]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
combine.c (make_compound_operation): Swap operands of commutative operation if necess...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105
106 /* Number of attempts to combine instructions in this function. */
107
108 static int combine_attempts;
109
110 /* Number of attempts that got as far as substitution in this function. */
111
112 static int combine_merges;
113
114 /* Number of instructions combined with added SETs in this function. */
115
116 static int combine_extras;
117
118 /* Number of instructions combined in this function. */
119
120 static int combine_successes;
121
122 /* Totals over entire compilation. */
123
124 static int total_attempts, total_merges, total_extras, total_successes;
125
126 \f
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
133
134 static int *uid_cuid;
135 static int max_uid_cuid;
136
137 /* Get the cuid of an insn. */
138
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
141
142 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
143 BITS_PER_WORD would invoke undefined behavior. Work around it. */
144
145 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
146 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
147
148 /* Maximum register number, which is the size of the tables below. */
149
150 static unsigned int combine_max_regno;
151
152 struct reg_stat {
153 /* Record last point of death of (hard or pseudo) register n. */
154 rtx last_death;
155
156 /* Record last point of modification of (hard or pseudo) register n. */
157 rtx last_set;
158
159 /* The next group of fields allows the recording of the last value assigned
160 to (hard or pseudo) register n. We use this information to see if an
161 operation being processed is redundant given a prior operation performed
162 on the register. For example, an `and' with a constant is redundant if
163 all the zero bits are already known to be turned off.
164
165 We use an approach similar to that used by cse, but change it in the
166 following ways:
167
168 (1) We do not want to reinitialize at each label.
169 (2) It is useful, but not critical, to know the actual value assigned
170 to a register. Often just its form is helpful.
171
172 Therefore, we maintain the following fields:
173
174 last_set_value the last value assigned
175 last_set_label records the value of label_tick when the
176 register was assigned
177 last_set_table_tick records the value of label_tick when a
178 value using the register is assigned
179 last_set_invalid set to nonzero when it is not valid
180 to use the value of this register in some
181 register's value
182
183 To understand the usage of these tables, it is important to understand
184 the distinction between the value in last_set_value being valid and
185 the register being validly contained in some other expression in the
186 table.
187
188 (The next two parameters are out of date).
189
190 reg_stat[i].last_set_value is valid if it is nonzero, and either
191 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
192
193 Register I may validly appear in any expression returned for the value
194 of another register if reg_n_sets[i] is 1. It may also appear in the
195 value for register J if reg_stat[j].last_set_invalid is zero, or
196 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
197
198 If an expression is found in the table containing a register which may
199 not validly appear in an expression, the register is replaced by
200 something that won't match, (clobber (const_int 0)). */
201
202 /* Record last value assigned to (hard or pseudo) register n. */
203
204 rtx last_set_value;
205
206 /* Record the value of label_tick when an expression involving register n
207 is placed in last_set_value. */
208
209 int last_set_table_tick;
210
211 /* Record the value of label_tick when the value for register n is placed in
212 last_set_value. */
213
214 int last_set_label;
215
216 /* These fields are maintained in parallel with last_set_value and are
217 used to store the mode in which the register was last set, the bits
218 that were known to be zero when it was last set, and the number of
219 sign bits copies it was known to have when it was last set. */
220
221 unsigned HOST_WIDE_INT last_set_nonzero_bits;
222 char last_set_sign_bit_copies;
223 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
224
225 /* Set nonzero if references to register n in expressions should not be
226 used. last_set_invalid is set nonzero when this register is being
227 assigned to and last_set_table_tick == label_tick. */
228
229 char last_set_invalid;
230
231 /* Some registers that are set more than once and used in more than one
232 basic block are nevertheless always set in similar ways. For example,
233 a QImode register may be loaded from memory in two places on a machine
234 where byte loads zero extend.
235
236 We record in the following fields if a register has some leading bits
237 that are always equal to the sign bit, and what we know about the
238 nonzero bits of a register, specifically which bits are known to be
239 zero.
240
241 If an entry is zero, it means that we don't know anything special. */
242
243 unsigned char sign_bit_copies;
244
245 unsigned HOST_WIDE_INT nonzero_bits;
246 };
247
248 static struct reg_stat *reg_stat;
249
250 /* Record the cuid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
252
253 static int mem_last_set;
254
255 /* Record the cuid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
257
258 static int last_call_cuid;
259
260 /* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
265
266 static rtx subst_insn;
267
268 /* This is the lowest CUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this CUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
274
275 static int subst_low_cuid;
276
277 /* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
279
280 static HARD_REG_SET newpat_used_regs;
281
282 /* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
285
286 static rtx added_links_insn;
287
288 /* Basic block in which we are performing combines. */
289 static basic_block this_basic_block;
290
291 /* A bitmap indicating which blocks had registers go dead at entry.
292 After combine, we'll need to re-do global life analysis with
293 those blocks as starting points. */
294 static sbitmap refresh_blocks;
295 \f
296 /* The following array records the insn_rtx_cost for every insn
297 in the instruction stream. */
298
299 static int *uid_insn_cost;
300
301 /* Length of the currently allocated uid_insn_cost array. */
302
303 static int last_insn_cost;
304
305 /* Incremented for each label. */
306
307 static int label_tick;
308
309 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
310 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
311
312 static enum machine_mode nonzero_bits_mode;
313
314 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
315 be safely used. It is zero while computing them and after combine has
316 completed. This former test prevents propagating values based on
317 previously set values, which can be incorrect if a variable is modified
318 in a loop. */
319
320 static int nonzero_sign_valid;
321
322 \f
323 /* Record one modification to rtl structure
324 to be undone by storing old_contents into *where.
325 is_int is 1 if the contents are an int. */
326
327 struct undo
328 {
329 struct undo *next;
330 int is_int;
331 union {rtx r; int i;} old_contents;
332 union {rtx *r; int *i;} where;
333 };
334
335 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
336 num_undo says how many are currently recorded.
337
338 other_insn is nonzero if we have modified some other insn in the process
339 of working on subst_insn. It must be verified too. */
340
341 struct undobuf
342 {
343 struct undo *undos;
344 struct undo *frees;
345 rtx other_insn;
346 };
347
348 static struct undobuf undobuf;
349
350 /* Number of times the pseudo being substituted for
351 was found and replaced. */
352
353 static int n_occurrences;
354
355 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned HOST_WIDE_INT,
358 unsigned HOST_WIDE_INT *);
359 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
360 enum machine_mode,
361 unsigned int, unsigned int *);
362 static void do_SUBST (rtx *, rtx);
363 static void do_SUBST_INT (int *, int);
364 static void init_reg_last (void);
365 static void setup_incoming_promotions (void);
366 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
367 static int cant_combine_insn_p (rtx);
368 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
369 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
370 static int contains_muldiv (rtx);
371 static rtx try_combine (rtx, rtx, rtx, int *);
372 static void undo_all (void);
373 static void undo_commit (void);
374 static rtx *find_split_point (rtx *, rtx);
375 static rtx subst (rtx, rtx, rtx, int, int);
376 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
377 static rtx simplify_if_then_else (rtx);
378 static rtx simplify_set (rtx);
379 static rtx simplify_logical (rtx);
380 static rtx expand_compound_operation (rtx);
381 static rtx expand_field_assignment (rtx);
382 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
383 rtx, unsigned HOST_WIDE_INT, int, int, int);
384 static rtx extract_left_shift (rtx, int);
385 static rtx make_compound_operation (rtx, enum rtx_code);
386 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
387 unsigned HOST_WIDE_INT *);
388 static rtx force_to_mode (rtx, enum machine_mode,
389 unsigned HOST_WIDE_INT, rtx, int);
390 static rtx if_then_else_cond (rtx, rtx *, rtx *);
391 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
392 static int rtx_equal_for_field_assignment_p (rtx, rtx);
393 static rtx make_field_assignment (rtx);
394 static rtx apply_distributive_law (rtx);
395 static rtx distribute_and_simplify_rtx (rtx, int);
396 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
397 unsigned HOST_WIDE_INT);
398 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
399 HOST_WIDE_INT, enum machine_mode, int *);
400 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
401 int);
402 static int recog_for_combine (rtx *, rtx, rtx *);
403 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
404 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
405 static void update_table_tick (rtx);
406 static void record_value_for_reg (rtx, rtx, rtx);
407 static void check_promoted_subreg (rtx, rtx);
408 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
409 static void record_dead_and_set_regs (rtx);
410 static int get_last_value_validate (rtx *, rtx, int, int);
411 static rtx get_last_value (rtx);
412 static int use_crosses_set_p (rtx, int);
413 static void reg_dead_at_p_1 (rtx, rtx, void *);
414 static int reg_dead_at_p (rtx, rtx);
415 static void move_deaths (rtx, rtx, int, rtx, rtx *);
416 static int reg_bitfield_target_p (rtx, rtx);
417 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
418 static void distribute_links (rtx);
419 static void mark_used_regs_combine (rtx);
420 static int insn_cuid (rtx);
421 static void record_promoted_value (rtx, rtx);
422 static int unmentioned_reg_p_1 (rtx *, void *);
423 static bool unmentioned_reg_p (rtx, rtx);
424 \f
425
426 /* It is not safe to use ordinary gen_lowpart in combine.
427 See comments in gen_lowpart_for_combine. */
428 #undef RTL_HOOKS_GEN_LOWPART
429 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
430
431 /* Our implementation of gen_lowpart never emits a new pseudo. */
432 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
433 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
434
435 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
436 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
437
438 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
439 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
440
441 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
442
443 \f
444 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
445 insn. The substitution can be undone by undo_all. If INTO is already
446 set to NEWVAL, do not record this change. Because computing NEWVAL might
447 also call SUBST, we have to compute it before we put anything into
448 the undo table. */
449
450 static void
451 do_SUBST (rtx *into, rtx newval)
452 {
453 struct undo *buf;
454 rtx oldval = *into;
455
456 if (oldval == newval)
457 return;
458
459 /* We'd like to catch as many invalid transformations here as
460 possible. Unfortunately, there are way too many mode changes
461 that are perfectly valid, so we'd waste too much effort for
462 little gain doing the checks here. Focus on catching invalid
463 transformations involving integer constants. */
464 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
465 && GET_CODE (newval) == CONST_INT)
466 {
467 /* Sanity check that we're replacing oldval with a CONST_INT
468 that is a valid sign-extension for the original mode. */
469 gcc_assert (INTVAL (newval)
470 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
471
472 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
473 CONST_INT is not valid, because after the replacement, the
474 original mode would be gone. Unfortunately, we can't tell
475 when do_SUBST is called to replace the operand thereof, so we
476 perform this test on oldval instead, checking whether an
477 invalid replacement took place before we got here. */
478 gcc_assert (!(GET_CODE (oldval) == SUBREG
479 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
480 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
481 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
482 }
483
484 if (undobuf.frees)
485 buf = undobuf.frees, undobuf.frees = buf->next;
486 else
487 buf = xmalloc (sizeof (struct undo));
488
489 buf->is_int = 0;
490 buf->where.r = into;
491 buf->old_contents.r = oldval;
492 *into = newval;
493
494 buf->next = undobuf.undos, undobuf.undos = buf;
495 }
496
497 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
498
499 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
500 for the value of a HOST_WIDE_INT value (including CONST_INT) is
501 not safe. */
502
503 static void
504 do_SUBST_INT (int *into, int newval)
505 {
506 struct undo *buf;
507 int oldval = *into;
508
509 if (oldval == newval)
510 return;
511
512 if (undobuf.frees)
513 buf = undobuf.frees, undobuf.frees = buf->next;
514 else
515 buf = xmalloc (sizeof (struct undo));
516
517 buf->is_int = 1;
518 buf->where.i = into;
519 buf->old_contents.i = oldval;
520 *into = newval;
521
522 buf->next = undobuf.undos, undobuf.undos = buf;
523 }
524
525 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
526 \f
527 /* Subroutine of try_combine. Determine whether the combine replacement
528 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
529 that the original instruction sequence I1, I2 and I3. Note that I1
530 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
531 costs of all instructions can be estimated, and the replacements are
532 more expensive than the original sequence. */
533
534 static bool
535 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
536 {
537 int i1_cost, i2_cost, i3_cost;
538 int new_i2_cost, new_i3_cost;
539 int old_cost, new_cost;
540
541 /* Lookup the original insn_rtx_costs. */
542 i2_cost = INSN_UID (i2) <= last_insn_cost
543 ? uid_insn_cost[INSN_UID (i2)] : 0;
544 i3_cost = INSN_UID (i3) <= last_insn_cost
545 ? uid_insn_cost[INSN_UID (i3)] : 0;
546
547 if (i1)
548 {
549 i1_cost = INSN_UID (i1) <= last_insn_cost
550 ? uid_insn_cost[INSN_UID (i1)] : 0;
551 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
552 ? i1_cost + i2_cost + i3_cost : 0;
553 }
554 else
555 {
556 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
557 i1_cost = 0;
558 }
559
560 /* Calculate the replacement insn_rtx_costs. */
561 new_i3_cost = insn_rtx_cost (newpat);
562 if (newi2pat)
563 {
564 new_i2_cost = insn_rtx_cost (newi2pat);
565 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
566 ? new_i2_cost + new_i3_cost : 0;
567 }
568 else
569 {
570 new_cost = new_i3_cost;
571 new_i2_cost = 0;
572 }
573
574 if (undobuf.other_insn)
575 {
576 int old_other_cost, new_other_cost;
577
578 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
579 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
580 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
581 if (old_other_cost > 0 && new_other_cost > 0)
582 {
583 old_cost += old_other_cost;
584 new_cost += new_other_cost;
585 }
586 else
587 old_cost = 0;
588 }
589
590 /* Disallow this recombination if both new_cost and old_cost are
591 greater than zero, and new_cost is greater than old cost. */
592 if (old_cost > 0
593 && new_cost > old_cost)
594 {
595 if (dump_file)
596 {
597 if (i1)
598 {
599 fprintf (dump_file,
600 "rejecting combination of insns %d, %d and %d\n",
601 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
602 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
603 i1_cost, i2_cost, i3_cost, old_cost);
604 }
605 else
606 {
607 fprintf (dump_file,
608 "rejecting combination of insns %d and %d\n",
609 INSN_UID (i2), INSN_UID (i3));
610 fprintf (dump_file, "original costs %d + %d = %d\n",
611 i2_cost, i3_cost, old_cost);
612 }
613
614 if (newi2pat)
615 {
616 fprintf (dump_file, "replacement costs %d + %d = %d\n",
617 new_i2_cost, new_i3_cost, new_cost);
618 }
619 else
620 fprintf (dump_file, "replacement cost %d\n", new_cost);
621 }
622
623 return false;
624 }
625
626 /* Update the uid_insn_cost array with the replacement costs. */
627 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
628 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
629 if (i1)
630 uid_insn_cost[INSN_UID (i1)] = 0;
631
632 return true;
633 }
634 \f
635 /* Main entry point for combiner. F is the first insn of the function.
636 NREGS is the first unused pseudo-reg number.
637
638 Return nonzero if the combiner has turned an indirect jump
639 instruction into a direct jump. */
640 int
641 combine_instructions (rtx f, unsigned int nregs)
642 {
643 rtx insn, next;
644 #ifdef HAVE_cc0
645 rtx prev;
646 #endif
647 int i;
648 unsigned int j = 0;
649 rtx links, nextlinks;
650 sbitmap_iterator sbi;
651
652 int new_direct_jump_p = 0;
653
654 combine_attempts = 0;
655 combine_merges = 0;
656 combine_extras = 0;
657 combine_successes = 0;
658
659 combine_max_regno = nregs;
660
661 rtl_hooks = combine_rtl_hooks;
662
663 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
664
665 init_recog_no_volatile ();
666
667 /* Compute maximum uid value so uid_cuid can be allocated. */
668
669 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
670 if (INSN_UID (insn) > i)
671 i = INSN_UID (insn);
672
673 uid_cuid = xmalloc ((i + 1) * sizeof (int));
674 max_uid_cuid = i;
675
676 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
677
678 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
679 problems when, for example, we have j <<= 1 in a loop. */
680
681 nonzero_sign_valid = 0;
682
683 /* Compute the mapping from uids to cuids.
684 Cuids are numbers assigned to insns, like uids,
685 except that cuids increase monotonically through the code.
686
687 Scan all SETs and see if we can deduce anything about what
688 bits are known to be zero for some registers and how many copies
689 of the sign bit are known to exist for those registers.
690
691 Also set any known values so that we can use it while searching
692 for what bits are known to be set. */
693
694 label_tick = 1;
695
696 setup_incoming_promotions ();
697
698 refresh_blocks = sbitmap_alloc (last_basic_block);
699 sbitmap_zero (refresh_blocks);
700
701 /* Allocate array of current insn_rtx_costs. */
702 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
703 last_insn_cost = max_uid_cuid;
704
705 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
706 {
707 uid_cuid[INSN_UID (insn)] = ++i;
708 subst_low_cuid = i;
709 subst_insn = insn;
710
711 if (INSN_P (insn))
712 {
713 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
714 NULL);
715 record_dead_and_set_regs (insn);
716
717 #ifdef AUTO_INC_DEC
718 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
719 if (REG_NOTE_KIND (links) == REG_INC)
720 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
721 NULL);
722 #endif
723
724 /* Record the current insn_rtx_cost of this instruction. */
725 if (NONJUMP_INSN_P (insn))
726 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
727 if (dump_file)
728 fprintf(dump_file, "insn_cost %d: %d\n",
729 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
730 }
731
732 if (LABEL_P (insn))
733 label_tick++;
734 }
735
736 nonzero_sign_valid = 1;
737
738 /* Now scan all the insns in forward order. */
739
740 label_tick = 1;
741 last_call_cuid = 0;
742 mem_last_set = 0;
743 init_reg_last ();
744 setup_incoming_promotions ();
745
746 FOR_EACH_BB (this_basic_block)
747 {
748 for (insn = BB_HEAD (this_basic_block);
749 insn != NEXT_INSN (BB_END (this_basic_block));
750 insn = next ? next : NEXT_INSN (insn))
751 {
752 next = 0;
753
754 if (LABEL_P (insn))
755 label_tick++;
756
757 else if (INSN_P (insn))
758 {
759 /* See if we know about function return values before this
760 insn based upon SUBREG flags. */
761 check_promoted_subreg (insn, PATTERN (insn));
762
763 /* Try this insn with each insn it links back to. */
764
765 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
766 if ((next = try_combine (insn, XEXP (links, 0),
767 NULL_RTX, &new_direct_jump_p)) != 0)
768 goto retry;
769
770 /* Try each sequence of three linked insns ending with this one. */
771
772 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
773 {
774 rtx link = XEXP (links, 0);
775
776 /* If the linked insn has been replaced by a note, then there
777 is no point in pursuing this chain any further. */
778 if (NOTE_P (link))
779 continue;
780
781 for (nextlinks = LOG_LINKS (link);
782 nextlinks;
783 nextlinks = XEXP (nextlinks, 1))
784 if ((next = try_combine (insn, link,
785 XEXP (nextlinks, 0),
786 &new_direct_jump_p)) != 0)
787 goto retry;
788 }
789
790 #ifdef HAVE_cc0
791 /* Try to combine a jump insn that uses CC0
792 with a preceding insn that sets CC0, and maybe with its
793 logical predecessor as well.
794 This is how we make decrement-and-branch insns.
795 We need this special code because data flow connections
796 via CC0 do not get entered in LOG_LINKS. */
797
798 if (JUMP_P (insn)
799 && (prev = prev_nonnote_insn (insn)) != 0
800 && NONJUMP_INSN_P (prev)
801 && sets_cc0_p (PATTERN (prev)))
802 {
803 if ((next = try_combine (insn, prev,
804 NULL_RTX, &new_direct_jump_p)) != 0)
805 goto retry;
806
807 for (nextlinks = LOG_LINKS (prev); nextlinks;
808 nextlinks = XEXP (nextlinks, 1))
809 if ((next = try_combine (insn, prev,
810 XEXP (nextlinks, 0),
811 &new_direct_jump_p)) != 0)
812 goto retry;
813 }
814
815 /* Do the same for an insn that explicitly references CC0. */
816 if (NONJUMP_INSN_P (insn)
817 && (prev = prev_nonnote_insn (insn)) != 0
818 && NONJUMP_INSN_P (prev)
819 && sets_cc0_p (PATTERN (prev))
820 && GET_CODE (PATTERN (insn)) == SET
821 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
822 {
823 if ((next = try_combine (insn, prev,
824 NULL_RTX, &new_direct_jump_p)) != 0)
825 goto retry;
826
827 for (nextlinks = LOG_LINKS (prev); nextlinks;
828 nextlinks = XEXP (nextlinks, 1))
829 if ((next = try_combine (insn, prev,
830 XEXP (nextlinks, 0),
831 &new_direct_jump_p)) != 0)
832 goto retry;
833 }
834
835 /* Finally, see if any of the insns that this insn links to
836 explicitly references CC0. If so, try this insn, that insn,
837 and its predecessor if it sets CC0. */
838 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
839 if (NONJUMP_INSN_P (XEXP (links, 0))
840 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
841 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
842 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
843 && NONJUMP_INSN_P (prev)
844 && sets_cc0_p (PATTERN (prev))
845 && (next = try_combine (insn, XEXP (links, 0),
846 prev, &new_direct_jump_p)) != 0)
847 goto retry;
848 #endif
849
850 /* Try combining an insn with two different insns whose results it
851 uses. */
852 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
853 for (nextlinks = XEXP (links, 1); nextlinks;
854 nextlinks = XEXP (nextlinks, 1))
855 if ((next = try_combine (insn, XEXP (links, 0),
856 XEXP (nextlinks, 0),
857 &new_direct_jump_p)) != 0)
858 goto retry;
859
860 /* Try this insn with each REG_EQUAL note it links back to. */
861 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
862 {
863 rtx set, note;
864 rtx temp = XEXP (links, 0);
865 if ((set = single_set (temp)) != 0
866 && (note = find_reg_equal_equiv_note (temp)) != 0
867 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
868 /* Avoid using a register that may already been marked
869 dead by an earlier instruction. */
870 && ! unmentioned_reg_p (note, SET_SRC (set))
871 && (GET_MODE (note) == VOIDmode
872 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
873 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
874 {
875 /* Temporarily replace the set's source with the
876 contents of the REG_EQUAL note. The insn will
877 be deleted or recognized by try_combine. */
878 rtx orig = SET_SRC (set);
879 SET_SRC (set) = note;
880 next = try_combine (insn, temp, NULL_RTX,
881 &new_direct_jump_p);
882 if (next)
883 goto retry;
884 SET_SRC (set) = orig;
885 }
886 }
887
888 if (!NOTE_P (insn))
889 record_dead_and_set_regs (insn);
890
891 retry:
892 ;
893 }
894 }
895 }
896 clear_bb_flags ();
897
898 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
899 BASIC_BLOCK (j)->flags |= BB_DIRTY;
900 new_direct_jump_p |= purge_all_dead_edges ();
901 delete_noop_moves ();
902
903 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
904 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
905 | PROP_KILL_DEAD_CODE);
906
907 /* Clean up. */
908 sbitmap_free (refresh_blocks);
909 free (uid_insn_cost);
910 free (reg_stat);
911 free (uid_cuid);
912
913 {
914 struct undo *undo, *next;
915 for (undo = undobuf.frees; undo; undo = next)
916 {
917 next = undo->next;
918 free (undo);
919 }
920 undobuf.frees = 0;
921 }
922
923 total_attempts += combine_attempts;
924 total_merges += combine_merges;
925 total_extras += combine_extras;
926 total_successes += combine_successes;
927
928 nonzero_sign_valid = 0;
929 rtl_hooks = general_rtl_hooks;
930
931 /* Make recognizer allow volatile MEMs again. */
932 init_recog ();
933
934 return new_direct_jump_p;
935 }
936
937 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
938
939 static void
940 init_reg_last (void)
941 {
942 unsigned int i;
943 for (i = 0; i < combine_max_regno; i++)
944 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
945 }
946 \f
947 /* Set up any promoted values for incoming argument registers. */
948
949 static void
950 setup_incoming_promotions (void)
951 {
952 unsigned int regno;
953 rtx reg;
954 enum machine_mode mode;
955 int unsignedp;
956 rtx first = get_insns ();
957
958 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
959 {
960 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
961 /* Check whether this register can hold an incoming pointer
962 argument. FUNCTION_ARG_REGNO_P tests outgoing register
963 numbers, so translate if necessary due to register windows. */
964 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
965 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
966 {
967 record_value_for_reg
968 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
969 : SIGN_EXTEND),
970 GET_MODE (reg),
971 gen_rtx_CLOBBER (mode, const0_rtx)));
972 }
973 }
974 }
975 \f
976 /* Called via note_stores. If X is a pseudo that is narrower than
977 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
978
979 If we are setting only a portion of X and we can't figure out what
980 portion, assume all bits will be used since we don't know what will
981 be happening.
982
983 Similarly, set how many bits of X are known to be copies of the sign bit
984 at all locations in the function. This is the smallest number implied
985 by any set of X. */
986
987 static void
988 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
989 void *data ATTRIBUTE_UNUSED)
990 {
991 unsigned int num;
992
993 if (REG_P (x)
994 && REGNO (x) >= FIRST_PSEUDO_REGISTER
995 /* If this register is undefined at the start of the file, we can't
996 say what its contents were. */
997 && ! REGNO_REG_SET_P
998 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
999 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1000 {
1001 if (set == 0 || GET_CODE (set) == CLOBBER)
1002 {
1003 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1004 reg_stat[REGNO (x)].sign_bit_copies = 1;
1005 return;
1006 }
1007
1008 /* If this is a complex assignment, see if we can convert it into a
1009 simple assignment. */
1010 set = expand_field_assignment (set);
1011
1012 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1013 set what we know about X. */
1014
1015 if (SET_DEST (set) == x
1016 || (GET_CODE (SET_DEST (set)) == SUBREG
1017 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1018 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1019 && SUBREG_REG (SET_DEST (set)) == x))
1020 {
1021 rtx src = SET_SRC (set);
1022
1023 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1024 /* If X is narrower than a word and SRC is a non-negative
1025 constant that would appear negative in the mode of X,
1026 sign-extend it for use in reg_stat[].nonzero_bits because some
1027 machines (maybe most) will actually do the sign-extension
1028 and this is the conservative approach.
1029
1030 ??? For 2.5, try to tighten up the MD files in this regard
1031 instead of this kludge. */
1032
1033 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1034 && GET_CODE (src) == CONST_INT
1035 && INTVAL (src) > 0
1036 && 0 != (INTVAL (src)
1037 & ((HOST_WIDE_INT) 1
1038 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1039 src = GEN_INT (INTVAL (src)
1040 | ((HOST_WIDE_INT) (-1)
1041 << GET_MODE_BITSIZE (GET_MODE (x))));
1042 #endif
1043
1044 /* Don't call nonzero_bits if it cannot change anything. */
1045 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1046 reg_stat[REGNO (x)].nonzero_bits
1047 |= nonzero_bits (src, nonzero_bits_mode);
1048 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1049 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1050 || reg_stat[REGNO (x)].sign_bit_copies > num)
1051 reg_stat[REGNO (x)].sign_bit_copies = num;
1052 }
1053 else
1054 {
1055 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1056 reg_stat[REGNO (x)].sign_bit_copies = 1;
1057 }
1058 }
1059 }
1060 \f
1061 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1062 insns that were previously combined into I3 or that will be combined
1063 into the merger of INSN and I3.
1064
1065 Return 0 if the combination is not allowed for any reason.
1066
1067 If the combination is allowed, *PDEST will be set to the single
1068 destination of INSN and *PSRC to the single source, and this function
1069 will return 1. */
1070
1071 static int
1072 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1073 rtx *pdest, rtx *psrc)
1074 {
1075 int i;
1076 rtx set = 0, src, dest;
1077 rtx p;
1078 #ifdef AUTO_INC_DEC
1079 rtx link;
1080 #endif
1081 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1082 && next_active_insn (succ) == i3)
1083 : next_active_insn (insn) == i3);
1084
1085 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1086 or a PARALLEL consisting of such a SET and CLOBBERs.
1087
1088 If INSN has CLOBBER parallel parts, ignore them for our processing.
1089 By definition, these happen during the execution of the insn. When it
1090 is merged with another insn, all bets are off. If they are, in fact,
1091 needed and aren't also supplied in I3, they may be added by
1092 recog_for_combine. Otherwise, it won't match.
1093
1094 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1095 note.
1096
1097 Get the source and destination of INSN. If more than one, can't
1098 combine. */
1099
1100 if (GET_CODE (PATTERN (insn)) == SET)
1101 set = PATTERN (insn);
1102 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1103 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1104 {
1105 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1106 {
1107 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1108 rtx note;
1109
1110 switch (GET_CODE (elt))
1111 {
1112 /* This is important to combine floating point insns
1113 for the SH4 port. */
1114 case USE:
1115 /* Combining an isolated USE doesn't make sense.
1116 We depend here on combinable_i3pat to reject them. */
1117 /* The code below this loop only verifies that the inputs of
1118 the SET in INSN do not change. We call reg_set_between_p
1119 to verify that the REG in the USE does not change between
1120 I3 and INSN.
1121 If the USE in INSN was for a pseudo register, the matching
1122 insn pattern will likely match any register; combining this
1123 with any other USE would only be safe if we knew that the
1124 used registers have identical values, or if there was
1125 something to tell them apart, e.g. different modes. For
1126 now, we forgo such complicated tests and simply disallow
1127 combining of USES of pseudo registers with any other USE. */
1128 if (REG_P (XEXP (elt, 0))
1129 && GET_CODE (PATTERN (i3)) == PARALLEL)
1130 {
1131 rtx i3pat = PATTERN (i3);
1132 int i = XVECLEN (i3pat, 0) - 1;
1133 unsigned int regno = REGNO (XEXP (elt, 0));
1134
1135 do
1136 {
1137 rtx i3elt = XVECEXP (i3pat, 0, i);
1138
1139 if (GET_CODE (i3elt) == USE
1140 && REG_P (XEXP (i3elt, 0))
1141 && (REGNO (XEXP (i3elt, 0)) == regno
1142 ? reg_set_between_p (XEXP (elt, 0),
1143 PREV_INSN (insn), i3)
1144 : regno >= FIRST_PSEUDO_REGISTER))
1145 return 0;
1146 }
1147 while (--i >= 0);
1148 }
1149 break;
1150
1151 /* We can ignore CLOBBERs. */
1152 case CLOBBER:
1153 break;
1154
1155 case SET:
1156 /* Ignore SETs whose result isn't used but not those that
1157 have side-effects. */
1158 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1159 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1160 || INTVAL (XEXP (note, 0)) <= 0)
1161 && ! side_effects_p (elt))
1162 break;
1163
1164 /* If we have already found a SET, this is a second one and
1165 so we cannot combine with this insn. */
1166 if (set)
1167 return 0;
1168
1169 set = elt;
1170 break;
1171
1172 default:
1173 /* Anything else means we can't combine. */
1174 return 0;
1175 }
1176 }
1177
1178 if (set == 0
1179 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1180 so don't do anything with it. */
1181 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1182 return 0;
1183 }
1184 else
1185 return 0;
1186
1187 if (set == 0)
1188 return 0;
1189
1190 set = expand_field_assignment (set);
1191 src = SET_SRC (set), dest = SET_DEST (set);
1192
1193 /* Don't eliminate a store in the stack pointer. */
1194 if (dest == stack_pointer_rtx
1195 /* Don't combine with an insn that sets a register to itself if it has
1196 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1197 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1198 /* Can't merge an ASM_OPERANDS. */
1199 || GET_CODE (src) == ASM_OPERANDS
1200 /* Can't merge a function call. */
1201 || GET_CODE (src) == CALL
1202 /* Don't eliminate a function call argument. */
1203 || (CALL_P (i3)
1204 && (find_reg_fusage (i3, USE, dest)
1205 || (REG_P (dest)
1206 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1207 && global_regs[REGNO (dest)])))
1208 /* Don't substitute into an incremented register. */
1209 || FIND_REG_INC_NOTE (i3, dest)
1210 || (succ && FIND_REG_INC_NOTE (succ, dest))
1211 /* Don't substitute into a non-local goto, this confuses CFG. */
1212 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1213 #if 0
1214 /* Don't combine the end of a libcall into anything. */
1215 /* ??? This gives worse code, and appears to be unnecessary, since no
1216 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1217 use REG_RETVAL notes for noconflict blocks, but other code here
1218 makes sure that those insns don't disappear. */
1219 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1220 #endif
1221 /* Make sure that DEST is not used after SUCC but before I3. */
1222 || (succ && ! all_adjacent
1223 && reg_used_between_p (dest, succ, i3))
1224 /* Make sure that the value that is to be substituted for the register
1225 does not use any registers whose values alter in between. However,
1226 If the insns are adjacent, a use can't cross a set even though we
1227 think it might (this can happen for a sequence of insns each setting
1228 the same destination; last_set of that register might point to
1229 a NOTE). If INSN has a REG_EQUIV note, the register is always
1230 equivalent to the memory so the substitution is valid even if there
1231 are intervening stores. Also, don't move a volatile asm or
1232 UNSPEC_VOLATILE across any other insns. */
1233 || (! all_adjacent
1234 && (((!MEM_P (src)
1235 || ! find_reg_note (insn, REG_EQUIV, src))
1236 && use_crosses_set_p (src, INSN_CUID (insn)))
1237 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1238 || GET_CODE (src) == UNSPEC_VOLATILE))
1239 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1240 better register allocation by not doing the combine. */
1241 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1242 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1243 /* Don't combine across a CALL_INSN, because that would possibly
1244 change whether the life span of some REGs crosses calls or not,
1245 and it is a pain to update that information.
1246 Exception: if source is a constant, moving it later can't hurt.
1247 Accept that special case, because it helps -fforce-addr a lot. */
1248 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1249 return 0;
1250
1251 /* DEST must either be a REG or CC0. */
1252 if (REG_P (dest))
1253 {
1254 /* If register alignment is being enforced for multi-word items in all
1255 cases except for parameters, it is possible to have a register copy
1256 insn referencing a hard register that is not allowed to contain the
1257 mode being copied and which would not be valid as an operand of most
1258 insns. Eliminate this problem by not combining with such an insn.
1259
1260 Also, on some machines we don't want to extend the life of a hard
1261 register. */
1262
1263 if (REG_P (src)
1264 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1265 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1266 /* Don't extend the life of a hard register unless it is
1267 user variable (if we have few registers) or it can't
1268 fit into the desired register (meaning something special
1269 is going on).
1270 Also avoid substituting a return register into I3, because
1271 reload can't handle a conflict with constraints of other
1272 inputs. */
1273 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1274 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1275 return 0;
1276 }
1277 else if (GET_CODE (dest) != CC0)
1278 return 0;
1279
1280
1281 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1282 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1283 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1284 {
1285 /* Don't substitute for a register intended as a clobberable
1286 operand. */
1287 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1288 if (rtx_equal_p (reg, dest))
1289 return 0;
1290
1291 /* If the clobber represents an earlyclobber operand, we must not
1292 substitute an expression containing the clobbered register.
1293 As we do not analyze the constraint strings here, we have to
1294 make the conservative assumption. However, if the register is
1295 a fixed hard reg, the clobber cannot represent any operand;
1296 we leave it up to the machine description to either accept or
1297 reject use-and-clobber patterns. */
1298 if (!REG_P (reg)
1299 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1300 || !fixed_regs[REGNO (reg)])
1301 if (reg_overlap_mentioned_p (reg, src))
1302 return 0;
1303 }
1304
1305 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1306 or not), reject, unless nothing volatile comes between it and I3 */
1307
1308 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1309 {
1310 /* Make sure succ doesn't contain a volatile reference. */
1311 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1312 return 0;
1313
1314 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1315 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1316 return 0;
1317 }
1318
1319 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1320 to be an explicit register variable, and was chosen for a reason. */
1321
1322 if (GET_CODE (src) == ASM_OPERANDS
1323 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1324 return 0;
1325
1326 /* If there are any volatile insns between INSN and I3, reject, because
1327 they might affect machine state. */
1328
1329 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1330 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1331 return 0;
1332
1333 /* If INSN contains an autoincrement or autodecrement, make sure that
1334 register is not used between there and I3, and not already used in
1335 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1336 Also insist that I3 not be a jump; if it were one
1337 and the incremented register were spilled, we would lose. */
1338
1339 #ifdef AUTO_INC_DEC
1340 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1341 if (REG_NOTE_KIND (link) == REG_INC
1342 && (JUMP_P (i3)
1343 || reg_used_between_p (XEXP (link, 0), insn, i3)
1344 || (pred != NULL_RTX
1345 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1346 || (succ != NULL_RTX
1347 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1348 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1349 return 0;
1350 #endif
1351
1352 #ifdef HAVE_cc0
1353 /* Don't combine an insn that follows a CC0-setting insn.
1354 An insn that uses CC0 must not be separated from the one that sets it.
1355 We do, however, allow I2 to follow a CC0-setting insn if that insn
1356 is passed as I1; in that case it will be deleted also.
1357 We also allow combining in this case if all the insns are adjacent
1358 because that would leave the two CC0 insns adjacent as well.
1359 It would be more logical to test whether CC0 occurs inside I1 or I2,
1360 but that would be much slower, and this ought to be equivalent. */
1361
1362 p = prev_nonnote_insn (insn);
1363 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1364 && ! all_adjacent)
1365 return 0;
1366 #endif
1367
1368 /* If we get here, we have passed all the tests and the combination is
1369 to be allowed. */
1370
1371 *pdest = dest;
1372 *psrc = src;
1373
1374 return 1;
1375 }
1376 \f
1377 /* LOC is the location within I3 that contains its pattern or the component
1378 of a PARALLEL of the pattern. We validate that it is valid for combining.
1379
1380 One problem is if I3 modifies its output, as opposed to replacing it
1381 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1382 so would produce an insn that is not equivalent to the original insns.
1383
1384 Consider:
1385
1386 (set (reg:DI 101) (reg:DI 100))
1387 (set (subreg:SI (reg:DI 101) 0) <foo>)
1388
1389 This is NOT equivalent to:
1390
1391 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1392 (set (reg:DI 101) (reg:DI 100))])
1393
1394 Not only does this modify 100 (in which case it might still be valid
1395 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1396
1397 We can also run into a problem if I2 sets a register that I1
1398 uses and I1 gets directly substituted into I3 (not via I2). In that
1399 case, we would be getting the wrong value of I2DEST into I3, so we
1400 must reject the combination. This case occurs when I2 and I1 both
1401 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1402 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1403 of a SET must prevent combination from occurring.
1404
1405 Before doing the above check, we first try to expand a field assignment
1406 into a set of logical operations.
1407
1408 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1409 we place a register that is both set and used within I3. If more than one
1410 such register is detected, we fail.
1411
1412 Return 1 if the combination is valid, zero otherwise. */
1413
1414 static int
1415 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1416 int i1_not_in_src, rtx *pi3dest_killed)
1417 {
1418 rtx x = *loc;
1419
1420 if (GET_CODE (x) == SET)
1421 {
1422 rtx set = x ;
1423 rtx dest = SET_DEST (set);
1424 rtx src = SET_SRC (set);
1425 rtx inner_dest = dest;
1426
1427 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1428 || GET_CODE (inner_dest) == SUBREG
1429 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1430 inner_dest = XEXP (inner_dest, 0);
1431
1432 /* Check for the case where I3 modifies its output, as discussed
1433 above. We don't want to prevent pseudos from being combined
1434 into the address of a MEM, so only prevent the combination if
1435 i1 or i2 set the same MEM. */
1436 if ((inner_dest != dest &&
1437 (!MEM_P (inner_dest)
1438 || rtx_equal_p (i2dest, inner_dest)
1439 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1440 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1441 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1442
1443 /* This is the same test done in can_combine_p except we can't test
1444 all_adjacent; we don't have to, since this instruction will stay
1445 in place, thus we are not considering increasing the lifetime of
1446 INNER_DEST.
1447
1448 Also, if this insn sets a function argument, combining it with
1449 something that might need a spill could clobber a previous
1450 function argument; the all_adjacent test in can_combine_p also
1451 checks this; here, we do a more specific test for this case. */
1452
1453 || (REG_P (inner_dest)
1454 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1455 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1456 GET_MODE (inner_dest))))
1457 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1458 return 0;
1459
1460 /* If DEST is used in I3, it is being killed in this insn,
1461 so record that for later.
1462 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1463 STACK_POINTER_REGNUM, since these are always considered to be
1464 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1465 if (pi3dest_killed && REG_P (dest)
1466 && reg_referenced_p (dest, PATTERN (i3))
1467 && REGNO (dest) != FRAME_POINTER_REGNUM
1468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1469 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1470 #endif
1471 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1472 && (REGNO (dest) != ARG_POINTER_REGNUM
1473 || ! fixed_regs [REGNO (dest)])
1474 #endif
1475 && REGNO (dest) != STACK_POINTER_REGNUM)
1476 {
1477 if (*pi3dest_killed)
1478 return 0;
1479
1480 *pi3dest_killed = dest;
1481 }
1482 }
1483
1484 else if (GET_CODE (x) == PARALLEL)
1485 {
1486 int i;
1487
1488 for (i = 0; i < XVECLEN (x, 0); i++)
1489 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1490 i1_not_in_src, pi3dest_killed))
1491 return 0;
1492 }
1493
1494 return 1;
1495 }
1496 \f
1497 /* Return 1 if X is an arithmetic expression that contains a multiplication
1498 and division. We don't count multiplications by powers of two here. */
1499
1500 static int
1501 contains_muldiv (rtx x)
1502 {
1503 switch (GET_CODE (x))
1504 {
1505 case MOD: case DIV: case UMOD: case UDIV:
1506 return 1;
1507
1508 case MULT:
1509 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1510 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1511 default:
1512 if (BINARY_P (x))
1513 return contains_muldiv (XEXP (x, 0))
1514 || contains_muldiv (XEXP (x, 1));
1515
1516 if (UNARY_P (x))
1517 return contains_muldiv (XEXP (x, 0));
1518
1519 return 0;
1520 }
1521 }
1522 \f
1523 /* Determine whether INSN can be used in a combination. Return nonzero if
1524 not. This is used in try_combine to detect early some cases where we
1525 can't perform combinations. */
1526
1527 static int
1528 cant_combine_insn_p (rtx insn)
1529 {
1530 rtx set;
1531 rtx src, dest;
1532
1533 /* If this isn't really an insn, we can't do anything.
1534 This can occur when flow deletes an insn that it has merged into an
1535 auto-increment address. */
1536 if (! INSN_P (insn))
1537 return 1;
1538
1539 /* Never combine loads and stores involving hard regs that are likely
1540 to be spilled. The register allocator can usually handle such
1541 reg-reg moves by tying. If we allow the combiner to make
1542 substitutions of likely-spilled regs, reload might die.
1543 As an exception, we allow combinations involving fixed regs; these are
1544 not available to the register allocator so there's no risk involved. */
1545
1546 set = single_set (insn);
1547 if (! set)
1548 return 0;
1549 src = SET_SRC (set);
1550 dest = SET_DEST (set);
1551 if (GET_CODE (src) == SUBREG)
1552 src = SUBREG_REG (src);
1553 if (GET_CODE (dest) == SUBREG)
1554 dest = SUBREG_REG (dest);
1555 if (REG_P (src) && REG_P (dest)
1556 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1557 && ! fixed_regs[REGNO (src)]
1558 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1559 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1560 && ! fixed_regs[REGNO (dest)]
1561 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1562 return 1;
1563
1564 return 0;
1565 }
1566
1567 struct likely_spilled_retval_info
1568 {
1569 unsigned regno, nregs;
1570 unsigned mask;
1571 };
1572
1573 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1574 hard registers that are known to be written to / clobbered in full. */
1575 static void
1576 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1577 {
1578 struct likely_spilled_retval_info *info = data;
1579 unsigned regno, nregs;
1580 unsigned new_mask;
1581
1582 if (!REG_P (XEXP (set, 0)))
1583 return;
1584 regno = REGNO (x);
1585 if (regno >= info->regno + info->nregs)
1586 return;
1587 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1588 if (regno + nregs <= info->regno)
1589 return;
1590 new_mask = (2U << (nregs - 1)) - 1;
1591 if (regno < info->regno)
1592 new_mask >>= info->regno - regno;
1593 else
1594 new_mask <<= regno - info->regno;
1595 info->mask &= new_mask;
1596 }
1597
1598 /* Return nonzero iff part of the return value is live during INSN, and
1599 it is likely spilled. This can happen when more than one insn is needed
1600 to copy the return value, e.g. when we consider to combine into the
1601 second copy insn for a complex value. */
1602
1603 static int
1604 likely_spilled_retval_p (rtx insn)
1605 {
1606 rtx use = BB_END (this_basic_block);
1607 rtx reg, p;
1608 unsigned regno, nregs;
1609 /* We assume here that no machine mode needs more than
1610 32 hard registers when the value overlaps with a register
1611 for which FUNCTION_VALUE_REGNO_P is true. */
1612 unsigned mask;
1613 struct likely_spilled_retval_info info;
1614
1615 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1616 return 0;
1617 reg = XEXP (PATTERN (use), 0);
1618 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1619 return 0;
1620 regno = REGNO (reg);
1621 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1622 if (nregs == 1)
1623 return 0;
1624 mask = (2U << (nregs - 1)) - 1;
1625
1626 /* Disregard parts of the return value that are set later. */
1627 info.regno = regno;
1628 info.nregs = nregs;
1629 info.mask = mask;
1630 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1631 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1632 mask = info.mask;
1633
1634 /* Check if any of the (probably) live return value registers is
1635 likely spilled. */
1636 nregs --;
1637 do
1638 {
1639 if ((mask & 1 << nregs)
1640 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1641 return 1;
1642 } while (nregs--);
1643 return 0;
1644 }
1645
1646 /* Adjust INSN after we made a change to its destination.
1647
1648 Changing the destination can invalidate notes that say something about
1649 the results of the insn and a LOG_LINK pointing to the insn. */
1650
1651 static void
1652 adjust_for_new_dest (rtx insn)
1653 {
1654 rtx *loc;
1655
1656 /* For notes, be conservative and simply remove them. */
1657 loc = &REG_NOTES (insn);
1658 while (*loc)
1659 {
1660 enum reg_note kind = REG_NOTE_KIND (*loc);
1661 if (kind == REG_EQUAL || kind == REG_EQUIV)
1662 *loc = XEXP (*loc, 1);
1663 else
1664 loc = &XEXP (*loc, 1);
1665 }
1666
1667 /* The new insn will have a destination that was previously the destination
1668 of an insn just above it. Call distribute_links to make a LOG_LINK from
1669 the next use of that destination. */
1670 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1671 }
1672
1673 /* Return TRUE if combine can reuse reg X in mode MODE.
1674 ADDED_SETS is nonzero if the original set is still required. */
1675 static bool
1676 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1677 {
1678 unsigned int regno;
1679
1680 if (!REG_P(x))
1681 return false;
1682
1683 regno = REGNO (x);
1684 /* Allow hard registers if the new mode is legal, and occupies no more
1685 registers than the old mode. */
1686 if (regno < FIRST_PSEUDO_REGISTER)
1687 return (HARD_REGNO_MODE_OK (regno, mode)
1688 && (hard_regno_nregs[regno][GET_MODE (x)]
1689 >= hard_regno_nregs[regno][mode]));
1690
1691 /* Or a pseudo that is only used once. */
1692 return (REG_N_SETS (regno) == 1 && !added_sets
1693 && !REG_USERVAR_P (x));
1694 }
1695
1696 /* Try to combine the insns I1 and I2 into I3.
