]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
basic-block.h (rtl_bb_info): Break out head_, end_, global_live_at_start, global_live...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
99
100 /* Number of attempts to combine instructions in this function. */
101
102 static int combine_attempts;
103
104 /* Number of attempts that got as far as substitution in this function. */
105
106 static int combine_merges;
107
108 /* Number of instructions combined with added SETs in this function. */
109
110 static int combine_extras;
111
112 /* Number of instructions combined in this function. */
113
114 static int combine_successes;
115
116 /* Totals over entire compilation. */
117
118 static int total_attempts, total_merges, total_extras, total_successes;
119
120 \f
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
127
128 static int *uid_cuid;
129 static int max_uid_cuid;
130
131 /* Get the cuid of an insn. */
132
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
135
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
138
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
141
142 /* Maximum register number, which is the size of the tables below. */
143
144 static unsigned int combine_max_regno;
145
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240 };
241
242 static struct reg_stat *reg_stat;
243
244 /* Record the cuid of the last insn that invalidated memory
245 (anything that writes memory, and subroutine calls, but not pushes). */
246
247 static int mem_last_set;
248
249 /* Record the cuid of the last CALL_INSN
250 so we can tell whether a potential combination crosses any calls. */
251
252 static int last_call_cuid;
253
254 /* When `subst' is called, this is the insn that is being modified
255 (by combining in a previous insn). The PATTERN of this insn
256 is still the old pattern partially modified and it should not be
257 looked at, but this may be used to examine the successors of the insn
258 to judge whether a simplification is valid. */
259
260 static rtx subst_insn;
261
262 /* This is the lowest CUID that `subst' is currently dealing with.
263 get_last_value will not return a value if the register was set at or
264 after this CUID. If not for this mechanism, we could get confused if
265 I2 or I1 in try_combine were an insn that used the old value of a register
266 to obtain a new value. In that case, we might erroneously get the
267 new value of the register when we wanted the old one. */
268
269 static int subst_low_cuid;
270
271 /* This contains any hard registers that are used in newpat; reg_dead_at_p
272 must consider all these registers to be always live. */
273
274 static HARD_REG_SET newpat_used_regs;
275
276 /* This is an insn to which a LOG_LINKS entry has been added. If this
277 insn is the earlier than I2 or I3, combine should rescan starting at
278 that location. */
279
280 static rtx added_links_insn;
281
282 /* Basic block in which we are performing combines. */
283 static basic_block this_basic_block;
284
285 /* A bitmap indicating which blocks had registers go dead at entry.
286 After combine, we'll need to re-do global life analysis with
287 those blocks as starting points. */
288 static sbitmap refresh_blocks;
289 \f
290 /* The following array records the insn_rtx_cost for every insn
291 in the instruction stream. */
292
293 static int *uid_insn_cost;
294
295 /* Length of the currently allocated uid_insn_cost array. */
296
297 static int last_insn_cost;
298
299 /* Incremented for each label. */
300
301 static int label_tick;
302
303 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
304 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
305
306 static enum machine_mode nonzero_bits_mode;
307
308 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
309 be safely used. It is zero while computing them and after combine has
310 completed. This former test prevents propagating values based on
311 previously set values, which can be incorrect if a variable is modified
312 in a loop. */
313
314 static int nonzero_sign_valid;
315
316 \f
317 /* Record one modification to rtl structure
318 to be undone by storing old_contents into *where.
319 is_int is 1 if the contents are an int. */
320
321 struct undo
322 {
323 struct undo *next;
324 int is_int;
325 union {rtx r; int i;} old_contents;
326 union {rtx *r; int *i;} where;
327 };
328
329 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
330 num_undo says how many are currently recorded.
331
332 other_insn is nonzero if we have modified some other insn in the process
333 of working on subst_insn. It must be verified too. */
334
335 struct undobuf
336 {
337 struct undo *undos;
338 struct undo *frees;
339 rtx other_insn;
340 };
341
342 static struct undobuf undobuf;
343
344 /* Number of times the pseudo being substituted for
345 was found and replaced. */
346
347 static int n_occurrences;
348
349 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
350 enum machine_mode,
351 unsigned HOST_WIDE_INT,
352 unsigned HOST_WIDE_INT *);
353 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
354 enum machine_mode,
355 unsigned int, unsigned int *);
356 static void do_SUBST (rtx *, rtx);
357 static void do_SUBST_INT (int *, int);
358 static void init_reg_last (void);
359 static void setup_incoming_promotions (void);
360 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
361 static int cant_combine_insn_p (rtx);
362 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
363 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
364 static int contains_muldiv (rtx);
365 static rtx try_combine (rtx, rtx, rtx, int *);
366 static void undo_all (void);
367 static void undo_commit (void);
368 static rtx *find_split_point (rtx *, rtx);
369 static rtx subst (rtx, rtx, rtx, int, int);
370 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
371 static rtx simplify_if_then_else (rtx);
372 static rtx simplify_set (rtx);
373 static rtx simplify_logical (rtx);
374 static rtx expand_compound_operation (rtx);
375 static rtx expand_field_assignment (rtx);
376 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
377 rtx, unsigned HOST_WIDE_INT, int, int, int);
378 static rtx extract_left_shift (rtx, int);
379 static rtx make_compound_operation (rtx, enum rtx_code);
380 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
381 unsigned HOST_WIDE_INT *);
382 static rtx force_to_mode (rtx, enum machine_mode,
383 unsigned HOST_WIDE_INT, rtx, int);
384 static rtx if_then_else_cond (rtx, rtx *, rtx *);
385 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
386 static int rtx_equal_for_field_assignment_p (rtx, rtx);
387 static rtx make_field_assignment (rtx);
388 static rtx apply_distributive_law (rtx);
389 static rtx distribute_and_simplify_rtx (rtx, int);
390 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
391 unsigned HOST_WIDE_INT);
392 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
393 HOST_WIDE_INT, enum machine_mode, int *);
394 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
395 int);
396 static int recog_for_combine (rtx *, rtx, rtx *);
397 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static int unmentioned_reg_p_1 (rtx *, void *);
417 static bool unmentioned_reg_p (rtx, rtx);
418 \f
419
420 /* It is not safe to use ordinary gen_lowpart in combine.
421 See comments in gen_lowpart_for_combine. */
422 #undef RTL_HOOKS_GEN_LOWPART
423 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
424
425 /* Our implementation of gen_lowpart never emits a new pseudo. */
426 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
427 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
428
429 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
430 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
431
432 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
433 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
434
435 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
436
437 \f
438 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
439 insn. The substitution can be undone by undo_all. If INTO is already
440 set to NEWVAL, do not record this change. Because computing NEWVAL might
441 also call SUBST, we have to compute it before we put anything into
442 the undo table. */
443
444 static void
445 do_SUBST (rtx *into, rtx newval)
446 {
447 struct undo *buf;
448 rtx oldval = *into;
449
450 if (oldval == newval)
451 return;
452
453 /* We'd like to catch as many invalid transformations here as
454 possible. Unfortunately, there are way too many mode changes
455 that are perfectly valid, so we'd waste too much effort for
456 little gain doing the checks here. Focus on catching invalid
457 transformations involving integer constants. */
458 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
459 && GET_CODE (newval) == CONST_INT)
460 {
461 /* Sanity check that we're replacing oldval with a CONST_INT
462 that is a valid sign-extension for the original mode. */
463 gcc_assert (INTVAL (newval)
464 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
465
466 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
467 CONST_INT is not valid, because after the replacement, the
468 original mode would be gone. Unfortunately, we can't tell
469 when do_SUBST is called to replace the operand thereof, so we
470 perform this test on oldval instead, checking whether an
471 invalid replacement took place before we got here. */
472 gcc_assert (!(GET_CODE (oldval) == SUBREG
473 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
474 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
475 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
476 }
477
478 if (undobuf.frees)
479 buf = undobuf.frees, undobuf.frees = buf->next;
480 else
481 buf = xmalloc (sizeof (struct undo));
482
483 buf->is_int = 0;
484 buf->where.r = into;
485 buf->old_contents.r = oldval;
486 *into = newval;
487
488 buf->next = undobuf.undos, undobuf.undos = buf;
489 }
490
491 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
492
493 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
494 for the value of a HOST_WIDE_INT value (including CONST_INT) is
495 not safe. */
496
497 static void
498 do_SUBST_INT (int *into, int newval)
499 {
500 struct undo *buf;
501 int oldval = *into;
502
503 if (oldval == newval)
504 return;
505
506 if (undobuf.frees)
507 buf = undobuf.frees, undobuf.frees = buf->next;
508 else
509 buf = xmalloc (sizeof (struct undo));
510
511 buf->is_int = 1;
512 buf->where.i = into;
513 buf->old_contents.i = oldval;
514 *into = newval;
515
516 buf->next = undobuf.undos, undobuf.undos = buf;
517 }
518
519 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
520 \f
521 /* Subroutine of try_combine. Determine whether the combine replacement
522 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
523 that the original instruction sequence I1, I2 and I3. Note that I1
524 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
525 costs of all instructions can be estimated, and the replacements are
526 more expensive than the original sequence. */
527
528 static bool
529 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
530 {
531 int i1_cost, i2_cost, i3_cost;
532 int new_i2_cost, new_i3_cost;
533 int old_cost, new_cost;
534
535 /* Lookup the original insn_rtx_costs. */
536 i2_cost = INSN_UID (i2) <= last_insn_cost
537 ? uid_insn_cost[INSN_UID (i2)] : 0;
538 i3_cost = INSN_UID (i3) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i3)] : 0;
540
541 if (i1)
542 {
543 i1_cost = INSN_UID (i1) <= last_insn_cost
544 ? uid_insn_cost[INSN_UID (i1)] : 0;
545 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
546 ? i1_cost + i2_cost + i3_cost : 0;
547 }
548 else
549 {
550 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
551 i1_cost = 0;
552 }
553
554 /* Calculate the replacement insn_rtx_costs. */
555 new_i3_cost = insn_rtx_cost (newpat);
556 if (newi2pat)
557 {
558 new_i2_cost = insn_rtx_cost (newi2pat);
559 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
560 ? new_i2_cost + new_i3_cost : 0;
561 }
562 else
563 {
564 new_cost = new_i3_cost;
565 new_i2_cost = 0;
566 }
567
568 if (undobuf.other_insn)
569 {
570 int old_other_cost, new_other_cost;
571
572 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
573 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
574 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
575 if (old_other_cost > 0 && new_other_cost > 0)
576 {
577 old_cost += old_other_cost;
578 new_cost += new_other_cost;
579 }
580 else
581 old_cost = 0;
582 }
583
584 /* Disallow this recombination if both new_cost and old_cost are
585 greater than zero, and new_cost is greater than old cost. */
586 if (old_cost > 0
587 && new_cost > old_cost)
588 {
589 if (dump_file)
590 {
591 if (i1)
592 {
593 fprintf (dump_file,
594 "rejecting combination of insns %d, %d and %d\n",
595 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
596 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
597 i1_cost, i2_cost, i3_cost, old_cost);
598 }
599 else
600 {
601 fprintf (dump_file,
602 "rejecting combination of insns %d and %d\n",
603 INSN_UID (i2), INSN_UID (i3));
604 fprintf (dump_file, "original costs %d + %d = %d\n",
605 i2_cost, i3_cost, old_cost);
606 }
607
608 if (newi2pat)
609 {
610 fprintf (dump_file, "replacement costs %d + %d = %d\n",
611 new_i2_cost, new_i3_cost, new_cost);
612 }
613 else
614 fprintf (dump_file, "replacement cost %d\n", new_cost);
615 }
616
617 return false;
618 }
619
620 /* Update the uid_insn_cost array with the replacement costs. */
621 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
622 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
623 if (i1)
624 uid_insn_cost[INSN_UID (i1)] = 0;
625
626 return true;
627 }
628 \f
629 /* Main entry point for combiner. F is the first insn of the function.
630 NREGS is the first unused pseudo-reg number.
631
632 Return nonzero if the combiner has turned an indirect jump
633 instruction into a direct jump. */
634 int
635 combine_instructions (rtx f, unsigned int nregs)
636 {
637 rtx insn, next;
638 #ifdef HAVE_cc0
639 rtx prev;
640 #endif
641 int i;
642 unsigned int j;
643 rtx links, nextlinks;
644 sbitmap_iterator sbi;
645
646 int new_direct_jump_p = 0;
647
648 combine_attempts = 0;
649 combine_merges = 0;
650 combine_extras = 0;
651 combine_successes = 0;
652
653 combine_max_regno = nregs;
654
655 rtl_hooks = combine_rtl_hooks;
656
657 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
658
659 init_recog_no_volatile ();
660
661 /* Compute maximum uid value so uid_cuid can be allocated. */
662
663 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
664 if (INSN_UID (insn) > i)
665 i = INSN_UID (insn);
666
667 uid_cuid = xmalloc ((i + 1) * sizeof (int));
668 max_uid_cuid = i;
669
670 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
671
672 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
673 problems when, for example, we have j <<= 1 in a loop. */
674
675 nonzero_sign_valid = 0;
676
677 /* Compute the mapping from uids to cuids.
678 Cuids are numbers assigned to insns, like uids,
679 except that cuids increase monotonically through the code.
680
681 Scan all SETs and see if we can deduce anything about what
682 bits are known to be zero for some registers and how many copies
683 of the sign bit are known to exist for those registers.
684
685 Also set any known values so that we can use it while searching
686 for what bits are known to be set. */
687
688 label_tick = 1;
689
690 setup_incoming_promotions ();
691
692 refresh_blocks = sbitmap_alloc (last_basic_block);
693 sbitmap_zero (refresh_blocks);
694
695 /* Allocate array of current insn_rtx_costs. */
696 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
697 last_insn_cost = max_uid_cuid;
698
699 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
700 {
701 uid_cuid[INSN_UID (insn)] = ++i;
702 subst_low_cuid = i;
703 subst_insn = insn;
704
705 if (INSN_P (insn))
706 {
707 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
708 NULL);
709 record_dead_and_set_regs (insn);
710
711 #ifdef AUTO_INC_DEC
712 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
713 if (REG_NOTE_KIND (links) == REG_INC)
714 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
715 NULL);
716 #endif
717
718 /* Record the current insn_rtx_cost of this instruction. */
719 if (NONJUMP_INSN_P (insn))
720 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
721 if (dump_file)
722 fprintf(dump_file, "insn_cost %d: %d\n",
723 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
724 }
725
726 if (LABEL_P (insn))
727 label_tick++;
728 }
729
730 nonzero_sign_valid = 1;
731
732 /* Now scan all the insns in forward order. */
733
734 label_tick = 1;
735 last_call_cuid = 0;
736 mem_last_set = 0;
737 init_reg_last ();
738 setup_incoming_promotions ();
739
740 FOR_EACH_BB (this_basic_block)
741 {
742 for (insn = BB_HEAD (this_basic_block);
743 insn != NEXT_INSN (BB_END (this_basic_block));
744 insn = next ? next : NEXT_INSN (insn))
745 {
746 next = 0;
747
748 if (LABEL_P (insn))
749 label_tick++;
750
751 else if (INSN_P (insn))
752 {
753 /* See if we know about function return values before this
754 insn based upon SUBREG flags. */
755 check_promoted_subreg (insn, PATTERN (insn));
756
757 /* Try this insn with each insn it links back to. */
758
759 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
760 if ((next = try_combine (insn, XEXP (links, 0),
761 NULL_RTX, &new_direct_jump_p)) != 0)
762 goto retry;
763
764 /* Try each sequence of three linked insns ending with this one. */
765
766 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
767 {
768 rtx link = XEXP (links, 0);
769
770 /* If the linked insn has been replaced by a note, then there
771 is no point in pursuing this chain any further. */
772 if (NOTE_P (link))
773 continue;
774
775 for (nextlinks = LOG_LINKS (link);
776 nextlinks;
777 nextlinks = XEXP (nextlinks, 1))
778 if ((next = try_combine (insn, link,
779 XEXP (nextlinks, 0),
780 &new_direct_jump_p)) != 0)
781 goto retry;
782 }
783
784 #ifdef HAVE_cc0
785 /* Try to combine a jump insn that uses CC0
786 with a preceding insn that sets CC0, and maybe with its
787 logical predecessor as well.
788 This is how we make decrement-and-branch insns.
789 We need this special code because data flow connections
790 via CC0 do not get entered in LOG_LINKS. */
791
792 if (JUMP_P (insn)
793 && (prev = prev_nonnote_insn (insn)) != 0
794 && NONJUMP_INSN_P (prev)
795 && sets_cc0_p (PATTERN (prev)))
796 {
797 if ((next = try_combine (insn, prev,
798 NULL_RTX, &new_direct_jump_p)) != 0)
799 goto retry;
800
801 for (nextlinks = LOG_LINKS (prev); nextlinks;
802 nextlinks = XEXP (nextlinks, 1))
803 if ((next = try_combine (insn, prev,
804 XEXP (nextlinks, 0),
805 &new_direct_jump_p)) != 0)
806 goto retry;
807 }
808
809 /* Do the same for an insn that explicitly references CC0. */
810 if (NONJUMP_INSN_P (insn)
811 && (prev = prev_nonnote_insn (insn)) != 0
812 && NONJUMP_INSN_P (prev)
813 && sets_cc0_p (PATTERN (prev))
814 && GET_CODE (PATTERN (insn)) == SET
815 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
816 {
817 if ((next = try_combine (insn, prev,
818 NULL_RTX, &new_direct_jump_p)) != 0)
819 goto retry;
820
821 for (nextlinks = LOG_LINKS (prev); nextlinks;
822 nextlinks = XEXP (nextlinks, 1))
823 if ((next = try_combine (insn, prev,
824 XEXP (nextlinks, 0),
825 &new_direct_jump_p)) != 0)
826 goto retry;
827 }
828
829 /* Finally, see if any of the insns that this insn links to
830 explicitly references CC0. If so, try this insn, that insn,
831 and its predecessor if it sets CC0. */
832 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
833 if (NONJUMP_INSN_P (XEXP (links, 0))
834 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
835 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
836 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
837 && NONJUMP_INSN_P (prev)
838 && sets_cc0_p (PATTERN (prev))
839 && (next = try_combine (insn, XEXP (links, 0),
840 prev, &new_direct_jump_p)) != 0)
841 goto retry;
842 #endif
843
844 /* Try combining an insn with two different insns whose results it
845 uses. */
846 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
847 for (nextlinks = XEXP (links, 1); nextlinks;
848 nextlinks = XEXP (nextlinks, 1))
849 if ((next = try_combine (insn, XEXP (links, 0),
850 XEXP (nextlinks, 0),
851 &new_direct_jump_p)) != 0)
852 goto retry;
853
854 /* Try this insn with each REG_EQUAL note it links back to. */
855 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
856 {
857 rtx set, note;
858 rtx temp = XEXP (links, 0);
859 if ((set = single_set (temp)) != 0
860 && (note = find_reg_equal_equiv_note (temp)) != 0
861 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
862 /* Avoid using a register that may already been marked
863 dead by an earlier instruction. */
864 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
865 {
866 /* Temporarily replace the set's source with the
867 contents of the REG_EQUAL note. The insn will
868 be deleted or recognized by try_combine. */
869 rtx orig = SET_SRC (set);
870 SET_SRC (set) = XEXP (note, 0);
871 next = try_combine (insn, temp, NULL_RTX,
872 &new_direct_jump_p);
873 if (next)
874 goto retry;
875 SET_SRC (set) = orig;
876 }
877 }
878
879 if (!NOTE_P (insn))
880 record_dead_and_set_regs (insn);
881
882 retry:
883 ;
884 }
885 }
886 }
887 clear_bb_flags ();
888
889 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
890 BASIC_BLOCK (j)->flags |= BB_DIRTY;
891 new_direct_jump_p |= purge_all_dead_edges ();
892 delete_noop_moves ();
893
894 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
895 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
896 | PROP_KILL_DEAD_CODE);
897
898 /* Clean up. */
899 sbitmap_free (refresh_blocks);
900 free (uid_insn_cost);
901 free (reg_stat);
902 free (uid_cuid);
903
904 {
905 struct undo *undo, *next;
906 for (undo = undobuf.frees; undo; undo = next)
907 {
908 next = undo->next;
909 free (undo);
910 }
911 undobuf.frees = 0;
912 }
913
914 total_attempts += combine_attempts;
915 total_merges += combine_merges;
916 total_extras += combine_extras;
917 total_successes += combine_successes;
918
919 nonzero_sign_valid = 0;
920 rtl_hooks = general_rtl_hooks;
921
922 /* Make recognizer allow volatile MEMs again. */
923 init_recog ();
924
925 return new_direct_jump_p;
926 }
927
928 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
929
930 static void
931 init_reg_last (void)
932 {
933 unsigned int i;
934 for (i = 0; i < combine_max_regno; i++)
935 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
936 }
937 \f
938 /* Set up any promoted values for incoming argument registers. */
939
940 static void
941 setup_incoming_promotions (void)
942 {
943 unsigned int regno;
944 rtx reg;
945 enum machine_mode mode;
946 int unsignedp;
947 rtx first = get_insns ();
948
949 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
950 {
951 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
952 /* Check whether this register can hold an incoming pointer
953 argument. FUNCTION_ARG_REGNO_P tests outgoing register
954 numbers, so translate if necessary due to register windows. */
955 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
956 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
957 {
958 record_value_for_reg
959 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
960 : SIGN_EXTEND),
961 GET_MODE (reg),
962 gen_rtx_CLOBBER (mode, const0_rtx)));
963 }
964 }
965 }
966 \f
967 /* Called via note_stores. If X is a pseudo that is narrower than
968 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
969
970 If we are setting only a portion of X and we can't figure out what
971 portion, assume all bits will be used since we don't know what will
972 be happening.
973
974 Similarly, set how many bits of X are known to be copies of the sign bit
975 at all locations in the function. This is the smallest number implied
976 by any set of X. */
977
978 static void
979 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
980 void *data ATTRIBUTE_UNUSED)
981 {
982 unsigned int num;
983
984 if (REG_P (x)
985 && REGNO (x) >= FIRST_PSEUDO_REGISTER
986 /* If this register is undefined at the start of the file, we can't
987 say what its contents were. */
988 && ! REGNO_REG_SET_P
989 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
990 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
991 {
992 if (set == 0 || GET_CODE (set) == CLOBBER)
993 {
994 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
995 reg_stat[REGNO (x)].sign_bit_copies = 1;
996 return;
997 }
998
999 /* If this is a complex assignment, see if we can convert it into a
1000 simple assignment. */
1001 set = expand_field_assignment (set);
1002
1003 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1004 set what we know about X. */
1005
1006 if (SET_DEST (set) == x
1007 || (GET_CODE (SET_DEST (set)) == SUBREG
1008 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1010 && SUBREG_REG (SET_DEST (set)) == x))
1011 {
1012 rtx src = SET_SRC (set);
1013
1014 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1015 /* If X is narrower than a word and SRC is a non-negative
1016 constant that would appear negative in the mode of X,
1017 sign-extend it for use in reg_stat[].nonzero_bits because some
1018 machines (maybe most) will actually do the sign-extension
1019 and this is the conservative approach.
1020
1021 ??? For 2.5, try to tighten up the MD files in this regard
1022 instead of this kludge. */
1023
1024 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1025 && GET_CODE (src) == CONST_INT
1026 && INTVAL (src) > 0
1027 && 0 != (INTVAL (src)
1028 & ((HOST_WIDE_INT) 1
1029 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1030 src = GEN_INT (INTVAL (src)
1031 | ((HOST_WIDE_INT) (-1)
1032 << GET_MODE_BITSIZE (GET_MODE (x))));
1033 #endif
1034
1035 /* Don't call nonzero_bits if it cannot change anything. */
1036 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1037 reg_stat[REGNO (x)].nonzero_bits
1038 |= nonzero_bits (src, nonzero_bits_mode);
1039 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1040 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1041 || reg_stat[REGNO (x)].sign_bit_copies > num)
1042 reg_stat[REGNO (x)].sign_bit_copies = num;
1043 }
1044 else
1045 {
1046 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1047 reg_stat[REGNO (x)].sign_bit_copies = 1;
1048 }
1049 }
1050 }
1051 \f
1052 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1053 insns that were previously combined into I3 or that will be combined
1054 into the merger of INSN and I3.
1055
1056 Return 0 if the combination is not allowed for any reason.
1057
1058 If the combination is allowed, *PDEST will be set to the single
1059 destination of INSN and *PSRC to the single source, and this function
1060 will return 1. */
1061
1062 static int
1063 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1064 rtx *pdest, rtx *psrc)
1065 {
1066 int i;
1067 rtx set = 0, src, dest;
1068 rtx p;
1069 #ifdef AUTO_INC_DEC
1070 rtx link;
1071 #endif
1072 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1073 && next_active_insn (succ) == i3)
1074 : next_active_insn (insn) == i3);
1075
1076 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1077 or a PARALLEL consisting of such a SET and CLOBBERs.
1078
1079 If INSN has CLOBBER parallel parts, ignore them for our processing.
1080 By definition, these happen during the execution of the insn. When it
1081 is merged with another insn, all bets are off. If they are, in fact,
1082 needed and aren't also supplied in I3, they may be added by
1083 recog_for_combine. Otherwise, it won't match.
1084
1085 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1086 note.
1087
1088 Get the source and destination of INSN. If more than one, can't
1089 combine. */
1090
1091 if (GET_CODE (PATTERN (insn)) == SET)
1092 set = PATTERN (insn);
1093 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1094 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1095 {
1096 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1097 {
1098 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1099 rtx note;
1100
1101 switch (GET_CODE (elt))
1102 {
1103 /* This is important to combine floating point insns
1104 for the SH4 port. */
1105 case USE:
1106 /* Combining an isolated USE doesn't make sense.
1107 We depend here on combinable_i3pat to reject them. */
1108 /* The code below this loop only verifies that the inputs of
1109 the SET in INSN do not change. We call reg_set_between_p
1110 to verify that the REG in the USE does not change between
1111 I3 and INSN.
1112 If the USE in INSN was for a pseudo register, the matching
1113 insn pattern will likely match any register; combining this
1114 with any other USE would only be safe if we knew that the
1115 used registers have identical values, or if there was
1116 something to tell them apart, e.g. different modes. For
1117 now, we forgo such complicated tests and simply disallow
1118 combining of USES of pseudo registers with any other USE. */
1119 if (REG_P (XEXP (elt, 0))
1120 && GET_CODE (PATTERN (i3)) == PARALLEL)
1121 {
1122 rtx i3pat = PATTERN (i3);
1123 int i = XVECLEN (i3pat, 0) - 1;
1124 unsigned int regno = REGNO (XEXP (elt, 0));
1125
1126 do
1127 {
1128 rtx i3elt = XVECEXP (i3pat, 0, i);
1129
1130 if (GET_CODE (i3elt) == USE
1131 && REG_P (XEXP (i3elt, 0))
1132 && (REGNO (XEXP (i3elt, 0)) == regno
1133 ? reg_set_between_p (XEXP (elt, 0),
1134 PREV_INSN (insn), i3)
1135 : regno >= FIRST_PSEUDO_REGISTER))
1136 return 0;
1137 }
1138 while (--i >= 0);
1139 }
1140 break;
1141
1142 /* We can ignore CLOBBERs. */
1143 case CLOBBER:
1144 break;
1145
1146 case SET:
1147 /* Ignore SETs whose result isn't used but not those that
1148 have side-effects. */
1149 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1150 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1151 || INTVAL (XEXP (note, 0)) <= 0)
1152 && ! side_effects_p (elt))
1153 break;
1154
1155 /* If we have already found a SET, this is a second one and
1156 so we cannot combine with this insn. */
1157 if (set)
1158 return 0;
1159
1160 set = elt;
1161 break;
1162
1163 default:
1164 /* Anything else means we can't combine. */
1165 return 0;
1166 }
1167 }
1168
1169 if (set == 0
1170 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1171 so don't do anything with it. */
1172 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1173 return 0;
1174 }
1175 else
1176 return 0;
1177
1178 if (set == 0)
1179 return 0;
1180
1181 set = expand_field_assignment (set);
1182 src = SET_SRC (set), dest = SET_DEST (set);
1183
1184 /* Don't eliminate a store in the stack pointer. */
1185 if (dest == stack_pointer_rtx
1186 /* Don't combine with an insn that sets a register to itself if it has
1187 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1188 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1189 /* Can't merge an ASM_OPERANDS. */
1190 || GET_CODE (src) == ASM_OPERANDS
1191 /* Can't merge a function call. */
1192 || GET_CODE (src) == CALL
1193 /* Don't eliminate a function call argument. */
1194 || (CALL_P (i3)
1195 && (find_reg_fusage (i3, USE, dest)
1196 || (REG_P (dest)
1197 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1198 && global_regs[REGNO (dest)])))
1199 /* Don't substitute into an incremented register. */
1200 || FIND_REG_INC_NOTE (i3, dest)
1201 || (succ && FIND_REG_INC_NOTE (succ, dest))
1202 /* Don't substitute into a non-local goto, this confuses CFG. */
1203 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1204 #if 0
1205 /* Don't combine the end of a libcall into anything. */
1206 /* ??? This gives worse code, and appears to be unnecessary, since no
1207 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1208 use REG_RETVAL notes for noconflict blocks, but other code here
1209 makes sure that those insns don't disappear. */
1210 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1211 #endif
1212 /* Make sure that DEST is not used after SUCC but before I3. */
1213 || (succ && ! all_adjacent
1214 && reg_used_between_p (dest, succ, i3))
1215 /* Make sure that the value that is to be substituted for the register
1216 does not use any registers whose values alter in between. However,
1217 If the insns are adjacent, a use can't cross a set even though we
1218 think it might (this can happen for a sequence of insns each setting
1219 the same destination; last_set of that register might point to
1220 a NOTE). If INSN has a REG_EQUIV note, the register is always
1221 equivalent to the memory so the substitution is valid even if there
1222 are intervening stores. Also, don't move a volatile asm or
1223 UNSPEC_VOLATILE across any other insns. */
1224 || (! all_adjacent
1225 && (((!MEM_P (src)
1226 || ! find_reg_note (insn, REG_EQUIV, src))
1227 && use_crosses_set_p (src, INSN_CUID (insn)))
1228 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1229 || GET_CODE (src) == UNSPEC_VOLATILE))
1230 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1231 better register allocation by not doing the combine. */
1232 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1233 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1234 /* Don't combine across a CALL_INSN, because that would possibly
1235 change whether the life span of some REGs crosses calls or not,
1236 and it is a pain to update that information.
1237 Exception: if source is a constant, moving it later can't hurt.
1238 Accept that special case, because it helps -fforce-addr a lot. */
1239 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1240 return 0;
1241
1242 /* DEST must either be a REG or CC0. */
1243 if (REG_P (dest))
1244 {
1245 /* If register alignment is being enforced for multi-word items in all
1246 cases except for parameters, it is possible to have a register copy
1247 insn referencing a hard register that is not allowed to contain the
1248 mode being copied and which would not be valid as an operand of most
1249 insns. Eliminate this problem by not combining with such an insn.
1250
1251 Also, on some machines we don't want to extend the life of a hard
1252 register. */
1253
1254 if (REG_P (src)
1255 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1256 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1257 /* Don't extend the life of a hard register unless it is
1258 user variable (if we have few registers) or it can't
1259 fit into the desired register (meaning something special
1260 is going on).
1261 Also avoid substituting a return register into I3, because
1262 reload can't handle a conflict with constraints of other
1263 inputs. */
1264 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1265 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1266 return 0;
1267 }
1268 else if (GET_CODE (dest) != CC0)
1269 return 0;
1270
1271
1272 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1273 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1274 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1275 {
1276 /* Don't substitute for a register intended as a clobberable
1277 operand. */
1278 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1279 if (rtx_equal_p (reg, dest))
1280 return 0;
1281
1282 /* If the clobber represents an earlyclobber operand, we must not
1283 substitute an expression containing the clobbered register.
1284 As we do not analyze the constraint strings here, we have to
1285 make the conservative assumption. However, if the register is
1286 a fixed hard reg, the clobber cannot represent any operand;
1287 we leave it up to the machine description to either accept or
1288 reject use-and-clobber patterns. */
1289 if (!REG_P (reg)
1290 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1291 || !fixed_regs[REGNO (reg)])
1292 if (reg_overlap_mentioned_p (reg, src))
1293 return 0;
1294 }
1295
1296 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1297 or not), reject, unless nothing volatile comes between it and I3 */
1298
1299 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1300 {
1301 /* Make sure succ doesn't contain a volatile reference. */
1302 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1303 return 0;
1304
1305 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1306 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1307 return 0;
1308 }
1309
1310 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1311 to be an explicit register variable, and was chosen for a reason. */
1312
1313 if (GET_CODE (src) == ASM_OPERANDS
1314 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1315 return 0;
1316
1317 /* If there are any volatile insns between INSN and I3, reject, because
1318 they might affect machine state. */
1319
1320 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1321 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1322 return 0;
1323
1324 /* If INSN contains an autoincrement or autodecrement, make sure that
1325 register is not used between there and I3, and not already used in
1326 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1327 Also insist that I3 not be a jump; if it were one
1328 and the incremented register were spilled, we would lose. */
1329
1330 #ifdef AUTO_INC_DEC
1331 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1332 if (REG_NOTE_KIND (link) == REG_INC
1333 && (JUMP_P (i3)
1334 || reg_used_between_p (XEXP (link, 0), insn, i3)
1335 || (pred != NULL_RTX
1336 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1337 || (succ != NULL_RTX
1338 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1339 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1340 return 0;
1341 #endif
1342
1343 #ifdef HAVE_cc0
1344 /* Don't combine an insn that follows a CC0-setting insn.
1345 An insn that uses CC0 must not be separated from the one that sets it.
1346 We do, however, allow I2 to follow a CC0-setting insn if that insn
1347 is passed as I1; in that case it will be deleted also.
1348 We also allow combining in this case if all the insns are adjacent
1349 because that would leave the two CC0 insns adjacent as well.
1350 It would be more logical to test whether CC0 occurs inside I1 or I2,
1351 but that would be much slower, and this ought to be equivalent. */
1352
1353 p = prev_nonnote_insn (insn);
1354 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1355 && ! all_adjacent)
1356 return 0;
1357 #endif
1358
1359 /* If we get here, we have passed all the tests and the combination is
1360 to be allowed. */
1361
1362 *pdest = dest;
1363 *psrc = src;
1364
1365 return 1;
1366 }
1367 \f
1368 /* LOC is the location within I3 that contains its pattern or the component
1369 of a PARALLEL of the pattern. We validate that it is valid for combining.
1370
1371 One problem is if I3 modifies its output, as opposed to replacing it
1372 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1373 so would produce an insn that is not equivalent to the original insns.
1374
1375 Consider:
1376
1377 (set (reg:DI 101) (reg:DI 100))
1378 (set (subreg:SI (reg:DI 101) 0) <foo>)
1379
1380 This is NOT equivalent to:
1381
1382 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1383 (set (reg:DI 101) (reg:DI 100))])
1384
1385 Not only does this modify 100 (in which case it might still be valid
1386 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1387
1388 We can also run into a problem if I2 sets a register that I1
1389 uses and I1 gets directly substituted into I3 (not via I2). In that
1390 case, we would be getting the wrong value of I2DEST into I3, so we
1391 must reject the combination. This case occurs when I2 and I1 both
1392 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1393 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1394 of a SET must prevent combination from occurring.
1395
1396 Before doing the above check, we first try to expand a field assignment
1397 into a set of logical operations.
1398
1399 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1400 we place a register that is both set and used within I3. If more than one
1401 such register is detected, we fail.
1402
1403 Return 1 if the combination is valid, zero otherwise. */
1404
1405 static int
1406 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1407 int i1_not_in_src, rtx *pi3dest_killed)
1408 {
1409 rtx x = *loc;
1410
1411 if (GET_CODE (x) == SET)
1412 {
1413 rtx set = x ;
1414 rtx dest = SET_DEST (set);
1415 rtx src = SET_SRC (set);
1416 rtx inner_dest = dest;
1417
1418 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1419 || GET_CODE (inner_dest) == SUBREG
1420 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1421 inner_dest = XEXP (inner_dest, 0);
1422
1423 /* Check for the case where I3 modifies its output, as discussed
1424 above. We don't want to prevent pseudos from being combined
1425 into the address of a MEM, so only prevent the combination if
1426 i1 or i2 set the same MEM. */
1427 if ((inner_dest != dest &&
1428 (!MEM_P (inner_dest)
1429 || rtx_equal_p (i2dest, inner_dest)
1430 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1431 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1432 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1433
1434 /* This is the same test done in can_combine_p except we can't test
1435 all_adjacent; we don't have to, since this instruction will stay
1436 in place, thus we are not considering increasing the lifetime of
1437 INNER_DEST.
1438
1439 Also, if this insn sets a function argument, combining it with
1440 something that might need a spill could clobber a previous
1441 function argument; the all_adjacent test in can_combine_p also
1442 checks this; here, we do a more specific test for this case. */
1443
1444 || (REG_P (inner_dest)
1445 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1446 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1447 GET_MODE (inner_dest))))
1448 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1449 return 0;
1450
1451 /* If DEST is used in I3, it is being killed in this insn,
1452 so record that for later.
1453 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1454 STACK_POINTER_REGNUM, since these are always considered to be
1455 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1456 if (pi3dest_killed && REG_P (dest)
1457 && reg_referenced_p (dest, PATTERN (i3))
1458 && REGNO (dest) != FRAME_POINTER_REGNUM
1459 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1460 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1461 #endif
1462 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1463 && (REGNO (dest) != ARG_POINTER_REGNUM
1464 || ! fixed_regs [REGNO (dest)])
1465 #endif
1466 && REGNO (dest) != STACK_POINTER_REGNUM)
1467 {
1468 if (*pi3dest_killed)
1469 return 0;
1470
1471 *pi3dest_killed = dest;
1472 }
1473 }
1474
1475 else if (GET_CODE (x) == PARALLEL)
1476 {
1477 int i;
1478
1479 for (i = 0; i < XVECLEN (x, 0); i++)
1480 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1481 i1_not_in_src, pi3dest_killed))
1482 return 0;
1483 }
1484
1485 return 1;
1486 }
1487 \f
1488 /* Return 1 if X is an arithmetic expression that contains a multiplication
1489 and division. We don't count multiplications by powers of two here. */
1490
1491 static int
1492 contains_muldiv (rtx x)
1493 {
1494 switch (GET_CODE (x))
1495 {
1496 case MOD: case DIV: case UMOD: case UDIV:
1497 return 1;
1498
1499 case MULT:
1500 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1501 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1502 default:
1503 if (BINARY_P (x))
1504 return contains_muldiv (XEXP (x, 0))
1505 || contains_muldiv (XEXP (x, 1));
1506
1507 if (UNARY_P (x))
1508 return contains_muldiv (XEXP (x, 0));
1509
1510 return 0;
1511 }
1512 }
1513 \f
1514 /* Determine whether INSN can be used in a combination. Return nonzero if
1515 not. This is used in try_combine to detect early some cases where we
1516 can't perform combinations. */
1517
1518 static int
1519 cant_combine_insn_p (rtx insn)
1520 {
1521 rtx set;
1522 rtx src, dest;
1523
1524 /* If this isn't really an insn, we can't do anything.
1525 This can occur when flow deletes an insn that it has merged into an
1526 auto-increment address. */
1527 if (! INSN_P (insn))
1528 return 1;
1529
1530 /* Never combine loads and stores involving hard regs that are likely
1531 to be spilled. The register allocator can usually handle such
1532 reg-reg moves by tying. If we allow the combiner to make
1533 substitutions of likely-spilled regs, reload might die.
1534 As an exception, we allow combinations involving fixed regs; these are
1535 not available to the register allocator so there's no risk involved. */
1536
1537 set = single_set (insn);
1538 if (! set)
1539 return 0;
1540 src = SET_SRC (set);
1541 dest = SET_DEST (set);
1542 if (GET_CODE (src) == SUBREG)
1543 src = SUBREG_REG (src);
1544 if (GET_CODE (dest) == SUBREG)
1545 dest = SUBREG_REG (dest);
1546 if (REG_P (src) && REG_P (dest)
1547 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1548 && ! fixed_regs[REGNO (src)]
1549 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1550 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1551 && ! fixed_regs[REGNO (dest)]
1552 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1553 return 1;
1554
1555 return 0;
1556 }
1557
1558 /* Adjust INSN after we made a change to its destination.
1559
1560 Changing the destination can invalidate notes that say something about
1561 the results of the insn and a LOG_LINK pointing to the insn. */
1562
1563 static void
1564 adjust_for_new_dest (rtx insn)
1565 {
1566 rtx *loc;
1567
1568 /* For notes, be conservative and simply remove them. */
1569 loc = &REG_NOTES (insn);
1570 while (*loc)
1571 {
1572 enum reg_note kind = REG_NOTE_KIND (*loc);
1573 if (kind == REG_EQUAL || kind == REG_EQUIV)
1574 *loc = XEXP (*loc, 1);
1575 else
1576 loc = &XEXP (*loc, 1);
1577 }
1578
1579 /* The new insn will have a destination that was previously the destination
1580 of an insn just above it. Call distribute_links to make a LOG_LINK from
1581 the next use of that destination. */
1582 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1583 }
1584
1585 /* Try to combine the insns I1 and I2 into I3.
1586 Here I1 and I2 appear earlier than I3.
1587 I1 can be zero; then we combine just I2 into I3.
1588
1589 If we are combining three insns and the resulting insn is not recognized,
1590 try splitting it into two insns. If that happens, I2 and I3 are retained
1591 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1592 are pseudo-deleted.
1593
1594 Return 0 if the combination does not work. Then nothing is changed.
1595 If we did the combination, return the insn at which combine should
1596 resume scanning.
1597
1598 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1599 new direct jump instruction. */
1600
1601 static rtx
1602 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1603 {
1604 /* New patterns for I3 and I2, respectively. */
1605 rtx newpat, newi2pat = 0;
1606 rtvec newpat_vec_with_clobbers = 0;
1607 int substed_i2 = 0, substed_i1 = 0;
1608 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1609 int added_sets_1, added_sets_2;
1610 /* Total number of SETs to put into I3. */
1611 int total_sets;
1612 /* Nonzero if I2's body now appears in I3. */
1613 int i2_is_used;
1614 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1615 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1616 /* Contains I3 if the destination of I3 is used in its source, which means
1617 that the old life of I3 is being killed. If that usage is placed into
1618 I2 and not in I3, a REG_DEAD note must be made. */
1619 rtx i3dest_killed = 0;
1620 /* SET_DEST and SET_SRC of I2 and I1. */
1621 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1622 /* PATTERN (I2), or a copy of it in certain cases. */
1623 rtx i2pat;
1624 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1625 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1626 int i1_feeds_i3 = 0;
1627 /* Notes that must be added to REG_NOTES in I3 and I2. */
1628 rtx new_i3_notes, new_i2_notes;
1629 /* Notes that we substituted I3 into I2 instead of the normal case. */
1630 int i3_subst_into_i2 = 0;
1631 /* Notes that I1, I2 or I3 is a MULT operation. */
1632 int have_mult = 0;
1633 int swap_i2i3 = 0;
1634
1635 int maxreg;
1636 rtx temp;
1637 rtx link;
1638 int i;
1639
1640 /* Exit early if one of the insns involved can't be used for
1641 combinations. */
1642 if (cant_combine_insn_p (i3)
1643 || cant_combine_insn_p (i2)
1644 || (i1 && cant_combine_insn_p (i1))
1645 /* We also can't do anything if I3 has a
1646 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1647 libcall. */
1648 #if 0
1649 /* ??? This gives worse code, and appears to be unnecessary, since no
1650 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1651 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1652 #endif
1653 )
1654 return 0;
1655
1656 combine_attempts++;
1657 undobuf.other_insn = 0;
1658
1659 /* Reset the hard register usage information. */
1660 CLEAR_HARD_REG_SET (newpat_used_regs);
1661
1662 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1663 code below, set I1 to be the earlier of the two insns. */
1664 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1665 temp = i1, i1 = i2, i2 = temp;
1666
1667 added_links_insn = 0;
1668
1669 /* First check for one important special-case that the code below will
1670 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1671 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1672 we may be able to replace that destination with the destination of I3.
1673 This occurs in the common code where we compute both a quotient and
1674 remainder into a structure, in which case we want to do the computation
1675 directly into the structure to avoid register-register copies.
1676
1677 Note that this case handles both multiple sets in I2 and also
1678 cases where I2 has a number of CLOBBER or PARALLELs.
1679
1680 We make very conservative checks below and only try to handle the
1681 most common cases of this. For example, we only handle the case
1682 where I2 and I3 are adjacent to avoid making difficult register
1683 usage tests. */
1684
1685 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1686 && REG_P (SET_SRC (PATTERN (i3)))
1687 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1688 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1689 && GET_CODE (PATTERN (i2)) == PARALLEL
1690 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1691 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1692 below would need to check what is inside (and reg_overlap_mentioned_p
1693 doesn't support those codes anyway). Don't allow those destinations;
1694 the resulting insn isn't likely to be recognized anyway. */
1695 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1696 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1697 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1698 SET_DEST (PATTERN (i3)))
1699 && next_real_insn (i2) == i3)
1700 {
1701 rtx p2 = PATTERN (i2);
1702
1703 /* Make sure that the destination of I3,
1704 which we are going to substitute into one output of I2,
1705 is not used within another output of I2. We must avoid making this:
1706 (parallel [(set (mem (reg 69)) ...)
1707 (set (reg 69) ...)])
1708 which is not well-defined as to order of actions.
1709 (Besides, reload can't handle output reloads for this.)
