]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
combine.c (try_combine): Do not run subst on i1src and i2src in the case of generatin...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105
106 /* Number of attempts to combine instructions in this function. */
107
108 static int combine_attempts;
109
110 /* Number of attempts that got as far as substitution in this function. */
111
112 static int combine_merges;
113
114 /* Number of instructions combined with added SETs in this function. */
115
116 static int combine_extras;
117
118 /* Number of instructions combined in this function. */
119
120 static int combine_successes;
121
122 /* Totals over entire compilation. */
123
124 static int total_attempts, total_merges, total_extras, total_successes;
125
126 \f
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
133
134 static int *uid_cuid;
135 static int max_uid_cuid;
136
137 /* Get the cuid of an insn. */
138
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
141
142 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
143 BITS_PER_WORD would invoke undefined behavior. Work around it. */
144
145 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
146 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
147
148 /* Maximum register number, which is the size of the tables below. */
149
150 static unsigned int combine_max_regno;
151
152 struct reg_stat {
153 /* Record last point of death of (hard or pseudo) register n. */
154 rtx last_death;
155
156 /* Record last point of modification of (hard or pseudo) register n. */
157 rtx last_set;
158
159 /* The next group of fields allows the recording of the last value assigned
160 to (hard or pseudo) register n. We use this information to see if an
161 operation being processed is redundant given a prior operation performed
162 on the register. For example, an `and' with a constant is redundant if
163 all the zero bits are already known to be turned off.
164
165 We use an approach similar to that used by cse, but change it in the
166 following ways:
167
168 (1) We do not want to reinitialize at each label.
169 (2) It is useful, but not critical, to know the actual value assigned
170 to a register. Often just its form is helpful.
171
172 Therefore, we maintain the following fields:
173
174 last_set_value the last value assigned
175 last_set_label records the value of label_tick when the
176 register was assigned
177 last_set_table_tick records the value of label_tick when a
178 value using the register is assigned
179 last_set_invalid set to nonzero when it is not valid
180 to use the value of this register in some
181 register's value
182
183 To understand the usage of these tables, it is important to understand
184 the distinction between the value in last_set_value being valid and
185 the register being validly contained in some other expression in the
186 table.
187
188 (The next two parameters are out of date).
189
190 reg_stat[i].last_set_value is valid if it is nonzero, and either
191 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
192
193 Register I may validly appear in any expression returned for the value
194 of another register if reg_n_sets[i] is 1. It may also appear in the
195 value for register J if reg_stat[j].last_set_invalid is zero, or
196 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
197
198 If an expression is found in the table containing a register which may
199 not validly appear in an expression, the register is replaced by
200 something that won't match, (clobber (const_int 0)). */
201
202 /* Record last value assigned to (hard or pseudo) register n. */
203
204 rtx last_set_value;
205
206 /* Record the value of label_tick when an expression involving register n
207 is placed in last_set_value. */
208
209 int last_set_table_tick;
210
211 /* Record the value of label_tick when the value for register n is placed in
212 last_set_value. */
213
214 int last_set_label;
215
216 /* These fields are maintained in parallel with last_set_value and are
217 used to store the mode in which the register was last set, the bits
218 that were known to be zero when it was last set, and the number of
219 sign bits copies it was known to have when it was last set. */
220
221 unsigned HOST_WIDE_INT last_set_nonzero_bits;
222 char last_set_sign_bit_copies;
223 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
224
225 /* Set nonzero if references to register n in expressions should not be
226 used. last_set_invalid is set nonzero when this register is being
227 assigned to and last_set_table_tick == label_tick. */
228
229 char last_set_invalid;
230
231 /* Some registers that are set more than once and used in more than one
232 basic block are nevertheless always set in similar ways. For example,
233 a QImode register may be loaded from memory in two places on a machine
234 where byte loads zero extend.
235
236 We record in the following fields if a register has some leading bits
237 that are always equal to the sign bit, and what we know about the
238 nonzero bits of a register, specifically which bits are known to be
239 zero.
240
241 If an entry is zero, it means that we don't know anything special. */
242
243 unsigned char sign_bit_copies;
244
245 unsigned HOST_WIDE_INT nonzero_bits;
246 };
247
248 static struct reg_stat *reg_stat;
249
250 /* Record the cuid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
252
253 static int mem_last_set;
254
255 /* Record the cuid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
257
258 static int last_call_cuid;
259
260 /* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
265
266 static rtx subst_insn;
267
268 /* This is the lowest CUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this CUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
274
275 static int subst_low_cuid;
276
277 /* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
279
280 static HARD_REG_SET newpat_used_regs;
281
282 /* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
285
286 static rtx added_links_insn;
287
288 /* Basic block in which we are performing combines. */
289 static basic_block this_basic_block;
290
291 /* A bitmap indicating which blocks had registers go dead at entry.
292 After combine, we'll need to re-do global life analysis with
293 those blocks as starting points. */
294 static sbitmap refresh_blocks;
295 \f
296 /* The following array records the insn_rtx_cost for every insn
297 in the instruction stream. */
298
299 static int *uid_insn_cost;
300
301 /* Length of the currently allocated uid_insn_cost array. */
302
303 static int last_insn_cost;
304
305 /* Incremented for each label. */
306
307 static int label_tick;
308
309 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
310 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
311
312 static enum machine_mode nonzero_bits_mode;
313
314 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
315 be safely used. It is zero while computing them and after combine has
316 completed. This former test prevents propagating values based on
317 previously set values, which can be incorrect if a variable is modified
318 in a loop. */
319
320 static int nonzero_sign_valid;
321
322 \f
323 /* Record one modification to rtl structure
324 to be undone by storing old_contents into *where.
325 is_int is 1 if the contents are an int. */
326
327 struct undo
328 {
329 struct undo *next;
330 int is_int;
331 union {rtx r; int i;} old_contents;
332 union {rtx *r; int *i;} where;
333 };
334
335 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
336 num_undo says how many are currently recorded.
337
338 other_insn is nonzero if we have modified some other insn in the process
339 of working on subst_insn. It must be verified too. */
340
341 struct undobuf
342 {
343 struct undo *undos;
344 struct undo *frees;
345 rtx other_insn;
346 };
347
348 static struct undobuf undobuf;
349
350 /* Number of times the pseudo being substituted for
351 was found and replaced. */
352
353 static int n_occurrences;
354
355 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned HOST_WIDE_INT,
358 unsigned HOST_WIDE_INT *);
359 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
360 enum machine_mode,
361 unsigned int, unsigned int *);
362 static void do_SUBST (rtx *, rtx);
363 static void do_SUBST_INT (int *, int);
364 static void init_reg_last (void);
365 static void setup_incoming_promotions (void);
366 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
367 static int cant_combine_insn_p (rtx);
368 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
369 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
370 static int contains_muldiv (rtx);
371 static rtx try_combine (rtx, rtx, rtx, int *);
372 static void undo_all (void);
373 static void undo_commit (void);
374 static rtx *find_split_point (rtx *, rtx);
375 static rtx subst (rtx, rtx, rtx, int, int);
376 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
377 static rtx simplify_if_then_else (rtx);
378 static rtx simplify_set (rtx);
379 static rtx simplify_logical (rtx);
380 static rtx expand_compound_operation (rtx);
381 static rtx expand_field_assignment (rtx);
382 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
383 rtx, unsigned HOST_WIDE_INT, int, int, int);
384 static rtx extract_left_shift (rtx, int);
385 static rtx make_compound_operation (rtx, enum rtx_code);
386 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
387 unsigned HOST_WIDE_INT *);
388 static rtx force_to_mode (rtx, enum machine_mode,
389 unsigned HOST_WIDE_INT, rtx, int);
390 static rtx if_then_else_cond (rtx, rtx *, rtx *);
391 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
392 static int rtx_equal_for_field_assignment_p (rtx, rtx);
393 static rtx make_field_assignment (rtx);
394 static rtx apply_distributive_law (rtx);
395 static rtx distribute_and_simplify_rtx (rtx, int);
396 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
397 unsigned HOST_WIDE_INT);
398 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
399 HOST_WIDE_INT, enum machine_mode, int *);
400 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
401 int);
402 static int recog_for_combine (rtx *, rtx, rtx *);
403 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
404 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
405 static void update_table_tick (rtx);
406 static void record_value_for_reg (rtx, rtx, rtx);
407 static void check_promoted_subreg (rtx, rtx);
408 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
409 static void record_dead_and_set_regs (rtx);
410 static int get_last_value_validate (rtx *, rtx, int, int);
411 static rtx get_last_value (rtx);
412 static int use_crosses_set_p (rtx, int);
413 static void reg_dead_at_p_1 (rtx, rtx, void *);
414 static int reg_dead_at_p (rtx, rtx);
415 static void move_deaths (rtx, rtx, int, rtx, rtx *);
416 static int reg_bitfield_target_p (rtx, rtx);
417 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
418 static void distribute_links (rtx);
419 static void mark_used_regs_combine (rtx);
420 static int insn_cuid (rtx);
421 static void record_promoted_value (rtx, rtx);
422 static int unmentioned_reg_p_1 (rtx *, void *);
423 static bool unmentioned_reg_p (rtx, rtx);
424 \f
425
426 /* It is not safe to use ordinary gen_lowpart in combine.
427 See comments in gen_lowpart_for_combine. */
428 #undef RTL_HOOKS_GEN_LOWPART
429 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
430
431 /* Our implementation of gen_lowpart never emits a new pseudo. */
432 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
433 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
434
435 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
436 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
437
438 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
439 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
440
441 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
442
443 \f
444 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
445 insn. The substitution can be undone by undo_all. If INTO is already
446 set to NEWVAL, do not record this change. Because computing NEWVAL might
447 also call SUBST, we have to compute it before we put anything into
448 the undo table. */
449
450 static void
451 do_SUBST (rtx *into, rtx newval)
452 {
453 struct undo *buf;
454 rtx oldval = *into;
455
456 if (oldval == newval)
457 return;
458
459 /* We'd like to catch as many invalid transformations here as
460 possible. Unfortunately, there are way too many mode changes
461 that are perfectly valid, so we'd waste too much effort for
462 little gain doing the checks here. Focus on catching invalid
463 transformations involving integer constants. */
464 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
465 && GET_CODE (newval) == CONST_INT)
466 {
467 /* Sanity check that we're replacing oldval with a CONST_INT
468 that is a valid sign-extension for the original mode. */
469 gcc_assert (INTVAL (newval)
470 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
471
472 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
473 CONST_INT is not valid, because after the replacement, the
474 original mode would be gone. Unfortunately, we can't tell
475 when do_SUBST is called to replace the operand thereof, so we
476 perform this test on oldval instead, checking whether an
477 invalid replacement took place before we got here. */
478 gcc_assert (!(GET_CODE (oldval) == SUBREG
479 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
480 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
481 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
482 }
483
484 if (undobuf.frees)
485 buf = undobuf.frees, undobuf.frees = buf->next;
486 else
487 buf = xmalloc (sizeof (struct undo));
488
489 buf->is_int = 0;
490 buf->where.r = into;
491 buf->old_contents.r = oldval;
492 *into = newval;
493
494 buf->next = undobuf.undos, undobuf.undos = buf;
495 }
496
497 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
498
499 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
500 for the value of a HOST_WIDE_INT value (including CONST_INT) is
501 not safe. */
502
503 static void
504 do_SUBST_INT (int *into, int newval)
505 {
506 struct undo *buf;
507 int oldval = *into;
508
509 if (oldval == newval)
510 return;
511
512 if (undobuf.frees)
513 buf = undobuf.frees, undobuf.frees = buf->next;
514 else
515 buf = xmalloc (sizeof (struct undo));
516
517 buf->is_int = 1;
518 buf->where.i = into;
519 buf->old_contents.i = oldval;
520 *into = newval;
521
522 buf->next = undobuf.undos, undobuf.undos = buf;
523 }
524
525 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
526 \f
527 /* Subroutine of try_combine. Determine whether the combine replacement
528 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
529 that the original instruction sequence I1, I2 and I3. Note that I1
530 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
531 costs of all instructions can be estimated, and the replacements are
532 more expensive than the original sequence. */
533
534 static bool
535 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
536 {
537 int i1_cost, i2_cost, i3_cost;
538 int new_i2_cost, new_i3_cost;
539 int old_cost, new_cost;
540
541 /* Lookup the original insn_rtx_costs. */
542 i2_cost = INSN_UID (i2) <= last_insn_cost
543 ? uid_insn_cost[INSN_UID (i2)] : 0;
544 i3_cost = INSN_UID (i3) <= last_insn_cost
545 ? uid_insn_cost[INSN_UID (i3)] : 0;
546
547 if (i1)
548 {
549 i1_cost = INSN_UID (i1) <= last_insn_cost
550 ? uid_insn_cost[INSN_UID (i1)] : 0;
551 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
552 ? i1_cost + i2_cost + i3_cost : 0;
553 }
554 else
555 {
556 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
557 i1_cost = 0;
558 }
559
560 /* Calculate the replacement insn_rtx_costs. */
561 new_i3_cost = insn_rtx_cost (newpat);
562 if (newi2pat)
563 {
564 new_i2_cost = insn_rtx_cost (newi2pat);
565 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
566 ? new_i2_cost + new_i3_cost : 0;
567 }
568 else
569 {
570 new_cost = new_i3_cost;
571 new_i2_cost = 0;
572 }
573
574 if (undobuf.other_insn)
575 {
576 int old_other_cost, new_other_cost;
577
578 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
579 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
580 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
581 if (old_other_cost > 0 && new_other_cost > 0)
582 {
583 old_cost += old_other_cost;
584 new_cost += new_other_cost;
585 }
586 else
587 old_cost = 0;
588 }
589
590 /* Disallow this recombination if both new_cost and old_cost are
591 greater than zero, and new_cost is greater than old cost. */
592 if (old_cost > 0
593 && new_cost > old_cost)
594 {
595 if (dump_file)
596 {
597 if (i1)
598 {
599 fprintf (dump_file,
600 "rejecting combination of insns %d, %d and %d\n",
601 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
602 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
603 i1_cost, i2_cost, i3_cost, old_cost);
604 }
605 else
606 {
607 fprintf (dump_file,
608 "rejecting combination of insns %d and %d\n",
609 INSN_UID (i2), INSN_UID (i3));
610 fprintf (dump_file, "original costs %d + %d = %d\n",
611 i2_cost, i3_cost, old_cost);
612 }
613
614 if (newi2pat)
615 {
616 fprintf (dump_file, "replacement costs %d + %d = %d\n",
617 new_i2_cost, new_i3_cost, new_cost);
618 }
619 else
620 fprintf (dump_file, "replacement cost %d\n", new_cost);
621 }
622
623 return false;
624 }
625
626 /* Update the uid_insn_cost array with the replacement costs. */
627 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
628 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
629 if (i1)
630 uid_insn_cost[INSN_UID (i1)] = 0;
631
632 return true;
633 }
634 \f
635 /* Main entry point for combiner. F is the first insn of the function.
636 NREGS is the first unused pseudo-reg number.
637
638 Return nonzero if the combiner has turned an indirect jump
639 instruction into a direct jump. */
640 int
641 combine_instructions (rtx f, unsigned int nregs)
642 {
643 rtx insn, next;
644 #ifdef HAVE_cc0
645 rtx prev;
646 #endif
647 int i;
648 unsigned int j = 0;
649 rtx links, nextlinks;
650 sbitmap_iterator sbi;
651
652 int new_direct_jump_p = 0;
653
654 combine_attempts = 0;
655 combine_merges = 0;
656 combine_extras = 0;
657 combine_successes = 0;
658
659 combine_max_regno = nregs;
660
661 rtl_hooks = combine_rtl_hooks;
662
663 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
664
665 init_recog_no_volatile ();
666
667 /* Compute maximum uid value so uid_cuid can be allocated. */
668
669 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
670 if (INSN_UID (insn) > i)
671 i = INSN_UID (insn);
672
673 uid_cuid = xmalloc ((i + 1) * sizeof (int));
674 max_uid_cuid = i;
675
676 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
677
678 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
679 problems when, for example, we have j <<= 1 in a loop. */
680
681 nonzero_sign_valid = 0;
682
683 /* Compute the mapping from uids to cuids.
684 Cuids are numbers assigned to insns, like uids,
685 except that cuids increase monotonically through the code.
686
687 Scan all SETs and see if we can deduce anything about what
688 bits are known to be zero for some registers and how many copies
689 of the sign bit are known to exist for those registers.
690
691 Also set any known values so that we can use it while searching
692 for what bits are known to be set. */
693
694 label_tick = 1;
695
696 setup_incoming_promotions ();
697
698 refresh_blocks = sbitmap_alloc (last_basic_block);
699 sbitmap_zero (refresh_blocks);
700
701 /* Allocate array of current insn_rtx_costs. */
702 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
703 last_insn_cost = max_uid_cuid;
704
705 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
706 {
707 uid_cuid[INSN_UID (insn)] = ++i;
708 subst_low_cuid = i;
709 subst_insn = insn;
710
711 if (INSN_P (insn))
712 {
713 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
714 NULL);
715 record_dead_and_set_regs (insn);
716
717 #ifdef AUTO_INC_DEC
718 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
719 if (REG_NOTE_KIND (links) == REG_INC)
720 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
721 NULL);
722 #endif
723
724 /* Record the current insn_rtx_cost of this instruction. */
725 if (NONJUMP_INSN_P (insn))
726 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
727 if (dump_file)
728 fprintf(dump_file, "insn_cost %d: %d\n",
729 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
730 }
731
732 if (LABEL_P (insn))
733 label_tick++;
734 }
735
736 nonzero_sign_valid = 1;
737
738 /* Now scan all the insns in forward order. */
739
740 label_tick = 1;
741 last_call_cuid = 0;
742 mem_last_set = 0;
743 init_reg_last ();
744 setup_incoming_promotions ();
745
746 FOR_EACH_BB (this_basic_block)
747 {
748 for (insn = BB_HEAD (this_basic_block);
749 insn != NEXT_INSN (BB_END (this_basic_block));
750 insn = next ? next : NEXT_INSN (insn))
751 {
752 next = 0;
753
754 if (LABEL_P (insn))
755 label_tick++;
756
757 else if (INSN_P (insn))
758 {
759 /* See if we know about function return values before this
760 insn based upon SUBREG flags. */
761 check_promoted_subreg (insn, PATTERN (insn));
762
763 /* Try this insn with each insn it links back to. */
764
765 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
766 if ((next = try_combine (insn, XEXP (links, 0),
767 NULL_RTX, &new_direct_jump_p)) != 0)
768 goto retry;
769
770 /* Try each sequence of three linked insns ending with this one. */
771
772 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
773 {
774 rtx link = XEXP (links, 0);
775
776 /* If the linked insn has been replaced by a note, then there
777 is no point in pursuing this chain any further. */
778 if (NOTE_P (link))
779 continue;
780
781 for (nextlinks = LOG_LINKS (link);
782 nextlinks;
783 nextlinks = XEXP (nextlinks, 1))
784 if ((next = try_combine (insn, link,
785 XEXP (nextlinks, 0),
786 &new_direct_jump_p)) != 0)
787 goto retry;
788 }
789
790 #ifdef HAVE_cc0
791 /* Try to combine a jump insn that uses CC0
792 with a preceding insn that sets CC0, and maybe with its
793 logical predecessor as well.
794 This is how we make decrement-and-branch insns.
795 We need this special code because data flow connections
796 via CC0 do not get entered in LOG_LINKS. */
797
798 if (JUMP_P (insn)
799 && (prev = prev_nonnote_insn (insn)) != 0
800 && NONJUMP_INSN_P (prev)
801 && sets_cc0_p (PATTERN (prev)))
802 {
803 if ((next = try_combine (insn, prev,
804 NULL_RTX, &new_direct_jump_p)) != 0)
805 goto retry;
806
807 for (nextlinks = LOG_LINKS (prev); nextlinks;
808 nextlinks = XEXP (nextlinks, 1))
809 if ((next = try_combine (insn, prev,
810 XEXP (nextlinks, 0),
811 &new_direct_jump_p)) != 0)
812 goto retry;
813 }
814
815 /* Do the same for an insn that explicitly references CC0. */
816 if (NONJUMP_INSN_P (insn)
817 && (prev = prev_nonnote_insn (insn)) != 0
818 && NONJUMP_INSN_P (prev)
819 && sets_cc0_p (PATTERN (prev))
820 && GET_CODE (PATTERN (insn)) == SET
821 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
822 {
823 if ((next = try_combine (insn, prev,
824 NULL_RTX, &new_direct_jump_p)) != 0)
825 goto retry;
826
827 for (nextlinks = LOG_LINKS (prev); nextlinks;
828 nextlinks = XEXP (nextlinks, 1))
829 if ((next = try_combine (insn, prev,
830 XEXP (nextlinks, 0),
831 &new_direct_jump_p)) != 0)
832 goto retry;
833 }
834
835 /* Finally, see if any of the insns that this insn links to
836 explicitly references CC0. If so, try this insn, that insn,
837 and its predecessor if it sets CC0. */
838 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
839 if (NONJUMP_INSN_P (XEXP (links, 0))
840 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
841 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
842 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
843 && NONJUMP_INSN_P (prev)
844 && sets_cc0_p (PATTERN (prev))
845 && (next = try_combine (insn, XEXP (links, 0),
846 prev, &new_direct_jump_p)) != 0)
847 goto retry;
848 #endif
849
850 /* Try combining an insn with two different insns whose results it
851 uses. */
852 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
853 for (nextlinks = XEXP (links, 1); nextlinks;
854 nextlinks = XEXP (nextlinks, 1))
855 if ((next = try_combine (insn, XEXP (links, 0),
856 XEXP (nextlinks, 0),
857 &new_direct_jump_p)) != 0)
858 goto retry;
859
860 /* Try this insn with each REG_EQUAL note it links back to. */
861 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
862 {
863 rtx set, note;
864 rtx temp = XEXP (links, 0);
865 if ((set = single_set (temp)) != 0
866 && (note = find_reg_equal_equiv_note (temp)) != 0
867 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
868 /* Avoid using a register that may already been marked
869 dead by an earlier instruction. */
870 && ! unmentioned_reg_p (note, SET_SRC (set))
871 && (GET_MODE (note) == VOIDmode
872 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
873 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
874 {
875 /* Temporarily replace the set's source with the
876 contents of the REG_EQUAL note. The insn will
877 be deleted or recognized by try_combine. */
878 rtx orig = SET_SRC (set);
879 SET_SRC (set) = note;
880 next = try_combine (insn, temp, NULL_RTX,
881 &new_direct_jump_p);
882 if (next)
883 goto retry;
884 SET_SRC (set) = orig;
885 }
886 }
887
888 if (!NOTE_P (insn))
889 record_dead_and_set_regs (insn);
890
891 retry:
892 ;
893 }
894 }
895 }
896 clear_bb_flags ();
897
898 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
899 BASIC_BLOCK (j)->flags |= BB_DIRTY;
900 new_direct_jump_p |= purge_all_dead_edges ();
901 delete_noop_moves ();
902
903 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
904 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
905 | PROP_KILL_DEAD_CODE);
906
907 /* Clean up. */
908 sbitmap_free (refresh_blocks);
909 free (uid_insn_cost);
910 free (reg_stat);
911 free (uid_cuid);
912
913 {
914 struct undo *undo, *next;
915 for (undo = undobuf.frees; undo; undo = next)
916 {
917 next = undo->next;
918 free (undo);
919 }
920 undobuf.frees = 0;
921 }
922
923 total_attempts += combine_attempts;
924 total_merges += combine_merges;
925 total_extras += combine_extras;
926 total_successes += combine_successes;
927
928 nonzero_sign_valid = 0;
929 rtl_hooks = general_rtl_hooks;
930
931 /* Make recognizer allow volatile MEMs again. */
932 init_recog ();
933
934 return new_direct_jump_p;
935 }
936
937 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
938
939 static void
940 init_reg_last (void)
941 {
942 unsigned int i;
943 for (i = 0; i < combine_max_regno; i++)
944 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
945 }
946 \f
947 /* Set up any promoted values for incoming argument registers. */
948
949 static void
950 setup_incoming_promotions (void)
951 {
952 unsigned int regno;
953 rtx reg;
954 enum machine_mode mode;
955 int unsignedp;
956 rtx first = get_insns ();
957
958 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
959 {
960 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
961 /* Check whether this register can hold an incoming pointer
962 argument. FUNCTION_ARG_REGNO_P tests outgoing register
963 numbers, so translate if necessary due to register windows. */
964 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
965 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
966 {
967 record_value_for_reg
968 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
969 : SIGN_EXTEND),
970 GET_MODE (reg),
971 gen_rtx_CLOBBER (mode, const0_rtx)));
972 }
973 }
974 }
975 \f
976 /* Called via note_stores. If X is a pseudo that is narrower than
977 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
978
979 If we are setting only a portion of X and we can't figure out what
980 portion, assume all bits will be used since we don't know what will
981 be happening.
982
983 Similarly, set how many bits of X are known to be copies of the sign bit
984 at all locations in the function. This is the smallest number implied
985 by any set of X. */
986
987 static void
988 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
989 void *data ATTRIBUTE_UNUSED)
990 {
991 unsigned int num;
992
993 if (REG_P (x)
994 && REGNO (x) >= FIRST_PSEUDO_REGISTER
995 /* If this register is undefined at the start of the file, we can't
996 say what its contents were. */
997 && ! REGNO_REG_SET_P
998 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
999 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1000 {
1001 if (set == 0 || GET_CODE (set) == CLOBBER)
1002 {
1003 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1004 reg_stat[REGNO (x)].sign_bit_copies = 1;
1005 return;
1006 }
1007
1008 /* If this is a complex assignment, see if we can convert it into a
1009 simple assignment. */
1010 set = expand_field_assignment (set);
1011
1012 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1013 set what we know about X. */
1014
1015 if (SET_DEST (set) == x
1016 || (GET_CODE (SET_DEST (set)) == SUBREG
1017 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1018 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1019 && SUBREG_REG (SET_DEST (set)) == x))
1020 {
1021 rtx src = SET_SRC (set);
1022
1023 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1024 /* If X is narrower than a word and SRC is a non-negative
1025 constant that would appear negative in the mode of X,
1026 sign-extend it for use in reg_stat[].nonzero_bits because some
1027 machines (maybe most) will actually do the sign-extension
1028 and this is the conservative approach.
1029
1030 ??? For 2.5, try to tighten up the MD files in this regard
1031 instead of this kludge. */
1032
1033 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1034 && GET_CODE (src) == CONST_INT
1035 && INTVAL (src) > 0
1036 && 0 != (INTVAL (src)
1037 & ((HOST_WIDE_INT) 1
1038 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1039 src = GEN_INT (INTVAL (src)
1040 | ((HOST_WIDE_INT) (-1)
1041 << GET_MODE_BITSIZE (GET_MODE (x))));
1042 #endif
1043
1044 /* Don't call nonzero_bits if it cannot change anything. */
1045 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1046 reg_stat[REGNO (x)].nonzero_bits
1047 |= nonzero_bits (src, nonzero_bits_mode);
1048 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1049 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1050 || reg_stat[REGNO (x)].sign_bit_copies > num)
1051 reg_stat[REGNO (x)].sign_bit_copies = num;
1052 }
1053 else
1054 {
1055 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1056 reg_stat[REGNO (x)].sign_bit_copies = 1;
1057 }
1058 }
1059 }
1060 \f
1061 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1062 insns that were previously combined into I3 or that will be combined
1063 into the merger of INSN and I3.
1064
1065 Return 0 if the combination is not allowed for any reason.
1066
1067 If the combination is allowed, *PDEST will be set to the single
1068 destination of INSN and *PSRC to the single source, and this function
1069 will return 1. */
1070
1071 static int
1072 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1073 rtx *pdest, rtx *psrc)
1074 {
1075 int i;
1076 rtx set = 0, src, dest;
1077 rtx p;
1078 #ifdef AUTO_INC_DEC
1079 rtx link;
1080 #endif
1081 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1082 && next_active_insn (succ) == i3)
1083 : next_active_insn (insn) == i3);
1084
1085 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1086 or a PARALLEL consisting of such a SET and CLOBBERs.
1087
1088 If INSN has CLOBBER parallel parts, ignore them for our processing.
1089 By definition, these happen during the execution of the insn. When it
1090 is merged with another insn, all bets are off. If they are, in fact,
1091 needed and aren't also supplied in I3, they may be added by
1092 recog_for_combine. Otherwise, it won't match.
1093
1094 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1095 note.
1096
1097 Get the source and destination of INSN. If more than one, can't
1098 combine. */
1099
1100 if (GET_CODE (PATTERN (insn)) == SET)
1101 set = PATTERN (insn);
1102 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1103 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1104 {
1105 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1106 {
1107 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1108 rtx note;
1109
1110 switch (GET_CODE (elt))
1111 {
1112 /* This is important to combine floating point insns
1113 for the SH4 port. */
1114 case USE:
1115 /* Combining an isolated USE doesn't make sense.
1116 We depend here on combinable_i3pat to reject them. */
1117 /* The code below this loop only verifies that the inputs of
1118 the SET in INSN do not change. We call reg_set_between_p
1119 to verify that the REG in the USE does not change between
1120 I3 and INSN.
1121 If the USE in INSN was for a pseudo register, the matching
1122 insn pattern will likely match any register; combining this
1123 with any other USE would only be safe if we knew that the
1124 used registers have identical values, or if there was
1125 something to tell them apart, e.g. different modes. For
1126 now, we forgo such complicated tests and simply disallow
1127 combining of USES of pseudo registers with any other USE. */
1128 if (REG_P (XEXP (elt, 0))
1129 && GET_CODE (PATTERN (i3)) == PARALLEL)
1130 {
1131 rtx i3pat = PATTERN (i3);
1132 int i = XVECLEN (i3pat, 0) - 1;
1133 unsigned int regno = REGNO (XEXP (elt, 0));
1134
1135 do
1136 {
1137 rtx i3elt = XVECEXP (i3pat, 0, i);
1138
1139 if (GET_CODE (i3elt) == USE
1140 && REG_P (XEXP (i3elt, 0))
1141 && (REGNO (XEXP (i3elt, 0)) == regno
1142 ? reg_set_between_p (XEXP (elt, 0),
1143 PREV_INSN (insn), i3)
1144 : regno >= FIRST_PSEUDO_REGISTER))
1145 return 0;
1146 }
1147 while (--i >= 0);
1148 }
1149 break;
1150
1151 /* We can ignore CLOBBERs. */
1152 case CLOBBER:
1153 break;
1154
1155 case SET:
1156 /* Ignore SETs whose result isn't used but not those that
1157 have side-effects. */
1158 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1159 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1160 || INTVAL (XEXP (note, 0)) <= 0)
1161 && ! side_effects_p (elt))
1162 break;
1163
1164 /* If we have already found a SET, this is a second one and
1165 so we cannot combine with this insn. */
1166 if (set)
1167 return 0;
1168
1169 set = elt;
1170 break;
1171
1172 default:
1173 /* Anything else means we can't combine. */
1174 return 0;
1175 }
1176 }
1177
1178 if (set == 0
1179 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1180 so don't do anything with it. */
1181 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1182 return 0;
1183 }
1184 else
1185 return 0;
1186
1187 if (set == 0)
1188 return 0;
1189
1190 set = expand_field_assignment (set);
1191 src = SET_SRC (set), dest = SET_DEST (set);
1192
1193 /* Don't eliminate a store in the stack pointer. */
1194 if (dest == stack_pointer_rtx
1195 /* Don't combine with an insn that sets a register to itself if it has
1196 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1197 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1198 /* Can't merge an ASM_OPERANDS. */
1199 || GET_CODE (src) == ASM_OPERANDS
1200 /* Can't merge a function call. */
1201 || GET_CODE (src) == CALL
1202 /* Don't eliminate a function call argument. */
1203 || (CALL_P (i3)
1204 && (find_reg_fusage (i3, USE, dest)
1205 || (REG_P (dest)
1206 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1207 && global_regs[REGNO (dest)])))
1208 /* Don't substitute into an incremented register. */
1209 || FIND_REG_INC_NOTE (i3, dest)
1210 || (succ && FIND_REG_INC_NOTE (succ, dest))
1211 /* Don't substitute into a non-local goto, this confuses CFG. */
1212 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1213 #if 0
1214 /* Don't combine the end of a libcall into anything. */
1215 /* ??? This gives worse code, and appears to be unnecessary, since no
1216 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1217 use REG_RETVAL notes for noconflict blocks, but other code here
1218 makes sure that those insns don't disappear. */
1219 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1220 #endif
1221 /* Make sure that DEST is not used after SUCC but before I3. */
1222 || (succ && ! all_adjacent
1223 && reg_used_between_p (dest, succ, i3))
1224 /* Make sure that the value that is to be substituted for the register
1225 does not use any registers whose values alter in between. However,
1226 If the insns are adjacent, a use can't cross a set even though we
1227 think it might (this can happen for a sequence of insns each setting
1228 the same destination; last_set of that register might point to
1229 a NOTE). If INSN has a REG_EQUIV note, the register is always
1230 equivalent to the memory so the substitution is valid even if there
1231 are intervening stores. Also, don't move a volatile asm or
1232 UNSPEC_VOLATILE across any other insns. */
1233 || (! all_adjacent
1234 && (((!MEM_P (src)
1235 || ! find_reg_note (insn, REG_EQUIV, src))
1236 && use_crosses_set_p (src, INSN_CUID (insn)))
1237 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1238 || GET_CODE (src) == UNSPEC_VOLATILE))
1239 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1240 better register allocation by not doing the combine. */
1241 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1242 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1243 /* Don't combine across a CALL_INSN, because that would possibly
1244 change whether the life span of some REGs crosses calls or not,
1245 and it is a pain to update that information.
1246 Exception: if source is a constant, moving it later can't hurt.
1247 Accept that special case, because it helps -fforce-addr a lot. */
1248 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1249 return 0;
1250
1251 /* DEST must either be a REG or CC0. */
1252 if (REG_P (dest))
1253 {
1254 /* If register alignment is being enforced for multi-word items in all
1255 cases except for parameters, it is possible to have a register copy
1256 insn referencing a hard register that is not allowed to contain the
1257 mode being copied and which would not be valid as an operand of most
1258 insns. Eliminate this problem by not combining with such an insn.
1259
1260 Also, on some machines we don't want to extend the life of a hard
1261 register. */
1262
1263 if (REG_P (src)
1264 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1265 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1266 /* Don't extend the life of a hard register unless it is
1267 user variable (if we have few registers) or it can't
1268 fit into the desired register (meaning something special
1269 is going on).
1270 Also avoid substituting a return register into I3, because
1271 reload can't handle a conflict with constraints of other
1272 inputs. */
1273 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1274 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1275 return 0;
1276 }
1277 else if (GET_CODE (dest) != CC0)
1278 return 0;
1279
1280
1281 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1282 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1283 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1284 {
1285 /* Don't substitute for a register intended as a clobberable
1286 operand. */
1287 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1288 if (rtx_equal_p (reg, dest))
1289 return 0;
1290
1291 /* If the clobber represents an earlyclobber operand, we must not
1292 substitute an expression containing the clobbered register.
1293 As we do not analyze the constraint strings here, we have to
1294 make the conservative assumption. However, if the register is
1295 a fixed hard reg, the clobber cannot represent any operand;
1296 we leave it up to the machine description to either accept or
1297 reject use-and-clobber patterns. */
1298 if (!REG_P (reg)
1299 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1300 || !fixed_regs[REGNO (reg)])
1301 if (reg_overlap_mentioned_p (reg, src))
1302 return 0;
1303 }
1304
1305 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1306 or not), reject, unless nothing volatile comes between it and I3 */
1307
1308 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1309 {
1310 /* Make sure succ doesn't contain a volatile reference. */
1311 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1312 return 0;
1313
1314 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1315 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1316 return 0;
1317 }
1318
1319 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1320 to be an explicit register variable, and was chosen for a reason. */
1321
1322 if (GET_CODE (src) == ASM_OPERANDS
1323 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1324 return 0;
1325
1326 /* If there are any volatile insns between INSN and I3, reject, because
1327 they might affect machine state. */
1328
1329 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1330 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1331 return 0;
1332
1333 /* If INSN contains an autoincrement or autodecrement, make sure that
1334 register is not used between there and I3, and not already used in
1335 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1336 Also insist that I3 not be a jump; if it were one
1337 and the incremented register were spilled, we would lose. */
1338
1339 #ifdef AUTO_INC_DEC
1340 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1341 if (REG_NOTE_KIND (link) == REG_INC
1342 && (JUMP_P (i3)
1343 || reg_used_between_p (XEXP (link, 0), insn, i3)
1344 || (pred != NULL_RTX
1345 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1346 || (succ != NULL_RTX
1347 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1348 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1349 return 0;
1350 #endif
1351
1352 #ifdef HAVE_cc0
1353 /* Don't combine an insn that follows a CC0-setting insn.
1354 An insn that uses CC0 must not be separated from the one that sets it.
1355 We do, however, allow I2 to follow a CC0-setting insn if that insn
1356 is passed as I1; in that case it will be deleted also.
1357 We also allow combining in this case if all the insns are adjacent
1358 because that would leave the two CC0 insns adjacent as well.
1359 It would be more logical to test whether CC0 occurs inside I1 or I2,
1360 but that would be much slower, and this ought to be equivalent. */
1361
1362 p = prev_nonnote_insn (insn);
1363 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1364 && ! all_adjacent)
1365 return 0;
1366 #endif
1367
1368 /* If we get here, we have passed all the tests and the combination is
1369 to be allowed. */
1370
1371 *pdest = dest;
1372 *psrc = src;
1373
1374 return 1;
1375 }
1376 \f
1377 /* LOC is the location within I3 that contains its pattern or the component
1378 of a PARALLEL of the pattern. We validate that it is valid for combining.
1379
1380 One problem is if I3 modifies its output, as opposed to replacing it
1381 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1382 so would produce an insn that is not equivalent to the original insns.
1383
1384 Consider:
1385
1386 (set (reg:DI 101) (reg:DI 100))
1387 (set (subreg:SI (reg:DI 101) 0) <foo>)
1388
1389 This is NOT equivalent to:
1390
1391 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1392 (set (reg:DI 101) (reg:DI 100))])
1393
1394 Not only does this modify 100 (in which case it might still be valid
1395 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1396
1397 We can also run into a problem if I2 sets a register that I1
1398 uses and I1 gets directly substituted into I3 (not via I2). In that
1399 case, we would be getting the wrong value of I2DEST into I3, so we
1400 must reject the combination. This case occurs when I2 and I1 both
1401 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1402 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1403 of a SET must prevent combination from occurring.
1404
1405 Before doing the above check, we first try to expand a field assignment
1406 into a set of logical operations.
1407
1408 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1409 we place a register that is both set and used within I3. If more than one
1410 such register is detected, we fail.
1411
1412 Return 1 if the combination is valid, zero otherwise. */
1413
1414 static int
1415 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1416 int i1_not_in_src, rtx *pi3dest_killed)
1417 {
1418 rtx x = *loc;
1419
1420 if (GET_CODE (x) == SET)
1421 {
1422 rtx set = x ;
1423 rtx dest = SET_DEST (set);
1424 rtx src = SET_SRC (set);
1425 rtx inner_dest = dest;
1426
1427 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1428 || GET_CODE (inner_dest) == SUBREG
1429 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1430 inner_dest = XEXP (inner_dest, 0);
1431
1432 /* Check for the case where I3 modifies its output, as discussed
1433 above. We don't want to prevent pseudos from being combined
1434 into the address of a MEM, so only prevent the combination if
1435 i1 or i2 set the same MEM. */
1436 if ((inner_dest != dest &&
1437 (!MEM_P (inner_dest)
1438 || rtx_equal_p (i2dest, inner_dest)
1439 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1440 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1441 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1442
1443 /* This is the same test done in can_combine_p except we can't test
1444 all_adjacent; we don't have to, since this instruction will stay
1445 in place, thus we are not considering increasing the lifetime of
1446 INNER_DEST.
1447
1448 Also, if this insn sets a function argument, combining it with
1449 something that might need a spill could clobber a previous
1450 function argument; the all_adjacent test in can_combine_p also
1451 checks this; here, we do a more specific test for this case. */
1452
1453 || (REG_P (inner_dest)
1454 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1455 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1456 GET_MODE (inner_dest))))
1457 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1458 return 0;
1459
1460 /* If DEST is used in I3, it is being killed in this insn,
1461 so record that for later.
1462 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1463 STACK_POINTER_REGNUM, since these are always considered to be
1464 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1465 if (pi3dest_killed && REG_P (dest)
1466 && reg_referenced_p (dest, PATTERN (i3))
1467 && REGNO (dest) != FRAME_POINTER_REGNUM
1468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1469 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1470 #endif
1471 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1472 && (REGNO (dest) != ARG_POINTER_REGNUM
1473 || ! fixed_regs [REGNO (dest)])
1474 #endif
1475 && REGNO (dest) != STACK_POINTER_REGNUM)
1476 {
1477 if (*pi3dest_killed)
1478 return 0;
1479
1480 *pi3dest_killed = dest;
1481 }
1482 }
1483
1484 else if (GET_CODE (x) == PARALLEL)
1485 {
1486 int i;
1487
1488 for (i = 0; i < XVECLEN (x, 0); i++)
1489 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1490 i1_not_in_src, pi3dest_killed))
1491 return 0;
1492 }
1493
1494 return 1;
1495 }
1496 \f
1497 /* Return 1 if X is an arithmetic expression that contains a multiplication
1498 and division. We don't count multiplications by powers of two here. */
1499
1500 static int
1501 contains_muldiv (rtx x)
1502 {
1503 switch (GET_CODE (x))
1504 {
1505 case MOD: case DIV: case UMOD: case UDIV:
1506 return 1;
1507
1508 case MULT:
1509 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1510 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1511 default:
1512 if (BINARY_P (x))
1513 return contains_muldiv (XEXP (x, 0))
1514 || contains_muldiv (XEXP (x, 1));
1515
1516 if (UNARY_P (x))
1517 return contains_muldiv (XEXP (x, 0));
1518
1519 return 0;
1520 }
1521 }
1522 \f
1523 /* Determine whether INSN can be used in a combination. Return nonzero if
1524 not. This is used in try_combine to detect early some cases where we
1525 can't perform combinations. */
1526
1527 static int
1528 cant_combine_insn_p (rtx insn)
1529 {
1530 rtx set;
1531 rtx src, dest;
1532
1533 /* If this isn't really an insn, we can't do anything.
1534 This can occur when flow deletes an insn that it has merged into an
1535 auto-increment address. */
1536 if (! INSN_P (insn))
1537 return 1;
1538
1539 /* Never combine loads and stores involving hard regs that are likely
1540 to be spilled. The register allocator can usually handle such
1541 reg-reg moves by tying. If we allow the combiner to make
1542 substitutions of likely-spilled regs, reload might die.
1543 As an exception, we allow combinations involving fixed regs; these are
1544 not available to the register allocator so there's no risk involved. */
1545
1546 set = single_set (insn);
1547 if (! set)
1548 return 0;
1549 src = SET_SRC (set);
1550 dest = SET_DEST (set);
1551 if (GET_CODE (src) == SUBREG)
1552 src = SUBREG_REG (src);
1553 if (GET_CODE (dest) == SUBREG)
1554 dest = SUBREG_REG (dest);
1555 if (REG_P (src) && REG_P (dest)
1556 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1557 && ! fixed_regs[REGNO (src)]
1558 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1559 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1560 && ! fixed_regs[REGNO (dest)]
1561 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1562 return 1;
1563
1564 return 0;
1565 }
1566
1567 struct likely_spilled_retval_info
1568 {
1569 unsigned regno, nregs;
1570 unsigned mask;
1571 };
1572
1573 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1574 hard registers that are known to be written to / clobbered in full. */
1575 static void
1576 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1577 {
1578 struct likely_spilled_retval_info *info = data;
1579 unsigned regno, nregs;
1580 unsigned new_mask;
1581
1582 if (!REG_P (XEXP (set, 0)))
1583 return;
1584 regno = REGNO (x);
1585 if (regno >= info->regno + info->nregs)
1586 return;
1587 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1588 if (regno + nregs <= info->regno)
1589 return;
1590 new_mask = (2U << (nregs - 1)) - 1;
1591 if (regno < info->regno)
1592 new_mask >>= info->regno - regno;
1593 else
1594 new_mask <<= regno - info->regno;
1595 info->mask &= new_mask;
1596 }
1597
1598 /* Return nonzero iff part of the return value is live during INSN, and
1599 it is likely spilled. This can happen when more than one insn is needed
1600 to copy the return value, e.g. when we consider to combine into the
1601 second copy insn for a complex value. */
1602
1603 static int
1604 likely_spilled_retval_p (rtx insn)
1605 {
1606 rtx use = BB_END (this_basic_block);
1607 rtx reg, p;
1608 unsigned regno, nregs;
1609 /* We assume here that no machine mode needs more than
1610 32 hard registers when the value overlaps with a register
1611 for which FUNCTION_VALUE_REGNO_P is true. */
1612 unsigned mask;
1613 struct likely_spilled_retval_info info;
1614
1615 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1616 return 0;
1617 reg = XEXP (PATTERN (use), 0);
1618 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1619 return 0;
1620 regno = REGNO (reg);
1621 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1622 if (nregs == 1)
1623 return 0;
1624 mask = (2U << (nregs - 1)) - 1;
1625
1626 /* Disregard parts of the return value that are set later. */
1627 info.regno = regno;
1628 info.nregs = nregs;
1629 info.mask = mask;
1630 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1631 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1632 mask = info.mask;
1633
1634 /* Check if any of the (probably) live return value registers is
1635 likely spilled. */
1636 nregs --;
1637 do
1638 {
1639 if ((mask & 1 << nregs)
1640 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1641 return 1;
1642 } while (nregs--);
1643 return 0;
1644 }
1645
1646 /* Adjust INSN after we made a change to its destination.
1647
1648 Changing the destination can invalidate notes that say something about
1649 the results of the insn and a LOG_LINK pointing to the insn. */
1650
1651 static void
1652 adjust_for_new_dest (rtx insn)
1653 {
1654 rtx *loc;
1655
1656 /* For notes, be conservative and simply remove them. */
1657 loc = &REG_NOTES (insn);
1658 while (*loc)
1659 {
1660 enum reg_note kind = REG_NOTE_KIND (*loc);
1661 if (kind == REG_EQUAL || kind == REG_EQUIV)
1662 *loc = XEXP (*loc, 1);
1663 else
1664 loc = &XEXP (*loc, 1);
1665 }
1666
1667 /* The new insn will have a destination that was previously the destination
1668 of an insn just above it. Call distribute_links to make a LOG_LINK from
1669 the next use of that destination. */
1670 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1671 }
1672
1673 /* Return TRUE if combine can reuse reg X in mode MODE.
1674 ADDED_SETS is nonzero if the original set is still required. */
1675 static bool
1676 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1677 {
1678 unsigned int regno;
1679
1680 if (!REG_P(x))
1681 return false;
1682
1683 regno = REGNO (x);
1684 /* Allow hard registers if the new mode is legal, and occupies no more
1685 registers than the old mode. */
1686 if (regno < FIRST_PSEUDO_REGISTER)
1687 return (HARD_REGNO_MODE_OK (regno, mode)
1688 && (hard_regno_nregs[regno][GET_MODE (x)]
1689 >= hard_regno_nregs[regno][mode]));
1690
1691 /* Or a pseudo that is only used once. */
1692 return (REG_N_SETS (regno) == 1 && !added_sets
1693 && !REG_USERVAR_P (x));
1694 }
1695
1696 /* Try to combine the insns I1 and I2 into I3.
