]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
c-common.c, [...]: Fix comment formatting.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
99
100 /* Number of attempts to combine instructions in this function. */
101
102 static int combine_attempts;
103
104 /* Number of attempts that got as far as substitution in this function. */
105
106 static int combine_merges;
107
108 /* Number of instructions combined with added SETs in this function. */
109
110 static int combine_extras;
111
112 /* Number of instructions combined in this function. */
113
114 static int combine_successes;
115
116 /* Totals over entire compilation. */
117
118 static int total_attempts, total_merges, total_extras, total_successes;
119
120 \f
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
127
128 static int *uid_cuid;
129 static int max_uid_cuid;
130
131 /* Get the cuid of an insn. */
132
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
135
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
138
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
141
142 /* Maximum register number, which is the size of the tables below. */
143
144 static unsigned int combine_max_regno;
145
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240 };
241
242 static struct reg_stat *reg_stat;
243
244 /* Record the cuid of the last insn that invalidated memory
245 (anything that writes memory, and subroutine calls, but not pushes). */
246
247 static int mem_last_set;
248
249 /* Record the cuid of the last CALL_INSN
250 so we can tell whether a potential combination crosses any calls. */
251
252 static int last_call_cuid;
253
254 /* When `subst' is called, this is the insn that is being modified
255 (by combining in a previous insn). The PATTERN of this insn
256 is still the old pattern partially modified and it should not be
257 looked at, but this may be used to examine the successors of the insn
258 to judge whether a simplification is valid. */
259
260 static rtx subst_insn;
261
262 /* This is the lowest CUID that `subst' is currently dealing with.
263 get_last_value will not return a value if the register was set at or
264 after this CUID. If not for this mechanism, we could get confused if
265 I2 or I1 in try_combine were an insn that used the old value of a register
266 to obtain a new value. In that case, we might erroneously get the
267 new value of the register when we wanted the old one. */
268
269 static int subst_low_cuid;
270
271 /* This contains any hard registers that are used in newpat; reg_dead_at_p
272 must consider all these registers to be always live. */
273
274 static HARD_REG_SET newpat_used_regs;
275
276 /* This is an insn to which a LOG_LINKS entry has been added. If this
277 insn is the earlier than I2 or I3, combine should rescan starting at
278 that location. */
279
280 static rtx added_links_insn;
281
282 /* Basic block in which we are performing combines. */
283 static basic_block this_basic_block;
284
285 /* A bitmap indicating which blocks had registers go dead at entry.
286 After combine, we'll need to re-do global life analysis with
287 those blocks as starting points. */
288 static sbitmap refresh_blocks;
289 \f
290 /* The following array records the insn_rtx_cost for every insn
291 in the instruction stream. */
292
293 static int *uid_insn_cost;
294
295 /* Length of the currently allocated uid_insn_cost array. */
296
297 static int last_insn_cost;
298
299 /* Incremented for each label. */
300
301 static int label_tick;
302
303 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
304 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
305
306 static enum machine_mode nonzero_bits_mode;
307
308 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
309 be safely used. It is zero while computing them and after combine has
310 completed. This former test prevents propagating values based on
311 previously set values, which can be incorrect if a variable is modified
312 in a loop. */
313
314 static int nonzero_sign_valid;
315
316 \f
317 /* Record one modification to rtl structure
318 to be undone by storing old_contents into *where.
319 is_int is 1 if the contents are an int. */
320
321 struct undo
322 {
323 struct undo *next;
324 int is_int;
325 union {rtx r; int i;} old_contents;
326 union {rtx *r; int *i;} where;
327 };
328
329 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
330 num_undo says how many are currently recorded.
331
332 other_insn is nonzero if we have modified some other insn in the process
333 of working on subst_insn. It must be verified too. */
334
335 struct undobuf
336 {
337 struct undo *undos;
338 struct undo *frees;
339 rtx other_insn;
340 };
341
342 static struct undobuf undobuf;
343
344 /* Number of times the pseudo being substituted for
345 was found and replaced. */
346
347 static int n_occurrences;
348
349 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
350 enum machine_mode,
351 unsigned HOST_WIDE_INT,
352 unsigned HOST_WIDE_INT *);
353 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
354 enum machine_mode,
355 unsigned int, unsigned int *);
356 static void do_SUBST (rtx *, rtx);
357 static void do_SUBST_INT (int *, int);
358 static void init_reg_last (void);
359 static void setup_incoming_promotions (void);
360 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
361 static int cant_combine_insn_p (rtx);
362 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
363 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
364 static int contains_muldiv (rtx);
365 static rtx try_combine (rtx, rtx, rtx, int *);
366 static void undo_all (void);
367 static void undo_commit (void);
368 static rtx *find_split_point (rtx *, rtx);
369 static rtx subst (rtx, rtx, rtx, int, int);
370 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
371 static rtx simplify_if_then_else (rtx);
372 static rtx simplify_set (rtx);
373 static rtx simplify_logical (rtx);
374 static rtx expand_compound_operation (rtx);
375 static rtx expand_field_assignment (rtx);
376 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
377 rtx, unsigned HOST_WIDE_INT, int, int, int);
378 static rtx extract_left_shift (rtx, int);
379 static rtx make_compound_operation (rtx, enum rtx_code);
380 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
381 unsigned HOST_WIDE_INT *);
382 static rtx force_to_mode (rtx, enum machine_mode,
383 unsigned HOST_WIDE_INT, rtx, int);
384 static rtx if_then_else_cond (rtx, rtx *, rtx *);
385 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
386 static int rtx_equal_for_field_assignment_p (rtx, rtx);
387 static rtx make_field_assignment (rtx);
388 static rtx apply_distributive_law (rtx);
389 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
390 unsigned HOST_WIDE_INT);
391 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
392 HOST_WIDE_INT, enum machine_mode, int *);
393 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
394 int);
395 static int recog_for_combine (rtx *, rtx, rtx *);
396 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
397 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
417 static enum rtx_code combine_reversed_comparison_code (rtx);
418 static int unmentioned_reg_p_1 (rtx *, void *);
419 static bool unmentioned_reg_p (rtx, rtx);
420 \f
421
422 /* It is not safe to use ordinary gen_lowpart in combine.
423 See comments in gen_lowpart_for_combine. */
424 #undef RTL_HOOKS_GEN_LOWPART
425 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
426
427 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
428 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
429
430 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
431 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
432
433 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
434
435 \f
436 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
437 insn. The substitution can be undone by undo_all. If INTO is already
438 set to NEWVAL, do not record this change. Because computing NEWVAL might
439 also call SUBST, we have to compute it before we put anything into
440 the undo table. */
441
442 static void
443 do_SUBST (rtx *into, rtx newval)
444 {
445 struct undo *buf;
446 rtx oldval = *into;
447
448 if (oldval == newval)
449 return;
450
451 /* We'd like to catch as many invalid transformations here as
452 possible. Unfortunately, there are way too many mode changes
453 that are perfectly valid, so we'd waste too much effort for
454 little gain doing the checks here. Focus on catching invalid
455 transformations involving integer constants. */
456 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
457 && GET_CODE (newval) == CONST_INT)
458 {
459 /* Sanity check that we're replacing oldval with a CONST_INT
460 that is a valid sign-extension for the original mode. */
461 gcc_assert (INTVAL (newval)
462 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
463
464 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
465 CONST_INT is not valid, because after the replacement, the
466 original mode would be gone. Unfortunately, we can't tell
467 when do_SUBST is called to replace the operand thereof, so we
468 perform this test on oldval instead, checking whether an
469 invalid replacement took place before we got here. */
470 gcc_assert (!(GET_CODE (oldval) == SUBREG
471 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
472 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
473 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
474 }
475
476 if (undobuf.frees)
477 buf = undobuf.frees, undobuf.frees = buf->next;
478 else
479 buf = xmalloc (sizeof (struct undo));
480
481 buf->is_int = 0;
482 buf->where.r = into;
483 buf->old_contents.r = oldval;
484 *into = newval;
485
486 buf->next = undobuf.undos, undobuf.undos = buf;
487 }
488
489 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
490
491 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
492 for the value of a HOST_WIDE_INT value (including CONST_INT) is
493 not safe. */
494
495 static void
496 do_SUBST_INT (int *into, int newval)
497 {
498 struct undo *buf;
499 int oldval = *into;
500
501 if (oldval == newval)
502 return;
503
504 if (undobuf.frees)
505 buf = undobuf.frees, undobuf.frees = buf->next;
506 else
507 buf = xmalloc (sizeof (struct undo));
508
509 buf->is_int = 1;
510 buf->where.i = into;
511 buf->old_contents.i = oldval;
512 *into = newval;
513
514 buf->next = undobuf.undos, undobuf.undos = buf;
515 }
516
517 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
518 \f
519 /* Subroutine of try_combine. Determine whether the combine replacement
520 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
521 that the original instruction sequence I1, I2 and I3. Note that I1
522 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
523 costs of all instructions can be estimated, and the replacements are
524 more expensive than the original sequence. */
525
526 static bool
527 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
528 {
529 int i1_cost, i2_cost, i3_cost;
530 int new_i2_cost, new_i3_cost;
531 int old_cost, new_cost;
532
533 /* Lookup the original insn_rtx_costs. */
534 i2_cost = INSN_UID (i2) <= last_insn_cost
535 ? uid_insn_cost[INSN_UID (i2)] : 0;
536 i3_cost = INSN_UID (i3) <= last_insn_cost
537 ? uid_insn_cost[INSN_UID (i3)] : 0;
538
539 if (i1)
540 {
541 i1_cost = INSN_UID (i1) <= last_insn_cost
542 ? uid_insn_cost[INSN_UID (i1)] : 0;
543 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
544 ? i1_cost + i2_cost + i3_cost : 0;
545 }
546 else
547 {
548 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
549 i1_cost = 0;
550 }
551
552 /* Calculate the replacement insn_rtx_costs. */
553 new_i3_cost = insn_rtx_cost (newpat);
554 if (newi2pat)
555 {
556 new_i2_cost = insn_rtx_cost (newi2pat);
557 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
558 ? new_i2_cost + new_i3_cost : 0;
559 }
560 else
561 {
562 new_cost = new_i3_cost;
563 new_i2_cost = 0;
564 }
565
566 if (undobuf.other_insn)
567 {
568 int old_other_cost, new_other_cost;
569
570 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
571 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
572 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
573 if (old_other_cost > 0 && new_other_cost > 0)
574 {
575 old_cost += old_other_cost;
576 new_cost += new_other_cost;
577 }
578 else
579 old_cost = 0;
580 }
581
582 /* Disallow this recombination if both new_cost and old_cost are
583 greater than zero, and new_cost is greater than old cost. */
584 if (old_cost > 0
585 && new_cost > old_cost)
586 {
587 if (dump_file)
588 {
589 if (i1)
590 {
591 fprintf (dump_file,
592 "rejecting combination of insns %d, %d and %d\n",
593 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
594 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
595 i1_cost, i2_cost, i3_cost, old_cost);
596 }
597 else
598 {
599 fprintf (dump_file,
600 "rejecting combination of insns %d and %d\n",
601 INSN_UID (i2), INSN_UID (i3));
602 fprintf (dump_file, "original costs %d + %d = %d\n",
603 i2_cost, i3_cost, old_cost);
604 }
605
606 if (newi2pat)
607 {
608 fprintf (dump_file, "replacement costs %d + %d = %d\n",
609 new_i2_cost, new_i3_cost, new_cost);
610 }
611 else
612 fprintf (dump_file, "replacement cost %d\n", new_cost);
613 }
614
615 return false;
616 }
617
618 /* Update the uid_insn_cost array with the replacement costs. */
619 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
620 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
621 if (i1)
622 uid_insn_cost[INSN_UID (i1)] = 0;
623
624 return true;
625 }
626 \f
627 /* Main entry point for combiner. F is the first insn of the function.
628 NREGS is the first unused pseudo-reg number.
629
630 Return nonzero if the combiner has turned an indirect jump
631 instruction into a direct jump. */
632 int
633 combine_instructions (rtx f, unsigned int nregs)
634 {
635 rtx insn, next;
636 #ifdef HAVE_cc0
637 rtx prev;
638 #endif
639 int i;
640 rtx links, nextlinks;
641
642 int new_direct_jump_p = 0;
643
644 combine_attempts = 0;
645 combine_merges = 0;
646 combine_extras = 0;
647 combine_successes = 0;
648
649 combine_max_regno = nregs;
650
651 rtl_hooks = combine_rtl_hooks;
652
653 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
654
655 init_recog_no_volatile ();
656
657 /* Compute maximum uid value so uid_cuid can be allocated. */
658
659 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
660 if (INSN_UID (insn) > i)
661 i = INSN_UID (insn);
662
663 uid_cuid = xmalloc ((i + 1) * sizeof (int));
664 max_uid_cuid = i;
665
666 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
667
668 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
669 problems when, for example, we have j <<= 1 in a loop. */
670
671 nonzero_sign_valid = 0;
672
673 /* Compute the mapping from uids to cuids.
674 Cuids are numbers assigned to insns, like uids,
675 except that cuids increase monotonically through the code.
676
677 Scan all SETs and see if we can deduce anything about what
678 bits are known to be zero for some registers and how many copies
679 of the sign bit are known to exist for those registers.
680
681 Also set any known values so that we can use it while searching
682 for what bits are known to be set. */
683
684 label_tick = 1;
685
686 setup_incoming_promotions ();
687
688 refresh_blocks = sbitmap_alloc (last_basic_block);
689 sbitmap_zero (refresh_blocks);
690
691 /* Allocate array of current insn_rtx_costs. */
692 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
693 last_insn_cost = max_uid_cuid;
694
695 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
696 {
697 uid_cuid[INSN_UID (insn)] = ++i;
698 subst_low_cuid = i;
699 subst_insn = insn;
700
701 if (INSN_P (insn))
702 {
703 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
704 NULL);
705 record_dead_and_set_regs (insn);
706
707 #ifdef AUTO_INC_DEC
708 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
709 if (REG_NOTE_KIND (links) == REG_INC)
710 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
711 NULL);
712 #endif
713
714 /* Record the current insn_rtx_cost of this instruction. */
715 if (NONJUMP_INSN_P (insn))
716 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
717 if (dump_file)
718 fprintf(dump_file, "insn_cost %d: %d\n",
719 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
720 }
721
722 if (LABEL_P (insn))
723 label_tick++;
724 }
725
726 nonzero_sign_valid = 1;
727
728 /* Now scan all the insns in forward order. */
729
730 label_tick = 1;
731 last_call_cuid = 0;
732 mem_last_set = 0;
733 init_reg_last ();
734 setup_incoming_promotions ();
735
736 FOR_EACH_BB (this_basic_block)
737 {
738 for (insn = BB_HEAD (this_basic_block);
739 insn != NEXT_INSN (BB_END (this_basic_block));
740 insn = next ? next : NEXT_INSN (insn))
741 {
742 next = 0;
743
744 if (LABEL_P (insn))
745 label_tick++;
746
747 else if (INSN_P (insn))
748 {
749 /* See if we know about function return values before this
750 insn based upon SUBREG flags. */
751 check_promoted_subreg (insn, PATTERN (insn));
752
753 /* Try this insn with each insn it links back to. */
754
755 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
756 if ((next = try_combine (insn, XEXP (links, 0),
757 NULL_RTX, &new_direct_jump_p)) != 0)
758 goto retry;
759
760 /* Try each sequence of three linked insns ending with this one. */
761
762 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
763 {
764 rtx link = XEXP (links, 0);
765
766 /* If the linked insn has been replaced by a note, then there
767 is no point in pursuing this chain any further. */
768 if (NOTE_P (link))
769 continue;
770
771 for (nextlinks = LOG_LINKS (link);
772 nextlinks;
773 nextlinks = XEXP (nextlinks, 1))
774 if ((next = try_combine (insn, link,
775 XEXP (nextlinks, 0),
776 &new_direct_jump_p)) != 0)
777 goto retry;
778 }
779
780 #ifdef HAVE_cc0
781 /* Try to combine a jump insn that uses CC0
782 with a preceding insn that sets CC0, and maybe with its
783 logical predecessor as well.
784 This is how we make decrement-and-branch insns.
785 We need this special code because data flow connections
786 via CC0 do not get entered in LOG_LINKS. */
787
788 if (JUMP_P (insn)
789 && (prev = prev_nonnote_insn (insn)) != 0
790 && NONJUMP_INSN_P (prev)
791 && sets_cc0_p (PATTERN (prev)))
792 {
793 if ((next = try_combine (insn, prev,
794 NULL_RTX, &new_direct_jump_p)) != 0)
795 goto retry;
796
797 for (nextlinks = LOG_LINKS (prev); nextlinks;
798 nextlinks = XEXP (nextlinks, 1))
799 if ((next = try_combine (insn, prev,
800 XEXP (nextlinks, 0),
801 &new_direct_jump_p)) != 0)
802 goto retry;
803 }
804
805 /* Do the same for an insn that explicitly references CC0. */
806 if (NONJUMP_INSN_P (insn)
807 && (prev = prev_nonnote_insn (insn)) != 0
808 && NONJUMP_INSN_P (prev)
809 && sets_cc0_p (PATTERN (prev))
810 && GET_CODE (PATTERN (insn)) == SET
811 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
812 {
813 if ((next = try_combine (insn, prev,
814 NULL_RTX, &new_direct_jump_p)) != 0)
815 goto retry;
816
817 for (nextlinks = LOG_LINKS (prev); nextlinks;
818 nextlinks = XEXP (nextlinks, 1))
819 if ((next = try_combine (insn, prev,
820 XEXP (nextlinks, 0),
821 &new_direct_jump_p)) != 0)
822 goto retry;
823 }
824
825 /* Finally, see if any of the insns that this insn links to
826 explicitly references CC0. If so, try this insn, that insn,
827 and its predecessor if it sets CC0. */
828 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
829 if (NONJUMP_INSN_P (XEXP (links, 0))
830 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
831 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
832 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
833 && NONJUMP_INSN_P (prev)
834 && sets_cc0_p (PATTERN (prev))
835 && (next = try_combine (insn, XEXP (links, 0),
836 prev, &new_direct_jump_p)) != 0)
837 goto retry;
838 #endif
839
840 /* Try combining an insn with two different insns whose results it
841 uses. */
842 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
843 for (nextlinks = XEXP (links, 1); nextlinks;
844 nextlinks = XEXP (nextlinks, 1))
845 if ((next = try_combine (insn, XEXP (links, 0),
846 XEXP (nextlinks, 0),
847 &new_direct_jump_p)) != 0)
848 goto retry;
849
850 /* Try this insn with each REG_EQUAL note it links back to. */
851 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
852 {
853 rtx set, note;
854 rtx temp = XEXP (links, 0);
855 if ((set = single_set (temp)) != 0
856 && (note = find_reg_equal_equiv_note (temp)) != 0
857 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
858 /* Avoid using a register that may already been marked
859 dead by an earlier instruction. */
860 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
861 {
862 /* Temporarily replace the set's source with the
863 contents of the REG_EQUAL note. The insn will
864 be deleted or recognized by try_combine. */
865 rtx orig = SET_SRC (set);
866 SET_SRC (set) = XEXP (note, 0);
867 next = try_combine (insn, temp, NULL_RTX,
868 &new_direct_jump_p);
869 if (next)
870 goto retry;
871 SET_SRC (set) = orig;
872 }
873 }
874
875 if (!NOTE_P (insn))
876 record_dead_and_set_regs (insn);
877
878 retry:
879 ;
880 }
881 }
882 }
883 clear_bb_flags ();
884
885 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
886 BASIC_BLOCK (i)->flags |= BB_DIRTY);
887 new_direct_jump_p |= purge_all_dead_edges (0);
888 delete_noop_moves ();
889
890 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
891 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
892 | PROP_KILL_DEAD_CODE);
893
894 /* Clean up. */
895 sbitmap_free (refresh_blocks);
896 free (uid_insn_cost);
897 free (reg_stat);
898 free (uid_cuid);
899
900 {
901 struct undo *undo, *next;
902 for (undo = undobuf.frees; undo; undo = next)
903 {
904 next = undo->next;
905 free (undo);
906 }
907 undobuf.frees = 0;
908 }
909
910 total_attempts += combine_attempts;
911 total_merges += combine_merges;
912 total_extras += combine_extras;
913 total_successes += combine_successes;
914
915 nonzero_sign_valid = 0;
916 rtl_hooks = general_rtl_hooks;
917
918 /* Make recognizer allow volatile MEMs again. */
919 init_recog ();
920
921 return new_direct_jump_p;
922 }
923
924 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
925
926 static void
927 init_reg_last (void)
928 {
929 unsigned int i;
930 for (i = 0; i < combine_max_regno; i++)
931 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
932 }
933 \f
934 /* Set up any promoted values for incoming argument registers. */
935
936 static void
937 setup_incoming_promotions (void)
938 {
939 unsigned int regno;
940 rtx reg;
941 enum machine_mode mode;
942 int unsignedp;
943 rtx first = get_insns ();
944
945 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
946 {
947 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
948 /* Check whether this register can hold an incoming pointer
949 argument. FUNCTION_ARG_REGNO_P tests outgoing register
950 numbers, so translate if necessary due to register windows. */
951 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
952 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
953 {
954 record_value_for_reg
955 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
956 : SIGN_EXTEND),
957 GET_MODE (reg),
958 gen_rtx_CLOBBER (mode, const0_rtx)));
959 }
960 }
961 }
962 \f
963 /* Called via note_stores. If X is a pseudo that is narrower than
964 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
965
966 If we are setting only a portion of X and we can't figure out what
967 portion, assume all bits will be used since we don't know what will
968 be happening.
969
970 Similarly, set how many bits of X are known to be copies of the sign bit
971 at all locations in the function. This is the smallest number implied
972 by any set of X. */
973
974 static void
975 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
976 void *data ATTRIBUTE_UNUSED)
977 {
978 unsigned int num;
979
980 if (REG_P (x)
981 && REGNO (x) >= FIRST_PSEUDO_REGISTER
982 /* If this register is undefined at the start of the file, we can't
983 say what its contents were. */
984 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
985 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
986 {
987 if (set == 0 || GET_CODE (set) == CLOBBER)
988 {
989 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
990 reg_stat[REGNO (x)].sign_bit_copies = 1;
991 return;
992 }
993
994 /* If this is a complex assignment, see if we can convert it into a
995 simple assignment. */
996 set = expand_field_assignment (set);
997
998 /* If this is a simple assignment, or we have a paradoxical SUBREG,
999 set what we know about X. */
1000
1001 if (SET_DEST (set) == x
1002 || (GET_CODE (SET_DEST (set)) == SUBREG
1003 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1004 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1005 && SUBREG_REG (SET_DEST (set)) == x))
1006 {
1007 rtx src = SET_SRC (set);
1008
1009 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1010 /* If X is narrower than a word and SRC is a non-negative
1011 constant that would appear negative in the mode of X,
1012 sign-extend it for use in reg_stat[].nonzero_bits because some
1013 machines (maybe most) will actually do the sign-extension
1014 and this is the conservative approach.
1015
1016 ??? For 2.5, try to tighten up the MD files in this regard
1017 instead of this kludge. */
1018
1019 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1020 && GET_CODE (src) == CONST_INT
1021 && INTVAL (src) > 0
1022 && 0 != (INTVAL (src)
1023 & ((HOST_WIDE_INT) 1
1024 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1025 src = GEN_INT (INTVAL (src)
1026 | ((HOST_WIDE_INT) (-1)
1027 << GET_MODE_BITSIZE (GET_MODE (x))));
1028 #endif
1029
1030 /* Don't call nonzero_bits if it cannot change anything. */
1031 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1032 reg_stat[REGNO (x)].nonzero_bits
1033 |= nonzero_bits (src, nonzero_bits_mode);
1034 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1035 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1036 || reg_stat[REGNO (x)].sign_bit_copies > num)
1037 reg_stat[REGNO (x)].sign_bit_copies = num;
1038 }
1039 else
1040 {
1041 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1042 reg_stat[REGNO (x)].sign_bit_copies = 1;
1043 }
1044 }
1045 }
1046 \f
1047 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1048 insns that were previously combined into I3 or that will be combined
1049 into the merger of INSN and I3.
1050
1051 Return 0 if the combination is not allowed for any reason.
1052
1053 If the combination is allowed, *PDEST will be set to the single
1054 destination of INSN and *PSRC to the single source, and this function
1055 will return 1. */
1056
1057 static int
1058 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1059 rtx *pdest, rtx *psrc)
1060 {
1061 int i;
1062 rtx set = 0, src, dest;
1063 rtx p;
1064 #ifdef AUTO_INC_DEC
1065 rtx link;
1066 #endif
1067 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1068 && next_active_insn (succ) == i3)
1069 : next_active_insn (insn) == i3);
1070
1071 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1072 or a PARALLEL consisting of such a SET and CLOBBERs.
1073
1074 If INSN has CLOBBER parallel parts, ignore them for our processing.
1075 By definition, these happen during the execution of the insn. When it
1076 is merged with another insn, all bets are off. If they are, in fact,
1077 needed and aren't also supplied in I3, they may be added by
1078 recog_for_combine. Otherwise, it won't match.
1079
1080 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1081 note.
1082
1083 Get the source and destination of INSN. If more than one, can't
1084 combine. */
1085
1086 if (GET_CODE (PATTERN (insn)) == SET)
1087 set = PATTERN (insn);
1088 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1089 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1090 {
1091 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1092 {
1093 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1094 rtx note;
1095
1096 switch (GET_CODE (elt))
1097 {
1098 /* This is important to combine floating point insns
1099 for the SH4 port. */
1100 case USE:
1101 /* Combining an isolated USE doesn't make sense.
1102 We depend here on combinable_i3pat to reject them. */
1103 /* The code below this loop only verifies that the inputs of
1104 the SET in INSN do not change. We call reg_set_between_p
1105 to verify that the REG in the USE does not change between
1106 I3 and INSN.
1107 If the USE in INSN was for a pseudo register, the matching
1108 insn pattern will likely match any register; combining this
1109 with any other USE would only be safe if we knew that the
1110 used registers have identical values, or if there was
1111 something to tell them apart, e.g. different modes. For
1112 now, we forgo such complicated tests and simply disallow
1113 combining of USES of pseudo registers with any other USE. */
1114 if (REG_P (XEXP (elt, 0))
1115 && GET_CODE (PATTERN (i3)) == PARALLEL)
1116 {
1117 rtx i3pat = PATTERN (i3);
1118 int i = XVECLEN (i3pat, 0) - 1;
1119 unsigned int regno = REGNO (XEXP (elt, 0));
1120
1121 do
1122 {
1123 rtx i3elt = XVECEXP (i3pat, 0, i);
1124
1125 if (GET_CODE (i3elt) == USE
1126 && REG_P (XEXP (i3elt, 0))
1127 && (REGNO (XEXP (i3elt, 0)) == regno
1128 ? reg_set_between_p (XEXP (elt, 0),
1129 PREV_INSN (insn), i3)
1130 : regno >= FIRST_PSEUDO_REGISTER))
1131 return 0;
1132 }
1133 while (--i >= 0);
1134 }
1135 break;
1136
1137 /* We can ignore CLOBBERs. */
1138 case CLOBBER:
1139 break;
1140
1141 case SET:
1142 /* Ignore SETs whose result isn't used but not those that
1143 have side-effects. */
1144 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1145 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1146 || INTVAL (XEXP (note, 0)) <= 0)
1147 && ! side_effects_p (elt))
1148 break;
1149
1150 /* If we have already found a SET, this is a second one and
1151 so we cannot combine with this insn. */
1152 if (set)
1153 return 0;
1154
1155 set = elt;
1156 break;
1157
1158 default:
1159 /* Anything else means we can't combine. */
1160 return 0;
1161 }
1162 }
1163
1164 if (set == 0
1165 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1166 so don't do anything with it. */
1167 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1168 return 0;
1169 }
1170 else
1171 return 0;
1172
1173 if (set == 0)
1174 return 0;
1175
1176 set = expand_field_assignment (set);
1177 src = SET_SRC (set), dest = SET_DEST (set);
1178
1179 /* Don't eliminate a store in the stack pointer. */
1180 if (dest == stack_pointer_rtx
1181 /* Don't combine with an insn that sets a register to itself if it has
1182 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1183 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1184 /* Can't merge an ASM_OPERANDS. */
1185 || GET_CODE (src) == ASM_OPERANDS
1186 /* Can't merge a function call. */
1187 || GET_CODE (src) == CALL
1188 /* Don't eliminate a function call argument. */
1189 || (CALL_P (i3)
1190 && (find_reg_fusage (i3, USE, dest)
1191 || (REG_P (dest)
1192 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1193 && global_regs[REGNO (dest)])))
1194 /* Don't substitute into an incremented register. */
1195 || FIND_REG_INC_NOTE (i3, dest)
1196 || (succ && FIND_REG_INC_NOTE (succ, dest))
1197 /* Don't substitute into a non-local goto, this confuses CFG. */
1198 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1199 #if 0
1200 /* Don't combine the end of a libcall into anything. */
1201 /* ??? This gives worse code, and appears to be unnecessary, since no
1202 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1203 use REG_RETVAL notes for noconflict blocks, but other code here
1204 makes sure that those insns don't disappear. */
1205 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1206 #endif
1207 /* Make sure that DEST is not used after SUCC but before I3. */
1208 || (succ && ! all_adjacent
1209 && reg_used_between_p (dest, succ, i3))
1210 /* Make sure that the value that is to be substituted for the register
1211 does not use any registers whose values alter in between. However,
1212 If the insns are adjacent, a use can't cross a set even though we
1213 think it might (this can happen for a sequence of insns each setting
1214 the same destination; last_set of that register might point to
1215 a NOTE). If INSN has a REG_EQUIV note, the register is always
1216 equivalent to the memory so the substitution is valid even if there
1217 are intervening stores. Also, don't move a volatile asm or
1218 UNSPEC_VOLATILE across any other insns. */
1219 || (! all_adjacent
1220 && (((!MEM_P (src)
1221 || ! find_reg_note (insn, REG_EQUIV, src))
1222 && use_crosses_set_p (src, INSN_CUID (insn)))
1223 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1224 || GET_CODE (src) == UNSPEC_VOLATILE))
1225 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1226 better register allocation by not doing the combine. */
1227 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1228 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1229 /* Don't combine across a CALL_INSN, because that would possibly
1230 change whether the life span of some REGs crosses calls or not,
1231 and it is a pain to update that information.
1232 Exception: if source is a constant, moving it later can't hurt.
1233 Accept that special case, because it helps -fforce-addr a lot. */
1234 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1235 return 0;
1236
1237 /* DEST must either be a REG or CC0. */
1238 if (REG_P (dest))
1239 {
1240 /* If register alignment is being enforced for multi-word items in all
1241 cases except for parameters, it is possible to have a register copy
1242 insn referencing a hard register that is not allowed to contain the
1243 mode being copied and which would not be valid as an operand of most
1244 insns. Eliminate this problem by not combining with such an insn.
1245
1246 Also, on some machines we don't want to extend the life of a hard
1247 register. */
1248
1249 if (REG_P (src)
1250 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1251 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1252 /* Don't extend the life of a hard register unless it is
1253 user variable (if we have few registers) or it can't
1254 fit into the desired register (meaning something special
1255 is going on).
1256 Also avoid substituting a return register into I3, because
1257 reload can't handle a conflict with constraints of other
1258 inputs. */
1259 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1260 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1261 return 0;
1262 }
1263 else if (GET_CODE (dest) != CC0)
1264 return 0;
1265
1266
1267 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1268 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1269 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1270 {
1271 /* Don't substitute for a register intended as a clobberable
1272 operand. */
1273 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1274 if (rtx_equal_p (reg, dest))
1275 return 0;
1276
1277 /* If the clobber represents an earlyclobber operand, we must not
1278 substitute an expression containing the clobbered register.
1279 As we do not analyze the constraint strings here, we have to
1280 make the conservative assumption. However, if the register is
1281 a fixed hard reg, the clobber cannot represent any operand;
1282 we leave it up to the machine description to either accept or
1283 reject use-and-clobber patterns. */
1284 if (!REG_P (reg)
1285 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1286 || !fixed_regs[REGNO (reg)])
1287 if (reg_overlap_mentioned_p (reg, src))
1288 return 0;
1289 }
1290
1291 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1292 or not), reject, unless nothing volatile comes between it and I3 */
1293
1294 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1295 {
1296 /* Make sure succ doesn't contain a volatile reference. */
1297 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1298 return 0;
1299
1300 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1301 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1302 return 0;
1303 }
1304
1305 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1306 to be an explicit register variable, and was chosen for a reason. */
1307
1308 if (GET_CODE (src) == ASM_OPERANDS
1309 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1310 return 0;
1311
1312 /* If there are any volatile insns between INSN and I3, reject, because
1313 they might affect machine state. */
1314
1315 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1316 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1317 return 0;
1318
1319 /* If INSN or I2 contains an autoincrement or autodecrement,
1320 make sure that register is not used between there and I3,
1321 and not already used in I3 either.
1322 Also insist that I3 not be a jump; if it were one
1323 and the incremented register were spilled, we would lose. */
1324
1325 #ifdef AUTO_INC_DEC
1326 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1327 if (REG_NOTE_KIND (link) == REG_INC
1328 && (JUMP_P (i3)
1329 || reg_used_between_p (XEXP (link, 0), insn, i3)
1330 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1331 return 0;
1332 #endif
1333
1334 #ifdef HAVE_cc0
1335 /* Don't combine an insn that follows a CC0-setting insn.
1336 An insn that uses CC0 must not be separated from the one that sets it.
1337 We do, however, allow I2 to follow a CC0-setting insn if that insn
1338 is passed as I1; in that case it will be deleted also.
1339 We also allow combining in this case if all the insns are adjacent
1340 because that would leave the two CC0 insns adjacent as well.
1341 It would be more logical to test whether CC0 occurs inside I1 or I2,
1342 but that would be much slower, and this ought to be equivalent. */
1343
1344 p = prev_nonnote_insn (insn);
1345 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1346 && ! all_adjacent)
1347 return 0;
1348 #endif
1349
1350 /* If we get here, we have passed all the tests and the combination is
1351 to be allowed. */
1352
1353 *pdest = dest;
1354 *psrc = src;
1355
1356 return 1;
1357 }
1358 \f
1359 /* LOC is the location within I3 that contains its pattern or the component
1360 of a PARALLEL of the pattern. We validate that it is valid for combining.
1361
1362 One problem is if I3 modifies its output, as opposed to replacing it
1363 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1364 so would produce an insn that is not equivalent to the original insns.
1365
1366 Consider:
1367
1368 (set (reg:DI 101) (reg:DI 100))
1369 (set (subreg:SI (reg:DI 101) 0) <foo>)
1370
1371 This is NOT equivalent to:
1372
1373 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1374 (set (reg:DI 101) (reg:DI 100))])
1375
1376 Not only does this modify 100 (in which case it might still be valid
1377 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1378
1379 We can also run into a problem if I2 sets a register that I1
1380 uses and I1 gets directly substituted into I3 (not via I2). In that
1381 case, we would be getting the wrong value of I2DEST into I3, so we
1382 must reject the combination. This case occurs when I2 and I1 both
1383 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1384 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1385 of a SET must prevent combination from occurring.
1386
1387 Before doing the above check, we first try to expand a field assignment
1388 into a set of logical operations.
1389
1390 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1391 we place a register that is both set and used within I3. If more than one
1392 such register is detected, we fail.
1393
1394 Return 1 if the combination is valid, zero otherwise. */
1395
1396 static int
1397 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1398 int i1_not_in_src, rtx *pi3dest_killed)
1399 {
1400 rtx x = *loc;
1401
1402 if (GET_CODE (x) == SET)
1403 {
1404 rtx set = x ;
1405 rtx dest = SET_DEST (set);
1406 rtx src = SET_SRC (set);
1407 rtx inner_dest = dest;
1408
1409 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1410 || GET_CODE (inner_dest) == SUBREG
1411 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1412 inner_dest = XEXP (inner_dest, 0);
1413
1414 /* Check for the case where I3 modifies its output, as discussed
1415 above. We don't want to prevent pseudos from being combined
1416 into the address of a MEM, so only prevent the combination if
1417 i1 or i2 set the same MEM. */
1418 if ((inner_dest != dest &&
1419 (!MEM_P (inner_dest)
1420 || rtx_equal_p (i2dest, inner_dest)
1421 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1422 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1423 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1424
1425 /* This is the same test done in can_combine_p except we can't test
1426 all_adjacent; we don't have to, since this instruction will stay
1427 in place, thus we are not considering increasing the lifetime of
1428 INNER_DEST.
1429
1430 Also, if this insn sets a function argument, combining it with
1431 something that might need a spill could clobber a previous
1432 function argument; the all_adjacent test in can_combine_p also
1433 checks this; here, we do a more specific test for this case. */
1434
1435 || (REG_P (inner_dest)
1436 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1437 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1438 GET_MODE (inner_dest))))
1439 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1440 return 0;
1441
1442 /* If DEST is used in I3, it is being killed in this insn,
1443 so record that for later.
1444 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1445 STACK_POINTER_REGNUM, since these are always considered to be
1446 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1447 if (pi3dest_killed && REG_P (dest)
1448 && reg_referenced_p (dest, PATTERN (i3))
1449 && REGNO (dest) != FRAME_POINTER_REGNUM
1450 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1451 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1452 #endif
1453 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1454 && (REGNO (dest) != ARG_POINTER_REGNUM
1455 || ! fixed_regs [REGNO (dest)])
1456 #endif
1457 && REGNO (dest) != STACK_POINTER_REGNUM)
1458 {
1459 if (*pi3dest_killed)
1460 return 0;
1461
1462 *pi3dest_killed = dest;
1463 }
1464 }
1465
1466 else if (GET_CODE (x) == PARALLEL)
1467 {
1468 int i;
1469
1470 for (i = 0; i < XVECLEN (x, 0); i++)
1471 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1472 i1_not_in_src, pi3dest_killed))
1473 return 0;
1474 }
1475
1476 return 1;
1477 }
1478 \f
1479 /* Return 1 if X is an arithmetic expression that contains a multiplication
1480 and division. We don't count multiplications by powers of two here. */
1481
1482 static int
1483 contains_muldiv (rtx x)
1484 {
1485 switch (GET_CODE (x))
1486 {
1487 case MOD: case DIV: case UMOD: case UDIV:
1488 return 1;
1489
1490 case MULT:
1491 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1492 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1493 default:
1494 if (BINARY_P (x))
1495 return contains_muldiv (XEXP (x, 0))
1496 || contains_muldiv (XEXP (x, 1));
1497
1498 if (UNARY_P (x))
1499 return contains_muldiv (XEXP (x, 0));
1500
1501 return 0;
1502 }
1503 }
1504 \f
1505 /* Determine whether INSN can be used in a combination. Return nonzero if
1506 not. This is used in try_combine to detect early some cases where we
1507 can't perform combinations. */
1508
1509 static int
1510 cant_combine_insn_p (rtx insn)
1511 {
1512 rtx set;
1513 rtx src, dest;
1514
1515 /* If this isn't really an insn, we can't do anything.
1516 This can occur when flow deletes an insn that it has merged into an
1517 auto-increment address. */
1518 if (! INSN_P (insn))
1519 return 1;
1520
1521 /* Never combine loads and stores involving hard regs that are likely
1522 to be spilled. The register allocator can usually handle such
1523 reg-reg moves by tying. If we allow the combiner to make
1524 substitutions of likely-spilled regs, we may abort in reload.
1525 As an exception, we allow combinations involving fixed regs; these are
1526 not available to the register allocator so there's no risk involved. */
1527
1528 set = single_set (insn);
1529 if (! set)
1530 return 0;
1531 src = SET_SRC (set);
1532 dest = SET_DEST (set);
1533 if (GET_CODE (src) == SUBREG)
1534 src = SUBREG_REG (src);
1535 if (GET_CODE (dest) == SUBREG)
1536 dest = SUBREG_REG (dest);
1537 if (REG_P (src) && REG_P (dest)
1538 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1539 && ! fixed_regs[REGNO (src)]
1540 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1541 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1542 && ! fixed_regs[REGNO (dest)]
1543 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1544 return 1;
1545
1546 return 0;
1547 }
1548
1549 /* Adjust INSN after we made a change to its destination.
1550
1551 Changing the destination can invalidate notes that say something about
1552 the results of the insn and a LOG_LINK pointing to the insn. */
1553
1554 static void
1555 adjust_for_new_dest (rtx insn)
1556 {
1557 rtx *loc;
1558
1559 /* For notes, be conservative and simply remove them. */
1560 loc = &REG_NOTES (insn);
1561 while (*loc)
1562 {
1563 enum reg_note kind = REG_NOTE_KIND (*loc);
1564 if (kind == REG_EQUAL || kind == REG_EQUIV)
1565 *loc = XEXP (*loc, 1);
1566 else
1567 loc = &XEXP (*loc, 1);
1568 }
1569
1570 /* The new insn will have a destination that was previously the destination
1571 of an insn just above it. Call distribute_links to make a LOG_LINK from
1572 the next use of that destination. */
1573 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1574 }
1575
1576 /* Try to combine the insns I1 and I2 into I3.
1577 Here I1 and I2 appear earlier than I3.
1578 I1 can be zero; then we combine just I2 into I3.
1579
1580 If we are combining three insns and the resulting insn is not recognized,
1581 try splitting it into two insns. If that happens, I2 and I3 are retained
1582 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1583 are pseudo-deleted.
1584
1585 Return 0 if the combination does not work. Then nothing is changed.
1586 If we did the combination, return the insn at which combine should
1587 resume scanning.
1588
1589 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1590 new direct jump instruction. */
1591
1592 static rtx
1593 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1594 {
1595 /* New patterns for I3 and I2, respectively. */
1596 rtx newpat, newi2pat = 0;
1597 int substed_i2 = 0, substed_i1 = 0;
1598 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1599 int added_sets_1, added_sets_2;
1600 /* Total number of SETs to put into I3. */
1601 int total_sets;
1602 /* Nonzero if I2's body now appears in I3. */
1603 int i2_is_used;
1604 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1605 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1606 /* Contains I3 if the destination of I3 is used in its source, which means
1607 that the old life of I3 is being killed. If that usage is placed into
1608 I2 and not in I3, a REG_DEAD note must be made. */
1609 rtx i3dest_killed = 0;
1610 /* SET_DEST and SET_SRC of I2 and I1. */
1611 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1612 /* PATTERN (I2), or a copy of it in certain cases. */
1613 rtx i2pat;
1614 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1615 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1616 int i1_feeds_i3 = 0;
1617 /* Notes that must be added to REG_NOTES in I3 and I2. */
1618 rtx new_i3_notes, new_i2_notes;
1619 /* Notes that we substituted I3 into I2 instead of the normal case. */
1620 int i3_subst_into_i2 = 0;
1621 /* Notes that I1, I2 or I3 is a MULT operation. */
1622 int have_mult = 0;
1623 int swap_i2i3 = 0;
1624
1625 int maxreg;
1626 rtx temp;
1627 rtx link;
1628 int i;
1629
1630 /* Exit early if one of the insns involved can't be used for
1631 combinations. */
1632 if (cant_combine_insn_p (i3)
1633 || cant_combine_insn_p (i2)
1634 || (i1 && cant_combine_insn_p (i1))
1635 /* We also can't do anything if I3 has a
1636 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1637 libcall. */
1638 #if 0
1639 /* ??? This gives worse code, and appears to be unnecessary, since no
1640 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1641 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1642 #endif
1643 )
1644 return 0;
1645
1646 combine_attempts++;
1647 undobuf.other_insn = 0;
1648
1649 /* Reset the hard register usage information. */
1650 CLEAR_HARD_REG_SET (newpat_used_regs);
1651
1652 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1653 code below, set I1 to be the earlier of the two insns. */
1654 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1655 temp = i1, i1 = i2, i2 = temp;
1656
1657 added_links_insn = 0;
1658
1659 /* First check for one important special-case that the code below will
1660 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1661 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1662 we may be able to replace that destination with the destination of I3.
1663 This occurs in the common code where we compute both a quotient and
1664 remainder into a structure, in which case we want to do the computation
1665 directly into the structure to avoid register-register copies.
1666
1667 Note that this case handles both multiple sets in I2 and also
1668 cases where I2 has a number of CLOBBER or PARALLELs.
1669
1670 We make very conservative checks below and only try to handle the
1671 most common cases of this. For example, we only handle the case
1672 where I2 and I3 are adjacent to avoid making difficult register
1673 usage tests. */
1674
1675 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1676 && REG_P (SET_SRC (PATTERN (i3)))
1677 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1678 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1679 && GET_CODE (PATTERN (i2)) == PARALLEL
1680 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1681 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1682 below would need to check what is inside (and reg_overlap_mentioned_p
1683 doesn't support those codes anyway). Don't allow those destinations;
1684 the resulting insn isn't likely to be recognized anyway. */
1685 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1686 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1687 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1688 SET_DEST (PATTERN (i3)))
1689 && next_real_insn (i2) == i3)
1690 {
1691 rtx p2 = PATTERN (i2);
1692
1693 /* Make sure that the destination of I3,
1694 which we are going to substitute into one output of I2,
1695 is not used within another output of I2. We must avoid making this:
1696 (parallel [(set (mem (reg 69)) ...)
1697 (set (reg 69) ...)])
1698 which is not well-defined as to order of actions.
1699 (Besides, reload can't handle output reloads for this.)