1697 Here I1 and I2 appear earlier than I3.
1698 I1 can be zero; then we combine just I2 into I3.
1699
1700 If we are combining three insns and the resulting insn is not recognized,
1701 try splitting it into two insns. If that happens, I2 and I3 are retained
1702 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1703 are pseudo-deleted.
1704
1705 Return 0 if the combination does not work. Then nothing is changed.
1706 If we did the combination, return the insn at which combine should
1707 resume scanning.
1708
1709 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1710 new direct jump instruction. */
1711
1712 static rtx
1713 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1714 {
1715 /* New patterns for I3 and I2, respectively. */
1716 rtx newpat, newi2pat = 0;
1717 rtvec newpat_vec_with_clobbers = 0;
1718 int substed_i2 = 0, substed_i1 = 0;
1719 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1720 int added_sets_1, added_sets_2;
1721 /* Total number of SETs to put into I3. */
1722 int total_sets;
1723 /* Nonzero if I2's body now appears in I3. */
1724 int i2_is_used;
1725 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1726 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1727 /* Contains I3 if the destination of I3 is used in its source, which means
1728 that the old life of I3 is being killed. If that usage is placed into
1729 I2 and not in I3, a REG_DEAD note must be made. */
1730 rtx i3dest_killed = 0;
1731 /* SET_DEST and SET_SRC of I2 and I1. */
1732 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1733 /* PATTERN (I2), or a copy of it in certain cases. */
1734 rtx i2pat;
1735 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1736 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1737 int i2dest_killed = 0, i1dest_killed = 0;
1738 int i1_feeds_i3 = 0;
1739 /* Notes that must be added to REG_NOTES in I3 and I2. */
1740 rtx new_i3_notes, new_i2_notes;
1741 /* Notes that we substituted I3 into I2 instead of the normal case. */
1742 int i3_subst_into_i2 = 0;
1743 /* Notes that I1, I2 or I3 is a MULT operation. */
1744 int have_mult = 0;
1745 int swap_i2i3 = 0;
1746
1747 int maxreg;
1748 rtx temp;
1749 rtx link;
1750 int i;
1751
1752 /* Exit early if one of the insns involved can't be used for
1753 combinations. */
1754 if (cant_combine_insn_p (i3)
1755 || cant_combine_insn_p (i2)
1756 || (i1 && cant_combine_insn_p (i1))
1757 || likely_spilled_retval_p (i3)
1758 /* We also can't do anything if I3 has a
1759 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1760 libcall. */
1761 #if 0
1762 /* ??? This gives worse code, and appears to be unnecessary, since no
1763 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1764 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1765 #endif
1766 )
1767 return 0;
1768
1769 combine_attempts++;
1770 undobuf.other_insn = 0;
1771
1772 /* Reset the hard register usage information. */
1773 CLEAR_HARD_REG_SET (newpat_used_regs);
1774
1775 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1776 code below, set I1 to be the earlier of the two insns. */
1777 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1778 temp = i1, i1 = i2, i2 = temp;
1779
1780 added_links_insn = 0;
1781
1782 /* First check for one important special-case that the code below will
1783 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1784 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1785 we may be able to replace that destination with the destination of I3.
1786 This occurs in the common code where we compute both a quotient and
1787 remainder into a structure, in which case we want to do the computation
1788 directly into the structure to avoid register-register copies.
1789
1790 Note that this case handles both multiple sets in I2 and also
1791 cases where I2 has a number of CLOBBER or PARALLELs.
1792
1793 We make very conservative checks below and only try to handle the
1794 most common cases of this. For example, we only handle the case
1795 where I2 and I3 are adjacent to avoid making difficult register
1796 usage tests. */
1797
1798 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1799 && REG_P (SET_SRC (PATTERN (i3)))
1800 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1801 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1802 && GET_CODE (PATTERN (i2)) == PARALLEL
1803 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1804 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1805 below would need to check what is inside (and reg_overlap_mentioned_p
1806 doesn't support those codes anyway). Don't allow those destinations;
1807 the resulting insn isn't likely to be recognized anyway. */
1808 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1809 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1810 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1811 SET_DEST (PATTERN (i3)))
1812 && next_real_insn (i2) == i3)
1813 {
1814 rtx p2 = PATTERN (i2);
1815
1816 /* Make sure that the destination of I3,
1817 which we are going to substitute into one output of I2,
1818 is not used within another output of I2. We must avoid making this:
1819 (parallel [(set (mem (reg 69)) ...)
1820 (set (reg 69) ...)])
1821 which is not well-defined as to order of actions.
1822 (Besides, reload can't handle output reloads for this.)
1823
1824 The problem can also happen if the dest of I3 is a memory ref,
1825 if another dest in I2 is an indirect memory ref. */
1826 for (i = 0; i < XVECLEN (p2, 0); i++)
1827 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1828 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1829 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1830 SET_DEST (XVECEXP (p2, 0, i))))
1831 break;
1832
1833 if (i == XVECLEN (p2, 0))
1834 for (i = 0; i < XVECLEN (p2, 0); i++)
1835 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1836 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1837 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1838 {
1839 combine_merges++;
1840
1841 subst_insn = i3;
1842 subst_low_cuid = INSN_CUID (i2);
1843
1844 added_sets_2 = added_sets_1 = 0;
1845 i2dest = SET_SRC (PATTERN (i3));
1846 i2dest_killed = dead_or_set_p (i2, i2dest);
1847
1848 /* Replace the dest in I2 with our dest and make the resulting
1849 insn the new pattern for I3. Then skip to where we
1850 validate the pattern. Everything was set up above. */
1851 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1852 SET_DEST (PATTERN (i3)));
1853
1854 newpat = p2;
1855 i3_subst_into_i2 = 1;
1856 goto validate_replacement;
1857 }
1858 }
1859
1860 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1861 one of those words to another constant, merge them by making a new
1862 constant. */
1863 if (i1 == 0
1864 && (temp = single_set (i2)) != 0
1865 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1866 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1867 && REG_P (SET_DEST (temp))
1868 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1869 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1870 && GET_CODE (PATTERN (i3)) == SET
1871 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1872 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1873 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1874 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1875 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1876 {
1877 HOST_WIDE_INT lo, hi;
1878
1879 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1880 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1881 else
1882 {
1883 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1884 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1885 }
1886
1887 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1888 {
1889 /* We don't handle the case of the target word being wider
1890 than a host wide int. */
1891 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1892
1893 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1894 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1895 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1896 }
1897 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1898 hi = INTVAL (SET_SRC (PATTERN (i3)));
1899 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1900 {
1901 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1902 >> (HOST_BITS_PER_WIDE_INT - 1));
1903
1904 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1905 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1906 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1907 (INTVAL (SET_SRC (PATTERN (i3)))));
1908 if (hi == sign)
1909 hi = lo < 0 ? -1 : 0;
1910 }
1911 else
1912 /* We don't handle the case of the higher word not fitting
1913 entirely in either hi or lo. */
1914 gcc_unreachable ();
1915
1916 combine_merges++;
1917 subst_insn = i3;
1918 subst_low_cuid = INSN_CUID (i2);
1919 added_sets_2 = added_sets_1 = 0;
1920 i2dest = SET_DEST (temp);
1921 i2dest_killed = dead_or_set_p (i2, i2dest);
1922
1923 SUBST (SET_SRC (temp),
1924 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1925
1926 newpat = PATTERN (i2);
1927 goto validate_replacement;
1928 }
1929
1930 #ifndef HAVE_cc0
1931 /* If we have no I1 and I2 looks like:
1932 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1933 (set Y OP)])
1934 make up a dummy I1 that is
1935 (set Y OP)
1936 and change I2 to be
1937 (set (reg:CC X) (compare:CC Y (const_int 0)))
1938
1939 (We can ignore any trailing CLOBBERs.)
1940
1941 This undoes a previous combination and allows us to match a branch-and-
1942 decrement insn. */
1943
1944 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1945 && XVECLEN (PATTERN (i2), 0) >= 2
1946 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1947 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1948 == MODE_CC)
1949 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1950 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1951 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1952 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1953 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1954 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1955 {
1956 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1957 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1958 break;
1959
1960 if (i == 1)
1961 {
1962 /* We make I1 with the same INSN_UID as I2. This gives it
1963 the same INSN_CUID for value tracking. Our fake I1 will
1964 never appear in the insn stream so giving it the same INSN_UID
1965 as I2 will not cause a problem. */
1966
1967 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1968 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1969 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1970 NULL_RTX);
1971
1972 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1973 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1974 SET_DEST (PATTERN (i1)));
1975 }
1976 }
1977 #endif
1978
1979 /* Verify that I2 and I1 are valid for combining. */
1980 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1981 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1982 {
1983 undo_all ();
1984 return 0;
1985 }
1986
1987 /* Record whether I2DEST is used in I2SRC and similarly for the other
1988 cases. Knowing this will help in register status updating below. */
1989 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1990 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1991 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1992 i2dest_killed = dead_or_set_p (i2, i2dest);
1993 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
1994
1995 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1996 in I2SRC. */
1997 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1998
1999 /* Ensure that I3's pattern can be the destination of combines. */
2000 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2001 i1 && i2dest_in_i1src && i1_feeds_i3,
2002 &i3dest_killed))
2003 {
2004 undo_all ();
2005 return 0;
2006 }
2007
2008 /* See if any of the insns is a MULT operation. Unless one is, we will
2009 reject a combination that is, since it must be slower. Be conservative
2010 here. */
2011 if (GET_CODE (i2src) == MULT
2012 || (i1 != 0 && GET_CODE (i1src) == MULT)
2013 || (GET_CODE (PATTERN (i3)) == SET
2014 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2015 have_mult = 1;
2016
2017 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2018 We used to do this EXCEPT in one case: I3 has a post-inc in an
2019 output operand. However, that exception can give rise to insns like
2020 mov r3,(r3)+
2021 which is a famous insn on the PDP-11 where the value of r3 used as the
2022 source was model-dependent. Avoid this sort of thing. */
2023
2024 #if 0
2025 if (!(GET_CODE (PATTERN (i3)) == SET
2026 && REG_P (SET_SRC (PATTERN (i3)))
2027 && MEM_P (SET_DEST (PATTERN (i3)))
2028 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2029 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2030 /* It's not the exception. */
2031 #endif
2032 #ifdef AUTO_INC_DEC
2033 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2034 if (REG_NOTE_KIND (link) == REG_INC
2035 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2036 || (i1 != 0
2037 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2038 {
2039 undo_all ();
2040 return 0;
2041 }
2042 #endif
2043
2044 /* See if the SETs in I1 or I2 need to be kept around in the merged
2045 instruction: whenever the value set there is still needed past I3.
2046 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2047
2048 For the SET in I1, we have two cases: If I1 and I2 independently
2049 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2050 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2051 in I1 needs to be kept around unless I1DEST dies or is set in either
2052 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2053 I1DEST. If so, we know I1 feeds into I2. */
2054
2055 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2056
2057 added_sets_1
2058 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2059 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2060
2061 /* If the set in I2 needs to be kept around, we must make a copy of
2062 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2063 PATTERN (I2), we are only substituting for the original I1DEST, not into
2064 an already-substituted copy. This also prevents making self-referential
2065 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2066 I2DEST. */
2067
2068 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2069 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2070 : PATTERN (i2));
2071
2072 if (added_sets_2)
2073 i2pat = copy_rtx (i2pat);
2074
2075 combine_merges++;
2076
2077 /* Substitute in the latest insn for the regs set by the earlier ones. */
2078
2079 maxreg = max_reg_num ();
2080
2081 subst_insn = i3;
2082
2083 /* It is possible that the source of I2 or I1 may be performing an
2084 unneeded operation, such as a ZERO_EXTEND of something that is known
2085 to have the high part zero. Handle that case by letting subst look at
2086 the innermost one of them.
2087
2088 Another way to do this would be to have a function that tries to
2089 simplify a single insn instead of merging two or more insns. We don't
2090 do this because of the potential of infinite loops and because
2091 of the potential extra memory required. However, doing it the way
2092 we are is a bit of a kludge and doesn't catch all cases.
2093
2094 But only do this if -fexpensive-optimizations since it slows things down
2095 and doesn't usually win. */
2096
2097 if (flag_expensive_optimizations)
2098 {
2099 /* Pass pc_rtx so no substitutions are done, just simplifications. */
2100 if (i1)
2101 {
2102 subst_low_cuid = INSN_CUID (i1);
2103 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2104 }
2105 else
2106 {
2107 subst_low_cuid = INSN_CUID (i2);
2108 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2109 }
2110 }
2111
2112 #ifndef HAVE_cc0
2113 /* Many machines that don't use CC0 have insns that can both perform an
2114 arithmetic operation and set the condition code. These operations will
2115 be represented as a PARALLEL with the first element of the vector
2116 being a COMPARE of an arithmetic operation with the constant zero.
2117 The second element of the vector will set some pseudo to the result
2118 of the same arithmetic operation. If we simplify the COMPARE, we won't
2119 match such a pattern and so will generate an extra insn. Here we test
2120 for this case, where both the comparison and the operation result are
2121 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2122 I2SRC. Later we will make the PARALLEL that contains I2. */
2123
2124 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2125 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2126 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2127 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2128 {
2129 #ifdef SELECT_CC_MODE
2130 rtx *cc_use;
2131 enum machine_mode compare_mode;
2132 #endif
2133
2134 newpat = PATTERN (i3);
2135 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2136
2137 i2_is_used = 1;
2138
2139 #ifdef SELECT_CC_MODE
2140 /* See if a COMPARE with the operand we substituted in should be done
2141 with the mode that is currently being used. If not, do the same
2142 processing we do in `subst' for a SET; namely, if the destination
2143 is used only once, try to replace it with a register of the proper
2144 mode and also replace the COMPARE. */
2145 if (undobuf.other_insn == 0
2146 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2147 &undobuf.other_insn))
2148 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2149 i2src, const0_rtx))
2150 != GET_MODE (SET_DEST (newpat))))
2151 {
2152 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2153 compare_mode))
2154 {
2155 unsigned int regno = REGNO (SET_DEST (newpat));
2156 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2157
2158 if (regno >= FIRST_PSEUDO_REGISTER)
2159 SUBST (regno_reg_rtx[regno], new_dest);
2160
2161 SUBST (SET_DEST (newpat), new_dest);
2162 SUBST (XEXP (*cc_use, 0), new_dest);
2163 SUBST (SET_SRC (newpat),
2164 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2165 }
2166 else
2167 undobuf.other_insn = 0;
2168 }
2169 #endif
2170 }
2171 else
2172 #endif
2173 {
2174 n_occurrences = 0; /* `subst' counts here */
2175
2176 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2177 need to make a unique copy of I2SRC each time we substitute it
2178 to avoid self-referential rtl. */
2179
2180 subst_low_cuid = INSN_CUID (i2);
2181 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2182 ! i1_feeds_i3 && i1dest_in_i1src);
2183 substed_i2 = 1;
2184
2185 /* Record whether i2's body now appears within i3's body. */
2186 i2_is_used = n_occurrences;
2187 }
2188
2189 /* If we already got a failure, don't try to do more. Otherwise,
2190 try to substitute in I1 if we have it. */
2191
2192 if (i1 && GET_CODE (newpat) != CLOBBER)
2193 {
2194 /* Before we can do this substitution, we must redo the test done
2195 above (see detailed comments there) that ensures that I1DEST
2196 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2197
2198 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2199 0, (rtx*) 0))
2200 {
2201 undo_all ();
2202 return 0;
2203 }
2204
2205 n_occurrences = 0;
2206 subst_low_cuid = INSN_CUID (i1);
2207 newpat = subst (newpat, i1dest, i1src, 0, 0);
2208 substed_i1 = 1;
2209 }
2210
2211 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2212 to count all the ways that I2SRC and I1SRC can be used. */
2213 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2214 && i2_is_used + added_sets_2 > 1)
2215 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2216 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2217 > 1))
2218 /* Fail if we tried to make a new register. */
2219 || max_reg_num () != maxreg
2220 /* Fail if we couldn't do something and have a CLOBBER. */
2221 || GET_CODE (newpat) == CLOBBER
2222 /* Fail if this new pattern is a MULT and we didn't have one before
2223 at the outer level. */
2224 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2225 && ! have_mult))
2226 {
2227 undo_all ();
2228 return 0;
2229 }
2230
2231 /* If the actions of the earlier insns must be kept
2232 in addition to substituting them into the latest one,
2233 we must make a new PARALLEL for the latest insn
2234 to hold additional the SETs. */
2235
2236 if (added_sets_1 || added_sets_2)
2237 {
2238 combine_extras++;
2239
2240 if (GET_CODE (newpat) == PARALLEL)
2241 {
2242 rtvec old = XVEC (newpat, 0);
2243 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2244 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2245 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2246 sizeof (old->elem[0]) * old->num_elem);
2247 }
2248 else
2249 {
2250 rtx old = newpat;
2251 total_sets = 1 + added_sets_1 + added_sets_2;
2252 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2253 XVECEXP (newpat, 0, 0) = old;
2254 }
2255
2256 if (added_sets_1)
2257 XVECEXP (newpat, 0, --total_sets)
2258 = (GET_CODE (PATTERN (i1)) == PARALLEL
2259 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2260
2261 if (added_sets_2)
2262 {
2263 /* If there is no I1, use I2's body as is. We used to also not do
2264 the subst call below if I2 was substituted into I3,
2265 but that could lose a simplification. */
2266 if (i1 == 0)
2267 XVECEXP (newpat, 0, --total_sets) = i2pat;
2268 else
2269 /* See comment where i2pat is assigned. */
2270 XVECEXP (newpat, 0, --total_sets)
2271 = subst (i2pat, i1dest, i1src, 0, 0);
2272 }
2273 }
2274
2275 /* We come here when we are replacing a destination in I2 with the
2276 destination of I3. */
2277 validate_replacement:
2278
2279 /* Note which hard regs this insn has as inputs. */
2280 mark_used_regs_combine (newpat);
2281
2282 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2283 consider splitting this pattern, we might need these clobbers. */
2284 if (i1 && GET_CODE (newpat) == PARALLEL
2285 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2286 {
2287 int len = XVECLEN (newpat, 0);
2288
2289 newpat_vec_with_clobbers = rtvec_alloc (len);
2290 for (i = 0; i < len; i++)
2291 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2292 }
2293
2294 /* Is the result of combination a valid instruction? */
2295 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2296
2297 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2298 the second SET's destination is a register that is unused and isn't
2299 marked as an instruction that might trap in an EH region. In that case,
2300 we just need the first SET. This can occur when simplifying a divmod
2301 insn. We *must* test for this case here because the code below that
2302 splits two independent SETs doesn't handle this case correctly when it
2303 updates the register status.
2304
2305 It's pointless doing this if we originally had two sets, one from
2306 i3, and one from i2. Combining then splitting the parallel results
2307 in the original i2 again plus an invalid insn (which we delete).
2308 The net effect is only to move instructions around, which makes
2309 debug info less accurate.
2310
2311 Also check the case where the first SET's destination is unused.
2312 That would not cause incorrect code, but does cause an unneeded
2313 insn to remain. */
2314
2315 if (insn_code_number < 0
2316 && !(added_sets_2 && i1 == 0)
2317 && GET_CODE (newpat) == PARALLEL
2318 && XVECLEN (newpat, 0) == 2
2319 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2320 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2321 && asm_noperands (newpat) < 0)
2322 {
2323 rtx set0 = XVECEXP (newpat, 0, 0);
2324 rtx set1 = XVECEXP (newpat, 0, 1);
2325 rtx note;
2326
2327 if (((REG_P (SET_DEST (set1))
2328 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2329 || (GET_CODE (SET_DEST (set1)) == SUBREG
2330 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2331 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2332 || INTVAL (XEXP (note, 0)) <= 0)
2333 && ! side_effects_p (SET_SRC (set1)))
2334 {
2335 newpat = set0;
2336 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2337 }
2338
2339 else if (((REG_P (SET_DEST (set0))
2340 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2341 || (GET_CODE (SET_DEST (set0)) == SUBREG
2342 && find_reg_note (i3, REG_UNUSED,
2343 SUBREG_REG (SET_DEST (set0)))))
2344 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2345 || INTVAL (XEXP (note, 0)) <= 0)
2346 && ! side_effects_p (SET_SRC (set0)))
2347 {
2348 newpat = set1;
2349 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2350
2351 if (insn_code_number >= 0)
2352 {
2353 /* If we will be able to accept this, we have made a
2354 change to the destination of I3. This requires us to
2355 do a few adjustments. */
2356
2357 PATTERN (i3) = newpat;
2358 adjust_for_new_dest (i3);
2359 }
2360 }
2361 }
2362
2363 /* If we were combining three insns and the result is a simple SET
2364 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2365 insns. There are two ways to do this. It can be split using a
2366 machine-specific method (like when you have an addition of a large
2367 constant) or by combine in the function find_split_point. */
2368
2369 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2370 && asm_noperands (newpat) < 0)
2371 {
2372 rtx m_split, *split;
2373 rtx ni2dest = i2dest;
2374
2375 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2376 use I2DEST as a scratch register will help. In the latter case,
2377 convert I2DEST to the mode of the source of NEWPAT if we can. */
2378
2379 m_split = split_insns (newpat, i3);
2380
2381 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2382 inputs of NEWPAT. */
2383
2384 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2385 possible to try that as a scratch reg. This would require adding
2386 more code to make it work though. */
2387
2388 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2389 {
2390 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2391 /* If I2DEST is a hard register or the only use of a pseudo,
2392 we can change its mode. */
2393 if (new_mode != GET_MODE (i2dest)
2394 && new_mode != VOIDmode
2395 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2396 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2397 REGNO (i2dest));
2398
2399 m_split = split_insns (gen_rtx_PARALLEL
2400 (VOIDmode,
2401 gen_rtvec (2, newpat,
2402 gen_rtx_CLOBBER (VOIDmode,
2403 ni2dest))),
2404 i3);
2405 /* If the split with the mode-changed register didn't work, try
2406 the original register. */
2407 if (! m_split && ni2dest != i2dest)
2408 {
2409 ni2dest = i2dest;
2410 m_split = split_insns (gen_rtx_PARALLEL
2411 (VOIDmode,
2412 gen_rtvec (2, newpat,
2413 gen_rtx_CLOBBER (VOIDmode,
2414 i2dest))),
2415 i3);
2416 }
2417 }
2418
2419 /* If recog_for_combine has discarded clobbers, try to use them
2420 again for the split. */
2421 if (m_split == 0 && newpat_vec_with_clobbers)
2422 m_split
2423 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2424 newpat_vec_with_clobbers), i3);
2425
2426 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2427 {
2428 m_split = PATTERN (m_split);
2429 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2430 if (insn_code_number >= 0)
2431 newpat = m_split;
2432 }
2433 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2434 && (next_real_insn (i2) == i3
2435 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2436 {
2437 rtx i2set, i3set;
2438 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2439 newi2pat = PATTERN (m_split);
2440
2441 i3set = single_set (NEXT_INSN (m_split));
2442 i2set = single_set (m_split);
2443
2444 /* In case we changed the mode of I2DEST, replace it in the
2445 pseudo-register table here. We can't do it above in case this
2446 code doesn't get executed and we do a split the other way. */
2447
2448 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2449 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2450
2451 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2452
2453 /* If I2 or I3 has multiple SETs, we won't know how to track
2454 register status, so don't use these insns. If I2's destination
2455 is used between I2 and I3, we also can't use these insns. */
2456
2457 if (i2_code_number >= 0 && i2set && i3set
2458 && (next_real_insn (i2) == i3
2459 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2460 insn_code_number = recog_for_combine (&newi3pat, i3,
2461 &new_i3_notes);
2462 if (insn_code_number >= 0)
2463 newpat = newi3pat;
2464
2465 /* It is possible that both insns now set the destination of I3.
2466 If so, we must show an extra use of it. */
2467
2468 if (insn_code_number >= 0)
2469 {
2470 rtx new_i3_dest = SET_DEST (i3set);
2471 rtx new_i2_dest = SET_DEST (i2set);
2472
2473 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2474 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2475 || GET_CODE (new_i3_dest) == SUBREG)
2476 new_i3_dest = XEXP (new_i3_dest, 0);
2477
2478 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2479 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2480 || GET_CODE (new_i2_dest) == SUBREG)
2481 new_i2_dest = XEXP (new_i2_dest, 0);
2482
2483 if (REG_P (new_i3_dest)
2484 && REG_P (new_i2_dest)
2485 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2486 REG_N_SETS (REGNO (new_i2_dest))++;
2487 }
2488 }
2489
2490 /* If we can split it and use I2DEST, go ahead and see if that
2491 helps things be recognized. Verify that none of the registers
2492 are set between I2 and I3. */
2493 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2494 #ifdef HAVE_cc0
2495 && REG_P (i2dest)
2496 #endif
2497 /* We need I2DEST in the proper mode. If it is a hard register
2498 or the only use of a pseudo, we can change its mode.
2499 Make sure we don't change a hard register to have a mode that
2500 isn't valid for it, or change the number of registers. */
2501 && (GET_MODE (*split) == GET_MODE (i2dest)
2502 || GET_MODE (*split) == VOIDmode
2503 || can_change_dest_mode (i2dest, added_sets_2,
2504 GET_MODE (*split)))
2505 && (next_real_insn (i2) == i3
2506 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2507 /* We can't overwrite I2DEST if its value is still used by
2508 NEWPAT. */
2509 && ! reg_referenced_p (i2dest, newpat))
2510 {
2511 rtx newdest = i2dest;
2512 enum rtx_code split_code = GET_CODE (*split);
2513 enum machine_mode split_mode = GET_MODE (*split);
2514
2515 /* Get NEWDEST as a register in the proper mode. We have already
2516 validated that we can do this. */
2517 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2518 {
2519 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2520
2521 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2522 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2523 }
2524
2525 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2526 an ASHIFT. This can occur if it was inside a PLUS and hence
2527 appeared to be a memory address. This is a kludge. */
2528 if (split_code == MULT
2529 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2530 && INTVAL (XEXP (*split, 1)) > 0
2531 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2532 {
2533 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2534 XEXP (*split, 0), GEN_INT (i)));
2535 /* Update split_code because we may not have a multiply
2536 anymore. */
2537 split_code = GET_CODE (*split);
2538 }
2539
2540 #ifdef INSN_SCHEDULING
2541 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2542 be written as a ZERO_EXTEND. */
2543 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2544 {
2545 #ifdef LOAD_EXTEND_OP
2546 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2547 what it really is. */
2548 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2549 == SIGN_EXTEND)
2550 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2551 SUBREG_REG (*split)));
2552 else
2553 #endif
2554 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2555 SUBREG_REG (*split)));
2556 }
2557 #endif
2558
2559 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2560 SUBST (*split, newdest);
2561 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2562
2563 /* recog_for_combine might have added CLOBBERs to newi2pat.
2564 Make sure NEWPAT does not depend on the clobbered regs. */
2565 if (GET_CODE (newi2pat) == PARALLEL)
2566 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2567 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2568 {
2569 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2570 if (reg_overlap_mentioned_p (reg, newpat))
2571 {
2572 undo_all ();
2573 return 0;
2574 }
2575 }
2576
2577 /* If the split point was a MULT and we didn't have one before,
2578 don't use one now. */
2579 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2580 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2581 }
2582 }
2583
2584 /* Check for a case where we loaded from memory in a narrow mode and
2585 then sign extended it, but we need both registers. In that case,
2586 we have a PARALLEL with both loads from the same memory location.
2587 We can split this into a load from memory followed by a register-register
2588 copy. This saves at least one insn, more if register allocation can
2589 eliminate the copy.
2590
2591 We cannot do this if the destination of the first assignment is a
2592 condition code register or cc0. We eliminate this case by making sure
2593 the SET_DEST and SET_SRC have the same mode.
2594
2595 We cannot do this if the destination of the second assignment is
2596 a register that we have already assumed is zero-extended. Similarly
2597 for a SUBREG of such a register. */
2598
2599 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2600 && GET_CODE (newpat) == PARALLEL
2601 && XVECLEN (newpat, 0) == 2
2602 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2603 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2604 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2605 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2606 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2607 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2608 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2609 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2610 INSN_CUID (i2))
2611 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2612 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2613 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2614 (REG_P (temp)
2615 && reg_stat[REGNO (temp)].nonzero_bits != 0
2616 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2617 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2618 && (reg_stat[REGNO (temp)].nonzero_bits
2619 != GET_MODE_MASK (word_mode))))
2620 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2621 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2622 (REG_P (temp)
2623 && reg_stat[REGNO (temp)].nonzero_bits != 0
2624 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2625 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2626 && (reg_stat[REGNO (temp)].nonzero_bits
2627 != GET_MODE_MASK (word_mode)))))
2628 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2629 SET_SRC (XVECEXP (newpat, 0, 1)))
2630 && ! find_reg_note (i3, REG_UNUSED,
2631 SET_DEST (XVECEXP (newpat, 0, 0))))
2632 {
2633 rtx ni2dest;
2634
2635 newi2pat = XVECEXP (newpat, 0, 0);
2636 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2637 newpat = XVECEXP (newpat, 0, 1);
2638 SUBST (SET_SRC (newpat),
2639 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2640 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2641
2642 if (i2_code_number >= 0)
2643 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2644
2645 if (insn_code_number >= 0)
2646 swap_i2i3 = 1;
2647 }
2648
2649 /* Similarly, check for a case where we have a PARALLEL of two independent
2650 SETs but we started with three insns. In this case, we can do the sets
2651 as two separate insns. This case occurs when some SET allows two
2652 other insns to combine, but the destination of that SET is still live. */
2653
2654 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2655 && GET_CODE (newpat) == PARALLEL
2656 && XVECLEN (newpat, 0) == 2
2657 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2658 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2659 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2660 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2661 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2662 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2663 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2664 INSN_CUID (i2))
2665 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2666 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2667 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2668 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2669 XVECEXP (newpat, 0, 0))
2670 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2671 XVECEXP (newpat, 0, 1))
2672 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2673 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2674 {
2675 /* Normally, it doesn't matter which of the two is done first,
2676 but it does if one references cc0. In that case, it has to
2677 be first. */
2678 #ifdef HAVE_cc0
2679 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2680 {
2681 newi2pat = XVECEXP (newpat, 0, 0);
2682 newpat = XVECEXP (newpat, 0, 1);
2683 }
2684 else
2685 #endif
2686 {
2687 newi2pat = XVECEXP (newpat, 0, 1);
2688 newpat = XVECEXP (newpat, 0, 0);
2689 }
2690
2691 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2692
2693 if (i2_code_number >= 0)
2694 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2695 }
2696
2697 /* If it still isn't recognized, fail and change things back the way they
2698 were. */
2699 if ((insn_code_number < 0
2700 /* Is the result a reasonable ASM_OPERANDS? */
2701 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2702 {
2703 undo_all ();
2704 return 0;
2705 }
2706
2707 /* If we had to change another insn, make sure it is valid also. */
2708 if (undobuf.other_insn)
2709 {
2710 rtx other_pat = PATTERN (undobuf.other_insn);
2711 rtx new_other_notes;
2712 rtx note, next;
2713
2714 CLEAR_HARD_REG_SET (newpat_used_regs);
2715
2716 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2717 &new_other_notes);
2718
2719 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2720 {
2721 undo_all ();
2722 return 0;
2723 }
2724
2725 PATTERN (undobuf.other_insn) = other_pat;
2726
2727 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2728 are still valid. Then add any non-duplicate notes added by
2729 recog_for_combine. */
2730 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2731 {
2732 next = XEXP (note, 1);
2733
2734 if (REG_NOTE_KIND (note) == REG_UNUSED
2735 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2736 {
2737 if (REG_P (XEXP (note, 0)))
2738 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2739
2740 remove_note (undobuf.other_insn, note);
2741 }
2742 }
2743
2744 for (note = new_other_notes; note; note = XEXP (note, 1))
2745 if (REG_P (XEXP (note, 0)))
2746 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2747
2748 distribute_notes (new_other_notes, undobuf.other_insn,
2749 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2750 }
2751 #ifdef HAVE_cc0
2752 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2753 they are adjacent to each other or not. */
2754 {
2755 rtx p = prev_nonnote_insn (i3);
2756 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2757 && sets_cc0_p (newi2pat))
2758 {
2759 undo_all ();
2760 return 0;
2761 }
2762 }
2763 #endif
2764
2765 /* Only allow this combination if insn_rtx_costs reports that the
2766 replacement instructions are cheaper than the originals. */
2767 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2768 {
2769 undo_all ();
2770 return 0;
2771 }
2772
2773 /* We now know that we can do this combination. Merge the insns and
2774 update the status of registers and LOG_LINKS. */
2775
2776 if (swap_i2i3)
2777 {
2778 rtx insn;
2779 rtx link;
2780 rtx ni2dest;
2781
2782 /* I3 now uses what used to be its destination and which is now
2783 I2's destination. This requires us to do a few adjustments. */
2784 PATTERN (i3) = newpat;
2785 adjust_for_new_dest (i3);
2786
2787 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2788 so we still will.
2789
2790 However, some later insn might be using I2's dest and have
2791 a LOG_LINK pointing at I3. We must remove this link.
2792 The simplest way to remove the link is to point it at I1,
2793 which we know will be a NOTE. */
2794
2795 /* newi2pat is usually a SET here; however, recog_for_combine might
2796 have added some clobbers. */
2797 if (GET_CODE (newi2pat) == PARALLEL)
2798 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2799 else
2800 ni2dest = SET_DEST (newi2pat);
2801
2802 for (insn = NEXT_INSN (i3);
2803 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2804 || insn != BB_HEAD (this_basic_block->next_bb));
2805 insn = NEXT_INSN (insn))
2806 {
2807 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2808 {
2809 for (link = LOG_LINKS (insn); link;
2810 link = XEXP (link, 1))
2811 if (XEXP (link, 0) == i3)
2812 XEXP (link, 0) = i1;
2813
2814 break;
2815 }
2816 }
2817 }
2818
2819 {
2820 rtx i3notes, i2notes, i1notes = 0;
2821 rtx i3links, i2links, i1links = 0;
2822 rtx midnotes = 0;
2823 unsigned int regno;
2824 /* Compute which registers we expect to eliminate. newi2pat may be setting
2825 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2826 same as i3dest, in which case newi2pat may be setting i1dest. */
2827 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2828 || i2dest_in_i2src || i2dest_in_i1src
2829 || !i2dest_killed
2830 ? 0 : i2dest);
2831 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2832 || (newi2pat && reg_set_p (i1dest, newi2pat))
2833 || !i1dest_killed
2834 ? 0 : i1dest);
2835
2836 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2837 clear them. */
2838 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2839 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2840 if (i1)
2841 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2842
2843 /* Ensure that we do not have something that should not be shared but
2844 occurs multiple times in the new insns. Check this by first
2845 resetting all the `used' flags and then copying anything is shared. */
2846
2847 reset_used_flags (i3notes);
2848 reset_used_flags (i2notes);
2849 reset_used_flags (i1notes);
2850 reset_used_flags (newpat);
2851 reset_used_flags (newi2pat);
2852 if (undobuf.other_insn)
2853 reset_used_flags (PATTERN (undobuf.other_insn));
2854
2855 i3notes = copy_rtx_if_shared (i3notes);
2856 i2notes = copy_rtx_if_shared (i2notes);
2857 i1notes = copy_rtx_if_shared (i1notes);
2858 newpat = copy_rtx_if_shared (newpat);
2859 newi2pat = copy_rtx_if_shared (newi2pat);
2860 if (undobuf.other_insn)
2861 reset_used_flags (PATTERN (undobuf.other_insn));
2862
2863 INSN_CODE (i3) = insn_code_number;
2864 PATTERN (i3) = newpat;
2865
2866 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2867 {
2868 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2869
2870 reset_used_flags (call_usage);
2871 call_usage = copy_rtx (call_usage);
2872
2873 if (substed_i2)
2874 replace_rtx (call_usage, i2dest, i2src);
2875
2876 if (substed_i1)
2877 replace_rtx (call_usage, i1dest, i1src);
2878
2879 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2880 }
2881
2882 if (undobuf.other_insn)
2883 INSN_CODE (undobuf.other_insn) = other_code_number;
2884
2885 /* We had one special case above where I2 had more than one set and
2886 we replaced a destination of one of those sets with the destination
2887 of I3. In that case, we have to update LOG_LINKS of insns later
2888 in this basic block. Note that this (expensive) case is rare.
2889
2890 Also, in this case, we must pretend that all REG_NOTEs for I2
2891 actually came from I3, so that REG_UNUSED notes from I2 will be
2892 properly handled. */
2893
2894 if (i3_subst_into_i2)
2895 {
2896 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2897 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2898 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2899 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2900 && ! find_reg_note (i2, REG_UNUSED,
2901 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2902 for (temp = NEXT_INSN (i2);
2903 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2904 || BB_HEAD (this_basic_block) != temp);
2905 temp = NEXT_INSN (temp))
2906 if (temp != i3 && INSN_P (temp))
2907 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2908 if (XEXP (link, 0) == i2)
2909 XEXP (link, 0) = i3;
2910
2911 if (i3notes)
2912 {
2913 rtx link = i3notes;
2914 while (XEXP (link, 1))
2915 link = XEXP (link, 1);
2916 XEXP (link, 1) = i2notes;
2917 }
2918 else
2919 i3notes = i2notes;
2920 i2notes = 0;
2921 }
2922
2923 LOG_LINKS (i3) = 0;
2924 REG_NOTES (i3) = 0;
2925 LOG_LINKS (i2) = 0;
2926 REG_NOTES (i2) = 0;
2927
2928 if (newi2pat)
2929 {
2930 INSN_CODE (i2) = i2_code_number;
2931 PATTERN (i2) = newi2pat;
2932 }
2933 else
2934 SET_INSN_DELETED (i2);
2935
2936 if (i1)
2937 {
2938 LOG_LINKS (i1) = 0;
2939 REG_NOTES (i1) = 0;
2940 SET_INSN_DELETED (i1);
2941 }
2942
2943 /* Get death notes for everything that is now used in either I3 or
2944 I2 and used to die in a previous insn. If we built two new
2945 patterns, move from I1 to I2 then I2 to I3 so that we get the
2946 proper movement on registers that I2 modifies. */
2947
2948 if (newi2pat)
2949 {
2950 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2951 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2952 }
2953 else
2954 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2955 i3, &midnotes);
2956
2957 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2958 if (i3notes)
2959 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2960 elim_i2, elim_i1);
2961 if (i2notes)
2962 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2963 elim_i2, elim_i1);
2964 if (i1notes)
2965 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2966 elim_i2, elim_i1);
2967 if (midnotes)
2968 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2969 elim_i2, elim_i1);
2970
2971 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2972 know these are REG_UNUSED and want them to go to the desired insn,
2973 so we always pass it as i3. We have not counted the notes in
2974 reg_n_deaths yet, so we need to do so now. */
2975
2976 if (newi2pat && new_i2_notes)
2977 {
2978 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2979 if (REG_P (XEXP (temp, 0)))
2980 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2981
2982 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2983 }
2984
2985 if (new_i3_notes)
2986 {
2987 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2988 if (REG_P (XEXP (temp, 0)))
2989 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2990
2991 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2992 }
2993
2994 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2995 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2996 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2997 in that case, it might delete I2. Similarly for I2 and I1.
2998 Show an additional death due to the REG_DEAD note we make here. If
2999 we discard it in distribute_notes, we will decrement it again. */
3000
3001 if (i3dest_killed)
3002 {
3003 if (REG_P (i3dest_killed))
3004 REG_N_DEATHS (REGNO (i3dest_killed))++;
3005
3006 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3007 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3008 NULL_RTX),
3009 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3010 else
3011 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3012 NULL_RTX),
3013 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3014 elim_i2, elim_i1);
3015 }
3016
3017 if (i2dest_in_i2src)
3018 {
3019 if (REG_P (i2dest))
3020 REG_N_DEATHS (REGNO (i2dest))++;
3021
3022 if (newi2pat && reg_set_p (i2dest, newi2pat))
3023 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3024 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3025 else
3026 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3027 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3028 NULL_RTX, NULL_RTX);
3029 }
3030
3031 if (i1dest_in_i1src)
3032 {
3033 if (REG_P (i1dest))
3034 REG_N_DEATHS (REGNO (i1dest))++;
3035
3036 if (newi2pat && reg_set_p (i1dest, newi2pat))
3037 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3038 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3039 else
3040 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3041 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3042 NULL_RTX, NULL_RTX);
3043 }
3044
3045 distribute_links (i3links);
3046 distribute_links (i2links);
3047 distribute_links (i1links);
3048
3049 if (REG_P (i2dest))
3050 {
3051 rtx link;
3052 rtx i2_insn = 0, i2_val = 0, set;
3053
3054 /* The insn that used to set this register doesn't exist, and
3055 this life of the register may not exist either. See if one of
3056 I3's links points to an insn that sets I2DEST. If it does,
3057 that is now the last known value for I2DEST. If we don't update
3058 this and I2 set the register to a value that depended on its old
3059 contents, we will get confused. If this insn is used, thing
3060 will be set correctly in combine_instructions. */
3061
3062 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3063 if ((set = single_set (XEXP (link, 0))) != 0
3064 && rtx_equal_p (i2dest, SET_DEST (set)))
3065 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3066
3067 record_value_for_reg (i2dest, i2_insn, i2_val);
3068
3069 /* If the reg formerly set in I2 died only once and that was in I3,
3070 zero its use count so it won't make `reload' do any work. */
3071 if (! added_sets_2
3072 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3073 && ! i2dest_in_i2src)
3074 {
3075 regno = REGNO (i2dest);
3076 REG_N_SETS (regno)--;
3077 }
3078 }
3079
3080 if (i1 && REG_P (i1dest))
3081 {
3082 rtx link;
3083 rtx i1_insn = 0, i1_val = 0, set;
3084
3085 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3086 if ((set = single_set (XEXP (link, 0))) != 0
3087 && rtx_equal_p (i1dest, SET_DEST (set)))
3088 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3089
3090 record_value_for_reg (i1dest, i1_insn, i1_val);
3091
3092 regno = REGNO (i1dest);
3093 if (! added_sets_1 && ! i1dest_in_i1src)
3094 REG_N_SETS (regno)--;
3095 }
3096
3097 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3098 been made to this insn. The order of
3099 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3100 can affect nonzero_bits of newpat */
3101 if (newi2pat)
3102 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3103 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3104
3105 /* Set new_direct_jump_p if a new return or simple jump instruction
3106 has been created.
3107
3108 If I3 is now an unconditional jump, ensure that it has a
3109 BARRIER following it since it may have initially been a
3110 conditional jump. It may also be the last nonnote insn. */
3111
3112 if (returnjump_p (i3) || any_uncondjump_p (i3))
3113 {
3114 *new_direct_jump_p = 1;
3115 mark_jump_label (PATTERN (i3), i3, 0);
3116
3117 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3118 || !BARRIER_P (temp))
3119 emit_barrier_after (i3);
3120 }
3121
3122 if (undobuf.other_insn != NULL_RTX
3123 && (returnjump_p (undobuf.other_insn)
3124 || any_uncondjump_p (undobuf.other_insn)))
3125 {
3126 *new_direct_jump_p = 1;
3127
3128 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3129 || !BARRIER_P (temp))
3130 emit_barrier_after (undobuf.other_insn);
3131 }
3132
3133 /* An NOOP jump does not need barrier, but it does need cleaning up
3134 of CFG. */
3135 if (GET_CODE (newpat) == SET
3136 && SET_SRC (newpat) == pc_rtx
3137 && SET_DEST (newpat) == pc_rtx)
3138 *new_direct_jump_p = 1;
3139 }
3140
3141 combine_successes++;
3142 undo_commit ();
3143
3144 if (added_links_insn
3145 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3146 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3147 return added_links_insn;
3148 else
3149 return newi2pat ? i2 : i3;
3150 }
3151 \f
3152 /* Undo all the modifications recorded in undobuf. */
3153
3154 static void
3155 undo_all (void)
3156 {
3157 struct undo *undo, *next;
3158
3159 for (undo = undobuf.undos; undo; undo = next)
3160 {
3161 next = undo->next;
3162 if (undo->is_int)
3163 *undo->where.i = undo->old_contents.i;
3164 else
3165 *undo->where.r = undo->old_contents.r;
3166
3167 undo->next = undobuf.frees;
3168 undobuf.frees = undo;
3169 }
3170
3171 undobuf.undos = 0;
3172 }
3173
3174 /* We've committed to accepting the changes we made. Move all
3175 of the undos to the free list. */
3176
3177 static void
3178 undo_commit (void)
3179 {
3180 struct undo *undo, *next;
3181
3182 for (undo = undobuf.undos; undo; undo = next)
3183 {
3184 next = undo->next;
3185 undo->next = undobuf.frees;
3186 undobuf.frees = undo;
3187 }
3188 undobuf.undos = 0;
3189 }
3190
3191 \f
3192 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3193 where we have an arithmetic expression and return that point. LOC will
3194 be inside INSN.
3195
3196 try_combine will call this function to see if an insn can be split into
3197 two insns. */
3198
3199 static rtx *
3200 find_split_point (rtx *loc, rtx insn)
3201 {
3202 rtx x = *loc;
3203 enum rtx_code code = GET_CODE (x);
3204 rtx *split;
3205 unsigned HOST_WIDE_INT len = 0;
3206 HOST_WIDE_INT pos = 0;
3207 int unsignedp = 0;
3208 rtx inner = NULL_RTX;
3209
3210 /* First special-case some codes. */
3211 switch (code)
3212 {
3213 case SUBREG:
3214 #ifdef INSN_SCHEDULING
3215 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3216 point. */
3217 if (MEM_P (SUBREG_REG (x)))
3218 return loc;
3219 #endif
3220 return find_split_point (&SUBREG_REG (x), insn);
3221
3222 case MEM:
3223 #ifdef HAVE_lo_sum
3224 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3225 using LO_SUM and HIGH. */
3226 if (GET_CODE (XEXP (x, 0)) == CONST
3227 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3228 {
3229 SUBST (XEXP (x, 0),
3230 gen_rtx_LO_SUM (Pmode,
3231 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3232 XEXP (x, 0)));
3233 return &XEXP (XEXP (x, 0), 0);
3234 }
3235 #endif
3236
3237 /* If we have a PLUS whose second operand is a constant and the
3238 address is not valid, perhaps will can split it up using
3239 the machine-specific way to split large constants. We use
3240 the first pseudo-reg (one of the virtual regs) as a placeholder;
3241 it will not remain in the result. */
3242 if (GET_CODE (XEXP (x, 0)) == PLUS
3243 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3244 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3245 {
3246 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3247 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3248 subst_insn);
3249
3250 /* This should have produced two insns, each of which sets our
3251 placeholder. If the source of the second is a valid address,
3252 we can make put both sources together and make a split point
3253 in the middle. */
3254
3255 if (seq
3256 && NEXT_INSN (seq) != NULL_RTX
3257 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3258 && NONJUMP_INSN_P (seq)
3259 && GET_CODE (PATTERN (seq)) == SET
3260 && SET_DEST (PATTERN (seq)) == reg
3261 && ! reg_mentioned_p (reg,
3262 SET_SRC (PATTERN (seq)))
3263 && NONJUMP_INSN_P (NEXT_INSN (seq))
3264 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3265 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3266 && memory_address_p (GET_MODE (x),
3267 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3268 {
3269 rtx src1 = SET_SRC (PATTERN (seq));
3270 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3271
3272 /* Replace the placeholder in SRC2 with SRC1. If we can
3273 find where in SRC2 it was placed, that can become our
3274 split point and we can replace this address with SRC2.