1697 Here I1 and I2 appear earlier than I3.
1698 I1 can be zero; then we combine just I2 into I3.
1699
1700 If we are combining three insns and the resulting insn is not recognized,
1701 try splitting it into two insns. If that happens, I2 and I3 are retained
1702 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1703 are pseudo-deleted.
1704
1705 Return 0 if the combination does not work. Then nothing is changed.
1706 If we did the combination, return the insn at which combine should
1707 resume scanning.
1708
1709 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1710 new direct jump instruction. */
1711
1712 static rtx
1713 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1714 {
1715 /* New patterns for I3 and I2, respectively. */
1716 rtx newpat, newi2pat = 0;
1717 rtvec newpat_vec_with_clobbers = 0;
1718 int substed_i2 = 0, substed_i1 = 0;
1719 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1720 int added_sets_1, added_sets_2;
1721 /* Total number of SETs to put into I3. */
1722 int total_sets;
1723 /* Nonzero if I2's body now appears in I3. */
1724 int i2_is_used;
1725 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1726 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1727 /* Contains I3 if the destination of I3 is used in its source, which means
1728 that the old life of I3 is being killed. If that usage is placed into
1729 I2 and not in I3, a REG_DEAD note must be made. */
1730 rtx i3dest_killed = 0;
1731 /* SET_DEST and SET_SRC of I2 and I1. */
1732 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1733 /* PATTERN (I2), or a copy of it in certain cases. */
1734 rtx i2pat;
1735 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1736 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1737 int i2dest_killed = 0, i1dest_killed = 0;
1738 int i1_feeds_i3 = 0;
1739 /* Notes that must be added to REG_NOTES in I3 and I2. */
1740 rtx new_i3_notes, new_i2_notes;
1741 /* Notes that we substituted I3 into I2 instead of the normal case. */
1742 int i3_subst_into_i2 = 0;
1743 /* Notes that I1, I2 or I3 is a MULT operation. */
1744 int have_mult = 0;
1745 int swap_i2i3 = 0;
1746
1747 int maxreg;
1748 rtx temp;
1749 rtx link;
1750 int i;
1751
1752 /* Exit early if one of the insns involved can't be used for
1753 combinations. */
1754 if (cant_combine_insn_p (i3)
1755 || cant_combine_insn_p (i2)
1756 || (i1 && cant_combine_insn_p (i1))
1757 || likely_spilled_retval_p (i3)
1758 /* We also can't do anything if I3 has a
1759 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1760 libcall. */
1761 #if 0
1762 /* ??? This gives worse code, and appears to be unnecessary, since no
1763 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1764 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1765 #endif
1766 )
1767 return 0;
1768
1769 combine_attempts++;
1770 undobuf.other_insn = 0;
1771
1772 /* Reset the hard register usage information. */
1773 CLEAR_HARD_REG_SET (newpat_used_regs);
1774
1775 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1776 code below, set I1 to be the earlier of the two insns. */
1777 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1778 temp = i1, i1 = i2, i2 = temp;
1779
1780 added_links_insn = 0;
1781
1782 /* First check for one important special-case that the code below will
1783 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1784 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1785 we may be able to replace that destination with the destination of I3.
1786 This occurs in the common code where we compute both a quotient and
1787 remainder into a structure, in which case we want to do the computation
1788 directly into the structure to avoid register-register copies.
1789
1790 Note that this case handles both multiple sets in I2 and also
1791 cases where I2 has a number of CLOBBER or PARALLELs.
1792
1793 We make very conservative checks below and only try to handle the
1794 most common cases of this. For example, we only handle the case
1795 where I2 and I3 are adjacent to avoid making difficult register
1796 usage tests. */
1797
1798 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1799 && REG_P (SET_SRC (PATTERN (i3)))
1800 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1801 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1802 && GET_CODE (PATTERN (i2)) == PARALLEL
1803 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1804 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1805 below would need to check what is inside (and reg_overlap_mentioned_p
1806 doesn't support those codes anyway). Don't allow those destinations;
1807 the resulting insn isn't likely to be recognized anyway. */
1808 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1809 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1810 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1811 SET_DEST (PATTERN (i3)))
1812 && next_real_insn (i2) == i3)
1813 {
1814 rtx p2 = PATTERN (i2);
1815
1816 /* Make sure that the destination of I3,
1817 which we are going to substitute into one output of I2,
1818 is not used within another output of I2. We must avoid making this:
1819 (parallel [(set (mem (reg 69)) ...)
1820 (set (reg 69) ...)])
1821 which is not well-defined as to order of actions.
1822 (Besides, reload can't handle output reloads for this.)
1823
1824 The problem can also happen if the dest of I3 is a memory ref,
1825 if another dest in I2 is an indirect memory ref. */
1826 for (i = 0; i < XVECLEN (p2, 0); i++)
1827 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1828 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1829 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1830 SET_DEST (XVECEXP (p2, 0, i))))
1831 break;
1832
1833 if (i == XVECLEN (p2, 0))
1834 for (i = 0; i < XVECLEN (p2, 0); i++)
1835 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1836 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1837 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1838 {
1839 combine_merges++;
1840
1841 subst_insn = i3;
1842 subst_low_cuid = INSN_CUID (i2);
1843
1844 added_sets_2 = added_sets_1 = 0;
1845 i2dest = SET_SRC (PATTERN (i3));
1846 i2dest_killed = dead_or_set_p (i2, i2dest);
1847
1848 /* Replace the dest in I2 with our dest and make the resulting
1849 insn the new pattern for I3. Then skip to where we
1850 validate the pattern. Everything was set up above. */
1851 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1852 SET_DEST (PATTERN (i3)));
1853
1854 newpat = p2;
1855 i3_subst_into_i2 = 1;
1856 goto validate_replacement;
1857 }
1858 }
1859
1860 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1861 one of those words to another constant, merge them by making a new
1862 constant. */
1863 if (i1 == 0
1864 && (temp = single_set (i2)) != 0
1865 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1866 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1867 && REG_P (SET_DEST (temp))
1868 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1869 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1870 && GET_CODE (PATTERN (i3)) == SET
1871 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1872 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1873 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1874 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1875 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1876 {
1877 HOST_WIDE_INT lo, hi;
1878
1879 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1880 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1881 else
1882 {
1883 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1884 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1885 }
1886
1887 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1888 {
1889 /* We don't handle the case of the target word being wider
1890 than a host wide int. */
1891 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1892
1893 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1894 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1895 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1896 }
1897 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1898 hi = INTVAL (SET_SRC (PATTERN (i3)));
1899 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1900 {
1901 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1902 >> (HOST_BITS_PER_WIDE_INT - 1));
1903
1904 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1905 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1906 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1907 (INTVAL (SET_SRC (PATTERN (i3)))));
1908 if (hi == sign)
1909 hi = lo < 0 ? -1 : 0;
1910 }
1911 else
1912 /* We don't handle the case of the higher word not fitting
1913 entirely in either hi or lo. */
1914 gcc_unreachable ();
1915
1916 combine_merges++;
1917 subst_insn = i3;
1918 subst_low_cuid = INSN_CUID (i2);
1919 added_sets_2 = added_sets_1 = 0;
1920 i2dest = SET_DEST (temp);
1921 i2dest_killed = dead_or_set_p (i2, i2dest);
1922
1923 SUBST (SET_SRC (temp),
1924 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1925
1926 newpat = PATTERN (i2);
1927 goto validate_replacement;
1928 }
1929
1930 #ifndef HAVE_cc0
1931 /* If we have no I1 and I2 looks like:
1932 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1933 (set Y OP)])
1934 make up a dummy I1 that is
1935 (set Y OP)
1936 and change I2 to be
1937 (set (reg:CC X) (compare:CC Y (const_int 0)))
1938
1939 (We can ignore any trailing CLOBBERs.)
1940
1941 This undoes a previous combination and allows us to match a branch-and-
1942 decrement insn. */
1943
1944 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1945 && XVECLEN (PATTERN (i2), 0) >= 2
1946 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1947 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1948 == MODE_CC)
1949 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1950 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1951 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1952 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1953 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1954 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1955 {
1956 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1957 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1958 break;
1959
1960 if (i == 1)
1961 {
1962 /* We make I1 with the same INSN_UID as I2. This gives it
1963 the same INSN_CUID for value tracking. Our fake I1 will
1964 never appear in the insn stream so giving it the same INSN_UID
1965 as I2 will not cause a problem. */
1966
1967 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1968 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1969 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1970 NULL_RTX);
1971
1972 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1973 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1974 SET_DEST (PATTERN (i1)));
1975 }
1976 }
1977 #endif
1978
1979 /* Verify that I2 and I1 are valid for combining. */
1980 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1981 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1982 {
1983 undo_all ();
1984 return 0;
1985 }
1986
1987 /* Record whether I2DEST is used in I2SRC and similarly for the other
1988 cases. Knowing this will help in register status updating below. */
1989 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1990 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1991 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1992 i2dest_killed = dead_or_set_p (i2, i2dest);
1993 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
1994
1995 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1996 in I2SRC. */
1997 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1998
1999 /* Ensure that I3's pattern can be the destination of combines. */
2000 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2001 i1 && i2dest_in_i1src && i1_feeds_i3,
2002 &i3dest_killed))
2003 {
2004 undo_all ();
2005 return 0;
2006 }
2007
2008 /* See if any of the insns is a MULT operation. Unless one is, we will
2009 reject a combination that is, since it must be slower. Be conservative
2010 here. */
2011 if (GET_CODE (i2src) == MULT
2012 || (i1 != 0 && GET_CODE (i1src) == MULT)
2013 || (GET_CODE (PATTERN (i3)) == SET
2014 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2015 have_mult = 1;
2016
2017 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2018 We used to do this EXCEPT in one case: I3 has a post-inc in an
2019 output operand. However, that exception can give rise to insns like
2020 mov r3,(r3)+
2021 which is a famous insn on the PDP-11 where the value of r3 used as the
2022 source was model-dependent. Avoid this sort of thing. */
2023
2024 #if 0
2025 if (!(GET_CODE (PATTERN (i3)) == SET
2026 && REG_P (SET_SRC (PATTERN (i3)))
2027 && MEM_P (SET_DEST (PATTERN (i3)))
2028 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2029 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2030 /* It's not the exception. */
2031 #endif
2032 #ifdef AUTO_INC_DEC
2033 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2034 if (REG_NOTE_KIND (link) == REG_INC
2035 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2036 || (i1 != 0
2037 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2038 {
2039 undo_all ();
2040 return 0;
2041 }
2042 #endif
2043
2044 /* See if the SETs in I1 or I2 need to be kept around in the merged
2045 instruction: whenever the value set there is still needed past I3.
2046 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2047
2048 For the SET in I1, we have two cases: If I1 and I2 independently
2049 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2050 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2051 in I1 needs to be kept around unless I1DEST dies or is set in either
2052 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2053 I1DEST. If so, we know I1 feeds into I2. */
2054
2055 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2056
2057 added_sets_1
2058 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2059 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2060
2061 /* If the set in I2 needs to be kept around, we must make a copy of
2062 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2063 PATTERN (I2), we are only substituting for the original I1DEST, not into
2064 an already-substituted copy. This also prevents making self-referential
2065 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2066 I2DEST. */
2067
2068 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2069 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2070 : PATTERN (i2));
2071
2072 if (added_sets_2)
2073 i2pat = copy_rtx (i2pat);
2074
2075 combine_merges++;
2076
2077 /* Substitute in the latest insn for the regs set by the earlier ones. */
2078
2079 maxreg = max_reg_num ();
2080
2081 subst_insn = i3;
2082
2083 #ifndef HAVE_cc0
2084 /* Many machines that don't use CC0 have insns that can both perform an
2085 arithmetic operation and set the condition code. These operations will
2086 be represented as a PARALLEL with the first element of the vector
2087 being a COMPARE of an arithmetic operation with the constant zero.
2088 The second element of the vector will set some pseudo to the result
2089 of the same arithmetic operation. If we simplify the COMPARE, we won't
2090 match such a pattern and so will generate an extra insn. Here we test
2091 for this case, where both the comparison and the operation result are
2092 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2093 I2SRC. Later we will make the PARALLEL that contains I2. */
2094
2095 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2096 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2097 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2098 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2099 {
2100 #ifdef SELECT_CC_MODE
2101 rtx *cc_use;
2102 enum machine_mode compare_mode;
2103 #endif
2104
2105 newpat = PATTERN (i3);
2106 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2107
2108 i2_is_used = 1;
2109
2110 #ifdef SELECT_CC_MODE
2111 /* See if a COMPARE with the operand we substituted in should be done
2112 with the mode that is currently being used. If not, do the same
2113 processing we do in `subst' for a SET; namely, if the destination
2114 is used only once, try to replace it with a register of the proper
2115 mode and also replace the COMPARE. */
2116 if (undobuf.other_insn == 0
2117 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2118 &undobuf.other_insn))
2119 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2120 i2src, const0_rtx))
2121 != GET_MODE (SET_DEST (newpat))))
2122 {
2123 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2124 compare_mode))
2125 {
2126 unsigned int regno = REGNO (SET_DEST (newpat));
2127 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2128
2129 if (regno >= FIRST_PSEUDO_REGISTER)
2130 SUBST (regno_reg_rtx[regno], new_dest);
2131
2132 SUBST (SET_DEST (newpat), new_dest);
2133 SUBST (XEXP (*cc_use, 0), new_dest);
2134 SUBST (SET_SRC (newpat),
2135 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2136 }
2137 else
2138 undobuf.other_insn = 0;
2139 }
2140 #endif
2141 }
2142 else
2143 #endif
2144 {
2145 /* It is possible that the source of I2 or I1 may be performing
2146 an unneeded operation, such as a ZERO_EXTEND of something
2147 that is known to have the high part zero. Handle that case
2148 by letting subst look at the innermost one of them.
2149
2150 Another way to do this would be to have a function that tries
2151 to simplify a single insn instead of merging two or more
2152 insns. We don't do this because of the potential of infinite
2153 loops and because of the potential extra memory required.
2154 However, doing it the way we are is a bit of a kludge and
2155 doesn't catch all cases.
2156
2157 But only do this if -fexpensive-optimizations since it slows
2158 things down and doesn't usually win.
2159
2160 This is not done in the COMPARE case above because the
2161 unmodified I2PAT is used in the PARALLEL and so a pattern
2162 with a modified I2SRC would not match. */
2163
2164 if (flag_expensive_optimizations)
2165 {
2166 /* Pass pc_rtx so no substitutions are done, just
2167 simplifications. */
2168 if (i1)
2169 {
2170 subst_low_cuid = INSN_CUID (i1);
2171 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2172 }
2173 else
2174 {
2175 subst_low_cuid = INSN_CUID (i2);
2176 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2177 }
2178 }
2179
2180 n_occurrences = 0; /* `subst' counts here */
2181
2182 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2183 need to make a unique copy of I2SRC each time we substitute it
2184 to avoid self-referential rtl. */
2185
2186 subst_low_cuid = INSN_CUID (i2);
2187 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2188 ! i1_feeds_i3 && i1dest_in_i1src);
2189 substed_i2 = 1;
2190
2191 /* Record whether i2's body now appears within i3's body. */
2192 i2_is_used = n_occurrences;
2193 }
2194
2195 /* If we already got a failure, don't try to do more. Otherwise,
2196 try to substitute in I1 if we have it. */
2197
2198 if (i1 && GET_CODE (newpat) != CLOBBER)
2199 {
2200 /* Before we can do this substitution, we must redo the test done
2201 above (see detailed comments there) that ensures that I1DEST
2202 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2203
2204 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2205 0, (rtx*) 0))
2206 {
2207 undo_all ();
2208 return 0;
2209 }
2210
2211 n_occurrences = 0;
2212 subst_low_cuid = INSN_CUID (i1);
2213 newpat = subst (newpat, i1dest, i1src, 0, 0);
2214 substed_i1 = 1;
2215 }
2216
2217 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2218 to count all the ways that I2SRC and I1SRC can be used. */
2219 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2220 && i2_is_used + added_sets_2 > 1)
2221 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2222 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2223 > 1))
2224 /* Fail if we tried to make a new register. */
2225 || max_reg_num () != maxreg
2226 /* Fail if we couldn't do something and have a CLOBBER. */
2227 || GET_CODE (newpat) == CLOBBER
2228 /* Fail if this new pattern is a MULT and we didn't have one before
2229 at the outer level. */
2230 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2231 && ! have_mult))
2232 {
2233 undo_all ();
2234 return 0;
2235 }
2236
2237 /* If the actions of the earlier insns must be kept
2238 in addition to substituting them into the latest one,
2239 we must make a new PARALLEL for the latest insn
2240 to hold additional the SETs. */
2241
2242 if (added_sets_1 || added_sets_2)
2243 {
2244 combine_extras++;
2245
2246 if (GET_CODE (newpat) == PARALLEL)
2247 {
2248 rtvec old = XVEC (newpat, 0);
2249 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2250 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2251 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2252 sizeof (old->elem[0]) * old->num_elem);
2253 }
2254 else
2255 {
2256 rtx old = newpat;
2257 total_sets = 1 + added_sets_1 + added_sets_2;
2258 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2259 XVECEXP (newpat, 0, 0) = old;
2260 }
2261
2262 if (added_sets_1)
2263 XVECEXP (newpat, 0, --total_sets)
2264 = (GET_CODE (PATTERN (i1)) == PARALLEL
2265 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2266
2267 if (added_sets_2)
2268 {
2269 /* If there is no I1, use I2's body as is. We used to also not do
2270 the subst call below if I2 was substituted into I3,
2271 but that could lose a simplification. */
2272 if (i1 == 0)
2273 XVECEXP (newpat, 0, --total_sets) = i2pat;
2274 else
2275 /* See comment where i2pat is assigned. */
2276 XVECEXP (newpat, 0, --total_sets)
2277 = subst (i2pat, i1dest, i1src, 0, 0);
2278 }
2279 }
2280
2281 /* We come here when we are replacing a destination in I2 with the
2282 destination of I3. */
2283 validate_replacement:
2284
2285 /* Note which hard regs this insn has as inputs. */
2286 mark_used_regs_combine (newpat);
2287
2288 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2289 consider splitting this pattern, we might need these clobbers. */
2290 if (i1 && GET_CODE (newpat) == PARALLEL
2291 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2292 {
2293 int len = XVECLEN (newpat, 0);
2294
2295 newpat_vec_with_clobbers = rtvec_alloc (len);
2296 for (i = 0; i < len; i++)
2297 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2298 }
2299
2300 /* Is the result of combination a valid instruction? */
2301 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2302
2303 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2304 the second SET's destination is a register that is unused and isn't
2305 marked as an instruction that might trap in an EH region. In that case,
2306 we just need the first SET. This can occur when simplifying a divmod
2307 insn. We *must* test for this case here because the code below that
2308 splits two independent SETs doesn't handle this case correctly when it
2309 updates the register status.
2310
2311 It's pointless doing this if we originally had two sets, one from
2312 i3, and one from i2. Combining then splitting the parallel results
2313 in the original i2 again plus an invalid insn (which we delete).
2314 The net effect is only to move instructions around, which makes
2315 debug info less accurate.
2316
2317 Also check the case where the first SET's destination is unused.
2318 That would not cause incorrect code, but does cause an unneeded
2319 insn to remain. */
2320
2321 if (insn_code_number < 0
2322 && !(added_sets_2 && i1 == 0)
2323 && GET_CODE (newpat) == PARALLEL
2324 && XVECLEN (newpat, 0) == 2
2325 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2326 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2327 && asm_noperands (newpat) < 0)
2328 {
2329 rtx set0 = XVECEXP (newpat, 0, 0);
2330 rtx set1 = XVECEXP (newpat, 0, 1);
2331 rtx note;
2332
2333 if (((REG_P (SET_DEST (set1))
2334 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2335 || (GET_CODE (SET_DEST (set1)) == SUBREG
2336 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2337 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2338 || INTVAL (XEXP (note, 0)) <= 0)
2339 && ! side_effects_p (SET_SRC (set1)))
2340 {
2341 newpat = set0;
2342 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2343 }
2344
2345 else if (((REG_P (SET_DEST (set0))
2346 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2347 || (GET_CODE (SET_DEST (set0)) == SUBREG
2348 && find_reg_note (i3, REG_UNUSED,
2349 SUBREG_REG (SET_DEST (set0)))))
2350 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2351 || INTVAL (XEXP (note, 0)) <= 0)
2352 && ! side_effects_p (SET_SRC (set0)))
2353 {
2354 newpat = set1;
2355 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2356
2357 if (insn_code_number >= 0)
2358 {
2359 /* If we will be able to accept this, we have made a
2360 change to the destination of I3. This requires us to
2361 do a few adjustments. */
2362
2363 PATTERN (i3) = newpat;
2364 adjust_for_new_dest (i3);
2365 }
2366 }
2367 }
2368
2369 /* If we were combining three insns and the result is a simple SET
2370 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2371 insns. There are two ways to do this. It can be split using a
2372 machine-specific method (like when you have an addition of a large
2373 constant) or by combine in the function find_split_point. */
2374
2375 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2376 && asm_noperands (newpat) < 0)
2377 {
2378 rtx m_split, *split;
2379 rtx ni2dest = i2dest;
2380
2381 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2382 use I2DEST as a scratch register will help. In the latter case,
2383 convert I2DEST to the mode of the source of NEWPAT if we can. */
2384
2385 m_split = split_insns (newpat, i3);
2386
2387 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2388 inputs of NEWPAT. */
2389
2390 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2391 possible to try that as a scratch reg. This would require adding
2392 more code to make it work though. */
2393
2394 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2395 {
2396 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2397 /* If I2DEST is a hard register or the only use of a pseudo,
2398 we can change its mode. */
2399 if (new_mode != GET_MODE (i2dest)
2400 && new_mode != VOIDmode
2401 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2402 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2403 REGNO (i2dest));
2404
2405 m_split = split_insns (gen_rtx_PARALLEL
2406 (VOIDmode,
2407 gen_rtvec (2, newpat,
2408 gen_rtx_CLOBBER (VOIDmode,
2409 ni2dest))),
2410 i3);
2411 /* If the split with the mode-changed register didn't work, try
2412 the original register. */
2413 if (! m_split && ni2dest != i2dest)
2414 {
2415 ni2dest = i2dest;
2416 m_split = split_insns (gen_rtx_PARALLEL
2417 (VOIDmode,
2418 gen_rtvec (2, newpat,
2419 gen_rtx_CLOBBER (VOIDmode,
2420 i2dest))),
2421 i3);
2422 }
2423 }
2424
2425 /* If recog_for_combine has discarded clobbers, try to use them
2426 again for the split. */
2427 if (m_split == 0 && newpat_vec_with_clobbers)
2428 m_split
2429 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2430 newpat_vec_with_clobbers), i3);
2431
2432 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2433 {
2434 m_split = PATTERN (m_split);
2435 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2436 if (insn_code_number >= 0)
2437 newpat = m_split;
2438 }
2439 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2440 && (next_real_insn (i2) == i3
2441 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2442 {
2443 rtx i2set, i3set;
2444 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2445 newi2pat = PATTERN (m_split);
2446
2447 i3set = single_set (NEXT_INSN (m_split));
2448 i2set = single_set (m_split);
2449
2450 /* In case we changed the mode of I2DEST, replace it in the
2451 pseudo-register table here. We can't do it above in case this
2452 code doesn't get executed and we do a split the other way. */
2453
2454 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2455 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2456
2457 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2458
2459 /* If I2 or I3 has multiple SETs, we won't know how to track
2460 register status, so don't use these insns. If I2's destination
2461 is used between I2 and I3, we also can't use these insns. */
2462
2463 if (i2_code_number >= 0 && i2set && i3set
2464 && (next_real_insn (i2) == i3
2465 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2466 insn_code_number = recog_for_combine (&newi3pat, i3,
2467 &new_i3_notes);
2468 if (insn_code_number >= 0)
2469 newpat = newi3pat;
2470
2471 /* It is possible that both insns now set the destination of I3.
2472 If so, we must show an extra use of it. */
2473
2474 if (insn_code_number >= 0)
2475 {
2476 rtx new_i3_dest = SET_DEST (i3set);
2477 rtx new_i2_dest = SET_DEST (i2set);
2478
2479 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2480 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2481 || GET_CODE (new_i3_dest) == SUBREG)
2482 new_i3_dest = XEXP (new_i3_dest, 0);
2483
2484 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2485 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2486 || GET_CODE (new_i2_dest) == SUBREG)
2487 new_i2_dest = XEXP (new_i2_dest, 0);
2488
2489 if (REG_P (new_i3_dest)
2490 && REG_P (new_i2_dest)
2491 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2492 REG_N_SETS (REGNO (new_i2_dest))++;
2493 }
2494 }
2495
2496 /* If we can split it and use I2DEST, go ahead and see if that
2497 helps things be recognized. Verify that none of the registers
2498 are set between I2 and I3. */
2499 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2500 #ifdef HAVE_cc0
2501 && REG_P (i2dest)
2502 #endif
2503 /* We need I2DEST in the proper mode. If it is a hard register
2504 or the only use of a pseudo, we can change its mode.
2505 Make sure we don't change a hard register to have a mode that
2506 isn't valid for it, or change the number of registers. */
2507 && (GET_MODE (*split) == GET_MODE (i2dest)
2508 || GET_MODE (*split) == VOIDmode
2509 || can_change_dest_mode (i2dest, added_sets_2,
2510 GET_MODE (*split)))
2511 && (next_real_insn (i2) == i3
2512 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2513 /* We can't overwrite I2DEST if its value is still used by
2514 NEWPAT. */
2515 && ! reg_referenced_p (i2dest, newpat))
2516 {
2517 rtx newdest = i2dest;
2518 enum rtx_code split_code = GET_CODE (*split);
2519 enum machine_mode split_mode = GET_MODE (*split);
2520
2521 /* Get NEWDEST as a register in the proper mode. We have already
2522 validated that we can do this. */
2523 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2524 {
2525 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2526
2527 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2528 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2529 }
2530
2531 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2532 an ASHIFT. This can occur if it was inside a PLUS and hence
2533 appeared to be a memory address. This is a kludge. */
2534 if (split_code == MULT
2535 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2536 && INTVAL (XEXP (*split, 1)) > 0
2537 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2538 {
2539 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2540 XEXP (*split, 0), GEN_INT (i)));
2541 /* Update split_code because we may not have a multiply
2542 anymore. */
2543 split_code = GET_CODE (*split);
2544 }
2545
2546 #ifdef INSN_SCHEDULING
2547 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2548 be written as a ZERO_EXTEND. */
2549 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2550 {
2551 #ifdef LOAD_EXTEND_OP
2552 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2553 what it really is. */
2554 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2555 == SIGN_EXTEND)
2556 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2557 SUBREG_REG (*split)));
2558 else
2559 #endif
2560 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2561 SUBREG_REG (*split)));
2562 }
2563 #endif
2564
2565 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2566 SUBST (*split, newdest);
2567 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2568
2569 /* recog_for_combine might have added CLOBBERs to newi2pat.
2570 Make sure NEWPAT does not depend on the clobbered regs. */
2571 if (GET_CODE (newi2pat) == PARALLEL)
2572 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2573 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2574 {
2575 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2576 if (reg_overlap_mentioned_p (reg, newpat))
2577 {
2578 undo_all ();
2579 return 0;
2580 }
2581 }
2582
2583 /* If the split point was a MULT and we didn't have one before,
2584 don't use one now. */
2585 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2586 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2587 }
2588 }
2589
2590 /* Check for a case where we loaded from memory in a narrow mode and
2591 then sign extended it, but we need both registers. In that case,
2592 we have a PARALLEL with both loads from the same memory location.
2593 We can split this into a load from memory followed by a register-register
2594 copy. This saves at least one insn, more if register allocation can
2595 eliminate the copy.
2596
2597 We cannot do this if the destination of the first assignment is a
2598 condition code register or cc0. We eliminate this case by making sure
2599 the SET_DEST and SET_SRC have the same mode.
2600
2601 We cannot do this if the destination of the second assignment is
2602 a register that we have already assumed is zero-extended. Similarly
2603 for a SUBREG of such a register. */
2604
2605 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2606 && GET_CODE (newpat) == PARALLEL
2607 && XVECLEN (newpat, 0) == 2
2608 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2609 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2610 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2611 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2612 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2613 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2614 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2615 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2616 INSN_CUID (i2))
2617 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2618 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2619 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2620 (REG_P (temp)
2621 && reg_stat[REGNO (temp)].nonzero_bits != 0
2622 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2623 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2624 && (reg_stat[REGNO (temp)].nonzero_bits
2625 != GET_MODE_MASK (word_mode))))
2626 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2627 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2628 (REG_P (temp)
2629 && reg_stat[REGNO (temp)].nonzero_bits != 0
2630 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2631 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2632 && (reg_stat[REGNO (temp)].nonzero_bits
2633 != GET_MODE_MASK (word_mode)))))
2634 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2635 SET_SRC (XVECEXP (newpat, 0, 1)))
2636 && ! find_reg_note (i3, REG_UNUSED,
2637 SET_DEST (XVECEXP (newpat, 0, 0))))
2638 {
2639 rtx ni2dest;
2640
2641 newi2pat = XVECEXP (newpat, 0, 0);
2642 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2643 newpat = XVECEXP (newpat, 0, 1);
2644 SUBST (SET_SRC (newpat),
2645 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2646 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2647
2648 if (i2_code_number >= 0)
2649 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2650
2651 if (insn_code_number >= 0)
2652 swap_i2i3 = 1;
2653 }
2654
2655 /* Similarly, check for a case where we have a PARALLEL of two independent
2656 SETs but we started with three insns. In this case, we can do the sets
2657 as two separate insns. This case occurs when some SET allows two
2658 other insns to combine, but the destination of that SET is still live. */
2659
2660 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2661 && GET_CODE (newpat) == PARALLEL
2662 && XVECLEN (newpat, 0) == 2
2663 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2664 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2665 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2666 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2667 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2668 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2669 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2670 INSN_CUID (i2))
2671 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2672 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2673 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2674 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2675 XVECEXP (newpat, 0, 0))
2676 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2677 XVECEXP (newpat, 0, 1))
2678 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2679 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2680 {
2681 /* Normally, it doesn't matter which of the two is done first,
2682 but it does if one references cc0. In that case, it has to
2683 be first. */
2684 #ifdef HAVE_cc0
2685 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2686 {
2687 newi2pat = XVECEXP (newpat, 0, 0);
2688 newpat = XVECEXP (newpat, 0, 1);
2689 }
2690 else
2691 #endif
2692 {
2693 newi2pat = XVECEXP (newpat, 0, 1);
2694 newpat = XVECEXP (newpat, 0, 0);
2695 }
2696
2697 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2698
2699 if (i2_code_number >= 0)
2700 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2701 }
2702
2703 /* If it still isn't recognized, fail and change things back the way they
2704 were. */
2705 if ((insn_code_number < 0
2706 /* Is the result a reasonable ASM_OPERANDS? */
2707 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2708 {
2709 undo_all ();
2710 return 0;
2711 }
2712
2713 /* If we had to change another insn, make sure it is valid also. */
2714 if (undobuf.other_insn)
2715 {
2716 rtx other_pat = PATTERN (undobuf.other_insn);
2717 rtx new_other_notes;
2718 rtx note, next;
2719
2720 CLEAR_HARD_REG_SET (newpat_used_regs);
2721
2722 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2723 &new_other_notes);
2724
2725 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2726 {
2727 undo_all ();
2728 return 0;
2729 }
2730
2731 PATTERN (undobuf.other_insn) = other_pat;
2732
2733 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2734 are still valid. Then add any non-duplicate notes added by
2735 recog_for_combine. */
2736 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2737 {
2738 next = XEXP (note, 1);
2739
2740 if (REG_NOTE_KIND (note) == REG_UNUSED
2741 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2742 {
2743 if (REG_P (XEXP (note, 0)))
2744 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2745
2746 remove_note (undobuf.other_insn, note);
2747 }
2748 }
2749
2750 for (note = new_other_notes; note; note = XEXP (note, 1))
2751 if (REG_P (XEXP (note, 0)))
2752 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2753
2754 distribute_notes (new_other_notes, undobuf.other_insn,
2755 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2756 }
2757 #ifdef HAVE_cc0
2758 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2759 they are adjacent to each other or not. */
2760 {
2761 rtx p = prev_nonnote_insn (i3);
2762 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2763 && sets_cc0_p (newi2pat))
2764 {
2765 undo_all ();
2766 return 0;
2767 }
2768 }
2769 #endif
2770
2771 /* Only allow this combination if insn_rtx_costs reports that the
2772 replacement instructions are cheaper than the originals. */
2773 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2774 {
2775 undo_all ();
2776 return 0;
2777 }
2778
2779 /* We now know that we can do this combination. Merge the insns and
2780 update the status of registers and LOG_LINKS. */
2781
2782 if (swap_i2i3)
2783 {
2784 rtx insn;
2785 rtx link;
2786 rtx ni2dest;
2787
2788 /* I3 now uses what used to be its destination and which is now
2789 I2's destination. This requires us to do a few adjustments. */
2790 PATTERN (i3) = newpat;
2791 adjust_for_new_dest (i3);
2792
2793 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2794 so we still will.
2795
2796 However, some later insn might be using I2's dest and have
2797 a LOG_LINK pointing at I3. We must remove this link.
2798 The simplest way to remove the link is to point it at I1,
2799 which we know will be a NOTE. */
2800
2801 /* newi2pat is usually a SET here; however, recog_for_combine might
2802 have added some clobbers. */
2803 if (GET_CODE (newi2pat) == PARALLEL)
2804 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2805 else
2806 ni2dest = SET_DEST (newi2pat);
2807
2808 for (insn = NEXT_INSN (i3);
2809 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2810 || insn != BB_HEAD (this_basic_block->next_bb));
2811 insn = NEXT_INSN (insn))
2812 {
2813 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2814 {
2815 for (link = LOG_LINKS (insn); link;
2816 link = XEXP (link, 1))
2817 if (XEXP (link, 0) == i3)
2818 XEXP (link, 0) = i1;
2819
2820 break;
2821 }
2822 }
2823 }
2824
2825 {
2826 rtx i3notes, i2notes, i1notes = 0;
2827 rtx i3links, i2links, i1links = 0;
2828 rtx midnotes = 0;
2829 unsigned int regno;
2830 /* Compute which registers we expect to eliminate. newi2pat may be setting
2831 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2832 same as i3dest, in which case newi2pat may be setting i1dest. */
2833 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2834 || i2dest_in_i2src || i2dest_in_i1src
2835 || !i2dest_killed
2836 ? 0 : i2dest);
2837 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2838 || (newi2pat && reg_set_p (i1dest, newi2pat))
2839 || !i1dest_killed
2840 ? 0 : i1dest);
2841
2842 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2843 clear them. */
2844 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2845 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2846 if (i1)
2847 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2848
2849 /* Ensure that we do not have something that should not be shared but
2850 occurs multiple times in the new insns. Check this by first
2851 resetting all the `used' flags and then copying anything is shared. */
2852
2853 reset_used_flags (i3notes);
2854 reset_used_flags (i2notes);
2855 reset_used_flags (i1notes);
2856 reset_used_flags (newpat);
2857 reset_used_flags (newi2pat);
2858 if (undobuf.other_insn)
2859 reset_used_flags (PATTERN (undobuf.other_insn));
2860
2861 i3notes = copy_rtx_if_shared (i3notes);
2862 i2notes = copy_rtx_if_shared (i2notes);
2863 i1notes = copy_rtx_if_shared (i1notes);
2864 newpat = copy_rtx_if_shared (newpat);
2865 newi2pat = copy_rtx_if_shared (newi2pat);
2866 if (undobuf.other_insn)
2867 reset_used_flags (PATTERN (undobuf.other_insn));
2868
2869 INSN_CODE (i3) = insn_code_number;
2870 PATTERN (i3) = newpat;
2871
2872 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2873 {
2874 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2875
2876 reset_used_flags (call_usage);
2877 call_usage = copy_rtx (call_usage);
2878
2879 if (substed_i2)
2880 replace_rtx (call_usage, i2dest, i2src);
2881
2882 if (substed_i1)
2883 replace_rtx (call_usage, i1dest, i1src);
2884
2885 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2886 }
2887
2888 if (undobuf.other_insn)
2889 INSN_CODE (undobuf.other_insn) = other_code_number;
2890
2891 /* We had one special case above where I2 had more than one set and
2892 we replaced a destination of one of those sets with the destination
2893 of I3. In that case, we have to update LOG_LINKS of insns later
2894 in this basic block. Note that this (expensive) case is rare.
2895
2896 Also, in this case, we must pretend that all REG_NOTEs for I2
2897 actually came from I3, so that REG_UNUSED notes from I2 will be
2898 properly handled. */
2899
2900 if (i3_subst_into_i2)
2901 {
2902 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2903 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2904 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2905 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2906 && ! find_reg_note (i2, REG_UNUSED,
2907 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2908 for (temp = NEXT_INSN (i2);
2909 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2910 || BB_HEAD (this_basic_block) != temp);
2911 temp = NEXT_INSN (temp))
2912 if (temp != i3 && INSN_P (temp))
2913 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2914 if (XEXP (link, 0) == i2)
2915 XEXP (link, 0) = i3;
2916
2917 if (i3notes)
2918 {
2919 rtx link = i3notes;
2920 while (XEXP (link, 1))
2921 link = XEXP (link, 1);
2922 XEXP (link, 1) = i2notes;
2923 }
2924 else
2925 i3notes = i2notes;
2926 i2notes = 0;
2927 }
2928
2929 LOG_LINKS (i3) = 0;
2930 REG_NOTES (i3) = 0;
2931 LOG_LINKS (i2) = 0;
2932 REG_NOTES (i2) = 0;
2933
2934 if (newi2pat)
2935 {
2936 INSN_CODE (i2) = i2_code_number;
2937 PATTERN (i2) = newi2pat;
2938 }
2939 else
2940 SET_INSN_DELETED (i2);
2941
2942 if (i1)
2943 {
2944 LOG_LINKS (i1) = 0;
2945 REG_NOTES (i1) = 0;
2946 SET_INSN_DELETED (i1);
2947 }
2948
2949 /* Get death notes for everything that is now used in either I3 or
2950 I2 and used to die in a previous insn. If we built two new
2951 patterns, move from I1 to I2 then I2 to I3 so that we get the
2952 proper movement on registers that I2 modifies. */
2953
2954 if (newi2pat)
2955 {
2956 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2957 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2958 }
2959 else
2960 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2961 i3, &midnotes);
2962
2963 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2964 if (i3notes)
2965 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2966 elim_i2, elim_i1);
2967 if (i2notes)
2968 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2969 elim_i2, elim_i1);
2970 if (i1notes)
2971 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2972 elim_i2, elim_i1);
2973 if (midnotes)
2974 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2975 elim_i2, elim_i1);
2976
2977 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2978 know these are REG_UNUSED and want them to go to the desired insn,
2979 so we always pass it as i3. We have not counted the notes in
2980 reg_n_deaths yet, so we need to do so now. */
2981
2982 if (newi2pat && new_i2_notes)
2983 {
2984 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2985 if (REG_P (XEXP (temp, 0)))
2986 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2987
2988 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2989 }
2990
2991 if (new_i3_notes)
2992 {
2993 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2994 if (REG_P (XEXP (temp, 0)))
2995 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2996
2997 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2998 }
2999
3000 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3001 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3002 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3003 in that case, it might delete I2. Similarly for I2 and I1.
3004 Show an additional death due to the REG_DEAD note we make here. If
3005 we discard it in distribute_notes, we will decrement it again. */
3006
3007 if (i3dest_killed)
3008 {
3009 if (REG_P (i3dest_killed))
3010 REG_N_DEATHS (REGNO (i3dest_killed))++;
3011
3012 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3013 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3014 NULL_RTX),
3015 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3016 else
3017 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3018 NULL_RTX),
3019 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3020 elim_i2, elim_i1);
3021 }
3022
3023 if (i2dest_in_i2src)
3024 {
3025 if (REG_P (i2dest))
3026 REG_N_DEATHS (REGNO (i2dest))++;
3027
3028 if (newi2pat && reg_set_p (i2dest, newi2pat))
3029 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3030 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3031 else
3032 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3033 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3034 NULL_RTX, NULL_RTX);
3035 }
3036
3037 if (i1dest_in_i1src)
3038 {
3039 if (REG_P (i1dest))
3040 REG_N_DEATHS (REGNO (i1dest))++;
3041
3042 if (newi2pat && reg_set_p (i1dest, newi2pat))
3043 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3044 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3045 else
3046 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3047 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3048 NULL_RTX, NULL_RTX);
3049 }
3050
3051 distribute_links (i3links);
3052 distribute_links (i2links);
3053 distribute_links (i1links);
3054
3055 if (REG_P (i2dest))
3056 {
3057 rtx link;
3058 rtx i2_insn = 0, i2_val = 0, set;
3059
3060 /* The insn that used to set this register doesn't exist, and
3061 this life of the register may not exist either. See if one of
3062 I3's links points to an insn that sets I2DEST. If it does,
3063 that is now the last known value for I2DEST. If we don't update
3064 this and I2 set the register to a value that depended on its old
3065 contents, we will get confused. If this insn is used, thing
3066 will be set correctly in combine_instructions. */
3067
3068 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3069 if ((set = single_set (XEXP (link, 0))) != 0
3070 && rtx_equal_p (i2dest, SET_DEST (set)))
3071 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3072
3073 record_value_for_reg (i2dest, i2_insn, i2_val);
3074
3075 /* If the reg formerly set in I2 died only once and that was in I3,
3076 zero its use count so it won't make `reload' do any work. */
3077 if (! added_sets_2
3078 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3079 && ! i2dest_in_i2src)
3080 {
3081 regno = REGNO (i2dest);
3082 REG_N_SETS (regno)--;
3083 }
3084 }
3085
3086 if (i1 && REG_P (i1dest))
3087 {
3088 rtx link;
3089 rtx i1_insn = 0, i1_val = 0, set;
3090
3091 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3092 if ((set = single_set (XEXP (link, 0))) != 0
3093 && rtx_equal_p (i1dest, SET_DEST (set)))
3094 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3095
3096 record_value_for_reg (i1dest, i1_insn, i1_val);
3097
3098 regno = REGNO (i1dest);
3099 if (! added_sets_1 && ! i1dest_in_i1src)
3100 REG_N_SETS (regno)--;
3101 }
3102
3103 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3104 been made to this insn. The order of
3105 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3106 can affect nonzero_bits of newpat */
3107 if (newi2pat)
3108 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3109 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3110
3111 /* Set new_direct_jump_p if a new return or simple jump instruction
3112 has been created.
3113
3114 If I3 is now an unconditional jump, ensure that it has a
3115 BARRIER following it since it may have initially been a
3116 conditional jump. It may also be the last nonnote insn. */
3117
3118 if (returnjump_p (i3) || any_uncondjump_p (i3))
3119 {
3120 *new_direct_jump_p = 1;
3121 mark_jump_label (PATTERN (i3), i3, 0);
3122
3123 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3124 || !BARRIER_P (temp))
3125 emit_barrier_after (i3);
3126 }
3127
3128 if (undobuf.other_insn != NULL_RTX
3129 && (returnjump_p (undobuf.other_insn)
3130 || any_uncondjump_p (undobuf.other_insn)))
3131 {
3132 *new_direct_jump_p = 1;
3133
3134 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3135 || !BARRIER_P (temp))
3136 emit_barrier_after (undobuf.other_insn);
3137 }
3138
3139 /* An NOOP jump does not need barrier, but it does need cleaning up
3140 of CFG. */
3141 if (GET_CODE (newpat) == SET
3142 && SET_SRC (newpat) == pc_rtx
3143 && SET_DEST (newpat) == pc_rtx)
3144 *new_direct_jump_p = 1;
3145 }
3146
3147 combine_successes++;
3148 undo_commit ();
3149
3150 if (added_links_insn
3151 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3152 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3153 return added_links_insn;
3154 else
3155 return newi2pat ? i2 : i3;
3156 }
3157 \f
3158 /* Undo all the modifications recorded in undobuf. */
3159
3160 static void
3161 undo_all (void)
3162 {
3163 struct undo *undo, *next;
3164
3165 for (undo = undobuf.undos; undo; undo = next)
3166 {
3167 next = undo->next;
3168 if (undo->is_int)
3169 *undo->where.i = undo->old_contents.i;
3170 else
3171 *undo->where.r = undo->old_contents.r;
3172
3173 undo->next = undobuf.frees;
3174 undobuf.frees = undo;
3175 }
3176
3177 undobuf.undos = 0;
3178 }
3179
3180 /* We've committed to accepting the changes we made. Move all
3181 of the undos to the free list. */
3182
3183 static void
3184 undo_commit (void)
3185 {
3186 struct undo *undo, *next;
3187
3188 for (undo = undobuf.undos; undo; undo = next)
3189 {
3190 next = undo->next;
3191 undo->next = undobuf.frees;
3192 undobuf.frees = undo;
3193 }
3194 undobuf.undos = 0;
3195 }
3196
3197 \f
3198 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3199 where we have an arithmetic expression and return that point. LOC will
3200 be inside INSN.
3201
3202 try_combine will call this function to see if an insn can be split into
3203 two insns. */
3204
3205 static rtx *
3206 find_split_point (rtx *loc, rtx insn)
3207 {
3208 rtx x = *loc;
3209 enum rtx_code code = GET_CODE (x);
3210 rtx *split;
3211 unsigned HOST_WIDE_INT len = 0;
3212 HOST_WIDE_INT pos = 0;
3213 int unsignedp = 0;
3214 rtx inner = NULL_RTX;
3215
3216 /* First special-case some codes. */
3217 switch (code)
3218 {
3219 case SUBREG:
3220 #ifdef INSN_SCHEDULING
3221 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3222 point. */
3223 if (MEM_P (SUBREG_REG (x)))
3224 return loc;
3225 #endif
3226 return find_split_point (&SUBREG_REG (x), insn);
3227
3228 case MEM:
3229 #ifdef HAVE_lo_sum
3230 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3231 using LO_SUM and HIGH. */
3232 if (GET_CODE (XEXP (x, 0)) == CONST
3233 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3234 {
3235 SUBST (XEXP (x, 0),
3236 gen_rtx_LO_SUM (Pmode,
3237 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3238 XEXP (x, 0)));
3239 return &XEXP (XEXP (x, 0), 0);
3240 }
3241 #endif
3242
3243 /* If we have a PLUS whose second operand is a constant and the
3244 address is not valid, perhaps will can split it up using
3245 the machine-specific way to split large constants. We use
3246 the first pseudo-reg (one of the virtual regs) as a placeholder;
3247 it will not remain in the result. */
3248 if (GET_CODE (XEXP (x, 0)) == PLUS
3249 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3250 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3251 {
3252 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3253 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3254 subst_insn);
3255
3256 /* This should have produced two insns, each of which sets our
3257 placeholder. If the source of the second is a valid address,
3258 we can make put both sources together and make a split point
3259 in the middle. */
3260
3261 if (seq
3262 && NEXT_INSN (seq) != NULL_RTX
3263 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3264 && NONJUMP_INSN_P (seq)
3265 && GET_CODE (PATTERN (seq)) == SET
3266 && SET_DEST (PATTERN (seq)) == reg
3267 && ! reg_mentioned_p (reg,
3268 SET_SRC (PATTERN (seq)))
3269 && NONJUMP_INSN_P (NEXT_INSN (seq))
3270 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3271 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3272 && memory_address_p (GET_MODE (x),
3273 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3274 {
3275 rtx src1 = SET_SRC (PATTERN (seq));
3276 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3277
3278 /* Replace the placeholder in SRC2 with SRC1. If we can
3279 find where in SRC2 it was placed, that can become our
3280 split point and we can replace this address with SRC2.