1710
1711 The problem can also happen if the dest of I3 is a memory ref,
1712 if another dest in I2 is an indirect memory ref. */
1713 for (i = 0; i < XVECLEN (p2, 0); i++)
1714 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1715 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1716 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1717 SET_DEST (XVECEXP (p2, 0, i))))
1718 break;
1719
1720 if (i == XVECLEN (p2, 0))
1721 for (i = 0; i < XVECLEN (p2, 0); i++)
1722 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1723 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1724 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1725 {
1726 combine_merges++;
1727
1728 subst_insn = i3;
1729 subst_low_cuid = INSN_CUID (i2);
1730
1731 added_sets_2 = added_sets_1 = 0;
1732 i2dest = SET_SRC (PATTERN (i3));
1733
1734 /* Replace the dest in I2 with our dest and make the resulting
1735 insn the new pattern for I3. Then skip to where we
1736 validate the pattern. Everything was set up above. */
1737 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1738 SET_DEST (PATTERN (i3)));
1739
1740 newpat = p2;
1741 i3_subst_into_i2 = 1;
1742 goto validate_replacement;
1743 }
1744 }
1745
1746 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1747 one of those words to another constant, merge them by making a new
1748 constant. */
1749 if (i1 == 0
1750 && (temp = single_set (i2)) != 0
1751 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1752 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1753 && REG_P (SET_DEST (temp))
1754 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1755 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1756 && GET_CODE (PATTERN (i3)) == SET
1757 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1758 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1759 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1760 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1761 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1762 {
1763 HOST_WIDE_INT lo, hi;
1764
1765 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1766 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1767 else
1768 {
1769 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1770 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1771 }
1772
1773 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1774 {
1775 /* We don't handle the case of the target word being wider
1776 than a host wide int. */
1777 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1778
1779 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1780 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1781 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1782 }
1783 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1784 hi = INTVAL (SET_SRC (PATTERN (i3)));
1785 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1786 {
1787 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1788 >> (HOST_BITS_PER_WIDE_INT - 1));
1789
1790 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1791 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1792 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1793 (INTVAL (SET_SRC (PATTERN (i3)))));
1794 if (hi == sign)
1795 hi = lo < 0 ? -1 : 0;
1796 }
1797 else
1798 /* We don't handle the case of the higher word not fitting
1799 entirely in either hi or lo. */
1800 gcc_unreachable ();
1801
1802 combine_merges++;
1803 subst_insn = i3;
1804 subst_low_cuid = INSN_CUID (i2);
1805 added_sets_2 = added_sets_1 = 0;
1806 i2dest = SET_DEST (temp);
1807
1808 SUBST (SET_SRC (temp),
1809 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1810
1811 newpat = PATTERN (i2);
1812 goto validate_replacement;
1813 }
1814
1815 #ifndef HAVE_cc0
1816 /* If we have no I1 and I2 looks like:
1817 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1818 (set Y OP)])
1819 make up a dummy I1 that is
1820 (set Y OP)
1821 and change I2 to be
1822 (set (reg:CC X) (compare:CC Y (const_int 0)))
1823
1824 (We can ignore any trailing CLOBBERs.)
1825
1826 This undoes a previous combination and allows us to match a branch-and-
1827 decrement insn. */
1828
1829 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1830 && XVECLEN (PATTERN (i2), 0) >= 2
1831 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1832 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1833 == MODE_CC)
1834 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1835 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1836 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1837 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1838 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1839 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1840 {
1841 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1842 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1843 break;
1844
1845 if (i == 1)
1846 {
1847 /* We make I1 with the same INSN_UID as I2. This gives it
1848 the same INSN_CUID for value tracking. Our fake I1 will
1849 never appear in the insn stream so giving it the same INSN_UID
1850 as I2 will not cause a problem. */
1851
1852 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1853 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1854 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1855 NULL_RTX);
1856
1857 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1858 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1859 SET_DEST (PATTERN (i1)));
1860 }
1861 }
1862 #endif
1863
1864 /* Verify that I2 and I1 are valid for combining. */
1865 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1866 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1867 {
1868 undo_all ();
1869 return 0;
1870 }
1871
1872 /* Record whether I2DEST is used in I2SRC and similarly for the other
1873 cases. Knowing this will help in register status updating below. */
1874 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1875 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1876 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1877
1878 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1879 in I2SRC. */
1880 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1881
1882 /* Ensure that I3's pattern can be the destination of combines. */
1883 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1884 i1 && i2dest_in_i1src && i1_feeds_i3,
1885 &i3dest_killed))
1886 {
1887 undo_all ();
1888 return 0;
1889 }
1890
1891 /* See if any of the insns is a MULT operation. Unless one is, we will
1892 reject a combination that is, since it must be slower. Be conservative
1893 here. */
1894 if (GET_CODE (i2src) == MULT
1895 || (i1 != 0 && GET_CODE (i1src) == MULT)
1896 || (GET_CODE (PATTERN (i3)) == SET
1897 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1898 have_mult = 1;
1899
1900 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1901 We used to do this EXCEPT in one case: I3 has a post-inc in an
1902 output operand. However, that exception can give rise to insns like
1903 mov r3,(r3)+
1904 which is a famous insn on the PDP-11 where the value of r3 used as the
1905 source was model-dependent. Avoid this sort of thing. */
1906
1907 #if 0
1908 if (!(GET_CODE (PATTERN (i3)) == SET
1909 && REG_P (SET_SRC (PATTERN (i3)))
1910 && MEM_P (SET_DEST (PATTERN (i3)))
1911 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1912 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1913 /* It's not the exception. */
1914 #endif
1915 #ifdef AUTO_INC_DEC
1916 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1917 if (REG_NOTE_KIND (link) == REG_INC
1918 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1919 || (i1 != 0
1920 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1921 {
1922 undo_all ();
1923 return 0;
1924 }
1925 #endif
1926
1927 /* See if the SETs in I1 or I2 need to be kept around in the merged
1928 instruction: whenever the value set there is still needed past I3.
1929 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1930
1931 For the SET in I1, we have two cases: If I1 and I2 independently
1932 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1933 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1934 in I1 needs to be kept around unless I1DEST dies or is set in either
1935 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1936 I1DEST. If so, we know I1 feeds into I2. */
1937
1938 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1939
1940 added_sets_1
1941 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1942 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1943
1944 /* If the set in I2 needs to be kept around, we must make a copy of
1945 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1946 PATTERN (I2), we are only substituting for the original I1DEST, not into
1947 an already-substituted copy. This also prevents making self-referential
1948 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1949 I2DEST. */
1950
1951 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1952 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1953 : PATTERN (i2));
1954
1955 if (added_sets_2)
1956 i2pat = copy_rtx (i2pat);
1957
1958 combine_merges++;
1959
1960 /* Substitute in the latest insn for the regs set by the earlier ones. */
1961
1962 maxreg = max_reg_num ();
1963
1964 subst_insn = i3;
1965
1966 /* It is possible that the source of I2 or I1 may be performing an
1967 unneeded operation, such as a ZERO_EXTEND of something that is known
1968 to have the high part zero. Handle that case by letting subst look at
1969 the innermost one of them.
1970
1971 Another way to do this would be to have a function that tries to
1972 simplify a single insn instead of merging two or more insns. We don't
1973 do this because of the potential of infinite loops and because
1974 of the potential extra memory required. However, doing it the way
1975 we are is a bit of a kludge and doesn't catch all cases.
1976
1977 But only do this if -fexpensive-optimizations since it slows things down
1978 and doesn't usually win. */
1979
1980 if (flag_expensive_optimizations)
1981 {
1982 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1983 if (i1)
1984 {
1985 subst_low_cuid = INSN_CUID (i1);
1986 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1987 }
1988 else
1989 {
1990 subst_low_cuid = INSN_CUID (i2);
1991 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1992 }
1993 }
1994
1995 #ifndef HAVE_cc0
1996 /* Many machines that don't use CC0 have insns that can both perform an
1997 arithmetic operation and set the condition code. These operations will
1998 be represented as a PARALLEL with the first element of the vector
1999 being a COMPARE of an arithmetic operation with the constant zero.
2000 The second element of the vector will set some pseudo to the result
2001 of the same arithmetic operation. If we simplify the COMPARE, we won't
2002 match such a pattern and so will generate an extra insn. Here we test
2003 for this case, where both the comparison and the operation result are
2004 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2005 I2SRC. Later we will make the PARALLEL that contains I2. */
2006
2007 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2008 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2009 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2010 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2011 {
2012 #ifdef SELECT_CC_MODE
2013 rtx *cc_use;
2014 enum machine_mode compare_mode;
2015 #endif
2016
2017 newpat = PATTERN (i3);
2018 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2019
2020 i2_is_used = 1;
2021
2022 #ifdef SELECT_CC_MODE
2023 /* See if a COMPARE with the operand we substituted in should be done
2024 with the mode that is currently being used. If not, do the same
2025 processing we do in `subst' for a SET; namely, if the destination
2026 is used only once, try to replace it with a register of the proper
2027 mode and also replace the COMPARE. */
2028 if (undobuf.other_insn == 0
2029 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2030 &undobuf.other_insn))
2031 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2032 i2src, const0_rtx))
2033 != GET_MODE (SET_DEST (newpat))))
2034 {
2035 unsigned int regno = REGNO (SET_DEST (newpat));
2036 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2037
2038 if (regno < FIRST_PSEUDO_REGISTER
2039 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2040 && ! REG_USERVAR_P (SET_DEST (newpat))))
2041 {
2042 if (regno >= FIRST_PSEUDO_REGISTER)
2043 SUBST (regno_reg_rtx[regno], new_dest);
2044
2045 SUBST (SET_DEST (newpat), new_dest);
2046 SUBST (XEXP (*cc_use, 0), new_dest);
2047 SUBST (SET_SRC (newpat),
2048 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2049 }
2050 else
2051 undobuf.other_insn = 0;
2052 }
2053 #endif
2054 }
2055 else
2056 #endif
2057 {
2058 n_occurrences = 0; /* `subst' counts here */
2059
2060 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2061 need to make a unique copy of I2SRC each time we substitute it
2062 to avoid self-referential rtl. */
2063
2064 subst_low_cuid = INSN_CUID (i2);
2065 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2066 ! i1_feeds_i3 && i1dest_in_i1src);
2067 substed_i2 = 1;
2068
2069 /* Record whether i2's body now appears within i3's body. */
2070 i2_is_used = n_occurrences;
2071 }
2072
2073 /* If we already got a failure, don't try to do more. Otherwise,
2074 try to substitute in I1 if we have it. */
2075
2076 if (i1 && GET_CODE (newpat) != CLOBBER)
2077 {
2078 /* Before we can do this substitution, we must redo the test done
2079 above (see detailed comments there) that ensures that I1DEST
2080 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2081
2082 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2083 0, (rtx*) 0))
2084 {
2085 undo_all ();
2086 return 0;
2087 }
2088
2089 n_occurrences = 0;
2090 subst_low_cuid = INSN_CUID (i1);
2091 newpat = subst (newpat, i1dest, i1src, 0, 0);
2092 substed_i1 = 1;
2093 }
2094
2095 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2096 to count all the ways that I2SRC and I1SRC can be used. */
2097 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2098 && i2_is_used + added_sets_2 > 1)
2099 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2100 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2101 > 1))
2102 /* Fail if we tried to make a new register. */
2103 || max_reg_num () != maxreg
2104 /* Fail if we couldn't do something and have a CLOBBER. */
2105 || GET_CODE (newpat) == CLOBBER
2106 /* Fail if this new pattern is a MULT and we didn't have one before
2107 at the outer level. */
2108 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2109 && ! have_mult))
2110 {
2111 undo_all ();
2112 return 0;
2113 }
2114
2115 /* If the actions of the earlier insns must be kept
2116 in addition to substituting them into the latest one,
2117 we must make a new PARALLEL for the latest insn
2118 to hold additional the SETs. */
2119
2120 if (added_sets_1 || added_sets_2)
2121 {
2122 combine_extras++;
2123
2124 if (GET_CODE (newpat) == PARALLEL)
2125 {
2126 rtvec old = XVEC (newpat, 0);
2127 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2128 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2129 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2130 sizeof (old->elem[0]) * old->num_elem);
2131 }
2132 else
2133 {
2134 rtx old = newpat;
2135 total_sets = 1 + added_sets_1 + added_sets_2;
2136 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2137 XVECEXP (newpat, 0, 0) = old;
2138 }
2139
2140 if (added_sets_1)
2141 XVECEXP (newpat, 0, --total_sets)
2142 = (GET_CODE (PATTERN (i1)) == PARALLEL
2143 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2144
2145 if (added_sets_2)
2146 {
2147 /* If there is no I1, use I2's body as is. We used to also not do
2148 the subst call below if I2 was substituted into I3,
2149 but that could lose a simplification. */
2150 if (i1 == 0)
2151 XVECEXP (newpat, 0, --total_sets) = i2pat;
2152 else
2153 /* See comment where i2pat is assigned. */
2154 XVECEXP (newpat, 0, --total_sets)
2155 = subst (i2pat, i1dest, i1src, 0, 0);
2156 }
2157 }
2158
2159 /* We come here when we are replacing a destination in I2 with the
2160 destination of I3. */
2161 validate_replacement:
2162
2163 /* Note which hard regs this insn has as inputs. */
2164 mark_used_regs_combine (newpat);
2165
2166 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2167 consider splitting this pattern, we might need these clobbers. */
2168 if (i1 && GET_CODE (newpat) == PARALLEL
2169 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2170 {
2171 int len = XVECLEN (newpat, 0);
2172
2173 newpat_vec_with_clobbers = rtvec_alloc (len);
2174 for (i = 0; i < len; i++)
2175 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2176 }
2177
2178 /* Is the result of combination a valid instruction? */
2179 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2180
2181 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2182 the second SET's destination is a register that is unused and isn't
2183 marked as an instruction that might trap in an EH region. In that case,
2184 we just need the first SET. This can occur when simplifying a divmod
2185 insn. We *must* test for this case here because the code below that
2186 splits two independent SETs doesn't handle this case correctly when it
2187 updates the register status.
2188
2189 It's pointless doing this if we originally had two sets, one from
2190 i3, and one from i2. Combining then splitting the parallel results
2191 in the original i2 again plus an invalid insn (which we delete).
2192 The net effect is only to move instructions around, which makes
2193 debug info less accurate.
2194
2195 Also check the case where the first SET's destination is unused.
2196 That would not cause incorrect code, but does cause an unneeded
2197 insn to remain. */
2198
2199 if (insn_code_number < 0
2200 && !(added_sets_2 && i1 == 0)
2201 && GET_CODE (newpat) == PARALLEL
2202 && XVECLEN (newpat, 0) == 2
2203 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2204 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2205 && asm_noperands (newpat) < 0)
2206 {
2207 rtx set0 = XVECEXP (newpat, 0, 0);
2208 rtx set1 = XVECEXP (newpat, 0, 1);
2209 rtx note;
2210
2211 if (((REG_P (SET_DEST (set1))
2212 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2213 || (GET_CODE (SET_DEST (set1)) == SUBREG
2214 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2215 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2216 || INTVAL (XEXP (note, 0)) <= 0)
2217 && ! side_effects_p (SET_SRC (set1)))
2218 {
2219 newpat = set0;
2220 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2221 }
2222
2223 else if (((REG_P (SET_DEST (set0))
2224 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2225 || (GET_CODE (SET_DEST (set0)) == SUBREG
2226 && find_reg_note (i3, REG_UNUSED,
2227 SUBREG_REG (SET_DEST (set0)))))
2228 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2229 || INTVAL (XEXP (note, 0)) <= 0)
2230 && ! side_effects_p (SET_SRC (set0)))
2231 {
2232 newpat = set1;
2233 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2234
2235 if (insn_code_number >= 0)
2236 {
2237 /* If we will be able to accept this, we have made a
2238 change to the destination of I3. This requires us to
2239 do a few adjustments. */
2240
2241 PATTERN (i3) = newpat;
2242 adjust_for_new_dest (i3);
2243 }
2244 }
2245 }
2246
2247 /* If we were combining three insns and the result is a simple SET
2248 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2249 insns. There are two ways to do this. It can be split using a
2250 machine-specific method (like when you have an addition of a large
2251 constant) or by combine in the function find_split_point. */
2252
2253 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2254 && asm_noperands (newpat) < 0)
2255 {
2256 rtx m_split, *split;
2257 rtx ni2dest = i2dest;
2258
2259 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2260 use I2DEST as a scratch register will help. In the latter case,
2261 convert I2DEST to the mode of the source of NEWPAT if we can. */
2262
2263 m_split = split_insns (newpat, i3);
2264
2265 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2266 inputs of NEWPAT. */
2267
2268 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2269 possible to try that as a scratch reg. This would require adding
2270 more code to make it work though. */
2271
2272 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2273 {
2274 /* If I2DEST is a hard register or the only use of a pseudo,
2275 we can change its mode. */
2276 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2277 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2278 && REG_P (i2dest)
2279 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2280 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2281 && ! REG_USERVAR_P (i2dest))))
2282 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2283 REGNO (i2dest));
2284
2285 m_split = split_insns (gen_rtx_PARALLEL
2286 (VOIDmode,
2287 gen_rtvec (2, newpat,
2288 gen_rtx_CLOBBER (VOIDmode,
2289 ni2dest))),
2290 i3);
2291 /* If the split with the mode-changed register didn't work, try
2292 the original register. */
2293 if (! m_split && ni2dest != i2dest)
2294 {
2295 ni2dest = i2dest;
2296 m_split = split_insns (gen_rtx_PARALLEL
2297 (VOIDmode,
2298 gen_rtvec (2, newpat,
2299 gen_rtx_CLOBBER (VOIDmode,
2300 i2dest))),
2301 i3);
2302 }
2303 }
2304
2305 /* If recog_for_combine has discarded clobbers, try to use them
2306 again for the split. */
2307 if (m_split == 0 && newpat_vec_with_clobbers)
2308 m_split
2309 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2310 newpat_vec_with_clobbers), i3);
2311
2312 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2313 {
2314 m_split = PATTERN (m_split);
2315 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2316 if (insn_code_number >= 0)
2317 newpat = m_split;
2318 }
2319 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2320 && (next_real_insn (i2) == i3
2321 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2322 {
2323 rtx i2set, i3set;
2324 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2325 newi2pat = PATTERN (m_split);
2326
2327 i3set = single_set (NEXT_INSN (m_split));
2328 i2set = single_set (m_split);
2329
2330 /* In case we changed the mode of I2DEST, replace it in the
2331 pseudo-register table here. We can't do it above in case this
2332 code doesn't get executed and we do a split the other way. */
2333
2334 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2335 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2336
2337 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2338
2339 /* If I2 or I3 has multiple SETs, we won't know how to track
2340 register status, so don't use these insns. If I2's destination
2341 is used between I2 and I3, we also can't use these insns. */
2342
2343 if (i2_code_number >= 0 && i2set && i3set
2344 && (next_real_insn (i2) == i3
2345 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2346 insn_code_number = recog_for_combine (&newi3pat, i3,
2347 &new_i3_notes);
2348 if (insn_code_number >= 0)
2349 newpat = newi3pat;
2350
2351 /* It is possible that both insns now set the destination of I3.
2352 If so, we must show an extra use of it. */
2353
2354 if (insn_code_number >= 0)
2355 {
2356 rtx new_i3_dest = SET_DEST (i3set);
2357 rtx new_i2_dest = SET_DEST (i2set);
2358
2359 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2360 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2361 || GET_CODE (new_i3_dest) == SUBREG)
2362 new_i3_dest = XEXP (new_i3_dest, 0);
2363
2364 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2365 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2366 || GET_CODE (new_i2_dest) == SUBREG)
2367 new_i2_dest = XEXP (new_i2_dest, 0);
2368
2369 if (REG_P (new_i3_dest)
2370 && REG_P (new_i2_dest)
2371 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2372 REG_N_SETS (REGNO (new_i2_dest))++;
2373 }
2374 }
2375
2376 /* If we can split it and use I2DEST, go ahead and see if that
2377 helps things be recognized. Verify that none of the registers
2378 are set between I2 and I3. */
2379 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2380 #ifdef HAVE_cc0
2381 && REG_P (i2dest)
2382 #endif
2383 /* We need I2DEST in the proper mode. If it is a hard register
2384 or the only use of a pseudo, we can change its mode.
2385 Make sure we don't change a hard register to have a mode that
2386 isn't valid for it, or change the number of registers. */
2387 && (GET_MODE (*split) == GET_MODE (i2dest)
2388 || GET_MODE (*split) == VOIDmode
2389 || (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2390 && HARD_REGNO_MODE_OK (REGNO (i2dest), GET_MODE (*split))
2391 && (hard_regno_nregs[REGNO (i2dest)][GET_MODE (i2dest)]
2392 == hard_regno_nregs[REGNO (i2dest)][GET_MODE (*split)]))
2393 || (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER
2394 && REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2395 && ! REG_USERVAR_P (i2dest)))
2396 && (next_real_insn (i2) == i3
2397 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2398 /* We can't overwrite I2DEST if its value is still used by
2399 NEWPAT. */
2400 && ! reg_referenced_p (i2dest, newpat))
2401 {
2402 rtx newdest = i2dest;
2403 enum rtx_code split_code = GET_CODE (*split);
2404 enum machine_mode split_mode = GET_MODE (*split);
2405
2406 /* Get NEWDEST as a register in the proper mode. We have already
2407 validated that we can do this. */
2408 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2409 {
2410 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2411
2412 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2413 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2414 }
2415
2416 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2417 an ASHIFT. This can occur if it was inside a PLUS and hence
2418 appeared to be a memory address. This is a kludge. */
2419 if (split_code == MULT
2420 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2421 && INTVAL (XEXP (*split, 1)) > 0
2422 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2423 {
2424 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2425 XEXP (*split, 0), GEN_INT (i)));
2426 /* Update split_code because we may not have a multiply
2427 anymore. */
2428 split_code = GET_CODE (*split);
2429 }
2430
2431 #ifdef INSN_SCHEDULING
2432 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2433 be written as a ZERO_EXTEND. */
2434 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2435 {
2436 #ifdef LOAD_EXTEND_OP
2437 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2438 what it really is. */
2439 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2440 == SIGN_EXTEND)
2441 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2442 SUBREG_REG (*split)));
2443 else
2444 #endif
2445 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2446 SUBREG_REG (*split)));
2447 }
2448 #endif
2449
2450 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2451 SUBST (*split, newdest);
2452 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2453
2454 /* recog_for_combine might have added CLOBBERs to newi2pat.
2455 Make sure NEWPAT does not depend on the clobbered regs. */
2456 if (GET_CODE (newi2pat) == PARALLEL)
2457 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2458 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2459 {
2460 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2461 if (reg_overlap_mentioned_p (reg, newpat))
2462 {
2463 undo_all ();
2464 return 0;
2465 }
2466 }
2467
2468 /* If the split point was a MULT and we didn't have one before,
2469 don't use one now. */
2470 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2471 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2472 }
2473 }
2474
2475 /* Check for a case where we loaded from memory in a narrow mode and
2476 then sign extended it, but we need both registers. In that case,
2477 we have a PARALLEL with both loads from the same memory location.
2478 We can split this into a load from memory followed by a register-register
2479 copy. This saves at least one insn, more if register allocation can
2480 eliminate the copy.
2481
2482 We cannot do this if the destination of the first assignment is a
2483 condition code register or cc0. We eliminate this case by making sure
2484 the SET_DEST and SET_SRC have the same mode.
2485
2486 We cannot do this if the destination of the second assignment is
2487 a register that we have already assumed is zero-extended. Similarly
2488 for a SUBREG of such a register. */
2489
2490 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2491 && GET_CODE (newpat) == PARALLEL
2492 && XVECLEN (newpat, 0) == 2
2493 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2494 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2495 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2496 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2497 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2498 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2499 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2500 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2501 INSN_CUID (i2))
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2503 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2504 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2505 (REG_P (temp)
2506 && reg_stat[REGNO (temp)].nonzero_bits != 0
2507 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2508 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2509 && (reg_stat[REGNO (temp)].nonzero_bits
2510 != GET_MODE_MASK (word_mode))))
2511 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2512 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2513 (REG_P (temp)
2514 && reg_stat[REGNO (temp)].nonzero_bits != 0
2515 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2516 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2517 && (reg_stat[REGNO (temp)].nonzero_bits
2518 != GET_MODE_MASK (word_mode)))))
2519 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2520 SET_SRC (XVECEXP (newpat, 0, 1)))
2521 && ! find_reg_note (i3, REG_UNUSED,
2522 SET_DEST (XVECEXP (newpat, 0, 0))))
2523 {
2524 rtx ni2dest;
2525
2526 newi2pat = XVECEXP (newpat, 0, 0);
2527 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2528 newpat = XVECEXP (newpat, 0, 1);
2529 SUBST (SET_SRC (newpat),
2530 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2531 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2532
2533 if (i2_code_number >= 0)
2534 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2535
2536 if (insn_code_number >= 0)
2537 swap_i2i3 = 1;
2538 }
2539
2540 /* Similarly, check for a case where we have a PARALLEL of two independent
2541 SETs but we started with three insns. In this case, we can do the sets
2542 as two separate insns. This case occurs when some SET allows two
2543 other insns to combine, but the destination of that SET is still live. */
2544
2545 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2546 && GET_CODE (newpat) == PARALLEL
2547 && XVECLEN (newpat, 0) == 2
2548 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2549 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2550 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2551 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2552 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2553 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2554 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2555 INSN_CUID (i2))
2556 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2557 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2558 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2559 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2560 XVECEXP (newpat, 0, 0))
2561 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2562 XVECEXP (newpat, 0, 1))
2563 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2564 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2565 {
2566 /* Normally, it doesn't matter which of the two is done first,
2567 but it does if one references cc0. In that case, it has to
2568 be first. */
2569 #ifdef HAVE_cc0
2570 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2571 {
2572 newi2pat = XVECEXP (newpat, 0, 0);
2573 newpat = XVECEXP (newpat, 0, 1);
2574 }
2575 else
2576 #endif
2577 {
2578 newi2pat = XVECEXP (newpat, 0, 1);
2579 newpat = XVECEXP (newpat, 0, 0);
2580 }
2581
2582 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2583
2584 if (i2_code_number >= 0)
2585 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2586 }
2587
2588 /* If it still isn't recognized, fail and change things back the way they
2589 were. */
2590 if ((insn_code_number < 0
2591 /* Is the result a reasonable ASM_OPERANDS? */
2592 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2593 {
2594 undo_all ();
2595 return 0;
2596 }
2597
2598 /* If we had to change another insn, make sure it is valid also. */
2599 if (undobuf.other_insn)
2600 {
2601 rtx other_pat = PATTERN (undobuf.other_insn);
2602 rtx new_other_notes;
2603 rtx note, next;
2604
2605 CLEAR_HARD_REG_SET (newpat_used_regs);
2606
2607 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2608 &new_other_notes);
2609
2610 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2611 {
2612 undo_all ();
2613 return 0;
2614 }
2615
2616 PATTERN (undobuf.other_insn) = other_pat;
2617
2618 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2619 are still valid. Then add any non-duplicate notes added by
2620 recog_for_combine. */
2621 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2622 {
2623 next = XEXP (note, 1);
2624
2625 if (REG_NOTE_KIND (note) == REG_UNUSED
2626 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2627 {
2628 if (REG_P (XEXP (note, 0)))
2629 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2630
2631 remove_note (undobuf.other_insn, note);
2632 }
2633 }
2634
2635 for (note = new_other_notes; note; note = XEXP (note, 1))
2636 if (REG_P (XEXP (note, 0)))
2637 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2638
2639 distribute_notes (new_other_notes, undobuf.other_insn,
2640 undobuf.other_insn, NULL_RTX);
2641 }
2642 #ifdef HAVE_cc0
2643 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2644 they are adjacent to each other or not. */
2645 {
2646 rtx p = prev_nonnote_insn (i3);
2647 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2648 && sets_cc0_p (newi2pat))
2649 {
2650 undo_all ();
2651 return 0;
2652 }
2653 }
2654 #endif
2655
2656 /* Only allow this combination if insn_rtx_costs reports that the
2657 replacement instructions are cheaper than the originals. */
2658 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2659 {
2660 undo_all ();
2661 return 0;
2662 }
2663
2664 /* We now know that we can do this combination. Merge the insns and
2665 update the status of registers and LOG_LINKS. */
2666
2667 if (swap_i2i3)
2668 {
2669 rtx insn;
2670 rtx link;
2671 rtx ni2dest;
2672
2673 /* I3 now uses what used to be its destination and which is now
2674 I2's destination. This requires us to do a few adjustments. */
2675 PATTERN (i3) = newpat;
2676 adjust_for_new_dest (i3);
2677
2678 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2679 so we still will.
2680
2681 However, some later insn might be using I2's dest and have
2682 a LOG_LINK pointing at I3. We must remove this link.
2683 The simplest way to remove the link is to point it at I1,
2684 which we know will be a NOTE. */
2685
2686 /* newi2pat is usually a SET here; however, recog_for_combine might
2687 have added some clobbers. */
2688 if (GET_CODE (newi2pat) == PARALLEL)
2689 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2690 else
2691 ni2dest = SET_DEST (newi2pat);
2692
2693 for (insn = NEXT_INSN (i3);
2694 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2695 || insn != BB_HEAD (this_basic_block->next_bb));
2696 insn = NEXT_INSN (insn))
2697 {
2698 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2699 {
2700 for (link = LOG_LINKS (insn); link;
2701 link = XEXP (link, 1))
2702 if (XEXP (link, 0) == i3)
2703 XEXP (link, 0) = i1;
2704
2705 break;
2706 }
2707 }
2708 }
2709
2710 {
2711 rtx i3notes, i2notes, i1notes = 0;
2712 rtx i3links, i2links, i1links = 0;
2713 rtx midnotes = 0;
2714 unsigned int regno;
2715
2716 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2717 clear them. */
2718 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2719 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2720 if (i1)
2721 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2722
2723 /* Ensure that we do not have something that should not be shared but
2724 occurs multiple times in the new insns. Check this by first
2725 resetting all the `used' flags and then copying anything is shared. */
2726
2727 reset_used_flags (i3notes);
2728 reset_used_flags (i2notes);
2729 reset_used_flags (i1notes);
2730 reset_used_flags (newpat);
2731 reset_used_flags (newi2pat);
2732 if (undobuf.other_insn)
2733 reset_used_flags (PATTERN (undobuf.other_insn));
2734
2735 i3notes = copy_rtx_if_shared (i3notes);
2736 i2notes = copy_rtx_if_shared (i2notes);
2737 i1notes = copy_rtx_if_shared (i1notes);
2738 newpat = copy_rtx_if_shared (newpat);
2739 newi2pat = copy_rtx_if_shared (newi2pat);
2740 if (undobuf.other_insn)
2741 reset_used_flags (PATTERN (undobuf.other_insn));
2742
2743 INSN_CODE (i3) = insn_code_number;
2744 PATTERN (i3) = newpat;
2745
2746 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2747 {
2748 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2749
2750 reset_used_flags (call_usage);
2751 call_usage = copy_rtx (call_usage);
2752
2753 if (substed_i2)
2754 replace_rtx (call_usage, i2dest, i2src);
2755
2756 if (substed_i1)
2757 replace_rtx (call_usage, i1dest, i1src);
2758
2759 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2760 }
2761
2762 if (undobuf.other_insn)
2763 INSN_CODE (undobuf.other_insn) = other_code_number;
2764
2765 /* We had one special case above where I2 had more than one set and
2766 we replaced a destination of one of those sets with the destination
2767 of I3. In that case, we have to update LOG_LINKS of insns later
2768 in this basic block. Note that this (expensive) case is rare.
2769
2770 Also, in this case, we must pretend that all REG_NOTEs for I2
2771 actually came from I3, so that REG_UNUSED notes from I2 will be
2772 properly handled. */
2773
2774 if (i3_subst_into_i2)
2775 {
2776 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2777 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2778 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2779 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2780 && ! find_reg_note (i2, REG_UNUSED,
2781 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2782 for (temp = NEXT_INSN (i2);
2783 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2784 || BB_HEAD (this_basic_block) != temp);
2785 temp = NEXT_INSN (temp))
2786 if (temp != i3 && INSN_P (temp))
2787 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2788 if (XEXP (link, 0) == i2)
2789 XEXP (link, 0) = i3;
2790
2791 if (i3notes)
2792 {
2793 rtx link = i3notes;
2794 while (XEXP (link, 1))
2795 link = XEXP (link, 1);
2796 XEXP (link, 1) = i2notes;
2797 }
2798 else
2799 i3notes = i2notes;
2800 i2notes = 0;
2801 }
2802
2803 LOG_LINKS (i3) = 0;
2804 REG_NOTES (i3) = 0;
2805 LOG_LINKS (i2) = 0;
2806 REG_NOTES (i2) = 0;
2807
2808 if (newi2pat)
2809 {
2810 INSN_CODE (i2) = i2_code_number;
2811 PATTERN (i2) = newi2pat;
2812 }
2813 else
2814 SET_INSN_DELETED (i2);
2815
2816 if (i1)
2817 {
2818 LOG_LINKS (i1) = 0;
2819 REG_NOTES (i1) = 0;
2820 SET_INSN_DELETED (i1);
2821 }
2822
2823 /* Get death notes for everything that is now used in either I3 or
2824 I2 and used to die in a previous insn. If we built two new
2825 patterns, move from I1 to I2 then I2 to I3 so that we get the
2826 proper movement on registers that I2 modifies. */
2827
2828 if (newi2pat)
2829 {
2830 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2831 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2832 }
2833 else
2834 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2835 i3, &midnotes);
2836
2837 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2838 if (i3notes)
2839 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2840 if (i2notes)
2841 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2842 if (i1notes)
2843 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2844 if (midnotes)
2845 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2846
2847 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2848 know these are REG_UNUSED and want them to go to the desired insn,
2849 so we always pass it as i3. We have not counted the notes in
2850 reg_n_deaths yet, so we need to do so now. */
2851
2852 if (newi2pat && new_i2_notes)
2853 {
2854 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2855 if (REG_P (XEXP (temp, 0)))
2856 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2857
2858 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2859 }
2860
2861 if (new_i3_notes)
2862 {
2863 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2864 if (REG_P (XEXP (temp, 0)))
2865 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2866
2867 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2868 }
2869
2870 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2871 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2872 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2873 in that case, it might delete I2. Similarly for I2 and I1.
2874 Show an additional death due to the REG_DEAD note we make here. If
2875 we discard it in distribute_notes, we will decrement it again. */
2876
2877 if (i3dest_killed)
2878 {
2879 if (REG_P (i3dest_killed))
2880 REG_N_DEATHS (REGNO (i3dest_killed))++;
2881
2882 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2883 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2884 NULL_RTX),
2885 NULL_RTX, i2, NULL_RTX);
2886 else
2887 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2888 NULL_RTX),
2889 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2890 }
2891
2892 if (i2dest_in_i2src)
2893 {
2894 if (REG_P (i2dest))
2895 REG_N_DEATHS (REGNO (i2dest))++;
2896
2897 if (newi2pat && reg_set_p (i2dest, newi2pat))
2898 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2899 NULL_RTX, i2, NULL_RTX);
2900 else
2901 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2902 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2903 }
2904
2905 if (i1dest_in_i1src)
2906 {
2907 if (REG_P (i1dest))
2908 REG_N_DEATHS (REGNO (i1dest))++;
2909
2910 if (newi2pat && reg_set_p (i1dest, newi2pat))
2911 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2912 NULL_RTX, i2, NULL_RTX);
2913 else
2914 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2915 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2916 }
2917
2918 distribute_links (i3links);
2919 distribute_links (i2links);
2920 distribute_links (i1links);
2921
2922 if (REG_P (i2dest))
2923 {
2924 rtx link;
2925 rtx i2_insn = 0, i2_val = 0, set;
2926
2927 /* The insn that used to set this register doesn't exist, and
2928 this life of the register may not exist either. See if one of
2929 I3's links points to an insn that sets I2DEST. If it does,
2930 that is now the last known value for I2DEST. If we don't update
2931 this and I2 set the register to a value that depended on its old
2932 contents, we will get confused. If this insn is used, thing
2933 will be set correctly in combine_instructions. */
2934
2935 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2936 if ((set = single_set (XEXP (link, 0))) != 0
2937 && rtx_equal_p (i2dest, SET_DEST (set)))
2938 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2939
2940 record_value_for_reg (i2dest, i2_insn, i2_val);
2941
2942 /* If the reg formerly set in I2 died only once and that was in I3,
2943 zero its use count so it won't make `reload' do any work. */
2944 if (! added_sets_2
2945 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2946 && ! i2dest_in_i2src)
2947 {
2948 regno = REGNO (i2dest);
2949 REG_N_SETS (regno)--;
2950 }
2951 }
2952
2953 if (i1 && REG_P (i1dest))
2954 {
2955 rtx link;
2956 rtx i1_insn = 0, i1_val = 0, set;
2957
2958 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2959 if ((set = single_set (XEXP (link, 0))) != 0
2960 && rtx_equal_p (i1dest, SET_DEST (set)))
2961 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2962
2963 record_value_for_reg (i1dest, i1_insn, i1_val);
2964
2965 regno = REGNO (i1dest);
2966 if (! added_sets_1 && ! i1dest_in_i1src)
2967 REG_N_SETS (regno)--;
2968 }
2969
2970 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2971 been made to this insn. The order of
2972 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2973 can affect nonzero_bits of newpat */
2974 if (newi2pat)
2975 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2976 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2977
2978 /* Set new_direct_jump_p if a new return or simple jump instruction
2979 has been created.
2980
2981 If I3 is now an unconditional jump, ensure that it has a
2982 BARRIER following it since it may have initially been a
2983 conditional jump. It may also be the last nonnote insn. */
2984
2985 if (returnjump_p (i3) || any_uncondjump_p (i3))
2986 {
2987 *new_direct_jump_p = 1;
2988 mark_jump_label (PATTERN (i3), i3, 0);
2989
2990 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2991 || !BARRIER_P (temp))
2992 emit_barrier_after (i3);
2993 }
2994
2995 if (undobuf.other_insn != NULL_RTX
2996 && (returnjump_p (undobuf.other_insn)
2997 || any_uncondjump_p (undobuf.other_insn)))
2998 {
2999 *new_direct_jump_p = 1;
3000
3001 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3002 || !BARRIER_P (temp))
3003 emit_barrier_after (undobuf.other_insn);
3004 }
3005
3006 /* An NOOP jump does not need barrier, but it does need cleaning up
3007 of CFG. */
3008 if (GET_CODE (newpat) == SET
3009 && SET_SRC (newpat) == pc_rtx
3010 && SET_DEST (newpat) == pc_rtx)
3011 *new_direct_jump_p = 1;
3012 }
3013
3014 combine_successes++;
3015 undo_commit ();
3016
3017 if (added_links_insn
3018 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3019 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3020 return added_links_insn;
3021 else
3022 return newi2pat ? i2 : i3;
3023 }
3024 \f
3025 /* Undo all the modifications recorded in undobuf. */
3026
3027 static void
3028 undo_all (void)
3029 {
3030 struct undo *undo, *next;
3031
3032 for (undo = undobuf.undos; undo; undo = next)
3033 {
3034 next = undo->next;
3035 if (undo->is_int)
3036 *undo->where.i = undo->old_contents.i;
3037 else
3038 *undo->where.r = undo->old_contents.r;
3039
3040 undo->next = undobuf.frees;
3041 undobuf.frees = undo;
3042 }
3043
3044 undobuf.undos = 0;
3045 }
3046
3047 /* We've committed to accepting the changes we made. Move all
3048 of the undos to the free list. */
3049
3050 static void
3051 undo_commit (void)
3052 {
3053 struct undo *undo, *next;
3054
3055 for (undo = undobuf.undos; undo; undo = next)
3056 {
3057 next = undo->next;
3058 undo->next = undobuf.frees;
3059 undobuf.frees = undo;
3060 }
3061 undobuf.undos = 0;
3062 }
3063
3064 \f
3065 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3066 where we have an arithmetic expression and return that point. LOC will
3067 be inside INSN.
3068
3069 try_combine will call this function to see if an insn can be split into
3070 two insns. */
3071
3072 static rtx *
3073 find_split_point (rtx *loc, rtx insn)
3074 {
3075 rtx x = *loc;
3076 enum rtx_code code = GET_CODE (x);
3077 rtx *split;
3078 unsigned HOST_WIDE_INT len = 0;
3079 HOST_WIDE_INT pos = 0;
3080 int unsignedp = 0;
3081 rtx inner = NULL_RTX;
3082
3083 /* First special-case some codes. */
3084 switch (code)
3085 {
3086 case SUBREG:
3087 #ifdef INSN_SCHEDULING
3088 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3089 point. */
3090 if (MEM_P (SUBREG_REG (x)))
3091 return loc;
3092 #endif
3093 return find_split_point (&SUBREG_REG (x), insn);
3094
3095 case MEM:
3096 #ifdef HAVE_lo_sum
3097 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3098 using LO_SUM and HIGH. */
3099 if (GET_CODE (XEXP (x, 0)) == CONST
3100 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3101 {
3102 SUBST (XEXP (x, 0),
3103 gen_rtx_LO_SUM (Pmode,
3104 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3105 XEXP (x, 0)));
3106 return &XEXP (XEXP (x, 0), 0);
3107 }
3108 #endif
3109
3110 /* If we have a PLUS whose second operand is a constant and the
3111 address is not valid, perhaps will can split it up using
3112 the machine-specific way to split large constants. We use
3113 the first pseudo-reg (one of the virtual regs) as a placeholder;
3114 it will not remain in the result. */
3115 if (GET_CODE (XEXP (x, 0)) == PLUS
3116 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3117 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3118 {
3119 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3120 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3121 subst_insn);
3122
3123 /* This should have produced two insns, each of which sets our
3124 placeholder. If the source of the second is a valid address,
3125 we can make put both sources together and make a split point
3126 in the middle. */
3127
3128 if (seq
3129 && NEXT_INSN (seq) != NULL_RTX
3130 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3131 && NONJUMP_INSN_P (seq)
3132 && GET_CODE (PATTERN (seq)) == SET
3133 && SET_DEST (PATTERN (seq)) == reg
3134 && ! reg_mentioned_p (reg,
3135 SET_SRC (PATTERN (seq)))
3136 && NONJUMP_INSN_P (NEXT_INSN (seq))
3137 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3138 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3139 && memory_address_p (GET_MODE (x),
3140 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3141 {
3142 rtx src1 = SET_SRC (PATTERN (seq));
3143 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3144
3145 /* Replace the placeholder in SRC2 with SRC1. If we can
3146 find where in SRC2 it was placed, that can become our
3147 split point and we can replace this address with SRC2.
3148 Just try two obvious places. */
3149
3150 src2 = replace_rtx (src2, reg, src1);
3151 split = 0;
3152 if (XEXP (src2, 0) == src1)
3153 split = &XEXP (src2, 0);
3154 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3155 && XEXP (XEXP (src2, 0), 0) == src1)
3156 split = &XEXP (XEXP (src2, 0), 0);
3157
3158 if (split)
3159 {
3160 SUBST (XEXP (x, 0), src2);
3161 return split;
3162 }
3163 }
3164
3165 /* If that didn't work, perhaps the first operand is complex and
3166 needs to be computed separately, so make a split point there.
3167 This will occur on machines that just support REG + CONST
3168 and have a constant moved through some previous computation. */
3169
3170 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3171 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3172 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3173 return &XEXP (XEXP (x, 0), 0);
3174 }
3175 break;
3176
3177 case SET:
3178 #ifdef HAVE_cc0
3179 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3180 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3181 we need to put the operand into a register. So split at that
3182 point. */
3183
3184 if (SET_DEST (x) == cc0_rtx
3185 && GET_CODE (SET_SRC (x)) != COMPARE
3186 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3187 && !OBJECT_P (SET_SRC (x))
3188 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3189 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3190 return &SET_SRC (x);
3191 #endif
3192
3193 /* See if we can split SET_SRC as it stands. */
3194 split = find_split_point (&SET_SRC (x), insn);
3195 if (split && split != &SET_SRC (x))
3196 return split;
3197
3198 /* See if we can split SET_DEST as it stands. */
3199 split = find_split_point (&SET_DEST (x), insn);
3200 if (split && split != &SET_DEST (x))
3201 return split;
3202
3203 /* See if this is a bitfield assignment with everything constant. If
3204 so, this is an IOR of an AND, so split it into that. */
3205 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3206 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3207 <= HOST_BITS_PER_WIDE_INT)
3208 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3209 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3210 && GET_CODE (SET_SRC (x)) == CONST_INT
3211 && ((INTVAL (XEXP (SET_DEST (x), 1))
3212 + INTVAL (XEXP (SET_DEST (x), 2)))
3213 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3214 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3215 {
3216 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3217 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3218 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3219 rtx dest = XEXP (SET_DEST (x), 0);
3220 enum machine_mode mode = GET_MODE (dest);
3221 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3222
3223 if (BITS_BIG_ENDIAN)
3224 pos = GET_MODE_BITSIZE (mode) - len - pos;
3225
3226 if (src == mask)
3227 SUBST (SET_SRC (x),
3228 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3229 else
3230 {
3231 rtx negmask = gen_int_mode (~(mask << pos), mode);
3232 SUBST (SET_SRC (x),
3233 simplify_gen_binary (IOR, mode,
3234 simplify_gen_binary (AND, mode,
3235 dest, negmask),
3236 GEN_INT (src << pos)));
3237 }
3238
3239 SUBST (SET_DEST (x), dest);
3240
3241 split = find_split_point (&SET_SRC (x), insn);
3242 if (split && split != &SET_SRC (x))
3243 return split;
3244 }
3245
3246 /* Otherwise, see if this is an operation that we can split into two.
