
10880 {
10881 rtx tem;
10882
10883 /* Set things up so get_last_value is allowed to see anything set up to
10884 our insn. */
10885 subst_low_cuid = INSN_CUID (insn);
10886 tem = get_last_value (reg);
10887
10888 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10889 it isn't going to be useful and will take a lot of time to process,
10890 so just use the CLOBBER. */
10891
10892 if (tem)
10893 {
10894 if (ARITHMETIC_P (tem)
10895 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10896 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10897 tem = XEXP (tem, 0);
10898 else if (count_occurrences (value, reg, 1) >= 2)
10899 {
10900 /* If there are two or more occurrences of REG in VALUE,
10901 prevent the value from growing too much. */
10902 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10903 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10904 }
10905
10906 value = replace_rtx (copy_rtx (value), reg, tem);
10907 }
10908 }
10909
10910 /* For each register modified, show we don't know its value, that
10911 we don't know about its bitwise content, that its value has been
10912 updated, and that we don't know the location of the death of the
10913 register. */
10914 for (i = regno; i < endregno; i++)
10915 {
10916 if (insn)
10917 reg_stat[i].last_set = insn;
10918
10919 reg_stat[i].last_set_value = 0;
10920 reg_stat[i].last_set_mode = 0;
10921 reg_stat[i].last_set_nonzero_bits = 0;
10922 reg_stat[i].last_set_sign_bit_copies = 0;
10923 reg_stat[i].last_death = 0;
10924 }
10925
10926 /* Mark registers that are being referenced in this value. */
10927 if (value)
10928 update_table_tick (value);
10929
10930 /* Now update the status of each register being set.
10931 If someone is using this register in this block, set this register
10932 to invalid since we will get confused between the two lives in this
10933 basic block. This makes using this register always invalid. In cse, we
10934 scan the table to invalidate all entries using this register, but this
10935 is too much work for us. */
10936
10937 for (i = regno; i < endregno; i++)
10938 {
10939 reg_stat[i].last_set_label = label_tick;
10940 if (value && reg_stat[i].last_set_table_tick == label_tick)
10941 reg_stat[i].last_set_invalid = 1;
10942 else
10943 reg_stat[i].last_set_invalid = 0;
10944 }
10945
10946 /* The value being assigned might refer to X (like in "x++;"). In that
10947 case, we must replace it with (clobber (const_int 0)) to prevent
10948 infinite loops. */
10949 if (value && ! get_last_value_validate (&value, insn,
10950 reg_stat[regno].last_set_label, 0))
10951 {
10952 value = copy_rtx (value);
10953 if (! get_last_value_validate (&value, insn,
10954 reg_stat[regno].last_set_label, 1))
10955 value = 0;
10956 }
10957
10958 /* For the main register being modified, update the value, the mode, the
10959 nonzero bits, and the number of sign bit copies. */
10960
10961 reg_stat[regno].last_set_value = value;
10962
10963 if (value)
10964 {
10965 enum machine_mode mode = GET_MODE (reg);
10966 subst_low_cuid = INSN_CUID (insn);
10967 reg_stat[regno].last_set_mode = mode;
10968 if (GET_MODE_CLASS (mode) == MODE_INT
10969 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10970 mode = nonzero_bits_mode;
10971 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10972 reg_stat[regno].last_set_sign_bit_copies
10973 = num_sign_bit_copies (value, GET_MODE (reg));
10974 }
10975 }
10976
10977 /* Called via note_stores from record_dead_and_set_regs to handle one
10978 SET or CLOBBER in an insn. DATA is the instruction in which the
10979 set is occurring. */
10980
10981 static void
10982 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10983 {
10984 rtx record_dead_insn = (rtx) data;
10985
10986 if (GET_CODE (dest) == SUBREG)
10987 dest = SUBREG_REG (dest);
10988
10989 if (REG_P (dest))
10990 {
10991 /* If we are setting the whole register, we know its value. Otherwise
10992 show that we don't know the value. We can handle SUBREG in
10993 some cases. */
10994 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10995 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10996 else if (GET_CODE (setter) == SET
10997 && GET_CODE (SET_DEST (setter)) == SUBREG
10998 && SUBREG_REG (SET_DEST (setter)) == dest
10999 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11000 && subreg_lowpart_p (SET_DEST (setter)))
11001 record_value_for_reg (dest, record_dead_insn,
11002 gen_lowpart (GET_MODE (dest),
11003 SET_SRC (setter)));
11004 else
11005 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11006 }
11007 else if (MEM_P (dest)
11008 /* Ignore pushes, they clobber nothing. */
11009 && ! push_operand (dest, GET_MODE (dest)))
11010 mem_last_set = INSN_CUID (record_dead_insn);
11011 }
11012
11013 /* Update the records of when each REG was most recently set or killed
11014 for the things done by INSN. This is the last thing done in processing
11015 INSN in the combiner loop.
11016
11017 We update reg_stat[], in particular fields last_set, last_set_value,
11018 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11019 last_death, and also the similar information mem_last_set (which insn
11020 most recently modified memory) and last_call_cuid (which insn was the
11021 most recent subroutine call). */
11022
11023 static void
11024 record_dead_and_set_regs (rtx insn)
11025 {
11026 rtx link;
11027 unsigned int i;
11028
11029 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11030 {
11031 if (REG_NOTE_KIND (link) == REG_DEAD
11032 && REG_P (XEXP (link, 0)))
11033 {
11034 unsigned int regno = REGNO (XEXP (link, 0));
11035 unsigned int endregno
11036 = regno + (regno < FIRST_PSEUDO_REGISTER
11037 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11038 : 1);
11039
11040 for (i = regno; i < endregno; i++)
11041 reg_stat[i].last_death = insn;
11042 }
11043 else if (REG_NOTE_KIND (link) == REG_INC)
11044 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11045 }
11046
11047 if (CALL_P (insn))
11048 {
11049 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11050 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11051 {
11052 reg_stat[i].last_set_value = 0;
11053 reg_stat[i].last_set_mode = 0;
11054 reg_stat[i].last_set_nonzero_bits = 0;
11055 reg_stat[i].last_set_sign_bit_copies = 0;
11056 reg_stat[i].last_death = 0;
11057 }
11058
11059 last_call_cuid = mem_last_set = INSN_CUID (insn);
11060
11061 /* Don't bother recording what this insn does. It might set the
11062 return value register, but we can't combine into a call
11063 pattern anyway, so there's no point trying (and it may cause
11064 a crash, if e.g. we wind up asking for last_set_value of a
11065 SUBREG of the return value register). */
11066 return;
11067 }
11068
11069 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11070 }
11071
11072 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11073 register present in the SUBREG, so for each such SUBREG go back and
11074 adjust nonzero and sign bit information of the registers that are
11075 known to have some zero/sign bits set.