3275 Just try two obvious places. */
3276
3277 src2 = replace_rtx (src2, reg, src1);
3278 split = 0;
3279 if (XEXP (src2, 0) == src1)
3280 split = &XEXP (src2, 0);
3281 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3282 && XEXP (XEXP (src2, 0), 0) == src1)
3283 split = &XEXP (XEXP (src2, 0), 0);
3284
3285 if (split)
3286 {
3287 SUBST (XEXP (x, 0), src2);
3288 return split;
3289 }
3290 }
3291
3292 /* If that didn't work, perhaps the first operand is complex and
3293 needs to be computed separately, so make a split point there.
3294 This will occur on machines that just support REG + CONST
3295 and have a constant moved through some previous computation. */
3296
3297 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3298 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3299 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3300 return &XEXP (XEXP (x, 0), 0);
3301 }
3302 break;
3303
3304 case SET:
3305 #ifdef HAVE_cc0
3306 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3307 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3308 we need to put the operand into a register. So split at that
3309 point. */
3310
3311 if (SET_DEST (x) == cc0_rtx
3312 && GET_CODE (SET_SRC (x)) != COMPARE
3313 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3314 && !OBJECT_P (SET_SRC (x))
3315 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3316 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3317 return &SET_SRC (x);
3318 #endif
3319
3320 /* See if we can split SET_SRC as it stands. */
3321 split = find_split_point (&SET_SRC (x), insn);
3322 if (split && split != &SET_SRC (x))
3323 return split;
3324
3325 /* See if we can split SET_DEST as it stands. */
3326 split = find_split_point (&SET_DEST (x), insn);
3327 if (split && split != &SET_DEST (x))
3328 return split;
3329
3330 /* See if this is a bitfield assignment with everything constant. If
3331 so, this is an IOR of an AND, so split it into that. */
3332 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3333 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3334 <= HOST_BITS_PER_WIDE_INT)
3335 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3336 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3337 && GET_CODE (SET_SRC (x)) == CONST_INT
3338 && ((INTVAL (XEXP (SET_DEST (x), 1))
3339 + INTVAL (XEXP (SET_DEST (x), 2)))
3340 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3341 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3342 {
3343 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3344 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3345 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3346 rtx dest = XEXP (SET_DEST (x), 0);
3347 enum machine_mode mode = GET_MODE (dest);
3348 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3349
3350 if (BITS_BIG_ENDIAN)
3351 pos = GET_MODE_BITSIZE (mode) - len - pos;
3352
3353 if (src == mask)
3354 SUBST (SET_SRC (x),
3355 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3356 else
3357 {
3358 rtx negmask = gen_int_mode (~(mask << pos), mode);
3359 SUBST (SET_SRC (x),
3360 simplify_gen_binary (IOR, mode,
3361 simplify_gen_binary (AND, mode,
3362 dest, negmask),
3363 GEN_INT (src << pos)));
3364 }
3365
3366 SUBST (SET_DEST (x), dest);
3367
3368 split = find_split_point (&SET_SRC (x), insn);
3369 if (split && split != &SET_SRC (x))
3370 return split;
3371 }
3372
3373 /* Otherwise, see if this is an operation that we can split into two.
3374 If so, try to split that. */
3375 code = GET_CODE (SET_SRC (x));
3376
3377 switch (code)
3378 {
3379 case AND:
3380 /* If we are AND'ing with a large constant that is only a single
3381 bit and the result is only being used in a context where we
3382 need to know if it is zero or nonzero, replace it with a bit
3383 extraction. This will avoid the large constant, which might
3384 have taken more than one insn to make. If the constant were
3385 not a valid argument to the AND but took only one insn to make,
3386 this is no worse, but if it took more than one insn, it will
3387 be better. */
3388
3389 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3390 && REG_P (XEXP (SET_SRC (x), 0))
3391 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3392 && REG_P (SET_DEST (x))
3393 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3394 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3395 && XEXP (*split, 0) == SET_DEST (x)
3396 && XEXP (*split, 1) == const0_rtx)
3397 {
3398 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3399 XEXP (SET_SRC (x), 0),
3400 pos, NULL_RTX, 1, 1, 0, 0);
3401 if (extraction != 0)
3402 {
3403 SUBST (SET_SRC (x), extraction);
3404 return find_split_point (loc, insn);
3405 }
3406 }
3407 break;
3408
3409 case NE:
3410 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3411 is known to be on, this can be converted into a NEG of a shift. */
3412 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3413 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3414 && 1 <= (pos = exact_log2
3415 (nonzero_bits (XEXP (SET_SRC (x), 0),
3416 GET_MODE (XEXP (SET_SRC (x), 0))))))
3417 {
3418 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3419
3420 SUBST (SET_SRC (x),
3421 gen_rtx_NEG (mode,
3422 gen_rtx_LSHIFTRT (mode,
3423 XEXP (SET_SRC (x), 0),
3424 GEN_INT (pos))));
3425
3426 split = find_split_point (&SET_SRC (x), insn);
3427 if (split && split != &SET_SRC (x))
3428 return split;
3429 }
3430 break;
3431
3432 case SIGN_EXTEND:
3433 inner = XEXP (SET_SRC (x), 0);
3434
3435 /* We can't optimize if either mode is a partial integer
3436 mode as we don't know how many bits are significant
3437 in those modes. */
3438 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3439 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3440 break;
3441
3442 pos = 0;
3443 len = GET_MODE_BITSIZE (GET_MODE (inner));
3444 unsignedp = 0;
3445 break;
3446
3447 case SIGN_EXTRACT:
3448 case ZERO_EXTRACT:
3449 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3450 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3451 {
3452 inner = XEXP (SET_SRC (x), 0);
3453 len = INTVAL (XEXP (SET_SRC (x), 1));
3454 pos = INTVAL (XEXP (SET_SRC (x), 2));
3455
3456 if (BITS_BIG_ENDIAN)
3457 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3458 unsignedp = (code == ZERO_EXTRACT);
3459 }
3460 break;
3461
3462 default:
3463 break;
3464 }
3465
3466 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3467 {
3468 enum machine_mode mode = GET_MODE (SET_SRC (x));
3469
3470 /* For unsigned, we have a choice of a shift followed by an
3471 AND or two shifts. Use two shifts for field sizes where the
3472 constant might be too large. We assume here that we can
3473 always at least get 8-bit constants in an AND insn, which is
3474 true for every current RISC. */
3475
3476 if (unsignedp && len <= 8)
3477 {
3478 SUBST (SET_SRC (x),
3479 gen_rtx_AND (mode,
3480 gen_rtx_LSHIFTRT
3481 (mode, gen_lowpart (mode, inner),
3482 GEN_INT (pos)),
3483 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3484
3485 split = find_split_point (&SET_SRC (x), insn);
3486 if (split && split != &SET_SRC (x))
3487 return split;
3488 }
3489 else
3490 {
3491 SUBST (SET_SRC (x),
3492 gen_rtx_fmt_ee
3493 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3494 gen_rtx_ASHIFT (mode,
3495 gen_lowpart (mode, inner),
3496 GEN_INT (GET_MODE_BITSIZE (mode)
3497 - len - pos)),
3498 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3499
3500 split = find_split_point (&SET_SRC (x), insn);
3501 if (split && split != &SET_SRC (x))
3502 return split;
3503 }
3504 }
3505
3506 /* See if this is a simple operation with a constant as the second
3507 operand. It might be that this constant is out of range and hence
3508 could be used as a split point. */
3509 if (BINARY_P (SET_SRC (x))
3510 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3511 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3512 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3513 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3514 return &XEXP (SET_SRC (x), 1);
3515
3516 /* Finally, see if this is a simple operation with its first operand
3517 not in a register. The operation might require this operand in a
3518 register, so return it as a split point. We can always do this
3519 because if the first operand were another operation, we would have
3520 already found it as a split point. */
3521 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3522 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3523 return &XEXP (SET_SRC (x), 0);
3524
3525 return 0;
3526
3527 case AND:
3528 case IOR:
3529 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3530 it is better to write this as (not (ior A B)) so we can split it.
3531 Similarly for IOR. */
3532 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3533 {
3534 SUBST (*loc,
3535 gen_rtx_NOT (GET_MODE (x),
3536 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3537 GET_MODE (x),
3538 XEXP (XEXP (x, 0), 0),
3539 XEXP (XEXP (x, 1), 0))));
3540 return find_split_point (loc, insn);
3541 }
3542
3543 /* Many RISC machines have a large set of logical insns. If the
3544 second operand is a NOT, put it first so we will try to split the
3545 other operand first. */
3546 if (GET_CODE (XEXP (x, 1)) == NOT)
3547 {
3548 rtx tem = XEXP (x, 0);
3549 SUBST (XEXP (x, 0), XEXP (x, 1));
3550 SUBST (XEXP (x, 1), tem);
3551 }
3552 break;
3553
3554 default:
3555 break;
3556 }
3557
3558 /* Otherwise, select our actions depending on our rtx class. */
3559 switch (GET_RTX_CLASS (code))
3560 {
3561 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3562 case RTX_TERNARY:
3563 split = find_split_point (&XEXP (x, 2), insn);
3564 if (split)
3565 return split;
3566 /* ... fall through ... */
3567 case RTX_BIN_ARITH:
3568 case RTX_COMM_ARITH:
3569 case RTX_COMPARE:
3570 case RTX_COMM_COMPARE:
3571 split = find_split_point (&XEXP (x, 1), insn);
3572 if (split)
3573 return split;
3574 /* ... fall through ... */
3575 case RTX_UNARY:
3576 /* Some machines have (and (shift ...) ...) insns. If X is not
3577 an AND, but XEXP (X, 0) is, use it as our split point. */
3578 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3579 return &XEXP (x, 0);
3580
3581 split = find_split_point (&XEXP (x, 0), insn);
3582 if (split)
3583 return split;
3584 return loc;
3585
3586 default:
3587 /* Otherwise, we don't have a split point. */
3588 return 0;
3589 }
3590 }
3591 \f
3592 /* Throughout X, replace FROM with TO, and return the result.
3593 The result is TO if X is FROM;
3594 otherwise the result is X, but its contents may have been modified.
3595 If they were modified, a record was made in undobuf so that
3596 undo_all will (among other things) return X to its original state.
3597
3598 If the number of changes necessary is too much to record to undo,
3599 the excess changes are not made, so the result is invalid.
3600 The changes already made can still be undone.
3601 undobuf.num_undo is incremented for such changes, so by testing that
3602 the caller can tell whether the result is valid.
3603
3604 `n_occurrences' is incremented each time FROM is replaced.
3605
3606 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3607
3608 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3609 by copying if `n_occurrences' is nonzero. */
3610
3611 static rtx
3612 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3613 {
3614 enum rtx_code code = GET_CODE (x);
3615 enum machine_mode op0_mode = VOIDmode;
3616 const char *fmt;
3617 int len, i;
3618 rtx new;
3619
3620 /* Two expressions are equal if they are identical copies of a shared
3621 RTX or if they are both registers with the same register number
3622 and mode. */
3623
3624 #define COMBINE_RTX_EQUAL_P(X,Y) \
3625 ((X) == (Y) \
3626 || (REG_P (X) && REG_P (Y) \
3627 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3628
3629 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3630 {
3631 n_occurrences++;
3632 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3633 }
3634
3635 /* If X and FROM are the same register but different modes, they will
3636 not have been seen as equal above. However, flow.c will make a
3637 LOG_LINKS entry for that case. If we do nothing, we will try to
3638 rerecognize our original insn and, when it succeeds, we will
3639 delete the feeding insn, which is incorrect.
3640
3641 So force this insn not to match in this (rare) case. */
3642 if (! in_dest && code == REG && REG_P (from)
3643 && REGNO (x) == REGNO (from))
3644 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3645
3646 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3647 of which may contain things that can be combined. */
3648 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3649 return x;
3650
3651 /* It is possible to have a subexpression appear twice in the insn.
3652 Suppose that FROM is a register that appears within TO.
3653 Then, after that subexpression has been scanned once by `subst',
3654 the second time it is scanned, TO may be found. If we were
3655 to scan TO here, we would find FROM within it and create a
3656 self-referent rtl structure which is completely wrong. */
3657 if (COMBINE_RTX_EQUAL_P (x, to))
3658 return to;
3659
3660 /* Parallel asm_operands need special attention because all of the
3661 inputs are shared across the arms. Furthermore, unsharing the
3662 rtl results in recognition failures. Failure to handle this case
3663 specially can result in circular rtl.
3664
3665 Solve this by doing a normal pass across the first entry of the
3666 parallel, and only processing the SET_DESTs of the subsequent
3667 entries. Ug. */
3668
3669 if (code == PARALLEL
3670 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3671 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3672 {
3673 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3674
3675 /* If this substitution failed, this whole thing fails. */
3676 if (GET_CODE (new) == CLOBBER
3677 && XEXP (new, 0) == const0_rtx)
3678 return new;
3679
3680 SUBST (XVECEXP (x, 0, 0), new);
3681
3682 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3683 {
3684 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3685
3686 if (!REG_P (dest)
3687 && GET_CODE (dest) != CC0
3688 && GET_CODE (dest) != PC)
3689 {
3690 new = subst (dest, from, to, 0, unique_copy);
3691
3692 /* If this substitution failed, this whole thing fails. */
3693 if (GET_CODE (new) == CLOBBER
3694 && XEXP (new, 0) == const0_rtx)
3695 return new;
3696
3697 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3698 }
3699 }
3700 }
3701 else
3702 {
3703 len = GET_RTX_LENGTH (code);
3704 fmt = GET_RTX_FORMAT (code);
3705
3706 /* We don't need to process a SET_DEST that is a register, CC0,
3707 or PC, so set up to skip this common case. All other cases
3708 where we want to suppress replacing something inside a
3709 SET_SRC are handled via the IN_DEST operand. */
3710 if (code == SET
3711 && (REG_P (SET_DEST (x))
3712 || GET_CODE (SET_DEST (x)) == CC0
3713 || GET_CODE (SET_DEST (x)) == PC))
3714 fmt = "ie";
3715
3716 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3717 constant. */
3718 if (fmt[0] == 'e')
3719 op0_mode = GET_MODE (XEXP (x, 0));
3720
3721 for (i = 0; i < len; i++)
3722 {
3723 if (fmt[i] == 'E')
3724 {
3725 int j;
3726 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3727 {
3728 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3729 {
3730 new = (unique_copy && n_occurrences
3731 ? copy_rtx (to) : to);
3732 n_occurrences++;
3733 }
3734 else
3735 {
3736 new = subst (XVECEXP (x, i, j), from, to, 0,
3737 unique_copy);
3738
3739 /* If this substitution failed, this whole thing
3740 fails. */
3741 if (GET_CODE (new) == CLOBBER
3742 && XEXP (new, 0) == const0_rtx)
3743 return new;
3744 }
3745
3746 SUBST (XVECEXP (x, i, j), new);
3747 }
3748 }
3749 else if (fmt[i] == 'e')
3750 {
3751 /* If this is a register being set, ignore it. */
3752 new = XEXP (x, i);
3753 if (in_dest
3754 && i == 0
3755 && (((code == SUBREG || code == ZERO_EXTRACT)
3756 && REG_P (new))
3757 || code == STRICT_LOW_PART))
3758 ;
3759
3760 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3761 {
3762 /* In general, don't install a subreg involving two
3763 modes not tieable. It can worsen register
3764 allocation, and can even make invalid reload
3765 insns, since the reg inside may need to be copied
3766 from in the outside mode, and that may be invalid
3767 if it is an fp reg copied in integer mode.
3768
3769 We allow two exceptions to this: It is valid if
3770 it is inside another SUBREG and the mode of that
3771 SUBREG and the mode of the inside of TO is
3772 tieable and it is valid if X is a SET that copies
3773 FROM to CC0. */
3774
3775 if (GET_CODE (to) == SUBREG
3776 && ! MODES_TIEABLE_P (GET_MODE (to),
3777 GET_MODE (SUBREG_REG (to)))
3778 && ! (code == SUBREG
3779 && MODES_TIEABLE_P (GET_MODE (x),
3780 GET_MODE (SUBREG_REG (to))))
3781 #ifdef HAVE_cc0
3782 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3783 #endif
3784 )
3785 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3786
3787 #ifdef CANNOT_CHANGE_MODE_CLASS
3788 if (code == SUBREG
3789 && REG_P (to)
3790 && REGNO (to) < FIRST_PSEUDO_REGISTER
3791 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3792 GET_MODE (to),
3793 GET_MODE (x)))
3794 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3795 #endif
3796
3797 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3798 n_occurrences++;
3799 }
3800 else
3801 /* If we are in a SET_DEST, suppress most cases unless we
3802 have gone inside a MEM, in which case we want to
3803 simplify the address. We assume here that things that
3804 are actually part of the destination have their inner
3805 parts in the first expression. This is true for SUBREG,
3806 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3807 things aside from REG and MEM that should appear in a
3808 SET_DEST. */
3809 new = subst (XEXP (x, i), from, to,
3810 (((in_dest
3811 && (code == SUBREG || code == STRICT_LOW_PART
3812 || code == ZERO_EXTRACT))
3813 || code == SET)
3814 && i == 0), unique_copy);
3815
3816 /* If we found that we will have to reject this combination,
3817 indicate that by returning the CLOBBER ourselves, rather than
3818 an expression containing it. This will speed things up as
3819 well as prevent accidents where two CLOBBERs are considered
3820 to be equal, thus producing an incorrect simplification. */
3821
3822 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3823 return new;
3824
3825 if (GET_CODE (x) == SUBREG
3826 && (GET_CODE (new) == CONST_INT
3827 || GET_CODE (new) == CONST_DOUBLE))
3828 {
3829 enum machine_mode mode = GET_MODE (x);
3830
3831 x = simplify_subreg (GET_MODE (x), new,
3832 GET_MODE (SUBREG_REG (x)),
3833 SUBREG_BYTE (x));
3834 if (! x)
3835 x = gen_rtx_CLOBBER (mode, const0_rtx);
3836 }
3837 else if (GET_CODE (new) == CONST_INT
3838 && GET_CODE (x) == ZERO_EXTEND)
3839 {
3840 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3841 new, GET_MODE (XEXP (x, 0)));
3842 gcc_assert (x);
3843 }
3844 else
3845 SUBST (XEXP (x, i), new);
3846 }
3847 }
3848 }
3849
3850 /* Try to simplify X. If the simplification changed the code, it is likely
3851 that further simplification will help, so loop, but limit the number
3852 of repetitions that will be performed. */
3853
3854 for (i = 0; i < 4; i++)
3855 {
3856 /* If X is sufficiently simple, don't bother trying to do anything
3857 with it. */
3858 if (code != CONST_INT && code != REG && code != CLOBBER)
3859 x = combine_simplify_rtx (x, op0_mode, in_dest);
3860
3861 if (GET_CODE (x) == code)
3862 break;
3863
3864 code = GET_CODE (x);
3865
3866 /* We no longer know the original mode of operand 0 since we
3867 have changed the form of X) */
3868 op0_mode = VOIDmode;
3869 }
3870
3871 return x;
3872 }
3873 \f
3874 /* Simplify X, a piece of RTL. We just operate on the expression at the
3875 outer level; call `subst' to simplify recursively. Return the new
3876 expression.
3877
3878 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3879 if we are inside a SET_DEST. */
3880
3881 static rtx
3882 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3883 {
3884 enum rtx_code code = GET_CODE (x);
3885 enum machine_mode mode = GET_MODE (x);
3886 rtx temp;
3887 rtx reversed;
3888 int i;
3889
3890 /* If this is a commutative operation, put a constant last and a complex
3891 expression first. We don't need to do this for comparisons here. */
3892 if (COMMUTATIVE_ARITH_P (x)
3893 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3894 {
3895 temp = XEXP (x, 0);
3896 SUBST (XEXP (x, 0), XEXP (x, 1));
3897 SUBST (XEXP (x, 1), temp);
3898 }
3899
3900 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3901 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3902 things. Check for cases where both arms are testing the same
3903 condition.
3904
3905 Don't do anything if all operands are very simple. */
3906
3907 if ((BINARY_P (x)
3908 && ((!OBJECT_P (XEXP (x, 0))
3909 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3910 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3911 || (!OBJECT_P (XEXP (x, 1))
3912 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3913 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3914 || (UNARY_P (x)
3915 && (!OBJECT_P (XEXP (x, 0))
3916 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3917 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3918 {
3919 rtx cond, true_rtx, false_rtx;
3920
3921 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3922 if (cond != 0
3923 /* If everything is a comparison, what we have is highly unlikely
3924 to be simpler, so don't use it. */
3925 && ! (COMPARISON_P (x)
3926 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3927 {
3928 rtx cop1 = const0_rtx;
3929 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3930
3931 if (cond_code == NE && COMPARISON_P (cond))
3932 return x;
3933
3934 /* Simplify the alternative arms; this may collapse the true and
3935 false arms to store-flag values. Be careful to use copy_rtx
3936 here since true_rtx or false_rtx might share RTL with x as a
3937 result of the if_then_else_cond call above. */
3938 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3939 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3940
3941 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3942 is unlikely to be simpler. */
3943 if (general_operand (true_rtx, VOIDmode)
3944 && general_operand (false_rtx, VOIDmode))
3945 {
3946 enum rtx_code reversed;
3947
3948 /* Restarting if we generate a store-flag expression will cause
3949 us to loop. Just drop through in this case. */
3950
3951 /* If the result values are STORE_FLAG_VALUE and zero, we can
3952 just make the comparison operation. */
3953 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3954 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3955 cond, cop1);
3956 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3957 && ((reversed = reversed_comparison_code_parts
3958 (cond_code, cond, cop1, NULL))
3959 != UNKNOWN))
3960 x = simplify_gen_relational (reversed, mode, VOIDmode,
3961 cond, cop1);
3962
3963 /* Likewise, we can make the negate of a comparison operation
3964 if the result values are - STORE_FLAG_VALUE and zero. */
3965 else if (GET_CODE (true_rtx) == CONST_INT
3966 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3967 && false_rtx == const0_rtx)
3968 x = simplify_gen_unary (NEG, mode,
3969 simplify_gen_relational (cond_code,
3970 mode, VOIDmode,
3971 cond, cop1),
3972 mode);
3973 else if (GET_CODE (false_rtx) == CONST_INT
3974 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3975 && true_rtx == const0_rtx
3976 && ((reversed = reversed_comparison_code_parts
3977 (cond_code, cond, cop1, NULL))
3978 != UNKNOWN))
3979 x = simplify_gen_unary (NEG, mode,
3980 simplify_gen_relational (reversed,
3981 mode, VOIDmode,
3982 cond, cop1),
3983 mode);
3984 else
3985 return gen_rtx_IF_THEN_ELSE (mode,
3986 simplify_gen_relational (cond_code,
3987 mode,
3988 VOIDmode,
3989 cond,
3990 cop1),
3991 true_rtx, false_rtx);
3992
3993 code = GET_CODE (x);
3994 op0_mode = VOIDmode;
3995 }
3996 }
3997 }
3998
3999 /* Try to fold this expression in case we have constants that weren't
4000 present before. */
4001 temp = 0;
4002 switch (GET_RTX_CLASS (code))
4003 {
4004 case RTX_UNARY:
4005 if (op0_mode == VOIDmode)
4006 op0_mode = GET_MODE (XEXP (x, 0));
4007 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4008 break;
4009 case RTX_COMPARE:
4010 case RTX_COMM_COMPARE:
4011 {
4012 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4013 if (cmp_mode == VOIDmode)
4014 {
4015 cmp_mode = GET_MODE (XEXP (x, 1));
4016 if (cmp_mode == VOIDmode)
4017 cmp_mode = op0_mode;
4018 }
4019 temp = simplify_relational_operation (code, mode, cmp_mode,
4020 XEXP (x, 0), XEXP (x, 1));
4021 }
4022 break;
4023 case RTX_COMM_ARITH:
4024 case RTX_BIN_ARITH:
4025 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4026 break;
4027 case RTX_BITFIELD_OPS:
4028 case RTX_TERNARY:
4029 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4030 XEXP (x, 1), XEXP (x, 2));
4031 break;
4032 default:
4033 break;
4034 }
4035
4036 if (temp)
4037 {
4038 x = temp;
4039 code = GET_CODE (temp);
4040 op0_mode = VOIDmode;
4041 mode = GET_MODE (temp);
4042 }
4043
4044 /* First see if we can apply the inverse distributive law. */
4045 if (code == PLUS || code == MINUS
4046 || code == AND || code == IOR || code == XOR)
4047 {
4048 x = apply_distributive_law (x);
4049 code = GET_CODE (x);
4050 op0_mode = VOIDmode;
4051 }
4052
4053 /* If CODE is an associative operation not otherwise handled, see if we
4054 can associate some operands. This can win if they are constants or
4055 if they are logically related (i.e. (a & b) & a). */
4056 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4057 || code == AND || code == IOR || code == XOR
4058 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4059 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4060 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4061 {
4062 if (GET_CODE (XEXP (x, 0)) == code)
4063 {
4064 rtx other = XEXP (XEXP (x, 0), 0);
4065 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4066 rtx inner_op1 = XEXP (x, 1);
4067 rtx inner;
4068
4069 /* Make sure we pass the constant operand if any as the second
4070 one if this is a commutative operation. */
4071 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4072 {
4073 rtx tem = inner_op0;
4074 inner_op0 = inner_op1;
4075 inner_op1 = tem;
4076 }
4077 inner = simplify_binary_operation (code == MINUS ? PLUS
4078 : code == DIV ? MULT
4079 : code,
4080 mode, inner_op0, inner_op1);
4081
4082 /* For commutative operations, try the other pair if that one
4083 didn't simplify. */
4084 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4085 {
4086 other = XEXP (XEXP (x, 0), 1);
4087 inner = simplify_binary_operation (code, mode,
4088 XEXP (XEXP (x, 0), 0),
4089 XEXP (x, 1));
4090 }
4091
4092 if (inner)
4093 return simplify_gen_binary (code, mode, other, inner);
4094 }
4095 }
4096
4097 /* A little bit of algebraic simplification here. */
4098 switch (code)
4099 {
4100 case MEM:
4101 /* Ensure that our address has any ASHIFTs converted to MULT in case
4102 address-recognizing predicates are called later. */
4103 temp = make_compound_operation (XEXP (x, 0), MEM);
4104 SUBST (XEXP (x, 0), temp);
4105 break;
4106
4107 case SUBREG:
4108 if (op0_mode == VOIDmode)
4109 op0_mode = GET_MODE (SUBREG_REG (x));
4110
4111 /* See if this can be moved to simplify_subreg. */
4112 if (CONSTANT_P (SUBREG_REG (x))
4113 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4114 /* Don't call gen_lowpart if the inner mode
4115 is VOIDmode and we cannot simplify it, as SUBREG without
4116 inner mode is invalid. */
4117 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4118 || gen_lowpart_common (mode, SUBREG_REG (x))))
4119 return gen_lowpart (mode, SUBREG_REG (x));
4120
4121 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4122 break;
4123 {
4124 rtx temp;
4125 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4126 SUBREG_BYTE (x));
4127 if (temp)
4128 return temp;
4129 }
4130
4131 /* Don't change the mode of the MEM if that would change the meaning
4132 of the address. */
4133 if (MEM_P (SUBREG_REG (x))
4134 && (MEM_VOLATILE_P (SUBREG_REG (x))
4135 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4136 return gen_rtx_CLOBBER (mode, const0_rtx);
4137
4138 /* Note that we cannot do any narrowing for non-constants since
4139 we might have been counting on using the fact that some bits were
4140 zero. We now do this in the SET. */
4141
4142 break;
4143
4144 case NOT:
4145 if (GET_CODE (XEXP (x, 0)) == SUBREG
4146 && subreg_lowpart_p (XEXP (x, 0))
4147 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4148 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4149 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4150 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4151 {
4152 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4153
4154 x = gen_rtx_ROTATE (inner_mode,
4155 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4156 inner_mode),
4157 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4158 return gen_lowpart (mode, x);
4159 }
4160
4161 /* Apply De Morgan's laws to reduce number of patterns for machines
4162 with negating logical insns (and-not, nand, etc.). If result has
4163 only one NOT, put it first, since that is how the patterns are
4164 coded. */
4165
4166 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4167 {
4168 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4169 enum machine_mode op_mode;
4170
4171 op_mode = GET_MODE (in1);
4172 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4173
4174 op_mode = GET_MODE (in2);
4175 if (op_mode == VOIDmode)
4176 op_mode = mode;
4177 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4178
4179 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4180 {
4181 rtx tem = in2;
4182 in2 = in1; in1 = tem;
4183 }
4184
4185 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4186 mode, in1, in2);
4187 }
4188 break;
4189
4190 case NEG:
4191 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4192 if (GET_CODE (XEXP (x, 0)) == XOR
4193 && XEXP (XEXP (x, 0), 1) == const1_rtx
4194 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4195 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4196 constm1_rtx);
4197
4198 temp = expand_compound_operation (XEXP (x, 0));
4199
4200 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4201 replaced by (lshiftrt X C). This will convert
4202 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4203
4204 if (GET_CODE (temp) == ASHIFTRT
4205 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4206 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4207 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4208 INTVAL (XEXP (temp, 1)));
4209
4210 /* If X has only a single bit that might be nonzero, say, bit I, convert
4211 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4212 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4213 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4214 or a SUBREG of one since we'd be making the expression more
4215 complex if it was just a register. */
4216
4217 if (!REG_P (temp)
4218 && ! (GET_CODE (temp) == SUBREG
4219 && REG_P (SUBREG_REG (temp)))
4220 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4221 {
4222 rtx temp1 = simplify_shift_const
4223 (NULL_RTX, ASHIFTRT, mode,
4224 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4225 GET_MODE_BITSIZE (mode) - 1 - i),
4226 GET_MODE_BITSIZE (mode) - 1 - i);
4227
4228 /* If all we did was surround TEMP with the two shifts, we
4229 haven't improved anything, so don't use it. Otherwise,
4230 we are better off with TEMP1. */
4231 if (GET_CODE (temp1) != ASHIFTRT
4232 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4233 || XEXP (XEXP (temp1, 0), 0) != temp)
4234 return temp1;
4235 }
4236 break;
4237
4238 case TRUNCATE:
4239 /* We can't handle truncation to a partial integer mode here
4240 because we don't know the real bitsize of the partial
4241 integer mode. */
4242 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4243 break;
4244
4245 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4246 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4247 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4248 SUBST (XEXP (x, 0),
4249 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4250 GET_MODE_MASK (mode), NULL_RTX, 0));
4251
4252 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4253 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4254 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4255 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4256 return XEXP (XEXP (x, 0), 0);
4257
4258 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4259 (OP:SI foo:SI) if OP is NEG or ABS. */
4260 if ((GET_CODE (XEXP (x, 0)) == ABS
4261 || GET_CODE (XEXP (x, 0)) == NEG)
4262 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4263 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4264 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4265 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4266 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4267
4268 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4269 (truncate:SI x). */
4270 if (GET_CODE (XEXP (x, 0)) == SUBREG
4271 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4272 && subreg_lowpart_p (XEXP (x, 0)))
4273 return SUBREG_REG (XEXP (x, 0));
4274
4275 /* If we know that the value is already truncated, we can
4276 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4277 is nonzero for the corresponding modes. But don't do this
4278 for an (LSHIFTRT (MULT ...)) since this will cause problems
4279 with the umulXi3_highpart patterns. */
4280 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4281 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4282 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4283 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4284 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4285 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4286 return gen_lowpart (mode, XEXP (x, 0));
4287
4288 /* A truncate of a comparison can be replaced with a subreg if
4289 STORE_FLAG_VALUE permits. This is like the previous test,
4290 but it works even if the comparison is done in a mode larger
4291 than HOST_BITS_PER_WIDE_INT. */
4292 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4293 && COMPARISON_P (XEXP (x, 0))
4294 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4295 return gen_lowpart (mode, XEXP (x, 0));
4296
4297 /* Similarly, a truncate of a register whose value is a
4298 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4299 permits. */
4300 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4301 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4302 && (temp = get_last_value (XEXP (x, 0)))
4303 && COMPARISON_P (temp))
4304 return gen_lowpart (mode, XEXP (x, 0));
4305
4306 break;
4307
4308 case FLOAT_TRUNCATE:
4309 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4310 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4311 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4312 return XEXP (XEXP (x, 0), 0);
4313
4314 /* (float_truncate:SF (float_truncate:DF foo:XF))
4315 = (float_truncate:SF foo:XF).
4316 This may eliminate double rounding, so it is unsafe.
4317
4318 (float_truncate:SF (float_extend:XF foo:DF))
4319 = (float_truncate:SF foo:DF).
4320
4321 (float_truncate:DF (float_extend:XF foo:SF))
4322 = (float_extend:SF foo:DF). */
4323 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4324 && flag_unsafe_math_optimizations)
4325 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4326 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4327 0)))
4328 > GET_MODE_SIZE (mode)
4329 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4330 mode,
4331 XEXP (XEXP (x, 0), 0), mode);
4332
4333 /* (float_truncate (float x)) is (float x) */
4334 if (GET_CODE (XEXP (x, 0)) == FLOAT
4335 && (flag_unsafe_math_optimizations
4336 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4337 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4338 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4339 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4340 return simplify_gen_unary (FLOAT, mode,
4341 XEXP (XEXP (x, 0), 0),
4342 GET_MODE (XEXP (XEXP (x, 0), 0)));
4343
4344 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4345 (OP:SF foo:SF) if OP is NEG or ABS. */
4346 if ((GET_CODE (XEXP (x, 0)) == ABS
4347 || GET_CODE (XEXP (x, 0)) == NEG)
4348 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4349 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4350 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4351 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4352
4353 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4354 is (float_truncate:SF x). */
4355 if (GET_CODE (XEXP (x, 0)) == SUBREG
4356 && subreg_lowpart_p (XEXP (x, 0))
4357 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4358 return SUBREG_REG (XEXP (x, 0));
4359 break;
4360 case FLOAT_EXTEND:
4361 /* (float_extend (float_extend x)) is (float_extend x)
4362
4363 (float_extend (float x)) is (float x) assuming that double
4364 rounding can't happen.
4365 */
4366 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4367 || (GET_CODE (XEXP (x, 0)) == FLOAT
4368 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4369 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4370 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4371 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4372 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4373 XEXP (XEXP (x, 0), 0),
4374 GET_MODE (XEXP (XEXP (x, 0), 0)));
4375
4376 break;
4377 #ifdef HAVE_cc0
4378 case COMPARE:
4379 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4380 using cc0, in which case we want to leave it as a COMPARE
4381 so we can distinguish it from a register-register-copy. */
4382 if (XEXP (x, 1) == const0_rtx)
4383 return XEXP (x, 0);
4384
4385 /* x - 0 is the same as x unless x's mode has signed zeros and
4386 allows rounding towards -infinity. Under those conditions,
4387 0 - 0 is -0. */
4388 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4389 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4390 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4391 return XEXP (x, 0);
4392 break;
4393 #endif
4394
4395 case CONST:
4396 /* (const (const X)) can become (const X). Do it this way rather than
4397 returning the inner CONST since CONST can be shared with a
4398 REG_EQUAL note. */
4399 if (GET_CODE (XEXP (x, 0)) == CONST)
4400 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4401 break;
4402
4403 #ifdef HAVE_lo_sum
4404 case LO_SUM:
4405 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4406 can add in an offset. find_split_point will split this address up
4407 again if it doesn't match. */
4408 if (GET_CODE (XEXP (x, 0)) == HIGH
4409 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4410 return XEXP (x, 1);
4411 break;
4412 #endif
4413
4414 case PLUS:
4415 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4416 */
4417 if (GET_CODE (XEXP (x, 0)) == MULT
4418 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4419 {
4420 rtx in1, in2;
4421
4422 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4423 in2 = XEXP (XEXP (x, 0), 1);
4424 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4425 simplify_gen_binary (MULT, mode,
4426 in1, in2));
4427 }
4428
4429 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4430 outermost. That's because that's the way indexed addresses are
4431 supposed to appear. This code used to check many more cases, but
4432 they are now checked elsewhere. */
4433 if (GET_CODE (XEXP (x, 0)) == PLUS
4434 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4435 return simplify_gen_binary (PLUS, mode,
4436 simplify_gen_binary (PLUS, mode,
4437 XEXP (XEXP (x, 0), 0),
4438 XEXP (x, 1)),
4439 XEXP (XEXP (x, 0), 1));
4440
4441 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4442 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4443 bit-field and can be replaced by either a sign_extend or a
4444 sign_extract. The `and' may be a zero_extend and the two
4445 <c>, -<c> constants may be reversed. */
4446 if (GET_CODE (XEXP (x, 0)) == XOR
4447 && GET_CODE (XEXP (x, 1)) == CONST_INT
4448 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4449 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4450 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4451 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4452 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4453 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4454 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4455 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4456 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4457 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4458 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4459 == (unsigned int) i + 1))))
4460 return simplify_shift_const
4461 (NULL_RTX, ASHIFTRT, mode,
4462 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4463 XEXP (XEXP (XEXP (x, 0), 0), 0),
4464 GET_MODE_BITSIZE (mode) - (i + 1)),
4465 GET_MODE_BITSIZE (mode) - (i + 1));
4466
4467 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4468 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4469 is 1. This produces better code than the alternative immediately
4470 below. */
4471 if (COMPARISON_P (XEXP (x, 0))
4472 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4473 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4474 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4475 return
4476 simplify_gen_unary (NEG, mode, reversed, mode);
4477
4478 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4479 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4480 the bitsize of the mode - 1. This allows simplification of
4481 "a = (b & 8) == 0;" */
4482 if (XEXP (x, 1) == constm1_rtx
4483 && !REG_P (XEXP (x, 0))
4484 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4485 && REG_P (SUBREG_REG (XEXP (x, 0))))
4486 && nonzero_bits (XEXP (x, 0), mode) == 1)
4487 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4488 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4489 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4490 GET_MODE_BITSIZE (mode) - 1),
4491 GET_MODE_BITSIZE (mode) - 1);
4492
4493 /* If we are adding two things that have no bits in common, convert
4494 the addition into an IOR. This will often be further simplified,
4495 for example in cases like ((a & 1) + (a & 2)), which can
4496 become a & 3. */
4497
4498 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4499 && (nonzero_bits (XEXP (x, 0), mode)
4500 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4501 {
4502 /* Try to simplify the expression further. */
4503 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4504 temp = combine_simplify_rtx (tor, mode, in_dest);
4505
4506 /* If we could, great. If not, do not go ahead with the IOR
4507 replacement, since PLUS appears in many special purpose
4508 address arithmetic instructions. */
4509 if (GET_CODE (temp) != CLOBBER && temp != tor)
4510 return temp;
4511 }
4512 break;
4513
4514 case MINUS:
4515 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4516 by reversing the comparison code if valid. */
4517 if (STORE_FLAG_VALUE == 1
4518 && XEXP (x, 0) == const1_rtx
4519 && COMPARISON_P (XEXP (x, 1))
4520 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4521 return reversed;
4522
4523 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4524 (and <foo> (const_int pow2-1)) */
4525 if (GET_CODE (XEXP (x, 1)) == AND
4526 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4527 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4528 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4529 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4530 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4531
4532 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4533 */
4534 if (GET_CODE (XEXP (x, 1)) == MULT
4535 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4536 {
4537 rtx in1, in2;
4538
4539 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4540 in2 = XEXP (XEXP (x, 1), 1);
4541 return simplify_gen_binary (PLUS, mode,
4542 simplify_gen_binary (MULT, mode,
4543 in1, in2),
4544 XEXP (x, 0));
4545 }
4546
4547 /* Canonicalize (minus (neg A) (mult B C)) to
4548 (minus (mult (neg B) C) A). */
4549 if (GET_CODE (XEXP (x, 1)) == MULT
4550 && GET_CODE (XEXP (x, 0)) == NEG)
4551 {
4552 rtx in1, in2;
4553
4554 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4555 in2 = XEXP (XEXP (x, 1), 1);
4556 return simplify_gen_binary (MINUS, mode,
4557 simplify_gen_binary (MULT, mode,
4558 in1, in2),
4559 XEXP (XEXP (x, 0), 0));
4560 }
4561
4562 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4563 integers. */
4564 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4565 return simplify_gen_binary (MINUS, mode,
4566 simplify_gen_binary (MINUS, mode,
4567 XEXP (x, 0),
4568 XEXP (XEXP (x, 1), 0)),
4569 XEXP (XEXP (x, 1), 1));
4570 break;
4571
4572 case MULT:
4573 /* If we have (mult (plus A B) C), apply the distributive law and then
4574 the inverse distributive law to see if things simplify. This
4575 occurs mostly in addresses, often when unrolling loops. */
4576
4577 if (GET_CODE (XEXP (x, 0)) == PLUS)
4578 {
4579 rtx result = distribute_and_simplify_rtx (x, 0);
4580 if (result)
4581 return result;
4582 }
4583
4584 /* Try simplify a*(b/c) as (a*b)/c. */
4585 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4586 && GET_CODE (XEXP (x, 0)) == DIV)
4587 {
4588 rtx tem = simplify_binary_operation (MULT, mode,
4589 XEXP (XEXP (x, 0), 0),
4590 XEXP (x, 1));
4591 if (tem)
4592 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4593 }
4594 break;
4595
4596 case UDIV:
4597 /* If this is a divide by a power of two, treat it as a shift if
4598 its first operand is a shift. */
4599 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4600 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4601 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4602 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4603 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4604 || GET_CODE (XEXP (x, 0)) == ROTATE
4605 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4606 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4607 break;
4608
4609 case EQ: case NE:
4610 case GT: case GTU: case GE: case GEU:
4611 case LT: case LTU: case LE: case LEU:
4612 case UNEQ: case LTGT:
4613 case UNGT: case UNGE:
4614 case UNLT: case UNLE:
4615 case UNORDERED: case ORDERED:
4616 /* If the first operand is a condition code, we can't do anything
4617 with it. */
4618 if (GET_CODE (XEXP (x, 0)) == COMPARE
4619 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4620 && ! CC0_P (XEXP (x, 0))))
4621 {
4622 rtx op0 = XEXP (x, 0);
4623 rtx op1 = XEXP (x, 1);
4624 enum rtx_code new_code;
4625
4626 if (GET_CODE (op0) == COMPARE)
4627 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4628
4629 /* Simplify our comparison, if possible. */
4630 new_code = simplify_comparison (code, &op0, &op1);
4631
4632 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4633 if only the low-order bit is possibly nonzero in X (such as when
4634 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4635 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4636 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4637 (plus X 1).
4638
4639 Remove any ZERO_EXTRACT we made when thinking this was a
4640 comparison. It may now be simpler to use, e.g., an AND. If a
4641 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4642 the call to make_compound_operation in the SET case. */
4643
4644 if (STORE_FLAG_VALUE == 1
4645 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4646 && op1 == const0_rtx
4647 && mode == GET_MODE (op0)
4648 && nonzero_bits (op0, mode) == 1)
4649 return gen_lowpart (mode,
4650 expand_compound_operation (op0));
4651
4652 else if (STORE_FLAG_VALUE == 1
4653 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4654 && op1 == const0_rtx
4655 && mode == GET_MODE (op0)
4656 && (num_sign_bit_copies (op0, mode)
4657 == GET_MODE_BITSIZE (mode)))
4658 {
4659 op0 = expand_compound_operation (op0);
4660 return simplify_gen_unary (NEG, mode,
4661 gen_lowpart (mode, op0),
4662 mode);
4663 }
4664
4665 else if (STORE_FLAG_VALUE == 1
4666 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4667 && op1 == const0_rtx
4668 && mode == GET_MODE (op0)
4669 && nonzero_bits (op0, mode) == 1)
4670 {
4671 op0 = expand_compound_operation (op0);
4672 return simplify_gen_binary (XOR, mode,
4673 gen_lowpart (mode, op0),
4674 const1_rtx);
4675 }
4676
4677 else if (STORE_FLAG_VALUE == 1
4678 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4679 && op1 == const0_rtx
4680 && mode == GET_MODE (op0)
4681 && (num_sign_bit_copies (op0, mode)
4682 == GET_MODE_BITSIZE (mode)))
4683 {
4684 op0 = expand_compound_operation (op0);
4685 return plus_constant (gen_lowpart (mode, op0), 1);
4686 }
4687
4688 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4689 those above. */
4690 if (STORE_FLAG_VALUE == -1
4691 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4692 && op1 == const0_rtx
4693 && (num_sign_bit_copies (op0, mode)
4694 == GET_MODE_BITSIZE (mode)))
4695 return gen_lowpart (mode,
4696 expand_compound_operation (op0));
4697
4698 else if (STORE_FLAG_VALUE == -1
4699 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4700 && op1 == const0_rtx
4701 && mode == GET_MODE (op0)
4702 && nonzero_bits (op0, mode) == 1)
4703 {
4704 op0 = expand_compound_operation (op0);
4705 return simplify_gen_unary (NEG, mode,
4706 gen_lowpart (mode, op0),
4707 mode);
4708 }
4709
4710 else if (STORE_FLAG_VALUE == -1
4711 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4712 && op1 == const0_rtx
4713 && mode == GET_MODE (op0)
4714 && (num_sign_bit_copies (op0, mode)
4715 == GET_MODE_BITSIZE (mode)))
4716 {
4717 op0 = expand_compound_operation (op0);
4718 return simplify_gen_unary (NOT, mode,
4719 gen_lowpart (mode, op0),
4720 mode);
4721 }
4722
4723 /* If X is 0/1, (eq X 0) is X-1. */
4724 else if (STORE_FLAG_VALUE == -1
4725 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4726 && op1 == const0_rtx
4727 && mode == GET_MODE (op0)
4728 && nonzero_bits (op0, mode) == 1)
4729 {
4730 op0 = expand_compound_operation (op0);
4731 return plus_constant (gen_lowpart (mode, op0), -1);
4732 }
4733
4734 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4735 one bit that might be nonzero, we can convert (ne x 0) to
4736 (ashift x c) where C puts the bit in the sign bit. Remove any
4737 AND with STORE_FLAG_VALUE when we are done, since we are only
4738 going to test the sign bit. */
4739 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4740 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4741 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4742 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4743 && op1 == const0_rtx
4744 && mode == GET_MODE (op0)
4745 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4746 {
4747 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4748 expand_compound_operation (op0),
4749 GET_MODE_BITSIZE (mode) - 1 - i);
4750 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4751 return XEXP (x, 0);
4752 else
4753 return x;
4754 }
4755
4756 /* If the code changed, return a whole new comparison. */
4757 if (new_code != code)
4758 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4759
4760 /* Otherwise, keep this operation, but maybe change its operands.