3247 If so, try to split that. */
3248 code = GET_CODE (SET_SRC (x));
3249
3250 switch (code)
3251 {
3252 case AND:
3253 /* If we are AND'ing with a large constant that is only a single
3254 bit and the result is only being used in a context where we
3255 need to know if it is zero or nonzero, replace it with a bit
3256 extraction. This will avoid the large constant, which might
3257 have taken more than one insn to make. If the constant were
3258 not a valid argument to the AND but took only one insn to make,
3259 this is no worse, but if it took more than one insn, it will
3260 be better. */
3261
3262 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3263 && REG_P (XEXP (SET_SRC (x), 0))
3264 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3265 && REG_P (SET_DEST (x))
3266 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3267 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3268 && XEXP (*split, 0) == SET_DEST (x)
3269 && XEXP (*split, 1) == const0_rtx)
3270 {
3271 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3272 XEXP (SET_SRC (x), 0),
3273 pos, NULL_RTX, 1, 1, 0, 0);
3274 if (extraction != 0)
3275 {
3276 SUBST (SET_SRC (x), extraction);
3277 return find_split_point (loc, insn);
3278 }
3279 }
3280 break;
3281
3282 case NE:
3283 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3284 is known to be on, this can be converted into a NEG of a shift. */
3285 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3286 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3287 && 1 <= (pos = exact_log2
3288 (nonzero_bits (XEXP (SET_SRC (x), 0),
3289 GET_MODE (XEXP (SET_SRC (x), 0))))))
3290 {
3291 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3292
3293 SUBST (SET_SRC (x),
3294 gen_rtx_NEG (mode,
3295 gen_rtx_LSHIFTRT (mode,
3296 XEXP (SET_SRC (x), 0),
3297 GEN_INT (pos))));
3298
3299 split = find_split_point (&SET_SRC (x), insn);
3300 if (split && split != &SET_SRC (x))
3301 return split;
3302 }
3303 break;
3304
3305 case SIGN_EXTEND:
3306 inner = XEXP (SET_SRC (x), 0);
3307
3308 /* We can't optimize if either mode is a partial integer
3309 mode as we don't know how many bits are significant
3310 in those modes. */
3311 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3312 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3313 break;
3314
3315 pos = 0;
3316 len = GET_MODE_BITSIZE (GET_MODE (inner));
3317 unsignedp = 0;
3318 break;
3319
3320 case SIGN_EXTRACT:
3321 case ZERO_EXTRACT:
3322 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3323 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3324 {
3325 inner = XEXP (SET_SRC (x), 0);
3326 len = INTVAL (XEXP (SET_SRC (x), 1));
3327 pos = INTVAL (XEXP (SET_SRC (x), 2));
3328
3329 if (BITS_BIG_ENDIAN)
3330 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3331 unsignedp = (code == ZERO_EXTRACT);
3332 }
3333 break;
3334
3335 default:
3336 break;
3337 }
3338
3339 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3340 {
3341 enum machine_mode mode = GET_MODE (SET_SRC (x));
3342
3343 /* For unsigned, we have a choice of a shift followed by an
3344 AND or two shifts. Use two shifts for field sizes where the
3345 constant might be too large. We assume here that we can
3346 always at least get 8-bit constants in an AND insn, which is
3347 true for every current RISC. */
3348
3349 if (unsignedp && len <= 8)
3350 {
3351 SUBST (SET_SRC (x),
3352 gen_rtx_AND (mode,
3353 gen_rtx_LSHIFTRT
3354 (mode, gen_lowpart (mode, inner),
3355 GEN_INT (pos)),
3356 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3357
3358 split = find_split_point (&SET_SRC (x), insn);
3359 if (split && split != &SET_SRC (x))
3360 return split;
3361 }
3362 else
3363 {
3364 SUBST (SET_SRC (x),
3365 gen_rtx_fmt_ee
3366 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3367 gen_rtx_ASHIFT (mode,
3368 gen_lowpart (mode, inner),
3369 GEN_INT (GET_MODE_BITSIZE (mode)
3370 - len - pos)),
3371 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3372
3373 split = find_split_point (&SET_SRC (x), insn);
3374 if (split && split != &SET_SRC (x))
3375 return split;
3376 }
3377 }
3378
3379 /* See if this is a simple operation with a constant as the second
3380 operand. It might be that this constant is out of range and hence
3381 could be used as a split point. */
3382 if (BINARY_P (SET_SRC (x))
3383 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3384 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3385 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3386 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3387 return &XEXP (SET_SRC (x), 1);
3388
3389 /* Finally, see if this is a simple operation with its first operand
3390 not in a register. The operation might require this operand in a
3391 register, so return it as a split point. We can always do this
3392 because if the first operand were another operation, we would have
3393 already found it as a split point. */
3394 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3395 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3396 return &XEXP (SET_SRC (x), 0);
3397
3398 return 0;
3399
3400 case AND:
3401 case IOR:
3402 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3403 it is better to write this as (not (ior A B)) so we can split it.
3404 Similarly for IOR. */
3405 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3406 {
3407 SUBST (*loc,
3408 gen_rtx_NOT (GET_MODE (x),
3409 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3410 GET_MODE (x),
3411 XEXP (XEXP (x, 0), 0),
3412 XEXP (XEXP (x, 1), 0))));
3413 return find_split_point (loc, insn);
3414 }
3415
3416 /* Many RISC machines have a large set of logical insns. If the
3417 second operand is a NOT, put it first so we will try to split the
3418 other operand first. */
3419 if (GET_CODE (XEXP (x, 1)) == NOT)
3420 {
3421 rtx tem = XEXP (x, 0);
3422 SUBST (XEXP (x, 0), XEXP (x, 1));
3423 SUBST (XEXP (x, 1), tem);
3424 }
3425 break;
3426
3427 default:
3428 break;
3429 }
3430
3431 /* Otherwise, select our actions depending on our rtx class. */
3432 switch (GET_RTX_CLASS (code))
3433 {
3434 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3435 case RTX_TERNARY:
3436 split = find_split_point (&XEXP (x, 2), insn);
3437 if (split)
3438 return split;
3439 /* ... fall through ... */
3440 case RTX_BIN_ARITH:
3441 case RTX_COMM_ARITH:
3442 case RTX_COMPARE:
3443 case RTX_COMM_COMPARE:
3444 split = find_split_point (&XEXP (x, 1), insn);
3445 if (split)
3446 return split;
3447 /* ... fall through ... */
3448 case RTX_UNARY:
3449 /* Some machines have (and (shift ...) ...) insns. If X is not
3450 an AND, but XEXP (X, 0) is, use it as our split point. */
3451 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3452 return &XEXP (x, 0);
3453
3454 split = find_split_point (&XEXP (x, 0), insn);
3455 if (split)
3456 return split;
3457 return loc;
3458
3459 default:
3460 /* Otherwise, we don't have a split point. */
3461 return 0;
3462 }
3463 }
3464 \f
3465 /* Throughout X, replace FROM with TO, and return the result.
3466 The result is TO if X is FROM;
3467 otherwise the result is X, but its contents may have been modified.
3468 If they were modified, a record was made in undobuf so that
3469 undo_all will (among other things) return X to its original state.
3470
3471 If the number of changes necessary is too much to record to undo,
3472 the excess changes are not made, so the result is invalid.
3473 The changes already made can still be undone.
3474 undobuf.num_undo is incremented for such changes, so by testing that
3475 the caller can tell whether the result is valid.
3476
3477 `n_occurrences' is incremented each time FROM is replaced.
3478
3479 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3480
3481 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3482 by copying if `n_occurrences' is nonzero. */
3483
3484 static rtx
3485 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3486 {
3487 enum rtx_code code = GET_CODE (x);
3488 enum machine_mode op0_mode = VOIDmode;
3489 const char *fmt;
3490 int len, i;
3491 rtx new;
3492
3493 /* Two expressions are equal if they are identical copies of a shared
3494 RTX or if they are both registers with the same register number
3495 and mode. */
3496
3497 #define COMBINE_RTX_EQUAL_P(X,Y) \
3498 ((X) == (Y) \
3499 || (REG_P (X) && REG_P (Y) \
3500 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3501
3502 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3503 {
3504 n_occurrences++;
3505 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3506 }
3507
3508 /* If X and FROM are the same register but different modes, they will
3509 not have been seen as equal above. However, flow.c will make a
3510 LOG_LINKS entry for that case. If we do nothing, we will try to
3511 rerecognize our original insn and, when it succeeds, we will
3512 delete the feeding insn, which is incorrect.
3513
3514 So force this insn not to match in this (rare) case. */
3515 if (! in_dest && code == REG && REG_P (from)
3516 && REGNO (x) == REGNO (from))
3517 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3518
3519 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3520 of which may contain things that can be combined. */
3521 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3522 return x;
3523
3524 /* It is possible to have a subexpression appear twice in the insn.
3525 Suppose that FROM is a register that appears within TO.
3526 Then, after that subexpression has been scanned once by `subst',
3527 the second time it is scanned, TO may be found. If we were
3528 to scan TO here, we would find FROM within it and create a
3529 self-referent rtl structure which is completely wrong. */
3530 if (COMBINE_RTX_EQUAL_P (x, to))
3531 return to;
3532
3533 /* Parallel asm_operands need special attention because all of the
3534 inputs are shared across the arms. Furthermore, unsharing the
3535 rtl results in recognition failures. Failure to handle this case
3536 specially can result in circular rtl.
3537
3538 Solve this by doing a normal pass across the first entry of the
3539 parallel, and only processing the SET_DESTs of the subsequent
3540 entries. Ug. */
3541
3542 if (code == PARALLEL
3543 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3544 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3545 {
3546 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3547
3548 /* If this substitution failed, this whole thing fails. */
3549 if (GET_CODE (new) == CLOBBER
3550 && XEXP (new, 0) == const0_rtx)
3551 return new;
3552
3553 SUBST (XVECEXP (x, 0, 0), new);
3554
3555 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3556 {
3557 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3558
3559 if (!REG_P (dest)
3560 && GET_CODE (dest) != CC0
3561 && GET_CODE (dest) != PC)
3562 {
3563 new = subst (dest, from, to, 0, unique_copy);
3564
3565 /* If this substitution failed, this whole thing fails. */
3566 if (GET_CODE (new) == CLOBBER
3567 && XEXP (new, 0) == const0_rtx)
3568 return new;
3569
3570 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3571 }
3572 }
3573 }
3574 else
3575 {
3576 len = GET_RTX_LENGTH (code);
3577 fmt = GET_RTX_FORMAT (code);
3578
3579 /* We don't need to process a SET_DEST that is a register, CC0,
3580 or PC, so set up to skip this common case. All other cases
3581 where we want to suppress replacing something inside a
3582 SET_SRC are handled via the IN_DEST operand. */
3583 if (code == SET
3584 && (REG_P (SET_DEST (x))
3585 || GET_CODE (SET_DEST (x)) == CC0
3586 || GET_CODE (SET_DEST (x)) == PC))
3587 fmt = "ie";
3588
3589 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3590 constant. */
3591 if (fmt[0] == 'e')
3592 op0_mode = GET_MODE (XEXP (x, 0));
3593
3594 for (i = 0; i < len; i++)
3595 {
3596 if (fmt[i] == 'E')
3597 {
3598 int j;
3599 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3600 {
3601 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3602 {
3603 new = (unique_copy && n_occurrences
3604 ? copy_rtx (to) : to);
3605 n_occurrences++;
3606 }
3607 else
3608 {
3609 new = subst (XVECEXP (x, i, j), from, to, 0,
3610 unique_copy);
3611
3612 /* If this substitution failed, this whole thing
3613 fails. */
3614 if (GET_CODE (new) == CLOBBER
3615 && XEXP (new, 0) == const0_rtx)
3616 return new;
3617 }
3618
3619 SUBST (XVECEXP (x, i, j), new);
3620 }
3621 }
3622 else if (fmt[i] == 'e')
3623 {
3624 /* If this is a register being set, ignore it. */
3625 new = XEXP (x, i);
3626 if (in_dest
3627 && i == 0
3628 && (((code == SUBREG || code == ZERO_EXTRACT)
3629 && REG_P (new))
3630 || code == STRICT_LOW_PART))
3631 ;
3632
3633 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3634 {
3635 /* In general, don't install a subreg involving two
3636 modes not tieable. It can worsen register
3637 allocation, and can even make invalid reload
3638 insns, since the reg inside may need to be copied
3639 from in the outside mode, and that may be invalid
3640 if it is an fp reg copied in integer mode.
3641
3642 We allow two exceptions to this: It is valid if
3643 it is inside another SUBREG and the mode of that
3644 SUBREG and the mode of the inside of TO is
3645 tieable and it is valid if X is a SET that copies
3646 FROM to CC0. */
3647
3648 if (GET_CODE (to) == SUBREG
3649 && ! MODES_TIEABLE_P (GET_MODE (to),
3650 GET_MODE (SUBREG_REG (to)))
3651 && ! (code == SUBREG
3652 && MODES_TIEABLE_P (GET_MODE (x),
3653 GET_MODE (SUBREG_REG (to))))
3654 #ifdef HAVE_cc0
3655 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3656 #endif
3657 )
3658 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3659
3660 #ifdef CANNOT_CHANGE_MODE_CLASS
3661 if (code == SUBREG
3662 && REG_P (to)
3663 && REGNO (to) < FIRST_PSEUDO_REGISTER
3664 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3665 GET_MODE (to),
3666 GET_MODE (x)))
3667 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3668 #endif
3669
3670 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3671 n_occurrences++;
3672 }
3673 else
3674 /* If we are in a SET_DEST, suppress most cases unless we
3675 have gone inside a MEM, in which case we want to
3676 simplify the address. We assume here that things that
3677 are actually part of the destination have their inner
3678 parts in the first expression. This is true for SUBREG,
3679 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3680 things aside from REG and MEM that should appear in a
3681 SET_DEST. */
3682 new = subst (XEXP (x, i), from, to,
3683 (((in_dest
3684 && (code == SUBREG || code == STRICT_LOW_PART
3685 || code == ZERO_EXTRACT))
3686 || code == SET)
3687 && i == 0), unique_copy);
3688
3689 /* If we found that we will have to reject this combination,
3690 indicate that by returning the CLOBBER ourselves, rather than
3691 an expression containing it. This will speed things up as
3692 well as prevent accidents where two CLOBBERs are considered
3693 to be equal, thus producing an incorrect simplification. */
3694
3695 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3696 return new;
3697
3698 if (GET_CODE (x) == SUBREG
3699 && (GET_CODE (new) == CONST_INT
3700 || GET_CODE (new) == CONST_DOUBLE))
3701 {
3702 enum machine_mode mode = GET_MODE (x);
3703
3704 x = simplify_subreg (GET_MODE (x), new,
3705 GET_MODE (SUBREG_REG (x)),
3706 SUBREG_BYTE (x));
3707 if (! x)
3708 x = gen_rtx_CLOBBER (mode, const0_rtx);
3709 }
3710 else if (GET_CODE (new) == CONST_INT
3711 && GET_CODE (x) == ZERO_EXTEND)
3712 {
3713 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3714 new, GET_MODE (XEXP (x, 0)));
3715 gcc_assert (x);
3716 }
3717 else
3718 SUBST (XEXP (x, i), new);
3719 }
3720 }
3721 }
3722
3723 /* Try to simplify X. If the simplification changed the code, it is likely
3724 that further simplification will help, so loop, but limit the number
3725 of repetitions that will be performed. */
3726
3727 for (i = 0; i < 4; i++)
3728 {
3729 /* If X is sufficiently simple, don't bother trying to do anything
3730 with it. */
3731 if (code != CONST_INT && code != REG && code != CLOBBER)
3732 x = combine_simplify_rtx (x, op0_mode, in_dest);
3733
3734 if (GET_CODE (x) == code)
3735 break;
3736
3737 code = GET_CODE (x);
3738
3739 /* We no longer know the original mode of operand 0 since we
3740 have changed the form of X) */
3741 op0_mode = VOIDmode;
3742 }
3743
3744 return x;
3745 }
3746 \f
3747 /* Simplify X, a piece of RTL. We just operate on the expression at the
3748 outer level; call `subst' to simplify recursively. Return the new
3749 expression.
3750
3751 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3752 if we are inside a SET_DEST. */
3753
3754 static rtx
3755 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3756 {
3757 enum rtx_code code = GET_CODE (x);
3758 enum machine_mode mode = GET_MODE (x);
3759 rtx temp;
3760 rtx reversed;
3761 int i;
3762
3763 /* If this is a commutative operation, put a constant last and a complex
3764 expression first. We don't need to do this for comparisons here. */
3765 if (COMMUTATIVE_ARITH_P (x)
3766 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3767 {
3768 temp = XEXP (x, 0);
3769 SUBST (XEXP (x, 0), XEXP (x, 1));
3770 SUBST (XEXP (x, 1), temp);
3771 }
3772
3773 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3774 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3775 things. Check for cases where both arms are testing the same
3776 condition.
3777
3778 Don't do anything if all operands are very simple. */
3779
3780 if ((BINARY_P (x)
3781 && ((!OBJECT_P (XEXP (x, 0))
3782 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3783 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3784 || (!OBJECT_P (XEXP (x, 1))
3785 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3786 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3787 || (UNARY_P (x)
3788 && (!OBJECT_P (XEXP (x, 0))
3789 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3790 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3791 {
3792 rtx cond, true_rtx, false_rtx;
3793
3794 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3795 if (cond != 0
3796 /* If everything is a comparison, what we have is highly unlikely
3797 to be simpler, so don't use it. */
3798 && ! (COMPARISON_P (x)
3799 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3800 {
3801 rtx cop1 = const0_rtx;
3802 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3803
3804 if (cond_code == NE && COMPARISON_P (cond))
3805 return x;
3806
3807 /* Simplify the alternative arms; this may collapse the true and
3808 false arms to store-flag values. Be careful to use copy_rtx
3809 here since true_rtx or false_rtx might share RTL with x as a
3810 result of the if_then_else_cond call above. */
3811 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3812 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3813
3814 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3815 is unlikely to be simpler. */
3816 if (general_operand (true_rtx, VOIDmode)
3817 && general_operand (false_rtx, VOIDmode))
3818 {
3819 enum rtx_code reversed;
3820
3821 /* Restarting if we generate a store-flag expression will cause
3822 us to loop. Just drop through in this case. */
3823
3824 /* If the result values are STORE_FLAG_VALUE and zero, we can
3825 just make the comparison operation. */
3826 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3827 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3828 cond, cop1);
3829 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3830 && ((reversed = reversed_comparison_code_parts
3831 (cond_code, cond, cop1, NULL))
3832 != UNKNOWN))
3833 x = simplify_gen_relational (reversed, mode, VOIDmode,
3834 cond, cop1);
3835
3836 /* Likewise, we can make the negate of a comparison operation
3837 if the result values are - STORE_FLAG_VALUE and zero. */
3838 else if (GET_CODE (true_rtx) == CONST_INT
3839 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3840 && false_rtx == const0_rtx)
3841 x = simplify_gen_unary (NEG, mode,
3842 simplify_gen_relational (cond_code,
3843 mode, VOIDmode,
3844 cond, cop1),
3845 mode);
3846 else if (GET_CODE (false_rtx) == CONST_INT
3847 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3848 && true_rtx == const0_rtx
3849 && ((reversed = reversed_comparison_code_parts
3850 (cond_code, cond, cop1, NULL))
3851 != UNKNOWN))
3852 x = simplify_gen_unary (NEG, mode,
3853 simplify_gen_relational (reversed,
3854 mode, VOIDmode,
3855 cond, cop1),
3856 mode);
3857 else
3858 return gen_rtx_IF_THEN_ELSE (mode,
3859 simplify_gen_relational (cond_code,
3860 mode,
3861 VOIDmode,
3862 cond,
3863 cop1),
3864 true_rtx, false_rtx);
3865
3866 code = GET_CODE (x);
3867 op0_mode = VOIDmode;
3868 }
3869 }
3870 }
3871
3872 /* Try to fold this expression in case we have constants that weren't
3873 present before. */
3874 temp = 0;
3875 switch (GET_RTX_CLASS (code))
3876 {
3877 case RTX_UNARY:
3878 if (op0_mode == VOIDmode)
3879 op0_mode = GET_MODE (XEXP (x, 0));
3880 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3881 break;
3882 case RTX_COMPARE:
3883 case RTX_COMM_COMPARE:
3884 {
3885 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3886 if (cmp_mode == VOIDmode)
3887 {
3888 cmp_mode = GET_MODE (XEXP (x, 1));
3889 if (cmp_mode == VOIDmode)
3890 cmp_mode = op0_mode;
3891 }
3892 temp = simplify_relational_operation (code, mode, cmp_mode,
3893 XEXP (x, 0), XEXP (x, 1));
3894 }
3895 break;
3896 case RTX_COMM_ARITH:
3897 case RTX_BIN_ARITH:
3898 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3899 break;
3900 case RTX_BITFIELD_OPS:
3901 case RTX_TERNARY:
3902 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3903 XEXP (x, 1), XEXP (x, 2));
3904 break;
3905 default:
3906 break;
3907 }
3908
3909 if (temp)
3910 {
3911 x = temp;
3912 code = GET_CODE (temp);
3913 op0_mode = VOIDmode;
3914 mode = GET_MODE (temp);
3915 }
3916
3917 /* First see if we can apply the inverse distributive law. */
3918 if (code == PLUS || code == MINUS
3919 || code == AND || code == IOR || code == XOR)
3920 {
3921 x = apply_distributive_law (x);
3922 code = GET_CODE (x);
3923 op0_mode = VOIDmode;
3924 }
3925
3926 /* If CODE is an associative operation not otherwise handled, see if we
3927 can associate some operands. This can win if they are constants or
3928 if they are logically related (i.e. (a & b) & a). */
3929 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3930 || code == AND || code == IOR || code == XOR
3931 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3932 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3933 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3934 {
3935 if (GET_CODE (XEXP (x, 0)) == code)
3936 {
3937 rtx other = XEXP (XEXP (x, 0), 0);
3938 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3939 rtx inner_op1 = XEXP (x, 1);
3940 rtx inner;
3941
3942 /* Make sure we pass the constant operand if any as the second
3943 one if this is a commutative operation. */
3944 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3945 {
3946 rtx tem = inner_op0;
3947 inner_op0 = inner_op1;
3948 inner_op1 = tem;
3949 }
3950 inner = simplify_binary_operation (code == MINUS ? PLUS
3951 : code == DIV ? MULT
3952 : code,
3953 mode, inner_op0, inner_op1);
3954
3955 /* For commutative operations, try the other pair if that one
3956 didn't simplify. */
3957 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3958 {
3959 other = XEXP (XEXP (x, 0), 1);
3960 inner = simplify_binary_operation (code, mode,
3961 XEXP (XEXP (x, 0), 0),
3962 XEXP (x, 1));
3963 }
3964
3965 if (inner)
3966 return simplify_gen_binary (code, mode, other, inner);
3967 }
3968 }
3969
3970 /* A little bit of algebraic simplification here. */
3971 switch (code)
3972 {
3973 case MEM:
3974 /* Ensure that our address has any ASHIFTs converted to MULT in case
3975 address-recognizing predicates are called later. */
3976 temp = make_compound_operation (XEXP (x, 0), MEM);
3977 SUBST (XEXP (x, 0), temp);
3978 break;
3979
3980 case SUBREG:
3981 if (op0_mode == VOIDmode)
3982 op0_mode = GET_MODE (SUBREG_REG (x));
3983
3984 /* See if this can be moved to simplify_subreg. */
3985 if (CONSTANT_P (SUBREG_REG (x))
3986 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3987 /* Don't call gen_lowpart if the inner mode
3988 is VOIDmode and we cannot simplify it, as SUBREG without
3989 inner mode is invalid. */
3990 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3991 || gen_lowpart_common (mode, SUBREG_REG (x))))
3992 return gen_lowpart (mode, SUBREG_REG (x));
3993
3994 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3995 break;
3996 {
3997 rtx temp;
3998 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3999 SUBREG_BYTE (x));
4000 if (temp)
4001 return temp;
4002 }
4003
4004 /* Don't change the mode of the MEM if that would change the meaning
4005 of the address. */
4006 if (MEM_P (SUBREG_REG (x))
4007 && (MEM_VOLATILE_P (SUBREG_REG (x))
4008 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4009 return gen_rtx_CLOBBER (mode, const0_rtx);
4010
4011 /* Note that we cannot do any narrowing for non-constants since
4012 we might have been counting on using the fact that some bits were
4013 zero. We now do this in the SET. */
4014
4015 break;
4016
4017 case NOT:
4018 if (GET_CODE (XEXP (x, 0)) == SUBREG
4019 && subreg_lowpart_p (XEXP (x, 0))
4020 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4021 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4022 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4023 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4024 {
4025 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4026
4027 x = gen_rtx_ROTATE (inner_mode,
4028 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4029 inner_mode),
4030 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4031 return gen_lowpart (mode, x);
4032 }
4033
4034 /* Apply De Morgan's laws to reduce number of patterns for machines
4035 with negating logical insns (and-not, nand, etc.). If result has
4036 only one NOT, put it first, since that is how the patterns are
4037 coded. */
4038
4039 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4040 {
4041 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4042 enum machine_mode op_mode;
4043
4044 op_mode = GET_MODE (in1);
4045 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4046
4047 op_mode = GET_MODE (in2);
4048 if (op_mode == VOIDmode)
4049 op_mode = mode;
4050 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4051
4052 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4053 {
4054 rtx tem = in2;
4055 in2 = in1; in1 = tem;
4056 }
4057
4058 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4059 mode, in1, in2);
4060 }
4061 break;
4062
4063 case NEG:
4064 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4065 if (GET_CODE (XEXP (x, 0)) == XOR
4066 && XEXP (XEXP (x, 0), 1) == const1_rtx
4067 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4068 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4069 constm1_rtx);
4070
4071 temp = expand_compound_operation (XEXP (x, 0));
4072
4073 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4074 replaced by (lshiftrt X C). This will convert
4075 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4076
4077 if (GET_CODE (temp) == ASHIFTRT
4078 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4079 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4080 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4081 INTVAL (XEXP (temp, 1)));
4082
4083 /* If X has only a single bit that might be nonzero, say, bit I, convert
4084 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4085 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4086 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4087 or a SUBREG of one since we'd be making the expression more
4088 complex if it was just a register. */
4089
4090 if (!REG_P (temp)
4091 && ! (GET_CODE (temp) == SUBREG
4092 && REG_P (SUBREG_REG (temp)))
4093 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4094 {
4095 rtx temp1 = simplify_shift_const
4096 (NULL_RTX, ASHIFTRT, mode,
4097 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4098 GET_MODE_BITSIZE (mode) - 1 - i),
4099 GET_MODE_BITSIZE (mode) - 1 - i);
4100
4101 /* If all we did was surround TEMP with the two shifts, we
4102 haven't improved anything, so don't use it. Otherwise,
4103 we are better off with TEMP1. */
4104 if (GET_CODE (temp1) != ASHIFTRT
4105 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4106 || XEXP (XEXP (temp1, 0), 0) != temp)
4107 return temp1;
4108 }
4109 break;
4110
4111 case TRUNCATE:
4112 /* We can't handle truncation to a partial integer mode here
4113 because we don't know the real bitsize of the partial
4114 integer mode. */
4115 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4116 break;
4117
4118 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4119 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4120 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4121 SUBST (XEXP (x, 0),
4122 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4123 GET_MODE_MASK (mode), NULL_RTX, 0));
4124
4125 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4126 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4127 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4128 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4129 return XEXP (XEXP (x, 0), 0);
4130
4131 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4132 (OP:SI foo:SI) if OP is NEG or ABS. */
4133 if ((GET_CODE (XEXP (x, 0)) == ABS
4134 || GET_CODE (XEXP (x, 0)) == NEG)
4135 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4136 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4137 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4138 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4139 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4140
4141 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4142 (truncate:SI x). */
4143 if (GET_CODE (XEXP (x, 0)) == SUBREG
4144 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4145 && subreg_lowpart_p (XEXP (x, 0)))
4146 return SUBREG_REG (XEXP (x, 0));
4147
4148 /* If we know that the value is already truncated, we can
4149 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4150 is nonzero for the corresponding modes. But don't do this
4151 for an (LSHIFTRT (MULT ...)) since this will cause problems
4152 with the umulXi3_highpart patterns. */
4153 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4154 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4155 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4156 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4157 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4158 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4159 return gen_lowpart (mode, XEXP (x, 0));
4160
4161 /* A truncate of a comparison can be replaced with a subreg if
4162 STORE_FLAG_VALUE permits. This is like the previous test,
4163 but it works even if the comparison is done in a mode larger
4164 than HOST_BITS_PER_WIDE_INT. */
4165 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4166 && COMPARISON_P (XEXP (x, 0))
4167 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4168 return gen_lowpart (mode, XEXP (x, 0));
4169
4170 /* Similarly, a truncate of a register whose value is a
4171 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4172 permits. */
4173 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4174 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4175 && (temp = get_last_value (XEXP (x, 0)))
4176 && COMPARISON_P (temp))
4177 return gen_lowpart (mode, XEXP (x, 0));
4178
4179 break;
4180
4181 case FLOAT_TRUNCATE:
4182 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4183 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4184 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4185 return XEXP (XEXP (x, 0), 0);
4186
4187 /* (float_truncate:SF (float_truncate:DF foo:XF))
4188 = (float_truncate:SF foo:XF).
4189 This may eliminate double rounding, so it is unsafe.
4190
4191 (float_truncate:SF (float_extend:XF foo:DF))
4192 = (float_truncate:SF foo:DF).
4193
4194 (float_truncate:DF (float_extend:XF foo:SF))
4195 = (float_extend:SF foo:DF). */
4196 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4197 && flag_unsafe_math_optimizations)
4198 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4199 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4200 0)))
4201 > GET_MODE_SIZE (mode)
4202 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4203 mode,
4204 XEXP (XEXP (x, 0), 0), mode);
4205
4206 /* (float_truncate (float x)) is (float x) */
4207 if (GET_CODE (XEXP (x, 0)) == FLOAT
4208 && (flag_unsafe_math_optimizations
4209 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4210 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4211 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4212 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4213 return simplify_gen_unary (FLOAT, mode,
4214 XEXP (XEXP (x, 0), 0),
4215 GET_MODE (XEXP (XEXP (x, 0), 0)));
4216
4217 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4218 (OP:SF foo:SF) if OP is NEG or ABS. */
4219 if ((GET_CODE (XEXP (x, 0)) == ABS
4220 || GET_CODE (XEXP (x, 0)) == NEG)
4221 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4222 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4223 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4224 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4225
4226 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4227 is (float_truncate:SF x). */
4228 if (GET_CODE (XEXP (x, 0)) == SUBREG
4229 && subreg_lowpart_p (XEXP (x, 0))
4230 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4231 return SUBREG_REG (XEXP (x, 0));
4232 break;
4233 case FLOAT_EXTEND:
4234 /* (float_extend (float_extend x)) is (float_extend x)
4235
4236 (float_extend (float x)) is (float x) assuming that double
4237 rounding can't happen.
4238 */
4239 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4240 || (GET_CODE (XEXP (x, 0)) == FLOAT
4241 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4242 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4243 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4244 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4245 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4246 XEXP (XEXP (x, 0), 0),
4247 GET_MODE (XEXP (XEXP (x, 0), 0)));
4248
4249 break;
4250 #ifdef HAVE_cc0
4251 case COMPARE:
4252 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4253 using cc0, in which case we want to leave it as a COMPARE
4254 so we can distinguish it from a register-register-copy. */
4255 if (XEXP (x, 1) == const0_rtx)
4256 return XEXP (x, 0);
4257
4258 /* x - 0 is the same as x unless x's mode has signed zeros and
4259 allows rounding towards -infinity. Under those conditions,
4260 0 - 0 is -0. */
4261 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4262 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4263 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4264 return XEXP (x, 0);
4265 break;
4266 #endif
4267
4268 case CONST:
4269 /* (const (const X)) can become (const X). Do it this way rather than
4270 returning the inner CONST since CONST can be shared with a
4271 REG_EQUAL note. */
4272 if (GET_CODE (XEXP (x, 0)) == CONST)
4273 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4274 break;
4275
4276 #ifdef HAVE_lo_sum
4277 case LO_SUM:
4278 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4279 can add in an offset. find_split_point will split this address up
4280 again if it doesn't match. */
4281 if (GET_CODE (XEXP (x, 0)) == HIGH
4282 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4283 return XEXP (x, 1);
4284 break;
4285 #endif
4286
4287 case PLUS:
4288 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4289 */
4290 if (GET_CODE (XEXP (x, 0)) == MULT
4291 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4292 {
4293 rtx in1, in2;
4294
4295 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4296 in2 = XEXP (XEXP (x, 0), 1);
4297 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4298 simplify_gen_binary (MULT, mode,
4299 in1, in2));
4300 }
4301
4302 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4303 outermost. That's because that's the way indexed addresses are
4304 supposed to appear. This code used to check many more cases, but
4305 they are now checked elsewhere. */
4306 if (GET_CODE (XEXP (x, 0)) == PLUS
4307 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4308 return simplify_gen_binary (PLUS, mode,
4309 simplify_gen_binary (PLUS, mode,
4310 XEXP (XEXP (x, 0), 0),
4311 XEXP (x, 1)),
4312 XEXP (XEXP (x, 0), 1));
4313
4314 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4315 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4316 bit-field and can be replaced by either a sign_extend or a
4317 sign_extract. The `and' may be a zero_extend and the two
4318 <c>, -<c> constants may be reversed. */
4319 if (GET_CODE (XEXP (x, 0)) == XOR
4320 && GET_CODE (XEXP (x, 1)) == CONST_INT
4321 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4322 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4323 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4324 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4325 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4326 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4327 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4328 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4329 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4330 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4331 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4332 == (unsigned int) i + 1))))
4333 return simplify_shift_const
4334 (NULL_RTX, ASHIFTRT, mode,
4335 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4336 XEXP (XEXP (XEXP (x, 0), 0), 0),
4337 GET_MODE_BITSIZE (mode) - (i + 1)),
4338 GET_MODE_BITSIZE (mode) - (i + 1));
4339
4340 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4341 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4342 is 1. This produces better code than the alternative immediately
4343 below. */
4344 if (COMPARISON_P (XEXP (x, 0))
4345 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4346 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4347 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4348 return
4349 simplify_gen_unary (NEG, mode, reversed, mode);
4350
4351 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4352 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4353 the bitsize of the mode - 1. This allows simplification of
4354 "a = (b & 8) == 0;" */
4355 if (XEXP (x, 1) == constm1_rtx
4356 && !REG_P (XEXP (x, 0))
4357 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4358 && REG_P (SUBREG_REG (XEXP (x, 0))))
4359 && nonzero_bits (XEXP (x, 0), mode) == 1)
4360 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4361 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4362 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4363 GET_MODE_BITSIZE (mode) - 1),
4364 GET_MODE_BITSIZE (mode) - 1);
4365
4366 /* If we are adding two things that have no bits in common, convert
4367 the addition into an IOR. This will often be further simplified,
4368 for example in cases like ((a & 1) + (a & 2)), which can
4369 become a & 3. */
4370
4371 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4372 && (nonzero_bits (XEXP (x, 0), mode)
4373 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4374 {
4375 /* Try to simplify the expression further. */
4376 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4377 temp = combine_simplify_rtx (tor, mode, in_dest);
4378
4379 /* If we could, great. If not, do not go ahead with the IOR
4380 replacement, since PLUS appears in many special purpose
4381 address arithmetic instructions. */
4382 if (GET_CODE (temp) != CLOBBER && temp != tor)
4383 return temp;
4384 }
4385 break;
4386
4387 case MINUS:
4388 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4389 by reversing the comparison code if valid. */
4390 if (STORE_FLAG_VALUE == 1
4391 && XEXP (x, 0) == const1_rtx
4392 && COMPARISON_P (XEXP (x, 1))
4393 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4394 return reversed;
4395
4396 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4397 (and <foo> (const_int pow2-1)) */
4398 if (GET_CODE (XEXP (x, 1)) == AND
4399 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4400 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4401 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4402 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4403 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4404
4405 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4406 */
4407 if (GET_CODE (XEXP (x, 1)) == MULT
4408 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4409 {
4410 rtx in1, in2;
4411
4412 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4413 in2 = XEXP (XEXP (x, 1), 1);
4414 return simplify_gen_binary (PLUS, mode,
4415 simplify_gen_binary (MULT, mode,
4416 in1, in2),
4417 XEXP (x, 0));
4418 }
4419
4420 /* Canonicalize (minus (neg A) (mult B C)) to
4421 (minus (mult (neg B) C) A). */
4422 if (GET_CODE (XEXP (x, 1)) == MULT
4423 && GET_CODE (XEXP (x, 0)) == NEG)
4424 {
4425 rtx in1, in2;
4426
4427 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4428 in2 = XEXP (XEXP (x, 1), 1);
4429 return simplify_gen_binary (MINUS, mode,
4430 simplify_gen_binary (MULT, mode,
4431 in1, in2),
4432 XEXP (XEXP (x, 0), 0));
4433 }
4434
4435 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4436 integers. */
4437 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4438 return simplify_gen_binary (MINUS, mode,
4439 simplify_gen_binary (MINUS, mode,
4440 XEXP (x, 0),
4441 XEXP (XEXP (x, 1), 0)),
4442 XEXP (XEXP (x, 1), 1));
4443 break;
4444
4445 case MULT:
4446 /* If we have (mult (plus A B) C), apply the distributive law and then
4447 the inverse distributive law to see if things simplify. This
4448 occurs mostly in addresses, often when unrolling loops. */
4449
4450 if (GET_CODE (XEXP (x, 0)) == PLUS)
4451 {
4452 rtx result = distribute_and_simplify_rtx (x, 0);
4453 if (result)
4454 return result;
4455 }
4456
4457 /* Try simplify a*(b/c) as (a*b)/c. */
4458 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4459 && GET_CODE (XEXP (x, 0)) == DIV)
4460 {
4461 rtx tem = simplify_binary_operation (MULT, mode,
4462 XEXP (XEXP (x, 0), 0),
4463 XEXP (x, 1));
4464 if (tem)
4465 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4466 }
4467 break;
4468
4469 case UDIV:
4470 /* If this is a divide by a power of two, treat it as a shift if
4471 its first operand is a shift. */
4472 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4473 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4474 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4475 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4476 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4477 || GET_CODE (XEXP (x, 0)) == ROTATE
4478 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4479 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4480 break;
4481
4482 case EQ: case NE:
4483 case GT: case GTU: case GE: case GEU:
4484 case LT: case LTU: case LE: case LEU:
4485 case UNEQ: case LTGT:
4486 case UNGT: case UNGE:
4487 case UNLT: case UNLE:
4488 case UNORDERED: case ORDERED:
4489 /* If the first operand is a condition code, we can't do anything
4490 with it. */
4491 if (GET_CODE (XEXP (x, 0)) == COMPARE
4492 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4493 && ! CC0_P (XEXP (x, 0))))
4494 {
4495 rtx op0 = XEXP (x, 0);
4496 rtx op1 = XEXP (x, 1);
4497 enum rtx_code new_code;
4498
4499 if (GET_CODE (op0) == COMPARE)
4500 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4501
4502 /* Simplify our comparison, if possible. */
4503 new_code = simplify_comparison (code, &op0, &op1);
4504
4505 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4506 if only the low-order bit is possibly nonzero in X (such as when
4507 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4508 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4509 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4510 (plus X 1).
4511
4512 Remove any ZERO_EXTRACT we made when thinking this was a
4513 comparison. It may now be simpler to use, e.g., an AND. If a
4514 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4515 the call to make_compound_operation in the SET case. */
4516
4517 if (STORE_FLAG_VALUE == 1
4518 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4519 && op1 == const0_rtx
4520 && mode == GET_MODE (op0)
4521 && nonzero_bits (op0, mode) == 1)
4522 return gen_lowpart (mode,
4523 expand_compound_operation (op0));
4524
4525 else if (STORE_FLAG_VALUE == 1
4526 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4527 && op1 == const0_rtx
4528 && mode == GET_MODE (op0)
4529 && (num_sign_bit_copies (op0, mode)
4530 == GET_MODE_BITSIZE (mode)))
4531 {
4532 op0 = expand_compound_operation (op0);
4533 return simplify_gen_unary (NEG, mode,
4534 gen_lowpart (mode, op0),
4535 mode);
4536 }
4537
4538 else if (STORE_FLAG_VALUE == 1
4539 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4540 && op1 == const0_rtx
4541 && mode == GET_MODE (op0)
4542 && nonzero_bits (op0, mode) == 1)
4543 {
4544 op0 = expand_compound_operation (op0);
4545 return simplify_gen_binary (XOR, mode,
4546 gen_lowpart (mode, op0),
4547 const1_rtx);
4548 }
4549
4550 else if (STORE_FLAG_VALUE == 1
4551 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4552 && op1 == const0_rtx
4553 && mode == GET_MODE (op0)
4554 && (num_sign_bit_copies (op0, mode)
4555 == GET_MODE_BITSIZE (mode)))
4556 {
4557 op0 = expand_compound_operation (op0);
4558 return plus_constant (gen_lowpart (mode, op0), 1);
4559 }
4560
4561 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4562 those above. */
4563 if (STORE_FLAG_VALUE == -1
4564 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4565 && op1 == const0_rtx
4566 && (num_sign_bit_copies (op0, mode)
4567 == GET_MODE_BITSIZE (mode)))
4568 return gen_lowpart (mode,
4569 expand_compound_operation (op0));
4570
4571 else if (STORE_FLAG_VALUE == -1
4572 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4573 && op1 == const0_rtx
4574 && mode == GET_MODE (op0)
4575 && nonzero_bits (op0, mode) == 1)
4576 {
4577 op0 = expand_compound_operation (op0);
4578 return simplify_gen_unary (NEG, mode,
4579 gen_lowpart (mode, op0),
4580 mode);
4581 }
4582
4583 else if (STORE_FLAG_VALUE == -1
4584 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4585 && op1 == const0_rtx
4586 && mode == GET_MODE (op0)
4587 && (num_sign_bit_copies (op0, mode)
4588 == GET_MODE_BITSIZE (mode)))
4589 {
4590 op0 = expand_compound_operation (op0);
4591 return simplify_gen_unary (NOT, mode,
4592 gen_lowpart (mode, op0),
4593 mode);
4594 }
4595
4596 /* If X is 0/1, (eq X 0) is X-1. */
4597 else if (STORE_FLAG_VALUE == -1
4598 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4599 && op1 == const0_rtx
4600 && mode == GET_MODE (op0)
4601 && nonzero_bits (op0, mode) == 1)
4602 {
4603 op0 = expand_compound_operation (op0);
4604 return plus_constant (gen_lowpart (mode, op0), -1);
4605 }
4606
4607 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4608 one bit that might be nonzero, we can convert (ne x 0) to
4609 (ashift x c) where C puts the bit in the sign bit. Remove any
4610 AND with STORE_FLAG_VALUE when we are done, since we are only
4611 going to test the sign bit. */
4612 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4613 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4614 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4615 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4616 && op1 == const0_rtx
4617 && mode == GET_MODE (op0)
4618 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4619 {
4620 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4621 expand_compound_operation (op0),
4622 GET_MODE_BITSIZE (mode) - 1 - i);
4623 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4624 return XEXP (x, 0);
4625 else
4626 return x;
4627 }
4628
4629 /* If the code changed, return a whole new comparison. */
4630 if (new_code != code)
4631 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4632
4633 /* Otherwise, keep this operation, but maybe change its operands.