1700
1701 The problem can also happen if the dest of I3 is a memory ref,
1702 if another dest in I2 is an indirect memory ref. */
1703 for (i = 0; i < XVECLEN (p2, 0); i++)
1704 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1705 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1706 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1707 SET_DEST (XVECEXP (p2, 0, i))))
1708 break;
1709
1710 if (i == XVECLEN (p2, 0))
1711 for (i = 0; i < XVECLEN (p2, 0); i++)
1712 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1713 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1714 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1715 {
1716 combine_merges++;
1717
1718 subst_insn = i3;
1719 subst_low_cuid = INSN_CUID (i2);
1720
1721 added_sets_2 = added_sets_1 = 0;
1722 i2dest = SET_SRC (PATTERN (i3));
1723
1724 /* Replace the dest in I2 with our dest and make the resulting
1725 insn the new pattern for I3. Then skip to where we
1726 validate the pattern. Everything was set up above. */
1727 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1728 SET_DEST (PATTERN (i3)));
1729
1730 newpat = p2;
1731 i3_subst_into_i2 = 1;
1732 goto validate_replacement;
1733 }
1734 }
1735
1736 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1737 one of those words to another constant, merge them by making a new
1738 constant. */
1739 if (i1 == 0
1740 && (temp = single_set (i2)) != 0
1741 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1742 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1743 && REG_P (SET_DEST (temp))
1744 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1745 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1746 && GET_CODE (PATTERN (i3)) == SET
1747 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1748 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1749 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1750 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1751 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1752 {
1753 HOST_WIDE_INT lo, hi;
1754
1755 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1756 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1757 else
1758 {
1759 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1760 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1761 }
1762
1763 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1764 {
1765 /* We don't handle the case of the target word being wider
1766 than a host wide int. */
1767 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1768
1769 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1770 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1771 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1772 }
1773 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1774 hi = INTVAL (SET_SRC (PATTERN (i3)));
1775 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1776 {
1777 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1778 >> (HOST_BITS_PER_WIDE_INT - 1));
1779
1780 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1781 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1782 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1783 (INTVAL (SET_SRC (PATTERN (i3)))));
1784 if (hi == sign)
1785 hi = lo < 0 ? -1 : 0;
1786 }
1787 else
1788 /* We don't handle the case of the higher word not fitting
1789 entirely in either hi or lo. */
1790 gcc_unreachable ();
1791
1792 combine_merges++;
1793 subst_insn = i3;
1794 subst_low_cuid = INSN_CUID (i2);
1795 added_sets_2 = added_sets_1 = 0;
1796 i2dest = SET_DEST (temp);
1797
1798 SUBST (SET_SRC (temp),
1799 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1800
1801 newpat = PATTERN (i2);
1802 goto validate_replacement;
1803 }
1804
1805 #ifndef HAVE_cc0
1806 /* If we have no I1 and I2 looks like:
1807 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1808 (set Y OP)])
1809 make up a dummy I1 that is
1810 (set Y OP)
1811 and change I2 to be
1812 (set (reg:CC X) (compare:CC Y (const_int 0)))
1813
1814 (We can ignore any trailing CLOBBERs.)
1815
1816 This undoes a previous combination and allows us to match a branch-and-
1817 decrement insn. */
1818
1819 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1820 && XVECLEN (PATTERN (i2), 0) >= 2
1821 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1822 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1823 == MODE_CC)
1824 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1825 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1826 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1827 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1828 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1829 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1830 {
1831 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1832 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1833 break;
1834
1835 if (i == 1)
1836 {
1837 /* We make I1 with the same INSN_UID as I2. This gives it
1838 the same INSN_CUID for value tracking. Our fake I1 will
1839 never appear in the insn stream so giving it the same INSN_UID
1840 as I2 will not cause a problem. */
1841
1842 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1843 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1844 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1845 NULL_RTX);
1846
1847 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1848 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1849 SET_DEST (PATTERN (i1)));
1850 }
1851 }
1852 #endif
1853
1854 /* Verify that I2 and I1 are valid for combining. */
1855 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1856 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1857 {
1858 undo_all ();
1859 return 0;
1860 }
1861
1862 /* Record whether I2DEST is used in I2SRC and similarly for the other
1863 cases. Knowing this will help in register status updating below. */
1864 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1865 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1866 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1867
1868 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1869 in I2SRC. */
1870 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1871
1872 /* Ensure that I3's pattern can be the destination of combines. */
1873 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1874 i1 && i2dest_in_i1src && i1_feeds_i3,
1875 &i3dest_killed))
1876 {
1877 undo_all ();
1878 return 0;
1879 }
1880
1881 /* See if any of the insns is a MULT operation. Unless one is, we will
1882 reject a combination that is, since it must be slower. Be conservative
1883 here. */
1884 if (GET_CODE (i2src) == MULT
1885 || (i1 != 0 && GET_CODE (i1src) == MULT)
1886 || (GET_CODE (PATTERN (i3)) == SET
1887 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1888 have_mult = 1;
1889
1890 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1891 We used to do this EXCEPT in one case: I3 has a post-inc in an
1892 output operand. However, that exception can give rise to insns like
1893 mov r3,(r3)+
1894 which is a famous insn on the PDP-11 where the value of r3 used as the
1895 source was model-dependent. Avoid this sort of thing. */
1896
1897 #if 0
1898 if (!(GET_CODE (PATTERN (i3)) == SET
1899 && REG_P (SET_SRC (PATTERN (i3)))
1900 && MEM_P (SET_DEST (PATTERN (i3)))
1901 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1902 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1903 /* It's not the exception. */
1904 #endif
1905 #ifdef AUTO_INC_DEC
1906 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1907 if (REG_NOTE_KIND (link) == REG_INC
1908 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1909 || (i1 != 0
1910 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1911 {
1912 undo_all ();
1913 return 0;
1914 }
1915 #endif
1916
1917 /* See if the SETs in I1 or I2 need to be kept around in the merged
1918 instruction: whenever the value set there is still needed past I3.
1919 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1920
1921 For the SET in I1, we have two cases: If I1 and I2 independently
1922 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1923 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1924 in I1 needs to be kept around unless I1DEST dies or is set in either
1925 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1926 I1DEST. If so, we know I1 feeds into I2. */
1927
1928 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1929
1930 added_sets_1
1931 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1932 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1933
1934 /* If the set in I2 needs to be kept around, we must make a copy of
1935 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1936 PATTERN (I2), we are only substituting for the original I1DEST, not into
1937 an already-substituted copy. This also prevents making self-referential
1938 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1939 I2DEST. */
1940
1941 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1942 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1943 : PATTERN (i2));
1944
1945 if (added_sets_2)
1946 i2pat = copy_rtx (i2pat);
1947
1948 combine_merges++;
1949
1950 /* Substitute in the latest insn for the regs set by the earlier ones. */
1951
1952 maxreg = max_reg_num ();
1953
1954 subst_insn = i3;
1955
1956 /* It is possible that the source of I2 or I1 may be performing an
1957 unneeded operation, such as a ZERO_EXTEND of something that is known
1958 to have the high part zero. Handle that case by letting subst look at
1959 the innermost one of them.
1960
1961 Another way to do this would be to have a function that tries to
1962 simplify a single insn instead of merging two or more insns. We don't
1963 do this because of the potential of infinite loops and because
1964 of the potential extra memory required. However, doing it the way
1965 we are is a bit of a kludge and doesn't catch all cases.
1966
1967 But only do this if -fexpensive-optimizations since it slows things down
1968 and doesn't usually win. */
1969
1970 if (flag_expensive_optimizations)
1971 {
1972 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1973 if (i1)
1974 {
1975 subst_low_cuid = INSN_CUID (i1);
1976 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1977 }
1978 else
1979 {
1980 subst_low_cuid = INSN_CUID (i2);
1981 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1982 }
1983 }
1984
1985 #ifndef HAVE_cc0
1986 /* Many machines that don't use CC0 have insns that can both perform an
1987 arithmetic operation and set the condition code. These operations will
1988 be represented as a PARALLEL with the first element of the vector
1989 being a COMPARE of an arithmetic operation with the constant zero.
1990 The second element of the vector will set some pseudo to the result
1991 of the same arithmetic operation. If we simplify the COMPARE, we won't
1992 match such a pattern and so will generate an extra insn. Here we test
1993 for this case, where both the comparison and the operation result are
1994 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1995 I2SRC. Later we will make the PARALLEL that contains I2. */
1996
1997 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1998 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1999 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2000 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2001 {
2002 #ifdef SELECT_CC_MODE
2003 rtx *cc_use;
2004 enum machine_mode compare_mode;
2005 #endif
2006
2007 newpat = PATTERN (i3);
2008 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2009
2010 i2_is_used = 1;
2011
2012 #ifdef SELECT_CC_MODE
2013 /* See if a COMPARE with the operand we substituted in should be done
2014 with the mode that is currently being used. If not, do the same
2015 processing we do in `subst' for a SET; namely, if the destination
2016 is used only once, try to replace it with a register of the proper
2017 mode and also replace the COMPARE. */
2018 if (undobuf.other_insn == 0
2019 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2020 &undobuf.other_insn))
2021 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2022 i2src, const0_rtx))
2023 != GET_MODE (SET_DEST (newpat))))
2024 {
2025 unsigned int regno = REGNO (SET_DEST (newpat));
2026 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2027
2028 if (regno < FIRST_PSEUDO_REGISTER
2029 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2030 && ! REG_USERVAR_P (SET_DEST (newpat))))
2031 {
2032 if (regno >= FIRST_PSEUDO_REGISTER)
2033 SUBST (regno_reg_rtx[regno], new_dest);
2034
2035 SUBST (SET_DEST (newpat), new_dest);
2036 SUBST (XEXP (*cc_use, 0), new_dest);
2037 SUBST (SET_SRC (newpat),
2038 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2039 }
2040 else
2041 undobuf.other_insn = 0;
2042 }
2043 #endif
2044 }
2045 else
2046 #endif
2047 {
2048 n_occurrences = 0; /* `subst' counts here */
2049
2050 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2051 need to make a unique copy of I2SRC each time we substitute it
2052 to avoid self-referential rtl. */
2053
2054 subst_low_cuid = INSN_CUID (i2);
2055 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2056 ! i1_feeds_i3 && i1dest_in_i1src);
2057 substed_i2 = 1;
2058
2059 /* Record whether i2's body now appears within i3's body. */
2060 i2_is_used = n_occurrences;
2061 }
2062
2063 /* If we already got a failure, don't try to do more. Otherwise,
2064 try to substitute in I1 if we have it. */
2065
2066 if (i1 && GET_CODE (newpat) != CLOBBER)
2067 {
2068 /* Before we can do this substitution, we must redo the test done
2069 above (see detailed comments there) that ensures that I1DEST
2070 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2071
2072 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2073 0, (rtx*) 0))
2074 {
2075 undo_all ();
2076 return 0;
2077 }
2078
2079 n_occurrences = 0;
2080 subst_low_cuid = INSN_CUID (i1);
2081 newpat = subst (newpat, i1dest, i1src, 0, 0);
2082 substed_i1 = 1;
2083 }
2084
2085 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2086 to count all the ways that I2SRC and I1SRC can be used. */
2087 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2088 && i2_is_used + added_sets_2 > 1)
2089 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2090 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2091 > 1))
2092 /* Fail if we tried to make a new register (we used to abort, but there's
2093 really no reason to). */
2094 || max_reg_num () != maxreg
2095 /* Fail if we couldn't do something and have a CLOBBER. */
2096 || GET_CODE (newpat) == CLOBBER
2097 /* Fail if this new pattern is a MULT and we didn't have one before
2098 at the outer level. */
2099 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2100 && ! have_mult))
2101 {
2102 undo_all ();
2103 return 0;
2104 }
2105
2106 /* If the actions of the earlier insns must be kept
2107 in addition to substituting them into the latest one,
2108 we must make a new PARALLEL for the latest insn
2109 to hold additional the SETs. */
2110
2111 if (added_sets_1 || added_sets_2)
2112 {
2113 combine_extras++;
2114
2115 if (GET_CODE (newpat) == PARALLEL)
2116 {
2117 rtvec old = XVEC (newpat, 0);
2118 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2119 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2120 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2121 sizeof (old->elem[0]) * old->num_elem);
2122 }
2123 else
2124 {
2125 rtx old = newpat;
2126 total_sets = 1 + added_sets_1 + added_sets_2;
2127 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2128 XVECEXP (newpat, 0, 0) = old;
2129 }
2130
2131 if (added_sets_1)
2132 XVECEXP (newpat, 0, --total_sets)
2133 = (GET_CODE (PATTERN (i1)) == PARALLEL
2134 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2135
2136 if (added_sets_2)
2137 {
2138 /* If there is no I1, use I2's body as is. We used to also not do
2139 the subst call below if I2 was substituted into I3,
2140 but that could lose a simplification. */
2141 if (i1 == 0)
2142 XVECEXP (newpat, 0, --total_sets) = i2pat;
2143 else
2144 /* See comment where i2pat is assigned. */
2145 XVECEXP (newpat, 0, --total_sets)
2146 = subst (i2pat, i1dest, i1src, 0, 0);
2147 }
2148 }
2149
2150 /* We come here when we are replacing a destination in I2 with the
2151 destination of I3. */
2152 validate_replacement:
2153
2154 /* Note which hard regs this insn has as inputs. */
2155 mark_used_regs_combine (newpat);
2156
2157 /* Is the result of combination a valid instruction? */
2158 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2159
2160 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2161 the second SET's destination is a register that is unused and isn't
2162 marked as an instruction that might trap in an EH region. In that case,
2163 we just need the first SET. This can occur when simplifying a divmod
2164 insn. We *must* test for this case here because the code below that
2165 splits two independent SETs doesn't handle this case correctly when it
2166 updates the register status.
2167
2168 It's pointless doing this if we originally had two sets, one from
2169 i3, and one from i2. Combining then splitting the parallel results
2170 in the original i2 again plus an invalid insn (which we delete).
2171 The net effect is only to move instructions around, which makes
2172 debug info less accurate.
2173
2174 Also check the case where the first SET's destination is unused.
2175 That would not cause incorrect code, but does cause an unneeded
2176 insn to remain. */
2177
2178 if (insn_code_number < 0
2179 && !(added_sets_2 && i1 == 0)
2180 && GET_CODE (newpat) == PARALLEL
2181 && XVECLEN (newpat, 0) == 2
2182 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2183 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2184 && asm_noperands (newpat) < 0)
2185 {
2186 rtx set0 = XVECEXP (newpat, 0, 0);
2187 rtx set1 = XVECEXP (newpat, 0, 1);
2188 rtx note;
2189
2190 if (((REG_P (SET_DEST (set1))
2191 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2192 || (GET_CODE (SET_DEST (set1)) == SUBREG
2193 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2194 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2195 || INTVAL (XEXP (note, 0)) <= 0)
2196 && ! side_effects_p (SET_SRC (set1)))
2197 {
2198 newpat = set0;
2199 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2200 }
2201
2202 else if (((REG_P (SET_DEST (set0))
2203 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2204 || (GET_CODE (SET_DEST (set0)) == SUBREG
2205 && find_reg_note (i3, REG_UNUSED,
2206 SUBREG_REG (SET_DEST (set0)))))
2207 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2208 || INTVAL (XEXP (note, 0)) <= 0)
2209 && ! side_effects_p (SET_SRC (set0)))
2210 {
2211 newpat = set1;
2212 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2213
2214 if (insn_code_number >= 0)
2215 {
2216 /* If we will be able to accept this, we have made a
2217 change to the destination of I3. This requires us to
2218 do a few adjustments. */
2219
2220 PATTERN (i3) = newpat;
2221 adjust_for_new_dest (i3);
2222 }
2223 }
2224 }
2225
2226 /* If we were combining three insns and the result is a simple SET
2227 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2228 insns. There are two ways to do this. It can be split using a
2229 machine-specific method (like when you have an addition of a large
2230 constant) or by combine in the function find_split_point. */
2231
2232 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2233 && asm_noperands (newpat) < 0)
2234 {
2235 rtx m_split, *split;
2236 rtx ni2dest = i2dest;
2237
2238 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2239 use I2DEST as a scratch register will help. In the latter case,
2240 convert I2DEST to the mode of the source of NEWPAT if we can. */
2241
2242 m_split = split_insns (newpat, i3);
2243
2244 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2245 inputs of NEWPAT. */
2246
2247 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2248 possible to try that as a scratch reg. This would require adding
2249 more code to make it work though. */
2250
2251 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2252 {
2253 /* If I2DEST is a hard register or the only use of a pseudo,
2254 we can change its mode. */
2255 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2256 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2257 && REG_P (i2dest)
2258 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2259 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2260 && ! REG_USERVAR_P (i2dest))))
2261 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2262 REGNO (i2dest));
2263
2264 m_split = split_insns (gen_rtx_PARALLEL
2265 (VOIDmode,
2266 gen_rtvec (2, newpat,
2267 gen_rtx_CLOBBER (VOIDmode,
2268 ni2dest))),
2269 i3);
2270 /* If the split with the mode-changed register didn't work, try
2271 the original register. */
2272 if (! m_split && ni2dest != i2dest)
2273 {
2274 ni2dest = i2dest;
2275 m_split = split_insns (gen_rtx_PARALLEL
2276 (VOIDmode,
2277 gen_rtvec (2, newpat,
2278 gen_rtx_CLOBBER (VOIDmode,
2279 i2dest))),
2280 i3);
2281 }
2282 }
2283
2284 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2285 {
2286 m_split = PATTERN (m_split);
2287 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2288 if (insn_code_number >= 0)
2289 newpat = m_split;
2290 }
2291 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2292 && (next_real_insn (i2) == i3
2293 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2294 {
2295 rtx i2set, i3set;
2296 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2297 newi2pat = PATTERN (m_split);
2298
2299 i3set = single_set (NEXT_INSN (m_split));
2300 i2set = single_set (m_split);
2301
2302 /* In case we changed the mode of I2DEST, replace it in the
2303 pseudo-register table here. We can't do it above in case this
2304 code doesn't get executed and we do a split the other way. */
2305
2306 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2307 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2308
2309 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2310
2311 /* If I2 or I3 has multiple SETs, we won't know how to track
2312 register status, so don't use these insns. If I2's destination
2313 is used between I2 and I3, we also can't use these insns. */
2314
2315 if (i2_code_number >= 0 && i2set && i3set
2316 && (next_real_insn (i2) == i3
2317 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2318 insn_code_number = recog_for_combine (&newi3pat, i3,
2319 &new_i3_notes);
2320 if (insn_code_number >= 0)
2321 newpat = newi3pat;
2322
2323 /* It is possible that both insns now set the destination of I3.
2324 If so, we must show an extra use of it. */
2325
2326 if (insn_code_number >= 0)
2327 {
2328 rtx new_i3_dest = SET_DEST (i3set);
2329 rtx new_i2_dest = SET_DEST (i2set);
2330
2331 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2332 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2333 || GET_CODE (new_i3_dest) == SUBREG)
2334 new_i3_dest = XEXP (new_i3_dest, 0);
2335
2336 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2337 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2338 || GET_CODE (new_i2_dest) == SUBREG)
2339 new_i2_dest = XEXP (new_i2_dest, 0);
2340
2341 if (REG_P (new_i3_dest)
2342 && REG_P (new_i2_dest)
2343 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2344 REG_N_SETS (REGNO (new_i2_dest))++;
2345 }
2346 }
2347
2348 /* If we can split it and use I2DEST, go ahead and see if that
2349 helps things be recognized. Verify that none of the registers
2350 are set between I2 and I3. */
2351 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2352 #ifdef HAVE_cc0
2353 && REG_P (i2dest)
2354 #endif
2355 /* We need I2DEST in the proper mode. If it is a hard register
2356 or the only use of a pseudo, we can change its mode. */
2357 && (GET_MODE (*split) == GET_MODE (i2dest)
2358 || GET_MODE (*split) == VOIDmode
2359 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2360 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2361 && ! REG_USERVAR_P (i2dest)))
2362 && (next_real_insn (i2) == i3
2363 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2364 /* We can't overwrite I2DEST if its value is still used by
2365 NEWPAT. */
2366 && ! reg_referenced_p (i2dest, newpat))
2367 {
2368 rtx newdest = i2dest;
2369 enum rtx_code split_code = GET_CODE (*split);
2370 enum machine_mode split_mode = GET_MODE (*split);
2371
2372 /* Get NEWDEST as a register in the proper mode. We have already
2373 validated that we can do this. */
2374 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2375 {
2376 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2377
2378 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2379 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2380 }
2381
2382 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2383 an ASHIFT. This can occur if it was inside a PLUS and hence
2384 appeared to be a memory address. This is a kludge. */
2385 if (split_code == MULT
2386 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2387 && INTVAL (XEXP (*split, 1)) > 0
2388 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2389 {
2390 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2391 XEXP (*split, 0), GEN_INT (i)));
2392 /* Update split_code because we may not have a multiply
2393 anymore. */
2394 split_code = GET_CODE (*split);
2395 }
2396
2397 #ifdef INSN_SCHEDULING
2398 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2399 be written as a ZERO_EXTEND. */
2400 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2401 {
2402 #ifdef LOAD_EXTEND_OP
2403 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2404 what it really is. */
2405 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2406 == SIGN_EXTEND)
2407 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2408 SUBREG_REG (*split)));
2409 else
2410 #endif
2411 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2412 SUBREG_REG (*split)));
2413 }
2414 #endif
2415
2416 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2417 SUBST (*split, newdest);
2418 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2419
2420 /* If the split point was a MULT and we didn't have one before,
2421 don't use one now. */
2422 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2423 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2424 }
2425 }
2426
2427 /* Check for a case where we loaded from memory in a narrow mode and
2428 then sign extended it, but we need both registers. In that case,
2429 we have a PARALLEL with both loads from the same memory location.
2430 We can split this into a load from memory followed by a register-register
2431 copy. This saves at least one insn, more if register allocation can
2432 eliminate the copy.
2433
2434 We cannot do this if the destination of the first assignment is a
2435 condition code register or cc0. We eliminate this case by making sure
2436 the SET_DEST and SET_SRC have the same mode.
2437
2438 We cannot do this if the destination of the second assignment is
2439 a register that we have already assumed is zero-extended. Similarly
2440 for a SUBREG of such a register. */
2441
2442 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2443 && GET_CODE (newpat) == PARALLEL
2444 && XVECLEN (newpat, 0) == 2
2445 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2446 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2447 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2448 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2449 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2450 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2451 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2452 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2453 INSN_CUID (i2))
2454 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2455 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2456 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2457 (REG_P (temp)
2458 && reg_stat[REGNO (temp)].nonzero_bits != 0
2459 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2460 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2461 && (reg_stat[REGNO (temp)].nonzero_bits
2462 != GET_MODE_MASK (word_mode))))
2463 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2464 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2465 (REG_P (temp)
2466 && reg_stat[REGNO (temp)].nonzero_bits != 0
2467 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2468 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2469 && (reg_stat[REGNO (temp)].nonzero_bits
2470 != GET_MODE_MASK (word_mode)))))
2471 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2472 SET_SRC (XVECEXP (newpat, 0, 1)))
2473 && ! find_reg_note (i3, REG_UNUSED,
2474 SET_DEST (XVECEXP (newpat, 0, 0))))
2475 {
2476 rtx ni2dest;
2477
2478 newi2pat = XVECEXP (newpat, 0, 0);
2479 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2480 newpat = XVECEXP (newpat, 0, 1);
2481 SUBST (SET_SRC (newpat),
2482 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2483 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2484
2485 if (i2_code_number >= 0)
2486 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2487
2488 if (insn_code_number >= 0)
2489 swap_i2i3 = 1;
2490 }
2491
2492 /* Similarly, check for a case where we have a PARALLEL of two independent
2493 SETs but we started with three insns. In this case, we can do the sets
2494 as two separate insns. This case occurs when some SET allows two
2495 other insns to combine, but the destination of that SET is still live. */
2496
2497 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2498 && GET_CODE (newpat) == PARALLEL
2499 && XVECLEN (newpat, 0) == 2
2500 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2501 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2503 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2504 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2505 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2506 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2507 INSN_CUID (i2))
2508 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2509 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2510 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2511 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2512 XVECEXP (newpat, 0, 0))
2513 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2514 XVECEXP (newpat, 0, 1))
2515 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2516 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2517 {
2518 /* Normally, it doesn't matter which of the two is done first,
2519 but it does if one references cc0. In that case, it has to
2520 be first. */
2521 #ifdef HAVE_cc0
2522 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2523 {
2524 newi2pat = XVECEXP (newpat, 0, 0);
2525 newpat = XVECEXP (newpat, 0, 1);
2526 }
2527 else
2528 #endif
2529 {
2530 newi2pat = XVECEXP (newpat, 0, 1);
2531 newpat = XVECEXP (newpat, 0, 0);
2532 }
2533
2534 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2535
2536 if (i2_code_number >= 0)
2537 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2538 }
2539
2540 /* If it still isn't recognized, fail and change things back the way they
2541 were. */
2542 if ((insn_code_number < 0
2543 /* Is the result a reasonable ASM_OPERANDS? */
2544 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2545 {
2546 undo_all ();
2547 return 0;
2548 }
2549
2550 /* If we had to change another insn, make sure it is valid also. */
2551 if (undobuf.other_insn)
2552 {
2553 rtx other_pat = PATTERN (undobuf.other_insn);
2554 rtx new_other_notes;
2555 rtx note, next;
2556
2557 CLEAR_HARD_REG_SET (newpat_used_regs);
2558
2559 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2560 &new_other_notes);
2561
2562 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2563 {
2564 undo_all ();
2565 return 0;
2566 }
2567
2568 PATTERN (undobuf.other_insn) = other_pat;
2569
2570 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2571 are still valid. Then add any non-duplicate notes added by
2572 recog_for_combine. */
2573 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2574 {
2575 next = XEXP (note, 1);
2576
2577 if (REG_NOTE_KIND (note) == REG_UNUSED
2578 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2579 {
2580 if (REG_P (XEXP (note, 0)))
2581 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2582
2583 remove_note (undobuf.other_insn, note);
2584 }
2585 }
2586
2587 for (note = new_other_notes; note; note = XEXP (note, 1))
2588 if (REG_P (XEXP (note, 0)))
2589 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2590
2591 distribute_notes (new_other_notes, undobuf.other_insn,
2592 undobuf.other_insn, NULL_RTX);
2593 }
2594 #ifdef HAVE_cc0
2595 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2596 they are adjacent to each other or not. */
2597 {
2598 rtx p = prev_nonnote_insn (i3);
2599 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2600 && sets_cc0_p (newi2pat))
2601 {
2602 undo_all ();
2603 return 0;
2604 }
2605 }
2606 #endif
2607
2608 /* Only allow this combination if insn_rtx_costs reports that the
2609 replacement instructions are cheaper than the originals. */
2610 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2611 {
2612 undo_all ();
2613 return 0;
2614 }
2615
2616 /* We now know that we can do this combination. Merge the insns and
2617 update the status of registers and LOG_LINKS. */
2618
2619 if (swap_i2i3)
2620 {
2621 rtx insn;
2622 rtx link;
2623 rtx ni2dest;
2624
2625 /* I3 now uses what used to be its destination and which is now
2626 I2's destination. This requires us to do a few adjustments. */
2627 PATTERN (i3) = newpat;
2628 adjust_for_new_dest (i3);
2629
2630 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2631 so we still will.
2632
2633 However, some later insn might be using I2's dest and have
2634 a LOG_LINK pointing at I3. We must remove this link.
2635 The simplest way to remove the link is to point it at I1,
2636 which we know will be a NOTE. */
2637
2638 /* newi2pat is usually a SET here; however, recog_for_combine might
2639 have added some clobbers. */
2640 if (GET_CODE (newi2pat) == PARALLEL)
2641 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2642 else
2643 ni2dest = SET_DEST (newi2pat);
2644
2645 for (insn = NEXT_INSN (i3);
2646 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2647 || insn != BB_HEAD (this_basic_block->next_bb));
2648 insn = NEXT_INSN (insn))
2649 {
2650 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2651 {
2652 for (link = LOG_LINKS (insn); link;
2653 link = XEXP (link, 1))
2654 if (XEXP (link, 0) == i3)
2655 XEXP (link, 0) = i1;
2656
2657 break;
2658 }
2659 }
2660 }
2661
2662 {
2663 rtx i3notes, i2notes, i1notes = 0;
2664 rtx i3links, i2links, i1links = 0;
2665 rtx midnotes = 0;
2666 unsigned int regno;
2667
2668 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2669 clear them. */
2670 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2671 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2672 if (i1)
2673 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2674
2675 /* Ensure that we do not have something that should not be shared but
2676 occurs multiple times in the new insns. Check this by first
2677 resetting all the `used' flags and then copying anything is shared. */
2678
2679 reset_used_flags (i3notes);
2680 reset_used_flags (i2notes);
2681 reset_used_flags (i1notes);
2682 reset_used_flags (newpat);
2683 reset_used_flags (newi2pat);
2684 if (undobuf.other_insn)
2685 reset_used_flags (PATTERN (undobuf.other_insn));
2686
2687 i3notes = copy_rtx_if_shared (i3notes);
2688 i2notes = copy_rtx_if_shared (i2notes);
2689 i1notes = copy_rtx_if_shared (i1notes);
2690 newpat = copy_rtx_if_shared (newpat);
2691 newi2pat = copy_rtx_if_shared (newi2pat);
2692 if (undobuf.other_insn)
2693 reset_used_flags (PATTERN (undobuf.other_insn));
2694
2695 INSN_CODE (i3) = insn_code_number;
2696 PATTERN (i3) = newpat;
2697
2698 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2699 {
2700 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2701
2702 reset_used_flags (call_usage);
2703 call_usage = copy_rtx (call_usage);
2704
2705 if (substed_i2)
2706 replace_rtx (call_usage, i2dest, i2src);
2707
2708 if (substed_i1)
2709 replace_rtx (call_usage, i1dest, i1src);
2710
2711 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2712 }
2713
2714 if (undobuf.other_insn)
2715 INSN_CODE (undobuf.other_insn) = other_code_number;
2716
2717 /* We had one special case above where I2 had more than one set and
2718 we replaced a destination of one of those sets with the destination
2719 of I3. In that case, we have to update LOG_LINKS of insns later
2720 in this basic block. Note that this (expensive) case is rare.
2721
2722 Also, in this case, we must pretend that all REG_NOTEs for I2
2723 actually came from I3, so that REG_UNUSED notes from I2 will be
2724 properly handled. */
2725
2726 if (i3_subst_into_i2)
2727 {
2728 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2729 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2730 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2731 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2732 && ! find_reg_note (i2, REG_UNUSED,
2733 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2734 for (temp = NEXT_INSN (i2);
2735 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2736 || BB_HEAD (this_basic_block) != temp);
2737 temp = NEXT_INSN (temp))
2738 if (temp != i3 && INSN_P (temp))
2739 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2740 if (XEXP (link, 0) == i2)
2741 XEXP (link, 0) = i3;
2742
2743 if (i3notes)
2744 {
2745 rtx link = i3notes;
2746 while (XEXP (link, 1))
2747 link = XEXP (link, 1);
2748 XEXP (link, 1) = i2notes;
2749 }
2750 else
2751 i3notes = i2notes;
2752 i2notes = 0;
2753 }
2754
2755 LOG_LINKS (i3) = 0;
2756 REG_NOTES (i3) = 0;
2757 LOG_LINKS (i2) = 0;
2758 REG_NOTES (i2) = 0;
2759
2760 if (newi2pat)
2761 {
2762 INSN_CODE (i2) = i2_code_number;
2763 PATTERN (i2) = newi2pat;
2764 }
2765 else
2766 SET_INSN_DELETED (i2);
2767
2768 if (i1)
2769 {
2770 LOG_LINKS (i1) = 0;
2771 REG_NOTES (i1) = 0;
2772 SET_INSN_DELETED (i1);
2773 }
2774
2775 /* Get death notes for everything that is now used in either I3 or
2776 I2 and used to die in a previous insn. If we built two new
2777 patterns, move from I1 to I2 then I2 to I3 so that we get the
2778 proper movement on registers that I2 modifies. */
2779
2780 if (newi2pat)
2781 {
2782 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2783 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2784 }
2785 else
2786 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2787 i3, &midnotes);
2788
2789 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2790 if (i3notes)
2791 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2792 if (i2notes)
2793 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2794 if (i1notes)
2795 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2796 if (midnotes)
2797 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2798
2799 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2800 know these are REG_UNUSED and want them to go to the desired insn,
2801 so we always pass it as i3. We have not counted the notes in
2802 reg_n_deaths yet, so we need to do so now. */
2803
2804 if (newi2pat && new_i2_notes)
2805 {
2806 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2807 if (REG_P (XEXP (temp, 0)))
2808 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2809
2810 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2811 }
2812
2813 if (new_i3_notes)
2814 {
2815 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2816 if (REG_P (XEXP (temp, 0)))
2817 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2818
2819 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2820 }
2821
2822 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2823 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2824 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2825 in that case, it might delete I2. Similarly for I2 and I1.
2826 Show an additional death due to the REG_DEAD note we make here. If
2827 we discard it in distribute_notes, we will decrement it again. */
2828
2829 if (i3dest_killed)
2830 {
2831 if (REG_P (i3dest_killed))
2832 REG_N_DEATHS (REGNO (i3dest_killed))++;
2833
2834 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2835 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2836 NULL_RTX),
2837 NULL_RTX, i2, NULL_RTX);
2838 else
2839 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2840 NULL_RTX),
2841 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2842 }
2843
2844 if (i2dest_in_i2src)
2845 {
2846 if (REG_P (i2dest))
2847 REG_N_DEATHS (REGNO (i2dest))++;
2848
2849 if (newi2pat && reg_set_p (i2dest, newi2pat))
2850 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2851 NULL_RTX, i2, NULL_RTX);
2852 else
2853 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2854 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2855 }
2856
2857 if (i1dest_in_i1src)
2858 {
2859 if (REG_P (i1dest))
2860 REG_N_DEATHS (REGNO (i1dest))++;
2861
2862 if (newi2pat && reg_set_p (i1dest, newi2pat))
2863 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2864 NULL_RTX, i2, NULL_RTX);
2865 else
2866 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2867 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2868 }
2869
2870 distribute_links (i3links);
2871 distribute_links (i2links);
2872 distribute_links (i1links);
2873
2874 if (REG_P (i2dest))
2875 {
2876 rtx link;
2877 rtx i2_insn = 0, i2_val = 0, set;
2878
2879 /* The insn that used to set this register doesn't exist, and
2880 this life of the register may not exist either. See if one of
2881 I3's links points to an insn that sets I2DEST. If it does,
2882 that is now the last known value for I2DEST. If we don't update
2883 this and I2 set the register to a value that depended on its old
2884 contents, we will get confused. If this insn is used, thing
2885 will be set correctly in combine_instructions. */
2886
2887 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2888 if ((set = single_set (XEXP (link, 0))) != 0
2889 && rtx_equal_p (i2dest, SET_DEST (set)))
2890 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2891
2892 record_value_for_reg (i2dest, i2_insn, i2_val);
2893
2894 /* If the reg formerly set in I2 died only once and that was in I3,
2895 zero its use count so it won't make `reload' do any work. */
2896 if (! added_sets_2
2897 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2898 && ! i2dest_in_i2src)
2899 {
2900 regno = REGNO (i2dest);
2901 REG_N_SETS (regno)--;
2902 }
2903 }
2904
2905 if (i1 && REG_P (i1dest))
2906 {
2907 rtx link;
2908 rtx i1_insn = 0, i1_val = 0, set;
2909
2910 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2911 if ((set = single_set (XEXP (link, 0))) != 0
2912 && rtx_equal_p (i1dest, SET_DEST (set)))
2913 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2914
2915 record_value_for_reg (i1dest, i1_insn, i1_val);
2916
2917 regno = REGNO (i1dest);
2918 if (! added_sets_1 && ! i1dest_in_i1src)
2919 REG_N_SETS (regno)--;
2920 }
2921
2922 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2923 been made to this insn. The order of
2924 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2925 can affect nonzero_bits of newpat */
2926 if (newi2pat)
2927 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2928 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2929
2930 /* Set new_direct_jump_p if a new return or simple jump instruction
2931 has been created.
2932
2933 If I3 is now an unconditional jump, ensure that it has a
2934 BARRIER following it since it may have initially been a
2935 conditional jump. It may also be the last nonnote insn. */
2936
2937 if (returnjump_p (i3) || any_uncondjump_p (i3))
2938 {
2939 *new_direct_jump_p = 1;
2940 mark_jump_label (PATTERN (i3), i3, 0);
2941
2942 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2943 || !BARRIER_P (temp))
2944 emit_barrier_after (i3);
2945 }
2946
2947 if (undobuf.other_insn != NULL_RTX
2948 && (returnjump_p (undobuf.other_insn)
2949 || any_uncondjump_p (undobuf.other_insn)))
2950 {
2951 *new_direct_jump_p = 1;
2952
2953 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2954 || !BARRIER_P (temp))
2955 emit_barrier_after (undobuf.other_insn);
2956 }
2957
2958 /* An NOOP jump does not need barrier, but it does need cleaning up
2959 of CFG. */
2960 if (GET_CODE (newpat) == SET
2961 && SET_SRC (newpat) == pc_rtx
2962 && SET_DEST (newpat) == pc_rtx)
2963 *new_direct_jump_p = 1;
2964 }
2965
2966 combine_successes++;
2967 undo_commit ();
2968
2969 if (added_links_insn
2970 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2971 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2972 return added_links_insn;
2973 else
2974 return newi2pat ? i2 : i3;
2975 }
2976 \f
2977 /* Undo all the modifications recorded in undobuf. */
2978
2979 static void
2980 undo_all (void)
2981 {
2982 struct undo *undo, *next;
2983
2984 for (undo = undobuf.undos; undo; undo = next)
2985 {
2986 next = undo->next;
2987 if (undo->is_int)
2988 *undo->where.i = undo->old_contents.i;
2989 else
2990 *undo->where.r = undo->old_contents.r;
2991
2992 undo->next = undobuf.frees;
2993 undobuf.frees = undo;
2994 }
2995
2996 undobuf.undos = 0;
2997 }
2998
2999 /* We've committed to accepting the changes we made. Move all
3000 of the undos to the free list. */
3001
3002 static void
3003 undo_commit (void)
3004 {
3005 struct undo *undo, *next;
3006
3007 for (undo = undobuf.undos; undo; undo = next)
3008 {
3009 next = undo->next;
3010 undo->next = undobuf.frees;
3011 undobuf.frees = undo;
3012 }
3013 undobuf.undos = 0;
3014 }
3015
3016 \f
3017 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3018 where we have an arithmetic expression and return that point. LOC will
3019 be inside INSN.
3020
3021 try_combine will call this function to see if an insn can be split into
3022 two insns. */
3023
3024 static rtx *
3025 find_split_point (rtx *loc, rtx insn)
3026 {
3027 rtx x = *loc;
3028 enum rtx_code code = GET_CODE (x);
3029 rtx *split;
3030 unsigned HOST_WIDE_INT len = 0;
3031 HOST_WIDE_INT pos = 0;
3032 int unsignedp = 0;
3033 rtx inner = NULL_RTX;
3034
3035 /* First special-case some codes. */
3036 switch (code)
3037 {
3038 case SUBREG:
3039 #ifdef INSN_SCHEDULING
3040 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3041 point. */
3042 if (MEM_P (SUBREG_REG (x)))
3043 return loc;
3044 #endif
3045 return find_split_point (&SUBREG_REG (x), insn);
3046
3047 case MEM:
3048 #ifdef HAVE_lo_sum
3049 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3050 using LO_SUM and HIGH. */
3051 if (GET_CODE (XEXP (x, 0)) == CONST
3052 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3053 {
3054 SUBST (XEXP (x, 0),
3055 gen_rtx_LO_SUM (Pmode,
3056 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3057 XEXP (x, 0)));
3058 return &XEXP (XEXP (x, 0), 0);
3059 }
3060 #endif
3061
3062 /* If we have a PLUS whose second operand is a constant and the
3063 address is not valid, perhaps will can split it up using
3064 the machine-specific way to split large constants. We use
3065 the first pseudo-reg (one of the virtual regs) as a placeholder;
3066 it will not remain in the result. */
3067 if (GET_CODE (XEXP (x, 0)) == PLUS
3068 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3069 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3070 {
3071 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3072 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3073 subst_insn);
3074
3075 /* This should have produced two insns, each of which sets our
3076 placeholder. If the source of the second is a valid address,
3077 we can make put both sources together and make a split point
3078 in the middle. */
3079
3080 if (seq
3081 && NEXT_INSN (seq) != NULL_RTX
3082 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3083 && NONJUMP_INSN_P (seq)
3084 && GET_CODE (PATTERN (seq)) == SET
3085 && SET_DEST (PATTERN (seq)) == reg
3086 && ! reg_mentioned_p (reg,
3087 SET_SRC (PATTERN (seq)))
3088 && NONJUMP_INSN_P (NEXT_INSN (seq))
3089 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3090 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3091 && memory_address_p (GET_MODE (x),
3092 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3093 {
3094 rtx src1 = SET_SRC (PATTERN (seq));
3095 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3096
3097 /* Replace the placeholder in SRC2 with SRC1. If we can
3098 find where in SRC2 it was placed, that can become our
3099 split point and we can replace this address with SRC2.
3100 Just try two obvious places. */
3101
3102 src2 = replace_rtx (src2, reg, src1);
3103 split = 0;
3104 if (XEXP (src2, 0) == src1)
3105 split = &XEXP (src2, 0);
3106 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3107 && XEXP (XEXP (src2, 0), 0) == src1)
3108 split = &XEXP (XEXP (src2, 0), 0);
3109
3110 if (split)
3111 {
3112 SUBST (XEXP (x, 0), src2);
3113 return split;
3114 }
3115 }
3116
3117 /* If that didn't work, perhaps the first operand is complex and
3118 needs to be computed separately, so make a split point there.
3119 This will occur on machines that just support REG + CONST
3120 and have a constant moved through some previous computation. */
3121
3122 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3123 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3124 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3125 return &XEXP (XEXP (x, 0), 0);
3126 }
3127 break;
3128
3129 case SET:
3130 #ifdef HAVE_cc0
3131 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3132 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3133 we need to put the operand into a register. So split at that
3134 point. */
3135
3136 if (SET_DEST (x) == cc0_rtx
3137 && GET_CODE (SET_SRC (x)) != COMPARE
3138 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3139 && !OBJECT_P (SET_SRC (x))
3140 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3141 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3142 return &SET_SRC (x);
3143 #endif
3144
3145 /* See if we can split SET_SRC as it stands. */
3146 split = find_split_point (&SET_SRC (x), insn);
3147 if (split && split != &SET_SRC (x))
3148 return split;
3149
3150 /* See if we can split SET_DEST as it stands. */
3151 split = find_split_point (&SET_DEST (x), insn);
3152 if (split && split != &SET_DEST (x))
3153 return split;
3154
3155 /* See if this is a bitfield assignment with everything constant. If
3156 so, this is an IOR of an AND, so split it into that. */
3157 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3158 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3159 <= HOST_BITS_PER_WIDE_INT)
3160 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3161 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3162 && GET_CODE (SET_SRC (x)) == CONST_INT
3163 && ((INTVAL (XEXP (SET_DEST (x), 1))
3164 + INTVAL (XEXP (SET_DEST (x), 2)))
3165 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3166 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3167 {
3168 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3169 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3170 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3171 rtx dest = XEXP (SET_DEST (x), 0);
3172 enum machine_mode mode = GET_MODE (dest);
3173 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3174
3175 if (BITS_BIG_ENDIAN)
3176 pos = GET_MODE_BITSIZE (mode) - len - pos;
3177
3178 if (src == mask)
3179 SUBST (SET_SRC (x),
3180 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3181 else
3182 SUBST (SET_SRC (x),
3183 gen_binary (IOR, mode,
3184 gen_binary (AND, mode, dest,
3185 gen_int_mode (~(mask << pos),
3186 mode)),
3187 GEN_INT (src << pos)));
3188
3189 SUBST (SET_DEST (x), dest);
3190
3191 split = find_split_point (&SET_SRC (x), insn);
3192 if (split && split != &SET_SRC (x))
3193 return split;
3194 }
3195
3196 /* Otherwise, see if this is an operation that we can split into two.
3197 If so, try to split that. */
3198 code = GET_CODE (SET_SRC (x));
3199
3200 switch (code)
3201 {
3202 case AND:
3203 /* If we are AND'ing with a large constant that is only a single
3204 bit and the result is only being used in a context where we
3205 need to know if it is zero or nonzero, replace it with a bit
3206 extraction. This will avoid the large constant, which might
3207 have taken more than one insn to make. If the constant were
3208 not a valid argument to the AND but took only one insn to make,
3209 this is no worse, but if it took more than one insn, it will
3210 be better. */
3211
3212 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3213 && REG_P (XEXP (SET_SRC (x), 0))
3214 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3215 && REG_P (SET_DEST (x))
3216 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3217 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3218 && XEXP (*split, 0) == SET_DEST (x)
3219 && XEXP (*split, 1) == const0_rtx)
3220 {
3221 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3222 XEXP (SET_SRC (x), 0),
3223 pos, NULL_RTX, 1, 1, 0, 0);
3224 if (extraction != 0)
3225 {
3226 SUBST (SET_SRC (x), extraction);
3227 return find_split_point (loc, insn);
3228 }
3229 }
3230 break;
3231
3232 case NE:
3233 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3234 is known to be on, this can be converted into a NEG of a shift. */
3235 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3236 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3237 && 1 <= (pos = exact_log2
3238 (nonzero_bits (XEXP (SET_SRC (x), 0),
3239 GET_MODE (XEXP (SET_SRC (x), 0))))))
3240 {
3241 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3242
3243 SUBST (SET_SRC (x),
3244 gen_rtx_NEG (mode,
3245 gen_rtx_LSHIFTRT (mode,
3246 XEXP (SET_SRC (x), 0),
3247 GEN_INT (pos))));
3248
3249 split = find_split_point (&SET_SRC (x), insn);
3250 if (split && split != &SET_SRC (x))
3251 return split;
3252 }
3253 break;
3254
3255 case SIGN_EXTEND:
3256 inner = XEXP (SET_SRC (x), 0);
3257
3258 /* We can't optimize if either mode is a partial integer
3259 mode as we don't know how many bits are significant
3260 in those modes. */
3261 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3262 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3263 break;
3264
3265 pos = 0;
3266 len = GET_MODE_BITSIZE (GET_MODE (inner));
3267 unsignedp = 0;
3268 break;
3269
3270 case SIGN_EXTRACT:
3271 case ZERO_EXTRACT:
3272 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3273 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3274 {
3275 inner = XEXP (SET_SRC (x), 0);
3276 len = INTVAL (XEXP (SET_SRC (x), 1));
3277 pos = INTVAL (XEXP (SET_SRC (x), 2));
3278
3279 if (BITS_BIG_ENDIAN)
3280 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3281 unsignedp = (code == ZERO_EXTRACT);
3282 }
3283 break;
3284
3285 default:
3286 break;
3287 }
3288
3289 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3290 {
3291 enum machine_mode mode = GET_MODE (SET_SRC (x));
3292
3293 /* For unsigned, we have a choice of a shift followed by an
3294 AND or two shifts. Use two shifts for field sizes where the
3295 constant might be too large. We assume here that we can
3296 always at least get 8-bit constants in an AND insn, which is
3297 true for every current RISC. */
3298
3299 if (unsignedp && len <= 8)
3300 {
3301 SUBST (SET_SRC (x),
3302 gen_rtx_AND (mode,
3303 gen_rtx_LSHIFTRT
3304 (mode, gen_lowpart (mode, inner),
3305 GEN_INT (pos)),
3306 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3307
3308 split = find_split_point (&SET_SRC (x), insn);
3309 if (split && split != &SET_SRC (x))
3310 return split;
3311 }
3312 else
3313 {
3314 SUBST (SET_SRC (x),
3315 gen_rtx_fmt_ee
3316 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3317 gen_rtx_ASHIFT (mode,
3318 gen_lowpart (mode, inner),
3319 GEN_INT (GET_MODE_BITSIZE (mode)
3320 - len - pos)),
3321 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3322
3323 split = find_split_point (&SET_SRC (x), insn);
3324 if (split && split != &SET_SRC (x))
3325 return split;
3326 }
3327 }
3328
3329 /* See if this is a simple operation with a constant as the second
3330 operand. It might be that this constant is out of range and hence
3331 could be used as a split point. */
3332 if (BINARY_P (SET_SRC (x))
3333 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3334 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3335 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3336 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3337 return &XEXP (SET_SRC (x), 1);
3338
3339 /* Finally, see if this is a simple operation with its first operand
3340 not in a register. The operation might require this operand in a
3341 register, so return it as a split point. We can always do this
3342 because if the first operand were another operation, we would have
3343 already found it as a split point. */
3344 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3345 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3346 return &XEXP (SET_SRC (x), 0);
3347
3348 return 0;
3349
3350 case AND:
3351 case IOR:
3352 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3353 it is better to write this as (not (ior A B)) so we can split it.