4761 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4762 SUBST (XEXP (x, 0), op0);
4763 SUBST (XEXP (x, 1), op1);
4764 }
4765 break;
4766
4767 case IF_THEN_ELSE:
4768 return simplify_if_then_else (x);
4769
4770 case ZERO_EXTRACT:
4771 case SIGN_EXTRACT:
4772 case ZERO_EXTEND:
4773 case SIGN_EXTEND:
4774 /* If we are processing SET_DEST, we are done. */
4775 if (in_dest)
4776 return x;
4777
4778 return expand_compound_operation (x);
4779
4780 case SET:
4781 return simplify_set (x);
4782
4783 case AND:
4784 case IOR:
4785 case XOR:
4786 return simplify_logical (x);
4787
4788 case ABS:
4789 /* (abs (neg <foo>)) -> (abs <foo>) */
4790 if (GET_CODE (XEXP (x, 0)) == NEG)
4791 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4792
4793 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4794 do nothing. */
4795 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4796 break;
4797
4798 /* If operand is something known to be positive, ignore the ABS. */
4799 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4800 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4801 <= HOST_BITS_PER_WIDE_INT)
4802 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4803 & ((HOST_WIDE_INT) 1
4804 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4805 == 0)))
4806 return XEXP (x, 0);
4807
4808 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4809 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4810 return gen_rtx_NEG (mode, XEXP (x, 0));
4811
4812 break;
4813
4814 case FFS:
4815 /* (ffs (*_extend <X>)) = (ffs <X>) */
4816 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4817 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4818 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4819 break;
4820
4821 case POPCOUNT:
4822 case PARITY:
4823 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4824 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4825 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4826 break;
4827
4828 case FLOAT:
4829 /* (float (sign_extend <X>)) = (float <X>). */
4830 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4831 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4832 break;
4833
4834 case ASHIFT:
4835 case LSHIFTRT:
4836 case ASHIFTRT:
4837 case ROTATE:
4838 case ROTATERT:
4839 /* If this is a shift by a constant amount, simplify it. */
4840 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4841 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4842 INTVAL (XEXP (x, 1)));
4843
4844 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4845 SUBST (XEXP (x, 1),
4846 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4847 ((HOST_WIDE_INT) 1
4848 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4849 - 1,
4850 NULL_RTX, 0));
4851 break;
4852
4853 case VEC_SELECT:
4854 {
4855 rtx op0 = XEXP (x, 0);
4856 rtx op1 = XEXP (x, 1);
4857 int len;
4858
4859 gcc_assert (GET_CODE (op1) == PARALLEL);
4860 len = XVECLEN (op1, 0);
4861 if (len == 1
4862 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4863 && GET_CODE (op0) == VEC_CONCAT)
4864 {
4865 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4866
4867 /* Try to find the element in the VEC_CONCAT. */
4868 for (;;)
4869 {
4870 if (GET_MODE (op0) == GET_MODE (x))
4871 return op0;
4872 if (GET_CODE (op0) == VEC_CONCAT)
4873 {
4874 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4875 if (offset < op0_size)
4876 op0 = XEXP (op0, 0);
4877 else
4878 {
4879 offset -= op0_size;
4880 op0 = XEXP (op0, 1);
4881 }
4882 }
4883 else
4884 break;
4885 }
4886 }
4887 }
4888
4889 break;
4890
4891 default:
4892 break;
4893 }
4894
4895 return x;
4896 }
4897 \f
4898 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4899
4900 static rtx
4901 simplify_if_then_else (rtx x)
4902 {
4903 enum machine_mode mode = GET_MODE (x);
4904 rtx cond = XEXP (x, 0);
4905 rtx true_rtx = XEXP (x, 1);
4906 rtx false_rtx = XEXP (x, 2);
4907 enum rtx_code true_code = GET_CODE (cond);
4908 int comparison_p = COMPARISON_P (cond);
4909 rtx temp;
4910 int i;
4911 enum rtx_code false_code;
4912 rtx reversed;
4913
4914 /* Simplify storing of the truth value. */
4915 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4916 return simplify_gen_relational (true_code, mode, VOIDmode,
4917 XEXP (cond, 0), XEXP (cond, 1));
4918
4919 /* Also when the truth value has to be reversed. */
4920 if (comparison_p
4921 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4922 && (reversed = reversed_comparison (cond, mode)))
4923 return reversed;
4924
4925 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4926 in it is being compared against certain values. Get the true and false
4927 comparisons and see if that says anything about the value of each arm. */
4928
4929 if (comparison_p
4930 && ((false_code = reversed_comparison_code (cond, NULL))
4931 != UNKNOWN)
4932 && REG_P (XEXP (cond, 0)))
4933 {
4934 HOST_WIDE_INT nzb;
4935 rtx from = XEXP (cond, 0);
4936 rtx true_val = XEXP (cond, 1);
4937 rtx false_val = true_val;
4938 int swapped = 0;
4939
4940 /* If FALSE_CODE is EQ, swap the codes and arms. */
4941
4942 if (false_code == EQ)
4943 {
4944 swapped = 1, true_code = EQ, false_code = NE;
4945 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4946 }
4947
4948 /* If we are comparing against zero and the expression being tested has
4949 only a single bit that might be nonzero, that is its value when it is
4950 not equal to zero. Similarly if it is known to be -1 or 0. */
4951
4952 if (true_code == EQ && true_val == const0_rtx
4953 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4954 false_code = EQ, false_val = GEN_INT (nzb);
4955 else if (true_code == EQ && true_val == const0_rtx
4956 && (num_sign_bit_copies (from, GET_MODE (from))
4957 == GET_MODE_BITSIZE (GET_MODE (from))))
4958 false_code = EQ, false_val = constm1_rtx;
4959
4960 /* Now simplify an arm if we know the value of the register in the
4961 branch and it is used in the arm. Be careful due to the potential
4962 of locally-shared RTL. */
4963
4964 if (reg_mentioned_p (from, true_rtx))
4965 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4966 from, true_val),
4967 pc_rtx, pc_rtx, 0, 0);
4968 if (reg_mentioned_p (from, false_rtx))
4969 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4970 from, false_val),
4971 pc_rtx, pc_rtx, 0, 0);
4972
4973 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4974 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4975
4976 true_rtx = XEXP (x, 1);
4977 false_rtx = XEXP (x, 2);
4978 true_code = GET_CODE (cond);
4979 }
4980
4981 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4982 reversed, do so to avoid needing two sets of patterns for
4983 subtract-and-branch insns. Similarly if we have a constant in the true
4984 arm, the false arm is the same as the first operand of the comparison, or
4985 the false arm is more complicated than the true arm. */
4986
4987 if (comparison_p
4988 && reversed_comparison_code (cond, NULL) != UNKNOWN
4989 && (true_rtx == pc_rtx
4990 || (CONSTANT_P (true_rtx)
4991 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4992 || true_rtx == const0_rtx
4993 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4994 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4995 && !OBJECT_P (false_rtx))
4996 || reg_mentioned_p (true_rtx, false_rtx)
4997 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4998 {
4999 true_code = reversed_comparison_code (cond, NULL);
5000 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5001 SUBST (XEXP (x, 1), false_rtx);
5002 SUBST (XEXP (x, 2), true_rtx);
5003
5004 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5005 cond = XEXP (x, 0);
5006
5007 /* It is possible that the conditional has been simplified out. */
5008 true_code = GET_CODE (cond);
5009 comparison_p = COMPARISON_P (cond);
5010 }
5011
5012 /* If the two arms are identical, we don't need the comparison. */
5013
5014 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5015 return true_rtx;
5016
5017 /* Convert a == b ? b : a to "a". */
5018 if (true_code == EQ && ! side_effects_p (cond)
5019 && !HONOR_NANS (mode)
5020 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5021 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5022 return false_rtx;
5023 else if (true_code == NE && ! side_effects_p (cond)
5024 && !HONOR_NANS (mode)
5025 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5026 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5027 return true_rtx;
5028
5029 /* Look for cases where we have (abs x) or (neg (abs X)). */
5030
5031 if (GET_MODE_CLASS (mode) == MODE_INT
5032 && GET_CODE (false_rtx) == NEG
5033 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5034 && comparison_p
5035 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5036 && ! side_effects_p (true_rtx))
5037 switch (true_code)
5038 {
5039 case GT:
5040 case GE:
5041 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5042 case LT:
5043 case LE:
5044 return
5045 simplify_gen_unary (NEG, mode,
5046 simplify_gen_unary (ABS, mode, true_rtx, mode),
5047 mode);
5048 default:
5049 break;
5050 }
5051
5052 /* Look for MIN or MAX. */
5053
5054 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5055 && comparison_p
5056 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5057 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5058 && ! side_effects_p (cond))
5059 switch (true_code)
5060 {
5061 case GE:
5062 case GT:
5063 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5064 case LE:
5065 case LT:
5066 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5067 case GEU:
5068 case GTU:
5069 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5070 case LEU:
5071 case LTU:
5072 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5073 default:
5074 break;
5075 }
5076
5077 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5078 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5079 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5080 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5081 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5082 neither 1 or -1, but it isn't worth checking for. */
5083
5084 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5085 && comparison_p
5086 && GET_MODE_CLASS (mode) == MODE_INT
5087 && ! side_effects_p (x))
5088 {
5089 rtx t = make_compound_operation (true_rtx, SET);
5090 rtx f = make_compound_operation (false_rtx, SET);
5091 rtx cond_op0 = XEXP (cond, 0);
5092 rtx cond_op1 = XEXP (cond, 1);
5093 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5094 enum machine_mode m = mode;
5095 rtx z = 0, c1 = NULL_RTX;
5096
5097 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5098 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5099 || GET_CODE (t) == ASHIFT
5100 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5101 && rtx_equal_p (XEXP (t, 0), f))
5102 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5103
5104 /* If an identity-zero op is commutative, check whether there
5105 would be a match if we swapped the operands. */
5106 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5107 || GET_CODE (t) == XOR)
5108 && rtx_equal_p (XEXP (t, 1), f))
5109 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5110 else if (GET_CODE (t) == SIGN_EXTEND
5111 && (GET_CODE (XEXP (t, 0)) == PLUS
5112 || GET_CODE (XEXP (t, 0)) == MINUS
5113 || GET_CODE (XEXP (t, 0)) == IOR
5114 || GET_CODE (XEXP (t, 0)) == XOR
5115 || GET_CODE (XEXP (t, 0)) == ASHIFT
5116 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5117 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5118 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5119 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5120 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5121 && (num_sign_bit_copies (f, GET_MODE (f))
5122 > (unsigned int)
5123 (GET_MODE_BITSIZE (mode)
5124 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5125 {
5126 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5127 extend_op = SIGN_EXTEND;
5128 m = GET_MODE (XEXP (t, 0));
5129 }
5130 else if (GET_CODE (t) == SIGN_EXTEND
5131 && (GET_CODE (XEXP (t, 0)) == PLUS
5132 || GET_CODE (XEXP (t, 0)) == IOR
5133 || GET_CODE (XEXP (t, 0)) == XOR)
5134 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5135 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5136 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5137 && (num_sign_bit_copies (f, GET_MODE (f))
5138 > (unsigned int)
5139 (GET_MODE_BITSIZE (mode)
5140 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5141 {
5142 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5143 extend_op = SIGN_EXTEND;
5144 m = GET_MODE (XEXP (t, 0));
5145 }
5146 else if (GET_CODE (t) == ZERO_EXTEND
5147 && (GET_CODE (XEXP (t, 0)) == PLUS
5148 || GET_CODE (XEXP (t, 0)) == MINUS
5149 || GET_CODE (XEXP (t, 0)) == IOR
5150 || GET_CODE (XEXP (t, 0)) == XOR
5151 || GET_CODE (XEXP (t, 0)) == ASHIFT
5152 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5153 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5154 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5155 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5156 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5157 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5158 && ((nonzero_bits (f, GET_MODE (f))
5159 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5160 == 0))
5161 {
5162 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5163 extend_op = ZERO_EXTEND;
5164 m = GET_MODE (XEXP (t, 0));
5165 }
5166 else if (GET_CODE (t) == ZERO_EXTEND
5167 && (GET_CODE (XEXP (t, 0)) == PLUS
5168 || GET_CODE (XEXP (t, 0)) == IOR
5169 || GET_CODE (XEXP (t, 0)) == XOR)
5170 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5171 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5172 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5173 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5174 && ((nonzero_bits (f, GET_MODE (f))
5175 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5176 == 0))
5177 {
5178 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5179 extend_op = ZERO_EXTEND;
5180 m = GET_MODE (XEXP (t, 0));
5181 }
5182
5183 if (z)
5184 {
5185 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5186 cond_op0, cond_op1),
5187 pc_rtx, pc_rtx, 0, 0);
5188 temp = simplify_gen_binary (MULT, m, temp,
5189 simplify_gen_binary (MULT, m, c1,
5190 const_true_rtx));
5191 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5192 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5193
5194 if (extend_op != UNKNOWN)
5195 temp = simplify_gen_unary (extend_op, mode, temp, m);
5196
5197 return temp;
5198 }
5199 }
5200
5201 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5202 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5203 negation of a single bit, we can convert this operation to a shift. We
5204 can actually do this more generally, but it doesn't seem worth it. */
5205
5206 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5207 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5208 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5209 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5210 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5211 == GET_MODE_BITSIZE (mode))
5212 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5213 return
5214 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5215 gen_lowpart (mode, XEXP (cond, 0)), i);
5216
5217 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5218 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5219 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5220 && GET_MODE (XEXP (cond, 0)) == mode
5221 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5222 == nonzero_bits (XEXP (cond, 0), mode)
5223 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5224 return XEXP (cond, 0);
5225
5226 return x;
5227 }
5228 \f
5229 /* Simplify X, a SET expression. Return the new expression. */
5230
5231 static rtx
5232 simplify_set (rtx x)
5233 {
5234 rtx src = SET_SRC (x);
5235 rtx dest = SET_DEST (x);
5236 enum machine_mode mode
5237 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5238 rtx other_insn;
5239 rtx *cc_use;
5240
5241 /* (set (pc) (return)) gets written as (return). */
5242 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5243 return src;
5244
5245 /* Now that we know for sure which bits of SRC we are using, see if we can
5246 simplify the expression for the object knowing that we only need the
5247 low-order bits. */
5248
5249 if (GET_MODE_CLASS (mode) == MODE_INT
5250 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5251 {
5252 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5253 SUBST (SET_SRC (x), src);
5254 }
5255
5256 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5257 the comparison result and try to simplify it unless we already have used
5258 undobuf.other_insn. */
5259 if ((GET_MODE_CLASS (mode) == MODE_CC
5260 || GET_CODE (src) == COMPARE
5261 || CC0_P (dest))
5262 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5263 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5264 && COMPARISON_P (*cc_use)
5265 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5266 {
5267 enum rtx_code old_code = GET_CODE (*cc_use);
5268 enum rtx_code new_code;
5269 rtx op0, op1, tmp;
5270 int other_changed = 0;
5271 enum machine_mode compare_mode = GET_MODE (dest);
5272
5273 if (GET_CODE (src) == COMPARE)
5274 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5275 else
5276 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5277
5278 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5279 op0, op1);
5280 if (!tmp)
5281 new_code = old_code;
5282 else if (!CONSTANT_P (tmp))
5283 {
5284 new_code = GET_CODE (tmp);
5285 op0 = XEXP (tmp, 0);
5286 op1 = XEXP (tmp, 1);
5287 }
5288 else
5289 {
5290 rtx pat = PATTERN (other_insn);
5291 undobuf.other_insn = other_insn;
5292 SUBST (*cc_use, tmp);
5293
5294 /* Attempt to simplify CC user. */
5295 if (GET_CODE (pat) == SET)
5296 {
5297 rtx new = simplify_rtx (SET_SRC (pat));
5298 if (new != NULL_RTX)
5299 SUBST (SET_SRC (pat), new);
5300 }
5301
5302 /* Convert X into a no-op move. */
5303 SUBST (SET_DEST (x), pc_rtx);
5304 SUBST (SET_SRC (x), pc_rtx);
5305 return x;
5306 }
5307
5308 /* Simplify our comparison, if possible. */
5309 new_code = simplify_comparison (new_code, &op0, &op1);
5310
5311 #ifdef SELECT_CC_MODE
5312 /* If this machine has CC modes other than CCmode, check to see if we
5313 need to use a different CC mode here. */
5314 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5315 compare_mode = GET_MODE (op0);
5316 else
5317 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5318
5319 #ifndef HAVE_cc0
5320 /* If the mode changed, we have to change SET_DEST, the mode in the
5321 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5322 a hard register, just build new versions with the proper mode. If it
5323 is a pseudo, we lose unless it is only time we set the pseudo, in
5324 which case we can safely change its mode. */
5325 if (compare_mode != GET_MODE (dest))
5326 {
5327 if (can_change_dest_mode (dest, 0, compare_mode))
5328 {
5329 unsigned int regno = REGNO (dest);
5330 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5331
5332 if (regno >= FIRST_PSEUDO_REGISTER)
5333 SUBST (regno_reg_rtx[regno], new_dest);
5334
5335 SUBST (SET_DEST (x), new_dest);
5336 SUBST (XEXP (*cc_use, 0), new_dest);
5337 other_changed = 1;
5338
5339 dest = new_dest;
5340 }
5341 }
5342 #endif /* cc0 */
5343 #endif /* SELECT_CC_MODE */
5344
5345 /* If the code changed, we have to build a new comparison in
5346 undobuf.other_insn. */
5347 if (new_code != old_code)
5348 {
5349 int other_changed_previously = other_changed;
5350 unsigned HOST_WIDE_INT mask;
5351
5352 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5353 dest, const0_rtx));
5354 other_changed = 1;
5355
5356 /* If the only change we made was to change an EQ into an NE or
5357 vice versa, OP0 has only one bit that might be nonzero, and OP1
5358 is zero, check if changing the user of the condition code will
5359 produce a valid insn. If it won't, we can keep the original code
5360 in that insn by surrounding our operation with an XOR. */
5361
5362 if (((old_code == NE && new_code == EQ)
5363 || (old_code == EQ && new_code == NE))
5364 && ! other_changed_previously && op1 == const0_rtx
5365 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5366 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5367 {
5368 rtx pat = PATTERN (other_insn), note = 0;
5369
5370 if ((recog_for_combine (&pat, other_insn, &note) < 0
5371 && ! check_asm_operands (pat)))
5372 {
5373 PUT_CODE (*cc_use, old_code);
5374 other_changed = 0;
5375
5376 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5377 op0, GEN_INT (mask));
5378 }
5379 }
5380 }
5381
5382 if (other_changed)
5383 undobuf.other_insn = other_insn;
5384
5385 #ifdef HAVE_cc0
5386 /* If we are now comparing against zero, change our source if
5387 needed. If we do not use cc0, we always have a COMPARE. */
5388 if (op1 == const0_rtx && dest == cc0_rtx)
5389 {
5390 SUBST (SET_SRC (x), op0);
5391 src = op0;
5392 }
5393 else
5394 #endif
5395
5396 /* Otherwise, if we didn't previously have a COMPARE in the
5397 correct mode, we need one. */
5398 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5399 {
5400 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5401 src = SET_SRC (x);
5402 }
5403 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5404 {
5405 SUBST(SET_SRC (x), op0);
5406 src = SET_SRC (x);
5407 }
5408 else
5409 {
5410 /* Otherwise, update the COMPARE if needed. */
5411 SUBST (XEXP (src, 0), op0);
5412 SUBST (XEXP (src, 1), op1);
5413 }
5414 }
5415 else
5416 {
5417 /* Get SET_SRC in a form where we have placed back any
5418 compound expressions. Then do the checks below. */
5419 src = make_compound_operation (src, SET);
5420 SUBST (SET_SRC (x), src);
5421 }
5422
5423 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5424 and X being a REG or (subreg (reg)), we may be able to convert this to
5425 (set (subreg:m2 x) (op)).
5426
5427 We can always do this if M1 is narrower than M2 because that means that
5428 we only care about the low bits of the result.
5429
5430 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5431 perform a narrower operation than requested since the high-order bits will
5432 be undefined. On machine where it is defined, this transformation is safe
5433 as long as M1 and M2 have the same number of words. */
5434
5435 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5436 && !OBJECT_P (SUBREG_REG (src))
5437 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5438 / UNITS_PER_WORD)
5439 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5440 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5441 #ifndef WORD_REGISTER_OPERATIONS
5442 && (GET_MODE_SIZE (GET_MODE (src))
5443 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5444 #endif
5445 #ifdef CANNOT_CHANGE_MODE_CLASS
5446 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5447 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5448 GET_MODE (SUBREG_REG (src)),
5449 GET_MODE (src)))
5450 #endif
5451 && (REG_P (dest)
5452 || (GET_CODE (dest) == SUBREG
5453 && REG_P (SUBREG_REG (dest)))))
5454 {
5455 SUBST (SET_DEST (x),
5456 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5457 dest));
5458 SUBST (SET_SRC (x), SUBREG_REG (src));
5459
5460 src = SET_SRC (x), dest = SET_DEST (x);
5461 }
5462
5463 #ifdef HAVE_cc0
5464 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5465 in SRC. */
5466 if (dest == cc0_rtx
5467 && GET_CODE (src) == SUBREG
5468 && subreg_lowpart_p (src)
5469 && (GET_MODE_BITSIZE (GET_MODE (src))
5470 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5471 {
5472 rtx inner = SUBREG_REG (src);
5473 enum machine_mode inner_mode = GET_MODE (inner);
5474
5475 /* Here we make sure that we don't have a sign bit on. */
5476 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5477 && (nonzero_bits (inner, inner_mode)
5478 < ((unsigned HOST_WIDE_INT) 1
5479 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5480 {
5481 SUBST (SET_SRC (x), inner);
5482 src = SET_SRC (x);
5483 }
5484 }
5485 #endif
5486
5487 #ifdef LOAD_EXTEND_OP
5488 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5489 would require a paradoxical subreg. Replace the subreg with a
5490 zero_extend to avoid the reload that would otherwise be required. */
5491
5492 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5493 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5494 && SUBREG_BYTE (src) == 0
5495 && (GET_MODE_SIZE (GET_MODE (src))
5496 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5497 && MEM_P (SUBREG_REG (src)))
5498 {
5499 SUBST (SET_SRC (x),
5500 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5501 GET_MODE (src), SUBREG_REG (src)));
5502
5503 src = SET_SRC (x);
5504 }
5505 #endif
5506
5507 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5508 are comparing an item known to be 0 or -1 against 0, use a logical
5509 operation instead. Check for one of the arms being an IOR of the other
5510 arm with some value. We compute three terms to be IOR'ed together. In
5511 practice, at most two will be nonzero. Then we do the IOR's. */
5512
5513 if (GET_CODE (dest) != PC
5514 && GET_CODE (src) == IF_THEN_ELSE
5515 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5516 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5517 && XEXP (XEXP (src, 0), 1) == const0_rtx
5518 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5519 #ifdef HAVE_conditional_move
5520 && ! can_conditionally_move_p (GET_MODE (src))
5521 #endif
5522 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5523 GET_MODE (XEXP (XEXP (src, 0), 0)))
5524 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5525 && ! side_effects_p (src))
5526 {
5527 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5528 ? XEXP (src, 1) : XEXP (src, 2));
5529 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5530 ? XEXP (src, 2) : XEXP (src, 1));
5531 rtx term1 = const0_rtx, term2, term3;
5532
5533 if (GET_CODE (true_rtx) == IOR
5534 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5535 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5536 else if (GET_CODE (true_rtx) == IOR
5537 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5538 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5539 else if (GET_CODE (false_rtx) == IOR
5540 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5541 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5542 else if (GET_CODE (false_rtx) == IOR
5543 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5544 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5545
5546 term2 = simplify_gen_binary (AND, GET_MODE (src),
5547 XEXP (XEXP (src, 0), 0), true_rtx);
5548 term3 = simplify_gen_binary (AND, GET_MODE (src),
5549 simplify_gen_unary (NOT, GET_MODE (src),
5550 XEXP (XEXP (src, 0), 0),
5551 GET_MODE (src)),
5552 false_rtx);
5553
5554 SUBST (SET_SRC (x),
5555 simplify_gen_binary (IOR, GET_MODE (src),
5556 simplify_gen_binary (IOR, GET_MODE (src),
5557 term1, term2),
5558 term3));
5559
5560 src = SET_SRC (x);
5561 }
5562
5563 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5564 whole thing fail. */
5565 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5566 return src;
5567 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5568 return dest;
5569 else
5570 /* Convert this into a field assignment operation, if possible. */
5571 return make_field_assignment (x);
5572 }
5573 \f
5574 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5575 result. */
5576
5577 static rtx
5578 simplify_logical (rtx x)
5579 {
5580 enum machine_mode mode = GET_MODE (x);
5581 rtx op0 = XEXP (x, 0);
5582 rtx op1 = XEXP (x, 1);
5583 rtx reversed;
5584
5585 switch (GET_CODE (x))
5586 {
5587 case AND:
5588 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5589 insn (and may simplify more). */
5590 if (GET_CODE (op0) == XOR
5591 && rtx_equal_p (XEXP (op0, 0), op1)
5592 && ! side_effects_p (op1))
5593 x = simplify_gen_binary (AND, mode,
5594 simplify_gen_unary (NOT, mode,
5595 XEXP (op0, 1), mode),
5596 op1);
5597
5598 if (GET_CODE (op0) == XOR
5599 && rtx_equal_p (XEXP (op0, 1), op1)
5600 && ! side_effects_p (op1))
5601 x = simplify_gen_binary (AND, mode,
5602 simplify_gen_unary (NOT, mode,
5603 XEXP (op0, 0), mode),
5604 op1);
5605
5606 /* Similarly for (~(A ^ B)) & A. */
5607 if (GET_CODE (op0) == NOT
5608 && GET_CODE (XEXP (op0, 0)) == XOR
5609 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5610 && ! side_effects_p (op1))
5611 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5612
5613 if (GET_CODE (op0) == NOT
5614 && GET_CODE (XEXP (op0, 0)) == XOR
5615 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5616 && ! side_effects_p (op1))
5617 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5618
5619 /* We can call simplify_and_const_int only if we don't lose
5620 any (sign) bits when converting INTVAL (op1) to
5621 "unsigned HOST_WIDE_INT". */
5622 if (GET_CODE (op1) == CONST_INT
5623 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5624 || INTVAL (op1) > 0))
5625 {
5626 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5627
5628 /* If we have (ior (and (X C1) C2)) and the next restart would be
5629 the last, simplify this by making C1 as small as possible
5630 and then exit. Only do this if C1 actually changes: for now
5631 this only saves memory but, should this transformation be
5632 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5633 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5634 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5635 && GET_CODE (op1) == CONST_INT
5636 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5637 return simplify_gen_binary (IOR, mode,
5638 simplify_gen_binary
5639 (AND, mode, XEXP (op0, 0),
5640 GEN_INT (INTVAL (XEXP (op0, 1))
5641 & ~INTVAL (op1))), op1);
5642
5643 if (GET_CODE (x) != AND)
5644 return x;
5645
5646 op0 = XEXP (x, 0);
5647 op1 = XEXP (x, 1);
5648 }
5649
5650 /* Convert (A | B) & A to A. */
5651 if (GET_CODE (op0) == IOR
5652 && (rtx_equal_p (XEXP (op0, 0), op1)
5653 || rtx_equal_p (XEXP (op0, 1), op1))
5654 && ! side_effects_p (XEXP (op0, 0))
5655 && ! side_effects_p (XEXP (op0, 1)))
5656 return op1;
5657
5658 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5659 apply the distributive law and then the inverse distributive
5660 law to see if things simplify. */
5661 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5662 {
5663 rtx result = distribute_and_simplify_rtx (x, 0);
5664 if (result)
5665 return result;
5666 }
5667 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5668 {
5669 rtx result = distribute_and_simplify_rtx (x, 1);
5670 if (result)
5671 return result;
5672 }
5673 break;
5674
5675 case IOR:
5676 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5677 if (GET_CODE (op1) == CONST_INT
5678 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5679 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5680 return op1;
5681
5682 /* Convert (A & B) | A to A. */
5683 if (GET_CODE (op0) == AND
5684 && (rtx_equal_p (XEXP (op0, 0), op1)
5685 || rtx_equal_p (XEXP (op0, 1), op1))
5686 && ! side_effects_p (XEXP (op0, 0))
5687 && ! side_effects_p (XEXP (op0, 1)))
5688 return op1;
5689
5690 /* If we have (ior (and A B) C), apply the distributive law and then
5691 the inverse distributive law to see if things simplify. */
5692
5693 if (GET_CODE (op0) == AND)
5694 {
5695 rtx result = distribute_and_simplify_rtx (x, 0);
5696 if (result)
5697 return result;
5698 }
5699
5700 if (GET_CODE (op1) == AND)
5701 {
5702 rtx result = distribute_and_simplify_rtx (x, 1);
5703 if (result)
5704 return result;
5705 }
5706
5707 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5708 mode size to (rotate A CX). */
5709
5710 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5711 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5712 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5713 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5714 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5715 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5716 == GET_MODE_BITSIZE (mode)))
5717 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5718 (GET_CODE (op0) == ASHIFT
5719 ? XEXP (op0, 1) : XEXP (op1, 1)));
5720
5721 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5722 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5723 does not affect any of the bits in OP1, it can really be done
5724 as a PLUS and we can associate. We do this by seeing if OP1
5725 can be safely shifted left C bits. */
5726 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5727 && GET_CODE (XEXP (op0, 0)) == PLUS
5728 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5729 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5730 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5731 {
5732 int count = INTVAL (XEXP (op0, 1));
5733 HOST_WIDE_INT mask = INTVAL (op1) << count;
5734
5735 if (mask >> count == INTVAL (op1)
5736 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5737 {
5738 SUBST (XEXP (XEXP (op0, 0), 1),
5739 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5740 return op0;
5741 }
5742 }
5743 break;
5744
5745 case XOR:
5746 /* If we are XORing two things that have no bits in common,
5747 convert them into an IOR. This helps to detect rotation encoded
5748 using those methods and possibly other simplifications. */
5749
5750 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5751 && (nonzero_bits (op0, mode)
5752 & nonzero_bits (op1, mode)) == 0)
5753 return (simplify_gen_binary (IOR, mode, op0, op1));
5754
5755 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5756 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5757 (NOT y). */
5758 {
5759 int num_negated = 0;
5760
5761 if (GET_CODE (op0) == NOT)
5762 num_negated++, op0 = XEXP (op0, 0);
5763 if (GET_CODE (op1) == NOT)
5764 num_negated++, op1 = XEXP (op1, 0);
5765
5766 if (num_negated == 2)
5767 {
5768 SUBST (XEXP (x, 0), op0);
5769 SUBST (XEXP (x, 1), op1);
5770 }
5771 else if (num_negated == 1)
5772 return
5773 simplify_gen_unary (NOT, mode,
5774 simplify_gen_binary (XOR, mode, op0, op1),
5775 mode);
5776 }
5777
5778 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5779 correspond to a machine insn or result in further simplifications
5780 if B is a constant. */
5781
5782 if (GET_CODE (op0) == AND
5783 && rtx_equal_p (XEXP (op0, 1), op1)
5784 && ! side_effects_p (op1))
5785 return simplify_gen_binary (AND, mode,
5786 simplify_gen_unary (NOT, mode,
5787 XEXP (op0, 0), mode),
5788 op1);
5789
5790 else if (GET_CODE (op0) == AND
5791 && rtx_equal_p (XEXP (op0, 0), op1)
5792 && ! side_effects_p (op1))
5793 return simplify_gen_binary (AND, mode,
5794 simplify_gen_unary (NOT, mode,
5795 XEXP (op0, 1), mode),
5796 op1);
5797
5798 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5799 comparison if STORE_FLAG_VALUE is 1. */
5800 if (STORE_FLAG_VALUE == 1
5801 && op1 == const1_rtx
5802 && COMPARISON_P (op0)
5803 && (reversed = reversed_comparison (op0, mode)))
5804 return reversed;
5805
5806 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5807 is (lt foo (const_int 0)), so we can perform the above
5808 simplification if STORE_FLAG_VALUE is 1. */
5809
5810 if (STORE_FLAG_VALUE == 1
5811 && op1 == const1_rtx
5812 && GET_CODE (op0) == LSHIFTRT
5813 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5814 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5815 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5816
5817 /* (xor (comparison foo bar) (const_int sign-bit))
5818 when STORE_FLAG_VALUE is the sign bit. */
5819 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5820 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5821 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5822 && op1 == const_true_rtx
5823 && COMPARISON_P (op0)
5824 && (reversed = reversed_comparison (op0, mode)))
5825 return reversed;
5826
5827 break;
5828
5829 default:
5830 gcc_unreachable ();
5831 }
5832
5833 return x;
5834 }
5835 \f
5836 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5837 operations" because they can be replaced with two more basic operations.
5838 ZERO_EXTEND is also considered "compound" because it can be replaced with
5839 an AND operation, which is simpler, though only one operation.
5840
5841 The function expand_compound_operation is called with an rtx expression
5842 and will convert it to the appropriate shifts and AND operations,
5843 simplifying at each stage.
5844
5845 The function make_compound_operation is called to convert an expression
5846 consisting of shifts and ANDs into the equivalent compound expression.
5847 It is the inverse of this function, loosely speaking. */
5848
5849 static rtx
5850 expand_compound_operation (rtx x)
5851 {
5852 unsigned HOST_WIDE_INT pos = 0, len;
5853 int unsignedp = 0;
5854 unsigned int modewidth;
5855 rtx tem;
5856
5857 switch (GET_CODE (x))
5858 {
5859 case ZERO_EXTEND:
5860 unsignedp = 1;
5861 case SIGN_EXTEND:
5862 /* We can't necessarily use a const_int for a multiword mode;
5863 it depends on implicitly extending the value.
5864 Since we don't know the right way to extend it,
5865 we can't tell whether the implicit way is right.
5866
5867 Even for a mode that is no wider than a const_int,
5868 we can't win, because we need to sign extend one of its bits through
5869 the rest of it, and we don't know which bit. */
5870 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5871 return x;
5872
5873 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5874 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5875 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5876 reloaded. If not for that, MEM's would very rarely be safe.
5877
5878 Reject MODEs bigger than a word, because we might not be able
5879 to reference a two-register group starting with an arbitrary register
5880 (and currently gen_lowpart might crash for a SUBREG). */
5881
5882 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5883 return x;
5884
5885 /* Reject MODEs that aren't scalar integers because turning vector
5886 or complex modes into shifts causes problems. */
5887
5888 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5889 return x;
5890
5891 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5892 /* If the inner object has VOIDmode (the only way this can happen
5893 is if it is an ASM_OPERANDS), we can't do anything since we don't
5894 know how much masking to do. */
5895 if (len == 0)
5896 return x;
5897
5898 break;
5899
5900 case ZERO_EXTRACT:
5901 unsignedp = 1;
5902
5903 /* ... fall through ... */
5904
5905 case SIGN_EXTRACT:
5906 /* If the operand is a CLOBBER, just return it. */
5907 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5908 return XEXP (x, 0);
5909
5910 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5911 || GET_CODE (XEXP (x, 2)) != CONST_INT
5912 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5913 return x;
5914
5915 /* Reject MODEs that aren't scalar integers because turning vector
5916 or complex modes into shifts causes problems. */
5917
5918 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5919 return x;
5920
5921 len = INTVAL (XEXP (x, 1));
5922 pos = INTVAL (XEXP (x, 2));
5923
5924 /* If this goes outside the object being extracted, replace the object
5925 with a (use (mem ...)) construct that only combine understands
5926 and is used only for this purpose. */
5927 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5928 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5929
5930 if (BITS_BIG_ENDIAN)
5931 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5932
5933 break;
5934
5935 default:
5936 return x;
5937 }
5938 /* Convert sign extension to zero extension, if we know that the high
5939 bit is not set, as this is easier to optimize. It will be converted
5940 back to cheaper alternative in make_extraction. */
5941 if (GET_CODE (x) == SIGN_EXTEND
5942 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5943 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5944 & ~(((unsigned HOST_WIDE_INT)
5945 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5946 >> 1))
5947 == 0)))
5948 {
5949 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5950 rtx temp2 = expand_compound_operation (temp);
5951
5952 /* Make sure this is a profitable operation. */
5953 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5954 return temp2;
5955 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5956 return temp;
5957 else
5958 return x;
5959 }
5960
5961 /* We can optimize some special cases of ZERO_EXTEND. */
5962 if (GET_CODE (x) == ZERO_EXTEND)
5963 {
5964 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5965 know that the last value didn't have any inappropriate bits
5966 set. */
5967 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5968 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5969 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5970 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5971 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5972 return XEXP (XEXP (x, 0), 0);
5973
5974 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5975 if (GET_CODE (XEXP (x, 0)) == SUBREG
5976 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5977 && subreg_lowpart_p (XEXP (x, 0))
5978 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5979 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5980 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5981 return SUBREG_REG (XEXP (x, 0));
5982
5983 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5984 is a comparison and STORE_FLAG_VALUE permits. This is like
5985 the first case, but it works even when GET_MODE (x) is larger
5986 than HOST_WIDE_INT. */
5987 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5988 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5989 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5990 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5991 <= HOST_BITS_PER_WIDE_INT)
5992 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5993 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5994 return XEXP (XEXP (x, 0), 0);
5995
5996 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5997 if (GET_CODE (XEXP (x, 0)) == SUBREG
5998 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5999 && subreg_lowpart_p (XEXP (x, 0))
6000 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6001 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6002 <= HOST_BITS_PER_WIDE_INT)
6003 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6004 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6005 return SUBREG_REG (XEXP (x, 0));
6006
6007 }
6008
6009 /* If we reach here, we want to return a pair of shifts. The inner
6010 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6011 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6012 logical depending on the value of UNSIGNEDP.
6013
6014 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6015 converted into an AND of a shift.
6016
6017 We must check for the case where the left shift would have a negative
6018 count. This can happen in a case like (x >> 31) & 255 on machines
6019 that can't shift by a constant. On those machines, we would first
6020 combine the shift with the AND to produce a variable-position
6021 extraction. Then the constant of 31 would be substituted in to produce
6022 a such a position. */
6023
6024 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6025 if (modewidth + len >= pos)
6026 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6027 GET_MODE (x),
6028 simplify_shift_const (NULL_RTX, ASHIFT,
6029 GET_MODE (x),
6030 XEXP (x, 0),
6031 modewidth - pos - len),
6032 modewidth - len);
6033
6034 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6035 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6036 simplify_shift_const (NULL_RTX, LSHIFTRT,
6037 GET_MODE (x),
6038 XEXP (x, 0), pos),
6039 ((HOST_WIDE_INT) 1 << len) - 1);
6040 else
6041 /* Any other cases we can't handle. */
6042 return x;
6043
6044 /* If we couldn't do this for some reason, return the original
6045 expression. */
6046 if (GET_CODE (tem) == CLOBBER)
6047 return x;
6048
6049 return tem;
6050 }
6051 \f
6052 /* X is a SET which contains an assignment of one object into
6053 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6054 or certain SUBREGS). If possible, convert it into a series of
6055 logical operations.
6056
6057 We half-heartedly support variable positions, but do not at all
6058 support variable lengths. */
6059
6060 static rtx
6061 expand_field_assignment (rtx x)
6062 {
6063 rtx inner;
6064 rtx pos; /* Always counts from low bit. */
6065 int len;
6066 rtx mask, cleared, masked;
6067 enum machine_mode compute_mode;
6068
6069 /* Loop until we find something we can't simplify. */
6070 while (1)
6071 {
6072 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6073 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6074 {
6075 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6076 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6077 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6078 }
6079 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6080 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6081 {
6082 inner = XEXP (SET_DEST (x), 0);
6083 len = INTVAL (XEXP (SET_DEST (x), 1));
6084 pos = XEXP (SET_DEST (x), 2);
6085
6086 /* If the position is constant and spans the width of INNER,
6087 surround INNER with a USE to indicate this. */
6088 if (GET_CODE (pos) == CONST_INT
6089 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6090 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6091
6092 if (BITS_BIG_ENDIAN)
6093 {
6094 if (GET_CODE (pos) == CONST_INT)
6095 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6096 - INTVAL (pos));
6097 else if (GET_CODE (pos) == MINUS
6098 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6099 && (INTVAL (XEXP (pos, 1))
6100 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6101 /* If position is ADJUST - X, new position is X. */
6102 pos = XEXP (pos, 0);
6103 else
6104 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6105 GEN_INT (GET_MODE_BITSIZE (
6106 GET_MODE (inner))
6107 - len),
6108 pos);
6109 }
6110 }
6111
6112 /* A SUBREG between two modes that occupy the same numbers of words
6113 can be done by moving the SUBREG to the source. */
6114 else if (GET_CODE (SET_DEST (x)) == SUBREG
6115 /* We need SUBREGs to compute nonzero_bits properly. */
6116 && nonzero_sign_valid
6117 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6118 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6119 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6120 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6121 {
6122 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6123 gen_lowpart
6124 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6125 SET_SRC (x)));
6126 continue;
6127 }
6128 else
6129 break;
6130
6131 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6132 inner = SUBREG_REG (inner);
6133
6134 compute_mode = GET_MODE (inner);
6135
6136 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6137 if (! SCALAR_INT_MODE_P (compute_mode))
6138 {
6139 enum machine_mode imode;
6140
6141 /* Don't do anything for vector or complex integral types. */
6142 if (! FLOAT_MODE_P (compute_mode))
6143 break;
6144
6145 /* Try to find an integral mode to pun with. */
6146 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6147 if (imode == BLKmode)
6148 break;
6149
6150 compute_mode = imode;
6151 inner = gen_lowpart (imode, inner);
6152 }
6153
6154 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6155 if (len >= HOST_BITS_PER_WIDE_INT)
6156 break;
6157
6158 /* Now compute the equivalent expression. Make a copy of INNER
6159 for the SET_DEST in case it is a MEM into which we will substitute;
6160 we don't want shared RTL in that case. */
6161 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6162 cleared = simplify_gen_binary (AND, compute_mode,
6163 simplify_gen_unary (NOT, compute_mode,
6164 simplify_gen_binary (ASHIFT,
6165 compute_mode,
6166 mask, pos),
6167 compute_mode),
6168 inner);
6169 masked = simplify_gen_binary (ASHIFT, compute_mode,
6170 simplify_gen_binary (
6171 AND, compute_mode,
6172 gen_lowpart (compute_mode, SET_SRC (x)),
6173 mask),
6174 pos);
6175
6176 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6177 simplify_gen_binary (IOR, compute_mode,
6178 cleared, masked));
6179 }
6180
6181 return x;
6182 }
6183 \f
6184 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6185 it is an RTX that represents a variable starting position; otherwise,
6186 POS is the (constant) starting bit position (counted from the LSB).
6187
6188 INNER may be a USE. This will occur when we started with a bitfield
6189 that went outside the boundary of the object in memory, which is
6190 allowed on most machines. To isolate this case, we produce a USE
6191 whose mode is wide enough and surround the MEM with it. The only
6192 code that understands the USE is this routine. If it is not removed,
6193 it will cause the resulting insn not to match.
6194
6195 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6196 signed reference.
6197
6198 IN_DEST is nonzero if this is a reference in the destination of a
6199 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6200 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6201 be used.
6202
6203 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6204 ZERO_EXTRACT should be built even for bits starting at bit 0.
6205
6206 MODE is the desired mode of the result (if IN_DEST == 0).
6207
6208 The result is an RTX for the extraction or NULL_RTX if the target
6209 can't handle it. */
6210
6211 static rtx
6212 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6213 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6214 int in_dest, int in_compare)
6215 {
6216 /* This mode describes the size of the storage area
6217 to fetch the overall value from. Within that, we
6218 ignore the POS lowest bits, etc. */
6219 enum machine_mode is_mode = GET_MODE (inner);
6220 enum machine_mode inner_mode;
6221 enum machine_mode wanted_inner_mode = byte_mode;
6222 enum machine_mode wanted_inner_reg_mode = word_mode;
6223 enum machine_mode pos_mode = word_mode;
6224 enum machine_mode extraction_mode = word_mode;
6225 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6226 int spans_byte = 0;
6227 rtx new = 0;
6228 rtx orig_pos_rtx = pos_rtx;
6229 HOST_WIDE_INT orig_pos;
6230
6231 /* Get some information about INNER and get the innermost object. */
6232 if (GET_CODE (inner) == USE)
6233 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6234 /* We don't need to adjust the position because we set up the USE
6235 to pretend that it was a full-word object. */
6236 spans_byte = 1, inner = XEXP (inner, 0);
6237 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6238 {
6239 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6240 consider just the QI as the memory to extract from.
6241 The subreg adds or removes high bits; its mode is
6242 irrelevant to the meaning of this extraction,
6243 since POS and LEN count from the lsb. */
6244 if (MEM_P (SUBREG_REG (inner)))
6245 is_mode = GET_MODE (SUBREG_REG (inner));
6246 inner = SUBREG_REG (inner);
6247 }
6248 else if (GET_CODE (inner) == ASHIFT
6249 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6250 && pos_rtx == 0 && pos == 0
6251 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6252 {
6253 /* We're extracting the least significant bits of an rtx
6254 (ashift X (const_int C)), where LEN > C. Extract the
6255 least significant (LEN - C) bits of X, giving an rtx
6256 whose mode is MODE, then shift it left C times. */
6257 new = make_extraction (mode, XEXP (inner, 0),
6258 0, 0, len - INTVAL (XEXP (inner, 1)),
6259 unsignedp, in_dest, in_compare);
6260 if (new != 0)
6261 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6262 }
6263
6264 inner_mode = GET_MODE (inner);
6265
6266 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6267 pos = INTVAL (pos_rtx), pos_rtx = 0;
6268
6269 /* See if this can be done without an extraction. We never can if the
6270 width of the field is not the same as that of some integer mode. For
6271 registers, we can only avoid the extraction if the position is at the
6272 low-order bit and this is either not in the destination or we have the
6273 appropriate STRICT_LOW_PART operation available.
6274
6275 For MEM, we can avoid an extract if the field starts on an appropriate
6276 boundary and we can change the mode of the memory reference. However,
6277 we cannot directly access the MEM if we have a USE and the underlying
6278 MEM is not TMODE. This combination means that MEM was being used in a
6279 context where bits outside its mode were being referenced; that is only
6280 valid in bit-field insns. */
6281
6282 if (tmode != BLKmode
6283 && ! (spans_byte && inner_mode != tmode)
6284 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6285 && !MEM_P (inner)
6286 && (! in_dest
6287 || (REG_P (inner)
6288 && have_insn_for (STRICT_LOW_PART, tmode))))
6289 || (MEM_P (inner) && pos_rtx == 0
6290 && (pos
6291 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6292 : BITS_PER_UNIT)) == 0
6293 /* We can't do this if we are widening INNER_MODE (it
6294 may not be aligned, for one thing). */
6295 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6296 && (inner_mode == tmode
6297 || (! mode_dependent_address_p (XEXP (inner, 0))
6298 && ! MEM_VOLATILE_P (inner))))))
6299 {
6300 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6301 field. If the original and current mode are the same, we need not
6302 adjust the offset. Otherwise, we do if bytes big endian.
