]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
combine.c (combine_instructions): Don't use reg_equal/equiv results if the mode doesn...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
99 #include "timevar.h"
100 #include "tree-pass.h"
101
102 /* Number of attempts to combine instructions in this function. */
103
104 static int combine_attempts;
105
106 /* Number of attempts that got as far as substitution in this function. */
107
108 static int combine_merges;
109
110 /* Number of instructions combined with added SETs in this function. */
111
112 static int combine_extras;
113
114 /* Number of instructions combined in this function. */
115
116 static int combine_successes;
117
118 /* Totals over entire compilation. */
119
120 static int total_attempts, total_merges, total_extras, total_successes;
121
122 \f
123 /* Vector mapping INSN_UIDs to cuids.
124 The cuids are like uids but increase monotonically always.
125 Combine always uses cuids so that it can compare them.
126 But actually renumbering the uids, which we used to do,
127 proves to be a bad idea because it makes it hard to compare
128 the dumps produced by earlier passes with those from later passes. */
129
130 static int *uid_cuid;
131 static int max_uid_cuid;
132
133 /* Get the cuid of an insn. */
134
135 #define INSN_CUID(INSN) \
136 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
137
138 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
139 BITS_PER_WORD would invoke undefined behavior. Work around it. */
140
141 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
142 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
143
144 /* Maximum register number, which is the size of the tables below. */
145
146 static unsigned int combine_max_regno;
147
148 struct reg_stat {
149 /* Record last point of death of (hard or pseudo) register n. */
150 rtx last_death;
151
152 /* Record last point of modification of (hard or pseudo) register n. */
153 rtx last_set;
154
155 /* The next group of fields allows the recording of the last value assigned
156 to (hard or pseudo) register n. We use this information to see if an
157 operation being processed is redundant given a prior operation performed
158 on the register. For example, an `and' with a constant is redundant if
159 all the zero bits are already known to be turned off.
160
161 We use an approach similar to that used by cse, but change it in the
162 following ways:
163
164 (1) We do not want to reinitialize at each label.
165 (2) It is useful, but not critical, to know the actual value assigned
166 to a register. Often just its form is helpful.
167
168 Therefore, we maintain the following fields:
169
170 last_set_value the last value assigned
171 last_set_label records the value of label_tick when the
172 register was assigned
173 last_set_table_tick records the value of label_tick when a
174 value using the register is assigned
175 last_set_invalid set to nonzero when it is not valid
176 to use the value of this register in some
177 register's value
178
179 To understand the usage of these tables, it is important to understand
180 the distinction between the value in last_set_value being valid and
181 the register being validly contained in some other expression in the
182 table.
183
184 (The next two parameters are out of date).
185
186 reg_stat[i].last_set_value is valid if it is nonzero, and either
187 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188
189 Register I may validly appear in any expression returned for the value
190 of another register if reg_n_sets[i] is 1. It may also appear in the
191 value for register J if reg_stat[j].last_set_invalid is zero, or
192 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193
194 If an expression is found in the table containing a register which may
195 not validly appear in an expression, the register is replaced by
196 something that won't match, (clobber (const_int 0)). */
197
198 /* Record last value assigned to (hard or pseudo) register n. */
199
200 rtx last_set_value;
201
202 /* Record the value of label_tick when an expression involving register n
203 is placed in last_set_value. */
204
205 int last_set_table_tick;
206
207 /* Record the value of label_tick when the value for register n is placed in
208 last_set_value. */
209
210 int last_set_label;
211
212 /* These fields are maintained in parallel with last_set_value and are
213 used to store the mode in which the register was last set, the bits
214 that were known to be zero when it was last set, and the number of
215 sign bits copies it was known to have when it was last set. */
216
217 unsigned HOST_WIDE_INT last_set_nonzero_bits;
218 char last_set_sign_bit_copies;
219 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
220
221 /* Set nonzero if references to register n in expressions should not be
222 used. last_set_invalid is set nonzero when this register is being
223 assigned to and last_set_table_tick == label_tick. */
224
225 char last_set_invalid;
226
227 /* Some registers that are set more than once and used in more than one
228 basic block are nevertheless always set in similar ways. For example,
229 a QImode register may be loaded from memory in two places on a machine
230 where byte loads zero extend.
231
232 We record in the following fields if a register has some leading bits
233 that are always equal to the sign bit, and what we know about the
234 nonzero bits of a register, specifically which bits are known to be
235 zero.
236
237 If an entry is zero, it means that we don't know anything special. */
238
239 unsigned char sign_bit_copies;
240
241 unsigned HOST_WIDE_INT nonzero_bits;
242 };
243
244 static struct reg_stat *reg_stat;
245
246 /* Record the cuid of the last insn that invalidated memory
247 (anything that writes memory, and subroutine calls, but not pushes). */
248
249 static int mem_last_set;
250
251 /* Record the cuid of the last CALL_INSN
252 so we can tell whether a potential combination crosses any calls. */
253
254 static int last_call_cuid;
255
256 /* When `subst' is called, this is the insn that is being modified
257 (by combining in a previous insn). The PATTERN of this insn
258 is still the old pattern partially modified and it should not be
259 looked at, but this may be used to examine the successors of the insn
260 to judge whether a simplification is valid. */
261
262 static rtx subst_insn;
263
264 /* This is the lowest CUID that `subst' is currently dealing with.
265 get_last_value will not return a value if the register was set at or
266 after this CUID. If not for this mechanism, we could get confused if
267 I2 or I1 in try_combine were an insn that used the old value of a register
268 to obtain a new value. In that case, we might erroneously get the
269 new value of the register when we wanted the old one. */
270
271 static int subst_low_cuid;
272
273 /* This contains any hard registers that are used in newpat; reg_dead_at_p
274 must consider all these registers to be always live. */
275
276 static HARD_REG_SET newpat_used_regs;
277
278 /* This is an insn to which a LOG_LINKS entry has been added. If this
279 insn is the earlier than I2 or I3, combine should rescan starting at
280 that location. */
281
282 static rtx added_links_insn;
283
284 /* Basic block in which we are performing combines. */
285 static basic_block this_basic_block;
286
287 /* A bitmap indicating which blocks had registers go dead at entry.
288 After combine, we'll need to re-do global life analysis with
289 those blocks as starting points. */
290 static sbitmap refresh_blocks;
291 \f
292 /* The following array records the insn_rtx_cost for every insn
293 in the instruction stream. */
294
295 static int *uid_insn_cost;
296
297 /* Length of the currently allocated uid_insn_cost array. */
298
299 static int last_insn_cost;
300
301 /* Incremented for each label. */
302
303 static int label_tick;
304
305 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
306 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
307
308 static enum machine_mode nonzero_bits_mode;
309
310 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
311 be safely used. It is zero while computing them and after combine has
312 completed. This former test prevents propagating values based on
313 previously set values, which can be incorrect if a variable is modified
314 in a loop. */
315
316 static int nonzero_sign_valid;
317
318 \f
319 /* Record one modification to rtl structure
320 to be undone by storing old_contents into *where.
321 is_int is 1 if the contents are an int. */
322
323 struct undo
324 {
325 struct undo *next;
326 int is_int;
327 union {rtx r; int i;} old_contents;
328 union {rtx *r; int *i;} where;
329 };
330
331 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
332 num_undo says how many are currently recorded.
333
334 other_insn is nonzero if we have modified some other insn in the process
335 of working on subst_insn. It must be verified too. */
336
337 struct undobuf
338 {
339 struct undo *undos;
340 struct undo *frees;
341 rtx other_insn;
342 };
343
344 static struct undobuf undobuf;
345
346 /* Number of times the pseudo being substituted for
347 was found and replaced. */
348
349 static int n_occurrences;
350
351 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
352 enum machine_mode,
353 unsigned HOST_WIDE_INT,
354 unsigned HOST_WIDE_INT *);
355 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned int, unsigned int *);
358 static void do_SUBST (rtx *, rtx);
359 static void do_SUBST_INT (int *, int);
360 static void init_reg_last (void);
361 static void setup_incoming_promotions (void);
362 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
363 static int cant_combine_insn_p (rtx);
364 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
365 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
366 static int contains_muldiv (rtx);
367 static rtx try_combine (rtx, rtx, rtx, int *);
368 static void undo_all (void);
369 static void undo_commit (void);
370 static rtx *find_split_point (rtx *, rtx);
371 static rtx subst (rtx, rtx, rtx, int, int);
372 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
373 static rtx simplify_if_then_else (rtx);
374 static rtx simplify_set (rtx);
375 static rtx simplify_logical (rtx);
376 static rtx expand_compound_operation (rtx);
377 static rtx expand_field_assignment (rtx);
378 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
379 rtx, unsigned HOST_WIDE_INT, int, int, int);
380 static rtx extract_left_shift (rtx, int);
381 static rtx make_compound_operation (rtx, enum rtx_code);
382 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
383 unsigned HOST_WIDE_INT *);
384 static rtx force_to_mode (rtx, enum machine_mode,
385 unsigned HOST_WIDE_INT, rtx, int);
386 static rtx if_then_else_cond (rtx, rtx *, rtx *);
387 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
388 static int rtx_equal_for_field_assignment_p (rtx, rtx);
389 static rtx make_field_assignment (rtx);
390 static rtx apply_distributive_law (rtx);
391 static rtx distribute_and_simplify_rtx (rtx, int);
392 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
393 unsigned HOST_WIDE_INT);
394 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
395 HOST_WIDE_INT, enum machine_mode, int *);
396 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
397 int);
398 static int recog_for_combine (rtx *, rtx, rtx *);
399 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
400 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
401 static void update_table_tick (rtx);
402 static void record_value_for_reg (rtx, rtx, rtx);
403 static void check_promoted_subreg (rtx, rtx);
404 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
405 static void record_dead_and_set_regs (rtx);
406 static int get_last_value_validate (rtx *, rtx, int, int);
407 static rtx get_last_value (rtx);
408 static int use_crosses_set_p (rtx, int);
409 static void reg_dead_at_p_1 (rtx, rtx, void *);
410 static int reg_dead_at_p (rtx, rtx);
411 static void move_deaths (rtx, rtx, int, rtx, rtx *);
412 static int reg_bitfield_target_p (rtx, rtx);
413 static void distribute_notes (rtx, rtx, rtx, rtx);
414 static void distribute_links (rtx);
415 static void mark_used_regs_combine (rtx);
416 static int insn_cuid (rtx);
417 static void record_promoted_value (rtx, rtx);
418 static int unmentioned_reg_p_1 (rtx *, void *);
419 static bool unmentioned_reg_p (rtx, rtx);
420 \f
421
422 /* It is not safe to use ordinary gen_lowpart in combine.
423 See comments in gen_lowpart_for_combine. */
424 #undef RTL_HOOKS_GEN_LOWPART
425 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
426
427 /* Our implementation of gen_lowpart never emits a new pseudo. */
428 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
429 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
430
431 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
432 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
433
434 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
435 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
436
437 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
438
439 \f
440 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
441 insn. The substitution can be undone by undo_all. If INTO is already
442 set to NEWVAL, do not record this change. Because computing NEWVAL might
443 also call SUBST, we have to compute it before we put anything into
444 the undo table. */
445
446 static void
447 do_SUBST (rtx *into, rtx newval)
448 {
449 struct undo *buf;
450 rtx oldval = *into;
451
452 if (oldval == newval)
453 return;
454
455 /* We'd like to catch as many invalid transformations here as
456 possible. Unfortunately, there are way too many mode changes
457 that are perfectly valid, so we'd waste too much effort for
458 little gain doing the checks here. Focus on catching invalid
459 transformations involving integer constants. */
460 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
461 && GET_CODE (newval) == CONST_INT)
462 {
463 /* Sanity check that we're replacing oldval with a CONST_INT
464 that is a valid sign-extension for the original mode. */
465 gcc_assert (INTVAL (newval)
466 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
467
468 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
469 CONST_INT is not valid, because after the replacement, the
470 original mode would be gone. Unfortunately, we can't tell
471 when do_SUBST is called to replace the operand thereof, so we
472 perform this test on oldval instead, checking whether an
473 invalid replacement took place before we got here. */
474 gcc_assert (!(GET_CODE (oldval) == SUBREG
475 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
476 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
477 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
478 }
479
480 if (undobuf.frees)
481 buf = undobuf.frees, undobuf.frees = buf->next;
482 else
483 buf = xmalloc (sizeof (struct undo));
484
485 buf->is_int = 0;
486 buf->where.r = into;
487 buf->old_contents.r = oldval;
488 *into = newval;
489
490 buf->next = undobuf.undos, undobuf.undos = buf;
491 }
492
493 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
494
495 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
496 for the value of a HOST_WIDE_INT value (including CONST_INT) is
497 not safe. */
498
499 static void
500 do_SUBST_INT (int *into, int newval)
501 {
502 struct undo *buf;
503 int oldval = *into;
504
505 if (oldval == newval)
506 return;
507
508 if (undobuf.frees)
509 buf = undobuf.frees, undobuf.frees = buf->next;
510 else
511 buf = xmalloc (sizeof (struct undo));
512
513 buf->is_int = 1;
514 buf->where.i = into;
515 buf->old_contents.i = oldval;
516 *into = newval;
517
518 buf->next = undobuf.undos, undobuf.undos = buf;
519 }
520
521 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
522 \f
523 /* Subroutine of try_combine. Determine whether the combine replacement
524 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
525 that the original instruction sequence I1, I2 and I3. Note that I1
526 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
527 costs of all instructions can be estimated, and the replacements are
528 more expensive than the original sequence. */
529
530 static bool
531 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
532 {
533 int i1_cost, i2_cost, i3_cost;
534 int new_i2_cost, new_i3_cost;
535 int old_cost, new_cost;
536
537 /* Lookup the original insn_rtx_costs. */
538 i2_cost = INSN_UID (i2) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i2)] : 0;
540 i3_cost = INSN_UID (i3) <= last_insn_cost
541 ? uid_insn_cost[INSN_UID (i3)] : 0;
542
543 if (i1)
544 {
545 i1_cost = INSN_UID (i1) <= last_insn_cost
546 ? uid_insn_cost[INSN_UID (i1)] : 0;
547 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
548 ? i1_cost + i2_cost + i3_cost : 0;
549 }
550 else
551 {
552 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
553 i1_cost = 0;
554 }
555
556 /* Calculate the replacement insn_rtx_costs. */
557 new_i3_cost = insn_rtx_cost (newpat);
558 if (newi2pat)
559 {
560 new_i2_cost = insn_rtx_cost (newi2pat);
561 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
562 ? new_i2_cost + new_i3_cost : 0;
563 }
564 else
565 {
566 new_cost = new_i3_cost;
567 new_i2_cost = 0;
568 }
569
570 if (undobuf.other_insn)
571 {
572 int old_other_cost, new_other_cost;
573
574 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
575 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
576 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
577 if (old_other_cost > 0 && new_other_cost > 0)
578 {
579 old_cost += old_other_cost;
580 new_cost += new_other_cost;
581 }
582 else
583 old_cost = 0;
584 }
585
586 /* Disallow this recombination if both new_cost and old_cost are
587 greater than zero, and new_cost is greater than old cost. */
588 if (old_cost > 0
589 && new_cost > old_cost)
590 {
591 if (dump_file)
592 {
593 if (i1)
594 {
595 fprintf (dump_file,
596 "rejecting combination of insns %d, %d and %d\n",
597 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
598 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
599 i1_cost, i2_cost, i3_cost, old_cost);
600 }
601 else
602 {
603 fprintf (dump_file,
604 "rejecting combination of insns %d and %d\n",
605 INSN_UID (i2), INSN_UID (i3));
606 fprintf (dump_file, "original costs %d + %d = %d\n",
607 i2_cost, i3_cost, old_cost);
608 }
609
610 if (newi2pat)
611 {
612 fprintf (dump_file, "replacement costs %d + %d = %d\n",
613 new_i2_cost, new_i3_cost, new_cost);
614 }
615 else
616 fprintf (dump_file, "replacement cost %d\n", new_cost);
617 }
618
619 return false;
620 }
621
622 /* Update the uid_insn_cost array with the replacement costs. */
623 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
624 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
625 if (i1)
626 uid_insn_cost[INSN_UID (i1)] = 0;
627
628 return true;
629 }
630 \f
631 /* Main entry point for combiner. F is the first insn of the function.
632 NREGS is the first unused pseudo-reg number.
633
634 Return nonzero if the combiner has turned an indirect jump
635 instruction into a direct jump. */
636 int
637 combine_instructions (rtx f, unsigned int nregs)
638 {
639 rtx insn, next;
640 #ifdef HAVE_cc0
641 rtx prev;
642 #endif
643 int i;
644 unsigned int j = 0;
645 rtx links, nextlinks;
646 sbitmap_iterator sbi;
647
648 int new_direct_jump_p = 0;
649
650 combine_attempts = 0;
651 combine_merges = 0;
652 combine_extras = 0;
653 combine_successes = 0;
654
655 combine_max_regno = nregs;
656
657 rtl_hooks = combine_rtl_hooks;
658
659 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
660
661 init_recog_no_volatile ();
662
663 /* Compute maximum uid value so uid_cuid can be allocated. */
664
665 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
666 if (INSN_UID (insn) > i)
667 i = INSN_UID (insn);
668
669 uid_cuid = xmalloc ((i + 1) * sizeof (int));
670 max_uid_cuid = i;
671
672 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
673
674 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
675 problems when, for example, we have j <<= 1 in a loop. */
676
677 nonzero_sign_valid = 0;
678
679 /* Compute the mapping from uids to cuids.
680 Cuids are numbers assigned to insns, like uids,
681 except that cuids increase monotonically through the code.
682
683 Scan all SETs and see if we can deduce anything about what
684 bits are known to be zero for some registers and how many copies
685 of the sign bit are known to exist for those registers.
686
687 Also set any known values so that we can use it while searching
688 for what bits are known to be set. */
689
690 label_tick = 1;
691
692 setup_incoming_promotions ();
693
694 refresh_blocks = sbitmap_alloc (last_basic_block);
695 sbitmap_zero (refresh_blocks);
696
697 /* Allocate array of current insn_rtx_costs. */
698 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
699 last_insn_cost = max_uid_cuid;
700
701 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
702 {
703 uid_cuid[INSN_UID (insn)] = ++i;
704 subst_low_cuid = i;
705 subst_insn = insn;
706
707 if (INSN_P (insn))
708 {
709 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
710 NULL);
711 record_dead_and_set_regs (insn);
712
713 #ifdef AUTO_INC_DEC
714 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
715 if (REG_NOTE_KIND (links) == REG_INC)
716 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
717 NULL);
718 #endif
719
720 /* Record the current insn_rtx_cost of this instruction. */
721 if (NONJUMP_INSN_P (insn))
722 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
723 if (dump_file)
724 fprintf(dump_file, "insn_cost %d: %d\n",
725 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
726 }
727
728 if (LABEL_P (insn))
729 label_tick++;
730 }
731
732 nonzero_sign_valid = 1;
733
734 /* Now scan all the insns in forward order. */
735
736 label_tick = 1;
737 last_call_cuid = 0;
738 mem_last_set = 0;
739 init_reg_last ();
740 setup_incoming_promotions ();
741
742 FOR_EACH_BB (this_basic_block)
743 {
744 for (insn = BB_HEAD (this_basic_block);
745 insn != NEXT_INSN (BB_END (this_basic_block));
746 insn = next ? next : NEXT_INSN (insn))
747 {
748 next = 0;
749
750 if (LABEL_P (insn))
751 label_tick++;
752
753 else if (INSN_P (insn))
754 {
755 /* See if we know about function return values before this
756 insn based upon SUBREG flags. */
757 check_promoted_subreg (insn, PATTERN (insn));
758
759 /* Try this insn with each insn it links back to. */
760
761 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
762 if ((next = try_combine (insn, XEXP (links, 0),
763 NULL_RTX, &new_direct_jump_p)) != 0)
764 goto retry;
765
766 /* Try each sequence of three linked insns ending with this one. */
767
768 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
769 {
770 rtx link = XEXP (links, 0);
771
772 /* If the linked insn has been replaced by a note, then there
773 is no point in pursuing this chain any further. */
774 if (NOTE_P (link))
775 continue;
776
777 for (nextlinks = LOG_LINKS (link);
778 nextlinks;
779 nextlinks = XEXP (nextlinks, 1))
780 if ((next = try_combine (insn, link,
781 XEXP (nextlinks, 0),
782 &new_direct_jump_p)) != 0)
783 goto retry;
784 }
785
786 #ifdef HAVE_cc0
787 /* Try to combine a jump insn that uses CC0
788 with a preceding insn that sets CC0, and maybe with its
789 logical predecessor as well.
790 This is how we make decrement-and-branch insns.
791 We need this special code because data flow connections
792 via CC0 do not get entered in LOG_LINKS. */
793
794 if (JUMP_P (insn)
795 && (prev = prev_nonnote_insn (insn)) != 0
796 && NONJUMP_INSN_P (prev)
797 && sets_cc0_p (PATTERN (prev)))
798 {
799 if ((next = try_combine (insn, prev,
800 NULL_RTX, &new_direct_jump_p)) != 0)
801 goto retry;
802
803 for (nextlinks = LOG_LINKS (prev); nextlinks;
804 nextlinks = XEXP (nextlinks, 1))
805 if ((next = try_combine (insn, prev,
806 XEXP (nextlinks, 0),
807 &new_direct_jump_p)) != 0)
808 goto retry;
809 }
810
811 /* Do the same for an insn that explicitly references CC0. */
812 if (NONJUMP_INSN_P (insn)
813 && (prev = prev_nonnote_insn (insn)) != 0
814 && NONJUMP_INSN_P (prev)
815 && sets_cc0_p (PATTERN (prev))
816 && GET_CODE (PATTERN (insn)) == SET
817 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
818 {
819 if ((next = try_combine (insn, prev,
820 NULL_RTX, &new_direct_jump_p)) != 0)
821 goto retry;
822
823 for (nextlinks = LOG_LINKS (prev); nextlinks;
824 nextlinks = XEXP (nextlinks, 1))
825 if ((next = try_combine (insn, prev,
826 XEXP (nextlinks, 0),
827 &new_direct_jump_p)) != 0)
828 goto retry;
829 }
830
831 /* Finally, see if any of the insns that this insn links to
832 explicitly references CC0. If so, try this insn, that insn,
833 and its predecessor if it sets CC0. */
834 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
835 if (NONJUMP_INSN_P (XEXP (links, 0))
836 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
837 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
838 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
839 && NONJUMP_INSN_P (prev)
840 && sets_cc0_p (PATTERN (prev))
841 && (next = try_combine (insn, XEXP (links, 0),
842 prev, &new_direct_jump_p)) != 0)
843 goto retry;
844 #endif
845
846 /* Try combining an insn with two different insns whose results it
847 uses. */
848 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
849 for (nextlinks = XEXP (links, 1); nextlinks;
850 nextlinks = XEXP (nextlinks, 1))
851 if ((next = try_combine (insn, XEXP (links, 0),
852 XEXP (nextlinks, 0),
853 &new_direct_jump_p)) != 0)
854 goto retry;
855
856 /* Try this insn with each REG_EQUAL note it links back to. */
857 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
858 {
859 rtx set, note;
860 rtx temp = XEXP (links, 0);
861 if ((set = single_set (temp)) != 0
862 && (note = find_reg_equal_equiv_note (temp)) != 0
863 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
864 /* Avoid using a register that may already been marked
865 dead by an earlier instruction. */
866 && ! unmentioned_reg_p (note, SET_SRC (set))
867 && (GET_MODE (note) == VOIDmode
868 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
869 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
870 {
871 /* Temporarily replace the set's source with the
872 contents of the REG_EQUAL note. The insn will
873 be deleted or recognized by try_combine. */
874 rtx orig = SET_SRC (set);
875 SET_SRC (set) = note;
876 next = try_combine (insn, temp, NULL_RTX,
877 &new_direct_jump_p);
878 if (next)
879 goto retry;
880 SET_SRC (set) = orig;
881 }
882 }
883
884 if (!NOTE_P (insn))
885 record_dead_and_set_regs (insn);
886
887 retry:
888 ;
889 }
890 }
891 }
892 clear_bb_flags ();
893
894 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
895 BASIC_BLOCK (j)->flags |= BB_DIRTY;
896 new_direct_jump_p |= purge_all_dead_edges ();
897 delete_noop_moves ();
898
899 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
900 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
901 | PROP_KILL_DEAD_CODE);
902
903 /* Clean up. */
904 sbitmap_free (refresh_blocks);
905 free (uid_insn_cost);
906 free (reg_stat);
907 free (uid_cuid);
908
909 {
910 struct undo *undo, *next;
911 for (undo = undobuf.frees; undo; undo = next)
912 {
913 next = undo->next;
914 free (undo);
915 }
916 undobuf.frees = 0;
917 }
918
919 total_attempts += combine_attempts;
920 total_merges += combine_merges;
921 total_extras += combine_extras;
922 total_successes += combine_successes;
923
924 nonzero_sign_valid = 0;
925 rtl_hooks = general_rtl_hooks;
926
927 /* Make recognizer allow volatile MEMs again. */
928 init_recog ();
929
930 return new_direct_jump_p;
931 }
932
933 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
934
935 static void
936 init_reg_last (void)
937 {
938 unsigned int i;
939 for (i = 0; i < combine_max_regno; i++)
940 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
941 }
942 \f
943 /* Set up any promoted values for incoming argument registers. */
944
945 static void
946 setup_incoming_promotions (void)
947 {
948 unsigned int regno;
949 rtx reg;
950 enum machine_mode mode;
951 int unsignedp;
952 rtx first = get_insns ();
953
954 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
955 {
956 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
957 /* Check whether this register can hold an incoming pointer
958 argument. FUNCTION_ARG_REGNO_P tests outgoing register
959 numbers, so translate if necessary due to register windows. */
960 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
961 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
962 {
963 record_value_for_reg
964 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
965 : SIGN_EXTEND),
966 GET_MODE (reg),
967 gen_rtx_CLOBBER (mode, const0_rtx)));
968 }
969 }
970 }
971 \f
972 /* Called via note_stores. If X is a pseudo that is narrower than
973 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
974
975 If we are setting only a portion of X and we can't figure out what
976 portion, assume all bits will be used since we don't know what will
977 be happening.
978
979 Similarly, set how many bits of X are known to be copies of the sign bit
980 at all locations in the function. This is the smallest number implied
981 by any set of X. */
982
983 static void
984 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
985 void *data ATTRIBUTE_UNUSED)
986 {
987 unsigned int num;
988
989 if (REG_P (x)
990 && REGNO (x) >= FIRST_PSEUDO_REGISTER
991 /* If this register is undefined at the start of the file, we can't
992 say what its contents were. */
993 && ! REGNO_REG_SET_P
994 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
995 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
996 {
997 if (set == 0 || GET_CODE (set) == CLOBBER)
998 {
999 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1000 reg_stat[REGNO (x)].sign_bit_copies = 1;
1001 return;
1002 }
1003
1004 /* If this is a complex assignment, see if we can convert it into a
1005 simple assignment. */
1006 set = expand_field_assignment (set);
1007
1008 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1009 set what we know about X. */
1010
1011 if (SET_DEST (set) == x
1012 || (GET_CODE (SET_DEST (set)) == SUBREG
1013 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1014 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1015 && SUBREG_REG (SET_DEST (set)) == x))
1016 {
1017 rtx src = SET_SRC (set);
1018
1019 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1020 /* If X is narrower than a word and SRC is a non-negative
1021 constant that would appear negative in the mode of X,
1022 sign-extend it for use in reg_stat[].nonzero_bits because some
1023 machines (maybe most) will actually do the sign-extension
1024 and this is the conservative approach.
1025
1026 ??? For 2.5, try to tighten up the MD files in this regard
1027 instead of this kludge. */
1028
1029 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1030 && GET_CODE (src) == CONST_INT
1031 && INTVAL (src) > 0
1032 && 0 != (INTVAL (src)
1033 & ((HOST_WIDE_INT) 1
1034 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1035 src = GEN_INT (INTVAL (src)
1036 | ((HOST_WIDE_INT) (-1)
1037 << GET_MODE_BITSIZE (GET_MODE (x))));
1038 #endif
1039
1040 /* Don't call nonzero_bits if it cannot change anything. */
1041 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1042 reg_stat[REGNO (x)].nonzero_bits
1043 |= nonzero_bits (src, nonzero_bits_mode);
1044 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1045 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1046 || reg_stat[REGNO (x)].sign_bit_copies > num)
1047 reg_stat[REGNO (x)].sign_bit_copies = num;
1048 }
1049 else
1050 {
1051 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1052 reg_stat[REGNO (x)].sign_bit_copies = 1;
1053 }
1054 }
1055 }
1056 \f
1057 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1058 insns that were previously combined into I3 or that will be combined
1059 into the merger of INSN and I3.
1060
1061 Return 0 if the combination is not allowed for any reason.
1062
1063 If the combination is allowed, *PDEST will be set to the single
1064 destination of INSN and *PSRC to the single source, and this function
1065 will return 1. */
1066
1067 static int
1068 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1069 rtx *pdest, rtx *psrc)
1070 {
1071 int i;
1072 rtx set = 0, src, dest;
1073 rtx p;
1074 #ifdef AUTO_INC_DEC
1075 rtx link;
1076 #endif
1077 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1078 && next_active_insn (succ) == i3)
1079 : next_active_insn (insn) == i3);
1080
1081 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1082 or a PARALLEL consisting of such a SET and CLOBBERs.
1083
1084 If INSN has CLOBBER parallel parts, ignore them for our processing.
1085 By definition, these happen during the execution of the insn. When it
1086 is merged with another insn, all bets are off. If they are, in fact,
1087 needed and aren't also supplied in I3, they may be added by
1088 recog_for_combine. Otherwise, it won't match.
1089
1090 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1091 note.
1092
1093 Get the source and destination of INSN. If more than one, can't
1094 combine. */
1095
1096 if (GET_CODE (PATTERN (insn)) == SET)
1097 set = PATTERN (insn);
1098 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1099 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1100 {
1101 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1102 {
1103 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1104 rtx note;
1105
1106 switch (GET_CODE (elt))
1107 {
1108 /* This is important to combine floating point insns
1109 for the SH4 port. */
1110 case USE:
1111 /* Combining an isolated USE doesn't make sense.
1112 We depend here on combinable_i3pat to reject them. */
1113 /* The code below this loop only verifies that the inputs of
1114 the SET in INSN do not change. We call reg_set_between_p
1115 to verify that the REG in the USE does not change between
1116 I3 and INSN.
1117 If the USE in INSN was for a pseudo register, the matching
1118 insn pattern will likely match any register; combining this
1119 with any other USE would only be safe if we knew that the
1120 used registers have identical values, or if there was
1121 something to tell them apart, e.g. different modes. For
1122 now, we forgo such complicated tests and simply disallow
1123 combining of USES of pseudo registers with any other USE. */
1124 if (REG_P (XEXP (elt, 0))
1125 && GET_CODE (PATTERN (i3)) == PARALLEL)
1126 {
1127 rtx i3pat = PATTERN (i3);
1128 int i = XVECLEN (i3pat, 0) - 1;
1129 unsigned int regno = REGNO (XEXP (elt, 0));
1130
1131 do
1132 {
1133 rtx i3elt = XVECEXP (i3pat, 0, i);
1134
1135 if (GET_CODE (i3elt) == USE
1136 && REG_P (XEXP (i3elt, 0))
1137 && (REGNO (XEXP (i3elt, 0)) == regno
1138 ? reg_set_between_p (XEXP (elt, 0),
1139 PREV_INSN (insn), i3)
1140 : regno >= FIRST_PSEUDO_REGISTER))
1141 return 0;
1142 }
1143 while (--i >= 0);
1144 }
1145 break;
1146
1147 /* We can ignore CLOBBERs. */
1148 case CLOBBER:
1149 break;
1150
1151 case SET:
1152 /* Ignore SETs whose result isn't used but not those that
1153 have side-effects. */
1154 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1155 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1156 || INTVAL (XEXP (note, 0)) <= 0)
1157 && ! side_effects_p (elt))
1158 break;
1159
1160 /* If we have already found a SET, this is a second one and
1161 so we cannot combine with this insn. */
1162 if (set)
1163 return 0;
1164
1165 set = elt;
1166 break;
1167
1168 default:
1169 /* Anything else means we can't combine. */
1170 return 0;
1171 }
1172 }
1173
1174 if (set == 0
1175 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1176 so don't do anything with it. */
1177 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1178 return 0;
1179 }
1180 else
1181 return 0;
1182
1183 if (set == 0)
1184 return 0;
1185
1186 set = expand_field_assignment (set);
1187 src = SET_SRC (set), dest = SET_DEST (set);
1188
1189 /* Don't eliminate a store in the stack pointer. */
1190 if (dest == stack_pointer_rtx
1191 /* Don't combine with an insn that sets a register to itself if it has
1192 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1193 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1194 /* Can't merge an ASM_OPERANDS. */
1195 || GET_CODE (src) == ASM_OPERANDS
1196 /* Can't merge a function call. */
1197 || GET_CODE (src) == CALL
1198 /* Don't eliminate a function call argument. */
1199 || (CALL_P (i3)
1200 && (find_reg_fusage (i3, USE, dest)
1201 || (REG_P (dest)
1202 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1203 && global_regs[REGNO (dest)])))
1204 /* Don't substitute into an incremented register. */
1205 || FIND_REG_INC_NOTE (i3, dest)
1206 || (succ && FIND_REG_INC_NOTE (succ, dest))
1207 /* Don't substitute into a non-local goto, this confuses CFG. */
1208 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1209 #if 0
1210 /* Don't combine the end of a libcall into anything. */
1211 /* ??? This gives worse code, and appears to be unnecessary, since no
1212 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1213 use REG_RETVAL notes for noconflict blocks, but other code here
1214 makes sure that those insns don't disappear. */
1215 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1216 #endif
1217 /* Make sure that DEST is not used after SUCC but before I3. */
1218 || (succ && ! all_adjacent
1219 && reg_used_between_p (dest, succ, i3))
1220 /* Make sure that the value that is to be substituted for the register
1221 does not use any registers whose values alter in between. However,
1222 If the insns are adjacent, a use can't cross a set even though we
1223 think it might (this can happen for a sequence of insns each setting
1224 the same destination; last_set of that register might point to
1225 a NOTE). If INSN has a REG_EQUIV note, the register is always
1226 equivalent to the memory so the substitution is valid even if there
1227 are intervening stores. Also, don't move a volatile asm or
1228 UNSPEC_VOLATILE across any other insns. */
1229 || (! all_adjacent
1230 && (((!MEM_P (src)
1231 || ! find_reg_note (insn, REG_EQUIV, src))
1232 && use_crosses_set_p (src, INSN_CUID (insn)))
1233 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1234 || GET_CODE (src) == UNSPEC_VOLATILE))
1235 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1236 better register allocation by not doing the combine. */
1237 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1238 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1239 /* Don't combine across a CALL_INSN, because that would possibly
1240 change whether the life span of some REGs crosses calls or not,
1241 and it is a pain to update that information.
1242 Exception: if source is a constant, moving it later can't hurt.
1243 Accept that special case, because it helps -fforce-addr a lot. */
1244 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1245 return 0;
1246
1247 /* DEST must either be a REG or CC0. */
1248 if (REG_P (dest))
1249 {
1250 /* If register alignment is being enforced for multi-word items in all
1251 cases except for parameters, it is possible to have a register copy
1252 insn referencing a hard register that is not allowed to contain the
1253 mode being copied and which would not be valid as an operand of most
1254 insns. Eliminate this problem by not combining with such an insn.
1255
1256 Also, on some machines we don't want to extend the life of a hard
1257 register. */
1258
1259 if (REG_P (src)
1260 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1261 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1262 /* Don't extend the life of a hard register unless it is
1263 user variable (if we have few registers) or it can't
1264 fit into the desired register (meaning something special
1265 is going on).
1266 Also avoid substituting a return register into I3, because
1267 reload can't handle a conflict with constraints of other
1268 inputs. */
1269 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1270 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1271 return 0;
1272 }
1273 else if (GET_CODE (dest) != CC0)
1274 return 0;
1275
1276
1277 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1278 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1279 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1280 {
1281 /* Don't substitute for a register intended as a clobberable
1282 operand. */
1283 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1284 if (rtx_equal_p (reg, dest))
1285 return 0;
1286
1287 /* If the clobber represents an earlyclobber operand, we must not
1288 substitute an expression containing the clobbered register.
1289 As we do not analyze the constraint strings here, we have to
1290 make the conservative assumption. However, if the register is
1291 a fixed hard reg, the clobber cannot represent any operand;
1292 we leave it up to the machine description to either accept or
1293 reject use-and-clobber patterns. */
1294 if (!REG_P (reg)
1295 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1296 || !fixed_regs[REGNO (reg)])
1297 if (reg_overlap_mentioned_p (reg, src))
1298 return 0;
1299 }
1300
1301 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1302 or not), reject, unless nothing volatile comes between it and I3 */
1303
1304 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1305 {
1306 /* Make sure succ doesn't contain a volatile reference. */
1307 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1308 return 0;
1309
1310 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1311 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1312 return 0;
1313 }
1314
1315 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1316 to be an explicit register variable, and was chosen for a reason. */
1317
1318 if (GET_CODE (src) == ASM_OPERANDS
1319 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1320 return 0;
1321
1322 /* If there are any volatile insns between INSN and I3, reject, because
1323 they might affect machine state. */
1324
1325 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1326 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1327 return 0;
1328
1329 /* If INSN contains an autoincrement or autodecrement, make sure that
1330 register is not used between there and I3, and not already used in
1331 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1332 Also insist that I3 not be a jump; if it were one
1333 and the incremented register were spilled, we would lose. */
1334
1335 #ifdef AUTO_INC_DEC
1336 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1337 if (REG_NOTE_KIND (link) == REG_INC
1338 && (JUMP_P (i3)
1339 || reg_used_between_p (XEXP (link, 0), insn, i3)
1340 || (pred != NULL_RTX
1341 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1342 || (succ != NULL_RTX
1343 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1344 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1345 return 0;
1346 #endif
1347
1348 #ifdef HAVE_cc0
1349 /* Don't combine an insn that follows a CC0-setting insn.
1350 An insn that uses CC0 must not be separated from the one that sets it.
1351 We do, however, allow I2 to follow a CC0-setting insn if that insn
1352 is passed as I1; in that case it will be deleted also.
1353 We also allow combining in this case if all the insns are adjacent
1354 because that would leave the two CC0 insns adjacent as well.
1355 It would be more logical to test whether CC0 occurs inside I1 or I2,
1356 but that would be much slower, and this ought to be equivalent. */
1357
1358 p = prev_nonnote_insn (insn);
1359 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1360 && ! all_adjacent)
1361 return 0;
1362 #endif
1363
1364 /* If we get here, we have passed all the tests and the combination is
1365 to be allowed. */
1366
1367 *pdest = dest;
1368 *psrc = src;
1369
1370 return 1;
1371 }
1372 \f
1373 /* LOC is the location within I3 that contains its pattern or the component
1374 of a PARALLEL of the pattern. We validate that it is valid for combining.
1375
1376 One problem is if I3 modifies its output, as opposed to replacing it
1377 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1378 so would produce an insn that is not equivalent to the original insns.
1379
1380 Consider:
1381
1382 (set (reg:DI 101) (reg:DI 100))
1383 (set (subreg:SI (reg:DI 101) 0) <foo>)
1384
1385 This is NOT equivalent to:
1386
1387 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1388 (set (reg:DI 101) (reg:DI 100))])
1389
1390 Not only does this modify 100 (in which case it might still be valid
1391 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1392
1393 We can also run into a problem if I2 sets a register that I1
1394 uses and I1 gets directly substituted into I3 (not via I2). In that
1395 case, we would be getting the wrong value of I2DEST into I3, so we
1396 must reject the combination. This case occurs when I2 and I1 both
1397 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1398 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1399 of a SET must prevent combination from occurring.
1400
1401 Before doing the above check, we first try to expand a field assignment
1402 into a set of logical operations.
1403
1404 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1405 we place a register that is both set and used within I3. If more than one
1406 such register is detected, we fail.
1407
1408 Return 1 if the combination is valid, zero otherwise. */
1409
1410 static int
1411 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1412 int i1_not_in_src, rtx *pi3dest_killed)
1413 {
1414 rtx x = *loc;
1415
1416 if (GET_CODE (x) == SET)
1417 {
1418 rtx set = x ;
1419 rtx dest = SET_DEST (set);
1420 rtx src = SET_SRC (set);
1421 rtx inner_dest = dest;
1422
1423 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1424 || GET_CODE (inner_dest) == SUBREG
1425 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1426 inner_dest = XEXP (inner_dest, 0);
1427
1428 /* Check for the case where I3 modifies its output, as discussed
1429 above. We don't want to prevent pseudos from being combined
1430 into the address of a MEM, so only prevent the combination if
1431 i1 or i2 set the same MEM. */
1432 if ((inner_dest != dest &&
1433 (!MEM_P (inner_dest)
1434 || rtx_equal_p (i2dest, inner_dest)
1435 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1436 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1437 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1438
1439 /* This is the same test done in can_combine_p except we can't test
1440 all_adjacent; we don't have to, since this instruction will stay
1441 in place, thus we are not considering increasing the lifetime of
1442 INNER_DEST.
1443
1444 Also, if this insn sets a function argument, combining it with
1445 something that might need a spill could clobber a previous
1446 function argument; the all_adjacent test in can_combine_p also
1447 checks this; here, we do a more specific test for this case. */
1448
1449 || (REG_P (inner_dest)
1450 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1451 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1452 GET_MODE (inner_dest))))
1453 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1454 return 0;
1455
1456 /* If DEST is used in I3, it is being killed in this insn,
1457 so record that for later.
1458 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1459 STACK_POINTER_REGNUM, since these are always considered to be
1460 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1461 if (pi3dest_killed && REG_P (dest)
1462 && reg_referenced_p (dest, PATTERN (i3))
1463 && REGNO (dest) != FRAME_POINTER_REGNUM
1464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1465 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1466 #endif
1467 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1468 && (REGNO (dest) != ARG_POINTER_REGNUM
1469 || ! fixed_regs [REGNO (dest)])
1470 #endif
1471 && REGNO (dest) != STACK_POINTER_REGNUM)
1472 {
1473 if (*pi3dest_killed)
1474 return 0;
1475
1476 *pi3dest_killed = dest;
1477 }
1478 }
1479
1480 else if (GET_CODE (x) == PARALLEL)
1481 {
1482 int i;
1483
1484 for (i = 0; i < XVECLEN (x, 0); i++)
1485 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1486 i1_not_in_src, pi3dest_killed))
1487 return 0;
1488 }
1489
1490 return 1;
1491 }
1492 \f
1493 /* Return 1 if X is an arithmetic expression that contains a multiplication
1494 and division. We don't count multiplications by powers of two here. */
1495
1496 static int
1497 contains_muldiv (rtx x)
1498 {
1499 switch (GET_CODE (x))
1500 {
1501 case MOD: case DIV: case UMOD: case UDIV:
1502 return 1;
1503
1504 case MULT:
1505 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1506 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1507 default:
1508 if (BINARY_P (x))
1509 return contains_muldiv (XEXP (x, 0))
1510 || contains_muldiv (XEXP (x, 1));
1511
1512 if (UNARY_P (x))
1513 return contains_muldiv (XEXP (x, 0));
1514
1515 return 0;
1516 }
1517 }
1518 \f
1519 /* Determine whether INSN can be used in a combination. Return nonzero if
1520 not. This is used in try_combine to detect early some cases where we
1521 can't perform combinations. */
1522
1523 static int
1524 cant_combine_insn_p (rtx insn)
1525 {
1526 rtx set;
1527 rtx src, dest;
1528
1529 /* If this isn't really an insn, we can't do anything.
1530 This can occur when flow deletes an insn that it has merged into an
1531 auto-increment address. */
1532 if (! INSN_P (insn))
1533 return 1;
1534
1535 /* Never combine loads and stores involving hard regs that are likely
1536 to be spilled. The register allocator can usually handle such
1537 reg-reg moves by tying. If we allow the combiner to make
1538 substitutions of likely-spilled regs, reload might die.
1539 As an exception, we allow combinations involving fixed regs; these are
1540 not available to the register allocator so there's no risk involved. */
1541
1542 set = single_set (insn);
1543 if (! set)
1544 return 0;
1545 src = SET_SRC (set);
1546 dest = SET_DEST (set);
1547 if (GET_CODE (src) == SUBREG)
1548 src = SUBREG_REG (src);
1549 if (GET_CODE (dest) == SUBREG)
1550 dest = SUBREG_REG (dest);
1551 if (REG_P (src) && REG_P (dest)
1552 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1553 && ! fixed_regs[REGNO (src)]
1554 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1555 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1556 && ! fixed_regs[REGNO (dest)]
1557 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1558 return 1;
1559
1560 return 0;
1561 }
1562
1563 struct likely_spilled_retval_info
1564 {
1565 unsigned regno, nregs;
1566 unsigned mask;
1567 };
1568
1569 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1570 hard registers that are known to be written to / clobbered in full. */
1571 static void
1572 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1573 {
1574 struct likely_spilled_retval_info *info = data;
1575 unsigned regno, nregs;
1576 unsigned new_mask;
1577
1578 if (!REG_P (XEXP (set, 0)))
1579 return;
1580 regno = REGNO (x);
1581 if (regno >= info->regno + info->nregs)
1582 return;
1583 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1584 if (regno + nregs <= info->regno)
1585 return;
1586 new_mask = (2U << (nregs - 1)) - 1;
1587 if (regno < info->regno)
1588 new_mask >>= info->regno - regno;
1589 else
1590 new_mask <<= regno - info->regno;
1591 info->mask &= new_mask;
1592 }
1593
1594 /* Return nonzero iff part of the return value is live during INSN, and
1595 it is likely spilled. This can happen when more than one insn is needed
1596 to copy the return value, e.g. when we consider to combine into the
1597 second copy insn for a complex value. */
1598
1599 static int
1600 likely_spilled_retval_p (rtx insn)
1601 {
1602 rtx use = BB_END (this_basic_block);
1603 rtx reg, p;
1604 unsigned regno, nregs;
1605 /* We assume here that no machine mode needs more than
1606 32 hard registers when the value overlaps with a register
1607 for which FUNCTION_VALUE_REGNO_P is true. */
1608 unsigned mask;
1609 struct likely_spilled_retval_info info;
1610
1611 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1612 return 0;
1613 reg = XEXP (PATTERN (use), 0);
1614 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1615 return 0;
1616 regno = REGNO (reg);
1617 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1618 if (nregs == 1)
1619 return 0;
1620 mask = (2U << (nregs - 1)) - 1;
1621
1622 /* Disregard parts of the return value that are set later. */
1623 info.regno = regno;
1624 info.nregs = nregs;
1625 info.mask = mask;
1626 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1627 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1628 mask = info.mask;
1629
1630 /* Check if any of the (probably) live return value registers is
1631 likely spilled. */
1632 nregs --;
1633 do
1634 {
1635 if ((mask & 1 << nregs)
1636 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1637 return 1;
1638 } while (nregs--);
1639 return 0;
1640 }
1641
1642 /* Adjust INSN after we made a change to its destination.