3354 Similarly for IOR. */
3355 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3356 {
3357 SUBST (*loc,
3358 gen_rtx_NOT (GET_MODE (x),
3359 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3360 GET_MODE (x),
3361 XEXP (XEXP (x, 0), 0),
3362 XEXP (XEXP (x, 1), 0))));
3363 return find_split_point (loc, insn);
3364 }
3365
3366 /* Many RISC machines have a large set of logical insns. If the
3367 second operand is a NOT, put it first so we will try to split the
3368 other operand first. */
3369 if (GET_CODE (XEXP (x, 1)) == NOT)
3370 {
3371 rtx tem = XEXP (x, 0);
3372 SUBST (XEXP (x, 0), XEXP (x, 1));
3373 SUBST (XEXP (x, 1), tem);
3374 }
3375 break;
3376
3377 default:
3378 break;
3379 }
3380
3381 /* Otherwise, select our actions depending on our rtx class. */
3382 switch (GET_RTX_CLASS (code))
3383 {
3384 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3385 case RTX_TERNARY:
3386 split = find_split_point (&XEXP (x, 2), insn);
3387 if (split)
3388 return split;
3389 /* ... fall through ... */
3390 case RTX_BIN_ARITH:
3391 case RTX_COMM_ARITH:
3392 case RTX_COMPARE:
3393 case RTX_COMM_COMPARE:
3394 split = find_split_point (&XEXP (x, 1), insn);
3395 if (split)
3396 return split;
3397 /* ... fall through ... */
3398 case RTX_UNARY:
3399 /* Some machines have (and (shift ...) ...) insns. If X is not
3400 an AND, but XEXP (X, 0) is, use it as our split point. */
3401 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3402 return &XEXP (x, 0);
3403
3404 split = find_split_point (&XEXP (x, 0), insn);
3405 if (split)
3406 return split;
3407 return loc;
3408
3409 default:
3410 /* Otherwise, we don't have a split point. */
3411 return 0;
3412 }
3413 }
3414 \f
3415 /* Throughout X, replace FROM with TO, and return the result.
3416 The result is TO if X is FROM;
3417 otherwise the result is X, but its contents may have been modified.
3418 If they were modified, a record was made in undobuf so that
3419 undo_all will (among other things) return X to its original state.
3420
3421 If the number of changes necessary is too much to record to undo,
3422 the excess changes are not made, so the result is invalid.
3423 The changes already made can still be undone.
3424 undobuf.num_undo is incremented for such changes, so by testing that
3425 the caller can tell whether the result is valid.
3426
3427 `n_occurrences' is incremented each time FROM is replaced.
3428
3429 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3430
3431 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3432 by copying if `n_occurrences' is nonzero. */
3433
3434 static rtx
3435 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3436 {
3437 enum rtx_code code = GET_CODE (x);
3438 enum machine_mode op0_mode = VOIDmode;
3439 const char *fmt;
3440 int len, i;
3441 rtx new;
3442
3443 /* Two expressions are equal if they are identical copies of a shared
3444 RTX or if they are both registers with the same register number
3445 and mode. */
3446
3447 #define COMBINE_RTX_EQUAL_P(X,Y) \
3448 ((X) == (Y) \
3449 || (REG_P (X) && REG_P (Y) \
3450 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3451
3452 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3453 {
3454 n_occurrences++;
3455 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3456 }
3457
3458 /* If X and FROM are the same register but different modes, they will
3459 not have been seen as equal above. However, flow.c will make a
3460 LOG_LINKS entry for that case. If we do nothing, we will try to
3461 rerecognize our original insn and, when it succeeds, we will
3462 delete the feeding insn, which is incorrect.
3463
3464 So force this insn not to match in this (rare) case. */
3465 if (! in_dest && code == REG && REG_P (from)
3466 && REGNO (x) == REGNO (from))
3467 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3468
3469 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3470 of which may contain things that can be combined. */
3471 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3472 return x;
3473
3474 /* It is possible to have a subexpression appear twice in the insn.
3475 Suppose that FROM is a register that appears within TO.
3476 Then, after that subexpression has been scanned once by `subst',
3477 the second time it is scanned, TO may be found. If we were
3478 to scan TO here, we would find FROM within it and create a
3479 self-referent rtl structure which is completely wrong. */
3480 if (COMBINE_RTX_EQUAL_P (x, to))
3481 return to;
3482
3483 /* Parallel asm_operands need special attention because all of the
3484 inputs are shared across the arms. Furthermore, unsharing the
3485 rtl results in recognition failures. Failure to handle this case
3486 specially can result in circular rtl.
3487
3488 Solve this by doing a normal pass across the first entry of the
3489 parallel, and only processing the SET_DESTs of the subsequent
3490 entries. Ug. */
3491
3492 if (code == PARALLEL
3493 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3494 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3495 {
3496 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3497
3498 /* If this substitution failed, this whole thing fails. */
3499 if (GET_CODE (new) == CLOBBER
3500 && XEXP (new, 0) == const0_rtx)
3501 return new;
3502
3503 SUBST (XVECEXP (x, 0, 0), new);
3504
3505 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3506 {
3507 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3508
3509 if (!REG_P (dest)
3510 && GET_CODE (dest) != CC0
3511 && GET_CODE (dest) != PC)
3512 {
3513 new = subst (dest, from, to, 0, unique_copy);
3514
3515 /* If this substitution failed, this whole thing fails. */
3516 if (GET_CODE (new) == CLOBBER
3517 && XEXP (new, 0) == const0_rtx)
3518 return new;
3519
3520 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3521 }
3522 }
3523 }
3524 else
3525 {
3526 len = GET_RTX_LENGTH (code);
3527 fmt = GET_RTX_FORMAT (code);
3528
3529 /* We don't need to process a SET_DEST that is a register, CC0,
3530 or PC, so set up to skip this common case. All other cases
3531 where we want to suppress replacing something inside a
3532 SET_SRC are handled via the IN_DEST operand. */
3533 if (code == SET
3534 && (REG_P (SET_DEST (x))
3535 || GET_CODE (SET_DEST (x)) == CC0
3536 || GET_CODE (SET_DEST (x)) == PC))
3537 fmt = "ie";
3538
3539 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3540 constant. */
3541 if (fmt[0] == 'e')
3542 op0_mode = GET_MODE (XEXP (x, 0));
3543
3544 for (i = 0; i < len; i++)
3545 {
3546 if (fmt[i] == 'E')
3547 {
3548 int j;
3549 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3550 {
3551 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3552 {
3553 new = (unique_copy && n_occurrences
3554 ? copy_rtx (to) : to);
3555 n_occurrences++;
3556 }
3557 else
3558 {
3559 new = subst (XVECEXP (x, i, j), from, to, 0,
3560 unique_copy);
3561
3562 /* If this substitution failed, this whole thing
3563 fails. */
3564 if (GET_CODE (new) == CLOBBER
3565 && XEXP (new, 0) == const0_rtx)
3566 return new;
3567 }
3568
3569 SUBST (XVECEXP (x, i, j), new);
3570 }
3571 }
3572 else if (fmt[i] == 'e')
3573 {
3574 /* If this is a register being set, ignore it. */
3575 new = XEXP (x, i);
3576 if (in_dest
3577 && i == 0
3578 && (((code == SUBREG || code == ZERO_EXTRACT)
3579 && REG_P (new))
3580 || code == STRICT_LOW_PART))
3581 ;
3582
3583 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3584 {
3585 /* In general, don't install a subreg involving two
3586 modes not tieable. It can worsen register
3587 allocation, and can even make invalid reload
3588 insns, since the reg inside may need to be copied
3589 from in the outside mode, and that may be invalid
3590 if it is an fp reg copied in integer mode.
3591
3592 We allow two exceptions to this: It is valid if
3593 it is inside another SUBREG and the mode of that
3594 SUBREG and the mode of the inside of TO is
3595 tieable and it is valid if X is a SET that copies
3596 FROM to CC0. */
3597
3598 if (GET_CODE (to) == SUBREG
3599 && ! MODES_TIEABLE_P (GET_MODE (to),
3600 GET_MODE (SUBREG_REG (to)))
3601 && ! (code == SUBREG
3602 && MODES_TIEABLE_P (GET_MODE (x),
3603 GET_MODE (SUBREG_REG (to))))
3604 #ifdef HAVE_cc0
3605 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3606 #endif
3607 )
3608 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3609
3610 #ifdef CANNOT_CHANGE_MODE_CLASS
3611 if (code == SUBREG
3612 && REG_P (to)
3613 && REGNO (to) < FIRST_PSEUDO_REGISTER
3614 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3615 GET_MODE (to),
3616 GET_MODE (x)))
3617 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3618 #endif
3619
3620 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3621 n_occurrences++;
3622 }
3623 else
3624 /* If we are in a SET_DEST, suppress most cases unless we
3625 have gone inside a MEM, in which case we want to
3626 simplify the address. We assume here that things that
3627 are actually part of the destination have their inner
3628 parts in the first expression. This is true for SUBREG,
3629 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3630 things aside from REG and MEM that should appear in a
3631 SET_DEST. */
3632 new = subst (XEXP (x, i), from, to,
3633 (((in_dest
3634 && (code == SUBREG || code == STRICT_LOW_PART
3635 || code == ZERO_EXTRACT))
3636 || code == SET)
3637 && i == 0), unique_copy);
3638
3639 /* If we found that we will have to reject this combination,
3640 indicate that by returning the CLOBBER ourselves, rather than
3641 an expression containing it. This will speed things up as
3642 well as prevent accidents where two CLOBBERs are considered
3643 to be equal, thus producing an incorrect simplification. */
3644
3645 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3646 return new;
3647
3648 if (GET_CODE (x) == SUBREG
3649 && (GET_CODE (new) == CONST_INT
3650 || GET_CODE (new) == CONST_DOUBLE))
3651 {
3652 enum machine_mode mode = GET_MODE (x);
3653
3654 x = simplify_subreg (GET_MODE (x), new,
3655 GET_MODE (SUBREG_REG (x)),
3656 SUBREG_BYTE (x));
3657 if (! x)
3658 x = gen_rtx_CLOBBER (mode, const0_rtx);
3659 }
3660 else if (GET_CODE (new) == CONST_INT
3661 && GET_CODE (x) == ZERO_EXTEND)
3662 {
3663 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3664 new, GET_MODE (XEXP (x, 0)));
3665 gcc_assert (x);
3666 }
3667 else
3668 SUBST (XEXP (x, i), new);
3669 }
3670 }
3671 }
3672
3673 /* Try to simplify X. If the simplification changed the code, it is likely
3674 that further simplification will help, so loop, but limit the number
3675 of repetitions that will be performed. */
3676
3677 for (i = 0; i < 4; i++)
3678 {
3679 /* If X is sufficiently simple, don't bother trying to do anything
3680 with it. */
3681 if (code != CONST_INT && code != REG && code != CLOBBER)
3682 x = combine_simplify_rtx (x, op0_mode, in_dest);
3683
3684 if (GET_CODE (x) == code)
3685 break;
3686
3687 code = GET_CODE (x);
3688
3689 /* We no longer know the original mode of operand 0 since we
3690 have changed the form of X) */
3691 op0_mode = VOIDmode;
3692 }
3693
3694 return x;
3695 }
3696 \f
3697 /* Simplify X, a piece of RTL. We just operate on the expression at the
3698 outer level; call `subst' to simplify recursively. Return the new
3699 expression.
3700
3701 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3702 if we are inside a SET_DEST. */
3703
3704 static rtx
3705 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3706 {
3707 enum rtx_code code = GET_CODE (x);
3708 enum machine_mode mode = GET_MODE (x);
3709 rtx temp;
3710 rtx reversed;
3711 int i;
3712
3713 /* If this is a commutative operation, put a constant last and a complex
3714 expression first. We don't need to do this for comparisons here. */
3715 if (COMMUTATIVE_ARITH_P (x)
3716 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3717 {
3718 temp = XEXP (x, 0);
3719 SUBST (XEXP (x, 0), XEXP (x, 1));
3720 SUBST (XEXP (x, 1), temp);
3721 }
3722
3723 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3724 sign extension of a PLUS with a constant, reverse the order of the sign
3725 extension and the addition. Note that this not the same as the original
3726 code, but overflow is undefined for signed values. Also note that the
3727 PLUS will have been partially moved "inside" the sign-extension, so that
3728 the first operand of X will really look like:
3729 (ashiftrt (plus (ashift A C4) C5) C4).
3730 We convert this to
3731 (plus (ashiftrt (ashift A C4) C2) C4)
3732 and replace the first operand of X with that expression. Later parts
3733 of this function may simplify the expression further.
3734
3735 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3736 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3737 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3738
3739 We do this to simplify address expressions. */
3740
3741 if ((code == PLUS || code == MINUS || code == MULT)
3742 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3743 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3744 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3745 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3746 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3747 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3748 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3749 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3750 XEXP (XEXP (XEXP (x, 0), 0), 1),
3751 XEXP (XEXP (x, 0), 1))) != 0)
3752 {
3753 rtx new
3754 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3755 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3756 INTVAL (XEXP (XEXP (x, 0), 1)));
3757
3758 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3759 INTVAL (XEXP (XEXP (x, 0), 1)));
3760
3761 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3762 }
3763
3764 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3765 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3766 things. Check for cases where both arms are testing the same
3767 condition.
3768
3769 Don't do anything if all operands are very simple. */
3770
3771 if ((BINARY_P (x)
3772 && ((!OBJECT_P (XEXP (x, 0))
3773 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3774 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3775 || (!OBJECT_P (XEXP (x, 1))
3776 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3777 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3778 || (UNARY_P (x)
3779 && (!OBJECT_P (XEXP (x, 0))
3780 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3781 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3782 {
3783 rtx cond, true_rtx, false_rtx;
3784
3785 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3786 if (cond != 0
3787 /* If everything is a comparison, what we have is highly unlikely
3788 to be simpler, so don't use it. */
3789 && ! (COMPARISON_P (x)
3790 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3791 {
3792 rtx cop1 = const0_rtx;
3793 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3794
3795 if (cond_code == NE && COMPARISON_P (cond))
3796 return x;
3797
3798 /* Simplify the alternative arms; this may collapse the true and
3799 false arms to store-flag values. Be careful to use copy_rtx
3800 here since true_rtx or false_rtx might share RTL with x as a
3801 result of the if_then_else_cond call above. */
3802 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3803 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3804
3805 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3806 is unlikely to be simpler. */
3807 if (general_operand (true_rtx, VOIDmode)
3808 && general_operand (false_rtx, VOIDmode))
3809 {
3810 enum rtx_code reversed;
3811
3812 /* Restarting if we generate a store-flag expression will cause
3813 us to loop. Just drop through in this case. */
3814
3815 /* If the result values are STORE_FLAG_VALUE and zero, we can
3816 just make the comparison operation. */
3817 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3818 x = gen_binary (cond_code, mode, cond, cop1);
3819 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3820 && ((reversed = reversed_comparison_code_parts
3821 (cond_code, cond, cop1, NULL))
3822 != UNKNOWN))
3823 x = gen_binary (reversed, mode, cond, cop1);
3824
3825 /* Likewise, we can make the negate of a comparison operation
3826 if the result values are - STORE_FLAG_VALUE and zero. */
3827 else if (GET_CODE (true_rtx) == CONST_INT
3828 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3829 && false_rtx == const0_rtx)
3830 x = simplify_gen_unary (NEG, mode,
3831 gen_binary (cond_code, mode, cond,
3832 cop1),
3833 mode);
3834 else if (GET_CODE (false_rtx) == CONST_INT
3835 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3836 && true_rtx == const0_rtx
3837 && ((reversed = reversed_comparison_code_parts
3838 (cond_code, cond, cop1, NULL))
3839 != UNKNOWN))
3840 x = simplify_gen_unary (NEG, mode,
3841 gen_binary (reversed, mode,
3842 cond, cop1),
3843 mode);
3844 else
3845 return gen_rtx_IF_THEN_ELSE (mode,
3846 gen_binary (cond_code, VOIDmode,
3847 cond, cop1),
3848 true_rtx, false_rtx);
3849
3850 code = GET_CODE (x);
3851 op0_mode = VOIDmode;
3852 }
3853 }
3854 }
3855
3856 /* Try to fold this expression in case we have constants that weren't
3857 present before. */
3858 temp = 0;
3859 switch (GET_RTX_CLASS (code))
3860 {
3861 case RTX_UNARY:
3862 if (op0_mode == VOIDmode)
3863 op0_mode = GET_MODE (XEXP (x, 0));
3864 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3865 break;
3866 case RTX_COMPARE:
3867 case RTX_COMM_COMPARE:
3868 {
3869 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3870 if (cmp_mode == VOIDmode)
3871 {
3872 cmp_mode = GET_MODE (XEXP (x, 1));
3873 if (cmp_mode == VOIDmode)
3874 cmp_mode = op0_mode;
3875 }
3876 temp = simplify_relational_operation (code, mode, cmp_mode,
3877 XEXP (x, 0), XEXP (x, 1));
3878 }
3879 break;
3880 case RTX_COMM_ARITH:
3881 case RTX_BIN_ARITH:
3882 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3883 break;
3884 case RTX_BITFIELD_OPS:
3885 case RTX_TERNARY:
3886 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3887 XEXP (x, 1), XEXP (x, 2));
3888 break;
3889 default:
3890 break;
3891 }
3892
3893 if (temp)
3894 {
3895 x = temp;
3896 code = GET_CODE (temp);
3897 op0_mode = VOIDmode;
3898 mode = GET_MODE (temp);
3899 }
3900
3901 /* First see if we can apply the inverse distributive law. */
3902 if (code == PLUS || code == MINUS
3903 || code == AND || code == IOR || code == XOR)
3904 {
3905 x = apply_distributive_law (x);
3906 code = GET_CODE (x);
3907 op0_mode = VOIDmode;
3908 }
3909
3910 /* If CODE is an associative operation not otherwise handled, see if we
3911 can associate some operands. This can win if they are constants or
3912 if they are logically related (i.e. (a & b) & a). */
3913 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3914 || code == AND || code == IOR || code == XOR
3915 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3916 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3917 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3918 {
3919 if (GET_CODE (XEXP (x, 0)) == code)
3920 {
3921 rtx other = XEXP (XEXP (x, 0), 0);
3922 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3923 rtx inner_op1 = XEXP (x, 1);
3924 rtx inner;
3925
3926 /* Make sure we pass the constant operand if any as the second
3927 one if this is a commutative operation. */
3928 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3929 {
3930 rtx tem = inner_op0;
3931 inner_op0 = inner_op1;
3932 inner_op1 = tem;
3933 }
3934 inner = simplify_binary_operation (code == MINUS ? PLUS
3935 : code == DIV ? MULT
3936 : code,
3937 mode, inner_op0, inner_op1);
3938
3939 /* For commutative operations, try the other pair if that one
3940 didn't simplify. */
3941 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3942 {
3943 other = XEXP (XEXP (x, 0), 1);
3944 inner = simplify_binary_operation (code, mode,
3945 XEXP (XEXP (x, 0), 0),
3946 XEXP (x, 1));
3947 }
3948
3949 if (inner)
3950 return gen_binary (code, mode, other, inner);
3951 }
3952 }
3953
3954 /* A little bit of algebraic simplification here. */
3955 switch (code)
3956 {
3957 case MEM:
3958 /* Ensure that our address has any ASHIFTs converted to MULT in case
3959 address-recognizing predicates are called later. */
3960 temp = make_compound_operation (XEXP (x, 0), MEM);
3961 SUBST (XEXP (x, 0), temp);
3962 break;
3963
3964 case SUBREG:
3965 if (op0_mode == VOIDmode)
3966 op0_mode = GET_MODE (SUBREG_REG (x));
3967
3968 /* See if this can be moved to simplify_subreg. */
3969 if (CONSTANT_P (SUBREG_REG (x))
3970 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3971 /* Don't call gen_lowpart if the inner mode
3972 is VOIDmode and we cannot simplify it, as SUBREG without
3973 inner mode is invalid. */
3974 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3975 || gen_lowpart_common (mode, SUBREG_REG (x))))
3976 return gen_lowpart (mode, SUBREG_REG (x));
3977
3978 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3979 break;
3980 {
3981 rtx temp;
3982 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3983 SUBREG_BYTE (x));
3984 if (temp)
3985 return temp;
3986 }
3987
3988 /* Don't change the mode of the MEM if that would change the meaning
3989 of the address. */
3990 if (MEM_P (SUBREG_REG (x))
3991 && (MEM_VOLATILE_P (SUBREG_REG (x))
3992 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3993 return gen_rtx_CLOBBER (mode, const0_rtx);
3994
3995 /* Note that we cannot do any narrowing for non-constants since
3996 we might have been counting on using the fact that some bits were
3997 zero. We now do this in the SET. */
3998
3999 break;
4000
4001 case NOT:
4002 if (GET_CODE (XEXP (x, 0)) == SUBREG
4003 && subreg_lowpart_p (XEXP (x, 0))
4004 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4005 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4006 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4007 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4008 {
4009 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4010
4011 x = gen_rtx_ROTATE (inner_mode,
4012 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4013 inner_mode),
4014 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4015 return gen_lowpart (mode, x);
4016 }
4017
4018 /* Apply De Morgan's laws to reduce number of patterns for machines
4019 with negating logical insns (and-not, nand, etc.). If result has
4020 only one NOT, put it first, since that is how the patterns are
4021 coded. */
4022
4023 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4024 {
4025 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4026 enum machine_mode op_mode;
4027
4028 op_mode = GET_MODE (in1);
4029 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4030
4031 op_mode = GET_MODE (in2);
4032 if (op_mode == VOIDmode)
4033 op_mode = mode;
4034 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4035
4036 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4037 {
4038 rtx tem = in2;
4039 in2 = in1; in1 = tem;
4040 }
4041
4042 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4043 mode, in1, in2);
4044 }
4045 break;
4046
4047 case NEG:
4048 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4049 if (GET_CODE (XEXP (x, 0)) == XOR
4050 && XEXP (XEXP (x, 0), 1) == const1_rtx
4051 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4052 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4053
4054 temp = expand_compound_operation (XEXP (x, 0));
4055
4056 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4057 replaced by (lshiftrt X C). This will convert
4058 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4059
4060 if (GET_CODE (temp) == ASHIFTRT
4061 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4062 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4063 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4064 INTVAL (XEXP (temp, 1)));
4065
4066 /* If X has only a single bit that might be nonzero, say, bit I, convert
4067 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4068 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4069 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4070 or a SUBREG of one since we'd be making the expression more
4071 complex if it was just a register. */
4072
4073 if (!REG_P (temp)
4074 && ! (GET_CODE (temp) == SUBREG
4075 && REG_P (SUBREG_REG (temp)))
4076 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4077 {
4078 rtx temp1 = simplify_shift_const
4079 (NULL_RTX, ASHIFTRT, mode,
4080 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4081 GET_MODE_BITSIZE (mode) - 1 - i),
4082 GET_MODE_BITSIZE (mode) - 1 - i);
4083
4084 /* If all we did was surround TEMP with the two shifts, we
4085 haven't improved anything, so don't use it. Otherwise,
4086 we are better off with TEMP1. */
4087 if (GET_CODE (temp1) != ASHIFTRT
4088 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4089 || XEXP (XEXP (temp1, 0), 0) != temp)
4090 return temp1;
4091 }
4092 break;
4093
4094 case TRUNCATE:
4095 /* We can't handle truncation to a partial integer mode here
4096 because we don't know the real bitsize of the partial
4097 integer mode. */
4098 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4099 break;
4100
4101 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4102 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4103 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4104 SUBST (XEXP (x, 0),
4105 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4106 GET_MODE_MASK (mode), NULL_RTX, 0));
4107
4108 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4109 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4110 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4111 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4112 return XEXP (XEXP (x, 0), 0);
4113
4114 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4115 (OP:SI foo:SI) if OP is NEG or ABS. */
4116 if ((GET_CODE (XEXP (x, 0)) == ABS
4117 || GET_CODE (XEXP (x, 0)) == NEG)
4118 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4119 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4120 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4121 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4122 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4123
4124 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4125 (truncate:SI x). */
4126 if (GET_CODE (XEXP (x, 0)) == SUBREG
4127 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4128 && subreg_lowpart_p (XEXP (x, 0)))
4129 return SUBREG_REG (XEXP (x, 0));
4130
4131 /* If we know that the value is already truncated, we can
4132 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4133 is nonzero for the corresponding modes. But don't do this
4134 for an (LSHIFTRT (MULT ...)) since this will cause problems
4135 with the umulXi3_highpart patterns. */
4136 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4137 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4138 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4139 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4140 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4141 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4142 return gen_lowpart (mode, XEXP (x, 0));
4143
4144 /* A truncate of a comparison can be replaced with a subreg if
4145 STORE_FLAG_VALUE permits. This is like the previous test,
4146 but it works even if the comparison is done in a mode larger
4147 than HOST_BITS_PER_WIDE_INT. */
4148 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4149 && COMPARISON_P (XEXP (x, 0))
4150 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4151 return gen_lowpart (mode, XEXP (x, 0));
4152
4153 /* Similarly, a truncate of a register whose value is a
4154 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4155 permits. */
4156 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4157 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4158 && (temp = get_last_value (XEXP (x, 0)))
4159 && COMPARISON_P (temp))
4160 return gen_lowpart (mode, XEXP (x, 0));
4161
4162 break;
4163
4164 case FLOAT_TRUNCATE:
4165 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4166 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4167 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4168 return XEXP (XEXP (x, 0), 0);
4169
4170 /* (float_truncate:SF (float_truncate:DF foo:XF))
4171 = (float_truncate:SF foo:XF).
4172 This may eliminate double rounding, so it is unsafe.
4173
4174 (float_truncate:SF (float_extend:XF foo:DF))
4175 = (float_truncate:SF foo:DF).
4176
4177 (float_truncate:DF (float_extend:XF foo:SF))
4178 = (float_extend:SF foo:DF). */
4179 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4180 && flag_unsafe_math_optimizations)
4181 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4182 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4183 0)))
4184 > GET_MODE_SIZE (mode)
4185 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4186 mode,
4187 XEXP (XEXP (x, 0), 0), mode);
4188
4189 /* (float_truncate (float x)) is (float x) */
4190 if (GET_CODE (XEXP (x, 0)) == FLOAT
4191 && (flag_unsafe_math_optimizations
4192 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4193 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4194 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4195 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4196 return simplify_gen_unary (FLOAT, mode,
4197 XEXP (XEXP (x, 0), 0),
4198 GET_MODE (XEXP (XEXP (x, 0), 0)));
4199
4200 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4201 (OP:SF foo:SF) if OP is NEG or ABS. */
4202 if ((GET_CODE (XEXP (x, 0)) == ABS
4203 || GET_CODE (XEXP (x, 0)) == NEG)
4204 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4205 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4206 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4207 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4208
4209 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4210 is (float_truncate:SF x). */
4211 if (GET_CODE (XEXP (x, 0)) == SUBREG
4212 && subreg_lowpart_p (XEXP (x, 0))
4213 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4214 return SUBREG_REG (XEXP (x, 0));
4215 break;
4216 case FLOAT_EXTEND:
4217 /* (float_extend (float_extend x)) is (float_extend x)
4218
4219 (float_extend (float x)) is (float x) assuming that double
4220 rounding can't happen.
4221 */
4222 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4223 || (GET_CODE (XEXP (x, 0)) == FLOAT
4224 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4225 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4226 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4227 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4228 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4229 XEXP (XEXP (x, 0), 0),
4230 GET_MODE (XEXP (XEXP (x, 0), 0)));
4231
4232 break;
4233 #ifdef HAVE_cc0
4234 case COMPARE:
4235 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4236 using cc0, in which case we want to leave it as a COMPARE
4237 so we can distinguish it from a register-register-copy. */
4238 if (XEXP (x, 1) == const0_rtx)
4239 return XEXP (x, 0);
4240
4241 /* x - 0 is the same as x unless x's mode has signed zeros and
4242 allows rounding towards -infinity. Under those conditions,
4243 0 - 0 is -0. */
4244 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4245 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4246 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4247 return XEXP (x, 0);
4248 break;
4249 #endif
4250
4251 case CONST:
4252 /* (const (const X)) can become (const X). Do it this way rather than
4253 returning the inner CONST since CONST can be shared with a
4254 REG_EQUAL note. */
4255 if (GET_CODE (XEXP (x, 0)) == CONST)
4256 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4257 break;
4258
4259 #ifdef HAVE_lo_sum
4260 case LO_SUM:
4261 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4262 can add in an offset. find_split_point will split this address up
4263 again if it doesn't match. */
4264 if (GET_CODE (XEXP (x, 0)) == HIGH
4265 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4266 return XEXP (x, 1);
4267 break;
4268 #endif
4269
4270 case PLUS:
4271 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4272 */
4273 if (GET_CODE (XEXP (x, 0)) == MULT
4274 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4275 {
4276 rtx in1, in2;
4277
4278 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4279 in2 = XEXP (XEXP (x, 0), 1);
4280 return gen_binary (MINUS, mode, XEXP (x, 1),
4281 gen_binary (MULT, mode, in1, in2));
4282 }
4283
4284 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4285 outermost. That's because that's the way indexed addresses are
4286 supposed to appear. This code used to check many more cases, but
4287 they are now checked elsewhere. */
4288 if (GET_CODE (XEXP (x, 0)) == PLUS
4289 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4290 return gen_binary (PLUS, mode,
4291 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4292 XEXP (x, 1)),
4293 XEXP (XEXP (x, 0), 1));
4294
4295 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4296 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4297 bit-field and can be replaced by either a sign_extend or a
4298 sign_extract. The `and' may be a zero_extend and the two
4299 <c>, -<c> constants may be reversed. */
4300 if (GET_CODE (XEXP (x, 0)) == XOR
4301 && GET_CODE (XEXP (x, 1)) == CONST_INT
4302 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4303 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4304 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4305 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4306 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4307 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4308 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4309 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4310 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4311 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4312 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4313 == (unsigned int) i + 1))))
4314 return simplify_shift_const
4315 (NULL_RTX, ASHIFTRT, mode,
4316 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4317 XEXP (XEXP (XEXP (x, 0), 0), 0),
4318 GET_MODE_BITSIZE (mode) - (i + 1)),
4319 GET_MODE_BITSIZE (mode) - (i + 1));
4320
4321 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4322 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4323 is 1. This produces better code than the alternative immediately
4324 below. */
4325 if (COMPARISON_P (XEXP (x, 0))
4326 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4327 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4328 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4329 XEXP (XEXP (x, 0), 0),
4330 XEXP (XEXP (x, 0), 1))))
4331 return
4332 simplify_gen_unary (NEG, mode, reversed, mode);
4333
4334 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4335 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4336 the bitsize of the mode - 1. This allows simplification of
4337 "a = (b & 8) == 0;" */
4338 if (XEXP (x, 1) == constm1_rtx
4339 && !REG_P (XEXP (x, 0))
4340 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4341 && REG_P (SUBREG_REG (XEXP (x, 0))))
4342 && nonzero_bits (XEXP (x, 0), mode) == 1)
4343 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4344 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4345 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4346 GET_MODE_BITSIZE (mode) - 1),
4347 GET_MODE_BITSIZE (mode) - 1);
4348
4349 /* If we are adding two things that have no bits in common, convert
4350 the addition into an IOR. This will often be further simplified,
4351 for example in cases like ((a & 1) + (a & 2)), which can
4352 become a & 3. */
4353
4354 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4355 && (nonzero_bits (XEXP (x, 0), mode)
4356 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4357 {
4358 /* Try to simplify the expression further. */
4359 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4360 temp = combine_simplify_rtx (tor, mode, in_dest);
4361
4362 /* If we could, great. If not, do not go ahead with the IOR
4363 replacement, since PLUS appears in many special purpose
4364 address arithmetic instructions. */
4365 if (GET_CODE (temp) != CLOBBER && temp != tor)
4366 return temp;
4367 }
4368 break;
4369
4370 case MINUS:
4371 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4372 by reversing the comparison code if valid. */
4373 if (STORE_FLAG_VALUE == 1
4374 && XEXP (x, 0) == const1_rtx
4375 && COMPARISON_P (XEXP (x, 1))
4376 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4377 XEXP (XEXP (x, 1), 0),
4378 XEXP (XEXP (x, 1), 1))))
4379 return reversed;
4380
4381 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4382 (and <foo> (const_int pow2-1)) */
4383 if (GET_CODE (XEXP (x, 1)) == AND
4384 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4385 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4386 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4387 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4388 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4389
4390 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4391 */
4392 if (GET_CODE (XEXP (x, 1)) == MULT
4393 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4394 {
4395 rtx in1, in2;
4396
4397 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4398 in2 = XEXP (XEXP (x, 1), 1);
4399 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4400 XEXP (x, 0));
4401 }
4402
4403 /* Canonicalize (minus (neg A) (mult B C)) to
4404 (minus (mult (neg B) C) A). */
4405 if (GET_CODE (XEXP (x, 1)) == MULT
4406 && GET_CODE (XEXP (x, 0)) == NEG)
4407 {
4408 rtx in1, in2;
4409
4410 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4411 in2 = XEXP (XEXP (x, 1), 1);
4412 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4413 XEXP (XEXP (x, 0), 0));
4414 }
4415
4416 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4417 integers. */
4418 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4419 return gen_binary (MINUS, mode,
4420 gen_binary (MINUS, mode, XEXP (x, 0),
4421 XEXP (XEXP (x, 1), 0)),
4422 XEXP (XEXP (x, 1), 1));
4423 break;
4424
4425 case MULT:
4426 /* If we have (mult (plus A B) C), apply the distributive law and then
4427 the inverse distributive law to see if things simplify. This
4428 occurs mostly in addresses, often when unrolling loops. */
4429
4430 if (GET_CODE (XEXP (x, 0)) == PLUS)
4431 {
4432 x = apply_distributive_law
4433 (gen_binary (PLUS, mode,
4434 gen_binary (MULT, mode,
4435 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4436 gen_binary (MULT, mode,
4437 XEXP (XEXP (x, 0), 1),
4438 copy_rtx (XEXP (x, 1)))));
4439
4440 if (GET_CODE (x) != MULT)
4441 return x;
4442 }
4443 /* Try simplify a*(b/c) as (a*b)/c. */
4444 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4445 && GET_CODE (XEXP (x, 0)) == DIV)
4446 {
4447 rtx tem = simplify_binary_operation (MULT, mode,
4448 XEXP (XEXP (x, 0), 0),
4449 XEXP (x, 1));
4450 if (tem)
4451 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4452 }
4453 break;
4454
4455 case UDIV:
4456 /* If this is a divide by a power of two, treat it as a shift if
4457 its first operand is a shift. */
4458 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4459 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4460 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4461 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4462 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4463 || GET_CODE (XEXP (x, 0)) == ROTATE
4464 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4465 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4466 break;
4467
4468 case EQ: case NE:
4469 case GT: case GTU: case GE: case GEU:
4470 case LT: case LTU: case LE: case LEU:
4471 case UNEQ: case LTGT:
4472 case UNGT: case UNGE:
4473 case UNLT: case UNLE:
4474 case UNORDERED: case ORDERED:
4475 /* If the first operand is a condition code, we can't do anything
4476 with it. */
4477 if (GET_CODE (XEXP (x, 0)) == COMPARE
4478 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4479 && ! CC0_P (XEXP (x, 0))))
4480 {
4481 rtx op0 = XEXP (x, 0);
4482 rtx op1 = XEXP (x, 1);
4483 enum rtx_code new_code;
4484
4485 if (GET_CODE (op0) == COMPARE)
4486 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4487
4488 /* Simplify our comparison, if possible. */
4489 new_code = simplify_comparison (code, &op0, &op1);
4490
4491 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4492 if only the low-order bit is possibly nonzero in X (such as when
4493 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4494 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4495 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4496 (plus X 1).
4497
4498 Remove any ZERO_EXTRACT we made when thinking this was a
4499 comparison. It may now be simpler to use, e.g., an AND. If a
4500 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4501 the call to make_compound_operation in the SET case. */
4502
4503 if (STORE_FLAG_VALUE == 1
4504 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4505 && op1 == const0_rtx
4506 && mode == GET_MODE (op0)
4507 && nonzero_bits (op0, mode) == 1)
4508 return gen_lowpart (mode,
4509 expand_compound_operation (op0));
4510
4511 else if (STORE_FLAG_VALUE == 1
4512 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4513 && op1 == const0_rtx
4514 && mode == GET_MODE (op0)
4515 && (num_sign_bit_copies (op0, mode)
4516 == GET_MODE_BITSIZE (mode)))
4517 {
4518 op0 = expand_compound_operation (op0);
4519 return simplify_gen_unary (NEG, mode,
4520 gen_lowpart (mode, op0),
4521 mode);
4522 }
4523
4524 else if (STORE_FLAG_VALUE == 1
4525 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4526 && op1 == const0_rtx
4527 && mode == GET_MODE (op0)
4528 && nonzero_bits (op0, mode) == 1)
4529 {
4530 op0 = expand_compound_operation (op0);
4531 return gen_binary (XOR, mode,
4532 gen_lowpart (mode, op0),
4533 const1_rtx);
4534 }
4535
4536 else if (STORE_FLAG_VALUE == 1
4537 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4538 && op1 == const0_rtx
4539 && mode == GET_MODE (op0)
4540 && (num_sign_bit_copies (op0, mode)
4541 == GET_MODE_BITSIZE (mode)))
4542 {
4543 op0 = expand_compound_operation (op0);
4544 return plus_constant (gen_lowpart (mode, op0), 1);
4545 }
4546
4547 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4548 those above. */
4549 if (STORE_FLAG_VALUE == -1
4550 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4551 && op1 == const0_rtx
4552 && (num_sign_bit_copies (op0, mode)
4553 == GET_MODE_BITSIZE (mode)))
4554 return gen_lowpart (mode,
4555 expand_compound_operation (op0));
4556
4557 else if (STORE_FLAG_VALUE == -1
4558 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4559 && op1 == const0_rtx
4560 && mode == GET_MODE (op0)
4561 && nonzero_bits (op0, mode) == 1)
4562 {
4563 op0 = expand_compound_operation (op0);
4564 return simplify_gen_unary (NEG, mode,
4565 gen_lowpart (mode, op0),
4566 mode);
4567 }
4568
4569 else if (STORE_FLAG_VALUE == -1
4570 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4571 && op1 == const0_rtx
4572 && mode == GET_MODE (op0)
4573 && (num_sign_bit_copies (op0, mode)
4574 == GET_MODE_BITSIZE (mode)))
4575 {
4576 op0 = expand_compound_operation (op0);
4577 return simplify_gen_unary (NOT, mode,
4578 gen_lowpart (mode, op0),
4579 mode);
4580 }
4581
4582 /* If X is 0/1, (eq X 0) is X-1. */
4583 else if (STORE_FLAG_VALUE == -1
4584 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4585 && op1 == const0_rtx
4586 && mode == GET_MODE (op0)
4587 && nonzero_bits (op0, mode) == 1)
4588 {
4589 op0 = expand_compound_operation (op0);
4590 return plus_constant (gen_lowpart (mode, op0), -1);
4591 }
4592
4593 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4594 one bit that might be nonzero, we can convert (ne x 0) to
4595 (ashift x c) where C puts the bit in the sign bit. Remove any
4596 AND with STORE_FLAG_VALUE when we are done, since we are only
4597 going to test the sign bit. */
4598 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4599 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4600 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4601 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4602 && op1 == const0_rtx
4603 && mode == GET_MODE (op0)
4604 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4605 {
4606 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4607 expand_compound_operation (op0),
4608 GET_MODE_BITSIZE (mode) - 1 - i);
4609 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4610 return XEXP (x, 0);
4611 else
4612 return x;
4613 }
4614
4615 /* If the code changed, return a whole new comparison. */
4616 if (new_code != code)
4617 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4618
4619 /* Otherwise, keep this operation, but maybe change its operands.