3281 Just try two obvious places. */
3282
3283 src2 = replace_rtx (src2, reg, src1);
3284 split = 0;
3285 if (XEXP (src2, 0) == src1)
3286 split = &XEXP (src2, 0);
3287 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3288 && XEXP (XEXP (src2, 0), 0) == src1)
3289 split = &XEXP (XEXP (src2, 0), 0);
3290
3291 if (split)
3292 {
3293 SUBST (XEXP (x, 0), src2);
3294 return split;
3295 }
3296 }
3297
3298 /* If that didn't work, perhaps the first operand is complex and
3299 needs to be computed separately, so make a split point there.
3300 This will occur on machines that just support REG + CONST
3301 and have a constant moved through some previous computation. */
3302
3303 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3304 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3305 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3306 return &XEXP (XEXP (x, 0), 0);
3307 }
3308 break;
3309
3310 case SET:
3311 #ifdef HAVE_cc0
3312 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3313 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3314 we need to put the operand into a register. So split at that
3315 point. */
3316
3317 if (SET_DEST (x) == cc0_rtx
3318 && GET_CODE (SET_SRC (x)) != COMPARE
3319 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3320 && !OBJECT_P (SET_SRC (x))
3321 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3322 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3323 return &SET_SRC (x);
3324 #endif
3325
3326 /* See if we can split SET_SRC as it stands. */
3327 split = find_split_point (&SET_SRC (x), insn);
3328 if (split && split != &SET_SRC (x))
3329 return split;
3330
3331 /* See if we can split SET_DEST as it stands. */
3332 split = find_split_point (&SET_DEST (x), insn);
3333 if (split && split != &SET_DEST (x))
3334 return split;
3335
3336 /* See if this is a bitfield assignment with everything constant. If
3337 so, this is an IOR of an AND, so split it into that. */
3338 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3339 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3340 <= HOST_BITS_PER_WIDE_INT)
3341 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3342 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3343 && GET_CODE (SET_SRC (x)) == CONST_INT
3344 && ((INTVAL (XEXP (SET_DEST (x), 1))
3345 + INTVAL (XEXP (SET_DEST (x), 2)))
3346 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3347 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3348 {
3349 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3350 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3351 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3352 rtx dest = XEXP (SET_DEST (x), 0);
3353 enum machine_mode mode = GET_MODE (dest);
3354 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3355
3356 if (BITS_BIG_ENDIAN)
3357 pos = GET_MODE_BITSIZE (mode) - len - pos;
3358
3359 if (src == mask)
3360 SUBST (SET_SRC (x),
3361 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3362 else
3363 {
3364 rtx negmask = gen_int_mode (~(mask << pos), mode);
3365 SUBST (SET_SRC (x),
3366 simplify_gen_binary (IOR, mode,
3367 simplify_gen_binary (AND, mode,
3368 dest, negmask),
3369 GEN_INT (src << pos)));
3370 }
3371
3372 SUBST (SET_DEST (x), dest);
3373
3374 split = find_split_point (&SET_SRC (x), insn);
3375 if (split && split != &SET_SRC (x))
3376 return split;
3377 }
3378
3379 /* Otherwise, see if this is an operation that we can split into two.
3380 If so, try to split that. */
3381 code = GET_CODE (SET_SRC (x));
3382
3383 switch (code)
3384 {
3385 case AND:
3386 /* If we are AND'ing with a large constant that is only a single
3387 bit and the result is only being used in a context where we
3388 need to know if it is zero or nonzero, replace it with a bit
3389 extraction. This will avoid the large constant, which might
3390 have taken more than one insn to make. If the constant were
3391 not a valid argument to the AND but took only one insn to make,
3392 this is no worse, but if it took more than one insn, it will
3393 be better. */
3394
3395 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3396 && REG_P (XEXP (SET_SRC (x), 0))
3397 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3398 && REG_P (SET_DEST (x))
3399 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3400 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3401 && XEXP (*split, 0) == SET_DEST (x)
3402 && XEXP (*split, 1) == const0_rtx)
3403 {
3404 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3405 XEXP (SET_SRC (x), 0),
3406 pos, NULL_RTX, 1, 1, 0, 0);
3407 if (extraction != 0)
3408 {
3409 SUBST (SET_SRC (x), extraction);
3410 return find_split_point (loc, insn);
3411 }
3412 }
3413 break;
3414
3415 case NE:
3416 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3417 is known to be on, this can be converted into a NEG of a shift. */
3418 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3419 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3420 && 1 <= (pos = exact_log2
3421 (nonzero_bits (XEXP (SET_SRC (x), 0),
3422 GET_MODE (XEXP (SET_SRC (x), 0))))))
3423 {
3424 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3425
3426 SUBST (SET_SRC (x),
3427 gen_rtx_NEG (mode,
3428 gen_rtx_LSHIFTRT (mode,
3429 XEXP (SET_SRC (x), 0),
3430 GEN_INT (pos))));
3431
3432 split = find_split_point (&SET_SRC (x), insn);
3433 if (split && split != &SET_SRC (x))
3434 return split;
3435 }
3436 break;
3437
3438 case SIGN_EXTEND:
3439 inner = XEXP (SET_SRC (x), 0);
3440
3441 /* We can't optimize if either mode is a partial integer
3442 mode as we don't know how many bits are significant
3443 in those modes. */
3444 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3445 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3446 break;
3447
3448 pos = 0;
3449 len = GET_MODE_BITSIZE (GET_MODE (inner));
3450 unsignedp = 0;
3451 break;
3452
3453 case SIGN_EXTRACT:
3454 case ZERO_EXTRACT:
3455 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3456 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3457 {
3458 inner = XEXP (SET_SRC (x), 0);
3459 len = INTVAL (XEXP (SET_SRC (x), 1));
3460 pos = INTVAL (XEXP (SET_SRC (x), 2));
3461
3462 if (BITS_BIG_ENDIAN)
3463 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3464 unsignedp = (code == ZERO_EXTRACT);
3465 }
3466 break;
3467
3468 default:
3469 break;
3470 }
3471
3472 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3473 {
3474 enum machine_mode mode = GET_MODE (SET_SRC (x));
3475
3476 /* For unsigned, we have a choice of a shift followed by an
3477 AND or two shifts. Use two shifts for field sizes where the
3478 constant might be too large. We assume here that we can
3479 always at least get 8-bit constants in an AND insn, which is
3480 true for every current RISC. */
3481
3482 if (unsignedp && len <= 8)
3483 {
3484 SUBST (SET_SRC (x),
3485 gen_rtx_AND (mode,
3486 gen_rtx_LSHIFTRT
3487 (mode, gen_lowpart (mode, inner),
3488 GEN_INT (pos)),
3489 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3490
3491 split = find_split_point (&SET_SRC (x), insn);
3492 if (split && split != &SET_SRC (x))
3493 return split;
3494 }
3495 else
3496 {
3497 SUBST (SET_SRC (x),
3498 gen_rtx_fmt_ee
3499 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3500 gen_rtx_ASHIFT (mode,
3501 gen_lowpart (mode, inner),
3502 GEN_INT (GET_MODE_BITSIZE (mode)
3503 - len - pos)),
3504 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3505
3506 split = find_split_point (&SET_SRC (x), insn);
3507 if (split && split != &SET_SRC (x))
3508 return split;
3509 }
3510 }
3511
3512 /* See if this is a simple operation with a constant as the second
3513 operand. It might be that this constant is out of range and hence
3514 could be used as a split point. */
3515 if (BINARY_P (SET_SRC (x))
3516 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3517 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3518 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3519 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3520 return &XEXP (SET_SRC (x), 1);
3521
3522 /* Finally, see if this is a simple operation with its first operand
3523 not in a register. The operation might require this operand in a
3524 register, so return it as a split point. We can always do this
3525 because if the first operand were another operation, we would have
3526 already found it as a split point. */
3527 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3528 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3529 return &XEXP (SET_SRC (x), 0);
3530
3531 return 0;
3532
3533 case AND:
3534 case IOR:
3535 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3536 it is better to write this as (not (ior A B)) so we can split it.
3537 Similarly for IOR. */
3538 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3539 {
3540 SUBST (*loc,
3541 gen_rtx_NOT (GET_MODE (x),
3542 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3543 GET_MODE (x),
3544 XEXP (XEXP (x, 0), 0),
3545 XEXP (XEXP (x, 1), 0))));
3546 return find_split_point (loc, insn);
3547 }
3548
3549 /* Many RISC machines have a large set of logical insns. If the
3550 second operand is a NOT, put it first so we will try to split the
3551 other operand first. */
3552 if (GET_CODE (XEXP (x, 1)) == NOT)
3553 {
3554 rtx tem = XEXP (x, 0);
3555 SUBST (XEXP (x, 0), XEXP (x, 1));
3556 SUBST (XEXP (x, 1), tem);
3557 }
3558 break;
3559
3560 default:
3561 break;
3562 }
3563
3564 /* Otherwise, select our actions depending on our rtx class. */
3565 switch (GET_RTX_CLASS (code))
3566 {
3567 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3568 case RTX_TERNARY:
3569 split = find_split_point (&XEXP (x, 2), insn);
3570 if (split)
3571 return split;
3572 /* ... fall through ... */
3573 case RTX_BIN_ARITH:
3574 case RTX_COMM_ARITH:
3575 case RTX_COMPARE:
3576 case RTX_COMM_COMPARE:
3577 split = find_split_point (&XEXP (x, 1), insn);
3578 if (split)
3579 return split;
3580 /* ... fall through ... */
3581 case RTX_UNARY:
3582 /* Some machines have (and (shift ...) ...) insns. If X is not
3583 an AND, but XEXP (X, 0) is, use it as our split point. */
3584 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3585 return &XEXP (x, 0);
3586
3587 split = find_split_point (&XEXP (x, 0), insn);
3588 if (split)
3589 return split;
3590 return loc;
3591
3592 default:
3593 /* Otherwise, we don't have a split point. */
3594 return 0;
3595 }
3596 }
3597 \f
3598 /* Throughout X, replace FROM with TO, and return the result.
3599 The result is TO if X is FROM;
3600 otherwise the result is X, but its contents may have been modified.
3601 If they were modified, a record was made in undobuf so that
3602 undo_all will (among other things) return X to its original state.
3603
3604 If the number of changes necessary is too much to record to undo,
3605 the excess changes are not made, so the result is invalid.
3606 The changes already made can still be undone.
3607 undobuf.num_undo is incremented for such changes, so by testing that
3608 the caller can tell whether the result is valid.
3609
3610 `n_occurrences' is incremented each time FROM is replaced.
3611
3612 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3613
3614 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3615 by copying if `n_occurrences' is nonzero. */
3616
3617 static rtx
3618 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3619 {
3620 enum rtx_code code = GET_CODE (x);
3621 enum machine_mode op0_mode = VOIDmode;
3622 const char *fmt;
3623 int len, i;
3624 rtx new;
3625
3626 /* Two expressions are equal if they are identical copies of a shared
3627 RTX or if they are both registers with the same register number
3628 and mode. */
3629
3630 #define COMBINE_RTX_EQUAL_P(X,Y) \
3631 ((X) == (Y) \
3632 || (REG_P (X) && REG_P (Y) \
3633 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3634
3635 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3636 {
3637 n_occurrences++;
3638 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3639 }
3640
3641 /* If X and FROM are the same register but different modes, they will
3642 not have been seen as equal above. However, flow.c will make a
3643 LOG_LINKS entry for that case. If we do nothing, we will try to
3644 rerecognize our original insn and, when it succeeds, we will
3645 delete the feeding insn, which is incorrect.
3646
3647 So force this insn not to match in this (rare) case. */
3648 if (! in_dest && code == REG && REG_P (from)
3649 && REGNO (x) == REGNO (from))
3650 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3651
3652 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3653 of which may contain things that can be combined. */
3654 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3655 return x;
3656
3657 /* It is possible to have a subexpression appear twice in the insn.
3658 Suppose that FROM is a register that appears within TO.
3659 Then, after that subexpression has been scanned once by `subst',
3660 the second time it is scanned, TO may be found. If we were
3661 to scan TO here, we would find FROM within it and create a
3662 self-referent rtl structure which is completely wrong. */
3663 if (COMBINE_RTX_EQUAL_P (x, to))
3664 return to;
3665
3666 /* Parallel asm_operands need special attention because all of the
3667 inputs are shared across the arms. Furthermore, unsharing the
3668 rtl results in recognition failures. Failure to handle this case
3669 specially can result in circular rtl.
3670
3671 Solve this by doing a normal pass across the first entry of the
3672 parallel, and only processing the SET_DESTs of the subsequent
3673 entries. Ug. */
3674
3675 if (code == PARALLEL
3676 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3677 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3678 {
3679 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3680
3681 /* If this substitution failed, this whole thing fails. */
3682 if (GET_CODE (new) == CLOBBER
3683 && XEXP (new, 0) == const0_rtx)
3684 return new;
3685
3686 SUBST (XVECEXP (x, 0, 0), new);
3687
3688 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3689 {
3690 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3691
3692 if (!REG_P (dest)
3693 && GET_CODE (dest) != CC0
3694 && GET_CODE (dest) != PC)
3695 {
3696 new = subst (dest, from, to, 0, unique_copy);
3697
3698 /* If this substitution failed, this whole thing fails. */
3699 if (GET_CODE (new) == CLOBBER
3700 && XEXP (new, 0) == const0_rtx)
3701 return new;
3702
3703 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3704 }
3705 }
3706 }
3707 else
3708 {
3709 len = GET_RTX_LENGTH (code);
3710 fmt = GET_RTX_FORMAT (code);
3711
3712 /* We don't need to process a SET_DEST that is a register, CC0,
3713 or PC, so set up to skip this common case. All other cases
3714 where we want to suppress replacing something inside a
3715 SET_SRC are handled via the IN_DEST operand. */
3716 if (code == SET
3717 && (REG_P (SET_DEST (x))
3718 || GET_CODE (SET_DEST (x)) == CC0
3719 || GET_CODE (SET_DEST (x)) == PC))
3720 fmt = "ie";
3721
3722 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3723 constant. */
3724 if (fmt[0] == 'e')
3725 op0_mode = GET_MODE (XEXP (x, 0));
3726
3727 for (i = 0; i < len; i++)
3728 {
3729 if (fmt[i] == 'E')
3730 {
3731 int j;
3732 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3733 {
3734 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3735 {
3736 new = (unique_copy && n_occurrences
3737 ? copy_rtx (to) : to);
3738 n_occurrences++;
3739 }
3740 else
3741 {
3742 new = subst (XVECEXP (x, i, j), from, to, 0,
3743 unique_copy);
3744
3745 /* If this substitution failed, this whole thing
3746 fails. */
3747 if (GET_CODE (new) == CLOBBER
3748 && XEXP (new, 0) == const0_rtx)
3749 return new;
3750 }
3751
3752 SUBST (XVECEXP (x, i, j), new);
3753 }
3754 }
3755 else if (fmt[i] == 'e')
3756 {
3757 /* If this is a register being set, ignore it. */
3758 new = XEXP (x, i);
3759 if (in_dest
3760 && i == 0
3761 && (((code == SUBREG || code == ZERO_EXTRACT)
3762 && REG_P (new))
3763 || code == STRICT_LOW_PART))
3764 ;
3765
3766 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3767 {
3768 /* In general, don't install a subreg involving two
3769 modes not tieable. It can worsen register
3770 allocation, and can even make invalid reload
3771 insns, since the reg inside may need to be copied
3772 from in the outside mode, and that may be invalid
3773 if it is an fp reg copied in integer mode.
3774
3775 We allow two exceptions to this: It is valid if
3776 it is inside another SUBREG and the mode of that
3777 SUBREG and the mode of the inside of TO is
3778 tieable and it is valid if X is a SET that copies
3779 FROM to CC0. */
3780
3781 if (GET_CODE (to) == SUBREG
3782 && ! MODES_TIEABLE_P (GET_MODE (to),
3783 GET_MODE (SUBREG_REG (to)))
3784 && ! (code == SUBREG
3785 && MODES_TIEABLE_P (GET_MODE (x),
3786 GET_MODE (SUBREG_REG (to))))
3787 #ifdef HAVE_cc0
3788 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3789 #endif
3790 )
3791 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3792
3793 #ifdef CANNOT_CHANGE_MODE_CLASS
3794 if (code == SUBREG
3795 && REG_P (to)
3796 && REGNO (to) < FIRST_PSEUDO_REGISTER
3797 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3798 GET_MODE (to),
3799 GET_MODE (x)))
3800 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3801 #endif
3802
3803 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3804 n_occurrences++;
3805 }
3806 else
3807 /* If we are in a SET_DEST, suppress most cases unless we
3808 have gone inside a MEM, in which case we want to
3809 simplify the address. We assume here that things that
3810 are actually part of the destination have their inner
3811 parts in the first expression. This is true for SUBREG,
3812 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3813 things aside from REG and MEM that should appear in a
3814 SET_DEST. */
3815 new = subst (XEXP (x, i), from, to,
3816 (((in_dest
3817 && (code == SUBREG || code == STRICT_LOW_PART
3818 || code == ZERO_EXTRACT))
3819 || code == SET)
3820 && i == 0), unique_copy);
3821
3822 /* If we found that we will have to reject this combination,
3823 indicate that by returning the CLOBBER ourselves, rather than
3824 an expression containing it. This will speed things up as
3825 well as prevent accidents where two CLOBBERs are considered
3826 to be equal, thus producing an incorrect simplification. */
3827
3828 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3829 return new;
3830
3831 if (GET_CODE (x) == SUBREG
3832 && (GET_CODE (new) == CONST_INT
3833 || GET_CODE (new) == CONST_DOUBLE))
3834 {
3835 enum machine_mode mode = GET_MODE (x);
3836
3837 x = simplify_subreg (GET_MODE (x), new,
3838 GET_MODE (SUBREG_REG (x)),
3839 SUBREG_BYTE (x));
3840 if (! x)
3841 x = gen_rtx_CLOBBER (mode, const0_rtx);
3842 }
3843 else if (GET_CODE (new) == CONST_INT
3844 && GET_CODE (x) == ZERO_EXTEND)
3845 {
3846 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3847 new, GET_MODE (XEXP (x, 0)));
3848 gcc_assert (x);
3849 }
3850 else
3851 SUBST (XEXP (x, i), new);
3852 }
3853 }
3854 }
3855
3856 /* Try to simplify X. If the simplification changed the code, it is likely
3857 that further simplification will help, so loop, but limit the number
3858 of repetitions that will be performed. */
3859
3860 for (i = 0; i < 4; i++)
3861 {
3862 /* If X is sufficiently simple, don't bother trying to do anything
3863 with it. */
3864 if (code != CONST_INT && code != REG && code != CLOBBER)
3865 x = combine_simplify_rtx (x, op0_mode, in_dest);
3866
3867 if (GET_CODE (x) == code)
3868 break;
3869
3870 code = GET_CODE (x);
3871
3872 /* We no longer know the original mode of operand 0 since we
3873 have changed the form of X) */
3874 op0_mode = VOIDmode;
3875 }
3876
3877 return x;
3878 }
3879 \f
3880 /* Simplify X, a piece of RTL. We just operate on the expression at the
3881 outer level; call `subst' to simplify recursively. Return the new
3882 expression.
3883
3884 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3885 if we are inside a SET_DEST. */
3886
3887 static rtx
3888 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3889 {
3890 enum rtx_code code = GET_CODE (x);
3891 enum machine_mode mode = GET_MODE (x);
3892 rtx temp;
3893 rtx reversed;
3894 int i;
3895
3896 /* If this is a commutative operation, put a constant last and a complex
3897 expression first. We don't need to do this for comparisons here. */
3898 if (COMMUTATIVE_ARITH_P (x)
3899 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3900 {
3901 temp = XEXP (x, 0);
3902 SUBST (XEXP (x, 0), XEXP (x, 1));
3903 SUBST (XEXP (x, 1), temp);
3904 }
3905
3906 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3907 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3908 things. Check for cases where both arms are testing the same
3909 condition.
3910
3911 Don't do anything if all operands are very simple. */
3912
3913 if ((BINARY_P (x)
3914 && ((!OBJECT_P (XEXP (x, 0))
3915 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3916 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3917 || (!OBJECT_P (XEXP (x, 1))
3918 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3919 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3920 || (UNARY_P (x)
3921 && (!OBJECT_P (XEXP (x, 0))
3922 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3923 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3924 {
3925 rtx cond, true_rtx, false_rtx;
3926
3927 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3928 if (cond != 0
3929 /* If everything is a comparison, what we have is highly unlikely
3930 to be simpler, so don't use it. */
3931 && ! (COMPARISON_P (x)
3932 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3933 {
3934 rtx cop1 = const0_rtx;
3935 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3936
3937 if (cond_code == NE && COMPARISON_P (cond))
3938 return x;
3939
3940 /* Simplify the alternative arms; this may collapse the true and
3941 false arms to store-flag values. Be careful to use copy_rtx
3942 here since true_rtx or false_rtx might share RTL with x as a
3943 result of the if_then_else_cond call above. */
3944 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3945 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3946
3947 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3948 is unlikely to be simpler. */
3949 if (general_operand (true_rtx, VOIDmode)
3950 && general_operand (false_rtx, VOIDmode))
3951 {
3952 enum rtx_code reversed;
3953
3954 /* Restarting if we generate a store-flag expression will cause
3955 us to loop. Just drop through in this case. */
3956
3957 /* If the result values are STORE_FLAG_VALUE and zero, we can
3958 just make the comparison operation. */
3959 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3960 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3961 cond, cop1);
3962 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3963 && ((reversed = reversed_comparison_code_parts
3964 (cond_code, cond, cop1, NULL))
3965 != UNKNOWN))
3966 x = simplify_gen_relational (reversed, mode, VOIDmode,
3967 cond, cop1);
3968
3969 /* Likewise, we can make the negate of a comparison operation
3970 if the result values are - STORE_FLAG_VALUE and zero. */
3971 else if (GET_CODE (true_rtx) == CONST_INT
3972 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3973 && false_rtx == const0_rtx)
3974 x = simplify_gen_unary (NEG, mode,
3975 simplify_gen_relational (cond_code,
3976 mode, VOIDmode,
3977 cond, cop1),
3978 mode);
3979 else if (GET_CODE (false_rtx) == CONST_INT
3980 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3981 && true_rtx == const0_rtx
3982 && ((reversed = reversed_comparison_code_parts
3983 (cond_code, cond, cop1, NULL))
3984 != UNKNOWN))
3985 x = simplify_gen_unary (NEG, mode,
3986 simplify_gen_relational (reversed,
3987 mode, VOIDmode,
3988 cond, cop1),
3989 mode);
3990 else
3991 return gen_rtx_IF_THEN_ELSE (mode,
3992 simplify_gen_relational (cond_code,
3993 mode,
3994 VOIDmode,
3995 cond,
3996 cop1),
3997 true_rtx, false_rtx);
3998
3999 code = GET_CODE (x);
4000 op0_mode = VOIDmode;
4001 }
4002 }
4003 }
4004
4005 /* Try to fold this expression in case we have constants that weren't
4006 present before. */
4007 temp = 0;
4008 switch (GET_RTX_CLASS (code))
4009 {
4010 case RTX_UNARY:
4011 if (op0_mode == VOIDmode)
4012 op0_mode = GET_MODE (XEXP (x, 0));
4013 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4014 break;
4015 case RTX_COMPARE:
4016 case RTX_COMM_COMPARE:
4017 {
4018 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4019 if (cmp_mode == VOIDmode)
4020 {
4021 cmp_mode = GET_MODE (XEXP (x, 1));
4022 if (cmp_mode == VOIDmode)
4023 cmp_mode = op0_mode;
4024 }
4025 temp = simplify_relational_operation (code, mode, cmp_mode,
4026 XEXP (x, 0), XEXP (x, 1));
4027 }
4028 break;
4029 case RTX_COMM_ARITH:
4030 case RTX_BIN_ARITH:
4031 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4032 break;
4033 case RTX_BITFIELD_OPS:
4034 case RTX_TERNARY:
4035 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4036 XEXP (x, 1), XEXP (x, 2));
4037 break;
4038 default:
4039 break;
4040 }
4041
4042 if (temp)
4043 {
4044 x = temp;
4045 code = GET_CODE (temp);
4046 op0_mode = VOIDmode;
4047 mode = GET_MODE (temp);
4048 }
4049
4050 /* First see if we can apply the inverse distributive law. */
4051 if (code == PLUS || code == MINUS
4052 || code == AND || code == IOR || code == XOR)
4053 {
4054 x = apply_distributive_law (x);
4055 code = GET_CODE (x);
4056 op0_mode = VOIDmode;
4057 }
4058
4059 /* If CODE is an associative operation not otherwise handled, see if we
4060 can associate some operands. This can win if they are constants or
4061 if they are logically related (i.e. (a & b) & a). */
4062 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4063 || code == AND || code == IOR || code == XOR
4064 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4065 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4066 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4067 {
4068 if (GET_CODE (XEXP (x, 0)) == code)
4069 {
4070 rtx other = XEXP (XEXP (x, 0), 0);
4071 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4072 rtx inner_op1 = XEXP (x, 1);
4073 rtx inner;
4074
4075 /* Make sure we pass the constant operand if any as the second
4076 one if this is a commutative operation. */
4077 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4078 {
4079 rtx tem = inner_op0;
4080 inner_op0 = inner_op1;
4081 inner_op1 = tem;
4082 }
4083 inner = simplify_binary_operation (code == MINUS ? PLUS
4084 : code == DIV ? MULT
4085 : code,
4086 mode, inner_op0, inner_op1);
4087
4088 /* For commutative operations, try the other pair if that one
4089 didn't simplify. */
4090 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4091 {
4092 other = XEXP (XEXP (x, 0), 1);
4093 inner = simplify_binary_operation (code, mode,
4094 XEXP (XEXP (x, 0), 0),
4095 XEXP (x, 1));
4096 }
4097
4098 if (inner)
4099 return simplify_gen_binary (code, mode, other, inner);
4100 }
4101 }
4102
4103 /* A little bit of algebraic simplification here. */
4104 switch (code)
4105 {
4106 case MEM:
4107 /* Ensure that our address has any ASHIFTs converted to MULT in case
4108 address-recognizing predicates are called later. */
4109 temp = make_compound_operation (XEXP (x, 0), MEM);
4110 SUBST (XEXP (x, 0), temp);
4111 break;
4112
4113 case SUBREG:
4114 if (op0_mode == VOIDmode)
4115 op0_mode = GET_MODE (SUBREG_REG (x));
4116
4117 /* See if this can be moved to simplify_subreg. */
4118 if (CONSTANT_P (SUBREG_REG (x))
4119 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4120 /* Don't call gen_lowpart if the inner mode
4121 is VOIDmode and we cannot simplify it, as SUBREG without
4122 inner mode is invalid. */
4123 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4124 || gen_lowpart_common (mode, SUBREG_REG (x))))
4125 return gen_lowpart (mode, SUBREG_REG (x));
4126
4127 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4128 break;
4129 {
4130 rtx temp;
4131 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4132 SUBREG_BYTE (x));
4133 if (temp)
4134 return temp;
4135 }
4136
4137 /* Don't change the mode of the MEM if that would change the meaning
4138 of the address. */
4139 if (MEM_P (SUBREG_REG (x))
4140 && (MEM_VOLATILE_P (SUBREG_REG (x))
4141 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4142 return gen_rtx_CLOBBER (mode, const0_rtx);
4143
4144 /* Note that we cannot do any narrowing for non-constants since
4145 we might have been counting on using the fact that some bits were
4146 zero. We now do this in the SET. */
4147
4148 break;
4149
4150 case NOT:
4151 if (GET_CODE (XEXP (x, 0)) == SUBREG
4152 && subreg_lowpart_p (XEXP (x, 0))
4153 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4154 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4155 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4156 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4157 {
4158 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4159
4160 x = gen_rtx_ROTATE (inner_mode,
4161 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4162 inner_mode),
4163 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4164 return gen_lowpart (mode, x);
4165 }
4166
4167 /* Apply De Morgan's laws to reduce number of patterns for machines
4168 with negating logical insns (and-not, nand, etc.). If result has
4169 only one NOT, put it first, since that is how the patterns are
4170 coded. */
4171
4172 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4173 {
4174 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4175 enum machine_mode op_mode;
4176
4177 op_mode = GET_MODE (in1);
4178 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4179
4180 op_mode = GET_MODE (in2);
4181 if (op_mode == VOIDmode)
4182 op_mode = mode;
4183 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4184
4185 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4186 {
4187 rtx tem = in2;
4188 in2 = in1; in1 = tem;
4189 }
4190
4191 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4192 mode, in1, in2);
4193 }
4194 break;
4195
4196 case NEG:
4197 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4198 if (GET_CODE (XEXP (x, 0)) == XOR
4199 && XEXP (XEXP (x, 0), 1) == const1_rtx
4200 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4201 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4202 constm1_rtx);
4203
4204 temp = expand_compound_operation (XEXP (x, 0));
4205
4206 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4207 replaced by (lshiftrt X C). This will convert
4208 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4209
4210 if (GET_CODE (temp) == ASHIFTRT
4211 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4212 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4213 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4214 INTVAL (XEXP (temp, 1)));
4215
4216 /* If X has only a single bit that might be nonzero, say, bit I, convert
4217 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4218 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4219 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4220 or a SUBREG of one since we'd be making the expression more
4221 complex if it was just a register. */
4222
4223 if (!REG_P (temp)
4224 && ! (GET_CODE (temp) == SUBREG
4225 && REG_P (SUBREG_REG (temp)))
4226 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4227 {
4228 rtx temp1 = simplify_shift_const
4229 (NULL_RTX, ASHIFTRT, mode,
4230 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4231 GET_MODE_BITSIZE (mode) - 1 - i),
4232 GET_MODE_BITSIZE (mode) - 1 - i);
4233
4234 /* If all we did was surround TEMP with the two shifts, we
4235 haven't improved anything, so don't use it. Otherwise,
4236 we are better off with TEMP1. */
4237 if (GET_CODE (temp1) != ASHIFTRT
4238 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4239 || XEXP (XEXP (temp1, 0), 0) != temp)
4240 return temp1;
4241 }
4242 break;
4243
4244 case TRUNCATE:
4245 /* We can't handle truncation to a partial integer mode here
4246 because we don't know the real bitsize of the partial
4247 integer mode. */
4248 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4249 break;
4250
4251 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4252 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4253 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4254 SUBST (XEXP (x, 0),
4255 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4256 GET_MODE_MASK (mode), NULL_RTX, 0));
4257
4258 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4259 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4260 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4261 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4262 return XEXP (XEXP (x, 0), 0);
4263
4264 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4265 (OP:SI foo:SI) if OP is NEG or ABS. */
4266 if ((GET_CODE (XEXP (x, 0)) == ABS
4267 || GET_CODE (XEXP (x, 0)) == NEG)
4268 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4269 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4270 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4271 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4272 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4273
4274 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4275 (truncate:SI x). */
4276 if (GET_CODE (XEXP (x, 0)) == SUBREG
4277 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4278 && subreg_lowpart_p (XEXP (x, 0)))
4279 return SUBREG_REG (XEXP (x, 0));
4280
4281 /* If we know that the value is already truncated, we can
4282 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4283 is nonzero for the corresponding modes. But don't do this
4284 for an (LSHIFTRT (MULT ...)) since this will cause problems
4285 with the umulXi3_highpart patterns. */
4286 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4287 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4288 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4289 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4290 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4291 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4292 return gen_lowpart (mode, XEXP (x, 0));
4293
4294 /* A truncate of a comparison can be replaced with a subreg if
4295 STORE_FLAG_VALUE permits. This is like the previous test,
4296 but it works even if the comparison is done in a mode larger
4297 than HOST_BITS_PER_WIDE_INT. */
4298 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4299 && COMPARISON_P (XEXP (x, 0))
4300 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4301 return gen_lowpart (mode, XEXP (x, 0));
4302
4303 /* Similarly, a truncate of a register whose value is a
4304 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4305 permits. */
4306 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4307 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4308 && (temp = get_last_value (XEXP (x, 0)))
4309 && COMPARISON_P (temp))
4310 return gen_lowpart (mode, XEXP (x, 0));
4311
4312 break;
4313
4314 case FLOAT_TRUNCATE:
4315 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4316 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4317 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4318 return XEXP (XEXP (x, 0), 0);
4319
4320 /* (float_truncate:SF (float_truncate:DF foo:XF))
4321 = (float_truncate:SF foo:XF).
4322 This may eliminate double rounding, so it is unsafe.
4323
4324 (float_truncate:SF (float_extend:XF foo:DF))
4325 = (float_truncate:SF foo:DF).
4326
4327 (float_truncate:DF (float_extend:XF foo:SF))
4328 = (float_extend:SF foo:DF). */
4329 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4330 && flag_unsafe_math_optimizations)
4331 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4332 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4333 0)))
4334 > GET_MODE_SIZE (mode)
4335 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4336 mode,
4337 XEXP (XEXP (x, 0), 0), mode);
4338
4339 /* (float_truncate (float x)) is (float x) */
4340 if (GET_CODE (XEXP (x, 0)) == FLOAT
4341 && (flag_unsafe_math_optimizations
4342 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4343 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4344 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4345 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4346 return simplify_gen_unary (FLOAT, mode,
4347 XEXP (XEXP (x, 0), 0),
4348 GET_MODE (XEXP (XEXP (x, 0), 0)));
4349
4350 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4351 (OP:SF foo:SF) if OP is NEG or ABS. */
4352 if ((GET_CODE (XEXP (x, 0)) == ABS
4353 || GET_CODE (XEXP (x, 0)) == NEG)
4354 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4355 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4356 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4357 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4358
4359 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4360 is (float_truncate:SF x). */
4361 if (GET_CODE (XEXP (x, 0)) == SUBREG
4362 && subreg_lowpart_p (XEXP (x, 0))
4363 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4364 return SUBREG_REG (XEXP (x, 0));
4365 break;
4366 case FLOAT_EXTEND:
4367 /* (float_extend (float_extend x)) is (float_extend x)
4368
4369 (float_extend (float x)) is (float x) assuming that double
4370 rounding can't happen.
4371 */
4372 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4373 || (GET_CODE (XEXP (x, 0)) == FLOAT
4374 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4375 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4376 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4377 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4378 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4379 XEXP (XEXP (x, 0), 0),
4380 GET_MODE (XEXP (XEXP (x, 0), 0)));
4381
4382 break;
4383 #ifdef HAVE_cc0
4384 case COMPARE:
4385 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4386 using cc0, in which case we want to leave it as a COMPARE
4387 so we can distinguish it from a register-register-copy. */
4388 if (XEXP (x, 1) == const0_rtx)
4389 return XEXP (x, 0);
4390
4391 /* x - 0 is the same as x unless x's mode has signed zeros and
4392 allows rounding towards -infinity. Under those conditions,
4393 0 - 0 is -0. */
4394 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4395 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4396 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4397 return XEXP (x, 0);
4398 break;
4399 #endif
4400
4401 case CONST:
4402 /* (const (const X)) can become (const X). Do it this way rather than
4403 returning the inner CONST since CONST can be shared with a
4404 REG_EQUAL note. */
4405 if (GET_CODE (XEXP (x, 0)) == CONST)
4406 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4407 break;
4408
4409 #ifdef HAVE_lo_sum
4410 case LO_SUM:
4411 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4412 can add in an offset. find_split_point will split this address up
4413 again if it doesn't match. */
4414 if (GET_CODE (XEXP (x, 0)) == HIGH
4415 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4416 return XEXP (x, 1);
4417 break;
4418 #endif
4419
4420 case PLUS:
4421 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4422 */
4423 if (GET_CODE (XEXP (x, 0)) == MULT
4424 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4425 {
4426 rtx in1, in2;
4427
4428 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4429 in2 = XEXP (XEXP (x, 0), 1);
4430 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4431 simplify_gen_binary (MULT, mode,
4432 in1, in2));
4433 }
4434
4435 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4436 outermost. That's because that's the way indexed addresses are
4437 supposed to appear. This code used to check many more cases, but
4438 they are now checked elsewhere. */
4439 if (GET_CODE (XEXP (x, 0)) == PLUS
4440 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4441 return simplify_gen_binary (PLUS, mode,
4442 simplify_gen_binary (PLUS, mode,
4443 XEXP (XEXP (x, 0), 0),
4444 XEXP (x, 1)),
4445 XEXP (XEXP (x, 0), 1));
4446
4447 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4448 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4449 bit-field and can be replaced by either a sign_extend or a
4450 sign_extract. The `and' may be a zero_extend and the two
4451 <c>, -<c> constants may be reversed. */
4452 if (GET_CODE (XEXP (x, 0)) == XOR
4453 && GET_CODE (XEXP (x, 1)) == CONST_INT
4454 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4455 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4456 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4457 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4458 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4459 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4460 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4461 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4462 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4463 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4464 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4465 == (unsigned int) i + 1))))
4466 return simplify_shift_const
4467 (NULL_RTX, ASHIFTRT, mode,
4468 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4469 XEXP (XEXP (XEXP (x, 0), 0), 0),
4470 GET_MODE_BITSIZE (mode) - (i + 1)),
4471 GET_MODE_BITSIZE (mode) - (i + 1));
4472
4473 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4474 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4475 is 1. This produces better code than the alternative immediately
4476 below. */
4477 if (COMPARISON_P (XEXP (x, 0))
4478 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4479 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4480 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4481 return
4482 simplify_gen_unary (NEG, mode, reversed, mode);
4483
4484 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4485 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4486 the bitsize of the mode - 1. This allows simplification of
4487 "a = (b & 8) == 0;" */
4488 if (XEXP (x, 1) == constm1_rtx
4489 && !REG_P (XEXP (x, 0))
4490 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4491 && REG_P (SUBREG_REG (XEXP (x, 0))))
4492 && nonzero_bits (XEXP (x, 0), mode) == 1)
4493 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4494 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4495 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4496 GET_MODE_BITSIZE (mode) - 1),
4497 GET_MODE_BITSIZE (mode) - 1);
4498
4499 /* If we are adding two things that have no bits in common, convert
4500 the addition into an IOR. This will often be further simplified,
4501 for example in cases like ((a & 1) + (a & 2)), which can
4502 become a & 3. */
4503
4504 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4505 && (nonzero_bits (XEXP (x, 0), mode)
4506 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4507 {
4508 /* Try to simplify the expression further. */
4509 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4510 temp = combine_simplify_rtx (tor, mode, in_dest);
4511
4512 /* If we could, great. If not, do not go ahead with the IOR
4513 replacement, since PLUS appears in many special purpose
4514 address arithmetic instructions. */
4515 if (GET_CODE (temp) != CLOBBER && temp != tor)
4516 return temp;
4517 }
4518 break;
4519
4520 case MINUS:
4521 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4522 by reversing the comparison code if valid. */
4523 if (STORE_FLAG_VALUE == 1
4524 && XEXP (x, 0) == const1_rtx
4525 && COMPARISON_P (XEXP (x, 1))
4526 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4527 return reversed;
4528
4529 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4530 (and <foo> (const_int pow2-1)) */
4531 if (GET_CODE (XEXP (x, 1)) == AND
4532 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4533 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4534 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4535 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4536 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4537
4538 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4539 */
4540 if (GET_CODE (XEXP (x, 1)) == MULT
4541 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4542 {
4543 rtx in1, in2;
4544
4545 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4546 in2 = XEXP (XEXP (x, 1), 1);
4547 return simplify_gen_binary (PLUS, mode,
4548 simplify_gen_binary (MULT, mode,
4549 in1, in2),
4550 XEXP (x, 0));
4551 }
4552
4553 /* Canonicalize (minus (neg A) (mult B C)) to
4554 (minus (mult (neg B) C) A). */
4555 if (GET_CODE (XEXP (x, 1)) == MULT
4556 && GET_CODE (XEXP (x, 0)) == NEG)
4557 {
4558 rtx in1, in2;
4559
4560 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4561 in2 = XEXP (XEXP (x, 1), 1);
4562 return simplify_gen_binary (MINUS, mode,
4563 simplify_gen_binary (MULT, mode,
4564 in1, in2),
4565 XEXP (XEXP (x, 0), 0));
4566 }
4567
4568 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4569 integers. */
4570 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4571 return simplify_gen_binary (MINUS, mode,
4572 simplify_gen_binary (MINUS, mode,
4573 XEXP (x, 0),
4574 XEXP (XEXP (x, 1), 0)),
4575 XEXP (XEXP (x, 1), 1));
4576 break;
4577
4578 case MULT:
4579 /* If we have (mult (plus A B) C), apply the distributive law and then
4580 the inverse distributive law to see if things simplify. This
4581 occurs mostly in addresses, often when unrolling loops. */
4582
4583 if (GET_CODE (XEXP (x, 0)) == PLUS)
4584 {
4585 rtx result = distribute_and_simplify_rtx (x, 0);
4586 if (result)
4587 return result;
4588 }
4589
4590 /* Try simplify a*(b/c) as (a*b)/c. */
4591 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4592 && GET_CODE (XEXP (x, 0)) == DIV)
4593 {
4594 rtx tem = simplify_binary_operation (MULT, mode,
4595 XEXP (XEXP (x, 0), 0),
4596 XEXP (x, 1));
4597 if (tem)
4598 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4599 }
4600 break;
4601
4602 case UDIV:
4603 /* If this is a divide by a power of two, treat it as a shift if
4604 its first operand is a shift. */
4605 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4606 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4607 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4608 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4609 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4610 || GET_CODE (XEXP (x, 0)) == ROTATE
4611 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4612 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4613 break;
4614
4615 case EQ: case NE:
4616 case GT: case GTU: case GE: case GEU:
4617 case LT: case LTU: case LE: case LEU:
4618 case UNEQ: case LTGT:
4619 case UNGT: case UNGE:
4620 case UNLT: case UNLE:
4621 case UNORDERED: case ORDERED:
4622 /* If the first operand is a condition code, we can't do anything
4623 with it. */
4624 if (GET_CODE (XEXP (x, 0)) == COMPARE
4625 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4626 && ! CC0_P (XEXP (x, 0))))
4627 {
4628 rtx op0 = XEXP (x, 0);
4629 rtx op1 = XEXP (x, 1);
4630 enum rtx_code new_code;
4631
4632 if (GET_CODE (op0) == COMPARE)
4633 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4634
4635 /* Simplify our comparison, if possible. */
4636 new_code = simplify_comparison (code, &op0, &op1);
4637
4638 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4639 if only the low-order bit is possibly nonzero in X (such as when
4640 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4641 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4642 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4643 (plus X 1).
4644
4645 Remove any ZERO_EXTRACT we made when thinking this was a
4646 comparison. It may now be simpler to use, e.g., an AND. If a
4647 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4648 the call to make_compound_operation in the SET case. */
4649
4650 if (STORE_FLAG_VALUE == 1
4651 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4652 && op1 == const0_rtx
4653 && mode == GET_MODE (op0)
4654 && nonzero_bits (op0, mode) == 1)
4655 return gen_lowpart (mode,
4656 expand_compound_operation (op0));
4657
4658 else if (STORE_FLAG_VALUE == 1
4659 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4660 && op1 == const0_rtx
4661 && mode == GET_MODE (op0)
4662 && (num_sign_bit_copies (op0, mode)
4663 == GET_MODE_BITSIZE (mode)))
4664 {
4665 op0 = expand_compound_operation (op0);
4666 return simplify_gen_unary (NEG, mode,
4667 gen_lowpart (mode, op0),
4668 mode);
4669 }
4670
4671 else if (STORE_FLAG_VALUE == 1
4672 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4673 && op1 == const0_rtx
4674 && mode == GET_MODE (op0)
4675 && nonzero_bits (op0, mode) == 1)
4676 {
4677 op0 = expand_compound_operation (op0);
4678 return simplify_gen_binary (XOR, mode,
4679 gen_lowpart (mode, op0),
4680 const1_rtx);
4681 }
4682
4683 else if (STORE_FLAG_VALUE == 1
4684 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4685 && op1 == const0_rtx
4686 && mode == GET_MODE (op0)
4687 && (num_sign_bit_copies (op0, mode)
4688 == GET_MODE_BITSIZE (mode)))
4689 {
4690 op0 = expand_compound_operation (op0);
4691 return plus_constant (gen_lowpart (mode, op0), 1);
4692 }
4693
4694 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4695 those above. */
4696 if (STORE_FLAG_VALUE == -1
4697 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4698 && op1 == const0_rtx
4699 && (num_sign_bit_copies (op0, mode)
4700 == GET_MODE_BITSIZE (mode)))
4701 return gen_lowpart (mode,
4702 expand_compound_operation (op0));
4703
4704 else if (STORE_FLAG_VALUE == -1
4705 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4706 && op1 == const0_rtx
4707 && mode == GET_MODE (op0)
4708 && nonzero_bits (op0, mode) == 1)
4709 {
4710 op0 = expand_compound_operation (op0);
4711 return simplify_gen_unary (NEG, mode,
4712 gen_lowpart (mode, op0),
4713 mode);
4714 }
4715
4716 else if (STORE_FLAG_VALUE == -1
4717 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4718 && op1 == const0_rtx
4719 && mode == GET_MODE (op0)
4720 && (num_sign_bit_copies (op0, mode)
4721 == GET_MODE_BITSIZE (mode)))
4722 {
4723 op0 = expand_compound_operation (op0);
4724 return simplify_gen_unary (NOT, mode,
4725 gen_lowpart (mode, op0),
4726 mode);
4727 }
4728
4729 /* If X is 0/1, (eq X 0) is X-1. */
4730 else if (STORE_FLAG_VALUE == -1
4731 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4732 && op1 == const0_rtx
4733 && mode == GET_MODE (op0)
4734 && nonzero_bits (op0, mode) == 1)
4735 {
4736 op0 = expand_compound_operation (op0);
4737 return plus_constant (gen_lowpart (mode, op0), -1);
4738 }
4739
4740 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4741 one bit that might be nonzero, we can convert (ne x 0) to
4742 (ashift x c) where C puts the bit in the sign bit. Remove any
4743 AND with STORE_FLAG_VALUE when we are done, since we are only
4744 going to test the sign bit. */
4745 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4746 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4747 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4748 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4749 && op1 == const0_rtx
4750 && mode == GET_MODE (op0)
4751 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4752 {
4753 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4754 expand_compound_operation (op0),
4755 GET_MODE_BITSIZE (mode) - 1 - i);
4756 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4757 return XEXP (x, 0);
4758 else
4759 return x;
4760 }
4761
4762 /* If the code changed, return a whole new comparison. */
4763 if (new_code != code)
4764 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4765
4766 /* Otherwise, keep this operation, but maybe change its operands.