6303
6304 If INNER is not a MEM, get a piece consisting of just the field
6305 of interest (in this case POS % BITS_PER_WORD must be 0). */
6306
6307 if (MEM_P (inner))
6308 {
6309 HOST_WIDE_INT offset;
6310
6311 /* POS counts from lsb, but make OFFSET count in memory order. */
6312 if (BYTES_BIG_ENDIAN)
6313 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6314 else
6315 offset = pos / BITS_PER_UNIT;
6316
6317 new = adjust_address_nv (inner, tmode, offset);
6318 }
6319 else if (REG_P (inner))
6320 {
6321 if (tmode != inner_mode)
6322 {
6323 /* We can't call gen_lowpart in a DEST since we
6324 always want a SUBREG (see below) and it would sometimes
6325 return a new hard register. */
6326 if (pos || in_dest)
6327 {
6328 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6329
6330 if (WORDS_BIG_ENDIAN
6331 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6332 final_word = ((GET_MODE_SIZE (inner_mode)
6333 - GET_MODE_SIZE (tmode))
6334 / UNITS_PER_WORD) - final_word;
6335
6336 final_word *= UNITS_PER_WORD;
6337 if (BYTES_BIG_ENDIAN &&
6338 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6339 final_word += (GET_MODE_SIZE (inner_mode)
6340 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6341
6342 /* Avoid creating invalid subregs, for example when
6343 simplifying (x>>32)&255. */
6344 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6345 return NULL_RTX;
6346
6347 new = gen_rtx_SUBREG (tmode, inner, final_word);
6348 }
6349 else
6350 new = gen_lowpart (tmode, inner);
6351 }
6352 else
6353 new = inner;
6354 }
6355 else
6356 new = force_to_mode (inner, tmode,
6357 len >= HOST_BITS_PER_WIDE_INT
6358 ? ~(unsigned HOST_WIDE_INT) 0
6359 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6360 NULL_RTX, 0);
6361
6362 /* If this extraction is going into the destination of a SET,
6363 make a STRICT_LOW_PART unless we made a MEM. */
6364
6365 if (in_dest)
6366 return (MEM_P (new) ? new
6367 : (GET_CODE (new) != SUBREG
6368 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6369 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6370
6371 if (mode == tmode)
6372 return new;
6373
6374 if (GET_CODE (new) == CONST_INT)
6375 return gen_int_mode (INTVAL (new), mode);
6376
6377 /* If we know that no extraneous bits are set, and that the high
6378 bit is not set, convert the extraction to the cheaper of
6379 sign and zero extension, that are equivalent in these cases. */
6380 if (flag_expensive_optimizations
6381 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6382 && ((nonzero_bits (new, tmode)
6383 & ~(((unsigned HOST_WIDE_INT)
6384 GET_MODE_MASK (tmode))
6385 >> 1))
6386 == 0)))
6387 {
6388 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6389 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6390
6391 /* Prefer ZERO_EXTENSION, since it gives more information to
6392 backends. */
6393 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6394 return temp;
6395 return temp1;
6396 }
6397
6398 /* Otherwise, sign- or zero-extend unless we already are in the
6399 proper mode. */
6400
6401 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6402 mode, new));
6403 }
6404
6405 /* Unless this is a COMPARE or we have a funny memory reference,
6406 don't do anything with zero-extending field extracts starting at
6407 the low-order bit since they are simple AND operations. */
6408 if (pos_rtx == 0 && pos == 0 && ! in_dest
6409 && ! in_compare && ! spans_byte && unsignedp)
6410 return 0;
6411
6412 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6413 we would be spanning bytes or if the position is not a constant and the
6414 length is not 1. In all other cases, we would only be going outside
6415 our object in cases when an original shift would have been
6416 undefined. */
6417 if (! spans_byte && MEM_P (inner)
6418 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6419 || (pos_rtx != 0 && len != 1)))
6420 return 0;
6421
6422 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6423 and the mode for the result. */
6424 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6425 {
6426 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6427 pos_mode = mode_for_extraction (EP_insv, 2);
6428 extraction_mode = mode_for_extraction (EP_insv, 3);
6429 }
6430
6431 if (! in_dest && unsignedp
6432 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6433 {
6434 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6435 pos_mode = mode_for_extraction (EP_extzv, 3);
6436 extraction_mode = mode_for_extraction (EP_extzv, 0);
6437 }
6438
6439 if (! in_dest && ! unsignedp
6440 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6441 {
6442 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6443 pos_mode = mode_for_extraction (EP_extv, 3);
6444 extraction_mode = mode_for_extraction (EP_extv, 0);
6445 }
6446
6447 /* Never narrow an object, since that might not be safe. */
6448
6449 if (mode != VOIDmode
6450 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6451 extraction_mode = mode;
6452
6453 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6454 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6455 pos_mode = GET_MODE (pos_rtx);
6456
6457 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6458 if we have to change the mode of memory and cannot, the desired mode is
6459 EXTRACTION_MODE. */
6460 if (!MEM_P (inner))
6461 wanted_inner_mode = wanted_inner_reg_mode;
6462 else if (inner_mode != wanted_inner_mode
6463 && (mode_dependent_address_p (XEXP (inner, 0))
6464 || MEM_VOLATILE_P (inner)))
6465 wanted_inner_mode = extraction_mode;
6466
6467 orig_pos = pos;
6468
6469 if (BITS_BIG_ENDIAN)
6470 {
6471 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6472 BITS_BIG_ENDIAN style. If position is constant, compute new
6473 position. Otherwise, build subtraction.
6474 Note that POS is relative to the mode of the original argument.
6475 If it's a MEM we need to recompute POS relative to that.
6476 However, if we're extracting from (or inserting into) a register,
6477 we want to recompute POS relative to wanted_inner_mode. */
6478 int width = (MEM_P (inner)
6479 ? GET_MODE_BITSIZE (is_mode)
6480 : GET_MODE_BITSIZE (wanted_inner_mode));
6481
6482 if (pos_rtx == 0)
6483 pos = width - len - pos;
6484 else
6485 pos_rtx
6486 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6487 /* POS may be less than 0 now, but we check for that below.
6488 Note that it can only be less than 0 if !MEM_P (inner). */
6489 }
6490
6491 /* If INNER has a wider mode, make it smaller. If this is a constant
6492 extract, try to adjust the byte to point to the byte containing
6493 the value. */
6494 if (wanted_inner_mode != VOIDmode
6495 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6496 && ((MEM_P (inner)
6497 && (inner_mode == wanted_inner_mode
6498 || (! mode_dependent_address_p (XEXP (inner, 0))
6499 && ! MEM_VOLATILE_P (inner))))))
6500 {
6501 int offset = 0;
6502
6503 /* The computations below will be correct if the machine is big
6504 endian in both bits and bytes or little endian in bits and bytes.
6505 If it is mixed, we must adjust. */
6506
6507 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6508 adjust OFFSET to compensate. */
6509 if (BYTES_BIG_ENDIAN
6510 && ! spans_byte
6511 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6512 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6513
6514 /* If this is a constant position, we can move to the desired byte.
6515 Be careful not to go beyond the original object and maintain the
6516 natural alignment of the memory. */
6517 if (pos_rtx == 0)
6518 {
6519 enum machine_mode bfmode = smallest_mode_for_size (len, MODE_INT);
6520 offset += (pos / GET_MODE_BITSIZE (bfmode)) * GET_MODE_SIZE (bfmode);
6521 pos %= GET_MODE_BITSIZE (bfmode);
6522 }
6523
6524 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6525 && ! spans_byte
6526 && is_mode != wanted_inner_mode)
6527 offset = (GET_MODE_SIZE (is_mode)
6528 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6529
6530 if (offset != 0 || inner_mode != wanted_inner_mode)
6531 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6532 }
6533
6534 /* If INNER is not memory, we can always get it into the proper mode. If we
6535 are changing its mode, POS must be a constant and smaller than the size
6536 of the new mode. */
6537 else if (!MEM_P (inner))
6538 {
6539 if (GET_MODE (inner) != wanted_inner_mode
6540 && (pos_rtx != 0
6541 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6542 return 0;
6543
6544 inner = force_to_mode (inner, wanted_inner_mode,
6545 pos_rtx
6546 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6547 ? ~(unsigned HOST_WIDE_INT) 0
6548 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6549 << orig_pos),
6550 NULL_RTX, 0);
6551 }
6552
6553 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6554 have to zero extend. Otherwise, we can just use a SUBREG. */
6555 if (pos_rtx != 0
6556 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6557 {
6558 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6559
6560 /* If we know that no extraneous bits are set, and that the high
6561 bit is not set, convert extraction to cheaper one - either
6562 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6563 cases. */
6564 if (flag_expensive_optimizations
6565 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6566 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6567 & ~(((unsigned HOST_WIDE_INT)
6568 GET_MODE_MASK (GET_MODE (pos_rtx)))
6569 >> 1))
6570 == 0)))
6571 {
6572 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6573
6574 /* Prefer ZERO_EXTENSION, since it gives more information to
6575 backends. */
6576 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6577 temp = temp1;
6578 }
6579 pos_rtx = temp;
6580 }
6581 else if (pos_rtx != 0
6582 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6583 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6584
6585 /* Make POS_RTX unless we already have it and it is correct. If we don't
6586 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6587 be a CONST_INT. */
6588 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6589 pos_rtx = orig_pos_rtx;
6590
6591 else if (pos_rtx == 0)
6592 pos_rtx = GEN_INT (pos);
6593
6594 /* Make the required operation. See if we can use existing rtx. */
6595 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6596 extraction_mode, inner, GEN_INT (len), pos_rtx);
6597 if (! in_dest)
6598 new = gen_lowpart (mode, new);
6599
6600 return new;
6601 }
6602 \f
6603 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6604 with any other operations in X. Return X without that shift if so. */
6605
6606 static rtx
6607 extract_left_shift (rtx x, int count)
6608 {
6609 enum rtx_code code = GET_CODE (x);
6610 enum machine_mode mode = GET_MODE (x);
6611 rtx tem;
6612
6613 switch (code)
6614 {
6615 case ASHIFT:
6616 /* This is the shift itself. If it is wide enough, we will return
6617 either the value being shifted if the shift count is equal to
6618 COUNT or a shift for the difference. */
6619 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6620 && INTVAL (XEXP (x, 1)) >= count)
6621 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6622 INTVAL (XEXP (x, 1)) - count);
6623 break;
6624
6625 case NEG: case NOT:
6626 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6627 return simplify_gen_unary (code, mode, tem, mode);
6628
6629 break;
6630
6631 case PLUS: case IOR: case XOR: case AND:
6632 /* If we can safely shift this constant and we find the inner shift,
6633 make a new operation. */
6634 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6635 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6636 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6637 return simplify_gen_binary (code, mode, tem,
6638 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6639
6640 break;
6641
6642 default:
6643 break;
6644 }
6645
6646 return 0;
6647 }
6648 \f
6649 /* Look at the expression rooted at X. Look for expressions
6650 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6651 Form these expressions.
6652
6653 Return the new rtx, usually just X.
6654
6655 Also, for machines like the VAX that don't have logical shift insns,
6656 try to convert logical to arithmetic shift operations in cases where
6657 they are equivalent. This undoes the canonicalizations to logical
6658 shifts done elsewhere.
6659
6660 We try, as much as possible, to re-use rtl expressions to save memory.
6661
6662 IN_CODE says what kind of expression we are processing. Normally, it is
6663 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6664 being kludges), it is MEM. When processing the arguments of a comparison
6665 or a COMPARE against zero, it is COMPARE. */
6666
6667 static rtx
6668 make_compound_operation (rtx x, enum rtx_code in_code)
6669 {
6670 enum rtx_code code = GET_CODE (x);
6671 enum machine_mode mode = GET_MODE (x);
6672 int mode_width = GET_MODE_BITSIZE (mode);
6673 rtx rhs, lhs;
6674 enum rtx_code next_code;
6675 int i;
6676 rtx new = 0;
6677 rtx tem;
6678 const char *fmt;
6679
6680 /* Select the code to be used in recursive calls. Once we are inside an
6681 address, we stay there. If we have a comparison, set to COMPARE,
6682 but once inside, go back to our default of SET. */
6683
6684 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6685 : ((code == COMPARE || COMPARISON_P (x))
6686 && XEXP (x, 1) == const0_rtx) ? COMPARE
6687 : in_code == COMPARE ? SET : in_code);
6688
6689 /* Process depending on the code of this operation. If NEW is set
6690 nonzero, it will be returned. */
6691
6692 switch (code)
6693 {
6694 case ASHIFT:
6695 /* Convert shifts by constants into multiplications if inside
6696 an address. */
6697 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6698 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6699 && INTVAL (XEXP (x, 1)) >= 0)
6700 {
6701 new = make_compound_operation (XEXP (x, 0), next_code);
6702 new = gen_rtx_MULT (mode, new,
6703 GEN_INT ((HOST_WIDE_INT) 1
6704 << INTVAL (XEXP (x, 1))));
6705 }
6706 break;
6707
6708 case AND:
6709 /* If the second operand is not a constant, we can't do anything
6710 with it. */
6711 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6712 break;
6713
6714 /* If the constant is a power of two minus one and the first operand
6715 is a logical right shift, make an extraction. */
6716 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6717 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6718 {
6719 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6720 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6721 0, in_code == COMPARE);
6722 }
6723
6724 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6725 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6726 && subreg_lowpart_p (XEXP (x, 0))
6727 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6728 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6729 {
6730 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6731 next_code);
6732 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6733 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6734 0, in_code == COMPARE);
6735 }
6736 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6737 else if ((GET_CODE (XEXP (x, 0)) == XOR
6738 || GET_CODE (XEXP (x, 0)) == IOR)
6739 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6740 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6741 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6742 {
6743 /* Apply the distributive law, and then try to make extractions. */
6744 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6745 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6746 XEXP (x, 1)),
6747 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6748 XEXP (x, 1)));
6749 new = make_compound_operation (new, in_code);
6750 }
6751
6752 /* If we are have (and (rotate X C) M) and C is larger than the number
6753 of bits in M, this is an extraction. */
6754
6755 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6756 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6757 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6758 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6759 {
6760 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6761 new = make_extraction (mode, new,
6762 (GET_MODE_BITSIZE (mode)
6763 - INTVAL (XEXP (XEXP (x, 0), 1))),
6764 NULL_RTX, i, 1, 0, in_code == COMPARE);
6765 }
6766
6767 /* On machines without logical shifts, if the operand of the AND is
6768 a logical shift and our mask turns off all the propagated sign
6769 bits, we can replace the logical shift with an arithmetic shift. */
6770 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6771 && !have_insn_for (LSHIFTRT, mode)
6772 && have_insn_for (ASHIFTRT, mode)
6773 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6774 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6775 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6776 && mode_width <= HOST_BITS_PER_WIDE_INT)
6777 {
6778 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6779
6780 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6781 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6782 SUBST (XEXP (x, 0),
6783 gen_rtx_ASHIFTRT (mode,
6784 make_compound_operation
6785 (XEXP (XEXP (x, 0), 0), next_code),
6786 XEXP (XEXP (x, 0), 1)));
6787 }
6788
6789 /* If the constant is one less than a power of two, this might be
6790 representable by an extraction even if no shift is present.
6791 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6792 we are in a COMPARE. */
6793 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6794 new = make_extraction (mode,
6795 make_compound_operation (XEXP (x, 0),
6796 next_code),
6797 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6798
6799 /* If we are in a comparison and this is an AND with a power of two,
6800 convert this into the appropriate bit extract. */
6801 else if (in_code == COMPARE
6802 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6803 new = make_extraction (mode,
6804 make_compound_operation (XEXP (x, 0),
6805 next_code),
6806 i, NULL_RTX, 1, 1, 0, 1);
6807
6808 break;
6809
6810 case LSHIFTRT:
6811 /* If the sign bit is known to be zero, replace this with an
6812 arithmetic shift. */
6813 if (have_insn_for (ASHIFTRT, mode)
6814 && ! have_insn_for (LSHIFTRT, mode)
6815 && mode_width <= HOST_BITS_PER_WIDE_INT
6816 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6817 {
6818 new = gen_rtx_ASHIFTRT (mode,
6819 make_compound_operation (XEXP (x, 0),
6820 next_code),
6821 XEXP (x, 1));
6822 break;
6823 }
6824
6825 /* ... fall through ... */
6826
6827 case ASHIFTRT:
6828 lhs = XEXP (x, 0);
6829 rhs = XEXP (x, 1);
6830
6831 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6832 this is a SIGN_EXTRACT. */
6833 if (GET_CODE (rhs) == CONST_INT
6834 && GET_CODE (lhs) == ASHIFT
6835 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6836 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6837 {
6838 new = make_compound_operation (XEXP (lhs, 0), next_code);
6839 new = make_extraction (mode, new,
6840 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6841 NULL_RTX, mode_width - INTVAL (rhs),
6842 code == LSHIFTRT, 0, in_code == COMPARE);
6843 break;
6844 }
6845
6846 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6847 If so, try to merge the shifts into a SIGN_EXTEND. We could
6848 also do this for some cases of SIGN_EXTRACT, but it doesn't
6849 seem worth the effort; the case checked for occurs on Alpha. */
6850
6851 if (!OBJECT_P (lhs)
6852 && ! (GET_CODE (lhs) == SUBREG
6853 && (OBJECT_P (SUBREG_REG (lhs))))
6854 && GET_CODE (rhs) == CONST_INT
6855 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6856 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6857 new = make_extraction (mode, make_compound_operation (new, next_code),
6858 0, NULL_RTX, mode_width - INTVAL (rhs),
6859 code == LSHIFTRT, 0, in_code == COMPARE);
6860
6861 break;
6862
6863 case SUBREG:
6864 /* Call ourselves recursively on the inner expression. If we are
6865 narrowing the object and it has a different RTL code from
6866 what it originally did, do this SUBREG as a force_to_mode. */
6867
6868 tem = make_compound_operation (SUBREG_REG (x), in_code);
6869
6870 {
6871 rtx simplified;
6872 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6873 SUBREG_BYTE (x));
6874
6875 if (simplified)
6876 tem = simplified;
6877
6878 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6879 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6880 && subreg_lowpart_p (x))
6881 {
6882 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6883 NULL_RTX, 0);
6884
6885 /* If we have something other than a SUBREG, we might have
6886 done an expansion, so rerun ourselves. */
6887 if (GET_CODE (newer) != SUBREG)
6888 newer = make_compound_operation (newer, in_code);
6889
6890 return newer;
6891 }
6892
6893 if (simplified)
6894 return tem;
6895 }
6896 break;
6897
6898 default:
6899 break;
6900 }
6901
6902 if (new)
6903 {
6904 x = gen_lowpart (mode, new);
6905 code = GET_CODE (x);
6906 }
6907
6908 /* Now recursively process each operand of this operation. */
6909 fmt = GET_RTX_FORMAT (code);
6910 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6911 if (fmt[i] == 'e')
6912 {
6913 new = make_compound_operation (XEXP (x, i), next_code);
6914 SUBST (XEXP (x, i), new);
6915 }
6916
6917 /* If this is a commutative operation, the changes to the operands
6918 may have made it noncanonical. */
6919 if (COMMUTATIVE_ARITH_P (x)
6920 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6921 {
6922 tem = XEXP (x, 0);
6923 SUBST (XEXP (x, 0), XEXP (x, 1));
6924 SUBST (XEXP (x, 1), tem);
6925 }
6926
6927 return x;
6928 }
6929 \f
6930 /* Given M see if it is a value that would select a field of bits
6931 within an item, but not the entire word. Return -1 if not.
6932 Otherwise, return the starting position of the field, where 0 is the
6933 low-order bit.
6934
6935 *PLEN is set to the length of the field. */
6936
6937 static int
6938 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6939 {
6940 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6941 int pos = exact_log2 (m & -m);
6942 int len = 0;
6943
6944 if (pos >= 0)
6945 /* Now shift off the low-order zero bits and see if we have a
6946 power of two minus 1. */
6947 len = exact_log2 ((m >> pos) + 1);
6948
6949 if (len <= 0)
6950 pos = -1;
6951
6952 *plen = len;
6953 return pos;
6954 }
6955 \f
6956 /* See if X can be simplified knowing that we will only refer to it in
6957 MODE and will only refer to those bits that are nonzero in MASK.
6958 If other bits are being computed or if masking operations are done
6959 that select a superset of the bits in MASK, they can sometimes be
6960 ignored.
6961
6962 Return a possibly simplified expression, but always convert X to
6963 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6964
6965 Also, if REG is nonzero and X is a register equal in value to REG,
6966 replace X with REG.
6967
6968 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6969 are all off in X. This is used when X will be complemented, by either
6970 NOT, NEG, or XOR. */
6971
6972 static rtx
6973 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6974 rtx reg, int just_select)
6975 {
6976 enum rtx_code code = GET_CODE (x);
6977 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6978 enum machine_mode op_mode;
6979 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6980 rtx op0, op1, temp;
6981
6982 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6983 code below will do the wrong thing since the mode of such an
6984 expression is VOIDmode.
6985
6986 Also do nothing if X is a CLOBBER; this can happen if X was
6987 the return value from a call to gen_lowpart. */
6988 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6989 return x;
6990
6991 /* We want to perform the operation is its present mode unless we know
6992 that the operation is valid in MODE, in which case we do the operation
6993 in MODE. */
6994 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6995 && have_insn_for (code, mode))
6996 ? mode : GET_MODE (x));
6997
6998 /* It is not valid to do a right-shift in a narrower mode
6999 than the one it came in with. */
7000 if ((code == LSHIFTRT || code == ASHIFTRT)
7001 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7002 op_mode = GET_MODE (x);
7003
7004 /* Truncate MASK to fit OP_MODE. */
7005 if (op_mode)
7006 mask &= GET_MODE_MASK (op_mode);
7007
7008 /* When we have an arithmetic operation, or a shift whose count we
7009 do not know, we need to assume that all bits up to the highest-order
7010 bit in MASK will be needed. This is how we form such a mask. */
7011 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7012 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7013 else
7014 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7015 - 1);
7016
7017 /* Determine what bits of X are guaranteed to be (non)zero. */
7018 nonzero = nonzero_bits (x, mode);
7019
7020 /* If none of the bits in X are needed, return a zero. */
7021 if (! just_select && (nonzero & mask) == 0)
7022 x = const0_rtx;
7023
7024 /* If X is a CONST_INT, return a new one. Do this here since the
7025 test below will fail. */
7026 if (GET_CODE (x) == CONST_INT)
7027 {
7028 if (SCALAR_INT_MODE_P (mode))
7029 return gen_int_mode (INTVAL (x) & mask, mode);
7030 else
7031 {
7032 x = GEN_INT (INTVAL (x) & mask);
7033 return gen_lowpart_common (mode, x);
7034 }
7035 }
7036
7037 /* If X is narrower than MODE and we want all the bits in X's mode, just
7038 get X in the proper mode. */
7039 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7040 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7041 return gen_lowpart (mode, x);
7042
7043 switch (code)
7044 {
7045 case CLOBBER:
7046 /* If X is a (clobber (const_int)), return it since we know we are
7047 generating something that won't match. */
7048 return x;
7049
7050 case USE:
7051 /* X is a (use (mem ..)) that was made from a bit-field extraction that
7052 spanned the boundary of the MEM. If we are now masking so it is
7053 within that boundary, we don't need the USE any more. */
7054 if (! BITS_BIG_ENDIAN
7055 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7056 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7057 break;
7058
7059 case SIGN_EXTEND:
7060 case ZERO_EXTEND:
7061 case ZERO_EXTRACT:
7062 case SIGN_EXTRACT:
7063 x = expand_compound_operation (x);
7064 if (GET_CODE (x) != code)
7065 return force_to_mode (x, mode, mask, reg, next_select);
7066 break;
7067
7068 case REG:
7069 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
7070 || rtx_equal_p (reg, get_last_value (x))))
7071 x = reg;
7072 break;
7073
7074 case SUBREG:
7075 if (subreg_lowpart_p (x)
7076 /* We can ignore the effect of this SUBREG if it narrows the mode or
7077 if the constant masks to zero all the bits the mode doesn't
7078 have. */
7079 && ((GET_MODE_SIZE (GET_MODE (x))
7080 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7081 || (0 == (mask
7082 & GET_MODE_MASK (GET_MODE (x))
7083 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7084 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
7085 break;
7086
7087 case AND:
7088 /* If this is an AND with a constant, convert it into an AND
7089 whose constant is the AND of that constant with MASK. If it
7090 remains an AND of MASK, delete it since it is redundant. */
7091
7092 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7093 {
7094 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7095 mask & INTVAL (XEXP (x, 1)));
7096
7097 /* If X is still an AND, see if it is an AND with a mask that
7098 is just some low-order bits. If so, and it is MASK, we don't
7099 need it. */
7100
7101 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7102 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7103 == mask))
7104 x = XEXP (x, 0);
7105
7106 /* If it remains an AND, try making another AND with the bits
7107 in the mode mask that aren't in MASK turned on. If the
7108 constant in the AND is wide enough, this might make a
7109 cheaper constant. */
7110
7111 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7112 && GET_MODE_MASK (GET_MODE (x)) != mask
7113 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7114 {
7115 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7116 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7117 int width = GET_MODE_BITSIZE (GET_MODE (x));
7118 rtx y;
7119
7120 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7121 number, sign extend it. */
7122 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7123 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7124 cval |= (HOST_WIDE_INT) -1 << width;
7125
7126 y = simplify_gen_binary (AND, GET_MODE (x),
7127 XEXP (x, 0), GEN_INT (cval));
7128 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7129 x = y;
7130 }
7131
7132 break;
7133 }
7134
7135 goto binop;
7136
7137 case PLUS:
7138 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7139 low-order bits (as in an alignment operation) and FOO is already
7140 aligned to that boundary, mask C1 to that boundary as well.
7141 This may eliminate that PLUS and, later, the AND. */
7142
7143 {
7144 unsigned int width = GET_MODE_BITSIZE (mode);
7145 unsigned HOST_WIDE_INT smask = mask;
7146
7147 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7148 number, sign extend it. */
7149
7150 if (width < HOST_BITS_PER_WIDE_INT
7151 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7152 smask |= (HOST_WIDE_INT) -1 << width;
7153
7154 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7155 && exact_log2 (- smask) >= 0
7156 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7157 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7158 return force_to_mode (plus_constant (XEXP (x, 0),
7159 (INTVAL (XEXP (x, 1)) & smask)),
7160 mode, smask, reg, next_select);
7161 }
7162
7163 /* ... fall through ... */
7164
7165 case MULT:
7166 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7167 most significant bit in MASK since carries from those bits will
7168 affect the bits we are interested in. */
7169 mask = fuller_mask;
7170 goto binop;
7171
7172 case MINUS:
7173 /* If X is (minus C Y) where C's least set bit is larger than any bit
7174 in the mask, then we may replace with (neg Y). */
7175 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7176 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7177 & -INTVAL (XEXP (x, 0))))
7178 > mask))
7179 {
7180 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7181 GET_MODE (x));
7182 return force_to_mode (x, mode, mask, reg, next_select);
7183 }
7184
7185 /* Similarly, if C contains every bit in the fuller_mask, then we may
7186 replace with (not Y). */
7187 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7188 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7189 == INTVAL (XEXP (x, 0))))
7190 {
7191 x = simplify_gen_unary (NOT, GET_MODE (x),
7192 XEXP (x, 1), GET_MODE (x));
7193 return force_to_mode (x, mode, mask, reg, next_select);
7194 }
7195
7196 mask = fuller_mask;
7197 goto binop;
7198
7199 case IOR:
7200 case XOR:
7201 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7202 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7203 operation which may be a bitfield extraction. Ensure that the
7204 constant we form is not wider than the mode of X. */
7205
7206 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7207 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7208 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7209 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7210 && GET_CODE (XEXP (x, 1)) == CONST_INT
7211 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7212 + floor_log2 (INTVAL (XEXP (x, 1))))
7213 < GET_MODE_BITSIZE (GET_MODE (x)))
7214 && (INTVAL (XEXP (x, 1))
7215 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7216 {
7217 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7218 << INTVAL (XEXP (XEXP (x, 0), 1)));
7219 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7220 XEXP (XEXP (x, 0), 0), temp);
7221 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7222 XEXP (XEXP (x, 0), 1));
7223 return force_to_mode (x, mode, mask, reg, next_select);
7224 }
7225
7226 binop:
7227 /* For most binary operations, just propagate into the operation and
7228 change the mode if we have an operation of that mode. */
7229
7230 op0 = gen_lowpart (op_mode,
7231 force_to_mode (XEXP (x, 0), mode, mask,
7232 reg, next_select));
7233 op1 = gen_lowpart (op_mode,
7234 force_to_mode (XEXP (x, 1), mode, mask,
7235 reg, next_select));
7236
7237 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7238 x = simplify_gen_binary (code, op_mode, op0, op1);
7239 break;
7240
7241 case ASHIFT:
7242 /* For left shifts, do the same, but just for the first operand.
7243 However, we cannot do anything with shifts where we cannot
7244 guarantee that the counts are smaller than the size of the mode
7245 because such a count will have a different meaning in a
7246 wider mode. */
7247
7248 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7249 && INTVAL (XEXP (x, 1)) >= 0
7250 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7251 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7252 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7253 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7254 break;
7255
7256 /* If the shift count is a constant and we can do arithmetic in
7257 the mode of the shift, refine which bits we need. Otherwise, use the
7258 conservative form of the mask. */
7259 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7260 && INTVAL (XEXP (x, 1)) >= 0
7261 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7262 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7263 mask >>= INTVAL (XEXP (x, 1));
7264 else
7265 mask = fuller_mask;
7266
7267 op0 = gen_lowpart (op_mode,
7268 force_to_mode (XEXP (x, 0), op_mode,
7269 mask, reg, next_select));
7270
7271 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7272 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7273 break;
7274
7275 case LSHIFTRT:
7276 /* Here we can only do something if the shift count is a constant,
7277 this shift constant is valid for the host, and we can do arithmetic
7278 in OP_MODE. */
7279
7280 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7281 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7282 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7283 {
7284 rtx inner = XEXP (x, 0);
7285 unsigned HOST_WIDE_INT inner_mask;
7286
7287 /* Select the mask of the bits we need for the shift operand. */
7288 inner_mask = mask << INTVAL (XEXP (x, 1));
7289
7290 /* We can only change the mode of the shift if we can do arithmetic
7291 in the mode of the shift and INNER_MASK is no wider than the
7292 width of X's mode. */
7293 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7294 op_mode = GET_MODE (x);
7295
7296 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7297
7298 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7299 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7300 }
7301
7302 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7303 shift and AND produces only copies of the sign bit (C2 is one less
7304 than a power of two), we can do this with just a shift. */
7305
7306 if (GET_CODE (x) == LSHIFTRT
7307 && GET_CODE (XEXP (x, 1)) == CONST_INT
7308 /* The shift puts one of the sign bit copies in the least significant
7309 bit. */
7310 && ((INTVAL (XEXP (x, 1))
7311 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7312 >= GET_MODE_BITSIZE (GET_MODE (x)))
7313 && exact_log2 (mask + 1) >= 0
7314 /* Number of bits left after the shift must be more than the mask
7315 needs. */
7316 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7317 <= GET_MODE_BITSIZE (GET_MODE (x)))
7318 /* Must be more sign bit copies than the mask needs. */
7319 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7320 >= exact_log2 (mask + 1)))
7321 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7322 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7323 - exact_log2 (mask + 1)));
7324
7325 goto shiftrt;
7326
7327 case ASHIFTRT:
7328 /* If we are just looking for the sign bit, we don't need this shift at
7329 all, even if it has a variable count. */
7330 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7331 && (mask == ((unsigned HOST_WIDE_INT) 1
7332 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7333 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7334
7335 /* If this is a shift by a constant, get a mask that contains those bits
7336 that are not copies of the sign bit. We then have two cases: If
7337 MASK only includes those bits, this can be a logical shift, which may
7338 allow simplifications. If MASK is a single-bit field not within
7339 those bits, we are requesting a copy of the sign bit and hence can
7340 shift the sign bit to the appropriate location. */
7341
7342 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7343 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7344 {
7345 int i = -1;
7346
7347 /* If the considered data is wider than HOST_WIDE_INT, we can't
7348 represent a mask for all its bits in a single scalar.
7349 But we only care about the lower bits, so calculate these. */
7350
7351 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7352 {
7353 nonzero = ~(HOST_WIDE_INT) 0;
7354
7355 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7356 is the number of bits a full-width mask would have set.
7357 We need only shift if these are fewer than nonzero can
7358 hold. If not, we must keep all bits set in nonzero. */
7359
7360 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7361 < HOST_BITS_PER_WIDE_INT)
7362 nonzero >>= INTVAL (XEXP (x, 1))
7363 + HOST_BITS_PER_WIDE_INT
7364 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7365 }
7366 else
7367 {
7368 nonzero = GET_MODE_MASK (GET_MODE (x));
7369 nonzero >>= INTVAL (XEXP (x, 1));
7370 }
7371
7372 if ((mask & ~nonzero) == 0
7373 || (i = exact_log2 (mask)) >= 0)
7374 {
7375 x = simplify_shift_const
7376 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7377 i < 0 ? INTVAL (XEXP (x, 1))
7378 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7379
7380 if (GET_CODE (x) != ASHIFTRT)
7381 return force_to_mode (x, mode, mask, reg, next_select);
7382 }
7383 }
7384
7385 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7386 even if the shift count isn't a constant. */
7387 if (mask == 1)
7388 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7389 XEXP (x, 0), XEXP (x, 1));
7390
7391 shiftrt:
7392
7393 /* If this is a zero- or sign-extension operation that just affects bits
7394 we don't care about, remove it. Be sure the call above returned
7395 something that is still a shift. */
7396
7397 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7398 && GET_CODE (XEXP (x, 1)) == CONST_INT
7399 && INTVAL (XEXP (x, 1)) >= 0
7400 && (INTVAL (XEXP (x, 1))
7401 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7402 && GET_CODE (XEXP (x, 0)) == ASHIFT
7403 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7404 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7405 reg, next_select);
7406
7407 break;
7408
7409 case ROTATE:
7410 case ROTATERT:
7411 /* If the shift count is constant and we can do computations
7412 in the mode of X, compute where the bits we care about are.
7413 Otherwise, we can't do anything. Don't change the mode of
7414 the shift or propagate MODE into the shift, though. */
7415 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7416 && INTVAL (XEXP (x, 1)) >= 0)
7417 {
7418 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7419 GET_MODE (x), GEN_INT (mask),
7420 XEXP (x, 1));
7421 if (temp && GET_CODE (temp) == CONST_INT)
7422 SUBST (XEXP (x, 0),
7423 force_to_mode (XEXP (x, 0), GET_MODE (x),
7424 INTVAL (temp), reg, next_select));
7425 }
7426 break;
7427
7428 case NEG:
7429 /* If we just want the low-order bit, the NEG isn't needed since it
7430 won't change the low-order bit. */
7431 if (mask == 1)
7432 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7433
7434 /* We need any bits less significant than the most significant bit in
7435 MASK since carries from those bits will affect the bits we are
7436 interested in. */
7437 mask = fuller_mask;
7438 goto unop;
7439
7440 case NOT:
7441 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7442 same as the XOR case above. Ensure that the constant we form is not
7443 wider than the mode of X. */
7444
7445 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7446 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7447 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7448 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7449 < GET_MODE_BITSIZE (GET_MODE (x)))
7450 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7451 {
7452 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7453 GET_MODE (x));
7454 temp = simplify_gen_binary (XOR, GET_MODE (x),
7455 XEXP (XEXP (x, 0), 0), temp);
7456 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7457 temp, XEXP (XEXP (x, 0), 1));
7458
7459 return force_to_mode (x, mode, mask, reg, next_select);
7460 }
7461
7462 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7463 use the full mask inside the NOT. */
7464 mask = fuller_mask;
7465
7466 unop:
7467 op0 = gen_lowpart (op_mode,
7468 force_to_mode (XEXP (x, 0), mode, mask,
7469 reg, next_select));
7470 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7471 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7472 break;
7473
7474 case NE:
7475 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7476 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7477 which is equal to STORE_FLAG_VALUE. */
7478 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7479 && GET_MODE (XEXP (x, 0)) == mode
7480 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7481 && (nonzero_bits (XEXP (x, 0), mode)
7482 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7483 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7484
7485 break;
7486
7487 case IF_THEN_ELSE:
7488 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7489 written in a narrower mode. We play it safe and do not do so. */
7490
7491 SUBST (XEXP (x, 1),
7492 gen_lowpart (GET_MODE (x),
7493 force_to_mode (XEXP (x, 1), mode,
7494 mask, reg, next_select)));
7495 SUBST (XEXP (x, 2),
7496 gen_lowpart (GET_MODE (x),
7497 force_to_mode (XEXP (x, 2), mode,
7498 mask, reg, next_select)));
7499 break;
7500
7501 default:
7502 break;
7503 }
7504
7505 /* Ensure we return a value of the proper mode. */
7506 return gen_lowpart (mode, x);
7507 }
7508 \f
7509 /* Return nonzero if X is an expression that has one of two values depending on
7510 whether some other value is zero or nonzero. In that case, we return the
7511 value that is being tested, *PTRUE is set to the value if the rtx being
7512 returned has a nonzero value, and *PFALSE is set to the other alternative.
7513
7514 If we return zero, we set *PTRUE and *PFALSE to X. */
7515
7516 static rtx
7517 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7518 {
7519 enum machine_mode mode = GET_MODE (x);
7520 enum rtx_code code = GET_CODE (x);
7521 rtx cond0, cond1, true0, true1, false0, false1;
7522 unsigned HOST_WIDE_INT nz;
7523
7524 /* If we are comparing a value against zero, we are done. */
7525 if ((code == NE || code == EQ)
7526 && XEXP (x, 1) == const0_rtx)
7527 {
7528 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7529 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7530 return XEXP (x, 0);
7531 }
7532
7533 /* If this is a unary operation whose operand has one of two values, apply
7534 our opcode to compute those values. */
7535 else if (UNARY_P (x)
7536 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7537 {
7538 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7539 *pfalse = simplify_gen_unary (code, mode, false0,
7540 GET_MODE (XEXP (x, 0)));
7541 return cond0;
7542 }
7543
7544 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7545 make can't possibly match and would suppress other optimizations. */
7546 else if (code == COMPARE)
7547 ;
7548
7549 /* If this is a binary operation, see if either side has only one of two
7550 values. If either one does or if both do and they are conditional on
7551 the same value, compute the new true and false values. */
7552 else if (BINARY_P (x))
7553 {
7554 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7555 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7556
7557 if ((cond0 != 0 || cond1 != 0)
7558 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7559 {
7560 /* If if_then_else_cond returned zero, then true/false are the
7561 same rtl. We must copy one of them to prevent invalid rtl
7562 sharing. */
7563 if (cond0 == 0)
7564 true0 = copy_rtx (true0);
7565 else if (cond1 == 0)
7566 true1 = copy_rtx (true1);
7567
7568 if (COMPARISON_P (x))
7569 {
7570 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7571 true0, true1);
7572 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7573 false0, false1);
7574 }
7575 else
7576 {
7577 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7578 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7579 }
7580
7581 return cond0 ? cond0 : cond1;
7582 }
7583
7584 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7585 operands is zero when the other is nonzero, and vice-versa,
7586 and STORE_FLAG_VALUE is 1 or -1. */
7587
7588 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7589 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7590 || code == UMAX)
7591 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7592 {
7593 rtx op0 = XEXP (XEXP (x, 0), 1);
7594 rtx op1 = XEXP (XEXP (x, 1), 1);
7595
7596 cond0 = XEXP (XEXP (x, 0), 0);
7597 cond1 = XEXP (XEXP (x, 1), 0);
7598
7599 if (COMPARISON_P (cond0)
7600 && COMPARISON_P (cond1)
7601 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7602 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7603 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7604 || ((swap_condition (GET_CODE (cond0))
7605 == reversed_comparison_code (cond1, NULL))
7606 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7607 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7608 && ! side_effects_p (x))
7609 {
7610 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7611 *pfalse = simplify_gen_binary (MULT, mode,
7612 (code == MINUS
7613 ? simplify_gen_unary (NEG, mode,
7614 op1, mode)
7615 : op1),
7616 const_true_rtx);
7617 return cond0;
7618 }
7619 }
7620
7621 /* Similarly for MULT, AND and UMIN, except that for these the result
7622 is always zero. */
7623 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7624 && (code == MULT || code == AND || code == UMIN)
7625 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7626 {
7627 cond0 = XEXP (XEXP (x, 0), 0);
7628 cond1 = XEXP (XEXP (x, 1), 0);
7629
7630 if (COMPARISON_P (cond0)
7631 && COMPARISON_P (cond1)
7632 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7633 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7634 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7635 || ((swap_condition (GET_CODE (cond0))
7636 == reversed_comparison_code (cond1, NULL))
7637 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7638 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7639 && ! side_effects_p (x))
7640 {
7641 *ptrue = *pfalse = const0_rtx;
7642 return cond0;
7643 }
7644 }
7645 }
7646
7647 else if (code == IF_THEN_ELSE)
7648 {
7649 /* If we have IF_THEN_ELSE already, extract the condition and
7650 canonicalize it if it is NE or EQ. */
7651 cond0 = XEXP (x, 0);
7652 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7653 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7654 return XEXP (cond0, 0);
7655 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7656 {
7657 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7658 return XEXP (cond0, 0);
7659 }
7660 else
7661 return cond0;
7662 }
7663
7664 /* If X is a SUBREG, we can narrow both the true and false values
7665 if the inner expression, if there is a condition. */
7666 else if (code == SUBREG
7667 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7668 &true0, &false0)))
7669 {
7670 true0 = simplify_gen_subreg (mode, true0,
7671 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7672 false0 = simplify_gen_subreg (mode, false0,
7673 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7674 if (true0 && false0)
7675 {
7676 *ptrue = true0;
7677 *pfalse = false0;
7678 return cond0;
7679 }
7680 }
7681
7682 /* If X is a constant, this isn't special and will cause confusions
7683 if we treat it as such. Likewise if it is equivalent to a constant. */
7684 else if (CONSTANT_P (x)
7685 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7686 ;
7687
7688 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7689 will be least confusing to the rest of the compiler. */
7690 else if (mode == BImode)
7691 {
7692 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7693 return x;
7694 }
7695
7696 /* If X is known to be either 0 or -1, those are the true and
7697 false values when testing X. */
7698 else if (x == constm1_rtx || x == const0_rtx
7699 || (mode != VOIDmode
7700 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7701 {
7702 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7703 return x;
7704 }
7705
7706 /* Likewise for 0 or a single bit. */
7707 else if (SCALAR_INT_MODE_P (mode)
7708 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7709 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7710 {
7711 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7712 return x;
7713 }
7714
7715 /* Otherwise fail; show no condition with true and false values the same. */
7716 *ptrue = *pfalse = x;
7717 return 0;
7718 }
7719 \f
7720 /* Return the value of expression X given the fact that condition COND
7721 is known to be true when applied to REG as its first operand and VAL
7722 as its second. X is known to not be shared and so can be modified in
7723 place.
7724
7725 We only handle the simplest cases, and specifically those cases that
7726 arise with IF_THEN_ELSE expressions. */
7727
7728 static rtx
7729 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7730 {
7731 enum rtx_code code = GET_CODE (x);
7732 rtx temp;
7733 const char *fmt;
7734 int i, j;
7735
7736 if (side_effects_p (x))
7737 return x;
7738
7739 /* If either operand of the condition is a floating point value,
7740 then we have to avoid collapsing an EQ comparison. */
7741 if (cond == EQ
7742 && rtx_equal_p (x, reg)
7743 && ! FLOAT_MODE_P (GET_MODE (x))
7744 && ! FLOAT_MODE_P (GET_MODE (val)))
7745 return val;
7746
7747 if (cond == UNEQ && rtx_equal_p (x, reg))
7748 return val;
7749
7750 /* If X is (abs REG) and we know something about REG's relationship
7751 with zero, we may be able to simplify this. */
7752
7753 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7754 switch (cond)
7755 {
7756 case GE: case GT: case EQ:
7757 return XEXP (x, 0);
7758 case LT: case LE:
7759 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7760 XEXP (x, 0),
7761 GET_MODE (XEXP (x, 0)));
7762 default:
7763 break;
7764 }
7765
7766 /* The only other cases we handle are MIN, MAX, and comparisons if the
7767 operands are the same as REG and VAL. */
7768
7769 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7770 {
7771 if (rtx_equal_p (XEXP (x, 0), val))
7772 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7773
7774 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7775 {
7776 if (COMPARISON_P (x))
7777 {
7778 if (comparison_dominates_p (cond, code))
7779 return const_true_rtx;
7780
7781 code = reversed_comparison_code (x, NULL);
7782 if (code != UNKNOWN
7783 && comparison_dominates_p (cond, code))
7784 return const0_rtx;
7785 else
7786 return x;
7787 }
7788 else if (code == SMAX || code == SMIN
7789 || code == UMIN || code == UMAX)
7790 {
7791 int unsignedp = (code == UMIN || code == UMAX);
7792
7793 /* Do not reverse the condition when it is NE or EQ.
7794 This is because we cannot conclude anything about
7795 the value of 'SMAX (x, y)' when x is not equal to y,
7796 but we can when x equals y. */
7797 if ((code == SMAX || code == UMAX)
7798 && ! (cond == EQ || cond == NE))
7799 cond = reverse_condition (cond);
7800
7801 switch (cond)
7802 {
7803 case GE: case GT:
7804 return unsignedp ? x : XEXP (x, 1);
7805 case LE: case LT:
7806 return unsignedp ? x : XEXP (x, 0);
7807 case GEU: case GTU:
7808 return unsignedp ? XEXP (x, 1) : x;
7809 case LEU: case LTU:
7810 return unsignedp ? XEXP (x, 0) : x;
7811 default:
7812 break;
7813 }
7814 }
7815 }
7816 }
7817 else if (code == SUBREG)
7818 {
7819 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7820 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7821
7822 if (SUBREG_REG (x) != r)
7823 {
7824 /* We must simplify subreg here, before we lose track of the
7825 original inner_mode. */
7826 new = simplify_subreg (GET_MODE (x), r,
7827 inner_mode, SUBREG_BYTE (x));
7828 if (new)
7829 return new;
7830 else
7831 SUBST (SUBREG_REG (x), r);
7832 }
7833
7834 return x;
7835 }
7836 /* We don't have to handle SIGN_EXTEND here, because even in the
7837 case of replacing something with a modeless CONST_INT, a
7838 CONST_INT is already (supposed to be) a valid sign extension for
7839 its narrower mode, which implies it's already properly
7840 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7841 story is different. */
7842 else if (code == ZERO_EXTEND)
7843 {
7844 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7845 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7846
7847 if (XEXP (x, 0) != r)
7848 {
7849 /* We must simplify the zero_extend here, before we lose
7850 track of the original inner_mode. */
7851 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7852 r, inner_mode);
7853 if (new)
7854 return new;
7855 else
7856 SUBST (XEXP (x, 0), r);
7857 }
7858
7859 return x;
7860 }
7861
7862 fmt = GET_RTX_FORMAT (code);
7863 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7864 {
7865 if (fmt[i] == 'e')
7866 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7867 else if (fmt[i] == 'E')
7868 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7869 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7870 cond, reg, val));
7871 }
7872
7873 return x;
7874 }
7875 \f
7876 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7877 assignment as a field assignment. */
7878
7879 static int
7880 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7881 {
7882 if (x == y || rtx_equal_p (x, y))
7883 return 1;
7884
7885 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7886 return 0;
7887
7888 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7889 Note that all SUBREGs of MEM are paradoxical; otherwise they
7890 would have been rewritten. */
7891 if (MEM_P (x) && GET_CODE (y) == SUBREG
7892 && MEM_P (SUBREG_REG (y))
7893 && rtx_equal_p (SUBREG_REG (y),
7894 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7895 return 1;
7896
7897 if (MEM_P (y) && GET_CODE (x) == SUBREG
7898 && MEM_P (SUBREG_REG (x))
7899 && rtx_equal_p (SUBREG_REG (x),
7900 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7901 return 1;
7902
7903 /* We used to see if get_last_value of X and Y were the same but that's
7904 not correct. In one direction, we'll cause the assignment to have
7905 the wrong destination and in the case, we'll import a register into this
7906 insn that might have already have been dead. So fail if none of the
7907 above cases are true. */
7908 return 0;
7909 }
7910 \f
7911 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7912 Return that assignment if so.