1643
1644 Changing the destination can invalidate notes that say something about
1645 the results of the insn and a LOG_LINK pointing to the insn. */
1646
1647 static void
1648 adjust_for_new_dest (rtx insn)
1649 {
1650 rtx *loc;
1651
1652 /* For notes, be conservative and simply remove them. */
1653 loc = &REG_NOTES (insn);
1654 while (*loc)
1655 {
1656 enum reg_note kind = REG_NOTE_KIND (*loc);
1657 if (kind == REG_EQUAL || kind == REG_EQUIV)
1658 *loc = XEXP (*loc, 1);
1659 else
1660 loc = &XEXP (*loc, 1);
1661 }
1662
1663 /* The new insn will have a destination that was previously the destination
1664 of an insn just above it. Call distribute_links to make a LOG_LINK from
1665 the next use of that destination. */
1666 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1667 }
1668
1669 /* Try to combine the insns I1 and I2 into I3.
1670 Here I1 and I2 appear earlier than I3.
1671 I1 can be zero; then we combine just I2 into I3.
1672
1673 If we are combining three insns and the resulting insn is not recognized,
1674 try splitting it into two insns. If that happens, I2 and I3 are retained
1675 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1676 are pseudo-deleted.
1677
1678 Return 0 if the combination does not work. Then nothing is changed.
1679 If we did the combination, return the insn at which combine should
1680 resume scanning.
1681
1682 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1683 new direct jump instruction. */
1684
1685 static rtx
1686 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1687 {
1688 /* New patterns for I3 and I2, respectively. */
1689 rtx newpat, newi2pat = 0;
1690 rtvec newpat_vec_with_clobbers = 0;
1691 int substed_i2 = 0, substed_i1 = 0;
1692 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1693 int added_sets_1, added_sets_2;
1694 /* Total number of SETs to put into I3. */
1695 int total_sets;
1696 /* Nonzero if I2's body now appears in I3. */
1697 int i2_is_used;
1698 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1699 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1700 /* Contains I3 if the destination of I3 is used in its source, which means
1701 that the old life of I3 is being killed. If that usage is placed into
1702 I2 and not in I3, a REG_DEAD note must be made. */
1703 rtx i3dest_killed = 0;
1704 /* SET_DEST and SET_SRC of I2 and I1. */
1705 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1706 /* PATTERN (I2), or a copy of it in certain cases. */
1707 rtx i2pat;
1708 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1709 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1710 int i1_feeds_i3 = 0;
1711 /* Notes that must be added to REG_NOTES in I3 and I2. */
1712 rtx new_i3_notes, new_i2_notes;
1713 /* Notes that we substituted I3 into I2 instead of the normal case. */
1714 int i3_subst_into_i2 = 0;
1715 /* Notes that I1, I2 or I3 is a MULT operation. */
1716 int have_mult = 0;
1717 int swap_i2i3 = 0;
1718
1719 int maxreg;
1720 rtx temp;
1721 rtx link;
1722 int i;
1723
1724 /* Exit early if one of the insns involved can't be used for
1725 combinations. */
1726 if (cant_combine_insn_p (i3)
1727 || cant_combine_insn_p (i2)
1728 || (i1 && cant_combine_insn_p (i1))
1729 || likely_spilled_retval_p (i3)
1730 /* We also can't do anything if I3 has a
1731 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1732 libcall. */
1733 #if 0
1734 /* ??? This gives worse code, and appears to be unnecessary, since no
1735 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1736 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1737 #endif
1738 )
1739 return 0;
1740
1741 combine_attempts++;
1742 undobuf.other_insn = 0;
1743
1744 /* Reset the hard register usage information. */
1745 CLEAR_HARD_REG_SET (newpat_used_regs);
1746
1747 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1748 code below, set I1 to be the earlier of the two insns. */
1749 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1750 temp = i1, i1 = i2, i2 = temp;
1751
1752 added_links_insn = 0;
1753
1754 /* First check for one important special-case that the code below will
1755 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1756 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1757 we may be able to replace that destination with the destination of I3.
1758 This occurs in the common code where we compute both a quotient and
1759 remainder into a structure, in which case we want to do the computation
1760 directly into the structure to avoid register-register copies.
1761
1762 Note that this case handles both multiple sets in I2 and also
1763 cases where I2 has a number of CLOBBER or PARALLELs.
1764
1765 We make very conservative checks below and only try to handle the
1766 most common cases of this. For example, we only handle the case
1767 where I2 and I3 are adjacent to avoid making difficult register
1768 usage tests. */
1769
1770 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1771 && REG_P (SET_SRC (PATTERN (i3)))
1772 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1773 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1774 && GET_CODE (PATTERN (i2)) == PARALLEL
1775 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1776 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1777 below would need to check what is inside (and reg_overlap_mentioned_p
1778 doesn't support those codes anyway). Don't allow those destinations;
1779 the resulting insn isn't likely to be recognized anyway. */
1780 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1781 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1782 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1783 SET_DEST (PATTERN (i3)))
1784 && next_real_insn (i2) == i3)
1785 {
1786 rtx p2 = PATTERN (i2);
1787
1788 /* Make sure that the destination of I3,
1789 which we are going to substitute into one output of I2,
1790 is not used within another output of I2. We must avoid making this:
1791 (parallel [(set (mem (reg 69)) ...)
1792 (set (reg 69) ...)])
1793 which is not well-defined as to order of actions.
1794 (Besides, reload can't handle output reloads for this.)
1795
1796 The problem can also happen if the dest of I3 is a memory ref,
1797 if another dest in I2 is an indirect memory ref. */
1798 for (i = 0; i < XVECLEN (p2, 0); i++)
1799 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1800 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1801 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1802 SET_DEST (XVECEXP (p2, 0, i))))
1803 break;
1804
1805 if (i == XVECLEN (p2, 0))
1806 for (i = 0; i < XVECLEN (p2, 0); i++)
1807 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1808 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1809 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1810 {
1811 combine_merges++;
1812
1813 subst_insn = i3;
1814 subst_low_cuid = INSN_CUID (i2);
1815
1816 added_sets_2 = added_sets_1 = 0;
1817 i2dest = SET_SRC (PATTERN (i3));
1818
1819 /* Replace the dest in I2 with our dest and make the resulting
1820 insn the new pattern for I3. Then skip to where we
1821 validate the pattern. Everything was set up above. */
1822 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1823 SET_DEST (PATTERN (i3)));
1824
1825 newpat = p2;
1826 i3_subst_into_i2 = 1;
1827 goto validate_replacement;
1828 }
1829 }
1830
1831 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1832 one of those words to another constant, merge them by making a new
1833 constant. */
1834 if (i1 == 0
1835 && (temp = single_set (i2)) != 0
1836 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1837 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1838 && REG_P (SET_DEST (temp))
1839 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1840 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1841 && GET_CODE (PATTERN (i3)) == SET
1842 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1843 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1844 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1845 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1846 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1847 {
1848 HOST_WIDE_INT lo, hi;
1849
1850 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1851 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1852 else
1853 {
1854 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1855 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1856 }
1857
1858 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1859 {
1860 /* We don't handle the case of the target word being wider
1861 than a host wide int. */
1862 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1863
1864 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1865 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1866 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1867 }
1868 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1869 hi = INTVAL (SET_SRC (PATTERN (i3)));
1870 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1871 {
1872 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1873 >> (HOST_BITS_PER_WIDE_INT - 1));
1874
1875 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1876 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1877 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1878 (INTVAL (SET_SRC (PATTERN (i3)))));
1879 if (hi == sign)
1880 hi = lo < 0 ? -1 : 0;
1881 }
1882 else
1883 /* We don't handle the case of the higher word not fitting
1884 entirely in either hi or lo. */
1885 gcc_unreachable ();
1886
1887 combine_merges++;
1888 subst_insn = i3;
1889 subst_low_cuid = INSN_CUID (i2);
1890 added_sets_2 = added_sets_1 = 0;
1891 i2dest = SET_DEST (temp);
1892
1893 SUBST (SET_SRC (temp),
1894 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1895
1896 newpat = PATTERN (i2);
1897 goto validate_replacement;
1898 }
1899
1900 #ifndef HAVE_cc0
1901 /* If we have no I1 and I2 looks like:
1902 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1903 (set Y OP)])
1904 make up a dummy I1 that is
1905 (set Y OP)
1906 and change I2 to be
1907 (set (reg:CC X) (compare:CC Y (const_int 0)))
1908
1909 (We can ignore any trailing CLOBBERs.)
1910
1911 This undoes a previous combination and allows us to match a branch-and-
1912 decrement insn. */
1913
1914 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1915 && XVECLEN (PATTERN (i2), 0) >= 2
1916 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1917 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1918 == MODE_CC)
1919 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1920 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1921 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1922 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1923 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1924 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1925 {
1926 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1927 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1928 break;
1929
1930 if (i == 1)
1931 {
1932 /* We make I1 with the same INSN_UID as I2. This gives it
1933 the same INSN_CUID for value tracking. Our fake I1 will
1934 never appear in the insn stream so giving it the same INSN_UID
1935 as I2 will not cause a problem. */
1936
1937 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1938 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1939 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1940 NULL_RTX);
1941
1942 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1943 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1944 SET_DEST (PATTERN (i1)));
1945 }
1946 }
1947 #endif
1948
1949 /* Verify that I2 and I1 are valid for combining. */
1950 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1951 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1952 {
1953 undo_all ();
1954 return 0;
1955 }
1956
1957 /* Record whether I2DEST is used in I2SRC and similarly for the other
1958 cases. Knowing this will help in register status updating below. */
1959 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1960 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1961 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1962
1963 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1964 in I2SRC. */
1965 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1966
1967 /* Ensure that I3's pattern can be the destination of combines. */
1968 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1969 i1 && i2dest_in_i1src && i1_feeds_i3,
1970 &i3dest_killed))
1971 {
1972 undo_all ();
1973 return 0;
1974 }
1975
1976 /* See if any of the insns is a MULT operation. Unless one is, we will
1977 reject a combination that is, since it must be slower. Be conservative
1978 here. */
1979 if (GET_CODE (i2src) == MULT
1980 || (i1 != 0 && GET_CODE (i1src) == MULT)
1981 || (GET_CODE (PATTERN (i3)) == SET
1982 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1983 have_mult = 1;
1984
1985 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1986 We used to do this EXCEPT in one case: I3 has a post-inc in an
1987 output operand. However, that exception can give rise to insns like
1988 mov r3,(r3)+
1989 which is a famous insn on the PDP-11 where the value of r3 used as the
1990 source was model-dependent. Avoid this sort of thing. */
1991
1992 #if 0
1993 if (!(GET_CODE (PATTERN (i3)) == SET
1994 && REG_P (SET_SRC (PATTERN (i3)))
1995 && MEM_P (SET_DEST (PATTERN (i3)))
1996 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1997 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1998 /* It's not the exception. */
1999 #endif
2000 #ifdef AUTO_INC_DEC
2001 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2002 if (REG_NOTE_KIND (link) == REG_INC
2003 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2004 || (i1 != 0
2005 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2006 {
2007 undo_all ();
2008 return 0;
2009 }
2010 #endif
2011
2012 /* See if the SETs in I1 or I2 need to be kept around in the merged
2013 instruction: whenever the value set there is still needed past I3.
2014 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2015
2016 For the SET in I1, we have two cases: If I1 and I2 independently
2017 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2018 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2019 in I1 needs to be kept around unless I1DEST dies or is set in either
2020 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2021 I1DEST. If so, we know I1 feeds into I2. */
2022
2023 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2024
2025 added_sets_1
2026 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2027 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2028
2029 /* If the set in I2 needs to be kept around, we must make a copy of
2030 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2031 PATTERN (I2), we are only substituting for the original I1DEST, not into
2032 an already-substituted copy. This also prevents making self-referential
2033 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2034 I2DEST. */
2035
2036 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2037 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2038 : PATTERN (i2));
2039
2040 if (added_sets_2)
2041 i2pat = copy_rtx (i2pat);
2042
2043 combine_merges++;
2044
2045 /* Substitute in the latest insn for the regs set by the earlier ones. */
2046
2047 maxreg = max_reg_num ();
2048
2049 subst_insn = i3;
2050
2051 /* It is possible that the source of I2 or I1 may be performing an
2052 unneeded operation, such as a ZERO_EXTEND of something that is known
2053 to have the high part zero. Handle that case by letting subst look at
2054 the innermost one of them.
2055
2056 Another way to do this would be to have a function that tries to
2057 simplify a single insn instead of merging two or more insns. We don't
2058 do this because of the potential of infinite loops and because
2059 of the potential extra memory required. However, doing it the way
2060 we are is a bit of a kludge and doesn't catch all cases.
2061
2062 But only do this if -fexpensive-optimizations since it slows things down
2063 and doesn't usually win. */
2064
2065 if (flag_expensive_optimizations)
2066 {
2067 /* Pass pc_rtx so no substitutions are done, just simplifications. */
2068 if (i1)
2069 {
2070 subst_low_cuid = INSN_CUID (i1);
2071 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2072 }
2073 else
2074 {
2075 subst_low_cuid = INSN_CUID (i2);
2076 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2077 }
2078 }
2079
2080 #ifndef HAVE_cc0
2081 /* Many machines that don't use CC0 have insns that can both perform an
2082 arithmetic operation and set the condition code. These operations will
2083 be represented as a PARALLEL with the first element of the vector
2084 being a COMPARE of an arithmetic operation with the constant zero.
2085 The second element of the vector will set some pseudo to the result
2086 of the same arithmetic operation. If we simplify the COMPARE, we won't
2087 match such a pattern and so will generate an extra insn. Here we test
2088 for this case, where both the comparison and the operation result are
2089 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2090 I2SRC. Later we will make the PARALLEL that contains I2. */
2091
2092 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2093 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2094 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2095 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2096 {
2097 #ifdef SELECT_CC_MODE
2098 rtx *cc_use;
2099 enum machine_mode compare_mode;
2100 #endif
2101
2102 newpat = PATTERN (i3);
2103 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2104
2105 i2_is_used = 1;
2106
2107 #ifdef SELECT_CC_MODE
2108 /* See if a COMPARE with the operand we substituted in should be done
2109 with the mode that is currently being used. If not, do the same
2110 processing we do in `subst' for a SET; namely, if the destination
2111 is used only once, try to replace it with a register of the proper
2112 mode and also replace the COMPARE. */
2113 if (undobuf.other_insn == 0
2114 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2115 &undobuf.other_insn))
2116 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2117 i2src, const0_rtx))
2118 != GET_MODE (SET_DEST (newpat))))
2119 {
2120 unsigned int regno = REGNO (SET_DEST (newpat));
2121 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2122
2123 if (regno < FIRST_PSEUDO_REGISTER
2124 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2125 && ! REG_USERVAR_P (SET_DEST (newpat))))
2126 {
2127 if (regno >= FIRST_PSEUDO_REGISTER)
2128 SUBST (regno_reg_rtx[regno], new_dest);
2129
2130 SUBST (SET_DEST (newpat), new_dest);
2131 SUBST (XEXP (*cc_use, 0), new_dest);
2132 SUBST (SET_SRC (newpat),
2133 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2134 }
2135 else
2136 undobuf.other_insn = 0;
2137 }
2138 #endif
2139 }
2140 else
2141 #endif
2142 {
2143 n_occurrences = 0; /* `subst' counts here */
2144
2145 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2146 need to make a unique copy of I2SRC each time we substitute it
2147 to avoid self-referential rtl. */
2148
2149 subst_low_cuid = INSN_CUID (i2);
2150 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2151 ! i1_feeds_i3 && i1dest_in_i1src);
2152 substed_i2 = 1;
2153
2154 /* Record whether i2's body now appears within i3's body. */
2155 i2_is_used = n_occurrences;
2156 }
2157
2158 /* If we already got a failure, don't try to do more. Otherwise,
2159 try to substitute in I1 if we have it. */
2160
2161 if (i1 && GET_CODE (newpat) != CLOBBER)
2162 {
2163 /* Before we can do this substitution, we must redo the test done
2164 above (see detailed comments there) that ensures that I1DEST
2165 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2166
2167 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2168 0, (rtx*) 0))
2169 {
2170 undo_all ();
2171 return 0;
2172 }
2173
2174 n_occurrences = 0;
2175 subst_low_cuid = INSN_CUID (i1);
2176 newpat = subst (newpat, i1dest, i1src, 0, 0);
2177 substed_i1 = 1;
2178 }
2179
2180 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2181 to count all the ways that I2SRC and I1SRC can be used. */
2182 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2183 && i2_is_used + added_sets_2 > 1)
2184 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2185 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2186 > 1))
2187 /* Fail if we tried to make a new register. */
2188 || max_reg_num () != maxreg
2189 /* Fail if we couldn't do something and have a CLOBBER. */
2190 || GET_CODE (newpat) == CLOBBER
2191 /* Fail if this new pattern is a MULT and we didn't have one before
2192 at the outer level. */
2193 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2194 && ! have_mult))
2195 {
2196 undo_all ();
2197 return 0;
2198 }
2199
2200 /* If the actions of the earlier insns must be kept
2201 in addition to substituting them into the latest one,
2202 we must make a new PARALLEL for the latest insn
2203 to hold additional the SETs. */
2204
2205 if (added_sets_1 || added_sets_2)
2206 {
2207 combine_extras++;
2208
2209 if (GET_CODE (newpat) == PARALLEL)
2210 {
2211 rtvec old = XVEC (newpat, 0);
2212 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2213 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2214 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2215 sizeof (old->elem[0]) * old->num_elem);
2216 }
2217 else
2218 {
2219 rtx old = newpat;
2220 total_sets = 1 + added_sets_1 + added_sets_2;
2221 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2222 XVECEXP (newpat, 0, 0) = old;
2223 }
2224
2225 if (added_sets_1)
2226 XVECEXP (newpat, 0, --total_sets)
2227 = (GET_CODE (PATTERN (i1)) == PARALLEL
2228 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2229
2230 if (added_sets_2)
2231 {
2232 /* If there is no I1, use I2's body as is. We used to also not do
2233 the subst call below if I2 was substituted into I3,
2234 but that could lose a simplification. */
2235 if (i1 == 0)
2236 XVECEXP (newpat, 0, --total_sets) = i2pat;
2237 else
2238 /* See comment where i2pat is assigned. */
2239 XVECEXP (newpat, 0, --total_sets)
2240 = subst (i2pat, i1dest, i1src, 0, 0);
2241 }
2242 }
2243
2244 /* We come here when we are replacing a destination in I2 with the
2245 destination of I3. */
2246 validate_replacement:
2247
2248 /* Note which hard regs this insn has as inputs. */
2249 mark_used_regs_combine (newpat);
2250
2251 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2252 consider splitting this pattern, we might need these clobbers. */
2253 if (i1 && GET_CODE (newpat) == PARALLEL
2254 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2255 {
2256 int len = XVECLEN (newpat, 0);
2257
2258 newpat_vec_with_clobbers = rtvec_alloc (len);
2259 for (i = 0; i < len; i++)
2260 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2261 }
2262
2263 /* Is the result of combination a valid instruction? */
2264 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2265
2266 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2267 the second SET's destination is a register that is unused and isn't
2268 marked as an instruction that might trap in an EH region. In that case,
2269 we just need the first SET. This can occur when simplifying a divmod
2270 insn. We *must* test for this case here because the code below that
2271 splits two independent SETs doesn't handle this case correctly when it
2272 updates the register status.
2273
2274 It's pointless doing this if we originally had two sets, one from
2275 i3, and one from i2. Combining then splitting the parallel results
2276 in the original i2 again plus an invalid insn (which we delete).
2277 The net effect is only to move instructions around, which makes
2278 debug info less accurate.
2279
2280 Also check the case where the first SET's destination is unused.
2281 That would not cause incorrect code, but does cause an unneeded
2282 insn to remain. */
2283
2284 if (insn_code_number < 0
2285 && !(added_sets_2 && i1 == 0)
2286 && GET_CODE (newpat) == PARALLEL
2287 && XVECLEN (newpat, 0) == 2
2288 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2289 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2290 && asm_noperands (newpat) < 0)
2291 {
2292 rtx set0 = XVECEXP (newpat, 0, 0);
2293 rtx set1 = XVECEXP (newpat, 0, 1);
2294 rtx note;
2295
2296 if (((REG_P (SET_DEST (set1))
2297 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2298 || (GET_CODE (SET_DEST (set1)) == SUBREG
2299 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2300 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2301 || INTVAL (XEXP (note, 0)) <= 0)
2302 && ! side_effects_p (SET_SRC (set1)))
2303 {
2304 newpat = set0;
2305 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2306 }
2307
2308 else if (((REG_P (SET_DEST (set0))
2309 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2310 || (GET_CODE (SET_DEST (set0)) == SUBREG
2311 && find_reg_note (i3, REG_UNUSED,
2312 SUBREG_REG (SET_DEST (set0)))))
2313 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2314 || INTVAL (XEXP (note, 0)) <= 0)
2315 && ! side_effects_p (SET_SRC (set0)))
2316 {
2317 newpat = set1;
2318 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2319
2320 if (insn_code_number >= 0)
2321 {
2322 /* If we will be able to accept this, we have made a
2323 change to the destination of I3. This requires us to
2324 do a few adjustments. */
2325
2326 PATTERN (i3) = newpat;
2327 adjust_for_new_dest (i3);
2328 }
2329 }
2330 }
2331
2332 /* If we were combining three insns and the result is a simple SET
2333 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2334 insns. There are two ways to do this. It can be split using a
2335 machine-specific method (like when you have an addition of a large
2336 constant) or by combine in the function find_split_point. */
2337
2338 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2339 && asm_noperands (newpat) < 0)
2340 {
2341 rtx m_split, *split;
2342 rtx ni2dest = i2dest;
2343
2344 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2345 use I2DEST as a scratch register will help. In the latter case,
2346 convert I2DEST to the mode of the source of NEWPAT if we can. */
2347
2348 m_split = split_insns (newpat, i3);
2349
2350 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2351 inputs of NEWPAT. */
2352
2353 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2354 possible to try that as a scratch reg. This would require adding
2355 more code to make it work though. */
2356
2357 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2358 {
2359 /* If I2DEST is a hard register or the only use of a pseudo,
2360 we can change its mode. */
2361 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2362 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2363 && REG_P (i2dest)
2364 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2365 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2366 && ! REG_USERVAR_P (i2dest))))
2367 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2368 REGNO (i2dest));
2369
2370 m_split = split_insns (gen_rtx_PARALLEL
2371 (VOIDmode,
2372 gen_rtvec (2, newpat,
2373 gen_rtx_CLOBBER (VOIDmode,
2374 ni2dest))),
2375 i3);
2376 /* If the split with the mode-changed register didn't work, try
2377 the original register. */
2378 if (! m_split && ni2dest != i2dest)
2379 {
2380 ni2dest = i2dest;
2381 m_split = split_insns (gen_rtx_PARALLEL
2382 (VOIDmode,
2383 gen_rtvec (2, newpat,
2384 gen_rtx_CLOBBER (VOIDmode,
2385 i2dest))),
2386 i3);
2387 }
2388 }
2389
2390 /* If recog_for_combine has discarded clobbers, try to use them
2391 again for the split. */
2392 if (m_split == 0 && newpat_vec_with_clobbers)
2393 m_split
2394 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2395 newpat_vec_with_clobbers), i3);
2396
2397 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2398 {
2399 m_split = PATTERN (m_split);
2400 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2401 if (insn_code_number >= 0)
2402 newpat = m_split;
2403 }
2404 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2405 && (next_real_insn (i2) == i3
2406 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2407 {
2408 rtx i2set, i3set;
2409 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2410 newi2pat = PATTERN (m_split);
2411
2412 i3set = single_set (NEXT_INSN (m_split));
2413 i2set = single_set (m_split);
2414
2415 /* In case we changed the mode of I2DEST, replace it in the
2416 pseudo-register table here. We can't do it above in case this
2417 code doesn't get executed and we do a split the other way. */
2418
2419 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2420 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2421
2422 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2423
2424 /* If I2 or I3 has multiple SETs, we won't know how to track
2425 register status, so don't use these insns. If I2's destination
2426 is used between I2 and I3, we also can't use these insns. */
2427
2428 if (i2_code_number >= 0 && i2set && i3set
2429 && (next_real_insn (i2) == i3
2430 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2431 insn_code_number = recog_for_combine (&newi3pat, i3,
2432 &new_i3_notes);
2433 if (insn_code_number >= 0)
2434 newpat = newi3pat;
2435
2436 /* It is possible that both insns now set the destination of I3.
2437 If so, we must show an extra use of it. */
2438
2439 if (insn_code_number >= 0)
2440 {
2441 rtx new_i3_dest = SET_DEST (i3set);
2442 rtx new_i2_dest = SET_DEST (i2set);
2443
2444 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2445 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2446 || GET_CODE (new_i3_dest) == SUBREG)
2447 new_i3_dest = XEXP (new_i3_dest, 0);
2448
2449 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2450 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2451 || GET_CODE (new_i2_dest) == SUBREG)
2452 new_i2_dest = XEXP (new_i2_dest, 0);
2453
2454 if (REG_P (new_i3_dest)
2455 && REG_P (new_i2_dest)
2456 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2457 REG_N_SETS (REGNO (new_i2_dest))++;
2458 }
2459 }
2460
2461 /* If we can split it and use I2DEST, go ahead and see if that
2462 helps things be recognized. Verify that none of the registers
2463 are set between I2 and I3. */
2464 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2465 #ifdef HAVE_cc0
2466 && REG_P (i2dest)
2467 #endif
2468 /* We need I2DEST in the proper mode. If it is a hard register
2469 or the only use of a pseudo, we can change its mode.
2470 Make sure we don't change a hard register to have a mode that
2471 isn't valid for it, or change the number of registers. */
2472 && (GET_MODE (*split) == GET_MODE (i2dest)
2473 || GET_MODE (*split) == VOIDmode
2474 || (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2475 && HARD_REGNO_MODE_OK (REGNO (i2dest), GET_MODE (*split))
2476 && (hard_regno_nregs[REGNO (i2dest)][GET_MODE (i2dest)]
2477 == hard_regno_nregs[REGNO (i2dest)][GET_MODE (*split)]))
2478 || (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER
2479 && REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2480 && ! REG_USERVAR_P (i2dest)))
2481 && (next_real_insn (i2) == i3
2482 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2483 /* We can't overwrite I2DEST if its value is still used by
2484 NEWPAT. */
2485 && ! reg_referenced_p (i2dest, newpat))
2486 {
2487 rtx newdest = i2dest;
2488 enum rtx_code split_code = GET_CODE (*split);
2489 enum machine_mode split_mode = GET_MODE (*split);
2490
2491 /* Get NEWDEST as a register in the proper mode. We have already
2492 validated that we can do this. */
2493 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2494 {
2495 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2496
2497 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2498 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2499 }
2500
2501 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2502 an ASHIFT. This can occur if it was inside a PLUS and hence
2503 appeared to be a memory address. This is a kludge. */
2504 if (split_code == MULT
2505 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2506 && INTVAL (XEXP (*split, 1)) > 0
2507 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2508 {
2509 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2510 XEXP (*split, 0), GEN_INT (i)));
2511 /* Update split_code because we may not have a multiply
2512 anymore. */
2513 split_code = GET_CODE (*split);
2514 }
2515
2516 #ifdef INSN_SCHEDULING
2517 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2518 be written as a ZERO_EXTEND. */
2519 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2520 {
2521 #ifdef LOAD_EXTEND_OP
2522 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2523 what it really is. */
2524 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2525 == SIGN_EXTEND)
2526 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2527 SUBREG_REG (*split)));
2528 else
2529 #endif
2530 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2531 SUBREG_REG (*split)));
2532 }
2533 #endif
2534
2535 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2536 SUBST (*split, newdest);
2537 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2538
2539 /* recog_for_combine might have added CLOBBERs to newi2pat.
2540 Make sure NEWPAT does not depend on the clobbered regs. */
2541 if (GET_CODE (newi2pat) == PARALLEL)
2542 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2543 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2544 {
2545 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2546 if (reg_overlap_mentioned_p (reg, newpat))
2547 {
2548 undo_all ();
2549 return 0;
2550 }
2551 }
2552
2553 /* If the split point was a MULT and we didn't have one before,
2554 don't use one now. */
2555 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2556 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2557 }
2558 }
2559
2560 /* Check for a case where we loaded from memory in a narrow mode and
2561 then sign extended it, but we need both registers. In that case,
2562 we have a PARALLEL with both loads from the same memory location.
2563 We can split this into a load from memory followed by a register-register
2564 copy. This saves at least one insn, more if register allocation can
2565 eliminate the copy.
2566
2567 We cannot do this if the destination of the first assignment is a
2568 condition code register or cc0. We eliminate this case by making sure
2569 the SET_DEST and SET_SRC have the same mode.
2570
2571 We cannot do this if the destination of the second assignment is
2572 a register that we have already assumed is zero-extended. Similarly
2573 for a SUBREG of such a register. */
2574
2575 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2576 && GET_CODE (newpat) == PARALLEL
2577 && XVECLEN (newpat, 0) == 2
2578 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2579 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2580 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2581 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2582 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2583 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2584 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2585 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2586 INSN_CUID (i2))
2587 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2588 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2589 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2590 (REG_P (temp)
2591 && reg_stat[REGNO (temp)].nonzero_bits != 0
2592 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2593 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2594 && (reg_stat[REGNO (temp)].nonzero_bits
2595 != GET_MODE_MASK (word_mode))))
2596 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2597 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2598 (REG_P (temp)
2599 && reg_stat[REGNO (temp)].nonzero_bits != 0
2600 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2601 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2602 && (reg_stat[REGNO (temp)].nonzero_bits
2603 != GET_MODE_MASK (word_mode)))))
2604 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2605 SET_SRC (XVECEXP (newpat, 0, 1)))
2606 && ! find_reg_note (i3, REG_UNUSED,
2607 SET_DEST (XVECEXP (newpat, 0, 0))))
2608 {
2609 rtx ni2dest;
2610
2611 newi2pat = XVECEXP (newpat, 0, 0);
2612 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2613 newpat = XVECEXP (newpat, 0, 1);
2614 SUBST (SET_SRC (newpat),
2615 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2616 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2617
2618 if (i2_code_number >= 0)
2619 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2620
2621 if (insn_code_number >= 0)
2622 swap_i2i3 = 1;
2623 }
2624
2625 /* Similarly, check for a case where we have a PARALLEL of two independent
2626 SETs but we started with three insns. In this case, we can do the sets
2627 as two separate insns. This case occurs when some SET allows two
2628 other insns to combine, but the destination of that SET is still live. */
2629
2630 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2631 && GET_CODE (newpat) == PARALLEL
2632 && XVECLEN (newpat, 0) == 2
2633 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2634 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2635 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2636 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2637 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2639 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2640 INSN_CUID (i2))
2641 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2642 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2643 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2644 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2645 XVECEXP (newpat, 0, 0))
2646 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2647 XVECEXP (newpat, 0, 1))
2648 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2649 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2650 {
2651 /* Normally, it doesn't matter which of the two is done first,
2652 but it does if one references cc0. In that case, it has to
2653 be first. */
2654 #ifdef HAVE_cc0
2655 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2656 {
2657 newi2pat = XVECEXP (newpat, 0, 0);
2658 newpat = XVECEXP (newpat, 0, 1);
2659 }
2660 else
2661 #endif
2662 {
2663 newi2pat = XVECEXP (newpat, 0, 1);
2664 newpat = XVECEXP (newpat, 0, 0);
2665 }
2666
2667 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2668
2669 if (i2_code_number >= 0)
2670 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2671 }
2672
2673 /* If it still isn't recognized, fail and change things back the way they
2674 were. */
2675 if ((insn_code_number < 0
2676 /* Is the result a reasonable ASM_OPERANDS? */
2677 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2678 {
2679 undo_all ();
2680 return 0;
2681 }
2682
2683 /* If we had to change another insn, make sure it is valid also. */
2684 if (undobuf.other_insn)
2685 {
2686 rtx other_pat = PATTERN (undobuf.other_insn);
2687 rtx new_other_notes;
2688 rtx note, next;
2689
2690 CLEAR_HARD_REG_SET (newpat_used_regs);
2691
2692 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2693 &new_other_notes);
2694
2695 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2696 {
2697 undo_all ();
2698 return 0;
2699 }
2700
2701 PATTERN (undobuf.other_insn) = other_pat;
2702
2703 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2704 are still valid. Then add any non-duplicate notes added by
2705 recog_for_combine. */
2706 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2707 {
2708 next = XEXP (note, 1);
2709
2710 if (REG_NOTE_KIND (note) == REG_UNUSED
2711 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2712 {
2713 if (REG_P (XEXP (note, 0)))
2714 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2715
2716 remove_note (undobuf.other_insn, note);
2717 }
2718 }
2719
2720 for (note = new_other_notes; note; note = XEXP (note, 1))
2721 if (REG_P (XEXP (note, 0)))
2722 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2723
2724 distribute_notes (new_other_notes, undobuf.other_insn,
2725 undobuf.other_insn, NULL_RTX);
2726 }
2727 #ifdef HAVE_cc0
2728 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2729 they are adjacent to each other or not. */
2730 {
2731 rtx p = prev_nonnote_insn (i3);
2732 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2733 && sets_cc0_p (newi2pat))
2734 {
2735 undo_all ();
2736 return 0;
2737 }
2738 }
2739 #endif
2740
2741 /* Only allow this combination if insn_rtx_costs reports that the
2742 replacement instructions are cheaper than the originals. */
2743 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2744 {
2745 undo_all ();
2746 return 0;
2747 }
2748
2749 /* We now know that we can do this combination. Merge the insns and
2750 update the status of registers and LOG_LINKS. */
2751
2752 if (swap_i2i3)
2753 {
2754 rtx insn;
2755 rtx link;
2756 rtx ni2dest;
2757
2758 /* I3 now uses what used to be its destination and which is now
2759 I2's destination. This requires us to do a few adjustments. */
2760 PATTERN (i3) = newpat;
2761 adjust_for_new_dest (i3);
2762
2763 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2764 so we still will.
2765
2766 However, some later insn might be using I2's dest and have
2767 a LOG_LINK pointing at I3. We must remove this link.
2768 The simplest way to remove the link is to point it at I1,
2769 which we know will be a NOTE. */
2770
2771 /* newi2pat is usually a SET here; however, recog_for_combine might
2772 have added some clobbers. */
2773 if (GET_CODE (newi2pat) == PARALLEL)
2774 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2775 else
2776 ni2dest = SET_DEST (newi2pat);
2777
2778 for (insn = NEXT_INSN (i3);
2779 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2780 || insn != BB_HEAD (this_basic_block->next_bb));
2781 insn = NEXT_INSN (insn))
2782 {
2783 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2784 {
2785 for (link = LOG_LINKS (insn); link;
2786 link = XEXP (link, 1))
2787 if (XEXP (link, 0) == i3)
2788 XEXP (link, 0) = i1;
2789
2790 break;
2791 }
2792 }
2793 }
2794
2795 {
2796 rtx i3notes, i2notes, i1notes = 0;
2797 rtx i3links, i2links, i1links = 0;
2798 rtx midnotes = 0;
2799 unsigned int regno;
2800
2801 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2802 clear them. */
2803 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2804 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2805 if (i1)
2806 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2807
2808 /* Ensure that we do not have something that should not be shared but
2809 occurs multiple times in the new insns. Check this by first
2810 resetting all the `used' flags and then copying anything is shared. */
2811
2812 reset_used_flags (i3notes);
2813 reset_used_flags (i2notes);
2814 reset_used_flags (i1notes);
2815 reset_used_flags (newpat);
2816 reset_used_flags (newi2pat);
2817 if (undobuf.other_insn)
2818 reset_used_flags (PATTERN (undobuf.other_insn));
2819
2820 i3notes = copy_rtx_if_shared (i3notes);
2821 i2notes = copy_rtx_if_shared (i2notes);
2822 i1notes = copy_rtx_if_shared (i1notes);
2823 newpat = copy_rtx_if_shared (newpat);
2824 newi2pat = copy_rtx_if_shared (newi2pat);
2825 if (undobuf.other_insn)
2826 reset_used_flags (PATTERN (undobuf.other_insn));
2827
2828 INSN_CODE (i3) = insn_code_number;
2829 PATTERN (i3) = newpat;
2830
2831 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2832 {
2833 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2834
2835 reset_used_flags (call_usage);
2836 call_usage = copy_rtx (call_usage);
2837
2838 if (substed_i2)
2839 replace_rtx (call_usage, i2dest, i2src);
2840
2841 if (substed_i1)
2842 replace_rtx (call_usage, i1dest, i1src);
2843
2844 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2845 }
2846
2847 if (undobuf.other_insn)
2848 INSN_CODE (undobuf.other_insn) = other_code_number;
2849
2850 /* We had one special case above where I2 had more than one set and
2851 we replaced a destination of one of those sets with the destination
2852 of I3. In that case, we have to update LOG_LINKS of insns later
2853 in this basic block. Note that this (expensive) case is rare.
2854
2855 Also, in this case, we must pretend that all REG_NOTEs for I2
2856 actually came from I3, so that REG_UNUSED notes from I2 will be
2857 properly handled. */
2858
2859 if (i3_subst_into_i2)
2860 {
2861 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2862 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2863 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2864 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2865 && ! find_reg_note (i2, REG_UNUSED,
2866 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2867 for (temp = NEXT_INSN (i2);
2868 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2869 || BB_HEAD (this_basic_block) != temp);
2870 temp = NEXT_INSN (temp))
2871 if (temp != i3 && INSN_P (temp))
2872 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2873 if (XEXP (link, 0) == i2)
2874 XEXP (link, 0) = i3;
2875
2876 if (i3notes)
2877 {
2878 rtx link = i3notes;
2879 while (XEXP (link, 1))
2880 link = XEXP (link, 1);
2881 XEXP (link, 1) = i2notes;
2882 }
2883 else
2884 i3notes = i2notes;
2885 i2notes = 0;
2886 }
2887
2888 LOG_LINKS (i3) = 0;
2889 REG_NOTES (i3) = 0;
2890 LOG_LINKS (i2) = 0;
2891 REG_NOTES (i2) = 0;
2892
2893 if (newi2pat)
2894 {
2895 INSN_CODE (i2) = i2_code_number;
2896 PATTERN (i2) = newi2pat;
2897 }
2898 else
2899 SET_INSN_DELETED (i2);
2900
2901 if (i1)
2902 {
2903 LOG_LINKS (i1) = 0;
2904 REG_NOTES (i1) = 0;
2905 SET_INSN_DELETED (i1);
2906 }
2907
2908 /* Get death notes for everything that is now used in either I3 or
2909 I2 and used to die in a previous insn. If we built two new
2910 patterns, move from I1 to I2 then I2 to I3 so that we get the
2911 proper movement on registers that I2 modifies. */
2912
2913 if (newi2pat)
2914 {
2915 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2916 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2917 }
2918 else
2919 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2920 i3, &midnotes);
2921
2922 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2923 if (i3notes)
2924 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2925 if (i2notes)
2926 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2927 if (i1notes)
2928 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2929 if (midnotes)
2930 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2931
2932 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2933 know these are REG_UNUSED and want them to go to the desired insn,
2934 so we always pass it as i3. We have not counted the notes in
2935 reg_n_deaths yet, so we need to do so now. */
2936
2937 if (newi2pat && new_i2_notes)
2938 {
2939 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2940 if (REG_P (XEXP (temp, 0)))
2941 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2942
2943 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2944 }
2945
2946 if (new_i3_notes)
2947 {
2948 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2949 if (REG_P (XEXP (temp, 0)))
2950 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2951
2952 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2953 }
2954
2955 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2956 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2957 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2958 in that case, it might delete I2. Similarly for I2 and I1.
2959 Show an additional death due to the REG_DEAD note we make here. If
2960 we discard it in distribute_notes, we will decrement it again. */
2961
2962 if (i3dest_killed)
2963 {
2964 if (REG_P (i3dest_killed))
2965 REG_N_DEATHS (REGNO (i3dest_killed))++;
2966
2967 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2968 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2969 NULL_RTX),
2970 NULL_RTX, i2, NULL_RTX);
2971 else
2972 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2973 NULL_RTX),
2974 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2975 }
2976
2977 if (i2dest_in_i2src)
2978 {
2979 if (REG_P (i2dest))
2980 REG_N_DEATHS (REGNO (i2dest))++;
2981
2982 if (newi2pat && reg_set_p (i2dest, newi2pat))
2983 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2984 NULL_RTX, i2, NULL_RTX);
2985 else
2986 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2987 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2988 }
2989
2990 if (i1dest_in_i1src)
2991 {
2992 if (REG_P (i1dest))
2993 REG_N_DEATHS (REGNO (i1dest))++;
2994
2995 if (newi2pat && reg_set_p (i1dest, newi2pat))
2996 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2997 NULL_RTX, i2, NULL_RTX);
2998 else
2999 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3000 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
3001 }
3002
3003 distribute_links (i3links);
3004 distribute_links (i2links);
3005 distribute_links (i1links);
3006
3007 if (REG_P (i2dest))
3008 {
3009 rtx link;
3010 rtx i2_insn = 0, i2_val = 0, set;
3011
3012 /* The insn that used to set this register doesn't exist, and
3013 this life of the register may not exist either. See if one of
3014 I3's links points to an insn that sets I2DEST. If it does,
3015 that is now the last known value for I2DEST. If we don't update
3016 this and I2 set the register to a value that depended on its old
3017 contents, we will get confused. If this insn is used, thing
3018 will be set correctly in combine_instructions. */
3019
3020 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3021 if ((set = single_set (XEXP (link, 0))) != 0
3022 && rtx_equal_p (i2dest, SET_DEST (set)))
3023 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3024
3025 record_value_for_reg (i2dest, i2_insn, i2_val);
3026
3027 /* If the reg formerly set in I2 died only once and that was in I3,
3028 zero its use count so it won't make `reload' do any work. */
3029 if (! added_sets_2
3030 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3031 && ! i2dest_in_i2src)
3032 {
3033 regno = REGNO (i2dest);
3034 REG_N_SETS (regno)--;
3035 }
3036 }
3037
3038 if (i1 && REG_P (i1dest))
3039 {
3040 rtx link;
3041 rtx i1_insn = 0, i1_val = 0, set;
3042
3043 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3044 if ((set = single_set (XEXP (link, 0))) != 0
3045 && rtx_equal_p (i1dest, SET_DEST (set)))
3046 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3047
3048 record_value_for_reg (i1dest, i1_insn, i1_val);
3049
3050 regno = REGNO (i1dest);
3051 if (! added_sets_1 && ! i1dest_in_i1src)
3052 REG_N_SETS (regno)--;
3053 }
3054
3055 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3056 been made to this insn. The order of
3057 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3058 can affect nonzero_bits of newpat */
3059 if (newi2pat)
3060 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3061 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3062
3063 /* Set new_direct_jump_p if a new return or simple jump instruction
3064 has been created.
3065
3066 If I3 is now an unconditional jump, ensure that it has a
3067 BARRIER following it since it may have initially been a
3068 conditional jump. It may also be the last nonnote insn. */
3069
3070 if (returnjump_p (i3) || any_uncondjump_p (i3))
3071 {
3072 *new_direct_jump_p = 1;
3073 mark_jump_label (PATTERN (i3), i3, 0);
3074
3075 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3076 || !BARRIER_P (temp))
3077 emit_barrier_after (i3);
3078 }
3079
3080 if (undobuf.other_insn != NULL_RTX
3081 && (returnjump_p (undobuf.other_insn)
3082 || any_uncondjump_p (undobuf.other_insn)))
3083 {
3084 *new_direct_jump_p = 1;
3085
3086 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3087 || !BARRIER_P (temp))
3088 emit_barrier_after (undobuf.other_insn);
3089 }
3090
3091 /* An NOOP jump does not need barrier, but it does need cleaning up
3092 of CFG. */
3093 if (GET_CODE (newpat) == SET
3094 && SET_SRC (newpat) == pc_rtx
3095 && SET_DEST (newpat) == pc_rtx)
3096 *new_direct_jump_p = 1;
3097 }
3098
3099 combine_successes++;
3100 undo_commit ();
3101
3102 if (added_links_insn
3103 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3104 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3105 return added_links_insn;
3106 else
3107 return newi2pat ? i2 : i3;
3108 }
3109 \f
3110 /* Undo all the modifications recorded in undobuf. */
3111
3112 static void
3113 undo_all (void)
3114 {
3115 struct undo *undo, *next;
3116
3117 for (undo = undobuf.undos; undo; undo = next)
3118 {
3119 next = undo->next;
3120 if (undo->is_int)
3121 *undo->where.i = undo->old_contents.i;
3122 else
3123 *undo->where.r = undo->old_contents.r;
3124
3125 undo->next = undobuf.frees;
3126 undobuf.frees = undo;
3127 }
3128
3129 undobuf.undos = 0;
3130 }
3131
3132 /* We've committed to accepting the changes we made. Move all
3133 of the undos to the free list. */
3134
3135 static void
3136 undo_commit (void)
3137 {
3138 struct undo *undo, *next;
3139
3140 for (undo = undobuf.undos; undo; undo = next)
3141 {
3142 next = undo->next;
3143 undo->next = undobuf.frees;
3144 undobuf.frees = undo;
3145 }
3146 undobuf.undos = 0;
3147 }
3148
3149 \f
3150 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3151 where we have an arithmetic expression and return that point. LOC will
3152 be inside INSN.
3153
3154 try_combine will call this function to see if an insn can be split into
3155 two insns. */
3156
3157 static rtx *
3158 find_split_point (rtx *loc, rtx insn)
3159 {
3160 rtx x = *loc;
3161 enum rtx_code code = GET_CODE (x);
3162 rtx *split;
3163 unsigned HOST_WIDE_INT len = 0;
3164 HOST_WIDE_INT pos = 0;
3165 int unsignedp = 0;
3166 rtx inner = NULL_RTX;
3167
3168 /* First special-case some codes. */
3169 switch (code)
3170 {
3171 case SUBREG:
3172 #ifdef INSN_SCHEDULING
3173 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3174 point. */
3175 if (MEM_P (SUBREG_REG (x)))
3176 return loc;
3177 #endif
3178 return find_split_point (&SUBREG_REG (x), insn);
3179
3180 case MEM:
3181 #ifdef HAVE_lo_sum
3182 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3183 using LO_SUM and HIGH. */
3184 if (GET_CODE (XEXP (x, 0)) == CONST
3185 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3186 {
3187 SUBST (XEXP (x, 0),
3188 gen_rtx_LO_SUM (Pmode,
3189 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3190 XEXP (x, 0)));
3191 return &XEXP (XEXP (x, 0), 0);
3192 }
3193 #endif
3194
3195 /* If we have a PLUS whose second operand is a constant and the
3196 address is not valid, perhaps will can split it up using
3197 the machine-specific way to split large constants. We use
3198 the first pseudo-reg (one of the virtual regs) as a placeholder;
3199 it will not remain in the result. */
3200 if (GET_CODE (XEXP (x, 0)) == PLUS
3201 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3202 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3203 {
3204 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3205 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3206 subst_insn);
3207
3208 /* This should have produced two insns, each of which sets our
3209 placeholder. If the source of the second is a valid address,
3210 we can make put both sources together and make a split point
3211 in the middle. */
3212
3213 if (seq
3214 && NEXT_INSN (seq) != NULL_RTX
3215 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3216 && NONJUMP_INSN_P (seq)
3217 && GET_CODE (PATTERN (seq)) == SET
3218 && SET_DEST (PATTERN (seq)) == reg
3219 && ! reg_mentioned_p (reg,
3220 SET_SRC (PATTERN (seq)))
3221 && NONJUMP_INSN_P (NEXT_INSN (seq))
3222 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3223 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3224 && memory_address_p (GET_MODE (x),
3225 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3226 {
3227 rtx src1 = SET_SRC (PATTERN (seq));
3228 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3229
3230 /* Replace the placeholder in SRC2 with SRC1. If we can
3231 find where in SRC2 it was placed, that can become our
3232 split point and we can replace this address with SRC2.
