]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
combine.c (combine_validate_cost): Consider cost of undobuf.other_insn rather than...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
96
97 /* Number of attempts to combine instructions in this function. */
98
99 static int combine_attempts;
100
101 /* Number of attempts that got as far as substitution in this function. */
102
103 static int combine_merges;
104
105 /* Number of instructions combined with added SETs in this function. */
106
107 static int combine_extras;
108
109 /* Number of instructions combined in this function. */
110
111 static int combine_successes;
112
113 /* Totals over entire compilation. */
114
115 static int total_attempts, total_merges, total_extras, total_successes;
116
117 \f
118 /* Vector mapping INSN_UIDs to cuids.
119 The cuids are like uids but increase monotonically always.
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
124
125 static int *uid_cuid;
126 static int max_uid_cuid;
127
128 /* Get the cuid of an insn. */
129
130 #define INSN_CUID(INSN) \
131 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
132
133 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
135
136 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
138
139 /* Maximum register number, which is the size of the tables below. */
140
141 static unsigned int combine_max_regno;
142
143 struct reg_stat {
144 /* Record last point of death of (hard or pseudo) register n. */
145 rtx last_death;
146
147 /* Record last point of modification of (hard or pseudo) register n. */
148 rtx last_set;
149
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
155
156 We use an approach similar to that used by cse, but change it in the
157 following ways:
158
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
162
163 Therefore, we maintain the following fields:
164
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
172 register's value
173
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
177 table.
178
179 (The next two parameters are out of date).
180
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
183
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
188
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
192
193 /* Record last value assigned to (hard or pseudo) register n. */
194
195 rtx last_set_value;
196
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
199
200 int last_set_table_tick;
201
202 /* Record the value of label_tick when the value for register n is placed in
203 last_set_value. */
204
205 int last_set_label;
206
207 /* These fields are maintained in parallel with last_set_value and are
208 used to store the mode in which the register was last set, the bits
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
211
212 unsigned HOST_WIDE_INT last_set_nonzero_bits;
213 char last_set_sign_bit_copies;
214 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
215
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
219
220 char last_set_invalid;
221
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
226
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
230 zero.
231
232 If an entry is zero, it means that we don't know anything special. */
233
234 unsigned char sign_bit_copies;
235
236 unsigned HOST_WIDE_INT nonzero_bits;
237 };
238
239 static struct reg_stat *reg_stat;
240
241 /* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
243
244 static int mem_last_set;
245
246 /* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
248
249 static int last_call_cuid;
250
251 /* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
256
257 static rtx subst_insn;
258
259 /* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
265
266 static int subst_low_cuid;
267
268 /* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
270
271 static HARD_REG_SET newpat_used_regs;
272
273 /* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
275 that location. */
276
277 static rtx added_links_insn;
278
279 /* Basic block in which we are performing combines. */
280 static basic_block this_basic_block;
281
282 /* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
284 those blocks as starting points. */
285 static sbitmap refresh_blocks;
286 \f
287 /* The following array records the insn_rtx_cost for every insn
288 in the instruction stream. */
289
290 static int *uid_insn_cost;
291
292 /* Length of the currently allocated uid_insn_cost array. */
293
294 static int last_insn_cost;
295
296 /* Incremented for each label. */
297
298 static int label_tick;
299
300 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
302
303 static enum machine_mode nonzero_bits_mode;
304
305 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
309 in a loop. */
310
311 static int nonzero_sign_valid;
312
313 \f
314 /* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
317
318 struct undo
319 {
320 struct undo *next;
321 int is_int;
322 union {rtx r; int i;} old_contents;
323 union {rtx *r; int *i;} where;
324 };
325
326 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
328
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too. */
331
332 struct undobuf
333 {
334 struct undo *undos;
335 struct undo *frees;
336 rtx other_insn;
337 };
338
339 static struct undobuf undobuf;
340
341 /* Number of times the pseudo being substituted for
342 was found and replaced. */
343
344 static int n_occurrences;
345
346 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
347 enum machine_mode,
348 unsigned HOST_WIDE_INT,
349 unsigned HOST_WIDE_INT *);
350 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
351 enum machine_mode,
352 unsigned int, unsigned int *);
353 static void do_SUBST (rtx *, rtx);
354 static void do_SUBST_INT (int *, int);
355 static void init_reg_last (void);
356 static void setup_incoming_promotions (void);
357 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
358 static int cant_combine_insn_p (rtx);
359 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
360 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
361 static int contains_muldiv (rtx);
362 static rtx try_combine (rtx, rtx, rtx, int *);
363 static void undo_all (void);
364 static void undo_commit (void);
365 static rtx *find_split_point (rtx *, rtx);
366 static rtx subst (rtx, rtx, rtx, int, int);
367 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
368 static rtx simplify_if_then_else (rtx);
369 static rtx simplify_set (rtx);
370 static rtx simplify_logical (rtx);
371 static rtx expand_compound_operation (rtx);
372 static rtx expand_field_assignment (rtx);
373 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
374 rtx, unsigned HOST_WIDE_INT, int, int, int);
375 static rtx extract_left_shift (rtx, int);
376 static rtx make_compound_operation (rtx, enum rtx_code);
377 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx force_to_mode (rtx, enum machine_mode,
380 unsigned HOST_WIDE_INT, rtx, int);
381 static rtx if_then_else_cond (rtx, rtx *, rtx *);
382 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
383 static int rtx_equal_for_field_assignment_p (rtx, rtx);
384 static rtx make_field_assignment (rtx);
385 static rtx apply_distributive_law (rtx);
386 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
387 unsigned HOST_WIDE_INT);
388 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392 static int recog_for_combine (rtx *, rtx, rtx *);
393 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
394 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
395 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396 static void update_table_tick (rtx);
397 static void record_value_for_reg (rtx, rtx, rtx);
398 static void check_promoted_subreg (rtx, rtx);
399 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400 static void record_dead_and_set_regs (rtx);
401 static int get_last_value_validate (rtx *, rtx, int, int);
402 static rtx get_last_value (rtx);
403 static int use_crosses_set_p (rtx, int);
404 static void reg_dead_at_p_1 (rtx, rtx, void *);
405 static int reg_dead_at_p (rtx, rtx);
406 static void move_deaths (rtx, rtx, int, rtx, rtx *);
407 static int reg_bitfield_target_p (rtx, rtx);
408 static void distribute_notes (rtx, rtx, rtx, rtx);
409 static void distribute_links (rtx);
410 static void mark_used_regs_combine (rtx);
411 static int insn_cuid (rtx);
412 static void record_promoted_value (rtx, rtx);
413 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414 static enum rtx_code combine_reversed_comparison_code (rtx);
415 static int unmentioned_reg_p_1 (rtx *, void *);
416 static bool unmentioned_reg_p (rtx, rtx);
417 \f
418
419 /* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421 #undef RTL_HOOKS_GEN_LOWPART
422 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
423
424 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
425 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
426
427 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
429
430 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
431
432 \f
433 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
437 the undo table. */
438
439 static void
440 do_SUBST (rtx *into, rtx newval)
441 {
442 struct undo *buf;
443 rtx oldval = *into;
444
445 if (oldval == newval)
446 return;
447
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
454 && GET_CODE (newval) == CONST_INT)
455 {
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
458 gcc_assert (INTVAL (newval)
459 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
460
461 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
462 CONST_INT is not valid, because after the replacement, the
463 original mode would be gone. Unfortunately, we can't tell
464 when do_SUBST is called to replace the operand thereof, so we
465 perform this test on oldval instead, checking whether an
466 invalid replacement took place before we got here. */
467 gcc_assert (!(GET_CODE (oldval) == SUBREG
468 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
469 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
470 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
471 }
472
473 if (undobuf.frees)
474 buf = undobuf.frees, undobuf.frees = buf->next;
475 else
476 buf = xmalloc (sizeof (struct undo));
477
478 buf->is_int = 0;
479 buf->where.r = into;
480 buf->old_contents.r = oldval;
481 *into = newval;
482
483 buf->next = undobuf.undos, undobuf.undos = buf;
484 }
485
486 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
487
488 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
489 for the value of a HOST_WIDE_INT value (including CONST_INT) is
490 not safe. */
491
492 static void
493 do_SUBST_INT (int *into, int newval)
494 {
495 struct undo *buf;
496 int oldval = *into;
497
498 if (oldval == newval)
499 return;
500
501 if (undobuf.frees)
502 buf = undobuf.frees, undobuf.frees = buf->next;
503 else
504 buf = xmalloc (sizeof (struct undo));
505
506 buf->is_int = 1;
507 buf->where.i = into;
508 buf->old_contents.i = oldval;
509 *into = newval;
510
511 buf->next = undobuf.undos, undobuf.undos = buf;
512 }
513
514 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
515 \f
516 /* Subroutine of try_combine. Determine whether the combine replacement
517 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
518 that the original instruction sequence I1, I2 and I3. Note that I1
519 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
520 costs of all instructions can be estimated, and the replacements are
521 more expensive than the original sequence. */
522
523 static bool
524 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
525 {
526 int i1_cost, i2_cost, i3_cost;
527 int new_i2_cost, new_i3_cost;
528 int old_cost, new_cost;
529
530 /* Lookup the original insn_rtx_costs. */
531 i2_cost = INSN_UID (i2) <= last_insn_cost
532 ? uid_insn_cost[INSN_UID (i2)] : 0;
533 i3_cost = INSN_UID (i3) <= last_insn_cost
534 ? uid_insn_cost[INSN_UID (i3)] : 0;
535
536 if (i1)
537 {
538 i1_cost = INSN_UID (i1) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i1)] : 0;
540 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
541 ? i1_cost + i2_cost + i3_cost : 0;
542 }
543 else
544 {
545 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
546 i1_cost = 0;
547 }
548
549 /* Calculate the replacement insn_rtx_costs. */
550 new_i3_cost = insn_rtx_cost (newpat);
551 if (newi2pat)
552 {
553 new_i2_cost = insn_rtx_cost (newi2pat);
554 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
555 ? new_i2_cost + new_i3_cost : 0;
556 }
557 else
558 {
559 new_cost = new_i3_cost;
560 new_i2_cost = 0;
561 }
562
563 if (undobuf.other_insn)
564 {
565 int old_other_cost, new_other_cost;
566
567 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
568 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
569 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
570 if (old_other_cost > 0 && new_other_cost > 0)
571 {
572 old_cost += old_other_cost;
573 new_cost += new_other_cost;
574 }
575 else
576 old_cost = 0;
577 }
578
579 /* Disallow this recombination if both new_cost and old_cost are
580 greater than zero, and new_cost is greater than old cost. */
581 if (old_cost > 0
582 && new_cost > old_cost)
583 {
584 if (dump_file)
585 {
586 if (i1)
587 {
588 fprintf (dump_file,
589 "rejecting combination of insns %d, %d and %d\n",
590 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
591 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
592 i1_cost, i2_cost, i3_cost, old_cost);
593 }
594 else
595 {
596 fprintf (dump_file,
597 "rejecting combination of insns %d and %d\n",
598 INSN_UID (i2), INSN_UID (i3));
599 fprintf (dump_file, "original costs %d + %d = %d\n",
600 i2_cost, i3_cost, old_cost);
601 }
602
603 if (newi2pat)
604 {
605 fprintf (dump_file, "replacement costs %d + %d = %d\n",
606 new_i2_cost, new_i3_cost, new_cost);
607 }
608 else
609 fprintf (dump_file, "replacement cost %d\n", new_cost);
610 }
611
612 return false;
613 }
614
615 /* Update the uid_insn_cost array with the replacement costs. */
616 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
617 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
618 if (i1)
619 uid_insn_cost[INSN_UID (i1)] = 0;
620
621 return true;
622 }
623 \f
624 /* Main entry point for combiner. F is the first insn of the function.
625 NREGS is the first unused pseudo-reg number.
626
627 Return nonzero if the combiner has turned an indirect jump
628 instruction into a direct jump. */
629 int
630 combine_instructions (rtx f, unsigned int nregs)
631 {
632 rtx insn, next;
633 #ifdef HAVE_cc0
634 rtx prev;
635 #endif
636 int i;
637 rtx links, nextlinks;
638
639 int new_direct_jump_p = 0;
640
641 combine_attempts = 0;
642 combine_merges = 0;
643 combine_extras = 0;
644 combine_successes = 0;
645
646 combine_max_regno = nregs;
647
648 rtl_hooks = combine_rtl_hooks;
649
650 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
651
652 init_recog_no_volatile ();
653
654 /* Compute maximum uid value so uid_cuid can be allocated. */
655
656 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
657 if (INSN_UID (insn) > i)
658 i = INSN_UID (insn);
659
660 uid_cuid = xmalloc ((i + 1) * sizeof (int));
661 max_uid_cuid = i;
662
663 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
664
665 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
666 problems when, for example, we have j <<= 1 in a loop. */
667
668 nonzero_sign_valid = 0;
669
670 /* Compute the mapping from uids to cuids.
671 Cuids are numbers assigned to insns, like uids,
672 except that cuids increase monotonically through the code.
673
674 Scan all SETs and see if we can deduce anything about what
675 bits are known to be zero for some registers and how many copies
676 of the sign bit are known to exist for those registers.
677
678 Also set any known values so that we can use it while searching
679 for what bits are known to be set. */
680
681 label_tick = 1;
682
683 setup_incoming_promotions ();
684
685 refresh_blocks = sbitmap_alloc (last_basic_block);
686 sbitmap_zero (refresh_blocks);
687
688 /* Allocate array of current insn_rtx_costs. */
689 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
690 last_insn_cost = max_uid_cuid;
691
692 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
693 {
694 uid_cuid[INSN_UID (insn)] = ++i;
695 subst_low_cuid = i;
696 subst_insn = insn;
697
698 if (INSN_P (insn))
699 {
700 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
701 NULL);
702 record_dead_and_set_regs (insn);
703
704 #ifdef AUTO_INC_DEC
705 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
706 if (REG_NOTE_KIND (links) == REG_INC)
707 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
708 NULL);
709 #endif
710
711 /* Record the current insn_rtx_cost of this instruction. */
712 if (NONJUMP_INSN_P (insn))
713 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
714 if (dump_file)
715 fprintf(dump_file, "insn_cost %d: %d\n",
716 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
717 }
718
719 if (LABEL_P (insn))
720 label_tick++;
721 }
722
723 nonzero_sign_valid = 1;
724
725 /* Now scan all the insns in forward order. */
726
727 label_tick = 1;
728 last_call_cuid = 0;
729 mem_last_set = 0;
730 init_reg_last ();
731 setup_incoming_promotions ();
732
733 FOR_EACH_BB (this_basic_block)
734 {
735 for (insn = BB_HEAD (this_basic_block);
736 insn != NEXT_INSN (BB_END (this_basic_block));
737 insn = next ? next : NEXT_INSN (insn))
738 {
739 next = 0;
740
741 if (LABEL_P (insn))
742 label_tick++;
743
744 else if (INSN_P (insn))
745 {
746 /* See if we know about function return values before this
747 insn based upon SUBREG flags. */
748 check_promoted_subreg (insn, PATTERN (insn));
749
750 /* Try this insn with each insn it links back to. */
751
752 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
753 if ((next = try_combine (insn, XEXP (links, 0),
754 NULL_RTX, &new_direct_jump_p)) != 0)
755 goto retry;
756
757 /* Try each sequence of three linked insns ending with this one. */
758
759 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
760 {
761 rtx link = XEXP (links, 0);
762
763 /* If the linked insn has been replaced by a note, then there
764 is no point in pursuing this chain any further. */
765 if (NOTE_P (link))
766 continue;
767
768 for (nextlinks = LOG_LINKS (link);
769 nextlinks;
770 nextlinks = XEXP (nextlinks, 1))
771 if ((next = try_combine (insn, link,
772 XEXP (nextlinks, 0),
773 &new_direct_jump_p)) != 0)
774 goto retry;
775 }
776
777 #ifdef HAVE_cc0
778 /* Try to combine a jump insn that uses CC0
779 with a preceding insn that sets CC0, and maybe with its
780 logical predecessor as well.
781 This is how we make decrement-and-branch insns.
782 We need this special code because data flow connections
783 via CC0 do not get entered in LOG_LINKS. */
784
785 if (JUMP_P (insn)
786 && (prev = prev_nonnote_insn (insn)) != 0
787 && NONJUMP_INSN_P (prev)
788 && sets_cc0_p (PATTERN (prev)))
789 {
790 if ((next = try_combine (insn, prev,
791 NULL_RTX, &new_direct_jump_p)) != 0)
792 goto retry;
793
794 for (nextlinks = LOG_LINKS (prev); nextlinks;
795 nextlinks = XEXP (nextlinks, 1))
796 if ((next = try_combine (insn, prev,
797 XEXP (nextlinks, 0),
798 &new_direct_jump_p)) != 0)
799 goto retry;
800 }
801
802 /* Do the same for an insn that explicitly references CC0. */
803 if (NONJUMP_INSN_P (insn)
804 && (prev = prev_nonnote_insn (insn)) != 0
805 && NONJUMP_INSN_P (prev)
806 && sets_cc0_p (PATTERN (prev))
807 && GET_CODE (PATTERN (insn)) == SET
808 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
809 {
810 if ((next = try_combine (insn, prev,
811 NULL_RTX, &new_direct_jump_p)) != 0)
812 goto retry;
813
814 for (nextlinks = LOG_LINKS (prev); nextlinks;
815 nextlinks = XEXP (nextlinks, 1))
816 if ((next = try_combine (insn, prev,
817 XEXP (nextlinks, 0),
818 &new_direct_jump_p)) != 0)
819 goto retry;
820 }
821
822 /* Finally, see if any of the insns that this insn links to
823 explicitly references CC0. If so, try this insn, that insn,
824 and its predecessor if it sets CC0. */
825 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
826 if (NONJUMP_INSN_P (XEXP (links, 0))
827 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
828 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
829 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
830 && NONJUMP_INSN_P (prev)
831 && sets_cc0_p (PATTERN (prev))
832 && (next = try_combine (insn, XEXP (links, 0),
833 prev, &new_direct_jump_p)) != 0)
834 goto retry;
835 #endif
836
837 /* Try combining an insn with two different insns whose results it
838 uses. */
839 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
840 for (nextlinks = XEXP (links, 1); nextlinks;
841 nextlinks = XEXP (nextlinks, 1))
842 if ((next = try_combine (insn, XEXP (links, 0),
843 XEXP (nextlinks, 0),
844 &new_direct_jump_p)) != 0)
845 goto retry;
846
847 /* Try this insn with each REG_EQUAL note it links back to. */
848 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
849 {
850 rtx set, note;
851 rtx temp = XEXP (links, 0);
852 if ((set = single_set (temp)) != 0
853 && (note = find_reg_equal_equiv_note (temp)) != 0
854 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
855 /* Avoid using a register that may already been marked
856 dead by an earlier instruction. */
857 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
858 {
859 /* Temporarily replace the set's source with the
860 contents of the REG_EQUAL note. The insn will
861 be deleted or recognized by try_combine. */
862 rtx orig = SET_SRC (set);
863 SET_SRC (set) = XEXP (note, 0);
864 next = try_combine (insn, temp, NULL_RTX,
865 &new_direct_jump_p);
866 if (next)
867 goto retry;
868 SET_SRC (set) = orig;
869 }
870 }
871
872 if (!NOTE_P (insn))
873 record_dead_and_set_regs (insn);
874
875 retry:
876 ;
877 }
878 }
879 }
880 clear_bb_flags ();
881
882 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
883 BASIC_BLOCK (i)->flags |= BB_DIRTY);
884 new_direct_jump_p |= purge_all_dead_edges (0);
885 delete_noop_moves ();
886
887 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
888 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
889 | PROP_KILL_DEAD_CODE);
890
891 /* Clean up. */
892 sbitmap_free (refresh_blocks);
893 free (uid_insn_cost);
894 free (reg_stat);
895 free (uid_cuid);
896
897 {
898 struct undo *undo, *next;
899 for (undo = undobuf.frees; undo; undo = next)
900 {
901 next = undo->next;
902 free (undo);
903 }
904 undobuf.frees = 0;
905 }
906
907 total_attempts += combine_attempts;
908 total_merges += combine_merges;
909 total_extras += combine_extras;
910 total_successes += combine_successes;
911
912 nonzero_sign_valid = 0;
913 rtl_hooks = general_rtl_hooks;
914
915 /* Make recognizer allow volatile MEMs again. */
916 init_recog ();
917
918 return new_direct_jump_p;
919 }
920
921 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
922
923 static void
924 init_reg_last (void)
925 {
926 unsigned int i;
927 for (i = 0; i < combine_max_regno; i++)
928 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
929 }
930 \f
931 /* Set up any promoted values for incoming argument registers. */
932
933 static void
934 setup_incoming_promotions (void)
935 {
936 unsigned int regno;
937 rtx reg;
938 enum machine_mode mode;
939 int unsignedp;
940 rtx first = get_insns ();
941
942 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
943 {
944 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
945 /* Check whether this register can hold an incoming pointer
946 argument. FUNCTION_ARG_REGNO_P tests outgoing register
947 numbers, so translate if necessary due to register windows. */
948 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
949 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
950 {
951 record_value_for_reg
952 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
953 : SIGN_EXTEND),
954 GET_MODE (reg),
955 gen_rtx_CLOBBER (mode, const0_rtx)));
956 }
957 }
958 }
959 \f
960 /* Called via note_stores. If X is a pseudo that is narrower than
961 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
962
963 If we are setting only a portion of X and we can't figure out what
964 portion, assume all bits will be used since we don't know what will
965 be happening.
966
967 Similarly, set how many bits of X are known to be copies of the sign bit
968 at all locations in the function. This is the smallest number implied
969 by any set of X. */
970
971 static void
972 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
973 void *data ATTRIBUTE_UNUSED)
974 {
975 unsigned int num;
976
977 if (REG_P (x)
978 && REGNO (x) >= FIRST_PSEUDO_REGISTER
979 /* If this register is undefined at the start of the file, we can't
980 say what its contents were. */
981 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
982 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
983 {
984 if (set == 0 || GET_CODE (set) == CLOBBER)
985 {
986 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
987 reg_stat[REGNO (x)].sign_bit_copies = 1;
988 return;
989 }
990
991 /* If this is a complex assignment, see if we can convert it into a
992 simple assignment. */
993 set = expand_field_assignment (set);
994
995 /* If this is a simple assignment, or we have a paradoxical SUBREG,
996 set what we know about X. */
997
998 if (SET_DEST (set) == x
999 || (GET_CODE (SET_DEST (set)) == SUBREG
1000 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1001 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1002 && SUBREG_REG (SET_DEST (set)) == x))
1003 {
1004 rtx src = SET_SRC (set);
1005
1006 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1007 /* If X is narrower than a word and SRC is a non-negative
1008 constant that would appear negative in the mode of X,
1009 sign-extend it for use in reg_stat[].nonzero_bits because some
1010 machines (maybe most) will actually do the sign-extension
1011 and this is the conservative approach.
1012
1013 ??? For 2.5, try to tighten up the MD files in this regard
1014 instead of this kludge. */
1015
1016 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1017 && GET_CODE (src) == CONST_INT
1018 && INTVAL (src) > 0
1019 && 0 != (INTVAL (src)
1020 & ((HOST_WIDE_INT) 1
1021 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1022 src = GEN_INT (INTVAL (src)
1023 | ((HOST_WIDE_INT) (-1)
1024 << GET_MODE_BITSIZE (GET_MODE (x))));
1025 #endif
1026
1027 /* Don't call nonzero_bits if it cannot change anything. */
1028 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1029 reg_stat[REGNO (x)].nonzero_bits
1030 |= nonzero_bits (src, nonzero_bits_mode);
1031 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1032 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1033 || reg_stat[REGNO (x)].sign_bit_copies > num)
1034 reg_stat[REGNO (x)].sign_bit_copies = num;
1035 }
1036 else
1037 {
1038 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1039 reg_stat[REGNO (x)].sign_bit_copies = 1;
1040 }
1041 }
1042 }
1043 \f
1044 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1045 insns that were previously combined into I3 or that will be combined
1046 into the merger of INSN and I3.
1047
1048 Return 0 if the combination is not allowed for any reason.
1049
1050 If the combination is allowed, *PDEST will be set to the single
1051 destination of INSN and *PSRC to the single source, and this function
1052 will return 1. */
1053
1054 static int
1055 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1056 rtx *pdest, rtx *psrc)
1057 {
1058 int i;
1059 rtx set = 0, src, dest;
1060 rtx p;
1061 #ifdef AUTO_INC_DEC
1062 rtx link;
1063 #endif
1064 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1065 && next_active_insn (succ) == i3)
1066 : next_active_insn (insn) == i3);
1067
1068 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1069 or a PARALLEL consisting of such a SET and CLOBBERs.
1070
1071 If INSN has CLOBBER parallel parts, ignore them for our processing.
1072 By definition, these happen during the execution of the insn. When it
1073 is merged with another insn, all bets are off. If they are, in fact,
1074 needed and aren't also supplied in I3, they may be added by
1075 recog_for_combine. Otherwise, it won't match.
1076
1077 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1078 note.
1079
1080 Get the source and destination of INSN. If more than one, can't
1081 combine. */
1082
1083 if (GET_CODE (PATTERN (insn)) == SET)
1084 set = PATTERN (insn);
1085 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1086 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1087 {
1088 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1089 {
1090 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1091 rtx note;
1092
1093 switch (GET_CODE (elt))
1094 {
1095 /* This is important to combine floating point insns
1096 for the SH4 port. */
1097 case USE:
1098 /* Combining an isolated USE doesn't make sense.
1099 We depend here on combinable_i3pat to reject them. */
1100 /* The code below this loop only verifies that the inputs of
1101 the SET in INSN do not change. We call reg_set_between_p
1102 to verify that the REG in the USE does not change between
1103 I3 and INSN.
1104 If the USE in INSN was for a pseudo register, the matching
1105 insn pattern will likely match any register; combining this
1106 with any other USE would only be safe if we knew that the
1107 used registers have identical values, or if there was
1108 something to tell them apart, e.g. different modes. For
1109 now, we forgo such complicated tests and simply disallow
1110 combining of USES of pseudo registers with any other USE. */
1111 if (REG_P (XEXP (elt, 0))
1112 && GET_CODE (PATTERN (i3)) == PARALLEL)
1113 {
1114 rtx i3pat = PATTERN (i3);
1115 int i = XVECLEN (i3pat, 0) - 1;
1116 unsigned int regno = REGNO (XEXP (elt, 0));
1117
1118 do
1119 {
1120 rtx i3elt = XVECEXP (i3pat, 0, i);
1121
1122 if (GET_CODE (i3elt) == USE
1123 && REG_P (XEXP (i3elt, 0))
1124 && (REGNO (XEXP (i3elt, 0)) == regno
1125 ? reg_set_between_p (XEXP (elt, 0),
1126 PREV_INSN (insn), i3)
1127 : regno >= FIRST_PSEUDO_REGISTER))
1128 return 0;
1129 }
1130 while (--i >= 0);
1131 }
1132 break;
1133
1134 /* We can ignore CLOBBERs. */
1135 case CLOBBER:
1136 break;
1137
1138 case SET:
1139 /* Ignore SETs whose result isn't used but not those that
1140 have side-effects. */
1141 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1142 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1143 || INTVAL (XEXP (note, 0)) <= 0)
1144 && ! side_effects_p (elt))
1145 break;
1146
1147 /* If we have already found a SET, this is a second one and
1148 so we cannot combine with this insn. */
1149 if (set)
1150 return 0;
1151
1152 set = elt;
1153 break;
1154
1155 default:
1156 /* Anything else means we can't combine. */
1157 return 0;
1158 }
1159 }
1160
1161 if (set == 0
1162 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1163 so don't do anything with it. */
1164 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1165 return 0;
1166 }
1167 else
1168 return 0;
1169
1170 if (set == 0)
1171 return 0;
1172
1173 set = expand_field_assignment (set);
1174 src = SET_SRC (set), dest = SET_DEST (set);
1175
1176 /* Don't eliminate a store in the stack pointer. */
1177 if (dest == stack_pointer_rtx
1178 /* Don't combine with an insn that sets a register to itself if it has
1179 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1180 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1181 /* Can't merge an ASM_OPERANDS. */
1182 || GET_CODE (src) == ASM_OPERANDS
1183 /* Can't merge a function call. */
1184 || GET_CODE (src) == CALL
1185 /* Don't eliminate a function call argument. */
1186 || (CALL_P (i3)
1187 && (find_reg_fusage (i3, USE, dest)
1188 || (REG_P (dest)
1189 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1190 && global_regs[REGNO (dest)])))
1191 /* Don't substitute into an incremented register. */
1192 || FIND_REG_INC_NOTE (i3, dest)
1193 || (succ && FIND_REG_INC_NOTE (succ, dest))
1194 /* Don't substitute into a non-local goto, this confuses CFG. */
1195 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1196 #if 0
1197 /* Don't combine the end of a libcall into anything. */
1198 /* ??? This gives worse code, and appears to be unnecessary, since no
1199 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1200 use REG_RETVAL notes for noconflict blocks, but other code here
1201 makes sure that those insns don't disappear. */
1202 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1203 #endif
1204 /* Make sure that DEST is not used after SUCC but before I3. */
1205 || (succ && ! all_adjacent
1206 && reg_used_between_p (dest, succ, i3))
1207 /* Make sure that the value that is to be substituted for the register
1208 does not use any registers whose values alter in between. However,
1209 If the insns are adjacent, a use can't cross a set even though we
1210 think it might (this can happen for a sequence of insns each setting
1211 the same destination; last_set of that register might point to
1212 a NOTE). If INSN has a REG_EQUIV note, the register is always
1213 equivalent to the memory so the substitution is valid even if there
1214 are intervening stores. Also, don't move a volatile asm or
1215 UNSPEC_VOLATILE across any other insns. */
1216 || (! all_adjacent
1217 && (((!MEM_P (src)
1218 || ! find_reg_note (insn, REG_EQUIV, src))
1219 && use_crosses_set_p (src, INSN_CUID (insn)))
1220 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1221 || GET_CODE (src) == UNSPEC_VOLATILE))
1222 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1223 better register allocation by not doing the combine. */
1224 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1225 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1226 /* Don't combine across a CALL_INSN, because that would possibly
1227 change whether the life span of some REGs crosses calls or not,
1228 and it is a pain to update that information.
1229 Exception: if source is a constant, moving it later can't hurt.
1230 Accept that special case, because it helps -fforce-addr a lot. */
1231 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1232 return 0;
1233
1234 /* DEST must either be a REG or CC0. */
1235 if (REG_P (dest))
1236 {
1237 /* If register alignment is being enforced for multi-word items in all
1238 cases except for parameters, it is possible to have a register copy
1239 insn referencing a hard register that is not allowed to contain the
1240 mode being copied and which would not be valid as an operand of most
1241 insns. Eliminate this problem by not combining with such an insn.
1242
1243 Also, on some machines we don't want to extend the life of a hard
1244 register. */
1245
1246 if (REG_P (src)
1247 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1248 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1249 /* Don't extend the life of a hard register unless it is
1250 user variable (if we have few registers) or it can't
1251 fit into the desired register (meaning something special
1252 is going on).
1253 Also avoid substituting a return register into I3, because
1254 reload can't handle a conflict with constraints of other
1255 inputs. */
1256 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1257 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1258 return 0;
1259 }
1260 else if (GET_CODE (dest) != CC0)
1261 return 0;
1262
1263
1264 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1265 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1266 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1267 {
1268 /* Don't substitute for a register intended as a clobberable
1269 operand. */
1270 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1271 if (rtx_equal_p (reg, dest))
1272 return 0;
1273
1274 /* If the clobber represents an earlyclobber operand, we must not
1275 substitute an expression containing the clobbered register.
1276 As we do not analyse the constraint strings here, we have to
1277 make the conservative assumption. However, if the register is
1278 a fixed hard reg, the clobber cannot represent any operand;
1279 we leave it up to the machine description to either accept or
1280 reject use-and-clobber patterns. */
1281 if (!REG_P (reg)
1282 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1283 || !fixed_regs[REGNO (reg)])
1284 if (reg_overlap_mentioned_p (reg, src))
1285 return 0;
1286 }
1287
1288 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1289 or not), reject, unless nothing volatile comes between it and I3 */
1290
1291 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1292 {
1293 /* Make sure succ doesn't contain a volatile reference. */
1294 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1295 return 0;
1296
1297 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1298 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1299 return 0;
1300 }
1301
1302 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1303 to be an explicit register variable, and was chosen for a reason. */
1304
1305 if (GET_CODE (src) == ASM_OPERANDS
1306 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1307 return 0;
1308
1309 /* If there are any volatile insns between INSN and I3, reject, because
1310 they might affect machine state. */
1311
1312 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1313 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1314 return 0;
1315
1316 /* If INSN or I2 contains an autoincrement or autodecrement,
1317 make sure that register is not used between there and I3,
1318 and not already used in I3 either.
1319 Also insist that I3 not be a jump; if it were one
1320 and the incremented register were spilled, we would lose. */
1321
1322 #ifdef AUTO_INC_DEC
1323 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1324 if (REG_NOTE_KIND (link) == REG_INC
1325 && (JUMP_P (i3)
1326 || reg_used_between_p (XEXP (link, 0), insn, i3)
1327 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1328 return 0;
1329 #endif
1330
1331 #ifdef HAVE_cc0
1332 /* Don't combine an insn that follows a CC0-setting insn.
1333 An insn that uses CC0 must not be separated from the one that sets it.
1334 We do, however, allow I2 to follow a CC0-setting insn if that insn
1335 is passed as I1; in that case it will be deleted also.
1336 We also allow combining in this case if all the insns are adjacent
1337 because that would leave the two CC0 insns adjacent as well.
1338 It would be more logical to test whether CC0 occurs inside I1 or I2,
1339 but that would be much slower, and this ought to be equivalent. */
1340
1341 p = prev_nonnote_insn (insn);
1342 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1343 && ! all_adjacent)
1344 return 0;
1345 #endif
1346
1347 /* If we get here, we have passed all the tests and the combination is
1348 to be allowed. */
1349
1350 *pdest = dest;
1351 *psrc = src;
1352
1353 return 1;
1354 }
1355 \f
1356 /* LOC is the location within I3 that contains its pattern or the component
1357 of a PARALLEL of the pattern. We validate that it is valid for combining.
1358
1359 One problem is if I3 modifies its output, as opposed to replacing it
1360 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1361 so would produce an insn that is not equivalent to the original insns.
1362
1363 Consider:
1364
1365 (set (reg:DI 101) (reg:DI 100))
1366 (set (subreg:SI (reg:DI 101) 0) <foo>)
1367
1368 This is NOT equivalent to:
1369
1370 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1371 (set (reg:DI 101) (reg:DI 100))])
1372
1373 Not only does this modify 100 (in which case it might still be valid
1374 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1375
1376 We can also run into a problem if I2 sets a register that I1
1377 uses and I1 gets directly substituted into I3 (not via I2). In that
1378 case, we would be getting the wrong value of I2DEST into I3, so we
1379 must reject the combination. This case occurs when I2 and I1 both
1380 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1381 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1382 of a SET must prevent combination from occurring.
1383
1384 Before doing the above check, we first try to expand a field assignment
1385 into a set of logical operations.
1386
1387 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1388 we place a register that is both set and used within I3. If more than one
1389 such register is detected, we fail.
1390
1391 Return 1 if the combination is valid, zero otherwise. */
1392
1393 static int
1394 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1395 int i1_not_in_src, rtx *pi3dest_killed)
1396 {
1397 rtx x = *loc;
1398
1399 if (GET_CODE (x) == SET)
1400 {
1401 rtx set = x ;
1402 rtx dest = SET_DEST (set);
1403 rtx src = SET_SRC (set);
1404 rtx inner_dest = dest;
1405
1406 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1407 || GET_CODE (inner_dest) == SUBREG
1408 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1409 inner_dest = XEXP (inner_dest, 0);
1410
1411 /* Check for the case where I3 modifies its output, as discussed
1412 above. We don't want to prevent pseudos from being combined
1413 into the address of a MEM, so only prevent the combination if
1414 i1 or i2 set the same MEM. */
1415 if ((inner_dest != dest &&
1416 (!MEM_P (inner_dest)
1417 || rtx_equal_p (i2dest, inner_dest)
1418 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1419 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1420 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1421
1422 /* This is the same test done in can_combine_p except we can't test
1423 all_adjacent; we don't have to, since this instruction will stay
1424 in place, thus we are not considering increasing the lifetime of
1425 INNER_DEST.
1426
1427 Also, if this insn sets a function argument, combining it with
1428 something that might need a spill could clobber a previous
1429 function argument; the all_adjacent test in can_combine_p also
1430 checks this; here, we do a more specific test for this case. */
1431
1432 || (REG_P (inner_dest)
1433 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1434 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1435 GET_MODE (inner_dest))))
1436 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1437 return 0;
1438
1439 /* If DEST is used in I3, it is being killed in this insn,
1440 so record that for later.
1441 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1442 STACK_POINTER_REGNUM, since these are always considered to be
1443 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1444 if (pi3dest_killed && REG_P (dest)
1445 && reg_referenced_p (dest, PATTERN (i3))
1446 && REGNO (dest) != FRAME_POINTER_REGNUM
1447 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1448 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1449 #endif
1450 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1451 && (REGNO (dest) != ARG_POINTER_REGNUM
1452 || ! fixed_regs [REGNO (dest)])
1453 #endif
1454 && REGNO (dest) != STACK_POINTER_REGNUM)
1455 {
1456 if (*pi3dest_killed)
1457 return 0;
1458
1459 *pi3dest_killed = dest;
1460 }
1461 }
1462
1463 else if (GET_CODE (x) == PARALLEL)
1464 {
1465 int i;
1466
1467 for (i = 0; i < XVECLEN (x, 0); i++)
1468 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1469 i1_not_in_src, pi3dest_killed))
1470 return 0;
1471 }
1472
1473 return 1;
1474 }
1475 \f
1476 /* Return 1 if X is an arithmetic expression that contains a multiplication
1477 and division. We don't count multiplications by powers of two here. */
1478
1479 static int
1480 contains_muldiv (rtx x)
1481 {
1482 switch (GET_CODE (x))
1483 {
1484 case MOD: case DIV: case UMOD: case UDIV:
1485 return 1;
1486
1487 case MULT:
1488 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1489 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1490 default:
1491 if (BINARY_P (x))
1492 return contains_muldiv (XEXP (x, 0))
1493 || contains_muldiv (XEXP (x, 1));
1494
1495 if (UNARY_P (x))
1496 return contains_muldiv (XEXP (x, 0));
1497
1498 return 0;
1499 }
1500 }
1501 \f
1502 /* Determine whether INSN can be used in a combination. Return nonzero if
1503 not. This is used in try_combine to detect early some cases where we
1504 can't perform combinations. */
1505
1506 static int
1507 cant_combine_insn_p (rtx insn)
1508 {
1509 rtx set;
1510 rtx src, dest;
1511
1512 /* If this isn't really an insn, we can't do anything.
1513 This can occur when flow deletes an insn that it has merged into an
1514 auto-increment address. */
1515 if (! INSN_P (insn))
1516 return 1;
1517
1518 /* Never combine loads and stores involving hard regs that are likely
1519 to be spilled. The register allocator can usually handle such
1520 reg-reg moves by tying. If we allow the combiner to make
1521 substitutions of likely-spilled regs, we may abort in reload.
1522 As an exception, we allow combinations involving fixed regs; these are
1523 not available to the register allocator so there's no risk involved. */
1524
1525 set = single_set (insn);
1526 if (! set)
1527 return 0;
1528 src = SET_SRC (set);
1529 dest = SET_DEST (set);
1530 if (GET_CODE (src) == SUBREG)
1531 src = SUBREG_REG (src);
1532 if (GET_CODE (dest) == SUBREG)
1533 dest = SUBREG_REG (dest);
1534 if (REG_P (src) && REG_P (dest)
1535 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1536 && ! fixed_regs[REGNO (src)]
1537 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1538 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1539 && ! fixed_regs[REGNO (dest)]
1540 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1541 return 1;
1542
1543 return 0;
1544 }
1545
1546 /* Adjust INSN after we made a change to its destination.
1547
1548 Changing the destination can invalidate notes that say something about
1549 the results of the insn and a LOG_LINK pointing to the insn. */
1550
1551 static void
1552 adjust_for_new_dest (rtx insn)
1553 {
1554 rtx *loc;
1555
1556 /* For notes, be conservative and simply remove them. */
1557 loc = &REG_NOTES (insn);
1558 while (*loc)
1559 {
1560 enum reg_note kind = REG_NOTE_KIND (*loc);
1561 if (kind == REG_EQUAL || kind == REG_EQUIV)
1562 *loc = XEXP (*loc, 1);
1563 else
1564 loc = &XEXP (*loc, 1);
1565 }
1566
1567 /* The new insn will have a destination that was previously the destination
1568 of an insn just above it. Call distribute_links to make a LOG_LINK from
1569 the next use of that destination. */
1570 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1571 }
1572
1573 /* Try to combine the insns I1 and I2 into I3.
1574 Here I1 and I2 appear earlier than I3.
1575 I1 can be zero; then we combine just I2 into I3.
1576
1577 If we are combining three insns and the resulting insn is not recognized,
1578 try splitting it into two insns. If that happens, I2 and I3 are retained
1579 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1580 are pseudo-deleted.
1581
1582 Return 0 if the combination does not work. Then nothing is changed.
1583 If we did the combination, return the insn at which combine should
1584 resume scanning.
1585
1586 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1587 new direct jump instruction. */
1588
1589 static rtx
1590 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1591 {
1592 /* New patterns for I3 and I2, respectively. */
1593 rtx newpat, newi2pat = 0;
1594 int substed_i2 = 0, substed_i1 = 0;
1595 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1596 int added_sets_1, added_sets_2;
1597 /* Total number of SETs to put into I3. */
1598 int total_sets;
1599 /* Nonzero if I2's body now appears in I3. */
1600 int i2_is_used;
1601 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1602 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1603 /* Contains I3 if the destination of I3 is used in its source, which means
1604 that the old life of I3 is being killed. If that usage is placed into
1605 I2 and not in I3, a REG_DEAD note must be made. */
1606 rtx i3dest_killed = 0;
1607 /* SET_DEST and SET_SRC of I2 and I1. */
1608 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1609 /* PATTERN (I2), or a copy of it in certain cases. */
1610 rtx i2pat;
1611 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1612 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1613 int i1_feeds_i3 = 0;
1614 /* Notes that must be added to REG_NOTES in I3 and I2. */
1615 rtx new_i3_notes, new_i2_notes;
1616 /* Notes that we substituted I3 into I2 instead of the normal case. */
1617 int i3_subst_into_i2 = 0;
1618 /* Notes that I1, I2 or I3 is a MULT operation. */
1619 int have_mult = 0;
1620 int swap_i2i3 = 0;
1621
1622 int maxreg;
1623 rtx temp;
1624 rtx link;
1625 int i;
1626
1627 /* Exit early if one of the insns involved can't be used for
1628 combinations. */
1629 if (cant_combine_insn_p (i3)
1630 || cant_combine_insn_p (i2)
1631 || (i1 && cant_combine_insn_p (i1))
1632 /* We also can't do anything if I3 has a
1633 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1634 libcall. */
1635 #if 0
1636 /* ??? This gives worse code, and appears to be unnecessary, since no
1637 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1638 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1639 #endif
1640 )
1641 return 0;
1642
1643 combine_attempts++;
1644 undobuf.other_insn = 0;
1645
1646 /* Reset the hard register usage information. */
1647 CLEAR_HARD_REG_SET (newpat_used_regs);
1648
1649 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1650 code below, set I1 to be the earlier of the two insns. */
1651 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1652 temp = i1, i1 = i2, i2 = temp;
1653
1654 added_links_insn = 0;
1655
1656 /* First check for one important special-case that the code below will
1657 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1658 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1659 we may be able to replace that destination with the destination of I3.
1660 This occurs in the common code where we compute both a quotient and
1661 remainder into a structure, in which case we want to do the computation
1662 directly into the structure to avoid register-register copies.
1663
1664 Note that this case handles both multiple sets in I2 and also
1665 cases where I2 has a number of CLOBBER or PARALLELs.
1666
1667 We make very conservative checks below and only try to handle the
1668 most common cases of this. For example, we only handle the case
1669 where I2 and I3 are adjacent to avoid making difficult register
1670 usage tests. */
1671
1672 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1673 && REG_P (SET_SRC (PATTERN (i3)))
1674 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1675 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1676 && GET_CODE (PATTERN (i2)) == PARALLEL
1677 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1678 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1679 below would need to check what is inside (and reg_overlap_mentioned_p
1680 doesn't support those codes anyway). Don't allow those destinations;
1681 the resulting insn isn't likely to be recognized anyway. */
1682 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1683 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1684 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1685 SET_DEST (PATTERN (i3)))
1686 && next_real_insn (i2) == i3)
1687 {
1688 rtx p2 = PATTERN (i2);
1689
1690 /* Make sure that the destination of I3,
1691 which we are going to substitute into one output of I2,
1692 is not used within another output of I2. We must avoid making this:
1693 (parallel [(set (mem (reg 69)) ...)
1694 (set (reg 69) ...)])
1695 which is not well-defined as to order of actions.
1696 (Besides, reload can't handle output reloads for this.)