11076
11077 This is needed because when combine blows the SUBREGs away, the
11078 information on zero/sign bits is lost and further combines can be
11079 missed because of that. */
11080
11081 static void
11082 record_promoted_value (rtx insn, rtx subreg)
11083 {
11084 rtx links, set;
11085 unsigned int regno = REGNO (SUBREG_REG (subreg));
11086 enum machine_mode mode = GET_MODE (subreg);
11087
11088 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11089 return;
11090
11091 for (links = LOG_LINKS (insn); links;)
11092 {
11093 insn = XEXP (links, 0);
11094 set = single_set (insn);
11095
11096 if (! set || !REG_P (SET_DEST (set))
11097 || REGNO (SET_DEST (set)) != regno
11098 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11099 {
11100 links = XEXP (links, 1);
11101 continue;
11102 }
11103
11104 if (reg_stat[regno].last_set == insn)
11105 {
11106 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11107 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11108 }
11109
11110 if (REG_P (SET_SRC (set)))
11111 {
11112 regno = REGNO (SET_SRC (set));
11113 links = LOG_LINKS (insn);
11114 }
11115 else
11116 break;
11117 }
11118 }
11119
11120 /* Scan X for promoted SUBREGs. For each one found,
11121 note what it implies to the registers used in it. */
11122
11123 static void
11124 check_promoted_subreg (rtx insn, rtx x)
11125 {
11126 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11127 && REG_P (SUBREG_REG (x)))
11128 record_promoted_value (insn, x);
11129 else
11130 {
11131 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11132 int i, j;
11133
11134 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11135 switch (format[i])
11136 {
11137 case 'e':
11138 check_promoted_subreg (insn, XEXP (x, i));
11139 break;
11140 case 'V':
11141 case 'E':
11142 if (XVEC (x, i) != 0)
11143 for (j = 0; j < XVECLEN (x, i); j++)
11144 check_promoted_subreg (insn, XVECEXP (x, i, j));
11145 break;
11146 }
11147 }
11148 }
11149 \f
11150 /* Utility routine for the following function. Verify that all the registers
11151 mentioned in *LOC are valid when *LOC was part of a value set when
11152 label_tick == TICK. Return 0 if some are not.
11153
11154 If REPLACE is nonzero, replace the invalid reference with
11155 (clobber (const_int 0)) and return 1. This replacement is useful because
11156 we often can get useful information about the form of a value (e.g., if
11157 it was produced by a shift that always produces -1 or 0) even though
11158 we don't know exactly what registers it was produced from. */
11159
11160 static int
11161 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11162 {
11163 rtx x = *loc;
11164 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11165 int len = GET_RTX_LENGTH (GET_CODE (x));
11166 int i;
11167
11168 if (REG_P (x))
11169 {
11170 unsigned int regno = REGNO (x);
11171 unsigned int endregno
11172 = regno + (regno < FIRST_PSEUDO_REGISTER
11173 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11174 unsigned int j;
11175
11176 for (j = regno; j < endregno; j++)
11177 if (reg_stat[j].last_set_invalid
11178 /* If this is a pseudo-register that was only set once and not
11179 live at the beginning of the function, it is always valid. */
11180 || (! (regno >= FIRST_PSEUDO_REGISTER
11181 && REG_N_SETS (regno) == 1
11182 && (! REGNO_REG_SET_P
11183 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11184 && reg_stat[j].last_set_label > tick))
11185 {
11186 if (replace)
11187 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11188 return replace;
11189 }
11190
11191 return 1;
11192 }
11193 /* If this is a memory reference, make sure that there were
11194 no stores after it that might have clobbered the value. We don't
11195 have alias info, so we assume any store invalidates it. */
11196 else if (MEM_P (x) && !MEM_READONLY_P (x)
11197 && INSN_CUID (insn) <= mem_last_set)
11198 {
11199 if (replace)
11200 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11201 return replace;
11202 }
11203
11204 for (i = 0; i < len; i++)
11205 {
11206 if (fmt[i] == 'e')
11207 {
11208 /* Check for identical subexpressions. If x contains
11209 identical subexpression we only have to traverse one of
11210 them. */
11211 if (i == 1 && ARITHMETIC_P (x))
11212 {
11213 /* Note that at this point x0 has already been checked
11214 and found valid. */
11215 rtx x0 = XEXP (x, 0);
11216 rtx x1 = XEXP (x, 1);
11217
11218 /* If x0 and x1 are identical then x is also valid. */
11219 if (x0 == x1)
11220 return 1;
11221
11222 /* If x1 is identical to a subexpression of x0 then
11223 while checking x0, x1 has already been checked. Thus
11224 it is valid and so as x. */
11225 if (ARITHMETIC_P (x0)
11226 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11227 return 1;
11228
11229 /* If x0 is identical to a subexpression of x1 then x is
11230 valid iff the rest of x1 is valid. */
11231 if (ARITHMETIC_P (x1)
11232 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11233 return
11234 get_last_value_validate (&XEXP (x1,
11235 x0 == XEXP (x1, 0) ? 1 : 0),
11236 insn, tick, replace);
11237 }
11238
11239 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11240 replace) == 0)
11241 return 0;
11242 }
11243 /* Don't bother with these. They shouldn't occur anyway. */
11244 else if (fmt[i] == 'E')
11245 return 0;
11246 }
11247
11248 /* If we haven't found a reason for it to be invalid, it is valid. */
11249 return 1;
11250 }
11251
11252 /* Get the last value assigned to X, if known. Some registers
11253 in the value may be replaced with (clobber (const_int 0)) if their value
11254 is known longer known reliably. */
11255
11256 static rtx
11257 get_last_value (rtx x)
11258 {
11259 unsigned int regno;
11260 rtx value;
11261
11262 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11263 then convert it to the desired mode. If this is a paradoxical SUBREG,
11264 we cannot predict what values the "extra" bits might have. */
11265 if (GET_CODE (x) == SUBREG
11266 && subreg_lowpart_p (x)
11267 && (GET_MODE_SIZE (GET_MODE (x))
11268 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11269 && (value = get_last_value (SUBREG_REG (x))) != 0)
11270 return gen_lowpart (GET_MODE (x), value);
11271
11272 if (!REG_P (x))
11273 return 0;
11274
11275 regno = REGNO (x);
11276 value = reg_stat[regno].last_set_value;
11277
11278 /* If we don't have a value, or if it isn't for this basic block and
11279 it's either a hard register, set more than once, or it's a live
11280 at the beginning of the function, return 0.