3233 Just try two obvious places. */
3234
3235 src2 = replace_rtx (src2, reg, src1);
3236 split = 0;
3237 if (XEXP (src2, 0) == src1)
3238 split = &XEXP (src2, 0);
3239 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3240 && XEXP (XEXP (src2, 0), 0) == src1)
3241 split = &XEXP (XEXP (src2, 0), 0);
3242
3243 if (split)
3244 {
3245 SUBST (XEXP (x, 0), src2);
3246 return split;
3247 }
3248 }
3249
3250 /* If that didn't work, perhaps the first operand is complex and
3251 needs to be computed separately, so make a split point there.
3252 This will occur on machines that just support REG + CONST
3253 and have a constant moved through some previous computation. */
3254
3255 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3256 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3257 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3258 return &XEXP (XEXP (x, 0), 0);
3259 }
3260 break;
3261
3262 case SET:
3263 #ifdef HAVE_cc0
3264 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3265 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3266 we need to put the operand into a register. So split at that
3267 point. */
3268
3269 if (SET_DEST (x) == cc0_rtx
3270 && GET_CODE (SET_SRC (x)) != COMPARE
3271 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3272 && !OBJECT_P (SET_SRC (x))
3273 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3274 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3275 return &SET_SRC (x);
3276 #endif
3277
3278 /* See if we can split SET_SRC as it stands. */
3279 split = find_split_point (&SET_SRC (x), insn);
3280 if (split && split != &SET_SRC (x))
3281 return split;
3282
3283 /* See if we can split SET_DEST as it stands. */
3284 split = find_split_point (&SET_DEST (x), insn);
3285 if (split && split != &SET_DEST (x))
3286 return split;
3287
3288 /* See if this is a bitfield assignment with everything constant. If
3289 so, this is an IOR of an AND, so split it into that. */
3290 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3291 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3292 <= HOST_BITS_PER_WIDE_INT)
3293 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3294 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3295 && GET_CODE (SET_SRC (x)) == CONST_INT
3296 && ((INTVAL (XEXP (SET_DEST (x), 1))
3297 + INTVAL (XEXP (SET_DEST (x), 2)))
3298 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3299 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3300 {
3301 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3302 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3303 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3304 rtx dest = XEXP (SET_DEST (x), 0);
3305 enum machine_mode mode = GET_MODE (dest);
3306 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3307
3308 if (BITS_BIG_ENDIAN)
3309 pos = GET_MODE_BITSIZE (mode) - len - pos;
3310
3311 if (src == mask)
3312 SUBST (SET_SRC (x),
3313 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3314 else
3315 {
3316 rtx negmask = gen_int_mode (~(mask << pos), mode);
3317 SUBST (SET_SRC (x),
3318 simplify_gen_binary (IOR, mode,
3319 simplify_gen_binary (AND, mode,
3320 dest, negmask),
3321 GEN_INT (src << pos)));
3322 }
3323
3324 SUBST (SET_DEST (x), dest);
3325
3326 split = find_split_point (&SET_SRC (x), insn);
3327 if (split && split != &SET_SRC (x))
3328 return split;
3329 }
3330
3331 /* Otherwise, see if this is an operation that we can split into two.
3332 If so, try to split that. */
3333 code = GET_CODE (SET_SRC (x));
3334
3335 switch (code)
3336 {
3337 case AND:
3338 /* If we are AND'ing with a large constant that is only a single
3339 bit and the result is only being used in a context where we
3340 need to know if it is zero or nonzero, replace it with a bit
3341 extraction. This will avoid the large constant, which might
3342 have taken more than one insn to make. If the constant were
3343 not a valid argument to the AND but took only one insn to make,
3344 this is no worse, but if it took more than one insn, it will
3345 be better. */
3346
3347 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3348 && REG_P (XEXP (SET_SRC (x), 0))
3349 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3350 && REG_P (SET_DEST (x))
3351 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3352 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3353 && XEXP (*split, 0) == SET_DEST (x)
3354 && XEXP (*split, 1) == const0_rtx)
3355 {
3356 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3357 XEXP (SET_SRC (x), 0),
3358 pos, NULL_RTX, 1, 1, 0, 0);
3359 if (extraction != 0)
3360 {
3361 SUBST (SET_SRC (x), extraction);
3362 return find_split_point (loc, insn);
3363 }
3364 }
3365 break;
3366
3367 case NE:
3368 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3369 is known to be on, this can be converted into a NEG of a shift. */
3370 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3371 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3372 && 1 <= (pos = exact_log2
3373 (nonzero_bits (XEXP (SET_SRC (x), 0),
3374 GET_MODE (XEXP (SET_SRC (x), 0))))))
3375 {
3376 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3377
3378 SUBST (SET_SRC (x),
3379 gen_rtx_NEG (mode,
3380 gen_rtx_LSHIFTRT (mode,
3381 XEXP (SET_SRC (x), 0),
3382 GEN_INT (pos))));
3383
3384 split = find_split_point (&SET_SRC (x), insn);
3385 if (split && split != &SET_SRC (x))
3386 return split;
3387 }
3388 break;
3389
3390 case SIGN_EXTEND:
3391 inner = XEXP (SET_SRC (x), 0);
3392
3393 /* We can't optimize if either mode is a partial integer
3394 mode as we don't know how many bits are significant
3395 in those modes. */
3396 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3397 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3398 break;
3399
3400 pos = 0;
3401 len = GET_MODE_BITSIZE (GET_MODE (inner));
3402 unsignedp = 0;
3403 break;
3404
3405 case SIGN_EXTRACT:
3406 case ZERO_EXTRACT:
3407 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3408 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3409 {
3410 inner = XEXP (SET_SRC (x), 0);
3411 len = INTVAL (XEXP (SET_SRC (x), 1));
3412 pos = INTVAL (XEXP (SET_SRC (x), 2));
3413
3414 if (BITS_BIG_ENDIAN)
3415 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3416 unsignedp = (code == ZERO_EXTRACT);
3417 }
3418 break;
3419
3420 default:
3421 break;
3422 }
3423
3424 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3425 {
3426 enum machine_mode mode = GET_MODE (SET_SRC (x));
3427
3428 /* For unsigned, we have a choice of a shift followed by an
3429 AND or two shifts. Use two shifts for field sizes where the
3430 constant might be too large. We assume here that we can
3431 always at least get 8-bit constants in an AND insn, which is
3432 true for every current RISC. */
3433
3434 if (unsignedp && len <= 8)
3435 {
3436 SUBST (SET_SRC (x),
3437 gen_rtx_AND (mode,
3438 gen_rtx_LSHIFTRT
3439 (mode, gen_lowpart (mode, inner),
3440 GEN_INT (pos)),
3441 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3442
3443 split = find_split_point (&SET_SRC (x), insn);
3444 if (split && split != &SET_SRC (x))
3445 return split;
3446 }
3447 else
3448 {
3449 SUBST (SET_SRC (x),
3450 gen_rtx_fmt_ee
3451 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3452 gen_rtx_ASHIFT (mode,
3453 gen_lowpart (mode, inner),
3454 GEN_INT (GET_MODE_BITSIZE (mode)
3455 - len - pos)),
3456 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3457
3458 split = find_split_point (&SET_SRC (x), insn);
3459 if (split && split != &SET_SRC (x))
3460 return split;
3461 }
3462 }
3463
3464 /* See if this is a simple operation with a constant as the second
3465 operand. It might be that this constant is out of range and hence
3466 could be used as a split point. */
3467 if (BINARY_P (SET_SRC (x))
3468 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3469 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3470 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3471 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3472 return &XEXP (SET_SRC (x), 1);
3473
3474 /* Finally, see if this is a simple operation with its first operand
3475 not in a register. The operation might require this operand in a
3476 register, so return it as a split point. We can always do this
3477 because if the first operand were another operation, we would have
3478 already found it as a split point. */
3479 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3480 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3481 return &XEXP (SET_SRC (x), 0);
3482
3483 return 0;
3484
3485 case AND:
3486 case IOR:
3487 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3488 it is better to write this as (not (ior A B)) so we can split it.
3489 Similarly for IOR. */
3490 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3491 {
3492 SUBST (*loc,
3493 gen_rtx_NOT (GET_MODE (x),
3494 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3495 GET_MODE (x),
3496 XEXP (XEXP (x, 0), 0),
3497 XEXP (XEXP (x, 1), 0))));
3498 return find_split_point (loc, insn);
3499 }
3500
3501 /* Many RISC machines have a large set of logical insns. If the
3502 second operand is a NOT, put it first so we will try to split the
3503 other operand first. */
3504 if (GET_CODE (XEXP (x, 1)) == NOT)
3505 {
3506 rtx tem = XEXP (x, 0);
3507 SUBST (XEXP (x, 0), XEXP (x, 1));
3508 SUBST (XEXP (x, 1), tem);
3509 }
3510 break;
3511
3512 default:
3513 break;
3514 }
3515
3516 /* Otherwise, select our actions depending on our rtx class. */
3517 switch (GET_RTX_CLASS (code))
3518 {
3519 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3520 case RTX_TERNARY:
3521 split = find_split_point (&XEXP (x, 2), insn);
3522 if (split)
3523 return split;
3524 /* ... fall through ... */
3525 case RTX_BIN_ARITH:
3526 case RTX_COMM_ARITH:
3527 case RTX_COMPARE:
3528 case RTX_COMM_COMPARE:
3529 split = find_split_point (&XEXP (x, 1), insn);
3530 if (split)
3531 return split;
3532 /* ... fall through ... */
3533 case RTX_UNARY:
3534 /* Some machines have (and (shift ...) ...) insns. If X is not
3535 an AND, but XEXP (X, 0) is, use it as our split point. */
3536 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3537 return &XEXP (x, 0);
3538
3539 split = find_split_point (&XEXP (x, 0), insn);
3540 if (split)
3541 return split;
3542 return loc;
3543
3544 default:
3545 /* Otherwise, we don't have a split point. */
3546 return 0;
3547 }
3548 }
3549 \f
3550 /* Throughout X, replace FROM with TO, and return the result.
3551 The result is TO if X is FROM;
3552 otherwise the result is X, but its contents may have been modified.
3553 If they were modified, a record was made in undobuf so that
3554 undo_all will (among other things) return X to its original state.
3555
3556 If the number of changes necessary is too much to record to undo,
3557 the excess changes are not made, so the result is invalid.
3558 The changes already made can still be undone.
3559 undobuf.num_undo is incremented for such changes, so by testing that
3560 the caller can tell whether the result is valid.
3561
3562 `n_occurrences' is incremented each time FROM is replaced.
3563
3564 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3565
3566 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3567 by copying if `n_occurrences' is nonzero. */
3568
3569 static rtx
3570 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3571 {
3572 enum rtx_code code = GET_CODE (x);
3573 enum machine_mode op0_mode = VOIDmode;
3574 const char *fmt;
3575 int len, i;
3576 rtx new;
3577
3578 /* Two expressions are equal if they are identical copies of a shared
3579 RTX or if they are both registers with the same register number
3580 and mode. */
3581
3582 #define COMBINE_RTX_EQUAL_P(X,Y) \
3583 ((X) == (Y) \
3584 || (REG_P (X) && REG_P (Y) \
3585 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3586
3587 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3588 {
3589 n_occurrences++;
3590 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3591 }
3592
3593 /* If X and FROM are the same register but different modes, they will
3594 not have been seen as equal above. However, flow.c will make a
3595 LOG_LINKS entry for that case. If we do nothing, we will try to
3596 rerecognize our original insn and, when it succeeds, we will
3597 delete the feeding insn, which is incorrect.
3598
3599 So force this insn not to match in this (rare) case. */
3600 if (! in_dest && code == REG && REG_P (from)
3601 && REGNO (x) == REGNO (from))
3602 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3603
3604 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3605 of which may contain things that can be combined. */
3606 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3607 return x;
3608
3609 /* It is possible to have a subexpression appear twice in the insn.
3610 Suppose that FROM is a register that appears within TO.
3611 Then, after that subexpression has been scanned once by `subst',
3612 the second time it is scanned, TO may be found. If we were
3613 to scan TO here, we would find FROM within it and create a
3614 self-referent rtl structure which is completely wrong. */
3615 if (COMBINE_RTX_EQUAL_P (x, to))
3616 return to;
3617
3618 /* Parallel asm_operands need special attention because all of the
3619 inputs are shared across the arms. Furthermore, unsharing the
3620 rtl results in recognition failures. Failure to handle this case
3621 specially can result in circular rtl.
3622
3623 Solve this by doing a normal pass across the first entry of the
3624 parallel, and only processing the SET_DESTs of the subsequent
3625 entries. Ug. */
3626
3627 if (code == PARALLEL
3628 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3629 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3630 {
3631 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3632
3633 /* If this substitution failed, this whole thing fails. */
3634 if (GET_CODE (new) == CLOBBER
3635 && XEXP (new, 0) == const0_rtx)
3636 return new;
3637
3638 SUBST (XVECEXP (x, 0, 0), new);
3639
3640 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3641 {
3642 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3643
3644 if (!REG_P (dest)
3645 && GET_CODE (dest) != CC0
3646 && GET_CODE (dest) != PC)
3647 {
3648 new = subst (dest, from, to, 0, unique_copy);
3649
3650 /* If this substitution failed, this whole thing fails. */
3651 if (GET_CODE (new) == CLOBBER
3652 && XEXP (new, 0) == const0_rtx)
3653 return new;
3654
3655 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3656 }
3657 }
3658 }
3659 else
3660 {
3661 len = GET_RTX_LENGTH (code);
3662 fmt = GET_RTX_FORMAT (code);
3663
3664 /* We don't need to process a SET_DEST that is a register, CC0,
3665 or PC, so set up to skip this common case. All other cases
3666 where we want to suppress replacing something inside a
3667 SET_SRC are handled via the IN_DEST operand. */
3668 if (code == SET
3669 && (REG_P (SET_DEST (x))
3670 || GET_CODE (SET_DEST (x)) == CC0
3671 || GET_CODE (SET_DEST (x)) == PC))
3672 fmt = "ie";
3673
3674 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3675 constant. */
3676 if (fmt[0] == 'e')
3677 op0_mode = GET_MODE (XEXP (x, 0));
3678
3679 for (i = 0; i < len; i++)
3680 {
3681 if (fmt[i] == 'E')
3682 {
3683 int j;
3684 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3685 {
3686 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3687 {
3688 new = (unique_copy && n_occurrences
3689 ? copy_rtx (to) : to);
3690 n_occurrences++;
3691 }
3692 else
3693 {
3694 new = subst (XVECEXP (x, i, j), from, to, 0,
3695 unique_copy);
3696
3697 /* If this substitution failed, this whole thing
3698 fails. */
3699 if (GET_CODE (new) == CLOBBER
3700 && XEXP (new, 0) == const0_rtx)
3701 return new;
3702 }
3703
3704 SUBST (XVECEXP (x, i, j), new);
3705 }
3706 }
3707 else if (fmt[i] == 'e')
3708 {
3709 /* If this is a register being set, ignore it. */
3710 new = XEXP (x, i);
3711 if (in_dest
3712 && i == 0
3713 && (((code == SUBREG || code == ZERO_EXTRACT)
3714 && REG_P (new))
3715 || code == STRICT_LOW_PART))
3716 ;
3717
3718 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3719 {
3720 /* In general, don't install a subreg involving two
3721 modes not tieable. It can worsen register
3722 allocation, and can even make invalid reload
3723 insns, since the reg inside may need to be copied
3724 from in the outside mode, and that may be invalid
3725 if it is an fp reg copied in integer mode.
3726
3727 We allow two exceptions to this: It is valid if
3728 it is inside another SUBREG and the mode of that
3729 SUBREG and the mode of the inside of TO is
3730 tieable and it is valid if X is a SET that copies
3731 FROM to CC0. */
3732
3733 if (GET_CODE (to) == SUBREG
3734 && ! MODES_TIEABLE_P (GET_MODE (to),
3735 GET_MODE (SUBREG_REG (to)))
3736 && ! (code == SUBREG
3737 && MODES_TIEABLE_P (GET_MODE (x),
3738 GET_MODE (SUBREG_REG (to))))
3739 #ifdef HAVE_cc0
3740 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3741 #endif
3742 )
3743 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3744
3745 #ifdef CANNOT_CHANGE_MODE_CLASS
3746 if (code == SUBREG
3747 && REG_P (to)
3748 && REGNO (to) < FIRST_PSEUDO_REGISTER
3749 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3750 GET_MODE (to),
3751 GET_MODE (x)))
3752 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3753 #endif
3754
3755 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3756 n_occurrences++;
3757 }
3758 else
3759 /* If we are in a SET_DEST, suppress most cases unless we
3760 have gone inside a MEM, in which case we want to
3761 simplify the address. We assume here that things that
3762 are actually part of the destination have their inner
3763 parts in the first expression. This is true for SUBREG,
3764 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3765 things aside from REG and MEM that should appear in a
3766 SET_DEST. */
3767 new = subst (XEXP (x, i), from, to,
3768 (((in_dest
3769 && (code == SUBREG || code == STRICT_LOW_PART
3770 || code == ZERO_EXTRACT))
3771 || code == SET)
3772 && i == 0), unique_copy);
3773
3774 /* If we found that we will have to reject this combination,
3775 indicate that by returning the CLOBBER ourselves, rather than
3776 an expression containing it. This will speed things up as
3777 well as prevent accidents where two CLOBBERs are considered
3778 to be equal, thus producing an incorrect simplification. */
3779
3780 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3781 return new;
3782
3783 if (GET_CODE (x) == SUBREG
3784 && (GET_CODE (new) == CONST_INT
3785 || GET_CODE (new) == CONST_DOUBLE))
3786 {
3787 enum machine_mode mode = GET_MODE (x);
3788
3789 x = simplify_subreg (GET_MODE (x), new,
3790 GET_MODE (SUBREG_REG (x)),
3791 SUBREG_BYTE (x));
3792 if (! x)
3793 x = gen_rtx_CLOBBER (mode, const0_rtx);
3794 }
3795 else if (GET_CODE (new) == CONST_INT
3796 && GET_CODE (x) == ZERO_EXTEND)
3797 {
3798 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3799 new, GET_MODE (XEXP (x, 0)));
3800 gcc_assert (x);
3801 }
3802 else
3803 SUBST (XEXP (x, i), new);
3804 }
3805 }
3806 }
3807
3808 /* Try to simplify X. If the simplification changed the code, it is likely
3809 that further simplification will help, so loop, but limit the number
3810 of repetitions that will be performed. */
3811
3812 for (i = 0; i < 4; i++)
3813 {
3814 /* If X is sufficiently simple, don't bother trying to do anything
3815 with it. */
3816 if (code != CONST_INT && code != REG && code != CLOBBER)
3817 x = combine_simplify_rtx (x, op0_mode, in_dest);
3818
3819 if (GET_CODE (x) == code)
3820 break;
3821
3822 code = GET_CODE (x);
3823
3824 /* We no longer know the original mode of operand 0 since we
3825 have changed the form of X) */
3826 op0_mode = VOIDmode;
3827 }
3828
3829 return x;
3830 }
3831 \f
3832 /* Simplify X, a piece of RTL. We just operate on the expression at the
3833 outer level; call `subst' to simplify recursively. Return the new
3834 expression.
3835
3836 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3837 if we are inside a SET_DEST. */
3838
3839 static rtx
3840 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3841 {
3842 enum rtx_code code = GET_CODE (x);
3843 enum machine_mode mode = GET_MODE (x);
3844 rtx temp;
3845 rtx reversed;
3846 int i;
3847
3848 /* If this is a commutative operation, put a constant last and a complex
3849 expression first. We don't need to do this for comparisons here. */
3850 if (COMMUTATIVE_ARITH_P (x)
3851 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3852 {
3853 temp = XEXP (x, 0);
3854 SUBST (XEXP (x, 0), XEXP (x, 1));
3855 SUBST (XEXP (x, 1), temp);
3856 }
3857
3858 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3859 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3860 things. Check for cases where both arms are testing the same
3861 condition.
3862
3863 Don't do anything if all operands are very simple. */
3864
3865 if ((BINARY_P (x)
3866 && ((!OBJECT_P (XEXP (x, 0))
3867 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3868 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3869 || (!OBJECT_P (XEXP (x, 1))
3870 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3871 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3872 || (UNARY_P (x)
3873 && (!OBJECT_P (XEXP (x, 0))
3874 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3875 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3876 {
3877 rtx cond, true_rtx, false_rtx;
3878
3879 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3880 if (cond != 0
3881 /* If everything is a comparison, what we have is highly unlikely
3882 to be simpler, so don't use it. */
3883 && ! (COMPARISON_P (x)
3884 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3885 {
3886 rtx cop1 = const0_rtx;
3887 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3888
3889 if (cond_code == NE && COMPARISON_P (cond))
3890 return x;
3891
3892 /* Simplify the alternative arms; this may collapse the true and
3893 false arms to store-flag values. Be careful to use copy_rtx
3894 here since true_rtx or false_rtx might share RTL with x as a
3895 result of the if_then_else_cond call above. */
3896 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3897 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3898
3899 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3900 is unlikely to be simpler. */
3901 if (general_operand (true_rtx, VOIDmode)
3902 && general_operand (false_rtx, VOIDmode))
3903 {
3904 enum rtx_code reversed;
3905
3906 /* Restarting if we generate a store-flag expression will cause
3907 us to loop. Just drop through in this case. */
3908
3909 /* If the result values are STORE_FLAG_VALUE and zero, we can
3910 just make the comparison operation. */
3911 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3912 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3913 cond, cop1);
3914 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3915 && ((reversed = reversed_comparison_code_parts
3916 (cond_code, cond, cop1, NULL))
3917 != UNKNOWN))
3918 x = simplify_gen_relational (reversed, mode, VOIDmode,
3919 cond, cop1);
3920
3921 /* Likewise, we can make the negate of a comparison operation
3922 if the result values are - STORE_FLAG_VALUE and zero. */
3923 else if (GET_CODE (true_rtx) == CONST_INT
3924 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3925 && false_rtx == const0_rtx)
3926 x = simplify_gen_unary (NEG, mode,
3927 simplify_gen_relational (cond_code,
3928 mode, VOIDmode,
3929 cond, cop1),
3930 mode);
3931 else if (GET_CODE (false_rtx) == CONST_INT
3932 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3933 && true_rtx == const0_rtx
3934 && ((reversed = reversed_comparison_code_parts
3935 (cond_code, cond, cop1, NULL))
3936 != UNKNOWN))
3937 x = simplify_gen_unary (NEG, mode,
3938 simplify_gen_relational (reversed,
3939 mode, VOIDmode,
3940 cond, cop1),
3941 mode);
3942 else
3943 return gen_rtx_IF_THEN_ELSE (mode,
3944 simplify_gen_relational (cond_code,
3945 mode,
3946 VOIDmode,
3947 cond,
3948 cop1),
3949 true_rtx, false_rtx);
3950
3951 code = GET_CODE (x);
3952 op0_mode = VOIDmode;
3953 }
3954 }
3955 }
3956
3957 /* Try to fold this expression in case we have constants that weren't
3958 present before. */
3959 temp = 0;
3960 switch (GET_RTX_CLASS (code))
3961 {
3962 case RTX_UNARY:
3963 if (op0_mode == VOIDmode)
3964 op0_mode = GET_MODE (XEXP (x, 0));
3965 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3966 break;
3967 case RTX_COMPARE:
3968 case RTX_COMM_COMPARE:
3969 {
3970 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3971 if (cmp_mode == VOIDmode)
3972 {
3973 cmp_mode = GET_MODE (XEXP (x, 1));
3974 if (cmp_mode == VOIDmode)
3975 cmp_mode = op0_mode;
3976 }
3977 temp = simplify_relational_operation (code, mode, cmp_mode,
3978 XEXP (x, 0), XEXP (x, 1));
3979 }
3980 break;
3981 case RTX_COMM_ARITH:
3982 case RTX_BIN_ARITH:
3983 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3984 break;
3985 case RTX_BITFIELD_OPS:
3986 case RTX_TERNARY:
3987 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3988 XEXP (x, 1), XEXP (x, 2));
3989 break;
3990 default:
3991 break;
3992 }
3993
3994 if (temp)
3995 {
3996 x = temp;
3997 code = GET_CODE (temp);
3998 op0_mode = VOIDmode;
3999 mode = GET_MODE (temp);
4000 }
4001
4002 /* First see if we can apply the inverse distributive law. */
4003 if (code == PLUS || code == MINUS
4004 || code == AND || code == IOR || code == XOR)
4005 {
4006 x = apply_distributive_law (x);
4007 code = GET_CODE (x);
4008 op0_mode = VOIDmode;
4009 }
4010
4011 /* If CODE is an associative operation not otherwise handled, see if we
4012 can associate some operands. This can win if they are constants or
4013 if they are logically related (i.e. (a & b) & a). */
4014 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4015 || code == AND || code == IOR || code == XOR
4016 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4017 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4018 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4019 {
4020 if (GET_CODE (XEXP (x, 0)) == code)
4021 {
4022 rtx other = XEXP (XEXP (x, 0), 0);
4023 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4024 rtx inner_op1 = XEXP (x, 1);
4025 rtx inner;
4026
4027 /* Make sure we pass the constant operand if any as the second
4028 one if this is a commutative operation. */
4029 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4030 {
4031 rtx tem = inner_op0;
4032 inner_op0 = inner_op1;
4033 inner_op1 = tem;
4034 }
4035 inner = simplify_binary_operation (code == MINUS ? PLUS
4036 : code == DIV ? MULT
4037 : code,
4038 mode, inner_op0, inner_op1);
4039
4040 /* For commutative operations, try the other pair if that one
4041 didn't simplify. */
4042 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4043 {
4044 other = XEXP (XEXP (x, 0), 1);
4045 inner = simplify_binary_operation (code, mode,
4046 XEXP (XEXP (x, 0), 0),
4047 XEXP (x, 1));
4048 }
4049
4050 if (inner)
4051 return simplify_gen_binary (code, mode, other, inner);
4052 }
4053 }
4054
4055 /* A little bit of algebraic simplification here. */
4056 switch (code)
4057 {
4058 case MEM:
4059 /* Ensure that our address has any ASHIFTs converted to MULT in case
4060 address-recognizing predicates are called later. */
4061 temp = make_compound_operation (XEXP (x, 0), MEM);
4062 SUBST (XEXP (x, 0), temp);
4063 break;
4064
4065 case SUBREG:
4066 if (op0_mode == VOIDmode)
4067 op0_mode = GET_MODE (SUBREG_REG (x));
4068
4069 /* See if this can be moved to simplify_subreg. */
4070 if (CONSTANT_P (SUBREG_REG (x))
4071 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4072 /* Don't call gen_lowpart if the inner mode
4073 is VOIDmode and we cannot simplify it, as SUBREG without
4074 inner mode is invalid. */
4075 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4076 || gen_lowpart_common (mode, SUBREG_REG (x))))
4077 return gen_lowpart (mode, SUBREG_REG (x));
4078
4079 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4080 break;
4081 {
4082 rtx temp;
4083 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4084 SUBREG_BYTE (x));
4085 if (temp)
4086 return temp;
4087 }
4088
4089 /* Don't change the mode of the MEM if that would change the meaning
4090 of the address. */
4091 if (MEM_P (SUBREG_REG (x))
4092 && (MEM_VOLATILE_P (SUBREG_REG (x))
4093 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4094 return gen_rtx_CLOBBER (mode, const0_rtx);
4095
4096 /* Note that we cannot do any narrowing for non-constants since
4097 we might have been counting on using the fact that some bits were
4098 zero. We now do this in the SET. */
4099
4100 break;
4101
4102 case NOT:
4103 if (GET_CODE (XEXP (x, 0)) == SUBREG
4104 && subreg_lowpart_p (XEXP (x, 0))
4105 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4106 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4107 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4108 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4109 {
4110 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4111
4112 x = gen_rtx_ROTATE (inner_mode,
4113 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4114 inner_mode),
4115 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4116 return gen_lowpart (mode, x);
4117 }
4118
4119 /* Apply De Morgan's laws to reduce number of patterns for machines
4120 with negating logical insns (and-not, nand, etc.). If result has
4121 only one NOT, put it first, since that is how the patterns are
4122 coded. */
4123
4124 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4125 {
4126 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4127 enum machine_mode op_mode;
4128
4129 op_mode = GET_MODE (in1);
4130 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4131
4132 op_mode = GET_MODE (in2);
4133 if (op_mode == VOIDmode)
4134 op_mode = mode;
4135 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4136
4137 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4138 {
4139 rtx tem = in2;
4140 in2 = in1; in1 = tem;
4141 }
4142
4143 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4144 mode, in1, in2);
4145 }
4146 break;
4147
4148 case NEG:
4149 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4150 if (GET_CODE (XEXP (x, 0)) == XOR
4151 && XEXP (XEXP (x, 0), 1) == const1_rtx
4152 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4153 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4154 constm1_rtx);
4155
4156 temp = expand_compound_operation (XEXP (x, 0));
4157
4158 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4159 replaced by (lshiftrt X C). This will convert
4160 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4161
4162 if (GET_CODE (temp) == ASHIFTRT
4163 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4164 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4165 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4166 INTVAL (XEXP (temp, 1)));
4167
4168 /* If X has only a single bit that might be nonzero, say, bit I, convert
4169 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4170 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4171 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4172 or a SUBREG of one since we'd be making the expression more
4173 complex if it was just a register. */
4174
4175 if (!REG_P (temp)
4176 && ! (GET_CODE (temp) == SUBREG
4177 && REG_P (SUBREG_REG (temp)))
4178 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4179 {
4180 rtx temp1 = simplify_shift_const
4181 (NULL_RTX, ASHIFTRT, mode,
4182 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4183 GET_MODE_BITSIZE (mode) - 1 - i),
4184 GET_MODE_BITSIZE (mode) - 1 - i);
4185
4186 /* If all we did was surround TEMP with the two shifts, we
4187 haven't improved anything, so don't use it. Otherwise,
4188 we are better off with TEMP1. */
4189 if (GET_CODE (temp1) != ASHIFTRT
4190 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4191 || XEXP (XEXP (temp1, 0), 0) != temp)
4192 return temp1;
4193 }
4194 break;
4195
4196 case TRUNCATE:
4197 /* We can't handle truncation to a partial integer mode here
4198 because we don't know the real bitsize of the partial
4199 integer mode. */
4200 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4201 break;
4202
4203 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4204 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4205 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4206 SUBST (XEXP (x, 0),
4207 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4208 GET_MODE_MASK (mode), NULL_RTX, 0));
4209
4210 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4211 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4212 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4213 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4214 return XEXP (XEXP (x, 0), 0);
4215
4216 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4217 (OP:SI foo:SI) if OP is NEG or ABS. */
4218 if ((GET_CODE (XEXP (x, 0)) == ABS
4219 || GET_CODE (XEXP (x, 0)) == NEG)
4220 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4221 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4222 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4223 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4224 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4225
4226 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4227 (truncate:SI x). */
4228 if (GET_CODE (XEXP (x, 0)) == SUBREG
4229 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4230 && subreg_lowpart_p (XEXP (x, 0)))
4231 return SUBREG_REG (XEXP (x, 0));
4232
4233 /* If we know that the value is already truncated, we can
4234 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4235 is nonzero for the corresponding modes. But don't do this
4236 for an (LSHIFTRT (MULT ...)) since this will cause problems
4237 with the umulXi3_highpart patterns. */
4238 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4239 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4240 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4241 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4242 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4243 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4244 return gen_lowpart (mode, XEXP (x, 0));
4245
4246 /* A truncate of a comparison can be replaced with a subreg if
4247 STORE_FLAG_VALUE permits. This is like the previous test,
4248 but it works even if the comparison is done in a mode larger
4249 than HOST_BITS_PER_WIDE_INT. */
4250 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4251 && COMPARISON_P (XEXP (x, 0))
4252 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4253 return gen_lowpart (mode, XEXP (x, 0));
4254
4255 /* Similarly, a truncate of a register whose value is a
4256 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4257 permits. */
4258 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4259 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4260 && (temp = get_last_value (XEXP (x, 0)))
4261 && COMPARISON_P (temp))
4262 return gen_lowpart (mode, XEXP (x, 0));
4263
4264 break;
4265
4266 case FLOAT_TRUNCATE:
4267 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4268 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4269 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4270 return XEXP (XEXP (x, 0), 0);
4271
4272 /* (float_truncate:SF (float_truncate:DF foo:XF))
4273 = (float_truncate:SF foo:XF).
4274 This may eliminate double rounding, so it is unsafe.
4275
4276 (float_truncate:SF (float_extend:XF foo:DF))
4277 = (float_truncate:SF foo:DF).
4278
4279 (float_truncate:DF (float_extend:XF foo:SF))
4280 = (float_extend:SF foo:DF). */
4281 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4282 && flag_unsafe_math_optimizations)
4283 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4284 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4285 0)))
4286 > GET_MODE_SIZE (mode)
4287 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4288 mode,
4289 XEXP (XEXP (x, 0), 0), mode);
4290
4291 /* (float_truncate (float x)) is (float x) */
4292 if (GET_CODE (XEXP (x, 0)) == FLOAT
4293 && (flag_unsafe_math_optimizations
4294 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4295 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4296 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4297 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4298 return simplify_gen_unary (FLOAT, mode,
4299 XEXP (XEXP (x, 0), 0),
4300 GET_MODE (XEXP (XEXP (x, 0), 0)));
4301
4302 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4303 (OP:SF foo:SF) if OP is NEG or ABS. */
4304 if ((GET_CODE (XEXP (x, 0)) == ABS
4305 || GET_CODE (XEXP (x, 0)) == NEG)
4306 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4307 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4308 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4309 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4310
4311 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4312 is (float_truncate:SF x). */
4313 if (GET_CODE (XEXP (x, 0)) == SUBREG
4314 && subreg_lowpart_p (XEXP (x, 0))
4315 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4316 return SUBREG_REG (XEXP (x, 0));
4317 break;
4318 case FLOAT_EXTEND:
4319 /* (float_extend (float_extend x)) is (float_extend x)
4320
4321 (float_extend (float x)) is (float x) assuming that double
4322 rounding can't happen.
4323 */
4324 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4325 || (GET_CODE (XEXP (x, 0)) == FLOAT
4326 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4327 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4328 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4329 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4330 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4331 XEXP (XEXP (x, 0), 0),
4332 GET_MODE (XEXP (XEXP (x, 0), 0)));
4333
4334 break;
4335 #ifdef HAVE_cc0
4336 case COMPARE:
4337 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4338 using cc0, in which case we want to leave it as a COMPARE
4339 so we can distinguish it from a register-register-copy. */
4340 if (XEXP (x, 1) == const0_rtx)
4341 return XEXP (x, 0);
4342
4343 /* x - 0 is the same as x unless x's mode has signed zeros and
4344 allows rounding towards -infinity. Under those conditions,
4345 0 - 0 is -0. */
4346 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4347 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4348 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4349 return XEXP (x, 0);
4350 break;
4351 #endif
4352
4353 case CONST:
4354 /* (const (const X)) can become (const X). Do it this way rather than
4355 returning the inner CONST since CONST can be shared with a
4356 REG_EQUAL note. */
4357 if (GET_CODE (XEXP (x, 0)) == CONST)
4358 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4359 break;
4360
4361 #ifdef HAVE_lo_sum
4362 case LO_SUM:
4363 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4364 can add in an offset. find_split_point will split this address up
4365 again if it doesn't match. */
4366 if (GET_CODE (XEXP (x, 0)) == HIGH
4367 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4368 return XEXP (x, 1);
4369 break;
4370 #endif
4371
4372 case PLUS:
4373 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4374 */
4375 if (GET_CODE (XEXP (x, 0)) == MULT
4376 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4377 {
4378 rtx in1, in2;
4379
4380 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4381 in2 = XEXP (XEXP (x, 0), 1);
4382 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4383 simplify_gen_binary (MULT, mode,
4384 in1, in2));
4385 }
4386
4387 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4388 outermost. That's because that's the way indexed addresses are
4389 supposed to appear. This code used to check many more cases, but
4390 they are now checked elsewhere. */
4391 if (GET_CODE (XEXP (x, 0)) == PLUS
4392 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4393 return simplify_gen_binary (PLUS, mode,
4394 simplify_gen_binary (PLUS, mode,
4395 XEXP (XEXP (x, 0), 0),
4396 XEXP (x, 1)),
4397 XEXP (XEXP (x, 0), 1));
4398
4399 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4400 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4401 bit-field and can be replaced by either a sign_extend or a
4402 sign_extract. The `and' may be a zero_extend and the two
4403 <c>, -<c> constants may be reversed. */
4404 if (GET_CODE (XEXP (x, 0)) == XOR
4405 && GET_CODE (XEXP (x, 1)) == CONST_INT
4406 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4407 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4408 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4409 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4410 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4411 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4412 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4413 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4414 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4415 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4416 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4417 == (unsigned int) i + 1))))
4418 return simplify_shift_const
4419 (NULL_RTX, ASHIFTRT, mode,
4420 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4421 XEXP (XEXP (XEXP (x, 0), 0), 0),
4422 GET_MODE_BITSIZE (mode) - (i + 1)),
4423 GET_MODE_BITSIZE (mode) - (i + 1));
4424
4425 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4426 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4427 is 1. This produces better code than the alternative immediately
4428 below. */
4429 if (COMPARISON_P (XEXP (x, 0))
4430 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4431 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4432 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4433 return
4434 simplify_gen_unary (NEG, mode, reversed, mode);
4435
4436 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4437 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4438 the bitsize of the mode - 1. This allows simplification of
4439 "a = (b & 8) == 0;" */
4440 if (XEXP (x, 1) == constm1_rtx
4441 && !REG_P (XEXP (x, 0))
4442 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4443 && REG_P (SUBREG_REG (XEXP (x, 0))))
4444 && nonzero_bits (XEXP (x, 0), mode) == 1)
4445 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4446 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4447 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4448 GET_MODE_BITSIZE (mode) - 1),
4449 GET_MODE_BITSIZE (mode) - 1);
4450
4451 /* If we are adding two things that have no bits in common, convert
4452 the addition into an IOR. This will often be further simplified,
4453 for example in cases like ((a & 1) + (a & 2)), which can
4454 become a & 3. */
4455
4456 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4457 && (nonzero_bits (XEXP (x, 0), mode)
4458 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4459 {
4460 /* Try to simplify the expression further. */
4461 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4462 temp = combine_simplify_rtx (tor, mode, in_dest);
4463
4464 /* If we could, great. If not, do not go ahead with the IOR
4465 replacement, since PLUS appears in many special purpose
4466 address arithmetic instructions. */
4467 if (GET_CODE (temp) != CLOBBER && temp != tor)
4468 return temp;
4469 }
4470 break;
4471
4472 case MINUS:
4473 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4474 by reversing the comparison code if valid. */
4475 if (STORE_FLAG_VALUE == 1
4476 && XEXP (x, 0) == const1_rtx
4477 && COMPARISON_P (XEXP (x, 1))
4478 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4479 return reversed;
4480
4481 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4482 (and <foo> (const_int pow2-1)) */
4483 if (GET_CODE (XEXP (x, 1)) == AND
4484 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4485 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4486 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4487 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4488 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4489
4490 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4491 */
4492 if (GET_CODE (XEXP (x, 1)) == MULT
4493 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4494 {
4495 rtx in1, in2;
4496
4497 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4498 in2 = XEXP (XEXP (x, 1), 1);
4499 return simplify_gen_binary (PLUS, mode,
4500 simplify_gen_binary (MULT, mode,
4501 in1, in2),
4502 XEXP (x, 0));
4503 }
4504
4505 /* Canonicalize (minus (neg A) (mult B C)) to
4506 (minus (mult (neg B) C) A). */
4507 if (GET_CODE (XEXP (x, 1)) == MULT
4508 && GET_CODE (XEXP (x, 0)) == NEG)
4509 {
4510 rtx in1, in2;
4511
4512 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4513 in2 = XEXP (XEXP (x, 1), 1);
4514 return simplify_gen_binary (MINUS, mode,
4515 simplify_gen_binary (MULT, mode,
4516 in1, in2),
4517 XEXP (XEXP (x, 0), 0));
4518 }
4519
4520 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4521 integers. */
4522 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4523 return simplify_gen_binary (MINUS, mode,
4524 simplify_gen_binary (MINUS, mode,
4525 XEXP (x, 0),
4526 XEXP (XEXP (x, 1), 0)),
4527 XEXP (XEXP (x, 1), 1));
4528 break;
4529
4530 case MULT:
4531 /* If we have (mult (plus A B) C), apply the distributive law and then
4532 the inverse distributive law to see if things simplify. This
4533 occurs mostly in addresses, often when unrolling loops. */
4534
4535 if (GET_CODE (XEXP (x, 0)) == PLUS)
4536 {
4537 rtx result = distribute_and_simplify_rtx (x, 0);
4538 if (result)
4539 return result;
4540 }
4541
4542 /* Try simplify a*(b/c) as (a*b)/c. */
4543 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4544 && GET_CODE (XEXP (x, 0)) == DIV)
4545 {
4546 rtx tem = simplify_binary_operation (MULT, mode,
4547 XEXP (XEXP (x, 0), 0),
4548 XEXP (x, 1));
4549 if (tem)
4550 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4551 }
4552 break;
4553
4554 case UDIV:
4555 /* If this is a divide by a power of two, treat it as a shift if
4556 its first operand is a shift. */
4557 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4558 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4559 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4560 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4561 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4562 || GET_CODE (XEXP (x, 0)) == ROTATE
4563 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4564 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4565 break;
4566
4567 case EQ: case NE:
4568 case GT: case GTU: case GE: case GEU:
4569 case LT: case LTU: case LE: case LEU:
4570 case UNEQ: case LTGT:
4571 case UNGT: case UNGE:
4572 case UNLT: case UNLE:
4573 case UNORDERED: case ORDERED:
4574 /* If the first operand is a condition code, we can't do anything
4575 with it. */
4576 if (GET_CODE (XEXP (x, 0)) == COMPARE
4577 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4578 && ! CC0_P (XEXP (x, 0))))
4579 {
4580 rtx op0 = XEXP (x, 0);
4581 rtx op1 = XEXP (x, 1);
4582 enum rtx_code new_code;
4583
4584 if (GET_CODE (op0) == COMPARE)
4585 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4586
4587 /* Simplify our comparison, if possible. */
4588 new_code = simplify_comparison (code, &op0, &op1);
4589
4590 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4591 if only the low-order bit is possibly nonzero in X (such as when
4592 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4593 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4594 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4595 (plus X 1).
4596
4597 Remove any ZERO_EXTRACT we made when thinking this was a
4598 comparison. It may now be simpler to use, e.g., an AND. If a
4599 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4600 the call to make_compound_operation in the SET case. */
4601
4602 if (STORE_FLAG_VALUE == 1
4603 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4604 && op1 == const0_rtx
4605 && mode == GET_MODE (op0)
4606 && nonzero_bits (op0, mode) == 1)
4607 return gen_lowpart (mode,
4608 expand_compound_operation (op0));
4609
4610 else if (STORE_FLAG_VALUE == 1
4611 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4612 && op1 == const0_rtx
4613 && mode == GET_MODE (op0)
4614 && (num_sign_bit_copies (op0, mode)
4615 == GET_MODE_BITSIZE (mode)))
4616 {
4617 op0 = expand_compound_operation (op0);
4618 return simplify_gen_unary (NEG, mode,
4619 gen_lowpart (mode, op0),
4620 mode);
4621 }
4622
4623 else if (STORE_FLAG_VALUE == 1
4624 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4625 && op1 == const0_rtx
4626 && mode == GET_MODE (op0)
4627 && nonzero_bits (op0, mode) == 1)
4628 {
4629 op0 = expand_compound_operation (op0);
4630 return simplify_gen_binary (XOR, mode,
4631 gen_lowpart (mode, op0),
4632 const1_rtx);
4633 }
4634
4635 else if (STORE_FLAG_VALUE == 1
4636 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4637 && op1 == const0_rtx
4638 && mode == GET_MODE (op0)
4639 && (num_sign_bit_copies (op0, mode)
4640 == GET_MODE_BITSIZE (mode)))
4641 {
4642 op0 = expand_compound_operation (op0);
4643 return plus_constant (gen_lowpart (mode, op0), 1);
4644 }
4645
4646 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4647 those above. */
4648 if (STORE_FLAG_VALUE == -1
4649 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4650 && op1 == const0_rtx
4651 && (num_sign_bit_copies (op0, mode)
4652 == GET_MODE_BITSIZE (mode)))
4653 return gen_lowpart (mode,
4654 expand_compound_operation (op0));
4655
4656 else if (STORE_FLAG_VALUE == -1
4657 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4658 && op1 == const0_rtx
4659 && mode == GET_MODE (op0)
4660 && nonzero_bits (op0, mode) == 1)
4661 {
4662 op0 = expand_compound_operation (op0);
4663 return simplify_gen_unary (NEG, mode,
4664 gen_lowpart (mode, op0),
4665 mode);
4666 }
4667
4668 else if (STORE_FLAG_VALUE == -1
4669 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4670 && op1 == const0_rtx
4671 && mode == GET_MODE (op0)
4672 && (num_sign_bit_copies (op0, mode)
4673 == GET_MODE_BITSIZE (mode)))
4674 {
4675 op0 = expand_compound_operation (op0);
4676 return simplify_gen_unary (NOT, mode,
4677 gen_lowpart (mode, op0),
4678 mode);
4679 }
4680
4681 /* If X is 0/1, (eq X 0) is X-1. */
4682 else if (STORE_FLAG_VALUE == -1
4683 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4684 && op1 == const0_rtx
4685 && mode == GET_MODE (op0)
4686 && nonzero_bits (op0, mode) == 1)
4687 {
4688 op0 = expand_compound_operation (op0);
4689 return plus_constant (gen_lowpart (mode, op0), -1);
4690 }
4691
4692 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4693 one bit that might be nonzero, we can convert (ne x 0) to
4694 (ashift x c) where C puts the bit in the sign bit. Remove any
4695 AND with STORE_FLAG_VALUE when we are done, since we are only
4696 going to test the sign bit. */
4697 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4698 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4699 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4700 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4701 && op1 == const0_rtx
4702 && mode == GET_MODE (op0)
4703 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4704 {
4705 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4706 expand_compound_operation (op0),
4707 GET_MODE_BITSIZE (mode) - 1 - i);
4708 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4709 return XEXP (x, 0);
4710 else
4711 return x;
4712 }
4713
4714 /* If the code changed, return a whole new comparison. */
4715 if (new_code != code)
4716 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4717
4718 /* Otherwise, keep this operation, but maybe change its operands.