1697
1698 The problem can also happen if the dest of I3 is a memory ref,
1699 if another dest in I2 is an indirect memory ref. */
1700 for (i = 0; i < XVECLEN (p2, 0); i++)
1701 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1702 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1703 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1704 SET_DEST (XVECEXP (p2, 0, i))))
1705 break;
1706
1707 if (i == XVECLEN (p2, 0))
1708 for (i = 0; i < XVECLEN (p2, 0); i++)
1709 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1710 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1711 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1712 {
1713 combine_merges++;
1714
1715 subst_insn = i3;
1716 subst_low_cuid = INSN_CUID (i2);
1717
1718 added_sets_2 = added_sets_1 = 0;
1719 i2dest = SET_SRC (PATTERN (i3));
1720
1721 /* Replace the dest in I2 with our dest and make the resulting
1722 insn the new pattern for I3. Then skip to where we
1723 validate the pattern. Everything was set up above. */
1724 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1725 SET_DEST (PATTERN (i3)));
1726
1727 newpat = p2;
1728 i3_subst_into_i2 = 1;
1729 goto validate_replacement;
1730 }
1731 }
1732
1733 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1734 one of those words to another constant, merge them by making a new
1735 constant. */
1736 if (i1 == 0
1737 && (temp = single_set (i2)) != 0
1738 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1739 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1740 && REG_P (SET_DEST (temp))
1741 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1742 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1743 && GET_CODE (PATTERN (i3)) == SET
1744 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1745 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1746 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1747 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1748 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1749 {
1750 HOST_WIDE_INT lo, hi;
1751
1752 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1753 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1754 else
1755 {
1756 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1757 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1758 }
1759
1760 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1761 {
1762 /* We don't handle the case of the target word being wider
1763 than a host wide int. */
1764 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1765
1766 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1767 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1768 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1769 }
1770 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1771 hi = INTVAL (SET_SRC (PATTERN (i3)));
1772 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1773 {
1774 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1775 >> (HOST_BITS_PER_WIDE_INT - 1));
1776
1777 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1778 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1779 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1780 (INTVAL (SET_SRC (PATTERN (i3)))));
1781 if (hi == sign)
1782 hi = lo < 0 ? -1 : 0;
1783 }
1784 else
1785 /* We don't handle the case of the higher word not fitting
1786 entirely in either hi or lo. */
1787 gcc_unreachable ();
1788
1789 combine_merges++;
1790 subst_insn = i3;
1791 subst_low_cuid = INSN_CUID (i2);
1792 added_sets_2 = added_sets_1 = 0;
1793 i2dest = SET_DEST (temp);
1794
1795 SUBST (SET_SRC (temp),
1796 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1797
1798 newpat = PATTERN (i2);
1799 goto validate_replacement;
1800 }
1801
1802 #ifndef HAVE_cc0
1803 /* If we have no I1 and I2 looks like:
1804 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1805 (set Y OP)])
1806 make up a dummy I1 that is
1807 (set Y OP)
1808 and change I2 to be
1809 (set (reg:CC X) (compare:CC Y (const_int 0)))
1810
1811 (We can ignore any trailing CLOBBERs.)
1812
1813 This undoes a previous combination and allows us to match a branch-and-
1814 decrement insn. */
1815
1816 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1817 && XVECLEN (PATTERN (i2), 0) >= 2
1818 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1819 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1820 == MODE_CC)
1821 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1822 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1823 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1824 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1825 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1826 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1827 {
1828 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1829 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1830 break;
1831
1832 if (i == 1)
1833 {
1834 /* We make I1 with the same INSN_UID as I2. This gives it
1835 the same INSN_CUID for value tracking. Our fake I1 will
1836 never appear in the insn stream so giving it the same INSN_UID
1837 as I2 will not cause a problem. */
1838
1839 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1840 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1841 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1842 NULL_RTX);
1843
1844 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1845 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1846 SET_DEST (PATTERN (i1)));
1847 }
1848 }
1849 #endif
1850
1851 /* Verify that I2 and I1 are valid for combining. */
1852 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1853 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1854 {
1855 undo_all ();
1856 return 0;
1857 }
1858
1859 /* Record whether I2DEST is used in I2SRC and similarly for the other
1860 cases. Knowing this will help in register status updating below. */
1861 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1862 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1863 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1864
1865 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1866 in I2SRC. */
1867 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1868
1869 /* Ensure that I3's pattern can be the destination of combines. */
1870 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1871 i1 && i2dest_in_i1src && i1_feeds_i3,
1872 &i3dest_killed))
1873 {
1874 undo_all ();
1875 return 0;
1876 }
1877
1878 /* See if any of the insns is a MULT operation. Unless one is, we will
1879 reject a combination that is, since it must be slower. Be conservative
1880 here. */
1881 if (GET_CODE (i2src) == MULT
1882 || (i1 != 0 && GET_CODE (i1src) == MULT)
1883 || (GET_CODE (PATTERN (i3)) == SET
1884 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1885 have_mult = 1;
1886
1887 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1888 We used to do this EXCEPT in one case: I3 has a post-inc in an
1889 output operand. However, that exception can give rise to insns like
1890 mov r3,(r3)+
1891 which is a famous insn on the PDP-11 where the value of r3 used as the
1892 source was model-dependent. Avoid this sort of thing. */
1893
1894 #if 0
1895 if (!(GET_CODE (PATTERN (i3)) == SET
1896 && REG_P (SET_SRC (PATTERN (i3)))
1897 && MEM_P (SET_DEST (PATTERN (i3)))
1898 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1899 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1900 /* It's not the exception. */
1901 #endif
1902 #ifdef AUTO_INC_DEC
1903 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1904 if (REG_NOTE_KIND (link) == REG_INC
1905 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1906 || (i1 != 0
1907 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1908 {
1909 undo_all ();
1910 return 0;
1911 }
1912 #endif
1913
1914 /* See if the SETs in I1 or I2 need to be kept around in the merged
1915 instruction: whenever the value set there is still needed past I3.
1916 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1917
1918 For the SET in I1, we have two cases: If I1 and I2 independently
1919 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1920 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1921 in I1 needs to be kept around unless I1DEST dies or is set in either
1922 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1923 I1DEST. If so, we know I1 feeds into I2. */
1924
1925 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1926
1927 added_sets_1
1928 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1929 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1930
1931 /* If the set in I2 needs to be kept around, we must make a copy of
1932 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1933 PATTERN (I2), we are only substituting for the original I1DEST, not into
1934 an already-substituted copy. This also prevents making self-referential
1935 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1936 I2DEST. */
1937
1938 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1939 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1940 : PATTERN (i2));
1941
1942 if (added_sets_2)
1943 i2pat = copy_rtx (i2pat);
1944
1945 combine_merges++;
1946
1947 /* Substitute in the latest insn for the regs set by the earlier ones. */
1948
1949 maxreg = max_reg_num ();
1950
1951 subst_insn = i3;
1952
1953 /* It is possible that the source of I2 or I1 may be performing an
1954 unneeded operation, such as a ZERO_EXTEND of something that is known
1955 to have the high part zero. Handle that case by letting subst look at
1956 the innermost one of them.
1957
1958 Another way to do this would be to have a function that tries to
1959 simplify a single insn instead of merging two or more insns. We don't
1960 do this because of the potential of infinite loops and because
1961 of the potential extra memory required. However, doing it the way
1962 we are is a bit of a kludge and doesn't catch all cases.
1963
1964 But only do this if -fexpensive-optimizations since it slows things down
1965 and doesn't usually win. */
1966
1967 if (flag_expensive_optimizations)
1968 {
1969 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1970 if (i1)
1971 {
1972 subst_low_cuid = INSN_CUID (i1);
1973 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1974 }
1975 else
1976 {
1977 subst_low_cuid = INSN_CUID (i2);
1978 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1979 }
1980 }
1981
1982 #ifndef HAVE_cc0
1983 /* Many machines that don't use CC0 have insns that can both perform an
1984 arithmetic operation and set the condition code. These operations will
1985 be represented as a PARALLEL with the first element of the vector
1986 being a COMPARE of an arithmetic operation with the constant zero.
1987 The second element of the vector will set some pseudo to the result
1988 of the same arithmetic operation. If we simplify the COMPARE, we won't
1989 match such a pattern and so will generate an extra insn. Here we test
1990 for this case, where both the comparison and the operation result are
1991 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1992 I2SRC. Later we will make the PARALLEL that contains I2. */
1993
1994 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1995 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1996 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1997 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1998 {
1999 #ifdef SELECT_CC_MODE
2000 rtx *cc_use;
2001 enum machine_mode compare_mode;
2002 #endif
2003
2004 newpat = PATTERN (i3);
2005 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2006
2007 i2_is_used = 1;
2008
2009 #ifdef SELECT_CC_MODE
2010 /* See if a COMPARE with the operand we substituted in should be done
2011 with the mode that is currently being used. If not, do the same
2012 processing we do in `subst' for a SET; namely, if the destination
2013 is used only once, try to replace it with a register of the proper
2014 mode and also replace the COMPARE. */
2015 if (undobuf.other_insn == 0
2016 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2017 &undobuf.other_insn))
2018 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2019 i2src, const0_rtx))
2020 != GET_MODE (SET_DEST (newpat))))
2021 {
2022 unsigned int regno = REGNO (SET_DEST (newpat));
2023 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2024
2025 if (regno < FIRST_PSEUDO_REGISTER
2026 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2027 && ! REG_USERVAR_P (SET_DEST (newpat))))
2028 {
2029 if (regno >= FIRST_PSEUDO_REGISTER)
2030 SUBST (regno_reg_rtx[regno], new_dest);
2031
2032 SUBST (SET_DEST (newpat), new_dest);
2033 SUBST (XEXP (*cc_use, 0), new_dest);
2034 SUBST (SET_SRC (newpat),
2035 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2036 }
2037 else
2038 undobuf.other_insn = 0;
2039 }
2040 #endif
2041 }
2042 else
2043 #endif
2044 {
2045 n_occurrences = 0; /* `subst' counts here */
2046
2047 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2048 need to make a unique copy of I2SRC each time we substitute it
2049 to avoid self-referential rtl. */
2050
2051 subst_low_cuid = INSN_CUID (i2);
2052 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2053 ! i1_feeds_i3 && i1dest_in_i1src);
2054 substed_i2 = 1;
2055
2056 /* Record whether i2's body now appears within i3's body. */
2057 i2_is_used = n_occurrences;
2058 }
2059
2060 /* If we already got a failure, don't try to do more. Otherwise,
2061 try to substitute in I1 if we have it. */
2062
2063 if (i1 && GET_CODE (newpat) != CLOBBER)
2064 {
2065 /* Before we can do this substitution, we must redo the test done
2066 above (see detailed comments there) that ensures that I1DEST
2067 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2068
2069 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2070 0, (rtx*) 0))
2071 {
2072 undo_all ();
2073 return 0;
2074 }
2075
2076 n_occurrences = 0;
2077 subst_low_cuid = INSN_CUID (i1);
2078 newpat = subst (newpat, i1dest, i1src, 0, 0);
2079 substed_i1 = 1;
2080 }
2081
2082 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2083 to count all the ways that I2SRC and I1SRC can be used. */
2084 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2085 && i2_is_used + added_sets_2 > 1)
2086 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2087 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2088 > 1))
2089 /* Fail if we tried to make a new register (we used to abort, but there's
2090 really no reason to). */
2091 || max_reg_num () != maxreg
2092 /* Fail if we couldn't do something and have a CLOBBER. */
2093 || GET_CODE (newpat) == CLOBBER
2094 /* Fail if this new pattern is a MULT and we didn't have one before
2095 at the outer level. */
2096 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2097 && ! have_mult))
2098 {
2099 undo_all ();
2100 return 0;
2101 }
2102
2103 /* If the actions of the earlier insns must be kept
2104 in addition to substituting them into the latest one,
2105 we must make a new PARALLEL for the latest insn
2106 to hold additional the SETs. */
2107
2108 if (added_sets_1 || added_sets_2)
2109 {
2110 combine_extras++;
2111
2112 if (GET_CODE (newpat) == PARALLEL)
2113 {
2114 rtvec old = XVEC (newpat, 0);
2115 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2116 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2117 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2118 sizeof (old->elem[0]) * old->num_elem);
2119 }
2120 else
2121 {
2122 rtx old = newpat;
2123 total_sets = 1 + added_sets_1 + added_sets_2;
2124 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2125 XVECEXP (newpat, 0, 0) = old;
2126 }
2127
2128 if (added_sets_1)
2129 XVECEXP (newpat, 0, --total_sets)
2130 = (GET_CODE (PATTERN (i1)) == PARALLEL
2131 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2132
2133 if (added_sets_2)
2134 {
2135 /* If there is no I1, use I2's body as is. We used to also not do
2136 the subst call below if I2 was substituted into I3,
2137 but that could lose a simplification. */
2138 if (i1 == 0)
2139 XVECEXP (newpat, 0, --total_sets) = i2pat;
2140 else
2141 /* See comment where i2pat is assigned. */
2142 XVECEXP (newpat, 0, --total_sets)
2143 = subst (i2pat, i1dest, i1src, 0, 0);
2144 }
2145 }
2146
2147 /* We come here when we are replacing a destination in I2 with the
2148 destination of I3. */
2149 validate_replacement:
2150
2151 /* Note which hard regs this insn has as inputs. */
2152 mark_used_regs_combine (newpat);
2153
2154 /* Is the result of combination a valid instruction? */
2155 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2156
2157 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2158 the second SET's destination is a register that is unused and isn't
2159 marked as an instruction that might trap in an EH region. In that case,
2160 we just need the first SET. This can occur when simplifying a divmod
2161 insn. We *must* test for this case here because the code below that
2162 splits two independent SETs doesn't handle this case correctly when it
2163 updates the register status.
2164
2165 It's pointless doing this if we originally had two sets, one from
2166 i3, and one from i2. Combining then splitting the parallel results
2167 in the original i2 again plus an invalid insn (which we delete).
2168 The net effect is only to move instructions around, which makes
2169 debug info less accurate.
2170
2171 Also check the case where the first SET's destination is unused.
2172 That would not cause incorrect code, but does cause an unneeded
2173 insn to remain. */
2174
2175 if (insn_code_number < 0
2176 && !(added_sets_2 && i1 == 0)
2177 && GET_CODE (newpat) == PARALLEL
2178 && XVECLEN (newpat, 0) == 2
2179 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2180 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2181 && asm_noperands (newpat) < 0)
2182 {
2183 rtx set0 = XVECEXP (newpat, 0, 0);
2184 rtx set1 = XVECEXP (newpat, 0, 1);
2185 rtx note;
2186
2187 if (((REG_P (SET_DEST (set1))
2188 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2189 || (GET_CODE (SET_DEST (set1)) == SUBREG
2190 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2191 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2192 || INTVAL (XEXP (note, 0)) <= 0)
2193 && ! side_effects_p (SET_SRC (set1)))
2194 {
2195 newpat = set0;
2196 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2197 }
2198
2199 else if (((REG_P (SET_DEST (set0))
2200 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2201 || (GET_CODE (SET_DEST (set0)) == SUBREG
2202 && find_reg_note (i3, REG_UNUSED,
2203 SUBREG_REG (SET_DEST (set0)))))
2204 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2205 || INTVAL (XEXP (note, 0)) <= 0)
2206 && ! side_effects_p (SET_SRC (set0)))
2207 {
2208 newpat = set1;
2209 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2210
2211 if (insn_code_number >= 0)
2212 {
2213 /* If we will be able to accept this, we have made a
2214 change to the destination of I3. This requires us to
2215 do a few adjustments. */
2216
2217 PATTERN (i3) = newpat;
2218 adjust_for_new_dest (i3);
2219 }
2220 }
2221 }
2222
2223 /* If we were combining three insns and the result is a simple SET
2224 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2225 insns. There are two ways to do this. It can be split using a
2226 machine-specific method (like when you have an addition of a large
2227 constant) or by combine in the function find_split_point. */
2228
2229 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2230 && asm_noperands (newpat) < 0)
2231 {
2232 rtx m_split, *split;
2233 rtx ni2dest = i2dest;
2234
2235 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2236 use I2DEST as a scratch register will help. In the latter case,
2237 convert I2DEST to the mode of the source of NEWPAT if we can. */
2238
2239 m_split = split_insns (newpat, i3);
2240
2241 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2242 inputs of NEWPAT. */
2243
2244 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2245 possible to try that as a scratch reg. This would require adding
2246 more code to make it work though. */
2247
2248 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2249 {
2250 /* If I2DEST is a hard register or the only use of a pseudo,
2251 we can change its mode. */
2252 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2253 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2254 && REG_P (i2dest)
2255 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2256 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2257 && ! REG_USERVAR_P (i2dest))))
2258 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2259 REGNO (i2dest));
2260
2261 m_split = split_insns (gen_rtx_PARALLEL
2262 (VOIDmode,
2263 gen_rtvec (2, newpat,
2264 gen_rtx_CLOBBER (VOIDmode,
2265 ni2dest))),
2266 i3);
2267 /* If the split with the mode-changed register didn't work, try
2268 the original register. */
2269 if (! m_split && ni2dest != i2dest)
2270 {
2271 ni2dest = i2dest;
2272 m_split = split_insns (gen_rtx_PARALLEL
2273 (VOIDmode,
2274 gen_rtvec (2, newpat,
2275 gen_rtx_CLOBBER (VOIDmode,
2276 i2dest))),
2277 i3);
2278 }
2279 }
2280
2281 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2282 {
2283 m_split = PATTERN (m_split);
2284 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2285 if (insn_code_number >= 0)
2286 newpat = m_split;
2287 }
2288 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2289 && (next_real_insn (i2) == i3
2290 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2291 {
2292 rtx i2set, i3set;
2293 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2294 newi2pat = PATTERN (m_split);
2295
2296 i3set = single_set (NEXT_INSN (m_split));
2297 i2set = single_set (m_split);
2298
2299 /* In case we changed the mode of I2DEST, replace it in the
2300 pseudo-register table here. We can't do it above in case this
2301 code doesn't get executed and we do a split the other way. */
2302
2303 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2304 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2305
2306 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2307
2308 /* If I2 or I3 has multiple SETs, we won't know how to track
2309 register status, so don't use these insns. If I2's destination
2310 is used between I2 and I3, we also can't use these insns. */
2311
2312 if (i2_code_number >= 0 && i2set && i3set
2313 && (next_real_insn (i2) == i3
2314 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2315 insn_code_number = recog_for_combine (&newi3pat, i3,
2316 &new_i3_notes);
2317 if (insn_code_number >= 0)
2318 newpat = newi3pat;
2319
2320 /* It is possible that both insns now set the destination of I3.
2321 If so, we must show an extra use of it. */
2322
2323 if (insn_code_number >= 0)
2324 {
2325 rtx new_i3_dest = SET_DEST (i3set);
2326 rtx new_i2_dest = SET_DEST (i2set);
2327
2328 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2329 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2330 || GET_CODE (new_i3_dest) == SUBREG)
2331 new_i3_dest = XEXP (new_i3_dest, 0);
2332
2333 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2334 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2335 || GET_CODE (new_i2_dest) == SUBREG)
2336 new_i2_dest = XEXP (new_i2_dest, 0);
2337
2338 if (REG_P (new_i3_dest)
2339 && REG_P (new_i2_dest)
2340 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2341 REG_N_SETS (REGNO (new_i2_dest))++;
2342 }
2343 }
2344
2345 /* If we can split it and use I2DEST, go ahead and see if that
2346 helps things be recognized. Verify that none of the registers
2347 are set between I2 and I3. */
2348 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2349 #ifdef HAVE_cc0
2350 && REG_P (i2dest)
2351 #endif
2352 /* We need I2DEST in the proper mode. If it is a hard register
2353 or the only use of a pseudo, we can change its mode. */
2354 && (GET_MODE (*split) == GET_MODE (i2dest)
2355 || GET_MODE (*split) == VOIDmode
2356 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2357 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2358 && ! REG_USERVAR_P (i2dest)))
2359 && (next_real_insn (i2) == i3
2360 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2361 /* We can't overwrite I2DEST if its value is still used by
2362 NEWPAT. */
2363 && ! reg_referenced_p (i2dest, newpat))
2364 {
2365 rtx newdest = i2dest;
2366 enum rtx_code split_code = GET_CODE (*split);
2367 enum machine_mode split_mode = GET_MODE (*split);
2368
2369 /* Get NEWDEST as a register in the proper mode. We have already
2370 validated that we can do this. */
2371 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2372 {
2373 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2374
2375 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2376 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2377 }
2378
2379 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2380 an ASHIFT. This can occur if it was inside a PLUS and hence
2381 appeared to be a memory address. This is a kludge. */
2382 if (split_code == MULT
2383 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2384 && INTVAL (XEXP (*split, 1)) > 0
2385 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2386 {
2387 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2388 XEXP (*split, 0), GEN_INT (i)));
2389 /* Update split_code because we may not have a multiply
2390 anymore. */
2391 split_code = GET_CODE (*split);
2392 }
2393
2394 #ifdef INSN_SCHEDULING
2395 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2396 be written as a ZERO_EXTEND. */
2397 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2398 {
2399 #ifdef LOAD_EXTEND_OP
2400 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2401 what it really is. */
2402 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2403 == SIGN_EXTEND)
2404 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2405 SUBREG_REG (*split)));
2406 else
2407 #endif
2408 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2409 SUBREG_REG (*split)));
2410 }
2411 #endif
2412
2413 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2414 SUBST (*split, newdest);
2415 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2416
2417 /* If the split point was a MULT and we didn't have one before,
2418 don't use one now. */
2419 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2420 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2421 }
2422 }
2423
2424 /* Check for a case where we loaded from memory in a narrow mode and
2425 then sign extended it, but we need both registers. In that case,
2426 we have a PARALLEL with both loads from the same memory location.
2427 We can split this into a load from memory followed by a register-register
2428 copy. This saves at least one insn, more if register allocation can
2429 eliminate the copy.
2430
2431 We cannot do this if the destination of the first assignment is a
2432 condition code register or cc0. We eliminate this case by making sure
2433 the SET_DEST and SET_SRC have the same mode.
2434
2435 We cannot do this if the destination of the second assignment is
2436 a register that we have already assumed is zero-extended. Similarly
2437 for a SUBREG of such a register. */
2438
2439 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2440 && GET_CODE (newpat) == PARALLEL
2441 && XVECLEN (newpat, 0) == 2
2442 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2443 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2444 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2445 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2446 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2447 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2448 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2449 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2450 INSN_CUID (i2))
2451 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2452 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2453 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2454 (REG_P (temp)
2455 && reg_stat[REGNO (temp)].nonzero_bits != 0
2456 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2457 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2458 && (reg_stat[REGNO (temp)].nonzero_bits
2459 != GET_MODE_MASK (word_mode))))
2460 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2461 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2462 (REG_P (temp)
2463 && reg_stat[REGNO (temp)].nonzero_bits != 0
2464 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2465 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2466 && (reg_stat[REGNO (temp)].nonzero_bits
2467 != GET_MODE_MASK (word_mode)))))
2468 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2469 SET_SRC (XVECEXP (newpat, 0, 1)))
2470 && ! find_reg_note (i3, REG_UNUSED,
2471 SET_DEST (XVECEXP (newpat, 0, 0))))
2472 {
2473 rtx ni2dest;
2474
2475 newi2pat = XVECEXP (newpat, 0, 0);
2476 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2477 newpat = XVECEXP (newpat, 0, 1);
2478 SUBST (SET_SRC (newpat),
2479 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2480 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2481
2482 if (i2_code_number >= 0)
2483 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2484
2485 if (insn_code_number >= 0)
2486 swap_i2i3 = 1;
2487 }
2488
2489 /* Similarly, check for a case where we have a PARALLEL of two independent
2490 SETs but we started with three insns. In this case, we can do the sets
2491 as two separate insns. This case occurs when some SET allows two
2492 other insns to combine, but the destination of that SET is still live. */
2493
2494 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2495 && GET_CODE (newpat) == PARALLEL
2496 && XVECLEN (newpat, 0) == 2
2497 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2498 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2499 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2500 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2501 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2503 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2504 INSN_CUID (i2))
2505 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2506 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2507 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2508 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2509 XVECEXP (newpat, 0, 0))
2510 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2511 XVECEXP (newpat, 0, 1))
2512 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2513 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2514 {
2515 /* Normally, it doesn't matter which of the two is done first,
2516 but it does if one references cc0. In that case, it has to
2517 be first. */
2518 #ifdef HAVE_cc0
2519 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2520 {
2521 newi2pat = XVECEXP (newpat, 0, 0);
2522 newpat = XVECEXP (newpat, 0, 1);
2523 }
2524 else
2525 #endif
2526 {
2527 newi2pat = XVECEXP (newpat, 0, 1);
2528 newpat = XVECEXP (newpat, 0, 0);
2529 }
2530
2531 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2532
2533 if (i2_code_number >= 0)
2534 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2535 }
2536
2537 /* If it still isn't recognized, fail and change things back the way they
2538 were. */
2539 if ((insn_code_number < 0
2540 /* Is the result a reasonable ASM_OPERANDS? */
2541 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2542 {
2543 undo_all ();
2544 return 0;
2545 }
2546
2547 /* If we had to change another insn, make sure it is valid also. */
2548 if (undobuf.other_insn)
2549 {
2550 rtx other_pat = PATTERN (undobuf.other_insn);
2551 rtx new_other_notes;
2552 rtx note, next;
2553
2554 CLEAR_HARD_REG_SET (newpat_used_regs);
2555
2556 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2557 &new_other_notes);
2558
2559 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2560 {
2561 undo_all ();
2562 return 0;
2563 }
2564
2565 PATTERN (undobuf.other_insn) = other_pat;
2566
2567 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2568 are still valid. Then add any non-duplicate notes added by
2569 recog_for_combine. */
2570 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2571 {
2572 next = XEXP (note, 1);
2573
2574 if (REG_NOTE_KIND (note) == REG_UNUSED
2575 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2576 {
2577 if (REG_P (XEXP (note, 0)))
2578 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2579
2580 remove_note (undobuf.other_insn, note);
2581 }
2582 }
2583
2584 for (note = new_other_notes; note; note = XEXP (note, 1))
2585 if (REG_P (XEXP (note, 0)))
2586 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2587
2588 distribute_notes (new_other_notes, undobuf.other_insn,
2589 undobuf.other_insn, NULL_RTX);
2590 }
2591 #ifdef HAVE_cc0
2592 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2593 they are adjacent to each other or not. */
2594 {
2595 rtx p = prev_nonnote_insn (i3);
2596 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2597 && sets_cc0_p (newi2pat))
2598 {
2599 undo_all ();
2600 return 0;
2601 }
2602 }
2603 #endif
2604
2605 /* Only allow this combination if insn_rtx_costs reports that the
2606 replacement instructions are cheaper than the originals. */
2607 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2608 {
2609 undo_all ();
2610 return 0;
2611 }
2612
2613 /* We now know that we can do this combination. Merge the insns and
2614 update the status of registers and LOG_LINKS. */
2615
2616 if (swap_i2i3)
2617 {
2618 rtx insn;
2619 rtx link;
2620 rtx ni2dest;
2621
2622 /* I3 now uses what used to be its destination and which is now
2623 I2's destination. This requires us to do a few adjustments. */
2624 PATTERN (i3) = newpat;
2625 adjust_for_new_dest (i3);
2626
2627 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2628 so we still will.
2629
2630 However, some later insn might be using I2's dest and have
2631 a LOG_LINK pointing at I3. We must remove this link.
2632 The simplest way to remove the link is to point it at I1,
2633 which we know will be a NOTE. */
2634
2635 /* newi2pat is usually a SET here; however, recog_for_combine might
2636 have added some clobbers. */
2637 if (GET_CODE (newi2pat) == PARALLEL)
2638 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2639 else
2640 ni2dest = SET_DEST (newi2pat);
2641
2642 for (insn = NEXT_INSN (i3);
2643 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2644 || insn != BB_HEAD (this_basic_block->next_bb));
2645 insn = NEXT_INSN (insn))
2646 {
2647 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2648 {
2649 for (link = LOG_LINKS (insn); link;
2650 link = XEXP (link, 1))
2651 if (XEXP (link, 0) == i3)
2652 XEXP (link, 0) = i1;
2653
2654 break;
2655 }
2656 }
2657 }
2658
2659 {
2660 rtx i3notes, i2notes, i1notes = 0;
2661 rtx i3links, i2links, i1links = 0;
2662 rtx midnotes = 0;
2663 unsigned int regno;
2664
2665 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2666 clear them. */
2667 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2668 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2669 if (i1)
2670 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2671
2672 /* Ensure that we do not have something that should not be shared but
2673 occurs multiple times in the new insns. Check this by first
2674 resetting all the `used' flags and then copying anything is shared. */
2675
2676 reset_used_flags (i3notes);
2677 reset_used_flags (i2notes);
2678 reset_used_flags (i1notes);
2679 reset_used_flags (newpat);
2680 reset_used_flags (newi2pat);
2681 if (undobuf.other_insn)
2682 reset_used_flags (PATTERN (undobuf.other_insn));
2683
2684 i3notes = copy_rtx_if_shared (i3notes);
2685 i2notes = copy_rtx_if_shared (i2notes);
2686 i1notes = copy_rtx_if_shared (i1notes);
2687 newpat = copy_rtx_if_shared (newpat);
2688 newi2pat = copy_rtx_if_shared (newi2pat);
2689 if (undobuf.other_insn)
2690 reset_used_flags (PATTERN (undobuf.other_insn));
2691
2692 INSN_CODE (i3) = insn_code_number;
2693 PATTERN (i3) = newpat;
2694
2695 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2696 {
2697 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2698
2699 reset_used_flags (call_usage);
2700 call_usage = copy_rtx (call_usage);
2701
2702 if (substed_i2)
2703 replace_rtx (call_usage, i2dest, i2src);
2704
2705 if (substed_i1)
2706 replace_rtx (call_usage, i1dest, i1src);
2707
2708 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2709 }
2710
2711 if (undobuf.other_insn)
2712 INSN_CODE (undobuf.other_insn) = other_code_number;
2713
2714 /* We had one special case above where I2 had more than one set and
2715 we replaced a destination of one of those sets with the destination
2716 of I3. In that case, we have to update LOG_LINKS of insns later
2717 in this basic block. Note that this (expensive) case is rare.
2718
2719 Also, in this case, we must pretend that all REG_NOTEs for I2
2720 actually came from I3, so that REG_UNUSED notes from I2 will be
2721 properly handled. */
2722
2723 if (i3_subst_into_i2)
2724 {
2725 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2726 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2727 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2728 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2729 && ! find_reg_note (i2, REG_UNUSED,
2730 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2731 for (temp = NEXT_INSN (i2);
2732 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2733 || BB_HEAD (this_basic_block) != temp);
2734 temp = NEXT_INSN (temp))
2735 if (temp != i3 && INSN_P (temp))
2736 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2737 if (XEXP (link, 0) == i2)
2738 XEXP (link, 0) = i3;
2739
2740 if (i3notes)
2741 {
2742 rtx link = i3notes;
2743 while (XEXP (link, 1))
2744 link = XEXP (link, 1);
2745 XEXP (link, 1) = i2notes;
2746 }
2747 else
2748 i3notes = i2notes;
2749 i2notes = 0;
2750 }
2751
2752 LOG_LINKS (i3) = 0;
2753 REG_NOTES (i3) = 0;
2754 LOG_LINKS (i2) = 0;
2755 REG_NOTES (i2) = 0;
2756
2757 if (newi2pat)
2758 {
2759 INSN_CODE (i2) = i2_code_number;
2760 PATTERN (i2) = newi2pat;
2761 }
2762 else
2763 SET_INSN_DELETED (i2);
2764
2765 if (i1)
2766 {
2767 LOG_LINKS (i1) = 0;
2768 REG_NOTES (i1) = 0;
2769 SET_INSN_DELETED (i1);
2770 }
2771
2772 /* Get death notes for everything that is now used in either I3 or
2773 I2 and used to die in a previous insn. If we built two new
2774 patterns, move from I1 to I2 then I2 to I3 so that we get the
2775 proper movement on registers that I2 modifies. */
2776
2777 if (newi2pat)
2778 {
2779 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2780 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2781 }
2782 else
2783 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2784 i3, &midnotes);
2785
2786 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2787 if (i3notes)
2788 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2789 if (i2notes)
2790 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2791 if (i1notes)
2792 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2793 if (midnotes)
2794 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2795
2796 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2797 know these are REG_UNUSED and want them to go to the desired insn,
2798 so we always pass it as i3. We have not counted the notes in
2799 reg_n_deaths yet, so we need to do so now. */
2800
2801 if (newi2pat && new_i2_notes)
2802 {
2803 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2804 if (REG_P (XEXP (temp, 0)))
2805 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2806
2807 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2808 }
2809
2810 if (new_i3_notes)
2811 {
2812 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2813 if (REG_P (XEXP (temp, 0)))
2814 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2815
2816 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2817 }
2818
2819 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2820 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2821 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2822 in that case, it might delete I2. Similarly for I2 and I1.
2823 Show an additional death due to the REG_DEAD note we make here. If
2824 we discard it in distribute_notes, we will decrement it again. */
2825
2826 if (i3dest_killed)
2827 {
2828 if (REG_P (i3dest_killed))
2829 REG_N_DEATHS (REGNO (i3dest_killed))++;
2830
2831 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2832 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2833 NULL_RTX),
2834 NULL_RTX, i2, NULL_RTX);
2835 else
2836 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2837 NULL_RTX),
2838 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2839 }
2840
2841 if (i2dest_in_i2src)
2842 {
2843 if (REG_P (i2dest))
2844 REG_N_DEATHS (REGNO (i2dest))++;
2845
2846 if (newi2pat && reg_set_p (i2dest, newi2pat))
2847 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2848 NULL_RTX, i2, NULL_RTX);
2849 else
2850 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2851 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2852 }
2853
2854 if (i1dest_in_i1src)
2855 {
2856 if (REG_P (i1dest))
2857 REG_N_DEATHS (REGNO (i1dest))++;
2858
2859 if (newi2pat && reg_set_p (i1dest, newi2pat))
2860 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2861 NULL_RTX, i2, NULL_RTX);
2862 else
2863 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2864 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2865 }
2866
2867 distribute_links (i3links);
2868 distribute_links (i2links);
2869 distribute_links (i1links);
2870
2871 if (REG_P (i2dest))
2872 {
2873 rtx link;
2874 rtx i2_insn = 0, i2_val = 0, set;
2875
2876 /* The insn that used to set this register doesn't exist, and
2877 this life of the register may not exist either. See if one of
2878 I3's links points to an insn that sets I2DEST. If it does,
2879 that is now the last known value for I2DEST. If we don't update
2880 this and I2 set the register to a value that depended on its old
2881 contents, we will get confused. If this insn is used, thing
2882 will be set correctly in combine_instructions. */
2883
2884 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2885 if ((set = single_set (XEXP (link, 0))) != 0
2886 && rtx_equal_p (i2dest, SET_DEST (set)))
2887 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2888
2889 record_value_for_reg (i2dest, i2_insn, i2_val);
2890
2891 /* If the reg formerly set in I2 died only once and that was in I3,
2892 zero its use count so it won't make `reload' do any work. */
2893 if (! added_sets_2
2894 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2895 && ! i2dest_in_i2src)
2896 {
2897 regno = REGNO (i2dest);
2898 REG_N_SETS (regno)--;
2899 }
2900 }
2901
2902 if (i1 && REG_P (i1dest))
2903 {
2904 rtx link;
2905 rtx i1_insn = 0, i1_val = 0, set;
2906
2907 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2908 if ((set = single_set (XEXP (link, 0))) != 0
2909 && rtx_equal_p (i1dest, SET_DEST (set)))
2910 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2911
2912 record_value_for_reg (i1dest, i1_insn, i1_val);
2913
2914 regno = REGNO (i1dest);
2915 if (! added_sets_1 && ! i1dest_in_i1src)
2916 REG_N_SETS (regno)--;
2917 }
2918
2919 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2920 been made to this insn. The order of
2921 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2922 can affect nonzero_bits of newpat */
2923 if (newi2pat)
2924 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2925 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2926
2927 /* Set new_direct_jump_p if a new return or simple jump instruction
2928 has been created.
2929
2930 If I3 is now an unconditional jump, ensure that it has a
2931 BARRIER following it since it may have initially been a
2932 conditional jump. It may also be the last nonnote insn. */
2933
2934 if (returnjump_p (i3) || any_uncondjump_p (i3))
2935 {
2936 *new_direct_jump_p = 1;
2937 mark_jump_label (PATTERN (i3), i3, 0);
2938
2939 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2940 || !BARRIER_P (temp))
2941 emit_barrier_after (i3);
2942 }
2943
2944 if (undobuf.other_insn != NULL_RTX
2945 && (returnjump_p (undobuf.other_insn)
2946 || any_uncondjump_p (undobuf.other_insn)))
2947 {
2948 *new_direct_jump_p = 1;
2949
2950 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2951 || !BARRIER_P (temp))
2952 emit_barrier_after (undobuf.other_insn);
2953 }
2954
2955 /* An NOOP jump does not need barrier, but it does need cleaning up
2956 of CFG. */
2957 if (GET_CODE (newpat) == SET
2958 && SET_SRC (newpat) == pc_rtx
2959 && SET_DEST (newpat) == pc_rtx)
2960 *new_direct_jump_p = 1;
2961 }
2962
2963 combine_successes++;
2964 undo_commit ();
2965
2966 if (added_links_insn
2967 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2968 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2969 return added_links_insn;
2970 else
2971 return newi2pat ? i2 : i3;
2972 }
2973 \f
2974 /* Undo all the modifications recorded in undobuf. */
2975
2976 static void
2977 undo_all (void)
2978 {
2979 struct undo *undo, *next;
2980
2981 for (undo = undobuf.undos; undo; undo = next)
2982 {
2983 next = undo->next;
2984 if (undo->is_int)
2985 *undo->where.i = undo->old_contents.i;
2986 else
2987 *undo->where.r = undo->old_contents.r;
2988
2989 undo->next = undobuf.frees;
2990 undobuf.frees = undo;
2991 }
2992
2993 undobuf.undos = 0;
2994 }
2995
2996 /* We've committed to accepting the changes we made. Move all
2997 of the undos to the free list. */
2998
2999 static void
3000 undo_commit (void)
3001 {
3002 struct undo *undo, *next;
3003
3004 for (undo = undobuf.undos; undo; undo = next)
3005 {
3006 next = undo->next;
3007 undo->next = undobuf.frees;
3008 undobuf.frees = undo;
3009 }
3010 undobuf.undos = 0;
3011 }
3012
3013 \f
3014 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3015 where we have an arithmetic expression and return that point. LOC will
3016 be inside INSN.
3017
3018 try_combine will call this function to see if an insn can be split into
3019 two insns. */
3020
3021 static rtx *
3022 find_split_point (rtx *loc, rtx insn)
3023 {
3024 rtx x = *loc;
3025 enum rtx_code code = GET_CODE (x);
3026 rtx *split;
3027 unsigned HOST_WIDE_INT len = 0;
3028 HOST_WIDE_INT pos = 0;
3029 int unsignedp = 0;
3030 rtx inner = NULL_RTX;
3031
3032 /* First special-case some codes. */
3033 switch (code)
3034 {
3035 case SUBREG:
3036 #ifdef INSN_SCHEDULING
3037 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3038 point. */
3039 if (MEM_P (SUBREG_REG (x)))
3040 return loc;
3041 #endif
3042 return find_split_point (&SUBREG_REG (x), insn);
3043
3044 case MEM:
3045 #ifdef HAVE_lo_sum
3046 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3047 using LO_SUM and HIGH. */
3048 if (GET_CODE (XEXP (x, 0)) == CONST
3049 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3050 {
3051 SUBST (XEXP (x, 0),
3052 gen_rtx_LO_SUM (Pmode,
3053 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3054 XEXP (x, 0)));
3055 return &XEXP (XEXP (x, 0), 0);
3056 }
3057 #endif
3058
3059 /* If we have a PLUS whose second operand is a constant and the
3060 address is not valid, perhaps will can split it up using
3061 the machine-specific way to split large constants. We use
3062 the first pseudo-reg (one of the virtual regs) as a placeholder;
3063 it will not remain in the result. */
3064 if (GET_CODE (XEXP (x, 0)) == PLUS
3065 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3066 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3067 {
3068 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3069 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3070 subst_insn);
3071
3072 /* This should have produced two insns, each of which sets our
3073 placeholder. If the source of the second is a valid address,
3074 we can make put both sources together and make a split point
3075 in the middle. */
3076
3077 if (seq
3078 && NEXT_INSN (seq) != NULL_RTX
3079 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3080 && NONJUMP_INSN_P (seq)
3081 && GET_CODE (PATTERN (seq)) == SET
3082 && SET_DEST (PATTERN (seq)) == reg
3083 && ! reg_mentioned_p (reg,
3084 SET_SRC (PATTERN (seq)))
3085 && NONJUMP_INSN_P (NEXT_INSN (seq))
3086 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3087 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3088 && memory_address_p (GET_MODE (x),
3089 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3090 {
3091 rtx src1 = SET_SRC (PATTERN (seq));
3092 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3093
3094 /* Replace the placeholder in SRC2 with SRC1. If we can
3095 find where in SRC2 it was placed, that can become our
3096 split point and we can replace this address with SRC2.
3097 Just try two obvious places. */
3098
3099 src2 = replace_rtx (src2, reg, src1);
3100 split = 0;
3101 if (XEXP (src2, 0) == src1)
3102 split = &XEXP (src2, 0);
3103 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3104 && XEXP (XEXP (src2, 0), 0) == src1)
3105 split = &XEXP (XEXP (src2, 0), 0);
3106
3107 if (split)
3108 {
3109 SUBST (XEXP (x, 0), src2);
3110 return split;
3111 }
3112 }
3113
3114 /* If that didn't work, perhaps the first operand is complex and
3115 needs to be computed separately, so make a split point there.
3116 This will occur on machines that just support REG + CONST
3117 and have a constant moved through some previous computation. */
3118
3119 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3120 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3121 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3122 return &XEXP (XEXP (x, 0), 0);
3123 }
3124 break;
3125
3126 case SET:
3127 #ifdef HAVE_cc0
3128 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3129 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3130 we need to put the operand into a register. So split at that
3131 point. */
3132
3133 if (SET_DEST (x) == cc0_rtx
3134 && GET_CODE (SET_SRC (x)) != COMPARE
3135 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3136 && !OBJECT_P (SET_SRC (x))
3137 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3138 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3139 return &SET_SRC (x);
3140 #endif
3141
3142 /* See if we can split SET_SRC as it stands. */
3143 split = find_split_point (&SET_SRC (x), insn);
3144 if (split && split != &SET_SRC (x))
3145 return split;
3146
3147 /* See if we can split SET_DEST as it stands. */
3148 split = find_split_point (&SET_DEST (x), insn);
3149 if (split && split != &SET_DEST (x))
3150 return split;
3151
3152 /* See if this is a bitfield assignment with everything constant. If
3153 so, this is an IOR of an AND, so split it into that. */
3154 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3155 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3156 <= HOST_BITS_PER_WIDE_INT)
3157 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3158 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3159 && GET_CODE (SET_SRC (x)) == CONST_INT
3160 && ((INTVAL (XEXP (SET_DEST (x), 1))
3161 + INTVAL (XEXP (SET_DEST (x), 2)))
3162 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3163 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3164 {
3165 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3166 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3167 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3168 rtx dest = XEXP (SET_DEST (x), 0);
3169 enum machine_mode mode = GET_MODE (dest);
3170 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3171
3172 if (BITS_BIG_ENDIAN)
3173 pos = GET_MODE_BITSIZE (mode) - len - pos;
3174
3175 if (src == mask)
3176 SUBST (SET_SRC (x),
3177 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3178 else
3179 SUBST (SET_SRC (x),
3180 gen_binary (IOR, mode,
3181 gen_binary (AND, mode, dest,
3182 gen_int_mode (~(mask << pos),
3183 mode)),
3184 GEN_INT (src << pos)));
3185
3186 SUBST (SET_DEST (x), dest);
3187
3188 split = find_split_point (&SET_SRC (x), insn);
3189 if (split && split != &SET_SRC (x))
3190 return split;
3191 }
3192
3193 /* Otherwise, see if this is an operation that we can split into two.