4634 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4635 SUBST (XEXP (x, 0), op0);
4636 SUBST (XEXP (x, 1), op1);
4637 }
4638 break;
4639
4640 case IF_THEN_ELSE:
4641 return simplify_if_then_else (x);
4642
4643 case ZERO_EXTRACT:
4644 case SIGN_EXTRACT:
4645 case ZERO_EXTEND:
4646 case SIGN_EXTEND:
4647 /* If we are processing SET_DEST, we are done. */
4648 if (in_dest)
4649 return x;
4650
4651 return expand_compound_operation (x);
4652
4653 case SET:
4654 return simplify_set (x);
4655
4656 case AND:
4657 case IOR:
4658 case XOR:
4659 return simplify_logical (x);
4660
4661 case ABS:
4662 /* (abs (neg <foo>)) -> (abs <foo>) */
4663 if (GET_CODE (XEXP (x, 0)) == NEG)
4664 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4665
4666 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4667 do nothing. */
4668 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4669 break;
4670
4671 /* If operand is something known to be positive, ignore the ABS. */
4672 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4673 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4674 <= HOST_BITS_PER_WIDE_INT)
4675 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4676 & ((HOST_WIDE_INT) 1
4677 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4678 == 0)))
4679 return XEXP (x, 0);
4680
4681 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4682 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4683 return gen_rtx_NEG (mode, XEXP (x, 0));
4684
4685 break;
4686
4687 case FFS:
4688 /* (ffs (*_extend <X>)) = (ffs <X>) */
4689 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4690 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4691 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4692 break;
4693
4694 case POPCOUNT:
4695 case PARITY:
4696 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4697 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4698 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4699 break;
4700
4701 case FLOAT:
4702 /* (float (sign_extend <X>)) = (float <X>). */
4703 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4704 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4705 break;
4706
4707 case ASHIFT:
4708 case LSHIFTRT:
4709 case ASHIFTRT:
4710 case ROTATE:
4711 case ROTATERT:
4712 /* If this is a shift by a constant amount, simplify it. */
4713 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4714 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4715 INTVAL (XEXP (x, 1)));
4716
4717 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4718 SUBST (XEXP (x, 1),
4719 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4720 ((HOST_WIDE_INT) 1
4721 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4722 - 1,
4723 NULL_RTX, 0));
4724 break;
4725
4726 case VEC_SELECT:
4727 {
4728 rtx op0 = XEXP (x, 0);
4729 rtx op1 = XEXP (x, 1);
4730 int len;
4731
4732 gcc_assert (GET_CODE (op1) == PARALLEL);
4733 len = XVECLEN (op1, 0);
4734 if (len == 1
4735 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4736 && GET_CODE (op0) == VEC_CONCAT)
4737 {
4738 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4739
4740 /* Try to find the element in the VEC_CONCAT. */
4741 for (;;)
4742 {
4743 if (GET_MODE (op0) == GET_MODE (x))
4744 return op0;
4745 if (GET_CODE (op0) == VEC_CONCAT)
4746 {
4747 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4748 if (offset < op0_size)
4749 op0 = XEXP (op0, 0);
4750 else
4751 {
4752 offset -= op0_size;
4753 op0 = XEXP (op0, 1);
4754 }
4755 }
4756 else
4757 break;
4758 }
4759 }
4760 }
4761
4762 break;
4763
4764 default:
4765 break;
4766 }
4767
4768 return x;
4769 }
4770 \f
4771 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4772
4773 static rtx
4774 simplify_if_then_else (rtx x)
4775 {
4776 enum machine_mode mode = GET_MODE (x);
4777 rtx cond = XEXP (x, 0);
4778 rtx true_rtx = XEXP (x, 1);
4779 rtx false_rtx = XEXP (x, 2);
4780 enum rtx_code true_code = GET_CODE (cond);
4781 int comparison_p = COMPARISON_P (cond);
4782 rtx temp;
4783 int i;
4784 enum rtx_code false_code;
4785 rtx reversed;
4786
4787 /* Simplify storing of the truth value. */
4788 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4789 return simplify_gen_relational (true_code, mode, VOIDmode,
4790 XEXP (cond, 0), XEXP (cond, 1));
4791
4792 /* Also when the truth value has to be reversed. */
4793 if (comparison_p
4794 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4795 && (reversed = reversed_comparison (cond, mode)))
4796 return reversed;
4797
4798 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4799 in it is being compared against certain values. Get the true and false
4800 comparisons and see if that says anything about the value of each arm. */
4801
4802 if (comparison_p
4803 && ((false_code = reversed_comparison_code (cond, NULL))
4804 != UNKNOWN)
4805 && REG_P (XEXP (cond, 0)))
4806 {
4807 HOST_WIDE_INT nzb;
4808 rtx from = XEXP (cond, 0);
4809 rtx true_val = XEXP (cond, 1);
4810 rtx false_val = true_val;
4811 int swapped = 0;
4812
4813 /* If FALSE_CODE is EQ, swap the codes and arms. */
4814
4815 if (false_code == EQ)
4816 {
4817 swapped = 1, true_code = EQ, false_code = NE;
4818 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4819 }
4820
4821 /* If we are comparing against zero and the expression being tested has
4822 only a single bit that might be nonzero, that is its value when it is
4823 not equal to zero. Similarly if it is known to be -1 or 0. */
4824
4825 if (true_code == EQ && true_val == const0_rtx
4826 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4827 false_code = EQ, false_val = GEN_INT (nzb);
4828 else if (true_code == EQ && true_val == const0_rtx
4829 && (num_sign_bit_copies (from, GET_MODE (from))
4830 == GET_MODE_BITSIZE (GET_MODE (from))))
4831 false_code = EQ, false_val = constm1_rtx;
4832
4833 /* Now simplify an arm if we know the value of the register in the
4834 branch and it is used in the arm. Be careful due to the potential
4835 of locally-shared RTL. */
4836
4837 if (reg_mentioned_p (from, true_rtx))
4838 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4839 from, true_val),
4840 pc_rtx, pc_rtx, 0, 0);
4841 if (reg_mentioned_p (from, false_rtx))
4842 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4843 from, false_val),
4844 pc_rtx, pc_rtx, 0, 0);
4845
4846 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4847 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4848
4849 true_rtx = XEXP (x, 1);
4850 false_rtx = XEXP (x, 2);
4851 true_code = GET_CODE (cond);
4852 }
4853
4854 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4855 reversed, do so to avoid needing two sets of patterns for
4856 subtract-and-branch insns. Similarly if we have a constant in the true
4857 arm, the false arm is the same as the first operand of the comparison, or
4858 the false arm is more complicated than the true arm. */
4859
4860 if (comparison_p
4861 && reversed_comparison_code (cond, NULL) != UNKNOWN
4862 && (true_rtx == pc_rtx
4863 || (CONSTANT_P (true_rtx)
4864 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4865 || true_rtx == const0_rtx
4866 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4867 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4868 && !OBJECT_P (false_rtx))
4869 || reg_mentioned_p (true_rtx, false_rtx)
4870 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4871 {
4872 true_code = reversed_comparison_code (cond, NULL);
4873 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4874 SUBST (XEXP (x, 1), false_rtx);
4875 SUBST (XEXP (x, 2), true_rtx);
4876
4877 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4878 cond = XEXP (x, 0);
4879
4880 /* It is possible that the conditional has been simplified out. */
4881 true_code = GET_CODE (cond);
4882 comparison_p = COMPARISON_P (cond);
4883 }
4884
4885 /* If the two arms are identical, we don't need the comparison. */
4886
4887 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4888 return true_rtx;
4889
4890 /* Convert a == b ? b : a to "a". */
4891 if (true_code == EQ && ! side_effects_p (cond)
4892 && !HONOR_NANS (mode)
4893 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4894 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4895 return false_rtx;
4896 else if (true_code == NE && ! side_effects_p (cond)
4897 && !HONOR_NANS (mode)
4898 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4899 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4900 return true_rtx;
4901
4902 /* Look for cases where we have (abs x) or (neg (abs X)). */
4903
4904 if (GET_MODE_CLASS (mode) == MODE_INT
4905 && GET_CODE (false_rtx) == NEG
4906 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4907 && comparison_p
4908 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4909 && ! side_effects_p (true_rtx))
4910 switch (true_code)
4911 {
4912 case GT:
4913 case GE:
4914 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4915 case LT:
4916 case LE:
4917 return
4918 simplify_gen_unary (NEG, mode,
4919 simplify_gen_unary (ABS, mode, true_rtx, mode),
4920 mode);
4921 default:
4922 break;
4923 }
4924
4925 /* Look for MIN or MAX. */
4926
4927 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4928 && comparison_p
4929 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4930 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4931 && ! side_effects_p (cond))
4932 switch (true_code)
4933 {
4934 case GE:
4935 case GT:
4936 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4937 case LE:
4938 case LT:
4939 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4940 case GEU:
4941 case GTU:
4942 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4943 case LEU:
4944 case LTU:
4945 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4946 default:
4947 break;
4948 }
4949
4950 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4951 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4952 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4953 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4954 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4955 neither 1 or -1, but it isn't worth checking for. */
4956
4957 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4958 && comparison_p
4959 && GET_MODE_CLASS (mode) == MODE_INT
4960 && ! side_effects_p (x))
4961 {
4962 rtx t = make_compound_operation (true_rtx, SET);
4963 rtx f = make_compound_operation (false_rtx, SET);
4964 rtx cond_op0 = XEXP (cond, 0);
4965 rtx cond_op1 = XEXP (cond, 1);
4966 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4967 enum machine_mode m = mode;
4968 rtx z = 0, c1 = NULL_RTX;
4969
4970 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4971 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4972 || GET_CODE (t) == ASHIFT
4973 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4974 && rtx_equal_p (XEXP (t, 0), f))
4975 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4976
4977 /* If an identity-zero op is commutative, check whether there
4978 would be a match if we swapped the operands. */
4979 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4980 || GET_CODE (t) == XOR)
4981 && rtx_equal_p (XEXP (t, 1), f))
4982 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4983 else if (GET_CODE (t) == SIGN_EXTEND
4984 && (GET_CODE (XEXP (t, 0)) == PLUS
4985 || GET_CODE (XEXP (t, 0)) == MINUS
4986 || GET_CODE (XEXP (t, 0)) == IOR
4987 || GET_CODE (XEXP (t, 0)) == XOR
4988 || GET_CODE (XEXP (t, 0)) == ASHIFT
4989 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4990 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4991 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4992 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4993 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4994 && (num_sign_bit_copies (f, GET_MODE (f))
4995 > (unsigned int)
4996 (GET_MODE_BITSIZE (mode)
4997 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4998 {
4999 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5000 extend_op = SIGN_EXTEND;
5001 m = GET_MODE (XEXP (t, 0));
5002 }
5003 else if (GET_CODE (t) == SIGN_EXTEND
5004 && (GET_CODE (XEXP (t, 0)) == PLUS
5005 || GET_CODE (XEXP (t, 0)) == IOR
5006 || GET_CODE (XEXP (t, 0)) == XOR)
5007 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5008 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5009 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5010 && (num_sign_bit_copies (f, GET_MODE (f))
5011 > (unsigned int)
5012 (GET_MODE_BITSIZE (mode)
5013 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5014 {
5015 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5016 extend_op = SIGN_EXTEND;
5017 m = GET_MODE (XEXP (t, 0));
5018 }
5019 else if (GET_CODE (t) == ZERO_EXTEND
5020 && (GET_CODE (XEXP (t, 0)) == PLUS
5021 || GET_CODE (XEXP (t, 0)) == MINUS
5022 || GET_CODE (XEXP (t, 0)) == IOR
5023 || GET_CODE (XEXP (t, 0)) == XOR
5024 || GET_CODE (XEXP (t, 0)) == ASHIFT
5025 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5026 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5027 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5028 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5029 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5030 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5031 && ((nonzero_bits (f, GET_MODE (f))
5032 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5033 == 0))
5034 {
5035 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5036 extend_op = ZERO_EXTEND;
5037 m = GET_MODE (XEXP (t, 0));
5038 }
5039 else if (GET_CODE (t) == ZERO_EXTEND
5040 && (GET_CODE (XEXP (t, 0)) == PLUS
5041 || GET_CODE (XEXP (t, 0)) == IOR
5042 || GET_CODE (XEXP (t, 0)) == XOR)
5043 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5044 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5045 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5046 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5047 && ((nonzero_bits (f, GET_MODE (f))
5048 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5049 == 0))
5050 {
5051 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5052 extend_op = ZERO_EXTEND;
5053 m = GET_MODE (XEXP (t, 0));
5054 }
5055
5056 if (z)
5057 {
5058 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5059 cond_op0, cond_op1),
5060 pc_rtx, pc_rtx, 0, 0);
5061 temp = simplify_gen_binary (MULT, m, temp,
5062 simplify_gen_binary (MULT, m, c1,
5063 const_true_rtx));
5064 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5065 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5066
5067 if (extend_op != UNKNOWN)
5068 temp = simplify_gen_unary (extend_op, mode, temp, m);
5069
5070 return temp;
5071 }
5072 }
5073
5074 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5075 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5076 negation of a single bit, we can convert this operation to a shift. We
5077 can actually do this more generally, but it doesn't seem worth it. */
5078
5079 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5080 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5081 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5082 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5083 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5084 == GET_MODE_BITSIZE (mode))
5085 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5086 return
5087 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5088 gen_lowpart (mode, XEXP (cond, 0)), i);
5089
5090 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5091 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5092 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5093 && GET_MODE (XEXP (cond, 0)) == mode
5094 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5095 == nonzero_bits (XEXP (cond, 0), mode)
5096 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5097 return XEXP (cond, 0);
5098
5099 return x;
5100 }
5101 \f
5102 /* Simplify X, a SET expression. Return the new expression. */
5103
5104 static rtx
5105 simplify_set (rtx x)
5106 {
5107 rtx src = SET_SRC (x);
5108 rtx dest = SET_DEST (x);
5109 enum machine_mode mode
5110 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5111 rtx other_insn;
5112 rtx *cc_use;
5113
5114 /* (set (pc) (return)) gets written as (return). */
5115 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5116 return src;
5117
5118 /* Now that we know for sure which bits of SRC we are using, see if we can
5119 simplify the expression for the object knowing that we only need the
5120 low-order bits. */
5121
5122 if (GET_MODE_CLASS (mode) == MODE_INT
5123 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5124 {
5125 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5126 SUBST (SET_SRC (x), src);
5127 }
5128
5129 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5130 the comparison result and try to simplify it unless we already have used
5131 undobuf.other_insn. */
5132 if ((GET_MODE_CLASS (mode) == MODE_CC
5133 || GET_CODE (src) == COMPARE
5134 || CC0_P (dest))
5135 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5136 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5137 && COMPARISON_P (*cc_use)
5138 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5139 {
5140 enum rtx_code old_code = GET_CODE (*cc_use);
5141 enum rtx_code new_code;
5142 rtx op0, op1, tmp;
5143 int other_changed = 0;
5144 enum machine_mode compare_mode = GET_MODE (dest);
5145
5146 if (GET_CODE (src) == COMPARE)
5147 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5148 else
5149 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5150
5151 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5152 op0, op1);
5153 if (!tmp)
5154 new_code = old_code;
5155 else if (!CONSTANT_P (tmp))
5156 {
5157 new_code = GET_CODE (tmp);
5158 op0 = XEXP (tmp, 0);
5159 op1 = XEXP (tmp, 1);
5160 }
5161 else
5162 {
5163 rtx pat = PATTERN (other_insn);
5164 undobuf.other_insn = other_insn;
5165 SUBST (*cc_use, tmp);
5166
5167 /* Attempt to simplify CC user. */
5168 if (GET_CODE (pat) == SET)
5169 {
5170 rtx new = simplify_rtx (SET_SRC (pat));
5171 if (new != NULL_RTX)
5172 SUBST (SET_SRC (pat), new);
5173 }
5174
5175 /* Convert X into a no-op move. */
5176 SUBST (SET_DEST (x), pc_rtx);
5177 SUBST (SET_SRC (x), pc_rtx);
5178 return x;
5179 }
5180
5181 /* Simplify our comparison, if possible. */
5182 new_code = simplify_comparison (new_code, &op0, &op1);
5183
5184 #ifdef SELECT_CC_MODE
5185 /* If this machine has CC modes other than CCmode, check to see if we
5186 need to use a different CC mode here. */
5187 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5188 compare_mode = GET_MODE (op0);
5189 else
5190 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5191
5192 #ifndef HAVE_cc0
5193 /* If the mode changed, we have to change SET_DEST, the mode in the
5194 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5195 a hard register, just build new versions with the proper mode. If it
5196 is a pseudo, we lose unless it is only time we set the pseudo, in
5197 which case we can safely change its mode. */
5198 if (compare_mode != GET_MODE (dest))
5199 {
5200 unsigned int regno = REGNO (dest);
5201 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5202
5203 if (regno < FIRST_PSEUDO_REGISTER
5204 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5205 {
5206 if (regno >= FIRST_PSEUDO_REGISTER)
5207 SUBST (regno_reg_rtx[regno], new_dest);
5208
5209 SUBST (SET_DEST (x), new_dest);
5210 SUBST (XEXP (*cc_use, 0), new_dest);
5211 other_changed = 1;
5212
5213 dest = new_dest;
5214 }
5215 }
5216 #endif /* cc0 */
5217 #endif /* SELECT_CC_MODE */
5218
5219 /* If the code changed, we have to build a new comparison in
5220 undobuf.other_insn. */
5221 if (new_code != old_code)
5222 {
5223 int other_changed_previously = other_changed;
5224 unsigned HOST_WIDE_INT mask;
5225
5226 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5227 dest, const0_rtx));
5228 other_changed = 1;
5229
5230 /* If the only change we made was to change an EQ into an NE or
5231 vice versa, OP0 has only one bit that might be nonzero, and OP1
5232 is zero, check if changing the user of the condition code will
5233 produce a valid insn. If it won't, we can keep the original code
5234 in that insn by surrounding our operation with an XOR. */
5235
5236 if (((old_code == NE && new_code == EQ)
5237 || (old_code == EQ && new_code == NE))
5238 && ! other_changed_previously && op1 == const0_rtx
5239 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5240 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5241 {
5242 rtx pat = PATTERN (other_insn), note = 0;
5243
5244 if ((recog_for_combine (&pat, other_insn, &note) < 0
5245 && ! check_asm_operands (pat)))
5246 {
5247 PUT_CODE (*cc_use, old_code);
5248 other_changed = 0;
5249
5250 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5251 op0, GEN_INT (mask));
5252 }
5253 }
5254 }
5255
5256 if (other_changed)
5257 undobuf.other_insn = other_insn;
5258
5259 #ifdef HAVE_cc0
5260 /* If we are now comparing against zero, change our source if
5261 needed. If we do not use cc0, we always have a COMPARE. */
5262 if (op1 == const0_rtx && dest == cc0_rtx)
5263 {
5264 SUBST (SET_SRC (x), op0);
5265 src = op0;
5266 }
5267 else
5268 #endif
5269
5270 /* Otherwise, if we didn't previously have a COMPARE in the
5271 correct mode, we need one. */
5272 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5273 {
5274 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5275 src = SET_SRC (x);
5276 }
5277 else
5278 {
5279 /* Otherwise, update the COMPARE if needed. */
5280 SUBST (XEXP (src, 0), op0);
5281 SUBST (XEXP (src, 1), op1);
5282 }
5283 }
5284 else
5285 {
5286 /* Get SET_SRC in a form where we have placed back any
5287 compound expressions. Then do the checks below. */
5288 src = make_compound_operation (src, SET);
5289 SUBST (SET_SRC (x), src);
5290 }
5291
5292 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5293 and X being a REG or (subreg (reg)), we may be able to convert this to
5294 (set (subreg:m2 x) (op)).
5295
5296 We can always do this if M1 is narrower than M2 because that means that
5297 we only care about the low bits of the result.
5298
5299 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5300 perform a narrower operation than requested since the high-order bits will
5301 be undefined. On machine where it is defined, this transformation is safe
5302 as long as M1 and M2 have the same number of words. */
5303
5304 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5305 && !OBJECT_P (SUBREG_REG (src))
5306 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5307 / UNITS_PER_WORD)
5308 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5309 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5310 #ifndef WORD_REGISTER_OPERATIONS
5311 && (GET_MODE_SIZE (GET_MODE (src))
5312 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5313 #endif
5314 #ifdef CANNOT_CHANGE_MODE_CLASS
5315 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5316 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5317 GET_MODE (SUBREG_REG (src)),
5318 GET_MODE (src)))
5319 #endif
5320 && (REG_P (dest)
5321 || (GET_CODE (dest) == SUBREG
5322 && REG_P (SUBREG_REG (dest)))))
5323 {
5324 SUBST (SET_DEST (x),
5325 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5326 dest));
5327 SUBST (SET_SRC (x), SUBREG_REG (src));
5328
5329 src = SET_SRC (x), dest = SET_DEST (x);
5330 }
5331
5332 #ifdef HAVE_cc0
5333 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5334 in SRC. */
5335 if (dest == cc0_rtx
5336 && GET_CODE (src) == SUBREG
5337 && subreg_lowpart_p (src)
5338 && (GET_MODE_BITSIZE (GET_MODE (src))
5339 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5340 {
5341 rtx inner = SUBREG_REG (src);
5342 enum machine_mode inner_mode = GET_MODE (inner);
5343
5344 /* Here we make sure that we don't have a sign bit on. */
5345 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5346 && (nonzero_bits (inner, inner_mode)
5347 < ((unsigned HOST_WIDE_INT) 1
5348 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5349 {
5350 SUBST (SET_SRC (x), inner);
5351 src = SET_SRC (x);
5352 }
5353 }
5354 #endif
5355
5356 #ifdef LOAD_EXTEND_OP
5357 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5358 would require a paradoxical subreg. Replace the subreg with a
5359 zero_extend to avoid the reload that would otherwise be required. */
5360
5361 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5362 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5363 && SUBREG_BYTE (src) == 0
5364 && (GET_MODE_SIZE (GET_MODE (src))
5365 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5366 && MEM_P (SUBREG_REG (src)))
5367 {
5368 SUBST (SET_SRC (x),
5369 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5370 GET_MODE (src), SUBREG_REG (src)));
5371
5372 src = SET_SRC (x);
5373 }
5374 #endif
5375
5376 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5377 are comparing an item known to be 0 or -1 against 0, use a logical
5378 operation instead. Check for one of the arms being an IOR of the other
5379 arm with some value. We compute three terms to be IOR'ed together. In
5380 practice, at most two will be nonzero. Then we do the IOR's. */
5381
5382 if (GET_CODE (dest) != PC
5383 && GET_CODE (src) == IF_THEN_ELSE
5384 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5385 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5386 && XEXP (XEXP (src, 0), 1) == const0_rtx
5387 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5388 #ifdef HAVE_conditional_move
5389 && ! can_conditionally_move_p (GET_MODE (src))
5390 #endif
5391 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5392 GET_MODE (XEXP (XEXP (src, 0), 0)))
5393 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5394 && ! side_effects_p (src))
5395 {
5396 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5397 ? XEXP (src, 1) : XEXP (src, 2));
5398 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5399 ? XEXP (src, 2) : XEXP (src, 1));
5400 rtx term1 = const0_rtx, term2, term3;
5401
5402 if (GET_CODE (true_rtx) == IOR
5403 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5404 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5405 else if (GET_CODE (true_rtx) == IOR
5406 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5407 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5408 else if (GET_CODE (false_rtx) == IOR
5409 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5410 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5411 else if (GET_CODE (false_rtx) == IOR
5412 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5413 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5414
5415 term2 = simplify_gen_binary (AND, GET_MODE (src),
5416 XEXP (XEXP (src, 0), 0), true_rtx);
5417 term3 = simplify_gen_binary (AND, GET_MODE (src),
5418 simplify_gen_unary (NOT, GET_MODE (src),
5419 XEXP (XEXP (src, 0), 0),
5420 GET_MODE (src)),
5421 false_rtx);
5422
5423 SUBST (SET_SRC (x),
5424 simplify_gen_binary (IOR, GET_MODE (src),
5425 simplify_gen_binary (IOR, GET_MODE (src),
5426 term1, term2),
5427 term3));
5428
5429 src = SET_SRC (x);
5430 }
5431
5432 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5433 whole thing fail. */
5434 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5435 return src;
5436 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5437 return dest;
5438 else
5439 /* Convert this into a field assignment operation, if possible. */
5440 return make_field_assignment (x);
5441 }
5442 \f
5443 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5444 result. */
5445
5446 static rtx
5447 simplify_logical (rtx x)
5448 {
5449 enum machine_mode mode = GET_MODE (x);
5450 rtx op0 = XEXP (x, 0);
5451 rtx op1 = XEXP (x, 1);
5452 rtx reversed;
5453
5454 switch (GET_CODE (x))
5455 {
5456 case AND:
5457 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5458 insn (and may simplify more). */
5459 if (GET_CODE (op0) == XOR
5460 && rtx_equal_p (XEXP (op0, 0), op1)
5461 && ! side_effects_p (op1))
5462 x = simplify_gen_binary (AND, mode,
5463 simplify_gen_unary (NOT, mode,
5464 XEXP (op0, 1), mode),
5465 op1);
5466
5467 if (GET_CODE (op0) == XOR
5468 && rtx_equal_p (XEXP (op0, 1), op1)
5469 && ! side_effects_p (op1))
5470 x = simplify_gen_binary (AND, mode,
5471 simplify_gen_unary (NOT, mode,
5472 XEXP (op0, 0), mode),
5473 op1);
5474
5475 /* Similarly for (~(A ^ B)) & A. */
5476 if (GET_CODE (op0) == NOT
5477 && GET_CODE (XEXP (op0, 0)) == XOR
5478 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5479 && ! side_effects_p (op1))
5480 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5481
5482 if (GET_CODE (op0) == NOT
5483 && GET_CODE (XEXP (op0, 0)) == XOR
5484 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5485 && ! side_effects_p (op1))
5486 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5487
5488 /* We can call simplify_and_const_int only if we don't lose
5489 any (sign) bits when converting INTVAL (op1) to
5490 "unsigned HOST_WIDE_INT". */
5491 if (GET_CODE (op1) == CONST_INT
5492 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5493 || INTVAL (op1) > 0))
5494 {
5495 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5496
5497 /* If we have (ior (and (X C1) C2)) and the next restart would be
5498 the last, simplify this by making C1 as small as possible
5499 and then exit. Only do this if C1 actually changes: for now
5500 this only saves memory but, should this transformation be
5501 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5502 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5503 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5504 && GET_CODE (op1) == CONST_INT
5505 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5506 return simplify_gen_binary (IOR, mode,
5507 simplify_gen_binary
5508 (AND, mode, XEXP (op0, 0),
5509 GEN_INT (INTVAL (XEXP (op0, 1))
5510 & ~INTVAL (op1))), op1);
5511
5512 if (GET_CODE (x) != AND)
5513 return x;
5514
5515 op0 = XEXP (x, 0);
5516 op1 = XEXP (x, 1);
5517 }
5518
5519 /* Convert (A | B) & A to A. */
5520 if (GET_CODE (op0) == IOR
5521 && (rtx_equal_p (XEXP (op0, 0), op1)
5522 || rtx_equal_p (XEXP (op0, 1), op1))
5523 && ! side_effects_p (XEXP (op0, 0))
5524 && ! side_effects_p (XEXP (op0, 1)))
5525 return op1;
5526
5527 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5528 apply the distributive law and then the inverse distributive
5529 law to see if things simplify. */
5530 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5531 {
5532 rtx result = distribute_and_simplify_rtx (x, 0);
5533 if (result)
5534 return result;
5535 }
5536 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5537 {
5538 rtx result = distribute_and_simplify_rtx (x, 1);
5539 if (result)
5540 return result;
5541 }
5542 break;
5543
5544 case IOR:
5545 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5546 if (GET_CODE (op1) == CONST_INT
5547 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5548 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5549 return op1;
5550
5551 /* Convert (A & B) | A to A. */
5552 if (GET_CODE (op0) == AND
5553 && (rtx_equal_p (XEXP (op0, 0), op1)
5554 || rtx_equal_p (XEXP (op0, 1), op1))
5555 && ! side_effects_p (XEXP (op0, 0))
5556 && ! side_effects_p (XEXP (op0, 1)))
5557 return op1;
5558
5559 /* If we have (ior (and A B) C), apply the distributive law and then
5560 the inverse distributive law to see if things simplify. */
5561
5562 if (GET_CODE (op0) == AND)
5563 {
5564 rtx result = distribute_and_simplify_rtx (x, 0);
5565 if (result)
5566 return result;
5567 }
5568
5569 if (GET_CODE (op1) == AND)
5570 {
5571 rtx result = distribute_and_simplify_rtx (x, 1);
5572 if (result)
5573 return result;
5574 }
5575
5576 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5577 mode size to (rotate A CX). */
5578
5579 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5580 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5581 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5582 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5583 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5584 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5585 == GET_MODE_BITSIZE (mode)))
5586 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5587 (GET_CODE (op0) == ASHIFT
5588 ? XEXP (op0, 1) : XEXP (op1, 1)));
5589
5590 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5591 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5592 does not affect any of the bits in OP1, it can really be done
5593 as a PLUS and we can associate. We do this by seeing if OP1
5594 can be safely shifted left C bits. */
5595 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5596 && GET_CODE (XEXP (op0, 0)) == PLUS
5597 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5598 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5599 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5600 {
5601 int count = INTVAL (XEXP (op0, 1));
5602 HOST_WIDE_INT mask = INTVAL (op1) << count;
5603
5604 if (mask >> count == INTVAL (op1)
5605 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5606 {
5607 SUBST (XEXP (XEXP (op0, 0), 1),
5608 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5609 return op0;
5610 }
5611 }
5612 break;
5613
5614 case XOR:
5615 /* If we are XORing two things that have no bits in common,
5616 convert them into an IOR. This helps to detect rotation encoded
5617 using those methods and possibly other simplifications. */
5618
5619 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5620 && (nonzero_bits (op0, mode)
5621 & nonzero_bits (op1, mode)) == 0)
5622 return (simplify_gen_binary (IOR, mode, op0, op1));
5623
5624 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5625 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5626 (NOT y). */
5627 {
5628 int num_negated = 0;
5629
5630 if (GET_CODE (op0) == NOT)
5631 num_negated++, op0 = XEXP (op0, 0);
5632 if (GET_CODE (op1) == NOT)
5633 num_negated++, op1 = XEXP (op1, 0);
5634
5635 if (num_negated == 2)
5636 {
5637 SUBST (XEXP (x, 0), op0);
5638 SUBST (XEXP (x, 1), op1);
5639 }
5640 else if (num_negated == 1)
5641 return
5642 simplify_gen_unary (NOT, mode,
5643 simplify_gen_binary (XOR, mode, op0, op1),
5644 mode);
5645 }
5646
5647 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5648 correspond to a machine insn or result in further simplifications
5649 if B is a constant. */
5650
5651 if (GET_CODE (op0) == AND
5652 && rtx_equal_p (XEXP (op0, 1), op1)
5653 && ! side_effects_p (op1))
5654 return simplify_gen_binary (AND, mode,
5655 simplify_gen_unary (NOT, mode,
5656 XEXP (op0, 0), mode),
5657 op1);
5658
5659 else if (GET_CODE (op0) == AND
5660 && rtx_equal_p (XEXP (op0, 0), op1)
5661 && ! side_effects_p (op1))
5662 return simplify_gen_binary (AND, mode,
5663 simplify_gen_unary (NOT, mode,
5664 XEXP (op0, 1), mode),
5665 op1);
5666
5667 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5668 comparison if STORE_FLAG_VALUE is 1. */
5669 if (STORE_FLAG_VALUE == 1
5670 && op1 == const1_rtx
5671 && COMPARISON_P (op0)
5672 && (reversed = reversed_comparison (op0, mode)))
5673 return reversed;
5674
5675 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5676 is (lt foo (const_int 0)), so we can perform the above
5677 simplification if STORE_FLAG_VALUE is 1. */
5678
5679 if (STORE_FLAG_VALUE == 1
5680 && op1 == const1_rtx
5681 && GET_CODE (op0) == LSHIFTRT
5682 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5683 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5684 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5685
5686 /* (xor (comparison foo bar) (const_int sign-bit))
5687 when STORE_FLAG_VALUE is the sign bit. */
5688 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5689 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5690 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5691 && op1 == const_true_rtx
5692 && COMPARISON_P (op0)
5693 && (reversed = reversed_comparison (op0, mode)))
5694 return reversed;
5695
5696 break;
5697
5698 default:
5699 gcc_unreachable ();
5700 }
5701
5702 return x;
5703 }
5704 \f
5705 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5706 operations" because they can be replaced with two more basic operations.
5707 ZERO_EXTEND is also considered "compound" because it can be replaced with
5708 an AND operation, which is simpler, though only one operation.
5709
5710 The function expand_compound_operation is called with an rtx expression
5711 and will convert it to the appropriate shifts and AND operations,
5712 simplifying at each stage.
5713
5714 The function make_compound_operation is called to convert an expression
5715 consisting of shifts and ANDs into the equivalent compound expression.
5716 It is the inverse of this function, loosely speaking. */
5717
5718 static rtx
5719 expand_compound_operation (rtx x)
5720 {
5721 unsigned HOST_WIDE_INT pos = 0, len;
5722 int unsignedp = 0;
5723 unsigned int modewidth;
5724 rtx tem;
5725
5726 switch (GET_CODE (x))
5727 {
5728 case ZERO_EXTEND:
5729 unsignedp = 1;
5730 case SIGN_EXTEND:
5731 /* We can't necessarily use a const_int for a multiword mode;
5732 it depends on implicitly extending the value.
5733 Since we don't know the right way to extend it,
5734 we can't tell whether the implicit way is right.
5735
5736 Even for a mode that is no wider than a const_int,
5737 we can't win, because we need to sign extend one of its bits through
5738 the rest of it, and we don't know which bit. */
5739 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5740 return x;
5741
5742 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5743 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5744 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5745 reloaded. If not for that, MEM's would very rarely be safe.
5746
5747 Reject MODEs bigger than a word, because we might not be able
5748 to reference a two-register group starting with an arbitrary register
5749 (and currently gen_lowpart might crash for a SUBREG). */
5750
5751 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5752 return x;
5753
5754 /* Reject MODEs that aren't scalar integers because turning vector
5755 or complex modes into shifts causes problems. */
5756
5757 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5758 return x;
5759
5760 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5761 /* If the inner object has VOIDmode (the only way this can happen
5762 is if it is an ASM_OPERANDS), we can't do anything since we don't
5763 know how much masking to do. */
5764 if (len == 0)
5765 return x;
5766
5767 break;
5768
5769 case ZERO_EXTRACT:
5770 unsignedp = 1;
5771
5772 /* ... fall through ... */
5773
5774 case SIGN_EXTRACT:
5775 /* If the operand is a CLOBBER, just return it. */
5776 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5777 return XEXP (x, 0);
5778
5779 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5780 || GET_CODE (XEXP (x, 2)) != CONST_INT
5781 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5782 return x;
5783
5784 /* Reject MODEs that aren't scalar integers because turning vector
5785 or complex modes into shifts causes problems. */
5786
5787 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5788 return x;
5789
5790 len = INTVAL (XEXP (x, 1));
5791 pos = INTVAL (XEXP (x, 2));
5792
5793 /* If this goes outside the object being extracted, replace the object
5794 with a (use (mem ...)) construct that only combine understands
5795 and is used only for this purpose. */
5796 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5797 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5798
5799 if (BITS_BIG_ENDIAN)
5800 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5801
5802 break;
5803
5804 default:
5805 return x;
5806 }
5807 /* Convert sign extension to zero extension, if we know that the high
5808 bit is not set, as this is easier to optimize. It will be converted
5809 back to cheaper alternative in make_extraction. */
5810 if (GET_CODE (x) == SIGN_EXTEND
5811 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5812 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5813 & ~(((unsigned HOST_WIDE_INT)
5814 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5815 >> 1))
5816 == 0)))
5817 {
5818 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5819 rtx temp2 = expand_compound_operation (temp);
5820
5821 /* Make sure this is a profitable operation. */
5822 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5823 return temp2;
5824 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5825 return temp;
5826 else
5827 return x;
5828 }
5829
5830 /* We can optimize some special cases of ZERO_EXTEND. */
5831 if (GET_CODE (x) == ZERO_EXTEND)
5832 {
5833 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5834 know that the last value didn't have any inappropriate bits
5835 set. */
5836 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5837 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5838 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5839 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5840 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5841 return XEXP (XEXP (x, 0), 0);
5842
5843 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5844 if (GET_CODE (XEXP (x, 0)) == SUBREG
5845 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5846 && subreg_lowpart_p (XEXP (x, 0))
5847 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5848 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5849 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5850 return SUBREG_REG (XEXP (x, 0));
5851
5852 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5853 is a comparison and STORE_FLAG_VALUE permits. This is like
5854 the first case, but it works even when GET_MODE (x) is larger
5855 than HOST_WIDE_INT. */
5856 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5857 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5858 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5859 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5860 <= HOST_BITS_PER_WIDE_INT)
5861 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5862 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5863 return XEXP (XEXP (x, 0), 0);
5864
5865 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5866 if (GET_CODE (XEXP (x, 0)) == SUBREG
5867 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5868 && subreg_lowpart_p (XEXP (x, 0))
5869 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5870 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5871 <= HOST_BITS_PER_WIDE_INT)
5872 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5873 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5874 return SUBREG_REG (XEXP (x, 0));
5875
5876 }
5877
5878 /* If we reach here, we want to return a pair of shifts. The inner
5879 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5880 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5881 logical depending on the value of UNSIGNEDP.
5882
5883 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5884 converted into an AND of a shift.
5885
5886 We must check for the case where the left shift would have a negative
5887 count. This can happen in a case like (x >> 31) & 255 on machines
5888 that can't shift by a constant. On those machines, we would first
5889 combine the shift with the AND to produce a variable-position
5890 extraction. Then the constant of 31 would be substituted in to produce
5891 a such a position. */
5892
5893 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5894 if (modewidth + len >= pos)
5895 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5896 GET_MODE (x),
5897 simplify_shift_const (NULL_RTX, ASHIFT,
5898 GET_MODE (x),
5899 XEXP (x, 0),
5900 modewidth - pos - len),
5901 modewidth - len);
5902
5903 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5904 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5905 simplify_shift_const (NULL_RTX, LSHIFTRT,
5906 GET_MODE (x),
5907 XEXP (x, 0), pos),
5908 ((HOST_WIDE_INT) 1 << len) - 1);
5909 else
5910 /* Any other cases we can't handle. */
5911 return x;
5912
5913 /* If we couldn't do this for some reason, return the original
5914 expression. */
5915 if (GET_CODE (tem) == CLOBBER)
5916 return x;
5917
5918 return tem;
5919 }
5920 \f
5921 /* X is a SET which contains an assignment of one object into
5922 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5923 or certain SUBREGS). If possible, convert it into a series of
5924 logical operations.
5925
5926 We half-heartedly support variable positions, but do not at all
5927 support variable lengths. */
5928
5929 static rtx
5930 expand_field_assignment (rtx x)
5931 {
5932 rtx inner;
5933 rtx pos; /* Always counts from low bit. */
5934 int len;
5935 rtx mask, cleared, masked;
5936 enum machine_mode compute_mode;
5937
5938 /* Loop until we find something we can't simplify. */
5939 while (1)
5940 {
5941 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5942 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5943 {
5944 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5945 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5946 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5947 }
5948 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5949 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5950 {
5951 inner = XEXP (SET_DEST (x), 0);
5952 len = INTVAL (XEXP (SET_DEST (x), 1));
5953 pos = XEXP (SET_DEST (x), 2);
5954
5955 /* If the position is constant and spans the width of INNER,
5956 surround INNER with a USE to indicate this. */
5957 if (GET_CODE (pos) == CONST_INT
5958 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5959 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5960
5961 if (BITS_BIG_ENDIAN)
5962 {
5963 if (GET_CODE (pos) == CONST_INT)
5964 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5965 - INTVAL (pos));
5966 else if (GET_CODE (pos) == MINUS
5967 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5968 && (INTVAL (XEXP (pos, 1))
5969 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5970 /* If position is ADJUST - X, new position is X. */
5971 pos = XEXP (pos, 0);
5972 else
5973 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5974 GEN_INT (GET_MODE_BITSIZE (
5975 GET_MODE (inner))
5976 - len),
5977 pos);
5978 }
5979 }
5980
5981 /* A SUBREG between two modes that occupy the same numbers of words
5982 can be done by moving the SUBREG to the source. */
5983 else if (GET_CODE (SET_DEST (x)) == SUBREG
5984 /* We need SUBREGs to compute nonzero_bits properly. */
5985 && nonzero_sign_valid
5986 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5987 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5988 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5989 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5990 {
5991 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5992 gen_lowpart
5993 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5994 SET_SRC (x)));
5995 continue;
5996 }
5997 else
5998 break;
5999
6000 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6001 inner = SUBREG_REG (inner);
6002
6003 compute_mode = GET_MODE (inner);
6004
6005 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6006 if (! SCALAR_INT_MODE_P (compute_mode))
6007 {
6008 enum machine_mode imode;
6009
6010 /* Don't do anything for vector or complex integral types. */
6011 if (! FLOAT_MODE_P (compute_mode))
6012 break;
6013
6014 /* Try to find an integral mode to pun with. */
6015 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6016 if (imode == BLKmode)
6017 break;
6018
6019 compute_mode = imode;
6020 inner = gen_lowpart (imode, inner);
6021 }
6022
6023 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6024 if (len >= HOST_BITS_PER_WIDE_INT)
6025 break;
6026
6027 /* Now compute the equivalent expression. Make a copy of INNER
6028 for the SET_DEST in case it is a MEM into which we will substitute;
6029 we don't want shared RTL in that case. */
6030 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6031 cleared = simplify_gen_binary (AND, compute_mode,
6032 simplify_gen_unary (NOT, compute_mode,
6033 simplify_gen_binary (ASHIFT,
6034 compute_mode,
6035 mask, pos),
6036 compute_mode),
6037 inner);
6038 masked = simplify_gen_binary (ASHIFT, compute_mode,
6039 simplify_gen_binary (
6040 AND, compute_mode,
6041 gen_lowpart (compute_mode, SET_SRC (x)),
6042 mask),
6043 pos);
6044
6045 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6046 simplify_gen_binary (IOR, compute_mode,
6047 cleared, masked));
6048 }
6049
6050 return x;
6051 }
6052 \f
6053 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6054 it is an RTX that represents a variable starting position; otherwise,
6055 POS is the (constant) starting bit position (counted from the LSB).
6056
6057 INNER may be a USE. This will occur when we started with a bitfield
6058 that went outside the boundary of the object in memory, which is
6059 allowed on most machines. To isolate this case, we produce a USE
6060 whose mode is wide enough and surround the MEM with it. The only
6061 code that understands the USE is this routine. If it is not removed,
6062 it will cause the resulting insn not to match.
6063
6064 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6065 signed reference.
6066
6067 IN_DEST is nonzero if this is a reference in the destination of a
6068 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6069 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6070 be used.
6071
6072 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6073 ZERO_EXTRACT should be built even for bits starting at bit 0.
6074
6075 MODE is the desired mode of the result (if IN_DEST == 0).
6076
6077 The result is an RTX for the extraction or NULL_RTX if the target
6078 can't handle it. */
6079
6080 static rtx
6081 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6082 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6083 int in_dest, int in_compare)
6084 {
6085 /* This mode describes the size of the storage area
6086 to fetch the overall value from. Within that, we
6087 ignore the POS lowest bits, etc. */
6088 enum machine_mode is_mode = GET_MODE (inner);
6089 enum machine_mode inner_mode;
6090 enum machine_mode wanted_inner_mode = byte_mode;
6091 enum machine_mode wanted_inner_reg_mode = word_mode;
6092 enum machine_mode pos_mode = word_mode;
6093 enum machine_mode extraction_mode = word_mode;
6094 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6095 int spans_byte = 0;
6096 rtx new = 0;
6097 rtx orig_pos_rtx = pos_rtx;
6098 HOST_WIDE_INT orig_pos;
6099
6100 /* Get some information about INNER and get the innermost object. */
6101 if (GET_CODE (inner) == USE)
6102 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6103 /* We don't need to adjust the position because we set up the USE
6104 to pretend that it was a full-word object. */
6105 spans_byte = 1, inner = XEXP (inner, 0);
6106 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6107 {
6108 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6109 consider just the QI as the memory to extract from.
6110 The subreg adds or removes high bits; its mode is
6111 irrelevant to the meaning of this extraction,
6112 since POS and LEN count from the lsb. */
6113 if (MEM_P (SUBREG_REG (inner)))
6114 is_mode = GET_MODE (SUBREG_REG (inner));
6115 inner = SUBREG_REG (inner);
6116 }
6117 else if (GET_CODE (inner) == ASHIFT
6118 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6119 && pos_rtx == 0 && pos == 0
6120 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6121 {
6122 /* We're extracting the least significant bits of an rtx
6123 (ashift X (const_int C)), where LEN > C. Extract the
6124 least significant (LEN - C) bits of X, giving an rtx
6125 whose mode is MODE, then shift it left C times. */
6126 new = make_extraction (mode, XEXP (inner, 0),
6127 0, 0, len - INTVAL (XEXP (inner, 1)),
6128 unsignedp, in_dest, in_compare);
6129 if (new != 0)
6130 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6131 }
6132
6133 inner_mode = GET_MODE (inner);
6134
6135 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6136 pos = INTVAL (pos_rtx), pos_rtx = 0;
6137
6138 /* See if this can be done without an extraction. We never can if the
6139 width of the field is not the same as that of some integer mode. For
6140 registers, we can only avoid the extraction if the position is at the
6141 low-order bit and this is either not in the destination or we have the
6142 appropriate STRICT_LOW_PART operation available.
6143
6144 For MEM, we can avoid an extract if the field starts on an appropriate
6145 boundary and we can change the mode of the memory reference. However,
6146 we cannot directly access the MEM if we have a USE and the underlying
6147 MEM is not TMODE. This combination means that MEM was being used in a
6148 context where bits outside its mode were being referenced; that is only
6149 valid in bit-field insns. */
6150
6151 if (tmode != BLKmode
6152 && ! (spans_byte && inner_mode != tmode)
6153 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6154 && !MEM_P (inner)
6155 && (! in_dest
6156 || (REG_P (inner)
6157 && have_insn_for (STRICT_LOW_PART, tmode))))
6158 || (MEM_P (inner) && pos_rtx == 0
6159 && (pos
6160 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6161 : BITS_PER_UNIT)) == 0
6162 /* We can't do this if we are widening INNER_MODE (it
6163 may not be aligned, for one thing). */
6164 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6165 && (inner_mode == tmode
6166 || (! mode_dependent_address_p (XEXP (inner, 0))
6167 && ! MEM_VOLATILE_P (inner))))))
6168 {
6169 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6170 field. If the original and current mode are the same, we need not
6171 adjust the offset. Otherwise, we do if bytes big endian.
6172
6173 If INNER is not a MEM, get a piece consisting of just the field
6174 of interest (in this case POS % BITS_PER_WORD must be 0). */
6175
6176 if (MEM_P (inner))
6177 {
6178 HOST_WIDE_INT offset;
6179
6180 /* POS counts from lsb, but make OFFSET count in memory order. */
6181 if (BYTES_BIG_ENDIAN)
6182 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6183 else
6184 offset = pos / BITS_PER_UNIT;
6185
6186 new = adjust_address_nv (inner, tmode, offset);
6187 }
6188 else if (REG_P (inner))
6189 {
6190 if (tmode != inner_mode)
6191 {
6192 /* We can't call gen_lowpart in a DEST since we
6193 always want a SUBREG (see below) and it would sometimes
6194 return a new hard register. */
6195 if (pos || in_dest)
6196 {
6197 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6198
6199 if (WORDS_BIG_ENDIAN
6200 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6201 final_word = ((GET_MODE_SIZE (inner_mode)
6202 - GET_MODE_SIZE (tmode))
6203 / UNITS_PER_WORD) - final_word;
6204
6205 final_word *= UNITS_PER_WORD;
6206 if (BYTES_BIG_ENDIAN &&
6207 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6208 final_word += (GET_MODE_SIZE (inner_mode)
6209 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6210
6211 /* Avoid creating invalid subregs, for example when
6212 simplifying (x>>32)&255. */
6213 if (final_word >= GET_MODE_SIZE (inner_mode))
6214 return NULL_RTX;
6215
6216 new = gen_rtx_SUBREG (tmode, inner, final_word);
6217 }
6218 else
6219 new = gen_lowpart (tmode, inner);
6220 }
6221 else
6222 new = inner;
6223 }
6224 else
6225 new = force_to_mode (inner, tmode,
6226 len >= HOST_BITS_PER_WIDE_INT
6227 ? ~(unsigned HOST_WIDE_INT) 0
6228 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6229 NULL_RTX, 0);
6230
6231 /* If this extraction is going into the destination of a SET,
6232 make a STRICT_LOW_PART unless we made a MEM. */
6233
6234 if (in_dest)
6235 return (MEM_P (new) ? new
6236 : (GET_CODE (new) != SUBREG
6237 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6238 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6239
6240 if (mode == tmode)
6241 return new;
6242
6243 if (GET_CODE (new) == CONST_INT)
6244 return gen_int_mode (INTVAL (new), mode);
6245
6246 /* If we know that no extraneous bits are set, and that the high
6247 bit is not set, convert the extraction to the cheaper of
6248 sign and zero extension, that are equivalent in these cases. */
6249 if (flag_expensive_optimizations
6250 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6251 && ((nonzero_bits (new, tmode)
6252 & ~(((unsigned HOST_WIDE_INT)
6253 GET_MODE_MASK (tmode))
6254 >> 1))
6255 == 0)))
6256 {
6257 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6258 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6259
6260 /* Prefer ZERO_EXTENSION, since it gives more information to
6261 backends. */
6262 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6263 return temp;
6264 return temp1;
6265 }
6266
6267 /* Otherwise, sign- or zero-extend unless we already are in the
6268 proper mode. */
6269
6270 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6271 mode, new));
6272 }
6273
6274 /* Unless this is a COMPARE or we have a funny memory reference,
6275 don't do anything with zero-extending field extracts starting at
6276 the low-order bit since they are simple AND operations. */
6277 if (pos_rtx == 0 && pos == 0 && ! in_dest
6278 && ! in_compare && ! spans_byte && unsignedp)
6279 return 0;
6280
6281 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6282 we would be spanning bytes or if the position is not a constant and the
6283 length is not 1. In all other cases, we would only be going outside
6284 our object in cases when an original shift would have been
6285 undefined. */
6286 if (! spans_byte && MEM_P (inner)
6287 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6288 || (pos_rtx != 0 && len != 1)))
6289 return 0;
6290
6291 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6292 and the mode for the result. */
6293 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6294 {
6295 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6296 pos_mode = mode_for_extraction (EP_insv, 2);
6297 extraction_mode = mode_for_extraction (EP_insv, 3);
6298 }
6299
6300 if (! in_dest && unsignedp
6301 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6302 {
6303 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6304 pos_mode = mode_for_extraction (EP_extzv, 3);
6305 extraction_mode = mode_for_extraction (EP_extzv, 0);
6306 }
6307
6308 if (! in_dest && ! unsignedp
6309 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6310 {
6311 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6312 pos_mode = mode_for_extraction (EP_extv, 3);
6313 extraction_mode = mode_for_extraction (EP_extv, 0);
6314 }
6315
6316 /* Never narrow an object, since that might not be safe. */
6317
6318 if (mode != VOIDmode
6319 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6320 extraction_mode = mode;
6321
6322 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6323 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6324 pos_mode = GET_MODE (pos_rtx);
6325
6326 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6327 if we have to change the mode of memory and cannot, the desired mode is
6328 EXTRACTION_MODE. */
6329 if (!MEM_P (inner))
6330 wanted_inner_mode = wanted_inner_reg_mode;
6331 else if (inner_mode != wanted_inner_mode
6332 && (mode_dependent_address_p (XEXP (inner, 0))
6333 || MEM_VOLATILE_P (inner)))
6334 wanted_inner_mode = extraction_mode;
6335
6336 orig_pos = pos;
6337
6338 if (BITS_BIG_ENDIAN)
6339 {
6340 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6341 BITS_BIG_ENDIAN style. If position is constant, compute new
6342 position. Otherwise, build subtraction.