4620 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4621 SUBST (XEXP (x, 0), op0);
4622 SUBST (XEXP (x, 1), op1);
4623 }
4624 break;
4625
4626 case IF_THEN_ELSE:
4627 return simplify_if_then_else (x);
4628
4629 case ZERO_EXTRACT:
4630 case SIGN_EXTRACT:
4631 case ZERO_EXTEND:
4632 case SIGN_EXTEND:
4633 /* If we are processing SET_DEST, we are done. */
4634 if (in_dest)
4635 return x;
4636
4637 return expand_compound_operation (x);
4638
4639 case SET:
4640 return simplify_set (x);
4641
4642 case AND:
4643 case IOR:
4644 case XOR:
4645 return simplify_logical (x);
4646
4647 case ABS:
4648 /* (abs (neg <foo>)) -> (abs <foo>) */
4649 if (GET_CODE (XEXP (x, 0)) == NEG)
4650 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4651
4652 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4653 do nothing. */
4654 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4655 break;
4656
4657 /* If operand is something known to be positive, ignore the ABS. */
4658 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4659 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4660 <= HOST_BITS_PER_WIDE_INT)
4661 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4662 & ((HOST_WIDE_INT) 1
4663 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4664 == 0)))
4665 return XEXP (x, 0);
4666
4667 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4668 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4669 return gen_rtx_NEG (mode, XEXP (x, 0));
4670
4671 break;
4672
4673 case FFS:
4674 /* (ffs (*_extend <X>)) = (ffs <X>) */
4675 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4676 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4677 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4678 break;
4679
4680 case POPCOUNT:
4681 case PARITY:
4682 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4683 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4684 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4685 break;
4686
4687 case FLOAT:
4688 /* (float (sign_extend <X>)) = (float <X>). */
4689 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4690 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4691 break;
4692
4693 case ASHIFT:
4694 case LSHIFTRT:
4695 case ASHIFTRT:
4696 case ROTATE:
4697 case ROTATERT:
4698 /* If this is a shift by a constant amount, simplify it. */
4699 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4700 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4701 INTVAL (XEXP (x, 1)));
4702
4703 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4704 SUBST (XEXP (x, 1),
4705 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4706 ((HOST_WIDE_INT) 1
4707 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4708 - 1,
4709 NULL_RTX, 0));
4710 break;
4711
4712 case VEC_SELECT:
4713 {
4714 rtx op0 = XEXP (x, 0);
4715 rtx op1 = XEXP (x, 1);
4716 int len;
4717
4718 gcc_assert (GET_CODE (op1) == PARALLEL);
4719 len = XVECLEN (op1, 0);
4720 if (len == 1
4721 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4722 && GET_CODE (op0) == VEC_CONCAT)
4723 {
4724 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4725
4726 /* Try to find the element in the VEC_CONCAT. */
4727 for (;;)
4728 {
4729 if (GET_MODE (op0) == GET_MODE (x))
4730 return op0;
4731 if (GET_CODE (op0) == VEC_CONCAT)
4732 {
4733 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4734 if (op0_size < offset)
4735 op0 = XEXP (op0, 0);
4736 else
4737 {
4738 offset -= op0_size;
4739 op0 = XEXP (op0, 1);
4740 }
4741 }
4742 else
4743 break;
4744 }
4745 }
4746 }
4747
4748 break;
4749
4750 default:
4751 break;
4752 }
4753
4754 return x;
4755 }
4756 \f
4757 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4758
4759 static rtx
4760 simplify_if_then_else (rtx x)
4761 {
4762 enum machine_mode mode = GET_MODE (x);
4763 rtx cond = XEXP (x, 0);
4764 rtx true_rtx = XEXP (x, 1);
4765 rtx false_rtx = XEXP (x, 2);
4766 enum rtx_code true_code = GET_CODE (cond);
4767 int comparison_p = COMPARISON_P (cond);
4768 rtx temp;
4769 int i;
4770 enum rtx_code false_code;
4771 rtx reversed;
4772
4773 /* Simplify storing of the truth value. */
4774 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4775 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4776
4777 /* Also when the truth value has to be reversed. */
4778 if (comparison_p
4779 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4780 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4781 XEXP (cond, 1))))
4782 return reversed;
4783
4784 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4785 in it is being compared against certain values. Get the true and false
4786 comparisons and see if that says anything about the value of each arm. */
4787
4788 if (comparison_p
4789 && ((false_code = combine_reversed_comparison_code (cond))
4790 != UNKNOWN)
4791 && REG_P (XEXP (cond, 0)))
4792 {
4793 HOST_WIDE_INT nzb;
4794 rtx from = XEXP (cond, 0);
4795 rtx true_val = XEXP (cond, 1);
4796 rtx false_val = true_val;
4797 int swapped = 0;
4798
4799 /* If FALSE_CODE is EQ, swap the codes and arms. */
4800
4801 if (false_code == EQ)
4802 {
4803 swapped = 1, true_code = EQ, false_code = NE;
4804 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4805 }
4806
4807 /* If we are comparing against zero and the expression being tested has
4808 only a single bit that might be nonzero, that is its value when it is
4809 not equal to zero. Similarly if it is known to be -1 or 0. */
4810
4811 if (true_code == EQ && true_val == const0_rtx
4812 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4813 false_code = EQ, false_val = GEN_INT (nzb);
4814 else if (true_code == EQ && true_val == const0_rtx
4815 && (num_sign_bit_copies (from, GET_MODE (from))
4816 == GET_MODE_BITSIZE (GET_MODE (from))))
4817 false_code = EQ, false_val = constm1_rtx;
4818
4819 /* Now simplify an arm if we know the value of the register in the
4820 branch and it is used in the arm. Be careful due to the potential
4821 of locally-shared RTL. */
4822
4823 if (reg_mentioned_p (from, true_rtx))
4824 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4825 from, true_val),
4826 pc_rtx, pc_rtx, 0, 0);
4827 if (reg_mentioned_p (from, false_rtx))
4828 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4829 from, false_val),
4830 pc_rtx, pc_rtx, 0, 0);
4831
4832 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4833 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4834
4835 true_rtx = XEXP (x, 1);
4836 false_rtx = XEXP (x, 2);
4837 true_code = GET_CODE (cond);
4838 }
4839
4840 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4841 reversed, do so to avoid needing two sets of patterns for
4842 subtract-and-branch insns. Similarly if we have a constant in the true
4843 arm, the false arm is the same as the first operand of the comparison, or
4844 the false arm is more complicated than the true arm. */
4845
4846 if (comparison_p
4847 && combine_reversed_comparison_code (cond) != UNKNOWN
4848 && (true_rtx == pc_rtx
4849 || (CONSTANT_P (true_rtx)
4850 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4851 || true_rtx == const0_rtx
4852 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4853 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4854 && !OBJECT_P (false_rtx))
4855 || reg_mentioned_p (true_rtx, false_rtx)
4856 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4857 {
4858 true_code = reversed_comparison_code (cond, NULL);
4859 SUBST (XEXP (x, 0),
4860 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4861 XEXP (cond, 1)));
4862
4863 SUBST (XEXP (x, 1), false_rtx);
4864 SUBST (XEXP (x, 2), true_rtx);
4865
4866 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4867 cond = XEXP (x, 0);
4868
4869 /* It is possible that the conditional has been simplified out. */
4870 true_code = GET_CODE (cond);
4871 comparison_p = COMPARISON_P (cond);
4872 }
4873
4874 /* If the two arms are identical, we don't need the comparison. */
4875
4876 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4877 return true_rtx;
4878
4879 /* Convert a == b ? b : a to "a". */
4880 if (true_code == EQ && ! side_effects_p (cond)
4881 && !HONOR_NANS (mode)
4882 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4883 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4884 return false_rtx;
4885 else if (true_code == NE && ! side_effects_p (cond)
4886 && !HONOR_NANS (mode)
4887 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4888 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4889 return true_rtx;
4890
4891 /* Look for cases where we have (abs x) or (neg (abs X)). */
4892
4893 if (GET_MODE_CLASS (mode) == MODE_INT
4894 && GET_CODE (false_rtx) == NEG
4895 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4896 && comparison_p
4897 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4898 && ! side_effects_p (true_rtx))
4899 switch (true_code)
4900 {
4901 case GT:
4902 case GE:
4903 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4904 case LT:
4905 case LE:
4906 return
4907 simplify_gen_unary (NEG, mode,
4908 simplify_gen_unary (ABS, mode, true_rtx, mode),
4909 mode);
4910 default:
4911 break;
4912 }
4913
4914 /* Look for MIN or MAX. */
4915
4916 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4917 && comparison_p
4918 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4919 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4920 && ! side_effects_p (cond))
4921 switch (true_code)
4922 {
4923 case GE:
4924 case GT:
4925 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4926 case LE:
4927 case LT:
4928 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4929 case GEU:
4930 case GTU:
4931 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4932 case LEU:
4933 case LTU:
4934 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4935 default:
4936 break;
4937 }
4938
4939 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4940 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4941 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4942 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4943 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4944 neither 1 or -1, but it isn't worth checking for. */
4945
4946 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4947 && comparison_p
4948 && GET_MODE_CLASS (mode) == MODE_INT
4949 && ! side_effects_p (x))
4950 {
4951 rtx t = make_compound_operation (true_rtx, SET);
4952 rtx f = make_compound_operation (false_rtx, SET);
4953 rtx cond_op0 = XEXP (cond, 0);
4954 rtx cond_op1 = XEXP (cond, 1);
4955 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4956 enum machine_mode m = mode;
4957 rtx z = 0, c1 = NULL_RTX;
4958
4959 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4960 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4961 || GET_CODE (t) == ASHIFT
4962 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4963 && rtx_equal_p (XEXP (t, 0), f))
4964 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4965
4966 /* If an identity-zero op is commutative, check whether there
4967 would be a match if we swapped the operands. */
4968 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4969 || GET_CODE (t) == XOR)
4970 && rtx_equal_p (XEXP (t, 1), f))
4971 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4972 else if (GET_CODE (t) == SIGN_EXTEND
4973 && (GET_CODE (XEXP (t, 0)) == PLUS
4974 || GET_CODE (XEXP (t, 0)) == MINUS
4975 || GET_CODE (XEXP (t, 0)) == IOR
4976 || GET_CODE (XEXP (t, 0)) == XOR
4977 || GET_CODE (XEXP (t, 0)) == ASHIFT
4978 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4979 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4980 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4981 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4982 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4983 && (num_sign_bit_copies (f, GET_MODE (f))
4984 > (unsigned int)
4985 (GET_MODE_BITSIZE (mode)
4986 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4987 {
4988 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4989 extend_op = SIGN_EXTEND;
4990 m = GET_MODE (XEXP (t, 0));
4991 }
4992 else if (GET_CODE (t) == SIGN_EXTEND
4993 && (GET_CODE (XEXP (t, 0)) == PLUS
4994 || GET_CODE (XEXP (t, 0)) == IOR
4995 || GET_CODE (XEXP (t, 0)) == XOR)
4996 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4997 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4998 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4999 && (num_sign_bit_copies (f, GET_MODE (f))
5000 > (unsigned int)
5001 (GET_MODE_BITSIZE (mode)
5002 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5003 {
5004 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5005 extend_op = SIGN_EXTEND;
5006 m = GET_MODE (XEXP (t, 0));
5007 }
5008 else if (GET_CODE (t) == ZERO_EXTEND
5009 && (GET_CODE (XEXP (t, 0)) == PLUS
5010 || GET_CODE (XEXP (t, 0)) == MINUS
5011 || GET_CODE (XEXP (t, 0)) == IOR
5012 || GET_CODE (XEXP (t, 0)) == XOR
5013 || GET_CODE (XEXP (t, 0)) == ASHIFT
5014 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5015 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5016 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5017 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5018 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5019 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5020 && ((nonzero_bits (f, GET_MODE (f))
5021 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5022 == 0))
5023 {
5024 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5025 extend_op = ZERO_EXTEND;
5026 m = GET_MODE (XEXP (t, 0));
5027 }
5028 else if (GET_CODE (t) == ZERO_EXTEND
5029 && (GET_CODE (XEXP (t, 0)) == PLUS
5030 || GET_CODE (XEXP (t, 0)) == IOR
5031 || GET_CODE (XEXP (t, 0)) == XOR)
5032 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5033 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5034 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5035 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5036 && ((nonzero_bits (f, GET_MODE (f))
5037 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5038 == 0))
5039 {
5040 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5041 extend_op = ZERO_EXTEND;
5042 m = GET_MODE (XEXP (t, 0));
5043 }
5044
5045 if (z)
5046 {
5047 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5048 pc_rtx, pc_rtx, 0, 0);
5049 temp = gen_binary (MULT, m, temp,
5050 gen_binary (MULT, m, c1, const_true_rtx));
5051 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5052 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5053
5054 if (extend_op != UNKNOWN)
5055 temp = simplify_gen_unary (extend_op, mode, temp, m);
5056
5057 return temp;
5058 }
5059 }
5060
5061 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5062 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5063 negation of a single bit, we can convert this operation to a shift. We
5064 can actually do this more generally, but it doesn't seem worth it. */
5065
5066 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5067 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5068 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5069 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5070 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5071 == GET_MODE_BITSIZE (mode))
5072 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5073 return
5074 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5075 gen_lowpart (mode, XEXP (cond, 0)), i);
5076
5077 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5078 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5079 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5080 && GET_MODE (XEXP (cond, 0)) == mode
5081 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5082 == nonzero_bits (XEXP (cond, 0), mode)
5083 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5084 return XEXP (cond, 0);
5085
5086 return x;
5087 }
5088 \f
5089 /* Simplify X, a SET expression. Return the new expression. */
5090
5091 static rtx
5092 simplify_set (rtx x)
5093 {
5094 rtx src = SET_SRC (x);
5095 rtx dest = SET_DEST (x);
5096 enum machine_mode mode
5097 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5098 rtx other_insn;
5099 rtx *cc_use;
5100
5101 /* (set (pc) (return)) gets written as (return). */
5102 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5103 return src;
5104
5105 /* Now that we know for sure which bits of SRC we are using, see if we can
5106 simplify the expression for the object knowing that we only need the
5107 low-order bits. */
5108
5109 if (GET_MODE_CLASS (mode) == MODE_INT
5110 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5111 {
5112 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5113 SUBST (SET_SRC (x), src);
5114 }
5115
5116 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5117 the comparison result and try to simplify it unless we already have used
5118 undobuf.other_insn. */
5119 if ((GET_MODE_CLASS (mode) == MODE_CC
5120 || GET_CODE (src) == COMPARE
5121 || CC0_P (dest))
5122 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5123 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5124 && COMPARISON_P (*cc_use)
5125 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5126 {
5127 enum rtx_code old_code = GET_CODE (*cc_use);
5128 enum rtx_code new_code;
5129 rtx op0, op1, tmp;
5130 int other_changed = 0;
5131 enum machine_mode compare_mode = GET_MODE (dest);
5132
5133 if (GET_CODE (src) == COMPARE)
5134 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5135 else
5136 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5137
5138 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5139 op0, op1);
5140 if (!tmp)
5141 new_code = old_code;
5142 else if (!CONSTANT_P (tmp))
5143 {
5144 new_code = GET_CODE (tmp);
5145 op0 = XEXP (tmp, 0);
5146 op1 = XEXP (tmp, 1);
5147 }
5148 else
5149 {
5150 rtx pat = PATTERN (other_insn);
5151 undobuf.other_insn = other_insn;
5152 SUBST (*cc_use, tmp);
5153
5154 /* Attempt to simplify CC user. */
5155 if (GET_CODE (pat) == SET)
5156 {
5157 rtx new = simplify_rtx (SET_SRC (pat));
5158 if (new != NULL_RTX)
5159 SUBST (SET_SRC (pat), new);
5160 }
5161
5162 /* Convert X into a no-op move. */
5163 SUBST (SET_DEST (x), pc_rtx);
5164 SUBST (SET_SRC (x), pc_rtx);
5165 return x;
5166 }
5167
5168 /* Simplify our comparison, if possible. */
5169 new_code = simplify_comparison (new_code, &op0, &op1);
5170
5171 #ifdef SELECT_CC_MODE
5172 /* If this machine has CC modes other than CCmode, check to see if we
5173 need to use a different CC mode here. */
5174 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5175 compare_mode = GET_MODE (op0);
5176 else
5177 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5178
5179 #ifndef HAVE_cc0
5180 /* If the mode changed, we have to change SET_DEST, the mode in the
5181 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5182 a hard register, just build new versions with the proper mode. If it
5183 is a pseudo, we lose unless it is only time we set the pseudo, in
5184 which case we can safely change its mode. */
5185 if (compare_mode != GET_MODE (dest))
5186 {
5187 unsigned int regno = REGNO (dest);
5188 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5189
5190 if (regno < FIRST_PSEUDO_REGISTER
5191 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5192 {
5193 if (regno >= FIRST_PSEUDO_REGISTER)
5194 SUBST (regno_reg_rtx[regno], new_dest);
5195
5196 SUBST (SET_DEST (x), new_dest);
5197 SUBST (XEXP (*cc_use, 0), new_dest);
5198 other_changed = 1;
5199
5200 dest = new_dest;
5201 }
5202 }
5203 #endif /* cc0 */
5204 #endif /* SELECT_CC_MODE */
5205
5206 /* If the code changed, we have to build a new comparison in
5207 undobuf.other_insn. */
5208 if (new_code != old_code)
5209 {
5210 int other_changed_previously = other_changed;
5211 unsigned HOST_WIDE_INT mask;
5212
5213 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5214 dest, const0_rtx));
5215 other_changed = 1;
5216
5217 /* If the only change we made was to change an EQ into an NE or
5218 vice versa, OP0 has only one bit that might be nonzero, and OP1
5219 is zero, check if changing the user of the condition code will
5220 produce a valid insn. If it won't, we can keep the original code
5221 in that insn by surrounding our operation with an XOR. */
5222
5223 if (((old_code == NE && new_code == EQ)
5224 || (old_code == EQ && new_code == NE))
5225 && ! other_changed_previously && op1 == const0_rtx
5226 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5227 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5228 {
5229 rtx pat = PATTERN (other_insn), note = 0;
5230
5231 if ((recog_for_combine (&pat, other_insn, &note) < 0
5232 && ! check_asm_operands (pat)))
5233 {
5234 PUT_CODE (*cc_use, old_code);
5235 other_changed = 0;
5236
5237 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5238 }
5239 }
5240 }
5241
5242 if (other_changed)
5243 undobuf.other_insn = other_insn;
5244
5245 #ifdef HAVE_cc0
5246 /* If we are now comparing against zero, change our source if
5247 needed. If we do not use cc0, we always have a COMPARE. */
5248 if (op1 == const0_rtx && dest == cc0_rtx)
5249 {
5250 SUBST (SET_SRC (x), op0);
5251 src = op0;
5252 }
5253 else
5254 #endif
5255
5256 /* Otherwise, if we didn't previously have a COMPARE in the
5257 correct mode, we need one. */
5258 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5259 {
5260 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5261 src = SET_SRC (x);
5262 }
5263 else
5264 {
5265 /* Otherwise, update the COMPARE if needed. */
5266 SUBST (XEXP (src, 0), op0);
5267 SUBST (XEXP (src, 1), op1);
5268 }
5269 }
5270 else
5271 {
5272 /* Get SET_SRC in a form where we have placed back any
5273 compound expressions. Then do the checks below. */
5274 src = make_compound_operation (src, SET);
5275 SUBST (SET_SRC (x), src);
5276 }
5277
5278 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5279 and X being a REG or (subreg (reg)), we may be able to convert this to
5280 (set (subreg:m2 x) (op)).
5281
5282 We can always do this if M1 is narrower than M2 because that means that
5283 we only care about the low bits of the result.
5284
5285 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5286 perform a narrower operation than requested since the high-order bits will
5287 be undefined. On machine where it is defined, this transformation is safe
5288 as long as M1 and M2 have the same number of words. */
5289
5290 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5291 && !OBJECT_P (SUBREG_REG (src))
5292 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5293 / UNITS_PER_WORD)
5294 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5295 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5296 #ifndef WORD_REGISTER_OPERATIONS
5297 && (GET_MODE_SIZE (GET_MODE (src))
5298 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5299 #endif
5300 #ifdef CANNOT_CHANGE_MODE_CLASS
5301 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5302 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5303 GET_MODE (SUBREG_REG (src)),
5304 GET_MODE (src)))
5305 #endif
5306 && (REG_P (dest)
5307 || (GET_CODE (dest) == SUBREG
5308 && REG_P (SUBREG_REG (dest)))))
5309 {
5310 SUBST (SET_DEST (x),
5311 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5312 dest));
5313 SUBST (SET_SRC (x), SUBREG_REG (src));
5314
5315 src = SET_SRC (x), dest = SET_DEST (x);
5316 }
5317
5318 #ifdef HAVE_cc0
5319 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5320 in SRC. */
5321 if (dest == cc0_rtx
5322 && GET_CODE (src) == SUBREG
5323 && subreg_lowpart_p (src)
5324 && (GET_MODE_BITSIZE (GET_MODE (src))
5325 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5326 {
5327 rtx inner = SUBREG_REG (src);
5328 enum machine_mode inner_mode = GET_MODE (inner);
5329
5330 /* Here we make sure that we don't have a sign bit on. */
5331 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5332 && (nonzero_bits (inner, inner_mode)
5333 < ((unsigned HOST_WIDE_INT) 1
5334 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5335 {
5336 SUBST (SET_SRC (x), inner);
5337 src = SET_SRC (x);
5338 }
5339 }
5340 #endif
5341
5342 #ifdef LOAD_EXTEND_OP
5343 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5344 would require a paradoxical subreg. Replace the subreg with a
5345 zero_extend to avoid the reload that would otherwise be required. */
5346
5347 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5348 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5349 && SUBREG_BYTE (src) == 0
5350 && (GET_MODE_SIZE (GET_MODE (src))
5351 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5352 && MEM_P (SUBREG_REG (src)))
5353 {
5354 SUBST (SET_SRC (x),
5355 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5356 GET_MODE (src), SUBREG_REG (src)));
5357
5358 src = SET_SRC (x);
5359 }
5360 #endif
5361
5362 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5363 are comparing an item known to be 0 or -1 against 0, use a logical
5364 operation instead. Check for one of the arms being an IOR of the other
5365 arm with some value. We compute three terms to be IOR'ed together. In
5366 practice, at most two will be nonzero. Then we do the IOR's. */
5367
5368 if (GET_CODE (dest) != PC
5369 && GET_CODE (src) == IF_THEN_ELSE
5370 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5371 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5372 && XEXP (XEXP (src, 0), 1) == const0_rtx
5373 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5374 #ifdef HAVE_conditional_move
5375 && ! can_conditionally_move_p (GET_MODE (src))
5376 #endif
5377 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5378 GET_MODE (XEXP (XEXP (src, 0), 0)))
5379 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5380 && ! side_effects_p (src))
5381 {
5382 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5383 ? XEXP (src, 1) : XEXP (src, 2));
5384 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5385 ? XEXP (src, 2) : XEXP (src, 1));
5386 rtx term1 = const0_rtx, term2, term3;
5387
5388 if (GET_CODE (true_rtx) == IOR
5389 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5390 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5391 else if (GET_CODE (true_rtx) == IOR
5392 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5393 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5394 else if (GET_CODE (false_rtx) == IOR
5395 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5396 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5397 else if (GET_CODE (false_rtx) == IOR
5398 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5399 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5400
5401 term2 = gen_binary (AND, GET_MODE (src),
5402 XEXP (XEXP (src, 0), 0), true_rtx);
5403 term3 = gen_binary (AND, GET_MODE (src),
5404 simplify_gen_unary (NOT, GET_MODE (src),
5405 XEXP (XEXP (src, 0), 0),
5406 GET_MODE (src)),
5407 false_rtx);
5408
5409 SUBST (SET_SRC (x),
5410 gen_binary (IOR, GET_MODE (src),
5411 gen_binary (IOR, GET_MODE (src), term1, term2),
5412 term3));
5413
5414 src = SET_SRC (x);
5415 }
5416
5417 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5418 whole thing fail. */
5419 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5420 return src;
5421 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5422 return dest;
5423 else
5424 /* Convert this into a field assignment operation, if possible. */
5425 return make_field_assignment (x);
5426 }
5427 \f
5428 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5429 result. */
5430
5431 static rtx
5432 simplify_logical (rtx x)
5433 {
5434 enum machine_mode mode = GET_MODE (x);
5435 rtx op0 = XEXP (x, 0);
5436 rtx op1 = XEXP (x, 1);
5437 rtx reversed;
5438
5439 switch (GET_CODE (x))
5440 {
5441 case AND:
5442 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5443 insn (and may simplify more). */
5444 if (GET_CODE (op0) == XOR
5445 && rtx_equal_p (XEXP (op0, 0), op1)
5446 && ! side_effects_p (op1))
5447 x = gen_binary (AND, mode,
5448 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5449 op1);
5450
5451 if (GET_CODE (op0) == XOR
5452 && rtx_equal_p (XEXP (op0, 1), op1)
5453 && ! side_effects_p (op1))
5454 x = gen_binary (AND, mode,
5455 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5456 op1);
5457
5458 /* Similarly for (~(A ^ B)) & A. */
5459 if (GET_CODE (op0) == NOT
5460 && GET_CODE (XEXP (op0, 0)) == XOR
5461 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5462 && ! side_effects_p (op1))
5463 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5464
5465 if (GET_CODE (op0) == NOT
5466 && GET_CODE (XEXP (op0, 0)) == XOR
5467 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5468 && ! side_effects_p (op1))
5469 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5470
5471 /* We can call simplify_and_const_int only if we don't lose
5472 any (sign) bits when converting INTVAL (op1) to
5473 "unsigned HOST_WIDE_INT". */
5474 if (GET_CODE (op1) == CONST_INT
5475 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5476 || INTVAL (op1) > 0))
5477 {
5478 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5479
5480 /* If we have (ior (and (X C1) C2)) and the next restart would be
5481 the last, simplify this by making C1 as small as possible
5482 and then exit. Only do this if C1 actually changes: for now
5483 this only saves memory but, should this transformation be
5484 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5485 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5486 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5487 && GET_CODE (op1) == CONST_INT
5488 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5489 return gen_binary (IOR, mode,
5490 gen_binary (AND, mode, XEXP (op0, 0),
5491 GEN_INT (INTVAL (XEXP (op0, 1))
5492 & ~INTVAL (op1))), op1);
5493
5494 if (GET_CODE (x) != AND)
5495 return x;
5496
5497 op0 = XEXP (x, 0);
5498 op1 = XEXP (x, 1);
5499 }
5500
5501 /* Convert (A | B) & A to A. */
5502 if (GET_CODE (op0) == IOR
5503 && (rtx_equal_p (XEXP (op0, 0), op1)
5504 || rtx_equal_p (XEXP (op0, 1), op1))
5505 && ! side_effects_p (XEXP (op0, 0))
5506 && ! side_effects_p (XEXP (op0, 1)))
5507 return op1;
5508
5509 /* In the following group of tests (and those in case IOR below),
5510 we start with some combination of logical operations and apply
5511 the distributive law followed by the inverse distributive law.
5512 Most of the time, this results in no change. However, if some of
5513 the operands are the same or inverses of each other, simplifications
5514 will result.
5515
5516 For example, (and (ior A B) (not B)) can occur as the result of
5517 expanding a bit field assignment. When we apply the distributive
5518 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5519 which then simplifies to (and (A (not B))).
5520
5521 If we have (and (ior A B) C), apply the distributive law and then
5522 the inverse distributive law to see if things simplify. */
5523
5524 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5525 {
5526 x = apply_distributive_law
5527 (gen_binary (GET_CODE (op0), mode,
5528 gen_binary (AND, mode, XEXP (op0, 0), op1),
5529 gen_binary (AND, mode, XEXP (op0, 1),
5530 copy_rtx (op1))));
5531 if (GET_CODE (x) != AND)
5532 return x;
5533 }
5534
5535 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5536 return apply_distributive_law
5537 (gen_binary (GET_CODE (op1), mode,
5538 gen_binary (AND, mode, XEXP (op1, 0), op0),
5539 gen_binary (AND, mode, XEXP (op1, 1),
5540 copy_rtx (op0))));
5541
5542 /* Similarly, taking advantage of the fact that
5543 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5544
5545 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5546 return apply_distributive_law
5547 (gen_binary (XOR, mode,
5548 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5549 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5550 XEXP (op1, 1))));
5551
5552 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5553 return apply_distributive_law
5554 (gen_binary (XOR, mode,
5555 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5556 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5557 break;
5558
5559 case IOR:
5560 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5561 if (GET_CODE (op1) == CONST_INT
5562 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5563 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5564 return op1;
5565
5566 /* Convert (A & B) | A to A. */
5567 if (GET_CODE (op0) == AND
5568 && (rtx_equal_p (XEXP (op0, 0), op1)
5569 || rtx_equal_p (XEXP (op0, 1), op1))
5570 && ! side_effects_p (XEXP (op0, 0))
5571 && ! side_effects_p (XEXP (op0, 1)))
5572 return op1;
5573
5574 /* If we have (ior (and A B) C), apply the distributive law and then
5575 the inverse distributive law to see if things simplify. */
5576
5577 if (GET_CODE (op0) == AND)
5578 {
5579 rtx tmp = apply_distributive_law
5580 (gen_binary (AND, mode,
5581 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5582 gen_binary (IOR, mode, XEXP (op0, 1),
5583 copy_rtx (op1))));
5584
5585 if (GET_CODE (tmp) != IOR
5586 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
5587 return tmp;
5588 }
5589
5590 if (GET_CODE (op1) == AND)
5591 {
5592 rtx tmp = apply_distributive_law
5593 (gen_binary (AND, mode,
5594 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5595 gen_binary (IOR, mode, XEXP (op1, 1),
5596 copy_rtx (op0))));
5597
5598 if (GET_CODE (tmp) != IOR
5599 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
5600 return tmp;
5601 }
5602
5603 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5604 mode size to (rotate A CX). */
5605
5606 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5607 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5608 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5609 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5610 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5611 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5612 == GET_MODE_BITSIZE (mode)))
5613 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5614 (GET_CODE (op0) == ASHIFT
5615 ? XEXP (op0, 1) : XEXP (op1, 1)));
5616
5617 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5618 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5619 does not affect any of the bits in OP1, it can really be done
5620 as a PLUS and we can associate. We do this by seeing if OP1
5621 can be safely shifted left C bits. */
5622 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5623 && GET_CODE (XEXP (op0, 0)) == PLUS
5624 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5625 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5626 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5627 {
5628 int count = INTVAL (XEXP (op0, 1));
5629 HOST_WIDE_INT mask = INTVAL (op1) << count;
5630
5631 if (mask >> count == INTVAL (op1)
5632 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5633 {
5634 SUBST (XEXP (XEXP (op0, 0), 1),
5635 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5636 return op0;
5637 }
5638 }
5639 break;
5640
5641 case XOR:
5642 /* If we are XORing two things that have no bits in common,
5643 convert them into an IOR. This helps to detect rotation encoded
5644 using those methods and possibly other simplifications. */
5645
5646 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5647 && (nonzero_bits (op0, mode)
5648 & nonzero_bits (op1, mode)) == 0)
5649 return (gen_binary (IOR, mode, op0, op1));
5650
5651 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5652 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5653 (NOT y). */
5654 {
5655 int num_negated = 0;
5656
5657 if (GET_CODE (op0) == NOT)
5658 num_negated++, op0 = XEXP (op0, 0);
5659 if (GET_CODE (op1) == NOT)
5660 num_negated++, op1 = XEXP (op1, 0);
5661
5662 if (num_negated == 2)
5663 {
5664 SUBST (XEXP (x, 0), op0);
5665 SUBST (XEXP (x, 1), op1);
5666 }
5667 else if (num_negated == 1)
5668 return
5669 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5670 mode);
5671 }
5672
5673 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5674 correspond to a machine insn or result in further simplifications
5675 if B is a constant. */
5676
5677 if (GET_CODE (op0) == AND
5678 && rtx_equal_p (XEXP (op0, 1), op1)
5679 && ! side_effects_p (op1))
5680 return gen_binary (AND, mode,
5681 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5682 op1);
5683
5684 else if (GET_CODE (op0) == AND
5685 && rtx_equal_p (XEXP (op0, 0), op1)
5686 && ! side_effects_p (op1))
5687 return gen_binary (AND, mode,
5688 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5689 op1);
5690
5691 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5692 comparison if STORE_FLAG_VALUE is 1. */
5693 if (STORE_FLAG_VALUE == 1
5694 && op1 == const1_rtx
5695 && COMPARISON_P (op0)
5696 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5697 XEXP (op0, 1))))
5698 return reversed;
5699
5700 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5701 is (lt foo (const_int 0)), so we can perform the above
5702 simplification if STORE_FLAG_VALUE is 1. */
5703
5704 if (STORE_FLAG_VALUE == 1
5705 && op1 == const1_rtx
5706 && GET_CODE (op0) == LSHIFTRT
5707 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5708 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5709 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5710
5711 /* (xor (comparison foo bar) (const_int sign-bit))
5712 when STORE_FLAG_VALUE is the sign bit. */
5713 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5714 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5715 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5716 && op1 == const_true_rtx
5717 && COMPARISON_P (op0)
5718 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5719 XEXP (op0, 1))))
5720 return reversed;
5721
5722 break;
5723
5724 default:
5725 gcc_unreachable ();
5726 }
5727
5728 return x;
5729 }
5730 \f
5731 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5732 operations" because they can be replaced with two more basic operations.
5733 ZERO_EXTEND is also considered "compound" because it can be replaced with
5734 an AND operation, which is simpler, though only one operation.
5735
5736 The function expand_compound_operation is called with an rtx expression
5737 and will convert it to the appropriate shifts and AND operations,
5738 simplifying at each stage.
5739
5740 The function make_compound_operation is called to convert an expression
5741 consisting of shifts and ANDs into the equivalent compound expression.
5742 It is the inverse of this function, loosely speaking. */
5743
5744 static rtx
5745 expand_compound_operation (rtx x)
5746 {
5747 unsigned HOST_WIDE_INT pos = 0, len;
5748 int unsignedp = 0;
5749 unsigned int modewidth;
5750 rtx tem;
5751
5752 switch (GET_CODE (x))
5753 {
5754 case ZERO_EXTEND:
5755 unsignedp = 1;
5756 case SIGN_EXTEND:
5757 /* We can't necessarily use a const_int for a multiword mode;
5758 it depends on implicitly extending the value.
5759 Since we don't know the right way to extend it,
5760 we can't tell whether the implicit way is right.
5761
5762 Even for a mode that is no wider than a const_int,
5763 we can't win, because we need to sign extend one of its bits through
5764 the rest of it, and we don't know which bit. */
5765 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5766 return x;
5767
5768 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5769 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5770 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5771 reloaded. If not for that, MEM's would very rarely be safe.
5772
5773 Reject MODEs bigger than a word, because we might not be able
5774 to reference a two-register group starting with an arbitrary register
5775 (and currently gen_lowpart might crash for a SUBREG). */
5776
5777 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5778 return x;
5779
5780 /* Reject MODEs that aren't scalar integers because turning vector
5781 or complex modes into shifts causes problems. */
5782
5783 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5784 return x;
5785
5786 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5787 /* If the inner object has VOIDmode (the only way this can happen
5788 is if it is an ASM_OPERANDS), we can't do anything since we don't
5789 know how much masking to do. */
5790 if (len == 0)
5791 return x;
5792
5793 break;
5794
5795 case ZERO_EXTRACT:
5796 unsignedp = 1;
5797
5798 /* ... fall through ... */
5799
5800 case SIGN_EXTRACT:
5801 /* If the operand is a CLOBBER, just return it. */
5802 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5803 return XEXP (x, 0);
5804
5805 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5806 || GET_CODE (XEXP (x, 2)) != CONST_INT
5807 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5808 return x;
5809
5810 /* Reject MODEs that aren't scalar integers because turning vector
5811 or complex modes into shifts causes problems. */
5812
5813 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5814 return x;
5815
5816 len = INTVAL (XEXP (x, 1));
5817 pos = INTVAL (XEXP (x, 2));
5818
5819 /* If this goes outside the object being extracted, replace the object
5820 with a (use (mem ...)) construct that only combine understands
5821 and is used only for this purpose. */
5822 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5823 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5824
5825 if (BITS_BIG_ENDIAN)
5826 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5827
5828 break;
5829
5830 default:
5831 return x;
5832 }
5833 /* Convert sign extension to zero extension, if we know that the high
5834 bit is not set, as this is easier to optimize. It will be converted
5835 back to cheaper alternative in make_extraction. */
5836 if (GET_CODE (x) == SIGN_EXTEND
5837 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5838 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5839 & ~(((unsigned HOST_WIDE_INT)
5840 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5841 >> 1))
5842 == 0)))
5843 {
5844 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5845 rtx temp2 = expand_compound_operation (temp);
5846
5847 /* Make sure this is a profitable operation. */
5848 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5849 return temp2;
5850 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5851 return temp;
5852 else
5853 return x;
5854 }
5855
5856 /* We can optimize some special cases of ZERO_EXTEND. */
5857 if (GET_CODE (x) == ZERO_EXTEND)
5858 {
5859 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5860 know that the last value didn't have any inappropriate bits
5861 set. */
5862 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5863 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5864 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5865 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5866 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5867 return XEXP (XEXP (x, 0), 0);
5868
5869 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5870 if (GET_CODE (XEXP (x, 0)) == SUBREG
5871 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5872 && subreg_lowpart_p (XEXP (x, 0))
5873 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5874 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5875 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5876 return SUBREG_REG (XEXP (x, 0));
5877
5878 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5879 is a comparison and STORE_FLAG_VALUE permits. This is like
5880 the first case, but it works even when GET_MODE (x) is larger
5881 than HOST_WIDE_INT. */
5882 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5883 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5884 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5885 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5886 <= HOST_BITS_PER_WIDE_INT)
5887 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5888 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5889 return XEXP (XEXP (x, 0), 0);
5890
5891 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5892 if (GET_CODE (XEXP (x, 0)) == SUBREG
5893 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5894 && subreg_lowpart_p (XEXP (x, 0))
5895 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5896 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5897 <= HOST_BITS_PER_WIDE_INT)
5898 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5899 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5900 return SUBREG_REG (XEXP (x, 0));
5901
5902 }
5903
5904 /* If we reach here, we want to return a pair of shifts. The inner
5905 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5906 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5907 logical depending on the value of UNSIGNEDP.
5908
5909 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5910 converted into an AND of a shift.
5911
5912 We must check for the case where the left shift would have a negative
5913 count. This can happen in a case like (x >> 31) & 255 on machines
5914 that can't shift by a constant. On those machines, we would first
5915 combine the shift with the AND to produce a variable-position
5916 extraction. Then the constant of 31 would be substituted in to produce
5917 a such a position. */
5918
5919 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5920 if (modewidth + len >= pos)
5921 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5922 GET_MODE (x),
5923 simplify_shift_const (NULL_RTX, ASHIFT,
5924 GET_MODE (x),
5925 XEXP (x, 0),
5926 modewidth - pos - len),
5927 modewidth - len);
5928
5929 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5930 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5931 simplify_shift_const (NULL_RTX, LSHIFTRT,
5932 GET_MODE (x),
5933 XEXP (x, 0), pos),
5934 ((HOST_WIDE_INT) 1 << len) - 1);
5935 else
5936 /* Any other cases we can't handle. */
5937 return x;
5938
5939 /* If we couldn't do this for some reason, return the original
5940 expression. */
5941 if (GET_CODE (tem) == CLOBBER)
5942 return x;
5943
5944 return tem;
5945 }
5946 \f
5947 /* X is a SET which contains an assignment of one object into
5948 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5949 or certain SUBREGS). If possible, convert it into a series of
5950 logical operations.
5951
5952 We half-heartedly support variable positions, but do not at all
5953 support variable lengths. */
5954
5955 static rtx
5956 expand_field_assignment (rtx x)
5957 {
5958 rtx inner;
5959 rtx pos; /* Always counts from low bit. */
5960 int len;
5961 rtx mask;
5962 enum machine_mode compute_mode;
5963
5964 /* Loop until we find something we can't simplify. */
5965 while (1)
5966 {
5967 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5968 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5969 {
5970 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5971 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5972 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5973 }
5974 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5975 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5976 {
5977 inner = XEXP (SET_DEST (x), 0);
5978 len = INTVAL (XEXP (SET_DEST (x), 1));
5979 pos = XEXP (SET_DEST (x), 2);
5980
5981 /* If the position is constant and spans the width of INNER,
5982 surround INNER with a USE to indicate this. */
5983 if (GET_CODE (pos) == CONST_INT
5984 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5985 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5986
5987 if (BITS_BIG_ENDIAN)
5988 {
5989 if (GET_CODE (pos) == CONST_INT)
5990 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5991 - INTVAL (pos));
5992 else if (GET_CODE (pos) == MINUS
5993 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5994 && (INTVAL (XEXP (pos, 1))
5995 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5996 /* If position is ADJUST - X, new position is X. */
5997 pos = XEXP (pos, 0);
5998 else
5999 pos = gen_binary (MINUS, GET_MODE (pos),
6000 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
6001 - len),
6002 pos);
6003 }
6004 }
6005
6006 /* A SUBREG between two modes that occupy the same numbers of words
6007 can be done by moving the SUBREG to the source. */
6008 else if (GET_CODE (SET_DEST (x)) == SUBREG
6009 /* We need SUBREGs to compute nonzero_bits properly. */
6010 && nonzero_sign_valid
6011 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6012 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6013 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6014 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6015 {
6016 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6017 gen_lowpart
6018 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6019 SET_SRC (x)));
6020 continue;
6021 }
6022 else
6023 break;
6024
6025 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6026 inner = SUBREG_REG (inner);
6027
6028 compute_mode = GET_MODE (inner);
6029
6030 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6031 if (! SCALAR_INT_MODE_P (compute_mode))
6032 {
6033 enum machine_mode imode;
6034
6035 /* Don't do anything for vector or complex integral types. */
6036 if (! FLOAT_MODE_P (compute_mode))
6037 break;
6038
6039 /* Try to find an integral mode to pun with. */
6040 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6041 if (imode == BLKmode)
6042 break;
6043
6044 compute_mode = imode;
6045 inner = gen_lowpart (imode, inner);
6046 }
6047
6048 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6049 if (len < HOST_BITS_PER_WIDE_INT)
6050 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6051 else
6052 break;
6053
6054 /* Now compute the equivalent expression. Make a copy of INNER
6055 for the SET_DEST in case it is a MEM into which we will substitute;
6056 we don't want shared RTL in that case. */
6057 x = gen_rtx_SET
6058 (VOIDmode, copy_rtx (inner),
6059 gen_binary (IOR, compute_mode,
6060 gen_binary (AND, compute_mode,
6061 simplify_gen_unary (NOT, compute_mode,
6062 gen_binary (ASHIFT,
6063 compute_mode,
6064 mask, pos),
6065 compute_mode),
6066 inner),
6067 gen_binary (ASHIFT, compute_mode,
6068 gen_binary (AND, compute_mode,
6069 gen_lowpart
6070 (compute_mode, SET_SRC (x)),
6071 mask),
6072 pos)));
6073 }
6074
6075 return x;
6076 }
6077 \f
6078 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6079 it is an RTX that represents a variable starting position; otherwise,
6080 POS is the (constant) starting bit position (counted from the LSB).
6081
6082 INNER may be a USE. This will occur when we started with a bitfield
6083 that went outside the boundary of the object in memory, which is
6084 allowed on most machines. To isolate this case, we produce a USE
6085 whose mode is wide enough and surround the MEM with it. The only
6086 code that understands the USE is this routine. If it is not removed,
6087 it will cause the resulting insn not to match.
6088
6089 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6090 signed reference.
6091
6092 IN_DEST is nonzero if this is a reference in the destination of a
6093 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6094 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6095 be used.
6096
6097 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6098 ZERO_EXTRACT should be built even for bits starting at bit 0.
6099
6100 MODE is the desired mode of the result (if IN_DEST == 0).
6101
6102 The result is an RTX for the extraction or NULL_RTX if the target
6103 can't handle it. */
6104
6105 static rtx
6106 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6107 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6108 int in_dest, int in_compare)
6109 {
6110 /* This mode describes the size of the storage area
6111 to fetch the overall value from. Within that, we
6112 ignore the POS lowest bits, etc. */
6113 enum machine_mode is_mode = GET_MODE (inner);
6114 enum machine_mode inner_mode;
6115 enum machine_mode wanted_inner_mode = byte_mode;
6116 enum machine_mode wanted_inner_reg_mode = word_mode;
6117 enum machine_mode pos_mode = word_mode;
6118 enum machine_mode extraction_mode = word_mode;
6119 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6120 int spans_byte = 0;
6121 rtx new = 0;
6122 rtx orig_pos_rtx = pos_rtx;
6123 HOST_WIDE_INT orig_pos;
6124
6125 /* Get some information about INNER and get the innermost object. */
6126 if (GET_CODE (inner) == USE)
6127 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6128 /* We don't need to adjust the position because we set up the USE
6129 to pretend that it was a full-word object. */
6130 spans_byte = 1, inner = XEXP (inner, 0);
6131 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6132 {
6133 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6134 consider just the QI as the memory to extract from.
6135 The subreg adds or removes high bits; its mode is
6136 irrelevant to the meaning of this extraction,
6137 since POS and LEN count from the lsb. */
6138 if (MEM_P (SUBREG_REG (inner)))
6139 is_mode = GET_MODE (SUBREG_REG (inner));
6140 inner = SUBREG_REG (inner);
6141 }
6142 else if (GET_CODE (inner) == ASHIFT
6143 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6144 && pos_rtx == 0 && pos == 0
6145 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6146 {
6147 /* We're extracting the least significant bits of an rtx
6148 (ashift X (const_int C)), where LEN > C. Extract the
6149 least significant (LEN - C) bits of X, giving an rtx
6150 whose mode is MODE, then shift it left C times. */
6151 new = make_extraction (mode, XEXP (inner, 0),
6152 0, 0, len - INTVAL (XEXP (inner, 1)),
6153 unsignedp, in_dest, in_compare);
6154 if (new != 0)
6155 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6156 }
6157
6158 inner_mode = GET_MODE (inner);
6159
6160 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6161 pos = INTVAL (pos_rtx), pos_rtx = 0;
6162
6163 /* See if this can be done without an extraction. We never can if the
6164 width of the field is not the same as that of some integer mode. For
6165 registers, we can only avoid the extraction if the position is at the
6166 low-order bit and this is either not in the destination or we have the
6167 appropriate STRICT_LOW_PART operation available.
6168
6169 For MEM, we can avoid an extract if the field starts on an appropriate
6170 boundary and we can change the mode of the memory reference. However,
6171 we cannot directly access the MEM if we have a USE and the underlying
6172 MEM is not TMODE. This combination means that MEM was being used in a
6173 context where bits outside its mode were being referenced; that is only
6174 valid in bit-field insns. */
6175
6176 if (tmode != BLKmode
6177 && ! (spans_byte && inner_mode != tmode)
6178 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6179 && !MEM_P (inner)
6180 && (! in_dest
6181 || (REG_P (inner)
6182 && have_insn_for (STRICT_LOW_PART, tmode))))
6183 || (MEM_P (inner) && pos_rtx == 0
6184 && (pos
6185 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6186 : BITS_PER_UNIT)) == 0
6187 /* We can't do this if we are widening INNER_MODE (it
6188 may not be aligned, for one thing). */
6189 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6190 && (inner_mode == tmode
6191 || (! mode_dependent_address_p (XEXP (inner, 0))
6192 && ! MEM_VOLATILE_P (inner))))))
6193 {
6194 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6195 field. If the original and current mode are the same, we need not
6196 adjust the offset. Otherwise, we do if bytes big endian.
6197
6198 If INNER is not a MEM, get a piece consisting of just the field
6199 of interest (in this case POS % BITS_PER_WORD must be 0). */
6200
6201 if (MEM_P (inner))
6202 {
6203 HOST_WIDE_INT offset;
6204
6205 /* POS counts from lsb, but make OFFSET count in memory order. */
6206 if (BYTES_BIG_ENDIAN)
6207 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6208 else
6209 offset = pos / BITS_PER_UNIT;
6210
6211 new = adjust_address_nv (inner, tmode, offset);
6212 }
6213 else if (REG_P (inner))
6214 {
6215 if (tmode != inner_mode)
6216 {
6217 /* We can't call gen_lowpart in a DEST since we
6218 always want a SUBREG (see below) and it would sometimes
6219 return a new hard register. */
6220 if (pos || in_dest)
6221 {
6222 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6223
6224 if (WORDS_BIG_ENDIAN
6225 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6226 final_word = ((GET_MODE_SIZE (inner_mode)
6227 - GET_MODE_SIZE (tmode))
6228 / UNITS_PER_WORD) - final_word;
6229
6230 final_word *= UNITS_PER_WORD;
6231 if (BYTES_BIG_ENDIAN &&
6232 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6233 final_word += (GET_MODE_SIZE (inner_mode)
6234 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6235
6236 /* Avoid creating invalid subregs, for example when
6237 simplifying (x>>32)&255. */
6238 if (final_word >= GET_MODE_SIZE (inner_mode))
6239 return NULL_RTX;
6240
6241 new = gen_rtx_SUBREG (tmode, inner, final_word);
6242 }
6243 else
6244 new = gen_lowpart (tmode, inner);
6245 }
6246 else
6247 new = inner;
6248 }
6249 else
6250 new = force_to_mode (inner, tmode,
6251 len >= HOST_BITS_PER_WIDE_INT
6252 ? ~(unsigned HOST_WIDE_INT) 0
6253 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6254 NULL_RTX, 0);
6255
6256 /* If this extraction is going into the destination of a SET,
6257 make a STRICT_LOW_PART unless we made a MEM. */
6258
6259 if (in_dest)
6260 return (MEM_P (new) ? new
6261 : (GET_CODE (new) != SUBREG
6262 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6263 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6264
6265 if (mode == tmode)
6266 return new;
6267
6268 if (GET_CODE (new) == CONST_INT)
6269 return gen_int_mode (INTVAL (new), mode);
6270
6271 /* If we know that no extraneous bits are set, and that the high
6272 bit is not set, convert the extraction to the cheaper of
6273 sign and zero extension, that are equivalent in these cases. */
6274 if (flag_expensive_optimizations
6275 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6276 && ((nonzero_bits (new, tmode)
6277 & ~(((unsigned HOST_WIDE_INT)
6278 GET_MODE_MASK (tmode))
6279 >> 1))
6280 == 0)))
6281 {
6282 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6283 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6284
6285 /* Prefer ZERO_EXTENSION, since it gives more information to
6286 backends. */
6287 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6288 return temp;
6289 return temp1;
6290 }
6291
6292 /* Otherwise, sign- or zero-extend unless we already are in the
6293 proper mode. */
6294
6295 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6296 mode, new));
6297 }
6298
6299 /* Unless this is a COMPARE or we have a funny memory reference,
6300 don't do anything with zero-extending field extracts starting at
6301 the low-order bit since they are simple AND operations. */
6302 if (pos_rtx == 0 && pos == 0 && ! in_dest
6303 && ! in_compare && ! spans_byte && unsignedp)
6304 return 0;
6305
6306 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6307 we would be spanning bytes or if the position is not a constant and the
6308 length is not 1. In all other cases, we would only be going outside
6309 our object in cases when an original shift would have been
6310 undefined. */
6311 if (! spans_byte && MEM_P (inner)
6312 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6313 || (pos_rtx != 0 && len != 1)))
6314 return 0;
6315
6316 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6317 and the mode for the result. */
6318 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6319 {
6320 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6321 pos_mode = mode_for_extraction (EP_insv, 2);
6322 extraction_mode = mode_for_extraction (EP_insv, 3);
6323 }
6324
6325 if (! in_dest && unsignedp
6326 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6327 {
6328 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6329 pos_mode = mode_for_extraction (EP_extzv, 3);
6330 extraction_mode = mode_for_extraction (EP_extzv, 0);
6331 }
6332
6333 if (! in_dest && ! unsignedp
6334 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6335 {
6336 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6337 pos_mode = mode_for_extraction (EP_extv, 3);
6338 extraction_mode = mode_for_extraction (EP_extv, 0);
6339 }
6340
6341 /* Never narrow an object, since that might not be safe. */
6342
6343 if (mode != VOIDmode
6344 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6345 extraction_mode = mode;
6346
6347 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6348 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6349 pos_mode = GET_MODE (pos_rtx);
6350
6351 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6352 if we have to change the mode of memory and cannot, the desired mode is
6353 EXTRACTION_MODE. */
6354 if (!MEM_P (inner))
6355 wanted_inner_mode = wanted_inner_reg_mode;
6356 else if (inner_mode != wanted_inner_mode
6357 && (mode_dependent_address_p (XEXP (inner, 0))
6358 || MEM_VOLATILE_P (inner)))
6359 wanted_inner_mode = extraction_mode;
6360
6361 orig_pos = pos;
6362
6363 if (BITS_BIG_ENDIAN)
6364 {
6365 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6366 BITS_BIG_ENDIAN style. If position is constant, compute new
6367 position. Otherwise, build subtraction.