3194 If so, try to split that. */
3195 code = GET_CODE (SET_SRC (x));
3196
3197 switch (code)
3198 {
3199 case AND:
3200 /* If we are AND'ing with a large constant that is only a single
3201 bit and the result is only being used in a context where we
3202 need to know if it is zero or nonzero, replace it with a bit
3203 extraction. This will avoid the large constant, which might
3204 have taken more than one insn to make. If the constant were
3205 not a valid argument to the AND but took only one insn to make,
3206 this is no worse, but if it took more than one insn, it will
3207 be better. */
3208
3209 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3210 && REG_P (XEXP (SET_SRC (x), 0))
3211 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3212 && REG_P (SET_DEST (x))
3213 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3214 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3215 && XEXP (*split, 0) == SET_DEST (x)
3216 && XEXP (*split, 1) == const0_rtx)
3217 {
3218 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3219 XEXP (SET_SRC (x), 0),
3220 pos, NULL_RTX, 1, 1, 0, 0);
3221 if (extraction != 0)
3222 {
3223 SUBST (SET_SRC (x), extraction);
3224 return find_split_point (loc, insn);
3225 }
3226 }
3227 break;
3228
3229 case NE:
3230 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3231 is known to be on, this can be converted into a NEG of a shift. */
3232 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3233 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3234 && 1 <= (pos = exact_log2
3235 (nonzero_bits (XEXP (SET_SRC (x), 0),
3236 GET_MODE (XEXP (SET_SRC (x), 0))))))
3237 {
3238 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3239
3240 SUBST (SET_SRC (x),
3241 gen_rtx_NEG (mode,
3242 gen_rtx_LSHIFTRT (mode,
3243 XEXP (SET_SRC (x), 0),
3244 GEN_INT (pos))));
3245
3246 split = find_split_point (&SET_SRC (x), insn);
3247 if (split && split != &SET_SRC (x))
3248 return split;
3249 }
3250 break;
3251
3252 case SIGN_EXTEND:
3253 inner = XEXP (SET_SRC (x), 0);
3254
3255 /* We can't optimize if either mode is a partial integer
3256 mode as we don't know how many bits are significant
3257 in those modes. */
3258 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3259 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3260 break;
3261
3262 pos = 0;
3263 len = GET_MODE_BITSIZE (GET_MODE (inner));
3264 unsignedp = 0;
3265 break;
3266
3267 case SIGN_EXTRACT:
3268 case ZERO_EXTRACT:
3269 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3270 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3271 {
3272 inner = XEXP (SET_SRC (x), 0);
3273 len = INTVAL (XEXP (SET_SRC (x), 1));
3274 pos = INTVAL (XEXP (SET_SRC (x), 2));
3275
3276 if (BITS_BIG_ENDIAN)
3277 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3278 unsignedp = (code == ZERO_EXTRACT);
3279 }
3280 break;
3281
3282 default:
3283 break;
3284 }
3285
3286 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3287 {
3288 enum machine_mode mode = GET_MODE (SET_SRC (x));
3289
3290 /* For unsigned, we have a choice of a shift followed by an
3291 AND or two shifts. Use two shifts for field sizes where the
3292 constant might be too large. We assume here that we can
3293 always at least get 8-bit constants in an AND insn, which is
3294 true for every current RISC. */
3295
3296 if (unsignedp && len <= 8)
3297 {
3298 SUBST (SET_SRC (x),
3299 gen_rtx_AND (mode,
3300 gen_rtx_LSHIFTRT
3301 (mode, gen_lowpart (mode, inner),
3302 GEN_INT (pos)),
3303 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3304
3305 split = find_split_point (&SET_SRC (x), insn);
3306 if (split && split != &SET_SRC (x))
3307 return split;
3308 }
3309 else
3310 {
3311 SUBST (SET_SRC (x),
3312 gen_rtx_fmt_ee
3313 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3314 gen_rtx_ASHIFT (mode,
3315 gen_lowpart (mode, inner),
3316 GEN_INT (GET_MODE_BITSIZE (mode)
3317 - len - pos)),
3318 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3319
3320 split = find_split_point (&SET_SRC (x), insn);
3321 if (split && split != &SET_SRC (x))
3322 return split;
3323 }
3324 }
3325
3326 /* See if this is a simple operation with a constant as the second
3327 operand. It might be that this constant is out of range and hence
3328 could be used as a split point. */
3329 if (BINARY_P (SET_SRC (x))
3330 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3331 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3332 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3333 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3334 return &XEXP (SET_SRC (x), 1);
3335
3336 /* Finally, see if this is a simple operation with its first operand
3337 not in a register. The operation might require this operand in a
3338 register, so return it as a split point. We can always do this
3339 because if the first operand were another operation, we would have
3340 already found it as a split point. */
3341 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3342 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3343 return &XEXP (SET_SRC (x), 0);
3344
3345 return 0;
3346
3347 case AND:
3348 case IOR:
3349 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3350 it is better to write this as (not (ior A B)) so we can split it.
3351 Similarly for IOR. */
3352 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3353 {
3354 SUBST (*loc,
3355 gen_rtx_NOT (GET_MODE (x),
3356 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3357 GET_MODE (x),
3358 XEXP (XEXP (x, 0), 0),
3359 XEXP (XEXP (x, 1), 0))));
3360 return find_split_point (loc, insn);
3361 }
3362
3363 /* Many RISC machines have a large set of logical insns. If the
3364 second operand is a NOT, put it first so we will try to split the
3365 other operand first. */
3366 if (GET_CODE (XEXP (x, 1)) == NOT)
3367 {
3368 rtx tem = XEXP (x, 0);
3369 SUBST (XEXP (x, 0), XEXP (x, 1));
3370 SUBST (XEXP (x, 1), tem);
3371 }
3372 break;
3373
3374 default:
3375 break;
3376 }
3377
3378 /* Otherwise, select our actions depending on our rtx class. */
3379 switch (GET_RTX_CLASS (code))
3380 {
3381 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3382 case RTX_TERNARY:
3383 split = find_split_point (&XEXP (x, 2), insn);
3384 if (split)
3385 return split;
3386 /* ... fall through ... */
3387 case RTX_BIN_ARITH:
3388 case RTX_COMM_ARITH:
3389 case RTX_COMPARE:
3390 case RTX_COMM_COMPARE:
3391 split = find_split_point (&XEXP (x, 1), insn);
3392 if (split)
3393 return split;
3394 /* ... fall through ... */
3395 case RTX_UNARY:
3396 /* Some machines have (and (shift ...) ...) insns. If X is not
3397 an AND, but XEXP (X, 0) is, use it as our split point. */
3398 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3399 return &XEXP (x, 0);
3400
3401 split = find_split_point (&XEXP (x, 0), insn);
3402 if (split)
3403 return split;
3404 return loc;
3405
3406 default:
3407 /* Otherwise, we don't have a split point. */
3408 return 0;
3409 }
3410 }
3411 \f
3412 /* Throughout X, replace FROM with TO, and return the result.
3413 The result is TO if X is FROM;
3414 otherwise the result is X, but its contents may have been modified.
3415 If they were modified, a record was made in undobuf so that
3416 undo_all will (among other things) return X to its original state.
3417
3418 If the number of changes necessary is too much to record to undo,
3419 the excess changes are not made, so the result is invalid.
3420 The changes already made can still be undone.
3421 undobuf.num_undo is incremented for such changes, so by testing that
3422 the caller can tell whether the result is valid.
3423
3424 `n_occurrences' is incremented each time FROM is replaced.
3425
3426 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3427
3428 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3429 by copying if `n_occurrences' is nonzero. */
3430
3431 static rtx
3432 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3433 {
3434 enum rtx_code code = GET_CODE (x);
3435 enum machine_mode op0_mode = VOIDmode;
3436 const char *fmt;
3437 int len, i;
3438 rtx new;
3439
3440 /* Two expressions are equal if they are identical copies of a shared
3441 RTX or if they are both registers with the same register number
3442 and mode. */
3443
3444 #define COMBINE_RTX_EQUAL_P(X,Y) \
3445 ((X) == (Y) \
3446 || (REG_P (X) && REG_P (Y) \
3447 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3448
3449 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3450 {
3451 n_occurrences++;
3452 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3453 }
3454
3455 /* If X and FROM are the same register but different modes, they will
3456 not have been seen as equal above. However, flow.c will make a
3457 LOG_LINKS entry for that case. If we do nothing, we will try to
3458 rerecognize our original insn and, when it succeeds, we will
3459 delete the feeding insn, which is incorrect.
3460
3461 So force this insn not to match in this (rare) case. */
3462 if (! in_dest && code == REG && REG_P (from)
3463 && REGNO (x) == REGNO (from))
3464 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3465
3466 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3467 of which may contain things that can be combined. */
3468 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3469 return x;
3470
3471 /* It is possible to have a subexpression appear twice in the insn.
3472 Suppose that FROM is a register that appears within TO.
3473 Then, after that subexpression has been scanned once by `subst',
3474 the second time it is scanned, TO may be found. If we were
3475 to scan TO here, we would find FROM within it and create a
3476 self-referent rtl structure which is completely wrong. */
3477 if (COMBINE_RTX_EQUAL_P (x, to))
3478 return to;
3479
3480 /* Parallel asm_operands need special attention because all of the
3481 inputs are shared across the arms. Furthermore, unsharing the
3482 rtl results in recognition failures. Failure to handle this case
3483 specially can result in circular rtl.
3484
3485 Solve this by doing a normal pass across the first entry of the
3486 parallel, and only processing the SET_DESTs of the subsequent
3487 entries. Ug. */
3488
3489 if (code == PARALLEL
3490 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3491 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3492 {
3493 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3494
3495 /* If this substitution failed, this whole thing fails. */
3496 if (GET_CODE (new) == CLOBBER
3497 && XEXP (new, 0) == const0_rtx)
3498 return new;
3499
3500 SUBST (XVECEXP (x, 0, 0), new);
3501
3502 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3503 {
3504 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3505
3506 if (!REG_P (dest)
3507 && GET_CODE (dest) != CC0
3508 && GET_CODE (dest) != PC)
3509 {
3510 new = subst (dest, from, to, 0, unique_copy);
3511
3512 /* If this substitution failed, this whole thing fails. */
3513 if (GET_CODE (new) == CLOBBER
3514 && XEXP (new, 0) == const0_rtx)
3515 return new;
3516
3517 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3518 }
3519 }
3520 }
3521 else
3522 {
3523 len = GET_RTX_LENGTH (code);
3524 fmt = GET_RTX_FORMAT (code);
3525
3526 /* We don't need to process a SET_DEST that is a register, CC0,
3527 or PC, so set up to skip this common case. All other cases
3528 where we want to suppress replacing something inside a
3529 SET_SRC are handled via the IN_DEST operand. */
3530 if (code == SET
3531 && (REG_P (SET_DEST (x))
3532 || GET_CODE (SET_DEST (x)) == CC0
3533 || GET_CODE (SET_DEST (x)) == PC))
3534 fmt = "ie";
3535
3536 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3537 constant. */
3538 if (fmt[0] == 'e')
3539 op0_mode = GET_MODE (XEXP (x, 0));
3540
3541 for (i = 0; i < len; i++)
3542 {
3543 if (fmt[i] == 'E')
3544 {
3545 int j;
3546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3547 {
3548 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3549 {
3550 new = (unique_copy && n_occurrences
3551 ? copy_rtx (to) : to);
3552 n_occurrences++;
3553 }
3554 else
3555 {
3556 new = subst (XVECEXP (x, i, j), from, to, 0,
3557 unique_copy);
3558
3559 /* If this substitution failed, this whole thing
3560 fails. */
3561 if (GET_CODE (new) == CLOBBER
3562 && XEXP (new, 0) == const0_rtx)
3563 return new;
3564 }
3565
3566 SUBST (XVECEXP (x, i, j), new);
3567 }
3568 }
3569 else if (fmt[i] == 'e')
3570 {
3571 /* If this is a register being set, ignore it. */
3572 new = XEXP (x, i);
3573 if (in_dest
3574 && i == 0
3575 && (((code == SUBREG || code == ZERO_EXTRACT)
3576 && REG_P (new))
3577 || code == STRICT_LOW_PART))
3578 ;
3579
3580 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3581 {
3582 /* In general, don't install a subreg involving two
3583 modes not tieable. It can worsen register
3584 allocation, and can even make invalid reload
3585 insns, since the reg inside may need to be copied
3586 from in the outside mode, and that may be invalid
3587 if it is an fp reg copied in integer mode.
3588
3589 We allow two exceptions to this: It is valid if
3590 it is inside another SUBREG and the mode of that
3591 SUBREG and the mode of the inside of TO is
3592 tieable and it is valid if X is a SET that copies
3593 FROM to CC0. */
3594
3595 if (GET_CODE (to) == SUBREG
3596 && ! MODES_TIEABLE_P (GET_MODE (to),
3597 GET_MODE (SUBREG_REG (to)))
3598 && ! (code == SUBREG
3599 && MODES_TIEABLE_P (GET_MODE (x),
3600 GET_MODE (SUBREG_REG (to))))
3601 #ifdef HAVE_cc0
3602 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3603 #endif
3604 )
3605 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3606
3607 #ifdef CANNOT_CHANGE_MODE_CLASS
3608 if (code == SUBREG
3609 && REG_P (to)
3610 && REGNO (to) < FIRST_PSEUDO_REGISTER
3611 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3612 GET_MODE (to),
3613 GET_MODE (x)))
3614 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3615 #endif
3616
3617 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3618 n_occurrences++;
3619 }
3620 else
3621 /* If we are in a SET_DEST, suppress most cases unless we
3622 have gone inside a MEM, in which case we want to
3623 simplify the address. We assume here that things that
3624 are actually part of the destination have their inner
3625 parts in the first expression. This is true for SUBREG,
3626 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3627 things aside from REG and MEM that should appear in a
3628 SET_DEST. */
3629 new = subst (XEXP (x, i), from, to,
3630 (((in_dest
3631 && (code == SUBREG || code == STRICT_LOW_PART
3632 || code == ZERO_EXTRACT))
3633 || code == SET)
3634 && i == 0), unique_copy);
3635
3636 /* If we found that we will have to reject this combination,
3637 indicate that by returning the CLOBBER ourselves, rather than
3638 an expression containing it. This will speed things up as
3639 well as prevent accidents where two CLOBBERs are considered
3640 to be equal, thus producing an incorrect simplification. */
3641
3642 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3643 return new;
3644
3645 if (GET_CODE (x) == SUBREG
3646 && (GET_CODE (new) == CONST_INT
3647 || GET_CODE (new) == CONST_DOUBLE))
3648 {
3649 enum machine_mode mode = GET_MODE (x);
3650
3651 x = simplify_subreg (GET_MODE (x), new,
3652 GET_MODE (SUBREG_REG (x)),
3653 SUBREG_BYTE (x));
3654 if (! x)
3655 x = gen_rtx_CLOBBER (mode, const0_rtx);
3656 }
3657 else if (GET_CODE (new) == CONST_INT
3658 && GET_CODE (x) == ZERO_EXTEND)
3659 {
3660 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3661 new, GET_MODE (XEXP (x, 0)));
3662 gcc_assert (x);
3663 }
3664 else
3665 SUBST (XEXP (x, i), new);
3666 }
3667 }
3668 }
3669
3670 /* Try to simplify X. If the simplification changed the code, it is likely
3671 that further simplification will help, so loop, but limit the number
3672 of repetitions that will be performed. */
3673
3674 for (i = 0; i < 4; i++)
3675 {
3676 /* If X is sufficiently simple, don't bother trying to do anything
3677 with it. */
3678 if (code != CONST_INT && code != REG && code != CLOBBER)
3679 x = combine_simplify_rtx (x, op0_mode, in_dest);
3680
3681 if (GET_CODE (x) == code)
3682 break;
3683
3684 code = GET_CODE (x);
3685
3686 /* We no longer know the original mode of operand 0 since we
3687 have changed the form of X) */
3688 op0_mode = VOIDmode;
3689 }
3690
3691 return x;
3692 }
3693 \f
3694 /* Simplify X, a piece of RTL. We just operate on the expression at the
3695 outer level; call `subst' to simplify recursively. Return the new
3696 expression.
3697
3698 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3699 if we are inside a SET_DEST. */
3700
3701 static rtx
3702 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3703 {
3704 enum rtx_code code = GET_CODE (x);
3705 enum machine_mode mode = GET_MODE (x);
3706 rtx temp;
3707 rtx reversed;
3708 int i;
3709
3710 /* If this is a commutative operation, put a constant last and a complex
3711 expression first. We don't need to do this for comparisons here. */
3712 if (COMMUTATIVE_ARITH_P (x)
3713 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3714 {
3715 temp = XEXP (x, 0);
3716 SUBST (XEXP (x, 0), XEXP (x, 1));
3717 SUBST (XEXP (x, 1), temp);
3718 }
3719
3720 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3721 sign extension of a PLUS with a constant, reverse the order of the sign
3722 extension and the addition. Note that this not the same as the original
3723 code, but overflow is undefined for signed values. Also note that the
3724 PLUS will have been partially moved "inside" the sign-extension, so that
3725 the first operand of X will really look like:
3726 (ashiftrt (plus (ashift A C4) C5) C4).
3727 We convert this to
3728 (plus (ashiftrt (ashift A C4) C2) C4)
3729 and replace the first operand of X with that expression. Later parts
3730 of this function may simplify the expression further.
3731
3732 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3733 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3734 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3735
3736 We do this to simplify address expressions. */
3737
3738 if ((code == PLUS || code == MINUS || code == MULT)
3739 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3740 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3741 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3742 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3743 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3744 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3745 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3746 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3747 XEXP (XEXP (XEXP (x, 0), 0), 1),
3748 XEXP (XEXP (x, 0), 1))) != 0)
3749 {
3750 rtx new
3751 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3752 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3753 INTVAL (XEXP (XEXP (x, 0), 1)));
3754
3755 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3756 INTVAL (XEXP (XEXP (x, 0), 1)));
3757
3758 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3759 }
3760
3761 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3762 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3763 things. Check for cases where both arms are testing the same
3764 condition.
3765
3766 Don't do anything if all operands are very simple. */
3767
3768 if ((BINARY_P (x)
3769 && ((!OBJECT_P (XEXP (x, 0))
3770 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3771 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3772 || (!OBJECT_P (XEXP (x, 1))
3773 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3774 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3775 || (UNARY_P (x)
3776 && (!OBJECT_P (XEXP (x, 0))
3777 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3778 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3779 {
3780 rtx cond, true_rtx, false_rtx;
3781
3782 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3783 if (cond != 0
3784 /* If everything is a comparison, what we have is highly unlikely
3785 to be simpler, so don't use it. */
3786 && ! (COMPARISON_P (x)
3787 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3788 {
3789 rtx cop1 = const0_rtx;
3790 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3791
3792 if (cond_code == NE && COMPARISON_P (cond))
3793 return x;
3794
3795 /* Simplify the alternative arms; this may collapse the true and
3796 false arms to store-flag values. Be careful to use copy_rtx
3797 here since true_rtx or false_rtx might share RTL with x as a
3798 result of the if_then_else_cond call above. */
3799 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3800 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3801
3802 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3803 is unlikely to be simpler. */
3804 if (general_operand (true_rtx, VOIDmode)
3805 && general_operand (false_rtx, VOIDmode))
3806 {
3807 enum rtx_code reversed;
3808
3809 /* Restarting if we generate a store-flag expression will cause
3810 us to loop. Just drop through in this case. */
3811
3812 /* If the result values are STORE_FLAG_VALUE and zero, we can
3813 just make the comparison operation. */
3814 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3815 x = gen_binary (cond_code, mode, cond, cop1);
3816 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3817 && ((reversed = reversed_comparison_code_parts
3818 (cond_code, cond, cop1, NULL))
3819 != UNKNOWN))
3820 x = gen_binary (reversed, mode, cond, cop1);
3821
3822 /* Likewise, we can make the negate of a comparison operation
3823 if the result values are - STORE_FLAG_VALUE and zero. */
3824 else if (GET_CODE (true_rtx) == CONST_INT
3825 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3826 && false_rtx == const0_rtx)
3827 x = simplify_gen_unary (NEG, mode,
3828 gen_binary (cond_code, mode, cond,
3829 cop1),
3830 mode);
3831 else if (GET_CODE (false_rtx) == CONST_INT
3832 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3833 && true_rtx == const0_rtx
3834 && ((reversed = reversed_comparison_code_parts
3835 (cond_code, cond, cop1, NULL))
3836 != UNKNOWN))
3837 x = simplify_gen_unary (NEG, mode,
3838 gen_binary (reversed, mode,
3839 cond, cop1),
3840 mode);
3841 else
3842 return gen_rtx_IF_THEN_ELSE (mode,
3843 gen_binary (cond_code, VOIDmode,
3844 cond, cop1),
3845 true_rtx, false_rtx);
3846
3847 code = GET_CODE (x);
3848 op0_mode = VOIDmode;
3849 }
3850 }
3851 }
3852
3853 /* Try to fold this expression in case we have constants that weren't
3854 present before. */
3855 temp = 0;
3856 switch (GET_RTX_CLASS (code))
3857 {
3858 case RTX_UNARY:
3859 if (op0_mode == VOIDmode)
3860 op0_mode = GET_MODE (XEXP (x, 0));
3861 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3862 break;
3863 case RTX_COMPARE:
3864 case RTX_COMM_COMPARE:
3865 {
3866 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3867 if (cmp_mode == VOIDmode)
3868 {
3869 cmp_mode = GET_MODE (XEXP (x, 1));
3870 if (cmp_mode == VOIDmode)
3871 cmp_mode = op0_mode;
3872 }
3873 temp = simplify_relational_operation (code, mode, cmp_mode,
3874 XEXP (x, 0), XEXP (x, 1));
3875 }
3876 break;
3877 case RTX_COMM_ARITH:
3878 case RTX_BIN_ARITH:
3879 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3880 break;
3881 case RTX_BITFIELD_OPS:
3882 case RTX_TERNARY:
3883 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3884 XEXP (x, 1), XEXP (x, 2));
3885 break;
3886 default:
3887 break;
3888 }
3889
3890 if (temp)
3891 {
3892 x = temp;
3893 code = GET_CODE (temp);
3894 op0_mode = VOIDmode;
3895 mode = GET_MODE (temp);
3896 }
3897
3898 /* First see if we can apply the inverse distributive law. */
3899 if (code == PLUS || code == MINUS
3900 || code == AND || code == IOR || code == XOR)
3901 {
3902 x = apply_distributive_law (x);
3903 code = GET_CODE (x);
3904 op0_mode = VOIDmode;
3905 }
3906
3907 /* If CODE is an associative operation not otherwise handled, see if we
3908 can associate some operands. This can win if they are constants or
3909 if they are logically related (i.e. (a & b) & a). */
3910 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3911 || code == AND || code == IOR || code == XOR
3912 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3913 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3914 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3915 {
3916 if (GET_CODE (XEXP (x, 0)) == code)
3917 {
3918 rtx other = XEXP (XEXP (x, 0), 0);
3919 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3920 rtx inner_op1 = XEXP (x, 1);
3921 rtx inner;
3922
3923 /* Make sure we pass the constant operand if any as the second
3924 one if this is a commutative operation. */
3925 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3926 {
3927 rtx tem = inner_op0;
3928 inner_op0 = inner_op1;
3929 inner_op1 = tem;
3930 }
3931 inner = simplify_binary_operation (code == MINUS ? PLUS
3932 : code == DIV ? MULT
3933 : code,
3934 mode, inner_op0, inner_op1);
3935
3936 /* For commutative operations, try the other pair if that one
3937 didn't simplify. */
3938 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3939 {
3940 other = XEXP (XEXP (x, 0), 1);
3941 inner = simplify_binary_operation (code, mode,
3942 XEXP (XEXP (x, 0), 0),
3943 XEXP (x, 1));
3944 }
3945
3946 if (inner)
3947 return gen_binary (code, mode, other, inner);
3948 }
3949 }
3950
3951 /* A little bit of algebraic simplification here. */
3952 switch (code)
3953 {
3954 case MEM:
3955 /* Ensure that our address has any ASHIFTs converted to MULT in case
3956 address-recognizing predicates are called later. */
3957 temp = make_compound_operation (XEXP (x, 0), MEM);
3958 SUBST (XEXP (x, 0), temp);
3959 break;
3960
3961 case SUBREG:
3962 if (op0_mode == VOIDmode)
3963 op0_mode = GET_MODE (SUBREG_REG (x));
3964
3965 /* See if this can be moved to simplify_subreg. */
3966 if (CONSTANT_P (SUBREG_REG (x))
3967 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3968 /* Don't call gen_lowpart if the inner mode
3969 is VOIDmode and we cannot simplify it, as SUBREG without
3970 inner mode is invalid. */
3971 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3972 || gen_lowpart_common (mode, SUBREG_REG (x))))
3973 return gen_lowpart (mode, SUBREG_REG (x));
3974
3975 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3976 break;
3977 {
3978 rtx temp;
3979 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3980 SUBREG_BYTE (x));
3981 if (temp)
3982 return temp;
3983 }
3984
3985 /* Don't change the mode of the MEM if that would change the meaning
3986 of the address. */
3987 if (MEM_P (SUBREG_REG (x))
3988 && (MEM_VOLATILE_P (SUBREG_REG (x))
3989 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3990 return gen_rtx_CLOBBER (mode, const0_rtx);
3991
3992 /* Note that we cannot do any narrowing for non-constants since
3993 we might have been counting on using the fact that some bits were
3994 zero. We now do this in the SET. */
3995
3996 break;
3997
3998 case NOT:
3999 if (GET_CODE (XEXP (x, 0)) == SUBREG
4000 && subreg_lowpart_p (XEXP (x, 0))
4001 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4002 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4003 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4004 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4005 {
4006 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4007
4008 x = gen_rtx_ROTATE (inner_mode,
4009 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4010 inner_mode),
4011 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4012 return gen_lowpart (mode, x);
4013 }
4014
4015 /* Apply De Morgan's laws to reduce number of patterns for machines
4016 with negating logical insns (and-not, nand, etc.). If result has
4017 only one NOT, put it first, since that is how the patterns are
4018 coded. */
4019
4020 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4021 {
4022 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4023 enum machine_mode op_mode;
4024
4025 op_mode = GET_MODE (in1);
4026 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4027
4028 op_mode = GET_MODE (in2);
4029 if (op_mode == VOIDmode)
4030 op_mode = mode;
4031 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4032
4033 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4034 {
4035 rtx tem = in2;
4036 in2 = in1; in1 = tem;
4037 }
4038
4039 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4040 mode, in1, in2);
4041 }
4042 break;
4043
4044 case NEG:
4045 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4046 if (GET_CODE (XEXP (x, 0)) == XOR
4047 && XEXP (XEXP (x, 0), 1) == const1_rtx
4048 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4049 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4050
4051 temp = expand_compound_operation (XEXP (x, 0));
4052
4053 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4054 replaced by (lshiftrt X C). This will convert
4055 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4056
4057 if (GET_CODE (temp) == ASHIFTRT
4058 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4059 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4060 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4061 INTVAL (XEXP (temp, 1)));
4062
4063 /* If X has only a single bit that might be nonzero, say, bit I, convert
4064 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4065 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4066 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4067 or a SUBREG of one since we'd be making the expression more
4068 complex if it was just a register. */
4069
4070 if (!REG_P (temp)
4071 && ! (GET_CODE (temp) == SUBREG
4072 && REG_P (SUBREG_REG (temp)))
4073 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4074 {
4075 rtx temp1 = simplify_shift_const
4076 (NULL_RTX, ASHIFTRT, mode,
4077 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4078 GET_MODE_BITSIZE (mode) - 1 - i),
4079 GET_MODE_BITSIZE (mode) - 1 - i);
4080
4081 /* If all we did was surround TEMP with the two shifts, we
4082 haven't improved anything, so don't use it. Otherwise,
4083 we are better off with TEMP1. */
4084 if (GET_CODE (temp1) != ASHIFTRT
4085 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4086 || XEXP (XEXP (temp1, 0), 0) != temp)
4087 return temp1;
4088 }
4089 break;
4090
4091 case TRUNCATE:
4092 /* We can't handle truncation to a partial integer mode here
4093 because we don't know the real bitsize of the partial
4094 integer mode. */
4095 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4096 break;
4097
4098 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4099 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4100 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4101 SUBST (XEXP (x, 0),
4102 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4103 GET_MODE_MASK (mode), NULL_RTX, 0));
4104
4105 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4106 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4107 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4108 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4109 return XEXP (XEXP (x, 0), 0);
4110
4111 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4112 (OP:SI foo:SI) if OP is NEG or ABS. */
4113 if ((GET_CODE (XEXP (x, 0)) == ABS
4114 || GET_CODE (XEXP (x, 0)) == NEG)
4115 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4116 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4117 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4118 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4119 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4120
4121 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4122 (truncate:SI x). */
4123 if (GET_CODE (XEXP (x, 0)) == SUBREG
4124 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4125 && subreg_lowpart_p (XEXP (x, 0)))
4126 return SUBREG_REG (XEXP (x, 0));
4127
4128 /* If we know that the value is already truncated, we can
4129 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4130 is nonzero for the corresponding modes. But don't do this
4131 for an (LSHIFTRT (MULT ...)) since this will cause problems
4132 with the umulXi3_highpart patterns. */
4133 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4134 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4135 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4136 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4137 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4138 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4139 return gen_lowpart (mode, XEXP (x, 0));
4140
4141 /* A truncate of a comparison can be replaced with a subreg if
4142 STORE_FLAG_VALUE permits. This is like the previous test,
4143 but it works even if the comparison is done in a mode larger
4144 than HOST_BITS_PER_WIDE_INT. */
4145 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4146 && COMPARISON_P (XEXP (x, 0))
4147 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4148 return gen_lowpart (mode, XEXP (x, 0));
4149
4150 /* Similarly, a truncate of a register whose value is a
4151 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4152 permits. */
4153 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4154 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4155 && (temp = get_last_value (XEXP (x, 0)))
4156 && COMPARISON_P (temp))
4157 return gen_lowpart (mode, XEXP (x, 0));
4158
4159 break;
4160
4161 case FLOAT_TRUNCATE:
4162 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4163 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4164 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4165 return XEXP (XEXP (x, 0), 0);
4166
4167 /* (float_truncate:SF (float_truncate:DF foo:XF))
4168 = (float_truncate:SF foo:XF).
4169 This may eliminate double rounding, so it is unsafe.
4170
4171 (float_truncate:SF (float_extend:XF foo:DF))
4172 = (float_truncate:SF foo:DF).
4173
4174 (float_truncate:DF (float_extend:XF foo:SF))
4175 = (float_extend:SF foo:DF). */
4176 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4177 && flag_unsafe_math_optimizations)
4178 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4179 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4180 0)))
4181 > GET_MODE_SIZE (mode)
4182 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4183 mode,
4184 XEXP (XEXP (x, 0), 0), mode);
4185
4186 /* (float_truncate (float x)) is (float x) */
4187 if (GET_CODE (XEXP (x, 0)) == FLOAT
4188 && (flag_unsafe_math_optimizations
4189 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4190 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4191 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4192 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4193 return simplify_gen_unary (FLOAT, mode,
4194 XEXP (XEXP (x, 0), 0),
4195 GET_MODE (XEXP (XEXP (x, 0), 0)));
4196
4197 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4198 (OP:SF foo:SF) if OP is NEG or ABS. */
4199 if ((GET_CODE (XEXP (x, 0)) == ABS
4200 || GET_CODE (XEXP (x, 0)) == NEG)
4201 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4202 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4203 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4204 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4205
4206 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4207 is (float_truncate:SF x). */
4208 if (GET_CODE (XEXP (x, 0)) == SUBREG
4209 && subreg_lowpart_p (XEXP (x, 0))
4210 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4211 return SUBREG_REG (XEXP (x, 0));
4212 break;
4213 case FLOAT_EXTEND:
4214 /* (float_extend (float_extend x)) is (float_extend x)
4215
4216 (float_extend (float x)) is (float x) assuming that double
4217 rounding can't happen.
4218 */
4219 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4220 || (GET_CODE (XEXP (x, 0)) == FLOAT
4221 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4222 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4223 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4224 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4225 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4226 XEXP (XEXP (x, 0), 0),
4227 GET_MODE (XEXP (XEXP (x, 0), 0)));
4228
4229 break;
4230 #ifdef HAVE_cc0
4231 case COMPARE:
4232 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4233 using cc0, in which case we want to leave it as a COMPARE
4234 so we can distinguish it from a register-register-copy. */
4235 if (XEXP (x, 1) == const0_rtx)
4236 return XEXP (x, 0);
4237
4238 /* x - 0 is the same as x unless x's mode has signed zeros and
4239 allows rounding towards -infinity. Under those conditions,
4240 0 - 0 is -0. */
4241 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4242 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4243 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4244 return XEXP (x, 0);
4245 break;
4246 #endif
4247
4248 case CONST:
4249 /* (const (const X)) can become (const X). Do it this way rather than
4250 returning the inner CONST since CONST can be shared with a
4251 REG_EQUAL note. */
4252 if (GET_CODE (XEXP (x, 0)) == CONST)
4253 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4254 break;
4255
4256 #ifdef HAVE_lo_sum
4257 case LO_SUM:
4258 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4259 can add in an offset. find_split_point will split this address up
4260 again if it doesn't match. */
4261 if (GET_CODE (XEXP (x, 0)) == HIGH
4262 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4263 return XEXP (x, 1);
4264 break;
4265 #endif
4266
4267 case PLUS:
4268 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4269 */
4270 if (GET_CODE (XEXP (x, 0)) == MULT
4271 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4272 {
4273 rtx in1, in2;
4274
4275 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4276 in2 = XEXP (XEXP (x, 0), 1);
4277 return gen_binary (MINUS, mode, XEXP (x, 1),
4278 gen_binary (MULT, mode, in1, in2));
4279 }
4280
4281 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4282 outermost. That's because that's the way indexed addresses are
4283 supposed to appear. This code used to check many more cases, but
4284 they are now checked elsewhere. */
4285 if (GET_CODE (XEXP (x, 0)) == PLUS
4286 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4287 return gen_binary (PLUS, mode,
4288 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4289 XEXP (x, 1)),
4290 XEXP (XEXP (x, 0), 1));
4291
4292 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4293 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4294 bit-field and can be replaced by either a sign_extend or a
4295 sign_extract. The `and' may be a zero_extend and the two
4296 <c>, -<c> constants may be reversed. */
4297 if (GET_CODE (XEXP (x, 0)) == XOR
4298 && GET_CODE (XEXP (x, 1)) == CONST_INT
4299 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4300 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4301 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4302 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4303 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4304 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4305 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4306 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4307 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4308 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4309 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4310 == (unsigned int) i + 1))))
4311 return simplify_shift_const
4312 (NULL_RTX, ASHIFTRT, mode,
4313 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4314 XEXP (XEXP (XEXP (x, 0), 0), 0),
4315 GET_MODE_BITSIZE (mode) - (i + 1)),
4316 GET_MODE_BITSIZE (mode) - (i + 1));
4317
4318 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4319 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4320 is 1. This produces better code than the alternative immediately
4321 below. */
4322 if (COMPARISON_P (XEXP (x, 0))
4323 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4324 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4325 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4326 XEXP (XEXP (x, 0), 0),
4327 XEXP (XEXP (x, 0), 1))))
4328 return
4329 simplify_gen_unary (NEG, mode, reversed, mode);
4330
4331 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4332 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4333 the bitsize of the mode - 1. This allows simplification of
4334 "a = (b & 8) == 0;" */
4335 if (XEXP (x, 1) == constm1_rtx
4336 && !REG_P (XEXP (x, 0))
4337 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4338 && REG_P (SUBREG_REG (XEXP (x, 0))))
4339 && nonzero_bits (XEXP (x, 0), mode) == 1)
4340 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4341 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4342 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4343 GET_MODE_BITSIZE (mode) - 1),
4344 GET_MODE_BITSIZE (mode) - 1);
4345
4346 /* If we are adding two things that have no bits in common, convert
4347 the addition into an IOR. This will often be further simplified,
4348 for example in cases like ((a & 1) + (a & 2)), which can
4349 become a & 3. */
4350
4351 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4352 && (nonzero_bits (XEXP (x, 0), mode)
4353 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4354 {
4355 /* Try to simplify the expression further. */
4356 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4357 temp = combine_simplify_rtx (tor, mode, in_dest);
4358
4359 /* If we could, great. If not, do not go ahead with the IOR
4360 replacement, since PLUS appears in many special purpose
4361 address arithmetic instructions. */
4362 if (GET_CODE (temp) != CLOBBER && temp != tor)
4363 return temp;
4364 }
4365 break;
4366
4367 case MINUS:
4368 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4369 by reversing the comparison code if valid. */
4370 if (STORE_FLAG_VALUE == 1
4371 && XEXP (x, 0) == const1_rtx
4372 && COMPARISON_P (XEXP (x, 1))
4373 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4374 XEXP (XEXP (x, 1), 0),
4375 XEXP (XEXP (x, 1), 1))))
4376 return reversed;
4377
4378 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4379 (and <foo> (const_int pow2-1)) */
4380 if (GET_CODE (XEXP (x, 1)) == AND
4381 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4382 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4383 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4384 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4385 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4386
4387 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4388 */
4389 if (GET_CODE (XEXP (x, 1)) == MULT
4390 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4391 {
4392 rtx in1, in2;
4393
4394 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4395 in2 = XEXP (XEXP (x, 1), 1);
4396 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4397 XEXP (x, 0));
4398 }
4399
4400 /* Canonicalize (minus (neg A) (mult B C)) to
4401 (minus (mult (neg B) C) A). */
4402 if (GET_CODE (XEXP (x, 1)) == MULT
4403 && GET_CODE (XEXP (x, 0)) == NEG)
4404 {
4405 rtx in1, in2;
4406
4407 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4408 in2 = XEXP (XEXP (x, 1), 1);
4409 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4410 XEXP (XEXP (x, 0), 0));
4411 }
4412
4413 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4414 integers. */
4415 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4416 return gen_binary (MINUS, mode,
4417 gen_binary (MINUS, mode, XEXP (x, 0),
4418 XEXP (XEXP (x, 1), 0)),
4419 XEXP (XEXP (x, 1), 1));
4420 break;
4421
4422 case MULT:
4423 /* If we have (mult (plus A B) C), apply the distributive law and then
4424 the inverse distributive law to see if things simplify. This
4425 occurs mostly in addresses, often when unrolling loops. */
4426
4427 if (GET_CODE (XEXP (x, 0)) == PLUS)
4428 {
4429 x = apply_distributive_law
4430 (gen_binary (PLUS, mode,
4431 gen_binary (MULT, mode,
4432 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4433 gen_binary (MULT, mode,
4434 XEXP (XEXP (x, 0), 1),
4435 copy_rtx (XEXP (x, 1)))));
4436
4437 if (GET_CODE (x) != MULT)
4438 return x;
4439 }
4440 /* Try simplify a*(b/c) as (a*b)/c. */
4441 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4442 && GET_CODE (XEXP (x, 0)) == DIV)
4443 {
4444 rtx tem = simplify_binary_operation (MULT, mode,
4445 XEXP (XEXP (x, 0), 0),
4446 XEXP (x, 1));
4447 if (tem)
4448 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4449 }
4450 break;
4451
4452 case UDIV:
4453 /* If this is a divide by a power of two, treat it as a shift if
4454 its first operand is a shift. */
4455 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4456 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4457 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4458 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4459 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4460 || GET_CODE (XEXP (x, 0)) == ROTATE
4461 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4462 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4463 break;
4464
4465 case EQ: case NE:
4466 case GT: case GTU: case GE: case GEU:
4467 case LT: case LTU: case LE: case LEU:
4468 case UNEQ: case LTGT:
4469 case UNGT: case UNGE:
4470 case UNLT: case UNLE:
4471 case UNORDERED: case ORDERED:
4472 /* If the first operand is a condition code, we can't do anything
4473 with it. */
4474 if (GET_CODE (XEXP (x, 0)) == COMPARE
4475 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4476 && ! CC0_P (XEXP (x, 0))))
4477 {
4478 rtx op0 = XEXP (x, 0);
4479 rtx op1 = XEXP (x, 1);
4480 enum rtx_code new_code;
4481
4482 if (GET_CODE (op0) == COMPARE)
4483 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4484
4485 /* Simplify our comparison, if possible. */
4486 new_code = simplify_comparison (code, &op0, &op1);
4487
4488 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4489 if only the low-order bit is possibly nonzero in X (such as when
4490 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4491 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4492 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4493 (plus X 1).
4494
4495 Remove any ZERO_EXTRACT we made when thinking this was a
4496 comparison. It may now be simpler to use, e.g., an AND. If a
4497 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4498 the call to make_compound_operation in the SET case. */
4499
4500 if (STORE_FLAG_VALUE == 1
4501 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4502 && op1 == const0_rtx
4503 && mode == GET_MODE (op0)
4504 && nonzero_bits (op0, mode) == 1)
4505 return gen_lowpart (mode,
4506 expand_compound_operation (op0));
4507
4508 else if (STORE_FLAG_VALUE == 1
4509 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4510 && op1 == const0_rtx
4511 && mode == GET_MODE (op0)
4512 && (num_sign_bit_copies (op0, mode)
4513 == GET_MODE_BITSIZE (mode)))
4514 {
4515 op0 = expand_compound_operation (op0);
4516 return simplify_gen_unary (NEG, mode,
4517 gen_lowpart (mode, op0),
4518 mode);
4519 }
4520
4521 else if (STORE_FLAG_VALUE == 1
4522 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4523 && op1 == const0_rtx
4524 && mode == GET_MODE (op0)
4525 && nonzero_bits (op0, mode) == 1)
4526 {
4527 op0 = expand_compound_operation (op0);
4528 return gen_binary (XOR, mode,
4529 gen_lowpart (mode, op0),
4530 const1_rtx);
4531 }
4532
4533 else if (STORE_FLAG_VALUE == 1
4534 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4535 && op1 == const0_rtx
4536 && mode == GET_MODE (op0)
4537 && (num_sign_bit_copies (op0, mode)
4538 == GET_MODE_BITSIZE (mode)))
4539 {
4540 op0 = expand_compound_operation (op0);
4541 return plus_constant (gen_lowpart (mode, op0), 1);
4542 }
4543
4544 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4545 those above. */
4546 if (STORE_FLAG_VALUE == -1
4547 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4548 && op1 == const0_rtx
4549 && (num_sign_bit_copies (op0, mode)
4550 == GET_MODE_BITSIZE (mode)))
4551 return gen_lowpart (mode,
4552 expand_compound_operation (op0));
4553
4554 else if (STORE_FLAG_VALUE == -1
4555 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4556 && op1 == const0_rtx
4557 && mode == GET_MODE (op0)
4558 && nonzero_bits (op0, mode) == 1)
4559 {
4560 op0 = expand_compound_operation (op0);
4561 return simplify_gen_unary (NEG, mode,
4562 gen_lowpart (mode, op0),
4563 mode);
4564 }
4565
4566 else if (STORE_FLAG_VALUE == -1
4567 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4568 && op1 == const0_rtx
4569 && mode == GET_MODE (op0)
4570 && (num_sign_bit_copies (op0, mode)
4571 == GET_MODE_BITSIZE (mode)))
4572 {
4573 op0 = expand_compound_operation (op0);
4574 return simplify_gen_unary (NOT, mode,
4575 gen_lowpart (mode, op0),
4576 mode);
4577 }
4578
4579 /* If X is 0/1, (eq X 0) is X-1. */
4580 else if (STORE_FLAG_VALUE == -1
4581 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4582 && op1 == const0_rtx
4583 && mode == GET_MODE (op0)
4584 && nonzero_bits (op0, mode) == 1)
4585 {
4586 op0 = expand_compound_operation (op0);
4587 return plus_constant (gen_lowpart (mode, op0), -1);
4588 }
4589
4590 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4591 one bit that might be nonzero, we can convert (ne x 0) to
4592 (ashift x c) where C puts the bit in the sign bit. Remove any
4593 AND with STORE_FLAG_VALUE when we are done, since we are only
4594 going to test the sign bit. */
4595 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4596 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4597 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4598 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4599 && op1 == const0_rtx
4600 && mode == GET_MODE (op0)
4601 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4602 {
4603 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4604 expand_compound_operation (op0),
4605 GET_MODE_BITSIZE (mode) - 1 - i);
4606 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4607 return XEXP (x, 0);
4608 else
4609 return x;
4610 }
4611
4612 /* If the code changed, return a whole new comparison. */
4613 if (new_code != code)
4614 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4615
4616 /* Otherwise, keep this operation, but maybe change its operands.