7913
7914 We only handle the most common cases. */
7915
7916 static rtx
7917 make_field_assignment (rtx x)
7918 {
7919 rtx dest = SET_DEST (x);
7920 rtx src = SET_SRC (x);
7921 rtx assign;
7922 rtx rhs, lhs;
7923 HOST_WIDE_INT c1;
7924 HOST_WIDE_INT pos;
7925 unsigned HOST_WIDE_INT len;
7926 rtx other;
7927 enum machine_mode mode;
7928
7929 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7930 a clear of a one-bit field. We will have changed it to
7931 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7932 for a SUBREG. */
7933
7934 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7935 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7936 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7937 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7938 {
7939 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7940 1, 1, 1, 0);
7941 if (assign != 0)
7942 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7943 return x;
7944 }
7945
7946 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7947 && subreg_lowpart_p (XEXP (src, 0))
7948 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7949 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7950 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7951 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7952 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7953 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7954 {
7955 assign = make_extraction (VOIDmode, dest, 0,
7956 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7957 1, 1, 1, 0);
7958 if (assign != 0)
7959 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7960 return x;
7961 }
7962
7963 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7964 one-bit field. */
7965 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7966 && XEXP (XEXP (src, 0), 0) == const1_rtx
7967 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7968 {
7969 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7970 1, 1, 1, 0);
7971 if (assign != 0)
7972 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7973 return x;
7974 }
7975
7976 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7977 SRC is an AND with all bits of that field set, then we can discard
7978 the AND. */
7979 if (GET_CODE (dest) == ZERO_EXTRACT
7980 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7981 && GET_CODE (src) == AND
7982 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7983 {
7984 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7985 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7986 unsigned HOST_WIDE_INT ze_mask;
7987
7988 if (width >= HOST_BITS_PER_WIDE_INT)
7989 ze_mask = -1;
7990 else
7991 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7992
7993 /* Complete overlap. We can remove the source AND. */
7994 if ((and_mask & ze_mask) == ze_mask)
7995 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7996
7997 /* Partial overlap. We can reduce the source AND. */
7998 if ((and_mask & ze_mask) != and_mask)
7999 {
8000 mode = GET_MODE (src);
8001 src = gen_rtx_AND (mode, XEXP (src, 0),
8002 gen_int_mode (and_mask & ze_mask, mode));
8003 return gen_rtx_SET (VOIDmode, dest, src);
8004 }
8005 }
8006
8007 /* The other case we handle is assignments into a constant-position
8008 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8009 a mask that has all one bits except for a group of zero bits and
8010 OTHER is known to have zeros where C1 has ones, this is such an
8011 assignment. Compute the position and length from C1. Shift OTHER
8012 to the appropriate position, force it to the required mode, and
8013 make the extraction. Check for the AND in both operands. */
8014
8015 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8016 return x;
8017
8018 rhs = expand_compound_operation (XEXP (src, 0));
8019 lhs = expand_compound_operation (XEXP (src, 1));
8020
8021 if (GET_CODE (rhs) == AND
8022 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8023 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8024 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8025 else if (GET_CODE (lhs) == AND
8026 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8027 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8028 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8029 else
8030 return x;
8031
8032 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8033 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8034 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8035 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8036 return x;
8037
8038 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8039 if (assign == 0)
8040 return x;
8041
8042 /* The mode to use for the source is the mode of the assignment, or of
8043 what is inside a possible STRICT_LOW_PART. */
8044 mode = (GET_CODE (assign) == STRICT_LOW_PART
8045 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8046
8047 /* Shift OTHER right POS places and make it the source, restricting it
8048 to the proper length and mode. */
8049
8050 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
8051 GET_MODE (src), other, pos),
8052 mode,
8053 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8054 ? ~(unsigned HOST_WIDE_INT) 0
8055 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8056 dest, 0);
8057
8058 /* If SRC is masked by an AND that does not make a difference in
8059 the value being stored, strip it. */
8060 if (GET_CODE (assign) == ZERO_EXTRACT
8061 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8062 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8063 && GET_CODE (src) == AND
8064 && GET_CODE (XEXP (src, 1)) == CONST_INT
8065 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8066 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8067 src = XEXP (src, 0);
8068
8069 return gen_rtx_SET (VOIDmode, assign, src);
8070 }
8071 \f
8072 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8073 if so. */
8074
8075 static rtx
8076 apply_distributive_law (rtx x)
8077 {
8078 enum rtx_code code = GET_CODE (x);
8079 enum rtx_code inner_code;
8080 rtx lhs, rhs, other;
8081 rtx tem;
8082
8083 /* Distributivity is not true for floating point as it can change the
8084 value. So we don't do it unless -funsafe-math-optimizations. */
8085 if (FLOAT_MODE_P (GET_MODE (x))
8086 && ! flag_unsafe_math_optimizations)
8087 return x;
8088
8089 /* The outer operation can only be one of the following: */
8090 if (code != IOR && code != AND && code != XOR
8091 && code != PLUS && code != MINUS)
8092 return x;
8093
8094 lhs = XEXP (x, 0);
8095 rhs = XEXP (x, 1);
8096
8097 /* If either operand is a primitive we can't do anything, so get out
8098 fast. */
8099 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8100 return x;
8101
8102 lhs = expand_compound_operation (lhs);
8103 rhs = expand_compound_operation (rhs);
8104 inner_code = GET_CODE (lhs);
8105 if (inner_code != GET_CODE (rhs))
8106 return x;
8107
8108 /* See if the inner and outer operations distribute. */
8109 switch (inner_code)
8110 {
8111 case LSHIFTRT:
8112 case ASHIFTRT:
8113 case AND:
8114 case IOR:
8115 /* These all distribute except over PLUS. */
8116 if (code == PLUS || code == MINUS)
8117 return x;
8118 break;
8119
8120 case MULT:
8121 if (code != PLUS && code != MINUS)
8122 return x;
8123 break;
8124
8125 case ASHIFT:
8126 /* This is also a multiply, so it distributes over everything. */
8127 break;
8128
8129 case SUBREG:
8130 /* Non-paradoxical SUBREGs distributes over all operations,
8131 provided the inner modes and byte offsets are the same, this
8132 is an extraction of a low-order part, we don't convert an fp
8133 operation to int or vice versa, this is not a vector mode,
8134 and we would not be converting a single-word operation into a
8135 multi-word operation. The latter test is not required, but
8136 it prevents generating unneeded multi-word operations. Some
8137 of the previous tests are redundant given the latter test,
8138 but are retained because they are required for correctness.
8139
8140 We produce the result slightly differently in this case. */
8141
8142 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8143 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8144 || ! subreg_lowpart_p (lhs)
8145 || (GET_MODE_CLASS (GET_MODE (lhs))
8146 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8147 || (GET_MODE_SIZE (GET_MODE (lhs))
8148 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8149 || VECTOR_MODE_P (GET_MODE (lhs))
8150 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8151 return x;
8152
8153 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8154 SUBREG_REG (lhs), SUBREG_REG (rhs));
8155 return gen_lowpart (GET_MODE (x), tem);
8156
8157 default:
8158 return x;
8159 }
8160
8161 /* Set LHS and RHS to the inner operands (A and B in the example
8162 above) and set OTHER to the common operand (C in the example).
8163 There is only one way to do this unless the inner operation is
8164 commutative. */
8165 if (COMMUTATIVE_ARITH_P (lhs)
8166 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8167 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8168 else if (COMMUTATIVE_ARITH_P (lhs)
8169 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8170 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8171 else if (COMMUTATIVE_ARITH_P (lhs)
8172 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8173 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8174 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8175 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8176 else
8177 return x;
8178
8179 /* Form the new inner operation, seeing if it simplifies first. */
8180 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8181
8182 /* There is one exception to the general way of distributing:
8183 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8184 if (code == XOR && inner_code == IOR)
8185 {
8186 inner_code = AND;
8187 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8188 }
8189
8190 /* We may be able to continuing distributing the result, so call
8191 ourselves recursively on the inner operation before forming the
8192 outer operation, which we return. */
8193 return simplify_gen_binary (inner_code, GET_MODE (x),
8194 apply_distributive_law (tem), other);
8195 }
8196
8197 /* See if X is of the form (* (+ A B) C), and if so convert to
8198 (+ (* A C) (* B C)) and try to simplify.
8199
8200 Most of the time, this results in no change. However, if some of
8201 the operands are the same or inverses of each other, simplifications
8202 will result.
8203
8204 For example, (and (ior A B) (not B)) can occur as the result of
8205 expanding a bit field assignment. When we apply the distributive
8206 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8207 which then simplifies to (and (A (not B))).
8208
8209 Note that no checks happen on the validity of applying the inverse
8210 distributive law. This is pointless since we can do it in the
8211 few places where this routine is called.
8212
8213 N is the index of the term that is decomposed (the arithmetic operation,
8214 i.e. (+ A B) in the first example above). !N is the index of the term that
8215 is distributed, i.e. of C in the first example above. */
8216 static rtx
8217 distribute_and_simplify_rtx (rtx x, int n)
8218 {
8219 enum machine_mode mode;
8220 enum rtx_code outer_code, inner_code;
8221 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8222
8223 decomposed = XEXP (x, n);
8224 if (!ARITHMETIC_P (decomposed))
8225 return NULL_RTX;
8226
8227 mode = GET_MODE (x);
8228 outer_code = GET_CODE (x);
8229 distributed = XEXP (x, !n);
8230
8231 inner_code = GET_CODE (decomposed);
8232 inner_op0 = XEXP (decomposed, 0);
8233 inner_op1 = XEXP (decomposed, 1);
8234
8235 /* Special case (and (xor B C) (not A)), which is equivalent to
8236 (xor (ior A B) (ior A C)) */
8237 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8238 {
8239 distributed = XEXP (distributed, 0);
8240 outer_code = IOR;
8241 }
8242
8243 if (n == 0)
8244 {
8245 /* Distribute the second term. */
8246 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8247 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8248 }
8249 else
8250 {
8251 /* Distribute the first term. */
8252 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8253 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8254 }
8255
8256 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8257 new_op0, new_op1));
8258 if (GET_CODE (tmp) != outer_code
8259 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8260 return tmp;
8261
8262 return NULL_RTX;
8263 }
8264 \f
8265 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8266 in MODE.
8267
8268 Return an equivalent form, if different from X. Otherwise, return X. If
8269 X is zero, we are to always construct the equivalent form. */
8270
8271 static rtx
8272 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8273 unsigned HOST_WIDE_INT constop)
8274 {
8275 unsigned HOST_WIDE_INT nonzero;
8276 int i;
8277
8278 /* Simplify VAROP knowing that we will be only looking at some of the
8279 bits in it.
8280
8281 Note by passing in CONSTOP, we guarantee that the bits not set in
8282 CONSTOP are not significant and will never be examined. We must
8283 ensure that is the case by explicitly masking out those bits
8284 before returning. */
8285 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8286
8287 /* If VAROP is a CLOBBER, we will fail so return it. */
8288 if (GET_CODE (varop) == CLOBBER)
8289 return varop;
8290
8291 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8292 to VAROP and return the new constant. */
8293 if (GET_CODE (varop) == CONST_INT)
8294 return gen_int_mode (INTVAL (varop) & constop, mode);
8295
8296 /* See what bits may be nonzero in VAROP. Unlike the general case of
8297 a call to nonzero_bits, here we don't care about bits outside
8298 MODE. */
8299
8300 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8301
8302 /* Turn off all bits in the constant that are known to already be zero.
8303 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8304 which is tested below. */
8305
8306 constop &= nonzero;
8307
8308 /* If we don't have any bits left, return zero. */
8309 if (constop == 0)
8310 return const0_rtx;
8311
8312 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8313 a power of two, we can replace this with an ASHIFT. */
8314 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8315 && (i = exact_log2 (constop)) >= 0)
8316 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8317
8318 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8319 or XOR, then try to apply the distributive law. This may eliminate
8320 operations if either branch can be simplified because of the AND.
8321 It may also make some cases more complex, but those cases probably
8322 won't match a pattern either with or without this. */
8323
8324 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8325 return
8326 gen_lowpart
8327 (mode,
8328 apply_distributive_law
8329 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8330 simplify_and_const_int (NULL_RTX,
8331 GET_MODE (varop),
8332 XEXP (varop, 0),
8333 constop),
8334 simplify_and_const_int (NULL_RTX,
8335 GET_MODE (varop),
8336 XEXP (varop, 1),
8337 constop))));
8338
8339 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8340 the AND and see if one of the operands simplifies to zero. If so, we
8341 may eliminate it. */
8342
8343 if (GET_CODE (varop) == PLUS
8344 && exact_log2 (constop + 1) >= 0)
8345 {
8346 rtx o0, o1;
8347
8348 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8349 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8350 if (o0 == const0_rtx)
8351 return o1;
8352 if (o1 == const0_rtx)
8353 return o0;
8354 }
8355
8356 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8357 if we already had one (just check for the simplest cases). */
8358 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8359 && GET_MODE (XEXP (x, 0)) == mode
8360 && SUBREG_REG (XEXP (x, 0)) == varop)
8361 varop = XEXP (x, 0);
8362 else
8363 varop = gen_lowpart (mode, varop);
8364
8365 /* If we can't make the SUBREG, try to return what we were given. */
8366 if (GET_CODE (varop) == CLOBBER)
8367 return x ? x : varop;
8368
8369 /* If we are only masking insignificant bits, return VAROP. */
8370 if (constop == nonzero)
8371 x = varop;
8372 else
8373 {
8374 /* Otherwise, return an AND. */
8375 constop = trunc_int_for_mode (constop, mode);
8376 /* See how much, if any, of X we can use. */
8377 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8378 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8379
8380 else
8381 {
8382 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8383 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8384 SUBST (XEXP (x, 1), GEN_INT (constop));
8385
8386 SUBST (XEXP (x, 0), varop);
8387 }
8388 }
8389
8390 return x;
8391 }
8392 \f
8393 /* Given a REG, X, compute which bits in X can be nonzero.
8394 We don't care about bits outside of those defined in MODE.
8395
8396 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8397 a shift, AND, or zero_extract, we can do better. */
8398
8399 static rtx
8400 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8401 rtx known_x ATTRIBUTE_UNUSED,
8402 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8403 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8404 unsigned HOST_WIDE_INT *nonzero)
8405 {
8406 rtx tem;
8407
8408 /* If X is a register whose nonzero bits value is current, use it.
8409 Otherwise, if X is a register whose value we can find, use that
8410 value. Otherwise, use the previously-computed global nonzero bits
8411 for this register. */
8412
8413 if (reg_stat[REGNO (x)].last_set_value != 0
8414 && (reg_stat[REGNO (x)].last_set_mode == mode
8415 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8416 && GET_MODE_CLASS (mode) == MODE_INT))
8417 && (reg_stat[REGNO (x)].last_set_label == label_tick
8418 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8419 && REG_N_SETS (REGNO (x)) == 1
8420 && ! REGNO_REG_SET_P
8421 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8422 REGNO (x))))
8423 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8424 {
8425 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8426 return NULL;
8427 }
8428
8429 tem = get_last_value (x);
8430
8431 if (tem)
8432 {
8433 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8434 /* If X is narrower than MODE and TEM is a non-negative
8435 constant that would appear negative in the mode of X,
8436 sign-extend it for use in reg_nonzero_bits because some
8437 machines (maybe most) will actually do the sign-extension
8438 and this is the conservative approach.
8439
8440 ??? For 2.5, try to tighten up the MD files in this regard
8441 instead of this kludge. */
8442
8443 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8444 && GET_CODE (tem) == CONST_INT
8445 && INTVAL (tem) > 0
8446 && 0 != (INTVAL (tem)
8447 & ((HOST_WIDE_INT) 1
8448 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8449 tem = GEN_INT (INTVAL (tem)
8450 | ((HOST_WIDE_INT) (-1)
8451 << GET_MODE_BITSIZE (GET_MODE (x))));
8452 #endif
8453 return tem;
8454 }
8455 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8456 {
8457 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8458
8459 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8460 /* We don't know anything about the upper bits. */
8461 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8462 *nonzero &= mask;
8463 }
8464
8465 return NULL;
8466 }
8467
8468 /* Return the number of bits at the high-order end of X that are known to
8469 be equal to the sign bit. X will be used in mode MODE; if MODE is
8470 VOIDmode, X will be used in its own mode. The returned value will always
8471 be between 1 and the number of bits in MODE. */
8472
8473 static rtx
8474 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8475 rtx known_x ATTRIBUTE_UNUSED,
8476 enum machine_mode known_mode
8477 ATTRIBUTE_UNUSED,
8478 unsigned int known_ret ATTRIBUTE_UNUSED,
8479 unsigned int *result)
8480 {
8481 rtx tem;
8482
8483 if (reg_stat[REGNO (x)].last_set_value != 0
8484 && reg_stat[REGNO (x)].last_set_mode == mode
8485 && (reg_stat[REGNO (x)].last_set_label == label_tick
8486 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8487 && REG_N_SETS (REGNO (x)) == 1
8488 && ! REGNO_REG_SET_P
8489 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8490 REGNO (x))))
8491 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8492 {
8493 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8494 return NULL;
8495 }
8496
8497 tem = get_last_value (x);
8498 if (tem != 0)
8499 return tem;
8500
8501 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8502 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8503 *result = reg_stat[REGNO (x)].sign_bit_copies;
8504
8505 return NULL;
8506 }
8507 \f
8508 /* Return the number of "extended" bits there are in X, when interpreted
8509 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8510 unsigned quantities, this is the number of high-order zero bits.
8511 For signed quantities, this is the number of copies of the sign bit
8512 minus 1. In both case, this function returns the number of "spare"
8513 bits. For example, if two quantities for which this function returns
8514 at least 1 are added, the addition is known not to overflow.
8515
8516 This function will always return 0 unless called during combine, which
8517 implies that it must be called from a define_split. */
8518
8519 unsigned int
8520 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8521 {
8522 if (nonzero_sign_valid == 0)
8523 return 0;
8524
8525 return (unsignedp
8526 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8527 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8528 - floor_log2 (nonzero_bits (x, mode)))
8529 : 0)
8530 : num_sign_bit_copies (x, mode) - 1);
8531 }
8532 \f
8533 /* This function is called from `simplify_shift_const' to merge two
8534 outer operations. Specifically, we have already found that we need
8535 to perform operation *POP0 with constant *PCONST0 at the outermost
8536 position. We would now like to also perform OP1 with constant CONST1
8537 (with *POP0 being done last).
8538
8539 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8540 the resulting operation. *PCOMP_P is set to 1 if we would need to
8541 complement the innermost operand, otherwise it is unchanged.
8542
8543 MODE is the mode in which the operation will be done. No bits outside
8544 the width of this mode matter. It is assumed that the width of this mode
8545 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8546
8547 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8548 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8549 result is simply *PCONST0.
8550
8551 If the resulting operation cannot be expressed as one operation, we
8552 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8553
8554 static int
8555 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8556 {
8557 enum rtx_code op0 = *pop0;
8558 HOST_WIDE_INT const0 = *pconst0;
8559
8560 const0 &= GET_MODE_MASK (mode);
8561 const1 &= GET_MODE_MASK (mode);
8562
8563 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8564 if (op0 == AND)
8565 const1 &= const0;
8566
8567 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8568 if OP0 is SET. */
8569
8570 if (op1 == UNKNOWN || op0 == SET)
8571 return 1;
8572
8573 else if (op0 == UNKNOWN)
8574 op0 = op1, const0 = const1;
8575
8576 else if (op0 == op1)
8577 {
8578 switch (op0)
8579 {
8580 case AND:
8581 const0 &= const1;
8582 break;
8583 case IOR:
8584 const0 |= const1;
8585 break;
8586 case XOR:
8587 const0 ^= const1;
8588 break;
8589 case PLUS:
8590 const0 += const1;
8591 break;
8592 case NEG:
8593 op0 = UNKNOWN;
8594 break;
8595 default:
8596 break;
8597 }
8598 }
8599
8600 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8601 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8602 return 0;
8603
8604 /* If the two constants aren't the same, we can't do anything. The
8605 remaining six cases can all be done. */
8606 else if (const0 != const1)
8607 return 0;
8608
8609 else
8610 switch (op0)
8611 {
8612 case IOR:
8613 if (op1 == AND)
8614 /* (a & b) | b == b */
8615 op0 = SET;
8616 else /* op1 == XOR */
8617 /* (a ^ b) | b == a | b */
8618 {;}
8619 break;
8620
8621 case XOR:
8622 if (op1 == AND)
8623 /* (a & b) ^ b == (~a) & b */
8624 op0 = AND, *pcomp_p = 1;
8625 else /* op1 == IOR */
8626 /* (a | b) ^ b == a & ~b */
8627 op0 = AND, const0 = ~const0;
8628 break;
8629
8630 case AND:
8631 if (op1 == IOR)
8632 /* (a | b) & b == b */
8633 op0 = SET;
8634 else /* op1 == XOR */
8635 /* (a ^ b) & b) == (~a) & b */
8636 *pcomp_p = 1;
8637 break;
8638 default:
8639 break;
8640 }
8641
8642 /* Check for NO-OP cases. */
8643 const0 &= GET_MODE_MASK (mode);
8644 if (const0 == 0
8645 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8646 op0 = UNKNOWN;
8647 else if (const0 == 0 && op0 == AND)
8648 op0 = SET;
8649 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8650 && op0 == AND)
8651 op0 = UNKNOWN;
8652
8653 /* ??? Slightly redundant with the above mask, but not entirely.
8654 Moving this above means we'd have to sign-extend the mode mask
8655 for the final test. */
8656 const0 = trunc_int_for_mode (const0, mode);
8657
8658 *pop0 = op0;
8659 *pconst0 = const0;
8660
8661 return 1;
8662 }
8663 \f
8664 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8665 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8666 that we started with.
8667
8668 The shift is normally computed in the widest mode we find in VAROP, as
8669 long as it isn't a different number of words than RESULT_MODE. Exceptions
8670 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8671
8672 static rtx
8673 simplify_shift_const (rtx x, enum rtx_code code,
8674 enum machine_mode result_mode, rtx varop,
8675 int orig_count)
8676 {
8677 enum rtx_code orig_code = code;
8678 unsigned int count;
8679 int signed_count;
8680 enum machine_mode mode = result_mode;
8681 enum machine_mode shift_mode, tmode;
8682 unsigned int mode_words
8683 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8684 /* We form (outer_op (code varop count) (outer_const)). */
8685 enum rtx_code outer_op = UNKNOWN;
8686 HOST_WIDE_INT outer_const = 0;
8687 rtx const_rtx;
8688 int complement_p = 0;
8689 rtx new;
8690
8691 /* Make sure and truncate the "natural" shift on the way in. We don't
8692 want to do this inside the loop as it makes it more difficult to
8693 combine shifts. */
8694 if (SHIFT_COUNT_TRUNCATED)
8695 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8696
8697 /* If we were given an invalid count, don't do anything except exactly
8698 what was requested. */
8699
8700 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8701 {
8702 if (x)
8703 return x;
8704
8705 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8706 }
8707
8708 count = orig_count;
8709
8710 /* Unless one of the branches of the `if' in this loop does a `continue',
8711 we will `break' the loop after the `if'. */
8712
8713 while (count != 0)
8714 {
8715 /* If we have an operand of (clobber (const_int 0)), just return that
8716 value. */
8717 if (GET_CODE (varop) == CLOBBER)
8718 return varop;
8719
8720 /* If we discovered we had to complement VAROP, leave. Making a NOT
8721 here would cause an infinite loop. */
8722 if (complement_p)
8723 break;
8724
8725 /* Convert ROTATERT to ROTATE. */
8726 if (code == ROTATERT)
8727 {
8728 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8729 code = ROTATE;
8730 if (VECTOR_MODE_P (result_mode))
8731 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8732 else
8733 count = bitsize - count;
8734 }
8735
8736 /* We need to determine what mode we will do the shift in. If the
8737 shift is a right shift or a ROTATE, we must always do it in the mode
8738 it was originally done in. Otherwise, we can do it in MODE, the
8739 widest mode encountered. */
8740 shift_mode
8741 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8742 ? result_mode : mode);
8743
8744 /* Handle cases where the count is greater than the size of the mode
8745 minus 1. For ASHIFT, use the size minus one as the count (this can
8746 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8747 take the count modulo the size. For other shifts, the result is
8748 zero.
8749
8750 Since these shifts are being produced by the compiler by combining
8751 multiple operations, each of which are defined, we know what the
8752 result is supposed to be. */
8753
8754 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8755 {
8756 if (code == ASHIFTRT)
8757 count = GET_MODE_BITSIZE (shift_mode) - 1;
8758 else if (code == ROTATE || code == ROTATERT)
8759 count %= GET_MODE_BITSIZE (shift_mode);
8760 else
8761 {
8762 /* We can't simply return zero because there may be an
8763 outer op. */
8764 varop = const0_rtx;
8765 count = 0;
8766 break;
8767 }
8768 }
8769
8770 /* An arithmetic right shift of a quantity known to be -1 or 0
8771 is a no-op. */
8772 if (code == ASHIFTRT
8773 && (num_sign_bit_copies (varop, shift_mode)
8774 == GET_MODE_BITSIZE (shift_mode)))
8775 {
8776 count = 0;
8777 break;
8778 }
8779
8780 /* If we are doing an arithmetic right shift and discarding all but
8781 the sign bit copies, this is equivalent to doing a shift by the
8782 bitsize minus one. Convert it into that shift because it will often
8783 allow other simplifications. */
8784
8785 if (code == ASHIFTRT
8786 && (count + num_sign_bit_copies (varop, shift_mode)
8787 >= GET_MODE_BITSIZE (shift_mode)))
8788 count = GET_MODE_BITSIZE (shift_mode) - 1;
8789
8790 /* We simplify the tests below and elsewhere by converting
8791 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8792 `make_compound_operation' will convert it to an ASHIFTRT for
8793 those machines (such as VAX) that don't have an LSHIFTRT. */
8794 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8795 && code == ASHIFTRT
8796 && ((nonzero_bits (varop, shift_mode)
8797 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8798 == 0))
8799 code = LSHIFTRT;
8800
8801 if (code == LSHIFTRT
8802 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8803 && !(nonzero_bits (varop, shift_mode) >> count))
8804 varop = const0_rtx;
8805 if (code == ASHIFT
8806 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8807 && !((nonzero_bits (varop, shift_mode) << count)
8808 & GET_MODE_MASK (shift_mode)))
8809 varop = const0_rtx;
8810
8811 switch (GET_CODE (varop))
8812 {
8813 case SIGN_EXTEND:
8814 case ZERO_EXTEND:
8815 case SIGN_EXTRACT:
8816 case ZERO_EXTRACT:
8817 new = expand_compound_operation (varop);
8818 if (new != varop)
8819 {
8820 varop = new;
8821 continue;
8822 }
8823 break;
8824
8825 case MEM:
8826 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8827 minus the width of a smaller mode, we can do this with a
8828 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8829 if ((code == ASHIFTRT || code == LSHIFTRT)
8830 && ! mode_dependent_address_p (XEXP (varop, 0))
8831 && ! MEM_VOLATILE_P (varop)
8832 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8833 MODE_INT, 1)) != BLKmode)
8834 {
8835 new = adjust_address_nv (varop, tmode,
8836 BYTES_BIG_ENDIAN ? 0
8837 : count / BITS_PER_UNIT);
8838
8839 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8840 : ZERO_EXTEND, mode, new);
8841 count = 0;
8842 continue;
8843 }
8844 break;
8845
8846 case USE:
8847 /* Similar to the case above, except that we can only do this if
8848 the resulting mode is the same as that of the underlying
8849 MEM and adjust the address depending on the *bits* endianness
8850 because of the way that bit-field extract insns are defined. */
8851 if ((code == ASHIFTRT || code == LSHIFTRT)
8852 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8853 MODE_INT, 1)) != BLKmode
8854 && tmode == GET_MODE (XEXP (varop, 0)))
8855 {
8856 if (BITS_BIG_ENDIAN)
8857 new = XEXP (varop, 0);
8858 else
8859 {
8860 new = copy_rtx (XEXP (varop, 0));
8861 SUBST (XEXP (new, 0),
8862 plus_constant (XEXP (new, 0),
8863 count / BITS_PER_UNIT));
8864 }
8865
8866 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8867 : ZERO_EXTEND, mode, new);
8868 count = 0;
8869 continue;
8870 }
8871 break;
8872
8873 case SUBREG:
8874 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8875 the same number of words as what we've seen so far. Then store
8876 the widest mode in MODE. */
8877 if (subreg_lowpart_p (varop)
8878 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8879 > GET_MODE_SIZE (GET_MODE (varop)))
8880 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8881 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8882 == mode_words)
8883 {
8884 varop = SUBREG_REG (varop);
8885 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8886 mode = GET_MODE (varop);
8887 continue;
8888 }
8889 break;
8890
8891 case MULT:
8892 /* Some machines use MULT instead of ASHIFT because MULT
8893 is cheaper. But it is still better on those machines to
8894 merge two shifts into one. */
8895 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8896 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8897 {
8898 varop
8899 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8900 XEXP (varop, 0),
8901 GEN_INT (exact_log2 (
8902 INTVAL (XEXP (varop, 1)))));
8903 continue;
8904 }
8905 break;
8906
8907 case UDIV:
8908 /* Similar, for when divides are cheaper. */
8909 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8910 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8911 {
8912 varop
8913 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8914 XEXP (varop, 0),
8915 GEN_INT (exact_log2 (
8916 INTVAL (XEXP (varop, 1)))));
8917 continue;
8918 }
8919 break;
8920
8921 case ASHIFTRT:
8922 /* If we are extracting just the sign bit of an arithmetic
8923 right shift, that shift is not needed. However, the sign
8924 bit of a wider mode may be different from what would be
8925 interpreted as the sign bit in a narrower mode, so, if
8926 the result is narrower, don't discard the shift. */
8927 if (code == LSHIFTRT
8928 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8929 && (GET_MODE_BITSIZE (result_mode)
8930 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8931 {
8932 varop = XEXP (varop, 0);
8933 continue;
8934 }
8935
8936 /* ... fall through ... */
8937
8938 case LSHIFTRT:
8939 case ASHIFT:
8940 case ROTATE:
8941 /* Here we have two nested shifts. The result is usually the
8942 AND of a new shift with a mask. We compute the result below. */
8943 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8944 && INTVAL (XEXP (varop, 1)) >= 0
8945 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8946 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8947 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8948 {
8949 enum rtx_code first_code = GET_CODE (varop);
8950 unsigned int first_count = INTVAL (XEXP (varop, 1));
8951 unsigned HOST_WIDE_INT mask;
8952 rtx mask_rtx;
8953
8954 /* We have one common special case. We can't do any merging if
8955 the inner code is an ASHIFTRT of a smaller mode. However, if
8956 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8957 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8958 we can convert it to
8959 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8960 This simplifies certain SIGN_EXTEND operations. */
8961 if (code == ASHIFT && first_code == ASHIFTRT
8962 && count == (unsigned int)
8963 (GET_MODE_BITSIZE (result_mode)
8964 - GET_MODE_BITSIZE (GET_MODE (varop))))
8965 {
8966 /* C3 has the low-order C1 bits zero. */
8967
8968 mask = (GET_MODE_MASK (mode)
8969 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8970
8971 varop = simplify_and_const_int (NULL_RTX, result_mode,
8972 XEXP (varop, 0), mask);
8973 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8974 varop, count);
8975 count = first_count;
8976 code = ASHIFTRT;
8977 continue;
8978 }
8979
8980 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8981 than C1 high-order bits equal to the sign bit, we can convert
8982 this to either an ASHIFT or an ASHIFTRT depending on the
8983 two counts.
8984
8985 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8986
8987 if (code == ASHIFTRT && first_code == ASHIFT
8988 && GET_MODE (varop) == shift_mode
8989 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8990 > first_count))
8991 {
8992 varop = XEXP (varop, 0);
8993
8994 signed_count = count - first_count;
8995 if (signed_count < 0)
8996 count = -signed_count, code = ASHIFT;
8997 else
8998 count = signed_count;
8999
9000 continue;
9001 }
9002
9003 /* There are some cases we can't do. If CODE is ASHIFTRT,
9004 we can only do this if FIRST_CODE is also ASHIFTRT.
9005
9006 We can't do the case when CODE is ROTATE and FIRST_CODE is
9007 ASHIFTRT.
9008
9009 If the mode of this shift is not the mode of the outer shift,
9010 we can't do this if either shift is a right shift or ROTATE.
9011
9012 Finally, we can't do any of these if the mode is too wide
9013 unless the codes are the same.
9014
9015 Handle the case where the shift codes are the same
9016 first. */
9017
9018 if (code == first_code)
9019 {
9020 if (GET_MODE (varop) != result_mode
9021 && (code == ASHIFTRT || code == LSHIFTRT
9022 || code == ROTATE))
9023 break;
9024
9025 count += first_count;
9026 varop = XEXP (varop, 0);
9027 continue;
9028 }
9029
9030 if (code == ASHIFTRT
9031 || (code == ROTATE && first_code == ASHIFTRT)
9032 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9033 || (GET_MODE (varop) != result_mode
9034 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9035 || first_code == ROTATE
9036 || code == ROTATE)))
9037 break;
9038
9039 /* To compute the mask to apply after the shift, shift the
9040 nonzero bits of the inner shift the same way the
9041 outer shift will. */
9042
9043 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9044
9045 mask_rtx
9046 = simplify_binary_operation (code, result_mode, mask_rtx,
9047 GEN_INT (count));
9048
9049 /* Give up if we can't compute an outer operation to use. */
9050 if (mask_rtx == 0
9051 || GET_CODE (mask_rtx) != CONST_INT
9052 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9053 INTVAL (mask_rtx),
9054 result_mode, &complement_p))
9055 break;
9056
9057 /* If the shifts are in the same direction, we add the
9058 counts. Otherwise, we subtract them. */
9059 signed_count = count;
9060 if ((code == ASHIFTRT || code == LSHIFTRT)
9061 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9062 signed_count += first_count;
9063 else
9064 signed_count -= first_count;
9065
9066 /* If COUNT is positive, the new shift is usually CODE,
9067 except for the two exceptions below, in which case it is
9068 FIRST_CODE. If the count is negative, FIRST_CODE should
9069 always be used */
9070 if (signed_count > 0
9071 && ((first_code == ROTATE && code == ASHIFT)
9072 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9073 code = first_code, count = signed_count;
9074 else if (signed_count < 0)
9075 code = first_code, count = -signed_count;
9076 else
9077 count = signed_count;
9078
9079 varop = XEXP (varop, 0);
9080 continue;
9081 }
9082
9083 /* If we have (A << B << C) for any shift, we can convert this to
9084 (A << C << B). This wins if A is a constant. Only try this if
9085 B is not a constant. */
9086
9087 else if (GET_CODE (varop) == code
9088 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9089 && 0 != (new
9090 = simplify_binary_operation (code, mode,
9091 XEXP (varop, 0),
9092 GEN_INT (count))))
9093 {
9094 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9095 count = 0;
9096 continue;
9097 }
9098 break;
9099
9100 case NOT:
9101 /* Make this fit the case below. */
9102 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9103 GEN_INT (GET_MODE_MASK (mode)));
9104 continue;
9105
9106 case IOR:
9107 case AND:
9108 case XOR:
9109 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9110 with C the size of VAROP - 1 and the shift is logical if
9111 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9112 we have an (le X 0) operation. If we have an arithmetic shift
9113 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9114 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9115
9116 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9117 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9118 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9119 && (code == LSHIFTRT || code == ASHIFTRT)
9120 && count == (unsigned int)
9121 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9122 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9123 {
9124 count = 0;
9125 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9126 const0_rtx);
9127
9128 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9129 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9130
9131 continue;
9132 }
9133
9134 /* If we have (shift (logical)), move the logical to the outside
9135 to allow it to possibly combine with another logical and the
9136 shift to combine with another shift. This also canonicalizes to
9137 what a ZERO_EXTRACT looks like. Also, some machines have
9138 (and (shift)) insns. */
9139
9140 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9141 /* We can't do this if we have (ashiftrt (xor)) and the
9142 constant has its sign bit set in shift_mode. */
9143 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9144 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9145 shift_mode))
9146 && (new = simplify_binary_operation (code, result_mode,
9147 XEXP (varop, 1),
9148 GEN_INT (count))) != 0
9149 && GET_CODE (new) == CONST_INT
9150 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9151 INTVAL (new), result_mode, &complement_p))
9152 {
9153 varop = XEXP (varop, 0);
9154 continue;
9155 }
9156
9157 /* If we can't do that, try to simplify the shift in each arm of the
9158 logical expression, make a new logical expression, and apply
9159 the inverse distributive law. This also can't be done
9160 for some (ashiftrt (xor)). */
9161 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9162 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9163 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9164 shift_mode)))
9165 {
9166 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9167 XEXP (varop, 0), count);
9168 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9169 XEXP (varop, 1), count);
9170
9171 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9172 lhs, rhs);
9173 varop = apply_distributive_law (varop);
9174
9175 count = 0;
9176 continue;
9177 }
9178 break;
9179
9180 case EQ:
9181 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9182 says that the sign bit can be tested, FOO has mode MODE, C is
9183 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9184 that may be nonzero. */
9185 if (code == LSHIFTRT
9186 && XEXP (varop, 1) == const0_rtx
9187 && GET_MODE (XEXP (varop, 0)) == result_mode
9188 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9189 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9190 && ((STORE_FLAG_VALUE
9191 & ((HOST_WIDE_INT) 1
9192 < (GET_MODE_BITSIZE (result_mode) - 1))))
9193 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9194 && merge_outer_ops (&outer_op, &outer_const, XOR,
9195 (HOST_WIDE_INT) 1, result_mode,
9196 &complement_p))
9197 {
9198 varop = XEXP (varop, 0);
9199 count = 0;
9200 continue;
9201 }
9202 break;
9203
9204 case NEG:
9205 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9206 than the number of bits in the mode is equivalent to A. */
9207 if (code == LSHIFTRT
9208 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9209 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9210 {
9211 varop = XEXP (varop, 0);
9212 count = 0;
9213 continue;
9214 }
9215
9216 /* NEG commutes with ASHIFT since it is multiplication. Move the
9217 NEG outside to allow shifts to combine. */
9218 if (code == ASHIFT
9219 && merge_outer_ops (&outer_op, &outer_const, NEG,
9220 (HOST_WIDE_INT) 0, result_mode,
9221 &complement_p))
9222 {
9223 varop = XEXP (varop, 0);
9224 continue;
9225 }
9226 break;
9227
9228 case PLUS:
9229 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9230 is one less than the number of bits in the mode is
9231 equivalent to (xor A 1). */
9232 if (code == LSHIFTRT
9233 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9234 && XEXP (varop, 1) == constm1_rtx
9235 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9236 && merge_outer_ops (&outer_op, &outer_const, XOR,
9237 (HOST_WIDE_INT) 1, result_mode,
9238 &complement_p))
9239 {
9240 count = 0;
9241 varop = XEXP (varop, 0);
9242 continue;
9243 }
9244
9245 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9246 that might be nonzero in BAR are those being shifted out and those
9247 bits are known zero in FOO, we can replace the PLUS with FOO.
9248 Similarly in the other operand order. This code occurs when
9249 we are computing the size of a variable-size array. */
9250
9251 if ((code == ASHIFTRT || code == LSHIFTRT)
9252 && count < HOST_BITS_PER_WIDE_INT
9253 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9254 && (nonzero_bits (XEXP (varop, 1), result_mode)
9255 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9256 {
9257 varop = XEXP (varop, 0);
9258 continue;
9259 }
9260 else if ((code == ASHIFTRT || code == LSHIFTRT)
9261 && count < HOST_BITS_PER_WIDE_INT
9262 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9263 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9264 >> count)
9265 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9266 & nonzero_bits (XEXP (varop, 1),
9267 result_mode)))
9268 {
9269 varop = XEXP (varop, 1);
9270 continue;
9271 }
9272
9273 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9274 if (code == ASHIFT
9275 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9276 && (new = simplify_binary_operation (ASHIFT, result_mode,
9277 XEXP (varop, 1),
9278 GEN_INT (count))) != 0
9279 && GET_CODE (new) == CONST_INT
9280 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9281 INTVAL (new), result_mode, &complement_p))
9282 {
9283 varop = XEXP (varop, 0);
9284 continue;
9285 }
9286
9287 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9288 signbit', and attempt to change the PLUS to an XOR and move it to
9289 the outer operation as is done above in the AND/IOR/XOR case
9290 leg for shift(logical). See details in logical handling above
9291 for reasoning in doing so. */
9292 if (code == LSHIFTRT
9293 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9294 && mode_signbit_p (result_mode, XEXP (varop, 1))
9295 && (new = simplify_binary_operation (code, result_mode,
9296 XEXP (varop, 1),
9297 GEN_INT (count))) != 0
9298 && GET_CODE (new) == CONST_INT
9299 && merge_outer_ops (&outer_op, &outer_const, XOR,
9300 INTVAL (new), result_mode, &complement_p))
9301 {
9302 varop = XEXP (varop, 0);
9303 continue;
9304 }
9305
9306 break;
9307
9308 case MINUS:
9309 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9310 with C the size of VAROP - 1 and the shift is logical if
9311 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9312 we have a (gt X 0) operation. If the shift is arithmetic with
9313 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9314 we have a (neg (gt X 0)) operation. */
9315
9316 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9317 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9318 && count == (unsigned int)
9319 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9320 && (code == LSHIFTRT || code == ASHIFTRT)
9321 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9322 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9323 == count
9324 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9325 {
9326 count = 0;
9327 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9328 const0_rtx);
9329
9330 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9331 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9332
9333 continue;
9334 }
9335 break;
9336
9337 case TRUNCATE:
9338 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9339 if the truncate does not affect the value. */
9340 if (code == LSHIFTRT
9341 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9342 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9343 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9344 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9345 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9346 {
9347 rtx varop_inner = XEXP (varop, 0);
9348
9349 varop_inner
9350 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9351 XEXP (varop_inner, 0),
9352 GEN_INT
9353 (count + INTVAL (XEXP (varop_inner, 1))));
9354 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9355 count = 0;
9356 continue;
9357 }
9358 break;
9359
9360 default:
9361 break;
9362 }
9363
9364 break;
9365 }
9366
9367 /* We need to determine what mode to do the shift in. If the shift is
9368 a right shift or ROTATE, we must always do it in the mode it was
9369 originally done in. Otherwise, we can do it in MODE, the widest mode
9370 encountered. The code we care about is that of the shift that will
9371 actually be done, not the shift that was originally requested. */
9372 shift_mode
9373 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9374 ? result_mode : mode);
9375
9376 /* We have now finished analyzing the shift. The result should be
9377 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9378 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9379 to the result of the shift. OUTER_CONST is the relevant constant,
9380 but we must turn off all bits turned off in the shift.
9381
9382 If we were passed a value for X, see if we can use any pieces of
9383 it. If not, make new rtx. */
9384
9385 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9386 && GET_CODE (XEXP (x, 1)) == CONST_INT
9387 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9388 const_rtx = XEXP (x, 1);
9389 else
9390 const_rtx = GEN_INT (count);
9391
9392 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9393 && GET_MODE (XEXP (x, 0)) == shift_mode
9394 && SUBREG_REG (XEXP (x, 0)) == varop)
9395 varop = XEXP (x, 0);
9396 else if (GET_MODE (varop) != shift_mode)
9397 varop = gen_lowpart (shift_mode, varop);
9398
9399 /* If we can't make the SUBREG, try to return what we were given. */
9400 if (GET_CODE (varop) == CLOBBER)
9401 return x ? x : varop;
9402
9403 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9404 if (new != 0)
9405 x = new;
9406 else
9407 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9408
9409 /* If we have an outer operation and we just made a shift, it is
9410 possible that we could have simplified the shift were it not
9411 for the outer operation. So try to do the simplification
9412 recursively. */
9413
9414 if (outer_op != UNKNOWN && GET_CODE (x) == code
9415 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9416 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9417 INTVAL (XEXP (x, 1)));
9418
9419 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9420 turn off all the bits that the shift would have turned off. */
9421 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9422 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9423 GET_MODE_MASK (result_mode) >> orig_count);
9424
9425 /* Do the remainder of the processing in RESULT_MODE. */
9426 x = gen_lowpart (result_mode, x);
9427
9428 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9429 operation. */
9430 if (complement_p)
9431 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9432
9433 if (outer_op != UNKNOWN)
9434 {
9435 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9436 outer_const = trunc_int_for_mode (outer_const, result_mode);
9437
9438 if (outer_op == AND)
9439 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9440 else if (outer_op == SET)
9441 /* This means that we have determined that the result is
9442 equivalent to a constant. This should be rare. */
9443 x = GEN_INT (outer_const);
9444 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9445 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9446 else
9447 x = simplify_gen_binary (outer_op, result_mode, x,
9448 GEN_INT (outer_const));
9449 }
9450
9451 return x;
9452 }
9453 \f
9454 /* Like recog, but we receive the address of a pointer to a new pattern.
9455 We try to match the rtx that the pointer points to.
9456 If that fails, we may try to modify or replace the pattern,
9457 storing the replacement into the same pointer object.
9458
9459 Modifications include deletion or addition of CLOBBERs.
9460
9461 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9462 the CLOBBERs are placed.
9463
9464 The value is the final insn code from the pattern ultimately matched,
9465 or -1. */
9466
9467 static int
9468 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9469 {
9470 rtx pat = *pnewpat;
9471 int insn_code_number;
9472 int num_clobbers_to_add = 0;
9473 int i;
9474 rtx notes = 0;
9475 rtx old_notes, old_pat;
9476
9477 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9478 we use to indicate that something didn't match. If we find such a
9479 thing, force rejection. */
9480 if (GET_CODE (pat) == PARALLEL)
9481 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9482 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9483 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9484 return -1;
9485
9486 old_pat = PATTERN (insn);
9487 old_notes = REG_NOTES (insn);
9488 PATTERN (insn) = pat;
9489 REG_NOTES (insn) = 0;
9490
9491 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9492
9493 /* If it isn't, there is the possibility that we previously had an insn
9494 that clobbered some register as a side effect, but the combined
9495 insn doesn't need to do that. So try once more without the clobbers
9496 unless this represents an ASM insn. */
9497
9498 if (insn_code_number < 0 && ! check_asm_operands (pat)
9499 && GET_CODE (pat) == PARALLEL)
9500 {
9501 int pos;
9502
9503 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9504 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9505 {
9506 if (i != pos)
9507 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9508 pos++;
9509 }
9510
9511 SUBST_INT (XVECLEN (pat, 0), pos);
9512
9513 if (pos == 1)
9514 pat = XVECEXP (pat, 0, 0);
9515
9516 PATTERN (insn) = pat;
9517 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9518 }
9519 PATTERN (insn) = old_pat;
9520 REG_NOTES (insn) = old_notes;
9521
9522 /* Recognize all noop sets, these will be killed by followup pass. */
9523 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9524 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9525
9526 /* If we had any clobbers to add, make a new pattern than contains
9527 them. Then check to make sure that all of them are dead. */
9528 if (num_clobbers_to_add)
9529 {
9530 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9531 rtvec_alloc (GET_CODE (pat) == PARALLEL
9532 ? (XVECLEN (pat, 0)
9533 + num_clobbers_to_add)
9534 : num_clobbers_to_add + 1));
9535
9536 if (GET_CODE (pat) == PARALLEL)
9537 for (i = 0; i < XVECLEN (pat, 0); i++)
9538 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9539 else
9540 XVECEXP (newpat, 0, 0) = pat;
9541
9542 add_clobbers (newpat, insn_code_number);
9543
9544 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9545 i < XVECLEN (newpat, 0); i++)
9546 {
9547 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9548 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9549 return -1;
9550 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9551 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9552 }
9553 pat = newpat;
9554 }
9555
9556 *pnewpat = pat;
9557 *pnotes = notes;
9558
9559 return insn_code_number;
9560 }
9561 \f
9562 /* Like gen_lowpart_general but for use by combine. In combine it
9563 is not possible to create any new pseudoregs. However, it is
9564 safe to create invalid memory addresses, because combine will
9565 try to recognize them and all they will do is make the combine
9566 attempt fail.
9567
9568 If for some reason this cannot do its job, an rtx
9569 (clobber (const_int 0)) is returned.