6368 Note that POS is relative to the mode of the original argument.
6369 If it's a MEM we need to recompute POS relative to that.
6370 However, if we're extracting from (or inserting into) a register,
6371 we want to recompute POS relative to wanted_inner_mode. */
6372 int width = (MEM_P (inner)
6373 ? GET_MODE_BITSIZE (is_mode)
6374 : GET_MODE_BITSIZE (wanted_inner_mode));
6375
6376 if (pos_rtx == 0)
6377 pos = width - len - pos;
6378 else
6379 pos_rtx
6380 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6381 /* POS may be less than 0 now, but we check for that below.
6382 Note that it can only be less than 0 if !MEM_P (inner). */
6383 }
6384
6385 /* If INNER has a wider mode, make it smaller. If this is a constant
6386 extract, try to adjust the byte to point to the byte containing
6387 the value. */
6388 if (wanted_inner_mode != VOIDmode
6389 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6390 && ((MEM_P (inner)
6391 && (inner_mode == wanted_inner_mode
6392 || (! mode_dependent_address_p (XEXP (inner, 0))
6393 && ! MEM_VOLATILE_P (inner))))))
6394 {
6395 int offset = 0;
6396
6397 /* The computations below will be correct if the machine is big
6398 endian in both bits and bytes or little endian in bits and bytes.
6399 If it is mixed, we must adjust. */
6400
6401 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6402 adjust OFFSET to compensate. */
6403 if (BYTES_BIG_ENDIAN
6404 && ! spans_byte
6405 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6406 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6407
6408 /* If this is a constant position, we can move to the desired byte. */
6409 if (pos_rtx == 0)
6410 {
6411 offset += pos / BITS_PER_UNIT;
6412 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6413 }
6414
6415 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6416 && ! spans_byte
6417 && is_mode != wanted_inner_mode)
6418 offset = (GET_MODE_SIZE (is_mode)
6419 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6420
6421 if (offset != 0 || inner_mode != wanted_inner_mode)
6422 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6423 }
6424
6425 /* If INNER is not memory, we can always get it into the proper mode. If we
6426 are changing its mode, POS must be a constant and smaller than the size
6427 of the new mode. */
6428 else if (!MEM_P (inner))
6429 {
6430 if (GET_MODE (inner) != wanted_inner_mode
6431 && (pos_rtx != 0
6432 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6433 return 0;
6434
6435 inner = force_to_mode (inner, wanted_inner_mode,
6436 pos_rtx
6437 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6438 ? ~(unsigned HOST_WIDE_INT) 0
6439 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6440 << orig_pos),
6441 NULL_RTX, 0);
6442 }
6443
6444 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6445 have to zero extend. Otherwise, we can just use a SUBREG. */
6446 if (pos_rtx != 0
6447 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6448 {
6449 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6450
6451 /* If we know that no extraneous bits are set, and that the high
6452 bit is not set, convert extraction to cheaper one - either
6453 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6454 cases. */
6455 if (flag_expensive_optimizations
6456 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6457 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6458 & ~(((unsigned HOST_WIDE_INT)
6459 GET_MODE_MASK (GET_MODE (pos_rtx)))
6460 >> 1))
6461 == 0)))
6462 {
6463 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6464
6465 /* Prefer ZERO_EXTENSION, since it gives more information to
6466 backends. */
6467 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6468 temp = temp1;
6469 }
6470 pos_rtx = temp;
6471 }
6472 else if (pos_rtx != 0
6473 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6474 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6475
6476 /* Make POS_RTX unless we already have it and it is correct. If we don't
6477 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6478 be a CONST_INT. */
6479 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6480 pos_rtx = orig_pos_rtx;
6481
6482 else if (pos_rtx == 0)
6483 pos_rtx = GEN_INT (pos);
6484
6485 /* Make the required operation. See if we can use existing rtx. */
6486 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6487 extraction_mode, inner, GEN_INT (len), pos_rtx);
6488 if (! in_dest)
6489 new = gen_lowpart (mode, new);
6490
6491 return new;
6492 }
6493 \f
6494 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6495 with any other operations in X. Return X without that shift if so. */
6496
6497 static rtx
6498 extract_left_shift (rtx x, int count)
6499 {
6500 enum rtx_code code = GET_CODE (x);
6501 enum machine_mode mode = GET_MODE (x);
6502 rtx tem;
6503
6504 switch (code)
6505 {
6506 case ASHIFT:
6507 /* This is the shift itself. If it is wide enough, we will return
6508 either the value being shifted if the shift count is equal to
6509 COUNT or a shift for the difference. */
6510 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6511 && INTVAL (XEXP (x, 1)) >= count)
6512 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6513 INTVAL (XEXP (x, 1)) - count);
6514 break;
6515
6516 case NEG: case NOT:
6517 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6518 return simplify_gen_unary (code, mode, tem, mode);
6519
6520 break;
6521
6522 case PLUS: case IOR: case XOR: case AND:
6523 /* If we can safely shift this constant and we find the inner shift,
6524 make a new operation. */
6525 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6526 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6527 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6528 return gen_binary (code, mode, tem,
6529 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6530
6531 break;
6532
6533 default:
6534 break;
6535 }
6536
6537 return 0;
6538 }
6539 \f
6540 /* Look at the expression rooted at X. Look for expressions
6541 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6542 Form these expressions.
6543
6544 Return the new rtx, usually just X.
6545
6546 Also, for machines like the VAX that don't have logical shift insns,
6547 try to convert logical to arithmetic shift operations in cases where
6548 they are equivalent. This undoes the canonicalizations to logical
6549 shifts done elsewhere.
6550
6551 We try, as much as possible, to re-use rtl expressions to save memory.
6552
6553 IN_CODE says what kind of expression we are processing. Normally, it is
6554 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6555 being kludges), it is MEM. When processing the arguments of a comparison
6556 or a COMPARE against zero, it is COMPARE. */
6557
6558 static rtx
6559 make_compound_operation (rtx x, enum rtx_code in_code)
6560 {
6561 enum rtx_code code = GET_CODE (x);
6562 enum machine_mode mode = GET_MODE (x);
6563 int mode_width = GET_MODE_BITSIZE (mode);
6564 rtx rhs, lhs;
6565 enum rtx_code next_code;
6566 int i;
6567 rtx new = 0;
6568 rtx tem;
6569 const char *fmt;
6570
6571 /* Select the code to be used in recursive calls. Once we are inside an
6572 address, we stay there. If we have a comparison, set to COMPARE,
6573 but once inside, go back to our default of SET. */
6574
6575 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6576 : ((code == COMPARE || COMPARISON_P (x))
6577 && XEXP (x, 1) == const0_rtx) ? COMPARE
6578 : in_code == COMPARE ? SET : in_code);
6579
6580 /* Process depending on the code of this operation. If NEW is set
6581 nonzero, it will be returned. */
6582
6583 switch (code)
6584 {
6585 case ASHIFT:
6586 /* Convert shifts by constants into multiplications if inside
6587 an address. */
6588 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6589 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6590 && INTVAL (XEXP (x, 1)) >= 0)
6591 {
6592 new = make_compound_operation (XEXP (x, 0), next_code);
6593 new = gen_rtx_MULT (mode, new,
6594 GEN_INT ((HOST_WIDE_INT) 1
6595 << INTVAL (XEXP (x, 1))));
6596 }
6597 break;
6598
6599 case AND:
6600 /* If the second operand is not a constant, we can't do anything
6601 with it. */
6602 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6603 break;
6604
6605 /* If the constant is a power of two minus one and the first operand
6606 is a logical right shift, make an extraction. */
6607 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6608 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6609 {
6610 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6611 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6612 0, in_code == COMPARE);
6613 }
6614
6615 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6616 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6617 && subreg_lowpart_p (XEXP (x, 0))
6618 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6619 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6620 {
6621 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6622 next_code);
6623 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6624 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6625 0, in_code == COMPARE);
6626 }
6627 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6628 else if ((GET_CODE (XEXP (x, 0)) == XOR
6629 || GET_CODE (XEXP (x, 0)) == IOR)
6630 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6631 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6632 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6633 {
6634 /* Apply the distributive law, and then try to make extractions. */
6635 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6636 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6637 XEXP (x, 1)),
6638 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6639 XEXP (x, 1)));
6640 new = make_compound_operation (new, in_code);
6641 }
6642
6643 /* If we are have (and (rotate X C) M) and C is larger than the number
6644 of bits in M, this is an extraction. */
6645
6646 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6647 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6648 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6649 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6650 {
6651 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6652 new = make_extraction (mode, new,
6653 (GET_MODE_BITSIZE (mode)
6654 - INTVAL (XEXP (XEXP (x, 0), 1))),
6655 NULL_RTX, i, 1, 0, in_code == COMPARE);
6656 }
6657
6658 /* On machines without logical shifts, if the operand of the AND is
6659 a logical shift and our mask turns off all the propagated sign
6660 bits, we can replace the logical shift with an arithmetic shift. */
6661 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6662 && !have_insn_for (LSHIFTRT, mode)
6663 && have_insn_for (ASHIFTRT, mode)
6664 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6665 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6666 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6667 && mode_width <= HOST_BITS_PER_WIDE_INT)
6668 {
6669 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6670
6671 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6672 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6673 SUBST (XEXP (x, 0),
6674 gen_rtx_ASHIFTRT (mode,
6675 make_compound_operation
6676 (XEXP (XEXP (x, 0), 0), next_code),
6677 XEXP (XEXP (x, 0), 1)));
6678 }
6679
6680 /* If the constant is one less than a power of two, this might be
6681 representable by an extraction even if no shift is present.
6682 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6683 we are in a COMPARE. */
6684 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6685 new = make_extraction (mode,
6686 make_compound_operation (XEXP (x, 0),
6687 next_code),
6688 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6689
6690 /* If we are in a comparison and this is an AND with a power of two,
6691 convert this into the appropriate bit extract. */
6692 else if (in_code == COMPARE
6693 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6694 new = make_extraction (mode,
6695 make_compound_operation (XEXP (x, 0),
6696 next_code),
6697 i, NULL_RTX, 1, 1, 0, 1);
6698
6699 break;
6700
6701 case LSHIFTRT:
6702 /* If the sign bit is known to be zero, replace this with an
6703 arithmetic shift. */
6704 if (have_insn_for (ASHIFTRT, mode)
6705 && ! have_insn_for (LSHIFTRT, mode)
6706 && mode_width <= HOST_BITS_PER_WIDE_INT
6707 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6708 {
6709 new = gen_rtx_ASHIFTRT (mode,
6710 make_compound_operation (XEXP (x, 0),
6711 next_code),
6712 XEXP (x, 1));
6713 break;
6714 }
6715
6716 /* ... fall through ... */
6717
6718 case ASHIFTRT:
6719 lhs = XEXP (x, 0);
6720 rhs = XEXP (x, 1);
6721
6722 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6723 this is a SIGN_EXTRACT. */
6724 if (GET_CODE (rhs) == CONST_INT
6725 && GET_CODE (lhs) == ASHIFT
6726 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6727 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6728 {
6729 new = make_compound_operation (XEXP (lhs, 0), next_code);
6730 new = make_extraction (mode, new,
6731 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6732 NULL_RTX, mode_width - INTVAL (rhs),
6733 code == LSHIFTRT, 0, in_code == COMPARE);
6734 break;
6735 }
6736
6737 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6738 If so, try to merge the shifts into a SIGN_EXTEND. We could
6739 also do this for some cases of SIGN_EXTRACT, but it doesn't
6740 seem worth the effort; the case checked for occurs on Alpha. */
6741
6742 if (!OBJECT_P (lhs)
6743 && ! (GET_CODE (lhs) == SUBREG
6744 && (OBJECT_P (SUBREG_REG (lhs))))
6745 && GET_CODE (rhs) == CONST_INT
6746 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6747 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6748 new = make_extraction (mode, make_compound_operation (new, next_code),
6749 0, NULL_RTX, mode_width - INTVAL (rhs),
6750 code == LSHIFTRT, 0, in_code == COMPARE);
6751
6752 break;
6753
6754 case SUBREG:
6755 /* Call ourselves recursively on the inner expression. If we are
6756 narrowing the object and it has a different RTL code from
6757 what it originally did, do this SUBREG as a force_to_mode. */
6758
6759 tem = make_compound_operation (SUBREG_REG (x), in_code);
6760 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6761 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6762 && subreg_lowpart_p (x))
6763 {
6764 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6765 NULL_RTX, 0);
6766
6767 /* If we have something other than a SUBREG, we might have
6768 done an expansion, so rerun ourselves. */
6769 if (GET_CODE (newer) != SUBREG)
6770 newer = make_compound_operation (newer, in_code);
6771
6772 return newer;
6773 }
6774
6775 /* If this is a paradoxical subreg, and the new code is a sign or
6776 zero extension, omit the subreg and widen the extension. If it
6777 is a regular subreg, we can still get rid of the subreg by not
6778 widening so much, or in fact removing the extension entirely. */
6779 if ((GET_CODE (tem) == SIGN_EXTEND
6780 || GET_CODE (tem) == ZERO_EXTEND)
6781 && subreg_lowpart_p (x))
6782 {
6783 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6784 || (GET_MODE_SIZE (mode) >
6785 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6786 {
6787 if (! SCALAR_INT_MODE_P (mode))
6788 break;
6789 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6790 }
6791 else
6792 tem = gen_lowpart (mode, XEXP (tem, 0));
6793 return tem;
6794 }
6795 break;
6796
6797 default:
6798 break;
6799 }
6800
6801 if (new)
6802 {
6803 x = gen_lowpart (mode, new);
6804 code = GET_CODE (x);
6805 }
6806
6807 /* Now recursively process each operand of this operation. */
6808 fmt = GET_RTX_FORMAT (code);
6809 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6810 if (fmt[i] == 'e')
6811 {
6812 new = make_compound_operation (XEXP (x, i), next_code);
6813 SUBST (XEXP (x, i), new);
6814 }
6815
6816 return x;
6817 }
6818 \f
6819 /* Given M see if it is a value that would select a field of bits
6820 within an item, but not the entire word. Return -1 if not.
6821 Otherwise, return the starting position of the field, where 0 is the
6822 low-order bit.
6823
6824 *PLEN is set to the length of the field. */
6825
6826 static int
6827 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6828 {
6829 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6830 int pos = exact_log2 (m & -m);
6831 int len = 0;
6832
6833 if (pos >= 0)
6834 /* Now shift off the low-order zero bits and see if we have a
6835 power of two minus 1. */
6836 len = exact_log2 ((m >> pos) + 1);
6837
6838 if (len <= 0)
6839 pos = -1;
6840
6841 *plen = len;
6842 return pos;
6843 }
6844 \f
6845 /* See if X can be simplified knowing that we will only refer to it in
6846 MODE and will only refer to those bits that are nonzero in MASK.
6847 If other bits are being computed or if masking operations are done
6848 that select a superset of the bits in MASK, they can sometimes be
6849 ignored.
6850
6851 Return a possibly simplified expression, but always convert X to
6852 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6853
6854 Also, if REG is nonzero and X is a register equal in value to REG,
6855 replace X with REG.
6856
6857 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6858 are all off in X. This is used when X will be complemented, by either
6859 NOT, NEG, or XOR. */
6860
6861 static rtx
6862 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6863 rtx reg, int just_select)
6864 {
6865 enum rtx_code code = GET_CODE (x);
6866 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6867 enum machine_mode op_mode;
6868 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6869 rtx op0, op1, temp;
6870
6871 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6872 code below will do the wrong thing since the mode of such an
6873 expression is VOIDmode.
6874
6875 Also do nothing if X is a CLOBBER; this can happen if X was
6876 the return value from a call to gen_lowpart. */
6877 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6878 return x;
6879
6880 /* We want to perform the operation is its present mode unless we know
6881 that the operation is valid in MODE, in which case we do the operation
6882 in MODE. */
6883 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6884 && have_insn_for (code, mode))
6885 ? mode : GET_MODE (x));
6886
6887 /* It is not valid to do a right-shift in a narrower mode
6888 than the one it came in with. */
6889 if ((code == LSHIFTRT || code == ASHIFTRT)
6890 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6891 op_mode = GET_MODE (x);
6892
6893 /* Truncate MASK to fit OP_MODE. */
6894 if (op_mode)
6895 mask &= GET_MODE_MASK (op_mode);
6896
6897 /* When we have an arithmetic operation, or a shift whose count we
6898 do not know, we need to assume that all bits up to the highest-order
6899 bit in MASK will be needed. This is how we form such a mask. */
6900 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6901 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6902 else
6903 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6904 - 1);
6905
6906 /* Determine what bits of X are guaranteed to be (non)zero. */
6907 nonzero = nonzero_bits (x, mode);
6908
6909 /* If none of the bits in X are needed, return a zero. */
6910 if (! just_select && (nonzero & mask) == 0)
6911 x = const0_rtx;
6912
6913 /* If X is a CONST_INT, return a new one. Do this here since the
6914 test below will fail. */
6915 if (GET_CODE (x) == CONST_INT)
6916 {
6917 if (SCALAR_INT_MODE_P (mode))
6918 return gen_int_mode (INTVAL (x) & mask, mode);
6919 else
6920 {
6921 x = GEN_INT (INTVAL (x) & mask);
6922 return gen_lowpart_common (mode, x);
6923 }
6924 }
6925
6926 /* If X is narrower than MODE and we want all the bits in X's mode, just
6927 get X in the proper mode. */
6928 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6929 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6930 return gen_lowpart (mode, x);
6931
6932 switch (code)
6933 {
6934 case CLOBBER:
6935 /* If X is a (clobber (const_int)), return it since we know we are
6936 generating something that won't match. */
6937 return x;
6938
6939 case USE:
6940 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6941 spanned the boundary of the MEM. If we are now masking so it is
6942 within that boundary, we don't need the USE any more. */
6943 if (! BITS_BIG_ENDIAN
6944 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6945 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6946 break;
6947
6948 case SIGN_EXTEND:
6949 case ZERO_EXTEND:
6950 case ZERO_EXTRACT:
6951 case SIGN_EXTRACT:
6952 x = expand_compound_operation (x);
6953 if (GET_CODE (x) != code)
6954 return force_to_mode (x, mode, mask, reg, next_select);
6955 break;
6956
6957 case REG:
6958 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6959 || rtx_equal_p (reg, get_last_value (x))))
6960 x = reg;
6961 break;
6962
6963 case SUBREG:
6964 if (subreg_lowpart_p (x)
6965 /* We can ignore the effect of this SUBREG if it narrows the mode or
6966 if the constant masks to zero all the bits the mode doesn't
6967 have. */
6968 && ((GET_MODE_SIZE (GET_MODE (x))
6969 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6970 || (0 == (mask
6971 & GET_MODE_MASK (GET_MODE (x))
6972 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6973 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6974 break;
6975
6976 case AND:
6977 /* If this is an AND with a constant, convert it into an AND
6978 whose constant is the AND of that constant with MASK. If it
6979 remains an AND of MASK, delete it since it is redundant. */
6980
6981 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6982 {
6983 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6984 mask & INTVAL (XEXP (x, 1)));
6985
6986 /* If X is still an AND, see if it is an AND with a mask that
6987 is just some low-order bits. If so, and it is MASK, we don't
6988 need it. */
6989
6990 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6991 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6992 == mask))
6993 x = XEXP (x, 0);
6994
6995 /* If it remains an AND, try making another AND with the bits
6996 in the mode mask that aren't in MASK turned on. If the
6997 constant in the AND is wide enough, this might make a
6998 cheaper constant. */
6999
7000 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7001 && GET_MODE_MASK (GET_MODE (x)) != mask
7002 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7003 {
7004 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7005 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7006 int width = GET_MODE_BITSIZE (GET_MODE (x));
7007 rtx y;
7008
7009 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7010 number, sign extend it. */
7011 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7012 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7013 cval |= (HOST_WIDE_INT) -1 << width;
7014
7015 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
7016 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7017 x = y;
7018 }
7019
7020 break;
7021 }
7022
7023 goto binop;
7024
7025 case PLUS:
7026 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7027 low-order bits (as in an alignment operation) and FOO is already
7028 aligned to that boundary, mask C1 to that boundary as well.
7029 This may eliminate that PLUS and, later, the AND. */
7030
7031 {
7032 unsigned int width = GET_MODE_BITSIZE (mode);
7033 unsigned HOST_WIDE_INT smask = mask;
7034
7035 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7036 number, sign extend it. */
7037
7038 if (width < HOST_BITS_PER_WIDE_INT
7039 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7040 smask |= (HOST_WIDE_INT) -1 << width;
7041
7042 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7043 && exact_log2 (- smask) >= 0
7044 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7045 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7046 return force_to_mode (plus_constant (XEXP (x, 0),
7047 (INTVAL (XEXP (x, 1)) & smask)),
7048 mode, smask, reg, next_select);
7049 }
7050
7051 /* ... fall through ... */
7052
7053 case MULT:
7054 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7055 most significant bit in MASK since carries from those bits will
7056 affect the bits we are interested in. */
7057 mask = fuller_mask;
7058 goto binop;
7059
7060 case MINUS:
7061 /* If X is (minus C Y) where C's least set bit is larger than any bit
7062 in the mask, then we may replace with (neg Y). */
7063 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7064 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7065 & -INTVAL (XEXP (x, 0))))
7066 > mask))
7067 {
7068 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7069 GET_MODE (x));
7070 return force_to_mode (x, mode, mask, reg, next_select);
7071 }
7072
7073 /* Similarly, if C contains every bit in the fuller_mask, then we may
7074 replace with (not Y). */
7075 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7076 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7077 == INTVAL (XEXP (x, 0))))
7078 {
7079 x = simplify_gen_unary (NOT, GET_MODE (x),
7080 XEXP (x, 1), GET_MODE (x));
7081 return force_to_mode (x, mode, mask, reg, next_select);
7082 }
7083
7084 mask = fuller_mask;
7085 goto binop;
7086
7087 case IOR:
7088 case XOR:
7089 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7090 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7091 operation which may be a bitfield extraction. Ensure that the
7092 constant we form is not wider than the mode of X. */
7093
7094 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7095 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7096 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7097 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7098 && GET_CODE (XEXP (x, 1)) == CONST_INT
7099 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7100 + floor_log2 (INTVAL (XEXP (x, 1))))
7101 < GET_MODE_BITSIZE (GET_MODE (x)))
7102 && (INTVAL (XEXP (x, 1))
7103 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7104 {
7105 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7106 << INTVAL (XEXP (XEXP (x, 0), 1)));
7107 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7108 XEXP (XEXP (x, 0), 0), temp);
7109 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7110 XEXP (XEXP (x, 0), 1));
7111 return force_to_mode (x, mode, mask, reg, next_select);
7112 }
7113
7114 binop:
7115 /* For most binary operations, just propagate into the operation and
7116 change the mode if we have an operation of that mode. */
7117
7118 op0 = gen_lowpart (op_mode,
7119 force_to_mode (XEXP (x, 0), mode, mask,
7120 reg, next_select));
7121 op1 = gen_lowpart (op_mode,
7122 force_to_mode (XEXP (x, 1), mode, mask,
7123 reg, next_select));
7124
7125 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7126 x = gen_binary (code, op_mode, op0, op1);
7127 break;
7128
7129 case ASHIFT:
7130 /* For left shifts, do the same, but just for the first operand.
7131 However, we cannot do anything with shifts where we cannot
7132 guarantee that the counts are smaller than the size of the mode
7133 because such a count will have a different meaning in a
7134 wider mode. */
7135
7136 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7137 && INTVAL (XEXP (x, 1)) >= 0
7138 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7139 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7140 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7141 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7142 break;
7143
7144 /* If the shift count is a constant and we can do arithmetic in
7145 the mode of the shift, refine which bits we need. Otherwise, use the
7146 conservative form of the mask. */
7147 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7148 && INTVAL (XEXP (x, 1)) >= 0
7149 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7150 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7151 mask >>= INTVAL (XEXP (x, 1));
7152 else
7153 mask = fuller_mask;
7154
7155 op0 = gen_lowpart (op_mode,
7156 force_to_mode (XEXP (x, 0), op_mode,
7157 mask, reg, next_select));
7158
7159 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7160 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7161 break;
7162
7163 case LSHIFTRT:
7164 /* Here we can only do something if the shift count is a constant,
7165 this shift constant is valid for the host, and we can do arithmetic
7166 in OP_MODE. */
7167
7168 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7169 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7170 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7171 {
7172 rtx inner = XEXP (x, 0);
7173 unsigned HOST_WIDE_INT inner_mask;
7174
7175 /* Select the mask of the bits we need for the shift operand. */
7176 inner_mask = mask << INTVAL (XEXP (x, 1));
7177
7178 /* We can only change the mode of the shift if we can do arithmetic
7179 in the mode of the shift and INNER_MASK is no wider than the
7180 width of X's mode. */
7181 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7182 op_mode = GET_MODE (x);
7183
7184 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7185
7186 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7187 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7188 }
7189
7190 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7191 shift and AND produces only copies of the sign bit (C2 is one less
7192 than a power of two), we can do this with just a shift. */
7193
7194 if (GET_CODE (x) == LSHIFTRT
7195 && GET_CODE (XEXP (x, 1)) == CONST_INT
7196 /* The shift puts one of the sign bit copies in the least significant
7197 bit. */
7198 && ((INTVAL (XEXP (x, 1))
7199 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7200 >= GET_MODE_BITSIZE (GET_MODE (x)))
7201 && exact_log2 (mask + 1) >= 0
7202 /* Number of bits left after the shift must be more than the mask
7203 needs. */
7204 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7205 <= GET_MODE_BITSIZE (GET_MODE (x)))
7206 /* Must be more sign bit copies than the mask needs. */
7207 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7208 >= exact_log2 (mask + 1)))
7209 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7210 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7211 - exact_log2 (mask + 1)));
7212
7213 goto shiftrt;
7214
7215 case ASHIFTRT:
7216 /* If we are just looking for the sign bit, we don't need this shift at
7217 all, even if it has a variable count. */
7218 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7219 && (mask == ((unsigned HOST_WIDE_INT) 1
7220 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7221 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7222
7223 /* If this is a shift by a constant, get a mask that contains those bits
7224 that are not copies of the sign bit. We then have two cases: If
7225 MASK only includes those bits, this can be a logical shift, which may
7226 allow simplifications. If MASK is a single-bit field not within
7227 those bits, we are requesting a copy of the sign bit and hence can
7228 shift the sign bit to the appropriate location. */
7229
7230 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7231 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7232 {
7233 int i = -1;
7234
7235 /* If the considered data is wider than HOST_WIDE_INT, we can't
7236 represent a mask for all its bits in a single scalar.
7237 But we only care about the lower bits, so calculate these. */
7238
7239 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7240 {
7241 nonzero = ~(HOST_WIDE_INT) 0;
7242
7243 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7244 is the number of bits a full-width mask would have set.
7245 We need only shift if these are fewer than nonzero can
7246 hold. If not, we must keep all bits set in nonzero. */
7247
7248 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7249 < HOST_BITS_PER_WIDE_INT)
7250 nonzero >>= INTVAL (XEXP (x, 1))
7251 + HOST_BITS_PER_WIDE_INT
7252 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7253 }
7254 else
7255 {
7256 nonzero = GET_MODE_MASK (GET_MODE (x));
7257 nonzero >>= INTVAL (XEXP (x, 1));
7258 }
7259
7260 if ((mask & ~nonzero) == 0
7261 || (i = exact_log2 (mask)) >= 0)
7262 {
7263 x = simplify_shift_const
7264 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7265 i < 0 ? INTVAL (XEXP (x, 1))
7266 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7267
7268 if (GET_CODE (x) != ASHIFTRT)
7269 return force_to_mode (x, mode, mask, reg, next_select);
7270 }
7271 }
7272
7273 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7274 even if the shift count isn't a constant. */
7275 if (mask == 1)
7276 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7277
7278 shiftrt:
7279
7280 /* If this is a zero- or sign-extension operation that just affects bits
7281 we don't care about, remove it. Be sure the call above returned
7282 something that is still a shift. */
7283
7284 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7285 && GET_CODE (XEXP (x, 1)) == CONST_INT
7286 && INTVAL (XEXP (x, 1)) >= 0
7287 && (INTVAL (XEXP (x, 1))
7288 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7289 && GET_CODE (XEXP (x, 0)) == ASHIFT
7290 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7291 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7292 reg, next_select);
7293
7294 break;
7295
7296 case ROTATE:
7297 case ROTATERT:
7298 /* If the shift count is constant and we can do computations
7299 in the mode of X, compute where the bits we care about are.
7300 Otherwise, we can't do anything. Don't change the mode of
7301 the shift or propagate MODE into the shift, though. */
7302 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7303 && INTVAL (XEXP (x, 1)) >= 0)
7304 {
7305 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7306 GET_MODE (x), GEN_INT (mask),
7307 XEXP (x, 1));
7308 if (temp && GET_CODE (temp) == CONST_INT)
7309 SUBST (XEXP (x, 0),
7310 force_to_mode (XEXP (x, 0), GET_MODE (x),
7311 INTVAL (temp), reg, next_select));
7312 }
7313 break;
7314
7315 case NEG:
7316 /* If we just want the low-order bit, the NEG isn't needed since it
7317 won't change the low-order bit. */
7318 if (mask == 1)
7319 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7320
7321 /* We need any bits less significant than the most significant bit in
7322 MASK since carries from those bits will affect the bits we are
7323 interested in. */
7324 mask = fuller_mask;
7325 goto unop;
7326
7327 case NOT:
7328 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7329 same as the XOR case above. Ensure that the constant we form is not
7330 wider than the mode of X. */
7331
7332 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7333 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7334 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7335 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7336 < GET_MODE_BITSIZE (GET_MODE (x)))
7337 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7338 {
7339 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7340 GET_MODE (x));
7341 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7342 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7343
7344 return force_to_mode (x, mode, mask, reg, next_select);
7345 }
7346
7347 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7348 use the full mask inside the NOT. */
7349 mask = fuller_mask;
7350
7351 unop:
7352 op0 = gen_lowpart (op_mode,
7353 force_to_mode (XEXP (x, 0), mode, mask,
7354 reg, next_select));
7355 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7356 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7357 break;
7358
7359 case NE:
7360 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7361 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7362 which is equal to STORE_FLAG_VALUE. */
7363 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7364 && GET_MODE (XEXP (x, 0)) == mode
7365 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7366 && (nonzero_bits (XEXP (x, 0), mode)
7367 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7368 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7369
7370 break;
7371
7372 case IF_THEN_ELSE:
7373 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7374 written in a narrower mode. We play it safe and do not do so. */
7375
7376 SUBST (XEXP (x, 1),
7377 gen_lowpart (GET_MODE (x),
7378 force_to_mode (XEXP (x, 1), mode,
7379 mask, reg, next_select)));
7380 SUBST (XEXP (x, 2),
7381 gen_lowpart (GET_MODE (x),
7382 force_to_mode (XEXP (x, 2), mode,
7383 mask, reg, next_select)));
7384 break;
7385
7386 default:
7387 break;
7388 }
7389
7390 /* Ensure we return a value of the proper mode. */
7391 return gen_lowpart (mode, x);
7392 }
7393 \f
7394 /* Return nonzero if X is an expression that has one of two values depending on
7395 whether some other value is zero or nonzero. In that case, we return the
7396 value that is being tested, *PTRUE is set to the value if the rtx being
7397 returned has a nonzero value, and *PFALSE is set to the other alternative.
7398
7399 If we return zero, we set *PTRUE and *PFALSE to X. */
7400
7401 static rtx
7402 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7403 {
7404 enum machine_mode mode = GET_MODE (x);
7405 enum rtx_code code = GET_CODE (x);
7406 rtx cond0, cond1, true0, true1, false0, false1;
7407 unsigned HOST_WIDE_INT nz;
7408
7409 /* If we are comparing a value against zero, we are done. */
7410 if ((code == NE || code == EQ)
7411 && XEXP (x, 1) == const0_rtx)
7412 {
7413 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7414 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7415 return XEXP (x, 0);
7416 }
7417
7418 /* If this is a unary operation whose operand has one of two values, apply
7419 our opcode to compute those values. */
7420 else if (UNARY_P (x)
7421 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7422 {
7423 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7424 *pfalse = simplify_gen_unary (code, mode, false0,
7425 GET_MODE (XEXP (x, 0)));
7426 return cond0;
7427 }
7428
7429 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7430 make can't possibly match and would suppress other optimizations. */
7431 else if (code == COMPARE)
7432 ;
7433
7434 /* If this is a binary operation, see if either side has only one of two
7435 values. If either one does or if both do and they are conditional on
7436 the same value, compute the new true and false values. */
7437 else if (BINARY_P (x))
7438 {
7439 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7440 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7441
7442 if ((cond0 != 0 || cond1 != 0)
7443 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7444 {
7445 /* If if_then_else_cond returned zero, then true/false are the
7446 same rtl. We must copy one of them to prevent invalid rtl
7447 sharing. */
7448 if (cond0 == 0)
7449 true0 = copy_rtx (true0);
7450 else if (cond1 == 0)
7451 true1 = copy_rtx (true1);
7452
7453 *ptrue = gen_binary (code, mode, true0, true1);
7454 *pfalse = gen_binary (code, mode, false0, false1);
7455 return cond0 ? cond0 : cond1;
7456 }
7457
7458 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7459 operands is zero when the other is nonzero, and vice-versa,
7460 and STORE_FLAG_VALUE is 1 or -1. */
7461
7462 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7463 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7464 || code == UMAX)
7465 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7466 {
7467 rtx op0 = XEXP (XEXP (x, 0), 1);
7468 rtx op1 = XEXP (XEXP (x, 1), 1);
7469
7470 cond0 = XEXP (XEXP (x, 0), 0);
7471 cond1 = XEXP (XEXP (x, 1), 0);
7472
7473 if (COMPARISON_P (cond0)
7474 && COMPARISON_P (cond1)
7475 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7476 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7477 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7478 || ((swap_condition (GET_CODE (cond0))
7479 == combine_reversed_comparison_code (cond1))
7480 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7481 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7482 && ! side_effects_p (x))
7483 {
7484 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7485 *pfalse = gen_binary (MULT, mode,
7486 (code == MINUS
7487 ? simplify_gen_unary (NEG, mode, op1,
7488 mode)
7489 : op1),
7490 const_true_rtx);
7491 return cond0;
7492 }
7493 }
7494
7495 /* Similarly for MULT, AND and UMIN, except that for these the result
7496 is always zero. */
7497 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7498 && (code == MULT || code == AND || code == UMIN)
7499 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7500 {
7501 cond0 = XEXP (XEXP (x, 0), 0);
7502 cond1 = XEXP (XEXP (x, 1), 0);
7503
7504 if (COMPARISON_P (cond0)
7505 && COMPARISON_P (cond1)
7506 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7507 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7508 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7509 || ((swap_condition (GET_CODE (cond0))
7510 == combine_reversed_comparison_code (cond1))
7511 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7512 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7513 && ! side_effects_p (x))
7514 {
7515 *ptrue = *pfalse = const0_rtx;
7516 return cond0;
7517 }
7518 }
7519 }
7520
7521 else if (code == IF_THEN_ELSE)
7522 {
7523 /* If we have IF_THEN_ELSE already, extract the condition and
7524 canonicalize it if it is NE or EQ. */
7525 cond0 = XEXP (x, 0);
7526 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7527 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7528 return XEXP (cond0, 0);
7529 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7530 {
7531 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7532 return XEXP (cond0, 0);
7533 }
7534 else
7535 return cond0;
7536 }
7537
7538 /* If X is a SUBREG, we can narrow both the true and false values
7539 if the inner expression, if there is a condition. */
7540 else if (code == SUBREG
7541 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7542 &true0, &false0)))
7543 {
7544 true0 = simplify_gen_subreg (mode, true0,
7545 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7546 false0 = simplify_gen_subreg (mode, false0,
7547 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7548 if (true0 && false0)
7549 {
7550 *ptrue = true0;
7551 *pfalse = false0;
7552 return cond0;
7553 }
7554 }
7555
7556 /* If X is a constant, this isn't special and will cause confusions
7557 if we treat it as such. Likewise if it is equivalent to a constant. */
7558 else if (CONSTANT_P (x)
7559 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7560 ;
7561
7562 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7563 will be least confusing to the rest of the compiler. */
7564 else if (mode == BImode)
7565 {
7566 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7567 return x;
7568 }
7569
7570 /* If X is known to be either 0 or -1, those are the true and
7571 false values when testing X. */
7572 else if (x == constm1_rtx || x == const0_rtx
7573 || (mode != VOIDmode
7574 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7575 {
7576 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7577 return x;
7578 }
7579
7580 /* Likewise for 0 or a single bit. */
7581 else if (SCALAR_INT_MODE_P (mode)
7582 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7583 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7584 {
7585 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7586 return x;
7587 }
7588
7589 /* Otherwise fail; show no condition with true and false values the same. */
7590 *ptrue = *pfalse = x;
7591 return 0;
7592 }
7593 \f
7594 /* Return the value of expression X given the fact that condition COND
7595 is known to be true when applied to REG as its first operand and VAL
7596 as its second. X is known to not be shared and so can be modified in
7597 place.
7598
7599 We only handle the simplest cases, and specifically those cases that
7600 arise with IF_THEN_ELSE expressions. */
7601
7602 static rtx
7603 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7604 {
7605 enum rtx_code code = GET_CODE (x);
7606 rtx temp;
7607 const char *fmt;
7608 int i, j;
7609
7610 if (side_effects_p (x))
7611 return x;
7612
7613 /* If either operand of the condition is a floating point value,
7614 then we have to avoid collapsing an EQ comparison. */
7615 if (cond == EQ
7616 && rtx_equal_p (x, reg)
7617 && ! FLOAT_MODE_P (GET_MODE (x))
7618 && ! FLOAT_MODE_P (GET_MODE (val)))
7619 return val;
7620
7621 if (cond == UNEQ && rtx_equal_p (x, reg))
7622 return val;
7623
7624 /* If X is (abs REG) and we know something about REG's relationship
7625 with zero, we may be able to simplify this. */
7626
7627 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7628 switch (cond)
7629 {
7630 case GE: case GT: case EQ:
7631 return XEXP (x, 0);
7632 case LT: case LE:
7633 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7634 XEXP (x, 0),
7635 GET_MODE (XEXP (x, 0)));
7636 default:
7637 break;
7638 }
7639
7640 /* The only other cases we handle are MIN, MAX, and comparisons if the
7641 operands are the same as REG and VAL. */
7642
7643 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7644 {
7645 if (rtx_equal_p (XEXP (x, 0), val))
7646 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7647
7648 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7649 {
7650 if (COMPARISON_P (x))
7651 {
7652 if (comparison_dominates_p (cond, code))
7653 return const_true_rtx;
7654
7655 code = combine_reversed_comparison_code (x);
7656 if (code != UNKNOWN
7657 && comparison_dominates_p (cond, code))
7658 return const0_rtx;
7659 else
7660 return x;
7661 }
7662 else if (code == SMAX || code == SMIN
7663 || code == UMIN || code == UMAX)
7664 {
7665 int unsignedp = (code == UMIN || code == UMAX);
7666
7667 /* Do not reverse the condition when it is NE or EQ.
7668 This is because we cannot conclude anything about
7669 the value of 'SMAX (x, y)' when x is not equal to y,
7670 but we can when x equals y. */
7671 if ((code == SMAX || code == UMAX)
7672 && ! (cond == EQ || cond == NE))
7673 cond = reverse_condition (cond);
7674
7675 switch (cond)
7676 {
7677 case GE: case GT:
7678 return unsignedp ? x : XEXP (x, 1);
7679 case LE: case LT:
7680 return unsignedp ? x : XEXP (x, 0);
7681 case GEU: case GTU:
7682 return unsignedp ? XEXP (x, 1) : x;
7683 case LEU: case LTU:
7684 return unsignedp ? XEXP (x, 0) : x;
7685 default:
7686 break;
7687 }
7688 }
7689 }
7690 }
7691 else if (code == SUBREG)
7692 {
7693 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7694 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7695
7696 if (SUBREG_REG (x) != r)
7697 {
7698 /* We must simplify subreg here, before we lose track of the
7699 original inner_mode. */
7700 new = simplify_subreg (GET_MODE (x), r,
7701 inner_mode, SUBREG_BYTE (x));
7702 if (new)
7703 return new;
7704 else
7705 SUBST (SUBREG_REG (x), r);
7706 }
7707
7708 return x;
7709 }
7710 /* We don't have to handle SIGN_EXTEND here, because even in the
7711 case of replacing something with a modeless CONST_INT, a
7712 CONST_INT is already (supposed to be) a valid sign extension for
7713 its narrower mode, which implies it's already properly
7714 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7715 story is different. */
7716 else if (code == ZERO_EXTEND)
7717 {
7718 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7719 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7720
7721 if (XEXP (x, 0) != r)
7722 {
7723 /* We must simplify the zero_extend here, before we lose
7724 track of the original inner_mode. */
7725 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7726 r, inner_mode);
7727 if (new)
7728 return new;
7729 else
7730 SUBST (XEXP (x, 0), r);
7731 }
7732
7733 return x;
7734 }
7735
7736 fmt = GET_RTX_FORMAT (code);
7737 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7738 {
7739 if (fmt[i] == 'e')
7740 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7741 else if (fmt[i] == 'E')
7742 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7743 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7744 cond, reg, val));
7745 }
7746
7747 return x;
7748 }
7749 \f
7750 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7751 assignment as a field assignment. */
7752
7753 static int
7754 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7755 {
7756 if (x == y || rtx_equal_p (x, y))
7757 return 1;
7758
7759 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7760 return 0;
7761
7762 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7763 Note that all SUBREGs of MEM are paradoxical; otherwise they
7764 would have been rewritten. */
7765 if (MEM_P (x) && GET_CODE (y) == SUBREG
7766 && MEM_P (SUBREG_REG (y))
7767 && rtx_equal_p (SUBREG_REG (y),
7768 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7769 return 1;
7770
7771 if (MEM_P (y) && GET_CODE (x) == SUBREG
7772 && MEM_P (SUBREG_REG (x))
7773 && rtx_equal_p (SUBREG_REG (x),
7774 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7775 return 1;
7776
7777 /* We used to see if get_last_value of X and Y were the same but that's
7778 not correct. In one direction, we'll cause the assignment to have
7779 the wrong destination and in the case, we'll import a register into this
7780 insn that might have already have been dead. So fail if none of the
7781 above cases are true. */
7782 return 0;
7783 }
7784 \f
7785 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7786 Return that assignment if so.