4617 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4618 SUBST (XEXP (x, 0), op0);
4619 SUBST (XEXP (x, 1), op1);
4620 }
4621 break;
4622
4623 case IF_THEN_ELSE:
4624 return simplify_if_then_else (x);
4625
4626 case ZERO_EXTRACT:
4627 case SIGN_EXTRACT:
4628 case ZERO_EXTEND:
4629 case SIGN_EXTEND:
4630 /* If we are processing SET_DEST, we are done. */
4631 if (in_dest)
4632 return x;
4633
4634 return expand_compound_operation (x);
4635
4636 case SET:
4637 return simplify_set (x);
4638
4639 case AND:
4640 case IOR:
4641 case XOR:
4642 return simplify_logical (x);
4643
4644 case ABS:
4645 /* (abs (neg <foo>)) -> (abs <foo>) */
4646 if (GET_CODE (XEXP (x, 0)) == NEG)
4647 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4648
4649 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4650 do nothing. */
4651 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4652 break;
4653
4654 /* If operand is something known to be positive, ignore the ABS. */
4655 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4656 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4657 <= HOST_BITS_PER_WIDE_INT)
4658 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4659 & ((HOST_WIDE_INT) 1
4660 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4661 == 0)))
4662 return XEXP (x, 0);
4663
4664 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4665 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4666 return gen_rtx_NEG (mode, XEXP (x, 0));
4667
4668 break;
4669
4670 case FFS:
4671 /* (ffs (*_extend <X>)) = (ffs <X>) */
4672 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4673 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4674 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4675 break;
4676
4677 case POPCOUNT:
4678 case PARITY:
4679 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4680 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4681 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4682 break;
4683
4684 case FLOAT:
4685 /* (float (sign_extend <X>)) = (float <X>). */
4686 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4687 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4688 break;
4689
4690 case ASHIFT:
4691 case LSHIFTRT:
4692 case ASHIFTRT:
4693 case ROTATE:
4694 case ROTATERT:
4695 /* If this is a shift by a constant amount, simplify it. */
4696 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4697 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4698 INTVAL (XEXP (x, 1)));
4699
4700 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4701 SUBST (XEXP (x, 1),
4702 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4703 ((HOST_WIDE_INT) 1
4704 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4705 - 1,
4706 NULL_RTX, 0));
4707 break;
4708
4709 case VEC_SELECT:
4710 {
4711 rtx op0 = XEXP (x, 0);
4712 rtx op1 = XEXP (x, 1);
4713 int len;
4714
4715 gcc_assert (GET_CODE (op1) == PARALLEL);
4716 len = XVECLEN (op1, 0);
4717 if (len == 1
4718 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4719 && GET_CODE (op0) == VEC_CONCAT)
4720 {
4721 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4722
4723 /* Try to find the element in the VEC_CONCAT. */
4724 for (;;)
4725 {
4726 if (GET_MODE (op0) == GET_MODE (x))
4727 return op0;
4728 if (GET_CODE (op0) == VEC_CONCAT)
4729 {
4730 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4731 if (op0_size < offset)
4732 op0 = XEXP (op0, 0);
4733 else
4734 {
4735 offset -= op0_size;
4736 op0 = XEXP (op0, 1);
4737 }
4738 }
4739 else
4740 break;
4741 }
4742 }
4743 }
4744
4745 break;
4746
4747 default:
4748 break;
4749 }
4750
4751 return x;
4752 }
4753 \f
4754 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4755
4756 static rtx
4757 simplify_if_then_else (rtx x)
4758 {
4759 enum machine_mode mode = GET_MODE (x);
4760 rtx cond = XEXP (x, 0);
4761 rtx true_rtx = XEXP (x, 1);
4762 rtx false_rtx = XEXP (x, 2);
4763 enum rtx_code true_code = GET_CODE (cond);
4764 int comparison_p = COMPARISON_P (cond);
4765 rtx temp;
4766 int i;
4767 enum rtx_code false_code;
4768 rtx reversed;
4769
4770 /* Simplify storing of the truth value. */
4771 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4772 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4773
4774 /* Also when the truth value has to be reversed. */
4775 if (comparison_p
4776 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4777 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4778 XEXP (cond, 1))))
4779 return reversed;
4780
4781 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4782 in it is being compared against certain values. Get the true and false
4783 comparisons and see if that says anything about the value of each arm. */
4784
4785 if (comparison_p
4786 && ((false_code = combine_reversed_comparison_code (cond))
4787 != UNKNOWN)
4788 && REG_P (XEXP (cond, 0)))
4789 {
4790 HOST_WIDE_INT nzb;
4791 rtx from = XEXP (cond, 0);
4792 rtx true_val = XEXP (cond, 1);
4793 rtx false_val = true_val;
4794 int swapped = 0;
4795
4796 /* If FALSE_CODE is EQ, swap the codes and arms. */
4797
4798 if (false_code == EQ)
4799 {
4800 swapped = 1, true_code = EQ, false_code = NE;
4801 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4802 }
4803
4804 /* If we are comparing against zero and the expression being tested has
4805 only a single bit that might be nonzero, that is its value when it is
4806 not equal to zero. Similarly if it is known to be -1 or 0. */
4807
4808 if (true_code == EQ && true_val == const0_rtx
4809 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4810 false_code = EQ, false_val = GEN_INT (nzb);
4811 else if (true_code == EQ && true_val == const0_rtx
4812 && (num_sign_bit_copies (from, GET_MODE (from))
4813 == GET_MODE_BITSIZE (GET_MODE (from))))
4814 false_code = EQ, false_val = constm1_rtx;
4815
4816 /* Now simplify an arm if we know the value of the register in the
4817 branch and it is used in the arm. Be careful due to the potential
4818 of locally-shared RTL. */
4819
4820 if (reg_mentioned_p (from, true_rtx))
4821 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4822 from, true_val),
4823 pc_rtx, pc_rtx, 0, 0);
4824 if (reg_mentioned_p (from, false_rtx))
4825 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4826 from, false_val),
4827 pc_rtx, pc_rtx, 0, 0);
4828
4829 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4830 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4831
4832 true_rtx = XEXP (x, 1);
4833 false_rtx = XEXP (x, 2);
4834 true_code = GET_CODE (cond);
4835 }
4836
4837 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4838 reversed, do so to avoid needing two sets of patterns for
4839 subtract-and-branch insns. Similarly if we have a constant in the true
4840 arm, the false arm is the same as the first operand of the comparison, or
4841 the false arm is more complicated than the true arm. */
4842
4843 if (comparison_p
4844 && combine_reversed_comparison_code (cond) != UNKNOWN
4845 && (true_rtx == pc_rtx
4846 || (CONSTANT_P (true_rtx)
4847 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4848 || true_rtx == const0_rtx
4849 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4850 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4851 && !OBJECT_P (false_rtx))
4852 || reg_mentioned_p (true_rtx, false_rtx)
4853 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4854 {
4855 true_code = reversed_comparison_code (cond, NULL);
4856 SUBST (XEXP (x, 0),
4857 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4858 XEXP (cond, 1)));
4859
4860 SUBST (XEXP (x, 1), false_rtx);
4861 SUBST (XEXP (x, 2), true_rtx);
4862
4863 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4864 cond = XEXP (x, 0);
4865
4866 /* It is possible that the conditional has been simplified out. */
4867 true_code = GET_CODE (cond);
4868 comparison_p = COMPARISON_P (cond);
4869 }
4870
4871 /* If the two arms are identical, we don't need the comparison. */
4872
4873 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4874 return true_rtx;
4875
4876 /* Convert a == b ? b : a to "a". */
4877 if (true_code == EQ && ! side_effects_p (cond)
4878 && !HONOR_NANS (mode)
4879 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4880 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4881 return false_rtx;
4882 else if (true_code == NE && ! side_effects_p (cond)
4883 && !HONOR_NANS (mode)
4884 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4885 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4886 return true_rtx;
4887
4888 /* Look for cases where we have (abs x) or (neg (abs X)). */
4889
4890 if (GET_MODE_CLASS (mode) == MODE_INT
4891 && GET_CODE (false_rtx) == NEG
4892 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4893 && comparison_p
4894 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4895 && ! side_effects_p (true_rtx))
4896 switch (true_code)
4897 {
4898 case GT:
4899 case GE:
4900 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4901 case LT:
4902 case LE:
4903 return
4904 simplify_gen_unary (NEG, mode,
4905 simplify_gen_unary (ABS, mode, true_rtx, mode),
4906 mode);
4907 default:
4908 break;
4909 }
4910
4911 /* Look for MIN or MAX. */
4912
4913 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4914 && comparison_p
4915 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4916 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4917 && ! side_effects_p (cond))
4918 switch (true_code)
4919 {
4920 case GE:
4921 case GT:
4922 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4923 case LE:
4924 case LT:
4925 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4926 case GEU:
4927 case GTU:
4928 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4929 case LEU:
4930 case LTU:
4931 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4932 default:
4933 break;
4934 }
4935
4936 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4937 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4938 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4939 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4940 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4941 neither 1 or -1, but it isn't worth checking for. */
4942
4943 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4944 && comparison_p
4945 && GET_MODE_CLASS (mode) == MODE_INT
4946 && ! side_effects_p (x))
4947 {
4948 rtx t = make_compound_operation (true_rtx, SET);
4949 rtx f = make_compound_operation (false_rtx, SET);
4950 rtx cond_op0 = XEXP (cond, 0);
4951 rtx cond_op1 = XEXP (cond, 1);
4952 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4953 enum machine_mode m = mode;
4954 rtx z = 0, c1 = NULL_RTX;
4955
4956 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4957 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4958 || GET_CODE (t) == ASHIFT
4959 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4960 && rtx_equal_p (XEXP (t, 0), f))
4961 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4962
4963 /* If an identity-zero op is commutative, check whether there
4964 would be a match if we swapped the operands. */
4965 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4966 || GET_CODE (t) == XOR)
4967 && rtx_equal_p (XEXP (t, 1), f))
4968 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4969 else if (GET_CODE (t) == SIGN_EXTEND
4970 && (GET_CODE (XEXP (t, 0)) == PLUS
4971 || GET_CODE (XEXP (t, 0)) == MINUS
4972 || GET_CODE (XEXP (t, 0)) == IOR
4973 || GET_CODE (XEXP (t, 0)) == XOR
4974 || GET_CODE (XEXP (t, 0)) == ASHIFT
4975 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4976 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4977 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4978 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4979 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4980 && (num_sign_bit_copies (f, GET_MODE (f))
4981 > (unsigned int)
4982 (GET_MODE_BITSIZE (mode)
4983 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4984 {
4985 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4986 extend_op = SIGN_EXTEND;
4987 m = GET_MODE (XEXP (t, 0));
4988 }
4989 else if (GET_CODE (t) == SIGN_EXTEND
4990 && (GET_CODE (XEXP (t, 0)) == PLUS
4991 || GET_CODE (XEXP (t, 0)) == IOR
4992 || GET_CODE (XEXP (t, 0)) == XOR)
4993 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4994 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4995 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4996 && (num_sign_bit_copies (f, GET_MODE (f))
4997 > (unsigned int)
4998 (GET_MODE_BITSIZE (mode)
4999 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5000 {
5001 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5002 extend_op = SIGN_EXTEND;
5003 m = GET_MODE (XEXP (t, 0));
5004 }
5005 else if (GET_CODE (t) == ZERO_EXTEND
5006 && (GET_CODE (XEXP (t, 0)) == PLUS
5007 || GET_CODE (XEXP (t, 0)) == MINUS
5008 || GET_CODE (XEXP (t, 0)) == IOR
5009 || GET_CODE (XEXP (t, 0)) == XOR
5010 || GET_CODE (XEXP (t, 0)) == ASHIFT
5011 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5012 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5013 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5014 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5015 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5016 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5017 && ((nonzero_bits (f, GET_MODE (f))
5018 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5019 == 0))
5020 {
5021 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5022 extend_op = ZERO_EXTEND;
5023 m = GET_MODE (XEXP (t, 0));
5024 }
5025 else if (GET_CODE (t) == ZERO_EXTEND
5026 && (GET_CODE (XEXP (t, 0)) == PLUS
5027 || GET_CODE (XEXP (t, 0)) == IOR
5028 || GET_CODE (XEXP (t, 0)) == XOR)
5029 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5030 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5031 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5032 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5033 && ((nonzero_bits (f, GET_MODE (f))
5034 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5035 == 0))
5036 {
5037 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5038 extend_op = ZERO_EXTEND;
5039 m = GET_MODE (XEXP (t, 0));
5040 }
5041
5042 if (z)
5043 {
5044 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5045 pc_rtx, pc_rtx, 0, 0);
5046 temp = gen_binary (MULT, m, temp,
5047 gen_binary (MULT, m, c1, const_true_rtx));
5048 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5049 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5050
5051 if (extend_op != UNKNOWN)
5052 temp = simplify_gen_unary (extend_op, mode, temp, m);
5053
5054 return temp;
5055 }
5056 }
5057
5058 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5059 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5060 negation of a single bit, we can convert this operation to a shift. We
5061 can actually do this more generally, but it doesn't seem worth it. */
5062
5063 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5064 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5065 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5066 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5067 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5068 == GET_MODE_BITSIZE (mode))
5069 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5070 return
5071 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5072 gen_lowpart (mode, XEXP (cond, 0)), i);
5073
5074 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5075 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5076 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5077 && GET_MODE (XEXP (cond, 0)) == mode
5078 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5079 == nonzero_bits (XEXP (cond, 0), mode)
5080 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5081 return XEXP (cond, 0);
5082
5083 return x;
5084 }
5085 \f
5086 /* Simplify X, a SET expression. Return the new expression. */
5087
5088 static rtx
5089 simplify_set (rtx x)
5090 {
5091 rtx src = SET_SRC (x);
5092 rtx dest = SET_DEST (x);
5093 enum machine_mode mode
5094 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5095 rtx other_insn;
5096 rtx *cc_use;
5097
5098 /* (set (pc) (return)) gets written as (return). */
5099 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5100 return src;
5101
5102 /* Now that we know for sure which bits of SRC we are using, see if we can
5103 simplify the expression for the object knowing that we only need the
5104 low-order bits. */
5105
5106 if (GET_MODE_CLASS (mode) == MODE_INT
5107 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5108 {
5109 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5110 SUBST (SET_SRC (x), src);
5111 }
5112
5113 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5114 the comparison result and try to simplify it unless we already have used
5115 undobuf.other_insn. */
5116 if ((GET_MODE_CLASS (mode) == MODE_CC
5117 || GET_CODE (src) == COMPARE
5118 || CC0_P (dest))
5119 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5120 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5121 && COMPARISON_P (*cc_use)
5122 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5123 {
5124 enum rtx_code old_code = GET_CODE (*cc_use);
5125 enum rtx_code new_code;
5126 rtx op0, op1, tmp;
5127 int other_changed = 0;
5128 enum machine_mode compare_mode = GET_MODE (dest);
5129
5130 if (GET_CODE (src) == COMPARE)
5131 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5132 else
5133 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5134
5135 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5136 op0, op1);
5137 if (!tmp)
5138 new_code = old_code;
5139 else if (!CONSTANT_P (tmp))
5140 {
5141 new_code = GET_CODE (tmp);
5142 op0 = XEXP (tmp, 0);
5143 op1 = XEXP (tmp, 1);
5144 }
5145 else
5146 {
5147 rtx pat = PATTERN (other_insn);
5148 undobuf.other_insn = other_insn;
5149 SUBST (*cc_use, tmp);
5150
5151 /* Attempt to simplify CC user. */
5152 if (GET_CODE (pat) == SET)
5153 {
5154 rtx new = simplify_rtx (SET_SRC (pat));
5155 if (new != NULL_RTX)
5156 SUBST (SET_SRC (pat), new);
5157 }
5158
5159 /* Convert X into a no-op move. */
5160 SUBST (SET_DEST (x), pc_rtx);
5161 SUBST (SET_SRC (x), pc_rtx);
5162 return x;
5163 }
5164
5165 /* Simplify our comparison, if possible. */
5166 new_code = simplify_comparison (new_code, &op0, &op1);
5167
5168 #ifdef SELECT_CC_MODE
5169 /* If this machine has CC modes other than CCmode, check to see if we
5170 need to use a different CC mode here. */
5171 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5172 compare_mode = GET_MODE (op0);
5173 else
5174 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5175
5176 #ifndef HAVE_cc0
5177 /* If the mode changed, we have to change SET_DEST, the mode in the
5178 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5179 a hard register, just build new versions with the proper mode. If it
5180 is a pseudo, we lose unless it is only time we set the pseudo, in
5181 which case we can safely change its mode. */
5182 if (compare_mode != GET_MODE (dest))
5183 {
5184 unsigned int regno = REGNO (dest);
5185 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5186
5187 if (regno < FIRST_PSEUDO_REGISTER
5188 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5189 {
5190 if (regno >= FIRST_PSEUDO_REGISTER)
5191 SUBST (regno_reg_rtx[regno], new_dest);
5192
5193 SUBST (SET_DEST (x), new_dest);
5194 SUBST (XEXP (*cc_use, 0), new_dest);
5195 other_changed = 1;
5196
5197 dest = new_dest;
5198 }
5199 }
5200 #endif /* cc0 */
5201 #endif /* SELECT_CC_MODE */
5202
5203 /* If the code changed, we have to build a new comparison in
5204 undobuf.other_insn. */
5205 if (new_code != old_code)
5206 {
5207 int other_changed_previously = other_changed;
5208 unsigned HOST_WIDE_INT mask;
5209
5210 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5211 dest, const0_rtx));
5212 other_changed = 1;
5213
5214 /* If the only change we made was to change an EQ into an NE or
5215 vice versa, OP0 has only one bit that might be nonzero, and OP1
5216 is zero, check if changing the user of the condition code will
5217 produce a valid insn. If it won't, we can keep the original code
5218 in that insn by surrounding our operation with an XOR. */
5219
5220 if (((old_code == NE && new_code == EQ)
5221 || (old_code == EQ && new_code == NE))
5222 && ! other_changed_previously && op1 == const0_rtx
5223 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5224 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5225 {
5226 rtx pat = PATTERN (other_insn), note = 0;
5227
5228 if ((recog_for_combine (&pat, other_insn, &note) < 0
5229 && ! check_asm_operands (pat)))
5230 {
5231 PUT_CODE (*cc_use, old_code);
5232 other_changed = 0;
5233
5234 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5235 }
5236 }
5237 }
5238
5239 if (other_changed)
5240 undobuf.other_insn = other_insn;
5241
5242 #ifdef HAVE_cc0
5243 /* If we are now comparing against zero, change our source if
5244 needed. If we do not use cc0, we always have a COMPARE. */
5245 if (op1 == const0_rtx && dest == cc0_rtx)
5246 {
5247 SUBST (SET_SRC (x), op0);
5248 src = op0;
5249 }
5250 else
5251 #endif
5252
5253 /* Otherwise, if we didn't previously have a COMPARE in the
5254 correct mode, we need one. */
5255 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5256 {
5257 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5258 src = SET_SRC (x);
5259 }
5260 else
5261 {
5262 /* Otherwise, update the COMPARE if needed. */
5263 SUBST (XEXP (src, 0), op0);
5264 SUBST (XEXP (src, 1), op1);
5265 }
5266 }
5267 else
5268 {
5269 /* Get SET_SRC in a form where we have placed back any
5270 compound expressions. Then do the checks below. */
5271 src = make_compound_operation (src, SET);
5272 SUBST (SET_SRC (x), src);
5273 }
5274
5275 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5276 and X being a REG or (subreg (reg)), we may be able to convert this to
5277 (set (subreg:m2 x) (op)).
5278
5279 We can always do this if M1 is narrower than M2 because that means that
5280 we only care about the low bits of the result.
5281
5282 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5283 perform a narrower operation than requested since the high-order bits will
5284 be undefined. On machine where it is defined, this transformation is safe
5285 as long as M1 and M2 have the same number of words. */
5286
5287 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5288 && !OBJECT_P (SUBREG_REG (src))
5289 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5290 / UNITS_PER_WORD)
5291 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5292 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5293 #ifndef WORD_REGISTER_OPERATIONS
5294 && (GET_MODE_SIZE (GET_MODE (src))
5295 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5296 #endif
5297 #ifdef CANNOT_CHANGE_MODE_CLASS
5298 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5299 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5300 GET_MODE (SUBREG_REG (src)),
5301 GET_MODE (src)))
5302 #endif
5303 && (REG_P (dest)
5304 || (GET_CODE (dest) == SUBREG
5305 && REG_P (SUBREG_REG (dest)))))
5306 {
5307 SUBST (SET_DEST (x),
5308 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5309 dest));
5310 SUBST (SET_SRC (x), SUBREG_REG (src));
5311
5312 src = SET_SRC (x), dest = SET_DEST (x);
5313 }
5314
5315 #ifdef HAVE_cc0
5316 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5317 in SRC. */
5318 if (dest == cc0_rtx
5319 && GET_CODE (src) == SUBREG
5320 && subreg_lowpart_p (src)
5321 && (GET_MODE_BITSIZE (GET_MODE (src))
5322 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5323 {
5324 rtx inner = SUBREG_REG (src);
5325 enum machine_mode inner_mode = GET_MODE (inner);
5326
5327 /* Here we make sure that we don't have a sign bit on. */
5328 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5329 && (nonzero_bits (inner, inner_mode)
5330 < ((unsigned HOST_WIDE_INT) 1
5331 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5332 {
5333 SUBST (SET_SRC (x), inner);
5334 src = SET_SRC (x);
5335 }
5336 }
5337 #endif
5338
5339 #ifdef LOAD_EXTEND_OP
5340 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5341 would require a paradoxical subreg. Replace the subreg with a
5342 zero_extend to avoid the reload that would otherwise be required. */
5343
5344 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5345 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5346 && SUBREG_BYTE (src) == 0
5347 && (GET_MODE_SIZE (GET_MODE (src))
5348 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5349 && MEM_P (SUBREG_REG (src)))
5350 {
5351 SUBST (SET_SRC (x),
5352 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5353 GET_MODE (src), SUBREG_REG (src)));
5354
5355 src = SET_SRC (x);
5356 }
5357 #endif
5358
5359 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5360 are comparing an item known to be 0 or -1 against 0, use a logical
5361 operation instead. Check for one of the arms being an IOR of the other
5362 arm with some value. We compute three terms to be IOR'ed together. In
5363 practice, at most two will be nonzero. Then we do the IOR's. */
5364
5365 if (GET_CODE (dest) != PC
5366 && GET_CODE (src) == IF_THEN_ELSE
5367 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5368 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5369 && XEXP (XEXP (src, 0), 1) == const0_rtx
5370 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5371 #ifdef HAVE_conditional_move
5372 && ! can_conditionally_move_p (GET_MODE (src))
5373 #endif
5374 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5375 GET_MODE (XEXP (XEXP (src, 0), 0)))
5376 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5377 && ! side_effects_p (src))
5378 {
5379 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5380 ? XEXP (src, 1) : XEXP (src, 2));
5381 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5382 ? XEXP (src, 2) : XEXP (src, 1));
5383 rtx term1 = const0_rtx, term2, term3;
5384
5385 if (GET_CODE (true_rtx) == IOR
5386 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5387 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5388 else if (GET_CODE (true_rtx) == IOR
5389 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5390 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5391 else if (GET_CODE (false_rtx) == IOR
5392 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5393 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5394 else if (GET_CODE (false_rtx) == IOR
5395 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5396 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5397
5398 term2 = gen_binary (AND, GET_MODE (src),
5399 XEXP (XEXP (src, 0), 0), true_rtx);
5400 term3 = gen_binary (AND, GET_MODE (src),
5401 simplify_gen_unary (NOT, GET_MODE (src),
5402 XEXP (XEXP (src, 0), 0),
5403 GET_MODE (src)),
5404 false_rtx);
5405
5406 SUBST (SET_SRC (x),
5407 gen_binary (IOR, GET_MODE (src),
5408 gen_binary (IOR, GET_MODE (src), term1, term2),
5409 term3));
5410
5411 src = SET_SRC (x);
5412 }
5413
5414 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5415 whole thing fail. */
5416 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5417 return src;
5418 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5419 return dest;
5420 else
5421 /* Convert this into a field assignment operation, if possible. */
5422 return make_field_assignment (x);
5423 }
5424 \f
5425 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5426 result. */
5427
5428 static rtx
5429 simplify_logical (rtx x)
5430 {
5431 enum machine_mode mode = GET_MODE (x);
5432 rtx op0 = XEXP (x, 0);
5433 rtx op1 = XEXP (x, 1);
5434 rtx reversed;
5435
5436 switch (GET_CODE (x))
5437 {
5438 case AND:
5439 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5440 insn (and may simplify more). */
5441 if (GET_CODE (op0) == XOR
5442 && rtx_equal_p (XEXP (op0, 0), op1)
5443 && ! side_effects_p (op1))
5444 x = gen_binary (AND, mode,
5445 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5446 op1);
5447
5448 if (GET_CODE (op0) == XOR
5449 && rtx_equal_p (XEXP (op0, 1), op1)
5450 && ! side_effects_p (op1))
5451 x = gen_binary (AND, mode,
5452 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5453 op1);
5454
5455 /* Similarly for (~(A ^ B)) & A. */
5456 if (GET_CODE (op0) == NOT
5457 && GET_CODE (XEXP (op0, 0)) == XOR
5458 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5459 && ! side_effects_p (op1))
5460 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5461
5462 if (GET_CODE (op0) == NOT
5463 && GET_CODE (XEXP (op0, 0)) == XOR
5464 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5465 && ! side_effects_p (op1))
5466 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5467
5468 /* We can call simplify_and_const_int only if we don't lose
5469 any (sign) bits when converting INTVAL (op1) to
5470 "unsigned HOST_WIDE_INT". */
5471 if (GET_CODE (op1) == CONST_INT
5472 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5473 || INTVAL (op1) > 0))
5474 {
5475 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5476
5477 /* If we have (ior (and (X C1) C2)) and the next restart would be
5478 the last, simplify this by making C1 as small as possible
5479 and then exit. Only do this if C1 actually changes: for now
5480 this only saves memory but, should this transformation be
5481 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5482 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5483 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5484 && GET_CODE (op1) == CONST_INT
5485 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5486 return gen_binary (IOR, mode,
5487 gen_binary (AND, mode, XEXP (op0, 0),
5488 GEN_INT (INTVAL (XEXP (op0, 1))
5489 & ~INTVAL (op1))), op1);
5490
5491 if (GET_CODE (x) != AND)
5492 return x;
5493
5494 op0 = XEXP (x, 0);
5495 op1 = XEXP (x, 1);
5496 }
5497
5498 /* Convert (A | B) & A to A. */
5499 if (GET_CODE (op0) == IOR
5500 && (rtx_equal_p (XEXP (op0, 0), op1)
5501 || rtx_equal_p (XEXP (op0, 1), op1))
5502 && ! side_effects_p (XEXP (op0, 0))
5503 && ! side_effects_p (XEXP (op0, 1)))
5504 return op1;
5505
5506 /* In the following group of tests (and those in case IOR below),
5507 we start with some combination of logical operations and apply
5508 the distributive law followed by the inverse distributive law.
5509 Most of the time, this results in no change. However, if some of
5510 the operands are the same or inverses of each other, simplifications
5511 will result.
5512
5513 For example, (and (ior A B) (not B)) can occur as the result of
5514 expanding a bit field assignment. When we apply the distributive
5515 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5516 which then simplifies to (and (A (not B))).
5517
5518 If we have (and (ior A B) C), apply the distributive law and then
5519 the inverse distributive law to see if things simplify. */
5520
5521 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5522 {
5523 x = apply_distributive_law
5524 (gen_binary (GET_CODE (op0), mode,
5525 gen_binary (AND, mode, XEXP (op0, 0), op1),
5526 gen_binary (AND, mode, XEXP (op0, 1),
5527 copy_rtx (op1))));
5528 if (GET_CODE (x) != AND)
5529 return x;
5530 }
5531
5532 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5533 return apply_distributive_law
5534 (gen_binary (GET_CODE (op1), mode,
5535 gen_binary (AND, mode, XEXP (op1, 0), op0),
5536 gen_binary (AND, mode, XEXP (op1, 1),
5537 copy_rtx (op0))));
5538
5539 /* Similarly, taking advantage of the fact that
5540 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5541
5542 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5543 return apply_distributive_law
5544 (gen_binary (XOR, mode,
5545 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5546 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5547 XEXP (op1, 1))));
5548
5549 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5550 return apply_distributive_law
5551 (gen_binary (XOR, mode,
5552 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5553 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5554 break;
5555
5556 case IOR:
5557 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5558 if (GET_CODE (op1) == CONST_INT
5559 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5560 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5561 return op1;
5562
5563 /* Convert (A & B) | A to A. */
5564 if (GET_CODE (op0) == AND
5565 && (rtx_equal_p (XEXP (op0, 0), op1)
5566 || rtx_equal_p (XEXP (op0, 1), op1))
5567 && ! side_effects_p (XEXP (op0, 0))
5568 && ! side_effects_p (XEXP (op0, 1)))
5569 return op1;
5570
5571 /* If we have (ior (and A B) C), apply the distributive law and then
5572 the inverse distributive law to see if things simplify. */
5573
5574 if (GET_CODE (op0) == AND)
5575 {
5576 x = apply_distributive_law
5577 (gen_binary (AND, mode,
5578 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5579 gen_binary (IOR, mode, XEXP (op0, 1),
5580 copy_rtx (op1))));
5581
5582 if (GET_CODE (x) != IOR)
5583 return x;
5584 }
5585
5586 if (GET_CODE (op1) == AND)
5587 {
5588 x = apply_distributive_law
5589 (gen_binary (AND, mode,
5590 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5591 gen_binary (IOR, mode, XEXP (op1, 1),
5592 copy_rtx (op0))));
5593
5594 if (GET_CODE (x) != IOR)
5595 return x;
5596 }
5597
5598 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5599 mode size to (rotate A CX). */
5600
5601 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5602 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5603 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5604 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5605 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5606 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5607 == GET_MODE_BITSIZE (mode)))
5608 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5609 (GET_CODE (op0) == ASHIFT
5610 ? XEXP (op0, 1) : XEXP (op1, 1)));
5611
5612 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5613 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5614 does not affect any of the bits in OP1, it can really be done
5615 as a PLUS and we can associate. We do this by seeing if OP1
5616 can be safely shifted left C bits. */
5617 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5618 && GET_CODE (XEXP (op0, 0)) == PLUS
5619 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5620 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5621 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5622 {
5623 int count = INTVAL (XEXP (op0, 1));
5624 HOST_WIDE_INT mask = INTVAL (op1) << count;
5625
5626 if (mask >> count == INTVAL (op1)
5627 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5628 {
5629 SUBST (XEXP (XEXP (op0, 0), 1),
5630 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5631 return op0;
5632 }
5633 }
5634 break;
5635
5636 case XOR:
5637 /* If we are XORing two things that have no bits in common,
5638 convert them into an IOR. This helps to detect rotation encoded
5639 using those methods and possibly other simplifications. */
5640
5641 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5642 && (nonzero_bits (op0, mode)
5643 & nonzero_bits (op1, mode)) == 0)
5644 return (gen_binary (IOR, mode, op0, op1));
5645
5646 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5647 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5648 (NOT y). */
5649 {
5650 int num_negated = 0;
5651
5652 if (GET_CODE (op0) == NOT)
5653 num_negated++, op0 = XEXP (op0, 0);
5654 if (GET_CODE (op1) == NOT)
5655 num_negated++, op1 = XEXP (op1, 0);
5656
5657 if (num_negated == 2)
5658 {
5659 SUBST (XEXP (x, 0), op0);
5660 SUBST (XEXP (x, 1), op1);
5661 }
5662 else if (num_negated == 1)
5663 return
5664 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5665 mode);
5666 }
5667
5668 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5669 correspond to a machine insn or result in further simplifications
5670 if B is a constant. */
5671
5672 if (GET_CODE (op0) == AND
5673 && rtx_equal_p (XEXP (op0, 1), op1)
5674 && ! side_effects_p (op1))
5675 return gen_binary (AND, mode,
5676 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5677 op1);
5678
5679 else if (GET_CODE (op0) == AND
5680 && rtx_equal_p (XEXP (op0, 0), op1)
5681 && ! side_effects_p (op1))
5682 return gen_binary (AND, mode,
5683 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5684 op1);
5685
5686 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5687 comparison if STORE_FLAG_VALUE is 1. */
5688 if (STORE_FLAG_VALUE == 1
5689 && op1 == const1_rtx
5690 && COMPARISON_P (op0)
5691 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5692 XEXP (op0, 1))))
5693 return reversed;
5694
5695 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5696 is (lt foo (const_int 0)), so we can perform the above
5697 simplification if STORE_FLAG_VALUE is 1. */
5698
5699 if (STORE_FLAG_VALUE == 1
5700 && op1 == const1_rtx
5701 && GET_CODE (op0) == LSHIFTRT
5702 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5703 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5704 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5705
5706 /* (xor (comparison foo bar) (const_int sign-bit))
5707 when STORE_FLAG_VALUE is the sign bit. */
5708 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5709 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5710 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5711 && op1 == const_true_rtx
5712 && COMPARISON_P (op0)
5713 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5714 XEXP (op0, 1))))
5715 return reversed;
5716
5717 break;
5718
5719 default:
5720 gcc_unreachable ();
5721 }
5722
5723 return x;
5724 }
5725 \f
5726 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5727 operations" because they can be replaced with two more basic operations.
5728 ZERO_EXTEND is also considered "compound" because it can be replaced with
5729 an AND operation, which is simpler, though only one operation.
5730
5731 The function expand_compound_operation is called with an rtx expression
5732 and will convert it to the appropriate shifts and AND operations,
5733 simplifying at each stage.
5734
5735 The function make_compound_operation is called to convert an expression
5736 consisting of shifts and ANDs into the equivalent compound expression.
5737 It is the inverse of this function, loosely speaking. */
5738
5739 static rtx
5740 expand_compound_operation (rtx x)
5741 {
5742 unsigned HOST_WIDE_INT pos = 0, len;
5743 int unsignedp = 0;
5744 unsigned int modewidth;
5745 rtx tem;
5746
5747 switch (GET_CODE (x))
5748 {
5749 case ZERO_EXTEND:
5750 unsignedp = 1;
5751 case SIGN_EXTEND:
5752 /* We can't necessarily use a const_int for a multiword mode;
5753 it depends on implicitly extending the value.
5754 Since we don't know the right way to extend it,
5755 we can't tell whether the implicit way is right.
5756
5757 Even for a mode that is no wider than a const_int,
5758 we can't win, because we need to sign extend one of its bits through
5759 the rest of it, and we don't know which bit. */
5760 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5761 return x;
5762
5763 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5764 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5765 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5766 reloaded. If not for that, MEM's would very rarely be safe.
5767
5768 Reject MODEs bigger than a word, because we might not be able
5769 to reference a two-register group starting with an arbitrary register
5770 (and currently gen_lowpart might crash for a SUBREG). */
5771
5772 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5773 return x;
5774
5775 /* Reject MODEs that aren't scalar integers because turning vector
5776 or complex modes into shifts causes problems. */
5777
5778 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5779 return x;
5780
5781 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5782 /* If the inner object has VOIDmode (the only way this can happen
5783 is if it is an ASM_OPERANDS), we can't do anything since we don't
5784 know how much masking to do. */
5785 if (len == 0)
5786 return x;
5787
5788 break;
5789
5790 case ZERO_EXTRACT:
5791 unsignedp = 1;
5792 case SIGN_EXTRACT:
5793 /* If the operand is a CLOBBER, just return it. */
5794 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5795 return XEXP (x, 0);
5796
5797 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5798 || GET_CODE (XEXP (x, 2)) != CONST_INT
5799 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5800 return x;
5801
5802 /* Reject MODEs that aren't scalar integers because turning vector
5803 or complex modes into shifts causes problems. */
5804
5805 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5806 return x;
5807
5808 len = INTVAL (XEXP (x, 1));
5809 pos = INTVAL (XEXP (x, 2));
5810
5811 /* If this goes outside the object being extracted, replace the object
5812 with a (use (mem ...)) construct that only combine understands
5813 and is used only for this purpose. */
5814 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5815 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5816
5817 if (BITS_BIG_ENDIAN)
5818 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5819
5820 break;
5821
5822 default:
5823 return x;
5824 }
5825 /* Convert sign extension to zero extension, if we know that the high
5826 bit is not set, as this is easier to optimize. It will be converted
5827 back to cheaper alternative in make_extraction. */
5828 if (GET_CODE (x) == SIGN_EXTEND
5829 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5830 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5831 & ~(((unsigned HOST_WIDE_INT)
5832 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5833 >> 1))
5834 == 0)))
5835 {
5836 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5837 rtx temp2 = expand_compound_operation (temp);
5838
5839 /* Make sure this is a profitable operation. */
5840 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5841 return temp2;
5842 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5843 return temp;
5844 else
5845 return x;
5846 }
5847
5848 /* We can optimize some special cases of ZERO_EXTEND. */
5849 if (GET_CODE (x) == ZERO_EXTEND)
5850 {
5851 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5852 know that the last value didn't have any inappropriate bits
5853 set. */
5854 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5855 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5856 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5857 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5858 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5859 return XEXP (XEXP (x, 0), 0);
5860
5861 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5862 if (GET_CODE (XEXP (x, 0)) == SUBREG
5863 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5864 && subreg_lowpart_p (XEXP (x, 0))
5865 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5866 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5867 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5868 return SUBREG_REG (XEXP (x, 0));
5869
5870 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5871 is a comparison and STORE_FLAG_VALUE permits. This is like
5872 the first case, but it works even when GET_MODE (x) is larger
5873 than HOST_WIDE_INT. */
5874 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5875 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5876 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5877 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5878 <= HOST_BITS_PER_WIDE_INT)
5879 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5880 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5881 return XEXP (XEXP (x, 0), 0);
5882
5883 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5884 if (GET_CODE (XEXP (x, 0)) == SUBREG
5885 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5886 && subreg_lowpart_p (XEXP (x, 0))
5887 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5888 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5889 <= HOST_BITS_PER_WIDE_INT)
5890 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5891 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5892 return SUBREG_REG (XEXP (x, 0));
5893
5894 }
5895
5896 /* If we reach here, we want to return a pair of shifts. The inner
5897 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5898 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5899 logical depending on the value of UNSIGNEDP.
5900
5901 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5902 converted into an AND of a shift.
5903
5904 We must check for the case where the left shift would have a negative
5905 count. This can happen in a case like (x >> 31) & 255 on machines
5906 that can't shift by a constant. On those machines, we would first
5907 combine the shift with the AND to produce a variable-position
5908 extraction. Then the constant of 31 would be substituted in to produce
5909 a such a position. */
5910
5911 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5912 if (modewidth + len >= pos)
5913 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5914 GET_MODE (x),
5915 simplify_shift_const (NULL_RTX, ASHIFT,
5916 GET_MODE (x),
5917 XEXP (x, 0),
5918 modewidth - pos - len),
5919 modewidth - len);
5920
5921 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5922 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5923 simplify_shift_const (NULL_RTX, LSHIFTRT,
5924 GET_MODE (x),
5925 XEXP (x, 0), pos),
5926 ((HOST_WIDE_INT) 1 << len) - 1);
5927 else
5928 /* Any other cases we can't handle. */
5929 return x;
5930
5931 /* If we couldn't do this for some reason, return the original
5932 expression. */
5933 if (GET_CODE (tem) == CLOBBER)
5934 return x;
5935
5936 return tem;
5937 }
5938 \f
5939 /* X is a SET which contains an assignment of one object into
5940 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5941 or certain SUBREGS). If possible, convert it into a series of
5942 logical operations.
5943
5944 We half-heartedly support variable positions, but do not at all
5945 support variable lengths. */
5946
5947 static rtx
5948 expand_field_assignment (rtx x)
5949 {
5950 rtx inner;
5951 rtx pos; /* Always counts from low bit. */
5952 int len;
5953 rtx mask;
5954 enum machine_mode compute_mode;
5955
5956 /* Loop until we find something we can't simplify. */
5957 while (1)
5958 {
5959 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5960 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5961 {
5962 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5963 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5964 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5965 }
5966 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5967 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5968 {
5969 inner = XEXP (SET_DEST (x), 0);
5970 len = INTVAL (XEXP (SET_DEST (x), 1));
5971 pos = XEXP (SET_DEST (x), 2);
5972
5973 /* If the position is constant and spans the width of INNER,
5974 surround INNER with a USE to indicate this. */
5975 if (GET_CODE (pos) == CONST_INT
5976 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5977 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5978
5979 if (BITS_BIG_ENDIAN)
5980 {
5981 if (GET_CODE (pos) == CONST_INT)
5982 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5983 - INTVAL (pos));
5984 else if (GET_CODE (pos) == MINUS
5985 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5986 && (INTVAL (XEXP (pos, 1))
5987 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5988 /* If position is ADJUST - X, new position is X. */
5989 pos = XEXP (pos, 0);
5990 else
5991 pos = gen_binary (MINUS, GET_MODE (pos),
5992 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5993 - len),
5994 pos);
5995 }
5996 }
5997
5998 /* A SUBREG between two modes that occupy the same numbers of words
5999 can be done by moving the SUBREG to the source. */
6000 else if (GET_CODE (SET_DEST (x)) == SUBREG
6001 /* We need SUBREGs to compute nonzero_bits properly. */
6002 && nonzero_sign_valid
6003 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6004 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6005 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6006 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6007 {
6008 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6009 gen_lowpart
6010 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6011 SET_SRC (x)));
6012 continue;
6013 }
6014 else
6015 break;
6016
6017 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6018 inner = SUBREG_REG (inner);
6019
6020 compute_mode = GET_MODE (inner);
6021
6022 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6023 if (! SCALAR_INT_MODE_P (compute_mode))
6024 {
6025 enum machine_mode imode;
6026
6027 /* Don't do anything for vector or complex integral types. */
6028 if (! FLOAT_MODE_P (compute_mode))
6029 break;
6030
6031 /* Try to find an integral mode to pun with. */
6032 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6033 if (imode == BLKmode)
6034 break;
6035
6036 compute_mode = imode;
6037 inner = gen_lowpart (imode, inner);
6038 }
6039
6040 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6041 if (len < HOST_BITS_PER_WIDE_INT)
6042 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6043 else
6044 break;
6045
6046 /* Now compute the equivalent expression. Make a copy of INNER
6047 for the SET_DEST in case it is a MEM into which we will substitute;
6048 we don't want shared RTL in that case. */
6049 x = gen_rtx_SET
6050 (VOIDmode, copy_rtx (inner),
6051 gen_binary (IOR, compute_mode,
6052 gen_binary (AND, compute_mode,
6053 simplify_gen_unary (NOT, compute_mode,
6054 gen_binary (ASHIFT,
6055 compute_mode,
6056 mask, pos),
6057 compute_mode),
6058 inner),
6059 gen_binary (ASHIFT, compute_mode,
6060 gen_binary (AND, compute_mode,
6061 gen_lowpart
6062 (compute_mode, SET_SRC (x)),
6063 mask),
6064 pos)));
6065 }
6066
6067 return x;
6068 }
6069 \f
6070 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6071 it is an RTX that represents a variable starting position; otherwise,
6072 POS is the (constant) starting bit position (counted from the LSB).
6073
6074 INNER may be a USE. This will occur when we started with a bitfield
6075 that went outside the boundary of the object in memory, which is
6076 allowed on most machines. To isolate this case, we produce a USE
6077 whose mode is wide enough and surround the MEM with it. The only
6078 code that understands the USE is this routine. If it is not removed,
6079 it will cause the resulting insn not to match.
6080
6081 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6082 signed reference.
6083
6084 IN_DEST is nonzero if this is a reference in the destination of a
6085 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6086 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6087 be used.
6088
6089 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6090 ZERO_EXTRACT should be built even for bits starting at bit 0.
6091
6092 MODE is the desired mode of the result (if IN_DEST == 0).
6093
6094 The result is an RTX for the extraction or NULL_RTX if the target
6095 can't handle it. */
6096
6097 static rtx
6098 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6099 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6100 int in_dest, int in_compare)
6101 {
6102 /* This mode describes the size of the storage area
6103 to fetch the overall value from. Within that, we
6104 ignore the POS lowest bits, etc. */
6105 enum machine_mode is_mode = GET_MODE (inner);
6106 enum machine_mode inner_mode;
6107 enum machine_mode wanted_inner_mode = byte_mode;
6108 enum machine_mode wanted_inner_reg_mode = word_mode;
6109 enum machine_mode pos_mode = word_mode;
6110 enum machine_mode extraction_mode = word_mode;
6111 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6112 int spans_byte = 0;
6113 rtx new = 0;
6114 rtx orig_pos_rtx = pos_rtx;
6115 HOST_WIDE_INT orig_pos;
6116
6117 /* Get some information about INNER and get the innermost object. */
6118 if (GET_CODE (inner) == USE)
6119 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6120 /* We don't need to adjust the position because we set up the USE
6121 to pretend that it was a full-word object. */
6122 spans_byte = 1, inner = XEXP (inner, 0);
6123 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6124 {
6125 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6126 consider just the QI as the memory to extract from.
6127 The subreg adds or removes high bits; its mode is
6128 irrelevant to the meaning of this extraction,
6129 since POS and LEN count from the lsb. */
6130 if (MEM_P (SUBREG_REG (inner)))
6131 is_mode = GET_MODE (SUBREG_REG (inner));
6132 inner = SUBREG_REG (inner);
6133 }
6134 else if (GET_CODE (inner) == ASHIFT
6135 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6136 && pos_rtx == 0 && pos == 0
6137 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6138 {
6139 /* We're extracting the least significant bits of an rtx
6140 (ashift X (const_int C)), where LEN > C. Extract the
6141 least significant (LEN - C) bits of X, giving an rtx
6142 whose mode is MODE, then shift it left C times. */
6143 new = make_extraction (mode, XEXP (inner, 0),
6144 0, 0, len - INTVAL (XEXP (inner, 1)),
6145 unsignedp, in_dest, in_compare);
6146 if (new != 0)
6147 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6148 }
6149
6150 inner_mode = GET_MODE (inner);
6151
6152 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6153 pos = INTVAL (pos_rtx), pos_rtx = 0;
6154
6155 /* See if this can be done without an extraction. We never can if the
6156 width of the field is not the same as that of some integer mode. For
6157 registers, we can only avoid the extraction if the position is at the
6158 low-order bit and this is either not in the destination or we have the
6159 appropriate STRICT_LOW_PART operation available.
6160
6161 For MEM, we can avoid an extract if the field starts on an appropriate
6162 boundary and we can change the mode of the memory reference. However,
6163 we cannot directly access the MEM if we have a USE and the underlying
6164 MEM is not TMODE. This combination means that MEM was being used in a
6165 context where bits outside its mode were being referenced; that is only
6166 valid in bit-field insns. */
6167
6168 if (tmode != BLKmode
6169 && ! (spans_byte && inner_mode != tmode)
6170 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6171 && !MEM_P (inner)
6172 && (! in_dest
6173 || (REG_P (inner)
6174 && have_insn_for (STRICT_LOW_PART, tmode))))
6175 || (MEM_P (inner) && pos_rtx == 0
6176 && (pos
6177 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6178 : BITS_PER_UNIT)) == 0
6179 /* We can't do this if we are widening INNER_MODE (it
6180 may not be aligned, for one thing). */
6181 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6182 && (inner_mode == tmode
6183 || (! mode_dependent_address_p (XEXP (inner, 0))
6184 && ! MEM_VOLATILE_P (inner))))))
6185 {
6186 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6187 field. If the original and current mode are the same, we need not
6188 adjust the offset. Otherwise, we do if bytes big endian.