11281
11282 Because if it's not live at the beginning of the function then the reg
11283 is always set before being used (is never used without being set).
11284 And, if it's set only once, and it's always set before use, then all
11285 uses must have the same last value, even if it's not from this basic
11286 block. */
11287
11288 if (value == 0
11289 || (reg_stat[regno].last_set_label != label_tick
11290 && (regno < FIRST_PSEUDO_REGISTER
11291 || REG_N_SETS (regno) != 1
11292 || (REGNO_REG_SET_P
11293 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11294 return 0;
11295
11296 /* If the value was set in a later insn than the ones we are processing,
11297 we can't use it even if the register was only set once. */
11298 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11299 return 0;
11300
11301 /* If the value has all its registers valid, return it. */
11302 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11303 reg_stat[regno].last_set_label, 0))
11304 return value;
11305
11306 /* Otherwise, make a copy and replace any invalid register with
11307 (clobber (const_int 0)). If that fails for some reason, return 0. */
11308
11309 value = copy_rtx (value);
11310 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11311 reg_stat[regno].last_set_label, 1))
11312 return value;
11313
11314 return 0;
11315 }
11316 \f
11317 /* Return nonzero if expression X refers to a REG or to memory
11318 that is set in an instruction more recent than FROM_CUID. */
11319
11320 static int
11321 use_crosses_set_p (rtx x, int from_cuid)
11322 {
11323 const char *fmt;
11324 int i;
11325 enum rtx_code code = GET_CODE (x);
11326
11327 if (code == REG)
11328 {
11329 unsigned int regno = REGNO (x);
11330 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11331 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11332
11333 #ifdef PUSH_ROUNDING
11334 /* Don't allow uses of the stack pointer to be moved,
11335 because we don't know whether the move crosses a push insn. */
11336 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11337 return 1;
11338 #endif
11339 for (; regno < endreg; regno++)
11340 if (reg_stat[regno].last_set
11341 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11342 return 1;
11343 return 0;
11344 }
11345
11346 if (code == MEM && mem_last_set > from_cuid)
11347 return 1;
11348
11349 fmt = GET_RTX_FORMAT (code);
11350
11351 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11352 {
11353 if (fmt[i] == 'E')
11354 {
11355 int j;
11356 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11357 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11358 return 1;
11359 }
11360 else if (fmt[i] == 'e'
11361 && use_crosses_set_p (XEXP (x, i), from_cuid))
11362 return 1;
11363 }
11364 return 0;
11365 }
11366 \f
11367 /* Define three variables used for communication between the following
11368 routines. */
11369
11370 static unsigned int reg_dead_regno, reg_dead_endregno;
11371 static int reg_dead_flag;
11372
11373 /* Function called via note_stores from reg_dead_at_p.
11374
11375 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11376 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11377
11378 static void
11379 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11380 {
11381 unsigned int regno, endregno;
11382
11383 if (!REG_P (dest))
11384 return;
11385
11386 regno = REGNO (dest);
11387 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11388 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11389
11390 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11391 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11392 }
11393
11394 /* Return nonzero if REG is known to be dead at INSN.
11395
11396 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11397 referencing REG, it is dead. If we hit a SET referencing REG, it is
11398 live. Otherwise, see if it is live or dead at the start of the basic
11399 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11400 must be assumed to be always live. */
11401
11402 static int
11403 reg_dead_at_p (rtx reg, rtx insn)
11404 {
11405 basic_block block;
11406 unsigned int i;
11407
11408 /* Set variables for reg_dead_at_p_1. */
11409 reg_dead_regno = REGNO (reg);
11410 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11411 ? hard_regno_nregs[reg_dead_regno]
11412 [GET_MODE (reg)]
11413 : 1);
11414
11415 reg_dead_flag = 0;
11416
11417 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11418 we allow the machine description to decide whether use-and-clobber
11419 patterns are OK. */
11420 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11421 {
11422 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11423 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11424 return 0;
11425 }
11426
11427 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11428 beginning of function. */
11429 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11430 insn = prev_nonnote_insn (insn))
11431 {
11432 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11433 if (reg_dead_flag)
11434 return reg_dead_flag == 1 ? 1 : 0;
11435
11436 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11437 return 1;
11438 }
11439
11440 /* Get the basic block that we were in. */
11441 if (insn == 0)
11442 block = ENTRY_BLOCK_PTR->next_bb;
11443 else
11444 {
11445 FOR_EACH_BB (block)
11446 if (insn == BB_HEAD (block))
11447 break;
11448
11449 if (block == EXIT_BLOCK_PTR)
11450 return 0;
11451 }
11452
11453 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11454 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11455 return 0;
11456
11457 return 1;
11458 }
11459 \f
11460 /* Note hard registers in X that are used. This code is similar to
11461 that in flow.c, but much simpler since we don't care about pseudos. */
11462
11463 static void
11464 mark_used_regs_combine (rtx x)
11465 {
11466 RTX_CODE code = GET_CODE (x);
11467 unsigned int regno;
11468 int i;
11469
11470 switch (code)
11471 {
11472 case LABEL_REF:
11473 case SYMBOL_REF:
11474 case CONST_INT:
11475 case CONST:
11476 case CONST_DOUBLE:
11477 case CONST_VECTOR:
11478 case PC:
11479 case ADDR_VEC:
11480 case ADDR_DIFF_VEC:
11481 case ASM_INPUT:
11482 #ifdef HAVE_cc0
11483 /* CC0 must die in the insn after it is set, so we don't need to take
11484 special note of it here. */
11485 case CC0:
11486 #endif
11487 return;
11488
11489 case CLOBBER:
11490 /* If we are clobbering a MEM, mark any hard registers inside the
11491 address as used. */
11492 if (MEM_P (XEXP (x, 0)))
11493 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11494 return;
11495
11496 case REG:
11497 regno = REGNO (x);
11498 /* A hard reg in a wide mode may really be multiple registers.
