]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
re PR rtl-optimization/17151 (x >> (y % WORDSIZE) not optimized)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
96
97 /* Number of attempts to combine instructions in this function. */
98
99 static int combine_attempts;
100
101 /* Number of attempts that got as far as substitution in this function. */
102
103 static int combine_merges;
104
105 /* Number of instructions combined with added SETs in this function. */
106
107 static int combine_extras;
108
109 /* Number of instructions combined in this function. */
110
111 static int combine_successes;
112
113 /* Totals over entire compilation. */
114
115 static int total_attempts, total_merges, total_extras, total_successes;
116
117 \f
118 /* Vector mapping INSN_UIDs to cuids.
119 The cuids are like uids but increase monotonically always.
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
124
125 static int *uid_cuid;
126 static int max_uid_cuid;
127
128 /* Get the cuid of an insn. */
129
130 #define INSN_CUID(INSN) \
131 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
132
133 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
135
136 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
138
139 /* Maximum register number, which is the size of the tables below. */
140
141 static unsigned int combine_max_regno;
142
143 struct reg_stat {
144 /* Record last point of death of (hard or pseudo) register n. */
145 rtx last_death;
146
147 /* Record last point of modification of (hard or pseudo) register n. */
148 rtx last_set;
149
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
155
156 We use an approach similar to that used by cse, but change it in the
157 following ways:
158
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
162
163 Therefore, we maintain the following fields:
164
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
172 register's value
173
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
177 table.
178
179 (The next two parameters are out of date).
180
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
183
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
188
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
192
193 /* Record last value assigned to (hard or pseudo) register n. */
194
195 rtx last_set_value;
196
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
199
200 int last_set_table_tick;
201
202 /* Record the value of label_tick when the value for register n is placed in
203 last_set_value. */
204
205 int last_set_label;
206
207 /* These fields are maintained in parallel with last_set_value and are
208 used to store the mode in which the register was last set, the bits
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
211
212 unsigned HOST_WIDE_INT last_set_nonzero_bits;
213 char last_set_sign_bit_copies;
214 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
215
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
219
220 char last_set_invalid;
221
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
226
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
230 zero.
231
232 If an entry is zero, it means that we don't know anything special. */
233
234 unsigned char sign_bit_copies;
235
236 unsigned HOST_WIDE_INT nonzero_bits;
237 };
238
239 static struct reg_stat *reg_stat;
240
241 /* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
243
244 static int mem_last_set;
245
246 /* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
248
249 static int last_call_cuid;
250
251 /* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
256
257 static rtx subst_insn;
258
259 /* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
265
266 static int subst_low_cuid;
267
268 /* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
270
271 static HARD_REG_SET newpat_used_regs;
272
273 /* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
275 that location. */
276
277 static rtx added_links_insn;
278
279 /* Basic block in which we are performing combines. */
280 static basic_block this_basic_block;
281
282 /* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
284 those blocks as starting points. */
285 static sbitmap refresh_blocks;
286 \f
287 /* The following array records the insn_rtx_cost for every insn
288 in the instruction stream. */
289
290 static int *uid_insn_cost;
291
292 /* Length of the currently allocated uid_insn_cost array. */
293
294 static int last_insn_cost;
295
296 /* Incremented for each label. */
297
298 static int label_tick;
299
300 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
302
303 static enum machine_mode nonzero_bits_mode;
304
305 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
309 in a loop. */
310
311 static int nonzero_sign_valid;
312
313 \f
314 /* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
317
318 struct undo
319 {
320 struct undo *next;
321 int is_int;
322 union {rtx r; int i;} old_contents;
323 union {rtx *r; int *i;} where;
324 };
325
326 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