6189
6190 If INNER is not a MEM, get a piece consisting of just the field
6191 of interest (in this case POS % BITS_PER_WORD must be 0). */
6192
6193 if (MEM_P (inner))
6194 {
6195 HOST_WIDE_INT offset;
6196
6197 /* POS counts from lsb, but make OFFSET count in memory order. */
6198 if (BYTES_BIG_ENDIAN)
6199 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6200 else
6201 offset = pos / BITS_PER_UNIT;
6202
6203 new = adjust_address_nv (inner, tmode, offset);
6204 }
6205 else if (REG_P (inner))
6206 {
6207 if (tmode != inner_mode)
6208 {
6209 /* We can't call gen_lowpart in a DEST since we
6210 always want a SUBREG (see below) and it would sometimes
6211 return a new hard register. */
6212 if (pos || in_dest)
6213 {
6214 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6215
6216 if (WORDS_BIG_ENDIAN
6217 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6218 final_word = ((GET_MODE_SIZE (inner_mode)
6219 - GET_MODE_SIZE (tmode))
6220 / UNITS_PER_WORD) - final_word;
6221
6222 final_word *= UNITS_PER_WORD;
6223 if (BYTES_BIG_ENDIAN &&
6224 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6225 final_word += (GET_MODE_SIZE (inner_mode)
6226 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6227
6228 /* Avoid creating invalid subregs, for example when
6229 simplifying (x>>32)&255. */
6230 if (final_word >= GET_MODE_SIZE (inner_mode))
6231 return NULL_RTX;
6232
6233 new = gen_rtx_SUBREG (tmode, inner, final_word);
6234 }
6235 else
6236 new = gen_lowpart (tmode, inner);
6237 }
6238 else
6239 new = inner;
6240 }
6241 else
6242 new = force_to_mode (inner, tmode,
6243 len >= HOST_BITS_PER_WIDE_INT
6244 ? ~(unsigned HOST_WIDE_INT) 0
6245 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6246 NULL_RTX, 0);
6247
6248 /* If this extraction is going into the destination of a SET,
6249 make a STRICT_LOW_PART unless we made a MEM. */
6250
6251 if (in_dest)
6252 return (MEM_P (new) ? new
6253 : (GET_CODE (new) != SUBREG
6254 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6255 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6256
6257 if (mode == tmode)
6258 return new;
6259
6260 if (GET_CODE (new) == CONST_INT)
6261 return gen_int_mode (INTVAL (new), mode);
6262
6263 /* If we know that no extraneous bits are set, and that the high
6264 bit is not set, convert the extraction to the cheaper of
6265 sign and zero extension, that are equivalent in these cases. */
6266 if (flag_expensive_optimizations
6267 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6268 && ((nonzero_bits (new, tmode)
6269 & ~(((unsigned HOST_WIDE_INT)
6270 GET_MODE_MASK (tmode))
6271 >> 1))
6272 == 0)))
6273 {
6274 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6275 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6276
6277 /* Prefer ZERO_EXTENSION, since it gives more information to
6278 backends. */
6279 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6280 return temp;
6281 return temp1;
6282 }
6283
6284 /* Otherwise, sign- or zero-extend unless we already are in the
6285 proper mode. */
6286
6287 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6288 mode, new));
6289 }
6290
6291 /* Unless this is a COMPARE or we have a funny memory reference,
6292 don't do anything with zero-extending field extracts starting at
6293 the low-order bit since they are simple AND operations. */
6294 if (pos_rtx == 0 && pos == 0 && ! in_dest
6295 && ! in_compare && ! spans_byte && unsignedp)
6296 return 0;
6297
6298 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6299 we would be spanning bytes or if the position is not a constant and the
6300 length is not 1. In all other cases, we would only be going outside
6301 our object in cases when an original shift would have been
6302 undefined. */
6303 if (! spans_byte && MEM_P (inner)
6304 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6305 || (pos_rtx != 0 && len != 1)))
6306 return 0;
6307
6308 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6309 and the mode for the result. */
6310 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6311 {
6312 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6313 pos_mode = mode_for_extraction (EP_insv, 2);
6314 extraction_mode = mode_for_extraction (EP_insv, 3);
6315 }
6316
6317 if (! in_dest && unsignedp
6318 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6319 {
6320 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6321 pos_mode = mode_for_extraction (EP_extzv, 3);
6322 extraction_mode = mode_for_extraction (EP_extzv, 0);
6323 }
6324
6325 if (! in_dest && ! unsignedp
6326 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6327 {
6328 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6329 pos_mode = mode_for_extraction (EP_extv, 3);
6330 extraction_mode = mode_for_extraction (EP_extv, 0);
6331 }
6332
6333 /* Never narrow an object, since that might not be safe. */
6334
6335 if (mode != VOIDmode
6336 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6337 extraction_mode = mode;
6338
6339 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6340 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6341 pos_mode = GET_MODE (pos_rtx);
6342
6343 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6344 if we have to change the mode of memory and cannot, the desired mode is
6345 EXTRACTION_MODE. */
6346 if (!MEM_P (inner))
6347 wanted_inner_mode = wanted_inner_reg_mode;
6348 else if (inner_mode != wanted_inner_mode
6349 && (mode_dependent_address_p (XEXP (inner, 0))
6350 || MEM_VOLATILE_P (inner)))
6351 wanted_inner_mode = extraction_mode;
6352
6353 orig_pos = pos;
6354
6355 if (BITS_BIG_ENDIAN)
6356 {
6357 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6358 BITS_BIG_ENDIAN style. If position is constant, compute new
6359 position. Otherwise, build subtraction.
6360 Note that POS is relative to the mode of the original argument.
6361 If it's a MEM we need to recompute POS relative to that.
6362 However, if we're extracting from (or inserting into) a register,
6363 we want to recompute POS relative to wanted_inner_mode. */
6364 int width = (MEM_P (inner)
6365 ? GET_MODE_BITSIZE (is_mode)
6366 : GET_MODE_BITSIZE (wanted_inner_mode));
6367
6368 if (pos_rtx == 0)
6369 pos = width - len - pos;
6370 else
6371 pos_rtx
6372 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6373 /* POS may be less than 0 now, but we check for that below.
6374 Note that it can only be less than 0 if !MEM_P (inner). */
6375 }
6376
6377 /* If INNER has a wider mode, make it smaller. If this is a constant
6378 extract, try to adjust the byte to point to the byte containing
6379 the value. */
6380 if (wanted_inner_mode != VOIDmode
6381 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6382 && ((MEM_P (inner)
6383 && (inner_mode == wanted_inner_mode
6384 || (! mode_dependent_address_p (XEXP (inner, 0))
6385 && ! MEM_VOLATILE_P (inner))))))
6386 {
6387 int offset = 0;
6388
6389 /* The computations below will be correct if the machine is big
6390 endian in both bits and bytes or little endian in bits and bytes.
6391 If it is mixed, we must adjust. */
6392
6393 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6394 adjust OFFSET to compensate. */
6395 if (BYTES_BIG_ENDIAN
6396 && ! spans_byte
6397 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6398 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6399
6400 /* If this is a constant position, we can move to the desired byte. */
6401 if (pos_rtx == 0)
6402 {
6403 offset += pos / BITS_PER_UNIT;
6404 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6405 }
6406
6407 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6408 && ! spans_byte
6409 && is_mode != wanted_inner_mode)
6410 offset = (GET_MODE_SIZE (is_mode)
6411 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6412
6413 if (offset != 0 || inner_mode != wanted_inner_mode)
6414 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6415 }
6416
6417 /* If INNER is not memory, we can always get it into the proper mode. If we
6418 are changing its mode, POS must be a constant and smaller than the size
6419 of the new mode. */
6420 else if (!MEM_P (inner))
6421 {
6422 if (GET_MODE (inner) != wanted_inner_mode
6423 && (pos_rtx != 0
6424 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6425 return 0;
6426
6427 inner = force_to_mode (inner, wanted_inner_mode,
6428 pos_rtx
6429 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6430 ? ~(unsigned HOST_WIDE_INT) 0
6431 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6432 << orig_pos),
6433 NULL_RTX, 0);
6434 }
6435
6436 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6437 have to zero extend. Otherwise, we can just use a SUBREG. */
6438 if (pos_rtx != 0
6439 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6440 {
6441 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6442
6443 /* If we know that no extraneous bits are set, and that the high
6444 bit is not set, convert extraction to cheaper one - either
6445 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6446 cases. */
6447 if (flag_expensive_optimizations
6448 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6449 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6450 & ~(((unsigned HOST_WIDE_INT)
6451 GET_MODE_MASK (GET_MODE (pos_rtx)))
6452 >> 1))
6453 == 0)))
6454 {
6455 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6456
6457 /* Prefer ZERO_EXTENSION, since it gives more information to
6458 backends. */
6459 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6460 temp = temp1;
6461 }
6462 pos_rtx = temp;
6463 }
6464 else if (pos_rtx != 0
6465 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6466 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6467
6468 /* Make POS_RTX unless we already have it and it is correct. If we don't
6469 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6470 be a CONST_INT. */
6471 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6472 pos_rtx = orig_pos_rtx;
6473
6474 else if (pos_rtx == 0)
6475 pos_rtx = GEN_INT (pos);
6476
6477 /* Make the required operation. See if we can use existing rtx. */
6478 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6479 extraction_mode, inner, GEN_INT (len), pos_rtx);
6480 if (! in_dest)
6481 new = gen_lowpart (mode, new);
6482
6483 return new;
6484 }
6485 \f
6486 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6487 with any other operations in X. Return X without that shift if so. */
6488
6489 static rtx
6490 extract_left_shift (rtx x, int count)
6491 {
6492 enum rtx_code code = GET_CODE (x);
6493 enum machine_mode mode = GET_MODE (x);
6494 rtx tem;
6495
6496 switch (code)
6497 {
6498 case ASHIFT:
6499 /* This is the shift itself. If it is wide enough, we will return
6500 either the value being shifted if the shift count is equal to
6501 COUNT or a shift for the difference. */
6502 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6503 && INTVAL (XEXP (x, 1)) >= count)
6504 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6505 INTVAL (XEXP (x, 1)) - count);
6506 break;
6507
6508 case NEG: case NOT:
6509 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6510 return simplify_gen_unary (code, mode, tem, mode);
6511
6512 break;
6513
6514 case PLUS: case IOR: case XOR: case AND:
6515 /* If we can safely shift this constant and we find the inner shift,
6516 make a new operation. */
6517 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6518 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6519 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6520 return gen_binary (code, mode, tem,
6521 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6522
6523 break;
6524
6525 default:
6526 break;
6527 }
6528
6529 return 0;
6530 }
6531 \f
6532 /* Look at the expression rooted at X. Look for expressions
6533 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6534 Form these expressions.
6535
6536 Return the new rtx, usually just X.
6537
6538 Also, for machines like the VAX that don't have logical shift insns,
6539 try to convert logical to arithmetic shift operations in cases where
6540 they are equivalent. This undoes the canonicalizations to logical
6541 shifts done elsewhere.
6542
6543 We try, as much as possible, to re-use rtl expressions to save memory.
6544
6545 IN_CODE says what kind of expression we are processing. Normally, it is
6546 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6547 being kludges), it is MEM. When processing the arguments of a comparison
6548 or a COMPARE against zero, it is COMPARE. */
6549
6550 static rtx
6551 make_compound_operation (rtx x, enum rtx_code in_code)
6552 {
6553 enum rtx_code code = GET_CODE (x);
6554 enum machine_mode mode = GET_MODE (x);
6555 int mode_width = GET_MODE_BITSIZE (mode);
6556 rtx rhs, lhs;
6557 enum rtx_code next_code;
6558 int i;
6559 rtx new = 0;
6560 rtx tem;
6561 const char *fmt;
6562
6563 /* Select the code to be used in recursive calls. Once we are inside an
6564 address, we stay there. If we have a comparison, set to COMPARE,
6565 but once inside, go back to our default of SET. */
6566
6567 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6568 : ((code == COMPARE || COMPARISON_P (x))
6569 && XEXP (x, 1) == const0_rtx) ? COMPARE
6570 : in_code == COMPARE ? SET : in_code);
6571
6572 /* Process depending on the code of this operation. If NEW is set
6573 nonzero, it will be returned. */
6574
6575 switch (code)
6576 {
6577 case ASHIFT:
6578 /* Convert shifts by constants into multiplications if inside
6579 an address. */
6580 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6581 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6582 && INTVAL (XEXP (x, 1)) >= 0)
6583 {
6584 new = make_compound_operation (XEXP (x, 0), next_code);
6585 new = gen_rtx_MULT (mode, new,
6586 GEN_INT ((HOST_WIDE_INT) 1
6587 << INTVAL (XEXP (x, 1))));
6588 }
6589 break;
6590
6591 case AND:
6592 /* If the second operand is not a constant, we can't do anything
6593 with it. */
6594 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6595 break;
6596
6597 /* If the constant is a power of two minus one and the first operand
6598 is a logical right shift, make an extraction. */
6599 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6600 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6601 {
6602 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6603 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6604 0, in_code == COMPARE);
6605 }
6606
6607 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6608 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6609 && subreg_lowpart_p (XEXP (x, 0))
6610 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6611 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6612 {
6613 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6614 next_code);
6615 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6616 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6617 0, in_code == COMPARE);
6618 }
6619 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6620 else if ((GET_CODE (XEXP (x, 0)) == XOR
6621 || GET_CODE (XEXP (x, 0)) == IOR)
6622 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6623 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6624 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6625 {
6626 /* Apply the distributive law, and then try to make extractions. */
6627 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6628 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6629 XEXP (x, 1)),
6630 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6631 XEXP (x, 1)));
6632 new = make_compound_operation (new, in_code);
6633 }
6634
6635 /* If we are have (and (rotate X C) M) and C is larger than the number
6636 of bits in M, this is an extraction. */
6637
6638 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6639 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6640 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6641 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6642 {
6643 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6644 new = make_extraction (mode, new,
6645 (GET_MODE_BITSIZE (mode)
6646 - INTVAL (XEXP (XEXP (x, 0), 1))),
6647 NULL_RTX, i, 1, 0, in_code == COMPARE);
6648 }
6649
6650 /* On machines without logical shifts, if the operand of the AND is
6651 a logical shift and our mask turns off all the propagated sign
6652 bits, we can replace the logical shift with an arithmetic shift. */
6653 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6654 && !have_insn_for (LSHIFTRT, mode)
6655 && have_insn_for (ASHIFTRT, mode)
6656 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6657 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6658 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6659 && mode_width <= HOST_BITS_PER_WIDE_INT)
6660 {
6661 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6662
6663 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6664 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6665 SUBST (XEXP (x, 0),
6666 gen_rtx_ASHIFTRT (mode,
6667 make_compound_operation
6668 (XEXP (XEXP (x, 0), 0), next_code),
6669 XEXP (XEXP (x, 0), 1)));
6670 }
6671
6672 /* If the constant is one less than a power of two, this might be
6673 representable by an extraction even if no shift is present.
6674 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6675 we are in a COMPARE. */
6676 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6677 new = make_extraction (mode,
6678 make_compound_operation (XEXP (x, 0),
6679 next_code),
6680 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6681
6682 /* If we are in a comparison and this is an AND with a power of two,
6683 convert this into the appropriate bit extract. */
6684 else if (in_code == COMPARE
6685 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6686 new = make_extraction (mode,
6687 make_compound_operation (XEXP (x, 0),
6688 next_code),
6689 i, NULL_RTX, 1, 1, 0, 1);
6690
6691 break;
6692
6693 case LSHIFTRT:
6694 /* If the sign bit is known to be zero, replace this with an
6695 arithmetic shift. */
6696 if (have_insn_for (ASHIFTRT, mode)
6697 && ! have_insn_for (LSHIFTRT, mode)
6698 && mode_width <= HOST_BITS_PER_WIDE_INT
6699 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6700 {
6701 new = gen_rtx_ASHIFTRT (mode,
6702 make_compound_operation (XEXP (x, 0),
6703 next_code),
6704 XEXP (x, 1));
6705 break;
6706 }
6707
6708 /* ... fall through ... */
6709
6710 case ASHIFTRT:
6711 lhs = XEXP (x, 0);
6712 rhs = XEXP (x, 1);
6713
6714 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6715 this is a SIGN_EXTRACT. */
6716 if (GET_CODE (rhs) == CONST_INT
6717 && GET_CODE (lhs) == ASHIFT
6718 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6719 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6720 {
6721 new = make_compound_operation (XEXP (lhs, 0), next_code);
6722 new = make_extraction (mode, new,
6723 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6724 NULL_RTX, mode_width - INTVAL (rhs),
6725 code == LSHIFTRT, 0, in_code == COMPARE);
6726 break;
6727 }
6728
6729 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6730 If so, try to merge the shifts into a SIGN_EXTEND. We could
6731 also do this for some cases of SIGN_EXTRACT, but it doesn't
6732 seem worth the effort; the case checked for occurs on Alpha. */
6733
6734 if (!OBJECT_P (lhs)
6735 && ! (GET_CODE (lhs) == SUBREG
6736 && (OBJECT_P (SUBREG_REG (lhs))))
6737 && GET_CODE (rhs) == CONST_INT
6738 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6739 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6740 new = make_extraction (mode, make_compound_operation (new, next_code),
6741 0, NULL_RTX, mode_width - INTVAL (rhs),
6742 code == LSHIFTRT, 0, in_code == COMPARE);
6743
6744 break;
6745
6746 case SUBREG:
6747 /* Call ourselves recursively on the inner expression. If we are
6748 narrowing the object and it has a different RTL code from
6749 what it originally did, do this SUBREG as a force_to_mode. */
6750
6751 tem = make_compound_operation (SUBREG_REG (x), in_code);
6752 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6753 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6754 && subreg_lowpart_p (x))
6755 {
6756 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6757 NULL_RTX, 0);
6758
6759 /* If we have something other than a SUBREG, we might have
6760 done an expansion, so rerun ourselves. */
6761 if (GET_CODE (newer) != SUBREG)
6762 newer = make_compound_operation (newer, in_code);
6763
6764 return newer;
6765 }
6766
6767 /* If this is a paradoxical subreg, and the new code is a sign or
6768 zero extension, omit the subreg and widen the extension. If it
6769 is a regular subreg, we can still get rid of the subreg by not
6770 widening so much, or in fact removing the extension entirely. */
6771 if ((GET_CODE (tem) == SIGN_EXTEND
6772 || GET_CODE (tem) == ZERO_EXTEND)
6773 && subreg_lowpart_p (x))
6774 {
6775 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6776 || (GET_MODE_SIZE (mode) >
6777 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6778 {
6779 if (! SCALAR_INT_MODE_P (mode))
6780 break;
6781 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6782 }
6783 else
6784 tem = gen_lowpart (mode, XEXP (tem, 0));
6785 return tem;
6786 }
6787 break;
6788
6789 default:
6790 break;
6791 }
6792
6793 if (new)
6794 {
6795 x = gen_lowpart (mode, new);
6796 code = GET_CODE (x);
6797 }
6798
6799 /* Now recursively process each operand of this operation. */
6800 fmt = GET_RTX_FORMAT (code);
6801 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6802 if (fmt[i] == 'e')
6803 {
6804 new = make_compound_operation (XEXP (x, i), next_code);
6805 SUBST (XEXP (x, i), new);
6806 }
6807
6808 return x;
6809 }
6810 \f
6811 /* Given M see if it is a value that would select a field of bits
6812 within an item, but not the entire word. Return -1 if not.
6813 Otherwise, return the starting position of the field, where 0 is the
6814 low-order bit.
6815
6816 *PLEN is set to the length of the field. */
6817
6818 static int
6819 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6820 {
6821 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6822 int pos = exact_log2 (m & -m);
6823 int len = 0;
6824
6825 if (pos >= 0)
6826 /* Now shift off the low-order zero bits and see if we have a
6827 power of two minus 1. */
6828 len = exact_log2 ((m >> pos) + 1);
6829
6830 if (len <= 0)
6831 pos = -1;
6832
6833 *plen = len;
6834 return pos;
6835 }
6836 \f
6837 /* See if X can be simplified knowing that we will only refer to it in
6838 MODE and will only refer to those bits that are nonzero in MASK.
6839 If other bits are being computed or if masking operations are done
6840 that select a superset of the bits in MASK, they can sometimes be
6841 ignored.
6842
6843 Return a possibly simplified expression, but always convert X to
6844 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6845
6846 Also, if REG is nonzero and X is a register equal in value to REG,
6847 replace X with REG.
6848
6849 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6850 are all off in X. This is used when X will be complemented, by either
6851 NOT, NEG, or XOR. */
6852
6853 static rtx
6854 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6855 rtx reg, int just_select)
6856 {
6857 enum rtx_code code = GET_CODE (x);
6858 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6859 enum machine_mode op_mode;
6860 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6861 rtx op0, op1, temp;
6862
6863 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6864 code below will do the wrong thing since the mode of such an
6865 expression is VOIDmode.
6866
6867 Also do nothing if X is a CLOBBER; this can happen if X was
6868 the return value from a call to gen_lowpart. */
6869 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6870 return x;
6871
6872 /* We want to perform the operation is its present mode unless we know
6873 that the operation is valid in MODE, in which case we do the operation
6874 in MODE. */
6875 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6876 && have_insn_for (code, mode))
6877 ? mode : GET_MODE (x));
6878
6879 /* It is not valid to do a right-shift in a narrower mode
6880 than the one it came in with. */
6881 if ((code == LSHIFTRT || code == ASHIFTRT)
6882 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6883 op_mode = GET_MODE (x);
6884
6885 /* Truncate MASK to fit OP_MODE. */
6886 if (op_mode)
6887 mask &= GET_MODE_MASK (op_mode);
6888
6889 /* When we have an arithmetic operation, or a shift whose count we
6890 do not know, we need to assume that all bits up to the highest-order
6891 bit in MASK will be needed. This is how we form such a mask. */
6892 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6893 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6894 else
6895 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6896 - 1);
6897
6898 /* Determine what bits of X are guaranteed to be (non)zero. */
6899 nonzero = nonzero_bits (x, mode);
6900
6901 /* If none of the bits in X are needed, return a zero. */
6902 if (! just_select && (nonzero & mask) == 0)
6903 x = const0_rtx;
6904
6905 /* If X is a CONST_INT, return a new one. Do this here since the
6906 test below will fail. */
6907 if (GET_CODE (x) == CONST_INT)
6908 {
6909 if (SCALAR_INT_MODE_P (mode))
6910 return gen_int_mode (INTVAL (x) & mask, mode);
6911 else
6912 {
6913 x = GEN_INT (INTVAL (x) & mask);
6914 return gen_lowpart_common (mode, x);
6915 }
6916 }
6917
6918 /* If X is narrower than MODE and we want all the bits in X's mode, just
6919 get X in the proper mode. */
6920 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6921 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6922 return gen_lowpart (mode, x);
6923
6924 switch (code)
6925 {
6926 case CLOBBER:
6927 /* If X is a (clobber (const_int)), return it since we know we are
6928 generating something that won't match. */
6929 return x;
6930
6931 case USE:
6932 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6933 spanned the boundary of the MEM. If we are now masking so it is
6934 within that boundary, we don't need the USE any more. */
6935 if (! BITS_BIG_ENDIAN
6936 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6937 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6938 break;
6939
6940 case SIGN_EXTEND:
6941 case ZERO_EXTEND:
6942 case ZERO_EXTRACT:
6943 case SIGN_EXTRACT:
6944 x = expand_compound_operation (x);
6945 if (GET_CODE (x) != code)
6946 return force_to_mode (x, mode, mask, reg, next_select);
6947 break;
6948
6949 case REG:
6950 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6951 || rtx_equal_p (reg, get_last_value (x))))
6952 x = reg;
6953 break;
6954
6955 case SUBREG:
6956 if (subreg_lowpart_p (x)
6957 /* We can ignore the effect of this SUBREG if it narrows the mode or
6958 if the constant masks to zero all the bits the mode doesn't
6959 have. */
6960 && ((GET_MODE_SIZE (GET_MODE (x))
6961 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6962 || (0 == (mask
6963 & GET_MODE_MASK (GET_MODE (x))
6964 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6965 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6966 break;
6967
6968 case AND:
6969 /* If this is an AND with a constant, convert it into an AND
6970 whose constant is the AND of that constant with MASK. If it
6971 remains an AND of MASK, delete it since it is redundant. */
6972
6973 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6974 {
6975 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6976 mask & INTVAL (XEXP (x, 1)));
6977
6978 /* If X is still an AND, see if it is an AND with a mask that
6979 is just some low-order bits. If so, and it is MASK, we don't
6980 need it. */
6981
6982 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6983 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6984 == mask))
6985 x = XEXP (x, 0);
6986
6987 /* If it remains an AND, try making another AND with the bits
6988 in the mode mask that aren't in MASK turned on. If the
6989 constant in the AND is wide enough, this might make a
6990 cheaper constant. */
6991
6992 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6993 && GET_MODE_MASK (GET_MODE (x)) != mask
6994 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6995 {
6996 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6997 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6998 int width = GET_MODE_BITSIZE (GET_MODE (x));
6999 rtx y;
7000
7001 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7002 number, sign extend it. */
7003 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7004 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7005 cval |= (HOST_WIDE_INT) -1 << width;
7006
7007 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
7008 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7009 x = y;
7010 }
7011
7012 break;
7013 }
7014
7015 goto binop;
7016
7017 case PLUS:
7018 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7019 low-order bits (as in an alignment operation) and FOO is already
7020 aligned to that boundary, mask C1 to that boundary as well.
7021 This may eliminate that PLUS and, later, the AND. */
7022
7023 {
7024 unsigned int width = GET_MODE_BITSIZE (mode);
7025 unsigned HOST_WIDE_INT smask = mask;
7026
7027 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7028 number, sign extend it. */
7029
7030 if (width < HOST_BITS_PER_WIDE_INT
7031 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7032 smask |= (HOST_WIDE_INT) -1 << width;
7033
7034 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7035 && exact_log2 (- smask) >= 0
7036 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7037 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7038 return force_to_mode (plus_constant (XEXP (x, 0),
7039 (INTVAL (XEXP (x, 1)) & smask)),
7040 mode, smask, reg, next_select);
7041 }
7042
7043 /* ... fall through ... */
7044
7045 case MULT:
7046 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7047 most significant bit in MASK since carries from those bits will
7048 affect the bits we are interested in. */
7049 mask = fuller_mask;
7050 goto binop;
7051
7052 case MINUS:
7053 /* If X is (minus C Y) where C's least set bit is larger than any bit
7054 in the mask, then we may replace with (neg Y). */
7055 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7056 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7057 & -INTVAL (XEXP (x, 0))))
7058 > mask))
7059 {
7060 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7061 GET_MODE (x));
7062 return force_to_mode (x, mode, mask, reg, next_select);
7063 }
7064
7065 /* Similarly, if C contains every bit in the fuller_mask, then we may
7066 replace with (not Y). */
7067 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7068 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7069 == INTVAL (XEXP (x, 0))))
7070 {
7071 x = simplify_gen_unary (NOT, GET_MODE (x),
7072 XEXP (x, 1), GET_MODE (x));
7073 return force_to_mode (x, mode, mask, reg, next_select);
7074 }
7075
7076 mask = fuller_mask;
7077 goto binop;
7078
7079 case IOR:
7080 case XOR:
7081 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7082 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7083 operation which may be a bitfield extraction. Ensure that the
7084 constant we form is not wider than the mode of X. */
7085
7086 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7087 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7088 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7089 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7090 && GET_CODE (XEXP (x, 1)) == CONST_INT
7091 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7092 + floor_log2 (INTVAL (XEXP (x, 1))))
7093 < GET_MODE_BITSIZE (GET_MODE (x)))
7094 && (INTVAL (XEXP (x, 1))
7095 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7096 {
7097 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7098 << INTVAL (XEXP (XEXP (x, 0), 1)));
7099 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7100 XEXP (XEXP (x, 0), 0), temp);
7101 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7102 XEXP (XEXP (x, 0), 1));
7103 return force_to_mode (x, mode, mask, reg, next_select);
7104 }
7105
7106 binop:
7107 /* For most binary operations, just propagate into the operation and
7108 change the mode if we have an operation of that mode. */
7109
7110 op0 = gen_lowpart (op_mode,
7111 force_to_mode (XEXP (x, 0), mode, mask,
7112 reg, next_select));
7113 op1 = gen_lowpart (op_mode,
7114 force_to_mode (XEXP (x, 1), mode, mask,
7115 reg, next_select));
7116
7117 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7118 x = gen_binary (code, op_mode, op0, op1);
7119 break;
7120
7121 case ASHIFT:
7122 /* For left shifts, do the same, but just for the first operand.
7123 However, we cannot do anything with shifts where we cannot
7124 guarantee that the counts are smaller than the size of the mode
7125 because such a count will have a different meaning in a
7126 wider mode. */
7127
7128 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7129 && INTVAL (XEXP (x, 1)) >= 0
7130 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7131 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7132 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7133 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7134 break;
7135
7136 /* If the shift count is a constant and we can do arithmetic in
7137 the mode of the shift, refine which bits we need. Otherwise, use the
7138 conservative form of the mask. */
7139 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7140 && INTVAL (XEXP (x, 1)) >= 0
7141 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7142 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7143 mask >>= INTVAL (XEXP (x, 1));
7144 else
7145 mask = fuller_mask;
7146
7147 op0 = gen_lowpart (op_mode,
7148 force_to_mode (XEXP (x, 0), op_mode,
7149 mask, reg, next_select));
7150
7151 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7152 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7153 break;
7154
7155 case LSHIFTRT:
7156 /* Here we can only do something if the shift count is a constant,
7157 this shift constant is valid for the host, and we can do arithmetic
7158 in OP_MODE. */
7159
7160 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7161 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7162 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7163 {
7164 rtx inner = XEXP (x, 0);
7165 unsigned HOST_WIDE_INT inner_mask;
7166
7167 /* Select the mask of the bits we need for the shift operand. */
7168 inner_mask = mask << INTVAL (XEXP (x, 1));
7169
7170 /* We can only change the mode of the shift if we can do arithmetic
7171 in the mode of the shift and INNER_MASK is no wider than the
7172 width of X's mode. */
7173 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7174 op_mode = GET_MODE (x);
7175
7176 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7177
7178 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7179 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7180 }
7181
7182 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7183 shift and AND produces only copies of the sign bit (C2 is one less
7184 than a power of two), we can do this with just a shift. */
7185
7186 if (GET_CODE (x) == LSHIFTRT
7187 && GET_CODE (XEXP (x, 1)) == CONST_INT
7188 /* The shift puts one of the sign bit copies in the least significant
7189 bit. */
7190 && ((INTVAL (XEXP (x, 1))
7191 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7192 >= GET_MODE_BITSIZE (GET_MODE (x)))
7193 && exact_log2 (mask + 1) >= 0
7194 /* Number of bits left after the shift must be more than the mask
7195 needs. */
7196 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7197 <= GET_MODE_BITSIZE (GET_MODE (x)))
7198 /* Must be more sign bit copies than the mask needs. */
7199 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7200 >= exact_log2 (mask + 1)))
7201 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7202 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7203 - exact_log2 (mask + 1)));
7204
7205 goto shiftrt;
7206
7207 case ASHIFTRT:
7208 /* If we are just looking for the sign bit, we don't need this shift at
7209 all, even if it has a variable count. */
7210 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7211 && (mask == ((unsigned HOST_WIDE_INT) 1
7212 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7213 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7214
7215 /* If this is a shift by a constant, get a mask that contains those bits
7216 that are not copies of the sign bit. We then have two cases: If
7217 MASK only includes those bits, this can be a logical shift, which may
7218 allow simplifications. If MASK is a single-bit field not within
7219 those bits, we are requesting a copy of the sign bit and hence can
7220 shift the sign bit to the appropriate location. */
7221
7222 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7223 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7224 {
7225 int i = -1;
7226
7227 /* If the considered data is wider than HOST_WIDE_INT, we can't
7228 represent a mask for all its bits in a single scalar.
7229 But we only care about the lower bits, so calculate these. */
7230
7231 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7232 {
7233 nonzero = ~(HOST_WIDE_INT) 0;
7234
7235 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7236 is the number of bits a full-width mask would have set.
7237 We need only shift if these are fewer than nonzero can
7238 hold. If not, we must keep all bits set in nonzero. */
7239
7240 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7241 < HOST_BITS_PER_WIDE_INT)
7242 nonzero >>= INTVAL (XEXP (x, 1))
7243 + HOST_BITS_PER_WIDE_INT
7244 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7245 }
7246 else
7247 {
7248 nonzero = GET_MODE_MASK (GET_MODE (x));
7249 nonzero >>= INTVAL (XEXP (x, 1));
7250 }
7251
7252 if ((mask & ~nonzero) == 0
7253 || (i = exact_log2 (mask)) >= 0)
7254 {
7255 x = simplify_shift_const
7256 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7257 i < 0 ? INTVAL (XEXP (x, 1))
7258 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7259
7260 if (GET_CODE (x) != ASHIFTRT)
7261 return force_to_mode (x, mode, mask, reg, next_select);
7262 }
7263 }
7264
7265 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7266 even if the shift count isn't a constant. */
7267 if (mask == 1)
7268 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7269
7270 shiftrt:
7271
7272 /* If this is a zero- or sign-extension operation that just affects bits
7273 we don't care about, remove it. Be sure the call above returned
7274 something that is still a shift. */
7275
7276 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7277 && GET_CODE (XEXP (x, 1)) == CONST_INT
7278 && INTVAL (XEXP (x, 1)) >= 0
7279 && (INTVAL (XEXP (x, 1))
7280 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7281 && GET_CODE (XEXP (x, 0)) == ASHIFT
7282 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7283 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7284 reg, next_select);
7285
7286 break;
7287
7288 case ROTATE:
7289 case ROTATERT:
7290 /* If the shift count is constant and we can do computations
7291 in the mode of X, compute where the bits we care about are.
7292 Otherwise, we can't do anything. Don't change the mode of
7293 the shift or propagate MODE into the shift, though. */
7294 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7295 && INTVAL (XEXP (x, 1)) >= 0)
7296 {
7297 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7298 GET_MODE (x), GEN_INT (mask),
7299 XEXP (x, 1));
7300 if (temp && GET_CODE (temp) == CONST_INT)
7301 SUBST (XEXP (x, 0),
7302 force_to_mode (XEXP (x, 0), GET_MODE (x),
7303 INTVAL (temp), reg, next_select));
7304 }
7305 break;
7306
7307 case NEG:
7308 /* If we just want the low-order bit, the NEG isn't needed since it
7309 won't change the low-order bit. */
7310 if (mask == 1)
7311 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7312
7313 /* We need any bits less significant than the most significant bit in
7314 MASK since carries from those bits will affect the bits we are
7315 interested in. */
7316 mask = fuller_mask;
7317 goto unop;
7318
7319 case NOT:
7320 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7321 same as the XOR case above. Ensure that the constant we form is not
7322 wider than the mode of X. */
7323
7324 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7325 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7326 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7327 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7328 < GET_MODE_BITSIZE (GET_MODE (x)))
7329 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7330 {
7331 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7332 GET_MODE (x));
7333 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7334 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7335
7336 return force_to_mode (x, mode, mask, reg, next_select);
7337 }
7338
7339 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7340 use the full mask inside the NOT. */
7341 mask = fuller_mask;
7342
7343 unop:
7344 op0 = gen_lowpart (op_mode,
7345 force_to_mode (XEXP (x, 0), mode, mask,
7346 reg, next_select));
7347 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7348 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7349 break;
7350
7351 case NE:
7352 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7353 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7354 which is equal to STORE_FLAG_VALUE. */
7355 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7356 && GET_MODE (XEXP (x, 0)) == mode
7357 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7358 && (nonzero_bits (XEXP (x, 0), mode)
7359 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7360 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7361
7362 break;
7363
7364 case IF_THEN_ELSE:
7365 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7366 written in a narrower mode. We play it safe and do not do so. */
7367
7368 SUBST (XEXP (x, 1),
7369 gen_lowpart (GET_MODE (x),
7370 force_to_mode (XEXP (x, 1), mode,
7371 mask, reg, next_select)));
7372 SUBST (XEXP (x, 2),
7373 gen_lowpart (GET_MODE (x),
7374 force_to_mode (XEXP (x, 2), mode,
7375 mask, reg, next_select)));
7376 break;
7377
7378 default:
7379 break;
7380 }
7381
7382 /* Ensure we return a value of the proper mode. */
7383 return gen_lowpart (mode, x);
7384 }
7385 \f
7386 /* Return nonzero if X is an expression that has one of two values depending on
7387 whether some other value is zero or nonzero. In that case, we return the
7388 value that is being tested, *PTRUE is set to the value if the rtx being
7389 returned has a nonzero value, and *PFALSE is set to the other alternative.
7390
7391 If we return zero, we set *PTRUE and *PFALSE to X. */
7392
7393 static rtx
7394 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7395 {
7396 enum machine_mode mode = GET_MODE (x);
7397 enum rtx_code code = GET_CODE (x);
7398 rtx cond0, cond1, true0, true1, false0, false1;
7399 unsigned HOST_WIDE_INT nz;
7400
7401 /* If we are comparing a value against zero, we are done. */
7402 if ((code == NE || code == EQ)
7403 && XEXP (x, 1) == const0_rtx)
7404 {
7405 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7406 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7407 return XEXP (x, 0);
7408 }
7409
7410 /* If this is a unary operation whose operand has one of two values, apply
7411 our opcode to compute those values. */
7412 else if (UNARY_P (x)
7413 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7414 {
7415 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7416 *pfalse = simplify_gen_unary (code, mode, false0,
7417 GET_MODE (XEXP (x, 0)));
7418 return cond0;
7419 }
7420
7421 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7422 make can't possibly match and would suppress other optimizations. */
7423 else if (code == COMPARE)
7424 ;
7425
7426 /* If this is a binary operation, see if either side has only one of two
7427 values. If either one does or if both do and they are conditional on
7428 the same value, compute the new true and false values. */
7429 else if (BINARY_P (x))
7430 {
7431 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7432 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7433
7434 if ((cond0 != 0 || cond1 != 0)
7435 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7436 {
7437 /* If if_then_else_cond returned zero, then true/false are the
7438 same rtl. We must copy one of them to prevent invalid rtl
7439 sharing. */
7440 if (cond0 == 0)
7441 true0 = copy_rtx (true0);
7442 else if (cond1 == 0)
7443 true1 = copy_rtx (true1);
7444
7445 *ptrue = gen_binary (code, mode, true0, true1);
7446 *pfalse = gen_binary (code, mode, false0, false1);
7447 return cond0 ? cond0 : cond1;
7448 }
7449
7450 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7451 operands is zero when the other is nonzero, and vice-versa,
7452 and STORE_FLAG_VALUE is 1 or -1. */
7453
7454 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7455 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7456 || code == UMAX)
7457 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7458 {
7459 rtx op0 = XEXP (XEXP (x, 0), 1);
7460 rtx op1 = XEXP (XEXP (x, 1), 1);
7461
7462 cond0 = XEXP (XEXP (x, 0), 0);
7463 cond1 = XEXP (XEXP (x, 1), 0);
7464
7465 if (COMPARISON_P (cond0)
7466 && COMPARISON_P (cond1)
7467 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7468 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7469 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7470 || ((swap_condition (GET_CODE (cond0))
7471 == combine_reversed_comparison_code (cond1))
7472 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7473 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7474 && ! side_effects_p (x))
7475 {
7476 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7477 *pfalse = gen_binary (MULT, mode,
7478 (code == MINUS
7479 ? simplify_gen_unary (NEG, mode, op1,
7480 mode)
7481 : op1),
7482 const_true_rtx);
7483 return cond0;
7484 }
7485 }
7486
7487 /* Similarly for MULT, AND and UMIN, except that for these the result
7488 is always zero. */
7489 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7490 && (code == MULT || code == AND || code == UMIN)
7491 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7492 {
7493 cond0 = XEXP (XEXP (x, 0), 0);
7494 cond1 = XEXP (XEXP (x, 1), 0);
7495
7496 if (COMPARISON_P (cond0)
7497 && COMPARISON_P (cond1)
7498 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7499 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7500 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7501 || ((swap_condition (GET_CODE (cond0))
7502 == combine_reversed_comparison_code (cond1))
7503 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7504 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7505 && ! side_effects_p (x))
7506 {
7507 *ptrue = *pfalse = const0_rtx;
7508 return cond0;
7509 }
7510 }
7511 }
7512
7513 else if (code == IF_THEN_ELSE)
7514 {
7515 /* If we have IF_THEN_ELSE already, extract the condition and
7516 canonicalize it if it is NE or EQ. */
7517 cond0 = XEXP (x, 0);
7518 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7519 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7520 return XEXP (cond0, 0);
7521 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7522 {
7523 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7524 return XEXP (cond0, 0);
7525 }
7526 else
7527 return cond0;
7528 }
7529
7530 /* If X is a SUBREG, we can narrow both the true and false values
7531 if the inner expression, if there is a condition. */
7532 else if (code == SUBREG
7533 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7534 &true0, &false0)))
7535 {
7536 true0 = simplify_gen_subreg (mode, true0,
7537 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7538 false0 = simplify_gen_subreg (mode, false0,
7539 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7540 if (true0 && false0)
7541 {
7542 *ptrue = true0;
7543 *pfalse = false0;
7544 return cond0;
7545 }
7546 }
7547
7548 /* If X is a constant, this isn't special and will cause confusions
7549 if we treat it as such. Likewise if it is equivalent to a constant. */
7550 else if (CONSTANT_P (x)
7551 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7552 ;
7553
7554 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7555 will be least confusing to the rest of the compiler. */
7556 else if (mode == BImode)
7557 {
7558 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7559 return x;
7560 }
7561
7562 /* If X is known to be either 0 or -1, those are the true and
7563 false values when testing X. */
7564 else if (x == constm1_rtx || x == const0_rtx
7565 || (mode != VOIDmode
7566 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7567 {
7568 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7569 return x;
7570 }
7571
7572 /* Likewise for 0 or a single bit. */
7573 else if (SCALAR_INT_MODE_P (mode)
7574 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7575 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7576 {
7577 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7578 return x;
7579 }
7580
7581 /* Otherwise fail; show no condition with true and false values the same. */
7582 *ptrue = *pfalse = x;
7583 return 0;
7584 }
7585 \f
7586 /* Return the value of expression X given the fact that condition COND
7587 is known to be true when applied to REG as its first operand and VAL
7588 as its second. X is known to not be shared and so can be modified in
7589 place.
7590
7591 We only handle the simplest cases, and specifically those cases that
7592 arise with IF_THEN_ELSE expressions. */
7593
7594 static rtx
7595 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7596 {
7597 enum rtx_code code = GET_CODE (x);
7598 rtx temp;
7599 const char *fmt;
7600 int i, j;
7601
7602 if (side_effects_p (x))
7603 return x;
7604
7605 /* If either operand of the condition is a floating point value,
7606 then we have to avoid collapsing an EQ comparison. */
7607 if (cond == EQ
7608 && rtx_equal_p (x, reg)
7609 && ! FLOAT_MODE_P (GET_MODE (x))
7610 && ! FLOAT_MODE_P (GET_MODE (val)))
7611 return val;
7612
7613 if (cond == UNEQ && rtx_equal_p (x, reg))
7614 return val;
7615
7616 /* If X is (abs REG) and we know something about REG's relationship
7617 with zero, we may be able to simplify this. */
7618
7619 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7620 switch (cond)
7621 {
7622 case GE: case GT: case EQ:
7623 return XEXP (x, 0);
7624 case LT: case LE:
7625 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7626 XEXP (x, 0),
7627 GET_MODE (XEXP (x, 0)));
7628 default:
7629 break;
7630 }
7631
7632 /* The only other cases we handle are MIN, MAX, and comparisons if the
7633 operands are the same as REG and VAL. */
7634
7635 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7636 {
7637 if (rtx_equal_p (XEXP (x, 0), val))
7638 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7639
7640 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7641 {
7642 if (COMPARISON_P (x))
7643 {
7644 if (comparison_dominates_p (cond, code))
7645 return const_true_rtx;
7646
7647 code = combine_reversed_comparison_code (x);
7648 if (code != UNKNOWN
7649 && comparison_dominates_p (cond, code))
7650 return const0_rtx;
7651 else
7652 return x;
7653 }
7654 else if (code == SMAX || code == SMIN
7655 || code == UMIN || code == UMAX)
7656 {
7657 int unsignedp = (code == UMIN || code == UMAX);
7658
7659 /* Do not reverse the condition when it is NE or EQ.
7660 This is because we cannot conclude anything about
7661 the value of 'SMAX (x, y)' when x is not equal to y,
7662 but we can when x equals y. */
7663 if ((code == SMAX || code == UMAX)
7664 && ! (cond == EQ || cond == NE))
7665 cond = reverse_condition (cond);
7666
7667 switch (cond)
7668 {
7669 case GE: case GT:
7670 return unsignedp ? x : XEXP (x, 1);
7671 case LE: case LT:
7672 return unsignedp ? x : XEXP (x, 0);
7673 case GEU: case GTU:
7674 return unsignedp ? XEXP (x, 1) : x;
7675 case LEU: case LTU:
7676 return unsignedp ? XEXP (x, 0) : x;
7677 default:
7678 break;
7679 }
7680 }
7681 }
7682 }
7683 else if (code == SUBREG)
7684 {
7685 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7686 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7687
7688 if (SUBREG_REG (x) != r)
7689 {
7690 /* We must simplify subreg here, before we lose track of the
7691 original inner_mode. */
7692 new = simplify_subreg (GET_MODE (x), r,
7693 inner_mode, SUBREG_BYTE (x));
7694 if (new)
7695 return new;
7696 else
7697 SUBST (SUBREG_REG (x), r);
7698 }
7699
7700 return x;
7701 }
7702 /* We don't have to handle SIGN_EXTEND here, because even in the
7703 case of replacing something with a modeless CONST_INT, a
7704 CONST_INT is already (supposed to be) a valid sign extension for
7705 its narrower mode, which implies it's already properly
7706 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7707 story is different. */
7708 else if (code == ZERO_EXTEND)
7709 {
7710 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7711 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7712
7713 if (XEXP (x, 0) != r)
7714 {
7715 /* We must simplify the zero_extend here, before we lose
7716 track of the original inner_mode. */
7717 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7718 r, inner_mode);
7719 if (new)
7720 return new;
7721 else
7722 SUBST (XEXP (x, 0), r);
7723 }
7724
7725 return x;
7726 }
7727
7728 fmt = GET_RTX_FORMAT (code);
7729 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7730 {
7731 if (fmt[i] == 'e')
7732 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7733 else if (fmt[i] == 'E')
7734 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7735 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7736 cond, reg, val));
7737 }
7738
7739 return x;
7740 }
7741 \f
7742 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7743 assignment as a field assignment. */
7744
7745 static int
7746 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7747 {
7748 if (x == y || rtx_equal_p (x, y))
7749 return 1;
7750
7751 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7752 return 0;
7753
7754 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7755 Note that all SUBREGs of MEM are paradoxical; otherwise they
7756 would have been rewritten. */
7757 if (MEM_P (x) && GET_CODE (y) == SUBREG
7758 && MEM_P (SUBREG_REG (y))
7759 && rtx_equal_p (SUBREG_REG (y),
7760 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7761 return 1;
7762
7763 if (MEM_P (y) && GET_CODE (x) == SUBREG
7764 && MEM_P (SUBREG_REG (x))
7765 && rtx_equal_p (SUBREG_REG (x),
7766 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7767 return 1;
7768
7769 /* We used to see if get_last_value of X and Y were the same but that's
7770 not correct. In one direction, we'll cause the assignment to have
7771 the wrong destination and in the case, we'll import a register into this
7772 insn that might have already have been dead. So fail if none of the
7773 above cases are true. */
7774 return 0;
7775 }
7776 \f
7777 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7778 Return that assignment if so.