4719 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4720 SUBST (XEXP (x, 0), op0);
4721 SUBST (XEXP (x, 1), op1);
4722 }
4723 break;
4724
4725 case IF_THEN_ELSE:
4726 return simplify_if_then_else (x);
4727
4728 case ZERO_EXTRACT:
4729 case SIGN_EXTRACT:
4730 case ZERO_EXTEND:
4731 case SIGN_EXTEND:
4732 /* If we are processing SET_DEST, we are done. */
4733 if (in_dest)
4734 return x;
4735
4736 return expand_compound_operation (x);
4737
4738 case SET:
4739 return simplify_set (x);
4740
4741 case AND:
4742 case IOR:
4743 case XOR:
4744 return simplify_logical (x);
4745
4746 case ABS:
4747 /* (abs (neg <foo>)) -> (abs <foo>) */
4748 if (GET_CODE (XEXP (x, 0)) == NEG)
4749 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4750
4751 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4752 do nothing. */
4753 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4754 break;
4755
4756 /* If operand is something known to be positive, ignore the ABS. */
4757 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4758 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4759 <= HOST_BITS_PER_WIDE_INT)
4760 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4761 & ((HOST_WIDE_INT) 1
4762 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4763 == 0)))
4764 return XEXP (x, 0);
4765
4766 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4767 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4768 return gen_rtx_NEG (mode, XEXP (x, 0));
4769
4770 break;
4771
4772 case FFS:
4773 /* (ffs (*_extend <X>)) = (ffs <X>) */
4774 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4775 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4776 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4777 break;
4778
4779 case POPCOUNT:
4780 case PARITY:
4781 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4782 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4783 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4784 break;
4785
4786 case FLOAT:
4787 /* (float (sign_extend <X>)) = (float <X>). */
4788 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4789 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4790 break;
4791
4792 case ASHIFT:
4793 case LSHIFTRT:
4794 case ASHIFTRT:
4795 case ROTATE:
4796 case ROTATERT:
4797 /* If this is a shift by a constant amount, simplify it. */
4798 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4799 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4800 INTVAL (XEXP (x, 1)));
4801
4802 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4803 SUBST (XEXP (x, 1),
4804 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4805 ((HOST_WIDE_INT) 1
4806 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4807 - 1,
4808 NULL_RTX, 0));
4809 break;
4810
4811 case VEC_SELECT:
4812 {
4813 rtx op0 = XEXP (x, 0);
4814 rtx op1 = XEXP (x, 1);
4815 int len;
4816
4817 gcc_assert (GET_CODE (op1) == PARALLEL);
4818 len = XVECLEN (op1, 0);
4819 if (len == 1
4820 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4821 && GET_CODE (op0) == VEC_CONCAT)
4822 {
4823 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4824
4825 /* Try to find the element in the VEC_CONCAT. */
4826 for (;;)
4827 {
4828 if (GET_MODE (op0) == GET_MODE (x))
4829 return op0;
4830 if (GET_CODE (op0) == VEC_CONCAT)
4831 {
4832 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4833 if (offset < op0_size)
4834 op0 = XEXP (op0, 0);
4835 else
4836 {
4837 offset -= op0_size;
4838 op0 = XEXP (op0, 1);
4839 }
4840 }
4841 else
4842 break;
4843 }
4844 }
4845 }
4846
4847 break;
4848
4849 default:
4850 break;
4851 }
4852
4853 return x;
4854 }
4855 \f
4856 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4857
4858 static rtx
4859 simplify_if_then_else (rtx x)
4860 {
4861 enum machine_mode mode = GET_MODE (x);
4862 rtx cond = XEXP (x, 0);
4863 rtx true_rtx = XEXP (x, 1);
4864 rtx false_rtx = XEXP (x, 2);
4865 enum rtx_code true_code = GET_CODE (cond);
4866 int comparison_p = COMPARISON_P (cond);
4867 rtx temp;
4868 int i;
4869 enum rtx_code false_code;
4870 rtx reversed;
4871
4872 /* Simplify storing of the truth value. */
4873 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4874 return simplify_gen_relational (true_code, mode, VOIDmode,
4875 XEXP (cond, 0), XEXP (cond, 1));
4876
4877 /* Also when the truth value has to be reversed. */
4878 if (comparison_p
4879 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4880 && (reversed = reversed_comparison (cond, mode)))
4881 return reversed;
4882
4883 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4884 in it is being compared against certain values. Get the true and false
4885 comparisons and see if that says anything about the value of each arm. */
4886
4887 if (comparison_p
4888 && ((false_code = reversed_comparison_code (cond, NULL))
4889 != UNKNOWN)
4890 && REG_P (XEXP (cond, 0)))
4891 {
4892 HOST_WIDE_INT nzb;
4893 rtx from = XEXP (cond, 0);
4894 rtx true_val = XEXP (cond, 1);
4895 rtx false_val = true_val;
4896 int swapped = 0;
4897
4898 /* If FALSE_CODE is EQ, swap the codes and arms. */
4899
4900 if (false_code == EQ)
4901 {
4902 swapped = 1, true_code = EQ, false_code = NE;
4903 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4904 }
4905
4906 /* If we are comparing against zero and the expression being tested has
4907 only a single bit that might be nonzero, that is its value when it is
4908 not equal to zero. Similarly if it is known to be -1 or 0. */
4909
4910 if (true_code == EQ && true_val == const0_rtx
4911 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4912 false_code = EQ, false_val = GEN_INT (nzb);
4913 else if (true_code == EQ && true_val == const0_rtx
4914 && (num_sign_bit_copies (from, GET_MODE (from))
4915 == GET_MODE_BITSIZE (GET_MODE (from))))
4916 false_code = EQ, false_val = constm1_rtx;
4917
4918 /* Now simplify an arm if we know the value of the register in the
4919 branch and it is used in the arm. Be careful due to the potential
4920 of locally-shared RTL. */
4921
4922 if (reg_mentioned_p (from, true_rtx))
4923 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4924 from, true_val),
4925 pc_rtx, pc_rtx, 0, 0);
4926 if (reg_mentioned_p (from, false_rtx))
4927 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4928 from, false_val),
4929 pc_rtx, pc_rtx, 0, 0);
4930
4931 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4932 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4933
4934 true_rtx = XEXP (x, 1);
4935 false_rtx = XEXP (x, 2);
4936 true_code = GET_CODE (cond);
4937 }
4938
4939 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4940 reversed, do so to avoid needing two sets of patterns for
4941 subtract-and-branch insns. Similarly if we have a constant in the true
4942 arm, the false arm is the same as the first operand of the comparison, or
4943 the false arm is more complicated than the true arm. */
4944
4945 if (comparison_p
4946 && reversed_comparison_code (cond, NULL) != UNKNOWN
4947 && (true_rtx == pc_rtx
4948 || (CONSTANT_P (true_rtx)
4949 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4950 || true_rtx == const0_rtx
4951 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4952 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4953 && !OBJECT_P (false_rtx))
4954 || reg_mentioned_p (true_rtx, false_rtx)
4955 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4956 {
4957 true_code = reversed_comparison_code (cond, NULL);
4958 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4959 SUBST (XEXP (x, 1), false_rtx);
4960 SUBST (XEXP (x, 2), true_rtx);
4961
4962 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4963 cond = XEXP (x, 0);
4964
4965 /* It is possible that the conditional has been simplified out. */
4966 true_code = GET_CODE (cond);
4967 comparison_p = COMPARISON_P (cond);
4968 }
4969
4970 /* If the two arms are identical, we don't need the comparison. */
4971
4972 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4973 return true_rtx;
4974
4975 /* Convert a == b ? b : a to "a". */
4976 if (true_code == EQ && ! side_effects_p (cond)
4977 && !HONOR_NANS (mode)
4978 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4979 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4980 return false_rtx;
4981 else if (true_code == NE && ! side_effects_p (cond)
4982 && !HONOR_NANS (mode)
4983 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4984 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4985 return true_rtx;
4986
4987 /* Look for cases where we have (abs x) or (neg (abs X)). */
4988
4989 if (GET_MODE_CLASS (mode) == MODE_INT
4990 && GET_CODE (false_rtx) == NEG
4991 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4992 && comparison_p
4993 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4994 && ! side_effects_p (true_rtx))
4995 switch (true_code)
4996 {
4997 case GT:
4998 case GE:
4999 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5000 case LT:
5001 case LE:
5002 return
5003 simplify_gen_unary (NEG, mode,
5004 simplify_gen_unary (ABS, mode, true_rtx, mode),
5005 mode);
5006 default:
5007 break;
5008 }
5009
5010 /* Look for MIN or MAX. */
5011
5012 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5013 && comparison_p
5014 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5015 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5016 && ! side_effects_p (cond))
5017 switch (true_code)
5018 {
5019 case GE:
5020 case GT:
5021 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5022 case LE:
5023 case LT:
5024 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5025 case GEU:
5026 case GTU:
5027 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5028 case LEU:
5029 case LTU:
5030 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5031 default:
5032 break;
5033 }
5034
5035 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5036 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5037 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5038 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5039 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5040 neither 1 or -1, but it isn't worth checking for. */
5041
5042 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5043 && comparison_p
5044 && GET_MODE_CLASS (mode) == MODE_INT
5045 && ! side_effects_p (x))
5046 {
5047 rtx t = make_compound_operation (true_rtx, SET);
5048 rtx f = make_compound_operation (false_rtx, SET);
5049 rtx cond_op0 = XEXP (cond, 0);
5050 rtx cond_op1 = XEXP (cond, 1);
5051 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5052 enum machine_mode m = mode;
5053 rtx z = 0, c1 = NULL_RTX;
5054
5055 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5056 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5057 || GET_CODE (t) == ASHIFT
5058 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5059 && rtx_equal_p (XEXP (t, 0), f))
5060 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5061
5062 /* If an identity-zero op is commutative, check whether there
5063 would be a match if we swapped the operands. */
5064 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5065 || GET_CODE (t) == XOR)
5066 && rtx_equal_p (XEXP (t, 1), f))
5067 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5068 else if (GET_CODE (t) == SIGN_EXTEND
5069 && (GET_CODE (XEXP (t, 0)) == PLUS
5070 || GET_CODE (XEXP (t, 0)) == MINUS
5071 || GET_CODE (XEXP (t, 0)) == IOR
5072 || GET_CODE (XEXP (t, 0)) == XOR
5073 || GET_CODE (XEXP (t, 0)) == ASHIFT
5074 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5075 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5076 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5077 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5078 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5079 && (num_sign_bit_copies (f, GET_MODE (f))
5080 > (unsigned int)
5081 (GET_MODE_BITSIZE (mode)
5082 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5083 {
5084 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5085 extend_op = SIGN_EXTEND;
5086 m = GET_MODE (XEXP (t, 0));
5087 }
5088 else if (GET_CODE (t) == SIGN_EXTEND
5089 && (GET_CODE (XEXP (t, 0)) == PLUS
5090 || GET_CODE (XEXP (t, 0)) == IOR
5091 || GET_CODE (XEXP (t, 0)) == XOR)
5092 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5093 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5094 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5095 && (num_sign_bit_copies (f, GET_MODE (f))
5096 > (unsigned int)
5097 (GET_MODE_BITSIZE (mode)
5098 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5099 {
5100 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5101 extend_op = SIGN_EXTEND;
5102 m = GET_MODE (XEXP (t, 0));
5103 }
5104 else if (GET_CODE (t) == ZERO_EXTEND
5105 && (GET_CODE (XEXP (t, 0)) == PLUS
5106 || GET_CODE (XEXP (t, 0)) == MINUS
5107 || GET_CODE (XEXP (t, 0)) == IOR
5108 || GET_CODE (XEXP (t, 0)) == XOR
5109 || GET_CODE (XEXP (t, 0)) == ASHIFT
5110 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5111 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5112 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5113 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5114 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5115 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5116 && ((nonzero_bits (f, GET_MODE (f))
5117 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5118 == 0))
5119 {
5120 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5121 extend_op = ZERO_EXTEND;
5122 m = GET_MODE (XEXP (t, 0));
5123 }
5124 else if (GET_CODE (t) == ZERO_EXTEND
5125 && (GET_CODE (XEXP (t, 0)) == PLUS
5126 || GET_CODE (XEXP (t, 0)) == IOR
5127 || GET_CODE (XEXP (t, 0)) == XOR)
5128 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5129 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5130 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5131 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5132 && ((nonzero_bits (f, GET_MODE (f))
5133 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5134 == 0))
5135 {
5136 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5137 extend_op = ZERO_EXTEND;
5138 m = GET_MODE (XEXP (t, 0));
5139 }
5140
5141 if (z)
5142 {
5143 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5144 cond_op0, cond_op1),
5145 pc_rtx, pc_rtx, 0, 0);
5146 temp = simplify_gen_binary (MULT, m, temp,
5147 simplify_gen_binary (MULT, m, c1,
5148 const_true_rtx));
5149 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5150 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5151
5152 if (extend_op != UNKNOWN)
5153 temp = simplify_gen_unary (extend_op, mode, temp, m);
5154
5155 return temp;
5156 }
5157 }
5158
5159 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5160 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5161 negation of a single bit, we can convert this operation to a shift. We
5162 can actually do this more generally, but it doesn't seem worth it. */
5163
5164 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5165 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5166 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5167 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5168 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5169 == GET_MODE_BITSIZE (mode))
5170 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5171 return
5172 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5173 gen_lowpart (mode, XEXP (cond, 0)), i);
5174
5175 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5176 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5177 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5178 && GET_MODE (XEXP (cond, 0)) == mode
5179 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5180 == nonzero_bits (XEXP (cond, 0), mode)
5181 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5182 return XEXP (cond, 0);
5183
5184 return x;
5185 }
5186 \f
5187 /* Simplify X, a SET expression. Return the new expression. */
5188
5189 static rtx
5190 simplify_set (rtx x)
5191 {
5192 rtx src = SET_SRC (x);
5193 rtx dest = SET_DEST (x);
5194 enum machine_mode mode
5195 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5196 rtx other_insn;
5197 rtx *cc_use;
5198
5199 /* (set (pc) (return)) gets written as (return). */
5200 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5201 return src;
5202
5203 /* Now that we know for sure which bits of SRC we are using, see if we can
5204 simplify the expression for the object knowing that we only need the
5205 low-order bits. */
5206
5207 if (GET_MODE_CLASS (mode) == MODE_INT
5208 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5209 {
5210 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5211 SUBST (SET_SRC (x), src);
5212 }
5213
5214 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5215 the comparison result and try to simplify it unless we already have used
5216 undobuf.other_insn. */
5217 if ((GET_MODE_CLASS (mode) == MODE_CC
5218 || GET_CODE (src) == COMPARE
5219 || CC0_P (dest))
5220 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5221 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5222 && COMPARISON_P (*cc_use)
5223 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5224 {
5225 enum rtx_code old_code = GET_CODE (*cc_use);
5226 enum rtx_code new_code;
5227 rtx op0, op1, tmp;
5228 int other_changed = 0;
5229 enum machine_mode compare_mode = GET_MODE (dest);
5230
5231 if (GET_CODE (src) == COMPARE)
5232 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5233 else
5234 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5235
5236 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5237 op0, op1);
5238 if (!tmp)
5239 new_code = old_code;
5240 else if (!CONSTANT_P (tmp))
5241 {
5242 new_code = GET_CODE (tmp);
5243 op0 = XEXP (tmp, 0);
5244 op1 = XEXP (tmp, 1);
5245 }
5246 else
5247 {
5248 rtx pat = PATTERN (other_insn);
5249 undobuf.other_insn = other_insn;
5250 SUBST (*cc_use, tmp);
5251
5252 /* Attempt to simplify CC user. */
5253 if (GET_CODE (pat) == SET)
5254 {
5255 rtx new = simplify_rtx (SET_SRC (pat));
5256 if (new != NULL_RTX)
5257 SUBST (SET_SRC (pat), new);
5258 }
5259
5260 /* Convert X into a no-op move. */
5261 SUBST (SET_DEST (x), pc_rtx);
5262 SUBST (SET_SRC (x), pc_rtx);
5263 return x;
5264 }
5265
5266 /* Simplify our comparison, if possible. */
5267 new_code = simplify_comparison (new_code, &op0, &op1);
5268
5269 #ifdef SELECT_CC_MODE
5270 /* If this machine has CC modes other than CCmode, check to see if we
5271 need to use a different CC mode here. */
5272 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5273 compare_mode = GET_MODE (op0);
5274 else
5275 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5276
5277 #ifndef HAVE_cc0
5278 /* If the mode changed, we have to change SET_DEST, the mode in the
5279 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5280 a hard register, just build new versions with the proper mode. If it
5281 is a pseudo, we lose unless it is only time we set the pseudo, in
5282 which case we can safely change its mode. */
5283 if (compare_mode != GET_MODE (dest))
5284 {
5285 unsigned int regno = REGNO (dest);
5286 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5287
5288 if (regno < FIRST_PSEUDO_REGISTER
5289 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5290 {
5291 if (regno >= FIRST_PSEUDO_REGISTER)
5292 SUBST (regno_reg_rtx[regno], new_dest);
5293
5294 SUBST (SET_DEST (x), new_dest);
5295 SUBST (XEXP (*cc_use, 0), new_dest);
5296 other_changed = 1;
5297
5298 dest = new_dest;
5299 }
5300 }
5301 #endif /* cc0 */
5302 #endif /* SELECT_CC_MODE */
5303
5304 /* If the code changed, we have to build a new comparison in
5305 undobuf.other_insn. */
5306 if (new_code != old_code)
5307 {
5308 int other_changed_previously = other_changed;
5309 unsigned HOST_WIDE_INT mask;
5310
5311 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5312 dest, const0_rtx));
5313 other_changed = 1;
5314
5315 /* If the only change we made was to change an EQ into an NE or
5316 vice versa, OP0 has only one bit that might be nonzero, and OP1
5317 is zero, check if changing the user of the condition code will
5318 produce a valid insn. If it won't, we can keep the original code
5319 in that insn by surrounding our operation with an XOR. */
5320
5321 if (((old_code == NE && new_code == EQ)
5322 || (old_code == EQ && new_code == NE))
5323 && ! other_changed_previously && op1 == const0_rtx
5324 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5325 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5326 {
5327 rtx pat = PATTERN (other_insn), note = 0;
5328
5329 if ((recog_for_combine (&pat, other_insn, &note) < 0
5330 && ! check_asm_operands (pat)))
5331 {
5332 PUT_CODE (*cc_use, old_code);
5333 other_changed = 0;
5334
5335 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5336 op0, GEN_INT (mask));
5337 }
5338 }
5339 }
5340
5341 if (other_changed)
5342 undobuf.other_insn = other_insn;
5343
5344 #ifdef HAVE_cc0
5345 /* If we are now comparing against zero, change our source if
5346 needed. If we do not use cc0, we always have a COMPARE. */
5347 if (op1 == const0_rtx && dest == cc0_rtx)
5348 {
5349 SUBST (SET_SRC (x), op0);
5350 src = op0;
5351 }
5352 else
5353 #endif
5354
5355 /* Otherwise, if we didn't previously have a COMPARE in the
5356 correct mode, we need one. */
5357 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5358 {
5359 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5360 src = SET_SRC (x);
5361 }
5362 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5363 {
5364 SUBST(SET_SRC (x), op0);
5365 src = SET_SRC (x);
5366 }
5367 else
5368 {
5369 /* Otherwise, update the COMPARE if needed. */
5370 SUBST (XEXP (src, 0), op0);
5371 SUBST (XEXP (src, 1), op1);
5372 }
5373 }
5374 else
5375 {
5376 /* Get SET_SRC in a form where we have placed back any
5377 compound expressions. Then do the checks below. */
5378 src = make_compound_operation (src, SET);
5379 SUBST (SET_SRC (x), src);
5380 }
5381
5382 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5383 and X being a REG or (subreg (reg)), we may be able to convert this to
5384 (set (subreg:m2 x) (op)).
5385
5386 We can always do this if M1 is narrower than M2 because that means that
5387 we only care about the low bits of the result.
5388
5389 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5390 perform a narrower operation than requested since the high-order bits will
5391 be undefined. On machine where it is defined, this transformation is safe
5392 as long as M1 and M2 have the same number of words. */
5393
5394 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5395 && !OBJECT_P (SUBREG_REG (src))
5396 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5397 / UNITS_PER_WORD)
5398 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5399 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5400 #ifndef WORD_REGISTER_OPERATIONS
5401 && (GET_MODE_SIZE (GET_MODE (src))
5402 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5403 #endif
5404 #ifdef CANNOT_CHANGE_MODE_CLASS
5405 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5406 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5407 GET_MODE (SUBREG_REG (src)),
5408 GET_MODE (src)))
5409 #endif
5410 && (REG_P (dest)
5411 || (GET_CODE (dest) == SUBREG
5412 && REG_P (SUBREG_REG (dest)))))
5413 {
5414 SUBST (SET_DEST (x),
5415 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5416 dest));
5417 SUBST (SET_SRC (x), SUBREG_REG (src));
5418
5419 src = SET_SRC (x), dest = SET_DEST (x);
5420 }
5421
5422 #ifdef HAVE_cc0
5423 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5424 in SRC. */
5425 if (dest == cc0_rtx
5426 && GET_CODE (src) == SUBREG
5427 && subreg_lowpart_p (src)
5428 && (GET_MODE_BITSIZE (GET_MODE (src))
5429 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5430 {
5431 rtx inner = SUBREG_REG (src);
5432 enum machine_mode inner_mode = GET_MODE (inner);
5433
5434 /* Here we make sure that we don't have a sign bit on. */
5435 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5436 && (nonzero_bits (inner, inner_mode)
5437 < ((unsigned HOST_WIDE_INT) 1
5438 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5439 {
5440 SUBST (SET_SRC (x), inner);
5441 src = SET_SRC (x);
5442 }
5443 }
5444 #endif
5445
5446 #ifdef LOAD_EXTEND_OP
5447 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5448 would require a paradoxical subreg. Replace the subreg with a
5449 zero_extend to avoid the reload that would otherwise be required. */
5450
5451 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5452 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5453 && SUBREG_BYTE (src) == 0
5454 && (GET_MODE_SIZE (GET_MODE (src))
5455 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5456 && MEM_P (SUBREG_REG (src)))
5457 {
5458 SUBST (SET_SRC (x),
5459 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5460 GET_MODE (src), SUBREG_REG (src)));
5461
5462 src = SET_SRC (x);
5463 }
5464 #endif
5465
5466 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5467 are comparing an item known to be 0 or -1 against 0, use a logical
5468 operation instead. Check for one of the arms being an IOR of the other
5469 arm with some value. We compute three terms to be IOR'ed together. In
5470 practice, at most two will be nonzero. Then we do the IOR's. */
5471
5472 if (GET_CODE (dest) != PC
5473 && GET_CODE (src) == IF_THEN_ELSE
5474 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5475 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5476 && XEXP (XEXP (src, 0), 1) == const0_rtx
5477 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5478 #ifdef HAVE_conditional_move
5479 && ! can_conditionally_move_p (GET_MODE (src))
5480 #endif
5481 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5482 GET_MODE (XEXP (XEXP (src, 0), 0)))
5483 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5484 && ! side_effects_p (src))
5485 {
5486 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5487 ? XEXP (src, 1) : XEXP (src, 2));
5488 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5489 ? XEXP (src, 2) : XEXP (src, 1));
5490 rtx term1 = const0_rtx, term2, term3;
5491
5492 if (GET_CODE (true_rtx) == IOR
5493 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5494 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5495 else if (GET_CODE (true_rtx) == IOR
5496 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5497 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5498 else if (GET_CODE (false_rtx) == IOR
5499 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5500 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5501 else if (GET_CODE (false_rtx) == IOR
5502 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5503 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5504
5505 term2 = simplify_gen_binary (AND, GET_MODE (src),
5506 XEXP (XEXP (src, 0), 0), true_rtx);
5507 term3 = simplify_gen_binary (AND, GET_MODE (src),
5508 simplify_gen_unary (NOT, GET_MODE (src),
5509 XEXP (XEXP (src, 0), 0),
5510 GET_MODE (src)),
5511 false_rtx);
5512
5513 SUBST (SET_SRC (x),
5514 simplify_gen_binary (IOR, GET_MODE (src),
5515 simplify_gen_binary (IOR, GET_MODE (src),
5516 term1, term2),
5517 term3));
5518
5519 src = SET_SRC (x);
5520 }
5521
5522 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5523 whole thing fail. */
5524 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5525 return src;
5526 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5527 return dest;
5528 else
5529 /* Convert this into a field assignment operation, if possible. */
5530 return make_field_assignment (x);
5531 }
5532 \f
5533 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5534 result. */
5535
5536 static rtx
5537 simplify_logical (rtx x)
5538 {
5539 enum machine_mode mode = GET_MODE (x);
5540 rtx op0 = XEXP (x, 0);
5541 rtx op1 = XEXP (x, 1);
5542 rtx reversed;
5543
5544 switch (GET_CODE (x))
5545 {
5546 case AND:
5547 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5548 insn (and may simplify more). */
5549 if (GET_CODE (op0) == XOR
5550 && rtx_equal_p (XEXP (op0, 0), op1)
5551 && ! side_effects_p (op1))
5552 x = simplify_gen_binary (AND, mode,
5553 simplify_gen_unary (NOT, mode,
5554 XEXP (op0, 1), mode),
5555 op1);
5556
5557 if (GET_CODE (op0) == XOR
5558 && rtx_equal_p (XEXP (op0, 1), op1)
5559 && ! side_effects_p (op1))
5560 x = simplify_gen_binary (AND, mode,
5561 simplify_gen_unary (NOT, mode,
5562 XEXP (op0, 0), mode),
5563 op1);
5564
5565 /* Similarly for (~(A ^ B)) & A. */
5566 if (GET_CODE (op0) == NOT
5567 && GET_CODE (XEXP (op0, 0)) == XOR
5568 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5569 && ! side_effects_p (op1))
5570 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5571
5572 if (GET_CODE (op0) == NOT
5573 && GET_CODE (XEXP (op0, 0)) == XOR
5574 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5575 && ! side_effects_p (op1))
5576 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5577
5578 /* We can call simplify_and_const_int only if we don't lose
5579 any (sign) bits when converting INTVAL (op1) to
5580 "unsigned HOST_WIDE_INT". */
5581 if (GET_CODE (op1) == CONST_INT
5582 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5583 || INTVAL (op1) > 0))
5584 {
5585 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5586
5587 /* If we have (ior (and (X C1) C2)) and the next restart would be
5588 the last, simplify this by making C1 as small as possible
5589 and then exit. Only do this if C1 actually changes: for now
5590 this only saves memory but, should this transformation be
5591 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5592 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5593 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5594 && GET_CODE (op1) == CONST_INT
5595 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5596 return simplify_gen_binary (IOR, mode,
5597 simplify_gen_binary
5598 (AND, mode, XEXP (op0, 0),
5599 GEN_INT (INTVAL (XEXP (op0, 1))
5600 & ~INTVAL (op1))), op1);
5601
5602 if (GET_CODE (x) != AND)
5603 return x;
5604
5605 op0 = XEXP (x, 0);
5606 op1 = XEXP (x, 1);
5607 }
5608
5609 /* Convert (A | B) & A to A. */
5610 if (GET_CODE (op0) == IOR
5611 && (rtx_equal_p (XEXP (op0, 0), op1)
5612 || rtx_equal_p (XEXP (op0, 1), op1))
5613 && ! side_effects_p (XEXP (op0, 0))
5614 && ! side_effects_p (XEXP (op0, 1)))
5615 return op1;
5616
5617 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5618 apply the distributive law and then the inverse distributive
5619 law to see if things simplify. */
5620 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5621 {
5622 rtx result = distribute_and_simplify_rtx (x, 0);
5623 if (result)
5624 return result;
5625 }
5626 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5627 {
5628 rtx result = distribute_and_simplify_rtx (x, 1);
5629 if (result)
5630 return result;
5631 }
5632 break;
5633
5634 case IOR:
5635 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5636 if (GET_CODE (op1) == CONST_INT
5637 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5638 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5639 return op1;
5640
5641 /* Convert (A & B) | A to A. */
5642 if (GET_CODE (op0) == AND
5643 && (rtx_equal_p (XEXP (op0, 0), op1)
5644 || rtx_equal_p (XEXP (op0, 1), op1))
5645 && ! side_effects_p (XEXP (op0, 0))
5646 && ! side_effects_p (XEXP (op0, 1)))
5647 return op1;
5648
5649 /* If we have (ior (and A B) C), apply the distributive law and then
5650 the inverse distributive law to see if things simplify. */
5651
5652 if (GET_CODE (op0) == AND)
5653 {
5654 rtx result = distribute_and_simplify_rtx (x, 0);
5655 if (result)
5656 return result;
5657 }
5658
5659 if (GET_CODE (op1) == AND)
5660 {
5661 rtx result = distribute_and_simplify_rtx (x, 1);
5662 if (result)
5663 return result;
5664 }
5665
5666 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5667 mode size to (rotate A CX). */
5668
5669 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5670 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5671 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5672 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5673 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5674 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5675 == GET_MODE_BITSIZE (mode)))
5676 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5677 (GET_CODE (op0) == ASHIFT
5678 ? XEXP (op0, 1) : XEXP (op1, 1)));
5679
5680 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5681 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5682 does not affect any of the bits in OP1, it can really be done
5683 as a PLUS and we can associate. We do this by seeing if OP1
5684 can be safely shifted left C bits. */
5685 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5686 && GET_CODE (XEXP (op0, 0)) == PLUS
5687 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5688 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5689 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5690 {
5691 int count = INTVAL (XEXP (op0, 1));
5692 HOST_WIDE_INT mask = INTVAL (op1) << count;
5693
5694 if (mask >> count == INTVAL (op1)
5695 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5696 {
5697 SUBST (XEXP (XEXP (op0, 0), 1),
5698 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5699 return op0;
5700 }
5701 }
5702 break;
5703
5704 case XOR:
5705 /* If we are XORing two things that have no bits in common,
5706 convert them into an IOR. This helps to detect rotation encoded
5707 using those methods and possibly other simplifications. */
5708
5709 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5710 && (nonzero_bits (op0, mode)
5711 & nonzero_bits (op1, mode)) == 0)
5712 return (simplify_gen_binary (IOR, mode, op0, op1));
5713
5714 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5715 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5716 (NOT y). */
5717 {
5718 int num_negated = 0;
5719
5720 if (GET_CODE (op0) == NOT)
5721 num_negated++, op0 = XEXP (op0, 0);
5722 if (GET_CODE (op1) == NOT)
5723 num_negated++, op1 = XEXP (op1, 0);
5724
5725 if (num_negated == 2)
5726 {
5727 SUBST (XEXP (x, 0), op0);
5728 SUBST (XEXP (x, 1), op1);
5729 }
5730 else if (num_negated == 1)
5731 return
5732 simplify_gen_unary (NOT, mode,
5733 simplify_gen_binary (XOR, mode, op0, op1),
5734 mode);
5735 }
5736
5737 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5738 correspond to a machine insn or result in further simplifications
5739 if B is a constant. */
5740
5741 if (GET_CODE (op0) == AND
5742 && rtx_equal_p (XEXP (op0, 1), op1)
5743 && ! side_effects_p (op1))
5744 return simplify_gen_binary (AND, mode,
5745 simplify_gen_unary (NOT, mode,
5746 XEXP (op0, 0), mode),
5747 op1);
5748
5749 else if (GET_CODE (op0) == AND
5750 && rtx_equal_p (XEXP (op0, 0), op1)
5751 && ! side_effects_p (op1))
5752 return simplify_gen_binary (AND, mode,
5753 simplify_gen_unary (NOT, mode,
5754 XEXP (op0, 1), mode),
5755 op1);
5756
5757 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5758 comparison if STORE_FLAG_VALUE is 1. */
5759 if (STORE_FLAG_VALUE == 1
5760 && op1 == const1_rtx
5761 && COMPARISON_P (op0)
5762 && (reversed = reversed_comparison (op0, mode)))
5763 return reversed;
5764
5765 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5766 is (lt foo (const_int 0)), so we can perform the above
5767 simplification if STORE_FLAG_VALUE is 1. */
5768
5769 if (STORE_FLAG_VALUE == 1
5770 && op1 == const1_rtx
5771 && GET_CODE (op0) == LSHIFTRT
5772 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5773 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5774 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5775
5776 /* (xor (comparison foo bar) (const_int sign-bit))
5777 when STORE_FLAG_VALUE is the sign bit. */
5778 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5779 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5780 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5781 && op1 == const_true_rtx
5782 && COMPARISON_P (op0)
5783 && (reversed = reversed_comparison (op0, mode)))
5784 return reversed;
5785
5786 break;
5787
5788 default:
5789 gcc_unreachable ();
5790 }
5791
5792 return x;
5793 }
5794 \f
5795 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5796 operations" because they can be replaced with two more basic operations.
5797 ZERO_EXTEND is also considered "compound" because it can be replaced with
5798 an AND operation, which is simpler, though only one operation.
5799
5800 The function expand_compound_operation is called with an rtx expression
5801 and will convert it to the appropriate shifts and AND operations,
5802 simplifying at each stage.
5803
5804 The function make_compound_operation is called to convert an expression
5805 consisting of shifts and ANDs into the equivalent compound expression.
5806 It is the inverse of this function, loosely speaking. */
5807
5808 static rtx
5809 expand_compound_operation (rtx x)
5810 {
5811 unsigned HOST_WIDE_INT pos = 0, len;
5812 int unsignedp = 0;
5813 unsigned int modewidth;
5814 rtx tem;
5815
5816 switch (GET_CODE (x))
5817 {
5818 case ZERO_EXTEND:
5819 unsignedp = 1;
5820 case SIGN_EXTEND:
5821 /* We can't necessarily use a const_int for a multiword mode;
5822 it depends on implicitly extending the value.
5823 Since we don't know the right way to extend it,
5824 we can't tell whether the implicit way is right.
5825
5826 Even for a mode that is no wider than a const_int,
5827 we can't win, because we need to sign extend one of its bits through
5828 the rest of it, and we don't know which bit. */
5829 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5830 return x;
5831
5832 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5833 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5834 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5835 reloaded. If not for that, MEM's would very rarely be safe.
5836
5837 Reject MODEs bigger than a word, because we might not be able
5838 to reference a two-register group starting with an arbitrary register
5839 (and currently gen_lowpart might crash for a SUBREG). */
5840
5841 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5842 return x;
5843
5844 /* Reject MODEs that aren't scalar integers because turning vector
5845 or complex modes into shifts causes problems. */
5846
5847 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5848 return x;
5849
5850 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5851 /* If the inner object has VOIDmode (the only way this can happen
5852 is if it is an ASM_OPERANDS), we can't do anything since we don't
5853 know how much masking to do. */
5854 if (len == 0)
5855 return x;
5856
5857 break;
5858
5859 case ZERO_EXTRACT:
5860 unsignedp = 1;
5861
5862 /* ... fall through ... */
5863
5864 case SIGN_EXTRACT:
5865 /* If the operand is a CLOBBER, just return it. */
5866 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5867 return XEXP (x, 0);
5868
5869 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5870 || GET_CODE (XEXP (x, 2)) != CONST_INT
5871 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5872 return x;
5873
5874 /* Reject MODEs that aren't scalar integers because turning vector
5875 or complex modes into shifts causes problems. */
5876
5877 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5878 return x;
5879
5880 len = INTVAL (XEXP (x, 1));
5881 pos = INTVAL (XEXP (x, 2));
5882
5883 /* If this goes outside the object being extracted, replace the object
5884 with a (use (mem ...)) construct that only combine understands
5885 and is used only for this purpose. */
5886 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5887 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5888
5889 if (BITS_BIG_ENDIAN)
5890 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5891
5892 break;
5893
5894 default:
5895 return x;
5896 }
5897 /* Convert sign extension to zero extension, if we know that the high
5898 bit is not set, as this is easier to optimize. It will be converted
5899 back to cheaper alternative in make_extraction. */
5900 if (GET_CODE (x) == SIGN_EXTEND
5901 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5902 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5903 & ~(((unsigned HOST_WIDE_INT)
5904 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5905 >> 1))
5906 == 0)))
5907 {
5908 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5909 rtx temp2 = expand_compound_operation (temp);
5910
5911 /* Make sure this is a profitable operation. */
5912 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5913 return temp2;
5914 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5915 return temp;
5916 else
5917 return x;
5918 }
5919
5920 /* We can optimize some special cases of ZERO_EXTEND. */
5921 if (GET_CODE (x) == ZERO_EXTEND)
5922 {
5923 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5924 know that the last value didn't have any inappropriate bits
5925 set. */
5926 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5927 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5928 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5929 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5930 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5931 return XEXP (XEXP (x, 0), 0);
5932
5933 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5934 if (GET_CODE (XEXP (x, 0)) == SUBREG
5935 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5936 && subreg_lowpart_p (XEXP (x, 0))
5937 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5938 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5939 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5940 return SUBREG_REG (XEXP (x, 0));
5941
5942 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5943 is a comparison and STORE_FLAG_VALUE permits. This is like
5944 the first case, but it works even when GET_MODE (x) is larger
5945 than HOST_WIDE_INT. */
5946 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5947 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5948 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5949 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5950 <= HOST_BITS_PER_WIDE_INT)
5951 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5952 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5953 return XEXP (XEXP (x, 0), 0);
5954
5955 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5956 if (GET_CODE (XEXP (x, 0)) == SUBREG
5957 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5958 && subreg_lowpart_p (XEXP (x, 0))
5959 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5960 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5961 <= HOST_BITS_PER_WIDE_INT)
5962 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5963 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5964 return SUBREG_REG (XEXP (x, 0));
5965
5966 }
5967
5968 /* If we reach here, we want to return a pair of shifts. The inner
5969 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5970 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5971 logical depending on the value of UNSIGNEDP.
5972
5973 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5974 converted into an AND of a shift.
5975
5976 We must check for the case where the left shift would have a negative
5977 count. This can happen in a case like (x >> 31) & 255 on machines
5978 that can't shift by a constant. On those machines, we would first
5979 combine the shift with the AND to produce a variable-position
5980 extraction. Then the constant of 31 would be substituted in to produce
5981 a such a position. */
5982
5983 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5984 if (modewidth + len >= pos)
5985 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5986 GET_MODE (x),
5987 simplify_shift_const (NULL_RTX, ASHIFT,
5988 GET_MODE (x),
5989 XEXP (x, 0),
5990 modewidth - pos - len),
5991 modewidth - len);
5992
5993 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5994 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5995 simplify_shift_const (NULL_RTX, LSHIFTRT,
5996 GET_MODE (x),
5997 XEXP (x, 0), pos),
5998 ((HOST_WIDE_INT) 1 << len) - 1);
5999 else
6000 /* Any other cases we can't handle. */
6001 return x;
6002
6003 /* If we couldn't do this for some reason, return the original
6004 expression. */
6005 if (GET_CODE (tem) == CLOBBER)
6006 return x;
6007
6008 return tem;
6009 }
6010 \f
6011 /* X is a SET which contains an assignment of one object into
6012 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6013 or certain SUBREGS). If possible, convert it into a series of
6014 logical operations.
6015
6016 We half-heartedly support variable positions, but do not at all
6017 support variable lengths. */
6018
6019 static rtx
6020 expand_field_assignment (rtx x)
6021 {
6022 rtx inner;
6023 rtx pos; /* Always counts from low bit. */
6024 int len;
6025 rtx mask, cleared, masked;
6026 enum machine_mode compute_mode;
6027
6028 /* Loop until we find something we can't simplify. */
6029 while (1)
6030 {
6031 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6032 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6033 {
6034 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6035 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6036 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6037 }
6038 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6039 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6040 {
6041 inner = XEXP (SET_DEST (x), 0);
6042 len = INTVAL (XEXP (SET_DEST (x), 1));
6043 pos = XEXP (SET_DEST (x), 2);
6044
6045 /* If the position is constant and spans the width of INNER,
6046 surround INNER with a USE to indicate this. */
6047 if (GET_CODE (pos) == CONST_INT
6048 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6049 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6050
6051 if (BITS_BIG_ENDIAN)
6052 {
6053 if (GET_CODE (pos) == CONST_INT)
6054 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6055 - INTVAL (pos));
6056 else if (GET_CODE (pos) == MINUS
6057 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6058 && (INTVAL (XEXP (pos, 1))
6059 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6060 /* If position is ADJUST - X, new position is X. */
6061 pos = XEXP (pos, 0);
6062 else
6063 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6064 GEN_INT (GET_MODE_BITSIZE (
6065 GET_MODE (inner))
6066 - len),
6067 pos);
6068 }
6069 }
6070
6071 /* A SUBREG between two modes that occupy the same numbers of words
6072 can be done by moving the SUBREG to the source. */
6073 else if (GET_CODE (SET_DEST (x)) == SUBREG
6074 /* We need SUBREGs to compute nonzero_bits properly. */
6075 && nonzero_sign_valid
6076 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6077 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6078 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6079 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6080 {
6081 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6082 gen_lowpart
6083 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6084 SET_SRC (x)));
6085 continue;
6086 }
6087 else
6088 break;
6089
6090 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6091 inner = SUBREG_REG (inner);
6092
6093 compute_mode = GET_MODE (inner);
6094
6095 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6096 if (! SCALAR_INT_MODE_P (compute_mode))
6097 {
6098 enum machine_mode imode;
6099
6100 /* Don't do anything for vector or complex integral types. */
6101 if (! FLOAT_MODE_P (compute_mode))
6102 break;
6103
6104 /* Try to find an integral mode to pun with. */
6105 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6106 if (imode == BLKmode)
6107 break;
6108
6109 compute_mode = imode;
6110 inner = gen_lowpart (imode, inner);
6111 }
6112
6113 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6114 if (len >= HOST_BITS_PER_WIDE_INT)
6115 break;
6116
6117 /* Now compute the equivalent expression. Make a copy of INNER
6118 for the SET_DEST in case it is a MEM into which we will substitute;
6119 we don't want shared RTL in that case. */
6120 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6121 cleared = simplify_gen_binary (AND, compute_mode,
6122 simplify_gen_unary (NOT, compute_mode,
6123 simplify_gen_binary (ASHIFT,
6124 compute_mode,
6125 mask, pos),
6126 compute_mode),
6127 inner);
6128 masked = simplify_gen_binary (ASHIFT, compute_mode,
6129 simplify_gen_binary (
6130 AND, compute_mode,
6131 gen_lowpart (compute_mode, SET_SRC (x)),
6132 mask),
6133 pos);
6134
6135 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6136 simplify_gen_binary (IOR, compute_mode,
6137 cleared, masked));
6138 }
6139
6140 return x;
6141 }
6142 \f
6143 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6144 it is an RTX that represents a variable starting position; otherwise,
6145 POS is the (constant) starting bit position (counted from the LSB).
6146
6147 INNER may be a USE. This will occur when we started with a bitfield
6148 that went outside the boundary of the object in memory, which is
6149 allowed on most machines. To isolate this case, we produce a USE
6150 whose mode is wide enough and surround the MEM with it. The only
6151 code that understands the USE is this routine. If it is not removed,
6152 it will cause the resulting insn not to match.
6153
6154 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6155 signed reference.
6156
6157 IN_DEST is nonzero if this is a reference in the destination of a
6158 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6159 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6160 be used.
6161
6162 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6163 ZERO_EXTRACT should be built even for bits starting at bit 0.
6164
6165 MODE is the desired mode of the result (if IN_DEST == 0).
6166
6167 The result is an RTX for the extraction or NULL_RTX if the target
6168 can't handle it. */
6169
6170 static rtx
6171 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6172 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6173 int in_dest, int in_compare)
6174 {
6175 /* This mode describes the size of the storage area
6176 to fetch the overall value from. Within that, we
6177 ignore the POS lowest bits, etc. */
6178 enum machine_mode is_mode = GET_MODE (inner);
6179 enum machine_mode inner_mode;
6180 enum machine_mode wanted_inner_mode = byte_mode;
6181 enum machine_mode wanted_inner_reg_mode = word_mode;
6182 enum machine_mode pos_mode = word_mode;
6183 enum machine_mode extraction_mode = word_mode;
6184 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6185 int spans_byte = 0;
6186 rtx new = 0;
6187 rtx orig_pos_rtx = pos_rtx;
6188 HOST_WIDE_INT orig_pos;
6189
6190 /* Get some information about INNER and get the innermost object. */
6191 if (GET_CODE (inner) == USE)
6192 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6193 /* We don't need to adjust the position because we set up the USE
6194 to pretend that it was a full-word object. */
6195 spans_byte = 1, inner = XEXP (inner, 0);
6196 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6197 {
6198 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6199 consider just the QI as the memory to extract from.
6200 The subreg adds or removes high bits; its mode is
6201 irrelevant to the meaning of this extraction,
6202 since POS and LEN count from the lsb. */
6203 if (MEM_P (SUBREG_REG (inner)))
6204 is_mode = GET_MODE (SUBREG_REG (inner));
6205 inner = SUBREG_REG (inner);
6206 }
6207 else if (GET_CODE (inner) == ASHIFT
6208 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6209 && pos_rtx == 0 && pos == 0
6210 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6211 {
6212 /* We're extracting the least significant bits of an rtx
6213 (ashift X (const_int C)), where LEN > C. Extract the
6214 least significant (LEN - C) bits of X, giving an rtx
6215 whose mode is MODE, then shift it left C times. */
6216 new = make_extraction (mode, XEXP (inner, 0),
6217 0, 0, len - INTVAL (XEXP (inner, 1)),
6218 unsignedp, in_dest, in_compare);
6219 if (new != 0)
6220 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6221 }
6222
6223 inner_mode = GET_MODE (inner);
6224
6225 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6226 pos = INTVAL (pos_rtx), pos_rtx = 0;
6227
6228 /* See if this can be done without an extraction. We never can if the
6229 width of the field is not the same as that of some integer mode. For
6230 registers, we can only avoid the extraction if the position is at the
6231 low-order bit and this is either not in the destination or we have the
6232 appropriate STRICT_LOW_PART operation available.
6233
6234 For MEM, we can avoid an extract if the field starts on an appropriate
6235 boundary and we can change the mode of the memory reference. However,
6236 we cannot directly access the MEM if we have a USE and the underlying
6237 MEM is not TMODE. This combination means that MEM was being used in a
6238 context where bits outside its mode were being referenced; that is only
6239 valid in bit-field insns. */
6240
6241 if (tmode != BLKmode
6242 && ! (spans_byte && inner_mode != tmode)
6243 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6244 && !MEM_P (inner)
6245 && (! in_dest
6246 || (REG_P (inner)
6247 && have_insn_for (STRICT_LOW_PART, tmode))))
6248 || (MEM_P (inner) && pos_rtx == 0
6249 && (pos
6250 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6251 : BITS_PER_UNIT)) == 0
6252 /* We can't do this if we are widening INNER_MODE (it
6253 may not be aligned, for one thing). */
6254 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6255 && (inner_mode == tmode
6256 || (! mode_dependent_address_p (XEXP (inner, 0))
6257 && ! MEM_VOLATILE_P (inner))))))
6258 {
6259 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6260 field. If the original and current mode are the same, we need not
6261 adjust the offset. Otherwise, we do if bytes big endian.