328
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too. */
331
332 struct undobuf
333 {
334 struct undo *undos;
335 struct undo *frees;
336 rtx other_insn;
337 };
338
339 static struct undobuf undobuf;
340
341 /* Number of times the pseudo being substituted for
342 was found and replaced. */
343
344 static int n_occurrences;
345
346 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
347 enum machine_mode,
348 unsigned HOST_WIDE_INT,
349 unsigned HOST_WIDE_INT *);
350 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
351 enum machine_mode,
352 unsigned int, unsigned int *);
353 static void do_SUBST (rtx *, rtx);
354 static void do_SUBST_INT (int *, int);
355 static void init_reg_last (void);
356 static void setup_incoming_promotions (void);
357 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
358 static int cant_combine_insn_p (rtx);
359 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
360 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
361 static int contains_muldiv (rtx);
362 static rtx try_combine (rtx, rtx, rtx, int *);
363 static void undo_all (void);
364 static void undo_commit (void);
365 static rtx *find_split_point (rtx *, rtx);
366 static rtx subst (rtx, rtx, rtx, int, int);
367 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
368 static rtx simplify_if_then_else (rtx);
369 static rtx simplify_set (rtx);
370 static rtx simplify_logical (rtx);
371 static rtx expand_compound_operation (rtx);
372 static rtx expand_field_assignment (rtx);
373 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
374 rtx, unsigned HOST_WIDE_INT, int, int, int);
375 static rtx extract_left_shift (rtx, int);
376 static rtx make_compound_operation (rtx, enum rtx_code);
377 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx force_to_mode (rtx, enum machine_mode,
380 unsigned HOST_WIDE_INT, rtx, int);
381 static rtx if_then_else_cond (rtx, rtx *, rtx *);
382 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
383 static int rtx_equal_for_field_assignment_p (rtx, rtx);
384 static rtx make_field_assignment (rtx);
385 static rtx apply_distributive_law (rtx);
386 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
387 unsigned HOST_WIDE_INT);
388 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392 static int recog_for_combine (rtx *, rtx, rtx *);
393 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
394 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
395 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396 static void update_table_tick (rtx);
397 static void record_value_for_reg (rtx, rtx, rtx);
398 static void check_promoted_subreg (rtx, rtx);
399 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400 static void record_dead_and_set_regs (rtx);
401 static int get_last_value_validate (rtx *, rtx, int, int);
402 static rtx get_last_value (rtx);
403 static int use_crosses_set_p (rtx, int);
404 static void reg_dead_at_p_1 (rtx, rtx, void *);
405 static int reg_dead_at_p (rtx, rtx);
406 static void move_deaths (rtx, rtx, int, rtx, rtx *);
407 static int reg_bitfield_target_p (rtx, rtx);
408 static void distribute_notes (rtx, rtx, rtx, rtx);
409 static void distribute_links (rtx);
410 static void mark_used_regs_combine (rtx);
411 static int insn_cuid (rtx);
412 static void record_promoted_value (rtx, rtx);
413 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414 static enum rtx_code combine_reversed_comparison_code (rtx);
415 static int unmentioned_reg_p_1 (rtx *, void *);
416 static bool unmentioned_reg_p (rtx, rtx);
417 \f
418
419 /* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421 #undef RTL_HOOKS_GEN_LOWPART
422 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
423
424 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
425 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
426
427 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
429
430 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
431
432 \f
433 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
437 the undo table. */
438
439 static void
440 do_SUBST (rtx *into, rtx newval)
441 {
442 struct undo *buf;
443 rtx oldval = *into;
444
445 if (oldval == newval)
446 return;
447
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
454 && GET_CODE (newval) == CONST_INT)
455 {
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
458 gcc_assert (INTVAL (newval)
459 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
460
461 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
462 CONST_INT is not valid, because after the replacement, the
463 original mode would be gone. Unfortunately, we can't tell
464 when do_SUBST is called to replace the operand thereof, so we
465 perform this test on oldval instead, checking whether an
466 invalid replacement took place before we got here. */
467 gcc_assert (!(GET_CODE (oldval) == SUBREG
468 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
469 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