6343 Note that POS is relative to the mode of the original argument.
6344 If it's a MEM we need to recompute POS relative to that.
6345 However, if we're extracting from (or inserting into) a register,
6346 we want to recompute POS relative to wanted_inner_mode. */
6347 int width = (MEM_P (inner)
6348 ? GET_MODE_BITSIZE (is_mode)
6349 : GET_MODE_BITSIZE (wanted_inner_mode));
6350
6351 if (pos_rtx == 0)
6352 pos = width - len - pos;
6353 else
6354 pos_rtx
6355 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6356 /* POS may be less than 0 now, but we check for that below.
6357 Note that it can only be less than 0 if !MEM_P (inner). */
6358 }
6359
6360 /* If INNER has a wider mode, make it smaller. If this is a constant
6361 extract, try to adjust the byte to point to the byte containing
6362 the value. */
6363 if (wanted_inner_mode != VOIDmode
6364 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6365 && ((MEM_P (inner)
6366 && (inner_mode == wanted_inner_mode
6367 || (! mode_dependent_address_p (XEXP (inner, 0))
6368 && ! MEM_VOLATILE_P (inner))))))
6369 {
6370 int offset = 0;
6371
6372 /* The computations below will be correct if the machine is big
6373 endian in both bits and bytes or little endian in bits and bytes.
6374 If it is mixed, we must adjust. */
6375
6376 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6377 adjust OFFSET to compensate. */
6378 if (BYTES_BIG_ENDIAN
6379 && ! spans_byte
6380 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6381 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6382
6383 /* If this is a constant position, we can move to the desired byte. */
6384 if (pos_rtx == 0)
6385 {
6386 offset += pos / BITS_PER_UNIT;
6387 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6388 }
6389
6390 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6391 && ! spans_byte
6392 && is_mode != wanted_inner_mode)
6393 offset = (GET_MODE_SIZE (is_mode)
6394 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6395
6396 if (offset != 0 || inner_mode != wanted_inner_mode)
6397 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6398 }
6399
6400 /* If INNER is not memory, we can always get it into the proper mode. If we
6401 are changing its mode, POS must be a constant and smaller than the size
6402 of the new mode. */
6403 else if (!MEM_P (inner))
6404 {
6405 if (GET_MODE (inner) != wanted_inner_mode
6406 && (pos_rtx != 0
6407 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6408 return 0;
6409
6410 inner = force_to_mode (inner, wanted_inner_mode,
6411 pos_rtx
6412 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6413 ? ~(unsigned HOST_WIDE_INT) 0
6414 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6415 << orig_pos),
6416 NULL_RTX, 0);
6417 }
6418
6419 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6420 have to zero extend. Otherwise, we can just use a SUBREG. */
6421 if (pos_rtx != 0
6422 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6423 {
6424 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6425
6426 /* If we know that no extraneous bits are set, and that the high
6427 bit is not set, convert extraction to cheaper one - either
6428 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6429 cases. */
6430 if (flag_expensive_optimizations
6431 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6432 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6433 & ~(((unsigned HOST_WIDE_INT)
6434 GET_MODE_MASK (GET_MODE (pos_rtx)))
6435 >> 1))
6436 == 0)))
6437 {
6438 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6439
6440 /* Prefer ZERO_EXTENSION, since it gives more information to
6441 backends. */
6442 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6443 temp = temp1;
6444 }
6445 pos_rtx = temp;
6446 }
6447 else if (pos_rtx != 0
6448 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6449 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6450
6451 /* Make POS_RTX unless we already have it and it is correct. If we don't
6452 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6453 be a CONST_INT. */
6454 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6455 pos_rtx = orig_pos_rtx;
6456
6457 else if (pos_rtx == 0)
6458 pos_rtx = GEN_INT (pos);
6459
6460 /* Make the required operation. See if we can use existing rtx. */
6461 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6462 extraction_mode, inner, GEN_INT (len), pos_rtx);
6463 if (! in_dest)
6464 new = gen_lowpart (mode, new);
6465
6466 return new;
6467 }
6468 \f
6469 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6470 with any other operations in X. Return X without that shift if so. */
6471
6472 static rtx
6473 extract_left_shift (rtx x, int count)
6474 {
6475 enum rtx_code code = GET_CODE (x);
6476 enum machine_mode mode = GET_MODE (x);
6477 rtx tem;
6478
6479 switch (code)
6480 {
6481 case ASHIFT:
6482 /* This is the shift itself. If it is wide enough, we will return
6483 either the value being shifted if the shift count is equal to
6484 COUNT or a shift for the difference. */
6485 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6486 && INTVAL (XEXP (x, 1)) >= count)
6487 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6488 INTVAL (XEXP (x, 1)) - count);
6489 break;
6490
6491 case NEG: case NOT:
6492 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6493 return simplify_gen_unary (code, mode, tem, mode);
6494
6495 break;
6496
6497 case PLUS: case IOR: case XOR: case AND:
6498 /* If we can safely shift this constant and we find the inner shift,
6499 make a new operation. */
6500 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6501 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6502 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6503 return simplify_gen_binary (code, mode, tem,
6504 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6505
6506 break;
6507
6508 default:
6509 break;
6510 }
6511
6512 return 0;
6513 }
6514 \f
6515 /* Look at the expression rooted at X. Look for expressions
6516 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6517 Form these expressions.
6518
6519 Return the new rtx, usually just X.
6520
6521 Also, for machines like the VAX that don't have logical shift insns,
6522 try to convert logical to arithmetic shift operations in cases where
6523 they are equivalent. This undoes the canonicalizations to logical
6524 shifts done elsewhere.
6525
6526 We try, as much as possible, to re-use rtl expressions to save memory.
6527
6528 IN_CODE says what kind of expression we are processing. Normally, it is
6529 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6530 being kludges), it is MEM. When processing the arguments of a comparison
6531 or a COMPARE against zero, it is COMPARE. */
6532
6533 static rtx
6534 make_compound_operation (rtx x, enum rtx_code in_code)
6535 {
6536 enum rtx_code code = GET_CODE (x);
6537 enum machine_mode mode = GET_MODE (x);
6538 int mode_width = GET_MODE_BITSIZE (mode);
6539 rtx rhs, lhs;
6540 enum rtx_code next_code;
6541 int i;
6542 rtx new = 0;
6543 rtx tem;
6544 const char *fmt;
6545
6546 /* Select the code to be used in recursive calls. Once we are inside an
6547 address, we stay there. If we have a comparison, set to COMPARE,
6548 but once inside, go back to our default of SET. */
6549
6550 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6551 : ((code == COMPARE || COMPARISON_P (x))
6552 && XEXP (x, 1) == const0_rtx) ? COMPARE
6553 : in_code == COMPARE ? SET : in_code);
6554
6555 /* Process depending on the code of this operation. If NEW is set
6556 nonzero, it will be returned. */
6557
6558 switch (code)
6559 {
6560 case ASHIFT:
6561 /* Convert shifts by constants into multiplications if inside
6562 an address. */
6563 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6564 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6565 && INTVAL (XEXP (x, 1)) >= 0)
6566 {
6567 new = make_compound_operation (XEXP (x, 0), next_code);
6568 new = gen_rtx_MULT (mode, new,
6569 GEN_INT ((HOST_WIDE_INT) 1
6570 << INTVAL (XEXP (x, 1))));
6571 }
6572 break;
6573
6574 case AND:
6575 /* If the second operand is not a constant, we can't do anything
6576 with it. */
6577 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6578 break;
6579
6580 /* If the constant is a power of two minus one and the first operand
6581 is a logical right shift, make an extraction. */
6582 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6583 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6584 {
6585 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6586 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6587 0, in_code == COMPARE);
6588 }
6589
6590 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6591 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6592 && subreg_lowpart_p (XEXP (x, 0))
6593 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6594 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6595 {
6596 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6597 next_code);
6598 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6599 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6600 0, in_code == COMPARE);
6601 }
6602 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6603 else if ((GET_CODE (XEXP (x, 0)) == XOR
6604 || GET_CODE (XEXP (x, 0)) == IOR)
6605 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6606 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6607 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6608 {
6609 /* Apply the distributive law, and then try to make extractions. */
6610 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6611 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6612 XEXP (x, 1)),
6613 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6614 XEXP (x, 1)));
6615 new = make_compound_operation (new, in_code);
6616 }
6617
6618 /* If we are have (and (rotate X C) M) and C is larger than the number
6619 of bits in M, this is an extraction. */
6620
6621 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6622 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6623 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6624 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6625 {
6626 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6627 new = make_extraction (mode, new,
6628 (GET_MODE_BITSIZE (mode)
6629 - INTVAL (XEXP (XEXP (x, 0), 1))),
6630 NULL_RTX, i, 1, 0, in_code == COMPARE);
6631 }
6632
6633 /* On machines without logical shifts, if the operand of the AND is
6634 a logical shift and our mask turns off all the propagated sign
6635 bits, we can replace the logical shift with an arithmetic shift. */
6636 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6637 && !have_insn_for (LSHIFTRT, mode)
6638 && have_insn_for (ASHIFTRT, mode)
6639 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6640 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6641 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6642 && mode_width <= HOST_BITS_PER_WIDE_INT)
6643 {
6644 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6645
6646 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6647 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6648 SUBST (XEXP (x, 0),
6649 gen_rtx_ASHIFTRT (mode,
6650 make_compound_operation
6651 (XEXP (XEXP (x, 0), 0), next_code),
6652 XEXP (XEXP (x, 0), 1)));
6653 }
6654
6655 /* If the constant is one less than a power of two, this might be
6656 representable by an extraction even if no shift is present.
6657 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6658 we are in a COMPARE. */
6659 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6660 new = make_extraction (mode,
6661 make_compound_operation (XEXP (x, 0),
6662 next_code),
6663 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6664
6665 /* If we are in a comparison and this is an AND with a power of two,
6666 convert this into the appropriate bit extract. */
6667 else if (in_code == COMPARE
6668 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6669 new = make_extraction (mode,
6670 make_compound_operation (XEXP (x, 0),
6671 next_code),
6672 i, NULL_RTX, 1, 1, 0, 1);
6673
6674 break;
6675
6676 case LSHIFTRT:
6677 /* If the sign bit is known to be zero, replace this with an
6678 arithmetic shift. */
6679 if (have_insn_for (ASHIFTRT, mode)
6680 && ! have_insn_for (LSHIFTRT, mode)
6681 && mode_width <= HOST_BITS_PER_WIDE_INT
6682 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6683 {
6684 new = gen_rtx_ASHIFTRT (mode,
6685 make_compound_operation (XEXP (x, 0),
6686 next_code),
6687 XEXP (x, 1));
6688 break;
6689 }
6690
6691 /* ... fall through ... */
6692
6693 case ASHIFTRT:
6694 lhs = XEXP (x, 0);
6695 rhs = XEXP (x, 1);
6696
6697 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6698 this is a SIGN_EXTRACT. */
6699 if (GET_CODE (rhs) == CONST_INT
6700 && GET_CODE (lhs) == ASHIFT
6701 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6702 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6703 {
6704 new = make_compound_operation (XEXP (lhs, 0), next_code);
6705 new = make_extraction (mode, new,
6706 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6707 NULL_RTX, mode_width - INTVAL (rhs),
6708 code == LSHIFTRT, 0, in_code == COMPARE);
6709 break;
6710 }
6711
6712 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6713 If so, try to merge the shifts into a SIGN_EXTEND. We could
6714 also do this for some cases of SIGN_EXTRACT, but it doesn't
6715 seem worth the effort; the case checked for occurs on Alpha. */
6716
6717 if (!OBJECT_P (lhs)
6718 && ! (GET_CODE (lhs) == SUBREG
6719 && (OBJECT_P (SUBREG_REG (lhs))))
6720 && GET_CODE (rhs) == CONST_INT
6721 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6722 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6723 new = make_extraction (mode, make_compound_operation (new, next_code),
6724 0, NULL_RTX, mode_width - INTVAL (rhs),
6725 code == LSHIFTRT, 0, in_code == COMPARE);
6726
6727 break;
6728
6729 case SUBREG:
6730 /* Call ourselves recursively on the inner expression. If we are
6731 narrowing the object and it has a different RTL code from
6732 what it originally did, do this SUBREG as a force_to_mode. */
6733
6734 tem = make_compound_operation (SUBREG_REG (x), in_code);
6735 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6736 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6737 && subreg_lowpart_p (x))
6738 {
6739 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6740 NULL_RTX, 0);
6741
6742 /* If we have something other than a SUBREG, we might have
6743 done an expansion, so rerun ourselves. */
6744 if (GET_CODE (newer) != SUBREG)
6745 newer = make_compound_operation (newer, in_code);
6746
6747 return newer;
6748 }
6749
6750 /* If this is a paradoxical subreg, and the new code is a sign or
6751 zero extension, omit the subreg and widen the extension. If it
6752 is a regular subreg, we can still get rid of the subreg by not
6753 widening so much, or in fact removing the extension entirely. */
6754 if ((GET_CODE (tem) == SIGN_EXTEND
6755 || GET_CODE (tem) == ZERO_EXTEND)
6756 && subreg_lowpart_p (x))
6757 {
6758 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6759 || (GET_MODE_SIZE (mode) >
6760 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6761 {
6762 if (! SCALAR_INT_MODE_P (mode))
6763 break;
6764 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6765 }
6766 else
6767 tem = gen_lowpart (mode, XEXP (tem, 0));
6768 return tem;
6769 }
6770 break;
6771
6772 default:
6773 break;
6774 }
6775
6776 if (new)
6777 {
6778 x = gen_lowpart (mode, new);
6779 code = GET_CODE (x);
6780 }
6781
6782 /* Now recursively process each operand of this operation. */
6783 fmt = GET_RTX_FORMAT (code);
6784 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6785 if (fmt[i] == 'e')
6786 {
6787 new = make_compound_operation (XEXP (x, i), next_code);
6788 SUBST (XEXP (x, i), new);
6789 }
6790
6791 return x;
6792 }
6793 \f
6794 /* Given M see if it is a value that would select a field of bits
6795 within an item, but not the entire word. Return -1 if not.
6796 Otherwise, return the starting position of the field, where 0 is the
6797 low-order bit.
6798
6799 *PLEN is set to the length of the field. */
6800
6801 static int
6802 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6803 {
6804 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6805 int pos = exact_log2 (m & -m);
6806 int len = 0;
6807
6808 if (pos >= 0)
6809 /* Now shift off the low-order zero bits and see if we have a
6810 power of two minus 1. */
6811 len = exact_log2 ((m >> pos) + 1);
6812
6813 if (len <= 0)
6814 pos = -1;
6815
6816 *plen = len;
6817 return pos;
6818 }
6819 \f
6820 /* See if X can be simplified knowing that we will only refer to it in
6821 MODE and will only refer to those bits that are nonzero in MASK.
6822 If other bits are being computed or if masking operations are done
6823 that select a superset of the bits in MASK, they can sometimes be
6824 ignored.
6825
6826 Return a possibly simplified expression, but always convert X to
6827 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6828
6829 Also, if REG is nonzero and X is a register equal in value to REG,
6830 replace X with REG.
6831
6832 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6833 are all off in X. This is used when X will be complemented, by either
6834 NOT, NEG, or XOR. */
6835
6836 static rtx
6837 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6838 rtx reg, int just_select)
6839 {
6840 enum rtx_code code = GET_CODE (x);
6841 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6842 enum machine_mode op_mode;
6843 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6844 rtx op0, op1, temp;
6845
6846 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6847 code below will do the wrong thing since the mode of such an
6848 expression is VOIDmode.
6849
6850 Also do nothing if X is a CLOBBER; this can happen if X was
6851 the return value from a call to gen_lowpart. */
6852 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6853 return x;
6854
6855 /* We want to perform the operation is its present mode unless we know
6856 that the operation is valid in MODE, in which case we do the operation
6857 in MODE. */
6858 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6859 && have_insn_for (code, mode))
6860 ? mode : GET_MODE (x));
6861
6862 /* It is not valid to do a right-shift in a narrower mode
6863 than the one it came in with. */
6864 if ((code == LSHIFTRT || code == ASHIFTRT)
6865 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6866 op_mode = GET_MODE (x);
6867
6868 /* Truncate MASK to fit OP_MODE. */
6869 if (op_mode)
6870 mask &= GET_MODE_MASK (op_mode);
6871
6872 /* When we have an arithmetic operation, or a shift whose count we
6873 do not know, we need to assume that all bits up to the highest-order
6874 bit in MASK will be needed. This is how we form such a mask. */
6875 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6876 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6877 else
6878 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6879 - 1);
6880
6881 /* Determine what bits of X are guaranteed to be (non)zero. */
6882 nonzero = nonzero_bits (x, mode);
6883
6884 /* If none of the bits in X are needed, return a zero. */
6885 if (! just_select && (nonzero & mask) == 0)
6886 x = const0_rtx;
6887
6888 /* If X is a CONST_INT, return a new one. Do this here since the
6889 test below will fail. */
6890 if (GET_CODE (x) == CONST_INT)
6891 {
6892 if (SCALAR_INT_MODE_P (mode))
6893 return gen_int_mode (INTVAL (x) & mask, mode);
6894 else
6895 {
6896 x = GEN_INT (INTVAL (x) & mask);
6897 return gen_lowpart_common (mode, x);
6898 }
6899 }
6900
6901 /* If X is narrower than MODE and we want all the bits in X's mode, just
6902 get X in the proper mode. */
6903 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6904 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6905 return gen_lowpart (mode, x);
6906
6907 switch (code)
6908 {
6909 case CLOBBER:
6910 /* If X is a (clobber (const_int)), return it since we know we are
6911 generating something that won't match. */
6912 return x;
6913
6914 case USE:
6915 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6916 spanned the boundary of the MEM. If we are now masking so it is
6917 within that boundary, we don't need the USE any more. */
6918 if (! BITS_BIG_ENDIAN
6919 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6920 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6921 break;
6922
6923 case SIGN_EXTEND:
6924 case ZERO_EXTEND:
6925 case ZERO_EXTRACT:
6926 case SIGN_EXTRACT:
6927 x = expand_compound_operation (x);
6928 if (GET_CODE (x) != code)
6929 return force_to_mode (x, mode, mask, reg, next_select);
6930 break;
6931
6932 case REG:
6933 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6934 || rtx_equal_p (reg, get_last_value (x))))
6935 x = reg;
6936 break;
6937
6938 case SUBREG:
6939 if (subreg_lowpart_p (x)
6940 /* We can ignore the effect of this SUBREG if it narrows the mode or
6941 if the constant masks to zero all the bits the mode doesn't
6942 have. */
6943 && ((GET_MODE_SIZE (GET_MODE (x))
6944 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6945 || (0 == (mask
6946 & GET_MODE_MASK (GET_MODE (x))
6947 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6948 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6949 break;
6950
6951 case AND:
6952 /* If this is an AND with a constant, convert it into an AND
6953 whose constant is the AND of that constant with MASK. If it
6954 remains an AND of MASK, delete it since it is redundant. */
6955
6956 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6957 {
6958 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6959 mask & INTVAL (XEXP (x, 1)));
6960
6961 /* If X is still an AND, see if it is an AND with a mask that
6962 is just some low-order bits. If so, and it is MASK, we don't
6963 need it. */
6964
6965 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6966 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6967 == mask))
6968 x = XEXP (x, 0);
6969
6970 /* If it remains an AND, try making another AND with the bits
6971 in the mode mask that aren't in MASK turned on. If the
6972 constant in the AND is wide enough, this might make a
6973 cheaper constant. */
6974
6975 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6976 && GET_MODE_MASK (GET_MODE (x)) != mask
6977 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6978 {
6979 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6980 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6981 int width = GET_MODE_BITSIZE (GET_MODE (x));
6982 rtx y;
6983
6984 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6985 number, sign extend it. */
6986 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6987 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6988 cval |= (HOST_WIDE_INT) -1 << width;
6989
6990 y = simplify_gen_binary (AND, GET_MODE (x),
6991 XEXP (x, 0), GEN_INT (cval));
6992 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6993 x = y;
6994 }
6995
6996 break;
6997 }
6998
6999 goto binop;
7000
7001 case PLUS:
7002 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7003 low-order bits (as in an alignment operation) and FOO is already
7004 aligned to that boundary, mask C1 to that boundary as well.
7005 This may eliminate that PLUS and, later, the AND. */
7006
7007 {
7008 unsigned int width = GET_MODE_BITSIZE (mode);
7009 unsigned HOST_WIDE_INT smask = mask;
7010
7011 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7012 number, sign extend it. */
7013
7014 if (width < HOST_BITS_PER_WIDE_INT
7015 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7016 smask |= (HOST_WIDE_INT) -1 << width;
7017
7018 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7019 && exact_log2 (- smask) >= 0
7020 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7021 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7022 return force_to_mode (plus_constant (XEXP (x, 0),
7023 (INTVAL (XEXP (x, 1)) & smask)),
7024 mode, smask, reg, next_select);
7025 }
7026
7027 /* ... fall through ... */
7028
7029 case MULT:
7030 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7031 most significant bit in MASK since carries from those bits will
7032 affect the bits we are interested in. */
7033 mask = fuller_mask;
7034 goto binop;
7035
7036 case MINUS:
7037 /* If X is (minus C Y) where C's least set bit is larger than any bit
7038 in the mask, then we may replace with (neg Y). */
7039 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7040 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7041 & -INTVAL (XEXP (x, 0))))
7042 > mask))
7043 {
7044 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7045 GET_MODE (x));
7046 return force_to_mode (x, mode, mask, reg, next_select);
7047 }
7048
7049 /* Similarly, if C contains every bit in the fuller_mask, then we may
7050 replace with (not Y). */
7051 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7052 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7053 == INTVAL (XEXP (x, 0))))
7054 {
7055 x = simplify_gen_unary (NOT, GET_MODE (x),
7056 XEXP (x, 1), GET_MODE (x));
7057 return force_to_mode (x, mode, mask, reg, next_select);
7058 }
7059
7060 mask = fuller_mask;
7061 goto binop;
7062
7063 case IOR:
7064 case XOR:
7065 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7066 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7067 operation which may be a bitfield extraction. Ensure that the
7068 constant we form is not wider than the mode of X. */
7069
7070 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7071 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7072 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7073 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7074 && GET_CODE (XEXP (x, 1)) == CONST_INT
7075 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7076 + floor_log2 (INTVAL (XEXP (x, 1))))
7077 < GET_MODE_BITSIZE (GET_MODE (x)))
7078 && (INTVAL (XEXP (x, 1))
7079 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7080 {
7081 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7082 << INTVAL (XEXP (XEXP (x, 0), 1)));
7083 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7084 XEXP (XEXP (x, 0), 0), temp);
7085 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7086 XEXP (XEXP (x, 0), 1));
7087 return force_to_mode (x, mode, mask, reg, next_select);
7088 }
7089
7090 binop:
7091 /* For most binary operations, just propagate into the operation and
7092 change the mode if we have an operation of that mode. */
7093
7094 op0 = gen_lowpart (op_mode,
7095 force_to_mode (XEXP (x, 0), mode, mask,
7096 reg, next_select));
7097 op1 = gen_lowpart (op_mode,
7098 force_to_mode (XEXP (x, 1), mode, mask,
7099 reg, next_select));
7100
7101 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7102 x = simplify_gen_binary (code, op_mode, op0, op1);
7103 break;
7104
7105 case ASHIFT:
7106 /* For left shifts, do the same, but just for the first operand.
7107 However, we cannot do anything with shifts where we cannot
7108 guarantee that the counts are smaller than the size of the mode
7109 because such a count will have a different meaning in a
7110 wider mode. */
7111
7112 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7113 && INTVAL (XEXP (x, 1)) >= 0
7114 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7115 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7116 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7117 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7118 break;
7119
7120 /* If the shift count is a constant and we can do arithmetic in
7121 the mode of the shift, refine which bits we need. Otherwise, use the
7122 conservative form of the mask. */
7123 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7124 && INTVAL (XEXP (x, 1)) >= 0
7125 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7126 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7127 mask >>= INTVAL (XEXP (x, 1));
7128 else
7129 mask = fuller_mask;
7130
7131 op0 = gen_lowpart (op_mode,
7132 force_to_mode (XEXP (x, 0), op_mode,
7133 mask, reg, next_select));
7134
7135 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7136 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7137 break;
7138
7139 case LSHIFTRT:
7140 /* Here we can only do something if the shift count is a constant,
7141 this shift constant is valid for the host, and we can do arithmetic
7142 in OP_MODE. */
7143
7144 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7145 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7146 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7147 {
7148 rtx inner = XEXP (x, 0);
7149 unsigned HOST_WIDE_INT inner_mask;
7150
7151 /* Select the mask of the bits we need for the shift operand. */
7152 inner_mask = mask << INTVAL (XEXP (x, 1));
7153
7154 /* We can only change the mode of the shift if we can do arithmetic
7155 in the mode of the shift and INNER_MASK is no wider than the
7156 width of X's mode. */
7157 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7158 op_mode = GET_MODE (x);
7159
7160 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7161
7162 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7163 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7164 }
7165
7166 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7167 shift and AND produces only copies of the sign bit (C2 is one less
7168 than a power of two), we can do this with just a shift. */
7169
7170 if (GET_CODE (x) == LSHIFTRT
7171 && GET_CODE (XEXP (x, 1)) == CONST_INT
7172 /* The shift puts one of the sign bit copies in the least significant
7173 bit. */
7174 && ((INTVAL (XEXP (x, 1))
7175 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7176 >= GET_MODE_BITSIZE (GET_MODE (x)))
7177 && exact_log2 (mask + 1) >= 0
7178 /* Number of bits left after the shift must be more than the mask
7179 needs. */
7180 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7181 <= GET_MODE_BITSIZE (GET_MODE (x)))
7182 /* Must be more sign bit copies than the mask needs. */
7183 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7184 >= exact_log2 (mask + 1)))
7185 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7186 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7187 - exact_log2 (mask + 1)));
7188
7189 goto shiftrt;
7190
7191 case ASHIFTRT:
7192 /* If we are just looking for the sign bit, we don't need this shift at
7193 all, even if it has a variable count. */
7194 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7195 && (mask == ((unsigned HOST_WIDE_INT) 1
7196 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7197 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7198
7199 /* If this is a shift by a constant, get a mask that contains those bits
7200 that are not copies of the sign bit. We then have two cases: If
7201 MASK only includes those bits, this can be a logical shift, which may
7202 allow simplifications. If MASK is a single-bit field not within
7203 those bits, we are requesting a copy of the sign bit and hence can
7204 shift the sign bit to the appropriate location. */
7205
7206 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7207 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7208 {
7209 int i = -1;
7210
7211 /* If the considered data is wider than HOST_WIDE_INT, we can't
7212 represent a mask for all its bits in a single scalar.
7213 But we only care about the lower bits, so calculate these. */
7214
7215 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7216 {
7217 nonzero = ~(HOST_WIDE_INT) 0;
7218
7219 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7220 is the number of bits a full-width mask would have set.
7221 We need only shift if these are fewer than nonzero can
7222 hold. If not, we must keep all bits set in nonzero. */
7223
7224 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7225 < HOST_BITS_PER_WIDE_INT)
7226 nonzero >>= INTVAL (XEXP (x, 1))
7227 + HOST_BITS_PER_WIDE_INT
7228 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7229 }
7230 else
7231 {
7232 nonzero = GET_MODE_MASK (GET_MODE (x));
7233 nonzero >>= INTVAL (XEXP (x, 1));
7234 }
7235
7236 if ((mask & ~nonzero) == 0
7237 || (i = exact_log2 (mask)) >= 0)
7238 {
7239 x = simplify_shift_const
7240 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7241 i < 0 ? INTVAL (XEXP (x, 1))
7242 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7243
7244 if (GET_CODE (x) != ASHIFTRT)
7245 return force_to_mode (x, mode, mask, reg, next_select);
7246 }
7247 }
7248
7249 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7250 even if the shift count isn't a constant. */
7251 if (mask == 1)
7252 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7253 XEXP (x, 0), XEXP (x, 1));
7254
7255 shiftrt:
7256
7257 /* If this is a zero- or sign-extension operation that just affects bits
7258 we don't care about, remove it. Be sure the call above returned
7259 something that is still a shift. */
7260
7261 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7262 && GET_CODE (XEXP (x, 1)) == CONST_INT
7263 && INTVAL (XEXP (x, 1)) >= 0
7264 && (INTVAL (XEXP (x, 1))
7265 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7266 && GET_CODE (XEXP (x, 0)) == ASHIFT
7267 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7268 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7269 reg, next_select);
7270
7271 break;
7272
7273 case ROTATE:
7274 case ROTATERT:
7275 /* If the shift count is constant and we can do computations
7276 in the mode of X, compute where the bits we care about are.
7277 Otherwise, we can't do anything. Don't change the mode of
7278 the shift or propagate MODE into the shift, though. */
7279 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7280 && INTVAL (XEXP (x, 1)) >= 0)
7281 {
7282 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7283 GET_MODE (x), GEN_INT (mask),
7284 XEXP (x, 1));
7285 if (temp && GET_CODE (temp) == CONST_INT)
7286 SUBST (XEXP (x, 0),
7287 force_to_mode (XEXP (x, 0), GET_MODE (x),
7288 INTVAL (temp), reg, next_select));
7289 }
7290 break;
7291
7292 case NEG:
7293 /* If we just want the low-order bit, the NEG isn't needed since it
7294 won't change the low-order bit. */
7295 if (mask == 1)
7296 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7297
7298 /* We need any bits less significant than the most significant bit in
7299 MASK since carries from those bits will affect the bits we are
7300 interested in. */
7301 mask = fuller_mask;
7302 goto unop;
7303
7304 case NOT:
7305 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7306 same as the XOR case above. Ensure that the constant we form is not
7307 wider than the mode of X. */
7308
7309 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7310 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7311 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7312 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7313 < GET_MODE_BITSIZE (GET_MODE (x)))
7314 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7315 {
7316 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7317 GET_MODE (x));
7318 temp = simplify_gen_binary (XOR, GET_MODE (x),
7319 XEXP (XEXP (x, 0), 0), temp);
7320 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7321 temp, XEXP (XEXP (x, 0), 1));
7322
7323 return force_to_mode (x, mode, mask, reg, next_select);
7324 }
7325
7326 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7327 use the full mask inside the NOT. */
7328 mask = fuller_mask;
7329
7330 unop:
7331 op0 = gen_lowpart (op_mode,
7332 force_to_mode (XEXP (x, 0), mode, mask,
7333 reg, next_select));
7334 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7335 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7336 break;
7337
7338 case NE:
7339 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7340 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7341 which is equal to STORE_FLAG_VALUE. */
7342 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7343 && GET_MODE (XEXP (x, 0)) == mode
7344 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7345 && (nonzero_bits (XEXP (x, 0), mode)
7346 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7347 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7348
7349 break;
7350
7351 case IF_THEN_ELSE:
7352 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7353 written in a narrower mode. We play it safe and do not do so. */
7354
7355 SUBST (XEXP (x, 1),
7356 gen_lowpart (GET_MODE (x),
7357 force_to_mode (XEXP (x, 1), mode,
7358 mask, reg, next_select)));
7359 SUBST (XEXP (x, 2),
7360 gen_lowpart (GET_MODE (x),
7361 force_to_mode (XEXP (x, 2), mode,
7362 mask, reg, next_select)));
7363 break;
7364
7365 default:
7366 break;
7367 }
7368
7369 /* Ensure we return a value of the proper mode. */
7370 return gen_lowpart (mode, x);
7371 }
7372 \f
7373 /* Return nonzero if X is an expression that has one of two values depending on
7374 whether some other value is zero or nonzero. In that case, we return the
7375 value that is being tested, *PTRUE is set to the value if the rtx being
7376 returned has a nonzero value, and *PFALSE is set to the other alternative.
7377
7378 If we return zero, we set *PTRUE and *PFALSE to X. */
7379
7380 static rtx
7381 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7382 {
7383 enum machine_mode mode = GET_MODE (x);
7384 enum rtx_code code = GET_CODE (x);
7385 rtx cond0, cond1, true0, true1, false0, false1;
7386 unsigned HOST_WIDE_INT nz;
7387
7388 /* If we are comparing a value against zero, we are done. */
7389 if ((code == NE || code == EQ)
7390 && XEXP (x, 1) == const0_rtx)
7391 {
7392 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7393 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7394 return XEXP (x, 0);
7395 }
7396
7397 /* If this is a unary operation whose operand has one of two values, apply
7398 our opcode to compute those values. */
7399 else if (UNARY_P (x)
7400 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7401 {
7402 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7403 *pfalse = simplify_gen_unary (code, mode, false0,
7404 GET_MODE (XEXP (x, 0)));
7405 return cond0;
7406 }
7407
7408 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7409 make can't possibly match and would suppress other optimizations. */
7410 else if (code == COMPARE)
7411 ;
7412
7413 /* If this is a binary operation, see if either side has only one of two
7414 values. If either one does or if both do and they are conditional on
7415 the same value, compute the new true and false values. */
7416 else if (BINARY_P (x))
7417 {
7418 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7419 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7420
7421 if ((cond0 != 0 || cond1 != 0)
7422 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7423 {
7424 /* If if_then_else_cond returned zero, then true/false are the
7425 same rtl. We must copy one of them to prevent invalid rtl
7426 sharing. */
7427 if (cond0 == 0)
7428 true0 = copy_rtx (true0);
7429 else if (cond1 == 0)
7430 true1 = copy_rtx (true1);
7431
7432 if (COMPARISON_P (x))
7433 {
7434 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7435 true0, true1);
7436 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7437 false0, false1);
7438 }
7439 else
7440 {
7441 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7442 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7443 }
7444
7445 return cond0 ? cond0 : cond1;
7446 }
7447
7448 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7449 operands is zero when the other is nonzero, and vice-versa,
7450 and STORE_FLAG_VALUE is 1 or -1. */
7451
7452 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7453 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7454 || code == UMAX)
7455 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7456 {
7457 rtx op0 = XEXP (XEXP (x, 0), 1);
7458 rtx op1 = XEXP (XEXP (x, 1), 1);
7459
7460 cond0 = XEXP (XEXP (x, 0), 0);
7461 cond1 = XEXP (XEXP (x, 1), 0);
7462
7463 if (COMPARISON_P (cond0)
7464 && COMPARISON_P (cond1)
7465 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7466 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7467 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7468 || ((swap_condition (GET_CODE (cond0))
7469 == reversed_comparison_code (cond1, NULL))
7470 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7471 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7472 && ! side_effects_p (x))
7473 {
7474 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7475 *pfalse = simplify_gen_binary (MULT, mode,
7476 (code == MINUS
7477 ? simplify_gen_unary (NEG, mode,
7478 op1, mode)
7479 : op1),
7480 const_true_rtx);
7481 return cond0;
7482 }
7483 }
7484
7485 /* Similarly for MULT, AND and UMIN, except that for these the result
7486 is always zero. */
7487 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7488 && (code == MULT || code == AND || code == UMIN)
7489 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7490 {
7491 cond0 = XEXP (XEXP (x, 0), 0);
7492 cond1 = XEXP (XEXP (x, 1), 0);
7493
7494 if (COMPARISON_P (cond0)
7495 && COMPARISON_P (cond1)
7496 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7497 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7498 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7499 || ((swap_condition (GET_CODE (cond0))
7500 == reversed_comparison_code (cond1, NULL))
7501 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7502 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7503 && ! side_effects_p (x))
7504 {
7505 *ptrue = *pfalse = const0_rtx;
7506 return cond0;
7507 }
7508 }
7509 }
7510
7511 else if (code == IF_THEN_ELSE)
7512 {
7513 /* If we have IF_THEN_ELSE already, extract the condition and
7514 canonicalize it if it is NE or EQ. */
7515 cond0 = XEXP (x, 0);
7516 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7517 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7518 return XEXP (cond0, 0);
7519 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7520 {
7521 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7522 return XEXP (cond0, 0);
7523 }
7524 else
7525 return cond0;
7526 }
7527
7528 /* If X is a SUBREG, we can narrow both the true and false values
7529 if the inner expression, if there is a condition. */
7530 else if (code == SUBREG
7531 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7532 &true0, &false0)))
7533 {
7534 true0 = simplify_gen_subreg (mode, true0,
7535 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7536 false0 = simplify_gen_subreg (mode, false0,
7537 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7538 if (true0 && false0)
7539 {
7540 *ptrue = true0;
7541 *pfalse = false0;
7542 return cond0;
7543 }
7544 }
7545
7546 /* If X is a constant, this isn't special and will cause confusions
7547 if we treat it as such. Likewise if it is equivalent to a constant. */
7548 else if (CONSTANT_P (x)
7549 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7550 ;
7551
7552 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7553 will be least confusing to the rest of the compiler. */
7554 else if (mode == BImode)
7555 {
7556 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7557 return x;
7558 }
7559
7560 /* If X is known to be either 0 or -1, those are the true and
7561 false values when testing X. */
7562 else if (x == constm1_rtx || x == const0_rtx
7563 || (mode != VOIDmode
7564 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7565 {
7566 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7567 return x;
7568 }
7569
7570 /* Likewise for 0 or a single bit. */
7571 else if (SCALAR_INT_MODE_P (mode)
7572 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7573 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7574 {
7575 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7576 return x;
7577 }
7578
7579 /* Otherwise fail; show no condition with true and false values the same. */
7580 *ptrue = *pfalse = x;
7581 return 0;
7582 }
7583 \f
7584 /* Return the value of expression X given the fact that condition COND
7585 is known to be true when applied to REG as its first operand and VAL
7586 as its second. X is known to not be shared and so can be modified in
7587 place.
7588
7589 We only handle the simplest cases, and specifically those cases that
7590 arise with IF_THEN_ELSE expressions. */
7591
7592 static rtx
7593 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7594 {
7595 enum rtx_code code = GET_CODE (x);
7596 rtx temp;
7597 const char *fmt;
7598 int i, j;
7599
7600 if (side_effects_p (x))
7601 return x;
7602
7603 /* If either operand of the condition is a floating point value,
7604 then we have to avoid collapsing an EQ comparison. */
7605 if (cond == EQ
7606 && rtx_equal_p (x, reg)
7607 && ! FLOAT_MODE_P (GET_MODE (x))
7608 && ! FLOAT_MODE_P (GET_MODE (val)))
7609 return val;
7610
7611 if (cond == UNEQ && rtx_equal_p (x, reg))
7612 return val;
7613
7614 /* If X is (abs REG) and we know something about REG's relationship
7615 with zero, we may be able to simplify this. */
7616
7617 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7618 switch (cond)
7619 {
7620 case GE: case GT: case EQ:
7621 return XEXP (x, 0);
7622 case LT: case LE:
7623 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7624 XEXP (x, 0),
7625 GET_MODE (XEXP (x, 0)));
7626 default:
7627 break;
7628 }
7629
7630 /* The only other cases we handle are MIN, MAX, and comparisons if the
7631 operands are the same as REG and VAL. */
7632
7633 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7634 {
7635 if (rtx_equal_p (XEXP (x, 0), val))
7636 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7637
7638 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7639 {
7640 if (COMPARISON_P (x))
7641 {
7642 if (comparison_dominates_p (cond, code))
7643 return const_true_rtx;
7644
7645 code = reversed_comparison_code (x, NULL);
7646 if (code != UNKNOWN
7647 && comparison_dominates_p (cond, code))
7648 return const0_rtx;
7649 else
7650 return x;
7651 }
7652 else if (code == SMAX || code == SMIN
7653 || code == UMIN || code == UMAX)
7654 {
7655 int unsignedp = (code == UMIN || code == UMAX);
7656
7657 /* Do not reverse the condition when it is NE or EQ.
7658 This is because we cannot conclude anything about
7659 the value of 'SMAX (x, y)' when x is not equal to y,
7660 but we can when x equals y. */
7661 if ((code == SMAX || code == UMAX)
7662 && ! (cond == EQ || cond == NE))
7663 cond = reverse_condition (cond);
7664
7665 switch (cond)
7666 {
7667 case GE: case GT:
7668 return unsignedp ? x : XEXP (x, 1);
7669 case LE: case LT:
7670 return unsignedp ? x : XEXP (x, 0);
7671 case GEU: case GTU:
7672 return unsignedp ? XEXP (x, 1) : x;
7673 case LEU: case LTU:
7674 return unsignedp ? XEXP (x, 0) : x;
7675 default:
7676 break;
7677 }
7678 }
7679 }
7680 }
7681 else if (code == SUBREG)
7682 {
7683 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7684 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7685
7686 if (SUBREG_REG (x) != r)
7687 {
7688 /* We must simplify subreg here, before we lose track of the
7689 original inner_mode. */
7690 new = simplify_subreg (GET_MODE (x), r,
7691 inner_mode, SUBREG_BYTE (x));
7692 if (new)
7693 return new;
7694 else
7695 SUBST (SUBREG_REG (x), r);
7696 }
7697
7698 return x;
7699 }
7700 /* We don't have to handle SIGN_EXTEND here, because even in the
7701 case of replacing something with a modeless CONST_INT, a
7702 CONST_INT is already (supposed to be) a valid sign extension for
7703 its narrower mode, which implies it's already properly
7704 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7705 story is different. */
7706 else if (code == ZERO_EXTEND)
7707 {
7708 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7709 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7710
7711 if (XEXP (x, 0) != r)
7712 {
7713 /* We must simplify the zero_extend here, before we lose
7714 track of the original inner_mode. */
7715 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7716 r, inner_mode);
7717 if (new)
7718 return new;
7719 else
7720 SUBST (XEXP (x, 0), r);
7721 }
7722
7723 return x;
7724 }
7725
7726 fmt = GET_RTX_FORMAT (code);
7727 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7728 {
7729 if (fmt[i] == 'e')
7730 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7731 else if (fmt[i] == 'E')
7732 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7733 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7734 cond, reg, val));
7735 }
7736
7737 return x;
7738 }
7739 \f
7740 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7741 assignment as a field assignment. */
7742
7743 static int
7744 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7745 {
7746 if (x == y || rtx_equal_p (x, y))
7747 return 1;
7748
7749 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7750 return 0;
7751
7752 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7753 Note that all SUBREGs of MEM are paradoxical; otherwise they
7754 would have been rewritten. */
7755 if (MEM_P (x) && GET_CODE (y) == SUBREG
7756 && MEM_P (SUBREG_REG (y))
7757 && rtx_equal_p (SUBREG_REG (y),
7758 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7759 return 1;
7760
7761 if (MEM_P (y) && GET_CODE (x) == SUBREG
7762 && MEM_P (SUBREG_REG (x))
7763 && rtx_equal_p (SUBREG_REG (x),
7764 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7765 return 1;
7766
7767 /* We used to see if get_last_value of X and Y were the same but that's
7768 not correct. In one direction, we'll cause the assignment to have
7769 the wrong destination and in the case, we'll import a register into this
7770 insn that might have already have been dead. So fail if none of the
7771 above cases are true. */
7772 return 0;
7773 }
7774 \f
7775 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7776 Return that assignment if so.