11499 If so, mark all of them just like the first. */
11500 if (regno < FIRST_PSEUDO_REGISTER)
11501 {
11502 unsigned int endregno, r;
11503
11504 /* None of this applies to the stack, frame or arg pointers. */
11505 if (regno == STACK_POINTER_REGNUM
11506 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11507 || regno == HARD_FRAME_POINTER_REGNUM
11508 #endif
11509 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11510 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11511 #endif
11512 || regno == FRAME_POINTER_REGNUM)
11513 return;
11514
11515 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11516 for (r = regno; r < endregno; r++)
11517 SET_HARD_REG_BIT (newpat_used_regs, r);
11518 }
11519 return;
11520
11521 case SET:
11522 {
11523 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11524 the address. */
11525 rtx testreg = SET_DEST (x);
11526
11527 while (GET_CODE (testreg) == SUBREG
11528 || GET_CODE (testreg) == ZERO_EXTRACT
11529 || GET_CODE (testreg) == STRICT_LOW_PART)
11530 testreg = XEXP (testreg, 0);
11531
11532 if (MEM_P (testreg))
11533 mark_used_regs_combine (XEXP (testreg, 0));
11534
11535 mark_used_regs_combine (SET_SRC (x));
11536 }
11537 return;
11538
11539 default:
11540 break;
11541 }
11542
11543 /* Recursively scan the operands of this expression. */
11544
11545 {
11546 const char *fmt = GET_RTX_FORMAT (code);
11547
11548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11549 {
11550 if (fmt[i] == 'e')
11551 mark_used_regs_combine (XEXP (x, i));
11552 else if (fmt[i] == 'E')
11553 {
11554 int j;
11555
11556 for (j = 0; j < XVECLEN (x, i); j++)
11557 mark_used_regs_combine (XVECEXP (x, i, j));
11558 }
11559 }
11560 }
11561 }
11562 \f
11563 /* Remove register number REGNO from the dead registers list of INSN.
11564
11565 Return the note used to record the death, if there was one. */
11566
11567 rtx
11568 remove_death (unsigned int regno, rtx insn)
11569 {
11570 rtx note = find_regno_note (insn, REG_DEAD, regno);
11571
11572 if (note)
11573 {
11574 REG_N_DEATHS (regno)--;
11575 remove_note (insn, note);
11576 }
11577
11578 return note;
11579 }
11580
11581 /* For each register (hardware or pseudo) used within expression X, if its
11582 death is in an instruction with cuid between FROM_CUID (inclusive) and
11583 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11584 list headed by PNOTES.
11585
11586 That said, don't move registers killed by maybe_kill_insn.
11587
11588 This is done when X is being merged by combination into TO_INSN. These
11589 notes will then be distributed as needed. */
11590
11591 static void
11592 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11593 rtx *pnotes)
11594 {
11595 const char *fmt;
11596 int len, i;
11597 enum rtx_code code = GET_CODE (x);
11598
11599 if (code == REG)
11600 {
11601 unsigned int regno = REGNO (x);
11602 rtx where_dead = reg_stat[regno].last_death;
11603 rtx before_dead, after_dead;
11604
11605 /* Don't move the register if it gets killed in between from and to. */
11606 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11607 && ! reg_referenced_p (x, maybe_kill_insn))
11608 return;
11609
11610 /* WHERE_DEAD could be a USE insn made by combine, so first we
11611 make sure that we have insns with valid INSN_CUID values. */
11612 before_dead = where_dead;
11613 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11614 before_dead = PREV_INSN (before_dead);
11615
11616 after_dead = where_dead;
11617 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11618 after_dead = NEXT_INSN (after_dead);
11619
11620 if (before_dead && after_dead
11621 && INSN_CUID (before_dead) >= from_cuid
11622 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11623 || (where_dead != after_dead
11624 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11625 {
11626 rtx note = remove_death (regno, where_dead);
11627
11628 /* It is possible for the call above to return 0. This can occur
11629 when last_death points to I2 or I1 that we combined with.
11630 In that case make a new note.
11631
11632 We must also check for the case where X is a hard register
11633 and NOTE is a death note for a range of hard registers
11634 including X. In that case, we must put REG_DEAD notes for
11635 the remaining registers in place of NOTE. */
11636
11637 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11638 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11639 > GET_MODE_SIZE (GET_MODE (x))))
11640 {
11641 unsigned int deadregno = REGNO (XEXP (note, 0));
11642 unsigned int deadend
11643 = (deadregno + hard_regno_nregs[deadregno]
11644 [GET_MODE (XEXP (note, 0))]);
11645 unsigned int ourend
11646 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11647 unsigned int i;
11648
11649 for (i = deadregno; i < deadend; i++)
11650 if (i < regno || i >= ourend)
11651 REG_NOTES (where_dead)
11652 = gen_rtx_EXPR_LIST (REG_DEAD,
11653 regno_reg_rtx[i],
11654 REG_NOTES (where_dead));
11655 }
11656
11657 /* If we didn't find any note, or if we found a REG_DEAD note that
11658 covers only part of the given reg, and we have a multi-reg hard
11659 register, then to be safe we must check for REG_DEAD notes
11660 for each register other than the first. They could have
11661 their own REG_DEAD notes lying around. */
11662 else if ((note == 0
11663 || (note != 0
11664 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11665 < GET_MODE_SIZE (GET_MODE (x)))))
11666 && regno < FIRST_PSEUDO_REGISTER
11667 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11668 {
11669 unsigned int ourend
11670 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11671 unsigned int i, offset;
11672 rtx oldnotes = 0;
11673
11674 if (note)
11675 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11676 else
11677 offset = 1;
11678
11679 for (i = regno + offset; i < ourend; i++)
11680 move_deaths (regno_reg_rtx[i],
11681 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11682 }
11683
11684 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11685 {
11686 XEXP (note, 1) = *pnotes;
11687 *pnotes = note;
11688 }
11689 else
11690 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11691
11692 REG_N_DEATHS (regno)++;
11693 }
11694
11695 return;
11696 }
11697
11698 else if (GET_CODE (x) == SET)
11699 {
11700 rtx dest = SET_DEST (x);
11701
11702 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11703
11704 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11705 that accesses one word of a multi-word item, some
11706 piece of everything register in the expression is used by
11707 this insn, so remove any old death. */
11708 /* ??? So why do we test for equality of the sizes? */
11709
11710 if (GET_CODE (dest) == ZERO_EXTRACT
11711 || GET_CODE (dest) == STRICT_LOW_PART
11712 || (GET_CODE (dest) == SUBREG
11713 && (((GET_MODE_SIZE (GET_MODE (dest))
11714 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11715 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11716 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11717 {
11718 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11719 return;
11720 }
11721
11722 /* If this is some other SUBREG, we know it replaces the entire
11723 value, so use that as the destination. */
11724 if (GET_CODE (dest) == SUBREG)
11725 dest = SUBREG_REG (dest);
11726
11727 /* If this is a MEM, adjust deaths of anything used in the address.