470 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
471 }
472
473 if (undobuf.frees)
474 buf = undobuf.frees, undobuf.frees = buf->next;
475 else
476 buf = xmalloc (sizeof (struct undo));
477
478 buf->is_int = 0;
479 buf->where.r = into;
480 buf->old_contents.r = oldval;
481 *into = newval;
482
483 buf->next = undobuf.undos, undobuf.undos = buf;
484 }
485
486 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
487
488 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
489 for the value of a HOST_WIDE_INT value (including CONST_INT) is
490 not safe. */
491
492 static void
493 do_SUBST_INT (int *into, int newval)
494 {
495 struct undo *buf;
496 int oldval = *into;
497
498 if (oldval == newval)
499 return;
500
501 if (undobuf.frees)
502 buf = undobuf.frees, undobuf.frees = buf->next;
503 else
504 buf = xmalloc (sizeof (struct undo));
505
506 buf->is_int = 1;
507 buf->where.i = into;
508 buf->old_contents.i = oldval;
509 *into = newval;
510
511 buf->next = undobuf.undos, undobuf.undos = buf;
512 }
513
514 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
515 \f
516 /* Subroutine of try_combine. Determine whether the combine replacement
517 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
518 that the original instruction sequence I1, I2 and I3. Note that I1
519 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
520 costs of all instructions can be estimated, and the replacements are
521 more expensive than the original sequence. */
522
523 static bool
524 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
525 {
526 int i1_cost, i2_cost, i3_cost;
527 int new_i2_cost, new_i3_cost;
528 int old_cost, new_cost;
529
530 /* Lookup the original insn_rtx_costs. */
531 i2_cost = INSN_UID (i2) <= last_insn_cost
532 ? uid_insn_cost[INSN_UID (i2)] : 0;
533 i3_cost = INSN_UID (i3) <= last_insn_cost
534 ? uid_insn_cost[INSN_UID (i3)] : 0;
535
536 if (i1)
537 {
538 i1_cost = INSN_UID (i1) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i1)] : 0;
540 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
541 ? i1_cost + i2_cost + i3_cost : 0;
542 }
543 else
544 {
545 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
546 i1_cost = 0;
547 }
548
549 /* Calculate the replacement insn_rtx_costs. */
550 new_i3_cost = insn_rtx_cost (newpat);
551 if (newi2pat)
552 {
553 new_i2_cost = insn_rtx_cost (newi2pat);
554 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
555 ? new_i2_cost + new_i3_cost : 0;
556 }
557 else
558 {
559 new_cost = new_i3_cost;
560 new_i2_cost = 0;
561 }
562
563 /* Disallow this recombination if both new_cost and old_cost are
564 greater than zero, and new_cost is greater than old cost. */
565 if (!undobuf.other_insn
566 && old_cost > 0
567 && new_cost > old_cost)
568 {
569 if (dump_file)
570 {
571 if (i1)
572 {
573 fprintf (dump_file,
574 "rejecting combination of insns %d, %d and %d\n",
575 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
576 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
577 i1_cost, i2_cost, i3_cost, old_cost);
578 }
579 else
580 {
581 fprintf (dump_file,
582 "rejecting combination of insns %d and %d\n",
583 INSN_UID (i2), INSN_UID (i3));
584 fprintf (dump_file, "original costs %d + %d = %d\n",
585 i2_cost, i3_cost, old_cost);
586 }
587
588 if (newi2pat)
589 {
590 fprintf (dump_file, "replacement costs %d + %d = %d\n",
591 new_i2_cost, new_i3_cost, new_cost);
592 }
593 else
594 fprintf (dump_file, "replacement cost %d\n", new_cost);
595 }
596
597 return false;
598 }
599
600 /* Update the uid_insn_cost array with the replacement costs. */
601 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
602 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
603 if (i1)
604 uid_insn_cost[INSN_UID (i1)] = 0;
605
606 return true;
607 }
608 \f
609 /* Main entry point for combiner. F is the first insn of the function.
610 NREGS is the first unused pseudo-reg number.
611
612 Return nonzero if the combiner has turned an indirect jump
613 instruction into a direct jump. */
614 int
615 combine_instructions (rtx f, unsigned int nregs)
616 {
617 rtx insn, next;
618 #ifdef HAVE_cc0
619 rtx prev;
620 #endif
621 int i;
622 rtx links, nextlinks;
623
624 int new_direct_jump_p = 0;
625
626 combine_attempts = 0;
627 combine_merges = 0;
628 combine_extras = 0;
629 combine_successes = 0;
630
631 combine_max_regno = nregs;
632
633 rtl_hooks = combine_rtl_hooks;
634
635 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
636
637 init_recog_no_volatile ();
638
639 /* Compute maximum uid value so uid_cuid can be allocated. */
640
641 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
642 if (INSN_UID (insn) > i)
643 i = INSN_UID (insn);
644
645 uid_cuid = xmalloc ((i + 1) * sizeof (int));
646 max_uid_cuid = i;
647
648 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
649
650 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
651 problems when, for example, we have j <<= 1 in a loop. */
652
653 nonzero_sign_valid = 0;
654
655 /* Compute the mapping from uids to cuids.