9570 An insn containing that will not be recognized. */
9571
9572 static rtx
9573 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9574 {
9575 enum machine_mode imode = GET_MODE (x);
9576 unsigned int osize = GET_MODE_SIZE (omode);
9577 unsigned int isize = GET_MODE_SIZE (imode);
9578 rtx result;
9579
9580 if (omode == imode)
9581 return x;
9582
9583 /* Return identity if this is a CONST or symbolic reference. */
9584 if (omode == Pmode
9585 && (GET_CODE (x) == CONST
9586 || GET_CODE (x) == SYMBOL_REF
9587 || GET_CODE (x) == LABEL_REF))
9588 return x;
9589
9590 /* We can only support MODE being wider than a word if X is a
9591 constant integer or has a mode the same size. */
9592 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9593 && ! ((imode == VOIDmode
9594 && (GET_CODE (x) == CONST_INT
9595 || GET_CODE (x) == CONST_DOUBLE))
9596 || isize == osize))
9597 goto fail;
9598
9599 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9600 won't know what to do. So we will strip off the SUBREG here and
9601 process normally. */
9602 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9603 {
9604 x = SUBREG_REG (x);
9605
9606 /* For use in case we fall down into the address adjustments
9607 further below, we need to adjust the known mode and size of
9608 x; imode and isize, since we just adjusted x. */
9609 imode = GET_MODE (x);
9610
9611 if (imode == omode)
9612 return x;
9613
9614 isize = GET_MODE_SIZE (imode);
9615 }
9616
9617 result = gen_lowpart_common (omode, x);
9618
9619 #ifdef CANNOT_CHANGE_MODE_CLASS
9620 if (result != 0 && GET_CODE (result) == SUBREG)
9621 record_subregs_of_mode (result);
9622 #endif
9623
9624 if (result)
9625 return result;
9626
9627 if (MEM_P (x))
9628 {
9629 int offset = 0;
9630
9631 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9632 address. */
9633 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9634 goto fail;
9635
9636 /* If we want to refer to something bigger than the original memref,
9637 generate a paradoxical subreg instead. That will force a reload
9638 of the original memref X. */
9639 if (isize < osize)
9640 return gen_rtx_SUBREG (omode, x, 0);
9641
9642 if (WORDS_BIG_ENDIAN)
9643 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9644
9645 /* Adjust the address so that the address-after-the-data is
9646 unchanged. */
9647 if (BYTES_BIG_ENDIAN)
9648 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9649
9650 return adjust_address_nv (x, omode, offset);
9651 }
9652
9653 /* If X is a comparison operator, rewrite it in a new mode. This
9654 probably won't match, but may allow further simplifications. */
9655 else if (COMPARISON_P (x))
9656 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9657
9658 /* If we couldn't simplify X any other way, just enclose it in a
9659 SUBREG. Normally, this SUBREG won't match, but some patterns may
9660 include an explicit SUBREG or we may simplify it further in combine. */
9661 else
9662 {
9663 int offset = 0;
9664 rtx res;
9665
9666 offset = subreg_lowpart_offset (omode, imode);
9667 if (imode == VOIDmode)
9668 {
9669 imode = int_mode_for_mode (omode);
9670 x = gen_lowpart_common (imode, x);
9671 if (x == NULL)
9672 goto fail;
9673 }
9674 res = simplify_gen_subreg (omode, x, imode, offset);
9675 if (res)
9676 return res;
9677 }
9678
9679 fail:
9680 return gen_rtx_CLOBBER (imode, const0_rtx);
9681 }
9682 \f
9683 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9684 comparison code that will be tested.
9685
9686 The result is a possibly different comparison code to use. *POP0 and
9687 *POP1 may be updated.
9688
9689 It is possible that we might detect that a comparison is either always
9690 true or always false. However, we do not perform general constant
9691 folding in combine, so this knowledge isn't useful. Such tautologies
9692 should have been detected earlier. Hence we ignore all such cases. */
9693
9694 static enum rtx_code
9695 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9696 {
9697 rtx op0 = *pop0;
9698 rtx op1 = *pop1;
9699 rtx tem, tem1;
9700 int i;
9701 enum machine_mode mode, tmode;
9702
9703 /* Try a few ways of applying the same transformation to both operands. */
9704 while (1)
9705 {
9706 #ifndef WORD_REGISTER_OPERATIONS
9707 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9708 so check specially. */
9709 if (code != GTU && code != GEU && code != LTU && code != LEU
9710 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9711 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9712 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9713 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9714 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9715 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9716 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9717 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9718 && XEXP (op0, 1) == XEXP (op1, 1)
9719 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9720 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9721 && (INTVAL (XEXP (op0, 1))
9722 == (GET_MODE_BITSIZE (GET_MODE (op0))
9723 - (GET_MODE_BITSIZE
9724 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9725 {
9726 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9727 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9728 }
9729 #endif
9730
9731 /* If both operands are the same constant shift, see if we can ignore the
9732 shift. We can if the shift is a rotate or if the bits shifted out of
9733 this shift are known to be zero for both inputs and if the type of
9734 comparison is compatible with the shift. */
9735 if (GET_CODE (op0) == GET_CODE (op1)
9736 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9737 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9738 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9739 && (code != GT && code != LT && code != GE && code != LE))
9740 || (GET_CODE (op0) == ASHIFTRT
9741 && (code != GTU && code != LTU
9742 && code != GEU && code != LEU)))
9743 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9744 && INTVAL (XEXP (op0, 1)) >= 0
9745 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9746 && XEXP (op0, 1) == XEXP (op1, 1))
9747 {
9748 enum machine_mode mode = GET_MODE (op0);
9749 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9750 int shift_count = INTVAL (XEXP (op0, 1));
9751
9752 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9753 mask &= (mask >> shift_count) << shift_count;
9754 else if (GET_CODE (op0) == ASHIFT)
9755 mask = (mask & (mask << shift_count)) >> shift_count;
9756
9757 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9758 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9759 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9760 else
9761 break;
9762 }
9763
9764 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9765 SUBREGs are of the same mode, and, in both cases, the AND would
9766 be redundant if the comparison was done in the narrower mode,
9767 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9768 and the operand's possibly nonzero bits are 0xffffff01; in that case
9769 if we only care about QImode, we don't need the AND). This case
9770 occurs if the output mode of an scc insn is not SImode and
9771 STORE_FLAG_VALUE == 1 (e.g., the 386).
9772
9773 Similarly, check for a case where the AND's are ZERO_EXTEND
9774 operations from some narrower mode even though a SUBREG is not
9775 present. */
9776
9777 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9778 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9779 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9780 {
9781 rtx inner_op0 = XEXP (op0, 0);
9782 rtx inner_op1 = XEXP (op1, 0);
9783 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9784 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9785 int changed = 0;
9786
9787 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9788 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9789 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9790 && (GET_MODE (SUBREG_REG (inner_op0))
9791 == GET_MODE (SUBREG_REG (inner_op1)))
9792 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9793 <= HOST_BITS_PER_WIDE_INT)
9794 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9795 GET_MODE (SUBREG_REG (inner_op0)))))
9796 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9797 GET_MODE (SUBREG_REG (inner_op1))))))
9798 {
9799 op0 = SUBREG_REG (inner_op0);
9800 op1 = SUBREG_REG (inner_op1);
9801
9802 /* The resulting comparison is always unsigned since we masked
9803 off the original sign bit. */
9804 code = unsigned_condition (code);
9805
9806 changed = 1;
9807 }
9808
9809 else if (c0 == c1)
9810 for (tmode = GET_CLASS_NARROWEST_MODE
9811 (GET_MODE_CLASS (GET_MODE (op0)));
9812 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9813 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9814 {
9815 op0 = gen_lowpart (tmode, inner_op0);
9816 op1 = gen_lowpart (tmode, inner_op1);
9817 code = unsigned_condition (code);
9818 changed = 1;
9819 break;
9820 }
9821
9822 if (! changed)
9823 break;
9824 }
9825
9826 /* If both operands are NOT, we can strip off the outer operation
9827 and adjust the comparison code for swapped operands; similarly for
9828 NEG, except that this must be an equality comparison. */
9829 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9830 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9831 && (code == EQ || code == NE)))
9832 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9833
9834 else
9835 break;
9836 }
9837
9838 /* If the first operand is a constant, swap the operands and adjust the
9839 comparison code appropriately, but don't do this if the second operand
9840 is already a constant integer. */
9841 if (swap_commutative_operands_p (op0, op1))
9842 {
9843 tem = op0, op0 = op1, op1 = tem;
9844 code = swap_condition (code);
9845 }
9846
9847 /* We now enter a loop during which we will try to simplify the comparison.
9848 For the most part, we only are concerned with comparisons with zero,
9849 but some things may really be comparisons with zero but not start
9850 out looking that way. */
9851
9852 while (GET_CODE (op1) == CONST_INT)
9853 {
9854 enum machine_mode mode = GET_MODE (op0);
9855 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9856 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9857 int equality_comparison_p;
9858 int sign_bit_comparison_p;
9859 int unsigned_comparison_p;
9860 HOST_WIDE_INT const_op;
9861
9862 /* We only want to handle integral modes. This catches VOIDmode,
9863 CCmode, and the floating-point modes. An exception is that we
9864 can handle VOIDmode if OP0 is a COMPARE or a comparison
9865 operation. */
9866
9867 if (GET_MODE_CLASS (mode) != MODE_INT
9868 && ! (mode == VOIDmode
9869 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9870 break;
9871
9872 /* Get the constant we are comparing against and turn off all bits
9873 not on in our mode. */
9874 const_op = INTVAL (op1);
9875 if (mode != VOIDmode)
9876 const_op = trunc_int_for_mode (const_op, mode);
9877 op1 = GEN_INT (const_op);
9878
9879 /* If we are comparing against a constant power of two and the value
9880 being compared can only have that single bit nonzero (e.g., it was
9881 `and'ed with that bit), we can replace this with a comparison
9882 with zero. */
9883 if (const_op
9884 && (code == EQ || code == NE || code == GE || code == GEU
9885 || code == LT || code == LTU)
9886 && mode_width <= HOST_BITS_PER_WIDE_INT
9887 && exact_log2 (const_op) >= 0
9888 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9889 {
9890 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9891 op1 = const0_rtx, const_op = 0;
9892 }
9893
9894 /* Similarly, if we are comparing a value known to be either -1 or
9895 0 with -1, change it to the opposite comparison against zero. */
9896
9897 if (const_op == -1
9898 && (code == EQ || code == NE || code == GT || code == LE
9899 || code == GEU || code == LTU)
9900 && num_sign_bit_copies (op0, mode) == mode_width)
9901 {
9902 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9903 op1 = const0_rtx, const_op = 0;
9904 }
9905
9906 /* Do some canonicalizations based on the comparison code. We prefer
9907 comparisons against zero and then prefer equality comparisons.
9908 If we can reduce the size of a constant, we will do that too. */
9909
9910 switch (code)
9911 {
9912 case LT:
9913 /* < C is equivalent to <= (C - 1) */
9914 if (const_op > 0)
9915 {
9916 const_op -= 1;
9917 op1 = GEN_INT (const_op);
9918 code = LE;
9919 /* ... fall through to LE case below. */
9920 }
9921 else
9922 break;
9923
9924 case LE:
9925 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9926 if (const_op < 0)
9927 {
9928 const_op += 1;
9929 op1 = GEN_INT (const_op);
9930 code = LT;
9931 }
9932
9933 /* If we are doing a <= 0 comparison on a value known to have
9934 a zero sign bit, we can replace this with == 0. */
9935 else if (const_op == 0
9936 && mode_width <= HOST_BITS_PER_WIDE_INT
9937 && (nonzero_bits (op0, mode)
9938 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9939 code = EQ;
9940 break;
9941
9942 case GE:
9943 /* >= C is equivalent to > (C - 1). */
9944 if (const_op > 0)
9945 {
9946 const_op -= 1;
9947 op1 = GEN_INT (const_op);
9948 code = GT;
9949 /* ... fall through to GT below. */
9950 }
9951 else
9952 break;
9953
9954 case GT:
9955 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9956 if (const_op < 0)
9957 {
9958 const_op += 1;
9959 op1 = GEN_INT (const_op);
9960 code = GE;
9961 }
9962
9963 /* If we are doing a > 0 comparison on a value known to have
9964 a zero sign bit, we can replace this with != 0. */
9965 else if (const_op == 0
9966 && mode_width <= HOST_BITS_PER_WIDE_INT
9967 && (nonzero_bits (op0, mode)
9968 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9969 code = NE;
9970 break;
9971
9972 case LTU:
9973 /* < C is equivalent to <= (C - 1). */
9974 if (const_op > 0)
9975 {
9976 const_op -= 1;
9977 op1 = GEN_INT (const_op);
9978 code = LEU;
9979 /* ... fall through ... */
9980 }
9981
9982 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9983 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9984 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9985 {
9986 const_op = 0, op1 = const0_rtx;
9987 code = GE;
9988 break;
9989 }
9990 else
9991 break;
9992
9993 case LEU:
9994 /* unsigned <= 0 is equivalent to == 0 */
9995 if (const_op == 0)
9996 code = EQ;
9997
9998 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9999 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10000 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10001 {
10002 const_op = 0, op1 = const0_rtx;
10003 code = GE;
10004 }
10005 break;
10006
10007 case GEU:
10008 /* >= C is equivalent to > (C - 1). */
10009 if (const_op > 1)
10010 {
10011 const_op -= 1;
10012 op1 = GEN_INT (const_op);
10013 code = GTU;
10014 /* ... fall through ... */
10015 }
10016
10017 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10018 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10019 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10020 {
10021 const_op = 0, op1 = const0_rtx;
10022 code = LT;
10023 break;
10024 }
10025 else
10026 break;
10027
10028 case GTU:
10029 /* unsigned > 0 is equivalent to != 0 */
10030 if (const_op == 0)
10031 code = NE;
10032
10033 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10034 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10035 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10036 {
10037 const_op = 0, op1 = const0_rtx;
10038 code = LT;
10039 }
10040 break;
10041
10042 default:
10043 break;
10044 }
10045
10046 /* Compute some predicates to simplify code below. */
10047
10048 equality_comparison_p = (code == EQ || code == NE);
10049 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10050 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10051 || code == GEU);
10052
10053 /* If this is a sign bit comparison and we can do arithmetic in
10054 MODE, say that we will only be needing the sign bit of OP0. */
10055 if (sign_bit_comparison_p
10056 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10057 op0 = force_to_mode (op0, mode,
10058 ((HOST_WIDE_INT) 1
10059 << (GET_MODE_BITSIZE (mode) - 1)),
10060 NULL_RTX, 0);
10061
10062 /* Now try cases based on the opcode of OP0. If none of the cases
10063 does a "continue", we exit this loop immediately after the
10064 switch. */
10065
10066 switch (GET_CODE (op0))
10067 {
10068 case ZERO_EXTRACT:
10069 /* If we are extracting a single bit from a variable position in
10070 a constant that has only a single bit set and are comparing it
10071 with zero, we can convert this into an equality comparison
10072 between the position and the location of the single bit. */
10073 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10074 have already reduced the shift count modulo the word size. */
10075 if (!SHIFT_COUNT_TRUNCATED
10076 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10077 && XEXP (op0, 1) == const1_rtx
10078 && equality_comparison_p && const_op == 0
10079 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10080 {
10081 if (BITS_BIG_ENDIAN)
10082 {
10083 enum machine_mode new_mode
10084 = mode_for_extraction (EP_extzv, 1);
10085 if (new_mode == MAX_MACHINE_MODE)
10086 i = BITS_PER_WORD - 1 - i;
10087 else
10088 {
10089 mode = new_mode;
10090 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10091 }
10092 }
10093
10094 op0 = XEXP (op0, 2);
10095 op1 = GEN_INT (i);
10096 const_op = i;
10097
10098 /* Result is nonzero iff shift count is equal to I. */
10099 code = reverse_condition (code);
10100 continue;
10101 }
10102
10103 /* ... fall through ... */
10104
10105 case SIGN_EXTRACT:
10106 tem = expand_compound_operation (op0);
10107 if (tem != op0)
10108 {
10109 op0 = tem;
10110 continue;
10111 }
10112 break;
10113
10114 case NOT:
10115 /* If testing for equality, we can take the NOT of the constant. */
10116 if (equality_comparison_p
10117 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10118 {
10119 op0 = XEXP (op0, 0);
10120 op1 = tem;
10121 continue;
10122 }
10123
10124 /* If just looking at the sign bit, reverse the sense of the
10125 comparison. */
10126 if (sign_bit_comparison_p)
10127 {
10128 op0 = XEXP (op0, 0);
10129 code = (code == GE ? LT : GE);
10130 continue;
10131 }
10132 break;
10133
10134 case NEG:
10135 /* If testing for equality, we can take the NEG of the constant. */
10136 if (equality_comparison_p
10137 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10138 {
10139 op0 = XEXP (op0, 0);
10140 op1 = tem;
10141 continue;
10142 }
10143
10144 /* The remaining cases only apply to comparisons with zero. */
10145 if (const_op != 0)
10146 break;
10147
10148 /* When X is ABS or is known positive,
10149 (neg X) is < 0 if and only if X != 0. */
10150
10151 if (sign_bit_comparison_p
10152 && (GET_CODE (XEXP (op0, 0)) == ABS
10153 || (mode_width <= HOST_BITS_PER_WIDE_INT
10154 && (nonzero_bits (XEXP (op0, 0), mode)
10155 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10156 {
10157 op0 = XEXP (op0, 0);
10158 code = (code == LT ? NE : EQ);
10159 continue;
10160 }
10161
10162 /* If we have NEG of something whose two high-order bits are the
10163 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10164 if (num_sign_bit_copies (op0, mode) >= 2)
10165 {
10166 op0 = XEXP (op0, 0);
10167 code = swap_condition (code);
10168 continue;
10169 }
10170 break;
10171
10172 case ROTATE:
10173 /* If we are testing equality and our count is a constant, we
10174 can perform the inverse operation on our RHS. */
10175 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10176 && (tem = simplify_binary_operation (ROTATERT, mode,
10177 op1, XEXP (op0, 1))) != 0)
10178 {
10179 op0 = XEXP (op0, 0);
10180 op1 = tem;
10181 continue;
10182 }
10183
10184 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10185 a particular bit. Convert it to an AND of a constant of that
10186 bit. This will be converted into a ZERO_EXTRACT. */
10187 if (const_op == 0 && sign_bit_comparison_p
10188 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10189 && mode_width <= HOST_BITS_PER_WIDE_INT)
10190 {
10191 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10192 ((HOST_WIDE_INT) 1
10193 << (mode_width - 1
10194 - INTVAL (XEXP (op0, 1)))));
10195 code = (code == LT ? NE : EQ);
10196 continue;
10197 }
10198
10199 /* Fall through. */
10200
10201 case ABS:
10202 /* ABS is ignorable inside an equality comparison with zero. */
10203 if (const_op == 0 && equality_comparison_p)
10204 {
10205 op0 = XEXP (op0, 0);
10206 continue;
10207 }
10208 break;
10209
10210 case SIGN_EXTEND:
10211 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10212 (compare FOO CONST) if CONST fits in FOO's mode and we
10213 are either testing inequality or have an unsigned
10214 comparison with ZERO_EXTEND or a signed comparison with
10215 SIGN_EXTEND. But don't do it if we don't have a compare
10216 insn of the given mode, since we'd have to revert it
10217 later on, and then we wouldn't know whether to sign- or
10218 zero-extend. */
10219 mode = GET_MODE (XEXP (op0, 0));
10220 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10221 && ! unsigned_comparison_p
10222 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10223 && ((unsigned HOST_WIDE_INT) const_op
10224 < (((unsigned HOST_WIDE_INT) 1
10225 << (GET_MODE_BITSIZE (mode) - 1))))
10226 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10227 {
10228 op0 = XEXP (op0, 0);
10229 continue;
10230 }
10231 break;
10232
10233 case SUBREG:
10234 /* Check for the case where we are comparing A - C1 with C2, that is
10235
10236 (subreg:MODE (plus (A) (-C1))) op (C2)
10237
10238 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10239 comparison in the wider mode. One of the following two conditions
10240 must be true in order for this to be valid:
10241
10242 1. The mode extension results in the same bit pattern being added
10243 on both sides and the comparison is equality or unsigned. As
10244 C2 has been truncated to fit in MODE, the pattern can only be
10245 all 0s or all 1s.
10246
10247 2. The mode extension results in the sign bit being copied on
10248 each side.
10249
10250 The difficulty here is that we have predicates for A but not for
10251 (A - C1) so we need to check that C1 is within proper bounds so
10252 as to perturbate A as little as possible. */
10253
10254 if (mode_width <= HOST_BITS_PER_WIDE_INT
10255 && subreg_lowpart_p (op0)
10256 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10257 && GET_CODE (SUBREG_REG (op0)) == PLUS
10258 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10259 {
10260 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10261 rtx a = XEXP (SUBREG_REG (op0), 0);
10262 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10263
10264 if ((c1 > 0
10265 && (unsigned HOST_WIDE_INT) c1
10266 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10267 && (equality_comparison_p || unsigned_comparison_p)
10268 /* (A - C1) zero-extends if it is positive and sign-extends
10269 if it is negative, C2 both zero- and sign-extends. */
10270 && ((0 == (nonzero_bits (a, inner_mode)
10271 & ~GET_MODE_MASK (mode))
10272 && const_op >= 0)
10273 /* (A - C1) sign-extends if it is positive and 1-extends
10274 if it is negative, C2 both sign- and 1-extends. */
10275 || (num_sign_bit_copies (a, inner_mode)
10276 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10277 - mode_width)
10278 && const_op < 0)))
10279 || ((unsigned HOST_WIDE_INT) c1
10280 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10281 /* (A - C1) always sign-extends, like C2. */
10282 && num_sign_bit_copies (a, inner_mode)
10283 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10284 - (mode_width - 1))))
10285 {
10286 op0 = SUBREG_REG (op0);
10287 continue;
10288 }
10289 }
10290
10291 /* If the inner mode is narrower and we are extracting the low part,
10292 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10293 if (subreg_lowpart_p (op0)
10294 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10295 /* Fall through */ ;
10296 else
10297 break;
10298
10299 /* ... fall through ... */
10300
10301 case ZERO_EXTEND:
10302 mode = GET_MODE (XEXP (op0, 0));
10303 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10304 && (unsigned_comparison_p || equality_comparison_p)
10305 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10306 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10307 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10308 {
10309 op0 = XEXP (op0, 0);
10310 continue;
10311 }
10312 break;
10313
10314 case PLUS:
10315 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10316 this for equality comparisons due to pathological cases involving
10317 overflows. */
10318 if (equality_comparison_p
10319 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10320 op1, XEXP (op0, 1))))
10321 {
10322 op0 = XEXP (op0, 0);
10323 op1 = tem;
10324 continue;
10325 }
10326
10327 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10328 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10329 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10330 {
10331 op0 = XEXP (XEXP (op0, 0), 0);
10332 code = (code == LT ? EQ : NE);
10333 continue;
10334 }
10335 break;
10336
10337 case MINUS:
10338 /* We used to optimize signed comparisons against zero, but that
10339 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10340 arrive here as equality comparisons, or (GEU, LTU) are
10341 optimized away. No need to special-case them. */
10342
10343 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10344 (eq B (minus A C)), whichever simplifies. We can only do
10345 this for equality comparisons due to pathological cases involving
10346 overflows. */
10347 if (equality_comparison_p
10348 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10349 XEXP (op0, 1), op1)))
10350 {
10351 op0 = XEXP (op0, 0);
10352 op1 = tem;
10353 continue;
10354 }
10355
10356 if (equality_comparison_p
10357 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10358 XEXP (op0, 0), op1)))
10359 {
10360 op0 = XEXP (op0, 1);
10361 op1 = tem;
10362 continue;
10363 }
10364
10365 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10366 of bits in X minus 1, is one iff X > 0. */
10367 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10368 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10369 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10370 == mode_width - 1
10371 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10372 {
10373 op0 = XEXP (op0, 1);
10374 code = (code == GE ? LE : GT);
10375 continue;
10376 }
10377 break;
10378
10379 case XOR:
10380 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10381 if C is zero or B is a constant. */
10382 if (equality_comparison_p
10383 && 0 != (tem = simplify_binary_operation (XOR, mode,
10384 XEXP (op0, 1), op1)))
10385 {
10386 op0 = XEXP (op0, 0);
10387 op1 = tem;
10388 continue;
10389 }
10390 break;
10391
10392 case EQ: case NE:
10393 case UNEQ: case LTGT:
10394 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10395 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10396 case UNORDERED: case ORDERED:
10397 /* We can't do anything if OP0 is a condition code value, rather
10398 than an actual data value. */
10399 if (const_op != 0
10400 || CC0_P (XEXP (op0, 0))
10401 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10402 break;
10403
10404 /* Get the two operands being compared. */
10405 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10406 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10407 else
10408 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10409
10410 /* Check for the cases where we simply want the result of the
10411 earlier test or the opposite of that result. */
10412 if (code == NE || code == EQ
10413 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10414 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10415 && (STORE_FLAG_VALUE
10416 & (((HOST_WIDE_INT) 1
10417 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10418 && (code == LT || code == GE)))
10419 {
10420 enum rtx_code new_code;
10421 if (code == LT || code == NE)
10422 new_code = GET_CODE (op0);
10423 else
10424 new_code = reversed_comparison_code (op0, NULL);
10425
10426 if (new_code != UNKNOWN)
10427 {
10428 code = new_code;
10429 op0 = tem;
10430 op1 = tem1;
10431 continue;
10432 }
10433 }
10434 break;
10435
10436 case IOR:
10437 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10438 iff X <= 0. */
10439 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10440 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10441 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10442 {
10443 op0 = XEXP (op0, 1);
10444 code = (code == GE ? GT : LE);
10445 continue;
10446 }
10447 break;
10448
10449 case AND:
10450 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10451 will be converted to a ZERO_EXTRACT later. */
10452 if (const_op == 0 && equality_comparison_p
10453 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10454 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10455 {
10456 op0 = simplify_and_const_int
10457 (op0, mode, gen_rtx_LSHIFTRT (mode,
10458 XEXP (op0, 1),
10459 XEXP (XEXP (op0, 0), 1)),
10460 (HOST_WIDE_INT) 1);
10461 continue;
10462 }
10463
10464 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10465 zero and X is a comparison and C1 and C2 describe only bits set
10466 in STORE_FLAG_VALUE, we can compare with X. */
10467 if (const_op == 0 && equality_comparison_p
10468 && mode_width <= HOST_BITS_PER_WIDE_INT
10469 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10470 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10471 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10472 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10473 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10474 {
10475 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10476 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10477 if ((~STORE_FLAG_VALUE & mask) == 0
10478 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10479 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10480 && COMPARISON_P (tem))))
10481 {
10482 op0 = XEXP (XEXP (op0, 0), 0);
10483 continue;
10484 }
10485 }
10486
10487 /* If we are doing an equality comparison of an AND of a bit equal
10488 to the sign bit, replace this with a LT or GE comparison of
10489 the underlying value. */
10490 if (equality_comparison_p
10491 && const_op == 0
10492 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10493 && mode_width <= HOST_BITS_PER_WIDE_INT
10494 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10495 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10496 {
10497 op0 = XEXP (op0, 0);
10498 code = (code == EQ ? GE : LT);
10499 continue;
10500 }
10501
10502 /* If this AND operation is really a ZERO_EXTEND from a narrower
10503 mode, the constant fits within that mode, and this is either an
10504 equality or unsigned comparison, try to do this comparison in
10505 the narrower mode. */
10506 if ((equality_comparison_p || unsigned_comparison_p)
10507 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10508 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10509 & GET_MODE_MASK (mode))
10510 + 1)) >= 0
10511 && const_op >> i == 0
10512 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10513 {
10514 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10515 continue;
10516 }
10517
10518 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10519 fits in both M1 and M2 and the SUBREG is either paradoxical
10520 or represents the low part, permute the SUBREG and the AND
10521 and try again. */
10522 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10523 {
10524 unsigned HOST_WIDE_INT c1;
10525 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10526 /* Require an integral mode, to avoid creating something like
10527 (AND:SF ...). */
10528 if (SCALAR_INT_MODE_P (tmode)
10529 /* It is unsafe to commute the AND into the SUBREG if the
10530 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10531 not defined. As originally written the upper bits
10532 have a defined value due to the AND operation.
10533 However, if we commute the AND inside the SUBREG then
10534 they no longer have defined values and the meaning of
10535 the code has been changed. */
10536 && (0
10537 #ifdef WORD_REGISTER_OPERATIONS
10538 || (mode_width > GET_MODE_BITSIZE (tmode)
10539 && mode_width <= BITS_PER_WORD)
10540 #endif
10541 || (mode_width <= GET_MODE_BITSIZE (tmode)
10542 && subreg_lowpart_p (XEXP (op0, 0))))
10543 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10544 && mode_width <= HOST_BITS_PER_WIDE_INT
10545 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10546 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10547 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10548 && c1 != mask
10549 && c1 != GET_MODE_MASK (tmode))
10550 {
10551 op0 = simplify_gen_binary (AND, tmode,
10552 SUBREG_REG (XEXP (op0, 0)),
10553 gen_int_mode (c1, tmode));
10554 op0 = gen_lowpart (mode, op0);
10555 continue;
10556 }
10557 }
10558
10559 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10560 if (const_op == 0 && equality_comparison_p
10561 && XEXP (op0, 1) == const1_rtx
10562 && GET_CODE (XEXP (op0, 0)) == NOT)
10563 {
10564 op0 = simplify_and_const_int
10565 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10566 code = (code == NE ? EQ : NE);
10567 continue;
10568 }
10569
10570 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10571 (eq (and (lshiftrt X) 1) 0).
10572 Also handle the case where (not X) is expressed using xor. */
10573 if (const_op == 0 && equality_comparison_p
10574 && XEXP (op0, 1) == const1_rtx
10575 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10576 {
10577 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10578 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10579
10580 if (GET_CODE (shift_op) == NOT
10581 || (GET_CODE (shift_op) == XOR
10582 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10583 && GET_CODE (shift_count) == CONST_INT
10584 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10585 && (INTVAL (XEXP (shift_op, 1))
10586 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10587 {
10588 op0 = simplify_and_const_int
10589 (NULL_RTX, mode,
10590 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10591 (HOST_WIDE_INT) 1);
10592 code = (code == NE ? EQ : NE);
10593 continue;
10594 }
10595 }
10596 break;
10597
10598 case ASHIFT:
10599 /* If we have (compare (ashift FOO N) (const_int C)) and
10600 the high order N bits of FOO (N+1 if an inequality comparison)
10601 are known to be zero, we can do this by comparing FOO with C
10602 shifted right N bits so long as the low-order N bits of C are
10603 zero. */
10604 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10605 && INTVAL (XEXP (op0, 1)) >= 0
10606 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10607 < HOST_BITS_PER_WIDE_INT)
10608 && ((const_op
10609 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10610 && mode_width <= HOST_BITS_PER_WIDE_INT
10611 && (nonzero_bits (XEXP (op0, 0), mode)
10612 & ~(mask >> (INTVAL (XEXP (op0, 1))
10613 + ! equality_comparison_p))) == 0)
10614 {
10615 /* We must perform a logical shift, not an arithmetic one,
10616 as we want the top N bits of C to be zero. */
10617 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10618
10619 temp >>= INTVAL (XEXP (op0, 1));
10620 op1 = gen_int_mode (temp, mode);
10621 op0 = XEXP (op0, 0);
10622 continue;
10623 }
10624
10625 /* If we are doing a sign bit comparison, it means we are testing
10626 a particular bit. Convert it to the appropriate AND. */
10627 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10628 && mode_width <= HOST_BITS_PER_WIDE_INT)
10629 {
10630 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10631 ((HOST_WIDE_INT) 1
10632 << (mode_width - 1
10633 - INTVAL (XEXP (op0, 1)))));
10634 code = (code == LT ? NE : EQ);
10635 continue;
10636 }
10637
10638 /* If this an equality comparison with zero and we are shifting
10639 the low bit to the sign bit, we can convert this to an AND of the
10640 low-order bit. */
10641 if (const_op == 0 && equality_comparison_p
10642 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10643 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10644 == mode_width - 1)
10645 {
10646 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10647 (HOST_WIDE_INT) 1);
10648 continue;
10649 }
10650 break;
10651
10652 case ASHIFTRT:
10653 /* If this is an equality comparison with zero, we can do this
10654 as a logical shift, which might be much simpler. */
10655 if (equality_comparison_p && const_op == 0
10656 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10657 {
10658 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10659 XEXP (op0, 0),
10660 INTVAL (XEXP (op0, 1)));
10661 continue;
10662 }
10663
10664 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10665 do the comparison in a narrower mode. */
10666 if (! unsigned_comparison_p
10667 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10668 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10669 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10670 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10671 MODE_INT, 1)) != BLKmode
10672 && (((unsigned HOST_WIDE_INT) const_op
10673 + (GET_MODE_MASK (tmode) >> 1) + 1)
10674 <= GET_MODE_MASK (tmode)))
10675 {
10676 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10677 continue;
10678 }
10679
10680 /* Likewise if OP0 is a PLUS of a sign extension with a
10681 constant, which is usually represented with the PLUS
10682 between the shifts. */
10683 if (! unsigned_comparison_p
10684 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10685 && GET_CODE (XEXP (op0, 0)) == PLUS
10686 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10687 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10688 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10689 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10690 MODE_INT, 1)) != BLKmode
10691 && (((unsigned HOST_WIDE_INT) const_op
10692 + (GET_MODE_MASK (tmode) >> 1) + 1)
10693 <= GET_MODE_MASK (tmode)))
10694 {
10695 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10696 rtx add_const = XEXP (XEXP (op0, 0), 1);
10697 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10698 add_const, XEXP (op0, 1));
10699
10700 op0 = simplify_gen_binary (PLUS, tmode,
10701 gen_lowpart (tmode, inner),
10702 new_const);
10703 continue;
10704 }
10705
10706 /* ... fall through ... */
10707 case LSHIFTRT:
10708 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10709 the low order N bits of FOO are known to be zero, we can do this
10710 by comparing FOO with C shifted left N bits so long as no
10711 overflow occurs. */
10712 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10713 && INTVAL (XEXP (op0, 1)) >= 0
10714 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10715 && mode_width <= HOST_BITS_PER_WIDE_INT
10716 && (nonzero_bits (XEXP (op0, 0), mode)
10717 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10718 && (((unsigned HOST_WIDE_INT) const_op
10719 + (GET_CODE (op0) != LSHIFTRT
10720 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10721 + 1)
10722 : 0))
10723 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10724 {
10725 /* If the shift was logical, then we must make the condition
10726 unsigned. */
10727 if (GET_CODE (op0) == LSHIFTRT)
10728 code = unsigned_condition (code);
10729
10730 const_op <<= INTVAL (XEXP (op0, 1));
10731 op1 = GEN_INT (const_op);
10732 op0 = XEXP (op0, 0);
10733 continue;
10734 }
10735
10736 /* If we are using this shift to extract just the sign bit, we
10737 can replace this with an LT or GE comparison. */
10738 if (const_op == 0
10739 && (equality_comparison_p || sign_bit_comparison_p)
10740 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10741 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10742 == mode_width - 1)
10743 {
10744 op0 = XEXP (op0, 0);
10745 code = (code == NE || code == GT ? LT : GE);
10746 continue;
10747 }
10748 break;
10749
10750 default:
10751 break;
10752 }
10753
10754 break;
10755 }
10756
10757 /* Now make any compound operations involved in this comparison. Then,
10758 check for an outmost SUBREG on OP0 that is not doing anything or is
10759 paradoxical. The latter transformation must only be performed when
10760 it is known that the "extra" bits will be the same in op0 and op1 or
10761 that they don't matter. There are three cases to consider:
10762
10763 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10764 care bits and we can assume they have any convenient value. So
10765 making the transformation is safe.
10766
10767 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10768 In this case the upper bits of op0 are undefined. We should not make
10769 the simplification in that case as we do not know the contents of
10770 those bits.
10771
10772 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10773 UNKNOWN. In that case we know those bits are zeros or ones. We must
10774 also be sure that they are the same as the upper bits of op1.
10775
10776 We can never remove a SUBREG for a non-equality comparison because
10777 the sign bit is in a different place in the underlying object. */
10778
10779 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10780 op1 = make_compound_operation (op1, SET);
10781
10782 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10783 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10784 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10785 && (code == NE || code == EQ))
10786 {
10787 if (GET_MODE_SIZE (GET_MODE (op0))
10788 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10789 {
10790 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10791 implemented. */
10792 if (REG_P (SUBREG_REG (op0)))
10793 {
10794 op0 = SUBREG_REG (op0);
10795 op1 = gen_lowpart (GET_MODE (op0), op1);
10796 }
10797 }
10798 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10799 <= HOST_BITS_PER_WIDE_INT)
10800 && (nonzero_bits (SUBREG_REG (op0),
10801 GET_MODE (SUBREG_REG (op0)))
10802 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10803 {
10804 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10805
10806 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10807 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10808 op0 = SUBREG_REG (op0), op1 = tem;
10809 }
10810 }
10811
10812 /* We now do the opposite procedure: Some machines don't have compare
10813 insns in all modes. If OP0's mode is an integer mode smaller than a
10814 word and we can't do a compare in that mode, see if there is a larger
10815 mode for which we can do the compare. There are a number of cases in
10816 which we can use the wider mode. */
10817
10818 mode = GET_MODE (op0);
10819 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10820 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10821 && ! have_insn_for (COMPARE, mode))
10822 for (tmode = GET_MODE_WIDER_MODE (mode);
10823 (tmode != VOIDmode
10824 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10825 tmode = GET_MODE_WIDER_MODE (tmode))
10826 if (have_insn_for (COMPARE, tmode))
10827 {
10828 int zero_extended;
10829
10830 /* If the only nonzero bits in OP0 and OP1 are those in the
10831 narrower mode and this is an equality or unsigned comparison,
10832 we can use the wider mode. Similarly for sign-extended
10833 values, in which case it is true for all comparisons. */
10834 zero_extended = ((code == EQ || code == NE
10835 || code == GEU || code == GTU
10836 || code == LEU || code == LTU)
10837 && (nonzero_bits (op0, tmode)
10838 & ~GET_MODE_MASK (mode)) == 0
10839 && ((GET_CODE (op1) == CONST_INT
10840 || (nonzero_bits (op1, tmode)
10841 & ~GET_MODE_MASK (mode)) == 0)));
10842
10843 if (zero_extended
10844 || ((num_sign_bit_copies (op0, tmode)
10845 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10846 - GET_MODE_BITSIZE (mode)))
10847 && (num_sign_bit_copies (op1, tmode)
10848 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10849 - GET_MODE_BITSIZE (mode)))))
10850 {
10851 /* If OP0 is an AND and we don't have an AND in MODE either,
10852 make a new AND in the proper mode. */
10853 if (GET_CODE (op0) == AND
10854 && !have_insn_for (AND, mode))
10855 op0 = simplify_gen_binary (AND, tmode,
10856 gen_lowpart (tmode,
10857 XEXP (op0, 0)),
10858 gen_lowpart (tmode,
10859 XEXP (op0, 1)));
10860
10861 op0 = gen_lowpart (tmode, op0);
10862 if (zero_extended && GET_CODE (op1) == CONST_INT)
10863 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10864 op1 = gen_lowpart (tmode, op1);
10865 break;
10866 }
10867
10868 /* If this is a test for negative, we can make an explicit
10869 test of the sign bit. */
10870
10871 if (op1 == const0_rtx && (code == LT || code == GE)
10872 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10873 {
10874 op0 = simplify_gen_binary (AND, tmode,
10875 gen_lowpart (tmode, op0),
10876 GEN_INT ((HOST_WIDE_INT) 1
10877 << (GET_MODE_BITSIZE (mode)
10878 - 1)));
10879 code = (code == LT) ? NE : EQ;
10880 break;
10881 }
10882 }
10883
10884 #ifdef CANONICALIZE_COMPARISON
10885 /* If this machine only supports a subset of valid comparisons, see if we
10886 can convert an unsupported one into a supported one. */
10887 CANONICALIZE_COMPARISON (code, op0, op1);
10888 #endif
10889
10890 *pop0 = op0;
10891 *pop1 = op1;
10892
10893 return code;
10894 }
10895 \f
10896 /* Utility function for record_value_for_reg. Count number of
10897 rtxs in X. */
10898 static int
10899 count_rtxs (rtx x)
10900 {
10901 enum rtx_code code = GET_CODE (x);
10902 const char *fmt;
10903 int i, ret = 1;
10904
10905 if (GET_RTX_CLASS (code) == '2'
10906 || GET_RTX_CLASS (code) == 'c')
10907 {
10908 rtx x0 = XEXP (x, 0);
10909 rtx x1 = XEXP (x, 1);
10910
10911 if (x0 == x1)
10912 return 1 + 2 * count_rtxs (x0);
10913
10914 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10915 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10916 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10917 return 2 + 2 * count_rtxs (x0)
10918 + count_rtxs (x == XEXP (x1, 0)
10919 ? XEXP (x1, 1) : XEXP (x1, 0));
10920
10921 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10922 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10923 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10924 return 2 + 2 * count_rtxs (x1)
10925 + count_rtxs (x == XEXP (x0, 0)
10926 ? XEXP (x0, 1) : XEXP (x0, 0));
10927 }
10928
10929 fmt = GET_RTX_FORMAT (code);
10930 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10931 if (fmt[i] == 'e')
10932 ret += count_rtxs (XEXP (x, i));
10933
10934 return ret;
10935 }
10936 \f
10937 /* Utility function for following routine. Called when X is part of a value
10938 being stored into last_set_value. Sets last_set_table_tick
10939 for each register mentioned. Similar to mention_regs in cse.c */
10940
10941 static void
10942 update_table_tick (rtx x)
10943 {
10944 enum rtx_code code = GET_CODE (x);
10945 const char *fmt = GET_RTX_FORMAT (code);
10946 int i;
10947
10948 if (code == REG)
10949 {
10950 unsigned int regno = REGNO (x);
10951 unsigned int endregno
10952 = regno + (regno < FIRST_PSEUDO_REGISTER
10953 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10954 unsigned int r;
10955
10956 for (r = regno; r < endregno; r++)
10957 reg_stat[r].last_set_table_tick = label_tick;
10958
10959 return;
10960 }
10961
10962 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10963 /* Note that we can't have an "E" in values stored; see
10964 get_last_value_validate. */
10965 if (fmt[i] == 'e')
10966 {
10967 /* Check for identical subexpressions. If x contains
10968 identical subexpression we only have to traverse one of
10969 them. */
10970 if (i == 0 && ARITHMETIC_P (x))
10971 {
10972 /* Note that at this point x1 has already been
10973 processed. */
10974 rtx x0 = XEXP (x, 0);
10975 rtx x1 = XEXP (x, 1);
10976
10977 /* If x0 and x1 are identical then there is no need to
10978 process x0. */
10979 if (x0 == x1)
10980 break;
10981
10982 /* If x0 is identical to a subexpression of x1 then while
10983 processing x1, x0 has already been processed. Thus we
10984 are done with x. */
10985 if (ARITHMETIC_P (x1)
10986 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10987 break;
10988
10989 /* If x1 is identical to a subexpression of x0 then we
10990 still have to process the rest of x0. */
10991 if (ARITHMETIC_P (x0)
10992 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10993 {
10994 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10995 break;
10996 }
10997 }
10998
10999 update_table_tick (XEXP (x, i));
11000 }
11001 }
11002
11003 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11004 are saying that the register is clobbered and we no longer know its
11005 value. If INSN is zero, don't update reg_stat[].last_set; this is
11006 only permitted with VALUE also zero and is used to invalidate the
11007 register. */
11008
11009 static void
11010 record_value_for_reg (rtx reg, rtx insn, rtx value)
11011 {
11012 unsigned int regno = REGNO (reg);
11013 unsigned int endregno
11014 = regno + (regno < FIRST_PSEUDO_REGISTER
11015 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
11016 unsigned int i;
11017
11018 /* If VALUE contains REG and we have a previous value for REG, substitute
11019 the previous value. */
11020 if (value && insn && reg_overlap_mentioned_p (reg, value))
11021 {
11022 rtx tem;
11023
11024 /* Set things up so get_last_value is allowed to see anything set up to
11025 our insn. */
11026 subst_low_cuid = INSN_CUID (insn);
11027 tem = get_last_value (reg);
11028
11029 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11030 it isn't going to be useful and will take a lot of time to process,
11031 so just use the CLOBBER. */
11032
11033 if (tem)
11034 {
11035 if (ARITHMETIC_P (tem)
11036 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11037 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11038 tem = XEXP (tem, 0);
11039 else if (count_occurrences (value, reg, 1) >= 2)
11040 {
11041 /* If there are two or more occurrences of REG in VALUE,
11042 prevent the value from growing too much. */
11043 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11044 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11045 }
11046
11047 value = replace_rtx (copy_rtx (value), reg, tem);
11048 }
11049 }
11050
11051 /* For each register modified, show we don't know its value, that
11052 we don't know about its bitwise content, that its value has been
11053 updated, and that we don't know the location of the death of the
11054 register. */
11055 for (i = regno; i < endregno; i++)
11056 {
11057 if (insn)
11058 reg_stat[i].last_set = insn;
11059
11060 reg_stat[i].last_set_value = 0;
11061 reg_stat[i].last_set_mode = 0;
11062 reg_stat[i].last_set_nonzero_bits = 0;
11063 reg_stat[i].last_set_sign_bit_copies = 0;
11064 reg_stat[i].last_death = 0;
11065 }
11066
11067 /* Mark registers that are being referenced in this value. */
11068 if (value)
11069 update_table_tick (value);
11070
11071 /* Now update the status of each register being set.