11728 For a REG (the only other possibility), the entire value is
11729 being replaced so the old value is not used in this insn. */
11730
11731 if (MEM_P (dest))
11732 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11733 to_insn, pnotes);
11734 return;
11735 }
11736
11737 else if (GET_CODE (x) == CLOBBER)
11738 return;
11739
11740 len = GET_RTX_LENGTH (code);
11741 fmt = GET_RTX_FORMAT (code);
11742
11743 for (i = 0; i < len; i++)
11744 {
11745 if (fmt[i] == 'E')
11746 {
11747 int j;
11748 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11749 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11750 to_insn, pnotes);
11751 }
11752 else if (fmt[i] == 'e')
11753 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11754 }
11755 }
11756 \f
11757 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11758 pattern of an insn. X must be a REG. */
11759
11760 static int
11761 reg_bitfield_target_p (rtx x, rtx body)
11762 {
11763 int i;
11764
11765 if (GET_CODE (body) == SET)
11766 {
11767 rtx dest = SET_DEST (body);
11768 rtx target;
11769 unsigned int regno, tregno, endregno, endtregno;
11770
11771 if (GET_CODE (dest) == ZERO_EXTRACT)
11772 target = XEXP (dest, 0);
11773 else if (GET_CODE (dest) == STRICT_LOW_PART)
11774 target = SUBREG_REG (XEXP (dest, 0));
11775 else
11776 return 0;
11777
11778 if (GET_CODE (target) == SUBREG)
11779 target = SUBREG_REG (target);
11780
11781 if (!REG_P (target))
11782 return 0;
11783
11784 tregno = REGNO (target), regno = REGNO (x);
11785 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11786 return target == x;
11787
11788 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11789 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11790
11791 return endregno > tregno && regno < endtregno;
11792 }
11793
11794 else if (GET_CODE (body) == PARALLEL)
11795 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11796 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11797 return 1;
11798
11799 return 0;
11800 }
11801 \f
11802 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11803 as appropriate. I3 and I2 are the insns resulting from the combination
11804 insns including FROM (I2 may be zero).
11805
11806 Each note in the list is either ignored or placed on some insns, depending
11807 on the type of note. */
11808
11809 static void
11810 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11811 {
11812 rtx note, next_note;
11813 rtx tem;
11814
11815 for (note = notes; note; note = next_note)
11816 {
11817 rtx place = 0, place2 = 0;
11818
11819 /* If this NOTE references a pseudo register, ensure it references
11820 the latest copy of that register. */
11821 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11822 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11823 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11824
11825 next_note = XEXP (note, 1);
11826 switch (REG_NOTE_KIND (note))
11827 {
11828 case REG_BR_PROB:
11829 case REG_BR_PRED:
11830 /* Doesn't matter much where we put this, as long as it's somewhere.
11831 It is preferable to keep these notes on branches, which is most
11832 likely to be i3. */
11833 place = i3;
11834 break;
11835
11836 case REG_VALUE_PROFILE:
11837 /* Just get rid of this note, as it is unused later anyway. */
11838 break;
11839
11840 case REG_NON_LOCAL_GOTO:
11841 if (JUMP_P (i3))
11842 place = i3;
11843 else
11844 {
11845 gcc_assert (i2 && JUMP_P (i2));
11846 place = i2;
11847 }
11848 break;
11849
11850 case REG_EH_REGION:
11851 /* These notes must remain with the call or trapping instruction. */
11852 if (CALL_P (i3))
11853 place = i3;
11854 else if (i2 && CALL_P (i2))
11855 place = i2;
11856 else
11857 {
11858 gcc_assert (flag_non_call_exceptions);
11859 if (may_trap_p (i3))
11860 place = i3;
11861 else if (i2 && may_trap_p (i2))
11862 place = i2;
11863 /* ??? Otherwise assume we've combined things such that we
11864 can now prove that the instructions can't trap. Drop the
11865 note in this case. */
11866 }
11867 break;
11868
11869 case REG_NORETURN:
11870 case REG_SETJMP:
11871 /* These notes must remain with the call. It should not be
11872 possible for both I2 and I3 to be a call. */
11873 if (CALL_P (i3))
11874 place = i3;
11875 else
11876 {
11877 gcc_assert (i2 && CALL_P (i2));
11878 place = i2;
11879 }
11880 break;
11881
11882 case REG_UNUSED:
11883 /* Any clobbers for i3 may still exist, and so we must process
11884 REG_UNUSED notes from that insn.
11885
11886 Any clobbers from i2 or i1 can only exist if they were added by
11887 recog_for_combine. In that case, recog_for_combine created the
11888 necessary REG_UNUSED notes. Trying to keep any original
11889 REG_UNUSED notes from these insns can cause incorrect output
11890 if it is for the same register as the original i3 dest.