656 Cuids are numbers assigned to insns, like uids,
657 except that cuids increase monotonically through the code.
658
659 Scan all SETs and see if we can deduce anything about what
660 bits are known to be zero for some registers and how many copies
661 of the sign bit are known to exist for those registers.
662
663 Also set any known values so that we can use it while searching
664 for what bits are known to be set. */
665
666 label_tick = 1;
667
668 setup_incoming_promotions ();
669
670 refresh_blocks = sbitmap_alloc (last_basic_block);
671 sbitmap_zero (refresh_blocks);
672
673 /* Allocate array of current insn_rtx_costs. */
674 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
675 last_insn_cost = max_uid_cuid;
676
677 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
678 {
679 uid_cuid[INSN_UID (insn)] = ++i;
680 subst_low_cuid = i;
681 subst_insn = insn;
682
683 if (INSN_P (insn))
684 {
685 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
686 NULL);
687 record_dead_and_set_regs (insn);
688
689 #ifdef AUTO_INC_DEC
690 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
691 if (REG_NOTE_KIND (links) == REG_INC)
692 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
693 NULL);
694 #endif
695
696 /* Record the current insn_rtx_cost of this instruction. */
697 if (NONJUMP_INSN_P (insn))
698 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
699 if (dump_file)
700 fprintf(dump_file, "insn_cost %d: %d\n",
701 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
702 }
703
704 if (LABEL_P (insn))
705 label_tick++;
706 }
707
708 nonzero_sign_valid = 1;
709
710 /* Now scan all the insns in forward order. */
711
712 label_tick = 1;
713 last_call_cuid = 0;
714 mem_last_set = 0;
715 init_reg_last ();
716 setup_incoming_promotions ();
717
718 FOR_EACH_BB (this_basic_block)
719 {
720 for (insn = BB_HEAD (this_basic_block);
721 insn != NEXT_INSN (BB_END (this_basic_block));
722 insn = next ? next : NEXT_INSN (insn))
723 {
724 next = 0;
725
726 if (LABEL_P (insn))
727 label_tick++;
728
729 else if (INSN_P (insn))
730 {
731 /* See if we know about function return values before this
732 insn based upon SUBREG flags. */
733 check_promoted_subreg (insn, PATTERN (insn));
734
735 /* Try this insn with each insn it links back to. */
736
737 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
738 if ((next = try_combine (insn, XEXP (links, 0),
739 NULL_RTX, &new_direct_jump_p)) != 0)
740 goto retry;
741
742 /* Try each sequence of three linked insns ending with this one. */
743
744 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
745 {
746 rtx link = XEXP (links, 0);
747
748 /* If the linked insn has been replaced by a note, then there
749 is no point in pursuing this chain any further. */
750 if (NOTE_P (link))
751 continue;
752
753 for (nextlinks = LOG_LINKS (link);
754 nextlinks;
755 nextlinks = XEXP (nextlinks, 1))
756 if ((next = try_combine (insn, link,
757 XEXP (nextlinks, 0),
758 &new_direct_jump_p)) != 0)
759 goto retry;
760 }
761
762 #ifdef HAVE_cc0
763 /* Try to combine a jump insn that uses CC0
764 with a preceding insn that sets CC0, and maybe with its
765 logical predecessor as well.