6262
6263 If INNER is not a MEM, get a piece consisting of just the field
6264 of interest (in this case POS % BITS_PER_WORD must be 0). */
6265
6266 if (MEM_P (inner))
6267 {
6268 HOST_WIDE_INT offset;
6269
6270 /* POS counts from lsb, but make OFFSET count in memory order. */
6271 if (BYTES_BIG_ENDIAN)
6272 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6273 else
6274 offset = pos / BITS_PER_UNIT;
6275
6276 new = adjust_address_nv (inner, tmode, offset);
6277 }
6278 else if (REG_P (inner))
6279 {
6280 if (tmode != inner_mode)
6281 {
6282 /* We can't call gen_lowpart in a DEST since we
6283 always want a SUBREG (see below) and it would sometimes
6284 return a new hard register. */
6285 if (pos || in_dest)
6286 {
6287 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6288
6289 if (WORDS_BIG_ENDIAN
6290 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6291 final_word = ((GET_MODE_SIZE (inner_mode)
6292 - GET_MODE_SIZE (tmode))
6293 / UNITS_PER_WORD) - final_word;
6294
6295 final_word *= UNITS_PER_WORD;
6296 if (BYTES_BIG_ENDIAN &&
6297 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6298 final_word += (GET_MODE_SIZE (inner_mode)
6299 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6300
6301 /* Avoid creating invalid subregs, for example when
6302 simplifying (x>>32)&255. */
6303 if (final_word >= GET_MODE_SIZE (inner_mode))
6304 return NULL_RTX;
6305
6306 new = gen_rtx_SUBREG (tmode, inner, final_word);
6307 }
6308 else
6309 new = gen_lowpart (tmode, inner);
6310 }
6311 else
6312 new = inner;
6313 }
6314 else
6315 new = force_to_mode (inner, tmode,
6316 len >= HOST_BITS_PER_WIDE_INT
6317 ? ~(unsigned HOST_WIDE_INT) 0
6318 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6319 NULL_RTX, 0);
6320
6321 /* If this extraction is going into the destination of a SET,
6322 make a STRICT_LOW_PART unless we made a MEM. */
6323
6324 if (in_dest)
6325 return (MEM_P (new) ? new
6326 : (GET_CODE (new) != SUBREG
6327 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6328 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6329
6330 if (mode == tmode)
6331 return new;
6332
6333 if (GET_CODE (new) == CONST_INT)
6334 return gen_int_mode (INTVAL (new), mode);
6335
6336 /* If we know that no extraneous bits are set, and that the high
6337 bit is not set, convert the extraction to the cheaper of
6338 sign and zero extension, that are equivalent in these cases. */
6339 if (flag_expensive_optimizations
6340 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6341 && ((nonzero_bits (new, tmode)
6342 & ~(((unsigned HOST_WIDE_INT)
6343 GET_MODE_MASK (tmode))
6344 >> 1))
6345 == 0)))
6346 {
6347 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6348 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6349
6350 /* Prefer ZERO_EXTENSION, since it gives more information to
6351 backends. */
6352 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6353 return temp;
6354 return temp1;
6355 }
6356
6357 /* Otherwise, sign- or zero-extend unless we already are in the
6358 proper mode. */
6359
6360 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6361 mode, new));
6362 }
6363
6364 /* Unless this is a COMPARE or we have a funny memory reference,
6365 don't do anything with zero-extending field extracts starting at
6366 the low-order bit since they are simple AND operations. */
6367 if (pos_rtx == 0 && pos == 0 && ! in_dest
6368 && ! in_compare && ! spans_byte && unsignedp)
6369 return 0;
6370
6371 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6372 we would be spanning bytes or if the position is not a constant and the
6373 length is not 1. In all other cases, we would only be going outside
6374 our object in cases when an original shift would have been
6375 undefined. */
6376 if (! spans_byte && MEM_P (inner)
6377 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6378 || (pos_rtx != 0 && len != 1)))
6379 return 0;
6380
6381 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6382 and the mode for the result. */
6383 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6384 {
6385 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6386 pos_mode = mode_for_extraction (EP_insv, 2);
6387 extraction_mode = mode_for_extraction (EP_insv, 3);
6388 }
6389
6390 if (! in_dest && unsignedp
6391 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6392 {
6393 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6394 pos_mode = mode_for_extraction (EP_extzv, 3);
6395 extraction_mode = mode_for_extraction (EP_extzv, 0);
6396 }
6397
6398 if (! in_dest && ! unsignedp
6399 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6400 {
6401 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6402 pos_mode = mode_for_extraction (EP_extv, 3);
6403 extraction_mode = mode_for_extraction (EP_extv, 0);
6404 }
6405
6406 /* Never narrow an object, since that might not be safe. */
6407
6408 if (mode != VOIDmode
6409 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6410 extraction_mode = mode;
6411
6412 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6413 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6414 pos_mode = GET_MODE (pos_rtx);
6415
6416 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6417 if we have to change the mode of memory and cannot, the desired mode is
6418 EXTRACTION_MODE. */
6419 if (!MEM_P (inner))
6420 wanted_inner_mode = wanted_inner_reg_mode;
6421 else if (inner_mode != wanted_inner_mode
6422 && (mode_dependent_address_p (XEXP (inner, 0))
6423 || MEM_VOLATILE_P (inner)))
6424 wanted_inner_mode = extraction_mode;
6425
6426 orig_pos = pos;
6427
6428 if (BITS_BIG_ENDIAN)
6429 {
6430 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6431 BITS_BIG_ENDIAN style. If position is constant, compute new
6432 position. Otherwise, build subtraction.
6433 Note that POS is relative to the mode of the original argument.
6434 If it's a MEM we need to recompute POS relative to that.
6435 However, if we're extracting from (or inserting into) a register,
6436 we want to recompute POS relative to wanted_inner_mode. */
6437 int width = (MEM_P (inner)
6438 ? GET_MODE_BITSIZE (is_mode)
6439 : GET_MODE_BITSIZE (wanted_inner_mode));
6440
6441 if (pos_rtx == 0)
6442 pos = width - len - pos;
6443 else
6444 pos_rtx
6445 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6446 /* POS may be less than 0 now, but we check for that below.
6447 Note that it can only be less than 0 if !MEM_P (inner). */
6448 }
6449
6450 /* If INNER has a wider mode, make it smaller. If this is a constant
6451 extract, try to adjust the byte to point to the byte containing
6452 the value. */
6453 if (wanted_inner_mode != VOIDmode
6454 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6455 && ((MEM_P (inner)
6456 && (inner_mode == wanted_inner_mode
6457 || (! mode_dependent_address_p (XEXP (inner, 0))
6458 && ! MEM_VOLATILE_P (inner))))))
6459 {
6460 int offset = 0;
6461
6462 /* The computations below will be correct if the machine is big
6463 endian in both bits and bytes or little endian in bits and bytes.
6464 If it is mixed, we must adjust. */
6465
6466 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6467 adjust OFFSET to compensate. */
6468 if (BYTES_BIG_ENDIAN
6469 && ! spans_byte
6470 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6471 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6472
6473 /* If this is a constant position, we can move to the desired byte. */
6474 if (pos_rtx == 0)
6475 {
6476 offset += pos / BITS_PER_UNIT;
6477 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6478 }
6479
6480 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6481 && ! spans_byte
6482 && is_mode != wanted_inner_mode)
6483 offset = (GET_MODE_SIZE (is_mode)
6484 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6485
6486 if (offset != 0 || inner_mode != wanted_inner_mode)
6487 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6488 }
6489
6490 /* If INNER is not memory, we can always get it into the proper mode. If we
6491 are changing its mode, POS must be a constant and smaller than the size
6492 of the new mode. */
6493 else if (!MEM_P (inner))
6494 {
6495 if (GET_MODE (inner) != wanted_inner_mode
6496 && (pos_rtx != 0
6497 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6498 return 0;
6499
6500 inner = force_to_mode (inner, wanted_inner_mode,
6501 pos_rtx
6502 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6503 ? ~(unsigned HOST_WIDE_INT) 0
6504 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6505 << orig_pos),
6506 NULL_RTX, 0);
6507 }
6508
6509 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6510 have to zero extend. Otherwise, we can just use a SUBREG. */
6511 if (pos_rtx != 0
6512 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6513 {
6514 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6515
6516 /* If we know that no extraneous bits are set, and that the high
6517 bit is not set, convert extraction to cheaper one - either
6518 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6519 cases. */
6520 if (flag_expensive_optimizations
6521 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6522 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6523 & ~(((unsigned HOST_WIDE_INT)
6524 GET_MODE_MASK (GET_MODE (pos_rtx)))
6525 >> 1))
6526 == 0)))
6527 {
6528 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6529
6530 /* Prefer ZERO_EXTENSION, since it gives more information to
6531 backends. */
6532 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6533 temp = temp1;
6534 }
6535 pos_rtx = temp;
6536 }
6537 else if (pos_rtx != 0
6538 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6539 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6540
6541 /* Make POS_RTX unless we already have it and it is correct. If we don't
6542 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6543 be a CONST_INT. */
6544 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6545 pos_rtx = orig_pos_rtx;
6546
6547 else if (pos_rtx == 0)
6548 pos_rtx = GEN_INT (pos);
6549
6550 /* Make the required operation. See if we can use existing rtx. */
6551 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6552 extraction_mode, inner, GEN_INT (len), pos_rtx);
6553 if (! in_dest)
6554 new = gen_lowpart (mode, new);
6555
6556 return new;
6557 }
6558 \f
6559 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6560 with any other operations in X. Return X without that shift if so. */
6561
6562 static rtx
6563 extract_left_shift (rtx x, int count)
6564 {
6565 enum rtx_code code = GET_CODE (x);
6566 enum machine_mode mode = GET_MODE (x);
6567 rtx tem;
6568
6569 switch (code)
6570 {
6571 case ASHIFT:
6572 /* This is the shift itself. If it is wide enough, we will return
6573 either the value being shifted if the shift count is equal to
6574 COUNT or a shift for the difference. */
6575 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6576 && INTVAL (XEXP (x, 1)) >= count)
6577 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6578 INTVAL (XEXP (x, 1)) - count);
6579 break;
6580
6581 case NEG: case NOT:
6582 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6583 return simplify_gen_unary (code, mode, tem, mode);
6584
6585 break;
6586
6587 case PLUS: case IOR: case XOR: case AND:
6588 /* If we can safely shift this constant and we find the inner shift,
6589 make a new operation. */
6590 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6591 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6592 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6593 return simplify_gen_binary (code, mode, tem,
6594 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6595
6596 break;
6597
6598 default:
6599 break;
6600 }
6601
6602 return 0;
6603 }
6604 \f
6605 /* Look at the expression rooted at X. Look for expressions
6606 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6607 Form these expressions.
6608
6609 Return the new rtx, usually just X.
6610
6611 Also, for machines like the VAX that don't have logical shift insns,
6612 try to convert logical to arithmetic shift operations in cases where
6613 they are equivalent. This undoes the canonicalizations to logical
6614 shifts done elsewhere.
6615
6616 We try, as much as possible, to re-use rtl expressions to save memory.
6617
6618 IN_CODE says what kind of expression we are processing. Normally, it is
6619 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6620 being kludges), it is MEM. When processing the arguments of a comparison
6621 or a COMPARE against zero, it is COMPARE. */
6622
6623 static rtx
6624 make_compound_operation (rtx x, enum rtx_code in_code)
6625 {
6626 enum rtx_code code = GET_CODE (x);
6627 enum machine_mode mode = GET_MODE (x);
6628 int mode_width = GET_MODE_BITSIZE (mode);
6629 rtx rhs, lhs;
6630 enum rtx_code next_code;
6631 int i;
6632 rtx new = 0;
6633 rtx tem;
6634 const char *fmt;
6635
6636 /* Select the code to be used in recursive calls. Once we are inside an
6637 address, we stay there. If we have a comparison, set to COMPARE,
6638 but once inside, go back to our default of SET. */
6639
6640 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6641 : ((code == COMPARE || COMPARISON_P (x))
6642 && XEXP (x, 1) == const0_rtx) ? COMPARE
6643 : in_code == COMPARE ? SET : in_code);
6644
6645 /* Process depending on the code of this operation. If NEW is set
6646 nonzero, it will be returned. */
6647
6648 switch (code)
6649 {
6650 case ASHIFT:
6651 /* Convert shifts by constants into multiplications if inside
6652 an address. */
6653 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6654 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6655 && INTVAL (XEXP (x, 1)) >= 0)
6656 {
6657 new = make_compound_operation (XEXP (x, 0), next_code);
6658 new = gen_rtx_MULT (mode, new,
6659 GEN_INT ((HOST_WIDE_INT) 1
6660 << INTVAL (XEXP (x, 1))));
6661 }
6662 break;
6663
6664 case AND:
6665 /* If the second operand is not a constant, we can't do anything
6666 with it. */
6667 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6668 break;
6669
6670 /* If the constant is a power of two minus one and the first operand
6671 is a logical right shift, make an extraction. */
6672 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6673 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6674 {
6675 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6676 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6677 0, in_code == COMPARE);
6678 }
6679
6680 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6681 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6682 && subreg_lowpart_p (XEXP (x, 0))
6683 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6684 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6685 {
6686 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6687 next_code);
6688 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6689 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6690 0, in_code == COMPARE);
6691 }
6692 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6693 else if ((GET_CODE (XEXP (x, 0)) == XOR
6694 || GET_CODE (XEXP (x, 0)) == IOR)
6695 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6696 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6697 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6698 {
6699 /* Apply the distributive law, and then try to make extractions. */
6700 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6701 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6702 XEXP (x, 1)),
6703 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6704 XEXP (x, 1)));
6705 new = make_compound_operation (new, in_code);
6706 }
6707
6708 /* If we are have (and (rotate X C) M) and C is larger than the number
6709 of bits in M, this is an extraction. */
6710
6711 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6712 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6713 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6714 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6715 {
6716 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6717 new = make_extraction (mode, new,
6718 (GET_MODE_BITSIZE (mode)
6719 - INTVAL (XEXP (XEXP (x, 0), 1))),
6720 NULL_RTX, i, 1, 0, in_code == COMPARE);
6721 }
6722
6723 /* On machines without logical shifts, if the operand of the AND is
6724 a logical shift and our mask turns off all the propagated sign
6725 bits, we can replace the logical shift with an arithmetic shift. */
6726 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6727 && !have_insn_for (LSHIFTRT, mode)
6728 && have_insn_for (ASHIFTRT, mode)
6729 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6730 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6731 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6732 && mode_width <= HOST_BITS_PER_WIDE_INT)
6733 {
6734 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6735
6736 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6737 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6738 SUBST (XEXP (x, 0),
6739 gen_rtx_ASHIFTRT (mode,
6740 make_compound_operation
6741 (XEXP (XEXP (x, 0), 0), next_code),
6742 XEXP (XEXP (x, 0), 1)));
6743 }
6744
6745 /* If the constant is one less than a power of two, this might be
6746 representable by an extraction even if no shift is present.
6747 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6748 we are in a COMPARE. */
6749 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6750 new = make_extraction (mode,
6751 make_compound_operation (XEXP (x, 0),
6752 next_code),
6753 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6754
6755 /* If we are in a comparison and this is an AND with a power of two,
6756 convert this into the appropriate bit extract. */
6757 else if (in_code == COMPARE
6758 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6759 new = make_extraction (mode,
6760 make_compound_operation (XEXP (x, 0),
6761 next_code),
6762 i, NULL_RTX, 1, 1, 0, 1);
6763
6764 break;
6765
6766 case LSHIFTRT:
6767 /* If the sign bit is known to be zero, replace this with an
6768 arithmetic shift. */
6769 if (have_insn_for (ASHIFTRT, mode)
6770 && ! have_insn_for (LSHIFTRT, mode)
6771 && mode_width <= HOST_BITS_PER_WIDE_INT
6772 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6773 {
6774 new = gen_rtx_ASHIFTRT (mode,
6775 make_compound_operation (XEXP (x, 0),
6776 next_code),
6777 XEXP (x, 1));
6778 break;
6779 }
6780
6781 /* ... fall through ... */
6782
6783 case ASHIFTRT:
6784 lhs = XEXP (x, 0);
6785 rhs = XEXP (x, 1);
6786
6787 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6788 this is a SIGN_EXTRACT. */
6789 if (GET_CODE (rhs) == CONST_INT
6790 && GET_CODE (lhs) == ASHIFT
6791 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6792 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6793 {
6794 new = make_compound_operation (XEXP (lhs, 0), next_code);
6795 new = make_extraction (mode, new,
6796 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6797 NULL_RTX, mode_width - INTVAL (rhs),
6798 code == LSHIFTRT, 0, in_code == COMPARE);
6799 break;
6800 }
6801
6802 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6803 If so, try to merge the shifts into a SIGN_EXTEND. We could
6804 also do this for some cases of SIGN_EXTRACT, but it doesn't
6805 seem worth the effort; the case checked for occurs on Alpha. */
6806
6807 if (!OBJECT_P (lhs)
6808 && ! (GET_CODE (lhs) == SUBREG
6809 && (OBJECT_P (SUBREG_REG (lhs))))
6810 && GET_CODE (rhs) == CONST_INT
6811 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6812 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6813 new = make_extraction (mode, make_compound_operation (new, next_code),
6814 0, NULL_RTX, mode_width - INTVAL (rhs),
6815 code == LSHIFTRT, 0, in_code == COMPARE);
6816
6817 break;
6818
6819 case SUBREG:
6820 /* Call ourselves recursively on the inner expression. If we are
6821 narrowing the object and it has a different RTL code from
6822 what it originally did, do this SUBREG as a force_to_mode. */
6823
6824 tem = make_compound_operation (SUBREG_REG (x), in_code);
6825
6826 {
6827 rtx simplified;
6828 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6829 SUBREG_BYTE (x));
6830
6831 if (simplified)
6832 tem = simplified;
6833
6834 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6835 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6836 && subreg_lowpart_p (x))
6837 {
6838 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6839 NULL_RTX, 0);
6840
6841 /* If we have something other than a SUBREG, we might have
6842 done an expansion, so rerun ourselves. */
6843 if (GET_CODE (newer) != SUBREG)
6844 newer = make_compound_operation (newer, in_code);
6845
6846 return newer;
6847 }
6848
6849 if (simplified)
6850 return tem;
6851 }
6852 break;
6853
6854 default:
6855 break;
6856 }
6857
6858 if (new)
6859 {
6860 x = gen_lowpart (mode, new);
6861 code = GET_CODE (x);
6862 }
6863
6864 /* Now recursively process each operand of this operation. */
6865 fmt = GET_RTX_FORMAT (code);
6866 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6867 if (fmt[i] == 'e')
6868 {
6869 new = make_compound_operation (XEXP (x, i), next_code);
6870 SUBST (XEXP (x, i), new);
6871 }
6872
6873 return x;
6874 }
6875 \f
6876 /* Given M see if it is a value that would select a field of bits
6877 within an item, but not the entire word. Return -1 if not.
6878 Otherwise, return the starting position of the field, where 0 is the
6879 low-order bit.
6880
6881 *PLEN is set to the length of the field. */
6882
6883 static int
6884 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6885 {
6886 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6887 int pos = exact_log2 (m & -m);
6888 int len = 0;
6889
6890 if (pos >= 0)
6891 /* Now shift off the low-order zero bits and see if we have a
6892 power of two minus 1. */
6893 len = exact_log2 ((m >> pos) + 1);
6894
6895 if (len <= 0)
6896 pos = -1;
6897
6898 *plen = len;
6899 return pos;
6900 }
6901 \f
6902 /* See if X can be simplified knowing that we will only refer to it in
6903 MODE and will only refer to those bits that are nonzero in MASK.
6904 If other bits are being computed or if masking operations are done
6905 that select a superset of the bits in MASK, they can sometimes be
6906 ignored.
6907
6908 Return a possibly simplified expression, but always convert X to
6909 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6910
6911 Also, if REG is nonzero and X is a register equal in value to REG,
6912 replace X with REG.
6913
6914 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6915 are all off in X. This is used when X will be complemented, by either
6916 NOT, NEG, or XOR. */
6917
6918 static rtx
6919 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6920 rtx reg, int just_select)
6921 {
6922 enum rtx_code code = GET_CODE (x);
6923 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6924 enum machine_mode op_mode;
6925 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6926 rtx op0, op1, temp;
6927
6928 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6929 code below will do the wrong thing since the mode of such an
6930 expression is VOIDmode.
6931
6932 Also do nothing if X is a CLOBBER; this can happen if X was
6933 the return value from a call to gen_lowpart. */
6934 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6935 return x;
6936
6937 /* We want to perform the operation is its present mode unless we know
6938 that the operation is valid in MODE, in which case we do the operation
6939 in MODE. */
6940 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6941 && have_insn_for (code, mode))
6942 ? mode : GET_MODE (x));
6943
6944 /* It is not valid to do a right-shift in a narrower mode
6945 than the one it came in with. */
6946 if ((code == LSHIFTRT || code == ASHIFTRT)
6947 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6948 op_mode = GET_MODE (x);
6949
6950 /* Truncate MASK to fit OP_MODE. */
6951 if (op_mode)
6952 mask &= GET_MODE_MASK (op_mode);
6953
6954 /* When we have an arithmetic operation, or a shift whose count we
6955 do not know, we need to assume that all bits up to the highest-order
6956 bit in MASK will be needed. This is how we form such a mask. */
6957 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6958 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6959 else
6960 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6961 - 1);
6962
6963 /* Determine what bits of X are guaranteed to be (non)zero. */
6964 nonzero = nonzero_bits (x, mode);
6965
6966 /* If none of the bits in X are needed, return a zero. */
6967 if (! just_select && (nonzero & mask) == 0)
6968 x = const0_rtx;
6969
6970 /* If X is a CONST_INT, return a new one. Do this here since the
6971 test below will fail. */
6972 if (GET_CODE (x) == CONST_INT)
6973 {
6974 if (SCALAR_INT_MODE_P (mode))
6975 return gen_int_mode (INTVAL (x) & mask, mode);
6976 else
6977 {
6978 x = GEN_INT (INTVAL (x) & mask);
6979 return gen_lowpart_common (mode, x);
6980 }
6981 }
6982
6983 /* If X is narrower than MODE and we want all the bits in X's mode, just
6984 get X in the proper mode. */
6985 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6986 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6987 return gen_lowpart (mode, x);
6988
6989 switch (code)
6990 {
6991 case CLOBBER:
6992 /* If X is a (clobber (const_int)), return it since we know we are
6993 generating something that won't match. */
6994 return x;
6995
6996 case USE:
6997 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6998 spanned the boundary of the MEM. If we are now masking so it is
6999 within that boundary, we don't need the USE any more. */
7000 if (! BITS_BIG_ENDIAN
7001 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7002 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7003 break;
7004
7005 case SIGN_EXTEND:
7006 case ZERO_EXTEND:
7007 case ZERO_EXTRACT:
7008 case SIGN_EXTRACT:
7009 x = expand_compound_operation (x);
7010 if (GET_CODE (x) != code)
7011 return force_to_mode (x, mode, mask, reg, next_select);
7012 break;
7013
7014 case REG:
7015 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
7016 || rtx_equal_p (reg, get_last_value (x))))
7017 x = reg;
7018 break;
7019
7020 case SUBREG:
7021 if (subreg_lowpart_p (x)
7022 /* We can ignore the effect of this SUBREG if it narrows the mode or
7023 if the constant masks to zero all the bits the mode doesn't
7024 have. */
7025 && ((GET_MODE_SIZE (GET_MODE (x))
7026 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7027 || (0 == (mask
7028 & GET_MODE_MASK (GET_MODE (x))
7029 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7030 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
7031 break;
7032
7033 case AND:
7034 /* If this is an AND with a constant, convert it into an AND
7035 whose constant is the AND of that constant with MASK. If it
7036 remains an AND of MASK, delete it since it is redundant. */
7037
7038 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7039 {
7040 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7041 mask & INTVAL (XEXP (x, 1)));
7042
7043 /* If X is still an AND, see if it is an AND with a mask that
7044 is just some low-order bits. If so, and it is MASK, we don't
7045 need it. */
7046
7047 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7048 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7049 == mask))
7050 x = XEXP (x, 0);
7051
7052 /* If it remains an AND, try making another AND with the bits
7053 in the mode mask that aren't in MASK turned on. If the
7054 constant in the AND is wide enough, this might make a
7055 cheaper constant. */
7056
7057 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7058 && GET_MODE_MASK (GET_MODE (x)) != mask
7059 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7060 {
7061 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7062 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7063 int width = GET_MODE_BITSIZE (GET_MODE (x));
7064 rtx y;
7065
7066 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7067 number, sign extend it. */
7068 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7069 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7070 cval |= (HOST_WIDE_INT) -1 << width;
7071
7072 y = simplify_gen_binary (AND, GET_MODE (x),
7073 XEXP (x, 0), GEN_INT (cval));
7074 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7075 x = y;
7076 }
7077
7078 break;
7079 }
7080
7081 goto binop;
7082
7083 case PLUS:
7084 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7085 low-order bits (as in an alignment operation) and FOO is already
7086 aligned to that boundary, mask C1 to that boundary as well.
7087 This may eliminate that PLUS and, later, the AND. */
7088
7089 {
7090 unsigned int width = GET_MODE_BITSIZE (mode);
7091 unsigned HOST_WIDE_INT smask = mask;
7092
7093 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7094 number, sign extend it. */
7095
7096 if (width < HOST_BITS_PER_WIDE_INT
7097 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7098 smask |= (HOST_WIDE_INT) -1 << width;
7099
7100 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7101 && exact_log2 (- smask) >= 0
7102 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7103 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7104 return force_to_mode (plus_constant (XEXP (x, 0),
7105 (INTVAL (XEXP (x, 1)) & smask)),
7106 mode, smask, reg, next_select);
7107 }
7108
7109 /* ... fall through ... */
7110
7111 case MULT:
7112 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7113 most significant bit in MASK since carries from those bits will
7114 affect the bits we are interested in. */
7115 mask = fuller_mask;
7116 goto binop;
7117
7118 case MINUS:
7119 /* If X is (minus C Y) where C's least set bit is larger than any bit
7120 in the mask, then we may replace with (neg Y). */
7121 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7122 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7123 & -INTVAL (XEXP (x, 0))))
7124 > mask))
7125 {
7126 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7127 GET_MODE (x));
7128 return force_to_mode (x, mode, mask, reg, next_select);
7129 }
7130
7131 /* Similarly, if C contains every bit in the fuller_mask, then we may
7132 replace with (not Y). */
7133 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7134 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7135 == INTVAL (XEXP (x, 0))))
7136 {
7137 x = simplify_gen_unary (NOT, GET_MODE (x),
7138 XEXP (x, 1), GET_MODE (x));
7139 return force_to_mode (x, mode, mask, reg, next_select);
7140 }
7141
7142 mask = fuller_mask;
7143 goto binop;
7144
7145 case IOR:
7146 case XOR:
7147 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7148 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7149 operation which may be a bitfield extraction. Ensure that the
7150 constant we form is not wider than the mode of X. */
7151
7152 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7153 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7154 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7155 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7156 && GET_CODE (XEXP (x, 1)) == CONST_INT
7157 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7158 + floor_log2 (INTVAL (XEXP (x, 1))))
7159 < GET_MODE_BITSIZE (GET_MODE (x)))
7160 && (INTVAL (XEXP (x, 1))
7161 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7162 {
7163 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7164 << INTVAL (XEXP (XEXP (x, 0), 1)));
7165 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7166 XEXP (XEXP (x, 0), 0), temp);
7167 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7168 XEXP (XEXP (x, 0), 1));
7169 return force_to_mode (x, mode, mask, reg, next_select);
7170 }
7171
7172 binop:
7173 /* For most binary operations, just propagate into the operation and
7174 change the mode if we have an operation of that mode. */
7175
7176 op0 = gen_lowpart (op_mode,
7177 force_to_mode (XEXP (x, 0), mode, mask,
7178 reg, next_select));
7179 op1 = gen_lowpart (op_mode,
7180 force_to_mode (XEXP (x, 1), mode, mask,
7181 reg, next_select));
7182
7183 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7184 x = simplify_gen_binary (code, op_mode, op0, op1);
7185 break;
7186
7187 case ASHIFT:
7188 /* For left shifts, do the same, but just for the first operand.
7189 However, we cannot do anything with shifts where we cannot
7190 guarantee that the counts are smaller than the size of the mode
7191 because such a count will have a different meaning in a
7192 wider mode. */
7193
7194 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7195 && INTVAL (XEXP (x, 1)) >= 0
7196 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7197 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7198 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7199 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7200 break;
7201
7202 /* If the shift count is a constant and we can do arithmetic in
7203 the mode of the shift, refine which bits we need. Otherwise, use the
7204 conservative form of the mask. */
7205 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7206 && INTVAL (XEXP (x, 1)) >= 0
7207 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7208 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7209 mask >>= INTVAL (XEXP (x, 1));
7210 else
7211 mask = fuller_mask;
7212
7213 op0 = gen_lowpart (op_mode,
7214 force_to_mode (XEXP (x, 0), op_mode,
7215 mask, reg, next_select));
7216
7217 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7218 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7219 break;
7220
7221 case LSHIFTRT:
7222 /* Here we can only do something if the shift count is a constant,
7223 this shift constant is valid for the host, and we can do arithmetic
7224 in OP_MODE. */
7225
7226 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7227 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7228 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7229 {
7230 rtx inner = XEXP (x, 0);
7231 unsigned HOST_WIDE_INT inner_mask;
7232
7233 /* Select the mask of the bits we need for the shift operand. */
7234 inner_mask = mask << INTVAL (XEXP (x, 1));
7235
7236 /* We can only change the mode of the shift if we can do arithmetic
7237 in the mode of the shift and INNER_MASK is no wider than the
7238 width of X's mode. */
7239 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7240 op_mode = GET_MODE (x);
7241
7242 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7243
7244 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7245 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7246 }
7247
7248 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7249 shift and AND produces only copies of the sign bit (C2 is one less
7250 than a power of two), we can do this with just a shift. */
7251
7252 if (GET_CODE (x) == LSHIFTRT
7253 && GET_CODE (XEXP (x, 1)) == CONST_INT
7254 /* The shift puts one of the sign bit copies in the least significant
7255 bit. */
7256 && ((INTVAL (XEXP (x, 1))
7257 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7258 >= GET_MODE_BITSIZE (GET_MODE (x)))
7259 && exact_log2 (mask + 1) >= 0
7260 /* Number of bits left after the shift must be more than the mask
7261 needs. */
7262 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7263 <= GET_MODE_BITSIZE (GET_MODE (x)))
7264 /* Must be more sign bit copies than the mask needs. */
7265 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7266 >= exact_log2 (mask + 1)))
7267 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7268 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7269 - exact_log2 (mask + 1)));
7270
7271 goto shiftrt;
7272
7273 case ASHIFTRT:
7274 /* If we are just looking for the sign bit, we don't need this shift at
7275 all, even if it has a variable count. */
7276 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7277 && (mask == ((unsigned HOST_WIDE_INT) 1
7278 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7279 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7280
7281 /* If this is a shift by a constant, get a mask that contains those bits
7282 that are not copies of the sign bit. We then have two cases: If
7283 MASK only includes those bits, this can be a logical shift, which may
7284 allow simplifications. If MASK is a single-bit field not within
7285 those bits, we are requesting a copy of the sign bit and hence can
7286 shift the sign bit to the appropriate location. */
7287
7288 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7289 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7290 {
7291 int i = -1;
7292
7293 /* If the considered data is wider than HOST_WIDE_INT, we can't
7294 represent a mask for all its bits in a single scalar.
7295 But we only care about the lower bits, so calculate these. */
7296
7297 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7298 {
7299 nonzero = ~(HOST_WIDE_INT) 0;
7300
7301 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7302 is the number of bits a full-width mask would have set.
7303 We need only shift if these are fewer than nonzero can
7304 hold. If not, we must keep all bits set in nonzero. */
7305
7306 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7307 < HOST_BITS_PER_WIDE_INT)
7308 nonzero >>= INTVAL (XEXP (x, 1))
7309 + HOST_BITS_PER_WIDE_INT
7310 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7311 }
7312 else
7313 {
7314 nonzero = GET_MODE_MASK (GET_MODE (x));
7315 nonzero >>= INTVAL (XEXP (x, 1));
7316 }
7317
7318 if ((mask & ~nonzero) == 0
7319 || (i = exact_log2 (mask)) >= 0)
7320 {
7321 x = simplify_shift_const
7322 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7323 i < 0 ? INTVAL (XEXP (x, 1))
7324 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7325
7326 if (GET_CODE (x) != ASHIFTRT)
7327 return force_to_mode (x, mode, mask, reg, next_select);
7328 }
7329 }
7330
7331 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7332 even if the shift count isn't a constant. */
7333 if (mask == 1)
7334 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7335 XEXP (x, 0), XEXP (x, 1));
7336
7337 shiftrt:
7338
7339 /* If this is a zero- or sign-extension operation that just affects bits
7340 we don't care about, remove it. Be sure the call above returned
7341 something that is still a shift. */
7342
7343 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7344 && GET_CODE (XEXP (x, 1)) == CONST_INT
7345 && INTVAL (XEXP (x, 1)) >= 0
7346 && (INTVAL (XEXP (x, 1))
7347 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7348 && GET_CODE (XEXP (x, 0)) == ASHIFT
7349 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7350 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7351 reg, next_select);
7352
7353 break;
7354
7355 case ROTATE:
7356 case ROTATERT:
7357 /* If the shift count is constant and we can do computations
7358 in the mode of X, compute where the bits we care about are.
7359 Otherwise, we can't do anything. Don't change the mode of
7360 the shift or propagate MODE into the shift, though. */
7361 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7362 && INTVAL (XEXP (x, 1)) >= 0)
7363 {
7364 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7365 GET_MODE (x), GEN_INT (mask),
7366 XEXP (x, 1));
7367 if (temp && GET_CODE (temp) == CONST_INT)
7368 SUBST (XEXP (x, 0),
7369 force_to_mode (XEXP (x, 0), GET_MODE (x),
7370 INTVAL (temp), reg, next_select));
7371 }
7372 break;
7373
7374 case NEG:
7375 /* If we just want the low-order bit, the NEG isn't needed since it
7376 won't change the low-order bit. */
7377 if (mask == 1)
7378 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7379
7380 /* We need any bits less significant than the most significant bit in
7381 MASK since carries from those bits will affect the bits we are
7382 interested in. */
7383 mask = fuller_mask;
7384 goto unop;
7385
7386 case NOT:
7387 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7388 same as the XOR case above. Ensure that the constant we form is not
7389 wider than the mode of X. */
7390
7391 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7392 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7393 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7394 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7395 < GET_MODE_BITSIZE (GET_MODE (x)))
7396 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7397 {
7398 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7399 GET_MODE (x));
7400 temp = simplify_gen_binary (XOR, GET_MODE (x),
7401 XEXP (XEXP (x, 0), 0), temp);
7402 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7403 temp, XEXP (XEXP (x, 0), 1));
7404
7405 return force_to_mode (x, mode, mask, reg, next_select);
7406 }
7407
7408 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7409 use the full mask inside the NOT. */
7410 mask = fuller_mask;
7411
7412 unop:
7413 op0 = gen_lowpart (op_mode,
7414 force_to_mode (XEXP (x, 0), mode, mask,
7415 reg, next_select));
7416 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7417 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7418 break;
7419
7420 case NE:
7421 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7422 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7423 which is equal to STORE_FLAG_VALUE. */
7424 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7425 && GET_MODE (XEXP (x, 0)) == mode
7426 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7427 && (nonzero_bits (XEXP (x, 0), mode)
7428 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7429 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7430
7431 break;
7432
7433 case IF_THEN_ELSE:
7434 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7435 written in a narrower mode. We play it safe and do not do so. */
7436
7437 SUBST (XEXP (x, 1),
7438 gen_lowpart (GET_MODE (x),
7439 force_to_mode (XEXP (x, 1), mode,
7440 mask, reg, next_select)));
7441 SUBST (XEXP (x, 2),
7442 gen_lowpart (GET_MODE (x),
7443 force_to_mode (XEXP (x, 2), mode,
7444 mask, reg, next_select)));
7445 break;
7446
7447 default:
7448 break;
7449 }
7450
7451 /* Ensure we return a value of the proper mode. */
7452 return gen_lowpart (mode, x);
7453 }
7454 \f
7455 /* Return nonzero if X is an expression that has one of two values depending on
7456 whether some other value is zero or nonzero. In that case, we return the
7457 value that is being tested, *PTRUE is set to the value if the rtx being
7458 returned has a nonzero value, and *PFALSE is set to the other alternative.
7459
7460 If we return zero, we set *PTRUE and *PFALSE to X. */
7461
7462 static rtx
7463 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7464 {
7465 enum machine_mode mode = GET_MODE (x);
7466 enum rtx_code code = GET_CODE (x);
7467 rtx cond0, cond1, true0, true1, false0, false1;
7468 unsigned HOST_WIDE_INT nz;
7469
7470 /* If we are comparing a value against zero, we are done. */
7471 if ((code == NE || code == EQ)
7472 && XEXP (x, 1) == const0_rtx)
7473 {
7474 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7475 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7476 return XEXP (x, 0);
7477 }
7478
7479 /* If this is a unary operation whose operand has one of two values, apply
7480 our opcode to compute those values. */
7481 else if (UNARY_P (x)
7482 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7483 {
7484 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7485 *pfalse = simplify_gen_unary (code, mode, false0,
7486 GET_MODE (XEXP (x, 0)));
7487 return cond0;
7488 }
7489
7490 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7491 make can't possibly match and would suppress other optimizations. */
7492 else if (code == COMPARE)
7493 ;
7494
7495 /* If this is a binary operation, see if either side has only one of two
7496 values. If either one does or if both do and they are conditional on
7497 the same value, compute the new true and false values. */
7498 else if (BINARY_P (x))
7499 {
7500 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7501 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7502
7503 if ((cond0 != 0 || cond1 != 0)
7504 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7505 {
7506 /* If if_then_else_cond returned zero, then true/false are the
7507 same rtl. We must copy one of them to prevent invalid rtl
7508 sharing. */
7509 if (cond0 == 0)
7510 true0 = copy_rtx (true0);
7511 else if (cond1 == 0)
7512 true1 = copy_rtx (true1);
7513
7514 if (COMPARISON_P (x))
7515 {
7516 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7517 true0, true1);
7518 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7519 false0, false1);
7520 }
7521 else
7522 {
7523 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7524 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7525 }
7526
7527 return cond0 ? cond0 : cond1;
7528 }
7529
7530 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7531 operands is zero when the other is nonzero, and vice-versa,
7532 and STORE_FLAG_VALUE is 1 or -1. */
7533
7534 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7535 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7536 || code == UMAX)
7537 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7538 {
7539 rtx op0 = XEXP (XEXP (x, 0), 1);
7540 rtx op1 = XEXP (XEXP (x, 1), 1);
7541
7542 cond0 = XEXP (XEXP (x, 0), 0);
7543 cond1 = XEXP (XEXP (x, 1), 0);
7544
7545 if (COMPARISON_P (cond0)
7546 && COMPARISON_P (cond1)
7547 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7548 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7549 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7550 || ((swap_condition (GET_CODE (cond0))
7551 == reversed_comparison_code (cond1, NULL))
7552 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7553 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7554 && ! side_effects_p (x))
7555 {
7556 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7557 *pfalse = simplify_gen_binary (MULT, mode,
7558 (code == MINUS
7559 ? simplify_gen_unary (NEG, mode,
7560 op1, mode)
7561 : op1),
7562 const_true_rtx);
7563 return cond0;
7564 }
7565 }
7566
7567 /* Similarly for MULT, AND and UMIN, except that for these the result
7568 is always zero. */
7569 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7570 && (code == MULT || code == AND || code == UMIN)
7571 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7572 {
7573 cond0 = XEXP (XEXP (x, 0), 0);
7574 cond1 = XEXP (XEXP (x, 1), 0);
7575
7576 if (COMPARISON_P (cond0)
7577 && COMPARISON_P (cond1)
7578 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7579 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7580 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7581 || ((swap_condition (GET_CODE (cond0))
7582 == reversed_comparison_code (cond1, NULL))
7583 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7584 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7585 && ! side_effects_p (x))
7586 {
7587 *ptrue = *pfalse = const0_rtx;
7588 return cond0;
7589 }
7590 }
7591 }
7592
7593 else if (code == IF_THEN_ELSE)
7594 {
7595 /* If we have IF_THEN_ELSE already, extract the condition and
7596 canonicalize it if it is NE or EQ. */
7597 cond0 = XEXP (x, 0);
7598 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7599 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7600 return XEXP (cond0, 0);
7601 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7602 {
7603 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7604 return XEXP (cond0, 0);
7605 }
7606 else
7607 return cond0;
7608 }
7609
7610 /* If X is a SUBREG, we can narrow both the true and false values
7611 if the inner expression, if there is a condition. */
7612 else if (code == SUBREG
7613 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7614 &true0, &false0)))
7615 {
7616 true0 = simplify_gen_subreg (mode, true0,
7617 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7618 false0 = simplify_gen_subreg (mode, false0,
7619 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7620 if (true0 && false0)
7621 {
7622 *ptrue = true0;
7623 *pfalse = false0;
7624 return cond0;
7625 }
7626 }
7627
7628 /* If X is a constant, this isn't special and will cause confusions
7629 if we treat it as such. Likewise if it is equivalent to a constant. */
7630 else if (CONSTANT_P (x)
7631 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7632 ;
7633
7634 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7635 will be least confusing to the rest of the compiler. */
7636 else if (mode == BImode)
7637 {
7638 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7639 return x;
7640 }
7641
7642 /* If X is known to be either 0 or -1, those are the true and
7643 false values when testing X. */
7644 else if (x == constm1_rtx || x == const0_rtx
7645 || (mode != VOIDmode
7646 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7647 {
7648 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7649 return x;
7650 }
7651
7652 /* Likewise for 0 or a single bit. */
7653 else if (SCALAR_INT_MODE_P (mode)
7654 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7655 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7656 {
7657 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7658 return x;
7659 }
7660
7661 /* Otherwise fail; show no condition with true and false values the same. */
7662 *ptrue = *pfalse = x;
7663 return 0;
7664 }
7665 \f
7666 /* Return the value of expression X given the fact that condition COND
7667 is known to be true when applied to REG as its first operand and VAL
7668 as its second. X is known to not be shared and so can be modified in
7669 place.
7670
7671 We only handle the simplest cases, and specifically those cases that
7672 arise with IF_THEN_ELSE expressions. */
7673
7674 static rtx
7675 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7676 {
7677 enum rtx_code code = GET_CODE (x);
7678 rtx temp;
7679 const char *fmt;
7680 int i, j;
7681
7682 if (side_effects_p (x))
7683 return x;
7684
7685 /* If either operand of the condition is a floating point value,
7686 then we have to avoid collapsing an EQ comparison. */
7687 if (cond == EQ
7688 && rtx_equal_p (x, reg)
7689 && ! FLOAT_MODE_P (GET_MODE (x))
7690 && ! FLOAT_MODE_P (GET_MODE (val)))
7691 return val;
7692
7693 if (cond == UNEQ && rtx_equal_p (x, reg))
7694 return val;
7695
7696 /* If X is (abs REG) and we know something about REG's relationship
7697 with zero, we may be able to simplify this. */
7698
7699 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7700 switch (cond)
7701 {
7702 case GE: case GT: case EQ:
7703 return XEXP (x, 0);
7704 case LT: case LE:
7705 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7706 XEXP (x, 0),
7707 GET_MODE (XEXP (x, 0)));
7708 default:
7709 break;
7710 }
7711
7712 /* The only other cases we handle are MIN, MAX, and comparisons if the
7713 operands are the same as REG and VAL. */
7714
7715 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7716 {
7717 if (rtx_equal_p (XEXP (x, 0), val))
7718 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7719
7720 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7721 {
7722 if (COMPARISON_P (x))
7723 {
7724 if (comparison_dominates_p (cond, code))
7725 return const_true_rtx;
7726
7727 code = reversed_comparison_code (x, NULL);
7728 if (code != UNKNOWN
7729 && comparison_dominates_p (cond, code))
7730 return const0_rtx;
7731 else
7732 return x;
7733 }
7734 else if (code == SMAX || code == SMIN
7735 || code == UMIN || code == UMAX)
7736 {
7737 int unsignedp = (code == UMIN || code == UMAX);
7738
7739 /* Do not reverse the condition when it is NE or EQ.
7740 This is because we cannot conclude anything about
7741 the value of 'SMAX (x, y)' when x is not equal to y,
7742 but we can when x equals y. */
7743 if ((code == SMAX || code == UMAX)
7744 && ! (cond == EQ || cond == NE))
7745 cond = reverse_condition (cond);
7746
7747 switch (cond)
7748 {
7749 case GE: case GT:
7750 return unsignedp ? x : XEXP (x, 1);
7751 case LE: case LT:
7752 return unsignedp ? x : XEXP (x, 0);
7753 case GEU: case GTU:
7754 return unsignedp ? XEXP (x, 1) : x;
7755 case LEU: case LTU:
7756 return unsignedp ? XEXP (x, 0) : x;
7757 default:
7758 break;
7759 }
7760 }
7761 }
7762 }
7763 else if (code == SUBREG)
7764 {
7765 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7766 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7767
7768 if (SUBREG_REG (x) != r)
7769 {
7770 /* We must simplify subreg here, before we lose track of the
7771 original inner_mode. */
7772 new = simplify_subreg (GET_MODE (x), r,
7773 inner_mode, SUBREG_BYTE (x));
7774 if (new)
7775 return new;
7776 else
7777 SUBST (SUBREG_REG (x), r);
7778 }
7779
7780 return x;
7781 }
7782 /* We don't have to handle SIGN_EXTEND here, because even in the
7783 case of replacing something with a modeless CONST_INT, a
7784 CONST_INT is already (supposed to be) a valid sign extension for
7785 its narrower mode, which implies it's already properly
7786 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7787 story is different. */
7788 else if (code == ZERO_EXTEND)
7789 {
7790 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7791 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7792
7793 if (XEXP (x, 0) != r)
7794 {
7795 /* We must simplify the zero_extend here, before we lose
7796 track of the original inner_mode. */
7797 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7798 r, inner_mode);
7799 if (new)
7800 return new;
7801 else
7802 SUBST (XEXP (x, 0), r);
7803 }
7804
7805 return x;
7806 }
7807
7808 fmt = GET_RTX_FORMAT (code);
7809 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7810 {
7811 if (fmt[i] == 'e')
7812 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7813 else if (fmt[i] == 'E')
7814 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7815 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7816 cond, reg, val));
7817 }
7818
7819 return x;
7820 }
7821 \f
7822 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7823 assignment as a field assignment. */
7824
7825 static int
7826 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7827 {
7828 if (x == y || rtx_equal_p (x, y))
7829 return 1;
7830
7831 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7832 return 0;
7833
7834 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7835 Note that all SUBREGs of MEM are paradoxical; otherwise they
7836 would have been rewritten. */
7837 if (MEM_P (x) && GET_CODE (y) == SUBREG
7838 && MEM_P (SUBREG_REG (y))
7839 && rtx_equal_p (SUBREG_REG (y),
7840 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7841 return 1;
7842
7843 if (MEM_P (y) && GET_CODE (x) == SUBREG
7844 && MEM_P (SUBREG_REG (x))
7845 && rtx_equal_p (SUBREG_REG (x),
7846 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7847 return 1;
7848
7849 /* We used to see if get_last_value of X and Y were the same but that's
7850 not correct. In one direction, we'll cause the assignment to have
7851 the wrong destination and in the case, we'll import a register into this
7852 insn that might have already have been dead. So fail if none of the
7853 above cases are true. */
7854 return 0;
7855 }
7856 \f
7857 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7858 Return that assignment if so.