11891 In that case, we will notice that the register is set in i3,
11892 and then add a REG_UNUSED note for the destination of i3, which
11893 is wrong. However, it is possible to have REG_UNUSED notes from
11894 i2 or i1 for register which were both used and clobbered, so
11895 we keep notes from i2 or i1 if they will turn into REG_DEAD
11896 notes. */
11897
11898 /* If this register is set or clobbered in I3, put the note there
11899 unless there is one already. */
11900 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11901 {
11902 if (from_insn != i3)
11903 break;
11904
11905 if (! (REG_P (XEXP (note, 0))
11906 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11907 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11908 place = i3;
11909 }
11910 /* Otherwise, if this register is used by I3, then this register
11911 now dies here, so we must put a REG_DEAD note here unless there
11912 is one already. */
11913 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11914 && ! (REG_P (XEXP (note, 0))
11915 ? find_regno_note (i3, REG_DEAD,
11916 REGNO (XEXP (note, 0)))
11917 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11918 {
11919 PUT_REG_NOTE_KIND (note, REG_DEAD);
11920 place = i3;
11921 }
11922 break;
11923
11924 case REG_EQUAL:
11925 case REG_EQUIV:
11926 case REG_NOALIAS:
11927 /* These notes say something about results of an insn. We can
11928 only support them if they used to be on I3 in which case they
11929 remain on I3. Otherwise they are ignored.
11930
11931 If the note refers to an expression that is not a constant, we
11932 must also ignore the note since we cannot tell whether the
11933 equivalence is still true. It might be possible to do
11934 slightly better than this (we only have a problem if I2DEST
11935 or I1DEST is present in the expression), but it doesn't
11936 seem worth the trouble. */
11937
11938 if (from_insn == i3
11939 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11940 place = i3;
11941 break;
11942
11943 case REG_INC:
11944 case REG_NO_CONFLICT:
11945 /* These notes say something about how a register is used. They must
11946 be present on any use of the register in I2 or I3. */
11947 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11948 place = i3;
11949
11950 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11951 {
11952 if (place)
11953 place2 = i2;
11954 else
11955 place = i2;
11956 }
11957 break;
11958
11959 case REG_LABEL:
11960 /* This can show up in several ways -- either directly in the
11961 pattern, or hidden off in the constant pool with (or without?)
11962 a REG_EQUAL note. */
11963 /* ??? Ignore the without-reg_equal-note problem for now. */
11964 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11965 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11966 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11967 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11968 place = i3;
11969
11970 if (i2
11971 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11972 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11973 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11974 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11975 {
11976 if (place)
11977 place2 = i2;
11978 else
11979 place = i2;
11980 }
11981
11982 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11983 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11984 if (place && JUMP_P (place))
11985 {
11986 rtx label = JUMP_LABEL (place);
11987
11988 if (!label)
11989 JUMP_LABEL (place) = XEXP (note, 0);
11990 else
11991 {
11992 gcc_assert (label == XEXP (note, 0));
11993 if (LABEL_P (label))
11994 LABEL_NUSES (label)--;
11995 }
11996 place = 0;
11997 }
11998 if (place2 && JUMP_P (place2))
11999 {
12000 rtx label = JUMP_LABEL (place2);
12001
12002 if (!label)
12003 JUMP_LABEL (place2) = XEXP (note, 0);
12004 else
12005 {
12006 gcc_assert (label == XEXP (note, 0));
12007 if (LABEL_P (label))
12008 LABEL_NUSES (label)--;
12009 }
12010 place2 = 0;
12011 }
12012 break;
12013
12014 case REG_NONNEG:
12015 /* This note says something about the value of a register prior
12016 to the execution of an insn. It is too much trouble to see
12017 if the note is still correct in all situations. It is better
12018 to simply delete it. */
12019 break;
12020
12021 case REG_RETVAL:
12022 /* If the insn previously containing this note still exists,
12023 put it back where it was. Otherwise move it to the previous
12024 insn. Adjust the corresponding REG_LIBCALL note. */
12025 if (!NOTE_P (from_insn))
12026 place = from_insn;
12027 else
12028 {
12029 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12030 place = prev_real_insn (from_insn);
12031 if (tem && place)
12032 XEXP (tem, 0) = place;
12033 /* If we're deleting the last remaining instruction of a
12034 libcall sequence, don't add the notes. */
12035 else if (XEXP (note, 0) == from_insn)
12036 tem = place = 0;
12037 /* Don't add the dangling REG_RETVAL note. */
12038 else if (! tem)
12039 place = 0;
12040 }
12041 break;
12042
12043 case REG_LIBCALL:
12044 /* This is handled similarly to REG_RETVAL. */
12045 if (!NOTE_P (from_insn))
12046 place = from_insn;
12047 else
12048 {
12049 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12050 place = next_real_insn (from_insn);
12051 if (tem && place)
12052 XEXP (tem, 0) = place;
12053 /* If we're deleting the last remaining instruction of a
12054 libcall sequence, don't add the notes. */
12055 else if (XEXP (note, 0) == from_insn)
12056 tem = place = 0;
12057 /* Don't add the dangling REG_LIBCALL note. */
12058 else if (! tem)
12059 place = 0;
12060 }
12061 break;
12062
12063 case REG_DEAD:
12064 /* If the register is used as an input in I3, it dies there.
12065 Similarly for I2, if it is nonzero and adjacent to I3.
12066
12067 If the register is not used as an input in either I3 or I2
12068 and it is not one of the registers we were supposed to eliminate,
12069 there are two possibilities. We might have a non-adjacent I2
12070 or we might have somehow eliminated an additional register
12071 from a computation. For example, we might have had A & B where
12072 we discover that B will always be zero. In this case we will
12073 eliminate the reference to A.
12074
12075 In both cases, we must search to see if we can find a previous
12076 use of A and put the death note there. */
12077
12078 if (from_insn
12079 && CALL_P (from_insn)
12080 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12081 place = from_insn;
12082 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12083 place = i3;
12084 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12085 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12086 place = i2;
12087
12088 if (place == 0)
12089 {
12090 basic_block bb = this_basic_block;
12091
12092 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12093 {
12094 if (! INSN_P (tem))
12095 {
12096 if (tem == BB_HEAD (bb))
12097 break;
12098 continue;
12099 }
12100
12101 /* If the register is being set at TEM, see if that is all
12102 TEM is doing. If so, delete TEM. Otherwise, make this
12103 into a REG_UNUSED note instead. Don't delete sets to
12104 global register vars. */
12105 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12106 || !global_regs[REGNO (XEXP (note, 0))])
12107 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12108 {
12109 rtx set = single_set (tem);
12110 rtx inner_dest = 0;
12111 #ifdef HAVE_cc0
12112 rtx cc0_setter = NULL_RTX;
12113 #endif
12114
12115 if (set != 0)
12116 for (inner_dest = SET_DEST (set);
12117 (GET_CODE (inner_dest) == STRICT_LOW_PART
12118 || GET_CODE (inner_dest) == SUBREG
12119 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12120 inner_dest = XEXP (inner_dest, 0))
12121 ;
12122
12123 /* Verify that it was the set, and not a clobber that
12124 modified the register.