766 This is how we make decrement-and-branch insns.
767 We need this special code because data flow connections
768 via CC0 do not get entered in LOG_LINKS. */
769
770 if (JUMP_P (insn)
771 && (prev = prev_nonnote_insn (insn)) != 0
772 && NONJUMP_INSN_P (prev)
773 && sets_cc0_p (PATTERN (prev)))
774 {
775 if ((next = try_combine (insn, prev,
776 NULL_RTX, &new_direct_jump_p)) != 0)
777 goto retry;
778
779 for (nextlinks = LOG_LINKS (prev); nextlinks;
780 nextlinks = XEXP (nextlinks, 1))
781 if ((next = try_combine (insn, prev,
782 XEXP (nextlinks, 0),
783 &new_direct_jump_p)) != 0)
784 goto retry;
785 }
786
787 /* Do the same for an insn that explicitly references CC0. */
788 if (NONJUMP_INSN_P (insn)
789 && (prev = prev_nonnote_insn (insn)) != 0
790 && NONJUMP_INSN_P (prev)
791 && sets_cc0_p (PATTERN (prev))
792 && GET_CODE (PATTERN (insn)) == SET
793 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
794 {
795 if ((next = try_combine (insn, prev,
796 NULL_RTX, &new_direct_jump_p)) != 0)
797 goto retry;
798
799 for (nextlinks = LOG_LINKS (prev); nextlinks;
800 nextlinks = XEXP (nextlinks, 1))
801 if ((next = try_combine (insn, prev,
802 XEXP (nextlinks, 0),
803 &new_direct_jump_p)) != 0)
804 goto retry;
805 }
806
807 /* Finally, see if any of the insns that this insn links to
808 explicitly references CC0. If so, try this insn, that insn,
809 and its predecessor if it sets CC0. */
810 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
811 if (NONJUMP_INSN_P (XEXP (links, 0))
812 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
813 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
814 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
815 && NONJUMP_INSN_P (prev)
816 && sets_cc0_p (PATTERN (prev))
817 && (next = try_combine (insn, XEXP (links, 0),
818 prev, &new_direct_jump_p)) != 0)
819 goto retry;
820 #endif
821
822 /* Try combining an insn with two different insns whose results it
823 uses. */
824 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
825 for (nextlinks = XEXP (links, 1); nextlinks;
826 nextlinks = XEXP (nextlinks, 1))
827 if ((next = try_combine (insn, XEXP (links, 0),
828 XEXP (nextlinks, 0),
829 &new_direct_jump_p)) != 0)
830 goto retry;
831
832 /* Try this insn with each REG_EQUAL note it links back to. */
833 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
834 {
835 rtx set, note;
836 rtx temp = XEXP (links, 0);
837 if ((set = single_set (temp)) != 0
838 && (note = find_reg_equal_equiv_note (temp)) != 0
839 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
840 /* Avoid using a register that may already been marked
841 dead by an earlier instruction. */
842 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
843 {
844 /* Temporarily replace the set's source with the
845 contents of the REG_EQUAL note. The insn will
846 be deleted or recognized by try_combine. */
847 rtx orig = SET_SRC (set);
848 SET_SRC (set) = XEXP (note, 0);
849 next = try_combine (insn, temp, NULL_RTX,
850 &new_direct_jump_p);
851 if (next)
852 goto retry;
853 SET_SRC (set) = orig;
854 }
855 }
856
857 if (!NOTE_P (insn))
858 record_dead_and_set_regs (insn);
859
860 retry:
861 ;
862 }
863 }
864 }
865 clear_bb_flags ();
866
867 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
868 BASIC_BLOCK (i)->flags |= BB_DIRTY);
869 new_direct_jump_p |= purge_all_dead_edges (0);
870 delete_noop_moves ();
871
872 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
873 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
874 | PROP_KILL_DEAD_CODE);
875
876 /* Clean up. */
877 sbitmap_free (refresh_blocks);
878 free (uid_insn_cost);
879 free (reg_stat);
880 free (uid_cuid);
881
882 {
883 struct undo *undo, *next;
884 for (undo = undobuf.frees; undo; undo = next)
885 {
886 next = undo->next;
887 free (undo);
888 }
889 undobuf.frees = 0;
890 }
891
892 total_attempts += combine_attempts;
893 total_merges += combine_merges;
894 total_extras += combine_extras;
895 total_successes += combine_successes;
896
897 nonzero_sign_valid = 0;
898 rtl_hooks = general_rtl_hooks;
899
900 /* Make recognizer allow volatile MEMs again. */
901 init_recog ();
902
903 return new_direct_jump_p;
904 }
905
906 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
907
908 static void
909 init_reg_last (void)
910 {
911 unsigned int i;
912 for (i = 0; i < combine_max_regno; i++)
913 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
914 }
915 \f
916 /* Set up any promoted values for incoming argument registers. */
917
918 static void
919 setup_incoming_promotions (void)
920 {
921 unsigned int regno;
922 rtx reg;
923 enum machine_mode mode;
924 int unsignedp;
925 rtx first = get_insns ();
926
927 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
928 {
929 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
930 /* Check whether this register can hold an incoming pointer
931 argument. FUNCTION_ARG_REGNO_P tests outgoing register
932 numbers, so translate if necessary due to register windows. */
933 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
934 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
935 {
936 record_value_for_reg
937 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
938 : SIGN_EXTEND),
939 GET_MODE (reg),
940 gen_rtx_CLOBBER (mode, const0_rtx)));
941 }
942 }
943 }
944 \f
945 /* Called via note_stores. If X is a pseudo that is narrower than
946 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
947
948 If we are setting only a portion of X and we can't figure out what
949 portion, assume all bits will be used since we don't know what will
950 be happening.