7859
7860 We only handle the most common cases. */
7861
7862 static rtx
7863 make_field_assignment (rtx x)
7864 {
7865 rtx dest = SET_DEST (x);
7866 rtx src = SET_SRC (x);
7867 rtx assign;
7868 rtx rhs, lhs;
7869 HOST_WIDE_INT c1;
7870 HOST_WIDE_INT pos;
7871 unsigned HOST_WIDE_INT len;
7872 rtx other;
7873 enum machine_mode mode;
7874
7875 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7876 a clear of a one-bit field. We will have changed it to
7877 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7878 for a SUBREG. */
7879
7880 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7881 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7882 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7883 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7884 {
7885 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7886 1, 1, 1, 0);
7887 if (assign != 0)
7888 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7889 return x;
7890 }
7891
7892 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7893 && subreg_lowpart_p (XEXP (src, 0))
7894 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7895 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7896 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7897 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7898 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7899 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7900 {
7901 assign = make_extraction (VOIDmode, dest, 0,
7902 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7903 1, 1, 1, 0);
7904 if (assign != 0)
7905 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7906 return x;
7907 }
7908
7909 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7910 one-bit field. */
7911 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7912 && XEXP (XEXP (src, 0), 0) == const1_rtx
7913 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7914 {
7915 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7916 1, 1, 1, 0);
7917 if (assign != 0)
7918 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7919 return x;
7920 }
7921
7922 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7923 SRC is an AND with all bits of that field set, then we can discard
7924 the AND. */
7925 if (GET_CODE (dest) == ZERO_EXTRACT
7926 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7927 && GET_CODE (src) == AND
7928 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7929 {
7930 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7931 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7932 unsigned HOST_WIDE_INT ze_mask;
7933
7934 if (width >= HOST_BITS_PER_WIDE_INT)
7935 ze_mask = -1;
7936 else
7937 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7938
7939 /* Complete overlap. We can remove the source AND. */
7940 if ((and_mask & ze_mask) == ze_mask)
7941 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7942
7943 /* Partial overlap. We can reduce the source AND. */
7944 if ((and_mask & ze_mask) != and_mask)
7945 {
7946 mode = GET_MODE (src);
7947 src = gen_rtx_AND (mode, XEXP (src, 0),
7948 gen_int_mode (and_mask & ze_mask, mode));
7949 return gen_rtx_SET (VOIDmode, dest, src);
7950 }
7951 }
7952
7953 /* The other case we handle is assignments into a constant-position
7954 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7955 a mask that has all one bits except for a group of zero bits and
7956 OTHER is known to have zeros where C1 has ones, this is such an
7957 assignment. Compute the position and length from C1. Shift OTHER
7958 to the appropriate position, force it to the required mode, and
7959 make the extraction. Check for the AND in both operands. */
7960
7961 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7962 return x;
7963
7964 rhs = expand_compound_operation (XEXP (src, 0));
7965 lhs = expand_compound_operation (XEXP (src, 1));
7966
7967 if (GET_CODE (rhs) == AND
7968 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7969 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7970 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7971 else if (GET_CODE (lhs) == AND
7972 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7973 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7974 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7975 else
7976 return x;
7977
7978 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7979 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7980 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7981 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7982 return x;
7983
7984 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7985 if (assign == 0)
7986 return x;
7987
7988 /* The mode to use for the source is the mode of the assignment, or of
7989 what is inside a possible STRICT_LOW_PART. */
7990 mode = (GET_CODE (assign) == STRICT_LOW_PART
7991 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7992
7993 /* Shift OTHER right POS places and make it the source, restricting it
7994 to the proper length and mode. */
7995
7996 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7997 GET_MODE (src), other, pos),
7998 mode,
7999 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8000 ? ~(unsigned HOST_WIDE_INT) 0
8001 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8002 dest, 0);
8003
8004 /* If SRC is masked by an AND that does not make a difference in
8005 the value being stored, strip it. */
8006 if (GET_CODE (assign) == ZERO_EXTRACT
8007 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8008 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8009 && GET_CODE (src) == AND
8010 && GET_CODE (XEXP (src, 1)) == CONST_INT
8011 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8012 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8013 src = XEXP (src, 0);
8014
8015 return gen_rtx_SET (VOIDmode, assign, src);
8016 }
8017 \f
8018 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8019 if so. */
8020
8021 static rtx
8022 apply_distributive_law (rtx x)
8023 {
8024 enum rtx_code code = GET_CODE (x);
8025 enum rtx_code inner_code;
8026 rtx lhs, rhs, other;
8027 rtx tem;
8028
8029 /* Distributivity is not true for floating point as it can change the
8030 value. So we don't do it unless -funsafe-math-optimizations. */
8031 if (FLOAT_MODE_P (GET_MODE (x))
8032 && ! flag_unsafe_math_optimizations)
8033 return x;
8034
8035 /* The outer operation can only be one of the following: */
8036 if (code != IOR && code != AND && code != XOR
8037 && code != PLUS && code != MINUS)
8038 return x;
8039
8040 lhs = XEXP (x, 0);
8041 rhs = XEXP (x, 1);
8042
8043 /* If either operand is a primitive we can't do anything, so get out
8044 fast. */
8045 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8046 return x;
8047
8048 lhs = expand_compound_operation (lhs);
8049 rhs = expand_compound_operation (rhs);
8050 inner_code = GET_CODE (lhs);
8051 if (inner_code != GET_CODE (rhs))
8052 return x;
8053
8054 /* See if the inner and outer operations distribute. */
8055 switch (inner_code)
8056 {
8057 case LSHIFTRT:
8058 case ASHIFTRT:
8059 case AND:
8060 case IOR:
8061 /* These all distribute except over PLUS. */
8062 if (code == PLUS || code == MINUS)
8063 return x;
8064 break;
8065
8066 case MULT:
8067 if (code != PLUS && code != MINUS)
8068 return x;
8069 break;
8070
8071 case ASHIFT:
8072 /* This is also a multiply, so it distributes over everything. */
8073 break;
8074
8075 case SUBREG:
8076 /* Non-paradoxical SUBREGs distributes over all operations, provided
8077 the inner modes and byte offsets are the same, this is an extraction
8078 of a low-order part, we don't convert an fp operation to int or
8079 vice versa, and we would not be converting a single-word
8080 operation into a multi-word operation. The latter test is not
8081 required, but it prevents generating unneeded multi-word operations.
8082 Some of the previous tests are redundant given the latter test, but
8083 are retained because they are required for correctness.
8084
8085 We produce the result slightly differently in this case. */
8086
8087 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8088 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8089 || ! subreg_lowpart_p (lhs)
8090 || (GET_MODE_CLASS (GET_MODE (lhs))
8091 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8092 || (GET_MODE_SIZE (GET_MODE (lhs))
8093 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8094 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8095 return x;
8096
8097 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8098 SUBREG_REG (lhs), SUBREG_REG (rhs));
8099 return gen_lowpart (GET_MODE (x), tem);
8100
8101 default:
8102 return x;
8103 }
8104
8105 /* Set LHS and RHS to the inner operands (A and B in the example
8106 above) and set OTHER to the common operand (C in the example).
8107 There is only one way to do this unless the inner operation is
8108 commutative. */
8109 if (COMMUTATIVE_ARITH_P (lhs)
8110 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8111 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8112 else if (COMMUTATIVE_ARITH_P (lhs)
8113 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8114 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8115 else if (COMMUTATIVE_ARITH_P (lhs)
8116 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8117 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8118 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8119 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8120 else
8121 return x;
8122
8123 /* Form the new inner operation, seeing if it simplifies first. */
8124 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8125
8126 /* There is one exception to the general way of distributing:
8127 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8128 if (code == XOR && inner_code == IOR)
8129 {
8130 inner_code = AND;
8131 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8132 }
8133
8134 /* We may be able to continuing distributing the result, so call
8135 ourselves recursively on the inner operation before forming the
8136 outer operation, which we return. */
8137 return simplify_gen_binary (inner_code, GET_MODE (x),
8138 apply_distributive_law (tem), other);
8139 }
8140
8141 /* See if X is of the form (* (+ A B) C), and if so convert to
8142 (+ (* A C) (* B C)) and try to simplify.
8143
8144 Most of the time, this results in no change. However, if some of
8145 the operands are the same or inverses of each other, simplifications
8146 will result.
8147
8148 For example, (and (ior A B) (not B)) can occur as the result of
8149 expanding a bit field assignment. When we apply the distributive
8150 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8151 which then simplifies to (and (A (not B))).
8152
8153 Note that no checks happen on the validity of applying the inverse
8154 distributive law. This is pointless since we can do it in the
8155 few places where this routine is called.
8156
8157 N is the index of the term that is decomposed (the arithmetic operation,
8158 i.e. (+ A B) in the first example above). !N is the index of the term that
8159 is distributed, i.e. of C in the first example above. */
8160 static rtx
8161 distribute_and_simplify_rtx (rtx x, int n)
8162 {
8163 enum machine_mode mode;
8164 enum rtx_code outer_code, inner_code;
8165 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8166
8167 decomposed = XEXP (x, n);
8168 if (!ARITHMETIC_P (decomposed))
8169 return NULL_RTX;
8170
8171 mode = GET_MODE (x);
8172 outer_code = GET_CODE (x);
8173 distributed = XEXP (x, !n);
8174
8175 inner_code = GET_CODE (decomposed);
8176 inner_op0 = XEXP (decomposed, 0);
8177 inner_op1 = XEXP (decomposed, 1);
8178
8179 /* Special case (and (xor B C) (not A)), which is equivalent to
8180 (xor (ior A B) (ior A C)) */
8181 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8182 {
8183 distributed = XEXP (distributed, 0);
8184 outer_code = IOR;
8185 }
8186
8187 if (n == 0)
8188 {
8189 /* Distribute the second term. */
8190 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8191 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8192 }
8193 else
8194 {
8195 /* Distribute the first term. */
8196 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8197 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8198 }
8199
8200 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8201 new_op0, new_op1));
8202 if (GET_CODE (tmp) != outer_code
8203 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8204 return tmp;
8205
8206 return NULL_RTX;
8207 }
8208 \f
8209 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8210 in MODE.
8211
8212 Return an equivalent form, if different from X. Otherwise, return X. If
8213 X is zero, we are to always construct the equivalent form. */
8214
8215 static rtx
8216 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8217 unsigned HOST_WIDE_INT constop)
8218 {
8219 unsigned HOST_WIDE_INT nonzero;
8220 int i;
8221
8222 /* Simplify VAROP knowing that we will be only looking at some of the
8223 bits in it.
8224
8225 Note by passing in CONSTOP, we guarantee that the bits not set in
8226 CONSTOP are not significant and will never be examined. We must
8227 ensure that is the case by explicitly masking out those bits
8228 before returning. */
8229 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8230
8231 /* If VAROP is a CLOBBER, we will fail so return it. */
8232 if (GET_CODE (varop) == CLOBBER)
8233 return varop;
8234
8235 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8236 to VAROP and return the new constant. */
8237 if (GET_CODE (varop) == CONST_INT)
8238 return gen_int_mode (INTVAL (varop) & constop, mode);
8239
8240 /* See what bits may be nonzero in VAROP. Unlike the general case of
8241 a call to nonzero_bits, here we don't care about bits outside
8242 MODE. */
8243
8244 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8245
8246 /* Turn off all bits in the constant that are known to already be zero.
8247 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8248 which is tested below. */
8249
8250 constop &= nonzero;
8251
8252 /* If we don't have any bits left, return zero. */
8253 if (constop == 0)
8254 return const0_rtx;
8255
8256 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8257 a power of two, we can replace this with an ASHIFT. */
8258 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8259 && (i = exact_log2 (constop)) >= 0)
8260 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8261
8262 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8263 or XOR, then try to apply the distributive law. This may eliminate
8264 operations if either branch can be simplified because of the AND.
8265 It may also make some cases more complex, but those cases probably
8266 won't match a pattern either with or without this. */
8267
8268 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8269 return
8270 gen_lowpart
8271 (mode,
8272 apply_distributive_law
8273 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8274 simplify_and_const_int (NULL_RTX,
8275 GET_MODE (varop),
8276 XEXP (varop, 0),
8277 constop),
8278 simplify_and_const_int (NULL_RTX,
8279 GET_MODE (varop),
8280 XEXP (varop, 1),
8281 constop))));
8282
8283 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8284 the AND and see if one of the operands simplifies to zero. If so, we
8285 may eliminate it. */
8286
8287 if (GET_CODE (varop) == PLUS
8288 && exact_log2 (constop + 1) >= 0)
8289 {
8290 rtx o0, o1;
8291
8292 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8293 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8294 if (o0 == const0_rtx)
8295 return o1;
8296 if (o1 == const0_rtx)
8297 return o0;
8298 }
8299
8300 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8301 if we already had one (just check for the simplest cases). */
8302 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8303 && GET_MODE (XEXP (x, 0)) == mode
8304 && SUBREG_REG (XEXP (x, 0)) == varop)
8305 varop = XEXP (x, 0);
8306 else
8307 varop = gen_lowpart (mode, varop);
8308
8309 /* If we can't make the SUBREG, try to return what we were given. */
8310 if (GET_CODE (varop) == CLOBBER)
8311 return x ? x : varop;
8312
8313 /* If we are only masking insignificant bits, return VAROP. */
8314 if (constop == nonzero)
8315 x = varop;
8316 else
8317 {
8318 /* Otherwise, return an AND. */
8319 constop = trunc_int_for_mode (constop, mode);
8320 /* See how much, if any, of X we can use. */
8321 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8322 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8323
8324 else
8325 {
8326 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8327 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8328 SUBST (XEXP (x, 1), GEN_INT (constop));
8329
8330 SUBST (XEXP (x, 0), varop);
8331 }
8332 }
8333
8334 return x;
8335 }
8336 \f
8337 /* Given a REG, X, compute which bits in X can be nonzero.
8338 We don't care about bits outside of those defined in MODE.
8339
8340 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8341 a shift, AND, or zero_extract, we can do better. */
8342
8343 static rtx
8344 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8345 rtx known_x ATTRIBUTE_UNUSED,
8346 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8347 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8348 unsigned HOST_WIDE_INT *nonzero)
8349 {
8350 rtx tem;
8351
8352 /* If X is a register whose nonzero bits value is current, use it.
8353 Otherwise, if X is a register whose value we can find, use that
8354 value. Otherwise, use the previously-computed global nonzero bits
8355 for this register. */
8356
8357 if (reg_stat[REGNO (x)].last_set_value != 0
8358 && (reg_stat[REGNO (x)].last_set_mode == mode
8359 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8360 && GET_MODE_CLASS (mode) == MODE_INT))
8361 && (reg_stat[REGNO (x)].last_set_label == label_tick
8362 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8363 && REG_N_SETS (REGNO (x)) == 1
8364 && ! REGNO_REG_SET_P
8365 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8366 REGNO (x))))
8367 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8368 {
8369 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8370 return NULL;
8371 }
8372
8373 tem = get_last_value (x);
8374
8375 if (tem)
8376 {
8377 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8378 /* If X is narrower than MODE and TEM is a non-negative
8379 constant that would appear negative in the mode of X,
8380 sign-extend it for use in reg_nonzero_bits because some
8381 machines (maybe most) will actually do the sign-extension
8382 and this is the conservative approach.
8383
8384 ??? For 2.5, try to tighten up the MD files in this regard
8385 instead of this kludge. */
8386
8387 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8388 && GET_CODE (tem) == CONST_INT
8389 && INTVAL (tem) > 0
8390 && 0 != (INTVAL (tem)
8391 & ((HOST_WIDE_INT) 1
8392 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8393 tem = GEN_INT (INTVAL (tem)
8394 | ((HOST_WIDE_INT) (-1)
8395 << GET_MODE_BITSIZE (GET_MODE (x))));
8396 #endif
8397 return tem;
8398 }
8399 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8400 {
8401 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8402
8403 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8404 /* We don't know anything about the upper bits. */
8405 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8406 *nonzero &= mask;
8407 }
8408
8409 return NULL;
8410 }
8411
8412 /* Return the number of bits at the high-order end of X that are known to
8413 be equal to the sign bit. X will be used in mode MODE; if MODE is
8414 VOIDmode, X will be used in its own mode. The returned value will always
8415 be between 1 and the number of bits in MODE. */
8416
8417 static rtx
8418 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8419 rtx known_x ATTRIBUTE_UNUSED,
8420 enum machine_mode known_mode
8421 ATTRIBUTE_UNUSED,
8422 unsigned int known_ret ATTRIBUTE_UNUSED,
8423 unsigned int *result)
8424 {
8425 rtx tem;
8426
8427 if (reg_stat[REGNO (x)].last_set_value != 0
8428 && reg_stat[REGNO (x)].last_set_mode == mode
8429 && (reg_stat[REGNO (x)].last_set_label == label_tick
8430 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8431 && REG_N_SETS (REGNO (x)) == 1
8432 && ! REGNO_REG_SET_P
8433 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8434 REGNO (x))))
8435 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8436 {
8437 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8438 return NULL;
8439 }
8440
8441 tem = get_last_value (x);
8442 if (tem != 0)
8443 return tem;
8444
8445 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8446 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8447 *result = reg_stat[REGNO (x)].sign_bit_copies;
8448
8449 return NULL;
8450 }
8451 \f
8452 /* Return the number of "extended" bits there are in X, when interpreted
8453 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8454 unsigned quantities, this is the number of high-order zero bits.
8455 For signed quantities, this is the number of copies of the sign bit
8456 minus 1. In both case, this function returns the number of "spare"
8457 bits. For example, if two quantities for which this function returns
8458 at least 1 are added, the addition is known not to overflow.
8459
8460 This function will always return 0 unless called during combine, which
8461 implies that it must be called from a define_split. */
8462
8463 unsigned int
8464 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8465 {
8466 if (nonzero_sign_valid == 0)
8467 return 0;
8468
8469 return (unsignedp
8470 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8471 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8472 - floor_log2 (nonzero_bits (x, mode)))
8473 : 0)
8474 : num_sign_bit_copies (x, mode) - 1);
8475 }
8476 \f
8477 /* This function is called from `simplify_shift_const' to merge two
8478 outer operations. Specifically, we have already found that we need
8479 to perform operation *POP0 with constant *PCONST0 at the outermost
8480 position. We would now like to also perform OP1 with constant CONST1
8481 (with *POP0 being done last).
8482
8483 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8484 the resulting operation. *PCOMP_P is set to 1 if we would need to
8485 complement the innermost operand, otherwise it is unchanged.
8486
8487 MODE is the mode in which the operation will be done. No bits outside
8488 the width of this mode matter. It is assumed that the width of this mode
8489 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8490
8491 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8492 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8493 result is simply *PCONST0.
8494
8495 If the resulting operation cannot be expressed as one operation, we
8496 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8497
8498 static int
8499 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8500 {
8501 enum rtx_code op0 = *pop0;
8502 HOST_WIDE_INT const0 = *pconst0;
8503
8504 const0 &= GET_MODE_MASK (mode);
8505 const1 &= GET_MODE_MASK (mode);
8506
8507 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8508 if (op0 == AND)
8509 const1 &= const0;
8510
8511 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8512 if OP0 is SET. */
8513
8514 if (op1 == UNKNOWN || op0 == SET)
8515 return 1;
8516
8517 else if (op0 == UNKNOWN)
8518 op0 = op1, const0 = const1;
8519
8520 else if (op0 == op1)
8521 {
8522 switch (op0)
8523 {
8524 case AND:
8525 const0 &= const1;
8526 break;
8527 case IOR:
8528 const0 |= const1;
8529 break;
8530 case XOR:
8531 const0 ^= const1;
8532 break;
8533 case PLUS:
8534 const0 += const1;
8535 break;
8536 case NEG:
8537 op0 = UNKNOWN;
8538 break;
8539 default:
8540 break;
8541 }
8542 }
8543
8544 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8545 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8546 return 0;
8547
8548 /* If the two constants aren't the same, we can't do anything. The
8549 remaining six cases can all be done. */
8550 else if (const0 != const1)
8551 return 0;
8552
8553 else
8554 switch (op0)
8555 {
8556 case IOR:
8557 if (op1 == AND)
8558 /* (a & b) | b == b */
8559 op0 = SET;
8560 else /* op1 == XOR */
8561 /* (a ^ b) | b == a | b */
8562 {;}
8563 break;
8564
8565 case XOR:
8566 if (op1 == AND)
8567 /* (a & b) ^ b == (~a) & b */
8568 op0 = AND, *pcomp_p = 1;
8569 else /* op1 == IOR */
8570 /* (a | b) ^ b == a & ~b */
8571 op0 = AND, const0 = ~const0;
8572 break;
8573
8574 case AND:
8575 if (op1 == IOR)
8576 /* (a | b) & b == b */
8577 op0 = SET;
8578 else /* op1 == XOR */
8579 /* (a ^ b) & b) == (~a) & b */
8580 *pcomp_p = 1;
8581 break;
8582 default:
8583 break;
8584 }
8585
8586 /* Check for NO-OP cases. */
8587 const0 &= GET_MODE_MASK (mode);
8588 if (const0 == 0
8589 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8590 op0 = UNKNOWN;
8591 else if (const0 == 0 && op0 == AND)
8592 op0 = SET;
8593 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8594 && op0 == AND)
8595 op0 = UNKNOWN;
8596
8597 /* ??? Slightly redundant with the above mask, but not entirely.
8598 Moving this above means we'd have to sign-extend the mode mask
8599 for the final test. */
8600 const0 = trunc_int_for_mode (const0, mode);
8601
8602 *pop0 = op0;
8603 *pconst0 = const0;
8604
8605 return 1;
8606 }
8607 \f
8608 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8609 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8610 that we started with.
8611
8612 The shift is normally computed in the widest mode we find in VAROP, as
8613 long as it isn't a different number of words than RESULT_MODE. Exceptions
8614 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8615
8616 static rtx
8617 simplify_shift_const (rtx x, enum rtx_code code,
8618 enum machine_mode result_mode, rtx varop,
8619 int orig_count)
8620 {
8621 enum rtx_code orig_code = code;
8622 unsigned int count;
8623 int signed_count;
8624 enum machine_mode mode = result_mode;
8625 enum machine_mode shift_mode, tmode;
8626 unsigned int mode_words
8627 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8628 /* We form (outer_op (code varop count) (outer_const)). */
8629 enum rtx_code outer_op = UNKNOWN;
8630 HOST_WIDE_INT outer_const = 0;
8631 rtx const_rtx;
8632 int complement_p = 0;
8633 rtx new;
8634
8635 /* Make sure and truncate the "natural" shift on the way in. We don't
8636 want to do this inside the loop as it makes it more difficult to
8637 combine shifts. */
8638 if (SHIFT_COUNT_TRUNCATED)
8639 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8640
8641 /* If we were given an invalid count, don't do anything except exactly
8642 what was requested. */
8643
8644 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8645 {
8646 if (x)
8647 return x;
8648
8649 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8650 }
8651
8652 count = orig_count;
8653
8654 /* Unless one of the branches of the `if' in this loop does a `continue',
8655 we will `break' the loop after the `if'. */
8656
8657 while (count != 0)
8658 {
8659 /* If we have an operand of (clobber (const_int 0)), just return that
8660 value. */
8661 if (GET_CODE (varop) == CLOBBER)
8662 return varop;
8663
8664 /* If we discovered we had to complement VAROP, leave. Making a NOT
8665 here would cause an infinite loop. */
8666 if (complement_p)
8667 break;
8668
8669 /* Convert ROTATERT to ROTATE. */
8670 if (code == ROTATERT)
8671 {
8672 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8673 code = ROTATE;
8674 if (VECTOR_MODE_P (result_mode))
8675 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8676 else
8677 count = bitsize - count;
8678 }
8679
8680 /* We need to determine what mode we will do the shift in. If the
8681 shift is a right shift or a ROTATE, we must always do it in the mode
8682 it was originally done in. Otherwise, we can do it in MODE, the
8683 widest mode encountered. */
8684 shift_mode
8685 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8686 ? result_mode : mode);
8687
8688 /* Handle cases where the count is greater than the size of the mode
8689 minus 1. For ASHIFT, use the size minus one as the count (this can
8690 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8691 take the count modulo the size. For other shifts, the result is
8692 zero.
8693
8694 Since these shifts are being produced by the compiler by combining
8695 multiple operations, each of which are defined, we know what the
8696 result is supposed to be. */
8697
8698 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8699 {
8700 if (code == ASHIFTRT)
8701 count = GET_MODE_BITSIZE (shift_mode) - 1;
8702 else if (code == ROTATE || code == ROTATERT)
8703 count %= GET_MODE_BITSIZE (shift_mode);
8704 else
8705 {
8706 /* We can't simply return zero because there may be an
8707 outer op. */
8708 varop = const0_rtx;
8709 count = 0;
8710 break;
8711 }
8712 }
8713
8714 /* An arithmetic right shift of a quantity known to be -1 or 0
8715 is a no-op. */
8716 if (code == ASHIFTRT
8717 && (num_sign_bit_copies (varop, shift_mode)
8718 == GET_MODE_BITSIZE (shift_mode)))
8719 {
8720 count = 0;
8721 break;
8722 }
8723
8724 /* If we are doing an arithmetic right shift and discarding all but
8725 the sign bit copies, this is equivalent to doing a shift by the
8726 bitsize minus one. Convert it into that shift because it will often
8727 allow other simplifications. */
8728
8729 if (code == ASHIFTRT
8730 && (count + num_sign_bit_copies (varop, shift_mode)
8731 >= GET_MODE_BITSIZE (shift_mode)))
8732 count = GET_MODE_BITSIZE (shift_mode) - 1;
8733
8734 /* We simplify the tests below and elsewhere by converting
8735 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8736 `make_compound_operation' will convert it to an ASHIFTRT for
8737 those machines (such as VAX) that don't have an LSHIFTRT. */
8738 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8739 && code == ASHIFTRT
8740 && ((nonzero_bits (varop, shift_mode)
8741 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8742 == 0))
8743 code = LSHIFTRT;
8744
8745 if (code == LSHIFTRT
8746 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8747 && !(nonzero_bits (varop, shift_mode) >> count))
8748 varop = const0_rtx;
8749 if (code == ASHIFT
8750 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8751 && !((nonzero_bits (varop, shift_mode) << count)
8752 & GET_MODE_MASK (shift_mode)))
8753 varop = const0_rtx;
8754
8755 switch (GET_CODE (varop))
8756 {
8757 case SIGN_EXTEND:
8758 case ZERO_EXTEND:
8759 case SIGN_EXTRACT:
8760 case ZERO_EXTRACT:
8761 new = expand_compound_operation (varop);
8762 if (new != varop)
8763 {
8764 varop = new;
8765 continue;
8766 }
8767 break;
8768
8769 case MEM:
8770 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8771 minus the width of a smaller mode, we can do this with a
8772 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8773 if ((code == ASHIFTRT || code == LSHIFTRT)
8774 && ! mode_dependent_address_p (XEXP (varop, 0))
8775 && ! MEM_VOLATILE_P (varop)
8776 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8777 MODE_INT, 1)) != BLKmode)
8778 {
8779 new = adjust_address_nv (varop, tmode,
8780 BYTES_BIG_ENDIAN ? 0
8781 : count / BITS_PER_UNIT);
8782
8783 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8784 : ZERO_EXTEND, mode, new);
8785 count = 0;
8786 continue;
8787 }
8788 break;
8789
8790 case USE:
8791 /* Similar to the case above, except that we can only do this if
8792 the resulting mode is the same as that of the underlying
8793 MEM and adjust the address depending on the *bits* endianness
8794 because of the way that bit-field extract insns are defined. */
8795 if ((code == ASHIFTRT || code == LSHIFTRT)
8796 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8797 MODE_INT, 1)) != BLKmode
8798 && tmode == GET_MODE (XEXP (varop, 0)))
8799 {
8800 if (BITS_BIG_ENDIAN)
8801 new = XEXP (varop, 0);
8802 else
8803 {
8804 new = copy_rtx (XEXP (varop, 0));
8805 SUBST (XEXP (new, 0),
8806 plus_constant (XEXP (new, 0),
8807 count / BITS_PER_UNIT));
8808 }
8809
8810 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8811 : ZERO_EXTEND, mode, new);
8812 count = 0;
8813 continue;
8814 }
8815 break;
8816
8817 case SUBREG:
8818 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8819 the same number of words as what we've seen so far. Then store
8820 the widest mode in MODE. */
8821 if (subreg_lowpart_p (varop)
8822 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8823 > GET_MODE_SIZE (GET_MODE (varop)))
8824 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8825 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8826 == mode_words)
8827 {
8828 varop = SUBREG_REG (varop);
8829 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8830 mode = GET_MODE (varop);
8831 continue;
8832 }
8833 break;
8834
8835 case MULT:
8836 /* Some machines use MULT instead of ASHIFT because MULT
8837 is cheaper. But it is still better on those machines to
8838 merge two shifts into one. */
8839 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8840 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8841 {
8842 varop
8843 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8844 XEXP (varop, 0),
8845 GEN_INT (exact_log2 (
8846 INTVAL (XEXP (varop, 1)))));
8847 continue;
8848 }
8849 break;
8850
8851 case UDIV:
8852 /* Similar, for when divides are cheaper. */
8853 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8854 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8855 {
8856 varop
8857 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8858 XEXP (varop, 0),
8859 GEN_INT (exact_log2 (
8860 INTVAL (XEXP (varop, 1)))));
8861 continue;
8862 }
8863 break;
8864
8865 case ASHIFTRT:
8866 /* If we are extracting just the sign bit of an arithmetic
8867 right shift, that shift is not needed. However, the sign
8868 bit of a wider mode may be different from what would be
8869 interpreted as the sign bit in a narrower mode, so, if
8870 the result is narrower, don't discard the shift. */
8871 if (code == LSHIFTRT
8872 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8873 && (GET_MODE_BITSIZE (result_mode)
8874 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8875 {
8876 varop = XEXP (varop, 0);
8877 continue;
8878 }
8879
8880 /* ... fall through ... */
8881
8882 case LSHIFTRT:
8883 case ASHIFT:
8884 case ROTATE:
8885 /* Here we have two nested shifts. The result is usually the
8886 AND of a new shift with a mask. We compute the result below. */
8887 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8888 && INTVAL (XEXP (varop, 1)) >= 0
8889 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8890 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8891 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8892 {
8893 enum rtx_code first_code = GET_CODE (varop);
8894 unsigned int first_count = INTVAL (XEXP (varop, 1));
8895 unsigned HOST_WIDE_INT mask;
8896 rtx mask_rtx;
8897
8898 /* We have one common special case. We can't do any merging if
8899 the inner code is an ASHIFTRT of a smaller mode. However, if
8900 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8901 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8902 we can convert it to
8903 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8904 This simplifies certain SIGN_EXTEND operations. */
8905 if (code == ASHIFT && first_code == ASHIFTRT
8906 && count == (unsigned int)
8907 (GET_MODE_BITSIZE (result_mode)
8908 - GET_MODE_BITSIZE (GET_MODE (varop))))
8909 {
8910 /* C3 has the low-order C1 bits zero. */
8911
8912 mask = (GET_MODE_MASK (mode)
8913 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8914
8915 varop = simplify_and_const_int (NULL_RTX, result_mode,
8916 XEXP (varop, 0), mask);
8917 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8918 varop, count);
8919 count = first_count;
8920 code = ASHIFTRT;
8921 continue;
8922 }
8923
8924 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8925 than C1 high-order bits equal to the sign bit, we can convert
8926 this to either an ASHIFT or an ASHIFTRT depending on the
8927 two counts.
8928
8929 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8930
8931 if (code == ASHIFTRT && first_code == ASHIFT
8932 && GET_MODE (varop) == shift_mode
8933 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8934 > first_count))
8935 {
8936 varop = XEXP (varop, 0);
8937
8938 signed_count = count - first_count;
8939 if (signed_count < 0)
8940 count = -signed_count, code = ASHIFT;
8941 else
8942 count = signed_count;
8943
8944 continue;
8945 }
8946
8947 /* There are some cases we can't do. If CODE is ASHIFTRT,
8948 we can only do this if FIRST_CODE is also ASHIFTRT.
8949
8950 We can't do the case when CODE is ROTATE and FIRST_CODE is
8951 ASHIFTRT.
8952
8953 If the mode of this shift is not the mode of the outer shift,
8954 we can't do this if either shift is a right shift or ROTATE.
8955
8956 Finally, we can't do any of these if the mode is too wide
8957 unless the codes are the same.
8958
8959 Handle the case where the shift codes are the same
8960 first. */
8961
8962 if (code == first_code)
8963 {
8964 if (GET_MODE (varop) != result_mode
8965 && (code == ASHIFTRT || code == LSHIFTRT
8966 || code == ROTATE))
8967 break;
8968
8969 count += first_count;
8970 varop = XEXP (varop, 0);
8971 continue;
8972 }
8973
8974 if (code == ASHIFTRT
8975 || (code == ROTATE && first_code == ASHIFTRT)
8976 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8977 || (GET_MODE (varop) != result_mode
8978 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8979 || first_code == ROTATE
8980 || code == ROTATE)))
8981 break;
8982
8983 /* To compute the mask to apply after the shift, shift the
8984 nonzero bits of the inner shift the same way the
8985 outer shift will. */
8986
8987 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8988
8989 mask_rtx
8990 = simplify_binary_operation (code, result_mode, mask_rtx,
8991 GEN_INT (count));
8992
8993 /* Give up if we can't compute an outer operation to use. */
8994 if (mask_rtx == 0
8995 || GET_CODE (mask_rtx) != CONST_INT
8996 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8997 INTVAL (mask_rtx),
8998 result_mode, &complement_p))
8999 break;
9000
9001 /* If the shifts are in the same direction, we add the
9002 counts. Otherwise, we subtract them. */
9003 signed_count = count;
9004 if ((code == ASHIFTRT || code == LSHIFTRT)
9005 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9006 signed_count += first_count;
9007 else
9008 signed_count -= first_count;
9009
9010 /* If COUNT is positive, the new shift is usually CODE,
9011 except for the two exceptions below, in which case it is
9012 FIRST_CODE. If the count is negative, FIRST_CODE should
9013 always be used */
9014 if (signed_count > 0
9015 && ((first_code == ROTATE && code == ASHIFT)
9016 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9017 code = first_code, count = signed_count;
9018 else if (signed_count < 0)
9019 code = first_code, count = -signed_count;
9020 else
9021 count = signed_count;
9022
9023 varop = XEXP (varop, 0);
9024 continue;
9025 }
9026
9027 /* If we have (A << B << C) for any shift, we can convert this to
9028 (A << C << B). This wins if A is a constant. Only try this if
9029 B is not a constant. */
9030
9031 else if (GET_CODE (varop) == code
9032 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9033 && 0 != (new
9034 = simplify_binary_operation (code, mode,
9035 XEXP (varop, 0),
9036 GEN_INT (count))))
9037 {
9038 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9039 count = 0;
9040 continue;
9041 }
9042 break;
9043
9044 case NOT:
9045 /* Make this fit the case below. */
9046 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9047 GEN_INT (GET_MODE_MASK (mode)));
9048 continue;
9049
9050 case IOR:
9051 case AND:
9052 case XOR:
9053 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9054 with C the size of VAROP - 1 and the shift is logical if
9055 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9056 we have an (le X 0) operation. If we have an arithmetic shift
9057 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9058 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9059
9060 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9061 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9062 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9063 && (code == LSHIFTRT || code == ASHIFTRT)
9064 && count == (unsigned int)
9065 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9066 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9067 {
9068 count = 0;
9069 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9070 const0_rtx);
9071
9072 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9073 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9074
9075 continue;
9076 }
9077
9078 /* If we have (shift (logical)), move the logical to the outside
9079 to allow it to possibly combine with another logical and the
9080 shift to combine with another shift. This also canonicalizes to
9081 what a ZERO_EXTRACT looks like. Also, some machines have
9082 (and (shift)) insns. */
9083
9084 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9085 /* We can't do this if we have (ashiftrt (xor)) and the
9086 constant has its sign bit set in shift_mode. */
9087 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9088 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9089 shift_mode))
9090 && (new = simplify_binary_operation (code, result_mode,
9091 XEXP (varop, 1),
9092 GEN_INT (count))) != 0
9093 && GET_CODE (new) == CONST_INT
9094 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9095 INTVAL (new), result_mode, &complement_p))
9096 {
9097 varop = XEXP (varop, 0);
9098 continue;
9099 }
9100
9101 /* If we can't do that, try to simplify the shift in each arm of the
9102 logical expression, make a new logical expression, and apply
9103 the inverse distributive law. This also can't be done
9104 for some (ashiftrt (xor)). */
9105 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9106 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9107 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9108 shift_mode)))
9109 {
9110 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9111 XEXP (varop, 0), count);
9112 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9113 XEXP (varop, 1), count);
9114
9115 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9116 lhs, rhs);
9117 varop = apply_distributive_law (varop);
9118
9119 count = 0;
9120 continue;
9121 }
9122 break;
9123
9124 case EQ:
9125 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9126 says that the sign bit can be tested, FOO has mode MODE, C is
9127 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9128 that may be nonzero. */
9129 if (code == LSHIFTRT
9130 && XEXP (varop, 1) == const0_rtx
9131 && GET_MODE (XEXP (varop, 0)) == result_mode
9132 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9133 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9134 && ((STORE_FLAG_VALUE
9135 & ((HOST_WIDE_INT) 1
9136 < (GET_MODE_BITSIZE (result_mode) - 1))))
9137 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9138 && merge_outer_ops (&outer_op, &outer_const, XOR,
9139 (HOST_WIDE_INT) 1, result_mode,
9140 &complement_p))
9141 {
9142 varop = XEXP (varop, 0);
9143 count = 0;
9144 continue;
9145 }
9146 break;
9147
9148 case NEG:
9149 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9150 than the number of bits in the mode is equivalent to A. */
9151 if (code == LSHIFTRT
9152 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9153 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9154 {
9155 varop = XEXP (varop, 0);
9156 count = 0;
9157 continue;
9158 }
9159
9160 /* NEG commutes with ASHIFT since it is multiplication. Move the
9161 NEG outside to allow shifts to combine. */
9162 if (code == ASHIFT
9163 && merge_outer_ops (&outer_op, &outer_const, NEG,
9164 (HOST_WIDE_INT) 0, result_mode,
9165 &complement_p))
9166 {
9167 varop = XEXP (varop, 0);
9168 continue;
9169 }
9170 break;
9171
9172 case PLUS:
9173 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9174 is one less than the number of bits in the mode is
9175 equivalent to (xor A 1). */
9176 if (code == LSHIFTRT
9177 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9178 && XEXP (varop, 1) == constm1_rtx
9179 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9180 && merge_outer_ops (&outer_op, &outer_const, XOR,
9181 (HOST_WIDE_INT) 1, result_mode,
9182 &complement_p))
9183 {
9184 count = 0;
9185 varop = XEXP (varop, 0);
9186 continue;
9187 }
9188
9189 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9190 that might be nonzero in BAR are those being shifted out and those
9191 bits are known zero in FOO, we can replace the PLUS with FOO.
9192 Similarly in the other operand order. This code occurs when
9193 we are computing the size of a variable-size array. */
9194
9195 if ((code == ASHIFTRT || code == LSHIFTRT)
9196 && count < HOST_BITS_PER_WIDE_INT
9197 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9198 && (nonzero_bits (XEXP (varop, 1), result_mode)
9199 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9200 {
9201 varop = XEXP (varop, 0);
9202 continue;
9203 }
9204 else if ((code == ASHIFTRT || code == LSHIFTRT)
9205 && count < HOST_BITS_PER_WIDE_INT
9206 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9207 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9208 >> count)
9209 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9210 & nonzero_bits (XEXP (varop, 1),
9211 result_mode)))
9212 {
9213 varop = XEXP (varop, 1);
9214 continue;
9215 }
9216
9217 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9218 if (code == ASHIFT
9219 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9220 && (new = simplify_binary_operation (ASHIFT, result_mode,
9221 XEXP (varop, 1),
9222 GEN_INT (count))) != 0
9223 && GET_CODE (new) == CONST_INT
9224 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9225 INTVAL (new), result_mode, &complement_p))
9226 {
9227 varop = XEXP (varop, 0);
9228 continue;
9229 }
9230
9231 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9232 signbit', and attempt to change the PLUS to an XOR and move it to
9233 the outer operation as is done above in the AND/IOR/XOR case
9234 leg for shift(logical). See details in logical handling above
9235 for reasoning in doing so. */
9236 if (code == LSHIFTRT
9237 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9238 && mode_signbit_p (result_mode, XEXP (varop, 1))
9239 && (new = simplify_binary_operation (code, result_mode,
9240 XEXP (varop, 1),
9241 GEN_INT (count))) != 0
9242 && GET_CODE (new) == CONST_INT
9243 && merge_outer_ops (&outer_op, &outer_const, XOR,
9244 INTVAL (new), result_mode, &complement_p))
9245 {
9246 varop = XEXP (varop, 0);
9247 continue;
9248 }
9249
9250 break;
9251
9252 case MINUS:
9253 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9254 with C the size of VAROP - 1 and the shift is logical if
9255 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9256 we have a (gt X 0) operation. If the shift is arithmetic with
9257 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9258 we have a (neg (gt X 0)) operation. */
9259
9260 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9261 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9262 && count == (unsigned int)
9263 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9264 && (code == LSHIFTRT || code == ASHIFTRT)
9265 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9266 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9267 == count
9268 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9269 {
9270 count = 0;
9271 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9272 const0_rtx);
9273
9274 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9275 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9276
9277 continue;
9278 }
9279 break;
9280
9281 case TRUNCATE:
9282 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9283 if the truncate does not affect the value. */
9284 if (code == LSHIFTRT
9285 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9286 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9287 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9288 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9289 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9290 {
9291 rtx varop_inner = XEXP (varop, 0);
9292
9293 varop_inner
9294 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9295 XEXP (varop_inner, 0),
9296 GEN_INT
9297 (count + INTVAL (XEXP (varop_inner, 1))));
9298 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9299 count = 0;
9300 continue;
9301 }
9302 break;
9303
9304 default:
9305 break;
9306 }
9307
9308 break;
9309 }
9310
9311 /* We need to determine what mode to do the shift in. If the shift is
9312 a right shift or ROTATE, we must always do it in the mode it was
9313 originally done in. Otherwise, we can do it in MODE, the widest mode
9314 encountered. The code we care about is that of the shift that will
9315 actually be done, not the shift that was originally requested. */
9316 shift_mode
9317 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9318 ? result_mode : mode);
9319
9320 /* We have now finished analyzing the shift. The result should be
9321 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9322 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9323 to the result of the shift. OUTER_CONST is the relevant constant,
9324 but we must turn off all bits turned off in the shift.
9325
9326 If we were passed a value for X, see if we can use any pieces of
9327 it. If not, make new rtx. */
9328
9329 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9330 && GET_CODE (XEXP (x, 1)) == CONST_INT
9331 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9332 const_rtx = XEXP (x, 1);
9333 else
9334 const_rtx = GEN_INT (count);
9335
9336 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9337 && GET_MODE (XEXP (x, 0)) == shift_mode
9338 && SUBREG_REG (XEXP (x, 0)) == varop)
9339 varop = XEXP (x, 0);
9340 else if (GET_MODE (varop) != shift_mode)
9341 varop = gen_lowpart (shift_mode, varop);
9342
9343 /* If we can't make the SUBREG, try to return what we were given. */
9344 if (GET_CODE (varop) == CLOBBER)
9345 return x ? x : varop;
9346
9347 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9348 if (new != 0)
9349 x = new;
9350 else
9351 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9352
9353 /* If we have an outer operation and we just made a shift, it is
9354 possible that we could have simplified the shift were it not
9355 for the outer operation. So try to do the simplification
9356 recursively. */
9357
9358 if (outer_op != UNKNOWN && GET_CODE (x) == code
9359 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9360 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9361 INTVAL (XEXP (x, 1)));
9362
9363 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9364 turn off all the bits that the shift would have turned off. */
9365 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9366 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9367 GET_MODE_MASK (result_mode) >> orig_count);
9368
9369 /* Do the remainder of the processing in RESULT_MODE. */
9370 x = gen_lowpart (result_mode, x);
9371
9372 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9373 operation. */
9374 if (complement_p)
9375 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9376
9377 if (outer_op != UNKNOWN)
9378 {
9379 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9380 outer_const = trunc_int_for_mode (outer_const, result_mode);
9381
9382 if (outer_op == AND)
9383 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9384 else if (outer_op == SET)
9385 /* This means that we have determined that the result is
9386 equivalent to a constant. This should be rare. */
9387 x = GEN_INT (outer_const);
9388 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9389 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9390 else
9391 x = simplify_gen_binary (outer_op, result_mode, x,
9392 GEN_INT (outer_const));
9393 }
9394
9395 return x;
9396 }
9397 \f
9398 /* Like recog, but we receive the address of a pointer to a new pattern.
9399 We try to match the rtx that the pointer points to.
9400 If that fails, we may try to modify or replace the pattern,
9401 storing the replacement into the same pointer object.
9402
9403 Modifications include deletion or addition of CLOBBERs.
9404
9405 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9406 the CLOBBERs are placed.
9407
9408 The value is the final insn code from the pattern ultimately matched,
9409 or -1. */
9410
9411 static int
9412 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9413 {
9414 rtx pat = *pnewpat;
9415 int insn_code_number;
9416 int num_clobbers_to_add = 0;
9417 int i;
9418 rtx notes = 0;
9419 rtx old_notes, old_pat;
9420
9421 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9422 we use to indicate that something didn't match. If we find such a
9423 thing, force rejection. */
9424 if (GET_CODE (pat) == PARALLEL)
9425 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9426 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9427 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9428 return -1;
9429
9430 old_pat = PATTERN (insn);
9431 old_notes = REG_NOTES (insn);
9432 PATTERN (insn) = pat;
9433 REG_NOTES (insn) = 0;
9434
9435 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9436
9437 /* If it isn't, there is the possibility that we previously had an insn
9438 that clobbered some register as a side effect, but the combined
9439 insn doesn't need to do that. So try once more without the clobbers
9440 unless this represents an ASM insn. */
9441
9442 if (insn_code_number < 0 && ! check_asm_operands (pat)
9443 && GET_CODE (pat) == PARALLEL)
9444 {
9445 int pos;
9446
9447 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9448 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9449 {
9450 if (i != pos)
9451 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9452 pos++;
9453 }
9454
9455 SUBST_INT (XVECLEN (pat, 0), pos);
9456
9457 if (pos == 1)
9458 pat = XVECEXP (pat, 0, 0);
9459
9460 PATTERN (insn) = pat;
9461 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9462 }
9463 PATTERN (insn) = old_pat;
9464 REG_NOTES (insn) = old_notes;
9465
9466 /* Recognize all noop sets, these will be killed by followup pass. */
9467 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9468 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9469
9470 /* If we had any clobbers to add, make a new pattern than contains
9471 them. Then check to make sure that all of them are dead. */
9472 if (num_clobbers_to_add)
9473 {
9474 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9475 rtvec_alloc (GET_CODE (pat) == PARALLEL
9476 ? (XVECLEN (pat, 0)
9477 + num_clobbers_to_add)
9478 : num_clobbers_to_add + 1));
9479
9480 if (GET_CODE (pat) == PARALLEL)
9481 for (i = 0; i < XVECLEN (pat, 0); i++)
9482 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9483 else
9484 XVECEXP (newpat, 0, 0) = pat;
9485
9486 add_clobbers (newpat, insn_code_number);
9487
9488 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9489 i < XVECLEN (newpat, 0); i++)
9490 {
9491 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9492 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9493 return -1;
9494 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9495 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9496 }
9497 pat = newpat;
9498 }
9499
9500 *pnewpat = pat;
9501 *pnotes = notes;
9502
9503 return insn_code_number;
9504 }
9505 \f
9506 /* Like gen_lowpart_general but for use by combine. In combine it
9507 is not possible to create any new pseudoregs. However, it is
9508 safe to create invalid memory addresses, because combine will
9509 try to recognize them and all they will do is make the combine
9510 attempt fail.