4767 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4768 SUBST (XEXP (x, 0), op0);
4769 SUBST (XEXP (x, 1), op1);
4770 }
4771 break;
4772
4773 case IF_THEN_ELSE:
4774 return simplify_if_then_else (x);
4775
4776 case ZERO_EXTRACT:
4777 case SIGN_EXTRACT:
4778 case ZERO_EXTEND:
4779 case SIGN_EXTEND:
4780 /* If we are processing SET_DEST, we are done. */
4781 if (in_dest)
4782 return x;
4783
4784 return expand_compound_operation (x);
4785
4786 case SET:
4787 return simplify_set (x);
4788
4789 case AND:
4790 case IOR:
4791 case XOR:
4792 return simplify_logical (x);
4793
4794 case ABS:
4795 /* (abs (neg <foo>)) -> (abs <foo>) */
4796 if (GET_CODE (XEXP (x, 0)) == NEG)
4797 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4798
4799 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4800 do nothing. */
4801 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4802 break;
4803
4804 /* If operand is something known to be positive, ignore the ABS. */
4805 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4806 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4807 <= HOST_BITS_PER_WIDE_INT)
4808 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4809 & ((HOST_WIDE_INT) 1
4810 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4811 == 0)))
4812 return XEXP (x, 0);
4813
4814 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4815 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4816 return gen_rtx_NEG (mode, XEXP (x, 0));
4817
4818 break;
4819
4820 case FFS:
4821 /* (ffs (*_extend <X>)) = (ffs <X>) */
4822 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4823 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4824 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4825 break;
4826
4827 case POPCOUNT:
4828 case PARITY:
4829 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4830 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4831 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4832 break;
4833
4834 case FLOAT:
4835 /* (float (sign_extend <X>)) = (float <X>). */
4836 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4837 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4838 break;
4839
4840 case ASHIFT:
4841 case LSHIFTRT:
4842 case ASHIFTRT:
4843 case ROTATE:
4844 case ROTATERT:
4845 /* If this is a shift by a constant amount, simplify it. */
4846 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4847 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4848 INTVAL (XEXP (x, 1)));
4849
4850 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4851 SUBST (XEXP (x, 1),
4852 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4853 ((HOST_WIDE_INT) 1
4854 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4855 - 1,
4856 NULL_RTX, 0));
4857 break;
4858
4859 case VEC_SELECT:
4860 {
4861 rtx op0 = XEXP (x, 0);
4862 rtx op1 = XEXP (x, 1);
4863 int len;
4864
4865 gcc_assert (GET_CODE (op1) == PARALLEL);
4866 len = XVECLEN (op1, 0);
4867 if (len == 1
4868 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4869 && GET_CODE (op0) == VEC_CONCAT)
4870 {
4871 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4872
4873 /* Try to find the element in the VEC_CONCAT. */
4874 for (;;)
4875 {
4876 if (GET_MODE (op0) == GET_MODE (x))
4877 return op0;
4878 if (GET_CODE (op0) == VEC_CONCAT)
4879 {
4880 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4881 if (offset < op0_size)
4882 op0 = XEXP (op0, 0);
4883 else
4884 {
4885 offset -= op0_size;
4886 op0 = XEXP (op0, 1);
4887 }
4888 }
4889 else
4890 break;
4891 }
4892 }
4893 }
4894
4895 break;
4896
4897 default:
4898 break;
4899 }
4900
4901 return x;
4902 }
4903 \f
4904 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4905
4906 static rtx
4907 simplify_if_then_else (rtx x)
4908 {
4909 enum machine_mode mode = GET_MODE (x);
4910 rtx cond = XEXP (x, 0);
4911 rtx true_rtx = XEXP (x, 1);
4912 rtx false_rtx = XEXP (x, 2);
4913 enum rtx_code true_code = GET_CODE (cond);
4914 int comparison_p = COMPARISON_P (cond);
4915 rtx temp;
4916 int i;
4917 enum rtx_code false_code;
4918 rtx reversed;
4919
4920 /* Simplify storing of the truth value. */
4921 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4922 return simplify_gen_relational (true_code, mode, VOIDmode,
4923 XEXP (cond, 0), XEXP (cond, 1));
4924
4925 /* Also when the truth value has to be reversed. */
4926 if (comparison_p
4927 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4928 && (reversed = reversed_comparison (cond, mode)))
4929 return reversed;
4930
4931 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4932 in it is being compared against certain values. Get the true and false
4933 comparisons and see if that says anything about the value of each arm. */
4934
4935 if (comparison_p
4936 && ((false_code = reversed_comparison_code (cond, NULL))
4937 != UNKNOWN)
4938 && REG_P (XEXP (cond, 0)))
4939 {
4940 HOST_WIDE_INT nzb;
4941 rtx from = XEXP (cond, 0);
4942 rtx true_val = XEXP (cond, 1);
4943 rtx false_val = true_val;
4944 int swapped = 0;
4945
4946 /* If FALSE_CODE is EQ, swap the codes and arms. */
4947
4948 if (false_code == EQ)
4949 {
4950 swapped = 1, true_code = EQ, false_code = NE;
4951 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4952 }
4953
4954 /* If we are comparing against zero and the expression being tested has
4955 only a single bit that might be nonzero, that is its value when it is
4956 not equal to zero. Similarly if it is known to be -1 or 0. */
4957
4958 if (true_code == EQ && true_val == const0_rtx
4959 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4960 false_code = EQ, false_val = GEN_INT (nzb);
4961 else if (true_code == EQ && true_val == const0_rtx
4962 && (num_sign_bit_copies (from, GET_MODE (from))
4963 == GET_MODE_BITSIZE (GET_MODE (from))))
4964 false_code = EQ, false_val = constm1_rtx;
4965
4966 /* Now simplify an arm if we know the value of the register in the
4967 branch and it is used in the arm. Be careful due to the potential
4968 of locally-shared RTL. */
4969
4970 if (reg_mentioned_p (from, true_rtx))
4971 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4972 from, true_val),
4973 pc_rtx, pc_rtx, 0, 0);
4974 if (reg_mentioned_p (from, false_rtx))
4975 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4976 from, false_val),
4977 pc_rtx, pc_rtx, 0, 0);
4978
4979 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4980 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4981
4982 true_rtx = XEXP (x, 1);
4983 false_rtx = XEXP (x, 2);
4984 true_code = GET_CODE (cond);
4985 }
4986
4987 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4988 reversed, do so to avoid needing two sets of patterns for
4989 subtract-and-branch insns. Similarly if we have a constant in the true
4990 arm, the false arm is the same as the first operand of the comparison, or
4991 the false arm is more complicated than the true arm. */
4992
4993 if (comparison_p
4994 && reversed_comparison_code (cond, NULL) != UNKNOWN
4995 && (true_rtx == pc_rtx
4996 || (CONSTANT_P (true_rtx)
4997 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4998 || true_rtx == const0_rtx
4999 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5000 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5001 && !OBJECT_P (false_rtx))
5002 || reg_mentioned_p (true_rtx, false_rtx)
5003 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5004 {
5005 true_code = reversed_comparison_code (cond, NULL);
5006 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5007 SUBST (XEXP (x, 1), false_rtx);
5008 SUBST (XEXP (x, 2), true_rtx);
5009
5010 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5011 cond = XEXP (x, 0);
5012
5013 /* It is possible that the conditional has been simplified out. */
5014 true_code = GET_CODE (cond);
5015 comparison_p = COMPARISON_P (cond);
5016 }
5017
5018 /* If the two arms are identical, we don't need the comparison. */
5019
5020 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5021 return true_rtx;
5022
5023 /* Convert a == b ? b : a to "a". */
5024 if (true_code == EQ && ! side_effects_p (cond)
5025 && !HONOR_NANS (mode)
5026 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5027 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5028 return false_rtx;
5029 else if (true_code == NE && ! side_effects_p (cond)
5030 && !HONOR_NANS (mode)
5031 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5032 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5033 return true_rtx;
5034
5035 /* Look for cases where we have (abs x) or (neg (abs X)). */
5036
5037 if (GET_MODE_CLASS (mode) == MODE_INT
5038 && GET_CODE (false_rtx) == NEG
5039 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5040 && comparison_p
5041 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5042 && ! side_effects_p (true_rtx))
5043 switch (true_code)
5044 {
5045 case GT:
5046 case GE:
5047 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5048 case LT:
5049 case LE:
5050 return
5051 simplify_gen_unary (NEG, mode,
5052 simplify_gen_unary (ABS, mode, true_rtx, mode),
5053 mode);
5054 default:
5055 break;
5056 }
5057
5058 /* Look for MIN or MAX. */
5059
5060 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5061 && comparison_p
5062 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5063 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5064 && ! side_effects_p (cond))
5065 switch (true_code)
5066 {
5067 case GE:
5068 case GT:
5069 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5070 case LE:
5071 case LT:
5072 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5073 case GEU:
5074 case GTU:
5075 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5076 case LEU:
5077 case LTU:
5078 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5079 default:
5080 break;
5081 }
5082
5083 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5084 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5085 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5086 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5087 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5088 neither 1 or -1, but it isn't worth checking for. */
5089
5090 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5091 && comparison_p
5092 && GET_MODE_CLASS (mode) == MODE_INT
5093 && ! side_effects_p (x))
5094 {
5095 rtx t = make_compound_operation (true_rtx, SET);
5096 rtx f = make_compound_operation (false_rtx, SET);
5097 rtx cond_op0 = XEXP (cond, 0);
5098 rtx cond_op1 = XEXP (cond, 1);
5099 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5100 enum machine_mode m = mode;
5101 rtx z = 0, c1 = NULL_RTX;
5102
5103 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5104 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5105 || GET_CODE (t) == ASHIFT
5106 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5107 && rtx_equal_p (XEXP (t, 0), f))
5108 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5109
5110 /* If an identity-zero op is commutative, check whether there
5111 would be a match if we swapped the operands. */
5112 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5113 || GET_CODE (t) == XOR)
5114 && rtx_equal_p (XEXP (t, 1), f))
5115 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5116 else if (GET_CODE (t) == SIGN_EXTEND
5117 && (GET_CODE (XEXP (t, 0)) == PLUS
5118 || GET_CODE (XEXP (t, 0)) == MINUS
5119 || GET_CODE (XEXP (t, 0)) == IOR
5120 || GET_CODE (XEXP (t, 0)) == XOR
5121 || GET_CODE (XEXP (t, 0)) == ASHIFT
5122 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5123 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5124 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5125 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5126 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5127 && (num_sign_bit_copies (f, GET_MODE (f))
5128 > (unsigned int)
5129 (GET_MODE_BITSIZE (mode)
5130 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5131 {
5132 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5133 extend_op = SIGN_EXTEND;
5134 m = GET_MODE (XEXP (t, 0));
5135 }
5136 else if (GET_CODE (t) == SIGN_EXTEND
5137 && (GET_CODE (XEXP (t, 0)) == PLUS
5138 || GET_CODE (XEXP (t, 0)) == IOR
5139 || GET_CODE (XEXP (t, 0)) == XOR)
5140 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5141 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5142 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5143 && (num_sign_bit_copies (f, GET_MODE (f))
5144 > (unsigned int)
5145 (GET_MODE_BITSIZE (mode)
5146 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5147 {
5148 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5149 extend_op = SIGN_EXTEND;
5150 m = GET_MODE (XEXP (t, 0));
5151 }
5152 else if (GET_CODE (t) == ZERO_EXTEND
5153 && (GET_CODE (XEXP (t, 0)) == PLUS
5154 || GET_CODE (XEXP (t, 0)) == MINUS
5155 || GET_CODE (XEXP (t, 0)) == IOR
5156 || GET_CODE (XEXP (t, 0)) == XOR
5157 || GET_CODE (XEXP (t, 0)) == ASHIFT
5158 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5159 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5160 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5161 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5162 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5163 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5164 && ((nonzero_bits (f, GET_MODE (f))
5165 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5166 == 0))
5167 {
5168 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5169 extend_op = ZERO_EXTEND;
5170 m = GET_MODE (XEXP (t, 0));
5171 }
5172 else if (GET_CODE (t) == ZERO_EXTEND
5173 && (GET_CODE (XEXP (t, 0)) == PLUS
5174 || GET_CODE (XEXP (t, 0)) == IOR
5175 || GET_CODE (XEXP (t, 0)) == XOR)
5176 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5177 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5178 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5179 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5180 && ((nonzero_bits (f, GET_MODE (f))
5181 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5182 == 0))
5183 {
5184 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5185 extend_op = ZERO_EXTEND;
5186 m = GET_MODE (XEXP (t, 0));
5187 }
5188
5189 if (z)
5190 {
5191 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5192 cond_op0, cond_op1),
5193 pc_rtx, pc_rtx, 0, 0);
5194 temp = simplify_gen_binary (MULT, m, temp,
5195 simplify_gen_binary (MULT, m, c1,
5196 const_true_rtx));
5197 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5198 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5199
5200 if (extend_op != UNKNOWN)
5201 temp = simplify_gen_unary (extend_op, mode, temp, m);
5202
5203 return temp;
5204 }
5205 }
5206
5207 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5208 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5209 negation of a single bit, we can convert this operation to a shift. We
5210 can actually do this more generally, but it doesn't seem worth it. */
5211
5212 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5213 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5214 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5215 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5216 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5217 == GET_MODE_BITSIZE (mode))
5218 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5219 return
5220 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5221 gen_lowpart (mode, XEXP (cond, 0)), i);
5222
5223 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5224 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5225 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5226 && GET_MODE (XEXP (cond, 0)) == mode
5227 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5228 == nonzero_bits (XEXP (cond, 0), mode)
5229 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5230 return XEXP (cond, 0);
5231
5232 return x;
5233 }
5234 \f
5235 /* Simplify X, a SET expression. Return the new expression. */
5236
5237 static rtx
5238 simplify_set (rtx x)
5239 {
5240 rtx src = SET_SRC (x);
5241 rtx dest = SET_DEST (x);
5242 enum machine_mode mode
5243 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5244 rtx other_insn;
5245 rtx *cc_use;
5246
5247 /* (set (pc) (return)) gets written as (return). */
5248 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5249 return src;
5250
5251 /* Now that we know for sure which bits of SRC we are using, see if we can
5252 simplify the expression for the object knowing that we only need the
5253 low-order bits. */
5254
5255 if (GET_MODE_CLASS (mode) == MODE_INT
5256 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5257 {
5258 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5259 SUBST (SET_SRC (x), src);
5260 }
5261
5262 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5263 the comparison result and try to simplify it unless we already have used
5264 undobuf.other_insn. */
5265 if ((GET_MODE_CLASS (mode) == MODE_CC
5266 || GET_CODE (src) == COMPARE
5267 || CC0_P (dest))
5268 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5269 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5270 && COMPARISON_P (*cc_use)
5271 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5272 {
5273 enum rtx_code old_code = GET_CODE (*cc_use);
5274 enum rtx_code new_code;
5275 rtx op0, op1, tmp;
5276 int other_changed = 0;
5277 enum machine_mode compare_mode = GET_MODE (dest);
5278
5279 if (GET_CODE (src) == COMPARE)
5280 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5281 else
5282 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5283
5284 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5285 op0, op1);
5286 if (!tmp)
5287 new_code = old_code;
5288 else if (!CONSTANT_P (tmp))
5289 {
5290 new_code = GET_CODE (tmp);
5291 op0 = XEXP (tmp, 0);
5292 op1 = XEXP (tmp, 1);
5293 }
5294 else
5295 {
5296 rtx pat = PATTERN (other_insn);
5297 undobuf.other_insn = other_insn;
5298 SUBST (*cc_use, tmp);
5299
5300 /* Attempt to simplify CC user. */
5301 if (GET_CODE (pat) == SET)
5302 {
5303 rtx new = simplify_rtx (SET_SRC (pat));
5304 if (new != NULL_RTX)
5305 SUBST (SET_SRC (pat), new);
5306 }
5307
5308 /* Convert X into a no-op move. */
5309 SUBST (SET_DEST (x), pc_rtx);
5310 SUBST (SET_SRC (x), pc_rtx);
5311 return x;
5312 }
5313
5314 /* Simplify our comparison, if possible. */
5315 new_code = simplify_comparison (new_code, &op0, &op1);
5316
5317 #ifdef SELECT_CC_MODE
5318 /* If this machine has CC modes other than CCmode, check to see if we
5319 need to use a different CC mode here. */
5320 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5321 compare_mode = GET_MODE (op0);
5322 else
5323 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5324
5325 #ifndef HAVE_cc0
5326 /* If the mode changed, we have to change SET_DEST, the mode in the
5327 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5328 a hard register, just build new versions with the proper mode. If it
5329 is a pseudo, we lose unless it is only time we set the pseudo, in
5330 which case we can safely change its mode. */
5331 if (compare_mode != GET_MODE (dest))
5332 {
5333 if (can_change_dest_mode (dest, 0, compare_mode))
5334 {
5335 unsigned int regno = REGNO (dest);
5336 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5337
5338 if (regno >= FIRST_PSEUDO_REGISTER)
5339 SUBST (regno_reg_rtx[regno], new_dest);
5340
5341 SUBST (SET_DEST (x), new_dest);
5342 SUBST (XEXP (*cc_use, 0), new_dest);
5343 other_changed = 1;
5344
5345 dest = new_dest;
5346 }
5347 }
5348 #endif /* cc0 */
5349 #endif /* SELECT_CC_MODE */
5350
5351 /* If the code changed, we have to build a new comparison in
5352 undobuf.other_insn. */
5353 if (new_code != old_code)
5354 {
5355 int other_changed_previously = other_changed;
5356 unsigned HOST_WIDE_INT mask;
5357
5358 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5359 dest, const0_rtx));
5360 other_changed = 1;
5361
5362 /* If the only change we made was to change an EQ into an NE or
5363 vice versa, OP0 has only one bit that might be nonzero, and OP1
5364 is zero, check if changing the user of the condition code will
5365 produce a valid insn. If it won't, we can keep the original code
5366 in that insn by surrounding our operation with an XOR. */
5367
5368 if (((old_code == NE && new_code == EQ)
5369 || (old_code == EQ && new_code == NE))
5370 && ! other_changed_previously && op1 == const0_rtx
5371 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5372 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5373 {
5374 rtx pat = PATTERN (other_insn), note = 0;
5375
5376 if ((recog_for_combine (&pat, other_insn, &note) < 0
5377 && ! check_asm_operands (pat)))
5378 {
5379 PUT_CODE (*cc_use, old_code);
5380 other_changed = 0;
5381
5382 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5383 op0, GEN_INT (mask));
5384 }
5385 }
5386 }
5387
5388 if (other_changed)
5389 undobuf.other_insn = other_insn;
5390
5391 #ifdef HAVE_cc0
5392 /* If we are now comparing against zero, change our source if
5393 needed. If we do not use cc0, we always have a COMPARE. */
5394 if (op1 == const0_rtx && dest == cc0_rtx)
5395 {
5396 SUBST (SET_SRC (x), op0);
5397 src = op0;
5398 }
5399 else
5400 #endif
5401
5402 /* Otherwise, if we didn't previously have a COMPARE in the
5403 correct mode, we need one. */
5404 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5405 {
5406 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5407 src = SET_SRC (x);
5408 }
5409 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5410 {
5411 SUBST(SET_SRC (x), op0);
5412 src = SET_SRC (x);
5413 }
5414 else
5415 {
5416 /* Otherwise, update the COMPARE if needed. */
5417 SUBST (XEXP (src, 0), op0);
5418 SUBST (XEXP (src, 1), op1);
5419 }
5420 }
5421 else
5422 {
5423 /* Get SET_SRC in a form where we have placed back any
5424 compound expressions. Then do the checks below. */
5425 src = make_compound_operation (src, SET);
5426 SUBST (SET_SRC (x), src);
5427 }
5428
5429 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5430 and X being a REG or (subreg (reg)), we may be able to convert this to
5431 (set (subreg:m2 x) (op)).
5432
5433 We can always do this if M1 is narrower than M2 because that means that
5434 we only care about the low bits of the result.
5435
5436 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5437 perform a narrower operation than requested since the high-order bits will
5438 be undefined. On machine where it is defined, this transformation is safe
5439 as long as M1 and M2 have the same number of words. */
5440
5441 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5442 && !OBJECT_P (SUBREG_REG (src))
5443 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5444 / UNITS_PER_WORD)
5445 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5446 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5447 #ifndef WORD_REGISTER_OPERATIONS
5448 && (GET_MODE_SIZE (GET_MODE (src))
5449 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5450 #endif
5451 #ifdef CANNOT_CHANGE_MODE_CLASS
5452 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5453 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5454 GET_MODE (SUBREG_REG (src)),
5455 GET_MODE (src)))
5456 #endif
5457 && (REG_P (dest)
5458 || (GET_CODE (dest) == SUBREG
5459 && REG_P (SUBREG_REG (dest)))))
5460 {
5461 SUBST (SET_DEST (x),
5462 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5463 dest));
5464 SUBST (SET_SRC (x), SUBREG_REG (src));
5465
5466 src = SET_SRC (x), dest = SET_DEST (x);
5467 }
5468
5469 #ifdef HAVE_cc0
5470 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5471 in SRC. */
5472 if (dest == cc0_rtx
5473 && GET_CODE (src) == SUBREG
5474 && subreg_lowpart_p (src)
5475 && (GET_MODE_BITSIZE (GET_MODE (src))
5476 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5477 {
5478 rtx inner = SUBREG_REG (src);
5479 enum machine_mode inner_mode = GET_MODE (inner);
5480
5481 /* Here we make sure that we don't have a sign bit on. */
5482 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5483 && (nonzero_bits (inner, inner_mode)
5484 < ((unsigned HOST_WIDE_INT) 1
5485 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5486 {
5487 SUBST (SET_SRC (x), inner);
5488 src = SET_SRC (x);
5489 }
5490 }
5491 #endif
5492
5493 #ifdef LOAD_EXTEND_OP
5494 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5495 would require a paradoxical subreg. Replace the subreg with a
5496 zero_extend to avoid the reload that would otherwise be required. */
5497
5498 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5499 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5500 && SUBREG_BYTE (src) == 0
5501 && (GET_MODE_SIZE (GET_MODE (src))
5502 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5503 && MEM_P (SUBREG_REG (src)))
5504 {
5505 SUBST (SET_SRC (x),
5506 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5507 GET_MODE (src), SUBREG_REG (src)));
5508
5509 src = SET_SRC (x);
5510 }
5511 #endif
5512
5513 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5514 are comparing an item known to be 0 or -1 against 0, use a logical
5515 operation instead. Check for one of the arms being an IOR of the other
5516 arm with some value. We compute three terms to be IOR'ed together. In
5517 practice, at most two will be nonzero. Then we do the IOR's. */
5518
5519 if (GET_CODE (dest) != PC
5520 && GET_CODE (src) == IF_THEN_ELSE
5521 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5522 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5523 && XEXP (XEXP (src, 0), 1) == const0_rtx
5524 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5525 #ifdef HAVE_conditional_move
5526 && ! can_conditionally_move_p (GET_MODE (src))
5527 #endif
5528 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5529 GET_MODE (XEXP (XEXP (src, 0), 0)))
5530 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5531 && ! side_effects_p (src))
5532 {
5533 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5534 ? XEXP (src, 1) : XEXP (src, 2));
5535 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5536 ? XEXP (src, 2) : XEXP (src, 1));
5537 rtx term1 = const0_rtx, term2, term3;
5538
5539 if (GET_CODE (true_rtx) == IOR
5540 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5541 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5542 else if (GET_CODE (true_rtx) == IOR
5543 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5544 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5545 else if (GET_CODE (false_rtx) == IOR
5546 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5547 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5548 else if (GET_CODE (false_rtx) == IOR
5549 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5550 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5551
5552 term2 = simplify_gen_binary (AND, GET_MODE (src),
5553 XEXP (XEXP (src, 0), 0), true_rtx);
5554 term3 = simplify_gen_binary (AND, GET_MODE (src),
5555 simplify_gen_unary (NOT, GET_MODE (src),
5556 XEXP (XEXP (src, 0), 0),
5557 GET_MODE (src)),
5558 false_rtx);
5559
5560 SUBST (SET_SRC (x),
5561 simplify_gen_binary (IOR, GET_MODE (src),
5562 simplify_gen_binary (IOR, GET_MODE (src),
5563 term1, term2),
5564 term3));
5565
5566 src = SET_SRC (x);
5567 }
5568
5569 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5570 whole thing fail. */
5571 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5572 return src;
5573 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5574 return dest;
5575 else
5576 /* Convert this into a field assignment operation, if possible. */
5577 return make_field_assignment (x);
5578 }
5579 \f
5580 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5581 result. */
5582
5583 static rtx
5584 simplify_logical (rtx x)
5585 {
5586 enum machine_mode mode = GET_MODE (x);
5587 rtx op0 = XEXP (x, 0);
5588 rtx op1 = XEXP (x, 1);
5589 rtx reversed;
5590
5591 switch (GET_CODE (x))
5592 {
5593 case AND:
5594 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5595 insn (and may simplify more). */
5596 if (GET_CODE (op0) == XOR
5597 && rtx_equal_p (XEXP (op0, 0), op1)
5598 && ! side_effects_p (op1))
5599 x = simplify_gen_binary (AND, mode,
5600 simplify_gen_unary (NOT, mode,
5601 XEXP (op0, 1), mode),
5602 op1);
5603
5604 if (GET_CODE (op0) == XOR
5605 && rtx_equal_p (XEXP (op0, 1), op1)
5606 && ! side_effects_p (op1))
5607 x = simplify_gen_binary (AND, mode,
5608 simplify_gen_unary (NOT, mode,
5609 XEXP (op0, 0), mode),
5610 op1);
5611
5612 /* Similarly for (~(A ^ B)) & A. */
5613 if (GET_CODE (op0) == NOT
5614 && GET_CODE (XEXP (op0, 0)) == XOR
5615 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5616 && ! side_effects_p (op1))
5617 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5618
5619 if (GET_CODE (op0) == NOT
5620 && GET_CODE (XEXP (op0, 0)) == XOR
5621 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5622 && ! side_effects_p (op1))
5623 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5624
5625 /* We can call simplify_and_const_int only if we don't lose
5626 any (sign) bits when converting INTVAL (op1) to
5627 "unsigned HOST_WIDE_INT". */
5628 if (GET_CODE (op1) == CONST_INT
5629 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5630 || INTVAL (op1) > 0))
5631 {
5632 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5633
5634 /* If we have (ior (and (X C1) C2)) and the next restart would be
5635 the last, simplify this by making C1 as small as possible
5636 and then exit. Only do this if C1 actually changes: for now
5637 this only saves memory but, should this transformation be
5638 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5639 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5640 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5641 && GET_CODE (op1) == CONST_INT
5642 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5643 return simplify_gen_binary (IOR, mode,
5644 simplify_gen_binary
5645 (AND, mode, XEXP (op0, 0),
5646 GEN_INT (INTVAL (XEXP (op0, 1))
5647 & ~INTVAL (op1))), op1);
5648
5649 if (GET_CODE (x) != AND)
5650 return x;
5651
5652 op0 = XEXP (x, 0);
5653 op1 = XEXP (x, 1);
5654 }
5655
5656 /* Convert (A | B) & A to A. */
5657 if (GET_CODE (op0) == IOR
5658 && (rtx_equal_p (XEXP (op0, 0), op1)
5659 || rtx_equal_p (XEXP (op0, 1), op1))
5660 && ! side_effects_p (XEXP (op0, 0))
5661 && ! side_effects_p (XEXP (op0, 1)))
5662 return op1;
5663
5664 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5665 apply the distributive law and then the inverse distributive
5666 law to see if things simplify. */
5667 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5668 {
5669 rtx result = distribute_and_simplify_rtx (x, 0);
5670 if (result)
5671 return result;
5672 }
5673 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5674 {
5675 rtx result = distribute_and_simplify_rtx (x, 1);
5676 if (result)
5677 return result;
5678 }
5679 break;
5680
5681 case IOR:
5682 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5683 if (GET_CODE (op1) == CONST_INT
5684 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5685 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5686 return op1;
5687
5688 /* Convert (A & B) | A to A. */
5689 if (GET_CODE (op0) == AND
5690 && (rtx_equal_p (XEXP (op0, 0), op1)
5691 || rtx_equal_p (XEXP (op0, 1), op1))
5692 && ! side_effects_p (XEXP (op0, 0))
5693 && ! side_effects_p (XEXP (op0, 1)))
5694 return op1;
5695
5696 /* If we have (ior (and A B) C), apply the distributive law and then
5697 the inverse distributive law to see if things simplify. */
5698
5699 if (GET_CODE (op0) == AND)
5700 {
5701 rtx result = distribute_and_simplify_rtx (x, 0);
5702 if (result)
5703 return result;
5704 }
5705
5706 if (GET_CODE (op1) == AND)
5707 {
5708 rtx result = distribute_and_simplify_rtx (x, 1);
5709 if (result)
5710 return result;
5711 }
5712
5713 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5714 mode size to (rotate A CX). */
5715
5716 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5717 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5718 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5719 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5720 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5721 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5722 == GET_MODE_BITSIZE (mode)))
5723 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5724 (GET_CODE (op0) == ASHIFT
5725 ? XEXP (op0, 1) : XEXP (op1, 1)));
5726
5727 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5728 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5729 does not affect any of the bits in OP1, it can really be done
5730 as a PLUS and we can associate. We do this by seeing if OP1
5731 can be safely shifted left C bits. */
5732 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5733 && GET_CODE (XEXP (op0, 0)) == PLUS
5734 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5735 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5736 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5737 {
5738 int count = INTVAL (XEXP (op0, 1));
5739 HOST_WIDE_INT mask = INTVAL (op1) << count;
5740
5741 if (mask >> count == INTVAL (op1)
5742 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5743 {
5744 SUBST (XEXP (XEXP (op0, 0), 1),
5745 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5746 return op0;
5747 }
5748 }
5749 break;
5750
5751 case XOR:
5752 /* If we are XORing two things that have no bits in common,
5753 convert them into an IOR. This helps to detect rotation encoded
5754 using those methods and possibly other simplifications. */
5755
5756 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5757 && (nonzero_bits (op0, mode)
5758 & nonzero_bits (op1, mode)) == 0)
5759 return (simplify_gen_binary (IOR, mode, op0, op1));
5760
5761 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5762 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5763 (NOT y). */
5764 {
5765 int num_negated = 0;
5766
5767 if (GET_CODE (op0) == NOT)
5768 num_negated++, op0 = XEXP (op0, 0);
5769 if (GET_CODE (op1) == NOT)
5770 num_negated++, op1 = XEXP (op1, 0);
5771
5772 if (num_negated == 2)
5773 {
5774 SUBST (XEXP (x, 0), op0);
5775 SUBST (XEXP (x, 1), op1);
5776 }
5777 else if (num_negated == 1)
5778 return
5779 simplify_gen_unary (NOT, mode,
5780 simplify_gen_binary (XOR, mode, op0, op1),
5781 mode);
5782 }
5783
5784 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5785 correspond to a machine insn or result in further simplifications
5786 if B is a constant. */
5787
5788 if (GET_CODE (op0) == AND
5789 && rtx_equal_p (XEXP (op0, 1), op1)
5790 && ! side_effects_p (op1))
5791 return simplify_gen_binary (AND, mode,
5792 simplify_gen_unary (NOT, mode,
5793 XEXP (op0, 0), mode),
5794 op1);
5795
5796 else if (GET_CODE (op0) == AND
5797 && rtx_equal_p (XEXP (op0, 0), op1)
5798 && ! side_effects_p (op1))
5799 return simplify_gen_binary (AND, mode,
5800 simplify_gen_unary (NOT, mode,
5801 XEXP (op0, 1), mode),
5802 op1);
5803
5804 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5805 comparison if STORE_FLAG_VALUE is 1. */
5806 if (STORE_FLAG_VALUE == 1
5807 && op1 == const1_rtx
5808 && COMPARISON_P (op0)
5809 && (reversed = reversed_comparison (op0, mode)))
5810 return reversed;
5811
5812 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5813 is (lt foo (const_int 0)), so we can perform the above
5814 simplification if STORE_FLAG_VALUE is 1. */
5815
5816 if (STORE_FLAG_VALUE == 1
5817 && op1 == const1_rtx
5818 && GET_CODE (op0) == LSHIFTRT
5819 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5820 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5821 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5822
5823 /* (xor (comparison foo bar) (const_int sign-bit))
5824 when STORE_FLAG_VALUE is the sign bit. */
5825 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5826 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5827 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5828 && op1 == const_true_rtx
5829 && COMPARISON_P (op0)
5830 && (reversed = reversed_comparison (op0, mode)))
5831 return reversed;
5832
5833 break;
5834
5835 default:
5836 gcc_unreachable ();
5837 }
5838
5839 return x;
5840 }
5841 \f
5842 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5843 operations" because they can be replaced with two more basic operations.
5844 ZERO_EXTEND is also considered "compound" because it can be replaced with
5845 an AND operation, which is simpler, though only one operation.
5846
5847 The function expand_compound_operation is called with an rtx expression
5848 and will convert it to the appropriate shifts and AND operations,
5849 simplifying at each stage.
5850
5851 The function make_compound_operation is called to convert an expression
5852 consisting of shifts and ANDs into the equivalent compound expression.
5853 It is the inverse of this function, loosely speaking. */
5854
5855 static rtx
5856 expand_compound_operation (rtx x)
5857 {
5858 unsigned HOST_WIDE_INT pos = 0, len;
5859 int unsignedp = 0;
5860 unsigned int modewidth;
5861 rtx tem;
5862
5863 switch (GET_CODE (x))
5864 {
5865 case ZERO_EXTEND:
5866 unsignedp = 1;
5867 case SIGN_EXTEND:
5868 /* We can't necessarily use a const_int for a multiword mode;
5869 it depends on implicitly extending the value.
5870 Since we don't know the right way to extend it,
5871 we can't tell whether the implicit way is right.
5872
5873 Even for a mode that is no wider than a const_int,
5874 we can't win, because we need to sign extend one of its bits through
5875 the rest of it, and we don't know which bit. */
5876 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5877 return x;
5878
5879 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5880 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5881 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5882 reloaded. If not for that, MEM's would very rarely be safe.
5883
5884 Reject MODEs bigger than a word, because we might not be able
5885 to reference a two-register group starting with an arbitrary register
5886 (and currently gen_lowpart might crash for a SUBREG). */
5887
5888 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5889 return x;
5890
5891 /* Reject MODEs that aren't scalar integers because turning vector
5892 or complex modes into shifts causes problems. */
5893
5894 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5895 return x;
5896
5897 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5898 /* If the inner object has VOIDmode (the only way this can happen
5899 is if it is an ASM_OPERANDS), we can't do anything since we don't
5900 know how much masking to do. */
5901 if (len == 0)
5902 return x;
5903
5904 break;
5905
5906 case ZERO_EXTRACT:
5907 unsignedp = 1;
5908
5909 /* ... fall through ... */
5910
5911 case SIGN_EXTRACT:
5912 /* If the operand is a CLOBBER, just return it. */
5913 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5914 return XEXP (x, 0);
5915
5916 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5917 || GET_CODE (XEXP (x, 2)) != CONST_INT
5918 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5919 return x;
5920
5921 /* Reject MODEs that aren't scalar integers because turning vector
5922 or complex modes into shifts causes problems. */
5923
5924 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5925 return x;
5926
5927 len = INTVAL (XEXP (x, 1));
5928 pos = INTVAL (XEXP (x, 2));
5929
5930 /* If this goes outside the object being extracted, replace the object
5931 with a (use (mem ...)) construct that only combine understands
5932 and is used only for this purpose. */
5933 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5934 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5935
5936 if (BITS_BIG_ENDIAN)
5937 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5938
5939 break;
5940
5941 default:
5942 return x;
5943 }
5944 /* Convert sign extension to zero extension, if we know that the high
5945 bit is not set, as this is easier to optimize. It will be converted
5946 back to cheaper alternative in make_extraction. */
5947 if (GET_CODE (x) == SIGN_EXTEND
5948 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5949 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5950 & ~(((unsigned HOST_WIDE_INT)
5951 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5952 >> 1))
5953 == 0)))
5954 {
5955 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5956 rtx temp2 = expand_compound_operation (temp);
5957
5958 /* Make sure this is a profitable operation. */
5959 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5960 return temp2;
5961 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5962 return temp;
5963 else
5964 return x;
5965 }
5966
5967 /* We can optimize some special cases of ZERO_EXTEND. */
5968 if (GET_CODE (x) == ZERO_EXTEND)
5969 {
5970 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5971 know that the last value didn't have any inappropriate bits
5972 set. */
5973 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5974 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5975 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5976 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5977 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5978 return XEXP (XEXP (x, 0), 0);
5979
5980 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5981 if (GET_CODE (XEXP (x, 0)) == SUBREG
5982 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5983 && subreg_lowpart_p (XEXP (x, 0))
5984 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5985 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5986 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5987 return SUBREG_REG (XEXP (x, 0));
5988
5989 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5990 is a comparison and STORE_FLAG_VALUE permits. This is like
5991 the first case, but it works even when GET_MODE (x) is larger
5992 than HOST_WIDE_INT. */
5993 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5994 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5995 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5996 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5997 <= HOST_BITS_PER_WIDE_INT)
5998 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5999 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6000 return XEXP (XEXP (x, 0), 0);
6001
6002 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6003 if (GET_CODE (XEXP (x, 0)) == SUBREG
6004 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6005 && subreg_lowpart_p (XEXP (x, 0))
6006 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6007 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6008 <= HOST_BITS_PER_WIDE_INT)
6009 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6010 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6011 return SUBREG_REG (XEXP (x, 0));
6012
6013 }
6014
6015 /* If we reach here, we want to return a pair of shifts. The inner
6016 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6017 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6018 logical depending on the value of UNSIGNEDP.
6019
6020 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6021 converted into an AND of a shift.
6022
6023 We must check for the case where the left shift would have a negative
6024 count. This can happen in a case like (x >> 31) & 255 on machines
6025 that can't shift by a constant. On those machines, we would first
6026 combine the shift with the AND to produce a variable-position
6027 extraction. Then the constant of 31 would be substituted in to produce
6028 a such a position. */
6029
6030 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6031 if (modewidth + len >= pos)
6032 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6033 GET_MODE (x),
6034 simplify_shift_const (NULL_RTX, ASHIFT,
6035 GET_MODE (x),
6036 XEXP (x, 0),
6037 modewidth - pos - len),
6038 modewidth - len);
6039
6040 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6041 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6042 simplify_shift_const (NULL_RTX, LSHIFTRT,
6043 GET_MODE (x),
6044 XEXP (x, 0), pos),
6045 ((HOST_WIDE_INT) 1 << len) - 1);
6046 else
6047 /* Any other cases we can't handle. */
6048 return x;
6049
6050 /* If we couldn't do this for some reason, return the original
6051 expression. */
6052 if (GET_CODE (tem) == CLOBBER)
6053 return x;
6054
6055 return tem;
6056 }
6057 \f
6058 /* X is a SET which contains an assignment of one object into
6059 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6060 or certain SUBREGS). If possible, convert it into a series of
6061 logical operations.
6062
6063 We half-heartedly support variable positions, but do not at all
6064 support variable lengths. */
6065
6066 static rtx
6067 expand_field_assignment (rtx x)
6068 {
6069 rtx inner;
6070 rtx pos; /* Always counts from low bit. */
6071 int len;
6072 rtx mask, cleared, masked;
6073 enum machine_mode compute_mode;
6074
6075 /* Loop until we find something we can't simplify. */
6076 while (1)
6077 {
6078 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6079 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6080 {
6081 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6082 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6083 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6084 }
6085 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6086 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6087 {
6088 inner = XEXP (SET_DEST (x), 0);
6089 len = INTVAL (XEXP (SET_DEST (x), 1));
6090 pos = XEXP (SET_DEST (x), 2);
6091
6092 /* If the position is constant and spans the width of INNER,
6093 surround INNER with a USE to indicate this. */
6094 if (GET_CODE (pos) == CONST_INT
6095 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6096 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6097
6098 if (BITS_BIG_ENDIAN)
6099 {
6100 if (GET_CODE (pos) == CONST_INT)
6101 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6102 - INTVAL (pos));
6103 else if (GET_CODE (pos) == MINUS
6104 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6105 && (INTVAL (XEXP (pos, 1))
6106 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6107 /* If position is ADJUST - X, new position is X. */
6108 pos = XEXP (pos, 0);
6109 else
6110 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6111 GEN_INT (GET_MODE_BITSIZE (
6112 GET_MODE (inner))
6113 - len),
6114 pos);
6115 }
6116 }
6117
6118 /* A SUBREG between two modes that occupy the same numbers of words
6119 can be done by moving the SUBREG to the source. */
6120 else if (GET_CODE (SET_DEST (x)) == SUBREG
6121 /* We need SUBREGs to compute nonzero_bits properly. */
6122 && nonzero_sign_valid
6123 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6124 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6125 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6126 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6127 {
6128 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6129 gen_lowpart
6130 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6131 SET_SRC (x)));
6132 continue;
6133 }
6134 else
6135 break;
6136
6137 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6138 inner = SUBREG_REG (inner);
6139
6140 compute_mode = GET_MODE (inner);
6141
6142 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6143 if (! SCALAR_INT_MODE_P (compute_mode))
6144 {
6145 enum machine_mode imode;
6146
6147 /* Don't do anything for vector or complex integral types. */
6148 if (! FLOAT_MODE_P (compute_mode))
6149 break;
6150
6151 /* Try to find an integral mode to pun with. */
6152 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6153 if (imode == BLKmode)
6154 break;
6155
6156 compute_mode = imode;
6157 inner = gen_lowpart (imode, inner);
6158 }
6159
6160 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6161 if (len >= HOST_BITS_PER_WIDE_INT)
6162 break;
6163
6164 /* Now compute the equivalent expression. Make a copy of INNER
6165 for the SET_DEST in case it is a MEM into which we will substitute;
6166 we don't want shared RTL in that case. */
6167 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6168 cleared = simplify_gen_binary (AND, compute_mode,
6169 simplify_gen_unary (NOT, compute_mode,
6170 simplify_gen_binary (ASHIFT,
6171 compute_mode,
6172 mask, pos),
6173 compute_mode),
6174 inner);
6175 masked = simplify_gen_binary (ASHIFT, compute_mode,
6176 simplify_gen_binary (
6177 AND, compute_mode,
6178 gen_lowpart (compute_mode, SET_SRC (x)),
6179 mask),
6180 pos);
6181
6182 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6183 simplify_gen_binary (IOR, compute_mode,
6184 cleared, masked));
6185 }
6186
6187 return x;
6188 }
6189 \f
6190 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6191 it is an RTX that represents a variable starting position; otherwise,
6192 POS is the (constant) starting bit position (counted from the LSB).
6193
6194 INNER may be a USE. This will occur when we started with a bitfield
6195 that went outside the boundary of the object in memory, which is
6196 allowed on most machines. To isolate this case, we produce a USE
6197 whose mode is wide enough and surround the MEM with it. The only
6198 code that understands the USE is this routine. If it is not removed,
6199 it will cause the resulting insn not to match.
6200
6201 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6202 signed reference.
6203
6204 IN_DEST is nonzero if this is a reference in the destination of a
6205 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6206 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6207 be used.
6208
6209 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6210 ZERO_EXTRACT should be built even for bits starting at bit 0.
6211
6212 MODE is the desired mode of the result (if IN_DEST == 0).
6213
6214 The result is an RTX for the extraction or NULL_RTX if the target
6215 can't handle it. */
6216
6217 static rtx
6218 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6219 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6220 int in_dest, int in_compare)
6221 {
6222 /* This mode describes the size of the storage area
6223 to fetch the overall value from. Within that, we
6224 ignore the POS lowest bits, etc. */
6225 enum machine_mode is_mode = GET_MODE (inner);
6226 enum machine_mode inner_mode;
6227 enum machine_mode wanted_inner_mode = byte_mode;
6228 enum machine_mode wanted_inner_reg_mode = word_mode;
6229 enum machine_mode pos_mode = word_mode;
6230 enum machine_mode extraction_mode = word_mode;
6231 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6232 int spans_byte = 0;
6233 rtx new = 0;
6234 rtx orig_pos_rtx = pos_rtx;
6235 HOST_WIDE_INT orig_pos;
6236
6237 /* Get some information about INNER and get the innermost object. */
6238 if (GET_CODE (inner) == USE)
6239 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6240 /* We don't need to adjust the position because we set up the USE
6241 to pretend that it was a full-word object. */
6242 spans_byte = 1, inner = XEXP (inner, 0);
6243 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6244 {
6245 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6246 consider just the QI as the memory to extract from.
6247 The subreg adds or removes high bits; its mode is
6248 irrelevant to the meaning of this extraction,
6249 since POS and LEN count from the lsb. */
6250 if (MEM_P (SUBREG_REG (inner)))
6251 is_mode = GET_MODE (SUBREG_REG (inner));
6252 inner = SUBREG_REG (inner);
6253 }
6254 else if (GET_CODE (inner) == ASHIFT
6255 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6256 && pos_rtx == 0 && pos == 0
6257 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6258 {
6259 /* We're extracting the least significant bits of an rtx
6260 (ashift X (const_int C)), where LEN > C. Extract the
6261 least significant (LEN - C) bits of X, giving an rtx
6262 whose mode is MODE, then shift it left C times. */
6263 new = make_extraction (mode, XEXP (inner, 0),
6264 0, 0, len - INTVAL (XEXP (inner, 1)),
6265 unsignedp, in_dest, in_compare);
6266 if (new != 0)
6267 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6268 }
6269
6270 inner_mode = GET_MODE (inner);
6271
6272 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6273 pos = INTVAL (pos_rtx), pos_rtx = 0;
6274
6275 /* See if this can be done without an extraction. We never can if the
6276 width of the field is not the same as that of some integer mode. For
6277 registers, we can only avoid the extraction if the position is at the
6278 low-order bit and this is either not in the destination or we have the
6279 appropriate STRICT_LOW_PART operation available.
6280
6281 For MEM, we can avoid an extract if the field starts on an appropriate
6282 boundary and we can change the mode of the memory reference. However,
6283 we cannot directly access the MEM if we have a USE and the underlying
6284 MEM is not TMODE. This combination means that MEM was being used in a
6285 context where bits outside its mode were being referenced; that is only
6286 valid in bit-field insns. */
6287
6288 if (tmode != BLKmode
6289 && ! (spans_byte && inner_mode != tmode)
6290 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6291 && !MEM_P (inner)
6292 && (! in_dest
6293 || (REG_P (inner)
6294 && have_insn_for (STRICT_LOW_PART, tmode))))
6295 || (MEM_P (inner) && pos_rtx == 0
6296 && (pos
6297 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6298 : BITS_PER_UNIT)) == 0
6299 /* We can't do this if we are widening INNER_MODE (it
6300 may not be aligned, for one thing). */
6301 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6302 && (inner_mode == tmode
6303 || (! mode_dependent_address_p (XEXP (inner, 0))
6304 && ! MEM_VOLATILE_P (inner))))))
6305 {
6306 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6307 field. If the original and current mode are the same, we need not
6308 adjust the offset. Otherwise, we do if bytes big endian.