951
952 Similarly, set how many bits of X are known to be copies of the sign bit
953 at all locations in the function. This is the smallest number implied
954 by any set of X. */
955
956 static void
957 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
958 void *data ATTRIBUTE_UNUSED)
959 {
960 unsigned int num;
961
962 if (REG_P (x)
963 && REGNO (x) >= FIRST_PSEUDO_REGISTER
964 /* If this register is undefined at the start of the file, we can't
965 say what its contents were. */
966 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
967 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
968 {
969 if (set == 0 || GET_CODE (set) == CLOBBER)
970 {
971 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
972 reg_stat[REGNO (x)].sign_bit_copies = 1;
973 return;
974 }
975
976 /* If this is a complex assignment, see if we can convert it into a
977 simple assignment. */
978 set = expand_field_assignment (set);
979
980 /* If this is a simple assignment, or we have a paradoxical SUBREG,
981 set what we know about X. */
982
983 if (SET_DEST (set) == x
984 || (GET_CODE (SET_DEST (set)) == SUBREG
985 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
986 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
987 && SUBREG_REG (SET_DEST (set)) == x))
988 {
989 rtx src = SET_SRC (set);
990
991 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
992 /* If X is narrower than a word and SRC is a non-negative
993 constant that would appear negative in the mode of X,
994 sign-extend it for use in reg_stat[].nonzero_bits because some
995 machines (maybe most) will actually do the sign-extension
996 and this is the conservative approach.
997
998 ??? For 2.5, try to tighten up the MD files in this regard
999 instead of this kludge. */
1000
1001 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1002 && GET_CODE (src) == CONST_INT
1003 && INTVAL (src) > 0
1004 && 0 != (INTVAL (src)
1005 & ((HOST_WIDE_INT) 1
1006 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1007 src = GEN_INT (INTVAL (src)
1008 | ((HOST_WIDE_INT) (-1)
1009 << GET_MODE_BITSIZE (GET_MODE (x))));
1010 #endif
1011
1012 /* Don't call nonzero_bits if it cannot change anything. */
1013 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1014 reg_stat[REGNO (x)].nonzero_bits
1015 |= nonzero_bits (src, nonzero_bits_mode);
1016 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1017 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1018 || reg_stat[REGNO (x)].sign_bit_copies > num)
1019 reg_stat[REGNO (x)].sign_bit_copies = num;
1020 }
1021 else
1022 {
1023 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1024 reg_stat[REGNO (x)].sign_bit_copies = 1;
1025 }
1026 }
1027 }
1028 \f
1029 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1030 insns that were previously combined into I3 or that will be combined
1031 into the merger of INSN and I3.
1032
1033 Return 0 if the combination is not allowed for any reason.
1034
1035 If the combination is allowed, *PDEST will be set to the single
1036 destination of INSN and *PSRC to the single source, and this function
1037 will return 1. */
1038
1039 static int
1040 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1041 rtx *pdest, rtx *psrc)
1042 {
1043 int i;
1044 rtx set = 0, src, dest;
1045 rtx p;
1046 #ifdef AUTO_INC_DEC
1047 rtx link;
1048 #endif
1049 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1050 && next_active_insn (succ) == i3)
1051 : next_active_insn (insn) == i3);
1052
1053 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1054 or a PARALLEL consisting of such a SET and CLOBBERs.