7777
7778 We only handle the most common cases. */
7779
7780 static rtx
7781 make_field_assignment (rtx x)
7782 {
7783 rtx dest = SET_DEST (x);
7784 rtx src = SET_SRC (x);
7785 rtx assign;
7786 rtx rhs, lhs;
7787 HOST_WIDE_INT c1;
7788 HOST_WIDE_INT pos;
7789 unsigned HOST_WIDE_INT len;
7790 rtx other;
7791 enum machine_mode mode;
7792
7793 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7794 a clear of a one-bit field. We will have changed it to
7795 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7796 for a SUBREG. */
7797
7798 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7799 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7800 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7801 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7802 {
7803 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7804 1, 1, 1, 0);
7805 if (assign != 0)
7806 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7807 return x;
7808 }
7809
7810 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7811 && subreg_lowpart_p (XEXP (src, 0))
7812 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7813 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7814 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7815 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7816 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7817 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7818 {
7819 assign = make_extraction (VOIDmode, dest, 0,
7820 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7821 1, 1, 1, 0);
7822 if (assign != 0)
7823 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7824 return x;
7825 }
7826
7827 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7828 one-bit field. */
7829 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7830 && XEXP (XEXP (src, 0), 0) == const1_rtx
7831 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7832 {
7833 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7834 1, 1, 1, 0);
7835 if (assign != 0)
7836 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7837 return x;
7838 }
7839
7840 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7841 SRC is an AND with all bits of that field set, then we can discard
7842 the AND. */
7843 if (GET_CODE (dest) == ZERO_EXTRACT
7844 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7845 && GET_CODE (src) == AND
7846 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7847 {
7848 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7849 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7850 unsigned HOST_WIDE_INT ze_mask;
7851
7852 if (width >= HOST_BITS_PER_WIDE_INT)
7853 ze_mask = -1;
7854 else
7855 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7856
7857 /* Complete overlap. We can remove the source AND. */
7858 if ((and_mask & ze_mask) == ze_mask)
7859 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7860
7861 /* Partial overlap. We can reduce the source AND. */
7862 if ((and_mask & ze_mask) != and_mask)
7863 {
7864 mode = GET_MODE (src);
7865 src = gen_rtx_AND (mode, XEXP (src, 0),
7866 gen_int_mode (and_mask & ze_mask, mode));
7867 return gen_rtx_SET (VOIDmode, dest, src);
7868 }
7869 }
7870
7871 /* The other case we handle is assignments into a constant-position
7872 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7873 a mask that has all one bits except for a group of zero bits and
7874 OTHER is known to have zeros where C1 has ones, this is such an
7875 assignment. Compute the position and length from C1. Shift OTHER
7876 to the appropriate position, force it to the required mode, and
7877 make the extraction. Check for the AND in both operands. */
7878
7879 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7880 return x;
7881
7882 rhs = expand_compound_operation (XEXP (src, 0));
7883 lhs = expand_compound_operation (XEXP (src, 1));
7884
7885 if (GET_CODE (rhs) == AND
7886 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7887 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7888 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7889 else if (GET_CODE (lhs) == AND
7890 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7891 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7892 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7893 else
7894 return x;
7895
7896 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7897 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7898 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7899 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7900 return x;
7901
7902 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7903 if (assign == 0)
7904 return x;
7905
7906 /* The mode to use for the source is the mode of the assignment, or of
7907 what is inside a possible STRICT_LOW_PART. */
7908 mode = (GET_CODE (assign) == STRICT_LOW_PART
7909 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7910
7911 /* Shift OTHER right POS places and make it the source, restricting it
7912 to the proper length and mode. */
7913
7914 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7915 GET_MODE (src), other, pos),
7916 mode,
7917 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7918 ? ~(unsigned HOST_WIDE_INT) 0
7919 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7920 dest, 0);
7921
7922 /* If SRC is masked by an AND that does not make a difference in
7923 the value being stored, strip it. */
7924 if (GET_CODE (assign) == ZERO_EXTRACT
7925 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7926 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7927 && GET_CODE (src) == AND
7928 && GET_CODE (XEXP (src, 1)) == CONST_INT
7929 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7930 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7931 src = XEXP (src, 0);
7932
7933 return gen_rtx_SET (VOIDmode, assign, src);
7934 }
7935 \f
7936 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7937 if so. */
7938
7939 static rtx
7940 apply_distributive_law (rtx x)
7941 {
7942 enum rtx_code code = GET_CODE (x);
7943 enum rtx_code inner_code;
7944 rtx lhs, rhs, other;
7945 rtx tem;
7946
7947 /* Distributivity is not true for floating point as it can change the
7948 value. So we don't do it unless -funsafe-math-optimizations. */
7949 if (FLOAT_MODE_P (GET_MODE (x))
7950 && ! flag_unsafe_math_optimizations)
7951 return x;
7952
7953 /* The outer operation can only be one of the following: */
7954 if (code != IOR && code != AND && code != XOR
7955 && code != PLUS && code != MINUS)
7956 return x;
7957
7958 lhs = XEXP (x, 0);
7959 rhs = XEXP (x, 1);
7960
7961 /* If either operand is a primitive we can't do anything, so get out
7962 fast. */
7963 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7964 return x;
7965
7966 lhs = expand_compound_operation (lhs);
7967 rhs = expand_compound_operation (rhs);
7968 inner_code = GET_CODE (lhs);
7969 if (inner_code != GET_CODE (rhs))
7970 return x;
7971
7972 /* See if the inner and outer operations distribute. */
7973 switch (inner_code)
7974 {
7975 case LSHIFTRT:
7976 case ASHIFTRT:
7977 case AND:
7978 case IOR:
7979 /* These all distribute except over PLUS. */
7980 if (code == PLUS || code == MINUS)
7981 return x;
7982 break;
7983
7984 case MULT:
7985 if (code != PLUS && code != MINUS)
7986 return x;
7987 break;
7988
7989 case ASHIFT:
7990 /* This is also a multiply, so it distributes over everything. */
7991 break;
7992
7993 case SUBREG:
7994 /* Non-paradoxical SUBREGs distributes over all operations, provided
7995 the inner modes and byte offsets are the same, this is an extraction
7996 of a low-order part, we don't convert an fp operation to int or
7997 vice versa, and we would not be converting a single-word
7998 operation into a multi-word operation. The latter test is not
7999 required, but it prevents generating unneeded multi-word operations.
8000 Some of the previous tests are redundant given the latter test, but
8001 are retained because they are required for correctness.
8002
8003 We produce the result slightly differently in this case. */
8004
8005 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8006 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8007 || ! subreg_lowpart_p (lhs)
8008 || (GET_MODE_CLASS (GET_MODE (lhs))
8009 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8010 || (GET_MODE_SIZE (GET_MODE (lhs))
8011 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8012 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8013 return x;
8014
8015 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8016 SUBREG_REG (lhs), SUBREG_REG (rhs));
8017 return gen_lowpart (GET_MODE (x), tem);
8018
8019 default:
8020 return x;
8021 }
8022
8023 /* Set LHS and RHS to the inner operands (A and B in the example
8024 above) and set OTHER to the common operand (C in the example).
8025 There is only one way to do this unless the inner operation is
8026 commutative. */
8027 if (COMMUTATIVE_ARITH_P (lhs)
8028 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8029 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8030 else if (COMMUTATIVE_ARITH_P (lhs)
8031 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8032 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8033 else if (COMMUTATIVE_ARITH_P (lhs)
8034 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8035 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8036 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8037 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8038 else
8039 return x;
8040
8041 /* Form the new inner operation, seeing if it simplifies first. */
8042 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8043
8044 /* There is one exception to the general way of distributing:
8045 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8046 if (code == XOR && inner_code == IOR)
8047 {
8048 inner_code = AND;
8049 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8050 }
8051
8052 /* We may be able to continuing distributing the result, so call
8053 ourselves recursively on the inner operation before forming the
8054 outer operation, which we return. */
8055 return simplify_gen_binary (inner_code, GET_MODE (x),
8056 apply_distributive_law (tem), other);
8057 }
8058
8059 /* See if X is of the form (* (+ A B) C), and if so convert to
8060 (+ (* A C) (* B C)) and try to simplify.
8061
8062 Most of the time, this results in no change. However, if some of
8063 the operands are the same or inverses of each other, simplifications
8064 will result.
8065
8066 For example, (and (ior A B) (not B)) can occur as the result of
8067 expanding a bit field assignment. When we apply the distributive
8068 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8069 which then simplifies to (and (A (not B))).
8070
8071 Note that no checks happen on the validity of applying the inverse
8072 distributive law. This is pointless since we can do it in the
8073 few places where this routine is called.
8074
8075 N is the index of the term that is decomposed (the arithmetic operation,
8076 i.e. (+ A B) in the first example above). !N is the index of the term that
8077 is distributed, i.e. of C in the first example above. */
8078 static rtx
8079 distribute_and_simplify_rtx (rtx x, int n)
8080 {
8081 enum machine_mode mode;
8082 enum rtx_code outer_code, inner_code;
8083 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8084
8085 decomposed = XEXP (x, n);
8086 if (!ARITHMETIC_P (decomposed))
8087 return NULL_RTX;
8088
8089 mode = GET_MODE (x);
8090 outer_code = GET_CODE (x);
8091 distributed = XEXP (x, !n);
8092
8093 inner_code = GET_CODE (decomposed);
8094 inner_op0 = XEXP (decomposed, 0);
8095 inner_op1 = XEXP (decomposed, 1);
8096
8097 /* Special case (and (xor B C) (not A)), which is equivalent to
8098 (xor (ior A B) (ior A C)) */
8099 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8100 {
8101 distributed = XEXP (distributed, 0);
8102 outer_code = IOR;
8103 }
8104
8105 if (n == 0)
8106 {
8107 /* Distribute the second term. */
8108 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8109 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8110 }
8111 else
8112 {
8113 /* Distribute the first term. */
8114 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8115 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8116 }
8117
8118 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8119 new_op0, new_op1));
8120 if (GET_CODE (tmp) != outer_code
8121 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8122 return tmp;
8123
8124 return NULL_RTX;
8125 }
8126 \f
8127 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8128 in MODE.
8129
8130 Return an equivalent form, if different from X. Otherwise, return X. If
8131 X is zero, we are to always construct the equivalent form. */
8132
8133 static rtx
8134 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8135 unsigned HOST_WIDE_INT constop)
8136 {
8137 unsigned HOST_WIDE_INT nonzero;
8138 int i;
8139
8140 /* Simplify VAROP knowing that we will be only looking at some of the
8141 bits in it.
8142
8143 Note by passing in CONSTOP, we guarantee that the bits not set in
8144 CONSTOP are not significant and will never be examined. We must
8145 ensure that is the case by explicitly masking out those bits
8146 before returning. */
8147 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8148
8149 /* If VAROP is a CLOBBER, we will fail so return it. */
8150 if (GET_CODE (varop) == CLOBBER)
8151 return varop;
8152
8153 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8154 to VAROP and return the new constant. */
8155 if (GET_CODE (varop) == CONST_INT)
8156 return gen_int_mode (INTVAL (varop) & constop, mode);
8157
8158 /* See what bits may be nonzero in VAROP. Unlike the general case of
8159 a call to nonzero_bits, here we don't care about bits outside
8160 MODE. */
8161
8162 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8163
8164 /* Turn off all bits in the constant that are known to already be zero.
8165 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8166 which is tested below. */
8167
8168 constop &= nonzero;
8169
8170 /* If we don't have any bits left, return zero. */
8171 if (constop == 0)
8172 return const0_rtx;
8173
8174 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8175 a power of two, we can replace this with an ASHIFT. */
8176 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8177 && (i = exact_log2 (constop)) >= 0)
8178 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8179
8180 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8181 or XOR, then try to apply the distributive law. This may eliminate
8182 operations if either branch can be simplified because of the AND.
8183 It may also make some cases more complex, but those cases probably
8184 won't match a pattern either with or without this. */
8185
8186 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8187 return
8188 gen_lowpart
8189 (mode,
8190 apply_distributive_law
8191 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8192 simplify_and_const_int (NULL_RTX,
8193 GET_MODE (varop),
8194 XEXP (varop, 0),
8195 constop),
8196 simplify_and_const_int (NULL_RTX,
8197 GET_MODE (varop),
8198 XEXP (varop, 1),
8199 constop))));
8200
8201 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8202 the AND and see if one of the operands simplifies to zero. If so, we
8203 may eliminate it. */
8204
8205 if (GET_CODE (varop) == PLUS
8206 && exact_log2 (constop + 1) >= 0)
8207 {
8208 rtx o0, o1;
8209
8210 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8211 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8212 if (o0 == const0_rtx)
8213 return o1;
8214 if (o1 == const0_rtx)
8215 return o0;
8216 }
8217
8218 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8219 if we already had one (just check for the simplest cases). */
8220 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8221 && GET_MODE (XEXP (x, 0)) == mode
8222 && SUBREG_REG (XEXP (x, 0)) == varop)
8223 varop = XEXP (x, 0);
8224 else
8225 varop = gen_lowpart (mode, varop);
8226
8227 /* If we can't make the SUBREG, try to return what we were given. */
8228 if (GET_CODE (varop) == CLOBBER)
8229 return x ? x : varop;
8230
8231 /* If we are only masking insignificant bits, return VAROP. */
8232 if (constop == nonzero)
8233 x = varop;
8234 else
8235 {
8236 /* Otherwise, return an AND. */
8237 constop = trunc_int_for_mode (constop, mode);
8238 /* See how much, if any, of X we can use. */
8239 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8240 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8241
8242 else
8243 {
8244 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8245 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8246 SUBST (XEXP (x, 1), GEN_INT (constop));
8247
8248 SUBST (XEXP (x, 0), varop);
8249 }
8250 }
8251
8252 return x;
8253 }
8254 \f
8255 /* Given a REG, X, compute which bits in X can be nonzero.
8256 We don't care about bits outside of those defined in MODE.
8257
8258 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8259 a shift, AND, or zero_extract, we can do better. */
8260
8261 static rtx
8262 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8263 rtx known_x ATTRIBUTE_UNUSED,
8264 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8265 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8266 unsigned HOST_WIDE_INT *nonzero)
8267 {
8268 rtx tem;
8269
8270 /* If X is a register whose nonzero bits value is current, use it.
8271 Otherwise, if X is a register whose value we can find, use that
8272 value. Otherwise, use the previously-computed global nonzero bits
8273 for this register. */
8274
8275 if (reg_stat[REGNO (x)].last_set_value != 0
8276 && (reg_stat[REGNO (x)].last_set_mode == mode
8277 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8278 && GET_MODE_CLASS (mode) == MODE_INT))
8279 && (reg_stat[REGNO (x)].last_set_label == label_tick
8280 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8281 && REG_N_SETS (REGNO (x)) == 1
8282 && ! REGNO_REG_SET_P
8283 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8284 REGNO (x))))
8285 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8286 {
8287 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8288 return NULL;
8289 }
8290
8291 tem = get_last_value (x);
8292
8293 if (tem)
8294 {
8295 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8296 /* If X is narrower than MODE and TEM is a non-negative
8297 constant that would appear negative in the mode of X,
8298 sign-extend it for use in reg_nonzero_bits because some
8299 machines (maybe most) will actually do the sign-extension
8300 and this is the conservative approach.
8301
8302 ??? For 2.5, try to tighten up the MD files in this regard
8303 instead of this kludge. */
8304
8305 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8306 && GET_CODE (tem) == CONST_INT
8307 && INTVAL (tem) > 0
8308 && 0 != (INTVAL (tem)
8309 & ((HOST_WIDE_INT) 1
8310 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8311 tem = GEN_INT (INTVAL (tem)
8312 | ((HOST_WIDE_INT) (-1)
8313 << GET_MODE_BITSIZE (GET_MODE (x))));
8314 #endif
8315 return tem;
8316 }
8317 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8318 {
8319 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8320
8321 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8322 /* We don't know anything about the upper bits. */
8323 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8324 *nonzero &= mask;
8325 }
8326
8327 return NULL;
8328 }
8329
8330 /* Return the number of bits at the high-order end of X that are known to
8331 be equal to the sign bit. X will be used in mode MODE; if MODE is
8332 VOIDmode, X will be used in its own mode. The returned value will always
8333 be between 1 and the number of bits in MODE. */
8334
8335 static rtx
8336 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8337 rtx known_x ATTRIBUTE_UNUSED,
8338 enum machine_mode known_mode
8339 ATTRIBUTE_UNUSED,
8340 unsigned int known_ret ATTRIBUTE_UNUSED,
8341 unsigned int *result)
8342 {
8343 rtx tem;
8344
8345 if (reg_stat[REGNO (x)].last_set_value != 0
8346 && reg_stat[REGNO (x)].last_set_mode == mode
8347 && (reg_stat[REGNO (x)].last_set_label == label_tick
8348 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8349 && REG_N_SETS (REGNO (x)) == 1
8350 && ! REGNO_REG_SET_P
8351 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8352 REGNO (x))))
8353 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8354 {
8355 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8356 return NULL;
8357 }
8358
8359 tem = get_last_value (x);
8360 if (tem != 0)
8361 return tem;
8362
8363 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8364 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8365 *result = reg_stat[REGNO (x)].sign_bit_copies;
8366
8367 return NULL;
8368 }
8369 \f
8370 /* Return the number of "extended" bits there are in X, when interpreted
8371 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8372 unsigned quantities, this is the number of high-order zero bits.
8373 For signed quantities, this is the number of copies of the sign bit
8374 minus 1. In both case, this function returns the number of "spare"
8375 bits. For example, if two quantities for which this function returns
8376 at least 1 are added, the addition is known not to overflow.
8377
8378 This function will always return 0 unless called during combine, which
8379 implies that it must be called from a define_split. */
8380
8381 unsigned int
8382 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8383 {
8384 if (nonzero_sign_valid == 0)
8385 return 0;
8386
8387 return (unsignedp
8388 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8389 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8390 - floor_log2 (nonzero_bits (x, mode)))
8391 : 0)
8392 : num_sign_bit_copies (x, mode) - 1);
8393 }
8394 \f
8395 /* This function is called from `simplify_shift_const' to merge two
8396 outer operations. Specifically, we have already found that we need
8397 to perform operation *POP0 with constant *PCONST0 at the outermost
8398 position. We would now like to also perform OP1 with constant CONST1
8399 (with *POP0 being done last).
8400
8401 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8402 the resulting operation. *PCOMP_P is set to 1 if we would need to
8403 complement the innermost operand, otherwise it is unchanged.
8404
8405 MODE is the mode in which the operation will be done. No bits outside
8406 the width of this mode matter. It is assumed that the width of this mode
8407 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8408
8409 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8410 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8411 result is simply *PCONST0.
8412
8413 If the resulting operation cannot be expressed as one operation, we
8414 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8415
8416 static int
8417 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8418 {
8419 enum rtx_code op0 = *pop0;
8420 HOST_WIDE_INT const0 = *pconst0;
8421
8422 const0 &= GET_MODE_MASK (mode);
8423 const1 &= GET_MODE_MASK (mode);
8424
8425 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8426 if (op0 == AND)
8427 const1 &= const0;
8428
8429 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8430 if OP0 is SET. */
8431
8432 if (op1 == UNKNOWN || op0 == SET)
8433 return 1;
8434
8435 else if (op0 == UNKNOWN)
8436 op0 = op1, const0 = const1;
8437
8438 else if (op0 == op1)
8439 {
8440 switch (op0)
8441 {
8442 case AND:
8443 const0 &= const1;
8444 break;
8445 case IOR:
8446 const0 |= const1;
8447 break;
8448 case XOR:
8449 const0 ^= const1;
8450 break;
8451 case PLUS:
8452 const0 += const1;
8453 break;
8454 case NEG:
8455 op0 = UNKNOWN;
8456 break;
8457 default:
8458 break;
8459 }
8460 }
8461
8462 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8463 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8464 return 0;
8465
8466 /* If the two constants aren't the same, we can't do anything. The
8467 remaining six cases can all be done. */
8468 else if (const0 != const1)
8469 return 0;
8470
8471 else
8472 switch (op0)
8473 {
8474 case IOR:
8475 if (op1 == AND)
8476 /* (a & b) | b == b */
8477 op0 = SET;
8478 else /* op1 == XOR */
8479 /* (a ^ b) | b == a | b */
8480 {;}
8481 break;
8482
8483 case XOR:
8484 if (op1 == AND)
8485 /* (a & b) ^ b == (~a) & b */
8486 op0 = AND, *pcomp_p = 1;
8487 else /* op1 == IOR */
8488 /* (a | b) ^ b == a & ~b */
8489 op0 = AND, const0 = ~const0;
8490 break;
8491
8492 case AND:
8493 if (op1 == IOR)
8494 /* (a | b) & b == b */
8495 op0 = SET;
8496 else /* op1 == XOR */
8497 /* (a ^ b) & b) == (~a) & b */
8498 *pcomp_p = 1;
8499 break;
8500 default:
8501 break;
8502 }
8503
8504 /* Check for NO-OP cases. */
8505 const0 &= GET_MODE_MASK (mode);
8506 if (const0 == 0
8507 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8508 op0 = UNKNOWN;
8509 else if (const0 == 0 && op0 == AND)
8510 op0 = SET;
8511 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8512 && op0 == AND)
8513 op0 = UNKNOWN;
8514
8515 /* ??? Slightly redundant with the above mask, but not entirely.
8516 Moving this above means we'd have to sign-extend the mode mask
8517 for the final test. */
8518 const0 = trunc_int_for_mode (const0, mode);
8519
8520 *pop0 = op0;
8521 *pconst0 = const0;
8522
8523 return 1;
8524 }
8525 \f
8526 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8527 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8528 that we started with.
8529
8530 The shift is normally computed in the widest mode we find in VAROP, as
8531 long as it isn't a different number of words than RESULT_MODE. Exceptions
8532 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8533
8534 static rtx
8535 simplify_shift_const (rtx x, enum rtx_code code,
8536 enum machine_mode result_mode, rtx varop,
8537 int orig_count)
8538 {
8539 enum rtx_code orig_code = code;
8540 unsigned int count;
8541 int signed_count;
8542 enum machine_mode mode = result_mode;
8543 enum machine_mode shift_mode, tmode;
8544 unsigned int mode_words
8545 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8546 /* We form (outer_op (code varop count) (outer_const)). */
8547 enum rtx_code outer_op = UNKNOWN;
8548 HOST_WIDE_INT outer_const = 0;
8549 rtx const_rtx;
8550 int complement_p = 0;
8551 rtx new;
8552
8553 /* Make sure and truncate the "natural" shift on the way in. We don't
8554 want to do this inside the loop as it makes it more difficult to
8555 combine shifts. */
8556 if (SHIFT_COUNT_TRUNCATED)
8557 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8558
8559 /* If we were given an invalid count, don't do anything except exactly
8560 what was requested. */
8561
8562 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8563 {
8564 if (x)
8565 return x;
8566
8567 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8568 }
8569
8570 count = orig_count;
8571
8572 /* Unless one of the branches of the `if' in this loop does a `continue',
8573 we will `break' the loop after the `if'. */
8574
8575 while (count != 0)
8576 {
8577 /* If we have an operand of (clobber (const_int 0)), just return that
8578 value. */
8579 if (GET_CODE (varop) == CLOBBER)
8580 return varop;
8581
8582 /* If we discovered we had to complement VAROP, leave. Making a NOT
8583 here would cause an infinite loop. */
8584 if (complement_p)
8585 break;
8586
8587 /* Convert ROTATERT to ROTATE. */
8588 if (code == ROTATERT)
8589 {
8590 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8591 code = ROTATE;
8592 if (VECTOR_MODE_P (result_mode))
8593 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8594 else
8595 count = bitsize - count;
8596 }
8597
8598 /* We need to determine what mode we will do the shift in. If the
8599 shift is a right shift or a ROTATE, we must always do it in the mode
8600 it was originally done in. Otherwise, we can do it in MODE, the
8601 widest mode encountered. */
8602 shift_mode
8603 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8604 ? result_mode : mode);
8605
8606 /* Handle cases where the count is greater than the size of the mode
8607 minus 1. For ASHIFT, use the size minus one as the count (this can
8608 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8609 take the count modulo the size. For other shifts, the result is
8610 zero.
8611
8612 Since these shifts are being produced by the compiler by combining
8613 multiple operations, each of which are defined, we know what the
8614 result is supposed to be. */
8615
8616 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8617 {
8618 if (code == ASHIFTRT)
8619 count = GET_MODE_BITSIZE (shift_mode) - 1;
8620 else if (code == ROTATE || code == ROTATERT)
8621 count %= GET_MODE_BITSIZE (shift_mode);
8622 else
8623 {
8624 /* We can't simply return zero because there may be an
8625 outer op. */
8626 varop = const0_rtx;
8627 count = 0;
8628 break;
8629 }
8630 }
8631
8632 /* An arithmetic right shift of a quantity known to be -1 or 0
8633 is a no-op. */
8634 if (code == ASHIFTRT
8635 && (num_sign_bit_copies (varop, shift_mode)
8636 == GET_MODE_BITSIZE (shift_mode)))
8637 {
8638 count = 0;
8639 break;
8640 }
8641
8642 /* If we are doing an arithmetic right shift and discarding all but
8643 the sign bit copies, this is equivalent to doing a shift by the
8644 bitsize minus one. Convert it into that shift because it will often
8645 allow other simplifications. */
8646
8647 if (code == ASHIFTRT
8648 && (count + num_sign_bit_copies (varop, shift_mode)
8649 >= GET_MODE_BITSIZE (shift_mode)))
8650 count = GET_MODE_BITSIZE (shift_mode) - 1;
8651
8652 /* We simplify the tests below and elsewhere by converting
8653 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8654 `make_compound_operation' will convert it to an ASHIFTRT for
8655 those machines (such as VAX) that don't have an LSHIFTRT. */
8656 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8657 && code == ASHIFTRT
8658 && ((nonzero_bits (varop, shift_mode)
8659 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8660 == 0))
8661 code = LSHIFTRT;
8662
8663 if (code == LSHIFTRT
8664 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8665 && !(nonzero_bits (varop, shift_mode) >> count))
8666 varop = const0_rtx;
8667 if (code == ASHIFT
8668 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8669 && !((nonzero_bits (varop, shift_mode) << count)
8670 & GET_MODE_MASK (shift_mode)))
8671 varop = const0_rtx;
8672
8673 switch (GET_CODE (varop))
8674 {
8675 case SIGN_EXTEND:
8676 case ZERO_EXTEND:
8677 case SIGN_EXTRACT:
8678 case ZERO_EXTRACT:
8679 new = expand_compound_operation (varop);
8680 if (new != varop)
8681 {
8682 varop = new;
8683 continue;
8684 }
8685 break;
8686
8687 case MEM:
8688 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8689 minus the width of a smaller mode, we can do this with a
8690 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8691 if ((code == ASHIFTRT || code == LSHIFTRT)
8692 && ! mode_dependent_address_p (XEXP (varop, 0))
8693 && ! MEM_VOLATILE_P (varop)
8694 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8695 MODE_INT, 1)) != BLKmode)
8696 {
8697 new = adjust_address_nv (varop, tmode,
8698 BYTES_BIG_ENDIAN ? 0
8699 : count / BITS_PER_UNIT);
8700
8701 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8702 : ZERO_EXTEND, mode, new);
8703 count = 0;
8704 continue;
8705 }
8706 break;
8707
8708 case USE:
8709 /* Similar to the case above, except that we can only do this if
8710 the resulting mode is the same as that of the underlying
8711 MEM and adjust the address depending on the *bits* endianness
8712 because of the way that bit-field extract insns are defined. */
8713 if ((code == ASHIFTRT || code == LSHIFTRT)
8714 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8715 MODE_INT, 1)) != BLKmode
8716 && tmode == GET_MODE (XEXP (varop, 0)))
8717 {
8718 if (BITS_BIG_ENDIAN)
8719 new = XEXP (varop, 0);
8720 else
8721 {
8722 new = copy_rtx (XEXP (varop, 0));
8723 SUBST (XEXP (new, 0),
8724 plus_constant (XEXP (new, 0),
8725 count / BITS_PER_UNIT));
8726 }
8727
8728 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8729 : ZERO_EXTEND, mode, new);
8730 count = 0;
8731 continue;
8732 }
8733 break;
8734
8735 case SUBREG:
8736 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8737 the same number of words as what we've seen so far. Then store
8738 the widest mode in MODE. */
8739 if (subreg_lowpart_p (varop)
8740 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8741 > GET_MODE_SIZE (GET_MODE (varop)))
8742 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8743 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8744 == mode_words)
8745 {
8746 varop = SUBREG_REG (varop);
8747 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8748 mode = GET_MODE (varop);
8749 continue;
8750 }
8751 break;
8752
8753 case MULT:
8754 /* Some machines use MULT instead of ASHIFT because MULT
8755 is cheaper. But it is still better on those machines to
8756 merge two shifts into one. */
8757 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8758 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8759 {
8760 varop
8761 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8762 XEXP (varop, 0),
8763 GEN_INT (exact_log2 (
8764 INTVAL (XEXP (varop, 1)))));
8765 continue;
8766 }
8767 break;
8768
8769 case UDIV:
8770 /* Similar, for when divides are cheaper. */
8771 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8772 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8773 {
8774 varop
8775 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8776 XEXP (varop, 0),
8777 GEN_INT (exact_log2 (
8778 INTVAL (XEXP (varop, 1)))));
8779 continue;
8780 }
8781 break;
8782
8783 case ASHIFTRT:
8784 /* If we are extracting just the sign bit of an arithmetic
8785 right shift, that shift is not needed. However, the sign
8786 bit of a wider mode may be different from what would be
8787 interpreted as the sign bit in a narrower mode, so, if
8788 the result is narrower, don't discard the shift. */
8789 if (code == LSHIFTRT
8790 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8791 && (GET_MODE_BITSIZE (result_mode)
8792 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8793 {
8794 varop = XEXP (varop, 0);
8795 continue;
8796 }
8797
8798 /* ... fall through ... */
8799
8800 case LSHIFTRT:
8801 case ASHIFT:
8802 case ROTATE:
8803 /* Here we have two nested shifts. The result is usually the
8804 AND of a new shift with a mask. We compute the result below. */
8805 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8806 && INTVAL (XEXP (varop, 1)) >= 0
8807 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8808 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8809 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8810 {
8811 enum rtx_code first_code = GET_CODE (varop);
8812 unsigned int first_count = INTVAL (XEXP (varop, 1));
8813 unsigned HOST_WIDE_INT mask;
8814 rtx mask_rtx;
8815
8816 /* We have one common special case. We can't do any merging if
8817 the inner code is an ASHIFTRT of a smaller mode. However, if
8818 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8819 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8820 we can convert it to
8821 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8822 This simplifies certain SIGN_EXTEND operations. */
8823 if (code == ASHIFT && first_code == ASHIFTRT
8824 && count == (unsigned int)
8825 (GET_MODE_BITSIZE (result_mode)
8826 - GET_MODE_BITSIZE (GET_MODE (varop))))
8827 {
8828 /* C3 has the low-order C1 bits zero. */
8829
8830 mask = (GET_MODE_MASK (mode)
8831 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8832
8833 varop = simplify_and_const_int (NULL_RTX, result_mode,
8834 XEXP (varop, 0), mask);
8835 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8836 varop, count);
8837 count = first_count;
8838 code = ASHIFTRT;
8839 continue;
8840 }
8841
8842 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8843 than C1 high-order bits equal to the sign bit, we can convert
8844 this to either an ASHIFT or an ASHIFTRT depending on the
8845 two counts.
8846
8847 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8848
8849 if (code == ASHIFTRT && first_code == ASHIFT
8850 && GET_MODE (varop) == shift_mode
8851 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8852 > first_count))
8853 {
8854 varop = XEXP (varop, 0);
8855
8856 signed_count = count - first_count;
8857 if (signed_count < 0)
8858 count = -signed_count, code = ASHIFT;
8859 else
8860 count = signed_count;
8861
8862 continue;
8863 }
8864
8865 /* There are some cases we can't do. If CODE is ASHIFTRT,
8866 we can only do this if FIRST_CODE is also ASHIFTRT.
8867
8868 We can't do the case when CODE is ROTATE and FIRST_CODE is
8869 ASHIFTRT.
8870
8871 If the mode of this shift is not the mode of the outer shift,
8872 we can't do this if either shift is a right shift or ROTATE.
8873
8874 Finally, we can't do any of these if the mode is too wide
8875 unless the codes are the same.
8876
8877 Handle the case where the shift codes are the same
8878 first. */
8879
8880 if (code == first_code)
8881 {
8882 if (GET_MODE (varop) != result_mode
8883 && (code == ASHIFTRT || code == LSHIFTRT
8884 || code == ROTATE))
8885 break;
8886
8887 count += first_count;
8888 varop = XEXP (varop, 0);
8889 continue;
8890 }
8891
8892 if (code == ASHIFTRT
8893 || (code == ROTATE && first_code == ASHIFTRT)
8894 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8895 || (GET_MODE (varop) != result_mode
8896 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8897 || first_code == ROTATE
8898 || code == ROTATE)))
8899 break;
8900
8901 /* To compute the mask to apply after the shift, shift the
8902 nonzero bits of the inner shift the same way the
8903 outer shift will. */
8904
8905 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8906
8907 mask_rtx
8908 = simplify_binary_operation (code, result_mode, mask_rtx,
8909 GEN_INT (count));
8910
8911 /* Give up if we can't compute an outer operation to use. */
8912 if (mask_rtx == 0
8913 || GET_CODE (mask_rtx) != CONST_INT
8914 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8915 INTVAL (mask_rtx),
8916 result_mode, &complement_p))
8917 break;
8918
8919 /* If the shifts are in the same direction, we add the
8920 counts. Otherwise, we subtract them. */
8921 signed_count = count;
8922 if ((code == ASHIFTRT || code == LSHIFTRT)
8923 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8924 signed_count += first_count;
8925 else
8926 signed_count -= first_count;
8927
8928 /* If COUNT is positive, the new shift is usually CODE,
8929 except for the two exceptions below, in which case it is
8930 FIRST_CODE. If the count is negative, FIRST_CODE should
8931 always be used */
8932 if (signed_count > 0
8933 && ((first_code == ROTATE && code == ASHIFT)
8934 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8935 code = first_code, count = signed_count;
8936 else if (signed_count < 0)
8937 code = first_code, count = -signed_count;
8938 else
8939 count = signed_count;
8940
8941 varop = XEXP (varop, 0);
8942 continue;
8943 }
8944
8945 /* If we have (A << B << C) for any shift, we can convert this to
8946 (A << C << B). This wins if A is a constant. Only try this if
8947 B is not a constant. */
8948
8949 else if (GET_CODE (varop) == code
8950 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8951 && 0 != (new
8952 = simplify_binary_operation (code, mode,
8953 XEXP (varop, 0),
8954 GEN_INT (count))))
8955 {
8956 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8957 count = 0;
8958 continue;
8959 }
8960 break;
8961
8962 case NOT:
8963 /* Make this fit the case below. */
8964 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8965 GEN_INT (GET_MODE_MASK (mode)));
8966 continue;
8967
8968 case IOR:
8969 case AND:
8970 case XOR:
8971 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8972 with C the size of VAROP - 1 and the shift is logical if
8973 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8974 we have an (le X 0) operation. If we have an arithmetic shift
8975 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8976 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8977
8978 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8979 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8980 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8981 && (code == LSHIFTRT || code == ASHIFTRT)
8982 && count == (unsigned int)
8983 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8984 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8985 {
8986 count = 0;
8987 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8988 const0_rtx);
8989
8990 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8991 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8992
8993 continue;
8994 }
8995
8996 /* If we have (shift (logical)), move the logical to the outside
8997 to allow it to possibly combine with another logical and the
8998 shift to combine with another shift. This also canonicalizes to
8999 what a ZERO_EXTRACT looks like. Also, some machines have
9000 (and (shift)) insns. */
9001
9002 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9003 /* We can't do this if we have (ashiftrt (xor)) and the
9004 constant has its sign bit set in shift_mode. */
9005 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9006 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9007 shift_mode))
9008 && (new = simplify_binary_operation (code, result_mode,
9009 XEXP (varop, 1),
9010 GEN_INT (count))) != 0
9011 && GET_CODE (new) == CONST_INT
9012 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9013 INTVAL (new), result_mode, &complement_p))
9014 {
9015 varop = XEXP (varop, 0);
9016 continue;
9017 }
9018
9019 /* If we can't do that, try to simplify the shift in each arm of the
9020 logical expression, make a new logical expression, and apply
9021 the inverse distributive law. This also can't be done
9022 for some (ashiftrt (xor)). */
9023 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9024 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9025 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9026 shift_mode)))
9027 {
9028 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9029 XEXP (varop, 0), count);
9030 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9031 XEXP (varop, 1), count);
9032
9033 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9034 lhs, rhs);
9035 varop = apply_distributive_law (varop);
9036
9037 count = 0;
9038 continue;
9039 }
9040 break;
9041
9042 case EQ:
9043 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9044 says that the sign bit can be tested, FOO has mode MODE, C is
9045 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9046 that may be nonzero. */
9047 if (code == LSHIFTRT
9048 && XEXP (varop, 1) == const0_rtx
9049 && GET_MODE (XEXP (varop, 0)) == result_mode
9050 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9051 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9052 && ((STORE_FLAG_VALUE
9053 & ((HOST_WIDE_INT) 1
9054 < (GET_MODE_BITSIZE (result_mode) - 1))))
9055 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9056 && merge_outer_ops (&outer_op, &outer_const, XOR,
9057 (HOST_WIDE_INT) 1, result_mode,
9058 &complement_p))
9059 {
9060 varop = XEXP (varop, 0);
9061 count = 0;
9062 continue;
9063 }
9064 break;
9065
9066 case NEG:
9067 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9068 than the number of bits in the mode is equivalent to A. */
9069 if (code == LSHIFTRT
9070 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9071 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9072 {
9073 varop = XEXP (varop, 0);
9074 count = 0;
9075 continue;
9076 }
9077
9078 /* NEG commutes with ASHIFT since it is multiplication. Move the
9079 NEG outside to allow shifts to combine. */
9080 if (code == ASHIFT
9081 && merge_outer_ops (&outer_op, &outer_const, NEG,
9082 (HOST_WIDE_INT) 0, result_mode,
9083 &complement_p))
9084 {
9085 varop = XEXP (varop, 0);
9086 continue;
9087 }
9088 break;
9089
9090 case PLUS:
9091 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9092 is one less than the number of bits in the mode is
9093 equivalent to (xor A 1). */
9094 if (code == LSHIFTRT
9095 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9096 && XEXP (varop, 1) == constm1_rtx
9097 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9098 && merge_outer_ops (&outer_op, &outer_const, XOR,
9099 (HOST_WIDE_INT) 1, result_mode,
9100 &complement_p))
9101 {
9102 count = 0;
9103 varop = XEXP (varop, 0);
9104 continue;
9105 }
9106
9107 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9108 that might be nonzero in BAR are those being shifted out and those
9109 bits are known zero in FOO, we can replace the PLUS with FOO.
9110 Similarly in the other operand order. This code occurs when
9111 we are computing the size of a variable-size array. */
9112
9113 if ((code == ASHIFTRT || code == LSHIFTRT)
9114 && count < HOST_BITS_PER_WIDE_INT
9115 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9116 && (nonzero_bits (XEXP (varop, 1), result_mode)
9117 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9118 {
9119 varop = XEXP (varop, 0);
9120 continue;
9121 }
9122 else if ((code == ASHIFTRT || code == LSHIFTRT)
9123 && count < HOST_BITS_PER_WIDE_INT
9124 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9125 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9126 >> count)
9127 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9128 & nonzero_bits (XEXP (varop, 1),
9129 result_mode)))
9130 {
9131 varop = XEXP (varop, 1);
9132 continue;
9133 }
9134
9135 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9136 if (code == ASHIFT
9137 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9138 && (new = simplify_binary_operation (ASHIFT, result_mode,
9139 XEXP (varop, 1),
9140 GEN_INT (count))) != 0
9141 && GET_CODE (new) == CONST_INT
9142 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9143 INTVAL (new), result_mode, &complement_p))
9144 {
9145 varop = XEXP (varop, 0);
9146 continue;
9147 }
9148
9149 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9150 signbit', and attempt to change the PLUS to an XOR and move it to
9151 the outer operation as is done above in the AND/IOR/XOR case
9152 leg for shift(logical). See details in logical handling above
9153 for reasoning in doing so. */
9154 if (code == LSHIFTRT
9155 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9156 && mode_signbit_p (result_mode, XEXP (varop, 1))
9157 && (new = simplify_binary_operation (code, result_mode,
9158 XEXP (varop, 1),
9159 GEN_INT (count))) != 0
9160 && GET_CODE (new) == CONST_INT
9161 && merge_outer_ops (&outer_op, &outer_const, XOR,
9162 INTVAL (new), result_mode, &complement_p))
9163 {
9164 varop = XEXP (varop, 0);
9165 continue;
9166 }
9167
9168 break;
9169
9170 case MINUS:
9171 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9172 with C the size of VAROP - 1 and the shift is logical if
9173 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9174 we have a (gt X 0) operation. If the shift is arithmetic with
9175 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9176 we have a (neg (gt X 0)) operation. */
9177
9178 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9179 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9180 && count == (unsigned int)
9181 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9182 && (code == LSHIFTRT || code == ASHIFTRT)
9183 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9184 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9185 == count
9186 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9187 {
9188 count = 0;
9189 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9190 const0_rtx);
9191
9192 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9193 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9194
9195 continue;
9196 }
9197 break;
9198
9199 case TRUNCATE:
9200 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9201 if the truncate does not affect the value. */
9202 if (code == LSHIFTRT
9203 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9204 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9205 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9206 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9207 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9208 {
9209 rtx varop_inner = XEXP (varop, 0);
9210
9211 varop_inner
9212 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9213 XEXP (varop_inner, 0),
9214 GEN_INT
9215 (count + INTVAL (XEXP (varop_inner, 1))));
9216 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9217 count = 0;
9218 continue;
9219 }
9220 break;
9221
9222 default:
9223 break;
9224 }
9225
9226 break;
9227 }
9228
9229 /* We need to determine what mode to do the shift in. If the shift is
9230 a right shift or ROTATE, we must always do it in the mode it was
9231 originally done in. Otherwise, we can do it in MODE, the widest mode
9232 encountered. The code we care about is that of the shift that will
9233 actually be done, not the shift that was originally requested. */
9234 shift_mode
9235 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9236 ? result_mode : mode);
9237
9238 /* We have now finished analyzing the shift. The result should be
9239 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9240 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9241 to the result of the shift. OUTER_CONST is the relevant constant,
9242 but we must turn off all bits turned off in the shift.
9243
9244 If we were passed a value for X, see if we can use any pieces of
9245 it. If not, make new rtx. */
9246
9247 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9248 && GET_CODE (XEXP (x, 1)) == CONST_INT
9249 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9250 const_rtx = XEXP (x, 1);
9251 else
9252 const_rtx = GEN_INT (count);
9253
9254 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9255 && GET_MODE (XEXP (x, 0)) == shift_mode
9256 && SUBREG_REG (XEXP (x, 0)) == varop)
9257 varop = XEXP (x, 0);
9258 else if (GET_MODE (varop) != shift_mode)
9259 varop = gen_lowpart (shift_mode, varop);
9260
9261 /* If we can't make the SUBREG, try to return what we were given. */
9262 if (GET_CODE (varop) == CLOBBER)
9263 return x ? x : varop;
9264
9265 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9266 if (new != 0)
9267 x = new;
9268 else
9269 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9270
9271 /* If we have an outer operation and we just made a shift, it is
9272 possible that we could have simplified the shift were it not
9273 for the outer operation. So try to do the simplification
9274 recursively. */
9275
9276 if (outer_op != UNKNOWN && GET_CODE (x) == code
9277 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9278 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9279 INTVAL (XEXP (x, 1)));
9280
9281 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9282 turn off all the bits that the shift would have turned off. */
9283 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9284 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9285 GET_MODE_MASK (result_mode) >> orig_count);
9286
9287 /* Do the remainder of the processing in RESULT_MODE. */
9288 x = gen_lowpart (result_mode, x);
9289
9290 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9291 operation. */
9292 if (complement_p)
9293 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9294
9295 if (outer_op != UNKNOWN)
9296 {
9297 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9298 outer_const = trunc_int_for_mode (outer_const, result_mode);
9299
9300 if (outer_op == AND)
9301 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9302 else if (outer_op == SET)
9303 /* This means that we have determined that the result is
9304 equivalent to a constant. This should be rare. */
9305 x = GEN_INT (outer_const);
9306 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9307 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9308 else
9309 x = simplify_gen_binary (outer_op, result_mode, x,
9310 GEN_INT (outer_const));
9311 }
9312
9313 return x;
9314 }
9315 \f
9316 /* Like recog, but we receive the address of a pointer to a new pattern.
9317 We try to match the rtx that the pointer points to.
9318 If that fails, we may try to modify or replace the pattern,
9319 storing the replacement into the same pointer object.
9320
9321 Modifications include deletion or addition of CLOBBERs.
9322
9323 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9324 the CLOBBERs are placed.
9325
9326 The value is the final insn code from the pattern ultimately matched,
9327 or -1. */
9328
9329 static int
9330 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9331 {
9332 rtx pat = *pnewpat;
9333 int insn_code_number;
9334 int num_clobbers_to_add = 0;
9335 int i;
9336 rtx notes = 0;
9337 rtx old_notes, old_pat;
9338
9339 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9340 we use to indicate that something didn't match. If we find such a
9341 thing, force rejection. */
9342 if (GET_CODE (pat) == PARALLEL)
9343 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9344 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9345 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9346 return -1;
9347
9348 old_pat = PATTERN (insn);
9349 old_notes = REG_NOTES (insn);
9350 PATTERN (insn) = pat;
9351 REG_NOTES (insn) = 0;
9352
9353 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9354
9355 /* If it isn't, there is the possibility that we previously had an insn
9356 that clobbered some register as a side effect, but the combined
9357 insn doesn't need to do that. So try once more without the clobbers
9358 unless this represents an ASM insn. */
9359
9360 if (insn_code_number < 0 && ! check_asm_operands (pat)
9361 && GET_CODE (pat) == PARALLEL)
9362 {
9363 int pos;
9364
9365 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9366 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9367 {
9368 if (i != pos)
9369 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9370 pos++;
9371 }
9372
9373 SUBST_INT (XVECLEN (pat, 0), pos);
9374
9375 if (pos == 1)
9376 pat = XVECEXP (pat, 0, 0);
9377
9378 PATTERN (insn) = pat;
9379 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9380 }
9381 PATTERN (insn) = old_pat;
9382 REG_NOTES (insn) = old_notes;
9383
9384 /* Recognize all noop sets, these will be killed by followup pass. */
9385 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9386 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9387
9388 /* If we had any clobbers to add, make a new pattern than contains
9389 them. Then check to make sure that all of them are dead. */
9390 if (num_clobbers_to_add)
9391 {
9392 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9393 rtvec_alloc (GET_CODE (pat) == PARALLEL
9394 ? (XVECLEN (pat, 0)
9395 + num_clobbers_to_add)
9396 : num_clobbers_to_add + 1));
9397
9398 if (GET_CODE (pat) == PARALLEL)
9399 for (i = 0; i < XVECLEN (pat, 0); i++)
9400 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9401 else
9402 XVECEXP (newpat, 0, 0) = pat;
9403
9404 add_clobbers (newpat, insn_code_number);
9405
9406 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9407 i < XVECLEN (newpat, 0); i++)
9408 {
9409 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9410 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9411 return -1;
9412 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9413 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9414 }
9415 pat = newpat;
9416 }
9417
9418 *pnewpat = pat;
9419 *pnotes = notes;
9420
9421 return insn_code_number;
9422 }
9423 \f
9424 /* Like gen_lowpart_general but for use by combine. In combine it
9425 is not possible to create any new pseudoregs. However, it is
9426 safe to create invalid memory addresses, because combine will
9427 try to recognize them and all they will do is make the combine
9428 attempt fail.
9429
9430 If for some reason this cannot do its job, an rtx
9431 (clobber (const_int 0)) is returned.