12125
12126 CC0 targets must be careful to maintain setter/user
12127 pairs. If we cannot delete the setter due to side
12128 effects, mark the user with an UNUSED note instead
12129 of deleting it. */
12130
12131 if (set != 0 && ! side_effects_p (SET_SRC (set))
12132 && rtx_equal_p (XEXP (note, 0), inner_dest)
12133 #ifdef HAVE_cc0
12134 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12135 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12136 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12137 #endif
12138 )
12139 {
12140 /* Move the notes and links of TEM elsewhere.
12141 This might delete other dead insns recursively.
12142 First set the pattern to something that won't use
12143 any register. */
12144 rtx old_notes = REG_NOTES (tem);
12145
12146 PATTERN (tem) = pc_rtx;
12147 REG_NOTES (tem) = NULL;
12148
12149 distribute_notes (old_notes, tem, tem, NULL_RTX);
12150 distribute_links (LOG_LINKS (tem));
12151
12152 SET_INSN_DELETED (tem);
12153
12154 #ifdef HAVE_cc0
12155 /* Delete the setter too. */
12156 if (cc0_setter)
12157 {
12158 PATTERN (cc0_setter) = pc_rtx;
12159 old_notes = REG_NOTES (cc0_setter);
12160 REG_NOTES (cc0_setter) = NULL;
12161
12162 distribute_notes (old_notes, cc0_setter,
12163 cc0_setter, NULL_RTX);
12164 distribute_links (LOG_LINKS (cc0_setter));
12165
12166 SET_INSN_DELETED (cc0_setter);
12167 }
12168 #endif
12169 }
12170 else
12171 {
12172 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12173
12174 /* If there isn't already a REG_UNUSED note, put one
12175 here. Do not place a REG_DEAD note, even if
12176 the register is also used here; that would not
12177 match the algorithm used in lifetime analysis
12178 and can cause the consistency check in the
12179 scheduler to fail. */
12180 if (! find_regno_note (tem, REG_UNUSED,
12181 REGNO (XEXP (note, 0))))
12182 place = tem;
12183 break;
12184 }
12185 }
12186 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12187 || (CALL_P (tem)
12188 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12189 {
12190 place = tem;
12191
12192 /* If we are doing a 3->2 combination, and we have a
12193 register which formerly died in i3 and was not used
12194 by i2, which now no longer dies in i3 and is used in
12195 i2 but does not die in i2, and place is between i2
12196 and i3, then we may need to move a link from place to
12197 i2. */
12198 if (i2 && INSN_UID (place) <= max_uid_cuid
12199 && INSN_CUID (place) > INSN_CUID (i2)
12200 && from_insn
12201 && INSN_CUID (from_insn) > INSN_CUID (i2)
12202 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12203 {
12204 rtx links = LOG_LINKS (place);
12205 LOG_LINKS (place) = 0;
12206 distribute_links (links);
12207 }
12208 break;
12209 }
12210
12211 if (tem == BB_HEAD (bb))
12212 break;
12213 }
12214
12215 /* We haven't found an insn for the death note and it
12216 is still a REG_DEAD note, but we have hit the beginning
12217 of the block. If the existing life info says the reg
12218 was dead, there's nothing left to do. Otherwise, we'll
12219 need to do a global life update after combine. */
12220 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12221 && REGNO_REG_SET_P (bb->global_live_at_start,
12222 REGNO (XEXP (note, 0))))
12223 SET_BIT (refresh_blocks, this_basic_block->index);
12224 }
12225
12226 /* If the register is set or already dead at PLACE, we needn't do
12227 anything with this note if it is still a REG_DEAD note.
12228 We check here if it is set at all, not if is it totally replaced,
12229 which is what `dead_or_set_p' checks, so also check for it being
12230 set partially. */
12231
12232 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12233 {
12234 unsigned int regno = REGNO (XEXP (note, 0));
12235
12236 /* Similarly, if the instruction on which we want to place
12237 the note is a noop, we'll need do a global live update
12238 after we remove them in delete_noop_moves. */
12239 if (noop_move_p (place))
12240 SET_BIT (refresh_blocks, this_basic_block->index);
12241
12242 if (dead_or_set_p (place, XEXP (note, 0))
12243 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12244 {
12245 /* Unless the register previously died in PLACE, clear
12246 last_death. [I no longer understand why this is
12247 being done.] */
12248 if (reg_stat[regno].last_death != place)
12249 reg_stat[regno].last_death = 0;
12250 place = 0;
12251 }
12252 else
12253 reg_stat[regno].last_death = place;
12254
12255 /* If this is a death note for a hard reg that is occupying
12256 multiple registers, ensure that we are still using all
12257 parts of the object. If we find a piece of the object
12258 that is unused, we must arrange for an appropriate REG_DEAD
12259 note to be added for it. However, we can't just emit a USE
12260 and tag the note to it, since the register might actually
12261 be dead; so we recourse, and the recursive call then finds
12262 the previous insn that used this register. */
12263
12264 if (place && regno < FIRST_PSEUDO_REGISTER
12265 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12266 {
12267 unsigned int endregno
12268 = regno + hard_regno_nregs[regno]
12269 [GET_MODE (XEXP (note, 0))];
12270 int all_used = 1;
12271 unsigned int i;
12272
12273 for (i = regno; i < endregno; i++)
12274 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12275 && ! find_regno_fusage (place, USE, i))
12276 || dead_or_set_regno_p (place, i))
12277 all_used = 0;
12278
12279 if (! all_used)
12280 {
12281 /* Put only REG_DEAD notes for pieces that are
12282 not already dead or set. */
12283
12284 for (i = regno; i < endregno;
12285 i += hard_regno_nregs[i][reg_raw_mode[i]])
12286 {
12287 rtx piece = regno_reg_rtx[i];
12288 basic_block bb = this_basic_block;
12289
12290 if (! dead_or_set_p (place, piece)
12291 && ! reg_bitfield_target_p (piece,
12292 PATTERN (place)))
12293 {
12294 rtx new_note
12295 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12296
12297 distribute_notes (new_note, place, place,
12298 NULL_RTX);
12299 }
12300 else if (! refers_to_regno_p (i, i + 1,
12301 PATTERN (place), 0)
12302 && ! find_regno_fusage (place, USE, i))
12303 for (tem = PREV_INSN (place); ;