7787
7788 We only handle the most common cases. */
7789
7790 static rtx
7791 make_field_assignment (rtx x)
7792 {
7793 rtx dest = SET_DEST (x);
7794 rtx src = SET_SRC (x);
7795 rtx assign;
7796 rtx rhs, lhs;
7797 HOST_WIDE_INT c1;
7798 HOST_WIDE_INT pos;
7799 unsigned HOST_WIDE_INT len;
7800 rtx other;
7801 enum machine_mode mode;
7802
7803 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7804 a clear of a one-bit field. We will have changed it to
7805 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7806 for a SUBREG. */
7807
7808 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7809 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7810 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7811 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7812 {
7813 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7814 1, 1, 1, 0);
7815 if (assign != 0)
7816 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7817 return x;
7818 }
7819
7820 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7821 && subreg_lowpart_p (XEXP (src, 0))
7822 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7823 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7824 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7825 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7826 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7827 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7828 {
7829 assign = make_extraction (VOIDmode, dest, 0,
7830 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7831 1, 1, 1, 0);
7832 if (assign != 0)
7833 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7834 return x;
7835 }
7836
7837 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7838 one-bit field. */
7839 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7840 && XEXP (XEXP (src, 0), 0) == const1_rtx
7841 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7842 {
7843 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7844 1, 1, 1, 0);
7845 if (assign != 0)
7846 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7847 return x;
7848 }
7849
7850 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7851 SRC is an AND with all bits of that field set, then we can discard
7852 the AND. */
7853 if (GET_CODE (dest) == ZERO_EXTRACT
7854 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7855 && GET_CODE (src) == AND
7856 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7857 {
7858 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7859 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7860 unsigned HOST_WIDE_INT ze_mask;
7861
7862 if (width >= HOST_BITS_PER_WIDE_INT)
7863 ze_mask = -1;
7864 else
7865 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7866
7867 /* Complete overlap. We can remove the source AND. */
7868 if ((and_mask & ze_mask) == ze_mask)
7869 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7870
7871 /* Partial overlap. We can reduce the source AND. */
7872 if ((and_mask & ze_mask) != and_mask)
7873 {
7874 mode = GET_MODE (src);
7875 src = gen_rtx_AND (mode, XEXP (src, 0),
7876 gen_int_mode (and_mask & ze_mask, mode));
7877 return gen_rtx_SET (VOIDmode, dest, src);
7878 }
7879 }
7880
7881 /* The other case we handle is assignments into a constant-position
7882 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7883 a mask that has all one bits except for a group of zero bits and
7884 OTHER is known to have zeros where C1 has ones, this is such an
7885 assignment. Compute the position and length from C1. Shift OTHER
7886 to the appropriate position, force it to the required mode, and
7887 make the extraction. Check for the AND in both operands. */
7888
7889 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7890 return x;
7891
7892 rhs = expand_compound_operation (XEXP (src, 0));
7893 lhs = expand_compound_operation (XEXP (src, 1));
7894
7895 if (GET_CODE (rhs) == AND
7896 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7897 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7898 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7899 else if (GET_CODE (lhs) == AND
7900 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7901 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7902 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7903 else
7904 return x;
7905
7906 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7907 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7908 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7909 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7910 return x;
7911
7912 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7913 if (assign == 0)
7914 return x;
7915
7916 /* The mode to use for the source is the mode of the assignment, or of
7917 what is inside a possible STRICT_LOW_PART. */
7918 mode = (GET_CODE (assign) == STRICT_LOW_PART
7919 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7920
7921 /* Shift OTHER right POS places and make it the source, restricting it
7922 to the proper length and mode. */
7923
7924 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7925 GET_MODE (src), other, pos),
7926 mode,
7927 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7928 ? ~(unsigned HOST_WIDE_INT) 0
7929 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7930 dest, 0);
7931
7932 /* If SRC is masked by an AND that does not make a difference in
7933 the value being stored, strip it. */
7934 if (GET_CODE (assign) == ZERO_EXTRACT
7935 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7936 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7937 && GET_CODE (src) == AND
7938 && GET_CODE (XEXP (src, 1)) == CONST_INT
7939 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7940 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7941 src = XEXP (src, 0);
7942
7943 return gen_rtx_SET (VOIDmode, assign, src);
7944 }
7945 \f
7946 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7947 if so. */
7948
7949 static rtx
7950 apply_distributive_law (rtx x)
7951 {
7952 enum rtx_code code = GET_CODE (x);
7953 enum rtx_code inner_code;
7954 rtx lhs, rhs, other;
7955 rtx tem;
7956
7957 /* Distributivity is not true for floating point as it can change the
7958 value. So we don't do it unless -funsafe-math-optimizations. */
7959 if (FLOAT_MODE_P (GET_MODE (x))
7960 && ! flag_unsafe_math_optimizations)
7961 return x;
7962
7963 /* The outer operation can only be one of the following: */
7964 if (code != IOR && code != AND && code != XOR
7965 && code != PLUS && code != MINUS)
7966 return x;
7967
7968 lhs = XEXP (x, 0);
7969 rhs = XEXP (x, 1);
7970
7971 /* If either operand is a primitive we can't do anything, so get out
7972 fast. */
7973 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7974 return x;
7975
7976 lhs = expand_compound_operation (lhs);
7977 rhs = expand_compound_operation (rhs);
7978 inner_code = GET_CODE (lhs);
7979 if (inner_code != GET_CODE (rhs))
7980 return x;
7981
7982 /* See if the inner and outer operations distribute. */
7983 switch (inner_code)
7984 {
7985 case LSHIFTRT:
7986 case ASHIFTRT:
7987 case AND:
7988 case IOR:
7989 /* These all distribute except over PLUS. */
7990 if (code == PLUS || code == MINUS)
7991 return x;
7992 break;
7993
7994 case MULT:
7995 if (code != PLUS && code != MINUS)
7996 return x;
7997 break;
7998
7999 case ASHIFT:
8000 /* This is also a multiply, so it distributes over everything. */
8001 break;
8002
8003 case SUBREG:
8004 /* Non-paradoxical SUBREGs distributes over all operations, provided
8005 the inner modes and byte offsets are the same, this is an extraction
8006 of a low-order part, we don't convert an fp operation to int or
8007 vice versa, and we would not be converting a single-word
8008 operation into a multi-word operation. The latter test is not
8009 required, but it prevents generating unneeded multi-word operations.
8010 Some of the previous tests are redundant given the latter test, but
8011 are retained because they are required for correctness.
8012
8013 We produce the result slightly differently in this case. */
8014
8015 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8016 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8017 || ! subreg_lowpart_p (lhs)
8018 || (GET_MODE_CLASS (GET_MODE (lhs))
8019 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8020 || (GET_MODE_SIZE (GET_MODE (lhs))
8021 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8022 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8023 return x;
8024
8025 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8026 SUBREG_REG (lhs), SUBREG_REG (rhs));
8027 return gen_lowpart (GET_MODE (x), tem);
8028
8029 default:
8030 return x;
8031 }
8032
8033 /* Set LHS and RHS to the inner operands (A and B in the example
8034 above) and set OTHER to the common operand (C in the example).
8035 There is only one way to do this unless the inner operation is
8036 commutative. */
8037 if (COMMUTATIVE_ARITH_P (lhs)
8038 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8039 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8040 else if (COMMUTATIVE_ARITH_P (lhs)
8041 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8042 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8043 else if (COMMUTATIVE_ARITH_P (lhs)
8044 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8045 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8046 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8047 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8048 else
8049 return x;
8050
8051 /* Form the new inner operation, seeing if it simplifies first. */
8052 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8053
8054 /* There is one exception to the general way of distributing:
8055 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8056 if (code == XOR && inner_code == IOR)
8057 {
8058 inner_code = AND;
8059 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8060 }
8061
8062 /* We may be able to continuing distributing the result, so call
8063 ourselves recursively on the inner operation before forming the
8064 outer operation, which we return. */
8065 return gen_binary (inner_code, GET_MODE (x),
8066 apply_distributive_law (tem), other);
8067 }
8068 \f
8069 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8070 in MODE.
8071
8072 Return an equivalent form, if different from X. Otherwise, return X. If
8073 X is zero, we are to always construct the equivalent form. */
8074
8075 static rtx
8076 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8077 unsigned HOST_WIDE_INT constop)
8078 {
8079 unsigned HOST_WIDE_INT nonzero;
8080 int i;
8081
8082 /* Simplify VAROP knowing that we will be only looking at some of the
8083 bits in it.
8084
8085 Note by passing in CONSTOP, we guarantee that the bits not set in
8086 CONSTOP are not significant and will never be examined. We must
8087 ensure that is the case by explicitly masking out those bits
8088 before returning. */
8089 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8090
8091 /* If VAROP is a CLOBBER, we will fail so return it. */
8092 if (GET_CODE (varop) == CLOBBER)
8093 return varop;
8094
8095 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8096 to VAROP and return the new constant. */
8097 if (GET_CODE (varop) == CONST_INT)
8098 return gen_int_mode (INTVAL (varop) & constop, mode);
8099
8100 /* See what bits may be nonzero in VAROP. Unlike the general case of
8101 a call to nonzero_bits, here we don't care about bits outside
8102 MODE. */
8103
8104 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8105
8106 /* Turn off all bits in the constant that are known to already be zero.
8107 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8108 which is tested below. */
8109
8110 constop &= nonzero;
8111
8112 /* If we don't have any bits left, return zero. */
8113 if (constop == 0)
8114 return const0_rtx;
8115
8116 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8117 a power of two, we can replace this with an ASHIFT. */
8118 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8119 && (i = exact_log2 (constop)) >= 0)
8120 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8121
8122 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8123 or XOR, then try to apply the distributive law. This may eliminate
8124 operations if either branch can be simplified because of the AND.
8125 It may also make some cases more complex, but those cases probably
8126 won't match a pattern either with or without this. */
8127
8128 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8129 return
8130 gen_lowpart
8131 (mode,
8132 apply_distributive_law
8133 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8134 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8135 XEXP (varop, 0), constop),
8136 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8137 XEXP (varop, 1), constop))));
8138
8139 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8140 the AND and see if one of the operands simplifies to zero. If so, we
8141 may eliminate it. */
8142
8143 if (GET_CODE (varop) == PLUS
8144 && exact_log2 (constop + 1) >= 0)
8145 {
8146 rtx o0, o1;
8147
8148 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8149 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8150 if (o0 == const0_rtx)
8151 return o1;
8152 if (o1 == const0_rtx)
8153 return o0;
8154 }
8155
8156 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8157 if we already had one (just check for the simplest cases). */
8158 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8159 && GET_MODE (XEXP (x, 0)) == mode
8160 && SUBREG_REG (XEXP (x, 0)) == varop)
8161 varop = XEXP (x, 0);
8162 else
8163 varop = gen_lowpart (mode, varop);
8164
8165 /* If we can't make the SUBREG, try to return what we were given. */
8166 if (GET_CODE (varop) == CLOBBER)
8167 return x ? x : varop;
8168
8169 /* If we are only masking insignificant bits, return VAROP. */
8170 if (constop == nonzero)
8171 x = varop;
8172 else
8173 {
8174 /* Otherwise, return an AND. */
8175 constop = trunc_int_for_mode (constop, mode);
8176 /* See how much, if any, of X we can use. */
8177 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8178 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8179
8180 else
8181 {
8182 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8183 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8184 SUBST (XEXP (x, 1), GEN_INT (constop));
8185
8186 SUBST (XEXP (x, 0), varop);
8187 }
8188 }
8189
8190 return x;
8191 }
8192 \f
8193 /* Given a REG, X, compute which bits in X can be nonzero.
8194 We don't care about bits outside of those defined in MODE.
8195
8196 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8197 a shift, AND, or zero_extract, we can do better. */
8198
8199 static rtx
8200 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8201 rtx known_x ATTRIBUTE_UNUSED,
8202 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8203 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8204 unsigned HOST_WIDE_INT *nonzero)
8205 {
8206 rtx tem;
8207
8208 /* If X is a register whose nonzero bits value is current, use it.
8209 Otherwise, if X is a register whose value we can find, use that
8210 value. Otherwise, use the previously-computed global nonzero bits
8211 for this register. */
8212
8213 if (reg_stat[REGNO (x)].last_set_value != 0
8214 && (reg_stat[REGNO (x)].last_set_mode == mode
8215 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8216 && GET_MODE_CLASS (mode) == MODE_INT))
8217 && (reg_stat[REGNO (x)].last_set_label == label_tick
8218 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8219 && REG_N_SETS (REGNO (x)) == 1
8220 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8221 REGNO (x))))
8222 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8223 {
8224 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8225 return NULL;
8226 }
8227
8228 tem = get_last_value (x);
8229
8230 if (tem)
8231 {
8232 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8233 /* If X is narrower than MODE and TEM is a non-negative
8234 constant that would appear negative in the mode of X,
8235 sign-extend it for use in reg_nonzero_bits because some
8236 machines (maybe most) will actually do the sign-extension
8237 and this is the conservative approach.
8238
8239 ??? For 2.5, try to tighten up the MD files in this regard
8240 instead of this kludge. */
8241
8242 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8243 && GET_CODE (tem) == CONST_INT
8244 && INTVAL (tem) > 0
8245 && 0 != (INTVAL (tem)
8246 & ((HOST_WIDE_INT) 1
8247 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8248 tem = GEN_INT (INTVAL (tem)
8249 | ((HOST_WIDE_INT) (-1)
8250 << GET_MODE_BITSIZE (GET_MODE (x))));
8251 #endif
8252 return tem;
8253 }
8254 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8255 {
8256 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8257
8258 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8259 /* We don't know anything about the upper bits. */
8260 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8261 *nonzero &= mask;
8262 }
8263
8264 return NULL;
8265 }
8266
8267 /* Return the number of bits at the high-order end of X that are known to
8268 be equal to the sign bit. X will be used in mode MODE; if MODE is
8269 VOIDmode, X will be used in its own mode. The returned value will always
8270 be between 1 and the number of bits in MODE. */
8271
8272 static rtx
8273 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8274 rtx known_x ATTRIBUTE_UNUSED,
8275 enum machine_mode known_mode
8276 ATTRIBUTE_UNUSED,
8277 unsigned int known_ret ATTRIBUTE_UNUSED,
8278 unsigned int *result)
8279 {
8280 rtx tem;
8281
8282 if (reg_stat[REGNO (x)].last_set_value != 0
8283 && reg_stat[REGNO (x)].last_set_mode == mode
8284 && (reg_stat[REGNO (x)].last_set_label == label_tick
8285 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8286 && REG_N_SETS (REGNO (x)) == 1
8287 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8288 REGNO (x))))
8289 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8290 {
8291 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8292 return NULL;
8293 }
8294
8295 tem = get_last_value (x);
8296 if (tem != 0)
8297 return tem;
8298
8299 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8300 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8301 *result = reg_stat[REGNO (x)].sign_bit_copies;
8302
8303 return NULL;
8304 }
8305 \f
8306 /* Return the number of "extended" bits there are in X, when interpreted
8307 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8308 unsigned quantities, this is the number of high-order zero bits.
8309 For signed quantities, this is the number of copies of the sign bit
8310 minus 1. In both case, this function returns the number of "spare"
8311 bits. For example, if two quantities for which this function returns
8312 at least 1 are added, the addition is known not to overflow.
8313
8314 This function will always return 0 unless called during combine, which
8315 implies that it must be called from a define_split. */
8316
8317 unsigned int
8318 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8319 {
8320 if (nonzero_sign_valid == 0)
8321 return 0;
8322
8323 return (unsignedp
8324 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8325 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8326 - floor_log2 (nonzero_bits (x, mode)))
8327 : 0)
8328 : num_sign_bit_copies (x, mode) - 1);
8329 }
8330 \f
8331 /* This function is called from `simplify_shift_const' to merge two
8332 outer operations. Specifically, we have already found that we need
8333 to perform operation *POP0 with constant *PCONST0 at the outermost
8334 position. We would now like to also perform OP1 with constant CONST1
8335 (with *POP0 being done last).
8336
8337 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8338 the resulting operation. *PCOMP_P is set to 1 if we would need to
8339 complement the innermost operand, otherwise it is unchanged.
8340
8341 MODE is the mode in which the operation will be done. No bits outside
8342 the width of this mode matter. It is assumed that the width of this mode
8343 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8344
8345 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8346 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8347 result is simply *PCONST0.
8348
8349 If the resulting operation cannot be expressed as one operation, we
8350 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8351
8352 static int
8353 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8354 {
8355 enum rtx_code op0 = *pop0;
8356 HOST_WIDE_INT const0 = *pconst0;
8357
8358 const0 &= GET_MODE_MASK (mode);
8359 const1 &= GET_MODE_MASK (mode);
8360
8361 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8362 if (op0 == AND)
8363 const1 &= const0;
8364
8365 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8366 if OP0 is SET. */
8367
8368 if (op1 == UNKNOWN || op0 == SET)
8369 return 1;
8370
8371 else if (op0 == UNKNOWN)
8372 op0 = op1, const0 = const1;
8373
8374 else if (op0 == op1)
8375 {
8376 switch (op0)
8377 {
8378 case AND:
8379 const0 &= const1;
8380 break;
8381 case IOR:
8382 const0 |= const1;
8383 break;
8384 case XOR:
8385 const0 ^= const1;
8386 break;
8387 case PLUS:
8388 const0 += const1;
8389 break;
8390 case NEG:
8391 op0 = UNKNOWN;
8392 break;
8393 default:
8394 break;
8395 }
8396 }
8397
8398 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8399 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8400 return 0;
8401
8402 /* If the two constants aren't the same, we can't do anything. The
8403 remaining six cases can all be done. */
8404 else if (const0 != const1)
8405 return 0;
8406
8407 else
8408 switch (op0)
8409 {
8410 case IOR:
8411 if (op1 == AND)
8412 /* (a & b) | b == b */
8413 op0 = SET;
8414 else /* op1 == XOR */
8415 /* (a ^ b) | b == a | b */
8416 {;}
8417 break;
8418
8419 case XOR:
8420 if (op1 == AND)
8421 /* (a & b) ^ b == (~a) & b */
8422 op0 = AND, *pcomp_p = 1;
8423 else /* op1 == IOR */
8424 /* (a | b) ^ b == a & ~b */
8425 op0 = AND, const0 = ~const0;
8426 break;
8427
8428 case AND:
8429 if (op1 == IOR)
8430 /* (a | b) & b == b */
8431 op0 = SET;
8432 else /* op1 == XOR */
8433 /* (a ^ b) & b) == (~a) & b */
8434 *pcomp_p = 1;
8435 break;
8436 default:
8437 break;
8438 }
8439
8440 /* Check for NO-OP cases. */
8441 const0 &= GET_MODE_MASK (mode);
8442 if (const0 == 0
8443 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8444 op0 = UNKNOWN;
8445 else if (const0 == 0 && op0 == AND)
8446 op0 = SET;
8447 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8448 && op0 == AND)
8449 op0 = UNKNOWN;
8450
8451 /* ??? Slightly redundant with the above mask, but not entirely.
8452 Moving this above means we'd have to sign-extend the mode mask
8453 for the final test. */
8454 const0 = trunc_int_for_mode (const0, mode);
8455
8456 *pop0 = op0;
8457 *pconst0 = const0;
8458
8459 return 1;
8460 }
8461 \f
8462 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8463 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8464 that we started with.
8465
8466 The shift is normally computed in the widest mode we find in VAROP, as
8467 long as it isn't a different number of words than RESULT_MODE. Exceptions
8468 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8469
8470 static rtx
8471 simplify_shift_const (rtx x, enum rtx_code code,
8472 enum machine_mode result_mode, rtx varop,
8473 int orig_count)
8474 {
8475 enum rtx_code orig_code = code;
8476 unsigned int count;
8477 int signed_count;
8478 enum machine_mode mode = result_mode;
8479 enum machine_mode shift_mode, tmode;
8480 unsigned int mode_words
8481 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8482 /* We form (outer_op (code varop count) (outer_const)). */
8483 enum rtx_code outer_op = UNKNOWN;
8484 HOST_WIDE_INT outer_const = 0;
8485 rtx const_rtx;
8486 int complement_p = 0;
8487 rtx new;
8488
8489 /* Make sure and truncate the "natural" shift on the way in. We don't
8490 want to do this inside the loop as it makes it more difficult to
8491 combine shifts. */
8492 if (SHIFT_COUNT_TRUNCATED)
8493 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8494
8495 /* If we were given an invalid count, don't do anything except exactly
8496 what was requested. */
8497
8498 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8499 {
8500 if (x)
8501 return x;
8502
8503 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8504 }
8505
8506 count = orig_count;
8507
8508 /* Unless one of the branches of the `if' in this loop does a `continue',
8509 we will `break' the loop after the `if'. */
8510
8511 while (count != 0)
8512 {
8513 /* If we have an operand of (clobber (const_int 0)), just return that
8514 value. */
8515 if (GET_CODE (varop) == CLOBBER)
8516 return varop;
8517
8518 /* If we discovered we had to complement VAROP, leave. Making a NOT
8519 here would cause an infinite loop. */
8520 if (complement_p)
8521 break;
8522
8523 /* Convert ROTATERT to ROTATE. */
8524 if (code == ROTATERT)
8525 {
8526 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8527 code = ROTATE;
8528 if (VECTOR_MODE_P (result_mode))
8529 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8530 else
8531 count = bitsize - count;
8532 }
8533
8534 /* We need to determine what mode we will do the shift in. If the
8535 shift is a right shift or a ROTATE, we must always do it in the mode
8536 it was originally done in. Otherwise, we can do it in MODE, the
8537 widest mode encountered. */
8538 shift_mode
8539 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8540 ? result_mode : mode);
8541
8542 /* Handle cases where the count is greater than the size of the mode
8543 minus 1. For ASHIFT, use the size minus one as the count (this can
8544 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8545 take the count modulo the size. For other shifts, the result is
8546 zero.
8547
8548 Since these shifts are being produced by the compiler by combining
8549 multiple operations, each of which are defined, we know what the
8550 result is supposed to be. */
8551
8552 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8553 {
8554 if (code == ASHIFTRT)
8555 count = GET_MODE_BITSIZE (shift_mode) - 1;
8556 else if (code == ROTATE || code == ROTATERT)
8557 count %= GET_MODE_BITSIZE (shift_mode);
8558 else
8559 {
8560 /* We can't simply return zero because there may be an
8561 outer op. */
8562 varop = const0_rtx;
8563 count = 0;
8564 break;
8565 }
8566 }
8567
8568 /* An arithmetic right shift of a quantity known to be -1 or 0
8569 is a no-op. */
8570 if (code == ASHIFTRT
8571 && (num_sign_bit_copies (varop, shift_mode)
8572 == GET_MODE_BITSIZE (shift_mode)))
8573 {
8574 count = 0;
8575 break;
8576 }
8577
8578 /* If we are doing an arithmetic right shift and discarding all but
8579 the sign bit copies, this is equivalent to doing a shift by the
8580 bitsize minus one. Convert it into that shift because it will often
8581 allow other simplifications. */
8582
8583 if (code == ASHIFTRT
8584 && (count + num_sign_bit_copies (varop, shift_mode)
8585 >= GET_MODE_BITSIZE (shift_mode)))
8586 count = GET_MODE_BITSIZE (shift_mode) - 1;
8587
8588 /* We simplify the tests below and elsewhere by converting
8589 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8590 `make_compound_operation' will convert it to an ASHIFTRT for
8591 those machines (such as VAX) that don't have an LSHIFTRT. */
8592 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8593 && code == ASHIFTRT
8594 && ((nonzero_bits (varop, shift_mode)
8595 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8596 == 0))
8597 code = LSHIFTRT;
8598
8599 if (code == LSHIFTRT
8600 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8601 && !(nonzero_bits (varop, shift_mode) >> count))
8602 varop = const0_rtx;
8603 if (code == ASHIFT
8604 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8605 && !((nonzero_bits (varop, shift_mode) << count)
8606 & GET_MODE_MASK (shift_mode)))
8607 varop = const0_rtx;
8608
8609 switch (GET_CODE (varop))
8610 {
8611 case SIGN_EXTEND:
8612 case ZERO_EXTEND:
8613 case SIGN_EXTRACT:
8614 case ZERO_EXTRACT:
8615 new = expand_compound_operation (varop);
8616 if (new != varop)
8617 {
8618 varop = new;
8619 continue;
8620 }
8621 break;
8622
8623 case MEM:
8624 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8625 minus the width of a smaller mode, we can do this with a
8626 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8627 if ((code == ASHIFTRT || code == LSHIFTRT)
8628 && ! mode_dependent_address_p (XEXP (varop, 0))
8629 && ! MEM_VOLATILE_P (varop)
8630 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8631 MODE_INT, 1)) != BLKmode)
8632 {
8633 new = adjust_address_nv (varop, tmode,
8634 BYTES_BIG_ENDIAN ? 0
8635 : count / BITS_PER_UNIT);
8636
8637 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8638 : ZERO_EXTEND, mode, new);
8639 count = 0;
8640 continue;
8641 }
8642 break;
8643
8644 case USE:
8645 /* Similar to the case above, except that we can only do this if
8646 the resulting mode is the same as that of the underlying
8647 MEM and adjust the address depending on the *bits* endianness
8648 because of the way that bit-field extract insns are defined. */
8649 if ((code == ASHIFTRT || code == LSHIFTRT)
8650 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8651 MODE_INT, 1)) != BLKmode
8652 && tmode == GET_MODE (XEXP (varop, 0)))
8653 {
8654 if (BITS_BIG_ENDIAN)
8655 new = XEXP (varop, 0);
8656 else
8657 {
8658 new = copy_rtx (XEXP (varop, 0));
8659 SUBST (XEXP (new, 0),
8660 plus_constant (XEXP (new, 0),
8661 count / BITS_PER_UNIT));
8662 }
8663
8664 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8665 : ZERO_EXTEND, mode, new);
8666 count = 0;
8667 continue;
8668 }
8669 break;
8670
8671 case SUBREG:
8672 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8673 the same number of words as what we've seen so far. Then store
8674 the widest mode in MODE. */
8675 if (subreg_lowpart_p (varop)
8676 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8677 > GET_MODE_SIZE (GET_MODE (varop)))
8678 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8679 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8680 == mode_words)
8681 {
8682 varop = SUBREG_REG (varop);
8683 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8684 mode = GET_MODE (varop);
8685 continue;
8686 }
8687 break;
8688
8689 case MULT:
8690 /* Some machines use MULT instead of ASHIFT because MULT
8691 is cheaper. But it is still better on those machines to
8692 merge two shifts into one. */
8693 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8694 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8695 {
8696 varop
8697 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8698 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8699 continue;
8700 }
8701 break;
8702
8703 case UDIV:
8704 /* Similar, for when divides are cheaper. */
8705 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8706 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8707 {
8708 varop
8709 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8710 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8711 continue;
8712 }
8713 break;
8714
8715 case ASHIFTRT:
8716 /* If we are extracting just the sign bit of an arithmetic
8717 right shift, that shift is not needed. However, the sign
8718 bit of a wider mode may be different from what would be
8719 interpreted as the sign bit in a narrower mode, so, if
8720 the result is narrower, don't discard the shift. */
8721 if (code == LSHIFTRT
8722 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8723 && (GET_MODE_BITSIZE (result_mode)
8724 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8725 {
8726 varop = XEXP (varop, 0);
8727 continue;
8728 }
8729
8730 /* ... fall through ... */
8731
8732 case LSHIFTRT:
8733 case ASHIFT:
8734 case ROTATE:
8735 /* Here we have two nested shifts. The result is usually the
8736 AND of a new shift with a mask. We compute the result below. */
8737 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8738 && INTVAL (XEXP (varop, 1)) >= 0
8739 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8740 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8741 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8742 {
8743 enum rtx_code first_code = GET_CODE (varop);
8744 unsigned int first_count = INTVAL (XEXP (varop, 1));
8745 unsigned HOST_WIDE_INT mask;
8746 rtx mask_rtx;
8747
8748 /* We have one common special case. We can't do any merging if
8749 the inner code is an ASHIFTRT of a smaller mode. However, if
8750 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8751 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8752 we can convert it to
8753 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8754 This simplifies certain SIGN_EXTEND operations. */
8755 if (code == ASHIFT && first_code == ASHIFTRT
8756 && count == (unsigned int)
8757 (GET_MODE_BITSIZE (result_mode)
8758 - GET_MODE_BITSIZE (GET_MODE (varop))))
8759 {
8760 /* C3 has the low-order C1 bits zero. */
8761
8762 mask = (GET_MODE_MASK (mode)
8763 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8764
8765 varop = simplify_and_const_int (NULL_RTX, result_mode,
8766 XEXP (varop, 0), mask);
8767 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8768 varop, count);
8769 count = first_count;
8770 code = ASHIFTRT;
8771 continue;
8772 }
8773
8774 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8775 than C1 high-order bits equal to the sign bit, we can convert
8776 this to either an ASHIFT or an ASHIFTRT depending on the
8777 two counts.
8778
8779 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8780
8781 if (code == ASHIFTRT && first_code == ASHIFT
8782 && GET_MODE (varop) == shift_mode
8783 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8784 > first_count))
8785 {
8786 varop = XEXP (varop, 0);
8787
8788 signed_count = count - first_count;
8789 if (signed_count < 0)
8790 count = -signed_count, code = ASHIFT;
8791 else
8792 count = signed_count;
8793
8794 continue;
8795 }
8796
8797 /* There are some cases we can't do. If CODE is ASHIFTRT,
8798 we can only do this if FIRST_CODE is also ASHIFTRT.
8799
8800 We can't do the case when CODE is ROTATE and FIRST_CODE is
8801 ASHIFTRT.
8802
8803 If the mode of this shift is not the mode of the outer shift,
8804 we can't do this if either shift is a right shift or ROTATE.
8805
8806 Finally, we can't do any of these if the mode is too wide
8807 unless the codes are the same.
8808
8809 Handle the case where the shift codes are the same
8810 first. */
8811
8812 if (code == first_code)
8813 {
8814 if (GET_MODE (varop) != result_mode
8815 && (code == ASHIFTRT || code == LSHIFTRT
8816 || code == ROTATE))
8817 break;
8818
8819 count += first_count;
8820 varop = XEXP (varop, 0);
8821 continue;
8822 }
8823
8824 if (code == ASHIFTRT
8825 || (code == ROTATE && first_code == ASHIFTRT)
8826 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8827 || (GET_MODE (varop) != result_mode
8828 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8829 || first_code == ROTATE
8830 || code == ROTATE)))
8831 break;
8832
8833 /* To compute the mask to apply after the shift, shift the
8834 nonzero bits of the inner shift the same way the
8835 outer shift will. */
8836
8837 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8838
8839 mask_rtx
8840 = simplify_binary_operation (code, result_mode, mask_rtx,
8841 GEN_INT (count));
8842
8843 /* Give up if we can't compute an outer operation to use. */
8844 if (mask_rtx == 0
8845 || GET_CODE (mask_rtx) != CONST_INT
8846 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8847 INTVAL (mask_rtx),
8848 result_mode, &complement_p))
8849 break;
8850
8851 /* If the shifts are in the same direction, we add the
8852 counts. Otherwise, we subtract them. */
8853 signed_count = count;
8854 if ((code == ASHIFTRT || code == LSHIFTRT)
8855 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8856 signed_count += first_count;
8857 else
8858 signed_count -= first_count;
8859
8860 /* If COUNT is positive, the new shift is usually CODE,
8861 except for the two exceptions below, in which case it is
8862 FIRST_CODE. If the count is negative, FIRST_CODE should
8863 always be used */
8864 if (signed_count > 0
8865 && ((first_code == ROTATE && code == ASHIFT)
8866 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8867 code = first_code, count = signed_count;
8868 else if (signed_count < 0)
8869 code = first_code, count = -signed_count;
8870 else
8871 count = signed_count;
8872
8873 varop = XEXP (varop, 0);
8874 continue;
8875 }
8876
8877 /* If we have (A << B << C) for any shift, we can convert this to
8878 (A << C << B). This wins if A is a constant. Only try this if
8879 B is not a constant. */
8880
8881 else if (GET_CODE (varop) == code
8882 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8883 && 0 != (new
8884 = simplify_binary_operation (code, mode,
8885 XEXP (varop, 0),
8886 GEN_INT (count))))
8887 {
8888 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8889 count = 0;
8890 continue;
8891 }
8892 break;
8893
8894 case NOT:
8895 /* Make this fit the case below. */
8896 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8897 GEN_INT (GET_MODE_MASK (mode)));
8898 continue;
8899
8900 case IOR:
8901 case AND:
8902 case XOR:
8903 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8904 with C the size of VAROP - 1 and the shift is logical if
8905 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8906 we have an (le X 0) operation. If we have an arithmetic shift
8907 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8908 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8909
8910 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8911 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8912 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8913 && (code == LSHIFTRT || code == ASHIFTRT)
8914 && count == (unsigned int)
8915 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8916 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8917 {
8918 count = 0;
8919 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8920 const0_rtx);
8921
8922 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8923 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8924
8925 continue;
8926 }
8927
8928 /* If we have (shift (logical)), move the logical to the outside
8929 to allow it to possibly combine with another logical and the
8930 shift to combine with another shift. This also canonicalizes to
8931 what a ZERO_EXTRACT looks like. Also, some machines have
8932 (and (shift)) insns. */
8933
8934 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8935 /* We can't do this if we have (ashiftrt (xor)) and the
8936 constant has its sign bit set in shift_mode. */
8937 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8938 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8939 shift_mode))
8940 && (new = simplify_binary_operation (code, result_mode,
8941 XEXP (varop, 1),
8942 GEN_INT (count))) != 0
8943 && GET_CODE (new) == CONST_INT
8944 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8945 INTVAL (new), result_mode, &complement_p))
8946 {
8947 varop = XEXP (varop, 0);
8948 continue;
8949 }
8950
8951 /* If we can't do that, try to simplify the shift in each arm of the
8952 logical expression, make a new logical expression, and apply
8953 the inverse distributive law. This also can't be done
8954 for some (ashiftrt (xor)). */
8955 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8956 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8957 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8958 shift_mode)))
8959 {
8960 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8961 XEXP (varop, 0), count);
8962 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8963 XEXP (varop, 1), count);
8964
8965 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8966 varop = apply_distributive_law (varop);
8967
8968 count = 0;
8969 continue;
8970 }
8971 break;
8972
8973 case EQ:
8974 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8975 says that the sign bit can be tested, FOO has mode MODE, C is
8976 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8977 that may be nonzero. */
8978 if (code == LSHIFTRT
8979 && XEXP (varop, 1) == const0_rtx
8980 && GET_MODE (XEXP (varop, 0)) == result_mode
8981 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8982 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8983 && ((STORE_FLAG_VALUE
8984 & ((HOST_WIDE_INT) 1
8985 < (GET_MODE_BITSIZE (result_mode) - 1))))
8986 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8987 && merge_outer_ops (&outer_op, &outer_const, XOR,
8988 (HOST_WIDE_INT) 1, result_mode,
8989 &complement_p))
8990 {
8991 varop = XEXP (varop, 0);
8992 count = 0;
8993 continue;
8994 }
8995 break;
8996
8997 case NEG:
8998 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8999 than the number of bits in the mode is equivalent to A. */
9000 if (code == LSHIFTRT
9001 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9002 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9003 {
9004 varop = XEXP (varop, 0);
9005 count = 0;
9006 continue;
9007 }
9008
9009 /* NEG commutes with ASHIFT since it is multiplication. Move the
9010 NEG outside to allow shifts to combine. */
9011 if (code == ASHIFT
9012 && merge_outer_ops (&outer_op, &outer_const, NEG,
9013 (HOST_WIDE_INT) 0, result_mode,
9014 &complement_p))
9015 {
9016 varop = XEXP (varop, 0);
9017 continue;
9018 }
9019 break;
9020
9021 case PLUS:
9022 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9023 is one less than the number of bits in the mode is
9024 equivalent to (xor A 1). */
9025 if (code == LSHIFTRT
9026 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9027 && XEXP (varop, 1) == constm1_rtx
9028 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9029 && merge_outer_ops (&outer_op, &outer_const, XOR,
9030 (HOST_WIDE_INT) 1, result_mode,
9031 &complement_p))
9032 {
9033 count = 0;
9034 varop = XEXP (varop, 0);
9035 continue;
9036 }
9037
9038 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9039 that might be nonzero in BAR are those being shifted out and those
9040 bits are known zero in FOO, we can replace the PLUS with FOO.
9041 Similarly in the other operand order. This code occurs when
9042 we are computing the size of a variable-size array. */
9043
9044 if ((code == ASHIFTRT || code == LSHIFTRT)
9045 && count < HOST_BITS_PER_WIDE_INT
9046 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9047 && (nonzero_bits (XEXP (varop, 1), result_mode)
9048 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9049 {
9050 varop = XEXP (varop, 0);
9051 continue;
9052 }
9053 else if ((code == ASHIFTRT || code == LSHIFTRT)
9054 && count < HOST_BITS_PER_WIDE_INT
9055 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9056 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9057 >> count)
9058 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9059 & nonzero_bits (XEXP (varop, 1),
9060 result_mode)))
9061 {
9062 varop = XEXP (varop, 1);
9063 continue;
9064 }
9065
9066 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9067 if (code == ASHIFT
9068 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9069 && (new = simplify_binary_operation (ASHIFT, result_mode,
9070 XEXP (varop, 1),
9071 GEN_INT (count))) != 0
9072 && GET_CODE (new) == CONST_INT
9073 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9074 INTVAL (new), result_mode, &complement_p))
9075 {
9076 varop = XEXP (varop, 0);
9077 continue;
9078 }
9079
9080 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9081 signbit', and attempt to change the PLUS to an XOR and move it to
9082 the outer operation as is done above in the AND/IOR/XOR case
9083 leg for shift(logical). See details in logical handling above
9084 for reasoning in doing so. */
9085 if (code == LSHIFTRT
9086 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9087 && mode_signbit_p (result_mode, XEXP (varop, 1))
9088 && (new = simplify_binary_operation (code, result_mode,
9089 XEXP (varop, 1),
9090 GEN_INT (count))) != 0
9091 && GET_CODE (new) == CONST_INT
9092 && merge_outer_ops (&outer_op, &outer_const, XOR,
9093 INTVAL (new), result_mode, &complement_p))
9094 {
9095 varop = XEXP (varop, 0);
9096 continue;
9097 }
9098
9099 break;
9100
9101 case MINUS:
9102 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9103 with C the size of VAROP - 1 and the shift is logical if
9104 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9105 we have a (gt X 0) operation. If the shift is arithmetic with
9106 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9107 we have a (neg (gt X 0)) operation. */
9108
9109 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9110 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9111 && count == (unsigned int)
9112 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9113 && (code == LSHIFTRT || code == ASHIFTRT)
9114 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9115 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9116 == count
9117 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9118 {
9119 count = 0;
9120 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9121 const0_rtx);
9122
9123 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9124 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9125
9126 continue;
9127 }
9128 break;
9129
9130 case TRUNCATE:
9131 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9132 if the truncate does not affect the value. */
9133 if (code == LSHIFTRT
9134 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9135 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9136 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9137 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9138 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9139 {
9140 rtx varop_inner = XEXP (varop, 0);
9141
9142 varop_inner
9143 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9144 XEXP (varop_inner, 0),
9145 GEN_INT
9146 (count + INTVAL (XEXP (varop_inner, 1))));
9147 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9148 count = 0;
9149 continue;
9150 }
9151 break;
9152
9153 default:
9154 break;
9155 }
9156
9157 break;
9158 }
9159
9160 /* We need to determine what mode to do the shift in. If the shift is
9161 a right shift or ROTATE, we must always do it in the mode it was
9162 originally done in. Otherwise, we can do it in MODE, the widest mode
9163 encountered. The code we care about is that of the shift that will
9164 actually be done, not the shift that was originally requested. */
9165 shift_mode
9166 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9167 ? result_mode : mode);
9168
9169 /* We have now finished analyzing the shift. The result should be
9170 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9171 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9172 to the result of the shift. OUTER_CONST is the relevant constant,
9173 but we must turn off all bits turned off in the shift.
9174
9175 If we were passed a value for X, see if we can use any pieces of
9176 it. If not, make new rtx. */
9177
9178 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9179 && GET_CODE (XEXP (x, 1)) == CONST_INT
9180 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9181 const_rtx = XEXP (x, 1);
9182 else
9183 const_rtx = GEN_INT (count);
9184
9185 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9186 && GET_MODE (XEXP (x, 0)) == shift_mode
9187 && SUBREG_REG (XEXP (x, 0)) == varop)
9188 varop = XEXP (x, 0);
9189 else if (GET_MODE (varop) != shift_mode)
9190 varop = gen_lowpart (shift_mode, varop);
9191
9192 /* If we can't make the SUBREG, try to return what we were given. */
9193 if (GET_CODE (varop) == CLOBBER)
9194 return x ? x : varop;
9195
9196 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9197 if (new != 0)
9198 x = new;
9199 else
9200 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9201
9202 /* If we have an outer operation and we just made a shift, it is
9203 possible that we could have simplified the shift were it not
9204 for the outer operation. So try to do the simplification
9205 recursively. */
9206
9207 if (outer_op != UNKNOWN && GET_CODE (x) == code
9208 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9209 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9210 INTVAL (XEXP (x, 1)));
9211
9212 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9213 turn off all the bits that the shift would have turned off. */
9214 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9215 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9216 GET_MODE_MASK (result_mode) >> orig_count);
9217
9218 /* Do the remainder of the processing in RESULT_MODE. */
9219 x = gen_lowpart (result_mode, x);
9220
9221 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9222 operation. */
9223 if (complement_p)
9224 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9225
9226 if (outer_op != UNKNOWN)
9227 {
9228 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9229 outer_const = trunc_int_for_mode (outer_const, result_mode);
9230
9231 if (outer_op == AND)
9232 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9233 else if (outer_op == SET)
9234 /* This means that we have determined that the result is
9235 equivalent to a constant. This should be rare. */
9236 x = GEN_INT (outer_const);
9237 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9238 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9239 else
9240 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9241 }
9242
9243 return x;
9244 }
9245 \f
9246 /* Like recog, but we receive the address of a pointer to a new pattern.
9247 We try to match the rtx that the pointer points to.
9248 If that fails, we may try to modify or replace the pattern,
9249 storing the replacement into the same pointer object.
9250
9251 Modifications include deletion or addition of CLOBBERs.
9252
9253 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9254 the CLOBBERs are placed.
9255
9256 The value is the final insn code from the pattern ultimately matched,
9257 or -1. */
9258
9259 static int
9260 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9261 {
9262 rtx pat = *pnewpat;
9263 int insn_code_number;
9264 int num_clobbers_to_add = 0;
9265 int i;
9266 rtx notes = 0;
9267 rtx old_notes, old_pat;
9268
9269 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9270 we use to indicate that something didn't match. If we find such a
9271 thing, force rejection. */
9272 if (GET_CODE (pat) == PARALLEL)
9273 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9274 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9275 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9276 return -1;
9277
9278 old_pat = PATTERN (insn);
9279 old_notes = REG_NOTES (insn);
9280 PATTERN (insn) = pat;
9281 REG_NOTES (insn) = 0;
9282
9283 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9284
9285 /* If it isn't, there is the possibility that we previously had an insn
9286 that clobbered some register as a side effect, but the combined
9287 insn doesn't need to do that. So try once more without the clobbers
9288 unless this represents an ASM insn. */
9289
9290 if (insn_code_number < 0 && ! check_asm_operands (pat)
9291 && GET_CODE (pat) == PARALLEL)
9292 {
9293 int pos;
9294
9295 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9296 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9297 {
9298 if (i != pos)
9299 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9300 pos++;
9301 }
9302
9303 SUBST_INT (XVECLEN (pat, 0), pos);
9304
9305 if (pos == 1)
9306 pat = XVECEXP (pat, 0, 0);
9307
9308 PATTERN (insn) = pat;
9309 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9310 }
9311 PATTERN (insn) = old_pat;
9312 REG_NOTES (insn) = old_notes;
9313
9314 /* Recognize all noop sets, these will be killed by followup pass. */
9315 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9316 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9317
9318 /* If we had any clobbers to add, make a new pattern than contains
9319 them. Then check to make sure that all of them are dead. */
9320 if (num_clobbers_to_add)
9321 {
9322 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9323 rtvec_alloc (GET_CODE (pat) == PARALLEL
9324 ? (XVECLEN (pat, 0)
9325 + num_clobbers_to_add)
9326 : num_clobbers_to_add + 1));
9327
9328 if (GET_CODE (pat) == PARALLEL)
9329 for (i = 0; i < XVECLEN (pat, 0); i++)
9330 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9331 else
9332 XVECEXP (newpat, 0, 0) = pat;
9333
9334 add_clobbers (newpat, insn_code_number);
9335
9336 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9337 i < XVECLEN (newpat, 0); i++)
9338 {
9339 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9340 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9341 return -1;
9342 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9343 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9344 }
9345 pat = newpat;
9346 }
9347
9348 *pnewpat = pat;
9349 *pnotes = notes;
9350
9351 return insn_code_number;
9352 }
9353 \f
9354 /* Like gen_lowpart_general but for use by combine. In combine it
9355 is not possible to create any new pseudoregs. However, it is
9356 safe to create invalid memory addresses, because combine will
9357 try to recognize them and all they will do is make the combine
9358 attempt fail.
9359
9360 If for some reason this cannot do its job, an rtx
9361 (clobber (const_int 0)) is returned.
9362 An insn containing that will not be recognized. */
9363
9364 static rtx
9365 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9366 {
9367 enum machine_mode imode = GET_MODE (x);
9368 unsigned int osize = GET_MODE_SIZE (omode);
9369 unsigned int isize = GET_MODE_SIZE (imode);
9370 rtx result;
9371
9372 if (omode == imode)
9373 return x;
9374
9375 /* Return identity if this is a CONST or symbolic reference. */
9376 if (omode == Pmode
9377 && (GET_CODE (x) == CONST
9378 || GET_CODE (x) == SYMBOL_REF
9379 || GET_CODE (x) == LABEL_REF))
9380 return x;
9381
9382 /* We can only support MODE being wider than a word if X is a
9383 constant integer or has a mode the same size. */
9384 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9385 && ! ((imode == VOIDmode
9386 && (GET_CODE (x) == CONST_INT
9387 || GET_CODE (x) == CONST_DOUBLE))
9388 || isize == osize))
9389 goto fail;
9390
9391 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9392 won't know what to do. So we will strip off the SUBREG here and
9393 process normally. */
9394 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9395 {
9396 x = SUBREG_REG (x);
9397
9398 /* For use in case we fall down into the address adjustments
9399 further below, we need to adjust the known mode and size of
9400 x; imode and isize, since we just adjusted x. */
9401 imode = GET_MODE (x);
9402
9403 if (imode == omode)
9404 return x;
9405
9406 isize = GET_MODE_SIZE (imode);
9407 }
9408
9409 result = gen_lowpart_common (omode, x);
9410
9411 #ifdef CANNOT_CHANGE_MODE_CLASS
9412 if (result != 0 && GET_CODE (result) == SUBREG)
9413 record_subregs_of_mode (result);
9414 #endif
9415
9416 if (result)
9417 return result;
9418
9419 if (MEM_P (x))
9420 {
9421 int offset = 0;
9422
9423 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9424 address. */
9425 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9426 goto fail;
9427
9428 /* If we want to refer to something bigger than the original memref,
9429 generate a paradoxical subreg instead. That will force a reload
9430 of the original memref X. */
9431 if (isize < osize)
9432 return gen_rtx_SUBREG (omode, x, 0);
9433
9434 if (WORDS_BIG_ENDIAN)
9435 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9436
9437 /* Adjust the address so that the address-after-the-data is
9438 unchanged. */
9439 if (BYTES_BIG_ENDIAN)
9440 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9441
9442 return adjust_address_nv (x, omode, offset);
9443 }
9444
9445 /* If X is a comparison operator, rewrite it in a new mode. This
9446 probably won't match, but may allow further simplifications. */
9447 else if (COMPARISON_P (x))
9448 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9449
9450 /* If we couldn't simplify X any other way, just enclose it in a
9451 SUBREG. Normally, this SUBREG won't match, but some patterns may
9452 include an explicit SUBREG or we may simplify it further in combine. */
9453 else
9454 {
9455 int offset = 0;
9456 rtx res;
9457
9458 offset = subreg_lowpart_offset (omode, imode);
9459 if (imode == VOIDmode)
9460 {
9461 imode = int_mode_for_mode (omode);
9462 x = gen_lowpart_common (imode, x);
9463 if (x == NULL)
9464 goto fail;
9465 }
9466 res = simplify_gen_subreg (omode, x, imode, offset);
9467 if (res)
9468 return res;
9469 }
9470
9471 fail:
9472 return gen_rtx_CLOBBER (imode, const0_rtx);
9473 }
9474 \f
9475 /* These routines make binary and unary operations by first seeing if they
9476 fold; if not, a new expression is allocated. */
9477
9478 static rtx
9479 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9480 {
9481 rtx result;
9482 rtx tem;
9483
9484 if (GET_CODE (op0) == CLOBBER)
9485 return op0;
9486 else if (GET_CODE (op1) == CLOBBER)
9487 return op1;
9488
9489 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9490 && swap_commutative_operands_p (op0, op1))
9491 tem = op0, op0 = op1, op1 = tem;
9492
9493 if (GET_RTX_CLASS (code) == RTX_COMPARE
9494 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9495 {
9496 enum machine_mode op_mode = GET_MODE (op0);
9497
9498 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9499 just (REL_OP X Y). */
9500 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9501 {
9502 op1 = XEXP (op0, 1);
9503 op0 = XEXP (op0, 0);
9504 op_mode = GET_MODE (op0);
9505 }
9506
9507 if (op_mode == VOIDmode)
9508 op_mode = GET_MODE (op1);
9509 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9510 }
9511 else
9512 result = simplify_binary_operation (code, mode, op0, op1);
9513
9514 if (result)
9515 return result;
9516
9517 /* Put complex operands first and constants second. */
9518 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9519 && swap_commutative_operands_p (op0, op1))
9520 return gen_rtx_fmt_ee (code, mode, op1, op0);
9521
9522 /* If we are turning off bits already known off in OP0, we need not do
9523 an AND. */
9524 else if (code == AND && GET_CODE (op1) == CONST_INT
9525 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9526 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9527 return op0;
9528
9529 return gen_rtx_fmt_ee (code, mode, op0, op1);
9530 }
9531 \f
9532 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9533 comparison code that will be tested.