9432 An insn containing that will not be recognized. */
9433
9434 static rtx
9435 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9436 {
9437 enum machine_mode imode = GET_MODE (x);
9438 unsigned int osize = GET_MODE_SIZE (omode);
9439 unsigned int isize = GET_MODE_SIZE (imode);
9440 rtx result;
9441
9442 if (omode == imode)
9443 return x;
9444
9445 /* Return identity if this is a CONST or symbolic reference. */
9446 if (omode == Pmode
9447 && (GET_CODE (x) == CONST
9448 || GET_CODE (x) == SYMBOL_REF
9449 || GET_CODE (x) == LABEL_REF))
9450 return x;
9451
9452 /* We can only support MODE being wider than a word if X is a
9453 constant integer or has a mode the same size. */
9454 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9455 && ! ((imode == VOIDmode
9456 && (GET_CODE (x) == CONST_INT
9457 || GET_CODE (x) == CONST_DOUBLE))
9458 || isize == osize))
9459 goto fail;
9460
9461 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9462 won't know what to do. So we will strip off the SUBREG here and
9463 process normally. */
9464 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9465 {
9466 x = SUBREG_REG (x);
9467
9468 /* For use in case we fall down into the address adjustments
9469 further below, we need to adjust the known mode and size of
9470 x; imode and isize, since we just adjusted x. */
9471 imode = GET_MODE (x);
9472
9473 if (imode == omode)
9474 return x;
9475
9476 isize = GET_MODE_SIZE (imode);
9477 }
9478
9479 result = gen_lowpart_common (omode, x);
9480
9481 #ifdef CANNOT_CHANGE_MODE_CLASS
9482 if (result != 0 && GET_CODE (result) == SUBREG)
9483 record_subregs_of_mode (result);
9484 #endif
9485
9486 if (result)
9487 return result;
9488
9489 if (MEM_P (x))
9490 {
9491 int offset = 0;
9492
9493 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9494 address. */
9495 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9496 goto fail;
9497
9498 /* If we want to refer to something bigger than the original memref,
9499 generate a paradoxical subreg instead. That will force a reload
9500 of the original memref X. */
9501 if (isize < osize)
9502 return gen_rtx_SUBREG (omode, x, 0);
9503
9504 if (WORDS_BIG_ENDIAN)
9505 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9506
9507 /* Adjust the address so that the address-after-the-data is
9508 unchanged. */
9509 if (BYTES_BIG_ENDIAN)
9510 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9511
9512 return adjust_address_nv (x, omode, offset);
9513 }
9514
9515 /* If X is a comparison operator, rewrite it in a new mode. This
9516 probably won't match, but may allow further simplifications. */
9517 else if (COMPARISON_P (x))
9518 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9519
9520 /* If we couldn't simplify X any other way, just enclose it in a
9521 SUBREG. Normally, this SUBREG won't match, but some patterns may
9522 include an explicit SUBREG or we may simplify it further in combine. */
9523 else
9524 {
9525 int offset = 0;
9526 rtx res;
9527
9528 offset = subreg_lowpart_offset (omode, imode);
9529 if (imode == VOIDmode)
9530 {
9531 imode = int_mode_for_mode (omode);
9532 x = gen_lowpart_common (imode, x);
9533 if (x == NULL)
9534 goto fail;
9535 }
9536 res = simplify_gen_subreg (omode, x, imode, offset);
9537 if (res)
9538 return res;
9539 }
9540
9541 fail:
9542 return gen_rtx_CLOBBER (imode, const0_rtx);
9543 }
9544 \f
9545 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9546 comparison code that will be tested.
9547
9548 The result is a possibly different comparison code to use. *POP0 and
9549 *POP1 may be updated.
9550
9551 It is possible that we might detect that a comparison is either always
9552 true or always false. However, we do not perform general constant
9553 folding in combine, so this knowledge isn't useful. Such tautologies
9554 should have been detected earlier. Hence we ignore all such cases. */
9555
9556 static enum rtx_code
9557 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9558 {
9559 rtx op0 = *pop0;
9560 rtx op1 = *pop1;
9561 rtx tem, tem1;
9562 int i;
9563 enum machine_mode mode, tmode;
9564
9565 /* Try a few ways of applying the same transformation to both operands. */
9566 while (1)
9567 {
9568 #ifndef WORD_REGISTER_OPERATIONS
9569 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9570 so check specially. */
9571 if (code != GTU && code != GEU && code != LTU && code != LEU
9572 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9573 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9574 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9575 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9576 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9577 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9578 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9579 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9580 && XEXP (op0, 1) == XEXP (op1, 1)
9581 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9582 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9583 && (INTVAL (XEXP (op0, 1))
9584 == (GET_MODE_BITSIZE (GET_MODE (op0))
9585 - (GET_MODE_BITSIZE
9586 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9587 {
9588 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9589 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9590 }
9591 #endif
9592
9593 /* If both operands are the same constant shift, see if we can ignore the
9594 shift. We can if the shift is a rotate or if the bits shifted out of
9595 this shift are known to be zero for both inputs and if the type of
9596 comparison is compatible with the shift. */
9597 if (GET_CODE (op0) == GET_CODE (op1)
9598 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9599 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9600 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9601 && (code != GT && code != LT && code != GE && code != LE))
9602 || (GET_CODE (op0) == ASHIFTRT
9603 && (code != GTU && code != LTU
9604 && code != GEU && code != LEU)))
9605 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9606 && INTVAL (XEXP (op0, 1)) >= 0
9607 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9608 && XEXP (op0, 1) == XEXP (op1, 1))
9609 {
9610 enum machine_mode mode = GET_MODE (op0);
9611 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9612 int shift_count = INTVAL (XEXP (op0, 1));
9613
9614 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9615 mask &= (mask >> shift_count) << shift_count;
9616 else if (GET_CODE (op0) == ASHIFT)
9617 mask = (mask & (mask << shift_count)) >> shift_count;
9618
9619 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9620 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9621 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9622 else
9623 break;
9624 }
9625
9626 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9627 SUBREGs are of the same mode, and, in both cases, the AND would
9628 be redundant if the comparison was done in the narrower mode,
9629 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9630 and the operand's possibly nonzero bits are 0xffffff01; in that case
9631 if we only care about QImode, we don't need the AND). This case
9632 occurs if the output mode of an scc insn is not SImode and
9633 STORE_FLAG_VALUE == 1 (e.g., the 386).
9634
9635 Similarly, check for a case where the AND's are ZERO_EXTEND
9636 operations from some narrower mode even though a SUBREG is not
9637 present. */
9638
9639 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9640 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9641 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9642 {
9643 rtx inner_op0 = XEXP (op0, 0);
9644 rtx inner_op1 = XEXP (op1, 0);
9645 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9646 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9647 int changed = 0;
9648
9649 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9650 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9651 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9652 && (GET_MODE (SUBREG_REG (inner_op0))
9653 == GET_MODE (SUBREG_REG (inner_op1)))
9654 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9655 <= HOST_BITS_PER_WIDE_INT)
9656 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9657 GET_MODE (SUBREG_REG (inner_op0)))))
9658 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9659 GET_MODE (SUBREG_REG (inner_op1))))))
9660 {
9661 op0 = SUBREG_REG (inner_op0);
9662 op1 = SUBREG_REG (inner_op1);
9663
9664 /* The resulting comparison is always unsigned since we masked
9665 off the original sign bit. */
9666 code = unsigned_condition (code);
9667
9668 changed = 1;
9669 }
9670
9671 else if (c0 == c1)
9672 for (tmode = GET_CLASS_NARROWEST_MODE
9673 (GET_MODE_CLASS (GET_MODE (op0)));
9674 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9675 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9676 {
9677 op0 = gen_lowpart (tmode, inner_op0);
9678 op1 = gen_lowpart (tmode, inner_op1);
9679 code = unsigned_condition (code);
9680 changed = 1;
9681 break;
9682 }
9683
9684 if (! changed)
9685 break;
9686 }
9687
9688 /* If both operands are NOT, we can strip off the outer operation
9689 and adjust the comparison code for swapped operands; similarly for
9690 NEG, except that this must be an equality comparison. */
9691 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9692 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9693 && (code == EQ || code == NE)))
9694 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9695
9696 else
9697 break;
9698 }
9699
9700 /* If the first operand is a constant, swap the operands and adjust the
9701 comparison code appropriately, but don't do this if the second operand
9702 is already a constant integer. */
9703 if (swap_commutative_operands_p (op0, op1))
9704 {
9705 tem = op0, op0 = op1, op1 = tem;
9706 code = swap_condition (code);
9707 }
9708
9709 /* We now enter a loop during which we will try to simplify the comparison.
9710 For the most part, we only are concerned with comparisons with zero,
9711 but some things may really be comparisons with zero but not start
9712 out looking that way. */
9713
9714 while (GET_CODE (op1) == CONST_INT)
9715 {
9716 enum machine_mode mode = GET_MODE (op0);
9717 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9718 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9719 int equality_comparison_p;
9720 int sign_bit_comparison_p;
9721 int unsigned_comparison_p;
9722 HOST_WIDE_INT const_op;
9723
9724 /* We only want to handle integral modes. This catches VOIDmode,
9725 CCmode, and the floating-point modes. An exception is that we
9726 can handle VOIDmode if OP0 is a COMPARE or a comparison
9727 operation. */
9728
9729 if (GET_MODE_CLASS (mode) != MODE_INT
9730 && ! (mode == VOIDmode
9731 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9732 break;
9733
9734 /* Get the constant we are comparing against and turn off all bits
9735 not on in our mode. */
9736 const_op = INTVAL (op1);
9737 if (mode != VOIDmode)
9738 const_op = trunc_int_for_mode (const_op, mode);
9739 op1 = GEN_INT (const_op);
9740
9741 /* If we are comparing against a constant power of two and the value
9742 being compared can only have that single bit nonzero (e.g., it was
9743 `and'ed with that bit), we can replace this with a comparison
9744 with zero. */
9745 if (const_op
9746 && (code == EQ || code == NE || code == GE || code == GEU
9747 || code == LT || code == LTU)
9748 && mode_width <= HOST_BITS_PER_WIDE_INT
9749 && exact_log2 (const_op) >= 0
9750 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9751 {
9752 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9753 op1 = const0_rtx, const_op = 0;
9754 }
9755
9756 /* Similarly, if we are comparing a value known to be either -1 or
9757 0 with -1, change it to the opposite comparison against zero. */
9758
9759 if (const_op == -1
9760 && (code == EQ || code == NE || code == GT || code == LE
9761 || code == GEU || code == LTU)
9762 && num_sign_bit_copies (op0, mode) == mode_width)
9763 {
9764 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9765 op1 = const0_rtx, const_op = 0;
9766 }
9767
9768 /* Do some canonicalizations based on the comparison code. We prefer
9769 comparisons against zero and then prefer equality comparisons.
9770 If we can reduce the size of a constant, we will do that too. */
9771
9772 switch (code)
9773 {
9774 case LT:
9775 /* < C is equivalent to <= (C - 1) */
9776 if (const_op > 0)
9777 {
9778 const_op -= 1;
9779 op1 = GEN_INT (const_op);
9780 code = LE;
9781 /* ... fall through to LE case below. */
9782 }
9783 else
9784 break;
9785
9786 case LE:
9787 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9788 if (const_op < 0)
9789 {
9790 const_op += 1;
9791 op1 = GEN_INT (const_op);
9792 code = LT;
9793 }
9794
9795 /* If we are doing a <= 0 comparison on a value known to have
9796 a zero sign bit, we can replace this with == 0. */
9797 else if (const_op == 0
9798 && mode_width <= HOST_BITS_PER_WIDE_INT
9799 && (nonzero_bits (op0, mode)
9800 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9801 code = EQ;
9802 break;
9803
9804 case GE:
9805 /* >= C is equivalent to > (C - 1). */
9806 if (const_op > 0)
9807 {
9808 const_op -= 1;
9809 op1 = GEN_INT (const_op);
9810 code = GT;
9811 /* ... fall through to GT below. */
9812 }
9813 else
9814 break;
9815
9816 case GT:
9817 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9818 if (const_op < 0)
9819 {
9820 const_op += 1;
9821 op1 = GEN_INT (const_op);
9822 code = GE;
9823 }
9824
9825 /* If we are doing a > 0 comparison on a value known to have
9826 a zero sign bit, we can replace this with != 0. */
9827 else if (const_op == 0
9828 && mode_width <= HOST_BITS_PER_WIDE_INT
9829 && (nonzero_bits (op0, mode)
9830 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9831 code = NE;
9832 break;
9833
9834 case LTU:
9835 /* < C is equivalent to <= (C - 1). */
9836 if (const_op > 0)
9837 {
9838 const_op -= 1;
9839 op1 = GEN_INT (const_op);
9840 code = LEU;
9841 /* ... fall through ... */
9842 }
9843
9844 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9845 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9846 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9847 {
9848 const_op = 0, op1 = const0_rtx;
9849 code = GE;
9850 break;
9851 }
9852 else
9853 break;
9854
9855 case LEU:
9856 /* unsigned <= 0 is equivalent to == 0 */
9857 if (const_op == 0)
9858 code = EQ;
9859
9860 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9861 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9862 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9863 {
9864 const_op = 0, op1 = const0_rtx;
9865 code = GE;
9866 }
9867 break;
9868
9869 case GEU:
9870 /* >= C is equivalent to > (C - 1). */
9871 if (const_op > 1)
9872 {
9873 const_op -= 1;
9874 op1 = GEN_INT (const_op);
9875 code = GTU;
9876 /* ... fall through ... */
9877 }
9878
9879 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9880 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9881 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9882 {
9883 const_op = 0, op1 = const0_rtx;
9884 code = LT;
9885 break;
9886 }
9887 else
9888 break;
9889
9890 case GTU:
9891 /* unsigned > 0 is equivalent to != 0 */
9892 if (const_op == 0)
9893 code = NE;
9894
9895 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9896 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9897 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9898 {
9899 const_op = 0, op1 = const0_rtx;
9900 code = LT;
9901 }
9902 break;
9903
9904 default:
9905 break;
9906 }
9907
9908 /* Compute some predicates to simplify code below. */
9909
9910 equality_comparison_p = (code == EQ || code == NE);
9911 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9912 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9913 || code == GEU);
9914
9915 /* If this is a sign bit comparison and we can do arithmetic in
9916 MODE, say that we will only be needing the sign bit of OP0. */
9917 if (sign_bit_comparison_p
9918 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9919 op0 = force_to_mode (op0, mode,
9920 ((HOST_WIDE_INT) 1
9921 << (GET_MODE_BITSIZE (mode) - 1)),
9922 NULL_RTX, 0);
9923
9924 /* Now try cases based on the opcode of OP0. If none of the cases
9925 does a "continue", we exit this loop immediately after the
9926 switch. */
9927
9928 switch (GET_CODE (op0))
9929 {
9930 case ZERO_EXTRACT:
9931 /* If we are extracting a single bit from a variable position in
9932 a constant that has only a single bit set and are comparing it
9933 with zero, we can convert this into an equality comparison
9934 between the position and the location of the single bit. */
9935 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9936 have already reduced the shift count modulo the word size. */
9937 if (!SHIFT_COUNT_TRUNCATED
9938 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9939 && XEXP (op0, 1) == const1_rtx
9940 && equality_comparison_p && const_op == 0
9941 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9942 {
9943 if (BITS_BIG_ENDIAN)
9944 {
9945 enum machine_mode new_mode
9946 = mode_for_extraction (EP_extzv, 1);
9947 if (new_mode == MAX_MACHINE_MODE)
9948 i = BITS_PER_WORD - 1 - i;
9949 else
9950 {
9951 mode = new_mode;
9952 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9953 }
9954 }
9955
9956 op0 = XEXP (op0, 2);
9957 op1 = GEN_INT (i);
9958 const_op = i;
9959
9960 /* Result is nonzero iff shift count is equal to I. */
9961 code = reverse_condition (code);
9962 continue;
9963 }
9964
9965 /* ... fall through ... */
9966
9967 case SIGN_EXTRACT:
9968 tem = expand_compound_operation (op0);
9969 if (tem != op0)
9970 {
9971 op0 = tem;
9972 continue;
9973 }
9974 break;
9975
9976 case NOT:
9977 /* If testing for equality, we can take the NOT of the constant. */
9978 if (equality_comparison_p
9979 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9980 {
9981 op0 = XEXP (op0, 0);
9982 op1 = tem;
9983 continue;
9984 }
9985
9986 /* If just looking at the sign bit, reverse the sense of the
9987 comparison. */
9988 if (sign_bit_comparison_p)
9989 {
9990 op0 = XEXP (op0, 0);
9991 code = (code == GE ? LT : GE);
9992 continue;
9993 }
9994 break;
9995
9996 case NEG:
9997 /* If testing for equality, we can take the NEG of the constant. */
9998 if (equality_comparison_p
9999 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10000 {
10001 op0 = XEXP (op0, 0);
10002 op1 = tem;
10003 continue;
10004 }
10005
10006 /* The remaining cases only apply to comparisons with zero. */
10007 if (const_op != 0)
10008 break;
10009
10010 /* When X is ABS or is known positive,
10011 (neg X) is < 0 if and only if X != 0. */
10012
10013 if (sign_bit_comparison_p
10014 && (GET_CODE (XEXP (op0, 0)) == ABS
10015 || (mode_width <= HOST_BITS_PER_WIDE_INT
10016 && (nonzero_bits (XEXP (op0, 0), mode)
10017 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10018 {
10019 op0 = XEXP (op0, 0);
10020 code = (code == LT ? NE : EQ);
10021 continue;
10022 }
10023
10024 /* If we have NEG of something whose two high-order bits are the
10025 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10026 if (num_sign_bit_copies (op0, mode) >= 2)
10027 {
10028 op0 = XEXP (op0, 0);
10029 code = swap_condition (code);
10030 continue;
10031 }
10032 break;
10033
10034 case ROTATE:
10035 /* If we are testing equality and our count is a constant, we
10036 can perform the inverse operation on our RHS. */
10037 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10038 && (tem = simplify_binary_operation (ROTATERT, mode,
10039 op1, XEXP (op0, 1))) != 0)
10040 {
10041 op0 = XEXP (op0, 0);
10042 op1 = tem;
10043 continue;
10044 }
10045
10046 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10047 a particular bit. Convert it to an AND of a constant of that
10048 bit. This will be converted into a ZERO_EXTRACT. */
10049 if (const_op == 0 && sign_bit_comparison_p
10050 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10051 && mode_width <= HOST_BITS_PER_WIDE_INT)
10052 {
10053 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10054 ((HOST_WIDE_INT) 1
10055 << (mode_width - 1
10056 - INTVAL (XEXP (op0, 1)))));
10057 code = (code == LT ? NE : EQ);
10058 continue;
10059 }
10060
10061 /* Fall through. */
10062
10063 case ABS:
10064 /* ABS is ignorable inside an equality comparison with zero. */
10065 if (const_op == 0 && equality_comparison_p)
10066 {
10067 op0 = XEXP (op0, 0);
10068 continue;
10069 }
10070 break;
10071
10072 case SIGN_EXTEND:
10073 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10074 (compare FOO CONST) if CONST fits in FOO's mode and we
10075 are either testing inequality or have an unsigned
10076 comparison with ZERO_EXTEND or a signed comparison with
10077 SIGN_EXTEND. But don't do it if we don't have a compare
10078 insn of the given mode, since we'd have to revert it
10079 later on, and then we wouldn't know whether to sign- or
10080 zero-extend. */
10081 mode = GET_MODE (XEXP (op0, 0));
10082 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10083 && ! unsigned_comparison_p
10084 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10085 && ((unsigned HOST_WIDE_INT) const_op
10086 < (((unsigned HOST_WIDE_INT) 1
10087 << (GET_MODE_BITSIZE (mode) - 1))))
10088 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10089 {
10090 op0 = XEXP (op0, 0);
10091 continue;
10092 }
10093 break;
10094
10095 case SUBREG:
10096 /* Check for the case where we are comparing A - C1 with C2, that is
10097
10098 (subreg:MODE (plus (A) (-C1))) op (C2)
10099
10100 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10101 comparison in the wider mode. One of the following two conditions
10102 must be true in order for this to be valid:
10103
10104 1. The mode extension results in the same bit pattern being added
10105 on both sides and the comparison is equality or unsigned. As
10106 C2 has been truncated to fit in MODE, the pattern can only be
10107 all 0s or all 1s.
10108
10109 2. The mode extension results in the sign bit being copied on
10110 each side.
10111
10112 The difficulty here is that we have predicates for A but not for
10113 (A - C1) so we need to check that C1 is within proper bounds so
10114 as to perturbate A as little as possible. */
10115
10116 if (mode_width <= HOST_BITS_PER_WIDE_INT
10117 && subreg_lowpart_p (op0)
10118 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10119 && GET_CODE (SUBREG_REG (op0)) == PLUS
10120 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10121 {
10122 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10123 rtx a = XEXP (SUBREG_REG (op0), 0);
10124 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10125
10126 if ((c1 > 0
10127 && (unsigned HOST_WIDE_INT) c1
10128 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10129 && (equality_comparison_p || unsigned_comparison_p)
10130 /* (A - C1) zero-extends if it is positive and sign-extends
10131 if it is negative, C2 both zero- and sign-extends. */
10132 && ((0 == (nonzero_bits (a, inner_mode)
10133 & ~GET_MODE_MASK (mode))
10134 && const_op >= 0)
10135 /* (A - C1) sign-extends if it is positive and 1-extends
10136 if it is negative, C2 both sign- and 1-extends. */
10137 || (num_sign_bit_copies (a, inner_mode)
10138 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10139 - mode_width)
10140 && const_op < 0)))
10141 || ((unsigned HOST_WIDE_INT) c1
10142 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10143 /* (A - C1) always sign-extends, like C2. */
10144 && num_sign_bit_copies (a, inner_mode)
10145 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10146 - mode_width - 1)))
10147 {
10148 op0 = SUBREG_REG (op0);
10149 continue;
10150 }
10151 }
10152
10153 /* If the inner mode is narrower and we are extracting the low part,
10154 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10155 if (subreg_lowpart_p (op0)
10156 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10157 /* Fall through */ ;
10158 else
10159 break;
10160
10161 /* ... fall through ... */
10162
10163 case ZERO_EXTEND:
10164 mode = GET_MODE (XEXP (op0, 0));
10165 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10166 && (unsigned_comparison_p || equality_comparison_p)
10167 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10168 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10169 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10170 {
10171 op0 = XEXP (op0, 0);
10172 continue;
10173 }
10174 break;
10175
10176 case PLUS:
10177 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10178 this for equality comparisons due to pathological cases involving
10179 overflows. */
10180 if (equality_comparison_p
10181 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10182 op1, XEXP (op0, 1))))
10183 {
10184 op0 = XEXP (op0, 0);
10185 op1 = tem;
10186 continue;
10187 }
10188
10189 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10190 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10191 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10192 {
10193 op0 = XEXP (XEXP (op0, 0), 0);
10194 code = (code == LT ? EQ : NE);
10195 continue;
10196 }
10197 break;
10198
10199 case MINUS:
10200 /* We used to optimize signed comparisons against zero, but that
10201 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10202 arrive here as equality comparisons, or (GEU, LTU) are
10203 optimized away. No need to special-case them. */
10204
10205 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10206 (eq B (minus A C)), whichever simplifies. We can only do
10207 this for equality comparisons due to pathological cases involving
10208 overflows. */
10209 if (equality_comparison_p
10210 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10211 XEXP (op0, 1), op1)))
10212 {
10213 op0 = XEXP (op0, 0);
10214 op1 = tem;
10215 continue;
10216 }
10217
10218 if (equality_comparison_p
10219 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10220 XEXP (op0, 0), op1)))
10221 {
10222 op0 = XEXP (op0, 1);
10223 op1 = tem;
10224 continue;
10225 }
10226
10227 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10228 of bits in X minus 1, is one iff X > 0. */
10229 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10230 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10231 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10232 == mode_width - 1
10233 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10234 {
10235 op0 = XEXP (op0, 1);
10236 code = (code == GE ? LE : GT);
10237 continue;
10238 }
10239 break;
10240
10241 case XOR:
10242 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10243 if C is zero or B is a constant. */
10244 if (equality_comparison_p
10245 && 0 != (tem = simplify_binary_operation (XOR, mode,
10246 XEXP (op0, 1), op1)))
10247 {
10248 op0 = XEXP (op0, 0);
10249 op1 = tem;
10250 continue;
10251 }
10252 break;
10253
10254 case EQ: case NE:
10255 case UNEQ: case LTGT:
10256 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10257 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10258 case UNORDERED: case ORDERED:
10259 /* We can't do anything if OP0 is a condition code value, rather
10260 than an actual data value. */
10261 if (const_op != 0
10262 || CC0_P (XEXP (op0, 0))
10263 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10264 break;
10265
10266 /* Get the two operands being compared. */
10267 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10268 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10269 else
10270 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10271
10272 /* Check for the cases where we simply want the result of the
10273 earlier test or the opposite of that result. */
10274 if (code == NE || code == EQ
10275 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10276 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10277 && (STORE_FLAG_VALUE
10278 & (((HOST_WIDE_INT) 1
10279 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10280 && (code == LT || code == GE)))
10281 {
10282 enum rtx_code new_code;
10283 if (code == LT || code == NE)
10284 new_code = GET_CODE (op0);
10285 else
10286 new_code = reversed_comparison_code (op0, NULL);
10287
10288 if (new_code != UNKNOWN)
10289 {
10290 code = new_code;
10291 op0 = tem;
10292 op1 = tem1;
10293 continue;
10294 }
10295 }
10296 break;
10297
10298 case IOR:
10299 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10300 iff X <= 0. */
10301 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10302 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10303 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10304 {
10305 op0 = XEXP (op0, 1);
10306 code = (code == GE ? GT : LE);
10307 continue;
10308 }
10309 break;
10310
10311 case AND:
10312 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10313 will be converted to a ZERO_EXTRACT later. */
10314 if (const_op == 0 && equality_comparison_p
10315 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10316 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10317 {
10318 op0 = simplify_and_const_int
10319 (op0, mode, gen_rtx_LSHIFTRT (mode,
10320 XEXP (op0, 1),
10321 XEXP (XEXP (op0, 0), 1)),
10322 (HOST_WIDE_INT) 1);
10323 continue;
10324 }
10325
10326 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10327 zero and X is a comparison and C1 and C2 describe only bits set
10328 in STORE_FLAG_VALUE, we can compare with X. */
10329 if (const_op == 0 && equality_comparison_p
10330 && mode_width <= HOST_BITS_PER_WIDE_INT
10331 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10332 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10333 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10334 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10335 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10336 {
10337 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10338 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10339 if ((~STORE_FLAG_VALUE & mask) == 0
10340 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10341 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10342 && COMPARISON_P (tem))))
10343 {
10344 op0 = XEXP (XEXP (op0, 0), 0);
10345 continue;
10346 }
10347 }
10348
10349 /* If we are doing an equality comparison of an AND of a bit equal
10350 to the sign bit, replace this with a LT or GE comparison of
10351 the underlying value. */
10352 if (equality_comparison_p
10353 && const_op == 0
10354 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10355 && mode_width <= HOST_BITS_PER_WIDE_INT
10356 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10357 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10358 {
10359 op0 = XEXP (op0, 0);
10360 code = (code == EQ ? GE : LT);
10361 continue;
10362 }
10363
10364 /* If this AND operation is really a ZERO_EXTEND from a narrower
10365 mode, the constant fits within that mode, and this is either an
10366 equality or unsigned comparison, try to do this comparison in
10367 the narrower mode. */
10368 if ((equality_comparison_p || unsigned_comparison_p)
10369 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10370 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10371 & GET_MODE_MASK (mode))
10372 + 1)) >= 0
10373 && const_op >> i == 0
10374 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10375 {
10376 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10377 continue;
10378 }
10379
10380 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10381 fits in both M1 and M2 and the SUBREG is either paradoxical
10382 or represents the low part, permute the SUBREG and the AND
10383 and try again. */
10384 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10385 {
10386 unsigned HOST_WIDE_INT c1;
10387 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10388 /* Require an integral mode, to avoid creating something like
10389 (AND:SF ...). */
10390 if (SCALAR_INT_MODE_P (tmode)
10391 /* It is unsafe to commute the AND into the SUBREG if the
10392 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10393 not defined. As originally written the upper bits
10394 have a defined value due to the AND operation.
10395 However, if we commute the AND inside the SUBREG then
10396 they no longer have defined values and the meaning of
10397 the code has been changed. */
10398 && (0
10399 #ifdef WORD_REGISTER_OPERATIONS
10400 || (mode_width > GET_MODE_BITSIZE (tmode)
10401 && mode_width <= BITS_PER_WORD)
10402 #endif
10403 || (mode_width <= GET_MODE_BITSIZE (tmode)
10404 && subreg_lowpart_p (XEXP (op0, 0))))
10405 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10406 && mode_width <= HOST_BITS_PER_WIDE_INT
10407 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10408 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10409 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10410 && c1 != mask
10411 && c1 != GET_MODE_MASK (tmode))
10412 {
10413 op0 = simplify_gen_binary (AND, tmode,
10414 SUBREG_REG (XEXP (op0, 0)),
10415 gen_int_mode (c1, tmode));
10416 op0 = gen_lowpart (mode, op0);
10417 continue;
10418 }
10419 }
10420
10421 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10422 if (const_op == 0 && equality_comparison_p
10423 && XEXP (op0, 1) == const1_rtx
10424 && GET_CODE (XEXP (op0, 0)) == NOT)
10425 {
10426 op0 = simplify_and_const_int
10427 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10428 code = (code == NE ? EQ : NE);
10429 continue;
10430 }
10431
10432 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10433 (eq (and (lshiftrt X) 1) 0).
10434 Also handle the case where (not X) is expressed using xor. */
10435 if (const_op == 0 && equality_comparison_p
10436 && XEXP (op0, 1) == const1_rtx
10437 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10438 {
10439 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10440 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10441
10442 if (GET_CODE (shift_op) == NOT
10443 || (GET_CODE (shift_op) == XOR
10444 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10445 && GET_CODE (shift_count) == CONST_INT
10446 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10447 && (INTVAL (XEXP (shift_op, 1))
10448 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10449 {
10450 op0 = simplify_and_const_int
10451 (NULL_RTX, mode,
10452 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10453 (HOST_WIDE_INT) 1);
10454 code = (code == NE ? EQ : NE);
10455 continue;
10456 }
10457 }
10458 break;
10459
10460 case ASHIFT:
10461 /* If we have (compare (ashift FOO N) (const_int C)) and
10462 the high order N bits of FOO (N+1 if an inequality comparison)
10463 are known to be zero, we can do this by comparing FOO with C
10464 shifted right N bits so long as the low-order N bits of C are
10465 zero. */
10466 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10467 && INTVAL (XEXP (op0, 1)) >= 0
10468 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10469 < HOST_BITS_PER_WIDE_INT)
10470 && ((const_op
10471 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10472 && mode_width <= HOST_BITS_PER_WIDE_INT
10473 && (nonzero_bits (XEXP (op0, 0), mode)
10474 & ~(mask >> (INTVAL (XEXP (op0, 1))
10475 + ! equality_comparison_p))) == 0)
10476 {
10477 /* We must perform a logical shift, not an arithmetic one,
10478 as we want the top N bits of C to be zero. */
10479 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10480
10481 temp >>= INTVAL (XEXP (op0, 1));
10482 op1 = gen_int_mode (temp, mode);
10483 op0 = XEXP (op0, 0);
10484 continue;
10485 }
10486
10487 /* If we are doing a sign bit comparison, it means we are testing
10488 a particular bit. Convert it to the appropriate AND. */
10489 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10490 && mode_width <= HOST_BITS_PER_WIDE_INT)
10491 {
10492 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10493 ((HOST_WIDE_INT) 1
10494 << (mode_width - 1
10495 - INTVAL (XEXP (op0, 1)))));
10496 code = (code == LT ? NE : EQ);
10497 continue;
10498 }
10499
10500 /* If this an equality comparison with zero and we are shifting
10501 the low bit to the sign bit, we can convert this to an AND of the
10502 low-order bit. */
10503 if (const_op == 0 && equality_comparison_p
10504 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10505 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10506 == mode_width - 1)
10507 {
10508 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10509 (HOST_WIDE_INT) 1);
10510 continue;
10511 }
10512 break;
10513
10514 case ASHIFTRT:
10515 /* If this is an equality comparison with zero, we can do this
10516 as a logical shift, which might be much simpler. */
10517 if (equality_comparison_p && const_op == 0
10518 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10519 {
10520 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10521 XEXP (op0, 0),
10522 INTVAL (XEXP (op0, 1)));
10523 continue;
10524 }
10525
10526 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10527 do the comparison in a narrower mode. */
10528 if (! unsigned_comparison_p
10529 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10530 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10531 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10532 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10533 MODE_INT, 1)) != BLKmode
10534 && (((unsigned HOST_WIDE_INT) const_op
10535 + (GET_MODE_MASK (tmode) >> 1) + 1)
10536 <= GET_MODE_MASK (tmode)))
10537 {
10538 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10539 continue;
10540 }
10541
10542 /* Likewise if OP0 is a PLUS of a sign extension with a
10543 constant, which is usually represented with the PLUS
10544 between the shifts. */
10545 if (! unsigned_comparison_p
10546 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10547 && GET_CODE (XEXP (op0, 0)) == PLUS
10548 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10549 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10550 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10551 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10552 MODE_INT, 1)) != BLKmode
10553 && (((unsigned HOST_WIDE_INT) const_op
10554 + (GET_MODE_MASK (tmode) >> 1) + 1)
10555 <= GET_MODE_MASK (tmode)))
10556 {
10557 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10558 rtx add_const = XEXP (XEXP (op0, 0), 1);
10559 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10560 add_const, XEXP (op0, 1));
10561
10562 op0 = simplify_gen_binary (PLUS, tmode,
10563 gen_lowpart (tmode, inner),
10564 new_const);
10565 continue;
10566 }
10567
10568 /* ... fall through ... */
10569 case LSHIFTRT:
10570 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10571 the low order N bits of FOO are known to be zero, we can do this
10572 by comparing FOO with C shifted left N bits so long as no
10573 overflow occurs. */
10574 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10575 && INTVAL (XEXP (op0, 1)) >= 0
10576 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10577 && mode_width <= HOST_BITS_PER_WIDE_INT
10578 && (nonzero_bits (XEXP (op0, 0), mode)
10579 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10580 && (((unsigned HOST_WIDE_INT) const_op
10581 + (GET_CODE (op0) != LSHIFTRT
10582 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10583 + 1)
10584 : 0))
10585 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10586 {
10587 /* If the shift was logical, then we must make the condition
10588 unsigned. */
10589 if (GET_CODE (op0) == LSHIFTRT)
10590 code = unsigned_condition (code);
10591
10592 const_op <<= INTVAL (XEXP (op0, 1));
10593 op1 = GEN_INT (const_op);
10594 op0 = XEXP (op0, 0);
10595 continue;
10596 }
10597
10598 /* If we are using this shift to extract just the sign bit, we
10599 can replace this with an LT or GE comparison. */
10600 if (const_op == 0
10601 && (equality_comparison_p || sign_bit_comparison_p)
10602 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10603 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10604 == mode_width - 1)
10605 {
10606 op0 = XEXP (op0, 0);
10607 code = (code == NE || code == GT ? LT : GE);
10608 continue;
10609 }
10610 break;
10611
10612 default:
10613 break;
10614 }
10615
10616 break;
10617 }
10618
10619 /* Now make any compound operations involved in this comparison. Then,
10620 check for an outmost SUBREG on OP0 that is not doing anything or is
10621 paradoxical. The latter transformation must only be performed when
10622 it is known that the "extra" bits will be the same in op0 and op1 or
10623 that they don't matter. There are three cases to consider:
10624
10625 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10626 care bits and we can assume they have any convenient value. So
10627 making the transformation is safe.
10628
10629 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10630 In this case the upper bits of op0 are undefined. We should not make
10631 the simplification in that case as we do not know the contents of
10632 those bits.
10633
10634 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10635 UNKNOWN. In that case we know those bits are zeros or ones. We must
10636 also be sure that they are the same as the upper bits of op1.
10637
10638 We can never remove a SUBREG for a non-equality comparison because
10639 the sign bit is in a different place in the underlying object. */
10640
10641 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10642 op1 = make_compound_operation (op1, SET);
10643
10644 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10645 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10646 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10647 && (code == NE || code == EQ))
10648 {
10649 if (GET_MODE_SIZE (GET_MODE (op0))
10650 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10651 {
10652 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10653 implemented. */
10654 if (REG_P (SUBREG_REG (op0)))
10655 {
10656 op0 = SUBREG_REG (op0);
10657 op1 = gen_lowpart (GET_MODE (op0), op1);
10658 }
10659 }
10660 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10661 <= HOST_BITS_PER_WIDE_INT)
10662 && (nonzero_bits (SUBREG_REG (op0),
10663 GET_MODE (SUBREG_REG (op0)))
10664 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10665 {
10666 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10667
10668 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10669 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10670 op0 = SUBREG_REG (op0), op1 = tem;
10671 }
10672 }
10673
10674 /* We now do the opposite procedure: Some machines don't have compare
10675 insns in all modes. If OP0's mode is an integer mode smaller than a
10676 word and we can't do a compare in that mode, see if there is a larger
10677 mode for which we can do the compare. There are a number of cases in
10678 which we can use the wider mode. */
10679
10680 mode = GET_MODE (op0);
10681 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10682 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10683 && ! have_insn_for (COMPARE, mode))
10684 for (tmode = GET_MODE_WIDER_MODE (mode);
10685 (tmode != VOIDmode
10686 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10687 tmode = GET_MODE_WIDER_MODE (tmode))
10688 if (have_insn_for (COMPARE, tmode))
10689 {
10690 int zero_extended;
10691
10692 /* If the only nonzero bits in OP0 and OP1 are those in the
10693 narrower mode and this is an equality or unsigned comparison,
10694 we can use the wider mode. Similarly for sign-extended
10695 values, in which case it is true for all comparisons. */
10696 zero_extended = ((code == EQ || code == NE
10697 || code == GEU || code == GTU
10698 || code == LEU || code == LTU)
10699 && (nonzero_bits (op0, tmode)
10700 & ~GET_MODE_MASK (mode)) == 0
10701 && ((GET_CODE (op1) == CONST_INT
10702 || (nonzero_bits (op1, tmode)
10703 & ~GET_MODE_MASK (mode)) == 0)));
10704
10705 if (zero_extended
10706 || ((num_sign_bit_copies (op0, tmode)
10707 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10708 - GET_MODE_BITSIZE (mode)))
10709 && (num_sign_bit_copies (op1, tmode)
10710 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10711 - GET_MODE_BITSIZE (mode)))))
10712 {
10713 /* If OP0 is an AND and we don't have an AND in MODE either,
10714 make a new AND in the proper mode. */
10715 if (GET_CODE (op0) == AND
10716 && !have_insn_for (AND, mode))
10717 op0 = simplify_gen_binary (AND, tmode,
10718 gen_lowpart (tmode,
10719 XEXP (op0, 0)),
10720 gen_lowpart (tmode,
10721 XEXP (op0, 1)));
10722
10723 op0 = gen_lowpart (tmode, op0);
10724 if (zero_extended && GET_CODE (op1) == CONST_INT)
10725 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10726 op1 = gen_lowpart (tmode, op1);
10727 break;
10728 }
10729
10730 /* If this is a test for negative, we can make an explicit
10731 test of the sign bit. */
10732
10733 if (op1 == const0_rtx && (code == LT || code == GE)
10734 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10735 {
10736 op0 = simplify_gen_binary (AND, tmode,
10737 gen_lowpart (tmode, op0),
10738 GEN_INT ((HOST_WIDE_INT) 1
10739 << (GET_MODE_BITSIZE (mode)
10740 - 1)));
10741 code = (code == LT) ? NE : EQ;
10742 break;
10743 }
10744 }
10745
10746 #ifdef CANONICALIZE_COMPARISON
10747 /* If this machine only supports a subset of valid comparisons, see if we
10748 can convert an unsupported one into a supported one. */
10749 CANONICALIZE_COMPARISON (code, op0, op1);
10750 #endif
10751
10752 *pop0 = op0;
10753 *pop1 = op1;
10754
10755 return code;
10756 }
10757 \f
10758 /* Utility function for record_value_for_reg. Count number of
10759 rtxs in X. */
10760 static int
10761 count_rtxs (rtx x)
10762 {
10763 enum rtx_code code = GET_CODE (x);
10764 const char *fmt;
10765 int i, ret = 1;
10766
10767 if (GET_RTX_CLASS (code) == '2'
10768 || GET_RTX_CLASS (code) == 'c')
10769 {
10770 rtx x0 = XEXP (x, 0);
10771 rtx x1 = XEXP (x, 1);
10772
10773 if (x0 == x1)
10774 return 1 + 2 * count_rtxs (x0);
10775
10776 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10777 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10778 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10779 return 2 + 2 * count_rtxs (x0)
10780 + count_rtxs (x == XEXP (x1, 0)
10781 ? XEXP (x1, 1) : XEXP (x1, 0));
10782
10783 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10784 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10785 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10786 return 2 + 2 * count_rtxs (x1)
10787 + count_rtxs (x == XEXP (x0, 0)
10788 ? XEXP (x0, 1) : XEXP (x0, 0));
10789 }
10790
10791 fmt = GET_RTX_FORMAT (code);
10792 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10793 if (fmt[i] == 'e')
10794 ret += count_rtxs (XEXP (x, i));
10795
10796 return ret;
10797 }
10798 \f
10799 /* Utility function for following routine. Called when X is part of a value
10800 being stored into last_set_value. Sets last_set_table_tick
10801 for each register mentioned. Similar to mention_regs in cse.c */
10802
10803 static void
10804 update_table_tick (rtx x)
10805 {
10806 enum rtx_code code = GET_CODE (x);
10807 const char *fmt = GET_RTX_FORMAT (code);
10808 int i;
10809
10810 if (code == REG)
10811 {
10812 unsigned int regno = REGNO (x);
10813 unsigned int endregno
10814 = regno + (regno < FIRST_PSEUDO_REGISTER
10815 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10816 unsigned int r;
10817
10818 for (r = regno; r < endregno; r++)
10819 reg_stat[r].last_set_table_tick = label_tick;
10820
10821 return;
10822 }
10823
10824 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10825 /* Note that we can't have an "E" in values stored; see
10826 get_last_value_validate. */
10827 if (fmt[i] == 'e')
10828 {
10829 /* Check for identical subexpressions. If x contains
10830 identical subexpression we only have to traverse one of
10831 them. */
10832 if (i == 0 && ARITHMETIC_P (x))
10833 {
10834 /* Note that at this point x1 has already been
10835 processed. */
10836 rtx x0 = XEXP (x, 0);
10837 rtx x1 = XEXP (x, 1);
10838
10839 /* If x0 and x1 are identical then there is no need to
10840 process x0. */
10841 if (x0 == x1)
10842 break;
10843
10844 /* If x0 is identical to a subexpression of x1 then while
10845 processing x1, x0 has already been processed. Thus we
10846 are done with x. */
10847 if (ARITHMETIC_P (x1)
10848 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10849 break;
10850
10851 /* If x1 is identical to a subexpression of x0 then we
10852 still have to process the rest of x0. */
10853 if (ARITHMETIC_P (x0)
10854 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10855 {
10856 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10857 break;
10858 }
10859 }
10860
10861 update_table_tick (XEXP (x, i));
10862 }
10863 }
10864
10865 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10866 are saying that the register is clobbered and we no longer know its
10867 value. If INSN is zero, don't update reg_stat[].last_set; this is
10868 only permitted with VALUE also zero and is used to invalidate the
10869 register. */
10870
10871 static void
10872 record_value_for_reg (rtx reg, rtx insn, rtx value)
10873 {
10874 unsigned int regno = REGNO (reg);
10875 unsigned int endregno
10876 = regno + (regno < FIRST_PSEUDO_REGISTER
10877 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10878 unsigned int i;
10879
10880 /* If VALUE contains REG and we have a previous value for REG, substitute
10881 the previous value. */
10882 if (value && insn && reg_overlap_mentioned_p (reg, value))
10883 {
10884 rtx tem;
10885
10886 /* Set things up so get_last_value is allowed to see anything set up to
10887 our insn. */
10888 subst_low_cuid = INSN_CUID (insn);
10889 tem = get_last_value (reg);
10890
10891 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10892 it isn't going to be useful and will take a lot of time to process,
10893 so just use the CLOBBER. */
10894
10895 if (tem)
10896 {
10897 if (ARITHMETIC_P (tem)
10898 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10899 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10900 tem = XEXP (tem, 0);
10901 else if (count_occurrences (value, reg, 1) >= 2)
10902 {
10903 /* If there are two or more occurrences of REG in VALUE,
10904 prevent the value from growing too much. */
10905 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10906 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10907 }
10908
10909 value = replace_rtx (copy_rtx (value), reg, tem);
10910 }
10911 }
10912
10913 /* For each register modified, show we don't know its value, that
10914 we don't know about its bitwise content, that its value has been
10915 updated, and that we don't know the location of the death of the
10916 register. */
10917 for (i = regno; i < endregno; i++)
10918 {
10919 if (insn)
10920 reg_stat[i].last_set = insn;
10921
10922 reg_stat[i].last_set_value = 0;
10923 reg_stat[i].last_set_mode = 0;
10924 reg_stat[i].last_set_nonzero_bits = 0;
10925 reg_stat[i].last_set_sign_bit_copies = 0;
10926 reg_stat[i].last_death = 0;
10927 }
10928
10929 /* Mark registers that are being referenced in this value. */
10930 if (value)
10931 update_table_tick (value);
10932
10933 /* Now update the status of each register being set.