9511
9512 If for some reason this cannot do its job, an rtx
9513 (clobber (const_int 0)) is returned.
9514 An insn containing that will not be recognized. */
9515
9516 static rtx
9517 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9518 {
9519 enum machine_mode imode = GET_MODE (x);
9520 unsigned int osize = GET_MODE_SIZE (omode);
9521 unsigned int isize = GET_MODE_SIZE (imode);
9522 rtx result;
9523
9524 if (omode == imode)
9525 return x;
9526
9527 /* Return identity if this is a CONST or symbolic reference. */
9528 if (omode == Pmode
9529 && (GET_CODE (x) == CONST
9530 || GET_CODE (x) == SYMBOL_REF
9531 || GET_CODE (x) == LABEL_REF))
9532 return x;
9533
9534 /* We can only support MODE being wider than a word if X is a
9535 constant integer or has a mode the same size. */
9536 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9537 && ! ((imode == VOIDmode
9538 && (GET_CODE (x) == CONST_INT
9539 || GET_CODE (x) == CONST_DOUBLE))
9540 || isize == osize))
9541 goto fail;
9542
9543 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9544 won't know what to do. So we will strip off the SUBREG here and
9545 process normally. */
9546 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9547 {
9548 x = SUBREG_REG (x);
9549
9550 /* For use in case we fall down into the address adjustments
9551 further below, we need to adjust the known mode and size of
9552 x; imode and isize, since we just adjusted x. */
9553 imode = GET_MODE (x);
9554
9555 if (imode == omode)
9556 return x;
9557
9558 isize = GET_MODE_SIZE (imode);
9559 }
9560
9561 result = gen_lowpart_common (omode, x);
9562
9563 #ifdef CANNOT_CHANGE_MODE_CLASS
9564 if (result != 0 && GET_CODE (result) == SUBREG)
9565 record_subregs_of_mode (result);
9566 #endif
9567
9568 if (result)
9569 return result;
9570
9571 if (MEM_P (x))
9572 {
9573 int offset = 0;
9574
9575 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9576 address. */
9577 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9578 goto fail;
9579
9580 /* If we want to refer to something bigger than the original memref,
9581 generate a paradoxical subreg instead. That will force a reload
9582 of the original memref X. */
9583 if (isize < osize)
9584 return gen_rtx_SUBREG (omode, x, 0);
9585
9586 if (WORDS_BIG_ENDIAN)
9587 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9588
9589 /* Adjust the address so that the address-after-the-data is
9590 unchanged. */
9591 if (BYTES_BIG_ENDIAN)
9592 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9593
9594 return adjust_address_nv (x, omode, offset);
9595 }
9596
9597 /* If X is a comparison operator, rewrite it in a new mode. This
9598 probably won't match, but may allow further simplifications. */
9599 else if (COMPARISON_P (x))
9600 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9601
9602 /* If we couldn't simplify X any other way, just enclose it in a
9603 SUBREG. Normally, this SUBREG won't match, but some patterns may
9604 include an explicit SUBREG or we may simplify it further in combine. */
9605 else
9606 {
9607 int offset = 0;
9608 rtx res;
9609
9610 offset = subreg_lowpart_offset (omode, imode);
9611 if (imode == VOIDmode)
9612 {
9613 imode = int_mode_for_mode (omode);
9614 x = gen_lowpart_common (imode, x);
9615 if (x == NULL)
9616 goto fail;
9617 }
9618 res = simplify_gen_subreg (omode, x, imode, offset);
9619 if (res)
9620 return res;
9621 }
9622
9623 fail:
9624 return gen_rtx_CLOBBER (imode, const0_rtx);
9625 }
9626 \f
9627 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9628 comparison code that will be tested.
9629
9630 The result is a possibly different comparison code to use. *POP0 and
9631 *POP1 may be updated.
9632
9633 It is possible that we might detect that a comparison is either always
9634 true or always false. However, we do not perform general constant
9635 folding in combine, so this knowledge isn't useful. Such tautologies
9636 should have been detected earlier. Hence we ignore all such cases. */
9637
9638 static enum rtx_code
9639 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9640 {
9641 rtx op0 = *pop0;
9642 rtx op1 = *pop1;
9643 rtx tem, tem1;
9644 int i;
9645 enum machine_mode mode, tmode;
9646
9647 /* Try a few ways of applying the same transformation to both operands. */
9648 while (1)
9649 {
9650 #ifndef WORD_REGISTER_OPERATIONS
9651 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9652 so check specially. */
9653 if (code != GTU && code != GEU && code != LTU && code != LEU
9654 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9655 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9656 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9657 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9658 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9659 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9660 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9661 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9662 && XEXP (op0, 1) == XEXP (op1, 1)
9663 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9664 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9665 && (INTVAL (XEXP (op0, 1))
9666 == (GET_MODE_BITSIZE (GET_MODE (op0))
9667 - (GET_MODE_BITSIZE
9668 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9669 {
9670 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9671 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9672 }
9673 #endif
9674
9675 /* If both operands are the same constant shift, see if we can ignore the
9676 shift. We can if the shift is a rotate or if the bits shifted out of
9677 this shift are known to be zero for both inputs and if the type of
9678 comparison is compatible with the shift. */
9679 if (GET_CODE (op0) == GET_CODE (op1)
9680 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9681 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9682 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9683 && (code != GT && code != LT && code != GE && code != LE))
9684 || (GET_CODE (op0) == ASHIFTRT
9685 && (code != GTU && code != LTU
9686 && code != GEU && code != LEU)))
9687 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9688 && INTVAL (XEXP (op0, 1)) >= 0
9689 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9690 && XEXP (op0, 1) == XEXP (op1, 1))
9691 {
9692 enum machine_mode mode = GET_MODE (op0);
9693 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9694 int shift_count = INTVAL (XEXP (op0, 1));
9695
9696 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9697 mask &= (mask >> shift_count) << shift_count;
9698 else if (GET_CODE (op0) == ASHIFT)
9699 mask = (mask & (mask << shift_count)) >> shift_count;
9700
9701 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9702 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9703 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9704 else
9705 break;
9706 }
9707
9708 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9709 SUBREGs are of the same mode, and, in both cases, the AND would
9710 be redundant if the comparison was done in the narrower mode,
9711 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9712 and the operand's possibly nonzero bits are 0xffffff01; in that case
9713 if we only care about QImode, we don't need the AND). This case
9714 occurs if the output mode of an scc insn is not SImode and
9715 STORE_FLAG_VALUE == 1 (e.g., the 386).
9716
9717 Similarly, check for a case where the AND's are ZERO_EXTEND
9718 operations from some narrower mode even though a SUBREG is not
9719 present. */
9720
9721 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9722 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9723 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9724 {
9725 rtx inner_op0 = XEXP (op0, 0);
9726 rtx inner_op1 = XEXP (op1, 0);
9727 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9728 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9729 int changed = 0;
9730
9731 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9732 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9733 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9734 && (GET_MODE (SUBREG_REG (inner_op0))
9735 == GET_MODE (SUBREG_REG (inner_op1)))
9736 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9737 <= HOST_BITS_PER_WIDE_INT)
9738 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9739 GET_MODE (SUBREG_REG (inner_op0)))))
9740 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9741 GET_MODE (SUBREG_REG (inner_op1))))))
9742 {
9743 op0 = SUBREG_REG (inner_op0);
9744 op1 = SUBREG_REG (inner_op1);
9745
9746 /* The resulting comparison is always unsigned since we masked
9747 off the original sign bit. */
9748 code = unsigned_condition (code);
9749
9750 changed = 1;
9751 }
9752
9753 else if (c0 == c1)
9754 for (tmode = GET_CLASS_NARROWEST_MODE
9755 (GET_MODE_CLASS (GET_MODE (op0)));
9756 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9757 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9758 {
9759 op0 = gen_lowpart (tmode, inner_op0);
9760 op1 = gen_lowpart (tmode, inner_op1);
9761 code = unsigned_condition (code);
9762 changed = 1;
9763 break;
9764 }
9765
9766 if (! changed)
9767 break;
9768 }
9769
9770 /* If both operands are NOT, we can strip off the outer operation
9771 and adjust the comparison code for swapped operands; similarly for
9772 NEG, except that this must be an equality comparison. */
9773 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9774 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9775 && (code == EQ || code == NE)))
9776 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9777
9778 else
9779 break;
9780 }
9781
9782 /* If the first operand is a constant, swap the operands and adjust the
9783 comparison code appropriately, but don't do this if the second operand
9784 is already a constant integer. */
9785 if (swap_commutative_operands_p (op0, op1))
9786 {
9787 tem = op0, op0 = op1, op1 = tem;
9788 code = swap_condition (code);
9789 }
9790
9791 /* We now enter a loop during which we will try to simplify the comparison.
9792 For the most part, we only are concerned with comparisons with zero,
9793 but some things may really be comparisons with zero but not start
9794 out looking that way. */
9795
9796 while (GET_CODE (op1) == CONST_INT)
9797 {
9798 enum machine_mode mode = GET_MODE (op0);
9799 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9800 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9801 int equality_comparison_p;
9802 int sign_bit_comparison_p;
9803 int unsigned_comparison_p;
9804 HOST_WIDE_INT const_op;
9805
9806 /* We only want to handle integral modes. This catches VOIDmode,
9807 CCmode, and the floating-point modes. An exception is that we
9808 can handle VOIDmode if OP0 is a COMPARE or a comparison
9809 operation. */
9810
9811 if (GET_MODE_CLASS (mode) != MODE_INT
9812 && ! (mode == VOIDmode
9813 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9814 break;
9815
9816 /* Get the constant we are comparing against and turn off all bits
9817 not on in our mode. */
9818 const_op = INTVAL (op1);
9819 if (mode != VOIDmode)
9820 const_op = trunc_int_for_mode (const_op, mode);
9821 op1 = GEN_INT (const_op);
9822
9823 /* If we are comparing against a constant power of two and the value
9824 being compared can only have that single bit nonzero (e.g., it was
9825 `and'ed with that bit), we can replace this with a comparison
9826 with zero. */
9827 if (const_op
9828 && (code == EQ || code == NE || code == GE || code == GEU
9829 || code == LT || code == LTU)
9830 && mode_width <= HOST_BITS_PER_WIDE_INT
9831 && exact_log2 (const_op) >= 0
9832 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9833 {
9834 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9835 op1 = const0_rtx, const_op = 0;
9836 }
9837
9838 /* Similarly, if we are comparing a value known to be either -1 or
9839 0 with -1, change it to the opposite comparison against zero. */
9840
9841 if (const_op == -1
9842 && (code == EQ || code == NE || code == GT || code == LE
9843 || code == GEU || code == LTU)
9844 && num_sign_bit_copies (op0, mode) == mode_width)
9845 {
9846 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9847 op1 = const0_rtx, const_op = 0;
9848 }
9849
9850 /* Do some canonicalizations based on the comparison code. We prefer
9851 comparisons against zero and then prefer equality comparisons.
9852 If we can reduce the size of a constant, we will do that too. */
9853
9854 switch (code)
9855 {
9856 case LT:
9857 /* < C is equivalent to <= (C - 1) */
9858 if (const_op > 0)
9859 {
9860 const_op -= 1;
9861 op1 = GEN_INT (const_op);
9862 code = LE;
9863 /* ... fall through to LE case below. */
9864 }
9865 else
9866 break;
9867
9868 case LE:
9869 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9870 if (const_op < 0)
9871 {
9872 const_op += 1;
9873 op1 = GEN_INT (const_op);
9874 code = LT;
9875 }
9876
9877 /* If we are doing a <= 0 comparison on a value known to have
9878 a zero sign bit, we can replace this with == 0. */
9879 else if (const_op == 0
9880 && mode_width <= HOST_BITS_PER_WIDE_INT
9881 && (nonzero_bits (op0, mode)
9882 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9883 code = EQ;
9884 break;
9885
9886 case GE:
9887 /* >= C is equivalent to > (C - 1). */
9888 if (const_op > 0)
9889 {
9890 const_op -= 1;
9891 op1 = GEN_INT (const_op);
9892 code = GT;
9893 /* ... fall through to GT below. */
9894 }
9895 else
9896 break;
9897
9898 case GT:
9899 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9900 if (const_op < 0)
9901 {
9902 const_op += 1;
9903 op1 = GEN_INT (const_op);
9904 code = GE;
9905 }
9906
9907 /* If we are doing a > 0 comparison on a value known to have
9908 a zero sign bit, we can replace this with != 0. */
9909 else if (const_op == 0
9910 && mode_width <= HOST_BITS_PER_WIDE_INT
9911 && (nonzero_bits (op0, mode)
9912 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9913 code = NE;
9914 break;
9915
9916 case LTU:
9917 /* < C is equivalent to <= (C - 1). */
9918 if (const_op > 0)
9919 {
9920 const_op -= 1;
9921 op1 = GEN_INT (const_op);
9922 code = LEU;
9923 /* ... fall through ... */
9924 }
9925
9926 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9927 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9928 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9929 {
9930 const_op = 0, op1 = const0_rtx;
9931 code = GE;
9932 break;
9933 }
9934 else
9935 break;
9936
9937 case LEU:
9938 /* unsigned <= 0 is equivalent to == 0 */
9939 if (const_op == 0)
9940 code = EQ;
9941
9942 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9943 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9944 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9945 {
9946 const_op = 0, op1 = const0_rtx;
9947 code = GE;
9948 }
9949 break;
9950
9951 case GEU:
9952 /* >= C is equivalent to > (C - 1). */
9953 if (const_op > 1)
9954 {
9955 const_op -= 1;
9956 op1 = GEN_INT (const_op);
9957 code = GTU;
9958 /* ... fall through ... */
9959 }
9960
9961 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9962 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9963 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9964 {
9965 const_op = 0, op1 = const0_rtx;
9966 code = LT;
9967 break;
9968 }
9969 else
9970 break;
9971
9972 case GTU:
9973 /* unsigned > 0 is equivalent to != 0 */
9974 if (const_op == 0)
9975 code = NE;
9976
9977 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9978 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9979 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9980 {
9981 const_op = 0, op1 = const0_rtx;
9982 code = LT;
9983 }
9984 break;
9985
9986 default:
9987 break;
9988 }
9989
9990 /* Compute some predicates to simplify code below. */
9991
9992 equality_comparison_p = (code == EQ || code == NE);
9993 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9994 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9995 || code == GEU);
9996
9997 /* If this is a sign bit comparison and we can do arithmetic in
9998 MODE, say that we will only be needing the sign bit of OP0. */
9999 if (sign_bit_comparison_p
10000 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10001 op0 = force_to_mode (op0, mode,
10002 ((HOST_WIDE_INT) 1
10003 << (GET_MODE_BITSIZE (mode) - 1)),
10004 NULL_RTX, 0);
10005
10006 /* Now try cases based on the opcode of OP0. If none of the cases
10007 does a "continue", we exit this loop immediately after the
10008 switch. */
10009
10010 switch (GET_CODE (op0))
10011 {
10012 case ZERO_EXTRACT:
10013 /* If we are extracting a single bit from a variable position in
10014 a constant that has only a single bit set and are comparing it
10015 with zero, we can convert this into an equality comparison
10016 between the position and the location of the single bit. */
10017 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10018 have already reduced the shift count modulo the word size. */
10019 if (!SHIFT_COUNT_TRUNCATED
10020 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10021 && XEXP (op0, 1) == const1_rtx
10022 && equality_comparison_p && const_op == 0
10023 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10024 {
10025 if (BITS_BIG_ENDIAN)
10026 {
10027 enum machine_mode new_mode
10028 = mode_for_extraction (EP_extzv, 1);
10029 if (new_mode == MAX_MACHINE_MODE)
10030 i = BITS_PER_WORD - 1 - i;
10031 else
10032 {
10033 mode = new_mode;
10034 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10035 }
10036 }
10037
10038 op0 = XEXP (op0, 2);
10039 op1 = GEN_INT (i);
10040 const_op = i;
10041
10042 /* Result is nonzero iff shift count is equal to I. */
10043 code = reverse_condition (code);
10044 continue;
10045 }
10046
10047 /* ... fall through ... */
10048
10049 case SIGN_EXTRACT:
10050 tem = expand_compound_operation (op0);
10051 if (tem != op0)
10052 {
10053 op0 = tem;
10054 continue;
10055 }
10056 break;
10057
10058 case NOT:
10059 /* If testing for equality, we can take the NOT of the constant. */
10060 if (equality_comparison_p
10061 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10062 {
10063 op0 = XEXP (op0, 0);
10064 op1 = tem;
10065 continue;
10066 }
10067
10068 /* If just looking at the sign bit, reverse the sense of the
10069 comparison. */
10070 if (sign_bit_comparison_p)
10071 {
10072 op0 = XEXP (op0, 0);
10073 code = (code == GE ? LT : GE);
10074 continue;
10075 }
10076 break;
10077
10078 case NEG:
10079 /* If testing for equality, we can take the NEG of the constant. */
10080 if (equality_comparison_p
10081 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10082 {
10083 op0 = XEXP (op0, 0);
10084 op1 = tem;
10085 continue;
10086 }
10087
10088 /* The remaining cases only apply to comparisons with zero. */
10089 if (const_op != 0)
10090 break;
10091
10092 /* When X is ABS or is known positive,
10093 (neg X) is < 0 if and only if X != 0. */
10094
10095 if (sign_bit_comparison_p
10096 && (GET_CODE (XEXP (op0, 0)) == ABS
10097 || (mode_width <= HOST_BITS_PER_WIDE_INT
10098 && (nonzero_bits (XEXP (op0, 0), mode)
10099 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10100 {
10101 op0 = XEXP (op0, 0);
10102 code = (code == LT ? NE : EQ);
10103 continue;
10104 }
10105
10106 /* If we have NEG of something whose two high-order bits are the
10107 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10108 if (num_sign_bit_copies (op0, mode) >= 2)
10109 {
10110 op0 = XEXP (op0, 0);
10111 code = swap_condition (code);
10112 continue;
10113 }
10114 break;
10115
10116 case ROTATE:
10117 /* If we are testing equality and our count is a constant, we
10118 can perform the inverse operation on our RHS. */
10119 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10120 && (tem = simplify_binary_operation (ROTATERT, mode,
10121 op1, XEXP (op0, 1))) != 0)
10122 {
10123 op0 = XEXP (op0, 0);
10124 op1 = tem;
10125 continue;
10126 }
10127
10128 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10129 a particular bit. Convert it to an AND of a constant of that
10130 bit. This will be converted into a ZERO_EXTRACT. */
10131 if (const_op == 0 && sign_bit_comparison_p
10132 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10133 && mode_width <= HOST_BITS_PER_WIDE_INT)
10134 {
10135 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10136 ((HOST_WIDE_INT) 1
10137 << (mode_width - 1
10138 - INTVAL (XEXP (op0, 1)))));
10139 code = (code == LT ? NE : EQ);
10140 continue;
10141 }
10142
10143 /* Fall through. */
10144
10145 case ABS:
10146 /* ABS is ignorable inside an equality comparison with zero. */
10147 if (const_op == 0 && equality_comparison_p)
10148 {
10149 op0 = XEXP (op0, 0);
10150 continue;
10151 }
10152 break;
10153
10154 case SIGN_EXTEND:
10155 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10156 (compare FOO CONST) if CONST fits in FOO's mode and we
10157 are either testing inequality or have an unsigned
10158 comparison with ZERO_EXTEND or a signed comparison with
10159 SIGN_EXTEND. But don't do it if we don't have a compare
10160 insn of the given mode, since we'd have to revert it
10161 later on, and then we wouldn't know whether to sign- or
10162 zero-extend. */
10163 mode = GET_MODE (XEXP (op0, 0));
10164 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10165 && ! unsigned_comparison_p
10166 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10167 && ((unsigned HOST_WIDE_INT) const_op
10168 < (((unsigned HOST_WIDE_INT) 1
10169 << (GET_MODE_BITSIZE (mode) - 1))))
10170 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10171 {
10172 op0 = XEXP (op0, 0);
10173 continue;
10174 }
10175 break;
10176
10177 case SUBREG:
10178 /* Check for the case where we are comparing A - C1 with C2, that is
10179
10180 (subreg:MODE (plus (A) (-C1))) op (C2)
10181
10182 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10183 comparison in the wider mode. One of the following two conditions
10184 must be true in order for this to be valid:
10185
10186 1. The mode extension results in the same bit pattern being added
10187 on both sides and the comparison is equality or unsigned. As
10188 C2 has been truncated to fit in MODE, the pattern can only be
10189 all 0s or all 1s.
10190
10191 2. The mode extension results in the sign bit being copied on
10192 each side.
10193
10194 The difficulty here is that we have predicates for A but not for
10195 (A - C1) so we need to check that C1 is within proper bounds so
10196 as to perturbate A as little as possible. */
10197
10198 if (mode_width <= HOST_BITS_PER_WIDE_INT
10199 && subreg_lowpart_p (op0)
10200 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10201 && GET_CODE (SUBREG_REG (op0)) == PLUS
10202 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10203 {
10204 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10205 rtx a = XEXP (SUBREG_REG (op0), 0);
10206 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10207
10208 if ((c1 > 0
10209 && (unsigned HOST_WIDE_INT) c1
10210 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10211 && (equality_comparison_p || unsigned_comparison_p)
10212 /* (A - C1) zero-extends if it is positive and sign-extends
10213 if it is negative, C2 both zero- and sign-extends. */
10214 && ((0 == (nonzero_bits (a, inner_mode)
10215 & ~GET_MODE_MASK (mode))
10216 && const_op >= 0)
10217 /* (A - C1) sign-extends if it is positive and 1-extends
10218 if it is negative, C2 both sign- and 1-extends. */
10219 || (num_sign_bit_copies (a, inner_mode)
10220 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10221 - mode_width)
10222 && const_op < 0)))
10223 || ((unsigned HOST_WIDE_INT) c1
10224 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10225 /* (A - C1) always sign-extends, like C2. */
10226 && num_sign_bit_copies (a, inner_mode)
10227 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10228 - mode_width - 1)))
10229 {
10230 op0 = SUBREG_REG (op0);
10231 continue;
10232 }
10233 }
10234
10235 /* If the inner mode is narrower and we are extracting the low part,
10236 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10237 if (subreg_lowpart_p (op0)
10238 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10239 /* Fall through */ ;
10240 else
10241 break;
10242
10243 /* ... fall through ... */
10244
10245 case ZERO_EXTEND:
10246 mode = GET_MODE (XEXP (op0, 0));
10247 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10248 && (unsigned_comparison_p || equality_comparison_p)
10249 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10250 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10251 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10252 {
10253 op0 = XEXP (op0, 0);
10254 continue;
10255 }
10256 break;
10257
10258 case PLUS:
10259 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10260 this for equality comparisons due to pathological cases involving
10261 overflows. */
10262 if (equality_comparison_p
10263 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10264 op1, XEXP (op0, 1))))
10265 {
10266 op0 = XEXP (op0, 0);
10267 op1 = tem;
10268 continue;
10269 }
10270
10271 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10272 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10273 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10274 {
10275 op0 = XEXP (XEXP (op0, 0), 0);
10276 code = (code == LT ? EQ : NE);
10277 continue;
10278 }
10279 break;
10280
10281 case MINUS:
10282 /* We used to optimize signed comparisons against zero, but that
10283 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10284 arrive here as equality comparisons, or (GEU, LTU) are
10285 optimized away. No need to special-case them. */
10286
10287 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10288 (eq B (minus A C)), whichever simplifies. We can only do
10289 this for equality comparisons due to pathological cases involving
10290 overflows. */
10291 if (equality_comparison_p
10292 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10293 XEXP (op0, 1), op1)))
10294 {
10295 op0 = XEXP (op0, 0);
10296 op1 = tem;
10297 continue;
10298 }
10299
10300 if (equality_comparison_p
10301 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10302 XEXP (op0, 0), op1)))
10303 {
10304 op0 = XEXP (op0, 1);
10305 op1 = tem;
10306 continue;
10307 }
10308
10309 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10310 of bits in X minus 1, is one iff X > 0. */
10311 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10312 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10313 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10314 == mode_width - 1
10315 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10316 {
10317 op0 = XEXP (op0, 1);
10318 code = (code == GE ? LE : GT);
10319 continue;
10320 }
10321 break;
10322
10323 case XOR:
10324 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10325 if C is zero or B is a constant. */
10326 if (equality_comparison_p
10327 && 0 != (tem = simplify_binary_operation (XOR, mode,
10328 XEXP (op0, 1), op1)))
10329 {
10330 op0 = XEXP (op0, 0);
10331 op1 = tem;
10332 continue;
10333 }
10334 break;
10335
10336 case EQ: case NE:
10337 case UNEQ: case LTGT:
10338 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10339 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10340 case UNORDERED: case ORDERED:
10341 /* We can't do anything if OP0 is a condition code value, rather
10342 than an actual data value. */
10343 if (const_op != 0
10344 || CC0_P (XEXP (op0, 0))
10345 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10346 break;
10347
10348 /* Get the two operands being compared. */
10349 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10350 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10351 else
10352 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10353
10354 /* Check for the cases where we simply want the result of the
10355 earlier test or the opposite of that result. */
10356 if (code == NE || code == EQ
10357 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10358 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10359 && (STORE_FLAG_VALUE
10360 & (((HOST_WIDE_INT) 1
10361 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10362 && (code == LT || code == GE)))
10363 {
10364 enum rtx_code new_code;
10365 if (code == LT || code == NE)
10366 new_code = GET_CODE (op0);
10367 else
10368 new_code = reversed_comparison_code (op0, NULL);
10369
10370 if (new_code != UNKNOWN)
10371 {
10372 code = new_code;
10373 op0 = tem;
10374 op1 = tem1;
10375 continue;
10376 }
10377 }
10378 break;
10379
10380 case IOR:
10381 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10382 iff X <= 0. */
10383 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10384 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10385 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10386 {
10387 op0 = XEXP (op0, 1);
10388 code = (code == GE ? GT : LE);
10389 continue;
10390 }
10391 break;
10392
10393 case AND:
10394 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10395 will be converted to a ZERO_EXTRACT later. */
10396 if (const_op == 0 && equality_comparison_p
10397 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10398 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10399 {
10400 op0 = simplify_and_const_int
10401 (op0, mode, gen_rtx_LSHIFTRT (mode,
10402 XEXP (op0, 1),
10403 XEXP (XEXP (op0, 0), 1)),
10404 (HOST_WIDE_INT) 1);
10405 continue;
10406 }
10407
10408 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10409 zero and X is a comparison and C1 and C2 describe only bits set
10410 in STORE_FLAG_VALUE, we can compare with X. */
10411 if (const_op == 0 && equality_comparison_p
10412 && mode_width <= HOST_BITS_PER_WIDE_INT
10413 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10414 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10415 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10416 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10417 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10418 {
10419 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10420 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10421 if ((~STORE_FLAG_VALUE & mask) == 0
10422 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10423 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10424 && COMPARISON_P (tem))))
10425 {
10426 op0 = XEXP (XEXP (op0, 0), 0);
10427 continue;
10428 }
10429 }
10430
10431 /* If we are doing an equality comparison of an AND of a bit equal
10432 to the sign bit, replace this with a LT or GE comparison of
10433 the underlying value. */
10434 if (equality_comparison_p
10435 && const_op == 0
10436 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10437 && mode_width <= HOST_BITS_PER_WIDE_INT
10438 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10439 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10440 {
10441 op0 = XEXP (op0, 0);
10442 code = (code == EQ ? GE : LT);
10443 continue;
10444 }
10445
10446 /* If this AND operation is really a ZERO_EXTEND from a narrower
10447 mode, the constant fits within that mode, and this is either an
10448 equality or unsigned comparison, try to do this comparison in
10449 the narrower mode. */
10450 if ((equality_comparison_p || unsigned_comparison_p)
10451 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10452 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10453 & GET_MODE_MASK (mode))
10454 + 1)) >= 0
10455 && const_op >> i == 0
10456 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10457 {
10458 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10459 continue;
10460 }
10461
10462 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10463 fits in both M1 and M2 and the SUBREG is either paradoxical
10464 or represents the low part, permute the SUBREG and the AND
10465 and try again. */
10466 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10467 {
10468 unsigned HOST_WIDE_INT c1;
10469 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10470 /* Require an integral mode, to avoid creating something like
10471 (AND:SF ...). */
10472 if (SCALAR_INT_MODE_P (tmode)
10473 /* It is unsafe to commute the AND into the SUBREG if the
10474 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10475 not defined. As originally written the upper bits
10476 have a defined value due to the AND operation.
10477 However, if we commute the AND inside the SUBREG then
10478 they no longer have defined values and the meaning of
10479 the code has been changed. */
10480 && (0
10481 #ifdef WORD_REGISTER_OPERATIONS
10482 || (mode_width > GET_MODE_BITSIZE (tmode)
10483 && mode_width <= BITS_PER_WORD)
10484 #endif
10485 || (mode_width <= GET_MODE_BITSIZE (tmode)
10486 && subreg_lowpart_p (XEXP (op0, 0))))
10487 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10488 && mode_width <= HOST_BITS_PER_WIDE_INT
10489 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10490 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10491 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10492 && c1 != mask
10493 && c1 != GET_MODE_MASK (tmode))
10494 {
10495 op0 = simplify_gen_binary (AND, tmode,
10496 SUBREG_REG (XEXP (op0, 0)),
10497 gen_int_mode (c1, tmode));
10498 op0 = gen_lowpart (mode, op0);
10499 continue;
10500 }
10501 }
10502
10503 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10504 if (const_op == 0 && equality_comparison_p
10505 && XEXP (op0, 1) == const1_rtx
10506 && GET_CODE (XEXP (op0, 0)) == NOT)
10507 {
10508 op0 = simplify_and_const_int
10509 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10510 code = (code == NE ? EQ : NE);
10511 continue;
10512 }
10513
10514 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10515 (eq (and (lshiftrt X) 1) 0).
10516 Also handle the case where (not X) is expressed using xor. */
10517 if (const_op == 0 && equality_comparison_p
10518 && XEXP (op0, 1) == const1_rtx
10519 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10520 {
10521 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10522 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10523
10524 if (GET_CODE (shift_op) == NOT
10525 || (GET_CODE (shift_op) == XOR
10526 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10527 && GET_CODE (shift_count) == CONST_INT
10528 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10529 && (INTVAL (XEXP (shift_op, 1))
10530 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10531 {
10532 op0 = simplify_and_const_int
10533 (NULL_RTX, mode,
10534 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10535 (HOST_WIDE_INT) 1);
10536 code = (code == NE ? EQ : NE);
10537 continue;
10538 }
10539 }
10540 break;
10541
10542 case ASHIFT:
10543 /* If we have (compare (ashift FOO N) (const_int C)) and
10544 the high order N bits of FOO (N+1 if an inequality comparison)
10545 are known to be zero, we can do this by comparing FOO with C
10546 shifted right N bits so long as the low-order N bits of C are
10547 zero. */
10548 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10549 && INTVAL (XEXP (op0, 1)) >= 0
10550 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10551 < HOST_BITS_PER_WIDE_INT)
10552 && ((const_op
10553 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10554 && mode_width <= HOST_BITS_PER_WIDE_INT
10555 && (nonzero_bits (XEXP (op0, 0), mode)
10556 & ~(mask >> (INTVAL (XEXP (op0, 1))
10557 + ! equality_comparison_p))) == 0)
10558 {
10559 /* We must perform a logical shift, not an arithmetic one,
10560 as we want the top N bits of C to be zero. */
10561 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10562
10563 temp >>= INTVAL (XEXP (op0, 1));
10564 op1 = gen_int_mode (temp, mode);
10565 op0 = XEXP (op0, 0);
10566 continue;
10567 }
10568
10569 /* If we are doing a sign bit comparison, it means we are testing
10570 a particular bit. Convert it to the appropriate AND. */
10571 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10572 && mode_width <= HOST_BITS_PER_WIDE_INT)
10573 {
10574 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10575 ((HOST_WIDE_INT) 1
10576 << (mode_width - 1
10577 - INTVAL (XEXP (op0, 1)))));
10578 code = (code == LT ? NE : EQ);
10579 continue;
10580 }
10581
10582 /* If this an equality comparison with zero and we are shifting
10583 the low bit to the sign bit, we can convert this to an AND of the
10584 low-order bit. */
10585 if (const_op == 0 && equality_comparison_p
10586 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10587 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10588 == mode_width - 1)
10589 {
10590 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10591 (HOST_WIDE_INT) 1);
10592 continue;
10593 }
10594 break;
10595
10596 case ASHIFTRT:
10597 /* If this is an equality comparison with zero, we can do this
10598 as a logical shift, which might be much simpler. */
10599 if (equality_comparison_p && const_op == 0
10600 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10601 {
10602 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10603 XEXP (op0, 0),
10604 INTVAL (XEXP (op0, 1)));
10605 continue;
10606 }
10607
10608 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10609 do the comparison in a narrower mode. */
10610 if (! unsigned_comparison_p
10611 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10612 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10613 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10614 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10615 MODE_INT, 1)) != BLKmode
10616 && (((unsigned HOST_WIDE_INT) const_op
10617 + (GET_MODE_MASK (tmode) >> 1) + 1)
10618 <= GET_MODE_MASK (tmode)))
10619 {
10620 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10621 continue;
10622 }
10623
10624 /* Likewise if OP0 is a PLUS of a sign extension with a
10625 constant, which is usually represented with the PLUS
10626 between the shifts. */
10627 if (! unsigned_comparison_p
10628 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10629 && GET_CODE (XEXP (op0, 0)) == PLUS
10630 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10631 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10632 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10633 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10634 MODE_INT, 1)) != BLKmode
10635 && (((unsigned HOST_WIDE_INT) const_op
10636 + (GET_MODE_MASK (tmode) >> 1) + 1)
10637 <= GET_MODE_MASK (tmode)))
10638 {
10639 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10640 rtx add_const = XEXP (XEXP (op0, 0), 1);
10641 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10642 add_const, XEXP (op0, 1));
10643
10644 op0 = simplify_gen_binary (PLUS, tmode,
10645 gen_lowpart (tmode, inner),
10646 new_const);
10647 continue;
10648 }
10649
10650 /* ... fall through ... */
10651 case LSHIFTRT:
10652 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10653 the low order N bits of FOO are known to be zero, we can do this
10654 by comparing FOO with C shifted left N bits so long as no
10655 overflow occurs. */
10656 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10657 && INTVAL (XEXP (op0, 1)) >= 0
10658 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10659 && mode_width <= HOST_BITS_PER_WIDE_INT
10660 && (nonzero_bits (XEXP (op0, 0), mode)
10661 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10662 && (((unsigned HOST_WIDE_INT) const_op
10663 + (GET_CODE (op0) != LSHIFTRT
10664 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10665 + 1)
10666 : 0))
10667 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10668 {
10669 /* If the shift was logical, then we must make the condition
10670 unsigned. */
10671 if (GET_CODE (op0) == LSHIFTRT)
10672 code = unsigned_condition (code);
10673
10674 const_op <<= INTVAL (XEXP (op0, 1));
10675 op1 = GEN_INT (const_op);
10676 op0 = XEXP (op0, 0);
10677 continue;
10678 }
10679
10680 /* If we are using this shift to extract just the sign bit, we
10681 can replace this with an LT or GE comparison. */
10682 if (const_op == 0
10683 && (equality_comparison_p || sign_bit_comparison_p)
10684 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10685 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10686 == mode_width - 1)
10687 {
10688 op0 = XEXP (op0, 0);
10689 code = (code == NE || code == GT ? LT : GE);
10690 continue;
10691 }
10692 break;
10693
10694 default:
10695 break;
10696 }
10697
10698 break;
10699 }
10700
10701 /* Now make any compound operations involved in this comparison. Then,
10702 check for an outmost SUBREG on OP0 that is not doing anything or is
10703 paradoxical. The latter transformation must only be performed when
10704 it is known that the "extra" bits will be the same in op0 and op1 or
10705 that they don't matter. There are three cases to consider:
10706
10707 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10708 care bits and we can assume they have any convenient value. So
10709 making the transformation is safe.
10710
10711 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10712 In this case the upper bits of op0 are undefined. We should not make
10713 the simplification in that case as we do not know the contents of
10714 those bits.
10715
10716 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10717 UNKNOWN. In that case we know those bits are zeros or ones. We must
10718 also be sure that they are the same as the upper bits of op1.
10719
10720 We can never remove a SUBREG for a non-equality comparison because
10721 the sign bit is in a different place in the underlying object. */
10722
10723 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10724 op1 = make_compound_operation (op1, SET);
10725
10726 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10727 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10728 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10729 && (code == NE || code == EQ))
10730 {
10731 if (GET_MODE_SIZE (GET_MODE (op0))
10732 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10733 {
10734 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10735 implemented. */
10736 if (REG_P (SUBREG_REG (op0)))
10737 {
10738 op0 = SUBREG_REG (op0);
10739 op1 = gen_lowpart (GET_MODE (op0), op1);
10740 }
10741 }
10742 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10743 <= HOST_BITS_PER_WIDE_INT)
10744 && (nonzero_bits (SUBREG_REG (op0),
10745 GET_MODE (SUBREG_REG (op0)))
10746 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10747 {
10748 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10749
10750 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10751 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10752 op0 = SUBREG_REG (op0), op1 = tem;
10753 }
10754 }
10755
10756 /* We now do the opposite procedure: Some machines don't have compare
10757 insns in all modes. If OP0's mode is an integer mode smaller than a
10758 word and we can't do a compare in that mode, see if there is a larger
10759 mode for which we can do the compare. There are a number of cases in
10760 which we can use the wider mode. */
10761
10762 mode = GET_MODE (op0);
10763 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10764 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10765 && ! have_insn_for (COMPARE, mode))
10766 for (tmode = GET_MODE_WIDER_MODE (mode);
10767 (tmode != VOIDmode
10768 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10769 tmode = GET_MODE_WIDER_MODE (tmode))
10770 if (have_insn_for (COMPARE, tmode))
10771 {
10772 int zero_extended;
10773
10774 /* If the only nonzero bits in OP0 and OP1 are those in the
10775 narrower mode and this is an equality or unsigned comparison,
10776 we can use the wider mode. Similarly for sign-extended
10777 values, in which case it is true for all comparisons. */
10778 zero_extended = ((code == EQ || code == NE
10779 || code == GEU || code == GTU
10780 || code == LEU || code == LTU)
10781 && (nonzero_bits (op0, tmode)
10782 & ~GET_MODE_MASK (mode)) == 0
10783 && ((GET_CODE (op1) == CONST_INT
10784 || (nonzero_bits (op1, tmode)
10785 & ~GET_MODE_MASK (mode)) == 0)));
10786
10787 if (zero_extended
10788 || ((num_sign_bit_copies (op0, tmode)
10789 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10790 - GET_MODE_BITSIZE (mode)))
10791 && (num_sign_bit_copies (op1, tmode)
10792 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10793 - GET_MODE_BITSIZE (mode)))))
10794 {
10795 /* If OP0 is an AND and we don't have an AND in MODE either,
10796 make a new AND in the proper mode. */
10797 if (GET_CODE (op0) == AND
10798 && !have_insn_for (AND, mode))
10799 op0 = simplify_gen_binary (AND, tmode,
10800 gen_lowpart (tmode,
10801 XEXP (op0, 0)),
10802 gen_lowpart (tmode,
10803 XEXP (op0, 1)));
10804
10805 op0 = gen_lowpart (tmode, op0);
10806 if (zero_extended && GET_CODE (op1) == CONST_INT)
10807 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10808 op1 = gen_lowpart (tmode, op1);
10809 break;
10810 }
10811
10812 /* If this is a test for negative, we can make an explicit
10813 test of the sign bit. */
10814
10815 if (op1 == const0_rtx && (code == LT || code == GE)
10816 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10817 {
10818 op0 = simplify_gen_binary (AND, tmode,
10819 gen_lowpart (tmode, op0),
10820 GEN_INT ((HOST_WIDE_INT) 1
10821 << (GET_MODE_BITSIZE (mode)
10822 - 1)));
10823 code = (code == LT) ? NE : EQ;
10824 break;
10825 }
10826 }
10827
10828 #ifdef CANONICALIZE_COMPARISON
10829 /* If this machine only supports a subset of valid comparisons, see if we
10830 can convert an unsupported one into a supported one. */
10831 CANONICALIZE_COMPARISON (code, op0, op1);
10832 #endif
10833
10834 *pop0 = op0;
10835 *pop1 = op1;
10836
10837 return code;
10838 }
10839 \f
10840 /* Utility function for record_value_for_reg. Count number of
10841 rtxs in X. */
10842 static int
10843 count_rtxs (rtx x)
10844 {
10845 enum rtx_code code = GET_CODE (x);
10846 const char *fmt;
10847 int i, ret = 1;
10848
10849 if (GET_RTX_CLASS (code) == '2'
10850 || GET_RTX_CLASS (code) == 'c')
10851 {
10852 rtx x0 = XEXP (x, 0);
10853 rtx x1 = XEXP (x, 1);
10854
10855 if (x0 == x1)
10856 return 1 + 2 * count_rtxs (x0);
10857
10858 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10859 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10860 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10861 return 2 + 2 * count_rtxs (x0)
10862 + count_rtxs (x == XEXP (x1, 0)
10863 ? XEXP (x1, 1) : XEXP (x1, 0));
10864
10865 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10866 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10867 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10868 return 2 + 2 * count_rtxs (x1)
10869 + count_rtxs (x == XEXP (x0, 0)
10870 ? XEXP (x0, 1) : XEXP (x0, 0));
10871 }
10872
10873 fmt = GET_RTX_FORMAT (code);
10874 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10875 if (fmt[i] == 'e')
10876 ret += count_rtxs (XEXP (x, i));
10877
10878 return ret;
10879 }
10880 \f
10881 /* Utility function for following routine. Called when X is part of a value
10882 being stored into last_set_value. Sets last_set_table_tick
10883 for each register mentioned. Similar to mention_regs in cse.c */
10884
10885 static void
10886 update_table_tick (rtx x)
10887 {
10888 enum rtx_code code = GET_CODE (x);
10889 const char *fmt = GET_RTX_FORMAT (code);
10890 int i;
10891
10892 if (code == REG)
10893 {
10894 unsigned int regno = REGNO (x);
10895 unsigned int endregno
10896 = regno + (regno < FIRST_PSEUDO_REGISTER
10897 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10898 unsigned int r;
10899
10900 for (r = regno; r < endregno; r++)
10901 reg_stat[r].last_set_table_tick = label_tick;
10902
10903 return;
10904 }
10905
10906 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10907 /* Note that we can't have an "E" in values stored; see
10908 get_last_value_validate. */
10909 if (fmt[i] == 'e')
10910 {
10911 /* Check for identical subexpressions. If x contains
10912 identical subexpression we only have to traverse one of
10913 them. */
10914 if (i == 0 && ARITHMETIC_P (x))
10915 {
10916 /* Note that at this point x1 has already been
10917 processed. */
10918 rtx x0 = XEXP (x, 0);
10919 rtx x1 = XEXP (x, 1);
10920
10921 /* If x0 and x1 are identical then there is no need to
10922 process x0. */
10923 if (x0 == x1)
10924 break;
10925
10926 /* If x0 is identical to a subexpression of x1 then while
10927 processing x1, x0 has already been processed. Thus we
10928 are done with x. */
10929 if (ARITHMETIC_P (x1)
10930 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10931 break;
10932
10933 /* If x1 is identical to a subexpression of x0 then we
10934 still have to process the rest of x0. */
10935 if (ARITHMETIC_P (x0)
10936 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10937 {
10938 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10939 break;
10940 }
10941 }
10942
10943 update_table_tick (XEXP (x, i));
10944 }
10945 }
10946
10947 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10948 are saying that the register is clobbered and we no longer know its
10949 value. If INSN is zero, don't update reg_stat[].last_set; this is
10950 only permitted with VALUE also zero and is used to invalidate the
10951 register. */
10952
10953 static void
10954 record_value_for_reg (rtx reg, rtx insn, rtx value)
10955 {
10956 unsigned int regno = REGNO (reg);
10957 unsigned int endregno
10958 = regno + (regno < FIRST_PSEUDO_REGISTER
10959 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10960 unsigned int i;
10961
10962 /* If VALUE contains REG and we have a previous value for REG, substitute
10963 the previous value. */
10964 if (value && insn && reg_overlap_mentioned_p (reg, value))
10965 {
10966 rtx tem;
10967
10968 /* Set things up so get_last_value is allowed to see anything set up to
10969 our insn. */
10970 subst_low_cuid = INSN_CUID (insn);
10971 tem = get_last_value (reg);
10972
10973 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10974 it isn't going to be useful and will take a lot of time to process,
10975 so just use the CLOBBER. */
10976
10977 if (tem)
10978 {
10979 if (ARITHMETIC_P (tem)
10980 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10981 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10982 tem = XEXP (tem, 0);
10983 else if (count_occurrences (value, reg, 1) >= 2)
10984 {
10985 /* If there are two or more occurrences of REG in VALUE,
10986 prevent the value from growing too much. */
10987 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10988 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10989 }
10990
10991 value = replace_rtx (copy_rtx (value), reg, tem);
10992 }
10993 }
10994
10995 /* For each register modified, show we don't know its value, that
10996 we don't know about its bitwise content, that its value has been
10997 updated, and that we don't know the location of the death of the
10998 register. */
10999 for (i = regno; i < endregno; i++)
11000 {
11001 if (insn)
11002 reg_stat[i].last_set = insn;
11003
11004 reg_stat[i].last_set_value = 0;
11005 reg_stat[i].last_set_mode = 0;
11006 reg_stat[i].last_set_nonzero_bits = 0;
11007 reg_stat[i].last_set_sign_bit_copies = 0;
11008 reg_stat[i].last_death = 0;
11009 }
11010
11011 /* Mark registers that are being referenced in this value. */
11012 if (value)
11013 update_table_tick (value);
11014
11015 /* Now update the status of each register being set.