9534
9535 The result is a possibly different comparison code to use. *POP0 and
9536 *POP1 may be updated.
9537
9538 It is possible that we might detect that a comparison is either always
9539 true or always false. However, we do not perform general constant
9540 folding in combine, so this knowledge isn't useful. Such tautologies
9541 should have been detected earlier. Hence we ignore all such cases. */
9542
9543 static enum rtx_code
9544 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9545 {
9546 rtx op0 = *pop0;
9547 rtx op1 = *pop1;
9548 rtx tem, tem1;
9549 int i;
9550 enum machine_mode mode, tmode;
9551
9552 /* Try a few ways of applying the same transformation to both operands. */
9553 while (1)
9554 {
9555 #ifndef WORD_REGISTER_OPERATIONS
9556 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9557 so check specially. */
9558 if (code != GTU && code != GEU && code != LTU && code != LEU
9559 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9560 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9561 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9562 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9563 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9564 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9565 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9566 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9567 && XEXP (op0, 1) == XEXP (op1, 1)
9568 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9569 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9570 && (INTVAL (XEXP (op0, 1))
9571 == (GET_MODE_BITSIZE (GET_MODE (op0))
9572 - (GET_MODE_BITSIZE
9573 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9574 {
9575 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9576 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9577 }
9578 #endif
9579
9580 /* If both operands are the same constant shift, see if we can ignore the
9581 shift. We can if the shift is a rotate or if the bits shifted out of
9582 this shift are known to be zero for both inputs and if the type of
9583 comparison is compatible with the shift. */
9584 if (GET_CODE (op0) == GET_CODE (op1)
9585 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9586 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9587 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9588 && (code != GT && code != LT && code != GE && code != LE))
9589 || (GET_CODE (op0) == ASHIFTRT
9590 && (code != GTU && code != LTU
9591 && code != GEU && code != LEU)))
9592 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9593 && INTVAL (XEXP (op0, 1)) >= 0
9594 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9595 && XEXP (op0, 1) == XEXP (op1, 1))
9596 {
9597 enum machine_mode mode = GET_MODE (op0);
9598 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9599 int shift_count = INTVAL (XEXP (op0, 1));
9600
9601 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9602 mask &= (mask >> shift_count) << shift_count;
9603 else if (GET_CODE (op0) == ASHIFT)
9604 mask = (mask & (mask << shift_count)) >> shift_count;
9605
9606 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9607 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9608 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9609 else
9610 break;
9611 }
9612
9613 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9614 SUBREGs are of the same mode, and, in both cases, the AND would
9615 be redundant if the comparison was done in the narrower mode,
9616 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9617 and the operand's possibly nonzero bits are 0xffffff01; in that case
9618 if we only care about QImode, we don't need the AND). This case
9619 occurs if the output mode of an scc insn is not SImode and
9620 STORE_FLAG_VALUE == 1 (e.g., the 386).
9621
9622 Similarly, check for a case where the AND's are ZERO_EXTEND
9623 operations from some narrower mode even though a SUBREG is not
9624 present. */
9625
9626 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9627 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9628 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9629 {
9630 rtx inner_op0 = XEXP (op0, 0);
9631 rtx inner_op1 = XEXP (op1, 0);
9632 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9633 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9634 int changed = 0;
9635
9636 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9637 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9638 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9639 && (GET_MODE (SUBREG_REG (inner_op0))
9640 == GET_MODE (SUBREG_REG (inner_op1)))
9641 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9642 <= HOST_BITS_PER_WIDE_INT)
9643 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9644 GET_MODE (SUBREG_REG (inner_op0)))))
9645 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9646 GET_MODE (SUBREG_REG (inner_op1))))))
9647 {
9648 op0 = SUBREG_REG (inner_op0);
9649 op1 = SUBREG_REG (inner_op1);
9650
9651 /* The resulting comparison is always unsigned since we masked
9652 off the original sign bit. */
9653 code = unsigned_condition (code);
9654
9655 changed = 1;
9656 }
9657
9658 else if (c0 == c1)
9659 for (tmode = GET_CLASS_NARROWEST_MODE
9660 (GET_MODE_CLASS (GET_MODE (op0)));
9661 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9662 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9663 {
9664 op0 = gen_lowpart (tmode, inner_op0);
9665 op1 = gen_lowpart (tmode, inner_op1);
9666 code = unsigned_condition (code);
9667 changed = 1;
9668 break;
9669 }
9670
9671 if (! changed)
9672 break;
9673 }
9674
9675 /* If both operands are NOT, we can strip off the outer operation
9676 and adjust the comparison code for swapped operands; similarly for
9677 NEG, except that this must be an equality comparison. */
9678 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9679 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9680 && (code == EQ || code == NE)))
9681 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9682
9683 else
9684 break;
9685 }
9686
9687 /* If the first operand is a constant, swap the operands and adjust the
9688 comparison code appropriately, but don't do this if the second operand
9689 is already a constant integer. */
9690 if (swap_commutative_operands_p (op0, op1))
9691 {
9692 tem = op0, op0 = op1, op1 = tem;
9693 code = swap_condition (code);
9694 }
9695
9696 /* We now enter a loop during which we will try to simplify the comparison.
9697 For the most part, we only are concerned with comparisons with zero,
9698 but some things may really be comparisons with zero but not start
9699 out looking that way. */
9700
9701 while (GET_CODE (op1) == CONST_INT)
9702 {
9703 enum machine_mode mode = GET_MODE (op0);
9704 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9705 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9706 int equality_comparison_p;
9707 int sign_bit_comparison_p;
9708 int unsigned_comparison_p;
9709 HOST_WIDE_INT const_op;
9710
9711 /* We only want to handle integral modes. This catches VOIDmode,
9712 CCmode, and the floating-point modes. An exception is that we
9713 can handle VOIDmode if OP0 is a COMPARE or a comparison
9714 operation. */
9715
9716 if (GET_MODE_CLASS (mode) != MODE_INT
9717 && ! (mode == VOIDmode
9718 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9719 break;
9720
9721 /* Get the constant we are comparing against and turn off all bits
9722 not on in our mode. */
9723 const_op = INTVAL (op1);
9724 if (mode != VOIDmode)
9725 const_op = trunc_int_for_mode (const_op, mode);
9726 op1 = GEN_INT (const_op);
9727
9728 /* If we are comparing against a constant power of two and the value
9729 being compared can only have that single bit nonzero (e.g., it was
9730 `and'ed with that bit), we can replace this with a comparison
9731 with zero. */
9732 if (const_op
9733 && (code == EQ || code == NE || code == GE || code == GEU
9734 || code == LT || code == LTU)
9735 && mode_width <= HOST_BITS_PER_WIDE_INT
9736 && exact_log2 (const_op) >= 0
9737 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9738 {
9739 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9740 op1 = const0_rtx, const_op = 0;
9741 }
9742
9743 /* Similarly, if we are comparing a value known to be either -1 or
9744 0 with -1, change it to the opposite comparison against zero. */
9745
9746 if (const_op == -1
9747 && (code == EQ || code == NE || code == GT || code == LE
9748 || code == GEU || code == LTU)
9749 && num_sign_bit_copies (op0, mode) == mode_width)
9750 {
9751 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9752 op1 = const0_rtx, const_op = 0;
9753 }
9754
9755 /* Do some canonicalizations based on the comparison code. We prefer
9756 comparisons against zero and then prefer equality comparisons.
9757 If we can reduce the size of a constant, we will do that too. */
9758
9759 switch (code)
9760 {
9761 case LT:
9762 /* < C is equivalent to <= (C - 1) */
9763 if (const_op > 0)
9764 {
9765 const_op -= 1;
9766 op1 = GEN_INT (const_op);
9767 code = LE;
9768 /* ... fall through to LE case below. */
9769 }
9770 else
9771 break;
9772
9773 case LE:
9774 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9775 if (const_op < 0)
9776 {
9777 const_op += 1;
9778 op1 = GEN_INT (const_op);
9779 code = LT;
9780 }
9781
9782 /* If we are doing a <= 0 comparison on a value known to have
9783 a zero sign bit, we can replace this with == 0. */
9784 else if (const_op == 0
9785 && mode_width <= HOST_BITS_PER_WIDE_INT
9786 && (nonzero_bits (op0, mode)
9787 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9788 code = EQ;
9789 break;
9790
9791 case GE:
9792 /* >= C is equivalent to > (C - 1). */
9793 if (const_op > 0)
9794 {
9795 const_op -= 1;
9796 op1 = GEN_INT (const_op);
9797 code = GT;
9798 /* ... fall through to GT below. */
9799 }
9800 else
9801 break;
9802
9803 case GT:
9804 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9805 if (const_op < 0)
9806 {
9807 const_op += 1;
9808 op1 = GEN_INT (const_op);
9809 code = GE;
9810 }
9811
9812 /* If we are doing a > 0 comparison on a value known to have
9813 a zero sign bit, we can replace this with != 0. */
9814 else if (const_op == 0
9815 && mode_width <= HOST_BITS_PER_WIDE_INT
9816 && (nonzero_bits (op0, mode)
9817 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9818 code = NE;
9819 break;
9820
9821 case LTU:
9822 /* < C is equivalent to <= (C - 1). */
9823 if (const_op > 0)
9824 {
9825 const_op -= 1;
9826 op1 = GEN_INT (const_op);
9827 code = LEU;
9828 /* ... fall through ... */
9829 }
9830
9831 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9832 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9833 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9834 {
9835 const_op = 0, op1 = const0_rtx;
9836 code = GE;
9837 break;
9838 }
9839 else
9840 break;
9841
9842 case LEU:
9843 /* unsigned <= 0 is equivalent to == 0 */
9844 if (const_op == 0)
9845 code = EQ;
9846
9847 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9848 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9849 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9850 {
9851 const_op = 0, op1 = const0_rtx;
9852 code = GE;
9853 }
9854 break;
9855
9856 case GEU:
9857 /* >= C is equivalent to > (C - 1). */
9858 if (const_op > 1)
9859 {
9860 const_op -= 1;
9861 op1 = GEN_INT (const_op);
9862 code = GTU;
9863 /* ... fall through ... */
9864 }
9865
9866 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9867 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9868 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9869 {
9870 const_op = 0, op1 = const0_rtx;
9871 code = LT;
9872 break;
9873 }
9874 else
9875 break;
9876
9877 case GTU:
9878 /* unsigned > 0 is equivalent to != 0 */
9879 if (const_op == 0)
9880 code = NE;
9881
9882 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9883 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9884 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9885 {
9886 const_op = 0, op1 = const0_rtx;
9887 code = LT;
9888 }
9889 break;
9890
9891 default:
9892 break;
9893 }
9894
9895 /* Compute some predicates to simplify code below. */
9896
9897 equality_comparison_p = (code == EQ || code == NE);
9898 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9899 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9900 || code == GEU);
9901
9902 /* If this is a sign bit comparison and we can do arithmetic in
9903 MODE, say that we will only be needing the sign bit of OP0. */
9904 if (sign_bit_comparison_p
9905 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9906 op0 = force_to_mode (op0, mode,
9907 ((HOST_WIDE_INT) 1
9908 << (GET_MODE_BITSIZE (mode) - 1)),
9909 NULL_RTX, 0);
9910
9911 /* Now try cases based on the opcode of OP0. If none of the cases
9912 does a "continue", we exit this loop immediately after the
9913 switch. */
9914
9915 switch (GET_CODE (op0))
9916 {
9917 case ZERO_EXTRACT:
9918 /* If we are extracting a single bit from a variable position in
9919 a constant that has only a single bit set and are comparing it
9920 with zero, we can convert this into an equality comparison
9921 between the position and the location of the single bit. */
9922 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9923 have already reduced the shift count modulo the word size. */
9924 if (!SHIFT_COUNT_TRUNCATED
9925 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9926 && XEXP (op0, 1) == const1_rtx
9927 && equality_comparison_p && const_op == 0
9928 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9929 {
9930 if (BITS_BIG_ENDIAN)
9931 {
9932 enum machine_mode new_mode
9933 = mode_for_extraction (EP_extzv, 1);
9934 if (new_mode == MAX_MACHINE_MODE)
9935 i = BITS_PER_WORD - 1 - i;
9936 else
9937 {
9938 mode = new_mode;
9939 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9940 }
9941 }
9942
9943 op0 = XEXP (op0, 2);
9944 op1 = GEN_INT (i);
9945 const_op = i;
9946
9947 /* Result is nonzero iff shift count is equal to I. */
9948 code = reverse_condition (code);
9949 continue;
9950 }
9951
9952 /* ... fall through ... */
9953
9954 case SIGN_EXTRACT:
9955 tem = expand_compound_operation (op0);
9956 if (tem != op0)
9957 {
9958 op0 = tem;
9959 continue;
9960 }
9961 break;
9962
9963 case NOT:
9964 /* If testing for equality, we can take the NOT of the constant. */
9965 if (equality_comparison_p
9966 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9967 {
9968 op0 = XEXP (op0, 0);
9969 op1 = tem;
9970 continue;
9971 }
9972
9973 /* If just looking at the sign bit, reverse the sense of the
9974 comparison. */
9975 if (sign_bit_comparison_p)
9976 {
9977 op0 = XEXP (op0, 0);
9978 code = (code == GE ? LT : GE);
9979 continue;
9980 }
9981 break;
9982
9983 case NEG:
9984 /* If testing for equality, we can take the NEG of the constant. */
9985 if (equality_comparison_p
9986 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9987 {
9988 op0 = XEXP (op0, 0);
9989 op1 = tem;
9990 continue;
9991 }
9992
9993 /* The remaining cases only apply to comparisons with zero. */
9994 if (const_op != 0)
9995 break;
9996
9997 /* When X is ABS or is known positive,
9998 (neg X) is < 0 if and only if X != 0. */
9999
10000 if (sign_bit_comparison_p
10001 && (GET_CODE (XEXP (op0, 0)) == ABS
10002 || (mode_width <= HOST_BITS_PER_WIDE_INT
10003 && (nonzero_bits (XEXP (op0, 0), mode)
10004 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10005 {
10006 op0 = XEXP (op0, 0);
10007 code = (code == LT ? NE : EQ);
10008 continue;
10009 }
10010
10011 /* If we have NEG of something whose two high-order bits are the
10012 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10013 if (num_sign_bit_copies (op0, mode) >= 2)
10014 {
10015 op0 = XEXP (op0, 0);
10016 code = swap_condition (code);
10017 continue;
10018 }
10019 break;
10020
10021 case ROTATE:
10022 /* If we are testing equality and our count is a constant, we
10023 can perform the inverse operation on our RHS. */
10024 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10025 && (tem = simplify_binary_operation (ROTATERT, mode,
10026 op1, XEXP (op0, 1))) != 0)
10027 {
10028 op0 = XEXP (op0, 0);
10029 op1 = tem;
10030 continue;
10031 }
10032
10033 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10034 a particular bit. Convert it to an AND of a constant of that
10035 bit. This will be converted into a ZERO_EXTRACT. */
10036 if (const_op == 0 && sign_bit_comparison_p
10037 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10038 && mode_width <= HOST_BITS_PER_WIDE_INT)
10039 {
10040 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10041 ((HOST_WIDE_INT) 1
10042 << (mode_width - 1
10043 - INTVAL (XEXP (op0, 1)))));
10044 code = (code == LT ? NE : EQ);
10045 continue;
10046 }
10047
10048 /* Fall through. */
10049
10050 case ABS:
10051 /* ABS is ignorable inside an equality comparison with zero. */
10052 if (const_op == 0 && equality_comparison_p)
10053 {
10054 op0 = XEXP (op0, 0);
10055 continue;
10056 }
10057 break;
10058
10059 case SIGN_EXTEND:
10060 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10061 (compare FOO CONST) if CONST fits in FOO's mode and we
10062 are either testing inequality or have an unsigned
10063 comparison with ZERO_EXTEND or a signed comparison with
10064 SIGN_EXTEND. But don't do it if we don't have a compare
10065 insn of the given mode, since we'd have to revert it
10066 later on, and then we wouldn't know whether to sign- or
10067 zero-extend. */
10068 mode = GET_MODE (XEXP (op0, 0));
10069 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10070 && ! unsigned_comparison_p
10071 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10072 && ((unsigned HOST_WIDE_INT) const_op
10073 < (((unsigned HOST_WIDE_INT) 1
10074 << (GET_MODE_BITSIZE (mode) - 1))))
10075 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10076 {
10077 op0 = XEXP (op0, 0);
10078 continue;
10079 }
10080 break;
10081
10082 case SUBREG:
10083 /* Check for the case where we are comparing A - C1 with C2, that is
10084
10085 (subreg:MODE (plus (A) (-C1))) op (C2)
10086
10087 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10088 comparison in the wider mode. One of the following two conditions
10089 must be true in order for this to be valid:
10090
10091 1. The mode extension results in the same bit pattern being added
10092 on both sides and the comparison is equality or unsigned. As
10093 C2 has been truncated to fit in MODE, the pattern can only be
10094 all 0s or all 1s.
10095
10096 2. The mode extension results in the sign bit being copied on
10097 each side.
10098
10099 The difficulty here is that we have predicates for A but not for
10100 (A - C1) so we need to check that C1 is within proper bounds so
10101 as to perturbate A as little as possible. */
10102
10103 if (mode_width <= HOST_BITS_PER_WIDE_INT
10104 && subreg_lowpart_p (op0)
10105 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10106 && GET_CODE (SUBREG_REG (op0)) == PLUS
10107 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10108 {
10109 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10110 rtx a = XEXP (SUBREG_REG (op0), 0);
10111 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10112
10113 if ((c1 > 0
10114 && (unsigned HOST_WIDE_INT) c1
10115 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10116 && (equality_comparison_p || unsigned_comparison_p)
10117 /* (A - C1) zero-extends if it is positive and sign-extends
10118 if it is negative, C2 both zero- and sign-extends. */
10119 && ((0 == (nonzero_bits (a, inner_mode)
10120 & ~GET_MODE_MASK (mode))
10121 && const_op >= 0)
10122 /* (A - C1) sign-extends if it is positive and 1-extends
10123 if it is negative, C2 both sign- and 1-extends. */
10124 || (num_sign_bit_copies (a, inner_mode)
10125 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10126 - mode_width)
10127 && const_op < 0)))
10128 || ((unsigned HOST_WIDE_INT) c1
10129 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10130 /* (A - C1) always sign-extends, like C2. */
10131 && num_sign_bit_copies (a, inner_mode)
10132 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10133 - mode_width - 1)))
10134 {
10135 op0 = SUBREG_REG (op0);
10136 continue;
10137 }
10138 }
10139
10140 /* If the inner mode is narrower and we are extracting the low part,
10141 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10142 if (subreg_lowpart_p (op0)
10143 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10144 /* Fall through */ ;
10145 else
10146 break;
10147
10148 /* ... fall through ... */
10149
10150 case ZERO_EXTEND:
10151 mode = GET_MODE (XEXP (op0, 0));
10152 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10153 && (unsigned_comparison_p || equality_comparison_p)
10154 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10155 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10156 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10157 {
10158 op0 = XEXP (op0, 0);
10159 continue;
10160 }
10161 break;
10162
10163 case PLUS:
10164 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10165 this for equality comparisons due to pathological cases involving
10166 overflows. */
10167 if (equality_comparison_p
10168 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10169 op1, XEXP (op0, 1))))
10170 {
10171 op0 = XEXP (op0, 0);
10172 op1 = tem;
10173 continue;
10174 }
10175
10176 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10177 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10178 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10179 {
10180 op0 = XEXP (XEXP (op0, 0), 0);
10181 code = (code == LT ? EQ : NE);
10182 continue;
10183 }
10184 break;
10185
10186 case MINUS:
10187 /* We used to optimize signed comparisons against zero, but that
10188 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10189 arrive here as equality comparisons, or (GEU, LTU) are
10190 optimized away. No need to special-case them. */
10191
10192 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10193 (eq B (minus A C)), whichever simplifies. We can only do
10194 this for equality comparisons due to pathological cases involving
10195 overflows. */
10196 if (equality_comparison_p
10197 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10198 XEXP (op0, 1), op1)))
10199 {
10200 op0 = XEXP (op0, 0);
10201 op1 = tem;
10202 continue;
10203 }
10204
10205 if (equality_comparison_p
10206 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10207 XEXP (op0, 0), op1)))
10208 {
10209 op0 = XEXP (op0, 1);
10210 op1 = tem;
10211 continue;
10212 }
10213
10214 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10215 of bits in X minus 1, is one iff X > 0. */
10216 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10217 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10218 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10219 == mode_width - 1
10220 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10221 {
10222 op0 = XEXP (op0, 1);
10223 code = (code == GE ? LE : GT);
10224 continue;
10225 }
10226 break;
10227
10228 case XOR:
10229 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10230 if C is zero or B is a constant. */
10231 if (equality_comparison_p
10232 && 0 != (tem = simplify_binary_operation (XOR, mode,
10233 XEXP (op0, 1), op1)))
10234 {
10235 op0 = XEXP (op0, 0);
10236 op1 = tem;
10237 continue;
10238 }
10239 break;
10240
10241 case EQ: case NE:
10242 case UNEQ: case LTGT:
10243 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10244 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10245 case UNORDERED: case ORDERED:
10246 /* We can't do anything if OP0 is a condition code value, rather
10247 than an actual data value. */
10248 if (const_op != 0
10249 || CC0_P (XEXP (op0, 0))
10250 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10251 break;
10252
10253 /* Get the two operands being compared. */
10254 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10255 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10256 else
10257 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10258
10259 /* Check for the cases where we simply want the result of the
10260 earlier test or the opposite of that result. */
10261 if (code == NE || code == EQ
10262 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10263 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10264 && (STORE_FLAG_VALUE
10265 & (((HOST_WIDE_INT) 1
10266 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10267 && (code == LT || code == GE)))
10268 {
10269 enum rtx_code new_code;
10270 if (code == LT || code == NE)
10271 new_code = GET_CODE (op0);
10272 else
10273 new_code = combine_reversed_comparison_code (op0);
10274
10275 if (new_code != UNKNOWN)
10276 {
10277 code = new_code;
10278 op0 = tem;
10279 op1 = tem1;
10280 continue;
10281 }
10282 }
10283 break;
10284
10285 case IOR:
10286 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10287 iff X <= 0. */
10288 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10289 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10290 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10291 {
10292 op0 = XEXP (op0, 1);
10293 code = (code == GE ? GT : LE);
10294 continue;
10295 }
10296 break;
10297
10298 case AND:
10299 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10300 will be converted to a ZERO_EXTRACT later. */
10301 if (const_op == 0 && equality_comparison_p
10302 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10303 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10304 {
10305 op0 = simplify_and_const_int
10306 (op0, mode, gen_rtx_LSHIFTRT (mode,
10307 XEXP (op0, 1),
10308 XEXP (XEXP (op0, 0), 1)),
10309 (HOST_WIDE_INT) 1);
10310 continue;
10311 }
10312
10313 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10314 zero and X is a comparison and C1 and C2 describe only bits set
10315 in STORE_FLAG_VALUE, we can compare with X. */
10316 if (const_op == 0 && equality_comparison_p
10317 && mode_width <= HOST_BITS_PER_WIDE_INT
10318 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10319 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10320 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10321 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10322 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10323 {
10324 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10325 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10326 if ((~STORE_FLAG_VALUE & mask) == 0
10327 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10328 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10329 && COMPARISON_P (tem))))
10330 {
10331 op0 = XEXP (XEXP (op0, 0), 0);
10332 continue;
10333 }
10334 }
10335
10336 /* If we are doing an equality comparison of an AND of a bit equal
10337 to the sign bit, replace this with a LT or GE comparison of
10338 the underlying value. */
10339 if (equality_comparison_p
10340 && const_op == 0
10341 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10342 && mode_width <= HOST_BITS_PER_WIDE_INT
10343 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10344 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10345 {
10346 op0 = XEXP (op0, 0);
10347 code = (code == EQ ? GE : LT);
10348 continue;
10349 }
10350
10351 /* If this AND operation is really a ZERO_EXTEND from a narrower
10352 mode, the constant fits within that mode, and this is either an
10353 equality or unsigned comparison, try to do this comparison in
10354 the narrower mode. */
10355 if ((equality_comparison_p || unsigned_comparison_p)
10356 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10357 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10358 & GET_MODE_MASK (mode))
10359 + 1)) >= 0
10360 && const_op >> i == 0
10361 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10362 {
10363 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10364 continue;
10365 }
10366
10367 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10368 fits in both M1 and M2 and the SUBREG is either paradoxical
10369 or represents the low part, permute the SUBREG and the AND
10370 and try again. */
10371 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10372 {
10373 unsigned HOST_WIDE_INT c1;
10374 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10375 /* Require an integral mode, to avoid creating something like
10376 (AND:SF ...). */
10377 if (SCALAR_INT_MODE_P (tmode)
10378 /* It is unsafe to commute the AND into the SUBREG if the
10379 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10380 not defined. As originally written the upper bits
10381 have a defined value due to the AND operation.
10382 However, if we commute the AND inside the SUBREG then
10383 they no longer have defined values and the meaning of
10384 the code has been changed. */
10385 && (0
10386 #ifdef WORD_REGISTER_OPERATIONS
10387 || (mode_width > GET_MODE_BITSIZE (tmode)
10388 && mode_width <= BITS_PER_WORD)
10389 #endif
10390 || (mode_width <= GET_MODE_BITSIZE (tmode)
10391 && subreg_lowpart_p (XEXP (op0, 0))))
10392 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10393 && mode_width <= HOST_BITS_PER_WIDE_INT
10394 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10395 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10396 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10397 && c1 != mask
10398 && c1 != GET_MODE_MASK (tmode))
10399 {
10400 op0 = gen_binary (AND, tmode,
10401 SUBREG_REG (XEXP (op0, 0)),
10402 gen_int_mode (c1, tmode));
10403 op0 = gen_lowpart (mode, op0);
10404 continue;
10405 }
10406 }
10407
10408 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10409 if (const_op == 0 && equality_comparison_p
10410 && XEXP (op0, 1) == const1_rtx
10411 && GET_CODE (XEXP (op0, 0)) == NOT)
10412 {
10413 op0 = simplify_and_const_int
10414 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10415 code = (code == NE ? EQ : NE);
10416 continue;
10417 }
10418
10419 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10420 (eq (and (lshiftrt X) 1) 0).
10421 Also handle the case where (not X) is expressed using xor. */
10422 if (const_op == 0 && equality_comparison_p
10423 && XEXP (op0, 1) == const1_rtx
10424 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10425 {
10426 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10427 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10428
10429 if (GET_CODE (shift_op) == NOT
10430 || (GET_CODE (shift_op) == XOR
10431 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10432 && GET_CODE (shift_count) == CONST_INT
10433 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10434 && (INTVAL (XEXP (shift_op, 1))
10435 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10436 {
10437 op0 = simplify_and_const_int
10438 (NULL_RTX, mode,
10439 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10440 (HOST_WIDE_INT) 1);
10441 code = (code == NE ? EQ : NE);
10442 continue;
10443 }
10444 }
10445 break;
10446
10447 case ASHIFT:
10448 /* If we have (compare (ashift FOO N) (const_int C)) and
10449 the high order N bits of FOO (N+1 if an inequality comparison)
10450 are known to be zero, we can do this by comparing FOO with C
10451 shifted right N bits so long as the low-order N bits of C are
10452 zero. */
10453 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10454 && INTVAL (XEXP (op0, 1)) >= 0
10455 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10456 < HOST_BITS_PER_WIDE_INT)
10457 && ((const_op
10458 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10459 && mode_width <= HOST_BITS_PER_WIDE_INT
10460 && (nonzero_bits (XEXP (op0, 0), mode)
10461 & ~(mask >> (INTVAL (XEXP (op0, 1))
10462 + ! equality_comparison_p))) == 0)
10463 {
10464 /* We must perform a logical shift, not an arithmetic one,
10465 as we want the top N bits of C to be zero. */
10466 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10467
10468 temp >>= INTVAL (XEXP (op0, 1));
10469 op1 = gen_int_mode (temp, mode);
10470 op0 = XEXP (op0, 0);
10471 continue;
10472 }
10473
10474 /* If we are doing a sign bit comparison, it means we are testing
10475 a particular bit. Convert it to the appropriate AND. */
10476 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10477 && mode_width <= HOST_BITS_PER_WIDE_INT)
10478 {
10479 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10480 ((HOST_WIDE_INT) 1
10481 << (mode_width - 1
10482 - INTVAL (XEXP (op0, 1)))));
10483 code = (code == LT ? NE : EQ);
10484 continue;
10485 }
10486
10487 /* If this an equality comparison with zero and we are shifting
10488 the low bit to the sign bit, we can convert this to an AND of the
10489 low-order bit. */
10490 if (const_op == 0 && equality_comparison_p
10491 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10492 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10493 == mode_width - 1)
10494 {
10495 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10496 (HOST_WIDE_INT) 1);
10497 continue;
10498 }
10499 break;
10500
10501 case ASHIFTRT:
10502 /* If this is an equality comparison with zero, we can do this
10503 as a logical shift, which might be much simpler. */
10504 if (equality_comparison_p && const_op == 0
10505 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10506 {
10507 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10508 XEXP (op0, 0),
10509 INTVAL (XEXP (op0, 1)));
10510 continue;
10511 }
10512
10513 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10514 do the comparison in a narrower mode. */
10515 if (! unsigned_comparison_p
10516 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10517 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10518 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10519 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10520 MODE_INT, 1)) != BLKmode
10521 && (((unsigned HOST_WIDE_INT) const_op
10522 + (GET_MODE_MASK (tmode) >> 1) + 1)
10523 <= GET_MODE_MASK (tmode)))
10524 {
10525 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10526 continue;
10527 }
10528
10529 /* Likewise if OP0 is a PLUS of a sign extension with a
10530 constant, which is usually represented with the PLUS
10531 between the shifts. */
10532 if (! unsigned_comparison_p
10533 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10534 && GET_CODE (XEXP (op0, 0)) == PLUS
10535 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10536 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10537 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10538 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10539 MODE_INT, 1)) != BLKmode
10540 && (((unsigned HOST_WIDE_INT) const_op
10541 + (GET_MODE_MASK (tmode) >> 1) + 1)
10542 <= GET_MODE_MASK (tmode)))
10543 {
10544 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10545 rtx add_const = XEXP (XEXP (op0, 0), 1);
10546 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10547 XEXP (op0, 1));
10548
10549 op0 = gen_binary (PLUS, tmode,
10550 gen_lowpart (tmode, inner),
10551 new_const);
10552 continue;
10553 }
10554
10555 /* ... fall through ... */
10556 case LSHIFTRT:
10557 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10558 the low order N bits of FOO are known to be zero, we can do this
10559 by comparing FOO with C shifted left N bits so long as no
10560 overflow occurs. */
10561 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10562 && INTVAL (XEXP (op0, 1)) >= 0
10563 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10564 && mode_width <= HOST_BITS_PER_WIDE_INT
10565 && (nonzero_bits (XEXP (op0, 0), mode)
10566 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10567 && (((unsigned HOST_WIDE_INT) const_op
10568 + (GET_CODE (op0) != LSHIFTRT
10569 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10570 + 1)
10571 : 0))
10572 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10573 {
10574 /* If the shift was logical, then we must make the condition
10575 unsigned. */
10576 if (GET_CODE (op0) == LSHIFTRT)
10577 code = unsigned_condition (code);
10578
10579 const_op <<= INTVAL (XEXP (op0, 1));
10580 op1 = GEN_INT (const_op);
10581 op0 = XEXP (op0, 0);
10582 continue;
10583 }
10584
10585 /* If we are using this shift to extract just the sign bit, we
10586 can replace this with an LT or GE comparison. */
10587 if (const_op == 0
10588 && (equality_comparison_p || sign_bit_comparison_p)
10589 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10590 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10591 == mode_width - 1)
10592 {
10593 op0 = XEXP (op0, 0);
10594 code = (code == NE || code == GT ? LT : GE);
10595 continue;
10596 }
10597 break;
10598
10599 default:
10600 break;
10601 }
10602
10603 break;
10604 }
10605
10606 /* Now make any compound operations involved in this comparison. Then,
10607 check for an outmost SUBREG on OP0 that is not doing anything or is
10608 paradoxical. The latter transformation must only be performed when
10609 it is known that the "extra" bits will be the same in op0 and op1 or
10610 that they don't matter. There are three cases to consider:
10611
10612 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10613 care bits and we can assume they have any convenient value. So
10614 making the transformation is safe.
10615
10616 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10617 In this case the upper bits of op0 are undefined. We should not make
10618 the simplification in that case as we do not know the contents of
10619 those bits.
10620
10621 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10622 UNKNOWN. In that case we know those bits are zeros or ones. We must
10623 also be sure that they are the same as the upper bits of op1.
10624
10625 We can never remove a SUBREG for a non-equality comparison because
10626 the sign bit is in a different place in the underlying object. */
10627
10628 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10629 op1 = make_compound_operation (op1, SET);
10630
10631 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10632 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10633 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10634 && (code == NE || code == EQ))
10635 {
10636 if (GET_MODE_SIZE (GET_MODE (op0))
10637 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10638 {
10639 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10640 implemented. */
10641 if (REG_P (SUBREG_REG (op0)))
10642 {
10643 op0 = SUBREG_REG (op0);
10644 op1 = gen_lowpart (GET_MODE (op0), op1);
10645 }
10646 }
10647 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10648 <= HOST_BITS_PER_WIDE_INT)
10649 && (nonzero_bits (SUBREG_REG (op0),
10650 GET_MODE (SUBREG_REG (op0)))
10651 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10652 {
10653 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10654
10655 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10656 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10657 op0 = SUBREG_REG (op0), op1 = tem;
10658 }
10659 }
10660
10661 /* We now do the opposite procedure: Some machines don't have compare
10662 insns in all modes. If OP0's mode is an integer mode smaller than a
10663 word and we can't do a compare in that mode, see if there is a larger
10664 mode for which we can do the compare. There are a number of cases in
10665 which we can use the wider mode. */
10666
10667 mode = GET_MODE (op0);
10668 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10669 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10670 && ! have_insn_for (COMPARE, mode))
10671 for (tmode = GET_MODE_WIDER_MODE (mode);
10672 (tmode != VOIDmode
10673 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10674 tmode = GET_MODE_WIDER_MODE (tmode))
10675 if (have_insn_for (COMPARE, tmode))
10676 {
10677 int zero_extended;
10678
10679 /* If the only nonzero bits in OP0 and OP1 are those in the
10680 narrower mode and this is an equality or unsigned comparison,
10681 we can use the wider mode. Similarly for sign-extended
10682 values, in which case it is true for all comparisons. */
10683 zero_extended = ((code == EQ || code == NE
10684 || code == GEU || code == GTU
10685 || code == LEU || code == LTU)
10686 && (nonzero_bits (op0, tmode)
10687 & ~GET_MODE_MASK (mode)) == 0
10688 && ((GET_CODE (op1) == CONST_INT
10689 || (nonzero_bits (op1, tmode)
10690 & ~GET_MODE_MASK (mode)) == 0)));
10691
10692 if (zero_extended
10693 || ((num_sign_bit_copies (op0, tmode)
10694 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10695 - GET_MODE_BITSIZE (mode)))
10696 && (num_sign_bit_copies (op1, tmode)
10697 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10698 - GET_MODE_BITSIZE (mode)))))
10699 {
10700 /* If OP0 is an AND and we don't have an AND in MODE either,
10701 make a new AND in the proper mode. */
10702 if (GET_CODE (op0) == AND
10703 && !have_insn_for (AND, mode))
10704 op0 = gen_binary (AND, tmode,
10705 gen_lowpart (tmode,
10706 XEXP (op0, 0)),
10707 gen_lowpart (tmode,
10708 XEXP (op0, 1)));
10709
10710 op0 = gen_lowpart (tmode, op0);
10711 if (zero_extended && GET_CODE (op1) == CONST_INT)
10712 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10713 op1 = gen_lowpart (tmode, op1);
10714 break;
10715 }
10716
10717 /* If this is a test for negative, we can make an explicit
10718 test of the sign bit. */
10719
10720 if (op1 == const0_rtx && (code == LT || code == GE)
10721 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10722 {
10723 op0 = gen_binary (AND, tmode,
10724 gen_lowpart (tmode, op0),
10725 GEN_INT ((HOST_WIDE_INT) 1
10726 << (GET_MODE_BITSIZE (mode) - 1)));
10727 code = (code == LT) ? NE : EQ;
10728 break;
10729 }
10730 }
10731
10732 #ifdef CANONICALIZE_COMPARISON
10733 /* If this machine only supports a subset of valid comparisons, see if we
10734 can convert an unsupported one into a supported one. */
10735 CANONICALIZE_COMPARISON (code, op0, op1);
10736 #endif
10737
10738 *pop0 = op0;
10739 *pop1 = op1;
10740
10741 return code;
10742 }
10743 \f
10744 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10745 searching backward. */
10746 static enum rtx_code
10747 combine_reversed_comparison_code (rtx exp)
10748 {
10749 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10750 rtx x;
10751
10752 if (code1 != UNKNOWN
10753 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10754 return code1;
10755 /* Otherwise try and find where the condition codes were last set and
10756 use that. */
10757 x = get_last_value (XEXP (exp, 0));
10758 if (!x || GET_CODE (x) != COMPARE)
10759 return UNKNOWN;
10760 return reversed_comparison_code_parts (GET_CODE (exp),
10761 XEXP (x, 0), XEXP (x, 1), NULL);
10762 }
10763
10764 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10765 Return NULL_RTX in case we fail to do the reversal. */
10766 static rtx
10767 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10768 {
10769 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10770 if (reversed_code == UNKNOWN)
10771 return NULL_RTX;
10772 else
10773 return gen_binary (reversed_code, mode, op0, op1);
10774 }
10775 \f
10776 /* Utility function for record_value_for_reg. Count number of
10777 rtxs in X. */
10778 static int
10779 count_rtxs (rtx x)
10780 {
10781 enum rtx_code code = GET_CODE (x);
10782 const char *fmt;
10783 int i, ret = 1;
10784
10785 if (GET_RTX_CLASS (code) == '2'
10786 || GET_RTX_CLASS (code) == 'c')
10787 {
10788 rtx x0 = XEXP (x, 0);
10789 rtx x1 = XEXP (x, 1);
10790
10791 if (x0 == x1)
10792 return 1 + 2 * count_rtxs (x0);
10793
10794 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10795 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10796 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10797 return 2 + 2 * count_rtxs (x0)
10798 + count_rtxs (x == XEXP (x1, 0)
10799 ? XEXP (x1, 1) : XEXP (x1, 0));
10800
10801 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10802 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10803 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10804 return 2 + 2 * count_rtxs (x1)
10805 + count_rtxs (x == XEXP (x0, 0)
10806 ? XEXP (x0, 1) : XEXP (x0, 0));
10807 }
10808
10809 fmt = GET_RTX_FORMAT (code);
10810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10811 if (fmt[i] == 'e')
10812 ret += count_rtxs (XEXP (x, i));
10813
10814 return ret;
10815 }
10816 \f
10817 /* Utility function for following routine. Called when X is part of a value
10818 being stored into last_set_value. Sets last_set_table_tick
10819 for each register mentioned. Similar to mention_regs in cse.c */
10820
10821 static void
10822 update_table_tick (rtx x)
10823 {
10824 enum rtx_code code = GET_CODE (x);
10825 const char *fmt = GET_RTX_FORMAT (code);
10826 int i;
10827
10828 if (code == REG)
10829 {
10830 unsigned int regno = REGNO (x);
10831 unsigned int endregno
10832 = regno + (regno < FIRST_PSEUDO_REGISTER
10833 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10834 unsigned int r;
10835
10836 for (r = regno; r < endregno; r++)
10837 reg_stat[r].last_set_table_tick = label_tick;
10838
10839 return;
10840 }
10841
10842 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10843 /* Note that we can't have an "E" in values stored; see
10844 get_last_value_validate. */
10845 if (fmt[i] == 'e')
10846 {
10847 /* Check for identical subexpressions. If x contains
10848 identical subexpression we only have to traverse one of
10849 them. */
10850 if (i == 0 && ARITHMETIC_P (x))
10851 {
10852 /* Note that at this point x1 has already been
10853 processed. */
10854 rtx x0 = XEXP (x, 0);
10855 rtx x1 = XEXP (x, 1);
10856
10857 /* If x0 and x1 are identical then there is no need to
10858 process x0. */
10859 if (x0 == x1)
10860 break;
10861
10862 /* If x0 is identical to a subexpression of x1 then while
10863 processing x1, x0 has already been processed. Thus we
10864 are done with x. */
10865 if (ARITHMETIC_P (x1)
10866 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10867 break;
10868
10869 /* If x1 is identical to a subexpression of x0 then we
10870 still have to process the rest of x0. */
10871 if (ARITHMETIC_P (x0)
10872 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10873 {
10874 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10875 break;
10876 }
10877 }
10878
10879 update_table_tick (XEXP (x, i));
10880 }
10881 }
10882
10883 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10884 are saying that the register is clobbered and we no longer know its
10885 value. If INSN is zero, don't update reg_stat[].last_set; this is
10886 only permitted with VALUE also zero and is used to invalidate the
10887 register. */
10888
10889 static void
10890 record_value_for_reg (rtx reg, rtx insn, rtx value)
10891 {
10892 unsigned int regno = REGNO (reg);
10893 unsigned int endregno
10894 = regno + (regno < FIRST_PSEUDO_REGISTER
10895 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10896 unsigned int i;
10897
10898 /* If VALUE contains REG and we have a previous value for REG, substitute
10899 the previous value. */
10900 if (value && insn && reg_overlap_mentioned_p (reg, value))
10901 {
10902 rtx tem;
10903
10904 /* Set things up so get_last_value is allowed to see anything set up to
10905 our insn. */
10906 subst_low_cuid = INSN_CUID (insn);
10907 tem = get_last_value (reg);
10908
10909 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10910 it isn't going to be useful and will take a lot of time to process,
10911 so just use the CLOBBER. */
10912
10913 if (tem)
10914 {
10915 if (ARITHMETIC_P (tem)
10916 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10917 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10918 tem = XEXP (tem, 0);
10919 else if (count_occurrences (value, reg, 1) >= 2)
10920 {
10921 /* If there are two or more occurrences of REG in VALUE,
10922 prevent the value from growing too much. */
10923 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10924 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10925 }
10926
10927 value = replace_rtx (copy_rtx (value), reg, tem);
10928 }
10929 }
10930
10931 /* For each register modified, show we don't know its value, that
10932 we don't know about its bitwise content, that its value has been
10933 updated, and that we don't know the location of the death of the
10934 register. */
10935 for (i = regno; i < endregno; i++)
10936 {
10937 if (insn)
10938 reg_stat[i].last_set = insn;
10939
10940 reg_stat[i].last_set_value = 0;
10941 reg_stat[i].last_set_mode = 0;
10942 reg_stat[i].last_set_nonzero_bits = 0;
10943 reg_stat[i].last_set_sign_bit_copies = 0;
10944 reg_stat[i].last_death = 0;
10945 }
10946
10947 /* Mark registers that are being referenced in this value. */
10948 if (value)
10949 update_table_tick (value);
10950
10951 /* Now update the status of each register being set.