7779
7780 We only handle the most common cases. */
7781
7782 static rtx
7783 make_field_assignment (rtx x)
7784 {
7785 rtx dest = SET_DEST (x);
7786 rtx src = SET_SRC (x);
7787 rtx assign;
7788 rtx rhs, lhs;
7789 HOST_WIDE_INT c1;
7790 HOST_WIDE_INT pos;
7791 unsigned HOST_WIDE_INT len;
7792 rtx other;
7793 enum machine_mode mode;
7794
7795 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7796 a clear of a one-bit field. We will have changed it to
7797 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7798 for a SUBREG. */
7799
7800 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7801 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7802 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7803 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7804 {
7805 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7806 1, 1, 1, 0);
7807 if (assign != 0)
7808 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7809 return x;
7810 }
7811
7812 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7813 && subreg_lowpart_p (XEXP (src, 0))
7814 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7815 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7816 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7817 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7818 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7819 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7820 {
7821 assign = make_extraction (VOIDmode, dest, 0,
7822 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7823 1, 1, 1, 0);
7824 if (assign != 0)
7825 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7826 return x;
7827 }
7828
7829 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7830 one-bit field. */
7831 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7832 && XEXP (XEXP (src, 0), 0) == const1_rtx
7833 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7834 {
7835 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7836 1, 1, 1, 0);
7837 if (assign != 0)
7838 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7839 return x;
7840 }
7841
7842 /* The other case we handle is assignments into a constant-position
7843 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7844 a mask that has all one bits except for a group of zero bits and
7845 OTHER is known to have zeros where C1 has ones, this is such an
7846 assignment. Compute the position and length from C1. Shift OTHER
7847 to the appropriate position, force it to the required mode, and
7848 make the extraction. Check for the AND in both operands. */
7849
7850 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7851 return x;
7852
7853 rhs = expand_compound_operation (XEXP (src, 0));
7854 lhs = expand_compound_operation (XEXP (src, 1));
7855
7856 if (GET_CODE (rhs) == AND
7857 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7858 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7859 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7860 else if (GET_CODE (lhs) == AND
7861 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7862 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7863 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7864 else
7865 return x;
7866
7867 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7868 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7869 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7870 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7871 return x;
7872
7873 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7874 if (assign == 0)
7875 return x;
7876
7877 /* The mode to use for the source is the mode of the assignment, or of
7878 what is inside a possible STRICT_LOW_PART. */
7879 mode = (GET_CODE (assign) == STRICT_LOW_PART
7880 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7881
7882 /* Shift OTHER right POS places and make it the source, restricting it
7883 to the proper length and mode. */
7884
7885 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7886 GET_MODE (src), other, pos),
7887 mode,
7888 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7889 ? ~(unsigned HOST_WIDE_INT) 0
7890 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7891 dest, 0);
7892
7893 /* If SRC is masked by an AND that does not make a difference in
7894 the value being stored, strip it. */
7895 if (GET_CODE (assign) == ZERO_EXTRACT
7896 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7897 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7898 && GET_CODE (src) == AND
7899 && GET_CODE (XEXP (src, 1)) == CONST_INT
7900 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7901 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7902 src = XEXP (src, 0);
7903
7904 return gen_rtx_SET (VOIDmode, assign, src);
7905 }
7906 \f
7907 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7908 if so. */
7909
7910 static rtx
7911 apply_distributive_law (rtx x)
7912 {
7913 enum rtx_code code = GET_CODE (x);
7914 enum rtx_code inner_code;
7915 rtx lhs, rhs, other;
7916 rtx tem;
7917
7918 /* Distributivity is not true for floating point as it can change the
7919 value. So we don't do it unless -funsafe-math-optimizations. */
7920 if (FLOAT_MODE_P (GET_MODE (x))
7921 && ! flag_unsafe_math_optimizations)
7922 return x;
7923
7924 /* The outer operation can only be one of the following: */
7925 if (code != IOR && code != AND && code != XOR
7926 && code != PLUS && code != MINUS)
7927 return x;
7928
7929 lhs = XEXP (x, 0);
7930 rhs = XEXP (x, 1);
7931
7932 /* If either operand is a primitive we can't do anything, so get out
7933 fast. */
7934 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7935 return x;
7936
7937 lhs = expand_compound_operation (lhs);
7938 rhs = expand_compound_operation (rhs);
7939 inner_code = GET_CODE (lhs);
7940 if (inner_code != GET_CODE (rhs))
7941 return x;
7942
7943 /* See if the inner and outer operations distribute. */
7944 switch (inner_code)
7945 {
7946 case LSHIFTRT:
7947 case ASHIFTRT:
7948 case AND:
7949 case IOR:
7950 /* These all distribute except over PLUS. */
7951 if (code == PLUS || code == MINUS)
7952 return x;
7953 break;
7954
7955 case MULT:
7956 if (code != PLUS && code != MINUS)
7957 return x;
7958 break;
7959
7960 case ASHIFT:
7961 /* This is also a multiply, so it distributes over everything. */
7962 break;
7963
7964 case SUBREG:
7965 /* Non-paradoxical SUBREGs distributes over all operations, provided
7966 the inner modes and byte offsets are the same, this is an extraction
7967 of a low-order part, we don't convert an fp operation to int or
7968 vice versa, and we would not be converting a single-word
7969 operation into a multi-word operation. The latter test is not
7970 required, but it prevents generating unneeded multi-word operations.
7971 Some of the previous tests are redundant given the latter test, but
7972 are retained because they are required for correctness.
7973
7974 We produce the result slightly differently in this case. */
7975
7976 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7977 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7978 || ! subreg_lowpart_p (lhs)
7979 || (GET_MODE_CLASS (GET_MODE (lhs))
7980 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7981 || (GET_MODE_SIZE (GET_MODE (lhs))
7982 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7983 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7984 return x;
7985
7986 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7987 SUBREG_REG (lhs), SUBREG_REG (rhs));
7988 return gen_lowpart (GET_MODE (x), tem);
7989
7990 default:
7991 return x;
7992 }
7993
7994 /* Set LHS and RHS to the inner operands (A and B in the example
7995 above) and set OTHER to the common operand (C in the example).
7996 There is only one way to do this unless the inner operation is
7997 commutative. */
7998 if (COMMUTATIVE_ARITH_P (lhs)
7999 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8000 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8001 else if (COMMUTATIVE_ARITH_P (lhs)
8002 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8003 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8004 else if (COMMUTATIVE_ARITH_P (lhs)
8005 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8006 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8007 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8008 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8009 else
8010 return x;
8011
8012 /* Form the new inner operation, seeing if it simplifies first. */
8013 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8014
8015 /* There is one exception to the general way of distributing:
8016 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8017 if (code == XOR && inner_code == IOR)
8018 {
8019 inner_code = AND;
8020 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8021 }
8022
8023 /* We may be able to continuing distributing the result, so call
8024 ourselves recursively on the inner operation before forming the
8025 outer operation, which we return. */
8026 return gen_binary (inner_code, GET_MODE (x),
8027 apply_distributive_law (tem), other);
8028 }
8029 \f
8030 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8031 in MODE.
8032
8033 Return an equivalent form, if different from X. Otherwise, return X. If
8034 X is zero, we are to always construct the equivalent form. */
8035
8036 static rtx
8037 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8038 unsigned HOST_WIDE_INT constop)
8039 {
8040 unsigned HOST_WIDE_INT nonzero;
8041 int i;
8042
8043 /* Simplify VAROP knowing that we will be only looking at some of the
8044 bits in it.
8045
8046 Note by passing in CONSTOP, we guarantee that the bits not set in
8047 CONSTOP are not significant and will never be examined. We must
8048 ensure that is the case by explicitly masking out those bits
8049 before returning. */
8050 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8051
8052 /* If VAROP is a CLOBBER, we will fail so return it. */
8053 if (GET_CODE (varop) == CLOBBER)
8054 return varop;
8055
8056 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8057 to VAROP and return the new constant. */
8058 if (GET_CODE (varop) == CONST_INT)
8059 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8060
8061 /* See what bits may be nonzero in VAROP. Unlike the general case of
8062 a call to nonzero_bits, here we don't care about bits outside
8063 MODE. */
8064
8065 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8066
8067 /* Turn off all bits in the constant that are known to already be zero.
8068 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8069 which is tested below. */
8070
8071 constop &= nonzero;
8072
8073 /* If we don't have any bits left, return zero. */
8074 if (constop == 0)
8075 return const0_rtx;
8076
8077 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8078 a power of two, we can replace this with an ASHIFT. */
8079 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8080 && (i = exact_log2 (constop)) >= 0)
8081 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8082
8083 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8084 or XOR, then try to apply the distributive law. This may eliminate
8085 operations if either branch can be simplified because of the AND.
8086 It may also make some cases more complex, but those cases probably
8087 won't match a pattern either with or without this. */
8088
8089 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8090 return
8091 gen_lowpart
8092 (mode,
8093 apply_distributive_law
8094 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8095 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8096 XEXP (varop, 0), constop),
8097 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8098 XEXP (varop, 1), constop))));
8099
8100 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8101 the AND and see if one of the operands simplifies to zero. If so, we
8102 may eliminate it. */
8103
8104 if (GET_CODE (varop) == PLUS
8105 && exact_log2 (constop + 1) >= 0)
8106 {
8107 rtx o0, o1;
8108
8109 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8110 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8111 if (o0 == const0_rtx)
8112 return o1;
8113 if (o1 == const0_rtx)
8114 return o0;
8115 }
8116
8117 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8118 if we already had one (just check for the simplest cases). */
8119 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8120 && GET_MODE (XEXP (x, 0)) == mode
8121 && SUBREG_REG (XEXP (x, 0)) == varop)
8122 varop = XEXP (x, 0);
8123 else
8124 varop = gen_lowpart (mode, varop);
8125
8126 /* If we can't make the SUBREG, try to return what we were given. */
8127 if (GET_CODE (varop) == CLOBBER)
8128 return x ? x : varop;
8129
8130 /* If we are only masking insignificant bits, return VAROP. */
8131 if (constop == nonzero)
8132 x = varop;
8133 else
8134 {
8135 /* Otherwise, return an AND. */
8136 constop = trunc_int_for_mode (constop, mode);
8137 /* See how much, if any, of X we can use. */
8138 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8139 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8140
8141 else
8142 {
8143 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8144 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8145 SUBST (XEXP (x, 1), GEN_INT (constop));
8146
8147 SUBST (XEXP (x, 0), varop);
8148 }
8149 }
8150
8151 return x;
8152 }
8153 \f
8154 /* Given a REG, X, compute which bits in X can be nonzero.
8155 We don't care about bits outside of those defined in MODE.
8156
8157 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8158 a shift, AND, or zero_extract, we can do better. */
8159
8160 static rtx
8161 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8162 rtx known_x ATTRIBUTE_UNUSED,
8163 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8164 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8165 unsigned HOST_WIDE_INT *nonzero)
8166 {
8167 rtx tem;
8168
8169 /* If X is a register whose nonzero bits value is current, use it.
8170 Otherwise, if X is a register whose value we can find, use that
8171 value. Otherwise, use the previously-computed global nonzero bits
8172 for this register. */
8173
8174 if (reg_stat[REGNO (x)].last_set_value != 0
8175 && (reg_stat[REGNO (x)].last_set_mode == mode
8176 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8177 && GET_MODE_CLASS (mode) == MODE_INT))
8178 && (reg_stat[REGNO (x)].last_set_label == label_tick
8179 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8180 && REG_N_SETS (REGNO (x)) == 1
8181 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8182 REGNO (x))))
8183 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8184 {
8185 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8186 return NULL;
8187 }
8188
8189 tem = get_last_value (x);
8190
8191 if (tem)
8192 {
8193 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8194 /* If X is narrower than MODE and TEM is a non-negative
8195 constant that would appear negative in the mode of X,
8196 sign-extend it for use in reg_nonzero_bits because some
8197 machines (maybe most) will actually do the sign-extension
8198 and this is the conservative approach.
8199
8200 ??? For 2.5, try to tighten up the MD files in this regard
8201 instead of this kludge. */
8202
8203 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8204 && GET_CODE (tem) == CONST_INT
8205 && INTVAL (tem) > 0
8206 && 0 != (INTVAL (tem)
8207 & ((HOST_WIDE_INT) 1
8208 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8209 tem = GEN_INT (INTVAL (tem)
8210 | ((HOST_WIDE_INT) (-1)
8211 << GET_MODE_BITSIZE (GET_MODE (x))));
8212 #endif
8213 return tem;
8214 }
8215 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8216 {
8217 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8218
8219 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8220 /* We don't know anything about the upper bits. */
8221 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8222 *nonzero &= mask;
8223 }
8224
8225 return NULL;
8226 }
8227
8228 /* Return the number of bits at the high-order end of X that are known to
8229 be equal to the sign bit. X will be used in mode MODE; if MODE is
8230 VOIDmode, X will be used in its own mode. The returned value will always
8231 be between 1 and the number of bits in MODE. */
8232
8233 static rtx
8234 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8235 rtx known_x ATTRIBUTE_UNUSED,
8236 enum machine_mode known_mode
8237 ATTRIBUTE_UNUSED,
8238 unsigned int known_ret ATTRIBUTE_UNUSED,
8239 unsigned int *result)
8240 {
8241 rtx tem;
8242
8243 if (reg_stat[REGNO (x)].last_set_value != 0
8244 && reg_stat[REGNO (x)].last_set_mode == mode
8245 && (reg_stat[REGNO (x)].last_set_label == label_tick
8246 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8247 && REG_N_SETS (REGNO (x)) == 1
8248 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8249 REGNO (x))))
8250 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8251 {
8252 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8253 return NULL;
8254 }
8255
8256 tem = get_last_value (x);
8257 if (tem != 0)
8258 return tem;
8259
8260 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8261 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8262 *result = reg_stat[REGNO (x)].sign_bit_copies;
8263
8264 return NULL;
8265 }
8266 \f
8267 /* Return the number of "extended" bits there are in X, when interpreted
8268 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8269 unsigned quantities, this is the number of high-order zero bits.
8270 For signed quantities, this is the number of copies of the sign bit
8271 minus 1. In both case, this function returns the number of "spare"
8272 bits. For example, if two quantities for which this function returns
8273 at least 1 are added, the addition is known not to overflow.
8274
8275 This function will always return 0 unless called during combine, which
8276 implies that it must be called from a define_split. */
8277
8278 unsigned int
8279 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8280 {
8281 if (nonzero_sign_valid == 0)
8282 return 0;
8283
8284 return (unsignedp
8285 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8286 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8287 - floor_log2 (nonzero_bits (x, mode)))
8288 : 0)
8289 : num_sign_bit_copies (x, mode) - 1);
8290 }
8291 \f
8292 /* This function is called from `simplify_shift_const' to merge two
8293 outer operations. Specifically, we have already found that we need
8294 to perform operation *POP0 with constant *PCONST0 at the outermost
8295 position. We would now like to also perform OP1 with constant CONST1
8296 (with *POP0 being done last).
8297
8298 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8299 the resulting operation. *PCOMP_P is set to 1 if we would need to
8300 complement the innermost operand, otherwise it is unchanged.
8301
8302 MODE is the mode in which the operation will be done. No bits outside
8303 the width of this mode matter. It is assumed that the width of this mode
8304 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8305
8306 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8307 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8308 result is simply *PCONST0.
8309
8310 If the resulting operation cannot be expressed as one operation, we
8311 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8312
8313 static int
8314 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8315 {
8316 enum rtx_code op0 = *pop0;
8317 HOST_WIDE_INT const0 = *pconst0;
8318
8319 const0 &= GET_MODE_MASK (mode);
8320 const1 &= GET_MODE_MASK (mode);
8321
8322 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8323 if (op0 == AND)
8324 const1 &= const0;
8325
8326 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8327 if OP0 is SET. */
8328
8329 if (op1 == UNKNOWN || op0 == SET)
8330 return 1;
8331
8332 else if (op0 == UNKNOWN)
8333 op0 = op1, const0 = const1;
8334
8335 else if (op0 == op1)
8336 {
8337 switch (op0)
8338 {
8339 case AND:
8340 const0 &= const1;
8341 break;
8342 case IOR:
8343 const0 |= const1;
8344 break;
8345 case XOR:
8346 const0 ^= const1;
8347 break;
8348 case PLUS:
8349 const0 += const1;
8350 break;
8351 case NEG:
8352 op0 = UNKNOWN;
8353 break;
8354 default:
8355 break;
8356 }
8357 }
8358
8359 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8360 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8361 return 0;
8362
8363 /* If the two constants aren't the same, we can't do anything. The
8364 remaining six cases can all be done. */
8365 else if (const0 != const1)
8366 return 0;
8367
8368 else
8369 switch (op0)
8370 {
8371 case IOR:
8372 if (op1 == AND)
8373 /* (a & b) | b == b */
8374 op0 = SET;
8375 else /* op1 == XOR */
8376 /* (a ^ b) | b == a | b */
8377 {;}
8378 break;
8379
8380 case XOR:
8381 if (op1 == AND)
8382 /* (a & b) ^ b == (~a) & b */
8383 op0 = AND, *pcomp_p = 1;
8384 else /* op1 == IOR */
8385 /* (a | b) ^ b == a & ~b */
8386 op0 = AND, const0 = ~const0;
8387 break;
8388
8389 case AND:
8390 if (op1 == IOR)
8391 /* (a | b) & b == b */
8392 op0 = SET;
8393 else /* op1 == XOR */
8394 /* (a ^ b) & b) == (~a) & b */
8395 *pcomp_p = 1;
8396 break;
8397 default:
8398 break;
8399 }
8400
8401 /* Check for NO-OP cases. */
8402 const0 &= GET_MODE_MASK (mode);
8403 if (const0 == 0
8404 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8405 op0 = UNKNOWN;
8406 else if (const0 == 0 && op0 == AND)
8407 op0 = SET;
8408 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8409 && op0 == AND)
8410 op0 = UNKNOWN;
8411
8412 /* ??? Slightly redundant with the above mask, but not entirely.
8413 Moving this above means we'd have to sign-extend the mode mask
8414 for the final test. */
8415 const0 = trunc_int_for_mode (const0, mode);
8416
8417 *pop0 = op0;
8418 *pconst0 = const0;
8419
8420 return 1;
8421 }
8422 \f
8423 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8424 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8425 that we started with.
8426
8427 The shift is normally computed in the widest mode we find in VAROP, as
8428 long as it isn't a different number of words than RESULT_MODE. Exceptions
8429 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8430
8431 static rtx
8432 simplify_shift_const (rtx x, enum rtx_code code,
8433 enum machine_mode result_mode, rtx varop,
8434 int orig_count)
8435 {
8436 enum rtx_code orig_code = code;
8437 unsigned int count;
8438 int signed_count;
8439 enum machine_mode mode = result_mode;
8440 enum machine_mode shift_mode, tmode;
8441 unsigned int mode_words
8442 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8443 /* We form (outer_op (code varop count) (outer_const)). */
8444 enum rtx_code outer_op = UNKNOWN;
8445 HOST_WIDE_INT outer_const = 0;
8446 rtx const_rtx;
8447 int complement_p = 0;
8448 rtx new;
8449
8450 /* Make sure and truncate the "natural" shift on the way in. We don't
8451 want to do this inside the loop as it makes it more difficult to
8452 combine shifts. */
8453 if (SHIFT_COUNT_TRUNCATED)
8454 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8455
8456 /* If we were given an invalid count, don't do anything except exactly
8457 what was requested. */
8458
8459 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8460 {
8461 if (x)
8462 return x;
8463
8464 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8465 }
8466
8467 count = orig_count;
8468
8469 /* Unless one of the branches of the `if' in this loop does a `continue',
8470 we will `break' the loop after the `if'. */
8471
8472 while (count != 0)
8473 {
8474 /* If we have an operand of (clobber (const_int 0)), just return that
8475 value. */
8476 if (GET_CODE (varop) == CLOBBER)
8477 return varop;
8478
8479 /* If we discovered we had to complement VAROP, leave. Making a NOT
8480 here would cause an infinite loop. */
8481 if (complement_p)
8482 break;
8483
8484 /* Convert ROTATERT to ROTATE. */
8485 if (code == ROTATERT)
8486 {
8487 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8488 code = ROTATE;
8489 if (VECTOR_MODE_P (result_mode))
8490 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8491 else
8492 count = bitsize - count;
8493 }
8494
8495 /* We need to determine what mode we will do the shift in. If the
8496 shift is a right shift or a ROTATE, we must always do it in the mode
8497 it was originally done in. Otherwise, we can do it in MODE, the
8498 widest mode encountered. */
8499 shift_mode
8500 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8501 ? result_mode : mode);
8502
8503 /* Handle cases where the count is greater than the size of the mode
8504 minus 1. For ASHIFT, use the size minus one as the count (this can
8505 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8506 take the count modulo the size. For other shifts, the result is
8507 zero.
8508
8509 Since these shifts are being produced by the compiler by combining
8510 multiple operations, each of which are defined, we know what the
8511 result is supposed to be. */
8512
8513 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8514 {
8515 if (code == ASHIFTRT)
8516 count = GET_MODE_BITSIZE (shift_mode) - 1;
8517 else if (code == ROTATE || code == ROTATERT)
8518 count %= GET_MODE_BITSIZE (shift_mode);
8519 else
8520 {
8521 /* We can't simply return zero because there may be an
8522 outer op. */
8523 varop = const0_rtx;
8524 count = 0;
8525 break;
8526 }
8527 }
8528
8529 /* An arithmetic right shift of a quantity known to be -1 or 0
8530 is a no-op. */
8531 if (code == ASHIFTRT
8532 && (num_sign_bit_copies (varop, shift_mode)
8533 == GET_MODE_BITSIZE (shift_mode)))
8534 {
8535 count = 0;
8536 break;
8537 }
8538
8539 /* If we are doing an arithmetic right shift and discarding all but
8540 the sign bit copies, this is equivalent to doing a shift by the
8541 bitsize minus one. Convert it into that shift because it will often
8542 allow other simplifications. */
8543
8544 if (code == ASHIFTRT
8545 && (count + num_sign_bit_copies (varop, shift_mode)
8546 >= GET_MODE_BITSIZE (shift_mode)))
8547 count = GET_MODE_BITSIZE (shift_mode) - 1;
8548
8549 /* We simplify the tests below and elsewhere by converting
8550 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8551 `make_compound_operation' will convert it to an ASHIFTRT for
8552 those machines (such as VAX) that don't have an LSHIFTRT. */
8553 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8554 && code == ASHIFTRT
8555 && ((nonzero_bits (varop, shift_mode)
8556 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8557 == 0))
8558 code = LSHIFTRT;
8559
8560 if (code == LSHIFTRT
8561 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8562 && !(nonzero_bits (varop, shift_mode) >> count))
8563 varop = const0_rtx;
8564 if (code == ASHIFT
8565 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8566 && !((nonzero_bits (varop, shift_mode) << count)
8567 & GET_MODE_MASK (shift_mode)))
8568 varop = const0_rtx;
8569
8570 switch (GET_CODE (varop))
8571 {
8572 case SIGN_EXTEND:
8573 case ZERO_EXTEND:
8574 case SIGN_EXTRACT:
8575 case ZERO_EXTRACT:
8576 new = expand_compound_operation (varop);
8577 if (new != varop)
8578 {
8579 varop = new;
8580 continue;
8581 }
8582 break;
8583
8584 case MEM:
8585 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8586 minus the width of a smaller mode, we can do this with a
8587 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8588 if ((code == ASHIFTRT || code == LSHIFTRT)
8589 && ! mode_dependent_address_p (XEXP (varop, 0))
8590 && ! MEM_VOLATILE_P (varop)
8591 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8592 MODE_INT, 1)) != BLKmode)
8593 {
8594 new = adjust_address_nv (varop, tmode,
8595 BYTES_BIG_ENDIAN ? 0
8596 : count / BITS_PER_UNIT);
8597
8598 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8599 : ZERO_EXTEND, mode, new);
8600 count = 0;
8601 continue;
8602 }
8603 break;
8604
8605 case USE:
8606 /* Similar to the case above, except that we can only do this if
8607 the resulting mode is the same as that of the underlying
8608 MEM and adjust the address depending on the *bits* endianness
8609 because of the way that bit-field extract insns are defined. */
8610 if ((code == ASHIFTRT || code == LSHIFTRT)
8611 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8612 MODE_INT, 1)) != BLKmode
8613 && tmode == GET_MODE (XEXP (varop, 0)))
8614 {
8615 if (BITS_BIG_ENDIAN)
8616 new = XEXP (varop, 0);
8617 else
8618 {
8619 new = copy_rtx (XEXP (varop, 0));
8620 SUBST (XEXP (new, 0),
8621 plus_constant (XEXP (new, 0),
8622 count / BITS_PER_UNIT));
8623 }
8624
8625 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8626 : ZERO_EXTEND, mode, new);
8627 count = 0;
8628 continue;
8629 }
8630 break;
8631
8632 case SUBREG:
8633 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8634 the same number of words as what we've seen so far. Then store
8635 the widest mode in MODE. */
8636 if (subreg_lowpart_p (varop)
8637 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8638 > GET_MODE_SIZE (GET_MODE (varop)))
8639 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8640 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8641 == mode_words)
8642 {
8643 varop = SUBREG_REG (varop);
8644 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8645 mode = GET_MODE (varop);
8646 continue;
8647 }
8648 break;
8649
8650 case MULT:
8651 /* Some machines use MULT instead of ASHIFT because MULT
8652 is cheaper. But it is still better on those machines to
8653 merge two shifts into one. */
8654 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8655 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8656 {
8657 varop
8658 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8659 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8660 continue;
8661 }
8662 break;
8663
8664 case UDIV:
8665 /* Similar, for when divides are cheaper. */
8666 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8667 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8668 {
8669 varop
8670 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8671 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8672 continue;
8673 }
8674 break;
8675
8676 case ASHIFTRT:
8677 /* If we are extracting just the sign bit of an arithmetic
8678 right shift, that shift is not needed. However, the sign
8679 bit of a wider mode may be different from what would be
8680 interpreted as the sign bit in a narrower mode, so, if
8681 the result is narrower, don't discard the shift. */
8682 if (code == LSHIFTRT
8683 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8684 && (GET_MODE_BITSIZE (result_mode)
8685 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8686 {
8687 varop = XEXP (varop, 0);
8688 continue;
8689 }
8690
8691 /* ... fall through ... */
8692
8693 case LSHIFTRT:
8694 case ASHIFT:
8695 case ROTATE:
8696 /* Here we have two nested shifts. The result is usually the
8697 AND of a new shift with a mask. We compute the result below. */
8698 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8699 && INTVAL (XEXP (varop, 1)) >= 0
8700 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8701 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8702 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8703 {
8704 enum rtx_code first_code = GET_CODE (varop);
8705 unsigned int first_count = INTVAL (XEXP (varop, 1));
8706 unsigned HOST_WIDE_INT mask;
8707 rtx mask_rtx;
8708
8709 /* We have one common special case. We can't do any merging if
8710 the inner code is an ASHIFTRT of a smaller mode. However, if
8711 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8712 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8713 we can convert it to
8714 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8715 This simplifies certain SIGN_EXTEND operations. */
8716 if (code == ASHIFT && first_code == ASHIFTRT
8717 && count == (unsigned int)
8718 (GET_MODE_BITSIZE (result_mode)
8719 - GET_MODE_BITSIZE (GET_MODE (varop))))
8720 {
8721 /* C3 has the low-order C1 bits zero. */
8722
8723 mask = (GET_MODE_MASK (mode)
8724 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8725
8726 varop = simplify_and_const_int (NULL_RTX, result_mode,
8727 XEXP (varop, 0), mask);
8728 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8729 varop, count);
8730 count = first_count;
8731 code = ASHIFTRT;
8732 continue;
8733 }
8734
8735 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8736 than C1 high-order bits equal to the sign bit, we can convert
8737 this to either an ASHIFT or an ASHIFTRT depending on the
8738 two counts.
8739
8740 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8741
8742 if (code == ASHIFTRT && first_code == ASHIFT
8743 && GET_MODE (varop) == shift_mode
8744 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8745 > first_count))
8746 {
8747 varop = XEXP (varop, 0);
8748
8749 signed_count = count - first_count;
8750 if (signed_count < 0)
8751 count = -signed_count, code = ASHIFT;
8752 else
8753 count = signed_count;
8754
8755 continue;
8756 }
8757
8758 /* There are some cases we can't do. If CODE is ASHIFTRT,
8759 we can only do this if FIRST_CODE is also ASHIFTRT.
8760
8761 We can't do the case when CODE is ROTATE and FIRST_CODE is
8762 ASHIFTRT.
8763
8764 If the mode of this shift is not the mode of the outer shift,
8765 we can't do this if either shift is a right shift or ROTATE.
8766
8767 Finally, we can't do any of these if the mode is too wide
8768 unless the codes are the same.
8769
8770 Handle the case where the shift codes are the same
8771 first. */
8772
8773 if (code == first_code)
8774 {
8775 if (GET_MODE (varop) != result_mode
8776 && (code == ASHIFTRT || code == LSHIFTRT
8777 || code == ROTATE))
8778 break;
8779
8780 count += first_count;
8781 varop = XEXP (varop, 0);
8782 continue;
8783 }
8784
8785 if (code == ASHIFTRT
8786 || (code == ROTATE && first_code == ASHIFTRT)
8787 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8788 || (GET_MODE (varop) != result_mode
8789 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8790 || first_code == ROTATE
8791 || code == ROTATE)))
8792 break;
8793
8794 /* To compute the mask to apply after the shift, shift the
8795 nonzero bits of the inner shift the same way the
8796 outer shift will. */
8797
8798 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8799
8800 mask_rtx
8801 = simplify_binary_operation (code, result_mode, mask_rtx,
8802 GEN_INT (count));
8803
8804 /* Give up if we can't compute an outer operation to use. */
8805 if (mask_rtx == 0
8806 || GET_CODE (mask_rtx) != CONST_INT
8807 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8808 INTVAL (mask_rtx),
8809 result_mode, &complement_p))
8810 break;
8811
8812 /* If the shifts are in the same direction, we add the
8813 counts. Otherwise, we subtract them. */
8814 signed_count = count;
8815 if ((code == ASHIFTRT || code == LSHIFTRT)
8816 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8817 signed_count += first_count;
8818 else
8819 signed_count -= first_count;
8820
8821 /* If COUNT is positive, the new shift is usually CODE,
8822 except for the two exceptions below, in which case it is
8823 FIRST_CODE. If the count is negative, FIRST_CODE should
8824 always be used */
8825 if (signed_count > 0
8826 && ((first_code == ROTATE && code == ASHIFT)
8827 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8828 code = first_code, count = signed_count;
8829 else if (signed_count < 0)
8830 code = first_code, count = -signed_count;
8831 else
8832 count = signed_count;
8833
8834 varop = XEXP (varop, 0);
8835 continue;
8836 }
8837
8838 /* If we have (A << B << C) for any shift, we can convert this to
8839 (A << C << B). This wins if A is a constant. Only try this if
8840 B is not a constant. */
8841
8842 else if (GET_CODE (varop) == code
8843 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8844 && 0 != (new
8845 = simplify_binary_operation (code, mode,
8846 XEXP (varop, 0),
8847 GEN_INT (count))))
8848 {
8849 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8850 count = 0;
8851 continue;
8852 }
8853 break;
8854
8855 case NOT:
8856 /* Make this fit the case below. */
8857 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8858 GEN_INT (GET_MODE_MASK (mode)));
8859 continue;
8860
8861 case IOR:
8862 case AND:
8863 case XOR:
8864 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8865 with C the size of VAROP - 1 and the shift is logical if
8866 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8867 we have an (le X 0) operation. If we have an arithmetic shift
8868 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8869 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8870
8871 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8872 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8873 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8874 && (code == LSHIFTRT || code == ASHIFTRT)
8875 && count == (unsigned int)
8876 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8877 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8878 {
8879 count = 0;
8880 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8881 const0_rtx);
8882
8883 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8884 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8885
8886 continue;
8887 }
8888
8889 /* If we have (shift (logical)), move the logical to the outside
8890 to allow it to possibly combine with another logical and the
8891 shift to combine with another shift. This also canonicalizes to
8892 what a ZERO_EXTRACT looks like. Also, some machines have
8893 (and (shift)) insns. */
8894
8895 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8896 /* We can't do this if we have (ashiftrt (xor)) and the
8897 constant has its sign bit set in shift_mode. */
8898 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8899 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8900 shift_mode))
8901 && (new = simplify_binary_operation (code, result_mode,
8902 XEXP (varop, 1),
8903 GEN_INT (count))) != 0
8904 && GET_CODE (new) == CONST_INT
8905 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8906 INTVAL (new), result_mode, &complement_p))
8907 {
8908 varop = XEXP (varop, 0);
8909 continue;
8910 }
8911
8912 /* If we can't do that, try to simplify the shift in each arm of the
8913 logical expression, make a new logical expression, and apply
8914 the inverse distributive law. This also can't be done
8915 for some (ashiftrt (xor)). */
8916 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8917 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8918 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8919 shift_mode)))
8920 {
8921 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8922 XEXP (varop, 0), count);
8923 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8924 XEXP (varop, 1), count);
8925
8926 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8927 varop = apply_distributive_law (varop);
8928
8929 count = 0;
8930 continue;
8931 }
8932 break;
8933
8934 case EQ:
8935 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8936 says that the sign bit can be tested, FOO has mode MODE, C is
8937 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8938 that may be nonzero. */
8939 if (code == LSHIFTRT
8940 && XEXP (varop, 1) == const0_rtx
8941 && GET_MODE (XEXP (varop, 0)) == result_mode
8942 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8943 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8944 && ((STORE_FLAG_VALUE
8945 & ((HOST_WIDE_INT) 1
8946 < (GET_MODE_BITSIZE (result_mode) - 1))))
8947 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8948 && merge_outer_ops (&outer_op, &outer_const, XOR,
8949 (HOST_WIDE_INT) 1, result_mode,
8950 &complement_p))
8951 {
8952 varop = XEXP (varop, 0);
8953 count = 0;
8954 continue;
8955 }
8956 break;
8957
8958 case NEG:
8959 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8960 than the number of bits in the mode is equivalent to A. */
8961 if (code == LSHIFTRT
8962 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8963 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8964 {
8965 varop = XEXP (varop, 0);
8966 count = 0;
8967 continue;
8968 }
8969
8970 /* NEG commutes with ASHIFT since it is multiplication. Move the
8971 NEG outside to allow shifts to combine. */
8972 if (code == ASHIFT
8973 && merge_outer_ops (&outer_op, &outer_const, NEG,
8974 (HOST_WIDE_INT) 0, result_mode,
8975 &complement_p))
8976 {
8977 varop = XEXP (varop, 0);
8978 continue;
8979 }
8980 break;
8981
8982 case PLUS:
8983 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8984 is one less than the number of bits in the mode is
8985 equivalent to (xor A 1). */
8986 if (code == LSHIFTRT
8987 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8988 && XEXP (varop, 1) == constm1_rtx
8989 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8990 && merge_outer_ops (&outer_op, &outer_const, XOR,
8991 (HOST_WIDE_INT) 1, result_mode,
8992 &complement_p))
8993 {
8994 count = 0;
8995 varop = XEXP (varop, 0);
8996 continue;
8997 }
8998
8999 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9000 that might be nonzero in BAR are those being shifted out and those
9001 bits are known zero in FOO, we can replace the PLUS with FOO.
9002 Similarly in the other operand order. This code occurs when
9003 we are computing the size of a variable-size array. */
9004
9005 if ((code == ASHIFTRT || code == LSHIFTRT)
9006 && count < HOST_BITS_PER_WIDE_INT
9007 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9008 && (nonzero_bits (XEXP (varop, 1), result_mode)
9009 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9010 {
9011 varop = XEXP (varop, 0);
9012 continue;
9013 }
9014 else if ((code == ASHIFTRT || code == LSHIFTRT)
9015 && count < HOST_BITS_PER_WIDE_INT
9016 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9017 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9018 >> count)
9019 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9020 & nonzero_bits (XEXP (varop, 1),
9021 result_mode)))
9022 {
9023 varop = XEXP (varop, 1);
9024 continue;
9025 }
9026
9027 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9028 if (code == ASHIFT
9029 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9030 && (new = simplify_binary_operation (ASHIFT, result_mode,
9031 XEXP (varop, 1),
9032 GEN_INT (count))) != 0
9033 && GET_CODE (new) == CONST_INT
9034 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9035 INTVAL (new), result_mode, &complement_p))
9036 {
9037 varop = XEXP (varop, 0);
9038 continue;
9039 }
9040
9041 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9042 signbit', and attempt to change the PLUS to an XOR and move it to
9043 the outer operation as is done above in the AND/IOR/XOR case
9044 leg for shift(logical). See details in logical handling above
9045 for reasoning in doing so. */
9046 if (code == LSHIFTRT
9047 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9048 && mode_signbit_p (result_mode, XEXP (varop, 1))
9049 && (new = simplify_binary_operation (code, result_mode,
9050 XEXP (varop, 1),
9051 GEN_INT (count))) != 0
9052 && GET_CODE (new) == CONST_INT
9053 && merge_outer_ops (&outer_op, &outer_const, XOR,
9054 INTVAL (new), result_mode, &complement_p))
9055 {
9056 varop = XEXP (varop, 0);
9057 continue;
9058 }
9059
9060 break;
9061
9062 case MINUS:
9063 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9064 with C the size of VAROP - 1 and the shift is logical if
9065 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9066 we have a (gt X 0) operation. If the shift is arithmetic with
9067 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9068 we have a (neg (gt X 0)) operation. */
9069
9070 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9071 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9072 && count == (unsigned int)
9073 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9074 && (code == LSHIFTRT || code == ASHIFTRT)
9075 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9076 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9077 == count
9078 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9079 {
9080 count = 0;
9081 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9082 const0_rtx);
9083
9084 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9085 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9086
9087 continue;
9088 }
9089 break;
9090
9091 case TRUNCATE:
9092 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9093 if the truncate does not affect the value. */
9094 if (code == LSHIFTRT
9095 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9096 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9097 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9098 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9099 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9100 {
9101 rtx varop_inner = XEXP (varop, 0);
9102
9103 varop_inner
9104 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9105 XEXP (varop_inner, 0),
9106 GEN_INT
9107 (count + INTVAL (XEXP (varop_inner, 1))));
9108 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9109 count = 0;
9110 continue;
9111 }
9112 break;
9113
9114 default:
9115 break;
9116 }
9117
9118 break;
9119 }
9120
9121 /* We need to determine what mode to do the shift in. If the shift is
9122 a right shift or ROTATE, we must always do it in the mode it was
9123 originally done in. Otherwise, we can do it in MODE, the widest mode
9124 encountered. The code we care about is that of the shift that will
9125 actually be done, not the shift that was originally requested. */
9126 shift_mode
9127 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9128 ? result_mode : mode);
9129
9130 /* We have now finished analyzing the shift. The result should be
9131 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9132 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9133 to the result of the shift. OUTER_CONST is the relevant constant,
9134 but we must turn off all bits turned off in the shift.
9135
9136 If we were passed a value for X, see if we can use any pieces of
9137 it. If not, make new rtx. */
9138
9139 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9140 && GET_CODE (XEXP (x, 1)) == CONST_INT
9141 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9142 const_rtx = XEXP (x, 1);
9143 else
9144 const_rtx = GEN_INT (count);
9145
9146 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9147 && GET_MODE (XEXP (x, 0)) == shift_mode
9148 && SUBREG_REG (XEXP (x, 0)) == varop)
9149 varop = XEXP (x, 0);
9150 else if (GET_MODE (varop) != shift_mode)
9151 varop = gen_lowpart (shift_mode, varop);
9152
9153 /* If we can't make the SUBREG, try to return what we were given. */
9154 if (GET_CODE (varop) == CLOBBER)
9155 return x ? x : varop;
9156
9157 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9158 if (new != 0)
9159 x = new;
9160 else
9161 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9162
9163 /* If we have an outer operation and we just made a shift, it is
9164 possible that we could have simplified the shift were it not
9165 for the outer operation. So try to do the simplification
9166 recursively. */
9167
9168 if (outer_op != UNKNOWN && GET_CODE (x) == code
9169 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9170 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9171 INTVAL (XEXP (x, 1)));
9172
9173 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9174 turn off all the bits that the shift would have turned off. */
9175 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9176 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9177 GET_MODE_MASK (result_mode) >> orig_count);
9178
9179 /* Do the remainder of the processing in RESULT_MODE. */
9180 x = gen_lowpart (result_mode, x);
9181
9182 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9183 operation. */
9184 if (complement_p)
9185 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9186
9187 if (outer_op != UNKNOWN)
9188 {
9189 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9190 outer_const = trunc_int_for_mode (outer_const, result_mode);
9191
9192 if (outer_op == AND)
9193 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9194 else if (outer_op == SET)
9195 /* This means that we have determined that the result is
9196 equivalent to a constant. This should be rare. */
9197 x = GEN_INT (outer_const);
9198 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9199 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9200 else
9201 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9202 }
9203
9204 return x;
9205 }
9206 \f
9207 /* Like recog, but we receive the address of a pointer to a new pattern.
9208 We try to match the rtx that the pointer points to.
9209 If that fails, we may try to modify or replace the pattern,
9210 storing the replacement into the same pointer object.
9211
9212 Modifications include deletion or addition of CLOBBERs.
9213
9214 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9215 the CLOBBERs are placed.
9216
9217 The value is the final insn code from the pattern ultimately matched,
9218 or -1. */
9219
9220 static int
9221 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9222 {
9223 rtx pat = *pnewpat;
9224 int insn_code_number;
9225 int num_clobbers_to_add = 0;
9226 int i;
9227 rtx notes = 0;
9228 rtx old_notes, old_pat;
9229
9230 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9231 we use to indicate that something didn't match. If we find such a
9232 thing, force rejection. */
9233 if (GET_CODE (pat) == PARALLEL)
9234 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9235 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9236 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9237 return -1;
9238
9239 old_pat = PATTERN (insn);
9240 old_notes = REG_NOTES (insn);
9241 PATTERN (insn) = pat;
9242 REG_NOTES (insn) = 0;
9243
9244 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9245
9246 /* If it isn't, there is the possibility that we previously had an insn
9247 that clobbered some register as a side effect, but the combined
9248 insn doesn't need to do that. So try once more without the clobbers
9249 unless this represents an ASM insn. */
9250
9251 if (insn_code_number < 0 && ! check_asm_operands (pat)
9252 && GET_CODE (pat) == PARALLEL)
9253 {
9254 int pos;
9255
9256 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9257 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9258 {
9259 if (i != pos)
9260 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9261 pos++;
9262 }
9263
9264 SUBST_INT (XVECLEN (pat, 0), pos);
9265
9266 if (pos == 1)
9267 pat = XVECEXP (pat, 0, 0);
9268
9269 PATTERN (insn) = pat;
9270 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9271 }
9272 PATTERN (insn) = old_pat;
9273 REG_NOTES (insn) = old_notes;
9274
9275 /* Recognize all noop sets, these will be killed by followup pass. */
9276 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9277 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9278
9279 /* If we had any clobbers to add, make a new pattern than contains
9280 them. Then check to make sure that all of them are dead. */
9281 if (num_clobbers_to_add)
9282 {
9283 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9284 rtvec_alloc (GET_CODE (pat) == PARALLEL
9285 ? (XVECLEN (pat, 0)
9286 + num_clobbers_to_add)
9287 : num_clobbers_to_add + 1));
9288
9289 if (GET_CODE (pat) == PARALLEL)
9290 for (i = 0; i < XVECLEN (pat, 0); i++)
9291 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9292 else
9293 XVECEXP (newpat, 0, 0) = pat;
9294
9295 add_clobbers (newpat, insn_code_number);
9296
9297 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9298 i < XVECLEN (newpat, 0); i++)
9299 {
9300 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9301 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9302 return -1;
9303 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9304 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9305 }
9306 pat = newpat;
9307 }
9308
9309 *pnewpat = pat;
9310 *pnotes = notes;
9311
9312 return insn_code_number;
9313 }
9314 \f
9315 /* Like gen_lowpart_general but for use by combine. In combine it
9316 is not possible to create any new pseudoregs. However, it is
9317 safe to create invalid memory addresses, because combine will
9318 try to recognize them and all they will do is make the combine
9319 attempt fail.
9320
9321 If for some reason this cannot do its job, an rtx
9322 (clobber (const_int 0)) is returned.