6309
6310 If INNER is not a MEM, get a piece consisting of just the field
6311 of interest (in this case POS % BITS_PER_WORD must be 0). */
6312
6313 if (MEM_P (inner))
6314 {
6315 HOST_WIDE_INT offset;
6316
6317 /* POS counts from lsb, but make OFFSET count in memory order. */
6318 if (BYTES_BIG_ENDIAN)
6319 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6320 else
6321 offset = pos / BITS_PER_UNIT;
6322
6323 new = adjust_address_nv (inner, tmode, offset);
6324 }
6325 else if (REG_P (inner))
6326 {
6327 if (tmode != inner_mode)
6328 {
6329 /* We can't call gen_lowpart in a DEST since we
6330 always want a SUBREG (see below) and it would sometimes
6331 return a new hard register. */
6332 if (pos || in_dest)
6333 {
6334 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6335
6336 if (WORDS_BIG_ENDIAN
6337 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6338 final_word = ((GET_MODE_SIZE (inner_mode)
6339 - GET_MODE_SIZE (tmode))
6340 / UNITS_PER_WORD) - final_word;
6341
6342 final_word *= UNITS_PER_WORD;
6343 if (BYTES_BIG_ENDIAN &&
6344 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6345 final_word += (GET_MODE_SIZE (inner_mode)
6346 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6347
6348 /* Avoid creating invalid subregs, for example when
6349 simplifying (x>>32)&255. */
6350 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6351 return NULL_RTX;
6352
6353 new = gen_rtx_SUBREG (tmode, inner, final_word);
6354 }
6355 else
6356 new = gen_lowpart (tmode, inner);
6357 }
6358 else
6359 new = inner;
6360 }
6361 else
6362 new = force_to_mode (inner, tmode,
6363 len >= HOST_BITS_PER_WIDE_INT
6364 ? ~(unsigned HOST_WIDE_INT) 0
6365 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6366 NULL_RTX, 0);
6367
6368 /* If this extraction is going into the destination of a SET,
6369 make a STRICT_LOW_PART unless we made a MEM. */
6370
6371 if (in_dest)
6372 return (MEM_P (new) ? new
6373 : (GET_CODE (new) != SUBREG
6374 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6375 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6376
6377 if (mode == tmode)
6378 return new;
6379
6380 if (GET_CODE (new) == CONST_INT)
6381 return gen_int_mode (INTVAL (new), mode);
6382
6383 /* If we know that no extraneous bits are set, and that the high
6384 bit is not set, convert the extraction to the cheaper of
6385 sign and zero extension, that are equivalent in these cases. */
6386 if (flag_expensive_optimizations
6387 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6388 && ((nonzero_bits (new, tmode)
6389 & ~(((unsigned HOST_WIDE_INT)
6390 GET_MODE_MASK (tmode))
6391 >> 1))
6392 == 0)))
6393 {
6394 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6395 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6396
6397 /* Prefer ZERO_EXTENSION, since it gives more information to
6398 backends. */
6399 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6400 return temp;
6401 return temp1;
6402 }
6403
6404 /* Otherwise, sign- or zero-extend unless we already are in the
6405 proper mode. */
6406
6407 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6408 mode, new));
6409 }
6410
6411 /* Unless this is a COMPARE or we have a funny memory reference,
6412 don't do anything with zero-extending field extracts starting at
6413 the low-order bit since they are simple AND operations. */
6414 if (pos_rtx == 0 && pos == 0 && ! in_dest
6415 && ! in_compare && ! spans_byte && unsignedp)
6416 return 0;
6417
6418 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6419 we would be spanning bytes or if the position is not a constant and the
6420 length is not 1. In all other cases, we would only be going outside
6421 our object in cases when an original shift would have been
6422 undefined. */
6423 if (! spans_byte && MEM_P (inner)
6424 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6425 || (pos_rtx != 0 && len != 1)))
6426 return 0;
6427
6428 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6429 and the mode for the result. */
6430 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6431 {
6432 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6433 pos_mode = mode_for_extraction (EP_insv, 2);
6434 extraction_mode = mode_for_extraction (EP_insv, 3);
6435 }
6436
6437 if (! in_dest && unsignedp
6438 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6439 {
6440 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6441 pos_mode = mode_for_extraction (EP_extzv, 3);
6442 extraction_mode = mode_for_extraction (EP_extzv, 0);
6443 }
6444
6445 if (! in_dest && ! unsignedp
6446 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6447 {
6448 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6449 pos_mode = mode_for_extraction (EP_extv, 3);
6450 extraction_mode = mode_for_extraction (EP_extv, 0);
6451 }
6452
6453 /* Never narrow an object, since that might not be safe. */
6454
6455 if (mode != VOIDmode
6456 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6457 extraction_mode = mode;
6458
6459 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6460 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6461 pos_mode = GET_MODE (pos_rtx);
6462
6463 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6464 if we have to change the mode of memory and cannot, the desired mode is
6465 EXTRACTION_MODE. */
6466 if (!MEM_P (inner))
6467 wanted_inner_mode = wanted_inner_reg_mode;
6468 else if (inner_mode != wanted_inner_mode
6469 && (mode_dependent_address_p (XEXP (inner, 0))
6470 || MEM_VOLATILE_P (inner)))
6471 wanted_inner_mode = extraction_mode;
6472
6473 orig_pos = pos;
6474
6475 if (BITS_BIG_ENDIAN)
6476 {
6477 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6478 BITS_BIG_ENDIAN style. If position is constant, compute new
6479 position. Otherwise, build subtraction.
6480 Note that POS is relative to the mode of the original argument.
6481 If it's a MEM we need to recompute POS relative to that.
6482 However, if we're extracting from (or inserting into) a register,
6483 we want to recompute POS relative to wanted_inner_mode. */
6484 int width = (MEM_P (inner)
6485 ? GET_MODE_BITSIZE (is_mode)
6486 : GET_MODE_BITSIZE (wanted_inner_mode));
6487
6488 if (pos_rtx == 0)
6489 pos = width - len - pos;
6490 else
6491 pos_rtx
6492 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6493 /* POS may be less than 0 now, but we check for that below.
6494 Note that it can only be less than 0 if !MEM_P (inner). */
6495 }
6496
6497 /* If INNER has a wider mode, make it smaller. If this is a constant
6498 extract, try to adjust the byte to point to the byte containing
6499 the value. */
6500 if (wanted_inner_mode != VOIDmode
6501 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6502 && ((MEM_P (inner)
6503 && (inner_mode == wanted_inner_mode
6504 || (! mode_dependent_address_p (XEXP (inner, 0))
6505 && ! MEM_VOLATILE_P (inner))))))
6506 {
6507 int offset = 0;
6508
6509 /* The computations below will be correct if the machine is big
6510 endian in both bits and bytes or little endian in bits and bytes.
6511 If it is mixed, we must adjust. */
6512
6513 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6514 adjust OFFSET to compensate. */
6515 if (BYTES_BIG_ENDIAN
6516 && ! spans_byte
6517 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6518 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6519
6520 /* If this is a constant position, we can move to the desired byte.
6521 Be careful not to go beyond the original object and maintain the
6522 natural alignment of the memory. */
6523 if (pos_rtx == 0)
6524 {
6525 enum machine_mode bfmode = smallest_mode_for_size (len, MODE_INT);
6526 offset += (pos / GET_MODE_BITSIZE (bfmode)) * GET_MODE_SIZE (bfmode);
6527 pos %= GET_MODE_BITSIZE (bfmode);
6528 }
6529
6530 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6531 && ! spans_byte
6532 && is_mode != wanted_inner_mode)
6533 offset = (GET_MODE_SIZE (is_mode)
6534 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6535
6536 if (offset != 0 || inner_mode != wanted_inner_mode)
6537 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6538 }
6539
6540 /* If INNER is not memory, we can always get it into the proper mode. If we
6541 are changing its mode, POS must be a constant and smaller than the size
6542 of the new mode. */
6543 else if (!MEM_P (inner))
6544 {
6545 if (GET_MODE (inner) != wanted_inner_mode
6546 && (pos_rtx != 0
6547 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6548 return 0;
6549
6550 inner = force_to_mode (inner, wanted_inner_mode,
6551 pos_rtx
6552 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6553 ? ~(unsigned HOST_WIDE_INT) 0
6554 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6555 << orig_pos),
6556 NULL_RTX, 0);
6557 }
6558
6559 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6560 have to zero extend. Otherwise, we can just use a SUBREG. */
6561 if (pos_rtx != 0
6562 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6563 {
6564 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6565
6566 /* If we know that no extraneous bits are set, and that the high
6567 bit is not set, convert extraction to cheaper one - either
6568 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6569 cases. */
6570 if (flag_expensive_optimizations
6571 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6572 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6573 & ~(((unsigned HOST_WIDE_INT)
6574 GET_MODE_MASK (GET_MODE (pos_rtx)))
6575 >> 1))
6576 == 0)))
6577 {
6578 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6579
6580 /* Prefer ZERO_EXTENSION, since it gives more information to
6581 backends. */
6582 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6583 temp = temp1;
6584 }
6585 pos_rtx = temp;
6586 }
6587 else if (pos_rtx != 0
6588 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6589 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6590
6591 /* Make POS_RTX unless we already have it and it is correct. If we don't
6592 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6593 be a CONST_INT. */
6594 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6595 pos_rtx = orig_pos_rtx;
6596
6597 else if (pos_rtx == 0)
6598 pos_rtx = GEN_INT (pos);
6599
6600 /* Make the required operation. See if we can use existing rtx. */
6601 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6602 extraction_mode, inner, GEN_INT (len), pos_rtx);
6603 if (! in_dest)
6604 new = gen_lowpart (mode, new);
6605
6606 return new;
6607 }
6608 \f
6609 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6610 with any other operations in X. Return X without that shift if so. */
6611
6612 static rtx
6613 extract_left_shift (rtx x, int count)
6614 {
6615 enum rtx_code code = GET_CODE (x);
6616 enum machine_mode mode = GET_MODE (x);
6617 rtx tem;
6618
6619 switch (code)
6620 {
6621 case ASHIFT:
6622 /* This is the shift itself. If it is wide enough, we will return
6623 either the value being shifted if the shift count is equal to
6624 COUNT or a shift for the difference. */
6625 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6626 && INTVAL (XEXP (x, 1)) >= count)
6627 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6628 INTVAL (XEXP (x, 1)) - count);
6629 break;
6630
6631 case NEG: case NOT:
6632 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6633 return simplify_gen_unary (code, mode, tem, mode);
6634
6635 break;
6636
6637 case PLUS: case IOR: case XOR: case AND:
6638 /* If we can safely shift this constant and we find the inner shift,
6639 make a new operation. */
6640 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6641 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6642 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6643 return simplify_gen_binary (code, mode, tem,
6644 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6645
6646 break;
6647
6648 default:
6649 break;
6650 }
6651
6652 return 0;
6653 }
6654 \f
6655 /* Look at the expression rooted at X. Look for expressions
6656 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6657 Form these expressions.
6658
6659 Return the new rtx, usually just X.
6660
6661 Also, for machines like the VAX that don't have logical shift insns,
6662 try to convert logical to arithmetic shift operations in cases where
6663 they are equivalent. This undoes the canonicalizations to logical
6664 shifts done elsewhere.
6665
6666 We try, as much as possible, to re-use rtl expressions to save memory.
6667
6668 IN_CODE says what kind of expression we are processing. Normally, it is
6669 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6670 being kludges), it is MEM. When processing the arguments of a comparison
6671 or a COMPARE against zero, it is COMPARE. */
6672
6673 static rtx
6674 make_compound_operation (rtx x, enum rtx_code in_code)
6675 {
6676 enum rtx_code code = GET_CODE (x);
6677 enum machine_mode mode = GET_MODE (x);
6678 int mode_width = GET_MODE_BITSIZE (mode);
6679 rtx rhs, lhs;
6680 enum rtx_code next_code;
6681 int i;
6682 rtx new = 0;
6683 rtx tem;
6684 const char *fmt;
6685
6686 /* Select the code to be used in recursive calls. Once we are inside an
6687 address, we stay there. If we have a comparison, set to COMPARE,
6688 but once inside, go back to our default of SET. */
6689
6690 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6691 : ((code == COMPARE || COMPARISON_P (x))
6692 && XEXP (x, 1) == const0_rtx) ? COMPARE
6693 : in_code == COMPARE ? SET : in_code);
6694
6695 /* Process depending on the code of this operation. If NEW is set
6696 nonzero, it will be returned. */
6697
6698 switch (code)
6699 {
6700 case ASHIFT:
6701 /* Convert shifts by constants into multiplications if inside
6702 an address. */
6703 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6704 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6705 && INTVAL (XEXP (x, 1)) >= 0)
6706 {
6707 new = make_compound_operation (XEXP (x, 0), next_code);
6708 new = gen_rtx_MULT (mode, new,
6709 GEN_INT ((HOST_WIDE_INT) 1
6710 << INTVAL (XEXP (x, 1))));
6711 }
6712 break;
6713
6714 case AND:
6715 /* If the second operand is not a constant, we can't do anything
6716 with it. */
6717 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6718 break;
6719
6720 /* If the constant is a power of two minus one and the first operand
6721 is a logical right shift, make an extraction. */
6722 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6723 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6724 {
6725 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6726 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6727 0, in_code == COMPARE);
6728 }
6729
6730 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6731 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6732 && subreg_lowpart_p (XEXP (x, 0))
6733 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6734 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6735 {
6736 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6737 next_code);
6738 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6739 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6740 0, in_code == COMPARE);
6741 }
6742 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6743 else if ((GET_CODE (XEXP (x, 0)) == XOR
6744 || GET_CODE (XEXP (x, 0)) == IOR)
6745 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6746 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6747 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6748 {
6749 /* Apply the distributive law, and then try to make extractions. */
6750 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6751 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6752 XEXP (x, 1)),
6753 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6754 XEXP (x, 1)));
6755 new = make_compound_operation (new, in_code);
6756 }
6757
6758 /* If we are have (and (rotate X C) M) and C is larger than the number
6759 of bits in M, this is an extraction. */
6760
6761 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6762 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6763 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6764 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6765 {
6766 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6767 new = make_extraction (mode, new,
6768 (GET_MODE_BITSIZE (mode)
6769 - INTVAL (XEXP (XEXP (x, 0), 1))),
6770 NULL_RTX, i, 1, 0, in_code == COMPARE);
6771 }
6772
6773 /* On machines without logical shifts, if the operand of the AND is
6774 a logical shift and our mask turns off all the propagated sign
6775 bits, we can replace the logical shift with an arithmetic shift. */
6776 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6777 && !have_insn_for (LSHIFTRT, mode)
6778 && have_insn_for (ASHIFTRT, mode)
6779 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6780 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6781 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6782 && mode_width <= HOST_BITS_PER_WIDE_INT)
6783 {
6784 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6785
6786 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6787 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6788 SUBST (XEXP (x, 0),
6789 gen_rtx_ASHIFTRT (mode,
6790 make_compound_operation
6791 (XEXP (XEXP (x, 0), 0), next_code),
6792 XEXP (XEXP (x, 0), 1)));
6793 }
6794
6795 /* If the constant is one less than a power of two, this might be
6796 representable by an extraction even if no shift is present.
6797 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6798 we are in a COMPARE. */
6799 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6800 new = make_extraction (mode,
6801 make_compound_operation (XEXP (x, 0),
6802 next_code),
6803 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6804
6805 /* If we are in a comparison and this is an AND with a power of two,
6806 convert this into the appropriate bit extract. */
6807 else if (in_code == COMPARE
6808 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6809 new = make_extraction (mode,
6810 make_compound_operation (XEXP (x, 0),
6811 next_code),
6812 i, NULL_RTX, 1, 1, 0, 1);
6813
6814 break;
6815
6816 case LSHIFTRT:
6817 /* If the sign bit is known to be zero, replace this with an
6818 arithmetic shift. */
6819 if (have_insn_for (ASHIFTRT, mode)
6820 && ! have_insn_for (LSHIFTRT, mode)
6821 && mode_width <= HOST_BITS_PER_WIDE_INT
6822 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6823 {
6824 new = gen_rtx_ASHIFTRT (mode,
6825 make_compound_operation (XEXP (x, 0),
6826 next_code),
6827 XEXP (x, 1));
6828 break;
6829 }
6830
6831 /* ... fall through ... */
6832
6833 case ASHIFTRT:
6834 lhs = XEXP (x, 0);
6835 rhs = XEXP (x, 1);
6836
6837 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6838 this is a SIGN_EXTRACT. */
6839 if (GET_CODE (rhs) == CONST_INT
6840 && GET_CODE (lhs) == ASHIFT
6841 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6842 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6843 {
6844 new = make_compound_operation (XEXP (lhs, 0), next_code);
6845 new = make_extraction (mode, new,
6846 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6847 NULL_RTX, mode_width - INTVAL (rhs),
6848 code == LSHIFTRT, 0, in_code == COMPARE);
6849 break;
6850 }
6851
6852 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6853 If so, try to merge the shifts into a SIGN_EXTEND. We could
6854 also do this for some cases of SIGN_EXTRACT, but it doesn't
6855 seem worth the effort; the case checked for occurs on Alpha. */
6856
6857 if (!OBJECT_P (lhs)
6858 && ! (GET_CODE (lhs) == SUBREG
6859 && (OBJECT_P (SUBREG_REG (lhs))))
6860 && GET_CODE (rhs) == CONST_INT
6861 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6862 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6863 new = make_extraction (mode, make_compound_operation (new, next_code),
6864 0, NULL_RTX, mode_width - INTVAL (rhs),
6865 code == LSHIFTRT, 0, in_code == COMPARE);
6866
6867 break;
6868
6869 case SUBREG:
6870 /* Call ourselves recursively on the inner expression. If we are
6871 narrowing the object and it has a different RTL code from
6872 what it originally did, do this SUBREG as a force_to_mode. */
6873
6874 tem = make_compound_operation (SUBREG_REG (x), in_code);
6875
6876 {
6877 rtx simplified;
6878 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6879 SUBREG_BYTE (x));
6880
6881 if (simplified)
6882 tem = simplified;
6883
6884 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6885 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6886 && subreg_lowpart_p (x))
6887 {
6888 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6889 NULL_RTX, 0);
6890
6891 /* If we have something other than a SUBREG, we might have
6892 done an expansion, so rerun ourselves. */
6893 if (GET_CODE (newer) != SUBREG)
6894 newer = make_compound_operation (newer, in_code);
6895
6896 return newer;
6897 }
6898
6899 if (simplified)
6900 return tem;
6901 }
6902 break;
6903
6904 default:
6905 break;
6906 }
6907
6908 if (new)
6909 {
6910 x = gen_lowpart (mode, new);
6911 code = GET_CODE (x);
6912 }
6913
6914 /* Now recursively process each operand of this operation. */
6915 fmt = GET_RTX_FORMAT (code);
6916 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6917 if (fmt[i] == 'e')
6918 {
6919 new = make_compound_operation (XEXP (x, i), next_code);
6920 SUBST (XEXP (x, i), new);
6921 }
6922
6923 /* If this is a commutative operation, the changes to the operands
6924 may have made it noncanonical. */
6925 if (COMMUTATIVE_ARITH_P (x)
6926 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6927 {
6928 tem = XEXP (x, 0);
6929 SUBST (XEXP (x, 0), XEXP (x, 1));
6930 SUBST (XEXP (x, 1), tem);
6931 }
6932
6933 return x;
6934 }
6935 \f
6936 /* Given M see if it is a value that would select a field of bits
6937 within an item, but not the entire word. Return -1 if not.
6938 Otherwise, return the starting position of the field, where 0 is the
6939 low-order bit.
6940
6941 *PLEN is set to the length of the field. */
6942
6943 static int
6944 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6945 {
6946 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6947 int pos = exact_log2 (m & -m);
6948 int len = 0;
6949
6950 if (pos >= 0)
6951 /* Now shift off the low-order zero bits and see if we have a
6952 power of two minus 1. */
6953 len = exact_log2 ((m >> pos) + 1);
6954
6955 if (len <= 0)
6956 pos = -1;
6957
6958 *plen = len;
6959 return pos;
6960 }
6961 \f
6962 /* See if X can be simplified knowing that we will only refer to it in
6963 MODE and will only refer to those bits that are nonzero in MASK.
6964 If other bits are being computed or if masking operations are done
6965 that select a superset of the bits in MASK, they can sometimes be
6966 ignored.
6967
6968 Return a possibly simplified expression, but always convert X to
6969 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6970
6971 Also, if REG is nonzero and X is a register equal in value to REG,
6972 replace X with REG.
6973
6974 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6975 are all off in X. This is used when X will be complemented, by either
6976 NOT, NEG, or XOR. */
6977
6978 static rtx
6979 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6980 rtx reg, int just_select)
6981 {
6982 enum rtx_code code = GET_CODE (x);
6983 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6984 enum machine_mode op_mode;
6985 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6986 rtx op0, op1, temp;
6987
6988 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6989 code below will do the wrong thing since the mode of such an
6990 expression is VOIDmode.
6991
6992 Also do nothing if X is a CLOBBER; this can happen if X was
6993 the return value from a call to gen_lowpart. */
6994 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6995 return x;
6996
6997 /* We want to perform the operation is its present mode unless we know
6998 that the operation is valid in MODE, in which case we do the operation
6999 in MODE. */
7000 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7001 && have_insn_for (code, mode))
7002 ? mode : GET_MODE (x));
7003
7004 /* It is not valid to do a right-shift in a narrower mode
7005 than the one it came in with. */
7006 if ((code == LSHIFTRT || code == ASHIFTRT)
7007 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7008 op_mode = GET_MODE (x);
7009
7010 /* Truncate MASK to fit OP_MODE. */
7011 if (op_mode)
7012 mask &= GET_MODE_MASK (op_mode);
7013
7014 /* When we have an arithmetic operation, or a shift whose count we
7015 do not know, we need to assume that all bits up to the highest-order
7016 bit in MASK will be needed. This is how we form such a mask. */
7017 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7018 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7019 else
7020 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7021 - 1);
7022
7023 /* Determine what bits of X are guaranteed to be (non)zero. */
7024 nonzero = nonzero_bits (x, mode);
7025
7026 /* If none of the bits in X are needed, return a zero. */
7027 if (! just_select && (nonzero & mask) == 0)
7028 x = const0_rtx;
7029
7030 /* If X is a CONST_INT, return a new one. Do this here since the
7031 test below will fail. */
7032 if (GET_CODE (x) == CONST_INT)
7033 {
7034 if (SCALAR_INT_MODE_P (mode))
7035 return gen_int_mode (INTVAL (x) & mask, mode);
7036 else
7037 {
7038 x = GEN_INT (INTVAL (x) & mask);
7039 return gen_lowpart_common (mode, x);
7040 }
7041 }
7042
7043 /* If X is narrower than MODE and we want all the bits in X's mode, just
7044 get X in the proper mode. */
7045 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7046 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7047 return gen_lowpart (mode, x);
7048
7049 switch (code)
7050 {
7051 case CLOBBER:
7052 /* If X is a (clobber (const_int)), return it since we know we are
7053 generating something that won't match. */
7054 return x;
7055
7056 case USE:
7057 /* X is a (use (mem ..)) that was made from a bit-field extraction that
7058 spanned the boundary of the MEM. If we are now masking so it is
7059 within that boundary, we don't need the USE any more. */
7060 if (! BITS_BIG_ENDIAN
7061 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7062 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7063 break;
7064
7065 case SIGN_EXTEND:
7066 case ZERO_EXTEND:
7067 case ZERO_EXTRACT:
7068 case SIGN_EXTRACT:
7069 x = expand_compound_operation (x);
7070 if (GET_CODE (x) != code)
7071 return force_to_mode (x, mode, mask, reg, next_select);
7072 break;
7073
7074 case REG:
7075 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
7076 || rtx_equal_p (reg, get_last_value (x))))
7077 x = reg;
7078 break;
7079
7080 case SUBREG:
7081 if (subreg_lowpart_p (x)
7082 /* We can ignore the effect of this SUBREG if it narrows the mode or
7083 if the constant masks to zero all the bits the mode doesn't
7084 have. */
7085 && ((GET_MODE_SIZE (GET_MODE (x))
7086 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7087 || (0 == (mask
7088 & GET_MODE_MASK (GET_MODE (x))
7089 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7090 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
7091 break;
7092
7093 case AND:
7094 /* If this is an AND with a constant, convert it into an AND
7095 whose constant is the AND of that constant with MASK. If it
7096 remains an AND of MASK, delete it since it is redundant. */
7097
7098 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7099 {
7100 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7101 mask & INTVAL (XEXP (x, 1)));
7102
7103 /* If X is still an AND, see if it is an AND with a mask that
7104 is just some low-order bits. If so, and it is MASK, we don't
7105 need it. */
7106
7107 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7108 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7109 == mask))
7110 x = XEXP (x, 0);
7111
7112 /* If it remains an AND, try making another AND with the bits
7113 in the mode mask that aren't in MASK turned on. If the
7114 constant in the AND is wide enough, this might make a
7115 cheaper constant. */
7116
7117 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7118 && GET_MODE_MASK (GET_MODE (x)) != mask
7119 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7120 {
7121 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7122 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7123 int width = GET_MODE_BITSIZE (GET_MODE (x));
7124 rtx y;
7125
7126 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7127 number, sign extend it. */
7128 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7129 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7130 cval |= (HOST_WIDE_INT) -1 << width;
7131
7132 y = simplify_gen_binary (AND, GET_MODE (x),
7133 XEXP (x, 0), GEN_INT (cval));
7134 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7135 x = y;
7136 }
7137
7138 break;
7139 }
7140
7141 goto binop;
7142
7143 case PLUS:
7144 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7145 low-order bits (as in an alignment operation) and FOO is already
7146 aligned to that boundary, mask C1 to that boundary as well.
7147 This may eliminate that PLUS and, later, the AND. */
7148
7149 {
7150 unsigned int width = GET_MODE_BITSIZE (mode);
7151 unsigned HOST_WIDE_INT smask = mask;
7152
7153 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7154 number, sign extend it. */
7155
7156 if (width < HOST_BITS_PER_WIDE_INT
7157 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7158 smask |= (HOST_WIDE_INT) -1 << width;
7159
7160 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7161 && exact_log2 (- smask) >= 0
7162 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7163 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7164 return force_to_mode (plus_constant (XEXP (x, 0),
7165 (INTVAL (XEXP (x, 1)) & smask)),
7166 mode, smask, reg, next_select);
7167 }
7168
7169 /* ... fall through ... */
7170
7171 case MULT:
7172 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7173 most significant bit in MASK since carries from those bits will
7174 affect the bits we are interested in. */
7175 mask = fuller_mask;
7176 goto binop;
7177
7178 case MINUS:
7179 /* If X is (minus C Y) where C's least set bit is larger than any bit
7180 in the mask, then we may replace with (neg Y). */
7181 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7182 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7183 & -INTVAL (XEXP (x, 0))))
7184 > mask))
7185 {
7186 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7187 GET_MODE (x));
7188 return force_to_mode (x, mode, mask, reg, next_select);
7189 }
7190
7191 /* Similarly, if C contains every bit in the fuller_mask, then we may
7192 replace with (not Y). */
7193 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7194 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7195 == INTVAL (XEXP (x, 0))))
7196 {
7197 x = simplify_gen_unary (NOT, GET_MODE (x),
7198 XEXP (x, 1), GET_MODE (x));
7199 return force_to_mode (x, mode, mask, reg, next_select);
7200 }
7201
7202 mask = fuller_mask;
7203 goto binop;
7204
7205 case IOR:
7206 case XOR:
7207 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7208 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7209 operation which may be a bitfield extraction. Ensure that the
7210 constant we form is not wider than the mode of X. */
7211
7212 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7213 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7214 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7215 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7216 && GET_CODE (XEXP (x, 1)) == CONST_INT
7217 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7218 + floor_log2 (INTVAL (XEXP (x, 1))))
7219 < GET_MODE_BITSIZE (GET_MODE (x)))
7220 && (INTVAL (XEXP (x, 1))
7221 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7222 {
7223 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7224 << INTVAL (XEXP (XEXP (x, 0), 1)));
7225 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7226 XEXP (XEXP (x, 0), 0), temp);
7227 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7228 XEXP (XEXP (x, 0), 1));
7229 return force_to_mode (x, mode, mask, reg, next_select);
7230 }
7231
7232 binop:
7233 /* For most binary operations, just propagate into the operation and
7234 change the mode if we have an operation of that mode. */
7235
7236 op0 = gen_lowpart (op_mode,
7237 force_to_mode (XEXP (x, 0), mode, mask,
7238 reg, next_select));
7239 op1 = gen_lowpart (op_mode,
7240 force_to_mode (XEXP (x, 1), mode, mask,
7241 reg, next_select));
7242
7243 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7244 x = simplify_gen_binary (code, op_mode, op0, op1);
7245 break;
7246
7247 case ASHIFT:
7248 /* For left shifts, do the same, but just for the first operand.
7249 However, we cannot do anything with shifts where we cannot
7250 guarantee that the counts are smaller than the size of the mode
7251 because such a count will have a different meaning in a
7252 wider mode. */
7253
7254 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7255 && INTVAL (XEXP (x, 1)) >= 0
7256 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7257 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7258 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7259 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7260 break;
7261
7262 /* If the shift count is a constant and we can do arithmetic in
7263 the mode of the shift, refine which bits we need. Otherwise, use the
7264 conservative form of the mask. */
7265 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7266 && INTVAL (XEXP (x, 1)) >= 0
7267 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7268 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7269 mask >>= INTVAL (XEXP (x, 1));
7270 else
7271 mask = fuller_mask;
7272
7273 op0 = gen_lowpart (op_mode,
7274 force_to_mode (XEXP (x, 0), op_mode,
7275 mask, reg, next_select));
7276
7277 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7278 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7279 break;
7280
7281 case LSHIFTRT:
7282 /* Here we can only do something if the shift count is a constant,
7283 this shift constant is valid for the host, and we can do arithmetic
7284 in OP_MODE. */
7285
7286 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7287 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7288 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7289 {
7290 rtx inner = XEXP (x, 0);
7291 unsigned HOST_WIDE_INT inner_mask;
7292
7293 /* Select the mask of the bits we need for the shift operand. */
7294 inner_mask = mask << INTVAL (XEXP (x, 1));
7295
7296 /* We can only change the mode of the shift if we can do arithmetic
7297 in the mode of the shift and INNER_MASK is no wider than the
7298 width of X's mode. */
7299 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7300 op_mode = GET_MODE (x);
7301
7302 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7303
7304 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7305 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7306 }
7307
7308 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7309 shift and AND produces only copies of the sign bit (C2 is one less
7310 than a power of two), we can do this with just a shift. */
7311
7312 if (GET_CODE (x) == LSHIFTRT
7313 && GET_CODE (XEXP (x, 1)) == CONST_INT
7314 /* The shift puts one of the sign bit copies in the least significant
7315 bit. */
7316 && ((INTVAL (XEXP (x, 1))
7317 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7318 >= GET_MODE_BITSIZE (GET_MODE (x)))
7319 && exact_log2 (mask + 1) >= 0
7320 /* Number of bits left after the shift must be more than the mask
7321 needs. */
7322 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7323 <= GET_MODE_BITSIZE (GET_MODE (x)))
7324 /* Must be more sign bit copies than the mask needs. */
7325 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7326 >= exact_log2 (mask + 1)))
7327 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7328 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7329 - exact_log2 (mask + 1)));
7330
7331 goto shiftrt;
7332
7333 case ASHIFTRT:
7334 /* If we are just looking for the sign bit, we don't need this shift at
7335 all, even if it has a variable count. */
7336 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7337 && (mask == ((unsigned HOST_WIDE_INT) 1
7338 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7339 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7340
7341 /* If this is a shift by a constant, get a mask that contains those bits
7342 that are not copies of the sign bit. We then have two cases: If
7343 MASK only includes those bits, this can be a logical shift, which may
7344 allow simplifications. If MASK is a single-bit field not within
7345 those bits, we are requesting a copy of the sign bit and hence can
7346 shift the sign bit to the appropriate location. */
7347
7348 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7349 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7350 {
7351 int i = -1;
7352
7353 /* If the considered data is wider than HOST_WIDE_INT, we can't
7354 represent a mask for all its bits in a single scalar.
7355 But we only care about the lower bits, so calculate these. */
7356
7357 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7358 {
7359 nonzero = ~(HOST_WIDE_INT) 0;
7360
7361 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7362 is the number of bits a full-width mask would have set.
7363 We need only shift if these are fewer than nonzero can
7364 hold. If not, we must keep all bits set in nonzero. */
7365
7366 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7367 < HOST_BITS_PER_WIDE_INT)
7368 nonzero >>= INTVAL (XEXP (x, 1))
7369 + HOST_BITS_PER_WIDE_INT
7370 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7371 }
7372 else
7373 {
7374 nonzero = GET_MODE_MASK (GET_MODE (x));
7375 nonzero >>= INTVAL (XEXP (x, 1));
7376 }
7377
7378 if ((mask & ~nonzero) == 0
7379 || (i = exact_log2 (mask)) >= 0)
7380 {
7381 x = simplify_shift_const
7382 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7383 i < 0 ? INTVAL (XEXP (x, 1))
7384 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7385
7386 if (GET_CODE (x) != ASHIFTRT)
7387 return force_to_mode (x, mode, mask, reg, next_select);
7388 }
7389 }
7390
7391 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7392 even if the shift count isn't a constant. */
7393 if (mask == 1)
7394 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7395 XEXP (x, 0), XEXP (x, 1));
7396
7397 shiftrt:
7398
7399 /* If this is a zero- or sign-extension operation that just affects bits
7400 we don't care about, remove it. Be sure the call above returned
7401 something that is still a shift. */
7402
7403 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7404 && GET_CODE (XEXP (x, 1)) == CONST_INT
7405 && INTVAL (XEXP (x, 1)) >= 0
7406 && (INTVAL (XEXP (x, 1))
7407 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7408 && GET_CODE (XEXP (x, 0)) == ASHIFT
7409 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7410 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7411 reg, next_select);
7412
7413 break;
7414
7415 case ROTATE:
7416 case ROTATERT:
7417 /* If the shift count is constant and we can do computations
7418 in the mode of X, compute where the bits we care about are.
7419 Otherwise, we can't do anything. Don't change the mode of
7420 the shift or propagate MODE into the shift, though. */
7421 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7422 && INTVAL (XEXP (x, 1)) >= 0)
7423 {
7424 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7425 GET_MODE (x), GEN_INT (mask),
7426 XEXP (x, 1));
7427 if (temp && GET_CODE (temp) == CONST_INT)
7428 SUBST (XEXP (x, 0),
7429 force_to_mode (XEXP (x, 0), GET_MODE (x),
7430 INTVAL (temp), reg, next_select));
7431 }
7432 break;
7433
7434 case NEG:
7435 /* If we just want the low-order bit, the NEG isn't needed since it
7436 won't change the low-order bit. */
7437 if (mask == 1)
7438 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7439
7440 /* We need any bits less significant than the most significant bit in
7441 MASK since carries from those bits will affect the bits we are
7442 interested in. */
7443 mask = fuller_mask;
7444 goto unop;
7445
7446 case NOT:
7447 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7448 same as the XOR case above. Ensure that the constant we form is not
7449 wider than the mode of X. */
7450
7451 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7452 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7453 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7454 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7455 < GET_MODE_BITSIZE (GET_MODE (x)))
7456 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7457 {
7458 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7459 GET_MODE (x));
7460 temp = simplify_gen_binary (XOR, GET_MODE (x),
7461 XEXP (XEXP (x, 0), 0), temp);
7462 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7463 temp, XEXP (XEXP (x, 0), 1));
7464
7465 return force_to_mode (x, mode, mask, reg, next_select);
7466 }
7467
7468 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7469 use the full mask inside the NOT. */
7470 mask = fuller_mask;
7471
7472 unop:
7473 op0 = gen_lowpart (op_mode,
7474 force_to_mode (XEXP (x, 0), mode, mask,
7475 reg, next_select));
7476 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7477 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7478 break;
7479
7480 case NE:
7481 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7482 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7483 which is equal to STORE_FLAG_VALUE. */
7484 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7485 && GET_MODE (XEXP (x, 0)) == mode
7486 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7487 && (nonzero_bits (XEXP (x, 0), mode)
7488 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7489 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7490
7491 break;
7492
7493 case IF_THEN_ELSE:
7494 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7495 written in a narrower mode. We play it safe and do not do so. */
7496
7497 SUBST (XEXP (x, 1),
7498 gen_lowpart (GET_MODE (x),
7499 force_to_mode (XEXP (x, 1), mode,
7500 mask, reg, next_select)));
7501 SUBST (XEXP (x, 2),
7502 gen_lowpart (GET_MODE (x),
7503 force_to_mode (XEXP (x, 2), mode,
7504 mask, reg, next_select)));
7505 break;
7506
7507 default:
7508 break;
7509 }
7510
7511 /* Ensure we return a value of the proper mode. */
7512 return gen_lowpart (mode, x);
7513 }
7514 \f
7515 /* Return nonzero if X is an expression that has one of two values depending on
7516 whether some other value is zero or nonzero. In that case, we return the
7517 value that is being tested, *PTRUE is set to the value if the rtx being
7518 returned has a nonzero value, and *PFALSE is set to the other alternative.
7519
7520 If we return zero, we set *PTRUE and *PFALSE to X. */
7521
7522 static rtx
7523 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7524 {
7525 enum machine_mode mode = GET_MODE (x);
7526 enum rtx_code code = GET_CODE (x);
7527 rtx cond0, cond1, true0, true1, false0, false1;
7528 unsigned HOST_WIDE_INT nz;
7529
7530 /* If we are comparing a value against zero, we are done. */
7531 if ((code == NE || code == EQ)
7532 && XEXP (x, 1) == const0_rtx)
7533 {
7534 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7535 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7536 return XEXP (x, 0);
7537 }
7538
7539 /* If this is a unary operation whose operand has one of two values, apply
7540 our opcode to compute those values. */
7541 else if (UNARY_P (x)
7542 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7543 {
7544 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7545 *pfalse = simplify_gen_unary (code, mode, false0,
7546 GET_MODE (XEXP (x, 0)));
7547 return cond0;
7548 }
7549
7550 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7551 make can't possibly match and would suppress other optimizations. */
7552 else if (code == COMPARE)
7553 ;
7554
7555 /* If this is a binary operation, see if either side has only one of two
7556 values. If either one does or if both do and they are conditional on
7557 the same value, compute the new true and false values. */
7558 else if (BINARY_P (x))
7559 {
7560 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7561 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7562
7563 if ((cond0 != 0 || cond1 != 0)
7564 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7565 {
7566 /* If if_then_else_cond returned zero, then true/false are the
7567 same rtl. We must copy one of them to prevent invalid rtl
7568 sharing. */
7569 if (cond0 == 0)
7570 true0 = copy_rtx (true0);
7571 else if (cond1 == 0)
7572 true1 = copy_rtx (true1);
7573
7574 if (COMPARISON_P (x))
7575 {
7576 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7577 true0, true1);
7578 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7579 false0, false1);
7580 }
7581 else
7582 {
7583 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7584 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7585 }
7586
7587 return cond0 ? cond0 : cond1;
7588 }
7589
7590 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7591 operands is zero when the other is nonzero, and vice-versa,
7592 and STORE_FLAG_VALUE is 1 or -1. */
7593
7594 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7595 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7596 || code == UMAX)
7597 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7598 {
7599 rtx op0 = XEXP (XEXP (x, 0), 1);
7600 rtx op1 = XEXP (XEXP (x, 1), 1);
7601
7602 cond0 = XEXP (XEXP (x, 0), 0);
7603 cond1 = XEXP (XEXP (x, 1), 0);
7604
7605 if (COMPARISON_P (cond0)
7606 && COMPARISON_P (cond1)
7607 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7608 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7609 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7610 || ((swap_condition (GET_CODE (cond0))
7611 == reversed_comparison_code (cond1, NULL))
7612 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7613 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7614 && ! side_effects_p (x))
7615 {
7616 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7617 *pfalse = simplify_gen_binary (MULT, mode,
7618 (code == MINUS
7619 ? simplify_gen_unary (NEG, mode,
7620 op1, mode)
7621 : op1),
7622 const_true_rtx);
7623 return cond0;
7624 }
7625 }
7626
7627 /* Similarly for MULT, AND and UMIN, except that for these the result
7628 is always zero. */
7629 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7630 && (code == MULT || code == AND || code == UMIN)
7631 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7632 {
7633 cond0 = XEXP (XEXP (x, 0), 0);
7634 cond1 = XEXP (XEXP (x, 1), 0);
7635
7636 if (COMPARISON_P (cond0)
7637 && COMPARISON_P (cond1)
7638 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7639 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7640 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7641 || ((swap_condition (GET_CODE (cond0))
7642 == reversed_comparison_code (cond1, NULL))
7643 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7644 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7645 && ! side_effects_p (x))
7646 {
7647 *ptrue = *pfalse = const0_rtx;
7648 return cond0;
7649 }
7650 }
7651 }
7652
7653 else if (code == IF_THEN_ELSE)
7654 {
7655 /* If we have IF_THEN_ELSE already, extract the condition and
7656 canonicalize it if it is NE or EQ. */
7657 cond0 = XEXP (x, 0);
7658 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7659 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7660 return XEXP (cond0, 0);
7661 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7662 {
7663 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7664 return XEXP (cond0, 0);
7665 }
7666 else
7667 return cond0;
7668 }
7669
7670 /* If X is a SUBREG, we can narrow both the true and false values
7671 if the inner expression, if there is a condition. */
7672 else if (code == SUBREG
7673 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7674 &true0, &false0)))
7675 {
7676 true0 = simplify_gen_subreg (mode, true0,
7677 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7678 false0 = simplify_gen_subreg (mode, false0,
7679 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7680 if (true0 && false0)
7681 {
7682 *ptrue = true0;
7683 *pfalse = false0;
7684 return cond0;
7685 }
7686 }
7687
7688 /* If X is a constant, this isn't special and will cause confusions
7689 if we treat it as such. Likewise if it is equivalent to a constant. */
7690 else if (CONSTANT_P (x)
7691 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7692 ;
7693
7694 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7695 will be least confusing to the rest of the compiler. */
7696 else if (mode == BImode)
7697 {
7698 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7699 return x;
7700 }
7701
7702 /* If X is known to be either 0 or -1, those are the true and
7703 false values when testing X. */
7704 else if (x == constm1_rtx || x == const0_rtx
7705 || (mode != VOIDmode
7706 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7707 {
7708 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7709 return x;
7710 }
7711
7712 /* Likewise for 0 or a single bit. */
7713 else if (SCALAR_INT_MODE_P (mode)
7714 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7715 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7716 {
7717 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7718 return x;
7719 }
7720
7721 /* Otherwise fail; show no condition with true and false values the same. */
7722 *ptrue = *pfalse = x;
7723 return 0;
7724 }
7725 \f
7726 /* Return the value of expression X given the fact that condition COND
7727 is known to be true when applied to REG as its first operand and VAL
7728 as its second. X is known to not be shared and so can be modified in
7729 place.
7730
7731 We only handle the simplest cases, and specifically those cases that
7732 arise with IF_THEN_ELSE expressions. */
7733
7734 static rtx
7735 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7736 {
7737 enum rtx_code code = GET_CODE (x);
7738 rtx temp;
7739 const char *fmt;
7740 int i, j;
7741
7742 if (side_effects_p (x))
7743 return x;
7744
7745 /* If either operand of the condition is a floating point value,
7746 then we have to avoid collapsing an EQ comparison. */
7747 if (cond == EQ
7748 && rtx_equal_p (x, reg)
7749 && ! FLOAT_MODE_P (GET_MODE (x))
7750 && ! FLOAT_MODE_P (GET_MODE (val)))
7751 return val;
7752
7753 if (cond == UNEQ && rtx_equal_p (x, reg))
7754 return val;
7755
7756 /* If X is (abs REG) and we know something about REG's relationship
7757 with zero, we may be able to simplify this. */
7758
7759 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7760 switch (cond)
7761 {
7762 case GE: case GT: case EQ:
7763 return XEXP (x, 0);
7764 case LT: case LE:
7765 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7766 XEXP (x, 0),
7767 GET_MODE (XEXP (x, 0)));
7768 default:
7769 break;
7770 }
7771
7772 /* The only other cases we handle are MIN, MAX, and comparisons if the
7773 operands are the same as REG and VAL. */
7774
7775 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7776 {
7777 if (rtx_equal_p (XEXP (x, 0), val))
7778 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7779
7780 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7781 {
7782 if (COMPARISON_P (x))
7783 {
7784 if (comparison_dominates_p (cond, code))
7785 return const_true_rtx;
7786
7787 code = reversed_comparison_code (x, NULL);
7788 if (code != UNKNOWN
7789 && comparison_dominates_p (cond, code))
7790 return const0_rtx;
7791 else
7792 return x;
7793 }
7794 else if (code == SMAX || code == SMIN
7795 || code == UMIN || code == UMAX)
7796 {
7797 int unsignedp = (code == UMIN || code == UMAX);
7798
7799 /* Do not reverse the condition when it is NE or EQ.
7800 This is because we cannot conclude anything about
7801 the value of 'SMAX (x, y)' when x is not equal to y,
7802 but we can when x equals y. */
7803 if ((code == SMAX || code == UMAX)
7804 && ! (cond == EQ || cond == NE))
7805 cond = reverse_condition (cond);
7806
7807 switch (cond)
7808 {
7809 case GE: case GT:
7810 return unsignedp ? x : XEXP (x, 1);
7811 case LE: case LT:
7812 return unsignedp ? x : XEXP (x, 0);
7813 case GEU: case GTU:
7814 return unsignedp ? XEXP (x, 1) : x;
7815 case LEU: case LTU:
7816 return unsignedp ? XEXP (x, 0) : x;
7817 default:
7818 break;
7819 }
7820 }
7821 }
7822 }
7823 else if (code == SUBREG)
7824 {
7825 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7826 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7827
7828 if (SUBREG_REG (x) != r)
7829 {
7830 /* We must simplify subreg here, before we lose track of the
7831 original inner_mode. */
7832 new = simplify_subreg (GET_MODE (x), r,
7833 inner_mode, SUBREG_BYTE (x));
7834 if (new)
7835 return new;
7836 else
7837 SUBST (SUBREG_REG (x), r);
7838 }
7839
7840 return x;
7841 }
7842 /* We don't have to handle SIGN_EXTEND here, because even in the
7843 case of replacing something with a modeless CONST_INT, a
7844 CONST_INT is already (supposed to be) a valid sign extension for
7845 its narrower mode, which implies it's already properly
7846 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7847 story is different. */
7848 else if (code == ZERO_EXTEND)
7849 {
7850 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7851 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7852
7853 if (XEXP (x, 0) != r)
7854 {
7855 /* We must simplify the zero_extend here, before we lose
7856 track of the original inner_mode. */
7857 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7858 r, inner_mode);
7859 if (new)
7860 return new;
7861 else
7862 SUBST (XEXP (x, 0), r);
7863 }
7864
7865 return x;
7866 }
7867
7868 fmt = GET_RTX_FORMAT (code);
7869 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7870 {
7871 if (fmt[i] == 'e')
7872 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7873 else if (fmt[i] == 'E')
7874 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7875 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7876 cond, reg, val));
7877 }
7878
7879 return x;
7880 }
7881 \f
7882 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7883 assignment as a field assignment. */
7884
7885 static int
7886 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7887 {
7888 if (x == y || rtx_equal_p (x, y))
7889 return 1;
7890
7891 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7892 return 0;
7893
7894 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7895 Note that all SUBREGs of MEM are paradoxical; otherwise they
7896 would have been rewritten. */
7897 if (MEM_P (x) && GET_CODE (y) == SUBREG
7898 && MEM_P (SUBREG_REG (y))
7899 && rtx_equal_p (SUBREG_REG (y),
7900 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7901 return 1;
7902
7903 if (MEM_P (y) && GET_CODE (x) == SUBREG
7904 && MEM_P (SUBREG_REG (x))
7905 && rtx_equal_p (SUBREG_REG (x),
7906 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7907 return 1;
7908
7909 /* We used to see if get_last_value of X and Y were the same but that's
7910 not correct. In one direction, we'll cause the assignment to have
7911 the wrong destination and in the case, we'll import a register into this
7912 insn that might have already have been dead. So fail if none of the
7913 above cases are true. */
7914 return 0;
7915 }
7916 \f
7917 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7918 Return that assignment if so.