11072 If someone is using this register in this block, set this register
11073 to invalid since we will get confused between the two lives in this
11074 basic block. This makes using this register always invalid. In cse, we
11075 scan the table to invalidate all entries using this register, but this
11076 is too much work for us. */
11077
11078 for (i = regno; i < endregno; i++)
11079 {
11080 reg_stat[i].last_set_label = label_tick;
11081 if (value && reg_stat[i].last_set_table_tick == label_tick)
11082 reg_stat[i].last_set_invalid = 1;
11083 else
11084 reg_stat[i].last_set_invalid = 0;
11085 }
11086
11087 /* The value being assigned might refer to X (like in "x++;"). In that
11088 case, we must replace it with (clobber (const_int 0)) to prevent
11089 infinite loops. */
11090 if (value && ! get_last_value_validate (&value, insn,
11091 reg_stat[regno].last_set_label, 0))
11092 {
11093 value = copy_rtx (value);
11094 if (! get_last_value_validate (&value, insn,
11095 reg_stat[regno].last_set_label, 1))
11096 value = 0;
11097 }
11098
11099 /* For the main register being modified, update the value, the mode, the
11100 nonzero bits, and the number of sign bit copies. */
11101
11102 reg_stat[regno].last_set_value = value;
11103
11104 if (value)
11105 {
11106 enum machine_mode mode = GET_MODE (reg);
11107 subst_low_cuid = INSN_CUID (insn);
11108 reg_stat[regno].last_set_mode = mode;
11109 if (GET_MODE_CLASS (mode) == MODE_INT
11110 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11111 mode = nonzero_bits_mode;
11112 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11113 reg_stat[regno].last_set_sign_bit_copies
11114 = num_sign_bit_copies (value, GET_MODE (reg));
11115 }
11116 }
11117
11118 /* Called via note_stores from record_dead_and_set_regs to handle one
11119 SET or CLOBBER in an insn. DATA is the instruction in which the
11120 set is occurring. */
11121
11122 static void
11123 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11124 {
11125 rtx record_dead_insn = (rtx) data;
11126
11127 if (GET_CODE (dest) == SUBREG)
11128 dest = SUBREG_REG (dest);
11129
11130 if (REG_P (dest))
11131 {
11132 /* If we are setting the whole register, we know its value. Otherwise
11133 show that we don't know the value. We can handle SUBREG in
11134 some cases. */
11135 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11136 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11137 else if (GET_CODE (setter) == SET
11138 && GET_CODE (SET_DEST (setter)) == SUBREG
11139 && SUBREG_REG (SET_DEST (setter)) == dest
11140 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11141 && subreg_lowpart_p (SET_DEST (setter)))
11142 record_value_for_reg (dest, record_dead_insn,
11143 gen_lowpart (GET_MODE (dest),
11144 SET_SRC (setter)));
11145 else
11146 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11147 }
11148 else if (MEM_P (dest)
11149 /* Ignore pushes, they clobber nothing. */
11150 && ! push_operand (dest, GET_MODE (dest)))
11151 mem_last_set = INSN_CUID (record_dead_insn);
11152 }
11153
11154 /* Update the records of when each REG was most recently set or killed
11155 for the things done by INSN. This is the last thing done in processing
11156 INSN in the combiner loop.
11157
11158 We update reg_stat[], in particular fields last_set, last_set_value,
11159 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11160 last_death, and also the similar information mem_last_set (which insn
11161 most recently modified memory) and last_call_cuid (which insn was the
11162 most recent subroutine call). */
11163
11164 static void
11165 record_dead_and_set_regs (rtx insn)
11166 {
11167 rtx link;
11168 unsigned int i;
11169
11170 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11171 {
11172 if (REG_NOTE_KIND (link) == REG_DEAD
11173 && REG_P (XEXP (link, 0)))
11174 {
11175 unsigned int regno = REGNO (XEXP (link, 0));
11176 unsigned int endregno
11177 = regno + (regno < FIRST_PSEUDO_REGISTER
11178 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11179 : 1);
11180
11181 for (i = regno; i < endregno; i++)
11182 reg_stat[i].last_death = insn;
11183 }
11184 else if (REG_NOTE_KIND (link) == REG_INC)
11185 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11186 }
11187
11188 if (CALL_P (insn))
11189 {
11190 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11191 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11192 {
11193 reg_stat[i].last_set_value = 0;
11194 reg_stat[i].last_set_mode = 0;
11195 reg_stat[i].last_set_nonzero_bits = 0;
11196 reg_stat[i].last_set_sign_bit_copies = 0;
11197 reg_stat[i].last_death = 0;
11198 }
11199
11200 last_call_cuid = mem_last_set = INSN_CUID (insn);
11201
11202 /* Don't bother recording what this insn does. It might set the
11203 return value register, but we can't combine into a call
11204 pattern anyway, so there's no point trying (and it may cause
11205 a crash, if e.g. we wind up asking for last_set_value of a
11206 SUBREG of the return value register). */
11207 return;
11208 }
11209
11210 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11211 }
11212
11213 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11214 register present in the SUBREG, so for each such SUBREG go back and
11215 adjust nonzero and sign bit information of the registers that are
11216 known to have some zero/sign bits set.
11217
11218 This is needed because when combine blows the SUBREGs away, the
11219 information on zero/sign bits is lost and further combines can be
11220 missed because of that. */
11221
11222 static void
11223 record_promoted_value (rtx insn, rtx subreg)
11224 {
11225 rtx links, set;
11226 unsigned int regno = REGNO (SUBREG_REG (subreg));
11227 enum machine_mode mode = GET_MODE (subreg);
11228
11229 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11230 return;
11231
11232 for (links = LOG_LINKS (insn); links;)
11233 {
11234 insn = XEXP (links, 0);
11235 set = single_set (insn);
11236
11237 if (! set || !REG_P (SET_DEST (set))
11238 || REGNO (SET_DEST (set)) != regno
11239 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11240 {
11241 links = XEXP (links, 1);
11242 continue;
11243 }
11244
11245 if (reg_stat[regno].last_set == insn)
11246 {
11247 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11248 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11249 }
11250
11251 if (REG_P (SET_SRC (set)))
11252 {
11253 regno = REGNO (SET_SRC (set));
11254 links = LOG_LINKS (insn);
11255 }
11256 else
11257 break;
11258 }
11259 }
11260
11261 /* Scan X for promoted SUBREGs. For each one found,
11262 note what it implies to the registers used in it. */
11263
11264 static void
11265 check_promoted_subreg (rtx insn, rtx x)
11266 {
11267 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11268 && REG_P (SUBREG_REG (x)))
11269 record_promoted_value (insn, x);
11270 else
11271 {
11272 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11273 int i, j;
11274
11275 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11276 switch (format[i])
11277 {
11278 case 'e':
11279 check_promoted_subreg (insn, XEXP (x, i));
11280 break;
11281 case 'V':
11282 case 'E':
11283 if (XVEC (x, i) != 0)
11284 for (j = 0; j < XVECLEN (x, i); j++)
11285 check_promoted_subreg (insn, XVECEXP (x, i, j));
11286 break;
11287 }
11288 }
11289 }
11290 \f
11291 /* Utility routine for the following function. Verify that all the registers
11292 mentioned in *LOC are valid when *LOC was part of a value set when
11293 label_tick == TICK. Return 0 if some are not.
11294
11295 If REPLACE is nonzero, replace the invalid reference with
11296 (clobber (const_int 0)) and return 1. This replacement is useful because
11297 we often can get useful information about the form of a value (e.g., if
11298 it was produced by a shift that always produces -1 or 0) even though
11299 we don't know exactly what registers it was produced from. */
11300
11301 static int
11302 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11303 {
11304 rtx x = *loc;
11305 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11306 int len = GET_RTX_LENGTH (GET_CODE (x));
11307 int i;
11308
11309 if (REG_P (x))
11310 {
11311 unsigned int regno = REGNO (x);
11312 unsigned int endregno
11313 = regno + (regno < FIRST_PSEUDO_REGISTER
11314 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11315 unsigned int j;
11316
11317 for (j = regno; j < endregno; j++)
11318 if (reg_stat[j].last_set_invalid
11319 /* If this is a pseudo-register that was only set once and not
11320 live at the beginning of the function, it is always valid. */
11321 || (! (regno >= FIRST_PSEUDO_REGISTER
11322 && REG_N_SETS (regno) == 1
11323 && (! REGNO_REG_SET_P
11324 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11325 regno)))
11326 && reg_stat[j].last_set_label > tick))
11327 {
11328 if (replace)
11329 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11330 return replace;
11331 }
11332
11333 return 1;
11334 }
11335 /* If this is a memory reference, make sure that there were
11336 no stores after it that might have clobbered the value. We don't
11337 have alias info, so we assume any store invalidates it. */
11338 else if (MEM_P (x) && !MEM_READONLY_P (x)
11339 && INSN_CUID (insn) <= mem_last_set)
11340 {
11341 if (replace)
11342 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11343 return replace;
11344 }
11345
11346 for (i = 0; i < len; i++)
11347 {
11348 if (fmt[i] == 'e')
11349 {
11350 /* Check for identical subexpressions. If x contains
11351 identical subexpression we only have to traverse one of
11352 them. */
11353 if (i == 1 && ARITHMETIC_P (x))
11354 {
11355 /* Note that at this point x0 has already been checked
11356 and found valid. */
11357 rtx x0 = XEXP (x, 0);
11358 rtx x1 = XEXP (x, 1);
11359
11360 /* If x0 and x1 are identical then x is also valid. */
11361 if (x0 == x1)
11362 return 1;
11363
11364 /* If x1 is identical to a subexpression of x0 then
11365 while checking x0, x1 has already been checked. Thus
11366 it is valid and so as x. */
11367 if (ARITHMETIC_P (x0)
11368 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11369 return 1;
11370
11371 /* If x0 is identical to a subexpression of x1 then x is
11372 valid iff the rest of x1 is valid. */
11373 if (ARITHMETIC_P (x1)
11374 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11375 return
11376 get_last_value_validate (&XEXP (x1,
11377 x0 == XEXP (x1, 0) ? 1 : 0),
11378 insn, tick, replace);
11379 }
11380
11381 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11382 replace) == 0)
11383 return 0;
11384 }
11385 /* Don't bother with these. They shouldn't occur anyway. */
11386 else if (fmt[i] == 'E')
11387 return 0;
11388 }
11389
11390 /* If we haven't found a reason for it to be invalid, it is valid. */
11391 return 1;
11392 }
11393
11394 /* Get the last value assigned to X, if known. Some registers
11395 in the value may be replaced with (clobber (const_int 0)) if their value
11396 is known longer known reliably. */
11397
11398 static rtx
11399 get_last_value (rtx x)
11400 {
11401 unsigned int regno;
11402 rtx value;
11403
11404 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11405 then convert it to the desired mode. If this is a paradoxical SUBREG,
11406 we cannot predict what values the "extra" bits might have. */
11407 if (GET_CODE (x) == SUBREG
11408 && subreg_lowpart_p (x)
11409 && (GET_MODE_SIZE (GET_MODE (x))
11410 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11411 && (value = get_last_value (SUBREG_REG (x))) != 0)
11412 return gen_lowpart (GET_MODE (x), value);
11413
11414 if (!REG_P (x))
11415 return 0;
11416
11417 regno = REGNO (x);
11418 value = reg_stat[regno].last_set_value;
11419
11420 /* If we don't have a value, or if it isn't for this basic block and
11421 it's either a hard register, set more than once, or it's a live
11422 at the beginning of the function, return 0.
11423
11424 Because if it's not live at the beginning of the function then the reg
11425 is always set before being used (is never used without being set).
11426 And, if it's set only once, and it's always set before use, then all
11427 uses must have the same last value, even if it's not from this basic
11428 block. */
11429
11430 if (value == 0
11431 || (reg_stat[regno].last_set_label != label_tick
11432 && (regno < FIRST_PSEUDO_REGISTER
11433 || REG_N_SETS (regno) != 1
11434 || (REGNO_REG_SET_P
11435 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11436 regno)))))
11437 return 0;
11438
11439 /* If the value was set in a later insn than the ones we are processing,
11440 we can't use it even if the register was only set once. */
11441 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11442 return 0;
11443
11444 /* If the value has all its registers valid, return it. */
11445 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11446 reg_stat[regno].last_set_label, 0))
11447 return value;
11448
11449 /* Otherwise, make a copy and replace any invalid register with
11450 (clobber (const_int 0)). If that fails for some reason, return 0. */
11451
11452 value = copy_rtx (value);
11453 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11454 reg_stat[regno].last_set_label, 1))
11455 return value;
11456
11457 return 0;
11458 }
11459 \f
11460 /* Return nonzero if expression X refers to a REG or to memory
11461 that is set in an instruction more recent than FROM_CUID. */
11462
11463 static int
11464 use_crosses_set_p (rtx x, int from_cuid)
11465 {
11466 const char *fmt;
11467 int i;
11468 enum rtx_code code = GET_CODE (x);
11469
11470 if (code == REG)
11471 {
11472 unsigned int regno = REGNO (x);
11473 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11474 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11475
11476 #ifdef PUSH_ROUNDING
11477 /* Don't allow uses of the stack pointer to be moved,
11478 because we don't know whether the move crosses a push insn. */
11479 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11480 return 1;
11481 #endif
11482 for (; regno < endreg; regno++)
11483 if (reg_stat[regno].last_set
11484 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11485 return 1;
11486 return 0;
11487 }
11488
11489 if (code == MEM && mem_last_set > from_cuid)
11490 return 1;
11491
11492 fmt = GET_RTX_FORMAT (code);
11493
11494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11495 {
11496 if (fmt[i] == 'E')
11497 {
11498 int j;
11499 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11500 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11501 return 1;
11502 }
11503 else if (fmt[i] == 'e'
11504 && use_crosses_set_p (XEXP (x, i), from_cuid))
11505 return 1;
11506 }
11507 return 0;
11508 }
11509 \f
11510 /* Define three variables used for communication between the following
11511 routines. */
11512
11513 static unsigned int reg_dead_regno, reg_dead_endregno;
11514 static int reg_dead_flag;
11515
11516 /* Function called via note_stores from reg_dead_at_p.
11517
11518 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11519 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11520
11521 static void
11522 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11523 {
11524 unsigned int regno, endregno;
11525
11526 if (!REG_P (dest))
11527 return;
11528
11529 regno = REGNO (dest);
11530 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11531 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11532
11533 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11534 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11535 }
11536
11537 /* Return nonzero if REG is known to be dead at INSN.
11538
11539 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11540 referencing REG, it is dead. If we hit a SET referencing REG, it is
11541 live. Otherwise, see if it is live or dead at the start of the basic
11542 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11543 must be assumed to be always live. */
11544
11545 static int
11546 reg_dead_at_p (rtx reg, rtx insn)
11547 {
11548 basic_block block;
11549 unsigned int i;
11550
11551 /* Set variables for reg_dead_at_p_1. */
11552 reg_dead_regno = REGNO (reg);
11553 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11554 ? hard_regno_nregs[reg_dead_regno]
11555 [GET_MODE (reg)]
11556 : 1);
11557
11558 reg_dead_flag = 0;
11559
11560 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11561 we allow the machine description to decide whether use-and-clobber
11562 patterns are OK. */
11563 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11564 {
11565 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11566 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11567 return 0;
11568 }
11569
11570 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11571 beginning of function. */
11572 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11573 insn = prev_nonnote_insn (insn))
11574 {
11575 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11576 if (reg_dead_flag)
11577 return reg_dead_flag == 1 ? 1 : 0;
11578
11579 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11580 return 1;
11581 }
11582
11583 /* Get the basic block that we were in. */
11584 if (insn == 0)
11585 block = ENTRY_BLOCK_PTR->next_bb;
11586 else
11587 {
11588 FOR_EACH_BB (block)
11589 if (insn == BB_HEAD (block))
11590 break;
11591
11592 if (block == EXIT_BLOCK_PTR)
11593 return 0;
11594 }
11595
11596 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11597 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11598 return 0;
11599
11600 return 1;
11601 }
11602 \f
11603 /* Note hard registers in X that are used. This code is similar to
11604 that in flow.c, but much simpler since we don't care about pseudos. */
11605
11606 static void
11607 mark_used_regs_combine (rtx x)
11608 {
11609 RTX_CODE code = GET_CODE (x);
11610 unsigned int regno;
11611 int i;
11612
11613 switch (code)
11614 {
11615 case LABEL_REF:
11616 case SYMBOL_REF:
11617 case CONST_INT:
11618 case CONST:
11619 case CONST_DOUBLE:
11620 case CONST_VECTOR:
11621 case PC:
11622 case ADDR_VEC:
11623 case ADDR_DIFF_VEC:
11624 case ASM_INPUT:
11625 #ifdef HAVE_cc0
11626 /* CC0 must die in the insn after it is set, so we don't need to take
11627 special note of it here. */
11628 case CC0:
11629 #endif
11630 return;
11631
11632 case CLOBBER:
11633 /* If we are clobbering a MEM, mark any hard registers inside the
11634 address as used. */
11635 if (MEM_P (XEXP (x, 0)))
11636 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11637 return;
11638
11639 case REG:
11640 regno = REGNO (x);
11641 /* A hard reg in a wide mode may really be multiple registers.
11642 If so, mark all of them just like the first. */
11643 if (regno < FIRST_PSEUDO_REGISTER)
11644 {
11645 unsigned int endregno, r;
11646
11647 /* None of this applies to the stack, frame or arg pointers. */
11648 if (regno == STACK_POINTER_REGNUM
11649 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11650 || regno == HARD_FRAME_POINTER_REGNUM
11651 #endif
11652 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11653 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11654 #endif
11655 || regno == FRAME_POINTER_REGNUM)
11656 return;
11657
11658 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11659 for (r = regno; r < endregno; r++)
11660 SET_HARD_REG_BIT (newpat_used_regs, r);
11661 }
11662 return;
11663
11664 case SET:
11665 {
11666 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11667 the address. */
11668 rtx testreg = SET_DEST (x);
11669
11670 while (GET_CODE (testreg) == SUBREG
11671 || GET_CODE (testreg) == ZERO_EXTRACT
11672 || GET_CODE (testreg) == STRICT_LOW_PART)
11673 testreg = XEXP (testreg, 0);
11674
11675 if (MEM_P (testreg))
11676 mark_used_regs_combine (XEXP (testreg, 0));
11677
11678 mark_used_regs_combine (SET_SRC (x));
11679 }
11680 return;
11681
11682 default:
11683 break;
11684 }
11685
11686 /* Recursively scan the operands of this expression. */
11687
11688 {
11689 const char *fmt = GET_RTX_FORMAT (code);
11690
11691 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11692 {
11693 if (fmt[i] == 'e')
11694 mark_used_regs_combine (XEXP (x, i));
11695 else if (fmt[i] == 'E')
11696 {
11697 int j;
11698
11699 for (j = 0; j < XVECLEN (x, i); j++)
11700 mark_used_regs_combine (XVECEXP (x, i, j));
11701 }
11702 }
11703 }
11704 }
11705 \f
11706 /* Remove register number REGNO from the dead registers list of INSN.
11707
11708 Return the note used to record the death, if there was one. */
11709
11710 rtx
11711 remove_death (unsigned int regno, rtx insn)
11712 {
11713 rtx note = find_regno_note (insn, REG_DEAD, regno);
11714
11715 if (note)
11716 {
11717 REG_N_DEATHS (regno)--;
11718 remove_note (insn, note);
11719 }
11720
11721 return note;
11722 }
11723
11724 /* For each register (hardware or pseudo) used within expression X, if its
11725 death is in an instruction with cuid between FROM_CUID (inclusive) and
11726 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11727 list headed by PNOTES.
11728
11729 That said, don't move registers killed by maybe_kill_insn.
11730
11731 This is done when X is being merged by combination into TO_INSN. These
11732 notes will then be distributed as needed. */
11733
11734 static void
11735 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11736 rtx *pnotes)
11737 {
11738 const char *fmt;
11739 int len, i;
11740 enum rtx_code code = GET_CODE (x);
11741
11742 if (code == REG)
11743 {
11744 unsigned int regno = REGNO (x);
11745 rtx where_dead = reg_stat[regno].last_death;
11746 rtx before_dead, after_dead;
11747
11748 /* Don't move the register if it gets killed in between from and to. */
11749 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11750 && ! reg_referenced_p (x, maybe_kill_insn))
11751 return;
11752
11753 /* WHERE_DEAD could be a USE insn made by combine, so first we
11754 make sure that we have insns with valid INSN_CUID values. */
11755 before_dead = where_dead;
11756 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11757 before_dead = PREV_INSN (before_dead);
11758
11759 after_dead = where_dead;
11760 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11761 after_dead = NEXT_INSN (after_dead);
11762
11763 if (before_dead && after_dead
11764 && INSN_CUID (before_dead) >= from_cuid
11765 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11766 || (where_dead != after_dead
11767 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11768 {
11769 rtx note = remove_death (regno, where_dead);
11770
11771 /* It is possible for the call above to return 0. This can occur
11772 when last_death points to I2 or I1 that we combined with.
11773 In that case make a new note.
11774
11775 We must also check for the case where X is a hard register
11776 and NOTE is a death note for a range of hard registers
11777 including X. In that case, we must put REG_DEAD notes for
11778 the remaining registers in place of NOTE. */
11779
11780 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11781 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11782 > GET_MODE_SIZE (GET_MODE (x))))
11783 {
11784 unsigned int deadregno = REGNO (XEXP (note, 0));
11785 unsigned int deadend
11786 = (deadregno + hard_regno_nregs[deadregno]
11787 [GET_MODE (XEXP (note, 0))]);
11788 unsigned int ourend
11789 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11790 unsigned int i;
11791
11792 for (i = deadregno; i < deadend; i++)
11793 if (i < regno || i >= ourend)
11794 REG_NOTES (where_dead)
11795 = gen_rtx_EXPR_LIST (REG_DEAD,
11796 regno_reg_rtx[i],
11797 REG_NOTES (where_dead));
11798 }
11799
11800 /* If we didn't find any note, or if we found a REG_DEAD note that
11801 covers only part of the given reg, and we have a multi-reg hard
11802 register, then to be safe we must check for REG_DEAD notes
11803 for each register other than the first. They could have
11804 their own REG_DEAD notes lying around. */
11805 else if ((note == 0
11806 || (note != 0
11807 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11808 < GET_MODE_SIZE (GET_MODE (x)))))
11809 && regno < FIRST_PSEUDO_REGISTER
11810 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11811 {
11812 unsigned int ourend
11813 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11814 unsigned int i, offset;
11815 rtx oldnotes = 0;
11816
11817 if (note)
11818 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11819 else
11820 offset = 1;
11821
11822 for (i = regno + offset; i < ourend; i++)
11823 move_deaths (regno_reg_rtx[i],
11824 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11825 }
11826
11827 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11828 {
11829 XEXP (note, 1) = *pnotes;
11830 *pnotes = note;
11831 }
11832 else
11833 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11834
11835 REG_N_DEATHS (regno)++;
11836 }
11837
11838 return;
11839 }
11840
11841 else if (GET_CODE (x) == SET)
11842 {
11843 rtx dest = SET_DEST (x);
11844
11845 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11846
11847 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11848 that accesses one word of a multi-word item, some
11849 piece of everything register in the expression is used by
11850 this insn, so remove any old death. */
11851 /* ??? So why do we test for equality of the sizes? */
11852
11853 if (GET_CODE (dest) == ZERO_EXTRACT
11854 || GET_CODE (dest) == STRICT_LOW_PART
11855 || (GET_CODE (dest) == SUBREG
11856 && (((GET_MODE_SIZE (GET_MODE (dest))
11857 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11858 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11859 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11860 {
11861 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11862 return;
11863 }
11864
11865 /* If this is some other SUBREG, we know it replaces the entire
11866 value, so use that as the destination. */
11867 if (GET_CODE (dest) == SUBREG)
11868 dest = SUBREG_REG (dest);
11869
11870 /* If this is a MEM, adjust deaths of anything used in the address.
11871 For a REG (the only other possibility), the entire value is
11872 being replaced so the old value is not used in this insn. */
11873
11874 if (MEM_P (dest))
11875 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11876 to_insn, pnotes);
11877 return;
11878 }
11879
11880 else if (GET_CODE (x) == CLOBBER)
11881 return;
11882
11883 len = GET_RTX_LENGTH (code);
11884 fmt = GET_RTX_FORMAT (code);
11885
11886 for (i = 0; i < len; i++)
11887 {
11888 if (fmt[i] == 'E')
11889 {
11890 int j;
11891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11892 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11893 to_insn, pnotes);
11894 }
11895 else if (fmt[i] == 'e')
11896 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11897 }
11898 }
11899 \f
11900 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11901 pattern of an insn. X must be a REG. */
11902
11903 static int
11904 reg_bitfield_target_p (rtx x, rtx body)
11905 {
11906 int i;
11907
11908 if (GET_CODE (body) == SET)
11909 {
11910 rtx dest = SET_DEST (body);
11911 rtx target;
11912 unsigned int regno, tregno, endregno, endtregno;
11913
11914 if (GET_CODE (dest) == ZERO_EXTRACT)
11915 target = XEXP (dest, 0);
11916 else if (GET_CODE (dest) == STRICT_LOW_PART)
11917 target = SUBREG_REG (XEXP (dest, 0));
11918 else
11919 return 0;
11920
11921 if (GET_CODE (target) == SUBREG)
11922 target = SUBREG_REG (target);
11923
11924 if (!REG_P (target))
11925 return 0;
11926
11927 tregno = REGNO (target), regno = REGNO (x);
11928 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11929 return target == x;
11930
11931 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11932 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11933
11934 return endregno > tregno && regno < endtregno;
11935 }
11936
11937 else if (GET_CODE (body) == PARALLEL)
11938 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11939 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11940 return 1;
11941
11942 return 0;
11943 }
11944 \f
11945 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11946 as appropriate. I3 and I2 are the insns resulting from the combination
11947 insns including FROM (I2 may be zero).
11948
11949 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11950 not need REG_DEAD notes because they are being substituted for. This
11951 saves searching in the most common cases.
11952
11953 Each note in the list is either ignored or placed on some insns, depending
11954 on the type of note. */
11955
11956 static void
11957 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11958 rtx elim_i1)
11959 {
11960 rtx note, next_note;
11961 rtx tem;
11962
11963 for (note = notes; note; note = next_note)
11964 {
11965 rtx place = 0, place2 = 0;
11966
11967 /* If this NOTE references a pseudo register, ensure it references
11968 the latest copy of that register. */
11969 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11970 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11971 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11972
11973 next_note = XEXP (note, 1);
11974 switch (REG_NOTE_KIND (note))
11975 {
11976 case REG_BR_PROB:
11977 case REG_BR_PRED:
11978 /* Doesn't matter much where we put this, as long as it's somewhere.
11979 It is preferable to keep these notes on branches, which is most
11980 likely to be i3. */
11981 place = i3;
11982 break;
11983
11984 case REG_VALUE_PROFILE:
11985 /* Just get rid of this note, as it is unused later anyway. */
11986 break;
11987
11988 case REG_NON_LOCAL_GOTO:
11989 if (JUMP_P (i3))
11990 place = i3;
11991 else
11992 {
11993 gcc_assert (i2 && JUMP_P (i2));
11994 place = i2;
11995 }
11996 break;
11997
11998 case REG_EH_REGION:
11999 /* These notes must remain with the call or trapping instruction. */
12000 if (CALL_P (i3))
12001 place = i3;
12002 else if (i2 && CALL_P (i2))
12003 place = i2;
12004 else
12005 {
12006 gcc_assert (flag_non_call_exceptions);
12007 if (may_trap_p (i3))
12008 place = i3;
12009 else if (i2 && may_trap_p (i2))
12010 place = i2;
12011 /* ??? Otherwise assume we've combined things such that we
12012 can now prove that the instructions can't trap. Drop the
12013 note in this case. */
12014 }
12015 break;
12016
12017 case REG_NORETURN:
12018 case REG_SETJMP:
12019 /* These notes must remain with the call. It should not be
12020 possible for both I2 and I3 to be a call. */
12021 if (CALL_P (i3))
12022 place = i3;
12023 else
12024 {
12025 gcc_assert (i2 && CALL_P (i2));
12026 place = i2;
12027 }
12028 break;
12029
12030 case REG_UNUSED:
12031 /* Any clobbers for i3 may still exist, and so we must process
12032 REG_UNUSED notes from that insn.
12033
12034 Any clobbers from i2 or i1 can only exist if they were added by
12035 recog_for_combine. In that case, recog_for_combine created the
12036 necessary REG_UNUSED notes. Trying to keep any original
12037 REG_UNUSED notes from these insns can cause incorrect output
12038 if it is for the same register as the original i3 dest.
12039 In that case, we will notice that the register is set in i3,
12040 and then add a REG_UNUSED note for the destination of i3, which
12041 is wrong. However, it is possible to have REG_UNUSED notes from
12042 i2 or i1 for register which were both used and clobbered, so
12043 we keep notes from i2 or i1 if they will turn into REG_DEAD
12044 notes. */
12045
12046 /* If this register is set or clobbered in I3, put the note there
12047 unless there is one already. */
12048 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12049 {
12050 if (from_insn != i3)
12051 break;
12052
12053 if (! (REG_P (XEXP (note, 0))
12054 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12055 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12056 place = i3;
12057 }
12058 /* Otherwise, if this register is used by I3, then this register
12059 now dies here, so we must put a REG_DEAD note here unless there
12060 is one already. */
12061 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12062 && ! (REG_P (XEXP (note, 0))
12063 ? find_regno_note (i3, REG_DEAD,
12064 REGNO (XEXP (note, 0)))
12065 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12066 {
12067 PUT_REG_NOTE_KIND (note, REG_DEAD);
12068 place = i3;
12069 }
12070 break;
12071
12072 case REG_EQUAL:
12073 case REG_EQUIV:
12074 case REG_NOALIAS:
12075 /* These notes say something about results of an insn. We can
12076 only support them if they used to be on I3 in which case they
12077 remain on I3. Otherwise they are ignored.
12078
12079 If the note refers to an expression that is not a constant, we
12080 must also ignore the note since we cannot tell whether the
12081 equivalence is still true. It might be possible to do
12082 slightly better than this (we only have a problem if I2DEST
12083 or I1DEST is present in the expression), but it doesn't
12084 seem worth the trouble. */
12085
12086 if (from_insn == i3
12087 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12088 place = i3;
12089 break;
12090
12091 case REG_INC:
12092 case REG_NO_CONFLICT:
12093 /* These notes say something about how a register is used. They must
12094 be present on any use of the register in I2 or I3. */
12095 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12096 place = i3;
12097
12098 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12099 {
12100 if (place)
12101 place2 = i2;
12102 else
12103 place = i2;
12104 }
12105 break;
12106
12107 case REG_LABEL:
12108 /* This can show up in several ways -- either directly in the
12109 pattern, or hidden off in the constant pool with (or without?)
12110 a REG_EQUAL note. */
12111 /* ??? Ignore the without-reg_equal-note problem for now. */
12112 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12113 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12114 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12115 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12116 place = i3;
12117
12118 if (i2
12119 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12120 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12121 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12122 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12123 {
12124 if (place)
12125 place2 = i2;
12126 else
12127 place = i2;
12128 }
12129
12130 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12131 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12132 if (place && JUMP_P (place))
12133 {
12134 rtx label = JUMP_LABEL (place);
12135
12136 if (!label)
12137 JUMP_LABEL (place) = XEXP (note, 0);
12138 else
12139 {
12140 gcc_assert (label == XEXP (note, 0));
12141 if (LABEL_P (label))
12142 LABEL_NUSES (label)--;
12143 }
12144 place = 0;
12145 }
12146 if (place2 && JUMP_P (place2))
12147 {
12148 rtx label = JUMP_LABEL (place2);
12149
12150 if (!label)
12151 JUMP_LABEL (place2) = XEXP (note, 0);
12152 else
12153 {
12154 gcc_assert (label == XEXP (note, 0));
12155 if (LABEL_P (label))
12156 LABEL_NUSES (label)--;
12157 }
12158 place2 = 0;
12159 }
12160 break;
12161
12162 case REG_NONNEG:
12163 /* This note says something about the value of a register prior
12164 to the execution of an insn. It is too much trouble to see
12165 if the note is still correct in all situations. It is better
12166 to simply delete it. */
12167 break;
12168
12169 case REG_RETVAL:
12170 /* If the insn previously containing this note still exists,
12171 put it back where it was. Otherwise move it to the previous
12172 insn. Adjust the corresponding REG_LIBCALL note. */
12173 if (!NOTE_P (from_insn))
12174 place = from_insn;
12175 else
12176 {
12177 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12178 place = prev_real_insn (from_insn);
12179 if (tem && place)
12180 XEXP (tem, 0) = place;
12181 /* If we're deleting the last remaining instruction of a
12182 libcall sequence, don't add the notes. */
12183 else if (XEXP (note, 0) == from_insn)
12184 tem = place = 0;
12185 /* Don't add the dangling REG_RETVAL note. */
12186 else if (! tem)
12187 place = 0;
12188 }
12189 break;
12190
12191 case REG_LIBCALL:
12192 /* This is handled similarly to REG_RETVAL. */
12193 if (!NOTE_P (from_insn))
12194 place = from_insn;
12195 else
12196 {
12197 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12198 place = next_real_insn (from_insn);
12199 if (tem && place)
12200 XEXP (tem, 0) = place;
12201 /* If we're deleting the last remaining instruction of a
12202 libcall sequence, don't add the notes. */
12203 else if (XEXP (note, 0) == from_insn)
12204 tem = place = 0;
12205 /* Don't add the dangling REG_LIBCALL note. */
12206 else if (! tem)
12207 place = 0;
12208 }
12209 break;
12210
12211 case REG_DEAD:
12212 /* If the register is used as an input in I3, it dies there.
12213 Similarly for I2, if it is nonzero and adjacent to I3.
12214
12215 If the register is not used as an input in either I3 or I2
12216 and it is not one of the registers we were supposed to eliminate,
12217 there are two possibilities. We might have a non-adjacent I2
12218 or we might have somehow eliminated an additional register
12219 from a computation. For example, we might have had A & B where
12220 we discover that B will always be zero. In this case we will
12221 eliminate the reference to A.
12222
12223 In both cases, we must search to see if we can find a previous
12224 use of A and put the death note there. */
12225
12226 if (from_insn
12227 && CALL_P (from_insn)
12228 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12229 place = from_insn;
12230 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12231 place = i3;
12232 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12233 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12234 place = i2;
12235
12236 if (place == 0
12237 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12238 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12239 break;
12240
12241 if (place == 0)
12242 {
12243 basic_block bb = this_basic_block;
12244
12245 /* You might think you could search back from FROM_INSN
12246 rather than from I3, but combine tries to split invalid
12247 combined instructions. This can result in the old I2
12248 or I1 moving later in the insn sequence. */
12249 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12250 {
12251 if (! INSN_P (tem))
12252 {
12253 if (tem == BB_HEAD (bb))
12254 break;
12255 continue;
12256 }
12257
12258 /* If the register is being set at TEM, see if that is all
12259 TEM is doing. If so, delete TEM. Otherwise, make this
12260 into a REG_UNUSED note instead. Don't delete sets to
12261 global register vars. */
12262 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12263 || !global_regs[REGNO (XEXP (note, 0))])
12264 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12265 {
12266 rtx set = single_set (tem);
12267 rtx inner_dest = 0;
12268 #ifdef HAVE_cc0
12269 rtx cc0_setter = NULL_RTX;
12270 #endif
12271
12272 if (set != 0)
12273 for (inner_dest = SET_DEST (set);
12274 (GET_CODE (inner_dest) == STRICT_LOW_PART
12275 || GET_CODE (inner_dest) == SUBREG
12276 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12277 inner_dest = XEXP (inner_dest, 0))
12278 ;
12279
12280 /* Verify that it was the set, and not a clobber that
12281 modified the register.
12282
12283 CC0 targets must be careful to maintain setter/user
12284 pairs. If we cannot delete the setter due to side
12285 effects, mark the user with an UNUSED note instead
12286 of deleting it. */
12287
12288 if (set != 0 && ! side_effects_p (SET_SRC (set))
12289 && rtx_equal_p (XEXP (note, 0), inner_dest)
12290 #ifdef HAVE_cc0
12291 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12292 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12293 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12294 #endif
12295 )
12296 {
12297 /* Move the notes and links of TEM elsewhere.
12298 This might delete other dead insns recursively.
12299 First set the pattern to something that won't use
12300 any register. */
12301 rtx old_notes = REG_NOTES (tem);
12302
12303 PATTERN (tem) = pc_rtx;
12304 REG_NOTES (tem) = NULL;
12305
12306 distribute_notes (old_notes, tem, tem, NULL_RTX,
12307 NULL_RTX, NULL_RTX);
12308 distribute_links (LOG_LINKS (tem));
12309
12310 SET_INSN_DELETED (tem);
12311
12312 #ifdef HAVE_cc0
12313 /* Delete the setter too. */
12314 if (cc0_setter)
12315 {
12316 PATTERN (cc0_setter) = pc_rtx;
12317 old_notes = REG_NOTES (cc0_setter);
12318 REG_NOTES (cc0_setter) = NULL;
12319
12320 distribute_notes (old_notes, cc0_setter,
12321 cc0_setter, NULL_RTX,
12322 NULL_RTX, NULL_RTX);
12323 distribute_links (LOG_LINKS (cc0_setter));
12324
12325 SET_INSN_DELETED (cc0_setter);
12326 }
12327 #endif
12328 }
12329 else
12330 {
12331 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12332
12333 /* If there isn't already a REG_UNUSED note, put one
12334 here. Do not place a REG_DEAD note, even if
12335 the register is also used here; that would not
12336 match the algorithm used in lifetime analysis
12337 and can cause the consistency check in the
12338 scheduler to fail. */
12339 if (! find_regno_note (tem, REG_UNUSED,
12340 REGNO (XEXP (note, 0))))
12341 place = tem;
12342 break;
12343 }
12344 }
12345 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12346 || (CALL_P (tem)
12347 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12348 {
12349 /* This may not be the correct place for the death
12350 note if FROM_INSN is before TEM, and the reg is
12351 set between FROM_INSN and TEM. The reg might
12352 die two or more times. An existing death note
12353 means we are looking at the wrong live range. */
12354 if (from_insn
12355 && INSN_CUID (from_insn) < INSN_CUID (tem)
12356 && find_regno_note (tem, REG_DEAD,
12357 REGNO (XEXP (note, 0))))
12358 {
12359 tem = from_insn;
12360 if (tem == BB_HEAD (bb))
12361 break;
12362 continue;
12363 }
12364
12365 place = tem;
12366
12367 /* If we are doing a 3->2 combination, and we have a
12368 register which formerly died in i3 and was not used
12369 by i2, which now no longer dies in i3 and is used in
12370 i2 but does not die in i2, and place is between i2
12371 and i3, then we may need to move a link from place to
12372 i2. */
12373 if (i2 && INSN_UID (place) <= max_uid_cuid
12374 && INSN_CUID (place) > INSN_CUID (i2)
12375 && from_insn
12376 && INSN_CUID (from_insn) > INSN_CUID (i2)
12377 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12378 {
12379 rtx links = LOG_LINKS (place);
12380 LOG_LINKS (place) = 0;
12381 distribute_links (links);
12382 }
12383 break;
12384 }
12385
12386 if (tem == BB_HEAD (bb))
12387 break;
12388 }
12389
12390 /* We haven't found an insn for the death note and it
12391 is still a REG_DEAD note, but we have hit the beginning
12392 of the block. If the existing life info says the reg
12393 was dead, there's nothing left to do. Otherwise, we'll
12394 need to do a global life update after combine. */
12395 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12396 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12397 REGNO (XEXP (note, 0))))
12398 SET_BIT (refresh_blocks, this_basic_block->index);
12399 }
12400
12401 /* If the register is set or already dead at PLACE, we needn't do
12402 anything with this note if it is still a REG_DEAD note.
12403 We check here if it is set at all, not if is it totally replaced,
12404 which is what `dead_or_set_p' checks, so also check for it being
12405 set partially. */
12406
12407 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12408 {
12409 unsigned int regno = REGNO (XEXP (note, 0));
12410
12411 /* Similarly, if the instruction on which we want to place
12412 the note is a noop, we'll need do a global live update
12413 after we remove them in delete_noop_moves. */
12414 if (noop_move_p (place))
12415 SET_BIT (refresh_blocks, this_basic_block->index);
12416
12417 if (dead_or_set_p (place, XEXP (note, 0))
12418 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12419 {
12420 /* Unless the register previously died in PLACE, clear
12421 last_death. [I no longer understand why this is
12422 being done.] */
12423 if (reg_stat[regno].last_death != place)
12424 reg_stat[regno].last_death = 0;
12425 place = 0;
12426 }
12427 else
12428 reg_stat[regno].last_death = place;
12429
12430 /* If this is a death note for a hard reg that is occupying
12431 multiple registers, ensure that we are still using all
12432 parts of the object. If we find a piece of the object
12433 that is unused, we must arrange for an appropriate REG_DEAD
12434 note to be added for it. However, we can't just emit a USE
12435 and tag the note to it, since the register might actually
12436 be dead; so we recourse, and the recursive call then finds
12437 the previous insn that used this register. */
12438
12439 if (place && regno < FIRST_PSEUDO_REGISTER
12440 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12441 {
12442 unsigned int endregno
12443 = regno + hard_regno_nregs[regno]
12444 [GET_MODE (XEXP (note, 0))];
12445 int all_used = 1;
12446 unsigned int i;
12447
12448 for (i = regno; i < endregno; i++)
12449 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12450 && ! find_regno_fusage (place, USE, i))
12451 || dead_or_set_regno_p (place, i))
12452 all_used = 0;
12453
12454 if (! all_used)
12455 {
12456 /* Put only REG_DEAD notes for pieces that are
12457 not already dead or set. */
12458
12459 for (i = regno; i < endregno;
12460 i += hard_regno_nregs[i][reg_raw_mode[i]])
12461 {
12462 rtx piece = regno_reg_rtx[i];
12463 basic_block bb = this_basic_block;
12464
12465 if (! dead_or_set_p (place, piece)
12466 && ! reg_bitfield_target_p (piece,
12467 PATTERN (place)))
12468 {
12469 rtx new_note
12470 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12471
12472 distribute_notes (new_note, place, place,
12473 NULL_RTX, NULL_RTX, NULL_RTX);
12474 }
12475 else if (! refers_to_regno_p (i, i + 1,
12476 PATTERN (place), 0)
12477 && ! find_regno_fusage (place, USE, i))
12478 for (tem = PREV_INSN (place); ;
12479 tem = PREV_INSN (tem))
12480 {
12481 if (! INSN_P (tem))
12482 {
12483 if (tem == BB_HEAD (bb))
12484 {
12485 SET_BIT (refresh_blocks,
12486 this_basic_block->index);
12487 break;
12488 }
12489 continue;
12490 }
12491 if (dead_or_set_p (tem, piece)
12492 || reg_bitfield_target_p (piece,
12493 PATTERN (tem)))
12494 {
12495 REG_NOTES (tem)
12496 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12497 REG_NOTES (tem));
12498 break;
12499 }
12500 }
12501
12502 }
12503
12504 place = 0;
12505 }
12506 }
12507 }
12508 break;
12509
12510 default:
12511 /* Any other notes should not be present at this point in the
12512 compilation. */
12513 gcc_unreachable ();
12514 }
12515
12516 if (place)
12517 {
12518 XEXP (note, 1) = REG_NOTES (place);
12519 REG_NOTES (place) = note;
12520 }
12521 else if ((REG_NOTE_KIND (note) == REG_DEAD
12522 || REG_NOTE_KIND (note) == REG_UNUSED)
12523 && REG_P (XEXP (note, 0)))
12524 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12525
12526 if (place2)
12527 {
12528 if ((REG_NOTE_KIND (note) == REG_DEAD
12529 || REG_NOTE_KIND (note) == REG_UNUSED)
12530 && REG_P (XEXP (note, 0)))
12531 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12532
12533 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12534 REG_NOTE_KIND (note),
12535 XEXP (note, 0),
12536 REG_NOTES (place2));
12537 }
12538 }
12539 }
12540 \f
12541 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12542 I3, I2, and I1 to new locations. This is also called to add a link
12543 pointing at I3 when I3's destination is changed. */
12544
12545 static void
12546 distribute_links (rtx links)
12547 {
12548 rtx link, next_link;
12549
12550 for (link = links; link; link = next_link)
12551 {
12552 rtx place = 0;
12553 rtx insn;
12554 rtx set, reg;
12555
12556 next_link = XEXP (link, 1);
12557
12558 /* If the insn that this link points to is a NOTE or isn't a single
12559 set, ignore it. In the latter case, it isn't clear what we
12560 can do other than ignore the link, since we can't tell which
12561 register it was for. Such links wouldn't be used by combine
12562 anyway.
12563
12564 It is not possible for the destination of the target of the link to
12565 have been changed by combine. The only potential of this is if we
12566 replace I3, I2, and I1 by I3 and I2. But in that case the
12567 destination of I2 also remains unchanged. */
12568
12569 if (NOTE_P (XEXP (link, 0))
12570 || (set = single_set (XEXP (link, 0))) == 0)
12571 continue;
12572
12573 reg = SET_DEST (set);
12574 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12575 || GET_CODE (reg) == STRICT_LOW_PART)
12576 reg = XEXP (reg, 0);
12577
12578 /* A LOG_LINK is defined as being placed on the first insn that uses
12579 a register and points to the insn that sets the register. Start
12580 searching at the next insn after the target of the link and stop
12581 when we reach a set of the register or the end of the basic block.
12582
12583 Note that this correctly handles the link that used to point from
12584 I3 to I2. Also note that not much searching is typically done here
12585 since most links don't point very far away. */
12586
12587 for (insn = NEXT_INSN (XEXP (link, 0));
12588 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12589 || BB_HEAD (this_basic_block->next_bb) != insn));
12590 insn = NEXT_INSN (insn))
12591 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12592 {
12593 if (reg_referenced_p (reg, PATTERN (insn)))
12594 place = insn;
12595 break;
12596 }
12597 else if (CALL_P (insn)
12598 && find_reg_fusage (insn, USE, reg))
12599 {
12600 place = insn;
12601 break;
12602 }
12603 else if (INSN_P (insn) && reg_set_p (reg, insn))
12604 break;
12605
12606 /* If we found a place to put the link, place it there unless there
12607 is already a link to the same insn as LINK at that point. */
12608
12609 if (place)
12610 {
12611 rtx link2;
12612
12613 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12614 if (XEXP (link2, 0) == XEXP (link, 0))
12615 break;
12616
12617 if (link2 == 0)
12618 {
12619 XEXP (link, 1) = LOG_LINKS (place);
12620 LOG_LINKS (place) = link;
12621
12622 /* Set added_links_insn to the earliest insn we added a
12623 link to. */
12624 if (added_links_insn == 0
12625 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12626 added_links_insn = place;
12627 }
12628 }
12629 }
12630 }
12631 \f
12632 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12633 Check whether the expression pointer to by LOC is a register or
12634 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12635 Otherwise return zero. */
12636
12637 static int
12638 unmentioned_reg_p_1 (rtx *loc, void *expr)
12639 {
12640 rtx x = *loc;
12641
12642 if (x != NULL_RTX
12643 && (REG_P (x) || MEM_P (x))
12644 && ! reg_mentioned_p (x, (rtx) expr))
12645 return 1;
12646 return 0;
12647 }
12648
12649 /* Check for any register or memory mentioned in EQUIV that is not
12650 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12651 of EXPR where some registers may have been replaced by constants. */
12652
12653 static bool
12654 unmentioned_reg_p (rtx equiv, rtx expr)
12655 {
12656 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12657 }
12658 \f
12659 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12660
12661 static int
12662 insn_cuid (rtx insn)
12663 {
12664 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12665 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12666 insn = NEXT_INSN (insn);
12667
12668 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12669
12670 return INSN_CUID (insn);
12671 }
12672 \f
12673 void
12674 dump_combine_stats (FILE *file)
12675 {
12676 fprintf
12677 (file,
12678 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12679 combine_attempts, combine_merges, combine_extras, combine_successes);
12680 }
12681
12682 void
12683 dump_combine_total_stats (FILE *file)
12684 {
12685 fprintf
12686 (file,
12687 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12688 total_attempts, total_merges, total_extras, total_successes);
12689 }
12690 \f
12691
12692 static bool
12693 gate_handle_combine (void)
12694 {
12695 return (optimize > 0);
12696 }
12697
12698 /* Try combining insns through substitution. */
12699 static void
12700 rest_of_handle_combine (void)
12701 {
12702 int rebuild_jump_labels_after_combine
12703 = combine_instructions (get_insns (), max_reg_num ());
12704
12705 /* Combining insns may have turned an indirect jump into a
12706 direct jump. Rebuild the JUMP_LABEL fields of jumping
12707 instructions. */
12708 if (rebuild_jump_labels_after_combine)
12709 {
12710 timevar_push (TV_JUMP);
12711 rebuild_jump_labels (get_insns ());
12712 timevar_pop (TV_JUMP);
12713
12714 delete_dead_jumptables ();
12715 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12716 }
12717 }
12718
12719 struct tree_opt_pass pass_combine =
12720 {
12721 "combine", /* name */
12722 gate_handle_combine, /* gate */
12723 rest_of_handle_combine, /* execute */
12724 NULL, /* sub */
12725 NULL, /* next */
12726 0, /* static_pass_number */
12727 TV_COMBINE, /* tv_id */
12728 0, /* properties_required */
12729 0, /* properties_provided */
12730 0, /* properties_destroyed */
12731 0, /* todo_flags_start */
12732 TODO_dump_func |
12733 TODO_ggc_collect, /* todo_flags_finish */
12734 'c' /* letter */
12735 };
12736
This page took 0.685159 seconds and 6 git commands to generate.