9323 An insn containing that will not be recognized. */
9324
9325 static rtx
9326 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9327 {
9328 enum machine_mode imode = GET_MODE (x);
9329 unsigned int osize = GET_MODE_SIZE (omode);
9330 unsigned int isize = GET_MODE_SIZE (imode);
9331 rtx result;
9332
9333 if (omode == imode)
9334 return x;
9335
9336 /* Return identity if this is a CONST or symbolic reference. */
9337 if (omode == Pmode
9338 && (GET_CODE (x) == CONST
9339 || GET_CODE (x) == SYMBOL_REF
9340 || GET_CODE (x) == LABEL_REF))
9341 return x;
9342
9343 /* We can only support MODE being wider than a word if X is a
9344 constant integer or has a mode the same size. */
9345 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9346 && ! ((imode == VOIDmode
9347 && (GET_CODE (x) == CONST_INT
9348 || GET_CODE (x) == CONST_DOUBLE))
9349 || isize == osize))
9350 goto fail;
9351
9352 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9353 won't know what to do. So we will strip off the SUBREG here and
9354 process normally. */
9355 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9356 {
9357 x = SUBREG_REG (x);
9358 if (GET_MODE (x) == omode)
9359 return x;
9360 }
9361
9362 result = gen_lowpart_common (omode, x);
9363
9364 #ifdef CANNOT_CHANGE_MODE_CLASS
9365 if (result != 0 && GET_CODE (result) == SUBREG)
9366 record_subregs_of_mode (result);
9367 #endif
9368
9369 if (result)
9370 return result;
9371
9372 if (MEM_P (x))
9373 {
9374 int offset = 0;
9375
9376 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9377 address. */
9378 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9379 goto fail;
9380
9381 /* If we want to refer to something bigger than the original memref,
9382 generate a paradoxical subreg instead. That will force a reload
9383 of the original memref X. */
9384 if (isize < osize)
9385 return gen_rtx_SUBREG (omode, x, 0);
9386
9387 if (WORDS_BIG_ENDIAN)
9388 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9389
9390 /* Adjust the address so that the address-after-the-data is unchanged. */
9391 if (BYTES_BIG_ENDIAN)
9392 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9393
9394 return adjust_address_nv (x, omode, offset);
9395 }
9396
9397 /* If X is a comparison operator, rewrite it in a new mode. This
9398 probably won't match, but may allow further simplifications. */
9399 else if (COMPARISON_P (x))
9400 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9401
9402 /* If we couldn't simplify X any other way, just enclose it in a
9403 SUBREG. Normally, this SUBREG won't match, but some patterns may
9404 include an explicit SUBREG or we may simplify it further in combine. */
9405 else
9406 {
9407 int offset = 0;
9408 rtx res;
9409
9410 offset = subreg_lowpart_offset (omode, imode);
9411 if (imode == VOIDmode)
9412 {
9413 imode = int_mode_for_mode (omode);
9414 x = gen_lowpart_common (imode, x);
9415 if (x == NULL)
9416 goto fail;
9417 }
9418 res = simplify_gen_subreg (omode, x, imode, offset);
9419 if (res)
9420 return res;
9421 }
9422
9423 fail:
9424 return gen_rtx_CLOBBER (imode, const0_rtx);
9425 }
9426 \f
9427 /* These routines make binary and unary operations by first seeing if they
9428 fold; if not, a new expression is allocated. */
9429
9430 static rtx
9431 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9432 {
9433 rtx result;
9434 rtx tem;
9435
9436 if (GET_CODE (op0) == CLOBBER)
9437 return op0;
9438 else if (GET_CODE (op1) == CLOBBER)
9439 return op1;
9440
9441 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9442 && swap_commutative_operands_p (op0, op1))
9443 tem = op0, op0 = op1, op1 = tem;
9444
9445 if (GET_RTX_CLASS (code) == RTX_COMPARE
9446 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9447 {
9448 enum machine_mode op_mode = GET_MODE (op0);
9449
9450 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9451 just (REL_OP X Y). */
9452 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9453 {
9454 op1 = XEXP (op0, 1);
9455 op0 = XEXP (op0, 0);
9456 op_mode = GET_MODE (op0);
9457 }
9458
9459 if (op_mode == VOIDmode)
9460 op_mode = GET_MODE (op1);
9461 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9462 }
9463 else
9464 result = simplify_binary_operation (code, mode, op0, op1);
9465
9466 if (result)
9467 return result;
9468
9469 /* Put complex operands first and constants second. */
9470 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9471 && swap_commutative_operands_p (op0, op1))
9472 return gen_rtx_fmt_ee (code, mode, op1, op0);
9473
9474 /* If we are turning off bits already known off in OP0, we need not do
9475 an AND. */
9476 else if (code == AND && GET_CODE (op1) == CONST_INT
9477 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9478 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9479 return op0;
9480
9481 return gen_rtx_fmt_ee (code, mode, op0, op1);
9482 }
9483 \f
9484 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9485 comparison code that will be tested.
9486
9487 The result is a possibly different comparison code to use. *POP0 and
9488 *POP1 may be updated.
9489
9490 It is possible that we might detect that a comparison is either always
9491 true or always false. However, we do not perform general constant
9492 folding in combine, so this knowledge isn't useful. Such tautologies
9493 should have been detected earlier. Hence we ignore all such cases. */
9494
9495 static enum rtx_code
9496 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9497 {
9498 rtx op0 = *pop0;
9499 rtx op1 = *pop1;
9500 rtx tem, tem1;
9501 int i;
9502 enum machine_mode mode, tmode;
9503
9504 /* Try a few ways of applying the same transformation to both operands. */
9505 while (1)
9506 {
9507 #ifndef WORD_REGISTER_OPERATIONS
9508 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9509 so check specially. */
9510 if (code != GTU && code != GEU && code != LTU && code != LEU
9511 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9512 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9513 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9514 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9515 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9516 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9517 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9518 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9519 && XEXP (op0, 1) == XEXP (op1, 1)
9520 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9521 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9522 && (INTVAL (XEXP (op0, 1))
9523 == (GET_MODE_BITSIZE (GET_MODE (op0))
9524 - (GET_MODE_BITSIZE
9525 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9526 {
9527 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9528 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9529 }
9530 #endif
9531
9532 /* If both operands are the same constant shift, see if we can ignore the
9533 shift. We can if the shift is a rotate or if the bits shifted out of
9534 this shift are known to be zero for both inputs and if the type of
9535 comparison is compatible with the shift. */
9536 if (GET_CODE (op0) == GET_CODE (op1)
9537 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9538 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9539 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9540 && (code != GT && code != LT && code != GE && code != LE))
9541 || (GET_CODE (op0) == ASHIFTRT
9542 && (code != GTU && code != LTU
9543 && code != GEU && code != LEU)))
9544 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9545 && INTVAL (XEXP (op0, 1)) >= 0
9546 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9547 && XEXP (op0, 1) == XEXP (op1, 1))
9548 {
9549 enum machine_mode mode = GET_MODE (op0);
9550 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9551 int shift_count = INTVAL (XEXP (op0, 1));
9552
9553 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9554 mask &= (mask >> shift_count) << shift_count;
9555 else if (GET_CODE (op0) == ASHIFT)
9556 mask = (mask & (mask << shift_count)) >> shift_count;
9557
9558 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9559 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9560 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9561 else
9562 break;
9563 }
9564
9565 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9566 SUBREGs are of the same mode, and, in both cases, the AND would
9567 be redundant if the comparison was done in the narrower mode,
9568 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9569 and the operand's possibly nonzero bits are 0xffffff01; in that case
9570 if we only care about QImode, we don't need the AND). This case
9571 occurs if the output mode of an scc insn is not SImode and
9572 STORE_FLAG_VALUE == 1 (e.g., the 386).
9573
9574 Similarly, check for a case where the AND's are ZERO_EXTEND
9575 operations from some narrower mode even though a SUBREG is not
9576 present. */
9577
9578 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9579 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9580 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9581 {
9582 rtx inner_op0 = XEXP (op0, 0);
9583 rtx inner_op1 = XEXP (op1, 0);
9584 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9585 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9586 int changed = 0;
9587
9588 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9589 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9590 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9591 && (GET_MODE (SUBREG_REG (inner_op0))
9592 == GET_MODE (SUBREG_REG (inner_op1)))
9593 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9594 <= HOST_BITS_PER_WIDE_INT)
9595 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9596 GET_MODE (SUBREG_REG (inner_op0)))))
9597 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9598 GET_MODE (SUBREG_REG (inner_op1))))))
9599 {
9600 op0 = SUBREG_REG (inner_op0);
9601 op1 = SUBREG_REG (inner_op1);
9602
9603 /* The resulting comparison is always unsigned since we masked
9604 off the original sign bit. */
9605 code = unsigned_condition (code);
9606
9607 changed = 1;
9608 }
9609
9610 else if (c0 == c1)
9611 for (tmode = GET_CLASS_NARROWEST_MODE
9612 (GET_MODE_CLASS (GET_MODE (op0)));
9613 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9614 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9615 {
9616 op0 = gen_lowpart (tmode, inner_op0);
9617 op1 = gen_lowpart (tmode, inner_op1);
9618 code = unsigned_condition (code);
9619 changed = 1;
9620 break;
9621 }
9622
9623 if (! changed)
9624 break;
9625 }
9626
9627 /* If both operands are NOT, we can strip off the outer operation
9628 and adjust the comparison code for swapped operands; similarly for
9629 NEG, except that this must be an equality comparison. */
9630 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9631 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9632 && (code == EQ || code == NE)))
9633 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9634
9635 else
9636 break;
9637 }
9638
9639 /* If the first operand is a constant, swap the operands and adjust the
9640 comparison code appropriately, but don't do this if the second operand
9641 is already a constant integer. */
9642 if (swap_commutative_operands_p (op0, op1))
9643 {
9644 tem = op0, op0 = op1, op1 = tem;
9645 code = swap_condition (code);
9646 }
9647
9648 /* We now enter a loop during which we will try to simplify the comparison.
9649 For the most part, we only are concerned with comparisons with zero,
9650 but some things may really be comparisons with zero but not start
9651 out looking that way. */
9652
9653 while (GET_CODE (op1) == CONST_INT)
9654 {
9655 enum machine_mode mode = GET_MODE (op0);
9656 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9657 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9658 int equality_comparison_p;
9659 int sign_bit_comparison_p;
9660 int unsigned_comparison_p;
9661 HOST_WIDE_INT const_op;
9662
9663 /* We only want to handle integral modes. This catches VOIDmode,
9664 CCmode, and the floating-point modes. An exception is that we
9665 can handle VOIDmode if OP0 is a COMPARE or a comparison
9666 operation. */
9667
9668 if (GET_MODE_CLASS (mode) != MODE_INT
9669 && ! (mode == VOIDmode
9670 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9671 break;
9672
9673 /* Get the constant we are comparing against and turn off all bits
9674 not on in our mode. */
9675 const_op = INTVAL (op1);
9676 if (mode != VOIDmode)
9677 const_op = trunc_int_for_mode (const_op, mode);
9678 op1 = GEN_INT (const_op);
9679
9680 /* If we are comparing against a constant power of two and the value
9681 being compared can only have that single bit nonzero (e.g., it was
9682 `and'ed with that bit), we can replace this with a comparison
9683 with zero. */
9684 if (const_op
9685 && (code == EQ || code == NE || code == GE || code == GEU
9686 || code == LT || code == LTU)
9687 && mode_width <= HOST_BITS_PER_WIDE_INT
9688 && exact_log2 (const_op) >= 0
9689 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9690 {
9691 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9692 op1 = const0_rtx, const_op = 0;
9693 }
9694
9695 /* Similarly, if we are comparing a value known to be either -1 or
9696 0 with -1, change it to the opposite comparison against zero. */
9697
9698 if (const_op == -1
9699 && (code == EQ || code == NE || code == GT || code == LE
9700 || code == GEU || code == LTU)
9701 && num_sign_bit_copies (op0, mode) == mode_width)
9702 {
9703 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9704 op1 = const0_rtx, const_op = 0;
9705 }
9706
9707 /* Do some canonicalizations based on the comparison code. We prefer
9708 comparisons against zero and then prefer equality comparisons.
9709 If we can reduce the size of a constant, we will do that too. */
9710
9711 switch (code)
9712 {
9713 case LT:
9714 /* < C is equivalent to <= (C - 1) */
9715 if (const_op > 0)
9716 {
9717 const_op -= 1;
9718 op1 = GEN_INT (const_op);
9719 code = LE;
9720 /* ... fall through to LE case below. */
9721 }
9722 else
9723 break;
9724
9725 case LE:
9726 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9727 if (const_op < 0)
9728 {
9729 const_op += 1;
9730 op1 = GEN_INT (const_op);
9731 code = LT;
9732 }
9733
9734 /* If we are doing a <= 0 comparison on a value known to have
9735 a zero sign bit, we can replace this with == 0. */
9736 else if (const_op == 0
9737 && mode_width <= HOST_BITS_PER_WIDE_INT
9738 && (nonzero_bits (op0, mode)
9739 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9740 code = EQ;
9741 break;
9742
9743 case GE:
9744 /* >= C is equivalent to > (C - 1). */
9745 if (const_op > 0)
9746 {
9747 const_op -= 1;
9748 op1 = GEN_INT (const_op);
9749 code = GT;
9750 /* ... fall through to GT below. */
9751 }
9752 else
9753 break;
9754
9755 case GT:
9756 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9757 if (const_op < 0)
9758 {
9759 const_op += 1;
9760 op1 = GEN_INT (const_op);
9761 code = GE;
9762 }
9763
9764 /* If we are doing a > 0 comparison on a value known to have
9765 a zero sign bit, we can replace this with != 0. */
9766 else if (const_op == 0
9767 && mode_width <= HOST_BITS_PER_WIDE_INT
9768 && (nonzero_bits (op0, mode)
9769 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9770 code = NE;
9771 break;
9772
9773 case LTU:
9774 /* < C is equivalent to <= (C - 1). */
9775 if (const_op > 0)
9776 {
9777 const_op -= 1;
9778 op1 = GEN_INT (const_op);
9779 code = LEU;
9780 /* ... fall through ... */
9781 }
9782
9783 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9784 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9785 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9786 {
9787 const_op = 0, op1 = const0_rtx;
9788 code = GE;
9789 break;
9790 }
9791 else
9792 break;
9793
9794 case LEU:
9795 /* unsigned <= 0 is equivalent to == 0 */
9796 if (const_op == 0)
9797 code = EQ;
9798
9799 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9800 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9801 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9802 {
9803 const_op = 0, op1 = const0_rtx;
9804 code = GE;
9805 }
9806 break;
9807
9808 case GEU:
9809 /* >= C is equivalent to > (C - 1). */
9810 if (const_op > 1)
9811 {
9812 const_op -= 1;
9813 op1 = GEN_INT (const_op);
9814 code = GTU;
9815 /* ... fall through ... */
9816 }
9817
9818 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9819 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9820 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9821 {
9822 const_op = 0, op1 = const0_rtx;
9823 code = LT;
9824 break;
9825 }
9826 else
9827 break;
9828
9829 case GTU:
9830 /* unsigned > 0 is equivalent to != 0 */
9831 if (const_op == 0)
9832 code = NE;
9833
9834 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9835 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9836 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9837 {
9838 const_op = 0, op1 = const0_rtx;
9839 code = LT;
9840 }
9841 break;
9842
9843 default:
9844 break;
9845 }
9846
9847 /* Compute some predicates to simplify code below. */
9848
9849 equality_comparison_p = (code == EQ || code == NE);
9850 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9851 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9852 || code == GEU);
9853
9854 /* If this is a sign bit comparison and we can do arithmetic in
9855 MODE, say that we will only be needing the sign bit of OP0. */
9856 if (sign_bit_comparison_p
9857 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9858 op0 = force_to_mode (op0, mode,
9859 ((HOST_WIDE_INT) 1
9860 << (GET_MODE_BITSIZE (mode) - 1)),
9861 NULL_RTX, 0);
9862
9863 /* Now try cases based on the opcode of OP0. If none of the cases
9864 does a "continue", we exit this loop immediately after the
9865 switch. */
9866
9867 switch (GET_CODE (op0))
9868 {
9869 case ZERO_EXTRACT:
9870 /* If we are extracting a single bit from a variable position in
9871 a constant that has only a single bit set and are comparing it
9872 with zero, we can convert this into an equality comparison
9873 between the position and the location of the single bit. */
9874 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9875 have already reduced the shift count modulo the word size. */
9876 if (!SHIFT_COUNT_TRUNCATED
9877 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9878 && XEXP (op0, 1) == const1_rtx
9879 && equality_comparison_p && const_op == 0
9880 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9881 {
9882 if (BITS_BIG_ENDIAN)
9883 {
9884 enum machine_mode new_mode
9885 = mode_for_extraction (EP_extzv, 1);
9886 if (new_mode == MAX_MACHINE_MODE)
9887 i = BITS_PER_WORD - 1 - i;
9888 else
9889 {
9890 mode = new_mode;
9891 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9892 }
9893 }
9894
9895 op0 = XEXP (op0, 2);
9896 op1 = GEN_INT (i);
9897 const_op = i;
9898
9899 /* Result is nonzero iff shift count is equal to I. */
9900 code = reverse_condition (code);
9901 continue;
9902 }
9903
9904 /* ... fall through ... */
9905
9906 case SIGN_EXTRACT:
9907 tem = expand_compound_operation (op0);
9908 if (tem != op0)
9909 {
9910 op0 = tem;
9911 continue;
9912 }
9913 break;
9914
9915 case NOT:
9916 /* If testing for equality, we can take the NOT of the constant. */
9917 if (equality_comparison_p
9918 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9919 {
9920 op0 = XEXP (op0, 0);
9921 op1 = tem;
9922 continue;
9923 }
9924
9925 /* If just looking at the sign bit, reverse the sense of the
9926 comparison. */
9927 if (sign_bit_comparison_p)
9928 {
9929 op0 = XEXP (op0, 0);
9930 code = (code == GE ? LT : GE);
9931 continue;
9932 }
9933 break;
9934
9935 case NEG:
9936 /* If testing for equality, we can take the NEG of the constant. */
9937 if (equality_comparison_p
9938 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9939 {
9940 op0 = XEXP (op0, 0);
9941 op1 = tem;
9942 continue;
9943 }
9944
9945 /* The remaining cases only apply to comparisons with zero. */
9946 if (const_op != 0)
9947 break;
9948
9949 /* When X is ABS or is known positive,
9950 (neg X) is < 0 if and only if X != 0. */
9951
9952 if (sign_bit_comparison_p
9953 && (GET_CODE (XEXP (op0, 0)) == ABS
9954 || (mode_width <= HOST_BITS_PER_WIDE_INT
9955 && (nonzero_bits (XEXP (op0, 0), mode)
9956 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9957 {
9958 op0 = XEXP (op0, 0);
9959 code = (code == LT ? NE : EQ);
9960 continue;
9961 }
9962
9963 /* If we have NEG of something whose two high-order bits are the
9964 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9965 if (num_sign_bit_copies (op0, mode) >= 2)
9966 {
9967 op0 = XEXP (op0, 0);
9968 code = swap_condition (code);
9969 continue;
9970 }
9971 break;
9972
9973 case ROTATE:
9974 /* If we are testing equality and our count is a constant, we
9975 can perform the inverse operation on our RHS. */
9976 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9977 && (tem = simplify_binary_operation (ROTATERT, mode,
9978 op1, XEXP (op0, 1))) != 0)
9979 {
9980 op0 = XEXP (op0, 0);
9981 op1 = tem;
9982 continue;
9983 }
9984
9985 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9986 a particular bit. Convert it to an AND of a constant of that
9987 bit. This will be converted into a ZERO_EXTRACT. */
9988 if (const_op == 0 && sign_bit_comparison_p
9989 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9990 && mode_width <= HOST_BITS_PER_WIDE_INT)
9991 {
9992 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9993 ((HOST_WIDE_INT) 1
9994 << (mode_width - 1
9995 - INTVAL (XEXP (op0, 1)))));
9996 code = (code == LT ? NE : EQ);
9997 continue;
9998 }
9999
10000 /* Fall through. */
10001
10002 case ABS:
10003 /* ABS is ignorable inside an equality comparison with zero. */
10004 if (const_op == 0 && equality_comparison_p)
10005 {
10006 op0 = XEXP (op0, 0);
10007 continue;
10008 }
10009 break;
10010
10011 case SIGN_EXTEND:
10012 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10013 to (compare FOO CONST) if CONST fits in FOO's mode and we
10014 are either testing inequality or have an unsigned comparison
10015 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10016 if (! unsigned_comparison_p
10017 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10018 <= HOST_BITS_PER_WIDE_INT)
10019 && ((unsigned HOST_WIDE_INT) const_op
10020 < (((unsigned HOST_WIDE_INT) 1
10021 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10022 {
10023 op0 = XEXP (op0, 0);
10024 continue;
10025 }
10026 break;
10027
10028 case SUBREG:
10029 /* Check for the case where we are comparing A - C1 with C2,
10030 both constants are smaller than 1/2 the maximum positive
10031 value in MODE, and the comparison is equality or unsigned.
10032 In that case, if A is either zero-extended to MODE or has
10033 sufficient sign bits so that the high-order bit in MODE
10034 is a copy of the sign in the inner mode, we can prove that it is
10035 safe to do the operation in the wider mode. This simplifies
10036 many range checks. */
10037
10038 if (mode_width <= HOST_BITS_PER_WIDE_INT
10039 && subreg_lowpart_p (op0)
10040 && GET_CODE (SUBREG_REG (op0)) == PLUS
10041 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10042 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10043 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10044 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10045 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10046 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10047 GET_MODE (SUBREG_REG (op0)))
10048 & ~GET_MODE_MASK (mode))
10049 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10050 GET_MODE (SUBREG_REG (op0)))
10051 > (unsigned int)
10052 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10053 - GET_MODE_BITSIZE (mode)))))
10054 {
10055 op0 = SUBREG_REG (op0);
10056 continue;
10057 }
10058
10059 /* If the inner mode is narrower and we are extracting the low part,
10060 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10061 if (subreg_lowpart_p (op0)
10062 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10063 /* Fall through */ ;
10064 else
10065 break;
10066
10067 /* ... fall through ... */
10068
10069 case ZERO_EXTEND:
10070 if ((unsigned_comparison_p || equality_comparison_p)
10071 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10072 <= HOST_BITS_PER_WIDE_INT)
10073 && ((unsigned HOST_WIDE_INT) const_op
10074 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10075 {
10076 op0 = XEXP (op0, 0);
10077 continue;
10078 }
10079 break;
10080
10081 case PLUS:
10082 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10083 this for equality comparisons due to pathological cases involving
10084 overflows. */
10085 if (equality_comparison_p
10086 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10087 op1, XEXP (op0, 1))))
10088 {
10089 op0 = XEXP (op0, 0);
10090 op1 = tem;
10091 continue;
10092 }
10093
10094 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10095 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10096 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10097 {
10098 op0 = XEXP (XEXP (op0, 0), 0);
10099 code = (code == LT ? EQ : NE);
10100 continue;
10101 }
10102 break;
10103
10104 case MINUS:
10105 /* We used to optimize signed comparisons against zero, but that
10106 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10107 arrive here as equality comparisons, or (GEU, LTU) are
10108 optimized away. No need to special-case them. */
10109
10110 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10111 (eq B (minus A C)), whichever simplifies. We can only do
10112 this for equality comparisons due to pathological cases involving
10113 overflows. */
10114 if (equality_comparison_p
10115 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10116 XEXP (op0, 1), op1)))
10117 {
10118 op0 = XEXP (op0, 0);
10119 op1 = tem;
10120 continue;
10121 }
10122
10123 if (equality_comparison_p
10124 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10125 XEXP (op0, 0), op1)))
10126 {
10127 op0 = XEXP (op0, 1);
10128 op1 = tem;
10129 continue;
10130 }
10131
10132 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10133 of bits in X minus 1, is one iff X > 0. */
10134 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10135 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10136 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10137 == mode_width - 1
10138 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10139 {
10140 op0 = XEXP (op0, 1);
10141 code = (code == GE ? LE : GT);
10142 continue;
10143 }
10144 break;
10145
10146 case XOR:
10147 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10148 if C is zero or B is a constant. */
10149 if (equality_comparison_p
10150 && 0 != (tem = simplify_binary_operation (XOR, mode,
10151 XEXP (op0, 1), op1)))
10152 {
10153 op0 = XEXP (op0, 0);
10154 op1 = tem;
10155 continue;
10156 }
10157 break;
10158
10159 case EQ: case NE:
10160 case UNEQ: case LTGT:
10161 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10162 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10163 case UNORDERED: case ORDERED:
10164 /* We can't do anything if OP0 is a condition code value, rather
10165 than an actual data value. */
10166 if (const_op != 0
10167 || CC0_P (XEXP (op0, 0))
10168 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10169 break;
10170
10171 /* Get the two operands being compared. */
10172 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10173 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10174 else
10175 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10176
10177 /* Check for the cases where we simply want the result of the
10178 earlier test or the opposite of that result. */
10179 if (code == NE || code == EQ
10180 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10181 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10182 && (STORE_FLAG_VALUE
10183 & (((HOST_WIDE_INT) 1
10184 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10185 && (code == LT || code == GE)))
10186 {
10187 enum rtx_code new_code;
10188 if (code == LT || code == NE)
10189 new_code = GET_CODE (op0);
10190 else
10191 new_code = combine_reversed_comparison_code (op0);
10192
10193 if (new_code != UNKNOWN)
10194 {
10195 code = new_code;
10196 op0 = tem;
10197 op1 = tem1;
10198 continue;
10199 }
10200 }
10201 break;
10202
10203 case IOR:
10204 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10205 iff X <= 0. */
10206 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10207 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10208 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10209 {
10210 op0 = XEXP (op0, 1);
10211 code = (code == GE ? GT : LE);
10212 continue;
10213 }
10214 break;
10215
10216 case AND:
10217 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10218 will be converted to a ZERO_EXTRACT later. */
10219 if (const_op == 0 && equality_comparison_p
10220 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10221 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10222 {
10223 op0 = simplify_and_const_int
10224 (op0, mode, gen_rtx_LSHIFTRT (mode,
10225 XEXP (op0, 1),
10226 XEXP (XEXP (op0, 0), 1)),
10227 (HOST_WIDE_INT) 1);
10228 continue;
10229 }
10230
10231 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10232 zero and X is a comparison and C1 and C2 describe only bits set
10233 in STORE_FLAG_VALUE, we can compare with X. */
10234 if (const_op == 0 && equality_comparison_p
10235 && mode_width <= HOST_BITS_PER_WIDE_INT
10236 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10237 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10238 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10239 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10240 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10241 {
10242 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10243 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10244 if ((~STORE_FLAG_VALUE & mask) == 0
10245 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10246 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10247 && COMPARISON_P (tem))))
10248 {
10249 op0 = XEXP (XEXP (op0, 0), 0);
10250 continue;
10251 }
10252 }
10253
10254 /* If we are doing an equality comparison of an AND of a bit equal
10255 to the sign bit, replace this with a LT or GE comparison of
10256 the underlying value. */
10257 if (equality_comparison_p
10258 && const_op == 0
10259 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10260 && mode_width <= HOST_BITS_PER_WIDE_INT
10261 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10262 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10263 {
10264 op0 = XEXP (op0, 0);
10265 code = (code == EQ ? GE : LT);
10266 continue;
10267 }
10268
10269 /* If this AND operation is really a ZERO_EXTEND from a narrower
10270 mode, the constant fits within that mode, and this is either an
10271 equality or unsigned comparison, try to do this comparison in
10272 the narrower mode. */
10273 if ((equality_comparison_p || unsigned_comparison_p)
10274 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10275 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10276 & GET_MODE_MASK (mode))
10277 + 1)) >= 0
10278 && const_op >> i == 0
10279 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10280 {
10281 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10282 continue;
10283 }
10284
10285 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10286 fits in both M1 and M2 and the SUBREG is either paradoxical
10287 or represents the low part, permute the SUBREG and the AND
10288 and try again. */
10289 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10290 {
10291 unsigned HOST_WIDE_INT c1;
10292 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10293 /* Require an integral mode, to avoid creating something like
10294 (AND:SF ...). */
10295 if (SCALAR_INT_MODE_P (tmode)
10296 /* It is unsafe to commute the AND into the SUBREG if the
10297 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10298 not defined. As originally written the upper bits
10299 have a defined value due to the AND operation.
10300 However, if we commute the AND inside the SUBREG then
10301 they no longer have defined values and the meaning of
10302 the code has been changed. */
10303 && (0
10304 #ifdef WORD_REGISTER_OPERATIONS
10305 || (mode_width > GET_MODE_BITSIZE (tmode)
10306 && mode_width <= BITS_PER_WORD)
10307 #endif
10308 || (mode_width <= GET_MODE_BITSIZE (tmode)
10309 && subreg_lowpart_p (XEXP (op0, 0))))
10310 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10311 && mode_width <= HOST_BITS_PER_WIDE_INT
10312 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10313 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10314 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10315 && c1 != mask
10316 && c1 != GET_MODE_MASK (tmode))
10317 {
10318 op0 = gen_binary (AND, tmode,
10319 SUBREG_REG (XEXP (op0, 0)),
10320 gen_int_mode (c1, tmode));
10321 op0 = gen_lowpart (mode, op0);
10322 continue;
10323 }
10324 }
10325
10326 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10327 if (const_op == 0 && equality_comparison_p
10328 && XEXP (op0, 1) == const1_rtx
10329 && GET_CODE (XEXP (op0, 0)) == NOT)
10330 {
10331 op0 = simplify_and_const_int
10332 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10333 code = (code == NE ? EQ : NE);
10334 continue;
10335 }
10336
10337 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10338 (eq (and (lshiftrt X) 1) 0).
10339 Also handle the case where (not X) is expressed using xor. */
10340 if (const_op == 0 && equality_comparison_p
10341 && XEXP (op0, 1) == const1_rtx
10342 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10343 {
10344 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10345 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10346
10347 if (GET_CODE (shift_op) == NOT
10348 || (GET_CODE (shift_op) == XOR
10349 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10350 && GET_CODE (shift_count) == CONST_INT
10351 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10352 && (INTVAL (XEXP (shift_op, 1))
10353 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10354 {
10355 op0 = simplify_and_const_int
10356 (NULL_RTX, mode,
10357 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10358 (HOST_WIDE_INT) 1);
10359 code = (code == NE ? EQ : NE);
10360 continue;
10361 }
10362 }
10363 break;
10364
10365 case ASHIFT:
10366 /* If we have (compare (ashift FOO N) (const_int C)) and
10367 the high order N bits of FOO (N+1 if an inequality comparison)
10368 are known to be zero, we can do this by comparing FOO with C
10369 shifted right N bits so long as the low-order N bits of C are
10370 zero. */
10371 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10372 && INTVAL (XEXP (op0, 1)) >= 0
10373 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10374 < HOST_BITS_PER_WIDE_INT)
10375 && ((const_op
10376 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10377 && mode_width <= HOST_BITS_PER_WIDE_INT
10378 && (nonzero_bits (XEXP (op0, 0), mode)
10379 & ~(mask >> (INTVAL (XEXP (op0, 1))
10380 + ! equality_comparison_p))) == 0)
10381 {
10382 /* We must perform a logical shift, not an arithmetic one,
10383 as we want the top N bits of C to be zero. */
10384 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10385
10386 temp >>= INTVAL (XEXP (op0, 1));
10387 op1 = gen_int_mode (temp, mode);
10388 op0 = XEXP (op0, 0);
10389 continue;
10390 }
10391
10392 /* If we are doing a sign bit comparison, it means we are testing
10393 a particular bit. Convert it to the appropriate AND. */
10394 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10395 && mode_width <= HOST_BITS_PER_WIDE_INT)
10396 {
10397 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10398 ((HOST_WIDE_INT) 1
10399 << (mode_width - 1
10400 - INTVAL (XEXP (op0, 1)))));
10401 code = (code == LT ? NE : EQ);
10402 continue;
10403 }
10404
10405 /* If this an equality comparison with zero and we are shifting
10406 the low bit to the sign bit, we can convert this to an AND of the
10407 low-order bit. */
10408 if (const_op == 0 && equality_comparison_p
10409 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10410 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10411 == mode_width - 1)
10412 {
10413 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10414 (HOST_WIDE_INT) 1);
10415 continue;
10416 }
10417 break;
10418
10419 case ASHIFTRT:
10420 /* If this is an equality comparison with zero, we can do this
10421 as a logical shift, which might be much simpler. */
10422 if (equality_comparison_p && const_op == 0
10423 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10424 {
10425 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10426 XEXP (op0, 0),
10427 INTVAL (XEXP (op0, 1)));
10428 continue;
10429 }
10430
10431 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10432 do the comparison in a narrower mode. */
10433 if (! unsigned_comparison_p
10434 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10435 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10436 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10437 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10438 MODE_INT, 1)) != BLKmode
10439 && (((unsigned HOST_WIDE_INT) const_op
10440 + (GET_MODE_MASK (tmode) >> 1) + 1)
10441 <= GET_MODE_MASK (tmode)))
10442 {
10443 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10444 continue;
10445 }
10446
10447 /* Likewise if OP0 is a PLUS of a sign extension with a
10448 constant, which is usually represented with the PLUS
10449 between the shifts. */
10450 if (! unsigned_comparison_p
10451 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10452 && GET_CODE (XEXP (op0, 0)) == PLUS
10453 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10454 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10455 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10456 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10457 MODE_INT, 1)) != BLKmode
10458 && (((unsigned HOST_WIDE_INT) const_op
10459 + (GET_MODE_MASK (tmode) >> 1) + 1)
10460 <= GET_MODE_MASK (tmode)))
10461 {
10462 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10463 rtx add_const = XEXP (XEXP (op0, 0), 1);
10464 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10465 XEXP (op0, 1));
10466
10467 op0 = gen_binary (PLUS, tmode,
10468 gen_lowpart (tmode, inner),
10469 new_const);
10470 continue;
10471 }
10472
10473 /* ... fall through ... */
10474 case LSHIFTRT:
10475 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10476 the low order N bits of FOO are known to be zero, we can do this
10477 by comparing FOO with C shifted left N bits so long as no
10478 overflow occurs. */
10479 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10480 && INTVAL (XEXP (op0, 1)) >= 0
10481 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10482 && mode_width <= HOST_BITS_PER_WIDE_INT
10483 && (nonzero_bits (XEXP (op0, 0), mode)
10484 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10485 && (((unsigned HOST_WIDE_INT) const_op
10486 + (GET_CODE (op0) != LSHIFTRT
10487 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10488 + 1)
10489 : 0))
10490 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10491 {
10492 /* If the shift was logical, then we must make the condition
10493 unsigned. */
10494 if (GET_CODE (op0) == LSHIFTRT)
10495 code = unsigned_condition (code);
10496
10497 const_op <<= INTVAL (XEXP (op0, 1));
10498 op1 = GEN_INT (const_op);
10499 op0 = XEXP (op0, 0);
10500 continue;
10501 }
10502
10503 /* If we are using this shift to extract just the sign bit, we
10504 can replace this with an LT or GE comparison. */
10505 if (const_op == 0
10506 && (equality_comparison_p || sign_bit_comparison_p)
10507 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10508 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10509 == mode_width - 1)
10510 {
10511 op0 = XEXP (op0, 0);
10512 code = (code == NE || code == GT ? LT : GE);
10513 continue;
10514 }
10515 break;
10516
10517 default:
10518 break;
10519 }
10520
10521 break;
10522 }
10523
10524 /* Now make any compound operations involved in this comparison. Then,
10525 check for an outmost SUBREG on OP0 that is not doing anything or is
10526 paradoxical. The latter transformation must only be performed when
10527 it is known that the "extra" bits will be the same in op0 and op1 or
10528 that they don't matter. There are three cases to consider:
10529
10530 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10531 care bits and we can assume they have any convenient value. So
10532 making the transformation is safe.
10533
10534 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10535 In this case the upper bits of op0 are undefined. We should not make
10536 the simplification in that case as we do not know the contents of
10537 those bits.
10538
10539 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10540 UNKNOWN. In that case we know those bits are zeros or ones. We must
10541 also be sure that they are the same as the upper bits of op1.
10542
10543 We can never remove a SUBREG for a non-equality comparison because
10544 the sign bit is in a different place in the underlying object. */
10545
10546 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10547 op1 = make_compound_operation (op1, SET);
10548
10549 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10550 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10551 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10552 && (code == NE || code == EQ))
10553 {
10554 if (GET_MODE_SIZE (GET_MODE (op0))
10555 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10556 {
10557 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10558 implemented. */
10559 if (REG_P (SUBREG_REG (op0)))
10560 {
10561 op0 = SUBREG_REG (op0);
10562 op1 = gen_lowpart (GET_MODE (op0), op1);
10563 }
10564 }
10565 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10566 <= HOST_BITS_PER_WIDE_INT)
10567 && (nonzero_bits (SUBREG_REG (op0),
10568 GET_MODE (SUBREG_REG (op0)))
10569 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10570 {
10571 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10572
10573 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10574 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10575 op0 = SUBREG_REG (op0), op1 = tem;
10576 }
10577 }
10578
10579 /* We now do the opposite procedure: Some machines don't have compare
10580 insns in all modes. If OP0's mode is an integer mode smaller than a
10581 word and we can't do a compare in that mode, see if there is a larger
10582 mode for which we can do the compare. There are a number of cases in
10583 which we can use the wider mode. */
10584
10585 mode = GET_MODE (op0);
10586 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10587 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10588 && ! have_insn_for (COMPARE, mode))
10589 for (tmode = GET_MODE_WIDER_MODE (mode);
10590 (tmode != VOIDmode
10591 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10592 tmode = GET_MODE_WIDER_MODE (tmode))
10593 if (have_insn_for (COMPARE, tmode))
10594 {
10595 int zero_extended;
10596
10597 /* If the only nonzero bits in OP0 and OP1 are those in the
10598 narrower mode and this is an equality or unsigned comparison,
10599 we can use the wider mode. Similarly for sign-extended
10600 values, in which case it is true for all comparisons. */
10601 zero_extended = ((code == EQ || code == NE
10602 || code == GEU || code == GTU
10603 || code == LEU || code == LTU)
10604 && (nonzero_bits (op0, tmode)
10605 & ~GET_MODE_MASK (mode)) == 0
10606 && ((GET_CODE (op1) == CONST_INT
10607 || (nonzero_bits (op1, tmode)
10608 & ~GET_MODE_MASK (mode)) == 0)));
10609
10610 if (zero_extended
10611 || ((num_sign_bit_copies (op0, tmode)
10612 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10613 - GET_MODE_BITSIZE (mode)))
10614 && (num_sign_bit_copies (op1, tmode)
10615 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10616 - GET_MODE_BITSIZE (mode)))))
10617 {
10618 /* If OP0 is an AND and we don't have an AND in MODE either,
10619 make a new AND in the proper mode. */
10620 if (GET_CODE (op0) == AND
10621 && !have_insn_for (AND, mode))
10622 op0 = gen_binary (AND, tmode,
10623 gen_lowpart (tmode,
10624 XEXP (op0, 0)),
10625 gen_lowpart (tmode,
10626 XEXP (op0, 1)));
10627
10628 op0 = gen_lowpart (tmode, op0);
10629 if (zero_extended && GET_CODE (op1) == CONST_INT)
10630 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10631 op1 = gen_lowpart (tmode, op1);
10632 break;
10633 }
10634
10635 /* If this is a test for negative, we can make an explicit
10636 test of the sign bit. */
10637
10638 if (op1 == const0_rtx && (code == LT || code == GE)
10639 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10640 {
10641 op0 = gen_binary (AND, tmode,
10642 gen_lowpart (tmode, op0),
10643 GEN_INT ((HOST_WIDE_INT) 1
10644 << (GET_MODE_BITSIZE (mode) - 1)));
10645 code = (code == LT) ? NE : EQ;
10646 break;
10647 }
10648 }
10649
10650 #ifdef CANONICALIZE_COMPARISON
10651 /* If this machine only supports a subset of valid comparisons, see if we
10652 can convert an unsupported one into a supported one. */
10653 CANONICALIZE_COMPARISON (code, op0, op1);
10654 #endif
10655
10656 *pop0 = op0;
10657 *pop1 = op1;
10658
10659 return code;
10660 }
10661 \f
10662 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10663 searching backward. */
10664 static enum rtx_code
10665 combine_reversed_comparison_code (rtx exp)
10666 {
10667 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10668 rtx x;
10669
10670 if (code1 != UNKNOWN
10671 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10672 return code1;
10673 /* Otherwise try and find where the condition codes were last set and
10674 use that. */
10675 x = get_last_value (XEXP (exp, 0));
10676 if (!x || GET_CODE (x) != COMPARE)
10677 return UNKNOWN;
10678 return reversed_comparison_code_parts (GET_CODE (exp),
10679 XEXP (x, 0), XEXP (x, 1), NULL);
10680 }
10681
10682 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10683 Return NULL_RTX in case we fail to do the reversal. */
10684 static rtx
10685 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10686 {
10687 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10688 if (reversed_code == UNKNOWN)
10689 return NULL_RTX;
10690 else
10691 return gen_binary (reversed_code, mode, op0, op1);
10692 }
10693 \f
10694 /* Utility function for following routine. Called when X is part of a value
10695 being stored into last_set_value. Sets last_set_table_tick
10696 for each register mentioned. Similar to mention_regs in cse.c */
10697
10698 static void
10699 update_table_tick (rtx x)
10700 {
10701 enum rtx_code code = GET_CODE (x);
10702 const char *fmt = GET_RTX_FORMAT (code);
10703 int i;
10704
10705 if (code == REG)
10706 {
10707 unsigned int regno = REGNO (x);
10708 unsigned int endregno
10709 = regno + (regno < FIRST_PSEUDO_REGISTER
10710 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10711 unsigned int r;
10712
10713 for (r = regno; r < endregno; r++)
10714 reg_stat[r].last_set_table_tick = label_tick;
10715
10716 return;
10717 }
10718
10719 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10720 /* Note that we can't have an "E" in values stored; see
10721 get_last_value_validate. */
10722 if (fmt[i] == 'e')
10723 {
10724 /* Check for identical subexpressions. If x contains
10725 identical subexpression we only have to traverse one of
10726 them. */
10727 if (i == 0 && ARITHMETIC_P (x))
10728 {
10729 /* Note that at this point x1 has already been
10730 processed. */
10731 rtx x0 = XEXP (x, 0);
10732 rtx x1 = XEXP (x, 1);
10733
10734 /* If x0 and x1 are identical then there is no need to
10735 process x0. */
10736 if (x0 == x1)
10737 break;
10738
10739 /* If x0 is identical to a subexpression of x1 then while
10740 processing x1, x0 has already been processed. Thus we
10741 are done with x. */
10742 if (ARITHMETIC_P (x1)
10743 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10744 break;
10745
10746 /* If x1 is identical to a subexpression of x0 then we
10747 still have to process the rest of x0. */
10748 if (ARITHMETIC_P (x0)
10749 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10750 {
10751 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10752 break;
10753 }
10754 }
10755
10756 update_table_tick (XEXP (x, i));
10757 }
10758 }
10759
10760 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10761 are saying that the register is clobbered and we no longer know its
10762 value. If INSN is zero, don't update reg_stat[].last_set; this is
10763 only permitted with VALUE also zero and is used to invalidate the
10764 register. */
10765
10766 static void
10767 record_value_for_reg (rtx reg, rtx insn, rtx value)
10768 {
10769 unsigned int regno = REGNO (reg);
10770 unsigned int endregno
10771 = regno + (regno < FIRST_PSEUDO_REGISTER
10772 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10773 unsigned int i;
10774
10775 /* If VALUE contains REG and we have a previous value for REG, substitute
10776 the previous value. */
10777 if (value && insn && reg_overlap_mentioned_p (reg, value))
10778 {
10779 rtx tem;
10780
10781 /* Set things up so get_last_value is allowed to see anything set up to
10782 our insn. */
10783 subst_low_cuid = INSN_CUID (insn);
10784 tem = get_last_value (reg);
10785
10786 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10787 it isn't going to be useful and will take a lot of time to process,
10788 so just use the CLOBBER. */
10789
10790 if (tem)
10791 {
10792 if (ARITHMETIC_P (tem)
10793 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10794 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10795 tem = XEXP (tem, 0);
10796
10797 value = replace_rtx (copy_rtx (value), reg, tem);
10798 }
10799 }
10800
10801 /* For each register modified, show we don't know its value, that
10802 we don't know about its bitwise content, that its value has been
10803 updated, and that we don't know the location of the death of the
10804 register. */
10805 for (i = regno; i < endregno; i++)
10806 {
10807 if (insn)
10808 reg_stat[i].last_set = insn;
10809
10810 reg_stat[i].last_set_value = 0;
10811 reg_stat[i].last_set_mode = 0;
10812 reg_stat[i].last_set_nonzero_bits = 0;
10813 reg_stat[i].last_set_sign_bit_copies = 0;
10814 reg_stat[i].last_death = 0;
10815 }
10816
10817 /* Mark registers that are being referenced in this value. */
10818 if (value)
10819 update_table_tick (value);
10820
10821 /* Now update the status of each register being set.