10952 If someone is using this register in this block, set this register
10953 to invalid since we will get confused between the two lives in this
10954 basic block. This makes using this register always invalid. In cse, we
10955 scan the table to invalidate all entries using this register, but this
10956 is too much work for us. */
10957
10958 for (i = regno; i < endregno; i++)
10959 {
10960 reg_stat[i].last_set_label = label_tick;
10961 if (value && reg_stat[i].last_set_table_tick == label_tick)
10962 reg_stat[i].last_set_invalid = 1;
10963 else
10964 reg_stat[i].last_set_invalid = 0;
10965 }
10966
10967 /* The value being assigned might refer to X (like in "x++;"). In that
10968 case, we must replace it with (clobber (const_int 0)) to prevent
10969 infinite loops. */
10970 if (value && ! get_last_value_validate (&value, insn,
10971 reg_stat[regno].last_set_label, 0))
10972 {
10973 value = copy_rtx (value);
10974 if (! get_last_value_validate (&value, insn,
10975 reg_stat[regno].last_set_label, 1))
10976 value = 0;
10977 }
10978
10979 /* For the main register being modified, update the value, the mode, the
10980 nonzero bits, and the number of sign bit copies. */
10981
10982 reg_stat[regno].last_set_value = value;
10983
10984 if (value)
10985 {
10986 enum machine_mode mode = GET_MODE (reg);
10987 subst_low_cuid = INSN_CUID (insn);
10988 reg_stat[regno].last_set_mode = mode;
10989 if (GET_MODE_CLASS (mode) == MODE_INT
10990 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10991 mode = nonzero_bits_mode;
10992 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10993 reg_stat[regno].last_set_sign_bit_copies
10994 = num_sign_bit_copies (value, GET_MODE (reg));
10995 }
10996 }
10997
10998 /* Called via note_stores from record_dead_and_set_regs to handle one
10999 SET or CLOBBER in an insn. DATA is the instruction in which the
11000 set is occurring. */
11001
11002 static void
11003 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11004 {
11005 rtx record_dead_insn = (rtx) data;
11006
11007 if (GET_CODE (dest) == SUBREG)
11008 dest = SUBREG_REG (dest);
11009
11010 if (REG_P (dest))
11011 {
11012 /* If we are setting the whole register, we know its value. Otherwise
11013 show that we don't know the value. We can handle SUBREG in
11014 some cases. */
11015 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11016 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11017 else if (GET_CODE (setter) == SET
11018 && GET_CODE (SET_DEST (setter)) == SUBREG
11019 && SUBREG_REG (SET_DEST (setter)) == dest
11020 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11021 && subreg_lowpart_p (SET_DEST (setter)))
11022 record_value_for_reg (dest, record_dead_insn,
11023 gen_lowpart (GET_MODE (dest),
11024 SET_SRC (setter)));
11025 else
11026 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11027 }
11028 else if (MEM_P (dest)
11029 /* Ignore pushes, they clobber nothing. */
11030 && ! push_operand (dest, GET_MODE (dest)))
11031 mem_last_set = INSN_CUID (record_dead_insn);
11032 }
11033
11034 /* Update the records of when each REG was most recently set or killed
11035 for the things done by INSN. This is the last thing done in processing
11036 INSN in the combiner loop.
11037
11038 We update reg_stat[], in particular fields last_set, last_set_value,
11039 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11040 last_death, and also the similar information mem_last_set (which insn
11041 most recently modified memory) and last_call_cuid (which insn was the
11042 most recent subroutine call). */
11043
11044 static void
11045 record_dead_and_set_regs (rtx insn)
11046 {
11047 rtx link;
11048 unsigned int i;
11049
11050 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11051 {
11052 if (REG_NOTE_KIND (link) == REG_DEAD
11053 && REG_P (XEXP (link, 0)))
11054 {
11055 unsigned int regno = REGNO (XEXP (link, 0));
11056 unsigned int endregno
11057 = regno + (regno < FIRST_PSEUDO_REGISTER
11058 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11059 : 1);
11060
11061 for (i = regno; i < endregno; i++)
11062 reg_stat[i].last_death = insn;
11063 }
11064 else if (REG_NOTE_KIND (link) == REG_INC)
11065 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11066 }
11067
11068 if (CALL_P (insn))
11069 {
11070 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11071 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11072 {
11073 reg_stat[i].last_set_value = 0;
11074 reg_stat[i].last_set_mode = 0;
11075 reg_stat[i].last_set_nonzero_bits = 0;
11076 reg_stat[i].last_set_sign_bit_copies = 0;
11077 reg_stat[i].last_death = 0;
11078 }
11079
11080 last_call_cuid = mem_last_set = INSN_CUID (insn);
11081
11082 /* Don't bother recording what this insn does. It might set the
11083 return value register, but we can't combine into a call
11084 pattern anyway, so there's no point trying (and it may cause
11085 a crash, if e.g. we wind up asking for last_set_value of a
11086 SUBREG of the return value register). */
11087 return;
11088 }
11089
11090 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11091 }
11092
11093 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11094 register present in the SUBREG, so for each such SUBREG go back and
11095 adjust nonzero and sign bit information of the registers that are
11096 known to have some zero/sign bits set.
11097
11098 This is needed because when combine blows the SUBREGs away, the
11099 information on zero/sign bits is lost and further combines can be
11100 missed because of that. */
11101
11102 static void
11103 record_promoted_value (rtx insn, rtx subreg)
11104 {
11105 rtx links, set;
11106 unsigned int regno = REGNO (SUBREG_REG (subreg));
11107 enum machine_mode mode = GET_MODE (subreg);
11108
11109 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11110 return;
11111
11112 for (links = LOG_LINKS (insn); links;)
11113 {
11114 insn = XEXP (links, 0);
11115 set = single_set (insn);
11116
11117 if (! set || !REG_P (SET_DEST (set))
11118 || REGNO (SET_DEST (set)) != regno
11119 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11120 {
11121 links = XEXP (links, 1);
11122 continue;
11123 }
11124
11125 if (reg_stat[regno].last_set == insn)
11126 {
11127 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11128 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11129 }
11130
11131 if (REG_P (SET_SRC (set)))
11132 {
11133 regno = REGNO (SET_SRC (set));
11134 links = LOG_LINKS (insn);
11135 }
11136 else
11137 break;
11138 }
11139 }
11140
11141 /* Scan X for promoted SUBREGs. For each one found,
11142 note what it implies to the registers used in it. */
11143
11144 static void
11145 check_promoted_subreg (rtx insn, rtx x)
11146 {
11147 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11148 && REG_P (SUBREG_REG (x)))
11149 record_promoted_value (insn, x);
11150 else
11151 {
11152 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11153 int i, j;
11154
11155 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11156 switch (format[i])
11157 {
11158 case 'e':
11159 check_promoted_subreg (insn, XEXP (x, i));
11160 break;
11161 case 'V':
11162 case 'E':
11163 if (XVEC (x, i) != 0)
11164 for (j = 0; j < XVECLEN (x, i); j++)
11165 check_promoted_subreg (insn, XVECEXP (x, i, j));
11166 break;
11167 }
11168 }
11169 }
11170 \f
11171 /* Utility routine for the following function. Verify that all the registers
11172 mentioned in *LOC are valid when *LOC was part of a value set when
11173 label_tick == TICK. Return 0 if some are not.
11174
11175 If REPLACE is nonzero, replace the invalid reference with
11176 (clobber (const_int 0)) and return 1. This replacement is useful because
11177 we often can get useful information about the form of a value (e.g., if
11178 it was produced by a shift that always produces -1 or 0) even though
11179 we don't know exactly what registers it was produced from. */
11180
11181 static int
11182 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11183 {
11184 rtx x = *loc;
11185 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11186 int len = GET_RTX_LENGTH (GET_CODE (x));
11187 int i;
11188
11189 if (REG_P (x))
11190 {
11191 unsigned int regno = REGNO (x);
11192 unsigned int endregno
11193 = regno + (regno < FIRST_PSEUDO_REGISTER
11194 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11195 unsigned int j;
11196
11197 for (j = regno; j < endregno; j++)
11198 if (reg_stat[j].last_set_invalid
11199 /* If this is a pseudo-register that was only set once and not
11200 live at the beginning of the function, it is always valid. */
11201 || (! (regno >= FIRST_PSEUDO_REGISTER
11202 && REG_N_SETS (regno) == 1
11203 && (! REGNO_REG_SET_P
11204 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11205 && reg_stat[j].last_set_label > tick))
11206 {
11207 if (replace)
11208 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11209 return replace;
11210 }
11211
11212 return 1;
11213 }
11214 /* If this is a memory reference, make sure that there were
11215 no stores after it that might have clobbered the value. We don't
11216 have alias info, so we assume any store invalidates it. */
11217 else if (MEM_P (x) && !MEM_READONLY_P (x)
11218 && INSN_CUID (insn) <= mem_last_set)
11219 {
11220 if (replace)
11221 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11222 return replace;
11223 }
11224
11225 for (i = 0; i < len; i++)
11226 {
11227 if (fmt[i] == 'e')
11228 {
11229 /* Check for identical subexpressions. If x contains
11230 identical subexpression we only have to traverse one of
11231 them. */
11232 if (i == 1 && ARITHMETIC_P (x))
11233 {
11234 /* Note that at this point x0 has already been checked
11235 and found valid. */
11236 rtx x0 = XEXP (x, 0);
11237 rtx x1 = XEXP (x, 1);
11238
11239 /* If x0 and x1 are identical then x is also valid. */
11240 if (x0 == x1)
11241 return 1;
11242
11243 /* If x1 is identical to a subexpression of x0 then
11244 while checking x0, x1 has already been checked. Thus
11245 it is valid and so as x. */
11246 if (ARITHMETIC_P (x0)
11247 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11248 return 1;
11249
11250 /* If x0 is identical to a subexpression of x1 then x is
11251 valid iff the rest of x1 is valid. */
11252 if (ARITHMETIC_P (x1)
11253 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11254 return
11255 get_last_value_validate (&XEXP (x1,
11256 x0 == XEXP (x1, 0) ? 1 : 0),
11257 insn, tick, replace);
11258 }
11259
11260 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11261 replace) == 0)
11262 return 0;
11263 }
11264 /* Don't bother with these. They shouldn't occur anyway. */
11265 else if (fmt[i] == 'E')
11266 return 0;
11267 }
11268
11269 /* If we haven't found a reason for it to be invalid, it is valid. */
11270 return 1;
11271 }
11272
11273 /* Get the last value assigned to X, if known. Some registers
11274 in the value may be replaced with (clobber (const_int 0)) if their value
11275 is known longer known reliably. */
11276
11277 static rtx
11278 get_last_value (rtx x)
11279 {
11280 unsigned int regno;
11281 rtx value;
11282
11283 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11284 then convert it to the desired mode. If this is a paradoxical SUBREG,
11285 we cannot predict what values the "extra" bits might have. */
11286 if (GET_CODE (x) == SUBREG
11287 && subreg_lowpart_p (x)
11288 && (GET_MODE_SIZE (GET_MODE (x))
11289 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11290 && (value = get_last_value (SUBREG_REG (x))) != 0)
11291 return gen_lowpart (GET_MODE (x), value);
11292
11293 if (!REG_P (x))
11294 return 0;
11295
11296 regno = REGNO (x);
11297 value = reg_stat[regno].last_set_value;
11298
11299 /* If we don't have a value, or if it isn't for this basic block and
11300 it's either a hard register, set more than once, or it's a live
11301 at the beginning of the function, return 0.
11302
11303 Because if it's not live at the beginning of the function then the reg
11304 is always set before being used (is never used without being set).
11305 And, if it's set only once, and it's always set before use, then all
11306 uses must have the same last value, even if it's not from this basic
11307 block. */
11308
11309 if (value == 0
11310 || (reg_stat[regno].last_set_label != label_tick
11311 && (regno < FIRST_PSEUDO_REGISTER
11312 || REG_N_SETS (regno) != 1
11313 || (REGNO_REG_SET_P
11314 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11315 return 0;
11316
11317 /* If the value was set in a later insn than the ones we are processing,
11318 we can't use it even if the register was only set once. */
11319 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11320 return 0;
11321
11322 /* If the value has all its registers valid, return it. */
11323 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11324 reg_stat[regno].last_set_label, 0))
11325 return value;
11326
11327 /* Otherwise, make a copy and replace any invalid register with
11328 (clobber (const_int 0)). If that fails for some reason, return 0. */
11329
11330 value = copy_rtx (value);
11331 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11332 reg_stat[regno].last_set_label, 1))
11333 return value;
11334
11335 return 0;
11336 }
11337 \f
11338 /* Return nonzero if expression X refers to a REG or to memory
11339 that is set in an instruction more recent than FROM_CUID. */
11340
11341 static int
11342 use_crosses_set_p (rtx x, int from_cuid)
11343 {
11344 const char *fmt;
11345 int i;
11346 enum rtx_code code = GET_CODE (x);
11347
11348 if (code == REG)
11349 {
11350 unsigned int regno = REGNO (x);
11351 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11352 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11353
11354 #ifdef PUSH_ROUNDING
11355 /* Don't allow uses of the stack pointer to be moved,
11356 because we don't know whether the move crosses a push insn. */
11357 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11358 return 1;
11359 #endif
11360 for (; regno < endreg; regno++)
11361 if (reg_stat[regno].last_set
11362 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11363 return 1;
11364 return 0;
11365 }
11366
11367 if (code == MEM && mem_last_set > from_cuid)
11368 return 1;
11369
11370 fmt = GET_RTX_FORMAT (code);
11371
11372 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11373 {
11374 if (fmt[i] == 'E')
11375 {
11376 int j;
11377 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11378 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11379 return 1;
11380 }
11381 else if (fmt[i] == 'e'
11382 && use_crosses_set_p (XEXP (x, i), from_cuid))
11383 return 1;
11384 }
11385 return 0;
11386 }
11387 \f
11388 /* Define three variables used for communication between the following
11389 routines. */
11390
11391 static unsigned int reg_dead_regno, reg_dead_endregno;
11392 static int reg_dead_flag;
11393
11394 /* Function called via note_stores from reg_dead_at_p.
11395
11396 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11397 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11398
11399 static void
11400 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11401 {
11402 unsigned int regno, endregno;
11403
11404 if (!REG_P (dest))
11405 return;
11406
11407 regno = REGNO (dest);
11408 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11409 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11410
11411 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11412 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11413 }
11414
11415 /* Return nonzero if REG is known to be dead at INSN.
11416
11417 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11418 referencing REG, it is dead. If we hit a SET referencing REG, it is
11419 live. Otherwise, see if it is live or dead at the start of the basic
11420 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11421 must be assumed to be always live. */
11422
11423 static int
11424 reg_dead_at_p (rtx reg, rtx insn)
11425 {
11426 basic_block block;
11427 unsigned int i;
11428
11429 /* Set variables for reg_dead_at_p_1. */
11430 reg_dead_regno = REGNO (reg);
11431 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11432 ? hard_regno_nregs[reg_dead_regno]
11433 [GET_MODE (reg)]
11434 : 1);
11435
11436 reg_dead_flag = 0;
11437
11438 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11439 we allow the machine description to decide whether use-and-clobber
11440 patterns are OK. */
11441 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11442 {
11443 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11444 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11445 return 0;
11446 }
11447
11448 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11449 beginning of function. */
11450 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11451 insn = prev_nonnote_insn (insn))
11452 {
11453 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11454 if (reg_dead_flag)
11455 return reg_dead_flag == 1 ? 1 : 0;
11456
11457 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11458 return 1;
11459 }
11460
11461 /* Get the basic block that we were in. */
11462 if (insn == 0)
11463 block = ENTRY_BLOCK_PTR->next_bb;
11464 else
11465 {
11466 FOR_EACH_BB (block)
11467 if (insn == BB_HEAD (block))
11468 break;
11469
11470 if (block == EXIT_BLOCK_PTR)
11471 return 0;
11472 }
11473
11474 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11475 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11476 return 0;
11477
11478 return 1;
11479 }
11480 \f
11481 /* Note hard registers in X that are used. This code is similar to
11482 that in flow.c, but much simpler since we don't care about pseudos. */
11483
11484 static void
11485 mark_used_regs_combine (rtx x)
11486 {
11487 RTX_CODE code = GET_CODE (x);
11488 unsigned int regno;
11489 int i;
11490
11491 switch (code)
11492 {
11493 case LABEL_REF:
11494 case SYMBOL_REF:
11495 case CONST_INT:
11496 case CONST:
11497 case CONST_DOUBLE:
11498 case CONST_VECTOR:
11499 case PC:
11500 case ADDR_VEC:
11501 case ADDR_DIFF_VEC:
11502 case ASM_INPUT:
11503 #ifdef HAVE_cc0
11504 /* CC0 must die in the insn after it is set, so we don't need to take
11505 special note of it here. */
11506 case CC0:
11507 #endif
11508 return;
11509
11510 case CLOBBER:
11511 /* If we are clobbering a MEM, mark any hard registers inside the
11512 address as used. */
11513 if (MEM_P (XEXP (x, 0)))
11514 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11515 return;
11516
11517 case REG:
11518 regno = REGNO (x);
11519 /* A hard reg in a wide mode may really be multiple registers.
11520 If so, mark all of them just like the first. */
11521 if (regno < FIRST_PSEUDO_REGISTER)
11522 {
11523 unsigned int endregno, r;
11524
11525 /* None of this applies to the stack, frame or arg pointers. */
11526 if (regno == STACK_POINTER_REGNUM
11527 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11528 || regno == HARD_FRAME_POINTER_REGNUM
11529 #endif
11530 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11531 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11532 #endif
11533 || regno == FRAME_POINTER_REGNUM)
11534 return;
11535
11536 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11537 for (r = regno; r < endregno; r++)
11538 SET_HARD_REG_BIT (newpat_used_regs, r);
11539 }
11540 return;
11541
11542 case SET:
11543 {
11544 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11545 the address. */
11546 rtx testreg = SET_DEST (x);
11547
11548 while (GET_CODE (testreg) == SUBREG
11549 || GET_CODE (testreg) == ZERO_EXTRACT
11550 || GET_CODE (testreg) == STRICT_LOW_PART)
11551 testreg = XEXP (testreg, 0);
11552
11553 if (MEM_P (testreg))
11554 mark_used_regs_combine (XEXP (testreg, 0));
11555
11556 mark_used_regs_combine (SET_SRC (x));
11557 }
11558 return;
11559
11560 default:
11561 break;
11562 }
11563
11564 /* Recursively scan the operands of this expression. */
11565
11566 {
11567 const char *fmt = GET_RTX_FORMAT (code);
11568
11569 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11570 {
11571 if (fmt[i] == 'e')
11572 mark_used_regs_combine (XEXP (x, i));
11573 else if (fmt[i] == 'E')
11574 {
11575 int j;
11576
11577 for (j = 0; j < XVECLEN (x, i); j++)
11578 mark_used_regs_combine (XVECEXP (x, i, j));
11579 }
11580 }
11581 }
11582 }
11583 \f
11584 /* Remove register number REGNO from the dead registers list of INSN.
11585
11586 Return the note used to record the death, if there was one. */
11587
11588 rtx
11589 remove_death (unsigned int regno, rtx insn)
11590 {
11591 rtx note = find_regno_note (insn, REG_DEAD, regno);
11592
11593 if (note)
11594 {
11595 REG_N_DEATHS (regno)--;
11596 remove_note (insn, note);
11597 }
11598
11599 return note;
11600 }
11601
11602 /* For each register (hardware or pseudo) used within expression X, if its
11603 death is in an instruction with cuid between FROM_CUID (inclusive) and
11604 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11605 list headed by PNOTES.
11606
11607 That said, don't move registers killed by maybe_kill_insn.
11608
11609 This is done when X is being merged by combination into TO_INSN. These
11610 notes will then be distributed as needed. */
11611
11612 static void
11613 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11614 rtx *pnotes)
11615 {
11616 const char *fmt;
11617 int len, i;
11618 enum rtx_code code = GET_CODE (x);
11619
11620 if (code == REG)
11621 {
11622 unsigned int regno = REGNO (x);
11623 rtx where_dead = reg_stat[regno].last_death;
11624 rtx before_dead, after_dead;
11625
11626 /* Don't move the register if it gets killed in between from and to. */
11627 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11628 && ! reg_referenced_p (x, maybe_kill_insn))
11629 return;
11630
11631 /* WHERE_DEAD could be a USE insn made by combine, so first we
11632 make sure that we have insns with valid INSN_CUID values. */
11633 before_dead = where_dead;
11634 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11635 before_dead = PREV_INSN (before_dead);
11636
11637 after_dead = where_dead;
11638 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11639 after_dead = NEXT_INSN (after_dead);
11640
11641 if (before_dead && after_dead
11642 && INSN_CUID (before_dead) >= from_cuid
11643 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11644 || (where_dead != after_dead
11645 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11646 {
11647 rtx note = remove_death (regno, where_dead);
11648
11649 /* It is possible for the call above to return 0. This can occur
11650 when last_death points to I2 or I1 that we combined with.
11651 In that case make a new note.
11652
11653 We must also check for the case where X is a hard register
11654 and NOTE is a death note for a range of hard registers
11655 including X. In that case, we must put REG_DEAD notes for
11656 the remaining registers in place of NOTE. */
11657
11658 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11659 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11660 > GET_MODE_SIZE (GET_MODE (x))))
11661 {
11662 unsigned int deadregno = REGNO (XEXP (note, 0));
11663 unsigned int deadend
11664 = (deadregno + hard_regno_nregs[deadregno]
11665 [GET_MODE (XEXP (note, 0))]);
11666 unsigned int ourend
11667 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11668 unsigned int i;
11669
11670 for (i = deadregno; i < deadend; i++)
11671 if (i < regno || i >= ourend)
11672 REG_NOTES (where_dead)
11673 = gen_rtx_EXPR_LIST (REG_DEAD,
11674 regno_reg_rtx[i],
11675 REG_NOTES (where_dead));
11676 }
11677
11678 /* If we didn't find any note, or if we found a REG_DEAD note that
11679 covers only part of the given reg, and we have a multi-reg hard
11680 register, then to be safe we must check for REG_DEAD notes
11681 for each register other than the first. They could have
11682 their own REG_DEAD notes lying around. */
11683 else if ((note == 0
11684 || (note != 0
11685 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11686 < GET_MODE_SIZE (GET_MODE (x)))))
11687 && regno < FIRST_PSEUDO_REGISTER
11688 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11689 {
11690 unsigned int ourend
11691 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11692 unsigned int i, offset;
11693 rtx oldnotes = 0;
11694
11695 if (note)
11696 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11697 else
11698 offset = 1;
11699
11700 for (i = regno + offset; i < ourend; i++)
11701 move_deaths (regno_reg_rtx[i],
11702 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11703 }
11704
11705 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11706 {
11707 XEXP (note, 1) = *pnotes;
11708 *pnotes = note;
11709 }
11710 else
11711 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11712
11713 REG_N_DEATHS (regno)++;
11714 }
11715
11716 return;
11717 }
11718
11719 else if (GET_CODE (x) == SET)
11720 {
11721 rtx dest = SET_DEST (x);
11722
11723 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11724
11725 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11726 that accesses one word of a multi-word item, some
11727 piece of everything register in the expression is used by
11728 this insn, so remove any old death. */
11729 /* ??? So why do we test for equality of the sizes? */
11730
11731 if (GET_CODE (dest) == ZERO_EXTRACT
11732 || GET_CODE (dest) == STRICT_LOW_PART
11733 || (GET_CODE (dest) == SUBREG
11734 && (((GET_MODE_SIZE (GET_MODE (dest))
11735 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11736 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11737 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11738 {
11739 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11740 return;
11741 }
11742
11743 /* If this is some other SUBREG, we know it replaces the entire
11744 value, so use that as the destination. */
11745 if (GET_CODE (dest) == SUBREG)
11746 dest = SUBREG_REG (dest);
11747
11748 /* If this is a MEM, adjust deaths of anything used in the address.
11749 For a REG (the only other possibility), the entire value is
11750 being replaced so the old value is not used in this insn. */
11751
11752 if (MEM_P (dest))
11753 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11754 to_insn, pnotes);
11755 return;
11756 }
11757
11758 else if (GET_CODE (x) == CLOBBER)
11759 return;
11760
11761 len = GET_RTX_LENGTH (code);
11762 fmt = GET_RTX_FORMAT (code);
11763
11764 for (i = 0; i < len; i++)
11765 {
11766 if (fmt[i] == 'E')
11767 {
11768 int j;
11769 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11770 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11771 to_insn, pnotes);
11772 }
11773 else if (fmt[i] == 'e')
11774 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11775 }
11776 }
11777 \f
11778 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11779 pattern of an insn. X must be a REG. */
11780
11781 static int
11782 reg_bitfield_target_p (rtx x, rtx body)
11783 {
11784 int i;
11785
11786 if (GET_CODE (body) == SET)
11787 {
11788 rtx dest = SET_DEST (body);
11789 rtx target;
11790 unsigned int regno, tregno, endregno, endtregno;
11791
11792 if (GET_CODE (dest) == ZERO_EXTRACT)
11793 target = XEXP (dest, 0);
11794 else if (GET_CODE (dest) == STRICT_LOW_PART)
11795 target = SUBREG_REG (XEXP (dest, 0));
11796 else
11797 return 0;
11798
11799 if (GET_CODE (target) == SUBREG)
11800 target = SUBREG_REG (target);
11801
11802 if (!REG_P (target))
11803 return 0;
11804
11805 tregno = REGNO (target), regno = REGNO (x);
11806 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11807 return target == x;
11808
11809 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11810 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11811
11812 return endregno > tregno && regno < endtregno;
11813 }
11814
11815 else if (GET_CODE (body) == PARALLEL)
11816 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11817 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11818 return 1;
11819
11820 return 0;
11821 }
11822 \f
11823 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11824 as appropriate. I3 and I2 are the insns resulting from the combination
11825 insns including FROM (I2 may be zero).
11826
11827 Each note in the list is either ignored or placed on some insns, depending
11828 on the type of note. */
11829
11830 static void
11831 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11832 {
11833 rtx note, next_note;
11834 rtx tem;
11835
11836 for (note = notes; note; note = next_note)
11837 {
11838 rtx place = 0, place2 = 0;
11839
11840 /* If this NOTE references a pseudo register, ensure it references
11841 the latest copy of that register. */
11842 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11843 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11844 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11845
11846 next_note = XEXP (note, 1);
11847 switch (REG_NOTE_KIND (note))
11848 {
11849 case REG_BR_PROB:
11850 case REG_BR_PRED:
11851 /* Doesn't matter much where we put this, as long as it's somewhere.
11852 It is preferable to keep these notes on branches, which is most
11853 likely to be i3. */
11854 place = i3;
11855 break;
11856
11857 case REG_VALUE_PROFILE:
11858 /* Just get rid of this note, as it is unused later anyway. */
11859 break;
11860
11861 case REG_NON_LOCAL_GOTO:
11862 if (JUMP_P (i3))
11863 place = i3;
11864 else
11865 {
11866 gcc_assert (i2 && JUMP_P (i2));
11867 place = i2;
11868 }
11869 break;
11870
11871 case REG_EH_REGION:
11872 /* These notes must remain with the call or trapping instruction. */
11873 if (CALL_P (i3))
11874 place = i3;
11875 else if (i2 && CALL_P (i2))
11876 place = i2;
11877 else
11878 {
11879 gcc_assert (flag_non_call_exceptions);
11880 if (may_trap_p (i3))
11881 place = i3;
11882 else if (i2 && may_trap_p (i2))
11883 place = i2;
11884 /* ??? Otherwise assume we've combined things such that we
11885 can now prove that the instructions can't trap. Drop the
11886 note in this case. */
11887 }
11888 break;
11889
11890 case REG_NORETURN:
11891 case REG_SETJMP:
11892 /* These notes must remain with the call. It should not be
11893 possible for both I2 and I3 to be a call. */
11894 if (CALL_P (i3))
11895 place = i3;
11896 else
11897 {
11898 gcc_assert (i2 && CALL_P (i2));
11899 place = i2;
11900 }
11901 break;
11902
11903 case REG_UNUSED:
11904 /* Any clobbers for i3 may still exist, and so we must process
11905 REG_UNUSED notes from that insn.
11906
11907 Any clobbers from i2 or i1 can only exist if they were added by
11908 recog_for_combine. In that case, recog_for_combine created the
11909 necessary REG_UNUSED notes. Trying to keep any original
11910 REG_UNUSED notes from these insns can cause incorrect output
11911 if it is for the same register as the original i3 dest.
11912 In that case, we will notice that the register is set in i3,
11913 and then add a REG_UNUSED note for the destination of i3, which
11914 is wrong. However, it is possible to have REG_UNUSED notes from
11915 i2 or i1 for register which were both used and clobbered, so
11916 we keep notes from i2 or i1 if they will turn into REG_DEAD
11917 notes. */
11918
11919 /* If this register is set or clobbered in I3, put the note there
11920 unless there is one already. */
11921 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11922 {
11923 if (from_insn != i3)
11924 break;
11925
11926 if (! (REG_P (XEXP (note, 0))
11927 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11928 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11929 place = i3;
11930 }
11931 /* Otherwise, if this register is used by I3, then this register
11932 now dies here, so we must put a REG_DEAD note here unless there
11933 is one already. */
11934 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11935 && ! (REG_P (XEXP (note, 0))
11936 ? find_regno_note (i3, REG_DEAD,
11937 REGNO (XEXP (note, 0)))
11938 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11939 {
11940 PUT_REG_NOTE_KIND (note, REG_DEAD);
11941 place = i3;
11942 }
11943 break;
11944
11945 case REG_EQUAL:
11946 case REG_EQUIV:
11947 case REG_NOALIAS:
11948 /* These notes say something about results of an insn. We can
11949 only support them if they used to be on I3 in which case they
11950 remain on I3. Otherwise they are ignored.
11951
11952 If the note refers to an expression that is not a constant, we
11953 must also ignore the note since we cannot tell whether the
11954 equivalence is still true. It might be possible to do
11955 slightly better than this (we only have a problem if I2DEST
11956 or I1DEST is present in the expression), but it doesn't
11957 seem worth the trouble. */
11958
11959 if (from_insn == i3
11960 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11961 place = i3;
11962 break;
11963
11964 case REG_INC:
11965 case REG_NO_CONFLICT:
11966 /* These notes say something about how a register is used. They must
11967 be present on any use of the register in I2 or I3. */
11968 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11969 place = i3;
11970
11971 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11972 {
11973 if (place)
11974 place2 = i2;
11975 else
11976 place = i2;
11977 }
11978 break;
11979
11980 case REG_LABEL:
11981 /* This can show up in several ways -- either directly in the
11982 pattern, or hidden off in the constant pool with (or without?)
11983 a REG_EQUAL note. */
11984 /* ??? Ignore the without-reg_equal-note problem for now. */
11985 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11986 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11987 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11988 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11989 place = i3;
11990
11991 if (i2
11992 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11993 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11994 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11995 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11996 {
11997 if (place)
11998 place2 = i2;
11999 else
12000 place = i2;
12001 }
12002
12003 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12004 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12005 if (place && JUMP_P (place))
12006 {
12007 rtx label = JUMP_LABEL (place);
12008
12009 if (!label)
12010 JUMP_LABEL (place) = XEXP (note, 0);
12011 else
12012 {
12013 gcc_assert (label == XEXP (note, 0));
12014 if (LABEL_P (label))
12015 LABEL_NUSES (label)--;
12016 }
12017 place = 0;
12018 }
12019 if (place2 && JUMP_P (place2))
12020 {
12021 rtx label = JUMP_LABEL (place2);
12022
12023 if (!label)
12024 JUMP_LABEL (place2) = XEXP (note, 0);
12025 else
12026 {
12027 gcc_assert (label == XEXP (note, 0));
12028 if (LABEL_P (label))
12029 LABEL_NUSES (label)--;
12030 }
12031 place2 = 0;
12032 }
12033 break;
12034
12035 case REG_NONNEG:
12036 /* This note says something about the value of a register prior
12037 to the execution of an insn. It is too much trouble to see
12038 if the note is still correct in all situations. It is better
12039 to simply delete it. */
12040 break;
12041
12042 case REG_RETVAL:
12043 /* If the insn previously containing this note still exists,
12044 put it back where it was. Otherwise move it to the previous
12045 insn. Adjust the corresponding REG_LIBCALL note. */
12046 if (!NOTE_P (from_insn))
12047 place = from_insn;
12048 else
12049 {
12050 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12051 place = prev_real_insn (from_insn);
12052 if (tem && place)
12053 XEXP (tem, 0) = place;
12054 /* If we're deleting the last remaining instruction of a
12055 libcall sequence, don't add the notes. */
12056 else if (XEXP (note, 0) == from_insn)
12057 tem = place = 0;
12058 /* Don't add the dangling REG_RETVAL note. */
12059 else if (! tem)
12060 place = 0;
12061 }
12062 break;
12063
12064 case REG_LIBCALL:
12065 /* This is handled similarly to REG_RETVAL. */
12066 if (!NOTE_P (from_insn))
12067 place = from_insn;
12068 else
12069 {
12070 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12071 place = next_real_insn (from_insn);
12072 if (tem && place)
12073 XEXP (tem, 0) = place;
12074 /* If we're deleting the last remaining instruction of a
12075 libcall sequence, don't add the notes. */
12076 else if (XEXP (note, 0) == from_insn)
12077 tem = place = 0;
12078 /* Don't add the dangling REG_LIBCALL note. */
12079 else if (! tem)
12080 place = 0;
12081 }
12082 break;
12083
12084 case REG_DEAD:
12085 /* If the register is used as an input in I3, it dies there.
12086 Similarly for I2, if it is nonzero and adjacent to I3.
12087
12088 If the register is not used as an input in either I3 or I2
12089 and it is not one of the registers we were supposed to eliminate,
12090 there are two possibilities. We might have a non-adjacent I2
12091 or we might have somehow eliminated an additional register
12092 from a computation. For example, we might have had A & B where
12093 we discover that B will always be zero. In this case we will
12094 eliminate the reference to A.
12095
12096 In both cases, we must search to see if we can find a previous
12097 use of A and put the death note there. */
12098
12099 if (from_insn
12100 && CALL_P (from_insn)
12101 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12102 place = from_insn;
12103 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12104 place = i3;
12105 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12106 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12107 place = i2;
12108
12109 if (place == 0)
12110 {
12111 basic_block bb = this_basic_block;
12112
12113 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12114 {
12115 if (! INSN_P (tem))
12116 {
12117 if (tem == BB_HEAD (bb))
12118 break;
12119 continue;
12120 }
12121
12122 /* If the register is being set at TEM, see if that is all
12123 TEM is doing. If so, delete TEM. Otherwise, make this
12124 into a REG_UNUSED note instead. Don't delete sets to
12125 global register vars. */
12126 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12127 || !global_regs[REGNO (XEXP (note, 0))])
12128 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12129 {
12130 rtx set = single_set (tem);
12131 rtx inner_dest = 0;
12132 #ifdef HAVE_cc0
12133 rtx cc0_setter = NULL_RTX;
12134 #endif
12135
12136 if (set != 0)
12137 for (inner_dest = SET_DEST (set);
12138 (GET_CODE (inner_dest) == STRICT_LOW_PART
12139 || GET_CODE (inner_dest) == SUBREG
12140 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12141 inner_dest = XEXP (inner_dest, 0))
12142 ;
12143
12144 /* Verify that it was the set, and not a clobber that
12145 modified the register.
12146
12147 CC0 targets must be careful to maintain setter/user
12148 pairs. If we cannot delete the setter due to side
12149 effects, mark the user with an UNUSED note instead
12150 of deleting it. */
12151
12152 if (set != 0 && ! side_effects_p (SET_SRC (set))
12153 && rtx_equal_p (XEXP (note, 0), inner_dest)
12154 #ifdef HAVE_cc0
12155 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12156 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12157 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12158 #endif
12159 )
12160 {
12161 /* Move the notes and links of TEM elsewhere.
12162 This might delete other dead insns recursively.
12163 First set the pattern to something that won't use
12164 any register. */
12165 rtx old_notes = REG_NOTES (tem);
12166
12167 PATTERN (tem) = pc_rtx;
12168 REG_NOTES (tem) = NULL;
12169
12170 distribute_notes (old_notes, tem, tem, NULL_RTX);
12171 distribute_links (LOG_LINKS (tem));
12172
12173 SET_INSN_DELETED (tem);
12174
12175 #ifdef HAVE_cc0
12176 /* Delete the setter too. */
12177 if (cc0_setter)
12178 {
12179 PATTERN (cc0_setter) = pc_rtx;
12180 old_notes = REG_NOTES (cc0_setter);
12181 REG_NOTES (cc0_setter) = NULL;
12182
12183 distribute_notes (old_notes, cc0_setter,
12184 cc0_setter, NULL_RTX);
12185 distribute_links (LOG_LINKS (cc0_setter));
12186
12187 SET_INSN_DELETED (cc0_setter);
12188 }
12189 #endif
12190 }
12191 else
12192 {
12193 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12194
12195 /* If there isn't already a REG_UNUSED note, put one
12196 here. Do not place a REG_DEAD note, even if
12197 the register is also used here; that would not
12198 match the algorithm used in lifetime analysis
12199 and can cause the consistency check in the
12200 scheduler to fail. */
12201 if (! find_regno_note (tem, REG_UNUSED,
12202 REGNO (XEXP (note, 0))))
12203 place = tem;
12204 break;
12205 }
12206 }
12207 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12208 || (CALL_P (tem)
12209 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12210 {
12211 place = tem;
12212
12213 /* If we are doing a 3->2 combination, and we have a
12214 register which formerly died in i3 and was not used
12215 by i2, which now no longer dies in i3 and is used in
12216 i2 but does not die in i2, and place is between i2
12217 and i3, then we may need to move a link from place to
12218 i2. */
12219 if (i2 && INSN_UID (place) <= max_uid_cuid
12220 && INSN_CUID (place) > INSN_CUID (i2)
12221 && from_insn
12222 && INSN_CUID (from_insn) > INSN_CUID (i2)
12223 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12224 {
12225 rtx links = LOG_LINKS (place);
12226 LOG_LINKS (place) = 0;
12227 distribute_links (links);
12228 }
12229 break;
12230 }
12231
12232 if (tem == BB_HEAD (bb))
12233 break;
12234 }
12235
12236 /* We haven't found an insn for the death note and it
12237 is still a REG_DEAD note, but we have hit the beginning
12238 of the block. If the existing life info says the reg
12239 was dead, there's nothing left to do. Otherwise, we'll
12240 need to do a global life update after combine. */
12241 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12242 && REGNO_REG_SET_P (bb->global_live_at_start,
12243 REGNO (XEXP (note, 0))))
12244 SET_BIT (refresh_blocks, this_basic_block->index);
12245 }
12246
12247 /* If the register is set or already dead at PLACE, we needn't do
12248 anything with this note if it is still a REG_DEAD note.
12249 We check here if it is set at all, not if is it totally replaced,
12250 which is what `dead_or_set_p' checks, so also check for it being
12251 set partially. */
12252
12253 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12254 {
12255 unsigned int regno = REGNO (XEXP (note, 0));
12256
12257 /* Similarly, if the instruction on which we want to place
12258 the note is a noop, we'll need do a global live update
12259 after we remove them in delete_noop_moves. */
12260 if (noop_move_p (place))
12261 SET_BIT (refresh_blocks, this_basic_block->index);
12262
12263 if (dead_or_set_p (place, XEXP (note, 0))
12264 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12265 {
12266 /* Unless the register previously died in PLACE, clear
12267 last_death. [I no longer understand why this is
12268 being done.] */
12269 if (reg_stat[regno].last_death != place)
12270 reg_stat[regno].last_death = 0;
12271 place = 0;
12272 }
12273 else
12274 reg_stat[regno].last_death = place;
12275
12276 /* If this is a death note for a hard reg that is occupying
12277 multiple registers, ensure that we are still using all
12278 parts of the object. If we find a piece of the object
12279 that is unused, we must arrange for an appropriate REG_DEAD
12280 note to be added for it. However, we can't just emit a USE
12281 and tag the note to it, since the register might actually
12282 be dead; so we recourse, and the recursive call then finds
12283 the previous insn that used this register. */
12284
12285 if (place && regno < FIRST_PSEUDO_REGISTER
12286 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12287 {
12288 unsigned int endregno
12289 = regno + hard_regno_nregs[regno]
12290 [GET_MODE (XEXP (note, 0))];
12291 int all_used = 1;
12292 unsigned int i;
12293
12294 for (i = regno; i < endregno; i++)
12295 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12296 && ! find_regno_fusage (place, USE, i))
12297 || dead_or_set_regno_p (place, i))
12298 all_used = 0;
12299
12300 if (! all_used)
12301 {
12302 /* Put only REG_DEAD notes for pieces that are
12303 not already dead or set. */
12304
12305 for (i = regno; i < endregno;
12306 i += hard_regno_nregs[i][reg_raw_mode[i]])
12307 {
12308 rtx piece = regno_reg_rtx[i];
12309 basic_block bb = this_basic_block;
12310
12311 if (! dead_or_set_p (place, piece)
12312 && ! reg_bitfield_target_p (piece,
12313 PATTERN (place)))
12314 {
12315 rtx new_note
12316 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12317
12318 distribute_notes (new_note, place, place,
12319 NULL_RTX);
12320 }
12321 else if (! refers_to_regno_p (i, i + 1,
12322 PATTERN (place), 0)
12323 && ! find_regno_fusage (place, USE, i))
12324 for (tem = PREV_INSN (place); ;
12325 tem = PREV_INSN (tem))
12326 {
12327 if (! INSN_P (tem))
12328 {
12329 if (tem == BB_HEAD (bb))
12330 {
12331 SET_BIT (refresh_blocks,
12332 this_basic_block->index);
12333 break;
12334 }
12335 continue;
12336 }
12337 if (dead_or_set_p (tem, piece)
12338 || reg_bitfield_target_p (piece,
12339 PATTERN (tem)))
12340 {
12341 REG_NOTES (tem)
12342 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12343 REG_NOTES (tem));
12344 break;
12345 }
12346 }
12347
12348 }
12349
12350 place = 0;
12351 }
12352 }
12353 }
12354 break;
12355
12356 default:
12357 /* Any other notes should not be present at this point in the
12358 compilation. */
12359 gcc_unreachable ();
12360 }
12361
12362 if (place)
12363 {
12364 XEXP (note, 1) = REG_NOTES (place);
12365 REG_NOTES (place) = note;
12366 }
12367 else if ((REG_NOTE_KIND (note) == REG_DEAD
12368 || REG_NOTE_KIND (note) == REG_UNUSED)
12369 && REG_P (XEXP (note, 0)))
12370 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12371
12372 if (place2)
12373 {
12374 if ((REG_NOTE_KIND (note) == REG_DEAD
12375 || REG_NOTE_KIND (note) == REG_UNUSED)
12376 && REG_P (XEXP (note, 0)))
12377 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12378
12379 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12380 REG_NOTE_KIND (note),
12381 XEXP (note, 0),
12382 REG_NOTES (place2));
12383 }
12384 }
12385 }
12386 \f
12387 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12388 I3, I2, and I1 to new locations. This is also called to add a link
12389 pointing at I3 when I3's destination is changed. */
12390
12391 static void
12392 distribute_links (rtx links)
12393 {
12394 rtx link, next_link;
12395
12396 for (link = links; link; link = next_link)
12397 {
12398 rtx place = 0;
12399 rtx insn;
12400 rtx set, reg;
12401
12402 next_link = XEXP (link, 1);
12403
12404 /* If the insn that this link points to is a NOTE or isn't a single
12405 set, ignore it. In the latter case, it isn't clear what we
12406 can do other than ignore the link, since we can't tell which
12407 register it was for. Such links wouldn't be used by combine
12408 anyway.
12409
12410 It is not possible for the destination of the target of the link to
12411 have been changed by combine. The only potential of this is if we
12412 replace I3, I2, and I1 by I3 and I2. But in that case the
12413 destination of I2 also remains unchanged. */
12414
12415 if (NOTE_P (XEXP (link, 0))
12416 || (set = single_set (XEXP (link, 0))) == 0)
12417 continue;
12418
12419 reg = SET_DEST (set);
12420 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12421 || GET_CODE (reg) == STRICT_LOW_PART)
12422 reg = XEXP (reg, 0);
12423
12424 /* A LOG_LINK is defined as being placed on the first insn that uses
12425 a register and points to the insn that sets the register. Start
12426 searching at the next insn after the target of the link and stop
12427 when we reach a set of the register or the end of the basic block.
12428
12429 Note that this correctly handles the link that used to point from
12430 I3 to I2. Also note that not much searching is typically done here
12431 since most links don't point very far away. */
12432
12433 for (insn = NEXT_INSN (XEXP (link, 0));
12434 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12435 || BB_HEAD (this_basic_block->next_bb) != insn));
12436 insn = NEXT_INSN (insn))
12437 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12438 {
12439 if (reg_referenced_p (reg, PATTERN (insn)))
12440 place = insn;
12441 break;
12442 }
12443 else if (CALL_P (insn)
12444 && find_reg_fusage (insn, USE, reg))
12445 {
12446 place = insn;
12447 break;
12448 }
12449 else if (INSN_P (insn) && reg_set_p (reg, insn))
12450 break;
12451
12452 /* If we found a place to put the link, place it there unless there
12453 is already a link to the same insn as LINK at that point. */
12454
12455 if (place)
12456 {
12457 rtx link2;
12458
12459 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12460 if (XEXP (link2, 0) == XEXP (link, 0))
12461 break;
12462
12463 if (link2 == 0)
12464 {
12465 XEXP (link, 1) = LOG_LINKS (place);
12466 LOG_LINKS (place) = link;
12467
12468 /* Set added_links_insn to the earliest insn we added a
12469 link to. */
12470 if (added_links_insn == 0
12471 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12472 added_links_insn = place;
12473 }
12474 }
12475 }
12476 }
12477 \f
12478 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12479 Check whether the expression pointer to by LOC is a register or
12480 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12481 Otherwise return zero. */
12482
12483 static int
12484 unmentioned_reg_p_1 (rtx *loc, void *expr)
12485 {
12486 rtx x = *loc;
12487
12488 if (x != NULL_RTX
12489 && (REG_P (x) || MEM_P (x))
12490 && ! reg_mentioned_p (x, (rtx) expr))
12491 return 1;
12492 return 0;
12493 }
12494
12495 /* Check for any register or memory mentioned in EQUIV that is not
12496 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12497 of EXPR where some registers may have been replaced by constants. */
12498
12499 static bool
12500 unmentioned_reg_p (rtx equiv, rtx expr)
12501 {
12502 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12503 }
12504 \f
12505 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12506
12507 static int
12508 insn_cuid (rtx insn)
12509 {
12510 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12511 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12512 insn = NEXT_INSN (insn);
12513
12514 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12515
12516 return INSN_CUID (insn);
12517 }
12518 \f
12519 void
12520 dump_combine_stats (FILE *file)
12521 {
12522 fnotice
12523 (file,
12524 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12525 combine_attempts, combine_merges, combine_extras, combine_successes);
12526 }
12527
12528 void
12529 dump_combine_total_stats (FILE *file)
12530 {
12531 fnotice
12532 (file,
12533 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12534 total_attempts, total_merges, total_extras, total_successes);
12535 }
This page took 0.666698 seconds and 6 git commands to generate.