11016 If someone is using this register in this block, set this register
11017 to invalid since we will get confused between the two lives in this
11018 basic block. This makes using this register always invalid. In cse, we
11019 scan the table to invalidate all entries using this register, but this
11020 is too much work for us. */
11021
11022 for (i = regno; i < endregno; i++)
11023 {
11024 reg_stat[i].last_set_label = label_tick;
11025 if (value && reg_stat[i].last_set_table_tick == label_tick)
11026 reg_stat[i].last_set_invalid = 1;
11027 else
11028 reg_stat[i].last_set_invalid = 0;
11029 }
11030
11031 /* The value being assigned might refer to X (like in "x++;"). In that
11032 case, we must replace it with (clobber (const_int 0)) to prevent
11033 infinite loops. */
11034 if (value && ! get_last_value_validate (&value, insn,
11035 reg_stat[regno].last_set_label, 0))
11036 {
11037 value = copy_rtx (value);
11038 if (! get_last_value_validate (&value, insn,
11039 reg_stat[regno].last_set_label, 1))
11040 value = 0;
11041 }
11042
11043 /* For the main register being modified, update the value, the mode, the
11044 nonzero bits, and the number of sign bit copies. */
11045
11046 reg_stat[regno].last_set_value = value;
11047
11048 if (value)
11049 {
11050 enum machine_mode mode = GET_MODE (reg);
11051 subst_low_cuid = INSN_CUID (insn);
11052 reg_stat[regno].last_set_mode = mode;
11053 if (GET_MODE_CLASS (mode) == MODE_INT
11054 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11055 mode = nonzero_bits_mode;
11056 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11057 reg_stat[regno].last_set_sign_bit_copies
11058 = num_sign_bit_copies (value, GET_MODE (reg));
11059 }
11060 }
11061
11062 /* Called via note_stores from record_dead_and_set_regs to handle one
11063 SET or CLOBBER in an insn. DATA is the instruction in which the
11064 set is occurring. */
11065
11066 static void
11067 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11068 {
11069 rtx record_dead_insn = (rtx) data;
11070
11071 if (GET_CODE (dest) == SUBREG)
11072 dest = SUBREG_REG (dest);
11073
11074 if (REG_P (dest))
11075 {
11076 /* If we are setting the whole register, we know its value. Otherwise
11077 show that we don't know the value. We can handle SUBREG in
11078 some cases. */
11079 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11080 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11081 else if (GET_CODE (setter) == SET
11082 && GET_CODE (SET_DEST (setter)) == SUBREG
11083 && SUBREG_REG (SET_DEST (setter)) == dest
11084 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11085 && subreg_lowpart_p (SET_DEST (setter)))
11086 record_value_for_reg (dest, record_dead_insn,
11087 gen_lowpart (GET_MODE (dest),
11088 SET_SRC (setter)));
11089 else
11090 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11091 }
11092 else if (MEM_P (dest)
11093 /* Ignore pushes, they clobber nothing. */
11094 && ! push_operand (dest, GET_MODE (dest)))
11095 mem_last_set = INSN_CUID (record_dead_insn);
11096 }
11097
11098 /* Update the records of when each REG was most recently set or killed
11099 for the things done by INSN. This is the last thing done in processing
11100 INSN in the combiner loop.
11101
11102 We update reg_stat[], in particular fields last_set, last_set_value,
11103 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11104 last_death, and also the similar information mem_last_set (which insn
11105 most recently modified memory) and last_call_cuid (which insn was the
11106 most recent subroutine call). */
11107
11108 static void
11109 record_dead_and_set_regs (rtx insn)
11110 {
11111 rtx link;
11112 unsigned int i;
11113
11114 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11115 {
11116 if (REG_NOTE_KIND (link) == REG_DEAD
11117 && REG_P (XEXP (link, 0)))
11118 {
11119 unsigned int regno = REGNO (XEXP (link, 0));
11120 unsigned int endregno
11121 = regno + (regno < FIRST_PSEUDO_REGISTER
11122 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11123 : 1);
11124
11125 for (i = regno; i < endregno; i++)
11126 reg_stat[i].last_death = insn;
11127 }
11128 else if (REG_NOTE_KIND (link) == REG_INC)
11129 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11130 }
11131
11132 if (CALL_P (insn))
11133 {
11134 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11135 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11136 {
11137 reg_stat[i].last_set_value = 0;
11138 reg_stat[i].last_set_mode = 0;
11139 reg_stat[i].last_set_nonzero_bits = 0;
11140 reg_stat[i].last_set_sign_bit_copies = 0;
11141 reg_stat[i].last_death = 0;
11142 }
11143
11144 last_call_cuid = mem_last_set = INSN_CUID (insn);
11145
11146 /* Don't bother recording what this insn does. It might set the
11147 return value register, but we can't combine into a call
11148 pattern anyway, so there's no point trying (and it may cause
11149 a crash, if e.g. we wind up asking for last_set_value of a
11150 SUBREG of the return value register). */
11151 return;
11152 }
11153
11154 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11155 }
11156
11157 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11158 register present in the SUBREG, so for each such SUBREG go back and
11159 adjust nonzero and sign bit information of the registers that are
11160 known to have some zero/sign bits set.
11161
11162 This is needed because when combine blows the SUBREGs away, the
11163 information on zero/sign bits is lost and further combines can be
11164 missed because of that. */
11165
11166 static void
11167 record_promoted_value (rtx insn, rtx subreg)
11168 {
11169 rtx links, set;
11170 unsigned int regno = REGNO (SUBREG_REG (subreg));
11171 enum machine_mode mode = GET_MODE (subreg);
11172
11173 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11174 return;
11175
11176 for (links = LOG_LINKS (insn); links;)
11177 {
11178 insn = XEXP (links, 0);
11179 set = single_set (insn);
11180
11181 if (! set || !REG_P (SET_DEST (set))
11182 || REGNO (SET_DEST (set)) != regno
11183 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11184 {
11185 links = XEXP (links, 1);
11186 continue;
11187 }
11188
11189 if (reg_stat[regno].last_set == insn)
11190 {
11191 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11192 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11193 }
11194
11195 if (REG_P (SET_SRC (set)))
11196 {
11197 regno = REGNO (SET_SRC (set));
11198 links = LOG_LINKS (insn);
11199 }
11200 else
11201 break;
11202 }
11203 }
11204
11205 /* Scan X for promoted SUBREGs. For each one found,
11206 note what it implies to the registers used in it. */
11207
11208 static void
11209 check_promoted_subreg (rtx insn, rtx x)
11210 {
11211 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11212 && REG_P (SUBREG_REG (x)))
11213 record_promoted_value (insn, x);
11214 else
11215 {
11216 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11217 int i, j;
11218
11219 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11220 switch (format[i])
11221 {
11222 case 'e':
11223 check_promoted_subreg (insn, XEXP (x, i));
11224 break;
11225 case 'V':
11226 case 'E':
11227 if (XVEC (x, i) != 0)
11228 for (j = 0; j < XVECLEN (x, i); j++)
11229 check_promoted_subreg (insn, XVECEXP (x, i, j));
11230 break;
11231 }
11232 }
11233 }
11234 \f
11235 /* Utility routine for the following function. Verify that all the registers
11236 mentioned in *LOC are valid when *LOC was part of a value set when
11237 label_tick == TICK. Return 0 if some are not.
11238
11239 If REPLACE is nonzero, replace the invalid reference with
11240 (clobber (const_int 0)) and return 1. This replacement is useful because
11241 we often can get useful information about the form of a value (e.g., if
11242 it was produced by a shift that always produces -1 or 0) even though
11243 we don't know exactly what registers it was produced from. */
11244
11245 static int
11246 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11247 {
11248 rtx x = *loc;
11249 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11250 int len = GET_RTX_LENGTH (GET_CODE (x));
11251 int i;
11252
11253 if (REG_P (x))
11254 {
11255 unsigned int regno = REGNO (x);
11256 unsigned int endregno
11257 = regno + (regno < FIRST_PSEUDO_REGISTER
11258 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11259 unsigned int j;
11260
11261 for (j = regno; j < endregno; j++)
11262 if (reg_stat[j].last_set_invalid
11263 /* If this is a pseudo-register that was only set once and not
11264 live at the beginning of the function, it is always valid. */
11265 || (! (regno >= FIRST_PSEUDO_REGISTER
11266 && REG_N_SETS (regno) == 1
11267 && (! REGNO_REG_SET_P
11268 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11269 regno)))
11270 && reg_stat[j].last_set_label > tick))
11271 {
11272 if (replace)
11273 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11274 return replace;
11275 }
11276
11277 return 1;
11278 }
11279 /* If this is a memory reference, make sure that there were
11280 no stores after it that might have clobbered the value. We don't
11281 have alias info, so we assume any store invalidates it. */
11282 else if (MEM_P (x) && !MEM_READONLY_P (x)
11283 && INSN_CUID (insn) <= mem_last_set)
11284 {
11285 if (replace)
11286 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11287 return replace;
11288 }
11289
11290 for (i = 0; i < len; i++)
11291 {
11292 if (fmt[i] == 'e')
11293 {
11294 /* Check for identical subexpressions. If x contains
11295 identical subexpression we only have to traverse one of
11296 them. */
11297 if (i == 1 && ARITHMETIC_P (x))
11298 {
11299 /* Note that at this point x0 has already been checked
11300 and found valid. */
11301 rtx x0 = XEXP (x, 0);
11302 rtx x1 = XEXP (x, 1);
11303
11304 /* If x0 and x1 are identical then x is also valid. */
11305 if (x0 == x1)
11306 return 1;
11307
11308 /* If x1 is identical to a subexpression of x0 then
11309 while checking x0, x1 has already been checked. Thus
11310 it is valid and so as x. */
11311 if (ARITHMETIC_P (x0)
11312 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11313 return 1;
11314
11315 /* If x0 is identical to a subexpression of x1 then x is
11316 valid iff the rest of x1 is valid. */
11317 if (ARITHMETIC_P (x1)
11318 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11319 return
11320 get_last_value_validate (&XEXP (x1,
11321 x0 == XEXP (x1, 0) ? 1 : 0),
11322 insn, tick, replace);
11323 }
11324
11325 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11326 replace) == 0)
11327 return 0;
11328 }
11329 /* Don't bother with these. They shouldn't occur anyway. */
11330 else if (fmt[i] == 'E')
11331 return 0;
11332 }
11333
11334 /* If we haven't found a reason for it to be invalid, it is valid. */
11335 return 1;
11336 }
11337
11338 /* Get the last value assigned to X, if known. Some registers
11339 in the value may be replaced with (clobber (const_int 0)) if their value
11340 is known longer known reliably. */
11341
11342 static rtx
11343 get_last_value (rtx x)
11344 {
11345 unsigned int regno;
11346 rtx value;
11347
11348 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11349 then convert it to the desired mode. If this is a paradoxical SUBREG,
11350 we cannot predict what values the "extra" bits might have. */
11351 if (GET_CODE (x) == SUBREG
11352 && subreg_lowpart_p (x)
11353 && (GET_MODE_SIZE (GET_MODE (x))
11354 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11355 && (value = get_last_value (SUBREG_REG (x))) != 0)
11356 return gen_lowpart (GET_MODE (x), value);
11357
11358 if (!REG_P (x))
11359 return 0;
11360
11361 regno = REGNO (x);
11362 value = reg_stat[regno].last_set_value;
11363
11364 /* If we don't have a value, or if it isn't for this basic block and
11365 it's either a hard register, set more than once, or it's a live
11366 at the beginning of the function, return 0.
11367
11368 Because if it's not live at the beginning of the function then the reg
11369 is always set before being used (is never used without being set).
11370 And, if it's set only once, and it's always set before use, then all
11371 uses must have the same last value, even if it's not from this basic
11372 block. */
11373
11374 if (value == 0
11375 || (reg_stat[regno].last_set_label != label_tick
11376 && (regno < FIRST_PSEUDO_REGISTER
11377 || REG_N_SETS (regno) != 1
11378 || (REGNO_REG_SET_P
11379 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11380 regno)))))
11381 return 0;
11382
11383 /* If the value was set in a later insn than the ones we are processing,
11384 we can't use it even if the register was only set once. */
11385 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11386 return 0;
11387
11388 /* If the value has all its registers valid, return it. */
11389 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11390 reg_stat[regno].last_set_label, 0))
11391 return value;
11392
11393 /* Otherwise, make a copy and replace any invalid register with
11394 (clobber (const_int 0)). If that fails for some reason, return 0. */
11395
11396 value = copy_rtx (value);
11397 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11398 reg_stat[regno].last_set_label, 1))
11399 return value;
11400
11401 return 0;
11402 }
11403 \f
11404 /* Return nonzero if expression X refers to a REG or to memory
11405 that is set in an instruction more recent than FROM_CUID. */
11406
11407 static int
11408 use_crosses_set_p (rtx x, int from_cuid)
11409 {
11410 const char *fmt;
11411 int i;
11412 enum rtx_code code = GET_CODE (x);
11413
11414 if (code == REG)
11415 {
11416 unsigned int regno = REGNO (x);
11417 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11418 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11419
11420 #ifdef PUSH_ROUNDING
11421 /* Don't allow uses of the stack pointer to be moved,
11422 because we don't know whether the move crosses a push insn. */
11423 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11424 return 1;
11425 #endif
11426 for (; regno < endreg; regno++)
11427 if (reg_stat[regno].last_set
11428 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11429 return 1;
11430 return 0;
11431 }
11432
11433 if (code == MEM && mem_last_set > from_cuid)
11434 return 1;
11435
11436 fmt = GET_RTX_FORMAT (code);
11437
11438 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11439 {
11440 if (fmt[i] == 'E')
11441 {
11442 int j;
11443 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11444 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11445 return 1;
11446 }
11447 else if (fmt[i] == 'e'
11448 && use_crosses_set_p (XEXP (x, i), from_cuid))
11449 return 1;
11450 }
11451 return 0;
11452 }
11453 \f
11454 /* Define three variables used for communication between the following
11455 routines. */
11456
11457 static unsigned int reg_dead_regno, reg_dead_endregno;
11458 static int reg_dead_flag;
11459
11460 /* Function called via note_stores from reg_dead_at_p.
11461
11462 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11463 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11464
11465 static void
11466 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11467 {
11468 unsigned int regno, endregno;
11469
11470 if (!REG_P (dest))
11471 return;
11472
11473 regno = REGNO (dest);
11474 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11475 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11476
11477 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11478 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11479 }
11480
11481 /* Return nonzero if REG is known to be dead at INSN.
11482
11483 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11484 referencing REG, it is dead. If we hit a SET referencing REG, it is
11485 live. Otherwise, see if it is live or dead at the start of the basic
11486 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11487 must be assumed to be always live. */
11488
11489 static int
11490 reg_dead_at_p (rtx reg, rtx insn)
11491 {
11492 basic_block block;
11493 unsigned int i;
11494
11495 /* Set variables for reg_dead_at_p_1. */
11496 reg_dead_regno = REGNO (reg);
11497 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11498 ? hard_regno_nregs[reg_dead_regno]
11499 [GET_MODE (reg)]
11500 : 1);
11501
11502 reg_dead_flag = 0;
11503
11504 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11505 we allow the machine description to decide whether use-and-clobber
11506 patterns are OK. */
11507 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11508 {
11509 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11510 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11511 return 0;
11512 }
11513
11514 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11515 beginning of function. */
11516 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11517 insn = prev_nonnote_insn (insn))
11518 {
11519 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11520 if (reg_dead_flag)
11521 return reg_dead_flag == 1 ? 1 : 0;
11522
11523 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11524 return 1;
11525 }
11526
11527 /* Get the basic block that we were in. */
11528 if (insn == 0)
11529 block = ENTRY_BLOCK_PTR->next_bb;
11530 else
11531 {
11532 FOR_EACH_BB (block)
11533 if (insn == BB_HEAD (block))
11534 break;
11535
11536 if (block == EXIT_BLOCK_PTR)
11537 return 0;
11538 }
11539
11540 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11541 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11542 return 0;
11543
11544 return 1;
11545 }
11546 \f
11547 /* Note hard registers in X that are used. This code is similar to
11548 that in flow.c, but much simpler since we don't care about pseudos. */
11549
11550 static void
11551 mark_used_regs_combine (rtx x)
11552 {
11553 RTX_CODE code = GET_CODE (x);
11554 unsigned int regno;
11555 int i;
11556
11557 switch (code)
11558 {
11559 case LABEL_REF:
11560 case SYMBOL_REF:
11561 case CONST_INT:
11562 case CONST:
11563 case CONST_DOUBLE:
11564 case CONST_VECTOR:
11565 case PC:
11566 case ADDR_VEC:
11567 case ADDR_DIFF_VEC:
11568 case ASM_INPUT:
11569 #ifdef HAVE_cc0
11570 /* CC0 must die in the insn after it is set, so we don't need to take
11571 special note of it here. */
11572 case CC0:
11573 #endif
11574 return;
11575
11576 case CLOBBER:
11577 /* If we are clobbering a MEM, mark any hard registers inside the
11578 address as used. */
11579 if (MEM_P (XEXP (x, 0)))
11580 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11581 return;
11582
11583 case REG:
11584 regno = REGNO (x);
11585 /* A hard reg in a wide mode may really be multiple registers.
11586 If so, mark all of them just like the first. */
11587 if (regno < FIRST_PSEUDO_REGISTER)
11588 {
11589 unsigned int endregno, r;
11590
11591 /* None of this applies to the stack, frame or arg pointers. */
11592 if (regno == STACK_POINTER_REGNUM
11593 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11594 || regno == HARD_FRAME_POINTER_REGNUM
11595 #endif
11596 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11597 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11598 #endif
11599 || regno == FRAME_POINTER_REGNUM)
11600 return;
11601
11602 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11603 for (r = regno; r < endregno; r++)
11604 SET_HARD_REG_BIT (newpat_used_regs, r);
11605 }
11606 return;
11607
11608 case SET:
11609 {
11610 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11611 the address. */
11612 rtx testreg = SET_DEST (x);
11613
11614 while (GET_CODE (testreg) == SUBREG
11615 || GET_CODE (testreg) == ZERO_EXTRACT
11616 || GET_CODE (testreg) == STRICT_LOW_PART)
11617 testreg = XEXP (testreg, 0);
11618
11619 if (MEM_P (testreg))
11620 mark_used_regs_combine (XEXP (testreg, 0));
11621
11622 mark_used_regs_combine (SET_SRC (x));
11623 }
11624 return;
11625
11626 default:
11627 break;
11628 }
11629
11630 /* Recursively scan the operands of this expression. */
11631
11632 {
11633 const char *fmt = GET_RTX_FORMAT (code);
11634
11635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11636 {
11637 if (fmt[i] == 'e')
11638 mark_used_regs_combine (XEXP (x, i));
11639 else if (fmt[i] == 'E')
11640 {
11641 int j;
11642
11643 for (j = 0; j < XVECLEN (x, i); j++)
11644 mark_used_regs_combine (XVECEXP (x, i, j));
11645 }
11646 }
11647 }
11648 }
11649 \f
11650 /* Remove register number REGNO from the dead registers list of INSN.
11651
11652 Return the note used to record the death, if there was one. */
11653
11654 rtx
11655 remove_death (unsigned int regno, rtx insn)
11656 {
11657 rtx note = find_regno_note (insn, REG_DEAD, regno);
11658
11659 if (note)
11660 {
11661 REG_N_DEATHS (regno)--;
11662 remove_note (insn, note);
11663 }
11664
11665 return note;
11666 }
11667
11668 /* For each register (hardware or pseudo) used within expression X, if its
11669 death is in an instruction with cuid between FROM_CUID (inclusive) and
11670 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11671 list headed by PNOTES.
11672
11673 That said, don't move registers killed by maybe_kill_insn.
11674
11675 This is done when X is being merged by combination into TO_INSN. These
11676 notes will then be distributed as needed. */
11677
11678 static void
11679 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11680 rtx *pnotes)
11681 {
11682 const char *fmt;
11683 int len, i;
11684 enum rtx_code code = GET_CODE (x);
11685
11686 if (code == REG)
11687 {
11688 unsigned int regno = REGNO (x);
11689 rtx where_dead = reg_stat[regno].last_death;
11690 rtx before_dead, after_dead;
11691
11692 /* Don't move the register if it gets killed in between from and to. */
11693 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11694 && ! reg_referenced_p (x, maybe_kill_insn))
11695 return;
11696
11697 /* WHERE_DEAD could be a USE insn made by combine, so first we
11698 make sure that we have insns with valid INSN_CUID values. */
11699 before_dead = where_dead;
11700 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11701 before_dead = PREV_INSN (before_dead);
11702
11703 after_dead = where_dead;
11704 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11705 after_dead = NEXT_INSN (after_dead);
11706
11707 if (before_dead && after_dead
11708 && INSN_CUID (before_dead) >= from_cuid
11709 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11710 || (where_dead != after_dead
11711 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11712 {
11713 rtx note = remove_death (regno, where_dead);
11714
11715 /* It is possible for the call above to return 0. This can occur
11716 when last_death points to I2 or I1 that we combined with.
11717 In that case make a new note.
11718
11719 We must also check for the case where X is a hard register
11720 and NOTE is a death note for a range of hard registers
11721 including X. In that case, we must put REG_DEAD notes for
11722 the remaining registers in place of NOTE. */
11723
11724 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11725 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11726 > GET_MODE_SIZE (GET_MODE (x))))
11727 {
11728 unsigned int deadregno = REGNO (XEXP (note, 0));
11729 unsigned int deadend
11730 = (deadregno + hard_regno_nregs[deadregno]
11731 [GET_MODE (XEXP (note, 0))]);
11732 unsigned int ourend
11733 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11734 unsigned int i;
11735
11736 for (i = deadregno; i < deadend; i++)
11737 if (i < regno || i >= ourend)
11738 REG_NOTES (where_dead)
11739 = gen_rtx_EXPR_LIST (REG_DEAD,
11740 regno_reg_rtx[i],
11741 REG_NOTES (where_dead));
11742 }
11743
11744 /* If we didn't find any note, or if we found a REG_DEAD note that
11745 covers only part of the given reg, and we have a multi-reg hard
11746 register, then to be safe we must check for REG_DEAD notes
11747 for each register other than the first. They could have
11748 their own REG_DEAD notes lying around. */
11749 else if ((note == 0
11750 || (note != 0
11751 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11752 < GET_MODE_SIZE (GET_MODE (x)))))
11753 && regno < FIRST_PSEUDO_REGISTER
11754 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11755 {
11756 unsigned int ourend
11757 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11758 unsigned int i, offset;
11759 rtx oldnotes = 0;
11760
11761 if (note)
11762 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11763 else
11764 offset = 1;
11765
11766 for (i = regno + offset; i < ourend; i++)
11767 move_deaths (regno_reg_rtx[i],
11768 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11769 }
11770
11771 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11772 {
11773 XEXP (note, 1) = *pnotes;
11774 *pnotes = note;
11775 }
11776 else
11777 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11778
11779 REG_N_DEATHS (regno)++;
11780 }
11781
11782 return;
11783 }
11784
11785 else if (GET_CODE (x) == SET)
11786 {
11787 rtx dest = SET_DEST (x);
11788
11789 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11790
11791 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11792 that accesses one word of a multi-word item, some
11793 piece of everything register in the expression is used by
11794 this insn, so remove any old death. */
11795 /* ??? So why do we test for equality of the sizes? */
11796
11797 if (GET_CODE (dest) == ZERO_EXTRACT
11798 || GET_CODE (dest) == STRICT_LOW_PART
11799 || (GET_CODE (dest) == SUBREG
11800 && (((GET_MODE_SIZE (GET_MODE (dest))
11801 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11802 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11803 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11804 {
11805 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11806 return;
11807 }
11808
11809 /* If this is some other SUBREG, we know it replaces the entire
11810 value, so use that as the destination. */
11811 if (GET_CODE (dest) == SUBREG)
11812 dest = SUBREG_REG (dest);
11813
11814 /* If this is a MEM, adjust deaths of anything used in the address.
11815 For a REG (the only other possibility), the entire value is
11816 being replaced so the old value is not used in this insn. */
11817
11818 if (MEM_P (dest))
11819 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11820 to_insn, pnotes);
11821 return;
11822 }
11823
11824 else if (GET_CODE (x) == CLOBBER)
11825 return;
11826
11827 len = GET_RTX_LENGTH (code);
11828 fmt = GET_RTX_FORMAT (code);
11829
11830 for (i = 0; i < len; i++)
11831 {
11832 if (fmt[i] == 'E')
11833 {
11834 int j;
11835 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11836 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11837 to_insn, pnotes);
11838 }
11839 else if (fmt[i] == 'e')
11840 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11841 }
11842 }
11843 \f
11844 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11845 pattern of an insn. X must be a REG. */
11846
11847 static int
11848 reg_bitfield_target_p (rtx x, rtx body)
11849 {
11850 int i;
11851
11852 if (GET_CODE (body) == SET)
11853 {
11854 rtx dest = SET_DEST (body);
11855 rtx target;
11856 unsigned int regno, tregno, endregno, endtregno;
11857
11858 if (GET_CODE (dest) == ZERO_EXTRACT)
11859 target = XEXP (dest, 0);
11860 else if (GET_CODE (dest) == STRICT_LOW_PART)
11861 target = SUBREG_REG (XEXP (dest, 0));
11862 else
11863 return 0;
11864
11865 if (GET_CODE (target) == SUBREG)
11866 target = SUBREG_REG (target);
11867
11868 if (!REG_P (target))
11869 return 0;
11870
11871 tregno = REGNO (target), regno = REGNO (x);
11872 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11873 return target == x;
11874
11875 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11876 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11877
11878 return endregno > tregno && regno < endtregno;
11879 }
11880
11881 else if (GET_CODE (body) == PARALLEL)
11882 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11883 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11884 return 1;
11885
11886 return 0;
11887 }
11888 \f
11889 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11890 as appropriate. I3 and I2 are the insns resulting from the combination
11891 insns including FROM (I2 may be zero).
11892
11893 Each note in the list is either ignored or placed on some insns, depending
11894 on the type of note. */
11895
11896 static void
11897 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11898 {
11899 rtx note, next_note;
11900 rtx tem;
11901
11902 for (note = notes; note; note = next_note)
11903 {
11904 rtx place = 0, place2 = 0;
11905
11906 /* If this NOTE references a pseudo register, ensure it references
11907 the latest copy of that register. */
11908 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11909 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11910 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11911
11912 next_note = XEXP (note, 1);
11913 switch (REG_NOTE_KIND (note))
11914 {
11915 case REG_BR_PROB:
11916 case REG_BR_PRED:
11917 /* Doesn't matter much where we put this, as long as it's somewhere.
11918 It is preferable to keep these notes on branches, which is most
11919 likely to be i3. */
11920 place = i3;
11921 break;
11922
11923 case REG_VALUE_PROFILE:
11924 /* Just get rid of this note, as it is unused later anyway. */
11925 break;
11926
11927 case REG_NON_LOCAL_GOTO:
11928 if (JUMP_P (i3))
11929 place = i3;
11930 else
11931 {
11932 gcc_assert (i2 && JUMP_P (i2));
11933 place = i2;
11934 }
11935 break;
11936
11937 case REG_EH_REGION:
11938 /* These notes must remain with the call or trapping instruction. */
11939 if (CALL_P (i3))
11940 place = i3;
11941 else if (i2 && CALL_P (i2))
11942 place = i2;
11943 else
11944 {
11945 gcc_assert (flag_non_call_exceptions);
11946 if (may_trap_p (i3))
11947 place = i3;
11948 else if (i2 && may_trap_p (i2))
11949 place = i2;
11950 /* ??? Otherwise assume we've combined things such that we
11951 can now prove that the instructions can't trap. Drop the
11952 note in this case. */
11953 }
11954 break;
11955
11956 case REG_NORETURN:
11957 case REG_SETJMP:
11958 /* These notes must remain with the call. It should not be
11959 possible for both I2 and I3 to be a call. */
11960 if (CALL_P (i3))
11961 place = i3;
11962 else
11963 {
11964 gcc_assert (i2 && CALL_P (i2));
11965 place = i2;
11966 }
11967 break;
11968
11969 case REG_UNUSED:
11970 /* Any clobbers for i3 may still exist, and so we must process
11971 REG_UNUSED notes from that insn.
11972
11973 Any clobbers from i2 or i1 can only exist if they were added by
11974 recog_for_combine. In that case, recog_for_combine created the
11975 necessary REG_UNUSED notes. Trying to keep any original
11976 REG_UNUSED notes from these insns can cause incorrect output
11977 if it is for the same register as the original i3 dest.
11978 In that case, we will notice that the register is set in i3,
11979 and then add a REG_UNUSED note for the destination of i3, which
11980 is wrong. However, it is possible to have REG_UNUSED notes from
11981 i2 or i1 for register which were both used and clobbered, so
11982 we keep notes from i2 or i1 if they will turn into REG_DEAD
11983 notes. */
11984
11985 /* If this register is set or clobbered in I3, put the note there
11986 unless there is one already. */
11987 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11988 {
11989 if (from_insn != i3)
11990 break;
11991
11992 if (! (REG_P (XEXP (note, 0))
11993 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11994 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11995 place = i3;
11996 }
11997 /* Otherwise, if this register is used by I3, then this register
11998 now dies here, so we must put a REG_DEAD note here unless there
11999 is one already. */
12000 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12001 && ! (REG_P (XEXP (note, 0))
12002 ? find_regno_note (i3, REG_DEAD,
12003 REGNO (XEXP (note, 0)))
12004 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12005 {
12006 PUT_REG_NOTE_KIND (note, REG_DEAD);
12007 place = i3;
12008 }
12009 break;
12010
12011 case REG_EQUAL:
12012 case REG_EQUIV:
12013 case REG_NOALIAS:
12014 /* These notes say something about results of an insn. We can
12015 only support them if they used to be on I3 in which case they
12016 remain on I3. Otherwise they are ignored.
12017
12018 If the note refers to an expression that is not a constant, we
12019 must also ignore the note since we cannot tell whether the
12020 equivalence is still true. It might be possible to do
12021 slightly better than this (we only have a problem if I2DEST
12022 or I1DEST is present in the expression), but it doesn't
12023 seem worth the trouble. */
12024
12025 if (from_insn == i3
12026 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12027 place = i3;
12028 break;
12029
12030 case REG_INC:
12031 case REG_NO_CONFLICT:
12032 /* These notes say something about how a register is used. They must
12033 be present on any use of the register in I2 or I3. */
12034 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12035 place = i3;
12036
12037 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12038 {
12039 if (place)
12040 place2 = i2;
12041 else
12042 place = i2;
12043 }
12044 break;
12045
12046 case REG_LABEL:
12047 /* This can show up in several ways -- either directly in the
12048 pattern, or hidden off in the constant pool with (or without?)
12049 a REG_EQUAL note. */
12050 /* ??? Ignore the without-reg_equal-note problem for now. */
12051 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12052 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12053 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12054 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12055 place = i3;
12056
12057 if (i2
12058 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12059 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12060 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12061 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12062 {
12063 if (place)
12064 place2 = i2;
12065 else
12066 place = i2;
12067 }
12068
12069 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12070 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12071 if (place && JUMP_P (place))
12072 {
12073 rtx label = JUMP_LABEL (place);
12074
12075 if (!label)
12076 JUMP_LABEL (place) = XEXP (note, 0);
12077 else
12078 {
12079 gcc_assert (label == XEXP (note, 0));
12080 if (LABEL_P (label))
12081 LABEL_NUSES (label)--;
12082 }
12083 place = 0;
12084 }
12085 if (place2 && JUMP_P (place2))
12086 {
12087 rtx label = JUMP_LABEL (place2);
12088
12089 if (!label)
12090 JUMP_LABEL (place2) = XEXP (note, 0);
12091 else
12092 {
12093 gcc_assert (label == XEXP (note, 0));
12094 if (LABEL_P (label))
12095 LABEL_NUSES (label)--;
12096 }
12097 place2 = 0;
12098 }
12099 break;
12100
12101 case REG_NONNEG:
12102 /* This note says something about the value of a register prior
12103 to the execution of an insn. It is too much trouble to see
12104 if the note is still correct in all situations. It is better
12105 to simply delete it. */
12106 break;
12107
12108 case REG_RETVAL:
12109 /* If the insn previously containing this note still exists,
12110 put it back where it was. Otherwise move it to the previous
12111 insn. Adjust the corresponding REG_LIBCALL note. */
12112 if (!NOTE_P (from_insn))
12113 place = from_insn;
12114 else
12115 {
12116 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12117 place = prev_real_insn (from_insn);
12118 if (tem && place)
12119 XEXP (tem, 0) = place;
12120 /* If we're deleting the last remaining instruction of a
12121 libcall sequence, don't add the notes. */
12122 else if (XEXP (note, 0) == from_insn)
12123 tem = place = 0;
12124 /* Don't add the dangling REG_RETVAL note. */
12125 else if (! tem)
12126 place = 0;
12127 }
12128 break;
12129
12130 case REG_LIBCALL:
12131 /* This is handled similarly to REG_RETVAL. */
12132 if (!NOTE_P (from_insn))
12133 place = from_insn;
12134 else
12135 {
12136 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12137 place = next_real_insn (from_insn);
12138 if (tem && place)
12139 XEXP (tem, 0) = place;
12140 /* If we're deleting the last remaining instruction of a
12141 libcall sequence, don't add the notes. */
12142 else if (XEXP (note, 0) == from_insn)
12143 tem = place = 0;
12144 /* Don't add the dangling REG_LIBCALL note. */
12145 else if (! tem)
12146 place = 0;
12147 }
12148 break;
12149
12150 case REG_DEAD:
12151 /* If the register is used as an input in I3, it dies there.
12152 Similarly for I2, if it is nonzero and adjacent to I3.
12153
12154 If the register is not used as an input in either I3 or I2
12155 and it is not one of the registers we were supposed to eliminate,
12156 there are two possibilities. We might have a non-adjacent I2
12157 or we might have somehow eliminated an additional register
12158 from a computation. For example, we might have had A & B where
12159 we discover that B will always be zero. In this case we will
12160 eliminate the reference to A.
12161
12162 In both cases, we must search to see if we can find a previous
12163 use of A and put the death note there. */
12164
12165 if (from_insn
12166 && CALL_P (from_insn)
12167 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12168 place = from_insn;
12169 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12170 place = i3;
12171 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12172 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12173 place = i2;
12174
12175 if (place == 0)
12176 {
12177 basic_block bb = this_basic_block;
12178
12179 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12180 {
12181 if (! INSN_P (tem))
12182 {
12183 if (tem == BB_HEAD (bb))
12184 break;
12185 continue;
12186 }
12187
12188 /* If the register is being set at TEM, see if that is all
12189 TEM is doing. If so, delete TEM. Otherwise, make this
12190 into a REG_UNUSED note instead. Don't delete sets to
12191 global register vars. */
12192 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12193 || !global_regs[REGNO (XEXP (note, 0))])
12194 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12195 {
12196 rtx set = single_set (tem);
12197 rtx inner_dest = 0;
12198 #ifdef HAVE_cc0
12199 rtx cc0_setter = NULL_RTX;
12200 #endif
12201
12202 if (set != 0)
12203 for (inner_dest = SET_DEST (set);
12204 (GET_CODE (inner_dest) == STRICT_LOW_PART
12205 || GET_CODE (inner_dest) == SUBREG
12206 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12207 inner_dest = XEXP (inner_dest, 0))
12208 ;
12209
12210 /* Verify that it was the set, and not a clobber that
12211 modified the register.
12212
12213 CC0 targets must be careful to maintain setter/user
12214 pairs. If we cannot delete the setter due to side
12215 effects, mark the user with an UNUSED note instead
12216 of deleting it. */
12217
12218 if (set != 0 && ! side_effects_p (SET_SRC (set))
12219 && rtx_equal_p (XEXP (note, 0), inner_dest)
12220 #ifdef HAVE_cc0
12221 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12222 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12223 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12224 #endif
12225 )
12226 {
12227 /* Move the notes and links of TEM elsewhere.
12228 This might delete other dead insns recursively.
12229 First set the pattern to something that won't use
12230 any register. */
12231 rtx old_notes = REG_NOTES (tem);
12232
12233 PATTERN (tem) = pc_rtx;
12234 REG_NOTES (tem) = NULL;
12235
12236 distribute_notes (old_notes, tem, tem, NULL_RTX);
12237 distribute_links (LOG_LINKS (tem));
12238
12239 SET_INSN_DELETED (tem);
12240
12241 #ifdef HAVE_cc0
12242 /* Delete the setter too. */
12243 if (cc0_setter)
12244 {
12245 PATTERN (cc0_setter) = pc_rtx;
12246 old_notes = REG_NOTES (cc0_setter);
12247 REG_NOTES (cc0_setter) = NULL;
12248
12249 distribute_notes (old_notes, cc0_setter,
12250 cc0_setter, NULL_RTX);
12251 distribute_links (LOG_LINKS (cc0_setter));
12252
12253 SET_INSN_DELETED (cc0_setter);
12254 }
12255 #endif
12256 }
12257 else
12258 {
12259 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12260
12261 /* If there isn't already a REG_UNUSED note, put one
12262 here. Do not place a REG_DEAD note, even if
12263 the register is also used here; that would not
12264 match the algorithm used in lifetime analysis
12265 and can cause the consistency check in the
12266 scheduler to fail. */
12267 if (! find_regno_note (tem, REG_UNUSED,
12268 REGNO (XEXP (note, 0))))
12269 place = tem;
12270 break;
12271 }
12272 }
12273 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12274 || (CALL_P (tem)
12275 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12276 {
12277 place = tem;
12278
12279 /* If we are doing a 3->2 combination, and we have a
12280 register which formerly died in i3 and was not used
12281 by i2, which now no longer dies in i3 and is used in
12282 i2 but does not die in i2, and place is between i2
12283 and i3, then we may need to move a link from place to
12284 i2. */
12285 if (i2 && INSN_UID (place) <= max_uid_cuid
12286 && INSN_CUID (place) > INSN_CUID (i2)
12287 && from_insn
12288 && INSN_CUID (from_insn) > INSN_CUID (i2)
12289 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12290 {
12291 rtx links = LOG_LINKS (place);
12292 LOG_LINKS (place) = 0;
12293 distribute_links (links);
12294 }
12295 break;
12296 }
12297
12298 if (tem == BB_HEAD (bb))
12299 break;
12300 }
12301
12302 /* We haven't found an insn for the death note and it
12303 is still a REG_DEAD note, but we have hit the beginning
12304 of the block. If the existing life info says the reg
12305 was dead, there's nothing left to do. Otherwise, we'll
12306 need to do a global life update after combine. */
12307 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12308 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12309 REGNO (XEXP (note, 0))))
12310 SET_BIT (refresh_blocks, this_basic_block->index);
12311 }
12312
12313 /* If the register is set or already dead at PLACE, we needn't do
12314 anything with this note if it is still a REG_DEAD note.
12315 We check here if it is set at all, not if is it totally replaced,
12316 which is what `dead_or_set_p' checks, so also check for it being
12317 set partially. */
12318
12319 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12320 {
12321 unsigned int regno = REGNO (XEXP (note, 0));
12322
12323 /* Similarly, if the instruction on which we want to place
12324 the note is a noop, we'll need do a global live update
12325 after we remove them in delete_noop_moves. */
12326 if (noop_move_p (place))
12327 SET_BIT (refresh_blocks, this_basic_block->index);
12328
12329 if (dead_or_set_p (place, XEXP (note, 0))
12330 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12331 {
12332 /* Unless the register previously died in PLACE, clear
12333 last_death. [I no longer understand why this is
12334 being done.] */
12335 if (reg_stat[regno].last_death != place)
12336 reg_stat[regno].last_death = 0;
12337 place = 0;
12338 }
12339 else
12340 reg_stat[regno].last_death = place;
12341
12342 /* If this is a death note for a hard reg that is occupying
12343 multiple registers, ensure that we are still using all
12344 parts of the object. If we find a piece of the object
12345 that is unused, we must arrange for an appropriate REG_DEAD
12346 note to be added for it. However, we can't just emit a USE
12347 and tag the note to it, since the register might actually
12348 be dead; so we recourse, and the recursive call then finds
12349 the previous insn that used this register. */
12350
12351 if (place && regno < FIRST_PSEUDO_REGISTER
12352 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12353 {
12354 unsigned int endregno
12355 = regno + hard_regno_nregs[regno]
12356 [GET_MODE (XEXP (note, 0))];
12357 int all_used = 1;
12358 unsigned int i;
12359
12360 for (i = regno; i < endregno; i++)
12361 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12362 && ! find_regno_fusage (place, USE, i))
12363 || dead_or_set_regno_p (place, i))
12364 all_used = 0;
12365
12366 if (! all_used)
12367 {
12368 /* Put only REG_DEAD notes for pieces that are
12369 not already dead or set. */
12370
12371 for (i = regno; i < endregno;
12372 i += hard_regno_nregs[i][reg_raw_mode[i]])
12373 {
12374 rtx piece = regno_reg_rtx[i];
12375 basic_block bb = this_basic_block;
12376
12377 if (! dead_or_set_p (place, piece)
12378 && ! reg_bitfield_target_p (piece,
12379 PATTERN (place)))
12380 {
12381 rtx new_note
12382 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12383
12384 distribute_notes (new_note, place, place,
12385 NULL_RTX);
12386 }
12387 else if (! refers_to_regno_p (i, i + 1,
12388 PATTERN (place), 0)
12389 && ! find_regno_fusage (place, USE, i))
12390 for (tem = PREV_INSN (place); ;
12391 tem = PREV_INSN (tem))
12392 {
12393 if (! INSN_P (tem))
12394 {
12395 if (tem == BB_HEAD (bb))
12396 {
12397 SET_BIT (refresh_blocks,
12398 this_basic_block->index);
12399 break;
12400 }
12401 continue;
12402 }
12403 if (dead_or_set_p (tem, piece)
12404 || reg_bitfield_target_p (piece,
12405 PATTERN (tem)))
12406 {
12407 REG_NOTES (tem)
12408 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12409 REG_NOTES (tem));
12410 break;
12411 }
12412 }
12413
12414 }
12415
12416 place = 0;
12417 }
12418 }
12419 }
12420 break;
12421
12422 default:
12423 /* Any other notes should not be present at this point in the
12424 compilation. */
12425 gcc_unreachable ();
12426 }
12427
12428 if (place)
12429 {
12430 XEXP (note, 1) = REG_NOTES (place);
12431 REG_NOTES (place) = note;
12432 }
12433 else if ((REG_NOTE_KIND (note) == REG_DEAD
12434 || REG_NOTE_KIND (note) == REG_UNUSED)
12435 && REG_P (XEXP (note, 0)))
12436 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12437
12438 if (place2)
12439 {
12440 if ((REG_NOTE_KIND (note) == REG_DEAD
12441 || REG_NOTE_KIND (note) == REG_UNUSED)
12442 && REG_P (XEXP (note, 0)))
12443 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12444
12445 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12446 REG_NOTE_KIND (note),
12447 XEXP (note, 0),
12448 REG_NOTES (place2));
12449 }
12450 }
12451 }
12452 \f
12453 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12454 I3, I2, and I1 to new locations. This is also called to add a link
12455 pointing at I3 when I3's destination is changed. */
12456
12457 static void
12458 distribute_links (rtx links)
12459 {
12460 rtx link, next_link;
12461
12462 for (link = links; link; link = next_link)
12463 {
12464 rtx place = 0;
12465 rtx insn;
12466 rtx set, reg;
12467
12468 next_link = XEXP (link, 1);
12469
12470 /* If the insn that this link points to is a NOTE or isn't a single
12471 set, ignore it. In the latter case, it isn't clear what we
12472 can do other than ignore the link, since we can't tell which
12473 register it was for. Such links wouldn't be used by combine
12474 anyway.
12475
12476 It is not possible for the destination of the target of the link to
12477 have been changed by combine. The only potential of this is if we
12478 replace I3, I2, and I1 by I3 and I2. But in that case the
12479 destination of I2 also remains unchanged. */
12480
12481 if (NOTE_P (XEXP (link, 0))
12482 || (set = single_set (XEXP (link, 0))) == 0)
12483 continue;
12484
12485 reg = SET_DEST (set);
12486 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12487 || GET_CODE (reg) == STRICT_LOW_PART)
12488 reg = XEXP (reg, 0);
12489
12490 /* A LOG_LINK is defined as being placed on the first insn that uses
12491 a register and points to the insn that sets the register. Start
12492 searching at the next insn after the target of the link and stop
12493 when we reach a set of the register or the end of the basic block.
12494
12495 Note that this correctly handles the link that used to point from
12496 I3 to I2. Also note that not much searching is typically done here
12497 since most links don't point very far away. */
12498
12499 for (insn = NEXT_INSN (XEXP (link, 0));
12500 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12501 || BB_HEAD (this_basic_block->next_bb) != insn));
12502 insn = NEXT_INSN (insn))
12503 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12504 {
12505 if (reg_referenced_p (reg, PATTERN (insn)))
12506 place = insn;
12507 break;
12508 }
12509 else if (CALL_P (insn)
12510 && find_reg_fusage (insn, USE, reg))
12511 {
12512 place = insn;
12513 break;
12514 }
12515 else if (INSN_P (insn) && reg_set_p (reg, insn))
12516 break;
12517
12518 /* If we found a place to put the link, place it there unless there
12519 is already a link to the same insn as LINK at that point. */
12520
12521 if (place)
12522 {
12523 rtx link2;
12524
12525 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12526 if (XEXP (link2, 0) == XEXP (link, 0))
12527 break;
12528
12529 if (link2 == 0)
12530 {
12531 XEXP (link, 1) = LOG_LINKS (place);
12532 LOG_LINKS (place) = link;
12533
12534 /* Set added_links_insn to the earliest insn we added a
12535 link to. */
12536 if (added_links_insn == 0
12537 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12538 added_links_insn = place;
12539 }
12540 }
12541 }
12542 }
12543 \f
12544 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12545 Check whether the expression pointer to by LOC is a register or
12546 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12547 Otherwise return zero. */
12548
12549 static int
12550 unmentioned_reg_p_1 (rtx *loc, void *expr)
12551 {
12552 rtx x = *loc;
12553
12554 if (x != NULL_RTX
12555 && (REG_P (x) || MEM_P (x))
12556 && ! reg_mentioned_p (x, (rtx) expr))
12557 return 1;
12558 return 0;
12559 }
12560
12561 /* Check for any register or memory mentioned in EQUIV that is not
12562 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12563 of EXPR where some registers may have been replaced by constants. */
12564
12565 static bool
12566 unmentioned_reg_p (rtx equiv, rtx expr)
12567 {
12568 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12569 }
12570 \f
12571 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12572
12573 static int
12574 insn_cuid (rtx insn)
12575 {
12576 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12577 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12578 insn = NEXT_INSN (insn);
12579
12580 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12581
12582 return INSN_CUID (insn);
12583 }
12584 \f
12585 void
12586 dump_combine_stats (FILE *file)
12587 {
12588 fprintf
12589 (file,
12590 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12591 combine_attempts, combine_merges, combine_extras, combine_successes);
12592 }
12593
12594 void
12595 dump_combine_total_stats (FILE *file)
12596 {
12597 fprintf
12598 (file,
12599 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12600 total_attempts, total_merges, total_extras, total_successes);
12601 }
12602 \f
12603
12604 static bool
12605 gate_handle_combine (void)
12606 {
12607 return (optimize > 0);
12608 }
12609
12610 /* Try combining insns through substitution. */
12611 static void
12612 rest_of_handle_combine (void)
12613 {
12614 int rebuild_jump_labels_after_combine
12615 = combine_instructions (get_insns (), max_reg_num ());
12616
12617 /* Combining insns may have turned an indirect jump into a
12618 direct jump. Rebuild the JUMP_LABEL fields of jumping
12619 instructions. */
12620 if (rebuild_jump_labels_after_combine)
12621 {
12622 timevar_push (TV_JUMP);
12623 rebuild_jump_labels (get_insns ());
12624 timevar_pop (TV_JUMP);
12625
12626 delete_dead_jumptables ();
12627 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12628 }
12629 }
12630
12631 struct tree_opt_pass pass_combine =
12632 {
12633 "combine", /* name */
12634 gate_handle_combine, /* gate */
12635 rest_of_handle_combine, /* execute */
12636 NULL, /* sub */
12637 NULL, /* next */
12638 0, /* static_pass_number */
12639 TV_COMBINE, /* tv_id */
12640 0, /* properties_required */
12641 0, /* properties_provided */
12642 0, /* properties_destroyed */
12643 0, /* todo_flags_start */
12644 TODO_dump_func |
12645 TODO_ggc_collect, /* todo_flags_finish */
12646 'c' /* letter */
12647 };
12648
This page took 0.718898 seconds and 6 git commands to generate.