7919
7920 We only handle the most common cases. */
7921
7922 static rtx
7923 make_field_assignment (rtx x)
7924 {
7925 rtx dest = SET_DEST (x);
7926 rtx src = SET_SRC (x);
7927 rtx assign;
7928 rtx rhs, lhs;
7929 HOST_WIDE_INT c1;
7930 HOST_WIDE_INT pos;
7931 unsigned HOST_WIDE_INT len;
7932 rtx other;
7933 enum machine_mode mode;
7934
7935 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7936 a clear of a one-bit field. We will have changed it to
7937 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7938 for a SUBREG. */
7939
7940 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7941 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7942 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7943 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7944 {
7945 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7946 1, 1, 1, 0);
7947 if (assign != 0)
7948 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7949 return x;
7950 }
7951
7952 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7953 && subreg_lowpart_p (XEXP (src, 0))
7954 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7955 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7956 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7957 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7958 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7959 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7960 {
7961 assign = make_extraction (VOIDmode, dest, 0,
7962 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7963 1, 1, 1, 0);
7964 if (assign != 0)
7965 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7966 return x;
7967 }
7968
7969 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7970 one-bit field. */
7971 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7972 && XEXP (XEXP (src, 0), 0) == const1_rtx
7973 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7974 {
7975 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7976 1, 1, 1, 0);
7977 if (assign != 0)
7978 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7979 return x;
7980 }
7981
7982 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7983 SRC is an AND with all bits of that field set, then we can discard
7984 the AND. */
7985 if (GET_CODE (dest) == ZERO_EXTRACT
7986 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7987 && GET_CODE (src) == AND
7988 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7989 {
7990 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7991 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7992 unsigned HOST_WIDE_INT ze_mask;
7993
7994 if (width >= HOST_BITS_PER_WIDE_INT)
7995 ze_mask = -1;
7996 else
7997 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7998
7999 /* Complete overlap. We can remove the source AND. */
8000 if ((and_mask & ze_mask) == ze_mask)
8001 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8002
8003 /* Partial overlap. We can reduce the source AND. */
8004 if ((and_mask & ze_mask) != and_mask)
8005 {
8006 mode = GET_MODE (src);
8007 src = gen_rtx_AND (mode, XEXP (src, 0),
8008 gen_int_mode (and_mask & ze_mask, mode));
8009 return gen_rtx_SET (VOIDmode, dest, src);
8010 }
8011 }
8012
8013 /* The other case we handle is assignments into a constant-position
8014 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8015 a mask that has all one bits except for a group of zero bits and
8016 OTHER is known to have zeros where C1 has ones, this is such an
8017 assignment. Compute the position and length from C1. Shift OTHER
8018 to the appropriate position, force it to the required mode, and
8019 make the extraction. Check for the AND in both operands. */
8020
8021 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8022 return x;
8023
8024 rhs = expand_compound_operation (XEXP (src, 0));
8025 lhs = expand_compound_operation (XEXP (src, 1));
8026
8027 if (GET_CODE (rhs) == AND
8028 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8029 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8030 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8031 else if (GET_CODE (lhs) == AND
8032 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8033 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8034 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8035 else
8036 return x;
8037
8038 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8039 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8040 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8041 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8042 return x;
8043
8044 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8045 if (assign == 0)
8046 return x;
8047
8048 /* The mode to use for the source is the mode of the assignment, or of
8049 what is inside a possible STRICT_LOW_PART. */
8050 mode = (GET_CODE (assign) == STRICT_LOW_PART
8051 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8052
8053 /* Shift OTHER right POS places and make it the source, restricting it
8054 to the proper length and mode. */
8055
8056 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
8057 GET_MODE (src), other, pos),
8058 mode,
8059 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8060 ? ~(unsigned HOST_WIDE_INT) 0
8061 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8062 dest, 0);
8063
8064 /* If SRC is masked by an AND that does not make a difference in
8065 the value being stored, strip it. */
8066 if (GET_CODE (assign) == ZERO_EXTRACT
8067 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8068 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8069 && GET_CODE (src) == AND
8070 && GET_CODE (XEXP (src, 1)) == CONST_INT
8071 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8072 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8073 src = XEXP (src, 0);
8074
8075 return gen_rtx_SET (VOIDmode, assign, src);
8076 }
8077 \f
8078 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8079 if so. */
8080
8081 static rtx
8082 apply_distributive_law (rtx x)
8083 {
8084 enum rtx_code code = GET_CODE (x);
8085 enum rtx_code inner_code;
8086 rtx lhs, rhs, other;
8087 rtx tem;
8088
8089 /* Distributivity is not true for floating point as it can change the
8090 value. So we don't do it unless -funsafe-math-optimizations. */
8091 if (FLOAT_MODE_P (GET_MODE (x))
8092 && ! flag_unsafe_math_optimizations)
8093 return x;
8094
8095 /* The outer operation can only be one of the following: */
8096 if (code != IOR && code != AND && code != XOR
8097 && code != PLUS && code != MINUS)
8098 return x;
8099
8100 lhs = XEXP (x, 0);
8101 rhs = XEXP (x, 1);
8102
8103 /* If either operand is a primitive we can't do anything, so get out
8104 fast. */
8105 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8106 return x;
8107
8108 lhs = expand_compound_operation (lhs);
8109 rhs = expand_compound_operation (rhs);
8110 inner_code = GET_CODE (lhs);
8111 if (inner_code != GET_CODE (rhs))
8112 return x;
8113
8114 /* See if the inner and outer operations distribute. */
8115 switch (inner_code)
8116 {
8117 case LSHIFTRT:
8118 case ASHIFTRT:
8119 case AND:
8120 case IOR:
8121 /* These all distribute except over PLUS. */
8122 if (code == PLUS || code == MINUS)
8123 return x;
8124 break;
8125
8126 case MULT:
8127 if (code != PLUS && code != MINUS)
8128 return x;
8129 break;
8130
8131 case ASHIFT:
8132 /* This is also a multiply, so it distributes over everything. */
8133 break;
8134
8135 case SUBREG:
8136 /* Non-paradoxical SUBREGs distributes over all operations,
8137 provided the inner modes and byte offsets are the same, this
8138 is an extraction of a low-order part, we don't convert an fp
8139 operation to int or vice versa, this is not a vector mode,
8140 and we would not be converting a single-word operation into a
8141 multi-word operation. The latter test is not required, but
8142 it prevents generating unneeded multi-word operations. Some
8143 of the previous tests are redundant given the latter test,
8144 but are retained because they are required for correctness.
8145
8146 We produce the result slightly differently in this case. */
8147
8148 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8149 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8150 || ! subreg_lowpart_p (lhs)
8151 || (GET_MODE_CLASS (GET_MODE (lhs))
8152 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8153 || (GET_MODE_SIZE (GET_MODE (lhs))
8154 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8155 || VECTOR_MODE_P (GET_MODE (lhs))
8156 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8157 return x;
8158
8159 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8160 SUBREG_REG (lhs), SUBREG_REG (rhs));
8161 return gen_lowpart (GET_MODE (x), tem);
8162
8163 default:
8164 return x;
8165 }
8166
8167 /* Set LHS and RHS to the inner operands (A and B in the example
8168 above) and set OTHER to the common operand (C in the example).
8169 There is only one way to do this unless the inner operation is
8170 commutative. */
8171 if (COMMUTATIVE_ARITH_P (lhs)
8172 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8173 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8174 else if (COMMUTATIVE_ARITH_P (lhs)
8175 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8176 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8177 else if (COMMUTATIVE_ARITH_P (lhs)
8178 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8179 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8180 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8181 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8182 else
8183 return x;
8184
8185 /* Form the new inner operation, seeing if it simplifies first. */
8186 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8187
8188 /* There is one exception to the general way of distributing:
8189 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8190 if (code == XOR && inner_code == IOR)
8191 {
8192 inner_code = AND;
8193 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8194 }
8195
8196 /* We may be able to continuing distributing the result, so call
8197 ourselves recursively on the inner operation before forming the
8198 outer operation, which we return. */
8199 return simplify_gen_binary (inner_code, GET_MODE (x),
8200 apply_distributive_law (tem), other);
8201 }
8202
8203 /* See if X is of the form (* (+ A B) C), and if so convert to
8204 (+ (* A C) (* B C)) and try to simplify.
8205
8206 Most of the time, this results in no change. However, if some of
8207 the operands are the same or inverses of each other, simplifications
8208 will result.
8209
8210 For example, (and (ior A B) (not B)) can occur as the result of
8211 expanding a bit field assignment. When we apply the distributive
8212 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8213 which then simplifies to (and (A (not B))).
8214
8215 Note that no checks happen on the validity of applying the inverse
8216 distributive law. This is pointless since we can do it in the
8217 few places where this routine is called.
8218
8219 N is the index of the term that is decomposed (the arithmetic operation,
8220 i.e. (+ A B) in the first example above). !N is the index of the term that
8221 is distributed, i.e. of C in the first example above. */
8222 static rtx
8223 distribute_and_simplify_rtx (rtx x, int n)
8224 {
8225 enum machine_mode mode;
8226 enum rtx_code outer_code, inner_code;
8227 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8228
8229 decomposed = XEXP (x, n);
8230 if (!ARITHMETIC_P (decomposed))
8231 return NULL_RTX;
8232
8233 mode = GET_MODE (x);
8234 outer_code = GET_CODE (x);
8235 distributed = XEXP (x, !n);
8236
8237 inner_code = GET_CODE (decomposed);
8238 inner_op0 = XEXP (decomposed, 0);
8239 inner_op1 = XEXP (decomposed, 1);
8240
8241 /* Special case (and (xor B C) (not A)), which is equivalent to
8242 (xor (ior A B) (ior A C)) */
8243 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8244 {
8245 distributed = XEXP (distributed, 0);
8246 outer_code = IOR;
8247 }
8248
8249 if (n == 0)
8250 {
8251 /* Distribute the second term. */
8252 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8253 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8254 }
8255 else
8256 {
8257 /* Distribute the first term. */
8258 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8259 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8260 }
8261
8262 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8263 new_op0, new_op1));
8264 if (GET_CODE (tmp) != outer_code
8265 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8266 return tmp;
8267
8268 return NULL_RTX;
8269 }
8270 \f
8271 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8272 in MODE.
8273
8274 Return an equivalent form, if different from X. Otherwise, return X. If
8275 X is zero, we are to always construct the equivalent form. */
8276
8277 static rtx
8278 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8279 unsigned HOST_WIDE_INT constop)
8280 {
8281 unsigned HOST_WIDE_INT nonzero;
8282 int i;
8283
8284 /* Simplify VAROP knowing that we will be only looking at some of the
8285 bits in it.
8286
8287 Note by passing in CONSTOP, we guarantee that the bits not set in
8288 CONSTOP are not significant and will never be examined. We must
8289 ensure that is the case by explicitly masking out those bits
8290 before returning. */
8291 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8292
8293 /* If VAROP is a CLOBBER, we will fail so return it. */
8294 if (GET_CODE (varop) == CLOBBER)
8295 return varop;
8296
8297 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8298 to VAROP and return the new constant. */
8299 if (GET_CODE (varop) == CONST_INT)
8300 return gen_int_mode (INTVAL (varop) & constop, mode);
8301
8302 /* See what bits may be nonzero in VAROP. Unlike the general case of
8303 a call to nonzero_bits, here we don't care about bits outside
8304 MODE. */
8305
8306 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8307
8308 /* Turn off all bits in the constant that are known to already be zero.
8309 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8310 which is tested below. */
8311
8312 constop &= nonzero;
8313
8314 /* If we don't have any bits left, return zero. */
8315 if (constop == 0)
8316 return const0_rtx;
8317
8318 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8319 a power of two, we can replace this with an ASHIFT. */
8320 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8321 && (i = exact_log2 (constop)) >= 0)
8322 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8323
8324 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8325 or XOR, then try to apply the distributive law. This may eliminate
8326 operations if either branch can be simplified because of the AND.
8327 It may also make some cases more complex, but those cases probably
8328 won't match a pattern either with or without this. */
8329
8330 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8331 return
8332 gen_lowpart
8333 (mode,
8334 apply_distributive_law
8335 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8336 simplify_and_const_int (NULL_RTX,
8337 GET_MODE (varop),
8338 XEXP (varop, 0),
8339 constop),
8340 simplify_and_const_int (NULL_RTX,
8341 GET_MODE (varop),
8342 XEXP (varop, 1),
8343 constop))));
8344
8345 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8346 the AND and see if one of the operands simplifies to zero. If so, we
8347 may eliminate it. */
8348
8349 if (GET_CODE (varop) == PLUS
8350 && exact_log2 (constop + 1) >= 0)
8351 {
8352 rtx o0, o1;
8353
8354 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8355 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8356 if (o0 == const0_rtx)
8357 return o1;
8358 if (o1 == const0_rtx)
8359 return o0;
8360 }
8361
8362 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8363 if we already had one (just check for the simplest cases). */
8364 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8365 && GET_MODE (XEXP (x, 0)) == mode
8366 && SUBREG_REG (XEXP (x, 0)) == varop)
8367 varop = XEXP (x, 0);
8368 else
8369 varop = gen_lowpart (mode, varop);
8370
8371 /* If we can't make the SUBREG, try to return what we were given. */
8372 if (GET_CODE (varop) == CLOBBER)
8373 return x ? x : varop;
8374
8375 /* If we are only masking insignificant bits, return VAROP. */
8376 if (constop == nonzero)
8377 x = varop;
8378 else
8379 {
8380 /* Otherwise, return an AND. */
8381 constop = trunc_int_for_mode (constop, mode);
8382 /* See how much, if any, of X we can use. */
8383 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8384 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8385
8386 else
8387 {
8388 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8389 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8390 SUBST (XEXP (x, 1), GEN_INT (constop));
8391
8392 SUBST (XEXP (x, 0), varop);
8393 }
8394 }
8395
8396 return x;
8397 }
8398 \f
8399 /* Given a REG, X, compute which bits in X can be nonzero.
8400 We don't care about bits outside of those defined in MODE.
8401
8402 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8403 a shift, AND, or zero_extract, we can do better. */
8404
8405 static rtx
8406 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8407 rtx known_x ATTRIBUTE_UNUSED,
8408 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8409 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8410 unsigned HOST_WIDE_INT *nonzero)
8411 {
8412 rtx tem;
8413
8414 /* If X is a register whose nonzero bits value is current, use it.
8415 Otherwise, if X is a register whose value we can find, use that
8416 value. Otherwise, use the previously-computed global nonzero bits
8417 for this register. */
8418
8419 if (reg_stat[REGNO (x)].last_set_value != 0
8420 && (reg_stat[REGNO (x)].last_set_mode == mode
8421 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8422 && GET_MODE_CLASS (mode) == MODE_INT))
8423 && (reg_stat[REGNO (x)].last_set_label == label_tick
8424 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8425 && REG_N_SETS (REGNO (x)) == 1
8426 && ! REGNO_REG_SET_P
8427 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8428 REGNO (x))))
8429 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8430 {
8431 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8432 return NULL;
8433 }
8434
8435 tem = get_last_value (x);
8436
8437 if (tem)
8438 {
8439 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8440 /* If X is narrower than MODE and TEM is a non-negative
8441 constant that would appear negative in the mode of X,
8442 sign-extend it for use in reg_nonzero_bits because some
8443 machines (maybe most) will actually do the sign-extension
8444 and this is the conservative approach.
8445
8446 ??? For 2.5, try to tighten up the MD files in this regard
8447 instead of this kludge. */
8448
8449 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8450 && GET_CODE (tem) == CONST_INT
8451 && INTVAL (tem) > 0
8452 && 0 != (INTVAL (tem)
8453 & ((HOST_WIDE_INT) 1
8454 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8455 tem = GEN_INT (INTVAL (tem)
8456 | ((HOST_WIDE_INT) (-1)
8457 << GET_MODE_BITSIZE (GET_MODE (x))));
8458 #endif
8459 return tem;
8460 }
8461 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8462 {
8463 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8464
8465 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8466 /* We don't know anything about the upper bits. */
8467 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8468 *nonzero &= mask;
8469 }
8470
8471 return NULL;
8472 }
8473
8474 /* Return the number of bits at the high-order end of X that are known to
8475 be equal to the sign bit. X will be used in mode MODE; if MODE is
8476 VOIDmode, X will be used in its own mode. The returned value will always
8477 be between 1 and the number of bits in MODE. */
8478
8479 static rtx
8480 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8481 rtx known_x ATTRIBUTE_UNUSED,
8482 enum machine_mode known_mode
8483 ATTRIBUTE_UNUSED,
8484 unsigned int known_ret ATTRIBUTE_UNUSED,
8485 unsigned int *result)
8486 {
8487 rtx tem;
8488
8489 if (reg_stat[REGNO (x)].last_set_value != 0
8490 && reg_stat[REGNO (x)].last_set_mode == mode
8491 && (reg_stat[REGNO (x)].last_set_label == label_tick
8492 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8493 && REG_N_SETS (REGNO (x)) == 1
8494 && ! REGNO_REG_SET_P
8495 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8496 REGNO (x))))
8497 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8498 {
8499 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8500 return NULL;
8501 }
8502
8503 tem = get_last_value (x);
8504 if (tem != 0)
8505 return tem;
8506
8507 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8508 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8509 *result = reg_stat[REGNO (x)].sign_bit_copies;
8510
8511 return NULL;
8512 }
8513 \f
8514 /* Return the number of "extended" bits there are in X, when interpreted
8515 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8516 unsigned quantities, this is the number of high-order zero bits.
8517 For signed quantities, this is the number of copies of the sign bit
8518 minus 1. In both case, this function returns the number of "spare"
8519 bits. For example, if two quantities for which this function returns
8520 at least 1 are added, the addition is known not to overflow.
8521
8522 This function will always return 0 unless called during combine, which
8523 implies that it must be called from a define_split. */
8524
8525 unsigned int
8526 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8527 {
8528 if (nonzero_sign_valid == 0)
8529 return 0;
8530
8531 return (unsignedp
8532 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8533 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8534 - floor_log2 (nonzero_bits (x, mode)))
8535 : 0)
8536 : num_sign_bit_copies (x, mode) - 1);
8537 }
8538 \f
8539 /* This function is called from `simplify_shift_const' to merge two
8540 outer operations. Specifically, we have already found that we need
8541 to perform operation *POP0 with constant *PCONST0 at the outermost
8542 position. We would now like to also perform OP1 with constant CONST1
8543 (with *POP0 being done last).
8544
8545 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8546 the resulting operation. *PCOMP_P is set to 1 if we would need to
8547 complement the innermost operand, otherwise it is unchanged.
8548
8549 MODE is the mode in which the operation will be done. No bits outside
8550 the width of this mode matter. It is assumed that the width of this mode
8551 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8552
8553 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8554 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8555 result is simply *PCONST0.
8556
8557 If the resulting operation cannot be expressed as one operation, we
8558 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8559
8560 static int
8561 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8562 {
8563 enum rtx_code op0 = *pop0;
8564 HOST_WIDE_INT const0 = *pconst0;
8565
8566 const0 &= GET_MODE_MASK (mode);
8567 const1 &= GET_MODE_MASK (mode);
8568
8569 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8570 if (op0 == AND)
8571 const1 &= const0;
8572
8573 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8574 if OP0 is SET. */
8575
8576 if (op1 == UNKNOWN || op0 == SET)
8577 return 1;
8578
8579 else if (op0 == UNKNOWN)
8580 op0 = op1, const0 = const1;
8581
8582 else if (op0 == op1)
8583 {
8584 switch (op0)
8585 {
8586 case AND:
8587 const0 &= const1;
8588 break;
8589 case IOR:
8590 const0 |= const1;
8591 break;
8592 case XOR:
8593 const0 ^= const1;
8594 break;
8595 case PLUS:
8596 const0 += const1;
8597 break;
8598 case NEG:
8599 op0 = UNKNOWN;
8600 break;
8601 default:
8602 break;
8603 }
8604 }
8605
8606 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8607 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8608 return 0;
8609
8610 /* If the two constants aren't the same, we can't do anything. The
8611 remaining six cases can all be done. */
8612 else if (const0 != const1)
8613 return 0;
8614
8615 else
8616 switch (op0)
8617 {
8618 case IOR:
8619 if (op1 == AND)
8620 /* (a & b) | b == b */
8621 op0 = SET;
8622 else /* op1 == XOR */
8623 /* (a ^ b) | b == a | b */
8624 {;}
8625 break;
8626
8627 case XOR:
8628 if (op1 == AND)
8629 /* (a & b) ^ b == (~a) & b */
8630 op0 = AND, *pcomp_p = 1;
8631 else /* op1 == IOR */
8632 /* (a | b) ^ b == a & ~b */
8633 op0 = AND, const0 = ~const0;
8634 break;
8635
8636 case AND:
8637 if (op1 == IOR)
8638 /* (a | b) & b == b */
8639 op0 = SET;
8640 else /* op1 == XOR */
8641 /* (a ^ b) & b) == (~a) & b */
8642 *pcomp_p = 1;
8643 break;
8644 default:
8645 break;
8646 }
8647
8648 /* Check for NO-OP cases. */
8649 const0 &= GET_MODE_MASK (mode);
8650 if (const0 == 0
8651 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8652 op0 = UNKNOWN;
8653 else if (const0 == 0 && op0 == AND)
8654 op0 = SET;
8655 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8656 && op0 == AND)
8657 op0 = UNKNOWN;
8658
8659 /* ??? Slightly redundant with the above mask, but not entirely.
8660 Moving this above means we'd have to sign-extend the mode mask
8661 for the final test. */
8662 const0 = trunc_int_for_mode (const0, mode);
8663
8664 *pop0 = op0;
8665 *pconst0 = const0;
8666
8667 return 1;
8668 }
8669 \f
8670 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8671 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8672 that we started with.
8673
8674 The shift is normally computed in the widest mode we find in VAROP, as
8675 long as it isn't a different number of words than RESULT_MODE. Exceptions
8676 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8677
8678 static rtx
8679 simplify_shift_const (rtx x, enum rtx_code code,
8680 enum machine_mode result_mode, rtx varop,
8681 int orig_count)
8682 {
8683 enum rtx_code orig_code = code;
8684 unsigned int count;
8685 int signed_count;
8686 enum machine_mode mode = result_mode;
8687 enum machine_mode shift_mode, tmode;
8688 unsigned int mode_words
8689 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8690 /* We form (outer_op (code varop count) (outer_const)). */
8691 enum rtx_code outer_op = UNKNOWN;
8692 HOST_WIDE_INT outer_const = 0;
8693 rtx const_rtx;
8694 int complement_p = 0;
8695 rtx new;
8696
8697 /* Make sure and truncate the "natural" shift on the way in. We don't
8698 want to do this inside the loop as it makes it more difficult to
8699 combine shifts. */
8700 if (SHIFT_COUNT_TRUNCATED)
8701 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8702
8703 /* If we were given an invalid count, don't do anything except exactly
8704 what was requested. */
8705
8706 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8707 {
8708 if (x)
8709 return x;
8710
8711 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8712 }
8713
8714 count = orig_count;
8715
8716 /* Unless one of the branches of the `if' in this loop does a `continue',
8717 we will `break' the loop after the `if'. */
8718
8719 while (count != 0)
8720 {
8721 /* If we have an operand of (clobber (const_int 0)), just return that
8722 value. */
8723 if (GET_CODE (varop) == CLOBBER)
8724 return varop;
8725
8726 /* If we discovered we had to complement VAROP, leave. Making a NOT
8727 here would cause an infinite loop. */
8728 if (complement_p)
8729 break;
8730
8731 /* Convert ROTATERT to ROTATE. */
8732 if (code == ROTATERT)
8733 {
8734 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8735 code = ROTATE;
8736 if (VECTOR_MODE_P (result_mode))
8737 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8738 else
8739 count = bitsize - count;
8740 }
8741
8742 /* We need to determine what mode we will do the shift in. If the
8743 shift is a right shift or a ROTATE, we must always do it in the mode
8744 it was originally done in. Otherwise, we can do it in MODE, the
8745 widest mode encountered. */
8746 shift_mode
8747 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8748 ? result_mode : mode);
8749
8750 /* Handle cases where the count is greater than the size of the mode
8751 minus 1. For ASHIFT, use the size minus one as the count (this can
8752 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8753 take the count modulo the size. For other shifts, the result is
8754 zero.
8755
8756 Since these shifts are being produced by the compiler by combining
8757 multiple operations, each of which are defined, we know what the
8758 result is supposed to be. */
8759
8760 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8761 {
8762 if (code == ASHIFTRT)
8763 count = GET_MODE_BITSIZE (shift_mode) - 1;
8764 else if (code == ROTATE || code == ROTATERT)
8765 count %= GET_MODE_BITSIZE (shift_mode);
8766 else
8767 {
8768 /* We can't simply return zero because there may be an
8769 outer op. */
8770 varop = const0_rtx;
8771 count = 0;
8772 break;
8773 }
8774 }
8775
8776 /* An arithmetic right shift of a quantity known to be -1 or 0
8777 is a no-op. */
8778 if (code == ASHIFTRT
8779 && (num_sign_bit_copies (varop, shift_mode)
8780 == GET_MODE_BITSIZE (shift_mode)))
8781 {
8782 count = 0;
8783 break;
8784 }
8785
8786 /* If we are doing an arithmetic right shift and discarding all but
8787 the sign bit copies, this is equivalent to doing a shift by the
8788 bitsize minus one. Convert it into that shift because it will often
8789 allow other simplifications. */
8790
8791 if (code == ASHIFTRT
8792 && (count + num_sign_bit_copies (varop, shift_mode)
8793 >= GET_MODE_BITSIZE (shift_mode)))
8794 count = GET_MODE_BITSIZE (shift_mode) - 1;
8795
8796 /* We simplify the tests below and elsewhere by converting
8797 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8798 `make_compound_operation' will convert it to an ASHIFTRT for
8799 those machines (such as VAX) that don't have an LSHIFTRT. */
8800 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8801 && code == ASHIFTRT
8802 && ((nonzero_bits (varop, shift_mode)
8803 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8804 == 0))
8805 code = LSHIFTRT;
8806
8807 if (code == LSHIFTRT
8808 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8809 && !(nonzero_bits (varop, shift_mode) >> count))
8810 varop = const0_rtx;
8811 if (code == ASHIFT
8812 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8813 && !((nonzero_bits (varop, shift_mode) << count)
8814 & GET_MODE_MASK (shift_mode)))
8815 varop = const0_rtx;
8816
8817 switch (GET_CODE (varop))
8818 {
8819 case SIGN_EXTEND:
8820 case ZERO_EXTEND:
8821 case SIGN_EXTRACT:
8822 case ZERO_EXTRACT:
8823 new = expand_compound_operation (varop);
8824 if (new != varop)
8825 {
8826 varop = new;
8827 continue;
8828 }
8829 break;
8830
8831 case MEM:
8832 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8833 minus the width of a smaller mode, we can do this with a
8834 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8835 if ((code == ASHIFTRT || code == LSHIFTRT)
8836 && ! mode_dependent_address_p (XEXP (varop, 0))
8837 && ! MEM_VOLATILE_P (varop)
8838 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8839 MODE_INT, 1)) != BLKmode)
8840 {
8841 new = adjust_address_nv (varop, tmode,
8842 BYTES_BIG_ENDIAN ? 0
8843 : count / BITS_PER_UNIT);
8844
8845 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8846 : ZERO_EXTEND, mode, new);
8847 count = 0;
8848 continue;
8849 }
8850 break;
8851
8852 case USE:
8853 /* Similar to the case above, except that we can only do this if
8854 the resulting mode is the same as that of the underlying
8855 MEM and adjust the address depending on the *bits* endianness
8856 because of the way that bit-field extract insns are defined. */
8857 if ((code == ASHIFTRT || code == LSHIFTRT)
8858 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8859 MODE_INT, 1)) != BLKmode
8860 && tmode == GET_MODE (XEXP (varop, 0)))
8861 {
8862 if (BITS_BIG_ENDIAN)
8863 new = XEXP (varop, 0);
8864 else
8865 {
8866 new = copy_rtx (XEXP (varop, 0));
8867 SUBST (XEXP (new, 0),
8868 plus_constant (XEXP (new, 0),
8869 count / BITS_PER_UNIT));
8870 }
8871
8872 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8873 : ZERO_EXTEND, mode, new);
8874 count = 0;
8875 continue;
8876 }
8877 break;
8878
8879 case SUBREG:
8880 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8881 the same number of words as what we've seen so far. Then store
8882 the widest mode in MODE. */
8883 if (subreg_lowpart_p (varop)
8884 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8885 > GET_MODE_SIZE (GET_MODE (varop)))
8886 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8887 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8888 == mode_words)
8889 {
8890 varop = SUBREG_REG (varop);
8891 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8892 mode = GET_MODE (varop);
8893 continue;
8894 }
8895 break;
8896
8897 case MULT:
8898 /* Some machines use MULT instead of ASHIFT because MULT
8899 is cheaper. But it is still better on those machines to
8900 merge two shifts into one. */
8901 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8902 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8903 {
8904 varop
8905 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8906 XEXP (varop, 0),
8907 GEN_INT (exact_log2 (
8908 INTVAL (XEXP (varop, 1)))));
8909 continue;
8910 }
8911 break;
8912
8913 case UDIV:
8914 /* Similar, for when divides are cheaper. */
8915 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8916 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8917 {
8918 varop
8919 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8920 XEXP (varop, 0),
8921 GEN_INT (exact_log2 (
8922 INTVAL (XEXP (varop, 1)))));
8923 continue;
8924 }
8925 break;
8926
8927 case ASHIFTRT:
8928 /* If we are extracting just the sign bit of an arithmetic
8929 right shift, that shift is not needed. However, the sign
8930 bit of a wider mode may be different from what would be
8931 interpreted as the sign bit in a narrower mode, so, if
8932 the result is narrower, don't discard the shift. */
8933 if (code == LSHIFTRT
8934 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8935 && (GET_MODE_BITSIZE (result_mode)
8936 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8937 {
8938 varop = XEXP (varop, 0);
8939 continue;
8940 }
8941
8942 /* ... fall through ... */
8943
8944 case LSHIFTRT:
8945 case ASHIFT:
8946 case ROTATE:
8947 /* Here we have two nested shifts. The result is usually the
8948 AND of a new shift with a mask. We compute the result below. */
8949 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8950 && INTVAL (XEXP (varop, 1)) >= 0
8951 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8952 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8953 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8954 {
8955 enum rtx_code first_code = GET_CODE (varop);
8956 unsigned int first_count = INTVAL (XEXP (varop, 1));
8957 unsigned HOST_WIDE_INT mask;
8958 rtx mask_rtx;
8959
8960 /* We have one common special case. We can't do any merging if
8961 the inner code is an ASHIFTRT of a smaller mode. However, if
8962 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8963 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8964 we can convert it to
8965 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8966 This simplifies certain SIGN_EXTEND operations. */
8967 if (code == ASHIFT && first_code == ASHIFTRT
8968 && count == (unsigned int)
8969 (GET_MODE_BITSIZE (result_mode)
8970 - GET_MODE_BITSIZE (GET_MODE (varop))))
8971 {
8972 /* C3 has the low-order C1 bits zero. */
8973
8974 mask = (GET_MODE_MASK (mode)
8975 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8976
8977 varop = simplify_and_const_int (NULL_RTX, result_mode,
8978 XEXP (varop, 0), mask);
8979 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8980 varop, count);
8981 count = first_count;
8982 code = ASHIFTRT;
8983 continue;
8984 }
8985
8986 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8987 than C1 high-order bits equal to the sign bit, we can convert
8988 this to either an ASHIFT or an ASHIFTRT depending on the
8989 two counts.
8990
8991 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8992
8993 if (code == ASHIFTRT && first_code == ASHIFT
8994 && GET_MODE (varop) == shift_mode
8995 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8996 > first_count))
8997 {
8998 varop = XEXP (varop, 0);
8999
9000 signed_count = count - first_count;
9001 if (signed_count < 0)
9002 count = -signed_count, code = ASHIFT;
9003 else
9004 count = signed_count;
9005
9006 continue;
9007 }
9008
9009 /* There are some cases we can't do. If CODE is ASHIFTRT,
9010 we can only do this if FIRST_CODE is also ASHIFTRT.
9011
9012 We can't do the case when CODE is ROTATE and FIRST_CODE is
9013 ASHIFTRT.
9014
9015 If the mode of this shift is not the mode of the outer shift,
9016 we can't do this if either shift is a right shift or ROTATE.
9017
9018 Finally, we can't do any of these if the mode is too wide
9019 unless the codes are the same.
9020
9021 Handle the case where the shift codes are the same
9022 first. */
9023
9024 if (code == first_code)
9025 {
9026 if (GET_MODE (varop) != result_mode
9027 && (code == ASHIFTRT || code == LSHIFTRT
9028 || code == ROTATE))
9029 break;
9030
9031 count += first_count;
9032 varop = XEXP (varop, 0);
9033 continue;
9034 }
9035
9036 if (code == ASHIFTRT
9037 || (code == ROTATE && first_code == ASHIFTRT)
9038 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9039 || (GET_MODE (varop) != result_mode
9040 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9041 || first_code == ROTATE
9042 || code == ROTATE)))
9043 break;
9044
9045 /* To compute the mask to apply after the shift, shift the
9046 nonzero bits of the inner shift the same way the
9047 outer shift will. */
9048
9049 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9050
9051 mask_rtx
9052 = simplify_binary_operation (code, result_mode, mask_rtx,
9053 GEN_INT (count));
9054
9055 /* Give up if we can't compute an outer operation to use. */
9056 if (mask_rtx == 0
9057 || GET_CODE (mask_rtx) != CONST_INT
9058 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9059 INTVAL (mask_rtx),
9060 result_mode, &complement_p))
9061 break;
9062
9063 /* If the shifts are in the same direction, we add the
9064 counts. Otherwise, we subtract them. */
9065 signed_count = count;
9066 if ((code == ASHIFTRT || code == LSHIFTRT)
9067 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9068 signed_count += first_count;
9069 else
9070 signed_count -= first_count;
9071
9072 /* If COUNT is positive, the new shift is usually CODE,
9073 except for the two exceptions below, in which case it is
9074 FIRST_CODE. If the count is negative, FIRST_CODE should
9075 always be used */
9076 if (signed_count > 0
9077 && ((first_code == ROTATE && code == ASHIFT)
9078 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9079 code = first_code, count = signed_count;
9080 else if (signed_count < 0)
9081 code = first_code, count = -signed_count;
9082 else
9083 count = signed_count;
9084
9085 varop = XEXP (varop, 0);
9086 continue;
9087 }
9088
9089 /* If we have (A << B << C) for any shift, we can convert this to
9090 (A << C << B). This wins if A is a constant. Only try this if
9091 B is not a constant. */
9092
9093 else if (GET_CODE (varop) == code
9094 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9095 && 0 != (new
9096 = simplify_binary_operation (code, mode,
9097 XEXP (varop, 0),
9098 GEN_INT (count))))
9099 {
9100 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9101 count = 0;
9102 continue;
9103 }
9104 break;
9105
9106 case NOT:
9107 /* Make this fit the case below. */
9108 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9109 GEN_INT (GET_MODE_MASK (mode)));
9110 continue;
9111
9112 case IOR:
9113 case AND:
9114 case XOR:
9115 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9116 with C the size of VAROP - 1 and the shift is logical if
9117 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9118 we have an (le X 0) operation. If we have an arithmetic shift
9119 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9120 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9121
9122 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9123 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9124 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9125 && (code == LSHIFTRT || code == ASHIFTRT)
9126 && count == (unsigned int)
9127 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9128 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9129 {
9130 count = 0;
9131 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9132 const0_rtx);
9133
9134 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9135 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9136
9137 continue;
9138 }
9139
9140 /* If we have (shift (logical)), move the logical to the outside
9141 to allow it to possibly combine with another logical and the
9142 shift to combine with another shift. This also canonicalizes to
9143 what a ZERO_EXTRACT looks like. Also, some machines have
9144 (and (shift)) insns. */
9145
9146 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9147 /* We can't do this if we have (ashiftrt (xor)) and the
9148 constant has its sign bit set in shift_mode. */
9149 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9150 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9151 shift_mode))
9152 && (new = simplify_binary_operation (code, result_mode,
9153 XEXP (varop, 1),
9154 GEN_INT (count))) != 0
9155 && GET_CODE (new) == CONST_INT
9156 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9157 INTVAL (new), result_mode, &complement_p))
9158 {
9159 varop = XEXP (varop, 0);
9160 continue;
9161 }
9162
9163 /* If we can't do that, try to simplify the shift in each arm of the
9164 logical expression, make a new logical expression, and apply
9165 the inverse distributive law. This also can't be done
9166 for some (ashiftrt (xor)). */
9167 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9168 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9169 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9170 shift_mode)))
9171 {
9172 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9173 XEXP (varop, 0), count);
9174 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9175 XEXP (varop, 1), count);
9176
9177 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9178 lhs, rhs);
9179 varop = apply_distributive_law (varop);
9180
9181 count = 0;
9182 continue;
9183 }
9184 break;
9185
9186 case EQ:
9187 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9188 says that the sign bit can be tested, FOO has mode MODE, C is
9189 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9190 that may be nonzero. */
9191 if (code == LSHIFTRT
9192 && XEXP (varop, 1) == const0_rtx
9193 && GET_MODE (XEXP (varop, 0)) == result_mode
9194 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9195 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9196 && ((STORE_FLAG_VALUE
9197 & ((HOST_WIDE_INT) 1
9198 < (GET_MODE_BITSIZE (result_mode) - 1))))
9199 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9200 && merge_outer_ops (&outer_op, &outer_const, XOR,
9201 (HOST_WIDE_INT) 1, result_mode,
9202 &complement_p))
9203 {
9204 varop = XEXP (varop, 0);
9205 count = 0;
9206 continue;
9207 }
9208 break;
9209
9210 case NEG:
9211 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9212 than the number of bits in the mode is equivalent to A. */
9213 if (code == LSHIFTRT
9214 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9215 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9216 {
9217 varop = XEXP (varop, 0);
9218 count = 0;
9219 continue;
9220 }
9221
9222 /* NEG commutes with ASHIFT since it is multiplication. Move the
9223 NEG outside to allow shifts to combine. */
9224 if (code == ASHIFT
9225 && merge_outer_ops (&outer_op, &outer_const, NEG,
9226 (HOST_WIDE_INT) 0, result_mode,
9227 &complement_p))
9228 {
9229 varop = XEXP (varop, 0);
9230 continue;
9231 }
9232 break;
9233
9234 case PLUS:
9235 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9236 is one less than the number of bits in the mode is
9237 equivalent to (xor A 1). */
9238 if (code == LSHIFTRT
9239 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9240 && XEXP (varop, 1) == constm1_rtx
9241 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9242 && merge_outer_ops (&outer_op, &outer_const, XOR,
9243 (HOST_WIDE_INT) 1, result_mode,
9244 &complement_p))
9245 {
9246 count = 0;
9247 varop = XEXP (varop, 0);
9248 continue;
9249 }
9250
9251 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9252 that might be nonzero in BAR are those being shifted out and those
9253 bits are known zero in FOO, we can replace the PLUS with FOO.
9254 Similarly in the other operand order. This code occurs when
9255 we are computing the size of a variable-size array. */
9256
9257 if ((code == ASHIFTRT || code == LSHIFTRT)
9258 && count < HOST_BITS_PER_WIDE_INT
9259 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9260 && (nonzero_bits (XEXP (varop, 1), result_mode)
9261 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9262 {
9263 varop = XEXP (varop, 0);
9264 continue;
9265 }
9266 else if ((code == ASHIFTRT || code == LSHIFTRT)
9267 && count < HOST_BITS_PER_WIDE_INT
9268 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9269 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9270 >> count)
9271 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9272 & nonzero_bits (XEXP (varop, 1),
9273 result_mode)))
9274 {
9275 varop = XEXP (varop, 1);
9276 continue;
9277 }
9278
9279 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9280 if (code == ASHIFT
9281 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9282 && (new = simplify_binary_operation (ASHIFT, result_mode,
9283 XEXP (varop, 1),
9284 GEN_INT (count))) != 0
9285 && GET_CODE (new) == CONST_INT
9286 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9287 INTVAL (new), result_mode, &complement_p))
9288 {
9289 varop = XEXP (varop, 0);
9290 continue;
9291 }
9292
9293 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9294 signbit', and attempt to change the PLUS to an XOR and move it to
9295 the outer operation as is done above in the AND/IOR/XOR case
9296 leg for shift(logical). See details in logical handling above
9297 for reasoning in doing so. */
9298 if (code == LSHIFTRT
9299 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9300 && mode_signbit_p (result_mode, XEXP (varop, 1))
9301 && (new = simplify_binary_operation (code, result_mode,
9302 XEXP (varop, 1),
9303 GEN_INT (count))) != 0
9304 && GET_CODE (new) == CONST_INT
9305 && merge_outer_ops (&outer_op, &outer_const, XOR,
9306 INTVAL (new), result_mode, &complement_p))
9307 {
9308 varop = XEXP (varop, 0);
9309 continue;
9310 }
9311
9312 break;
9313
9314 case MINUS:
9315 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9316 with C the size of VAROP - 1 and the shift is logical if
9317 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9318 we have a (gt X 0) operation. If the shift is arithmetic with
9319 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9320 we have a (neg (gt X 0)) operation. */
9321
9322 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9323 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9324 && count == (unsigned int)
9325 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9326 && (code == LSHIFTRT || code == ASHIFTRT)
9327 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9328 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9329 == count
9330 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9331 {
9332 count = 0;
9333 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9334 const0_rtx);
9335
9336 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9337 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9338
9339 continue;
9340 }
9341 break;
9342
9343 case TRUNCATE:
9344 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9345 if the truncate does not affect the value. */
9346 if (code == LSHIFTRT
9347 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9348 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9349 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9350 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9351 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9352 {
9353 rtx varop_inner = XEXP (varop, 0);
9354
9355 varop_inner
9356 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9357 XEXP (varop_inner, 0),
9358 GEN_INT
9359 (count + INTVAL (XEXP (varop_inner, 1))));
9360 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9361 count = 0;
9362 continue;
9363 }
9364 break;
9365
9366 default:
9367 break;
9368 }
9369
9370 break;
9371 }
9372
9373 /* We need to determine what mode to do the shift in. If the shift is
9374 a right shift or ROTATE, we must always do it in the mode it was
9375 originally done in. Otherwise, we can do it in MODE, the widest mode
9376 encountered. The code we care about is that of the shift that will
9377 actually be done, not the shift that was originally requested. */
9378 shift_mode
9379 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9380 ? result_mode : mode);
9381
9382 /* We have now finished analyzing the shift. The result should be
9383 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9384 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9385 to the result of the shift. OUTER_CONST is the relevant constant,
9386 but we must turn off all bits turned off in the shift.
9387
9388 If we were passed a value for X, see if we can use any pieces of
9389 it. If not, make new rtx. */
9390
9391 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9392 && GET_CODE (XEXP (x, 1)) == CONST_INT
9393 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9394 const_rtx = XEXP (x, 1);
9395 else
9396 const_rtx = GEN_INT (count);
9397
9398 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9399 && GET_MODE (XEXP (x, 0)) == shift_mode
9400 && SUBREG_REG (XEXP (x, 0)) == varop)
9401 varop = XEXP (x, 0);
9402 else if (GET_MODE (varop) != shift_mode)
9403 varop = gen_lowpart (shift_mode, varop);
9404
9405 /* If we can't make the SUBREG, try to return what we were given. */
9406 if (GET_CODE (varop) == CLOBBER)
9407 return x ? x : varop;
9408
9409 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9410 if (new != 0)
9411 x = new;
9412 else
9413 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9414
9415 /* If we have an outer operation and we just made a shift, it is
9416 possible that we could have simplified the shift were it not
9417 for the outer operation. So try to do the simplification
9418 recursively. */
9419
9420 if (outer_op != UNKNOWN && GET_CODE (x) == code
9421 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9422 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9423 INTVAL (XEXP (x, 1)));
9424
9425 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9426 turn off all the bits that the shift would have turned off. */
9427 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9428 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9429 GET_MODE_MASK (result_mode) >> orig_count);
9430
9431 /* Do the remainder of the processing in RESULT_MODE. */
9432 x = gen_lowpart (result_mode, x);
9433
9434 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9435 operation. */
9436 if (complement_p)
9437 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9438
9439 if (outer_op != UNKNOWN)
9440 {
9441 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9442 outer_const = trunc_int_for_mode (outer_const, result_mode);
9443
9444 if (outer_op == AND)
9445 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9446 else if (outer_op == SET)
9447 /* This means that we have determined that the result is
9448 equivalent to a constant. This should be rare. */
9449 x = GEN_INT (outer_const);
9450 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9451 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9452 else
9453 x = simplify_gen_binary (outer_op, result_mode, x,
9454 GEN_INT (outer_const));
9455 }
9456
9457 return x;
9458 }
9459 \f
9460 /* Like recog, but we receive the address of a pointer to a new pattern.
9461 We try to match the rtx that the pointer points to.
9462 If that fails, we may try to modify or replace the pattern,
9463 storing the replacement into the same pointer object.
9464
9465 Modifications include deletion or addition of CLOBBERs.
9466
9467 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9468 the CLOBBERs are placed.
9469
9470 The value is the final insn code from the pattern ultimately matched,
9471 or -1. */
9472
9473 static int
9474 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9475 {
9476 rtx pat = *pnewpat;
9477 int insn_code_number;
9478 int num_clobbers_to_add = 0;
9479 int i;
9480 rtx notes = 0;
9481 rtx old_notes, old_pat;
9482
9483 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9484 we use to indicate that something didn't match. If we find such a
9485 thing, force rejection. */
9486 if (GET_CODE (pat) == PARALLEL)
9487 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9488 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9489 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9490 return -1;
9491
9492 old_pat = PATTERN (insn);
9493 old_notes = REG_NOTES (insn);
9494 PATTERN (insn) = pat;
9495 REG_NOTES (insn) = 0;
9496
9497 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9498
9499 /* If it isn't, there is the possibility that we previously had an insn
9500 that clobbered some register as a side effect, but the combined
9501 insn doesn't need to do that. So try once more without the clobbers
9502 unless this represents an ASM insn. */
9503
9504 if (insn_code_number < 0 && ! check_asm_operands (pat)
9505 && GET_CODE (pat) == PARALLEL)
9506 {
9507 int pos;
9508
9509 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9510 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9511 {
9512 if (i != pos)
9513 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9514 pos++;
9515 }
9516
9517 SUBST_INT (XVECLEN (pat, 0), pos);
9518
9519 if (pos == 1)
9520 pat = XVECEXP (pat, 0, 0);
9521
9522 PATTERN (insn) = pat;
9523 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9524 }
9525 PATTERN (insn) = old_pat;
9526 REG_NOTES (insn) = old_notes;
9527
9528 /* Recognize all noop sets, these will be killed by followup pass. */
9529 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9530 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9531
9532 /* If we had any clobbers to add, make a new pattern than contains
9533 them. Then check to make sure that all of them are dead. */
9534 if (num_clobbers_to_add)
9535 {
9536 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9537 rtvec_alloc (GET_CODE (pat) == PARALLEL
9538 ? (XVECLEN (pat, 0)
9539 + num_clobbers_to_add)
9540 : num_clobbers_to_add + 1));
9541
9542 if (GET_CODE (pat) == PARALLEL)
9543 for (i = 0; i < XVECLEN (pat, 0); i++)
9544 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9545 else
9546 XVECEXP (newpat, 0, 0) = pat;
9547
9548 add_clobbers (newpat, insn_code_number);
9549
9550 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9551 i < XVECLEN (newpat, 0); i++)
9552 {
9553 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9554 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9555 return -1;
9556 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9557 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9558 }
9559 pat = newpat;
9560 }
9561
9562 *pnewpat = pat;
9563 *pnotes = notes;
9564
9565 return insn_code_number;
9566 }
9567 \f
9568 /* Like gen_lowpart_general but for use by combine. In combine it
9569 is not possible to create any new pseudoregs. However, it is
9570 safe to create invalid memory addresses, because combine will
9571 try to recognize them and all they will do is make the combine
9572 attempt fail.
9573
9574 If for some reason this cannot do its job, an rtx
9575 (clobber (const_int 0)) is returned.