10822 If someone is using this register in this block, set this register
10823 to invalid since we will get confused between the two lives in this
10824 basic block. This makes using this register always invalid. In cse, we
10825 scan the table to invalidate all entries using this register, but this
10826 is too much work for us. */
10827
10828 for (i = regno; i < endregno; i++)
10829 {
10830 reg_stat[i].last_set_label = label_tick;
10831 if (value && reg_stat[i].last_set_table_tick == label_tick)
10832 reg_stat[i].last_set_invalid = 1;
10833 else
10834 reg_stat[i].last_set_invalid = 0;
10835 }
10836
10837 /* The value being assigned might refer to X (like in "x++;"). In that
10838 case, we must replace it with (clobber (const_int 0)) to prevent
10839 infinite loops. */
10840 if (value && ! get_last_value_validate (&value, insn,
10841 reg_stat[regno].last_set_label, 0))
10842 {
10843 value = copy_rtx (value);
10844 if (! get_last_value_validate (&value, insn,
10845 reg_stat[regno].last_set_label, 1))
10846 value = 0;
10847 }
10848
10849 /* For the main register being modified, update the value, the mode, the
10850 nonzero bits, and the number of sign bit copies. */
10851
10852 reg_stat[regno].last_set_value = value;
10853
10854 if (value)
10855 {
10856 enum machine_mode mode = GET_MODE (reg);
10857 subst_low_cuid = INSN_CUID (insn);
10858 reg_stat[regno].last_set_mode = mode;
10859 if (GET_MODE_CLASS (mode) == MODE_INT
10860 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10861 mode = nonzero_bits_mode;
10862 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10863 reg_stat[regno].last_set_sign_bit_copies
10864 = num_sign_bit_copies (value, GET_MODE (reg));
10865 }
10866 }
10867
10868 /* Called via note_stores from record_dead_and_set_regs to handle one
10869 SET or CLOBBER in an insn. DATA is the instruction in which the
10870 set is occurring. */
10871
10872 static void
10873 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10874 {
10875 rtx record_dead_insn = (rtx) data;
10876
10877 if (GET_CODE (dest) == SUBREG)
10878 dest = SUBREG_REG (dest);
10879
10880 if (REG_P (dest))
10881 {
10882 /* If we are setting the whole register, we know its value. Otherwise
10883 show that we don't know the value. We can handle SUBREG in
10884 some cases. */
10885 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10886 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10887 else if (GET_CODE (setter) == SET
10888 && GET_CODE (SET_DEST (setter)) == SUBREG
10889 && SUBREG_REG (SET_DEST (setter)) == dest
10890 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10891 && subreg_lowpart_p (SET_DEST (setter)))
10892 record_value_for_reg (dest, record_dead_insn,
10893 gen_lowpart (GET_MODE (dest),
10894 SET_SRC (setter)));
10895 else
10896 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10897 }
10898 else if (MEM_P (dest)
10899 /* Ignore pushes, they clobber nothing. */
10900 && ! push_operand (dest, GET_MODE (dest)))
10901 mem_last_set = INSN_CUID (record_dead_insn);
10902 }
10903
10904 /* Update the records of when each REG was most recently set or killed
10905 for the things done by INSN. This is the last thing done in processing
10906 INSN in the combiner loop.
10907
10908 We update reg_stat[], in particular fields last_set, last_set_value,
10909 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10910 last_death, and also the similar information mem_last_set (which insn
10911 most recently modified memory) and last_call_cuid (which insn was the
10912 most recent subroutine call). */
10913
10914 static void
10915 record_dead_and_set_regs (rtx insn)
10916 {
10917 rtx link;
10918 unsigned int i;
10919
10920 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10921 {
10922 if (REG_NOTE_KIND (link) == REG_DEAD
10923 && REG_P (XEXP (link, 0)))
10924 {
10925 unsigned int regno = REGNO (XEXP (link, 0));
10926 unsigned int endregno
10927 = regno + (regno < FIRST_PSEUDO_REGISTER
10928 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10929 : 1);
10930
10931 for (i = regno; i < endregno; i++)
10932 reg_stat[i].last_death = insn;
10933 }
10934 else if (REG_NOTE_KIND (link) == REG_INC)
10935 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10936 }
10937
10938 if (CALL_P (insn))
10939 {
10940 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10941 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
10942 {
10943 reg_stat[i].last_set_value = 0;
10944 reg_stat[i].last_set_mode = 0;
10945 reg_stat[i].last_set_nonzero_bits = 0;
10946 reg_stat[i].last_set_sign_bit_copies = 0;
10947 reg_stat[i].last_death = 0;
10948 }
10949
10950 last_call_cuid = mem_last_set = INSN_CUID (insn);
10951
10952 /* Don't bother recording what this insn does. It might set the
10953 return value register, but we can't combine into a call
10954 pattern anyway, so there's no point trying (and it may cause
10955 a crash, if e.g. we wind up asking for last_set_value of a
10956 SUBREG of the return value register). */
10957 return;
10958 }
10959
10960 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
10961 }
10962
10963 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10964 register present in the SUBREG, so for each such SUBREG go back and
10965 adjust nonzero and sign bit information of the registers that are
10966 known to have some zero/sign bits set.
10967
10968 This is needed because when combine blows the SUBREGs away, the
10969 information on zero/sign bits is lost and further combines can be
10970 missed because of that. */
10971
10972 static void
10973 record_promoted_value (rtx insn, rtx subreg)
10974 {
10975 rtx links, set;
10976 unsigned int regno = REGNO (SUBREG_REG (subreg));
10977 enum machine_mode mode = GET_MODE (subreg);
10978
10979 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
10980 return;
10981
10982 for (links = LOG_LINKS (insn); links;)
10983 {
10984 insn = XEXP (links, 0);
10985 set = single_set (insn);
10986
10987 if (! set || !REG_P (SET_DEST (set))
10988 || REGNO (SET_DEST (set)) != regno
10989 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
10990 {
10991 links = XEXP (links, 1);
10992 continue;
10993 }
10994
10995 if (reg_stat[regno].last_set == insn)
10996 {
10997 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
10998 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
10999 }
11000
11001 if (REG_P (SET_SRC (set)))
11002 {
11003 regno = REGNO (SET_SRC (set));
11004 links = LOG_LINKS (insn);
11005 }
11006 else
11007 break;
11008 }
11009 }
11010
11011 /* Scan X for promoted SUBREGs. For each one found,
11012 note what it implies to the registers used in it. */
11013
11014 static void
11015 check_promoted_subreg (rtx insn, rtx x)
11016 {
11017 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11018 && REG_P (SUBREG_REG (x)))
11019 record_promoted_value (insn, x);
11020 else
11021 {
11022 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11023 int i, j;
11024
11025 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11026 switch (format[i])
11027 {
11028 case 'e':
11029 check_promoted_subreg (insn, XEXP (x, i));
11030 break;
11031 case 'V':
11032 case 'E':
11033 if (XVEC (x, i) != 0)
11034 for (j = 0; j < XVECLEN (x, i); j++)
11035 check_promoted_subreg (insn, XVECEXP (x, i, j));
11036 break;
11037 }
11038 }
11039 }
11040 \f
11041 /* Utility routine for the following function. Verify that all the registers
11042 mentioned in *LOC are valid when *LOC was part of a value set when
11043 label_tick == TICK. Return 0 if some are not.
11044
11045 If REPLACE is nonzero, replace the invalid reference with
11046 (clobber (const_int 0)) and return 1. This replacement is useful because
11047 we often can get useful information about the form of a value (e.g., if
11048 it was produced by a shift that always produces -1 or 0) even though
11049 we don't know exactly what registers it was produced from. */
11050
11051 static int
11052 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11053 {
11054 rtx x = *loc;
11055 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11056 int len = GET_RTX_LENGTH (GET_CODE (x));
11057 int i;
11058
11059 if (REG_P (x))
11060 {
11061 unsigned int regno = REGNO (x);
11062 unsigned int endregno
11063 = regno + (regno < FIRST_PSEUDO_REGISTER
11064 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11065 unsigned int j;
11066
11067 for (j = regno; j < endregno; j++)
11068 if (reg_stat[j].last_set_invalid
11069 /* If this is a pseudo-register that was only set once and not
11070 live at the beginning of the function, it is always valid. */
11071 || (! (regno >= FIRST_PSEUDO_REGISTER
11072 && REG_N_SETS (regno) == 1
11073 && (! REGNO_REG_SET_P
11074 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11075 && reg_stat[j].last_set_label > tick))
11076 {
11077 if (replace)
11078 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11079 return replace;
11080 }
11081
11082 return 1;
11083 }
11084 /* If this is a memory reference, make sure that there were
11085 no stores after it that might have clobbered the value. We don't
11086 have alias info, so we assume any store invalidates it. */
11087 else if (MEM_P (x) && !MEM_READONLY_P (x)
11088 && INSN_CUID (insn) <= mem_last_set)
11089 {
11090 if (replace)
11091 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11092 return replace;
11093 }
11094
11095 for (i = 0; i < len; i++)
11096 {
11097 if (fmt[i] == 'e')
11098 {
11099 /* Check for identical subexpressions. If x contains
11100 identical subexpression we only have to traverse one of
11101 them. */
11102 if (i == 1 && ARITHMETIC_P (x))
11103 {
11104 /* Note that at this point x0 has already been checked
11105 and found valid. */
11106 rtx x0 = XEXP (x, 0);
11107 rtx x1 = XEXP (x, 1);
11108
11109 /* If x0 and x1 are identical then x is also valid. */
11110 if (x0 == x1)
11111 return 1;
11112
11113 /* If x1 is identical to a subexpression of x0 then
11114 while checking x0, x1 has already been checked. Thus
11115 it is valid and so as x. */
11116 if (ARITHMETIC_P (x0)
11117 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11118 return 1;
11119
11120 /* If x0 is identical to a subexpression of x1 then x is
11121 valid iff the rest of x1 is valid. */
11122 if (ARITHMETIC_P (x1)
11123 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11124 return
11125 get_last_value_validate (&XEXP (x1,
11126 x0 == XEXP (x1, 0) ? 1 : 0),
11127 insn, tick, replace);
11128 }
11129
11130 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11131 replace) == 0)
11132 return 0;
11133 }
11134 /* Don't bother with these. They shouldn't occur anyway. */
11135 else if (fmt[i] == 'E')
11136 return 0;
11137 }
11138
11139 /* If we haven't found a reason for it to be invalid, it is valid. */
11140 return 1;
11141 }
11142
11143 /* Get the last value assigned to X, if known. Some registers
11144 in the value may be replaced with (clobber (const_int 0)) if their value
11145 is known longer known reliably. */
11146
11147 static rtx
11148 get_last_value (rtx x)
11149 {
11150 unsigned int regno;
11151 rtx value;
11152
11153 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11154 then convert it to the desired mode. If this is a paradoxical SUBREG,
11155 we cannot predict what values the "extra" bits might have. */
11156 if (GET_CODE (x) == SUBREG
11157 && subreg_lowpart_p (x)
11158 && (GET_MODE_SIZE (GET_MODE (x))
11159 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11160 && (value = get_last_value (SUBREG_REG (x))) != 0)
11161 return gen_lowpart (GET_MODE (x), value);
11162
11163 if (!REG_P (x))
11164 return 0;
11165
11166 regno = REGNO (x);
11167 value = reg_stat[regno].last_set_value;
11168
11169 /* If we don't have a value, or if it isn't for this basic block and
11170 it's either a hard register, set more than once, or it's a live
11171 at the beginning of the function, return 0.
11172
11173 Because if it's not live at the beginning of the function then the reg
11174 is always set before being used (is never used without being set).
11175 And, if it's set only once, and it's always set before use, then all
11176 uses must have the same last value, even if it's not from this basic
11177 block. */
11178
11179 if (value == 0
11180 || (reg_stat[regno].last_set_label != label_tick
11181 && (regno < FIRST_PSEUDO_REGISTER
11182 || REG_N_SETS (regno) != 1
11183 || (REGNO_REG_SET_P
11184 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11185 return 0;
11186
11187 /* If the value was set in a later insn than the ones we are processing,
11188 we can't use it even if the register was only set once. */
11189 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11190 return 0;
11191
11192 /* If the value has all its registers valid, return it. */
11193 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11194 reg_stat[regno].last_set_label, 0))
11195 return value;
11196
11197 /* Otherwise, make a copy and replace any invalid register with
11198 (clobber (const_int 0)). If that fails for some reason, return 0. */
11199
11200 value = copy_rtx (value);
11201 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11202 reg_stat[regno].last_set_label, 1))
11203 return value;
11204
11205 return 0;
11206 }
11207 \f
11208 /* Return nonzero if expression X refers to a REG or to memory
11209 that is set in an instruction more recent than FROM_CUID. */
11210
11211 static int
11212 use_crosses_set_p (rtx x, int from_cuid)
11213 {
11214 const char *fmt;
11215 int i;
11216 enum rtx_code code = GET_CODE (x);
11217
11218 if (code == REG)
11219 {
11220 unsigned int regno = REGNO (x);
11221 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11222 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11223
11224 #ifdef PUSH_ROUNDING
11225 /* Don't allow uses of the stack pointer to be moved,
11226 because we don't know whether the move crosses a push insn. */
11227 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11228 return 1;
11229 #endif
11230 for (; regno < endreg; regno++)
11231 if (reg_stat[regno].last_set
11232 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11233 return 1;
11234 return 0;
11235 }
11236
11237 if (code == MEM && mem_last_set > from_cuid)
11238 return 1;
11239
11240 fmt = GET_RTX_FORMAT (code);
11241
11242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11243 {
11244 if (fmt[i] == 'E')
11245 {
11246 int j;
11247 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11248 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11249 return 1;
11250 }
11251 else if (fmt[i] == 'e'
11252 && use_crosses_set_p (XEXP (x, i), from_cuid))
11253 return 1;
11254 }
11255 return 0;
11256 }
11257 \f
11258 /* Define three variables used for communication between the following
11259 routines. */
11260
11261 static unsigned int reg_dead_regno, reg_dead_endregno;
11262 static int reg_dead_flag;
11263
11264 /* Function called via note_stores from reg_dead_at_p.
11265
11266 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11267 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11268
11269 static void
11270 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11271 {
11272 unsigned int regno, endregno;
11273
11274 if (!REG_P (dest))
11275 return;
11276
11277 regno = REGNO (dest);
11278 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11279 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11280
11281 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11282 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11283 }
11284
11285 /* Return nonzero if REG is known to be dead at INSN.
11286
11287 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11288 referencing REG, it is dead. If we hit a SET referencing REG, it is
11289 live. Otherwise, see if it is live or dead at the start of the basic
11290 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11291 must be assumed to be always live. */
11292
11293 static int
11294 reg_dead_at_p (rtx reg, rtx insn)
11295 {
11296 basic_block block;
11297 unsigned int i;
11298
11299 /* Set variables for reg_dead_at_p_1. */
11300 reg_dead_regno = REGNO (reg);
11301 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11302 ? hard_regno_nregs[reg_dead_regno]
11303 [GET_MODE (reg)]
11304 : 1);
11305
11306 reg_dead_flag = 0;
11307
11308 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11309 we allow the machine description to decide whether use-and-clobber
11310 patterns are OK. */
11311 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11312 {
11313 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11314 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11315 return 0;
11316 }
11317
11318 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11319 beginning of function. */
11320 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11321 insn = prev_nonnote_insn (insn))
11322 {
11323 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11324 if (reg_dead_flag)
11325 return reg_dead_flag == 1 ? 1 : 0;
11326
11327 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11328 return 1;
11329 }
11330
11331 /* Get the basic block that we were in. */
11332 if (insn == 0)
11333 block = ENTRY_BLOCK_PTR->next_bb;
11334 else
11335 {
11336 FOR_EACH_BB (block)
11337 if (insn == BB_HEAD (block))
11338 break;
11339
11340 if (block == EXIT_BLOCK_PTR)
11341 return 0;
11342 }
11343
11344 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11345 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11346 return 0;
11347
11348 return 1;
11349 }
11350 \f
11351 /* Note hard registers in X that are used. This code is similar to
11352 that in flow.c, but much simpler since we don't care about pseudos. */
11353
11354 static void
11355 mark_used_regs_combine (rtx x)
11356 {
11357 RTX_CODE code = GET_CODE (x);
11358 unsigned int regno;
11359 int i;
11360
11361 switch (code)
11362 {
11363 case LABEL_REF:
11364 case SYMBOL_REF:
11365 case CONST_INT:
11366 case CONST:
11367 case CONST_DOUBLE:
11368 case CONST_VECTOR:
11369 case PC:
11370 case ADDR_VEC:
11371 case ADDR_DIFF_VEC:
11372 case ASM_INPUT:
11373 #ifdef HAVE_cc0
11374 /* CC0 must die in the insn after it is set, so we don't need to take
11375 special note of it here. */
11376 case CC0:
11377 #endif
11378 return;
11379
11380 case CLOBBER:
11381 /* If we are clobbering a MEM, mark any hard registers inside the
11382 address as used. */
11383 if (MEM_P (XEXP (x, 0)))
11384 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11385 return;
11386
11387 case REG:
11388 regno = REGNO (x);
11389 /* A hard reg in a wide mode may really be multiple registers.
11390 If so, mark all of them just like the first. */
11391 if (regno < FIRST_PSEUDO_REGISTER)
11392 {
11393 unsigned int endregno, r;
11394
11395 /* None of this applies to the stack, frame or arg pointers. */
11396 if (regno == STACK_POINTER_REGNUM
11397 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11398 || regno == HARD_FRAME_POINTER_REGNUM
11399 #endif
11400 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11401 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11402 #endif
11403 || regno == FRAME_POINTER_REGNUM)
11404 return;
11405
11406 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11407 for (r = regno; r < endregno; r++)
11408 SET_HARD_REG_BIT (newpat_used_regs, r);
11409 }
11410 return;
11411
11412 case SET:
11413 {
11414 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11415 the address. */
11416 rtx testreg = SET_DEST (x);
11417
11418 while (GET_CODE (testreg) == SUBREG
11419 || GET_CODE (testreg) == ZERO_EXTRACT
11420 || GET_CODE (testreg) == SIGN_EXTRACT
11421 || GET_CODE (testreg) == STRICT_LOW_PART)
11422 testreg = XEXP (testreg, 0);
11423
11424 if (MEM_P (testreg))
11425 mark_used_regs_combine (XEXP (testreg, 0));
11426
11427 mark_used_regs_combine (SET_SRC (x));
11428 }
11429 return;
11430
11431 default:
11432 break;
11433 }
11434
11435 /* Recursively scan the operands of this expression. */
11436
11437 {
11438 const char *fmt = GET_RTX_FORMAT (code);
11439
11440 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11441 {
11442 if (fmt[i] == 'e')
11443 mark_used_regs_combine (XEXP (x, i));
11444 else if (fmt[i] == 'E')
11445 {
11446 int j;
11447
11448 for (j = 0; j < XVECLEN (x, i); j++)
11449 mark_used_regs_combine (XVECEXP (x, i, j));
11450 }
11451 }
11452 }
11453 }
11454 \f
11455 /* Remove register number REGNO from the dead registers list of INSN.
11456
11457 Return the note used to record the death, if there was one. */
11458
11459 rtx
11460 remove_death (unsigned int regno, rtx insn)
11461 {
11462 rtx note = find_regno_note (insn, REG_DEAD, regno);
11463
11464 if (note)
11465 {
11466 REG_N_DEATHS (regno)--;
11467 remove_note (insn, note);
11468 }
11469
11470 return note;
11471 }
11472
11473 /* For each register (hardware or pseudo) used within expression X, if its
11474 death is in an instruction with cuid between FROM_CUID (inclusive) and
11475 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11476 list headed by PNOTES.
11477
11478 That said, don't move registers killed by maybe_kill_insn.
11479
11480 This is done when X is being merged by combination into TO_INSN. These
11481 notes will then be distributed as needed. */
11482
11483 static void
11484 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11485 rtx *pnotes)
11486 {
11487 const char *fmt;
11488 int len, i;
11489 enum rtx_code code = GET_CODE (x);
11490
11491 if (code == REG)
11492 {
11493 unsigned int regno = REGNO (x);
11494 rtx where_dead = reg_stat[regno].last_death;
11495 rtx before_dead, after_dead;
11496
11497 /* Don't move the register if it gets killed in between from and to. */
11498 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11499 && ! reg_referenced_p (x, maybe_kill_insn))
11500 return;
11501
11502 /* WHERE_DEAD could be a USE insn made by combine, so first we
11503 make sure that we have insns with valid INSN_CUID values. */
11504 before_dead = where_dead;
11505 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11506 before_dead = PREV_INSN (before_dead);
11507
11508 after_dead = where_dead;
11509 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11510 after_dead = NEXT_INSN (after_dead);
11511
11512 if (before_dead && after_dead
11513 && INSN_CUID (before_dead) >= from_cuid
11514 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11515 || (where_dead != after_dead
11516 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11517 {
11518 rtx note = remove_death (regno, where_dead);
11519
11520 /* It is possible for the call above to return 0. This can occur
11521 when last_death points to I2 or I1 that we combined with.
11522 In that case make a new note.
11523
11524 We must also check for the case where X is a hard register
11525 and NOTE is a death note for a range of hard registers
11526 including X. In that case, we must put REG_DEAD notes for
11527 the remaining registers in place of NOTE. */
11528
11529 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11530 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11531 > GET_MODE_SIZE (GET_MODE (x))))
11532 {
11533 unsigned int deadregno = REGNO (XEXP (note, 0));
11534 unsigned int deadend
11535 = (deadregno + hard_regno_nregs[deadregno]
11536 [GET_MODE (XEXP (note, 0))]);
11537 unsigned int ourend
11538 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11539 unsigned int i;
11540
11541 for (i = deadregno; i < deadend; i++)
11542 if (i < regno || i >= ourend)
11543 REG_NOTES (where_dead)
11544 = gen_rtx_EXPR_LIST (REG_DEAD,
11545 regno_reg_rtx[i],
11546 REG_NOTES (where_dead));
11547 }
11548
11549 /* If we didn't find any note, or if we found a REG_DEAD note that
11550 covers only part of the given reg, and we have a multi-reg hard
11551 register, then to be safe we must check for REG_DEAD notes
11552 for each register other than the first. They could have
11553 their own REG_DEAD notes lying around. */
11554 else if ((note == 0
11555 || (note != 0
11556 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11557 < GET_MODE_SIZE (GET_MODE (x)))))
11558 && regno < FIRST_PSEUDO_REGISTER
11559 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11560 {
11561 unsigned int ourend
11562 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11563 unsigned int i, offset;
11564 rtx oldnotes = 0;
11565
11566 if (note)
11567 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11568 else
11569 offset = 1;
11570
11571 for (i = regno + offset; i < ourend; i++)
11572 move_deaths (regno_reg_rtx[i],
11573 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11574 }
11575
11576 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11577 {
11578 XEXP (note, 1) = *pnotes;
11579 *pnotes = note;
11580 }
11581 else
11582 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11583
11584 REG_N_DEATHS (regno)++;
11585 }
11586
11587 return;
11588 }
11589
11590 else if (GET_CODE (x) == SET)
11591 {
11592 rtx dest = SET_DEST (x);
11593
11594 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11595
11596 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11597 that accesses one word of a multi-word item, some
11598 piece of everything register in the expression is used by
11599 this insn, so remove any old death. */
11600 /* ??? So why do we test for equality of the sizes? */
11601
11602 if (GET_CODE (dest) == ZERO_EXTRACT
11603 || GET_CODE (dest) == STRICT_LOW_PART
11604 || (GET_CODE (dest) == SUBREG
11605 && (((GET_MODE_SIZE (GET_MODE (dest))
11606 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11607 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11608 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11609 {
11610 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11611 return;
11612 }
11613
11614 /* If this is some other SUBREG, we know it replaces the entire
11615 value, so use that as the destination. */
11616 if (GET_CODE (dest) == SUBREG)
11617 dest = SUBREG_REG (dest);
11618
11619 /* If this is a MEM, adjust deaths of anything used in the address.
11620 For a REG (the only other possibility), the entire value is
11621 being replaced so the old value is not used in this insn. */
11622
11623 if (MEM_P (dest))
11624 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11625 to_insn, pnotes);
11626 return;
11627 }
11628
11629 else if (GET_CODE (x) == CLOBBER)
11630 return;
11631
11632 len = GET_RTX_LENGTH (code);
11633 fmt = GET_RTX_FORMAT (code);
11634
11635 for (i = 0; i < len; i++)
11636 {
11637 if (fmt[i] == 'E')
11638 {
11639 int j;
11640 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11641 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11642 to_insn, pnotes);
11643 }
11644 else if (fmt[i] == 'e')
11645 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11646 }
11647 }
11648 \f
11649 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11650 pattern of an insn. X must be a REG. */
11651
11652 static int
11653 reg_bitfield_target_p (rtx x, rtx body)
11654 {
11655 int i;
11656
11657 if (GET_CODE (body) == SET)
11658 {
11659 rtx dest = SET_DEST (body);
11660 rtx target;
11661 unsigned int regno, tregno, endregno, endtregno;
11662
11663 if (GET_CODE (dest) == ZERO_EXTRACT)
11664 target = XEXP (dest, 0);
11665 else if (GET_CODE (dest) == STRICT_LOW_PART)
11666 target = SUBREG_REG (XEXP (dest, 0));
11667 else
11668 return 0;
11669
11670 if (GET_CODE (target) == SUBREG)
11671 target = SUBREG_REG (target);
11672
11673 if (!REG_P (target))
11674 return 0;
11675
11676 tregno = REGNO (target), regno = REGNO (x);
11677 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11678 return target == x;
11679
11680 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11681 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11682
11683 return endregno > tregno && regno < endtregno;
11684 }
11685
11686 else if (GET_CODE (body) == PARALLEL)
11687 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11688 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11689 return 1;
11690
11691 return 0;
11692 }
11693 \f
11694 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11695 as appropriate. I3 and I2 are the insns resulting from the combination
11696 insns including FROM (I2 may be zero).
11697
11698 Each note in the list is either ignored or placed on some insns, depending
11699 on the type of note. */
11700
11701 static void
11702 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11703 {
11704 rtx note, next_note;
11705 rtx tem;
11706
11707 for (note = notes; note; note = next_note)
11708 {
11709 rtx place = 0, place2 = 0;
11710
11711 /* If this NOTE references a pseudo register, ensure it references
11712 the latest copy of that register. */
11713 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11714 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11715 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11716
11717 next_note = XEXP (note, 1);
11718 switch (REG_NOTE_KIND (note))
11719 {
11720 case REG_BR_PROB:
11721 case REG_BR_PRED:
11722 /* Doesn't matter much where we put this, as long as it's somewhere.
11723 It is preferable to keep these notes on branches, which is most
11724 likely to be i3. */
11725 place = i3;
11726 break;
11727
11728 case REG_VALUE_PROFILE:
11729 /* Just get rid of this note, as it is unused later anyway. */
11730 break;
11731
11732 case REG_NON_LOCAL_GOTO:
11733 if (JUMP_P (i3))
11734 place = i3;
11735 else
11736 {
11737 gcc_assert (i2 && JUMP_P (i2));
11738 place = i2;
11739 }
11740 break;
11741
11742 case REG_EH_REGION:
11743 /* These notes must remain with the call or trapping instruction. */
11744 if (CALL_P (i3))
11745 place = i3;
11746 else if (i2 && CALL_P (i2))
11747 place = i2;
11748 else
11749 {
11750 gcc_assert (flag_non_call_exceptions);
11751 if (may_trap_p (i3))
11752 place = i3;
11753 else if (i2 && may_trap_p (i2))
11754 place = i2;
11755 /* ??? Otherwise assume we've combined things such that we
11756 can now prove that the instructions can't trap. Drop the
11757 note in this case. */
11758 }
11759 break;
11760
11761 case REG_ALWAYS_RETURN:
11762 case REG_NORETURN:
11763 case REG_SETJMP:
11764 /* These notes must remain with the call. It should not be
11765 possible for both I2 and I3 to be a call. */
11766 if (CALL_P (i3))
11767 place = i3;
11768 else
11769 {
11770 gcc_assert (i2 && CALL_P (i2));
11771 place = i2;
11772 }
11773 break;
11774
11775 case REG_UNUSED:
11776 /* Any clobbers for i3 may still exist, and so we must process
11777 REG_UNUSED notes from that insn.
11778
11779 Any clobbers from i2 or i1 can only exist if they were added by
11780 recog_for_combine. In that case, recog_for_combine created the
11781 necessary REG_UNUSED notes. Trying to keep any original
11782 REG_UNUSED notes from these insns can cause incorrect output
11783 if it is for the same register as the original i3 dest.
11784 In that case, we will notice that the register is set in i3,
11785 and then add a REG_UNUSED note for the destination of i3, which
11786 is wrong. However, it is possible to have REG_UNUSED notes from
11787 i2 or i1 for register which were both used and clobbered, so
11788 we keep notes from i2 or i1 if they will turn into REG_DEAD
11789 notes. */
11790
11791 /* If this register is set or clobbered in I3, put the note there
11792 unless there is one already. */
11793 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11794 {
11795 if (from_insn != i3)
11796 break;
11797
11798 if (! (REG_P (XEXP (note, 0))
11799 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11800 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11801 place = i3;
11802 }
11803 /* Otherwise, if this register is used by I3, then this register
11804 now dies here, so we must put a REG_DEAD note here unless there
11805 is one already. */
11806 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11807 && ! (REG_P (XEXP (note, 0))
11808 ? find_regno_note (i3, REG_DEAD,
11809 REGNO (XEXP (note, 0)))
11810 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11811 {
11812 PUT_REG_NOTE_KIND (note, REG_DEAD);
11813 place = i3;
11814 }
11815 break;
11816
11817 case REG_EQUAL:
11818 case REG_EQUIV:
11819 case REG_NOALIAS:
11820 /* These notes say something about results of an insn. We can
11821 only support them if they used to be on I3 in which case they
11822 remain on I3. Otherwise they are ignored.
11823
11824 If the note refers to an expression that is not a constant, we
11825 must also ignore the note since we cannot tell whether the
11826 equivalence is still true. It might be possible to do
11827 slightly better than this (we only have a problem if I2DEST
11828 or I1DEST is present in the expression), but it doesn't
11829 seem worth the trouble. */
11830
11831 if (from_insn == i3
11832 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11833 place = i3;
11834 break;
11835
11836 case REG_INC:
11837 case REG_NO_CONFLICT:
11838 /* These notes say something about how a register is used. They must
11839 be present on any use of the register in I2 or I3. */
11840 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11841 place = i3;
11842
11843 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11844 {
11845 if (place)
11846 place2 = i2;
11847 else
11848 place = i2;
11849 }
11850 break;
11851
11852 case REG_LABEL:
11853 /* This can show up in several ways -- either directly in the
11854 pattern, or hidden off in the constant pool with (or without?)
11855 a REG_EQUAL note. */
11856 /* ??? Ignore the without-reg_equal-note problem for now. */
11857 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11858 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11859 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11860 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11861 place = i3;
11862
11863 if (i2
11864 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11865 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11866 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11867 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11868 {
11869 if (place)
11870 place2 = i2;
11871 else
11872 place = i2;
11873 }
11874
11875 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11876 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11877 if (place && JUMP_P (place))
11878 {
11879 rtx label = JUMP_LABEL (place);
11880
11881 if (!label)
11882 JUMP_LABEL (place) = XEXP (note, 0);
11883 else
11884 {
11885 gcc_assert (label == XEXP (note, 0));
11886 if (LABEL_P (label))
11887 LABEL_NUSES (label)--;
11888 }
11889 place = 0;
11890 }
11891 if (place2 && JUMP_P (place2))
11892 {
11893 rtx label = JUMP_LABEL (place2);
11894
11895 if (!label)
11896 JUMP_LABEL (place2) = XEXP (note, 0);
11897 else
11898 {
11899 gcc_assert (label == XEXP (note, 0));
11900 if (LABEL_P (label))
11901 LABEL_NUSES (label)--;
11902 }
11903 place2 = 0;
11904 }
11905 break;
11906
11907 case REG_NONNEG:
11908 /* This note says something about the value of a register prior
11909 to the execution of an insn. It is too much trouble to see
11910 if the note is still correct in all situations. It is better
11911 to simply delete it. */
11912 break;
11913
11914 case REG_RETVAL:
11915 /* If the insn previously containing this note still exists,
11916 put it back where it was. Otherwise move it to the previous
11917 insn. Adjust the corresponding REG_LIBCALL note. */
11918 if (!NOTE_P (from_insn))
11919 place = from_insn;
11920 else
11921 {
11922 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11923 place = prev_real_insn (from_insn);
11924 if (tem && place)
11925 XEXP (tem, 0) = place;
11926 /* If we're deleting the last remaining instruction of a
11927 libcall sequence, don't add the notes. */
11928 else if (XEXP (note, 0) == from_insn)
11929 tem = place = 0;
11930 /* Don't add the dangling REG_RETVAL note. */
11931 else if (! tem)
11932 place = 0;
11933 }
11934 break;
11935
11936 case REG_LIBCALL:
11937 /* This is handled similarly to REG_RETVAL. */
11938 if (!NOTE_P (from_insn))
11939 place = from_insn;
11940 else
11941 {
11942 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11943 place = next_real_insn (from_insn);
11944 if (tem && place)
11945 XEXP (tem, 0) = place;
11946 /* If we're deleting the last remaining instruction of a
11947 libcall sequence, don't add the notes. */
11948 else if (XEXP (note, 0) == from_insn)
11949 tem = place = 0;
11950 /* Don't add the dangling REG_LIBCALL note. */
11951 else if (! tem)
11952 place = 0;
11953 }
11954 break;
11955
11956 case REG_DEAD:
11957 /* If the register is used as an input in I3, it dies there.
11958 Similarly for I2, if it is nonzero and adjacent to I3.
11959
11960 If the register is not used as an input in either I3 or I2
11961 and it is not one of the registers we were supposed to eliminate,
11962 there are two possibilities. We might have a non-adjacent I2
11963 or we might have somehow eliminated an additional register
11964 from a computation. For example, we might have had A & B where
11965 we discover that B will always be zero. In this case we will
11966 eliminate the reference to A.
11967
11968 In both cases, we must search to see if we can find a previous
11969 use of A and put the death note there. */
11970
11971 if (from_insn
11972 && CALL_P (from_insn)
11973 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11974 place = from_insn;
11975 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11976 place = i3;
11977 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11978 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11979 place = i2;
11980
11981 if (place == 0)
11982 {
11983 basic_block bb = this_basic_block;
11984
11985 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
11986 {
11987 if (! INSN_P (tem))
11988 {
11989 if (tem == BB_HEAD (bb))
11990 break;
11991 continue;
11992 }
11993
11994 /* If the register is being set at TEM, see if that is all
11995 TEM is doing. If so, delete TEM. Otherwise, make this
11996 into a REG_UNUSED note instead. Don't delete sets to
11997 global register vars. */
11998 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
11999 || !global_regs[REGNO (XEXP (note, 0))])
12000 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12001 {
12002 rtx set = single_set (tem);
12003 rtx inner_dest = 0;
12004 #ifdef HAVE_cc0
12005 rtx cc0_setter = NULL_RTX;
12006 #endif
12007
12008 if (set != 0)
12009 for (inner_dest = SET_DEST (set);
12010 (GET_CODE (inner_dest) == STRICT_LOW_PART
12011 || GET_CODE (inner_dest) == SUBREG
12012 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12013 inner_dest = XEXP (inner_dest, 0))
12014 ;
12015
12016 /* Verify that it was the set, and not a clobber that
12017 modified the register.
12018
12019 CC0 targets must be careful to maintain setter/user
12020 pairs. If we cannot delete the setter due to side
12021 effects, mark the user with an UNUSED note instead
12022 of deleting it. */
12023
12024 if (set != 0 && ! side_effects_p (SET_SRC (set))
12025 && rtx_equal_p (XEXP (note, 0), inner_dest)
12026 #ifdef HAVE_cc0
12027 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12028 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12029 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12030 #endif
12031 )
12032 {
12033 /* Move the notes and links of TEM elsewhere.
12034 This might delete other dead insns recursively.
12035 First set the pattern to something that won't use
12036 any register. */
12037 rtx old_notes = REG_NOTES (tem);
12038
12039 PATTERN (tem) = pc_rtx;
12040 REG_NOTES (tem) = NULL;
12041
12042 distribute_notes (old_notes, tem, tem, NULL_RTX);
12043 distribute_links (LOG_LINKS (tem));
12044
12045 SET_INSN_DELETED (tem);
12046
12047 #ifdef HAVE_cc0
12048 /* Delete the setter too. */
12049 if (cc0_setter)
12050 {
12051 PATTERN (cc0_setter) = pc_rtx;
12052 old_notes = REG_NOTES (cc0_setter);
12053 REG_NOTES (cc0_setter) = NULL;
12054
12055 distribute_notes (old_notes, cc0_setter,
12056 cc0_setter, NULL_RTX);
12057 distribute_links (LOG_LINKS (cc0_setter));
12058
12059 SET_INSN_DELETED (cc0_setter);
12060 }
12061 #endif
12062 }
12063 else
12064 {
12065 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12066
12067 /* If there isn't already a REG_UNUSED note, put one
12068 here. Do not place a REG_DEAD note, even if
12069 the register is also used here; that would not
12070 match the algorithm used in lifetime analysis
12071 and can cause the consistency check in the
12072 scheduler to fail. */
12073 if (! find_regno_note (tem, REG_UNUSED,
12074 REGNO (XEXP (note, 0))))
12075 place = tem;
12076 break;
12077 }
12078 }
12079 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12080 || (CALL_P (tem)
12081 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12082 {
12083 place = tem;
12084
12085 /* If we are doing a 3->2 combination, and we have a
12086 register which formerly died in i3 and was not used
12087 by i2, which now no longer dies in i3 and is used in
12088 i2 but does not die in i2, and place is between i2
12089 and i3, then we may need to move a link from place to
12090 i2. */
12091 if (i2 && INSN_UID (place) <= max_uid_cuid
12092 && INSN_CUID (place) > INSN_CUID (i2)
12093 && from_insn
12094 && INSN_CUID (from_insn) > INSN_CUID (i2)
12095 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12096 {
12097 rtx links = LOG_LINKS (place);
12098 LOG_LINKS (place) = 0;
12099 distribute_links (links);
12100 }
12101 break;
12102 }
12103
12104 if (tem == BB_HEAD (bb))
12105 break;
12106 }
12107
12108 /* We haven't found an insn for the death note and it
12109 is still a REG_DEAD note, but we have hit the beginning
12110 of the block. If the existing life info says the reg
12111 was dead, there's nothing left to do. Otherwise, we'll
12112 need to do a global life update after combine. */
12113 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12114 && REGNO_REG_SET_P (bb->global_live_at_start,
12115 REGNO (XEXP (note, 0))))
12116 SET_BIT (refresh_blocks, this_basic_block->index);
12117 }
12118
12119 /* If the register is set or already dead at PLACE, we needn't do
12120 anything with this note if it is still a REG_DEAD note.
12121 We check here if it is set at all, not if is it totally replaced,
12122 which is what `dead_or_set_p' checks, so also check for it being
12123 set partially. */
12124
12125 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12126 {
12127 unsigned int regno = REGNO (XEXP (note, 0));
12128
12129 /* Similarly, if the instruction on which we want to place
12130 the note is a noop, we'll need do a global live update
12131 after we remove them in delete_noop_moves. */
12132 if (noop_move_p (place))
12133 SET_BIT (refresh_blocks, this_basic_block->index);
12134
12135 if (dead_or_set_p (place, XEXP (note, 0))
12136 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12137 {
12138 /* Unless the register previously died in PLACE, clear
12139 last_death. [I no longer understand why this is
12140 being done.] */
12141 if (reg_stat[regno].last_death != place)
12142 reg_stat[regno].last_death = 0;
12143 place = 0;
12144 }
12145 else
12146 reg_stat[regno].last_death = place;
12147
12148 /* If this is a death note for a hard reg that is occupying
12149 multiple registers, ensure that we are still using all
12150 parts of the object. If we find a piece of the object
12151 that is unused, we must arrange for an appropriate REG_DEAD
12152 note to be added for it. However, we can't just emit a USE
12153 and tag the note to it, since the register might actually
12154 be dead; so we recourse, and the recursive call then finds
12155 the previous insn that used this register. */
12156
12157 if (place && regno < FIRST_PSEUDO_REGISTER
12158 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12159 {
12160 unsigned int endregno
12161 = regno + hard_regno_nregs[regno]
12162 [GET_MODE (XEXP (note, 0))];
12163 int all_used = 1;
12164 unsigned int i;
12165
12166 for (i = regno; i < endregno; i++)
12167 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12168 && ! find_regno_fusage (place, USE, i))
12169 || dead_or_set_regno_p (place, i))
12170 all_used = 0;
12171
12172 if (! all_used)
12173 {
12174 /* Put only REG_DEAD notes for pieces that are
12175 not already dead or set. */
12176
12177 for (i = regno; i < endregno;
12178 i += hard_regno_nregs[i][reg_raw_mode[i]])
12179 {
12180 rtx piece = regno_reg_rtx[i];
12181 basic_block bb = this_basic_block;
12182
12183 if (! dead_or_set_p (place, piece)
12184 && ! reg_bitfield_target_p (piece,
12185 PATTERN (place)))
12186 {
12187 rtx new_note
12188 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12189
12190 distribute_notes (new_note, place, place,
12191 NULL_RTX);
12192 }
12193 else if (! refers_to_regno_p (i, i + 1,
12194 PATTERN (place), 0)
12195 && ! find_regno_fusage (place, USE, i))
12196 for (tem = PREV_INSN (place); ;
12197 tem = PREV_INSN (tem))
12198 {
12199 if (! INSN_P (tem))
12200 {
12201 if (tem == BB_HEAD (bb))
12202 {
12203 SET_BIT (refresh_blocks,
12204 this_basic_block->index);
12205 break;
12206 }
12207 continue;
12208 }
12209 if (dead_or_set_p (tem, piece)
12210 || reg_bitfield_target_p (piece,
12211 PATTERN (tem)))
12212 {
12213 REG_NOTES (tem)
12214 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12215 REG_NOTES (tem));
12216 break;
12217 }
12218 }
12219
12220 }
12221
12222 place = 0;
12223 }
12224 }
12225 }
12226 break;
12227
12228 default:
12229 /* Any other notes should not be present at this point in the
12230 compilation. */
12231 gcc_unreachable ();
12232 }
12233
12234 if (place)
12235 {
12236 XEXP (note, 1) = REG_NOTES (place);
12237 REG_NOTES (place) = note;
12238 }
12239 else if ((REG_NOTE_KIND (note) == REG_DEAD
12240 || REG_NOTE_KIND (note) == REG_UNUSED)
12241 && REG_P (XEXP (note, 0)))
12242 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12243
12244 if (place2)
12245 {
12246 if ((REG_NOTE_KIND (note) == REG_DEAD
12247 || REG_NOTE_KIND (note) == REG_UNUSED)
12248 && REG_P (XEXP (note, 0)))
12249 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12250
12251 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12252 REG_NOTE_KIND (note),
12253 XEXP (note, 0),
12254 REG_NOTES (place2));
12255 }
12256 }
12257 }
12258 \f
12259 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12260 I3, I2, and I1 to new locations. This is also called to add a link
12261 pointing at I3 when I3's destination is changed. */
12262
12263 static void
12264 distribute_links (rtx links)
12265 {
12266 rtx link, next_link;
12267
12268 for (link = links; link; link = next_link)
12269 {
12270 rtx place = 0;
12271 rtx insn;
12272 rtx set, reg;
12273
12274 next_link = XEXP (link, 1);
12275
12276 /* If the insn that this link points to is a NOTE or isn't a single
12277 set, ignore it. In the latter case, it isn't clear what we
12278 can do other than ignore the link, since we can't tell which
12279 register it was for. Such links wouldn't be used by combine
12280 anyway.
12281
12282 It is not possible for the destination of the target of the link to
12283 have been changed by combine. The only potential of this is if we
12284 replace I3, I2, and I1 by I3 and I2. But in that case the
12285 destination of I2 also remains unchanged. */
12286
12287 if (NOTE_P (XEXP (link, 0))
12288 || (set = single_set (XEXP (link, 0))) == 0)
12289 continue;
12290
12291 reg = SET_DEST (set);
12292 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12293 || GET_CODE (reg) == SIGN_EXTRACT
12294 || GET_CODE (reg) == STRICT_LOW_PART)
12295 reg = XEXP (reg, 0);
12296
12297 /* A LOG_LINK is defined as being placed on the first insn that uses
12298 a register and points to the insn that sets the register. Start
12299 searching at the next insn after the target of the link and stop
12300 when we reach a set of the register or the end of the basic block.
12301
12302 Note that this correctly handles the link that used to point from
12303 I3 to I2. Also note that not much searching is typically done here
12304 since most links don't point very far away. */
12305
12306 for (insn = NEXT_INSN (XEXP (link, 0));
12307 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12308 || BB_HEAD (this_basic_block->next_bb) != insn));
12309 insn = NEXT_INSN (insn))
12310 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12311 {
12312 if (reg_referenced_p (reg, PATTERN (insn)))
12313 place = insn;
12314 break;
12315 }
12316 else if (CALL_P (insn)
12317 && find_reg_fusage (insn, USE, reg))
12318 {
12319 place = insn;
12320 break;
12321 }
12322 else if (INSN_P (insn) && reg_set_p (reg, insn))
12323 break;
12324
12325 /* If we found a place to put the link, place it there unless there
12326 is already a link to the same insn as LINK at that point. */
12327
12328 if (place)
12329 {
12330 rtx link2;
12331
12332 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12333 if (XEXP (link2, 0) == XEXP (link, 0))
12334 break;
12335
12336 if (link2 == 0)
12337 {
12338 XEXP (link, 1) = LOG_LINKS (place);
12339 LOG_LINKS (place) = link;
12340
12341 /* Set added_links_insn to the earliest insn we added a
12342 link to. */
12343 if (added_links_insn == 0
12344 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12345 added_links_insn = place;
12346 }
12347 }
12348 }
12349 }
12350 \f
12351 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12352 Check whether the expression pointer to by LOC is a register or
12353 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12354 Otherwise return zero. */
12355
12356 static int
12357 unmentioned_reg_p_1 (rtx *loc, void *expr)
12358 {
12359 rtx x = *loc;
12360
12361 if (x != NULL_RTX
12362 && (REG_P (x) || MEM_P (x))
12363 && ! reg_mentioned_p (x, (rtx) expr))
12364 return 1;
12365 return 0;
12366 }
12367
12368 /* Check for any register or memory mentioned in EQUIV that is not
12369 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12370 of EXPR where some registers may have been replaced by constants. */
12371
12372 static bool
12373 unmentioned_reg_p (rtx equiv, rtx expr)
12374 {
12375 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12376 }
12377 \f
12378 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12379
12380 static int
12381 insn_cuid (rtx insn)
12382 {
12383 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12384 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12385 insn = NEXT_INSN (insn);
12386
12387 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12388
12389 return INSN_CUID (insn);
12390 }
12391 \f
12392 void
12393 dump_combine_stats (FILE *file)
12394 {
12395 fnotice
12396 (file,
12397 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12398 combine_attempts, combine_merges, combine_extras, combine_successes);
12399 }
12400
12401 void
12402 dump_combine_total_stats (FILE *file)
12403 {
12404 fnotice
12405 (file,
12406 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12407 total_attempts, total_merges, total_extras, total_successes);
12408 }
This page took 0.686723 seconds and 6 git commands to generate.