10934 If someone is using this register in this block, set this register
10935 to invalid since we will get confused between the two lives in this
10936 basic block. This makes using this register always invalid. In cse, we
10937 scan the table to invalidate all entries using this register, but this
10938 is too much work for us. */
10939
10940 for (i = regno; i < endregno; i++)
10941 {
10942 reg_stat[i].last_set_label = label_tick;
10943 if (value && reg_stat[i].last_set_table_tick == label_tick)
10944 reg_stat[i].last_set_invalid = 1;
10945 else
10946 reg_stat[i].last_set_invalid = 0;
10947 }
10948
10949 /* The value being assigned might refer to X (like in "x++;"). In that
10950 case, we must replace it with (clobber (const_int 0)) to prevent
10951 infinite loops. */
10952 if (value && ! get_last_value_validate (&value, insn,
10953 reg_stat[regno].last_set_label, 0))
10954 {
10955 value = copy_rtx (value);
10956 if (! get_last_value_validate (&value, insn,
10957 reg_stat[regno].last_set_label, 1))
10958 value = 0;
10959 }
10960
10961 /* For the main register being modified, update the value, the mode, the
10962 nonzero bits, and the number of sign bit copies. */
10963
10964 reg_stat[regno].last_set_value = value;
10965
10966 if (value)
10967 {
10968 enum machine_mode mode = GET_MODE (reg);
10969 subst_low_cuid = INSN_CUID (insn);
10970 reg_stat[regno].last_set_mode = mode;
10971 if (GET_MODE_CLASS (mode) == MODE_INT
10972 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10973 mode = nonzero_bits_mode;
10974 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10975 reg_stat[regno].last_set_sign_bit_copies
10976 = num_sign_bit_copies (value, GET_MODE (reg));
10977 }
10978 }
10979
10980 /* Called via note_stores from record_dead_and_set_regs to handle one
10981 SET or CLOBBER in an insn. DATA is the instruction in which the
10982 set is occurring. */
10983
10984 static void
10985 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10986 {
10987 rtx record_dead_insn = (rtx) data;
10988
10989 if (GET_CODE (dest) == SUBREG)
10990 dest = SUBREG_REG (dest);
10991
10992 if (REG_P (dest))
10993 {
10994 /* If we are setting the whole register, we know its value. Otherwise
10995 show that we don't know the value. We can handle SUBREG in
10996 some cases. */
10997 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10998 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10999 else if (GET_CODE (setter) == SET
11000 && GET_CODE (SET_DEST (setter)) == SUBREG
11001 && SUBREG_REG (SET_DEST (setter)) == dest
11002 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11003 && subreg_lowpart_p (SET_DEST (setter)))
11004 record_value_for_reg (dest, record_dead_insn,
11005 gen_lowpart (GET_MODE (dest),
11006 SET_SRC (setter)));
11007 else
11008 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11009 }
11010 else if (MEM_P (dest)
11011 /* Ignore pushes, they clobber nothing. */
11012 && ! push_operand (dest, GET_MODE (dest)))
11013 mem_last_set = INSN_CUID (record_dead_insn);
11014 }
11015
11016 /* Update the records of when each REG was most recently set or killed
11017 for the things done by INSN. This is the last thing done in processing
11018 INSN in the combiner loop.
11019
11020 We update reg_stat[], in particular fields last_set, last_set_value,
11021 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11022 last_death, and also the similar information mem_last_set (which insn
11023 most recently modified memory) and last_call_cuid (which insn was the
11024 most recent subroutine call). */
11025
11026 static void
11027 record_dead_and_set_regs (rtx insn)
11028 {
11029 rtx link;
11030 unsigned int i;
11031
11032 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11033 {
11034 if (REG_NOTE_KIND (link) == REG_DEAD
11035 && REG_P (XEXP (link, 0)))
11036 {
11037 unsigned int regno = REGNO (XEXP (link, 0));
11038 unsigned int endregno
11039 = regno + (regno < FIRST_PSEUDO_REGISTER
11040 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11041 : 1);
11042
11043 for (i = regno; i < endregno; i++)
11044 reg_stat[i].last_death = insn;
11045 }
11046 else if (REG_NOTE_KIND (link) == REG_INC)
11047 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11048 }
11049
11050 if (CALL_P (insn))
11051 {
11052 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11053 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11054 {
11055 reg_stat[i].last_set_value = 0;
11056 reg_stat[i].last_set_mode = 0;
11057 reg_stat[i].last_set_nonzero_bits = 0;
11058 reg_stat[i].last_set_sign_bit_copies = 0;
11059 reg_stat[i].last_death = 0;
11060 }
11061
11062 last_call_cuid = mem_last_set = INSN_CUID (insn);
11063
11064 /* Don't bother recording what this insn does. It might set the
11065 return value register, but we can't combine into a call
11066 pattern anyway, so there's no point trying (and it may cause
11067 a crash, if e.g. we wind up asking for last_set_value of a
11068 SUBREG of the return value register). */
11069 return;
11070 }
11071
11072 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11073 }
11074
11075 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11076 register present in the SUBREG, so for each such SUBREG go back and
11077 adjust nonzero and sign bit information of the registers that are
11078 known to have some zero/sign bits set.
11079
11080 This is needed because when combine blows the SUBREGs away, the
11081 information on zero/sign bits is lost and further combines can be
11082 missed because of that. */
11083
11084 static void
11085 record_promoted_value (rtx insn, rtx subreg)
11086 {
11087 rtx links, set;
11088 unsigned int regno = REGNO (SUBREG_REG (subreg));
11089 enum machine_mode mode = GET_MODE (subreg);
11090
11091 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11092 return;
11093
11094 for (links = LOG_LINKS (insn); links;)
11095 {
11096 insn = XEXP (links, 0);
11097 set = single_set (insn);
11098
11099 if (! set || !REG_P (SET_DEST (set))
11100 || REGNO (SET_DEST (set)) != regno
11101 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11102 {
11103 links = XEXP (links, 1);
11104 continue;
11105 }
11106
11107 if (reg_stat[regno].last_set == insn)
11108 {
11109 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11110 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11111 }
11112
11113 if (REG_P (SET_SRC (set)))
11114 {
11115 regno = REGNO (SET_SRC (set));
11116 links = LOG_LINKS (insn);
11117 }
11118 else
11119 break;
11120 }
11121 }
11122
11123 /* Scan X for promoted SUBREGs. For each one found,
11124 note what it implies to the registers used in it. */
11125
11126 static void
11127 check_promoted_subreg (rtx insn, rtx x)
11128 {
11129 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11130 && REG_P (SUBREG_REG (x)))
11131 record_promoted_value (insn, x);
11132 else
11133 {
11134 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11135 int i, j;
11136
11137 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11138 switch (format[i])
11139 {
11140 case 'e':
11141 check_promoted_subreg (insn, XEXP (x, i));
11142 break;
11143 case 'V':
11144 case 'E':
11145 if (XVEC (x, i) != 0)
11146 for (j = 0; j < XVECLEN (x, i); j++)
11147 check_promoted_subreg (insn, XVECEXP (x, i, j));
11148 break;
11149 }
11150 }
11151 }
11152 \f
11153 /* Utility routine for the following function. Verify that all the registers
11154 mentioned in *LOC are valid when *LOC was part of a value set when
11155 label_tick == TICK. Return 0 if some are not.
11156
11157 If REPLACE is nonzero, replace the invalid reference with
11158 (clobber (const_int 0)) and return 1. This replacement is useful because
11159 we often can get useful information about the form of a value (e.g., if
11160 it was produced by a shift that always produces -1 or 0) even though
11161 we don't know exactly what registers it was produced from. */
11162
11163 static int
11164 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11165 {
11166 rtx x = *loc;
11167 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11168 int len = GET_RTX_LENGTH (GET_CODE (x));
11169 int i;
11170
11171 if (REG_P (x))
11172 {
11173 unsigned int regno = REGNO (x);
11174 unsigned int endregno
11175 = regno + (regno < FIRST_PSEUDO_REGISTER
11176 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11177 unsigned int j;
11178
11179 for (j = regno; j < endregno; j++)
11180 if (reg_stat[j].last_set_invalid
11181 /* If this is a pseudo-register that was only set once and not
11182 live at the beginning of the function, it is always valid. */
11183 || (! (regno >= FIRST_PSEUDO_REGISTER
11184 && REG_N_SETS (regno) == 1
11185 && (! REGNO_REG_SET_P
11186 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11187 regno)))
11188 && reg_stat[j].last_set_label > tick))
11189 {
11190 if (replace)
11191 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11192 return replace;
11193 }
11194
11195 return 1;
11196 }
11197 /* If this is a memory reference, make sure that there were
11198 no stores after it that might have clobbered the value. We don't
11199 have alias info, so we assume any store invalidates it. */
11200 else if (MEM_P (x) && !MEM_READONLY_P (x)
11201 && INSN_CUID (insn) <= mem_last_set)
11202 {
11203 if (replace)
11204 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11205 return replace;
11206 }
11207
11208 for (i = 0; i < len; i++)
11209 {
11210 if (fmt[i] == 'e')
11211 {
11212 /* Check for identical subexpressions. If x contains
11213 identical subexpression we only have to traverse one of
11214 them. */
11215 if (i == 1 && ARITHMETIC_P (x))
11216 {
11217 /* Note that at this point x0 has already been checked
11218 and found valid. */
11219 rtx x0 = XEXP (x, 0);
11220 rtx x1 = XEXP (x, 1);
11221
11222 /* If x0 and x1 are identical then x is also valid. */
11223 if (x0 == x1)
11224 return 1;
11225
11226 /* If x1 is identical to a subexpression of x0 then
11227 while checking x0, x1 has already been checked. Thus
11228 it is valid and so as x. */
11229 if (ARITHMETIC_P (x0)
11230 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11231 return 1;
11232
11233 /* If x0 is identical to a subexpression of x1 then x is
11234 valid iff the rest of x1 is valid. */
11235 if (ARITHMETIC_P (x1)
11236 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11237 return
11238 get_last_value_validate (&XEXP (x1,
11239 x0 == XEXP (x1, 0) ? 1 : 0),
11240 insn, tick, replace);
11241 }
11242
11243 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11244 replace) == 0)
11245 return 0;
11246 }
11247 /* Don't bother with these. They shouldn't occur anyway. */
11248 else if (fmt[i] == 'E')
11249 return 0;
11250 }
11251
11252 /* If we haven't found a reason for it to be invalid, it is valid. */
11253 return 1;
11254 }
11255
11256 /* Get the last value assigned to X, if known. Some registers
11257 in the value may be replaced with (clobber (const_int 0)) if their value
11258 is known longer known reliably. */
11259
11260 static rtx
11261 get_last_value (rtx x)
11262 {
11263 unsigned int regno;
11264 rtx value;
11265
11266 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11267 then convert it to the desired mode. If this is a paradoxical SUBREG,
11268 we cannot predict what values the "extra" bits might have. */
11269 if (GET_CODE (x) == SUBREG
11270 && subreg_lowpart_p (x)
11271 && (GET_MODE_SIZE (GET_MODE (x))
11272 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11273 && (value = get_last_value (SUBREG_REG (x))) != 0)
11274 return gen_lowpart (GET_MODE (x), value);
11275
11276 if (!REG_P (x))
11277 return 0;
11278
11279 regno = REGNO (x);
11280 value = reg_stat[regno].last_set_value;
11281
11282 /* If we don't have a value, or if it isn't for this basic block and
11283 it's either a hard register, set more than once, or it's a live
11284 at the beginning of the function, return 0.
11285
11286 Because if it's not live at the beginning of the function then the reg
11287 is always set before being used (is never used without being set).
11288 And, if it's set only once, and it's always set before use, then all
11289 uses must have the same last value, even if it's not from this basic
11290 block. */
11291
11292 if (value == 0
11293 || (reg_stat[regno].last_set_label != label_tick
11294 && (regno < FIRST_PSEUDO_REGISTER
11295 || REG_N_SETS (regno) != 1
11296 || (REGNO_REG_SET_P
11297 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11298 regno)))))
11299 return 0;
11300
11301 /* If the value was set in a later insn than the ones we are processing,
11302 we can't use it even if the register was only set once. */
11303 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11304 return 0;
11305
11306 /* If the value has all its registers valid, return it. */
11307 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11308 reg_stat[regno].last_set_label, 0))
11309 return value;
11310
11311 /* Otherwise, make a copy and replace any invalid register with
11312 (clobber (const_int 0)). If that fails for some reason, return 0. */
11313
11314 value = copy_rtx (value);
11315 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11316 reg_stat[regno].last_set_label, 1))
11317 return value;
11318
11319 return 0;
11320 }
11321 \f
11322 /* Return nonzero if expression X refers to a REG or to memory
11323 that is set in an instruction more recent than FROM_CUID. */
11324
11325 static int
11326 use_crosses_set_p (rtx x, int from_cuid)
11327 {
11328 const char *fmt;
11329 int i;
11330 enum rtx_code code = GET_CODE (x);
11331
11332 if (code == REG)
11333 {
11334 unsigned int regno = REGNO (x);
11335 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11336 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11337
11338 #ifdef PUSH_ROUNDING
11339 /* Don't allow uses of the stack pointer to be moved,
11340 because we don't know whether the move crosses a push insn. */
11341 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11342 return 1;
11343 #endif
11344 for (; regno < endreg; regno++)
11345 if (reg_stat[regno].last_set
11346 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11347 return 1;
11348 return 0;
11349 }
11350
11351 if (code == MEM && mem_last_set > from_cuid)
11352 return 1;
11353
11354 fmt = GET_RTX_FORMAT (code);
11355
11356 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11357 {
11358 if (fmt[i] == 'E')
11359 {
11360 int j;
11361 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11362 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11363 return 1;
11364 }
11365 else if (fmt[i] == 'e'
11366 && use_crosses_set_p (XEXP (x, i), from_cuid))
11367 return 1;
11368 }
11369 return 0;
11370 }
11371 \f
11372 /* Define three variables used for communication between the following
11373 routines. */
11374
11375 static unsigned int reg_dead_regno, reg_dead_endregno;
11376 static int reg_dead_flag;
11377
11378 /* Function called via note_stores from reg_dead_at_p.
11379
11380 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11381 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11382
11383 static void
11384 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11385 {
11386 unsigned int regno, endregno;
11387
11388 if (!REG_P (dest))
11389 return;
11390
11391 regno = REGNO (dest);
11392 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11393 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11394
11395 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11396 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11397 }
11398
11399 /* Return nonzero if REG is known to be dead at INSN.
11400
11401 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11402 referencing REG, it is dead. If we hit a SET referencing REG, it is
11403 live. Otherwise, see if it is live or dead at the start of the basic
11404 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11405 must be assumed to be always live. */
11406
11407 static int
11408 reg_dead_at_p (rtx reg, rtx insn)
11409 {
11410 basic_block block;
11411 unsigned int i;
11412
11413 /* Set variables for reg_dead_at_p_1. */
11414 reg_dead_regno = REGNO (reg);
11415 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11416 ? hard_regno_nregs[reg_dead_regno]
11417 [GET_MODE (reg)]
11418 : 1);
11419
11420 reg_dead_flag = 0;
11421
11422 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11423 we allow the machine description to decide whether use-and-clobber
11424 patterns are OK. */
11425 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11426 {
11427 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11428 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11429 return 0;
11430 }
11431
11432 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11433 beginning of function. */
11434 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11435 insn = prev_nonnote_insn (insn))
11436 {
11437 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11438 if (reg_dead_flag)
11439 return reg_dead_flag == 1 ? 1 : 0;
11440
11441 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11442 return 1;
11443 }
11444
11445 /* Get the basic block that we were in. */
11446 if (insn == 0)
11447 block = ENTRY_BLOCK_PTR->next_bb;
11448 else
11449 {
11450 FOR_EACH_BB (block)
11451 if (insn == BB_HEAD (block))
11452 break;
11453
11454 if (block == EXIT_BLOCK_PTR)
11455 return 0;
11456 }
11457
11458 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11459 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11460 return 0;
11461
11462 return 1;
11463 }
11464 \f
11465 /* Note hard registers in X that are used. This code is similar to
11466 that in flow.c, but much simpler since we don't care about pseudos. */
11467
11468 static void
11469 mark_used_regs_combine (rtx x)
11470 {
11471 RTX_CODE code = GET_CODE (x);
11472 unsigned int regno;
11473 int i;
11474
11475 switch (code)
11476 {
11477 case LABEL_REF:
11478 case SYMBOL_REF:
11479 case CONST_INT:
11480 case CONST:
11481 case CONST_DOUBLE:
11482 case CONST_VECTOR:
11483 case PC:
11484 case ADDR_VEC:
11485 case ADDR_DIFF_VEC:
11486 case ASM_INPUT:
11487 #ifdef HAVE_cc0
11488 /* CC0 must die in the insn after it is set, so we don't need to take
11489 special note of it here. */
11490 case CC0:
11491 #endif
11492 return;
11493
11494 case CLOBBER:
11495 /* If we are clobbering a MEM, mark any hard registers inside the
11496 address as used. */
11497 if (MEM_P (XEXP (x, 0)))
11498 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11499 return;
11500
11501 case REG:
11502 regno = REGNO (x);
11503 /* A hard reg in a wide mode may really be multiple registers.
11504 If so, mark all of them just like the first. */
11505 if (regno < FIRST_PSEUDO_REGISTER)
11506 {
11507 unsigned int endregno, r;
11508
11509 /* None of this applies to the stack, frame or arg pointers. */
11510 if (regno == STACK_POINTER_REGNUM
11511 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11512 || regno == HARD_FRAME_POINTER_REGNUM
11513 #endif
11514 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11515 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11516 #endif
11517 || regno == FRAME_POINTER_REGNUM)
11518 return;
11519
11520 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11521 for (r = regno; r < endregno; r++)
11522 SET_HARD_REG_BIT (newpat_used_regs, r);
11523 }
11524 return;
11525
11526 case SET:
11527 {
11528 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11529 the address. */
11530 rtx testreg = SET_DEST (x);
11531
11532 while (GET_CODE (testreg) == SUBREG
11533 || GET_CODE (testreg) == ZERO_EXTRACT
11534 || GET_CODE (testreg) == STRICT_LOW_PART)
11535 testreg = XEXP (testreg, 0);
11536
11537 if (MEM_P (testreg))
11538 mark_used_regs_combine (XEXP (testreg, 0));
11539
11540 mark_used_regs_combine (SET_SRC (x));
11541 }
11542 return;
11543
11544 default:
11545 break;
11546 }
11547
11548 /* Recursively scan the operands of this expression. */
11549
11550 {
11551 const char *fmt = GET_RTX_FORMAT (code);
11552
11553 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11554 {
11555 if (fmt[i] == 'e')
11556 mark_used_regs_combine (XEXP (x, i));
11557 else if (fmt[i] == 'E')
11558 {
11559 int j;
11560
11561 for (j = 0; j < XVECLEN (x, i); j++)
11562 mark_used_regs_combine (XVECEXP (x, i, j));
11563 }
11564 }
11565 }
11566 }
11567 \f
11568 /* Remove register number REGNO from the dead registers list of INSN.
11569
11570 Return the note used to record the death, if there was one. */
11571
11572 rtx
11573 remove_death (unsigned int regno, rtx insn)
11574 {
11575 rtx note = find_regno_note (insn, REG_DEAD, regno);
11576
11577 if (note)
11578 {
11579 REG_N_DEATHS (regno)--;
11580 remove_note (insn, note);
11581 }
11582
11583 return note;
11584 }
11585
11586 /* For each register (hardware or pseudo) used within expression X, if its
11587 death is in an instruction with cuid between FROM_CUID (inclusive) and
11588 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11589 list headed by PNOTES.
11590
11591 That said, don't move registers killed by maybe_kill_insn.
11592
11593 This is done when X is being merged by combination into TO_INSN. These
11594 notes will then be distributed as needed. */
11595
11596 static void
11597 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11598 rtx *pnotes)
11599 {
11600 const char *fmt;
11601 int len, i;
11602 enum rtx_code code = GET_CODE (x);
11603
11604 if (code == REG)
11605 {
11606 unsigned int regno = REGNO (x);
11607 rtx where_dead = reg_stat[regno].last_death;
11608 rtx before_dead, after_dead;
11609
11610 /* Don't move the register if it gets killed in between from and to. */
11611 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11612 && ! reg_referenced_p (x, maybe_kill_insn))
11613 return;
11614
11615 /* WHERE_DEAD could be a USE insn made by combine, so first we
11616 make sure that we have insns with valid INSN_CUID values. */
11617 before_dead = where_dead;
11618 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11619 before_dead = PREV_INSN (before_dead);
11620
11621 after_dead = where_dead;
11622 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11623 after_dead = NEXT_INSN (after_dead);
11624
11625 if (before_dead && after_dead
11626 && INSN_CUID (before_dead) >= from_cuid
11627 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11628 || (where_dead != after_dead
11629 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11630 {
11631 rtx note = remove_death (regno, where_dead);
11632
11633 /* It is possible for the call above to return 0. This can occur
11634 when last_death points to I2 or I1 that we combined with.
11635 In that case make a new note.
11636
11637 We must also check for the case where X is a hard register
11638 and NOTE is a death note for a range of hard registers
11639 including X. In that case, we must put REG_DEAD notes for
11640 the remaining registers in place of NOTE. */
11641
11642 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11643 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11644 > GET_MODE_SIZE (GET_MODE (x))))
11645 {
11646 unsigned int deadregno = REGNO (XEXP (note, 0));
11647 unsigned int deadend
11648 = (deadregno + hard_regno_nregs[deadregno]
11649 [GET_MODE (XEXP (note, 0))]);
11650 unsigned int ourend
11651 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11652 unsigned int i;
11653
11654 for (i = deadregno; i < deadend; i++)
11655 if (i < regno || i >= ourend)
11656 REG_NOTES (where_dead)
11657 = gen_rtx_EXPR_LIST (REG_DEAD,
11658 regno_reg_rtx[i],
11659 REG_NOTES (where_dead));
11660 }
11661
11662 /* If we didn't find any note, or if we found a REG_DEAD note that
11663 covers only part of the given reg, and we have a multi-reg hard
11664 register, then to be safe we must check for REG_DEAD notes
11665 for each register other than the first. They could have
11666 their own REG_DEAD notes lying around. */
11667 else if ((note == 0
11668 || (note != 0
11669 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11670 < GET_MODE_SIZE (GET_MODE (x)))))
11671 && regno < FIRST_PSEUDO_REGISTER
11672 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11673 {
11674 unsigned int ourend
11675 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11676 unsigned int i, offset;
11677 rtx oldnotes = 0;
11678
11679 if (note)
11680 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11681 else
11682 offset = 1;
11683
11684 for (i = regno + offset; i < ourend; i++)
11685 move_deaths (regno_reg_rtx[i],
11686 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11687 }
11688
11689 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11690 {
11691 XEXP (note, 1) = *pnotes;
11692 *pnotes = note;
11693 }
11694 else
11695 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11696
11697 REG_N_DEATHS (regno)++;
11698 }
11699
11700 return;
11701 }
11702
11703 else if (GET_CODE (x) == SET)
11704 {
11705 rtx dest = SET_DEST (x);
11706
11707 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11708
11709 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11710 that accesses one word of a multi-word item, some
11711 piece of everything register in the expression is used by
11712 this insn, so remove any old death. */
11713 /* ??? So why do we test for equality of the sizes? */
11714
11715 if (GET_CODE (dest) == ZERO_EXTRACT
11716 || GET_CODE (dest) == STRICT_LOW_PART
11717 || (GET_CODE (dest) == SUBREG
11718 && (((GET_MODE_SIZE (GET_MODE (dest))
11719 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11720 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11721 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11722 {
11723 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11724 return;
11725 }
11726
11727 /* If this is some other SUBREG, we know it replaces the entire
11728 value, so use that as the destination. */
11729 if (GET_CODE (dest) == SUBREG)
11730 dest = SUBREG_REG (dest);
11731
11732 /* If this is a MEM, adjust deaths of anything used in the address.
11733 For a REG (the only other possibility), the entire value is
11734 being replaced so the old value is not used in this insn. */
11735
11736 if (MEM_P (dest))
11737 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11738 to_insn, pnotes);
11739 return;
11740 }
11741
11742 else if (GET_CODE (x) == CLOBBER)
11743 return;
11744
11745 len = GET_RTX_LENGTH (code);
11746 fmt = GET_RTX_FORMAT (code);
11747
11748 for (i = 0; i < len; i++)
11749 {
11750 if (fmt[i] == 'E')
11751 {
11752 int j;
11753 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11754 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11755 to_insn, pnotes);
11756 }
11757 else if (fmt[i] == 'e')
11758 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11759 }
11760 }
11761 \f
11762 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11763 pattern of an insn. X must be a REG. */
11764
11765 static int
11766 reg_bitfield_target_p (rtx x, rtx body)
11767 {
11768 int i;
11769
11770 if (GET_CODE (body) == SET)
11771 {
11772 rtx dest = SET_DEST (body);
11773 rtx target;
11774 unsigned int regno, tregno, endregno, endtregno;
11775
11776 if (GET_CODE (dest) == ZERO_EXTRACT)
11777 target = XEXP (dest, 0);
11778 else if (GET_CODE (dest) == STRICT_LOW_PART)
11779 target = SUBREG_REG (XEXP (dest, 0));
11780 else
11781 return 0;
11782
11783 if (GET_CODE (target) == SUBREG)
11784 target = SUBREG_REG (target);
11785
11786 if (!REG_P (target))
11787 return 0;
11788
11789 tregno = REGNO (target), regno = REGNO (x);
11790 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11791 return target == x;
11792
11793 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11794 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11795
11796 return endregno > tregno && regno < endtregno;
11797 }
11798
11799 else if (GET_CODE (body) == PARALLEL)
11800 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11801 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11802 return 1;
11803
11804 return 0;
11805 }
11806 \f
11807 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11808 as appropriate. I3 and I2 are the insns resulting from the combination
11809 insns including FROM (I2 may be zero).
11810
11811 Each note in the list is either ignored or placed on some insns, depending
11812 on the type of note. */
11813
11814 static void
11815 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11816 {
11817 rtx note, next_note;
11818 rtx tem;
11819
11820 for (note = notes; note; note = next_note)
11821 {
11822 rtx place = 0, place2 = 0;
11823
11824 /* If this NOTE references a pseudo register, ensure it references
11825 the latest copy of that register. */
11826 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11827 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11828 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11829
11830 next_note = XEXP (note, 1);
11831 switch (REG_NOTE_KIND (note))
11832 {
11833 case REG_BR_PROB:
11834 case REG_BR_PRED:
11835 /* Doesn't matter much where we put this, as long as it's somewhere.
11836 It is preferable to keep these notes on branches, which is most
11837 likely to be i3. */
11838 place = i3;
11839 break;
11840
11841 case REG_VALUE_PROFILE:
11842 /* Just get rid of this note, as it is unused later anyway. */
11843 break;
11844
11845 case REG_NON_LOCAL_GOTO:
11846 if (JUMP_P (i3))
11847 place = i3;
11848 else
11849 {
11850 gcc_assert (i2 && JUMP_P (i2));
11851 place = i2;
11852 }
11853 break;
11854
11855 case REG_EH_REGION:
11856 /* These notes must remain with the call or trapping instruction. */
11857 if (CALL_P (i3))
11858 place = i3;
11859 else if (i2 && CALL_P (i2))
11860 place = i2;
11861 else
11862 {
11863 gcc_assert (flag_non_call_exceptions);
11864 if (may_trap_p (i3))
11865 place = i3;
11866 else if (i2 && may_trap_p (i2))
11867 place = i2;
11868 /* ??? Otherwise assume we've combined things such that we
11869 can now prove that the instructions can't trap. Drop the
11870 note in this case. */
11871 }
11872 break;
11873
11874 case REG_NORETURN:
11875 case REG_SETJMP:
11876 /* These notes must remain with the call. It should not be
11877 possible for both I2 and I3 to be a call. */
11878 if (CALL_P (i3))
11879 place = i3;
11880 else
11881 {
11882 gcc_assert (i2 && CALL_P (i2));
11883 place = i2;
11884 }
11885 break;
11886
11887 case REG_UNUSED:
11888 /* Any clobbers for i3 may still exist, and so we must process
11889 REG_UNUSED notes from that insn.
11890
11891 Any clobbers from i2 or i1 can only exist if they were added by
11892 recog_for_combine. In that case, recog_for_combine created the
11893 necessary REG_UNUSED notes. Trying to keep any original
11894 REG_UNUSED notes from these insns can cause incorrect output
11895 if it is for the same register as the original i3 dest.
11896 In that case, we will notice that the register is set in i3,
11897 and then add a REG_UNUSED note for the destination of i3, which
11898 is wrong. However, it is possible to have REG_UNUSED notes from
11899 i2 or i1 for register which were both used and clobbered, so
11900 we keep notes from i2 or i1 if they will turn into REG_DEAD
11901 notes. */
11902
11903 /* If this register is set or clobbered in I3, put the note there
11904 unless there is one already. */
11905 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11906 {
11907 if (from_insn != i3)
11908 break;
11909
11910 if (! (REG_P (XEXP (note, 0))
11911 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11912 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11913 place = i3;
11914 }
11915 /* Otherwise, if this register is used by I3, then this register
11916 now dies here, so we must put a REG_DEAD note here unless there
11917 is one already. */
11918 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11919 && ! (REG_P (XEXP (note, 0))
11920 ? find_regno_note (i3, REG_DEAD,
11921 REGNO (XEXP (note, 0)))
11922 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11923 {
11924 PUT_REG_NOTE_KIND (note, REG_DEAD);
11925 place = i3;
11926 }
11927 break;
11928
11929 case REG_EQUAL:
11930 case REG_EQUIV:
11931 case REG_NOALIAS:
11932 /* These notes say something about results of an insn. We can
11933 only support them if they used to be on I3 in which case they
11934 remain on I3. Otherwise they are ignored.
11935
11936 If the note refers to an expression that is not a constant, we
11937 must also ignore the note since we cannot tell whether the
11938 equivalence is still true. It might be possible to do
11939 slightly better than this (we only have a problem if I2DEST
11940 or I1DEST is present in the expression), but it doesn't
11941 seem worth the trouble. */
11942
11943 if (from_insn == i3
11944 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11945 place = i3;
11946 break;
11947
11948 case REG_INC:
11949 case REG_NO_CONFLICT:
11950 /* These notes say something about how a register is used. They must
11951 be present on any use of the register in I2 or I3. */
11952 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11953 place = i3;
11954
11955 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11956 {
11957 if (place)
11958 place2 = i2;
11959 else
11960 place = i2;
11961 }
11962 break;
11963
11964 case REG_LABEL:
11965 /* This can show up in several ways -- either directly in the
11966 pattern, or hidden off in the constant pool with (or without?)
11967 a REG_EQUAL note. */
11968 /* ??? Ignore the without-reg_equal-note problem for now. */
11969 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11970 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11971 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11972 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11973 place = i3;
11974
11975 if (i2
11976 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11977 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11978 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11979 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11980 {
11981 if (place)
11982 place2 = i2;
11983 else
11984 place = i2;
11985 }
11986
11987 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11988 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11989 if (place && JUMP_P (place))
11990 {
11991 rtx label = JUMP_LABEL (place);
11992
11993 if (!label)
11994 JUMP_LABEL (place) = XEXP (note, 0);
11995 else
11996 {
11997 gcc_assert (label == XEXP (note, 0));
11998 if (LABEL_P (label))
11999 LABEL_NUSES (label)--;
12000 }
12001 place = 0;
12002 }
12003 if (place2 && JUMP_P (place2))
12004 {
12005 rtx label = JUMP_LABEL (place2);
12006
12007 if (!label)
12008 JUMP_LABEL (place2) = XEXP (note, 0);
12009 else
12010 {
12011 gcc_assert (label == XEXP (note, 0));
12012 if (LABEL_P (label))
12013 LABEL_NUSES (label)--;
12014 }
12015 place2 = 0;
12016 }
12017 break;
12018
12019 case REG_NONNEG:
12020 /* This note says something about the value of a register prior
12021 to the execution of an insn. It is too much trouble to see
12022 if the note is still correct in all situations. It is better
12023 to simply delete it. */
12024 break;
12025
12026 case REG_RETVAL:
12027 /* If the insn previously containing this note still exists,
12028 put it back where it was. Otherwise move it to the previous
12029 insn. Adjust the corresponding REG_LIBCALL note. */
12030 if (!NOTE_P (from_insn))
12031 place = from_insn;
12032 else
12033 {
12034 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12035 place = prev_real_insn (from_insn);
12036 if (tem && place)
12037 XEXP (tem, 0) = place;
12038 /* If we're deleting the last remaining instruction of a
12039 libcall sequence, don't add the notes. */
12040 else if (XEXP (note, 0) == from_insn)
12041 tem = place = 0;
12042 /* Don't add the dangling REG_RETVAL note. */
12043 else if (! tem)
12044 place = 0;
12045 }
12046 break;
12047
12048 case REG_LIBCALL:
12049 /* This is handled similarly to REG_RETVAL. */
12050 if (!NOTE_P (from_insn))
12051 place = from_insn;
12052 else
12053 {
12054 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12055 place = next_real_insn (from_insn);
12056 if (tem && place)
12057 XEXP (tem, 0) = place;
12058 /* If we're deleting the last remaining instruction of a
12059 libcall sequence, don't add the notes. */
12060 else if (XEXP (note, 0) == from_insn)
12061 tem = place = 0;
12062 /* Don't add the dangling REG_LIBCALL note. */
12063 else if (! tem)
12064 place = 0;
12065 }
12066 break;
12067
12068 case REG_DEAD:
12069 /* If the register is used as an input in I3, it dies there.
12070 Similarly for I2, if it is nonzero and adjacent to I3.
12071
12072 If the register is not used as an input in either I3 or I2
12073 and it is not one of the registers we were supposed to eliminate,
12074 there are two possibilities. We might have a non-adjacent I2
12075 or we might have somehow eliminated an additional register
12076 from a computation. For example, we might have had A & B where
12077 we discover that B will always be zero. In this case we will
12078 eliminate the reference to A.
12079
12080 In both cases, we must search to see if we can find a previous
12081 use of A and put the death note there. */
12082
12083 if (from_insn
12084 && CALL_P (from_insn)
12085 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12086 place = from_insn;
12087 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12088 place = i3;
12089 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12090 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12091 place = i2;
12092
12093 if (place == 0)
12094 {
12095 basic_block bb = this_basic_block;
12096
12097 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12098 {
12099 if (! INSN_P (tem))
12100 {
12101 if (tem == BB_HEAD (bb))
12102 break;
12103 continue;
12104 }
12105
12106 /* If the register is being set at TEM, see if that is all
12107 TEM is doing. If so, delete TEM. Otherwise, make this
12108 into a REG_UNUSED note instead. Don't delete sets to
12109 global register vars. */
12110 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12111 || !global_regs[REGNO (XEXP (note, 0))])
12112 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12113 {
12114 rtx set = single_set (tem);
12115 rtx inner_dest = 0;
12116 #ifdef HAVE_cc0
12117 rtx cc0_setter = NULL_RTX;
12118 #endif
12119
12120 if (set != 0)
12121 for (inner_dest = SET_DEST (set);
12122 (GET_CODE (inner_dest) == STRICT_LOW_PART
12123 || GET_CODE (inner_dest) == SUBREG
12124 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12125 inner_dest = XEXP (inner_dest, 0))
12126 ;
12127
12128 /* Verify that it was the set, and not a clobber that
12129 modified the register.
12130
12131 CC0 targets must be careful to maintain setter/user
12132 pairs. If we cannot delete the setter due to side
12133 effects, mark the user with an UNUSED note instead
12134 of deleting it. */
12135
12136 if (set != 0 && ! side_effects_p (SET_SRC (set))
12137 && rtx_equal_p (XEXP (note, 0), inner_dest)
12138 #ifdef HAVE_cc0
12139 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12140 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12141 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12142 #endif
12143 )
12144 {
12145 /* Move the notes and links of TEM elsewhere.
12146 This might delete other dead insns recursively.
12147 First set the pattern to something that won't use
12148 any register. */
12149 rtx old_notes = REG_NOTES (tem);
12150
12151 PATTERN (tem) = pc_rtx;
12152 REG_NOTES (tem) = NULL;
12153
12154 distribute_notes (old_notes, tem, tem, NULL_RTX);
12155 distribute_links (LOG_LINKS (tem));
12156
12157 SET_INSN_DELETED (tem);
12158
12159 #ifdef HAVE_cc0
12160 /* Delete the setter too. */
12161 if (cc0_setter)
12162 {
12163 PATTERN (cc0_setter) = pc_rtx;
12164 old_notes = REG_NOTES (cc0_setter);
12165 REG_NOTES (cc0_setter) = NULL;
12166
12167 distribute_notes (old_notes, cc0_setter,
12168 cc0_setter, NULL_RTX);
12169 distribute_links (LOG_LINKS (cc0_setter));
12170
12171 SET_INSN_DELETED (cc0_setter);
12172 }
12173 #endif
12174 }
12175 else
12176 {
12177 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12178
12179 /* If there isn't already a REG_UNUSED note, put one
12180 here. Do not place a REG_DEAD note, even if
12181 the register is also used here; that would not
12182 match the algorithm used in lifetime analysis
12183 and can cause the consistency check in the
12184 scheduler to fail. */
12185 if (! find_regno_note (tem, REG_UNUSED,
12186 REGNO (XEXP (note, 0))))
12187 place = tem;
12188 break;
12189 }
12190 }
12191 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12192 || (CALL_P (tem)
12193 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12194 {
12195 place = tem;
12196
12197 /* If we are doing a 3->2 combination, and we have a
12198 register which formerly died in i3 and was not used
12199 by i2, which now no longer dies in i3 and is used in
12200 i2 but does not die in i2, and place is between i2
12201 and i3, then we may need to move a link from place to
12202 i2. */
12203 if (i2 && INSN_UID (place) <= max_uid_cuid
12204 && INSN_CUID (place) > INSN_CUID (i2)
12205 && from_insn
12206 && INSN_CUID (from_insn) > INSN_CUID (i2)
12207 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12208 {
12209 rtx links = LOG_LINKS (place);
12210 LOG_LINKS (place) = 0;
12211 distribute_links (links);
12212 }
12213 break;
12214 }
12215
12216 if (tem == BB_HEAD (bb))
12217 break;
12218 }
12219
12220 /* We haven't found an insn for the death note and it
12221 is still a REG_DEAD note, but we have hit the beginning
12222 of the block. If the existing life info says the reg
12223 was dead, there's nothing left to do. Otherwise, we'll
12224 need to do a global life update after combine. */
12225 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12226 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12227 REGNO (XEXP (note, 0))))
12228 SET_BIT (refresh_blocks, this_basic_block->index);
12229 }
12230
12231 /* If the register is set or already dead at PLACE, we needn't do
12232 anything with this note if it is still a REG_DEAD note.
12233 We check here if it is set at all, not if is it totally replaced,
12234 which is what `dead_or_set_p' checks, so also check for it being
12235 set partially. */
12236
12237 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12238 {
12239 unsigned int regno = REGNO (XEXP (note, 0));
12240
12241 /* Similarly, if the instruction on which we want to place
12242 the note is a noop, we'll need do a global live update
12243 after we remove them in delete_noop_moves. */
12244 if (noop_move_p (place))
12245 SET_BIT (refresh_blocks, this_basic_block->index);
12246
12247 if (dead_or_set_p (place, XEXP (note, 0))
12248 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12249 {
12250 /* Unless the register previously died in PLACE, clear
12251 last_death. [I no longer understand why this is
12252 being done.] */
12253 if (reg_stat[regno].last_death != place)
12254 reg_stat[regno].last_death = 0;
12255 place = 0;
12256 }
12257 else
12258 reg_stat[regno].last_death = place;
12259
12260 /* If this is a death note for a hard reg that is occupying
12261 multiple registers, ensure that we are still using all
12262 parts of the object. If we find a piece of the object
12263 that is unused, we must arrange for an appropriate REG_DEAD
12264 note to be added for it. However, we can't just emit a USE
12265 and tag the note to it, since the register might actually
12266 be dead; so we recourse, and the recursive call then finds
12267 the previous insn that used this register. */
12268
12269 if (place && regno < FIRST_PSEUDO_REGISTER
12270 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12271 {
12272 unsigned int endregno
12273 = regno + hard_regno_nregs[regno]
12274 [GET_MODE (XEXP (note, 0))];
12275 int all_used = 1;
12276 unsigned int i;
12277
12278 for (i = regno; i < endregno; i++)
12279 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12280 && ! find_regno_fusage (place, USE, i))
12281 || dead_or_set_regno_p (place, i))
12282 all_used = 0;
12283
12284 if (! all_used)
12285 {
12286 /* Put only REG_DEAD notes for pieces that are
12287 not already dead or set. */
12288
12289 for (i = regno; i < endregno;
12290 i += hard_regno_nregs[i][reg_raw_mode[i]])
12291 {
12292 rtx piece = regno_reg_rtx[i];
12293 basic_block bb = this_basic_block;
12294
12295 if (! dead_or_set_p (place, piece)
12296 && ! reg_bitfield_target_p (piece,
12297 PATTERN (place)))
12298 {
12299 rtx new_note
12300 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12301
12302 distribute_notes (new_note, place, place,
12303 NULL_RTX);
12304 }
12305 else if (! refers_to_regno_p (i, i + 1,
12306 PATTERN (place), 0)
12307 && ! find_regno_fusage (place, USE, i))
12308 for (tem = PREV_INSN (place); ;
12309 tem = PREV_INSN (tem))
12310 {
12311 if (! INSN_P (tem))
12312 {
12313 if (tem == BB_HEAD (bb))
12314 {
12315 SET_BIT (refresh_blocks,
12316 this_basic_block->index);
12317 break;
12318 }
12319 continue;
12320 }
12321 if (dead_or_set_p (tem, piece)
12322 || reg_bitfield_target_p (piece,
12323 PATTERN (tem)))
12324 {
12325 REG_NOTES (tem)
12326 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12327 REG_NOTES (tem));
12328 break;
12329 }
12330 }
12331
12332 }
12333
12334 place = 0;
12335 }
12336 }
12337 }
12338 break;
12339
12340 default:
12341 /* Any other notes should not be present at this point in the
12342 compilation. */
12343 gcc_unreachable ();
12344 }
12345
12346 if (place)
12347 {
12348 XEXP (note, 1) = REG_NOTES (place);
12349 REG_NOTES (place) = note;
12350 }
12351 else if ((REG_NOTE_KIND (note) == REG_DEAD
12352 || REG_NOTE_KIND (note) == REG_UNUSED)
12353 && REG_P (XEXP (note, 0)))
12354 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12355
12356 if (place2)
12357 {
12358 if ((REG_NOTE_KIND (note) == REG_DEAD
12359 || REG_NOTE_KIND (note) == REG_UNUSED)
12360 && REG_P (XEXP (note, 0)))
12361 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12362
12363 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12364 REG_NOTE_KIND (note),
12365 XEXP (note, 0),
12366 REG_NOTES (place2));
12367 }
12368 }
12369 }
12370 \f
12371 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12372 I3, I2, and I1 to new locations. This is also called to add a link
12373 pointing at I3 when I3's destination is changed. */
12374
12375 static void
12376 distribute_links (rtx links)
12377 {
12378 rtx link, next_link;
12379
12380 for (link = links; link; link = next_link)
12381 {
12382 rtx place = 0;
12383 rtx insn;
12384 rtx set, reg;
12385
12386 next_link = XEXP (link, 1);
12387
12388 /* If the insn that this link points to is a NOTE or isn't a single
12389 set, ignore it. In the latter case, it isn't clear what we
12390 can do other than ignore the link, since we can't tell which
12391 register it was for. Such links wouldn't be used by combine
12392 anyway.
12393
12394 It is not possible for the destination of the target of the link to
12395 have been changed by combine. The only potential of this is if we
12396 replace I3, I2, and I1 by I3 and I2. But in that case the
12397 destination of I2 also remains unchanged. */
12398
12399 if (NOTE_P (XEXP (link, 0))
12400 || (set = single_set (XEXP (link, 0))) == 0)
12401 continue;
12402
12403 reg = SET_DEST (set);
12404 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12405 || GET_CODE (reg) == STRICT_LOW_PART)
12406 reg = XEXP (reg, 0);
12407
12408 /* A LOG_LINK is defined as being placed on the first insn that uses
12409 a register and points to the insn that sets the register. Start
12410 searching at the next insn after the target of the link and stop
12411 when we reach a set of the register or the end of the basic block.
12412
12413 Note that this correctly handles the link that used to point from
12414 I3 to I2. Also note that not much searching is typically done here
12415 since most links don't point very far away. */
12416
12417 for (insn = NEXT_INSN (XEXP (link, 0));
12418 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12419 || BB_HEAD (this_basic_block->next_bb) != insn));
12420 insn = NEXT_INSN (insn))
12421 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12422 {
12423 if (reg_referenced_p (reg, PATTERN (insn)))
12424 place = insn;
12425 break;
12426 }
12427 else if (CALL_P (insn)
12428 && find_reg_fusage (insn, USE, reg))
12429 {
12430 place = insn;
12431 break;
12432 }
12433 else if (INSN_P (insn) && reg_set_p (reg, insn))
12434 break;
12435
12436 /* If we found a place to put the link, place it there unless there
12437 is already a link to the same insn as LINK at that point. */
12438
12439 if (place)
12440 {
12441 rtx link2;
12442
12443 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12444 if (XEXP (link2, 0) == XEXP (link, 0))
12445 break;
12446
12447 if (link2 == 0)
12448 {
12449 XEXP (link, 1) = LOG_LINKS (place);
12450 LOG_LINKS (place) = link;
12451
12452 /* Set added_links_insn to the earliest insn we added a
12453 link to. */
12454 if (added_links_insn == 0
12455 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12456 added_links_insn = place;
12457 }
12458 }
12459 }
12460 }
12461 \f
12462 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12463 Check whether the expression pointer to by LOC is a register or
12464 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12465 Otherwise return zero. */
12466
12467 static int
12468 unmentioned_reg_p_1 (rtx *loc, void *expr)
12469 {
12470 rtx x = *loc;
12471
12472 if (x != NULL_RTX
12473 && (REG_P (x) || MEM_P (x))
12474 && ! reg_mentioned_p (x, (rtx) expr))
12475 return 1;
12476 return 0;
12477 }
12478
12479 /* Check for any register or memory mentioned in EQUIV that is not
12480 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12481 of EXPR where some registers may have been replaced by constants. */
12482
12483 static bool
12484 unmentioned_reg_p (rtx equiv, rtx expr)
12485 {
12486 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12487 }
12488 \f
12489 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12490
12491 static int
12492 insn_cuid (rtx insn)
12493 {
12494 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12495 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12496 insn = NEXT_INSN (insn);
12497
12498 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12499
12500 return INSN_CUID (insn);
12501 }
12502 \f
12503 void
12504 dump_combine_stats (FILE *file)
12505 {
12506 fnotice
12507 (file,
12508 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12509 combine_attempts, combine_merges, combine_extras, combine_successes);
12510 }
12511
12512 void
12513 dump_combine_total_stats (FILE *file)
12514 {
12515 fnotice
12516 (file,
12517 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12518 total_attempts, total_merges, total_extras, total_successes);
12519 }
This page took 0.688637 seconds and 6 git commands to generate.