9576 An insn containing that will not be recognized. */
9577
9578 static rtx
9579 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9580 {
9581 enum machine_mode imode = GET_MODE (x);
9582 unsigned int osize = GET_MODE_SIZE (omode);
9583 unsigned int isize = GET_MODE_SIZE (imode);
9584 rtx result;
9585
9586 if (omode == imode)
9587 return x;
9588
9589 /* Return identity if this is a CONST or symbolic reference. */
9590 if (omode == Pmode
9591 && (GET_CODE (x) == CONST
9592 || GET_CODE (x) == SYMBOL_REF
9593 || GET_CODE (x) == LABEL_REF))
9594 return x;
9595
9596 /* We can only support MODE being wider than a word if X is a
9597 constant integer or has a mode the same size. */
9598 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9599 && ! ((imode == VOIDmode
9600 && (GET_CODE (x) == CONST_INT
9601 || GET_CODE (x) == CONST_DOUBLE))
9602 || isize == osize))
9603 goto fail;
9604
9605 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9606 won't know what to do. So we will strip off the SUBREG here and
9607 process normally. */
9608 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9609 {
9610 x = SUBREG_REG (x);
9611
9612 /* For use in case we fall down into the address adjustments
9613 further below, we need to adjust the known mode and size of
9614 x; imode and isize, since we just adjusted x. */
9615 imode = GET_MODE (x);
9616
9617 if (imode == omode)
9618 return x;
9619
9620 isize = GET_MODE_SIZE (imode);
9621 }
9622
9623 result = gen_lowpart_common (omode, x);
9624
9625 #ifdef CANNOT_CHANGE_MODE_CLASS
9626 if (result != 0 && GET_CODE (result) == SUBREG)
9627 record_subregs_of_mode (result);
9628 #endif
9629
9630 if (result)
9631 return result;
9632
9633 if (MEM_P (x))
9634 {
9635 int offset = 0;
9636
9637 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9638 address. */
9639 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9640 goto fail;
9641
9642 /* If we want to refer to something bigger than the original memref,
9643 generate a paradoxical subreg instead. That will force a reload
9644 of the original memref X. */
9645 if (isize < osize)
9646 return gen_rtx_SUBREG (omode, x, 0);
9647
9648 if (WORDS_BIG_ENDIAN)
9649 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9650
9651 /* Adjust the address so that the address-after-the-data is
9652 unchanged. */
9653 if (BYTES_BIG_ENDIAN)
9654 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9655
9656 return adjust_address_nv (x, omode, offset);
9657 }
9658
9659 /* If X is a comparison operator, rewrite it in a new mode. This
9660 probably won't match, but may allow further simplifications. */
9661 else if (COMPARISON_P (x))
9662 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9663
9664 /* If we couldn't simplify X any other way, just enclose it in a
9665 SUBREG. Normally, this SUBREG won't match, but some patterns may
9666 include an explicit SUBREG or we may simplify it further in combine. */
9667 else
9668 {
9669 int offset = 0;
9670 rtx res;
9671
9672 offset = subreg_lowpart_offset (omode, imode);
9673 if (imode == VOIDmode)
9674 {
9675 imode = int_mode_for_mode (omode);
9676 x = gen_lowpart_common (imode, x);
9677 if (x == NULL)
9678 goto fail;
9679 }
9680 res = simplify_gen_subreg (omode, x, imode, offset);
9681 if (res)
9682 return res;
9683 }
9684
9685 fail:
9686 return gen_rtx_CLOBBER (imode, const0_rtx);
9687 }
9688 \f
9689 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9690 comparison code that will be tested.
9691
9692 The result is a possibly different comparison code to use. *POP0 and
9693 *POP1 may be updated.
9694
9695 It is possible that we might detect that a comparison is either always
9696 true or always false. However, we do not perform general constant
9697 folding in combine, so this knowledge isn't useful. Such tautologies
9698 should have been detected earlier. Hence we ignore all such cases. */
9699
9700 static enum rtx_code
9701 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9702 {
9703 rtx op0 = *pop0;
9704 rtx op1 = *pop1;
9705 rtx tem, tem1;
9706 int i;
9707 enum machine_mode mode, tmode;
9708
9709 /* Try a few ways of applying the same transformation to both operands. */
9710 while (1)
9711 {
9712 #ifndef WORD_REGISTER_OPERATIONS
9713 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9714 so check specially. */
9715 if (code != GTU && code != GEU && code != LTU && code != LEU
9716 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9717 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9718 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9719 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9720 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9721 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9722 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9723 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9724 && XEXP (op0, 1) == XEXP (op1, 1)
9725 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9726 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9727 && (INTVAL (XEXP (op0, 1))
9728 == (GET_MODE_BITSIZE (GET_MODE (op0))
9729 - (GET_MODE_BITSIZE
9730 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9731 {
9732 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9733 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9734 }
9735 #endif
9736
9737 /* If both operands are the same constant shift, see if we can ignore the
9738 shift. We can if the shift is a rotate or if the bits shifted out of
9739 this shift are known to be zero for both inputs and if the type of
9740 comparison is compatible with the shift. */
9741 if (GET_CODE (op0) == GET_CODE (op1)
9742 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9743 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9744 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9745 && (code != GT && code != LT && code != GE && code != LE))
9746 || (GET_CODE (op0) == ASHIFTRT
9747 && (code != GTU && code != LTU
9748 && code != GEU && code != LEU)))
9749 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9750 && INTVAL (XEXP (op0, 1)) >= 0
9751 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9752 && XEXP (op0, 1) == XEXP (op1, 1))
9753 {
9754 enum machine_mode mode = GET_MODE (op0);
9755 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9756 int shift_count = INTVAL (XEXP (op0, 1));
9757
9758 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9759 mask &= (mask >> shift_count) << shift_count;
9760 else if (GET_CODE (op0) == ASHIFT)
9761 mask = (mask & (mask << shift_count)) >> shift_count;
9762
9763 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9764 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9765 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9766 else
9767 break;
9768 }
9769
9770 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9771 SUBREGs are of the same mode, and, in both cases, the AND would
9772 be redundant if the comparison was done in the narrower mode,
9773 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9774 and the operand's possibly nonzero bits are 0xffffff01; in that case
9775 if we only care about QImode, we don't need the AND). This case
9776 occurs if the output mode of an scc insn is not SImode and
9777 STORE_FLAG_VALUE == 1 (e.g., the 386).
9778
9779 Similarly, check for a case where the AND's are ZERO_EXTEND
9780 operations from some narrower mode even though a SUBREG is not
9781 present. */
9782
9783 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9784 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9785 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9786 {
9787 rtx inner_op0 = XEXP (op0, 0);
9788 rtx inner_op1 = XEXP (op1, 0);
9789 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9790 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9791 int changed = 0;
9792
9793 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9794 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9795 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9796 && (GET_MODE (SUBREG_REG (inner_op0))
9797 == GET_MODE (SUBREG_REG (inner_op1)))
9798 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9799 <= HOST_BITS_PER_WIDE_INT)
9800 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9801 GET_MODE (SUBREG_REG (inner_op0)))))
9802 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9803 GET_MODE (SUBREG_REG (inner_op1))))))
9804 {
9805 op0 = SUBREG_REG (inner_op0);
9806 op1 = SUBREG_REG (inner_op1);
9807
9808 /* The resulting comparison is always unsigned since we masked
9809 off the original sign bit. */
9810 code = unsigned_condition (code);
9811
9812 changed = 1;
9813 }
9814
9815 else if (c0 == c1)
9816 for (tmode = GET_CLASS_NARROWEST_MODE
9817 (GET_MODE_CLASS (GET_MODE (op0)));
9818 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9819 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9820 {
9821 op0 = gen_lowpart (tmode, inner_op0);
9822 op1 = gen_lowpart (tmode, inner_op1);
9823 code = unsigned_condition (code);
9824 changed = 1;
9825 break;
9826 }
9827
9828 if (! changed)
9829 break;
9830 }
9831
9832 /* If both operands are NOT, we can strip off the outer operation
9833 and adjust the comparison code for swapped operands; similarly for
9834 NEG, except that this must be an equality comparison. */
9835 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9836 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9837 && (code == EQ || code == NE)))
9838 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9839
9840 else
9841 break;
9842 }
9843
9844 /* If the first operand is a constant, swap the operands and adjust the
9845 comparison code appropriately, but don't do this if the second operand
9846 is already a constant integer. */
9847 if (swap_commutative_operands_p (op0, op1))
9848 {
9849 tem = op0, op0 = op1, op1 = tem;
9850 code = swap_condition (code);
9851 }
9852
9853 /* We now enter a loop during which we will try to simplify the comparison.
9854 For the most part, we only are concerned with comparisons with zero,
9855 but some things may really be comparisons with zero but not start
9856 out looking that way. */
9857
9858 while (GET_CODE (op1) == CONST_INT)
9859 {
9860 enum machine_mode mode = GET_MODE (op0);
9861 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9862 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9863 int equality_comparison_p;
9864 int sign_bit_comparison_p;
9865 int unsigned_comparison_p;
9866 HOST_WIDE_INT const_op;
9867
9868 /* We only want to handle integral modes. This catches VOIDmode,
9869 CCmode, and the floating-point modes. An exception is that we
9870 can handle VOIDmode if OP0 is a COMPARE or a comparison
9871 operation. */
9872
9873 if (GET_MODE_CLASS (mode) != MODE_INT
9874 && ! (mode == VOIDmode
9875 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9876 break;
9877
9878 /* Get the constant we are comparing against and turn off all bits
9879 not on in our mode. */
9880 const_op = INTVAL (op1);
9881 if (mode != VOIDmode)
9882 const_op = trunc_int_for_mode (const_op, mode);
9883 op1 = GEN_INT (const_op);
9884
9885 /* If we are comparing against a constant power of two and the value
9886 being compared can only have that single bit nonzero (e.g., it was
9887 `and'ed with that bit), we can replace this with a comparison
9888 with zero. */
9889 if (const_op
9890 && (code == EQ || code == NE || code == GE || code == GEU
9891 || code == LT || code == LTU)
9892 && mode_width <= HOST_BITS_PER_WIDE_INT
9893 && exact_log2 (const_op) >= 0
9894 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9895 {
9896 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9897 op1 = const0_rtx, const_op = 0;
9898 }
9899
9900 /* Similarly, if we are comparing a value known to be either -1 or
9901 0 with -1, change it to the opposite comparison against zero. */
9902
9903 if (const_op == -1
9904 && (code == EQ || code == NE || code == GT || code == LE
9905 || code == GEU || code == LTU)
9906 && num_sign_bit_copies (op0, mode) == mode_width)
9907 {
9908 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9909 op1 = const0_rtx, const_op = 0;
9910 }
9911
9912 /* Do some canonicalizations based on the comparison code. We prefer
9913 comparisons against zero and then prefer equality comparisons.
9914 If we can reduce the size of a constant, we will do that too. */
9915
9916 switch (code)
9917 {
9918 case LT:
9919 /* < C is equivalent to <= (C - 1) */
9920 if (const_op > 0)
9921 {
9922 const_op -= 1;
9923 op1 = GEN_INT (const_op);
9924 code = LE;
9925 /* ... fall through to LE case below. */
9926 }
9927 else
9928 break;
9929
9930 case LE:
9931 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9932 if (const_op < 0)
9933 {
9934 const_op += 1;
9935 op1 = GEN_INT (const_op);
9936 code = LT;
9937 }
9938
9939 /* If we are doing a <= 0 comparison on a value known to have
9940 a zero sign bit, we can replace this with == 0. */
9941 else if (const_op == 0
9942 && mode_width <= HOST_BITS_PER_WIDE_INT
9943 && (nonzero_bits (op0, mode)
9944 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9945 code = EQ;
9946 break;
9947
9948 case GE:
9949 /* >= C is equivalent to > (C - 1). */
9950 if (const_op > 0)
9951 {
9952 const_op -= 1;
9953 op1 = GEN_INT (const_op);
9954 code = GT;
9955 /* ... fall through to GT below. */
9956 }
9957 else
9958 break;
9959
9960 case GT:
9961 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9962 if (const_op < 0)
9963 {
9964 const_op += 1;
9965 op1 = GEN_INT (const_op);
9966 code = GE;
9967 }
9968
9969 /* If we are doing a > 0 comparison on a value known to have
9970 a zero sign bit, we can replace this with != 0. */
9971 else if (const_op == 0
9972 && mode_width <= HOST_BITS_PER_WIDE_INT
9973 && (nonzero_bits (op0, mode)
9974 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9975 code = NE;
9976 break;
9977
9978 case LTU:
9979 /* < C is equivalent to <= (C - 1). */
9980 if (const_op > 0)
9981 {
9982 const_op -= 1;
9983 op1 = GEN_INT (const_op);
9984 code = LEU;
9985 /* ... fall through ... */
9986 }
9987
9988 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9989 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9990 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9991 {
9992 const_op = 0, op1 = const0_rtx;
9993 code = GE;
9994 break;
9995 }
9996 else
9997 break;
9998
9999 case LEU:
10000 /* unsigned <= 0 is equivalent to == 0 */
10001 if (const_op == 0)
10002 code = EQ;
10003
10004 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10005 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10006 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10007 {
10008 const_op = 0, op1 = const0_rtx;
10009 code = GE;
10010 }
10011 break;
10012
10013 case GEU:
10014 /* >= C is equivalent to > (C - 1). */
10015 if (const_op > 1)
10016 {
10017 const_op -= 1;
10018 op1 = GEN_INT (const_op);
10019 code = GTU;
10020 /* ... fall through ... */
10021 }
10022
10023 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10024 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10025 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10026 {
10027 const_op = 0, op1 = const0_rtx;
10028 code = LT;
10029 break;
10030 }
10031 else
10032 break;
10033
10034 case GTU:
10035 /* unsigned > 0 is equivalent to != 0 */
10036 if (const_op == 0)
10037 code = NE;
10038
10039 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10040 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10041 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10042 {
10043 const_op = 0, op1 = const0_rtx;
10044 code = LT;
10045 }
10046 break;
10047
10048 default:
10049 break;
10050 }
10051
10052 /* Compute some predicates to simplify code below. */
10053
10054 equality_comparison_p = (code == EQ || code == NE);
10055 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10056 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10057 || code == GEU);
10058
10059 /* If this is a sign bit comparison and we can do arithmetic in
10060 MODE, say that we will only be needing the sign bit of OP0. */
10061 if (sign_bit_comparison_p
10062 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10063 op0 = force_to_mode (op0, mode,
10064 ((HOST_WIDE_INT) 1
10065 << (GET_MODE_BITSIZE (mode) - 1)),
10066 NULL_RTX, 0);
10067
10068 /* Now try cases based on the opcode of OP0. If none of the cases
10069 does a "continue", we exit this loop immediately after the
10070 switch. */
10071
10072 switch (GET_CODE (op0))
10073 {
10074 case ZERO_EXTRACT:
10075 /* If we are extracting a single bit from a variable position in
10076 a constant that has only a single bit set and are comparing it
10077 with zero, we can convert this into an equality comparison
10078 between the position and the location of the single bit. */
10079 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10080 have already reduced the shift count modulo the word size. */
10081 if (!SHIFT_COUNT_TRUNCATED
10082 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10083 && XEXP (op0, 1) == const1_rtx
10084 && equality_comparison_p && const_op == 0
10085 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10086 {
10087 if (BITS_BIG_ENDIAN)
10088 {
10089 enum machine_mode new_mode
10090 = mode_for_extraction (EP_extzv, 1);
10091 if (new_mode == MAX_MACHINE_MODE)
10092 i = BITS_PER_WORD - 1 - i;
10093 else
10094 {
10095 mode = new_mode;
10096 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10097 }
10098 }
10099
10100 op0 = XEXP (op0, 2);
10101 op1 = GEN_INT (i);
10102 const_op = i;
10103
10104 /* Result is nonzero iff shift count is equal to I. */
10105 code = reverse_condition (code);
10106 continue;
10107 }
10108
10109 /* ... fall through ... */
10110
10111 case SIGN_EXTRACT:
10112 tem = expand_compound_operation (op0);
10113 if (tem != op0)
10114 {
10115 op0 = tem;
10116 continue;
10117 }
10118 break;
10119
10120 case NOT:
10121 /* If testing for equality, we can take the NOT of the constant. */
10122 if (equality_comparison_p
10123 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10124 {
10125 op0 = XEXP (op0, 0);
10126 op1 = tem;
10127 continue;
10128 }
10129
10130 /* If just looking at the sign bit, reverse the sense of the
10131 comparison. */
10132 if (sign_bit_comparison_p)
10133 {
10134 op0 = XEXP (op0, 0);
10135 code = (code == GE ? LT : GE);
10136 continue;
10137 }
10138 break;
10139
10140 case NEG:
10141 /* If testing for equality, we can take the NEG of the constant. */
10142 if (equality_comparison_p
10143 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10144 {
10145 op0 = XEXP (op0, 0);
10146 op1 = tem;
10147 continue;
10148 }
10149
10150 /* The remaining cases only apply to comparisons with zero. */
10151 if (const_op != 0)
10152 break;
10153
10154 /* When X is ABS or is known positive,
10155 (neg X) is < 0 if and only if X != 0. */
10156
10157 if (sign_bit_comparison_p
10158 && (GET_CODE (XEXP (op0, 0)) == ABS
10159 || (mode_width <= HOST_BITS_PER_WIDE_INT
10160 && (nonzero_bits (XEXP (op0, 0), mode)
10161 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10162 {
10163 op0 = XEXP (op0, 0);
10164 code = (code == LT ? NE : EQ);
10165 continue;
10166 }
10167
10168 /* If we have NEG of something whose two high-order bits are the
10169 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10170 if (num_sign_bit_copies (op0, mode) >= 2)
10171 {
10172 op0 = XEXP (op0, 0);
10173 code = swap_condition (code);
10174 continue;
10175 }
10176 break;
10177
10178 case ROTATE:
10179 /* If we are testing equality and our count is a constant, we
10180 can perform the inverse operation on our RHS. */
10181 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10182 && (tem = simplify_binary_operation (ROTATERT, mode,
10183 op1, XEXP (op0, 1))) != 0)
10184 {
10185 op0 = XEXP (op0, 0);
10186 op1 = tem;
10187 continue;
10188 }
10189
10190 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10191 a particular bit. Convert it to an AND of a constant of that
10192 bit. This will be converted into a ZERO_EXTRACT. */
10193 if (const_op == 0 && sign_bit_comparison_p
10194 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10195 && mode_width <= HOST_BITS_PER_WIDE_INT)
10196 {
10197 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10198 ((HOST_WIDE_INT) 1
10199 << (mode_width - 1
10200 - INTVAL (XEXP (op0, 1)))));
10201 code = (code == LT ? NE : EQ);
10202 continue;
10203 }
10204
10205 /* Fall through. */
10206
10207 case ABS:
10208 /* ABS is ignorable inside an equality comparison with zero. */
10209 if (const_op == 0 && equality_comparison_p)
10210 {
10211 op0 = XEXP (op0, 0);
10212 continue;
10213 }
10214 break;
10215
10216 case SIGN_EXTEND:
10217 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10218 (compare FOO CONST) if CONST fits in FOO's mode and we
10219 are either testing inequality or have an unsigned
10220 comparison with ZERO_EXTEND or a signed comparison with
10221 SIGN_EXTEND. But don't do it if we don't have a compare
10222 insn of the given mode, since we'd have to revert it
10223 later on, and then we wouldn't know whether to sign- or
10224 zero-extend. */
10225 mode = GET_MODE (XEXP (op0, 0));
10226 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10227 && ! unsigned_comparison_p
10228 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10229 && ((unsigned HOST_WIDE_INT) const_op
10230 < (((unsigned HOST_WIDE_INT) 1
10231 << (GET_MODE_BITSIZE (mode) - 1))))
10232 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10233 {
10234 op0 = XEXP (op0, 0);
10235 continue;
10236 }
10237 break;
10238
10239 case SUBREG:
10240 /* Check for the case where we are comparing A - C1 with C2, that is
10241
10242 (subreg:MODE (plus (A) (-C1))) op (C2)
10243
10244 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10245 comparison in the wider mode. One of the following two conditions
10246 must be true in order for this to be valid:
10247
10248 1. The mode extension results in the same bit pattern being added
10249 on both sides and the comparison is equality or unsigned. As
10250 C2 has been truncated to fit in MODE, the pattern can only be
10251 all 0s or all 1s.
10252
10253 2. The mode extension results in the sign bit being copied on
10254 each side.
10255
10256 The difficulty here is that we have predicates for A but not for
10257 (A - C1) so we need to check that C1 is within proper bounds so
10258 as to perturbate A as little as possible. */
10259
10260 if (mode_width <= HOST_BITS_PER_WIDE_INT
10261 && subreg_lowpart_p (op0)
10262 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10263 && GET_CODE (SUBREG_REG (op0)) == PLUS
10264 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10265 {
10266 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10267 rtx a = XEXP (SUBREG_REG (op0), 0);
10268 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10269
10270 if ((c1 > 0
10271 && (unsigned HOST_WIDE_INT) c1
10272 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10273 && (equality_comparison_p || unsigned_comparison_p)
10274 /* (A - C1) zero-extends if it is positive and sign-extends
10275 if it is negative, C2 both zero- and sign-extends. */
10276 && ((0 == (nonzero_bits (a, inner_mode)
10277 & ~GET_MODE_MASK (mode))
10278 && const_op >= 0)
10279 /* (A - C1) sign-extends if it is positive and 1-extends
10280 if it is negative, C2 both sign- and 1-extends. */
10281 || (num_sign_bit_copies (a, inner_mode)
10282 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10283 - mode_width)
10284 && const_op < 0)))
10285 || ((unsigned HOST_WIDE_INT) c1
10286 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10287 /* (A - C1) always sign-extends, like C2. */
10288 && num_sign_bit_copies (a, inner_mode)
10289 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10290 - (mode_width - 1))))
10291 {
10292 op0 = SUBREG_REG (op0);
10293 continue;
10294 }
10295 }
10296
10297 /* If the inner mode is narrower and we are extracting the low part,
10298 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10299 if (subreg_lowpart_p (op0)
10300 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10301 /* Fall through */ ;
10302 else
10303 break;
10304
10305 /* ... fall through ... */
10306
10307 case ZERO_EXTEND:
10308 mode = GET_MODE (XEXP (op0, 0));
10309 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10310 && (unsigned_comparison_p || equality_comparison_p)
10311 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10312 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10313 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10314 {
10315 op0 = XEXP (op0, 0);
10316 continue;
10317 }
10318 break;
10319
10320 case PLUS:
10321 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10322 this for equality comparisons due to pathological cases involving
10323 overflows. */
10324 if (equality_comparison_p
10325 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10326 op1, XEXP (op0, 1))))
10327 {
10328 op0 = XEXP (op0, 0);
10329 op1 = tem;
10330 continue;
10331 }
10332
10333 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10334 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10335 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10336 {
10337 op0 = XEXP (XEXP (op0, 0), 0);
10338 code = (code == LT ? EQ : NE);
10339 continue;
10340 }
10341 break;
10342
10343 case MINUS:
10344 /* We used to optimize signed comparisons against zero, but that
10345 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10346 arrive here as equality comparisons, or (GEU, LTU) are
10347 optimized away. No need to special-case them. */
10348
10349 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10350 (eq B (minus A C)), whichever simplifies. We can only do
10351 this for equality comparisons due to pathological cases involving
10352 overflows. */
10353 if (equality_comparison_p
10354 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10355 XEXP (op0, 1), op1)))
10356 {
10357 op0 = XEXP (op0, 0);
10358 op1 = tem;
10359 continue;
10360 }
10361
10362 if (equality_comparison_p
10363 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10364 XEXP (op0, 0), op1)))
10365 {
10366 op0 = XEXP (op0, 1);
10367 op1 = tem;
10368 continue;
10369 }
10370
10371 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10372 of bits in X minus 1, is one iff X > 0. */
10373 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10374 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10375 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10376 == mode_width - 1
10377 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10378 {
10379 op0 = XEXP (op0, 1);
10380 code = (code == GE ? LE : GT);
10381 continue;
10382 }
10383 break;
10384
10385 case XOR:
10386 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10387 if C is zero or B is a constant. */
10388 if (equality_comparison_p
10389 && 0 != (tem = simplify_binary_operation (XOR, mode,
10390 XEXP (op0, 1), op1)))
10391 {
10392 op0 = XEXP (op0, 0);
10393 op1 = tem;
10394 continue;
10395 }
10396 break;
10397
10398 case EQ: case NE:
10399 case UNEQ: case LTGT:
10400 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10401 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10402 case UNORDERED: case ORDERED:
10403 /* We can't do anything if OP0 is a condition code value, rather
10404 than an actual data value. */
10405 if (const_op != 0
10406 || CC0_P (XEXP (op0, 0))
10407 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10408 break;
10409
10410 /* Get the two operands being compared. */
10411 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10412 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10413 else
10414 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10415
10416 /* Check for the cases where we simply want the result of the
10417 earlier test or the opposite of that result. */
10418 if (code == NE || code == EQ
10419 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10420 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10421 && (STORE_FLAG_VALUE
10422 & (((HOST_WIDE_INT) 1
10423 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10424 && (code == LT || code == GE)))
10425 {
10426 enum rtx_code new_code;
10427 if (code == LT || code == NE)
10428 new_code = GET_CODE (op0);
10429 else
10430 new_code = reversed_comparison_code (op0, NULL);
10431
10432 if (new_code != UNKNOWN)
10433 {
10434 code = new_code;
10435 op0 = tem;
10436 op1 = tem1;
10437 continue;
10438 }
10439 }
10440 break;
10441
10442 case IOR:
10443 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10444 iff X <= 0. */
10445 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10446 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10447 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10448 {
10449 op0 = XEXP (op0, 1);
10450 code = (code == GE ? GT : LE);
10451 continue;
10452 }
10453 break;
10454
10455 case AND:
10456 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10457 will be converted to a ZERO_EXTRACT later. */
10458 if (const_op == 0 && equality_comparison_p
10459 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10460 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10461 {
10462 op0 = simplify_and_const_int
10463 (op0, mode, gen_rtx_LSHIFTRT (mode,
10464 XEXP (op0, 1),
10465 XEXP (XEXP (op0, 0), 1)),
10466 (HOST_WIDE_INT) 1);
10467 continue;
10468 }
10469
10470 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10471 zero and X is a comparison and C1 and C2 describe only bits set
10472 in STORE_FLAG_VALUE, we can compare with X. */
10473 if (const_op == 0 && equality_comparison_p
10474 && mode_width <= HOST_BITS_PER_WIDE_INT
10475 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10476 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10477 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10478 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10479 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10480 {
10481 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10482 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10483 if ((~STORE_FLAG_VALUE & mask) == 0
10484 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10485 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10486 && COMPARISON_P (tem))))
10487 {
10488 op0 = XEXP (XEXP (op0, 0), 0);
10489 continue;
10490 }
10491 }
10492
10493 /* If we are doing an equality comparison of an AND of a bit equal
10494 to the sign bit, replace this with a LT or GE comparison of
10495 the underlying value. */
10496 if (equality_comparison_p
10497 && const_op == 0
10498 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10499 && mode_width <= HOST_BITS_PER_WIDE_INT
10500 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10501 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10502 {
10503 op0 = XEXP (op0, 0);
10504 code = (code == EQ ? GE : LT);
10505 continue;
10506 }
10507
10508 /* If this AND operation is really a ZERO_EXTEND from a narrower
10509 mode, the constant fits within that mode, and this is either an
10510 equality or unsigned comparison, try to do this comparison in
10511 the narrower mode. */
10512 if ((equality_comparison_p || unsigned_comparison_p)
10513 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10514 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10515 & GET_MODE_MASK (mode))
10516 + 1)) >= 0
10517 && const_op >> i == 0
10518 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10519 {
10520 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10521 continue;
10522 }
10523
10524 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10525 fits in both M1 and M2 and the SUBREG is either paradoxical
10526 or represents the low part, permute the SUBREG and the AND
10527 and try again. */
10528 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10529 {
10530 unsigned HOST_WIDE_INT c1;
10531 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10532 /* Require an integral mode, to avoid creating something like
10533 (AND:SF ...). */
10534 if (SCALAR_INT_MODE_P (tmode)
10535 /* It is unsafe to commute the AND into the SUBREG if the
10536 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10537 not defined. As originally written the upper bits
10538 have a defined value due to the AND operation.
10539 However, if we commute the AND inside the SUBREG then
10540 they no longer have defined values and the meaning of
10541 the code has been changed. */
10542 && (0
10543 #ifdef WORD_REGISTER_OPERATIONS
10544 || (mode_width > GET_MODE_BITSIZE (tmode)
10545 && mode_width <= BITS_PER_WORD)
10546 #endif
10547 || (mode_width <= GET_MODE_BITSIZE (tmode)
10548 && subreg_lowpart_p (XEXP (op0, 0))))
10549 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10550 && mode_width <= HOST_BITS_PER_WIDE_INT
10551 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10552 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10553 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10554 && c1 != mask
10555 && c1 != GET_MODE_MASK (tmode))
10556 {
10557 op0 = simplify_gen_binary (AND, tmode,
10558 SUBREG_REG (XEXP (op0, 0)),
10559 gen_int_mode (c1, tmode));
10560 op0 = gen_lowpart (mode, op0);
10561 continue;
10562 }
10563 }
10564
10565 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10566 if (const_op == 0 && equality_comparison_p
10567 && XEXP (op0, 1) == const1_rtx
10568 && GET_CODE (XEXP (op0, 0)) == NOT)
10569 {
10570 op0 = simplify_and_const_int
10571 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10572 code = (code == NE ? EQ : NE);
10573 continue;
10574 }
10575
10576 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10577 (eq (and (lshiftrt X) 1) 0).
10578 Also handle the case where (not X) is expressed using xor. */
10579 if (const_op == 0 && equality_comparison_p
10580 && XEXP (op0, 1) == const1_rtx
10581 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10582 {
10583 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10584 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10585
10586 if (GET_CODE (shift_op) == NOT
10587 || (GET_CODE (shift_op) == XOR
10588 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10589 && GET_CODE (shift_count) == CONST_INT
10590 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10591 && (INTVAL (XEXP (shift_op, 1))
10592 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10593 {
10594 op0 = simplify_and_const_int
10595 (NULL_RTX, mode,
10596 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10597 (HOST_WIDE_INT) 1);
10598 code = (code == NE ? EQ : NE);
10599 continue;
10600 }
10601 }
10602 break;
10603
10604 case ASHIFT:
10605 /* If we have (compare (ashift FOO N) (const_int C)) and
10606 the high order N bits of FOO (N+1 if an inequality comparison)
10607 are known to be zero, we can do this by comparing FOO with C
10608 shifted right N bits so long as the low-order N bits of C are
10609 zero. */
10610 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10611 && INTVAL (XEXP (op0, 1)) >= 0
10612 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10613 < HOST_BITS_PER_WIDE_INT)
10614 && ((const_op
10615 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10616 && mode_width <= HOST_BITS_PER_WIDE_INT
10617 && (nonzero_bits (XEXP (op0, 0), mode)
10618 & ~(mask >> (INTVAL (XEXP (op0, 1))
10619 + ! equality_comparison_p))) == 0)
10620 {
10621 /* We must perform a logical shift, not an arithmetic one,
10622 as we want the top N bits of C to be zero. */
10623 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10624
10625 temp >>= INTVAL (XEXP (op0, 1));
10626 op1 = gen_int_mode (temp, mode);
10627 op0 = XEXP (op0, 0);
10628 continue;
10629 }
10630
10631 /* If we are doing a sign bit comparison, it means we are testing
10632 a particular bit. Convert it to the appropriate AND. */
10633 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10634 && mode_width <= HOST_BITS_PER_WIDE_INT)
10635 {
10636 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10637 ((HOST_WIDE_INT) 1
10638 << (mode_width - 1
10639 - INTVAL (XEXP (op0, 1)))));
10640 code = (code == LT ? NE : EQ);
10641 continue;
10642 }
10643
10644 /* If this an equality comparison with zero and we are shifting
10645 the low bit to the sign bit, we can convert this to an AND of the
10646 low-order bit. */
10647 if (const_op == 0 && equality_comparison_p
10648 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10649 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10650 == mode_width - 1)
10651 {
10652 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10653 (HOST_WIDE_INT) 1);
10654 continue;
10655 }
10656 break;
10657
10658 case ASHIFTRT:
10659 /* If this is an equality comparison with zero, we can do this
10660 as a logical shift, which might be much simpler. */
10661 if (equality_comparison_p && const_op == 0
10662 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10663 {
10664 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10665 XEXP (op0, 0),
10666 INTVAL (XEXP (op0, 1)));
10667 continue;
10668 }
10669
10670 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10671 do the comparison in a narrower mode. */
10672 if (! unsigned_comparison_p
10673 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10674 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10675 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10676 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10677 MODE_INT, 1)) != BLKmode
10678 && (((unsigned HOST_WIDE_INT) const_op
10679 + (GET_MODE_MASK (tmode) >> 1) + 1)
10680 <= GET_MODE_MASK (tmode)))
10681 {
10682 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10683 continue;
10684 }
10685
10686 /* Likewise if OP0 is a PLUS of a sign extension with a
10687 constant, which is usually represented with the PLUS
10688 between the shifts. */
10689 if (! unsigned_comparison_p
10690 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10691 && GET_CODE (XEXP (op0, 0)) == PLUS
10692 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10693 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10694 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10695 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10696 MODE_INT, 1)) != BLKmode
10697 && (((unsigned HOST_WIDE_INT) const_op
10698 + (GET_MODE_MASK (tmode) >> 1) + 1)
10699 <= GET_MODE_MASK (tmode)))
10700 {
10701 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10702 rtx add_const = XEXP (XEXP (op0, 0), 1);
10703 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10704 add_const, XEXP (op0, 1));
10705
10706 op0 = simplify_gen_binary (PLUS, tmode,
10707 gen_lowpart (tmode, inner),
10708 new_const);
10709 continue;
10710 }
10711
10712 /* ... fall through ... */
10713 case LSHIFTRT:
10714 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10715 the low order N bits of FOO are known to be zero, we can do this
10716 by comparing FOO with C shifted left N bits so long as no
10717 overflow occurs. */
10718 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10719 && INTVAL (XEXP (op0, 1)) >= 0
10720 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10721 && mode_width <= HOST_BITS_PER_WIDE_INT
10722 && (nonzero_bits (XEXP (op0, 0), mode)
10723 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10724 && (((unsigned HOST_WIDE_INT) const_op
10725 + (GET_CODE (op0) != LSHIFTRT
10726 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10727 + 1)
10728 : 0))
10729 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10730 {
10731 /* If the shift was logical, then we must make the condition
10732 unsigned. */
10733 if (GET_CODE (op0) == LSHIFTRT)
10734 code = unsigned_condition (code);
10735
10736 const_op <<= INTVAL (XEXP (op0, 1));
10737 op1 = GEN_INT (const_op);
10738 op0 = XEXP (op0, 0);
10739 continue;
10740 }
10741
10742 /* If we are using this shift to extract just the sign bit, we
10743 can replace this with an LT or GE comparison. */
10744 if (const_op == 0
10745 && (equality_comparison_p || sign_bit_comparison_p)
10746 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10747 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10748 == mode_width - 1)
10749 {
10750 op0 = XEXP (op0, 0);
10751 code = (code == NE || code == GT ? LT : GE);
10752 continue;
10753 }
10754 break;
10755
10756 default:
10757 break;
10758 }
10759
10760 break;
10761 }
10762
10763 /* Now make any compound operations involved in this comparison. Then,
10764 check for an outmost SUBREG on OP0 that is not doing anything or is
10765 paradoxical. The latter transformation must only be performed when
10766 it is known that the "extra" bits will be the same in op0 and op1 or
10767 that they don't matter. There are three cases to consider:
10768
10769 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10770 care bits and we can assume they have any convenient value. So
10771 making the transformation is safe.
10772
10773 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10774 In this case the upper bits of op0 are undefined. We should not make
10775 the simplification in that case as we do not know the contents of
10776 those bits.
10777
10778 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10779 UNKNOWN. In that case we know those bits are zeros or ones. We must
10780 also be sure that they are the same as the upper bits of op1.
10781
10782 We can never remove a SUBREG for a non-equality comparison because
10783 the sign bit is in a different place in the underlying object. */
10784
10785 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10786 op1 = make_compound_operation (op1, SET);
10787
10788 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10789 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10790 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10791 && (code == NE || code == EQ))
10792 {
10793 if (GET_MODE_SIZE (GET_MODE (op0))
10794 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10795 {
10796 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10797 implemented. */
10798 if (REG_P (SUBREG_REG (op0)))
10799 {
10800 op0 = SUBREG_REG (op0);
10801 op1 = gen_lowpart (GET_MODE (op0), op1);
10802 }
10803 }
10804 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10805 <= HOST_BITS_PER_WIDE_INT)
10806 && (nonzero_bits (SUBREG_REG (op0),
10807 GET_MODE (SUBREG_REG (op0)))
10808 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10809 {
10810 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10811
10812 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10813 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10814 op0 = SUBREG_REG (op0), op1 = tem;
10815 }
10816 }
10817
10818 /* We now do the opposite procedure: Some machines don't have compare
10819 insns in all modes. If OP0's mode is an integer mode smaller than a
10820 word and we can't do a compare in that mode, see if there is a larger
10821 mode for which we can do the compare. There are a number of cases in
10822 which we can use the wider mode. */
10823
10824 mode = GET_MODE (op0);
10825 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10826 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10827 && ! have_insn_for (COMPARE, mode))
10828 for (tmode = GET_MODE_WIDER_MODE (mode);
10829 (tmode != VOIDmode
10830 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10831 tmode = GET_MODE_WIDER_MODE (tmode))
10832 if (have_insn_for (COMPARE, tmode))
10833 {
10834 int zero_extended;
10835
10836 /* If the only nonzero bits in OP0 and OP1 are those in the
10837 narrower mode and this is an equality or unsigned comparison,
10838 we can use the wider mode. Similarly for sign-extended
10839 values, in which case it is true for all comparisons. */
10840 zero_extended = ((code == EQ || code == NE
10841 || code == GEU || code == GTU
10842 || code == LEU || code == LTU)
10843 && (nonzero_bits (op0, tmode)
10844 & ~GET_MODE_MASK (mode)) == 0
10845 && ((GET_CODE (op1) == CONST_INT
10846 || (nonzero_bits (op1, tmode)
10847 & ~GET_MODE_MASK (mode)) == 0)));
10848
10849 if (zero_extended
10850 || ((num_sign_bit_copies (op0, tmode)
10851 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10852 - GET_MODE_BITSIZE (mode)))
10853 && (num_sign_bit_copies (op1, tmode)
10854 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10855 - GET_MODE_BITSIZE (mode)))))
10856 {
10857 /* If OP0 is an AND and we don't have an AND in MODE either,
10858 make a new AND in the proper mode. */
10859 if (GET_CODE (op0) == AND
10860 && !have_insn_for (AND, mode))
10861 op0 = simplify_gen_binary (AND, tmode,
10862 gen_lowpart (tmode,
10863 XEXP (op0, 0)),
10864 gen_lowpart (tmode,
10865 XEXP (op0, 1)));
10866
10867 op0 = gen_lowpart (tmode, op0);
10868 if (zero_extended && GET_CODE (op1) == CONST_INT)
10869 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10870 op1 = gen_lowpart (tmode, op1);
10871 break;
10872 }
10873
10874 /* If this is a test for negative, we can make an explicit
10875 test of the sign bit. */
10876
10877 if (op1 == const0_rtx && (code == LT || code == GE)
10878 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10879 {
10880 op0 = simplify_gen_binary (AND, tmode,
10881 gen_lowpart (tmode, op0),
10882 GEN_INT ((HOST_WIDE_INT) 1
10883 << (GET_MODE_BITSIZE (mode)
10884 - 1)));
10885 code = (code == LT) ? NE : EQ;
10886 break;
10887 }
10888 }
10889
10890 #ifdef CANONICALIZE_COMPARISON
10891 /* If this machine only supports a subset of valid comparisons, see if we
10892 can convert an unsupported one into a supported one. */
10893 CANONICALIZE_COMPARISON (code, op0, op1);
10894 #endif
10895
10896 *pop0 = op0;
10897 *pop1 = op1;
10898
10899 return code;
10900 }
10901 \f
10902 /* Utility function for record_value_for_reg. Count number of
10903 rtxs in X. */
10904 static int
10905 count_rtxs (rtx x)
10906 {
10907 enum rtx_code code = GET_CODE (x);
10908 const char *fmt;
10909 int i, ret = 1;
10910
10911 if (GET_RTX_CLASS (code) == '2'
10912 || GET_RTX_CLASS (code) == 'c')
10913 {
10914 rtx x0 = XEXP (x, 0);
10915 rtx x1 = XEXP (x, 1);
10916
10917 if (x0 == x1)
10918 return 1 + 2 * count_rtxs (x0);
10919
10920 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10921 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10922 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10923 return 2 + 2 * count_rtxs (x0)
10924 + count_rtxs (x == XEXP (x1, 0)
10925 ? XEXP (x1, 1) : XEXP (x1, 0));
10926
10927 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10928 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10929 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10930 return 2 + 2 * count_rtxs (x1)
10931 + count_rtxs (x == XEXP (x0, 0)
10932 ? XEXP (x0, 1) : XEXP (x0, 0));
10933 }
10934
10935 fmt = GET_RTX_FORMAT (code);
10936 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10937 if (fmt[i] == 'e')
10938 ret += count_rtxs (XEXP (x, i));
10939
10940 return ret;
10941 }
10942 \f
10943 /* Utility function for following routine. Called when X is part of a value
10944 being stored into last_set_value. Sets last_set_table_tick
10945 for each register mentioned. Similar to mention_regs in cse.c */
10946
10947 static void
10948 update_table_tick (rtx x)
10949 {
10950 enum rtx_code code = GET_CODE (x);
10951 const char *fmt = GET_RTX_FORMAT (code);
10952 int i;
10953
10954 if (code == REG)
10955 {
10956 unsigned int regno = REGNO (x);
10957 unsigned int endregno
10958 = regno + (regno < FIRST_PSEUDO_REGISTER
10959 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10960 unsigned int r;
10961
10962 for (r = regno; r < endregno; r++)
10963 reg_stat[r].last_set_table_tick = label_tick;
10964
10965 return;
10966 }
10967
10968 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10969 /* Note that we can't have an "E" in values stored; see
10970 get_last_value_validate. */
10971 if (fmt[i] == 'e')
10972 {
10973 /* Check for identical subexpressions. If x contains
10974 identical subexpression we only have to traverse one of
10975 them. */
10976 if (i == 0 && ARITHMETIC_P (x))
10977 {
10978 /* Note that at this point x1 has already been
10979 processed. */
10980 rtx x0 = XEXP (x, 0);
10981 rtx x1 = XEXP (x, 1);
10982
10983 /* If x0 and x1 are identical then there is no need to
10984 process x0. */
10985 if (x0 == x1)
10986 break;
10987
10988 /* If x0 is identical to a subexpression of x1 then while
10989 processing x1, x0 has already been processed. Thus we
10990 are done with x. */
10991 if (ARITHMETIC_P (x1)
10992 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10993 break;
10994
10995 /* If x1 is identical to a subexpression of x0 then we
10996 still have to process the rest of x0. */
10997 if (ARITHMETIC_P (x0)
10998 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10999 {
11000 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11001 break;
11002 }
11003 }
11004
11005 update_table_tick (XEXP (x, i));
11006 }
11007 }
11008
11009 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11010 are saying that the register is clobbered and we no longer know its
11011 value. If INSN is zero, don't update reg_stat[].last_set; this is
11012 only permitted with VALUE also zero and is used to invalidate the
11013 register. */
11014
11015 static void
11016 record_value_for_reg (rtx reg, rtx insn, rtx value)
11017 {
11018 unsigned int regno = REGNO (reg);
11019 unsigned int endregno
11020 = regno + (regno < FIRST_PSEUDO_REGISTER
11021 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
11022 unsigned int i;
11023
11024 /* If VALUE contains REG and we have a previous value for REG, substitute
11025 the previous value. */
11026 if (value && insn && reg_overlap_mentioned_p (reg, value))
11027 {
11028 rtx tem;
11029
11030 /* Set things up so get_last_value is allowed to see anything set up to
11031 our insn. */
11032 subst_low_cuid = INSN_CUID (insn);
11033 tem = get_last_value (reg);
11034
11035 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11036 it isn't going to be useful and will take a lot of time to process,
11037 so just use the CLOBBER. */
11038
11039 if (tem)
11040 {
11041 if (ARITHMETIC_P (tem)
11042 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11043 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11044 tem = XEXP (tem, 0);
11045 else if (count_occurrences (value, reg, 1) >= 2)
11046 {
11047 /* If there are two or more occurrences of REG in VALUE,
11048 prevent the value from growing too much. */
11049 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11050 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11051 }
11052
11053 value = replace_rtx (copy_rtx (value), reg, tem);
11054 }
11055 }
11056
11057 /* For each register modified, show we don't know its value, that
11058 we don't know about its bitwise content, that its value has been
11059 updated, and that we don't know the location of the death of the
11060 register. */
11061 for (i = regno; i < endregno; i++)
11062 {
11063 if (insn)
11064 reg_stat[i].last_set = insn;
11065
11066 reg_stat[i].last_set_value = 0;
11067 reg_stat[i].last_set_mode = 0;
11068 reg_stat[i].last_set_nonzero_bits = 0;
11069 reg_stat[i].last_set_sign_bit_copies = 0;
11070 reg_stat[i].last_death = 0;
11071 }
11072
11073 /* Mark registers that are being referenced in this value. */
11074 if (value)
11075 update_table_tick (value);
11076
11077 /* Now update the status of each register being set.