12304 tem = PREV_INSN (tem))
12305 {
12306 if (! INSN_P (tem))
12307 {
12308 if (tem == BB_HEAD (bb))
12309 {
12310 SET_BIT (refresh_blocks,
12311 this_basic_block->index);
12312 break;
12313 }
12314 continue;
12315 }
12316 if (dead_or_set_p (tem, piece)
12317 || reg_bitfield_target_p (piece,
12318 PATTERN (tem)))
12319 {
12320 REG_NOTES (tem)
12321 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12322 REG_NOTES (tem));
12323 break;
12324 }
12325 }
12326
12327 }
12328
12329 place = 0;
12330 }
12331 }
12332 }
12333 break;
12334
12335 default:
12336 /* Any other notes should not be present at this point in the
12337 compilation. */
12338 gcc_unreachable ();
12339 }
12340
12341 if (place)
12342 {
12343 XEXP (note, 1) = REG_NOTES (place);
12344 REG_NOTES (place) = note;
12345 }
12346 else if ((REG_NOTE_KIND (note) == REG_DEAD
12347 || REG_NOTE_KIND (note) == REG_UNUSED)
12348 && REG_P (XEXP (note, 0)))
12349 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12350
12351 if (place2)
12352 {
12353 if ((REG_NOTE_KIND (note) == REG_DEAD
12354 || REG_NOTE_KIND (note) == REG_UNUSED)
12355 && REG_P (XEXP (note, 0)))
12356 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12357
12358 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12359 REG_NOTE_KIND (note),
12360 XEXP (note, 0),
12361 REG_NOTES (place2));
12362 }
12363 }
12364 }
12365 \f
12366 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12367 I3, I2, and I1 to new locations. This is also called to add a link
12368 pointing at I3 when I3's destination is changed. */
12369
12370 static void
12371 distribute_links (rtx links)
12372 {
12373 rtx link, next_link;
12374
12375 for (link = links; link; link = next_link)
12376 {
12377 rtx place = 0;
12378 rtx insn;
12379 rtx set, reg;
12380
12381 next_link = XEXP (link, 1);
12382
12383 /* If the insn that this link points to is a NOTE or isn't a single
12384 set, ignore it. In the latter case, it isn't clear what we
12385 can do other than ignore the link, since we can't tell which
12386 register it was for. Such links wouldn't be used by combine
12387 anyway.
12388
12389 It is not possible for the destination of the target of the link to
12390 have been changed by combine. The only potential of this is if we
12391 replace I3, I2, and I1 by I3 and I2. But in that case the
12392 destination of I2 also remains unchanged. */
12393
12394 if (NOTE_P (XEXP (link, 0))
12395 || (set = single_set (XEXP (link, 0))) == 0)
12396 continue;
12397
12398 reg = SET_DEST (set);
12399 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12400 || GET_CODE (reg) == STRICT_LOW_PART)
12401 reg = XEXP (reg, 0);
12402
12403 /* A LOG_LINK is defined as being placed on the first insn that uses
12404 a register and points to the insn that sets the register. Start
12405 searching at the next insn after the target of the link and stop
12406 when we reach a set of the register or the end of the basic block.
12407
12408 Note that this correctly handles the link that used to point from
12409 I3 to I2. Also note that not much searching is typically done here
12410 since most links don't point very far away. */
12411
12412 for (insn = NEXT_INSN (XEXP (link, 0));
12413 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12414 || BB_HEAD (this_basic_block->next_bb) != insn));
12415 insn = NEXT_INSN (insn))
12416 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12417 {
12418 if (reg_referenced_p (reg, PATTERN (insn)))
12419 place = insn;
12420 break;
12421 }
12422 else if (CALL_P (insn)
12423 && find_reg_fusage (insn, USE, reg))
12424 {
12425 place = insn;
12426 break;
12427 }
12428 else if (INSN_P (insn) && reg_set_p (reg, insn))
12429 break;
12430
12431 /* If we found a place to put the link, place it there unless there
12432 is already a link to the same insn as LINK at that point. */
12433
12434 if (place)
12435 {
12436 rtx link2;
12437
12438 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12439 if (XEXP (link2, 0) == XEXP (link, 0))
12440 break;
12441
12442 if (link2 == 0)
12443 {
12444 XEXP (link, 1) = LOG_LINKS (place);
12445 LOG_LINKS (place) = link;
12446
12447 /* Set added_links_insn to the earliest insn we added a
12448 link to. */
12449 if (added_links_insn == 0
12450 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12451 added_links_insn = place;
12452 }
12453 }
12454 }
12455 }
12456 \f
12457 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12458 Check whether the expression pointer to by LOC is a register or
12459 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12460 Otherwise return zero. */
12461
12462 static int
12463 unmentioned_reg_p_1 (rtx *loc, void *expr)
12464 {
12465 rtx x = *loc;
12466
12467 if (x != NULL_RTX
12468 && (REG_P (x) || MEM_P (x))
12469 && ! reg_mentioned_p (x, (rtx) expr))
12470 return 1;
12471 return 0;
12472 }
12473
12474 /* Check for any register or memory mentioned in EQUIV that is not
12475 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12476 of EXPR where some registers may have been replaced by constants. */
12477
12478 static bool
12479 unmentioned_reg_p (rtx equiv, rtx expr)
12480 {
12481 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12482 }
12483 \f
12484 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12485
12486 static int
12487 insn_cuid (rtx insn)
12488 {
12489 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12490 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12491 insn = NEXT_INSN (insn);
12492
12493 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12494
12495 return INSN_CUID (insn);
12496 }
12497 \f
12498 void
12499 dump_combine_stats (FILE *file)
12500 {
12501 fnotice
12502 (file,
12503 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12504 combine_attempts, combine_merges, combine_extras, combine_successes);
12505 }
12506
12507 void
12508 dump_combine_total_stats (FILE *file)
12509 {
12510 fnotice
12511 (file,
12512 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12513 total_attempts, total_merges, total_extras, total_successes);
12514 }
This page took 0.638935 seconds and 6 git commands to generate.