11078 If someone is using this register in this block, set this register
11079 to invalid since we will get confused between the two lives in this
11080 basic block. This makes using this register always invalid. In cse, we
11081 scan the table to invalidate all entries using this register, but this
11082 is too much work for us. */
11083
11084 for (i = regno; i < endregno; i++)
11085 {
11086 reg_stat[i].last_set_label = label_tick;
11087 if (value && reg_stat[i].last_set_table_tick == label_tick)
11088 reg_stat[i].last_set_invalid = 1;
11089 else
11090 reg_stat[i].last_set_invalid = 0;
11091 }
11092
11093 /* The value being assigned might refer to X (like in "x++;"). In that
11094 case, we must replace it with (clobber (const_int 0)) to prevent
11095 infinite loops. */
11096 if (value && ! get_last_value_validate (&value, insn,
11097 reg_stat[regno].last_set_label, 0))
11098 {
11099 value = copy_rtx (value);
11100 if (! get_last_value_validate (&value, insn,
11101 reg_stat[regno].last_set_label, 1))
11102 value = 0;
11103 }
11104
11105 /* For the main register being modified, update the value, the mode, the
11106 nonzero bits, and the number of sign bit copies. */
11107
11108 reg_stat[regno].last_set_value = value;
11109
11110 if (value)
11111 {
11112 enum machine_mode mode = GET_MODE (reg);
11113 subst_low_cuid = INSN_CUID (insn);
11114 reg_stat[regno].last_set_mode = mode;
11115 if (GET_MODE_CLASS (mode) == MODE_INT
11116 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11117 mode = nonzero_bits_mode;
11118 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11119 reg_stat[regno].last_set_sign_bit_copies
11120 = num_sign_bit_copies (value, GET_MODE (reg));
11121 }
11122 }
11123
11124 /* Called via note_stores from record_dead_and_set_regs to handle one
11125 SET or CLOBBER in an insn. DATA is the instruction in which the
11126 set is occurring. */
11127
11128 static void
11129 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11130 {
11131 rtx record_dead_insn = (rtx) data;
11132
11133 if (GET_CODE (dest) == SUBREG)
11134 dest = SUBREG_REG (dest);
11135
11136 if (REG_P (dest))
11137 {
11138 /* If we are setting the whole register, we know its value. Otherwise
11139 show that we don't know the value. We can handle SUBREG in
11140 some cases. */
11141 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11142 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11143 else if (GET_CODE (setter) == SET
11144 && GET_CODE (SET_DEST (setter)) == SUBREG
11145 && SUBREG_REG (SET_DEST (setter)) == dest
11146 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11147 && subreg_lowpart_p (SET_DEST (setter)))
11148 record_value_for_reg (dest, record_dead_insn,
11149 gen_lowpart (GET_MODE (dest),
11150 SET_SRC (setter)));
11151 else
11152 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11153 }
11154 else if (MEM_P (dest)
11155 /* Ignore pushes, they clobber nothing. */
11156 && ! push_operand (dest, GET_MODE (dest)))
11157 mem_last_set = INSN_CUID (record_dead_insn);
11158 }
11159
11160 /* Update the records of when each REG was most recently set or killed
11161 for the things done by INSN. This is the last thing done in processing
11162 INSN in the combiner loop.
11163
11164 We update reg_stat[], in particular fields last_set, last_set_value,
11165 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11166 last_death, and also the similar information mem_last_set (which insn
11167 most recently modified memory) and last_call_cuid (which insn was the
11168 most recent subroutine call). */
11169
11170 static void
11171 record_dead_and_set_regs (rtx insn)
11172 {
11173 rtx link;
11174 unsigned int i;
11175
11176 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11177 {
11178 if (REG_NOTE_KIND (link) == REG_DEAD
11179 && REG_P (XEXP (link, 0)))
11180 {
11181 unsigned int regno = REGNO (XEXP (link, 0));
11182 unsigned int endregno
11183 = regno + (regno < FIRST_PSEUDO_REGISTER
11184 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11185 : 1);
11186
11187 for (i = regno; i < endregno; i++)
11188 reg_stat[i].last_death = insn;
11189 }
11190 else if (REG_NOTE_KIND (link) == REG_INC)
11191 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11192 }
11193
11194 if (CALL_P (insn))
11195 {
11196 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11197 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11198 {
11199 reg_stat[i].last_set_value = 0;
11200 reg_stat[i].last_set_mode = 0;
11201 reg_stat[i].last_set_nonzero_bits = 0;
11202 reg_stat[i].last_set_sign_bit_copies = 0;
11203 reg_stat[i].last_death = 0;
11204 }
11205
11206 last_call_cuid = mem_last_set = INSN_CUID (insn);
11207
11208 /* Don't bother recording what this insn does. It might set the
11209 return value register, but we can't combine into a call
11210 pattern anyway, so there's no point trying (and it may cause
11211 a crash, if e.g. we wind up asking for last_set_value of a
11212 SUBREG of the return value register). */
11213 return;
11214 }
11215
11216 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11217 }
11218
11219 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11220 register present in the SUBREG, so for each such SUBREG go back and
11221 adjust nonzero and sign bit information of the registers that are
11222 known to have some zero/sign bits set.
11223
11224 This is needed because when combine blows the SUBREGs away, the
11225 information on zero/sign bits is lost and further combines can be
11226 missed because of that. */
11227
11228 static void
11229 record_promoted_value (rtx insn, rtx subreg)
11230 {
11231 rtx links, set;
11232 unsigned int regno = REGNO (SUBREG_REG (subreg));
11233 enum machine_mode mode = GET_MODE (subreg);
11234
11235 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11236 return;
11237
11238 for (links = LOG_LINKS (insn); links;)
11239 {
11240 insn = XEXP (links, 0);
11241 set = single_set (insn);
11242
11243 if (! set || !REG_P (SET_DEST (set))
11244 || REGNO (SET_DEST (set)) != regno
11245 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11246 {
11247 links = XEXP (links, 1);
11248 continue;
11249 }
11250
11251 if (reg_stat[regno].last_set == insn)
11252 {
11253 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11254 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11255 }
11256
11257 if (REG_P (SET_SRC (set)))
11258 {
11259 regno = REGNO (SET_SRC (set));
11260 links = LOG_LINKS (insn);
11261 }
11262 else
11263 break;
11264 }
11265 }
11266
11267 /* Scan X for promoted SUBREGs. For each one found,
11268 note what it implies to the registers used in it. */
11269
11270 static void
11271 check_promoted_subreg (rtx insn, rtx x)
11272 {
11273 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11274 && REG_P (SUBREG_REG (x)))
11275 record_promoted_value (insn, x);
11276 else
11277 {
11278 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11279 int i, j;
11280
11281 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11282 switch (format[i])
11283 {
11284 case 'e':
11285 check_promoted_subreg (insn, XEXP (x, i));
11286 break;
11287 case 'V':
11288 case 'E':
11289 if (XVEC (x, i) != 0)
11290 for (j = 0; j < XVECLEN (x, i); j++)
11291 check_promoted_subreg (insn, XVECEXP (x, i, j));
11292 break;
11293 }
11294 }
11295 }
11296 \f
11297 /* Utility routine for the following function. Verify that all the registers
11298 mentioned in *LOC are valid when *LOC was part of a value set when
11299 label_tick == TICK. Return 0 if some are not.
11300
11301 If REPLACE is nonzero, replace the invalid reference with
11302 (clobber (const_int 0)) and return 1. This replacement is useful because
11303 we often can get useful information about the form of a value (e.g., if
11304 it was produced by a shift that always produces -1 or 0) even though
11305 we don't know exactly what registers it was produced from. */
11306
11307 static int
11308 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11309 {
11310 rtx x = *loc;
11311 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11312 int len = GET_RTX_LENGTH (GET_CODE (x));
11313 int i;
11314
11315 if (REG_P (x))
11316 {
11317 unsigned int regno = REGNO (x);
11318 unsigned int endregno
11319 = regno + (regno < FIRST_PSEUDO_REGISTER
11320 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11321 unsigned int j;
11322
11323 for (j = regno; j < endregno; j++)
11324 if (reg_stat[j].last_set_invalid
11325 /* If this is a pseudo-register that was only set once and not
11326 live at the beginning of the function, it is always valid. */
11327 || (! (regno >= FIRST_PSEUDO_REGISTER
11328 && REG_N_SETS (regno) == 1
11329 && (! REGNO_REG_SET_P
11330 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11331 regno)))
11332 && reg_stat[j].last_set_label > tick))
11333 {
11334 if (replace)
11335 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11336 return replace;
11337 }
11338
11339 return 1;
11340 }
11341 /* If this is a memory reference, make sure that there were
11342 no stores after it that might have clobbered the value. We don't
11343 have alias info, so we assume any store invalidates it. */
11344 else if (MEM_P (x) && !MEM_READONLY_P (x)
11345 && INSN_CUID (insn) <= mem_last_set)
11346 {
11347 if (replace)
11348 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11349 return replace;
11350 }
11351
11352 for (i = 0; i < len; i++)
11353 {
11354 if (fmt[i] == 'e')
11355 {
11356 /* Check for identical subexpressions. If x contains
11357 identical subexpression we only have to traverse one of
11358 them. */
11359 if (i == 1 && ARITHMETIC_P (x))
11360 {
11361 /* Note that at this point x0 has already been checked
11362 and found valid. */
11363 rtx x0 = XEXP (x, 0);
11364 rtx x1 = XEXP (x, 1);
11365
11366 /* If x0 and x1 are identical then x is also valid. */
11367 if (x0 == x1)
11368 return 1;
11369
11370 /* If x1 is identical to a subexpression of x0 then
11371 while checking x0, x1 has already been checked. Thus
11372 it is valid and so as x. */
11373 if (ARITHMETIC_P (x0)
11374 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11375 return 1;
11376
11377 /* If x0 is identical to a subexpression of x1 then x is
11378 valid iff the rest of x1 is valid. */
11379 if (ARITHMETIC_P (x1)
11380 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11381 return
11382 get_last_value_validate (&XEXP (x1,
11383 x0 == XEXP (x1, 0) ? 1 : 0),
11384 insn, tick, replace);
11385 }
11386
11387 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11388 replace) == 0)
11389 return 0;
11390 }
11391 /* Don't bother with these. They shouldn't occur anyway. */
11392 else if (fmt[i] == 'E')
11393 return 0;
11394 }
11395
11396 /* If we haven't found a reason for it to be invalid, it is valid. */
11397 return 1;
11398 }
11399
11400 /* Get the last value assigned to X, if known. Some registers
11401 in the value may be replaced with (clobber (const_int 0)) if their value
11402 is known longer known reliably. */
11403
11404 static rtx
11405 get_last_value (rtx x)
11406 {
11407 unsigned int regno;
11408 rtx value;
11409
11410 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11411 then convert it to the desired mode. If this is a paradoxical SUBREG,
11412 we cannot predict what values the "extra" bits might have. */
11413 if (GET_CODE (x) == SUBREG
11414 && subreg_lowpart_p (x)
11415 && (GET_MODE_SIZE (GET_MODE (x))
11416 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11417 && (value = get_last_value (SUBREG_REG (x))) != 0)
11418 return gen_lowpart (GET_MODE (x), value);
11419
11420 if (!REG_P (x))
11421 return 0;
11422
11423 regno = REGNO (x);
11424 value = reg_stat[regno].last_set_value;
11425
11426 /* If we don't have a value, or if it isn't for this basic block and
11427 it's either a hard register, set more than once, or it's a live
11428 at the beginning of the function, return 0.
11429
11430 Because if it's not live at the beginning of the function then the reg
11431 is always set before being used (is never used without being set).
11432 And, if it's set only once, and it's always set before use, then all
11433 uses must have the same last value, even if it's not from this basic
11434 block. */
11435
11436 if (value == 0
11437 || (reg_stat[regno].last_set_label != label_tick
11438 && (regno < FIRST_PSEUDO_REGISTER
11439 || REG_N_SETS (regno) != 1
11440 || (REGNO_REG_SET_P
11441 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11442 regno)))))
11443 return 0;
11444
11445 /* If the value was set in a later insn than the ones we are processing,
11446 we can't use it even if the register was only set once. */
11447 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11448 return 0;
11449
11450 /* If the value has all its registers valid, return it. */
11451 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11452 reg_stat[regno].last_set_label, 0))
11453 return value;
11454
11455 /* Otherwise, make a copy and replace any invalid register with
11456 (clobber (const_int 0)). If that fails for some reason, return 0. */
11457
11458 value = copy_rtx (value);
11459 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11460 reg_stat[regno].last_set_label, 1))
11461 return value;
11462
11463 return 0;
11464 }
11465 \f
11466 /* Return nonzero if expression X refers to a REG or to memory
11467 that is set in an instruction more recent than FROM_CUID. */
11468
11469 static int
11470 use_crosses_set_p (rtx x, int from_cuid)
11471 {
11472 const char *fmt;
11473 int i;
11474 enum rtx_code code = GET_CODE (x);
11475
11476 if (code == REG)
11477 {
11478 unsigned int regno = REGNO (x);
11479 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11480 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11481
11482 #ifdef PUSH_ROUNDING
11483 /* Don't allow uses of the stack pointer to be moved,
11484 because we don't know whether the move crosses a push insn. */
11485 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11486 return 1;
11487 #endif
11488 for (; regno < endreg; regno++)
11489 if (reg_stat[regno].last_set
11490 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11491 return 1;
11492 return 0;
11493 }
11494
11495 if (code == MEM && mem_last_set > from_cuid)
11496 return 1;
11497
11498 fmt = GET_RTX_FORMAT (code);
11499
11500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11501 {
11502 if (fmt[i] == 'E')
11503 {
11504 int j;
11505 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11506 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11507 return 1;
11508 }
11509 else if (fmt[i] == 'e'
11510 && use_crosses_set_p (XEXP (x, i), from_cuid))
11511 return 1;
11512 }
11513 return 0;
11514 }
11515 \f
11516 /* Define three variables used for communication between the following
11517 routines. */
11518
11519 static unsigned int reg_dead_regno, reg_dead_endregno;
11520 static int reg_dead_flag;
11521
11522 /* Function called via note_stores from reg_dead_at_p.
11523
11524 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11525 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11526
11527 static void
11528 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11529 {
11530 unsigned int regno, endregno;
11531
11532 if (!REG_P (dest))
11533 return;
11534
11535 regno = REGNO (dest);
11536 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11537 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11538
11539 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11540 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11541 }
11542
11543 /* Return nonzero if REG is known to be dead at INSN.
11544
11545 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11546 referencing REG, it is dead. If we hit a SET referencing REG, it is
11547 live. Otherwise, see if it is live or dead at the start of the basic
11548 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11549 must be assumed to be always live. */
11550
11551 static int
11552 reg_dead_at_p (rtx reg, rtx insn)
11553 {
11554 basic_block block;
11555 unsigned int i;
11556
11557 /* Set variables for reg_dead_at_p_1. */
11558 reg_dead_regno = REGNO (reg);
11559 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11560 ? hard_regno_nregs[reg_dead_regno]
11561 [GET_MODE (reg)]
11562 : 1);
11563
11564 reg_dead_flag = 0;
11565
11566 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11567 we allow the machine description to decide whether use-and-clobber
11568 patterns are OK. */
11569 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11570 {
11571 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11572 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11573 return 0;
11574 }
11575
11576 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11577 beginning of function. */
11578 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11579 insn = prev_nonnote_insn (insn))
11580 {
11581 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11582 if (reg_dead_flag)
11583 return reg_dead_flag == 1 ? 1 : 0;
11584
11585 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11586 return 1;
11587 }
11588
11589 /* Get the basic block that we were in. */
11590 if (insn == 0)
11591 block = ENTRY_BLOCK_PTR->next_bb;
11592 else
11593 {
11594 FOR_EACH_BB (block)
11595 if (insn == BB_HEAD (block))
11596 break;
11597
11598 if (block == EXIT_BLOCK_PTR)
11599 return 0;
11600 }
11601
11602 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11603 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11604 return 0;
11605
11606 return 1;
11607 }
11608 \f
11609 /* Note hard registers in X that are used. This code is similar to
11610 that in flow.c, but much simpler since we don't care about pseudos. */
11611
11612 static void
11613 mark_used_regs_combine (rtx x)
11614 {
11615 RTX_CODE code = GET_CODE (x);
11616 unsigned int regno;
11617 int i;
11618
11619 switch (code)
11620 {
11621 case LABEL_REF:
11622 case SYMBOL_REF:
11623 case CONST_INT:
11624 case CONST:
11625 case CONST_DOUBLE:
11626 case CONST_VECTOR:
11627 case PC:
11628 case ADDR_VEC:
11629 case ADDR_DIFF_VEC:
11630 case ASM_INPUT:
11631 #ifdef HAVE_cc0
11632 /* CC0 must die in the insn after it is set, so we don't need to take
11633 special note of it here. */
11634 case CC0:
11635 #endif
11636 return;
11637
11638 case CLOBBER:
11639 /* If we are clobbering a MEM, mark any hard registers inside the
11640 address as used. */
11641 if (MEM_P (XEXP (x, 0)))
11642 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11643 return;
11644
11645 case REG:
11646 regno = REGNO (x);
11647 /* A hard reg in a wide mode may really be multiple registers.
11648 If so, mark all of them just like the first. */
11649 if (regno < FIRST_PSEUDO_REGISTER)
11650 {
11651 unsigned int endregno, r;
11652
11653 /* None of this applies to the stack, frame or arg pointers. */
11654 if (regno == STACK_POINTER_REGNUM
11655 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11656 || regno == HARD_FRAME_POINTER_REGNUM
11657 #endif
11658 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11659 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11660 #endif
11661 || regno == FRAME_POINTER_REGNUM)
11662 return;
11663
11664 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11665 for (r = regno; r < endregno; r++)
11666 SET_HARD_REG_BIT (newpat_used_regs, r);
11667 }
11668 return;
11669
11670 case SET:
11671 {
11672 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11673 the address. */
11674 rtx testreg = SET_DEST (x);
11675
11676 while (GET_CODE (testreg) == SUBREG
11677 || GET_CODE (testreg) == ZERO_EXTRACT
11678 || GET_CODE (testreg) == STRICT_LOW_PART)
11679 testreg = XEXP (testreg, 0);
11680
11681 if (MEM_P (testreg))
11682 mark_used_regs_combine (XEXP (testreg, 0));
11683
11684 mark_used_regs_combine (SET_SRC (x));
11685 }
11686 return;
11687
11688 default:
11689 break;
11690 }
11691
11692 /* Recursively scan the operands of this expression. */
11693
11694 {
11695 const char *fmt = GET_RTX_FORMAT (code);
11696
11697 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11698 {
11699 if (fmt[i] == 'e')
11700 mark_used_regs_combine (XEXP (x, i));
11701 else if (fmt[i] == 'E')
11702 {
11703 int j;
11704
11705 for (j = 0; j < XVECLEN (x, i); j++)
11706 mark_used_regs_combine (XVECEXP (x, i, j));
11707 }
11708 }
11709 }
11710 }
11711 \f
11712 /* Remove register number REGNO from the dead registers list of INSN.
11713
11714 Return the note used to record the death, if there was one. */
11715
11716 rtx
11717 remove_death (unsigned int regno, rtx insn)
11718 {
11719 rtx note = find_regno_note (insn, REG_DEAD, regno);
11720
11721 if (note)
11722 {
11723 REG_N_DEATHS (regno)--;
11724 remove_note (insn, note);
11725 }
11726
11727 return note;
11728 }
11729
11730 /* For each register (hardware or pseudo) used within expression X, if its
11731 death is in an instruction with cuid between FROM_CUID (inclusive) and
11732 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11733 list headed by PNOTES.
11734
11735 That said, don't move registers killed by maybe_kill_insn.
11736
11737 This is done when X is being merged by combination into TO_INSN. These
11738 notes will then be distributed as needed. */
11739
11740 static void
11741 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11742 rtx *pnotes)
11743 {
11744 const char *fmt;
11745 int len, i;
11746 enum rtx_code code = GET_CODE (x);
11747
11748 if (code == REG)
11749 {
11750 unsigned int regno = REGNO (x);
11751 rtx where_dead = reg_stat[regno].last_death;
11752 rtx before_dead, after_dead;
11753
11754 /* Don't move the register if it gets killed in between from and to. */
11755 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11756 && ! reg_referenced_p (x, maybe_kill_insn))
11757 return;
11758
11759 /* WHERE_DEAD could be a USE insn made by combine, so first we
11760 make sure that we have insns with valid INSN_CUID values. */
11761 before_dead = where_dead;
11762 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11763 before_dead = PREV_INSN (before_dead);
11764
11765 after_dead = where_dead;
11766 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11767 after_dead = NEXT_INSN (after_dead);
11768
11769 if (before_dead && after_dead
11770 && INSN_CUID (before_dead) >= from_cuid
11771 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11772 || (where_dead != after_dead
11773 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11774 {
11775 rtx note = remove_death (regno, where_dead);
11776
11777 /* It is possible for the call above to return 0. This can occur
11778 when last_death points to I2 or I1 that we combined with.
11779 In that case make a new note.
11780
11781 We must also check for the case where X is a hard register
11782 and NOTE is a death note for a range of hard registers
11783 including X. In that case, we must put REG_DEAD notes for
11784 the remaining registers in place of NOTE. */
11785
11786 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11787 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11788 > GET_MODE_SIZE (GET_MODE (x))))
11789 {
11790 unsigned int deadregno = REGNO (XEXP (note, 0));
11791 unsigned int deadend
11792 = (deadregno + hard_regno_nregs[deadregno]
11793 [GET_MODE (XEXP (note, 0))]);
11794 unsigned int ourend
11795 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11796 unsigned int i;
11797
11798 for (i = deadregno; i < deadend; i++)
11799 if (i < regno || i >= ourend)
11800 REG_NOTES (where_dead)
11801 = gen_rtx_EXPR_LIST (REG_DEAD,
11802 regno_reg_rtx[i],
11803 REG_NOTES (where_dead));
11804 }
11805
11806 /* If we didn't find any note, or if we found a REG_DEAD note that
11807 covers only part of the given reg, and we have a multi-reg hard
11808 register, then to be safe we must check for REG_DEAD notes
11809 for each register other than the first. They could have
11810 their own REG_DEAD notes lying around. */
11811 else if ((note == 0
11812 || (note != 0
11813 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11814 < GET_MODE_SIZE (GET_MODE (x)))))
11815 && regno < FIRST_PSEUDO_REGISTER
11816 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11817 {
11818 unsigned int ourend
11819 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11820 unsigned int i, offset;
11821 rtx oldnotes = 0;
11822
11823 if (note)
11824 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11825 else
11826 offset = 1;
11827
11828 for (i = regno + offset; i < ourend; i++)
11829 move_deaths (regno_reg_rtx[i],
11830 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11831 }
11832
11833 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11834 {
11835 XEXP (note, 1) = *pnotes;
11836 *pnotes = note;
11837 }
11838 else
11839 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11840
11841 REG_N_DEATHS (regno)++;
11842 }
11843
11844 return;
11845 }
11846
11847 else if (GET_CODE (x) == SET)
11848 {
11849 rtx dest = SET_DEST (x);
11850
11851 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11852
11853 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11854 that accesses one word of a multi-word item, some
11855 piece of everything register in the expression is used by
11856 this insn, so remove any old death. */
11857 /* ??? So why do we test for equality of the sizes? */
11858
11859 if (GET_CODE (dest) == ZERO_EXTRACT
11860 || GET_CODE (dest) == STRICT_LOW_PART
11861 || (GET_CODE (dest) == SUBREG
11862 && (((GET_MODE_SIZE (GET_MODE (dest))
11863 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11864 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11865 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11866 {
11867 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11868 return;
11869 }
11870
11871 /* If this is some other SUBREG, we know it replaces the entire
11872 value, so use that as the destination. */
11873 if (GET_CODE (dest) == SUBREG)
11874 dest = SUBREG_REG (dest);
11875
11876 /* If this is a MEM, adjust deaths of anything used in the address.
11877 For a REG (the only other possibility), the entire value is
11878 being replaced so the old value is not used in this insn. */
11879
11880 if (MEM_P (dest))
11881 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11882 to_insn, pnotes);
11883 return;
11884 }
11885
11886 else if (GET_CODE (x) == CLOBBER)
11887 return;
11888
11889 len = GET_RTX_LENGTH (code);
11890 fmt = GET_RTX_FORMAT (code);
11891
11892 for (i = 0; i < len; i++)
11893 {
11894 if (fmt[i] == 'E')
11895 {
11896 int j;
11897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11898 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11899 to_insn, pnotes);
11900 }
11901 else if (fmt[i] == 'e')
11902 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11903 }
11904 }
11905 \f
11906 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11907 pattern of an insn. X must be a REG. */
11908
11909 static int
11910 reg_bitfield_target_p (rtx x, rtx body)
11911 {
11912 int i;
11913
11914 if (GET_CODE (body) == SET)
11915 {
11916 rtx dest = SET_DEST (body);
11917 rtx target;
11918 unsigned int regno, tregno, endregno, endtregno;
11919
11920 if (GET_CODE (dest) == ZERO_EXTRACT)
11921 target = XEXP (dest, 0);
11922 else if (GET_CODE (dest) == STRICT_LOW_PART)
11923 target = SUBREG_REG (XEXP (dest, 0));
11924 else
11925 return 0;
11926
11927 if (GET_CODE (target) == SUBREG)
11928 target = SUBREG_REG (target);
11929
11930 if (!REG_P (target))
11931 return 0;
11932
11933 tregno = REGNO (target), regno = REGNO (x);
11934 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11935 return target == x;
11936
11937 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11938 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11939
11940 return endregno > tregno && regno < endtregno;
11941 }
11942
11943 else if (GET_CODE (body) == PARALLEL)
11944 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11945 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11946 return 1;
11947
11948 return 0;
11949 }
11950 \f
11951 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11952 as appropriate. I3 and I2 are the insns resulting from the combination
11953 insns including FROM (I2 may be zero).
11954
11955 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11956 not need REG_DEAD notes because they are being substituted for. This
11957 saves searching in the most common cases.
11958
11959 Each note in the list is either ignored or placed on some insns, depending
11960 on the type of note. */
11961
11962 static void
11963 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11964 rtx elim_i1)
11965 {
11966 rtx note, next_note;
11967 rtx tem;
11968
11969 for (note = notes; note; note = next_note)
11970 {
11971 rtx place = 0, place2 = 0;
11972
11973 /* If this NOTE references a pseudo register, ensure it references
11974 the latest copy of that register. */
11975 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11976 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11977 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11978
11979 next_note = XEXP (note, 1);
11980 switch (REG_NOTE_KIND (note))
11981 {
11982 case REG_BR_PROB:
11983 case REG_BR_PRED:
11984 /* Doesn't matter much where we put this, as long as it's somewhere.
11985 It is preferable to keep these notes on branches, which is most
11986 likely to be i3. */
11987 place = i3;
11988 break;
11989
11990 case REG_VALUE_PROFILE:
11991 /* Just get rid of this note, as it is unused later anyway. */
11992 break;
11993
11994 case REG_NON_LOCAL_GOTO:
11995 if (JUMP_P (i3))
11996 place = i3;
11997 else
11998 {
11999 gcc_assert (i2 && JUMP_P (i2));
12000 place = i2;
12001 }
12002 break;
12003
12004 case REG_EH_REGION:
12005 /* These notes must remain with the call or trapping instruction. */
12006 if (CALL_P (i3))
12007 place = i3;
12008 else if (i2 && CALL_P (i2))
12009 place = i2;
12010 else
12011 {
12012 gcc_assert (flag_non_call_exceptions);
12013 if (may_trap_p (i3))
12014 place = i3;
12015 else if (i2 && may_trap_p (i2))
12016 place = i2;
12017 /* ??? Otherwise assume we've combined things such that we
12018 can now prove that the instructions can't trap. Drop the
12019 note in this case. */
12020 }
12021 break;
12022
12023 case REG_NORETURN:
12024 case REG_SETJMP:
12025 /* These notes must remain with the call. It should not be
12026 possible for both I2 and I3 to be a call. */
12027 if (CALL_P (i3))
12028 place = i3;
12029 else
12030 {
12031 gcc_assert (i2 && CALL_P (i2));
12032 place = i2;
12033 }
12034 break;
12035
12036 case REG_UNUSED:
12037 /* Any clobbers for i3 may still exist, and so we must process
12038 REG_UNUSED notes from that insn.
12039
12040 Any clobbers from i2 or i1 can only exist if they were added by
12041 recog_for_combine. In that case, recog_for_combine created the
12042 necessary REG_UNUSED notes. Trying to keep any original
12043 REG_UNUSED notes from these insns can cause incorrect output
12044 if it is for the same register as the original i3 dest.
12045 In that case, we will notice that the register is set in i3,
12046 and then add a REG_UNUSED note for the destination of i3, which
12047 is wrong. However, it is possible to have REG_UNUSED notes from
12048 i2 or i1 for register which were both used and clobbered, so
12049 we keep notes from i2 or i1 if they will turn into REG_DEAD
12050 notes. */
12051
12052 /* If this register is set or clobbered in I3, put the note there
12053 unless there is one already. */
12054 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12055 {
12056 if (from_insn != i3)
12057 break;
12058
12059 if (! (REG_P (XEXP (note, 0))
12060 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12061 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12062 place = i3;
12063 }
12064 /* Otherwise, if this register is used by I3, then this register
12065 now dies here, so we must put a REG_DEAD note here unless there
12066 is one already. */
12067 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12068 && ! (REG_P (XEXP (note, 0))
12069 ? find_regno_note (i3, REG_DEAD,
12070 REGNO (XEXP (note, 0)))
12071 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12072 {
12073 PUT_REG_NOTE_KIND (note, REG_DEAD);
12074 place = i3;
12075 }
12076 break;
12077
12078 case REG_EQUAL:
12079 case REG_EQUIV:
12080 case REG_NOALIAS:
12081 /* These notes say something about results of an insn. We can
12082 only support them if they used to be on I3 in which case they
12083 remain on I3. Otherwise they are ignored.
12084
12085 If the note refers to an expression that is not a constant, we
12086 must also ignore the note since we cannot tell whether the
12087 equivalence is still true. It might be possible to do
12088 slightly better than this (we only have a problem if I2DEST
12089 or I1DEST is present in the expression), but it doesn't
12090 seem worth the trouble. */
12091
12092 if (from_insn == i3
12093 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12094 place = i3;
12095 break;
12096
12097 case REG_INC:
12098 case REG_NO_CONFLICT:
12099 /* These notes say something about how a register is used. They must
12100 be present on any use of the register in I2 or I3. */
12101 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12102 place = i3;
12103
12104 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12105 {
12106 if (place)
12107 place2 = i2;
12108 else
12109 place = i2;
12110 }
12111 break;
12112
12113 case REG_LABEL:
12114 /* This can show up in several ways -- either directly in the
12115 pattern, or hidden off in the constant pool with (or without?)
12116 a REG_EQUAL note. */
12117 /* ??? Ignore the without-reg_equal-note problem for now. */
12118 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12119 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12120 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12121 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12122 place = i3;
12123
12124 if (i2
12125 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12126 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12127 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12128 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12129 {
12130 if (place)
12131 place2 = i2;
12132 else
12133 place = i2;
12134 }
12135
12136 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12137 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12138 if (place && JUMP_P (place))
12139 {
12140 rtx label = JUMP_LABEL (place);
12141
12142 if (!label)
12143 JUMP_LABEL (place) = XEXP (note, 0);
12144 else
12145 {
12146 gcc_assert (label == XEXP (note, 0));
12147 if (LABEL_P (label))
12148 LABEL_NUSES (label)--;
12149 }
12150 place = 0;
12151 }
12152 if (place2 && JUMP_P (place2))
12153 {
12154 rtx label = JUMP_LABEL (place2);
12155
12156 if (!label)
12157 JUMP_LABEL (place2) = XEXP (note, 0);
12158 else
12159 {
12160 gcc_assert (label == XEXP (note, 0));
12161 if (LABEL_P (label))
12162 LABEL_NUSES (label)--;
12163 }
12164 place2 = 0;
12165 }
12166 break;
12167
12168 case REG_NONNEG:
12169 /* This note says something about the value of a register prior
12170 to the execution of an insn. It is too much trouble to see
12171 if the note is still correct in all situations. It is better
12172 to simply delete it. */
12173 break;
12174
12175 case REG_RETVAL:
12176 /* If the insn previously containing this note still exists,
12177 put it back where it was. Otherwise move it to the previous
12178 insn. Adjust the corresponding REG_LIBCALL note. */
12179 if (!NOTE_P (from_insn))
12180 place = from_insn;
12181 else
12182 {
12183 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12184 place = prev_real_insn (from_insn);
12185 if (tem && place)
12186 XEXP (tem, 0) = place;
12187 /* If we're deleting the last remaining instruction of a
12188 libcall sequence, don't add the notes. */
12189 else if (XEXP (note, 0) == from_insn)
12190 tem = place = 0;
12191 /* Don't add the dangling REG_RETVAL note. */
12192 else if (! tem)
12193 place = 0;
12194 }
12195 break;
12196
12197 case REG_LIBCALL:
12198 /* This is handled similarly to REG_RETVAL. */
12199 if (!NOTE_P (from_insn))
12200 place = from_insn;
12201 else
12202 {
12203 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12204 place = next_real_insn (from_insn);
12205 if (tem && place)
12206 XEXP (tem, 0) = place;
12207 /* If we're deleting the last remaining instruction of a
12208 libcall sequence, don't add the notes. */
12209 else if (XEXP (note, 0) == from_insn)
12210 tem = place = 0;
12211 /* Don't add the dangling REG_LIBCALL note. */
12212 else if (! tem)
12213 place = 0;
12214 }
12215 break;
12216
12217 case REG_DEAD:
12218 /* If the register is used as an input in I3, it dies there.
12219 Similarly for I2, if it is nonzero and adjacent to I3.
12220
12221 If the register is not used as an input in either I3 or I2
12222 and it is not one of the registers we were supposed to eliminate,
12223 there are two possibilities. We might have a non-adjacent I2
12224 or we might have somehow eliminated an additional register
12225 from a computation. For example, we might have had A & B where
12226 we discover that B will always be zero. In this case we will
12227 eliminate the reference to A.
12228
12229 In both cases, we must search to see if we can find a previous
12230 use of A and put the death note there. */
12231
12232 if (from_insn
12233 && CALL_P (from_insn)
12234 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12235 place = from_insn;
12236 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12237 place = i3;
12238 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12239 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12240 place = i2;
12241
12242 if (place == 0
12243 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12244 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12245 break;
12246
12247 if (place == 0)
12248 {
12249 basic_block bb = this_basic_block;
12250
12251 /* You might think you could search back from FROM_INSN
12252 rather than from I3, but combine tries to split invalid
12253 combined instructions. This can result in the old I2
12254 or I1 moving later in the insn sequence. */
12255 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12256 {
12257 if (! INSN_P (tem))
12258 {
12259 if (tem == BB_HEAD (bb))
12260 break;
12261 continue;
12262 }
12263
12264 /* If the register is being set at TEM, see if that is all
12265 TEM is doing. If so, delete TEM. Otherwise, make this
12266 into a REG_UNUSED note instead. Don't delete sets to
12267 global register vars. */
12268 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12269 || !global_regs[REGNO (XEXP (note, 0))])
12270 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12271 {
12272 rtx set = single_set (tem);
12273 rtx inner_dest = 0;
12274 #ifdef HAVE_cc0
12275 rtx cc0_setter = NULL_RTX;
12276 #endif
12277
12278 if (set != 0)
12279 for (inner_dest = SET_DEST (set);
12280 (GET_CODE (inner_dest) == STRICT_LOW_PART
12281 || GET_CODE (inner_dest) == SUBREG
12282 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12283 inner_dest = XEXP (inner_dest, 0))
12284 ;
12285
12286 /* Verify that it was the set, and not a clobber that
12287 modified the register.
12288
12289 CC0 targets must be careful to maintain setter/user
12290 pairs. If we cannot delete the setter due to side
12291 effects, mark the user with an UNUSED note instead
12292 of deleting it. */
12293
12294 if (set != 0 && ! side_effects_p (SET_SRC (set))
12295 && rtx_equal_p (XEXP (note, 0), inner_dest)
12296 #ifdef HAVE_cc0
12297 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12298 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12299 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12300 #endif
12301 )
12302 {
12303 /* Move the notes and links of TEM elsewhere.
12304 This might delete other dead insns recursively.
12305 First set the pattern to something that won't use
12306 any register. */
12307 rtx old_notes = REG_NOTES (tem);
12308
12309 PATTERN (tem) = pc_rtx;
12310 REG_NOTES (tem) = NULL;
12311
12312 distribute_notes (old_notes, tem, tem, NULL_RTX,
12313 NULL_RTX, NULL_RTX);
12314 distribute_links (LOG_LINKS (tem));
12315
12316 SET_INSN_DELETED (tem);
12317
12318 #ifdef HAVE_cc0
12319 /* Delete the setter too. */
12320 if (cc0_setter)
12321 {
12322 PATTERN (cc0_setter) = pc_rtx;
12323 old_notes = REG_NOTES (cc0_setter);
12324 REG_NOTES (cc0_setter) = NULL;
12325
12326 distribute_notes (old_notes, cc0_setter,
12327 cc0_setter, NULL_RTX,
12328 NULL_RTX, NULL_RTX);
12329 distribute_links (LOG_LINKS (cc0_setter));
12330
12331 SET_INSN_DELETED (cc0_setter);
12332 }
12333 #endif
12334 }
12335 else
12336 {
12337 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12338
12339 /* If there isn't already a REG_UNUSED note, put one
12340 here. Do not place a REG_DEAD note, even if
12341 the register is also used here; that would not
12342 match the algorithm used in lifetime analysis
12343 and can cause the consistency check in the
12344 scheduler to fail. */
12345 if (! find_regno_note (tem, REG_UNUSED,
12346 REGNO (XEXP (note, 0))))
12347 place = tem;
12348 break;
12349 }
12350 }
12351 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12352 || (CALL_P (tem)
12353 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12354 {
12355 /* This may not be the correct place for the death
12356 note if FROM_INSN is before TEM, and the reg is
12357 set between FROM_INSN and TEM. The reg might
12358 die two or more times. An existing death note
12359 means we are looking at the wrong live range. */
12360 if (from_insn
12361 && INSN_CUID (from_insn) < INSN_CUID (tem)
12362 && find_regno_note (tem, REG_DEAD,
12363 REGNO (XEXP (note, 0))))
12364 {
12365 tem = from_insn;
12366 if (tem == BB_HEAD (bb))
12367 break;
12368 continue;
12369 }
12370
12371 place = tem;
12372
12373 /* If we are doing a 3->2 combination, and we have a
12374 register which formerly died in i3 and was not used
12375 by i2, which now no longer dies in i3 and is used in
12376 i2 but does not die in i2, and place is between i2
12377 and i3, then we may need to move a link from place to
12378 i2. */
12379 if (i2 && INSN_UID (place) <= max_uid_cuid
12380 && INSN_CUID (place) > INSN_CUID (i2)
12381 && from_insn
12382 && INSN_CUID (from_insn) > INSN_CUID (i2)
12383 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12384 {
12385 rtx links = LOG_LINKS (place);
12386 LOG_LINKS (place) = 0;
12387 distribute_links (links);
12388 }
12389 break;
12390 }
12391
12392 if (tem == BB_HEAD (bb))
12393 break;
12394 }
12395
12396 /* We haven't found an insn for the death note and it
12397 is still a REG_DEAD note, but we have hit the beginning
12398 of the block. If the existing life info says the reg
12399 was dead, there's nothing left to do. Otherwise, we'll
12400 need to do a global life update after combine. */
12401 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12402 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12403 REGNO (XEXP (note, 0))))
12404 SET_BIT (refresh_blocks, this_basic_block->index);
12405 }
12406
12407 /* If the register is set or already dead at PLACE, we needn't do
12408 anything with this note if it is still a REG_DEAD note.
12409 We check here if it is set at all, not if is it totally replaced,
12410 which is what `dead_or_set_p' checks, so also check for it being
12411 set partially. */
12412
12413 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12414 {
12415 unsigned int regno = REGNO (XEXP (note, 0));
12416
12417 /* Similarly, if the instruction on which we want to place
12418 the note is a noop, we'll need do a global live update
12419 after we remove them in delete_noop_moves. */
12420 if (noop_move_p (place))
12421 SET_BIT (refresh_blocks, this_basic_block->index);
12422
12423 if (dead_or_set_p (place, XEXP (note, 0))
12424 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12425 {
12426 /* Unless the register previously died in PLACE, clear
12427 last_death. [I no longer understand why this is
12428 being done.] */
12429 if (reg_stat[regno].last_death != place)
12430 reg_stat[regno].last_death = 0;
12431 place = 0;
12432 }
12433 else
12434 reg_stat[regno].last_death = place;
12435
12436 /* If this is a death note for a hard reg that is occupying
12437 multiple registers, ensure that we are still using all
12438 parts of the object. If we find a piece of the object
12439 that is unused, we must arrange for an appropriate REG_DEAD
12440 note to be added for it. However, we can't just emit a USE
12441 and tag the note to it, since the register might actually
12442 be dead; so we recourse, and the recursive call then finds
12443 the previous insn that used this register. */
12444
12445 if (place && regno < FIRST_PSEUDO_REGISTER
12446 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12447 {
12448 unsigned int endregno
12449 = regno + hard_regno_nregs[regno]
12450 [GET_MODE (XEXP (note, 0))];
12451 int all_used = 1;
12452 unsigned int i;
12453
12454 for (i = regno; i < endregno; i++)
12455 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12456 && ! find_regno_fusage (place, USE, i))
12457 || dead_or_set_regno_p (place, i))
12458 all_used = 0;
12459
12460 if (! all_used)
12461 {
12462 /* Put only REG_DEAD notes for pieces that are
12463 not already dead or set. */
12464
12465 for (i = regno; i < endregno;
12466 i += hard_regno_nregs[i][reg_raw_mode[i]])
12467 {
12468 rtx piece = regno_reg_rtx[i];
12469 basic_block bb = this_basic_block;
12470
12471 if (! dead_or_set_p (place, piece)
12472 && ! reg_bitfield_target_p (piece,
12473 PATTERN (place)))
12474 {
12475 rtx new_note
12476 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12477
12478 distribute_notes (new_note, place, place,
12479 NULL_RTX, NULL_RTX, NULL_RTX);
12480 }
12481 else if (! refers_to_regno_p (i, i + 1,
12482 PATTERN (place), 0)
12483 && ! find_regno_fusage (place, USE, i))
12484 for (tem = PREV_INSN (place); ;
12485 tem = PREV_INSN (tem))
12486 {
12487 if (! INSN_P (tem))
12488 {
12489 if (tem == BB_HEAD (bb))
12490 {
12491 SET_BIT (refresh_blocks,
12492 this_basic_block->index);
12493 break;
12494 }
12495 continue;
12496 }
12497 if (dead_or_set_p (tem, piece)
12498 || reg_bitfield_target_p (piece,
12499 PATTERN (tem)))
12500 {
12501 REG_NOTES (tem)
12502 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12503 REG_NOTES (tem));
12504 break;
12505 }
12506 }
12507
12508 }
12509
12510 place = 0;
12511 }
12512 }
12513 }
12514 break;
12515
12516 default:
12517 /* Any other notes should not be present at this point in the
12518 compilation. */
12519 gcc_unreachable ();
12520 }
12521
12522 if (place)
12523 {
12524 XEXP (note, 1) = REG_NOTES (place);
12525 REG_NOTES (place) = note;
12526 }
12527 else if ((REG_NOTE_KIND (note) == REG_DEAD
12528 || REG_NOTE_KIND (note) == REG_UNUSED)
12529 && REG_P (XEXP (note, 0)))
12530 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12531
12532 if (place2)
12533 {
12534 if ((REG_NOTE_KIND (note) == REG_DEAD
12535 || REG_NOTE_KIND (note) == REG_UNUSED)
12536 && REG_P (XEXP (note, 0)))
12537 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12538
12539 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12540 REG_NOTE_KIND (note),
12541 XEXP (note, 0),
12542 REG_NOTES (place2));
12543 }
12544 }
12545 }
12546 \f
12547 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12548 I3, I2, and I1 to new locations. This is also called to add a link
12549 pointing at I3 when I3's destination is changed. */
12550
12551 static void
12552 distribute_links (rtx links)
12553 {
12554 rtx link, next_link;
12555
12556 for (link = links; link; link = next_link)
12557 {
12558 rtx place = 0;
12559 rtx insn;
12560 rtx set, reg;
12561
12562 next_link = XEXP (link, 1);
12563
12564 /* If the insn that this link points to is a NOTE or isn't a single
12565 set, ignore it. In the latter case, it isn't clear what we
12566 can do other than ignore the link, since we can't tell which
12567 register it was for. Such links wouldn't be used by combine
12568 anyway.
12569
12570 It is not possible for the destination of the target of the link to
12571 have been changed by combine. The only potential of this is if we
12572 replace I3, I2, and I1 by I3 and I2. But in that case the
12573 destination of I2 also remains unchanged. */
12574
12575 if (NOTE_P (XEXP (link, 0))
12576 || (set = single_set (XEXP (link, 0))) == 0)
12577 continue;
12578
12579 reg = SET_DEST (set);
12580 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12581 || GET_CODE (reg) == STRICT_LOW_PART)
12582 reg = XEXP (reg, 0);
12583
12584 /* A LOG_LINK is defined as being placed on the first insn that uses
12585 a register and points to the insn that sets the register. Start
12586 searching at the next insn after the target of the link and stop
12587 when we reach a set of the register or the end of the basic block.
12588
12589 Note that this correctly handles the link that used to point from
12590 I3 to I2. Also note that not much searching is typically done here
12591 since most links don't point very far away. */
12592
12593 for (insn = NEXT_INSN (XEXP (link, 0));
12594 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12595 || BB_HEAD (this_basic_block->next_bb) != insn));
12596 insn = NEXT_INSN (insn))
12597 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12598 {
12599 if (reg_referenced_p (reg, PATTERN (insn)))
12600 place = insn;
12601 break;
12602 }
12603 else if (CALL_P (insn)
12604 && find_reg_fusage (insn, USE, reg))
12605 {
12606 place = insn;
12607 break;
12608 }
12609 else if (INSN_P (insn) && reg_set_p (reg, insn))
12610 break;
12611
12612 /* If we found a place to put the link, place it there unless there
12613 is already a link to the same insn as LINK at that point. */
12614
12615 if (place)
12616 {
12617 rtx link2;
12618
12619 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12620 if (XEXP (link2, 0) == XEXP (link, 0))
12621 break;
12622
12623 if (link2 == 0)
12624 {
12625 XEXP (link, 1) = LOG_LINKS (place);
12626 LOG_LINKS (place) = link;
12627
12628 /* Set added_links_insn to the earliest insn we added a
12629 link to. */
12630 if (added_links_insn == 0
12631 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12632 added_links_insn = place;
12633 }
12634 }
12635 }
12636 }
12637 \f
12638 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12639 Check whether the expression pointer to by LOC is a register or
12640 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12641 Otherwise return zero. */
12642
12643 static int
12644 unmentioned_reg_p_1 (rtx *loc, void *expr)
12645 {
12646 rtx x = *loc;
12647
12648 if (x != NULL_RTX
12649 && (REG_P (x) || MEM_P (x))
12650 && ! reg_mentioned_p (x, (rtx) expr))
12651 return 1;
12652 return 0;
12653 }
12654
12655 /* Check for any register or memory mentioned in EQUIV that is not
12656 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12657 of EXPR where some registers may have been replaced by constants. */
12658
12659 static bool
12660 unmentioned_reg_p (rtx equiv, rtx expr)
12661 {
12662 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12663 }
12664 \f
12665 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12666
12667 static int
12668 insn_cuid (rtx insn)
12669 {
12670 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12671 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12672 insn = NEXT_INSN (insn);
12673
12674 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12675
12676 return INSN_CUID (insn);
12677 }
12678 \f
12679 void
12680 dump_combine_stats (FILE *file)
12681 {
12682 fprintf
12683 (file,
12684 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12685 combine_attempts, combine_merges, combine_extras, combine_successes);
12686 }
12687
12688 void
12689 dump_combine_total_stats (FILE *file)
12690 {
12691 fprintf
12692 (file,
12693 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12694 total_attempts, total_merges, total_extras, total_successes);
12695 }
12696 \f
12697
12698 static bool
12699 gate_handle_combine (void)
12700 {
12701 return (optimize > 0);
12702 }
12703
12704 /* Try combining insns through substitution. */
12705 static void
12706 rest_of_handle_combine (void)
12707 {
12708 int rebuild_jump_labels_after_combine
12709 = combine_instructions (get_insns (), max_reg_num ());
12710
12711 /* Combining insns may have turned an indirect jump into a
12712 direct jump. Rebuild the JUMP_LABEL fields of jumping
12713 instructions. */
12714 if (rebuild_jump_labels_after_combine)
12715 {
12716 timevar_push (TV_JUMP);
12717 rebuild_jump_labels (get_insns ());
12718 timevar_pop (TV_JUMP);
12719
12720 delete_dead_jumptables ();
12721 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12722 }
12723 }
12724
12725 struct tree_opt_pass pass_combine =
12726 {
12727 "combine", /* name */
12728 gate_handle_combine, /* gate */
12729 rest_of_handle_combine, /* execute */
12730 NULL, /* sub */
12731 NULL, /* next */
12732 0, /* static_pass_number */
12733 TV_COMBINE, /* tv_id */
12734 0, /* properties_required */
12735 0, /* properties_provided */
12736 0, /* properties_destroyed */
12737 0, /* todo_flags_start */
12738 TODO_dump_func |
12739 TODO_ggc_collect, /* todo_flags_finish */
12740 'c' /* letter */
12741 };
12742
This page took 0.691797 seconds and 6 git commands to generate.