1055
1056 If INSN has CLOBBER parallel parts, ignore them for our processing.
1057 By definition, these happen during the execution of the insn. When it
1058 is merged with another insn, all bets are off. If they are, in fact,
1059 needed and aren't also supplied in I3, they may be added by
1060 recog_for_combine. Otherwise, it won't match.
1061
1062 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1063 note.
1064
1065 Get the source and destination of INSN. If more than one, can't
1066 combine. */
1067
1068 if (GET_CODE (PATTERN (insn)) == SET)
1069 set = PATTERN (insn);
1070 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1071 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1072 {
1073 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1074 {
1075 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1076 rtx note;
1077
1078 switch (GET_CODE (elt))
1079 {
1080 /* This is important to combine floating point insns
1081 for the SH4 port. */
1082 case USE:
1083 /* Combining an isolated USE doesn't make sense.
1084 We depend here on combinable_i3pat to reject them. */
1085 /* The code below this loop only verifies that the inputs of
1086 the SET in INSN do not change. We call reg_set_between_p
1087 to verify that the REG in the USE does not change between
1088 I3 and INSN.
1089 If the USE in INSN was for a pseudo register, the matching
1090 insn pattern will likely match any register; combining this
1091 with any other USE would only be safe if we knew that the
1092 used registers have identical values, or if there was
1093 something to tell them apart, e.g. different modes. For
1094 now, we forgo such complicated tests and simply disallow
1095 combining of USES of pseudo registers with any other USE. */
1096 if (REG_P (XEXP (elt, 0))
1097 && GET_CODE (PATTERN (i3)) == PARALLEL)
1098 {
1099 rtx i3pat = PATTERN (i3);
1100 int i = XVECLEN (i3pat, 0) - 1;
1101 unsigned int regno = REGNO (XEXP (elt, 0));
1102
1103 do
1104 {
1105 rtx i3elt = XVECEXP (i3pat, 0, i);
1106
1107 if (GET_CODE (i3elt) == USE
1108 && REG_P (XEXP (i3elt, 0))
1109 && (REGNO (XEXP (i3elt, 0)) == regno
1110 ? reg_set_between_p (XEXP (elt, 0),
1111 PREV_INSN (insn), i3)
1112 : regno >= FIRST_PSEUDO_REGISTER))
1113 return 0;
1114 }
1115 while (--i >= 0);
1116 }
1117 break;
1118
1119 /* We can ignore CLOBBERs. */
1120 case CLOBBER:
1121 break;
1122
1123 case SET:
1124 /* Ignore SETs whose result isn't used but not those that
1125 have side-effects. */
1126 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1127 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1128 || INTVAL (XEXP (note, 0)) <= 0)
1129 && ! side_effects_p (elt))
1130 break;
1131
1132 /* If we have already found a SET, this is a second one and
1133 so we cannot combine with this insn. */
1134 if (set)
1135 return 0;
1136
1137 set = elt;
1138 break;
1139
1140 default:
1141 /* Anything else means we can't combine. */
1142 return 0;
1143 }
1144 }
1145
1146 if (set == 0
1147 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1148 so don't do anything with it. */
1149 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1150 return 0;
1151 }
1152 else
1153 return 0;
1154
1155 if (set == 0)
1156 return 0;
1157
1158 set = expand_field_assignment (set);
1159 src = SET_SRC (set), dest = SET_DEST (set);
1160
1161 /* Don't eliminate a store in the stack pointer. */
1162 if (dest == stack_pointer_rtx
1163 /* Don't combine with an insn that sets a register to itself if it has
1164 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1165 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1166 /* Can't merge an ASM_OPERANDS. */
1167 || GET_CODE (src) == ASM_OPERANDS
1168 /* Can't merge a function call. */
1169 || GET_CODE (src) == CALL
1170 /* Don't eliminate a function call argument. */
1171 || (CALL_P (i3)
1172 && (find_reg_fusage (i3, USE, dest)
1173 || (REG_P (dest)
1174 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1175 && global_regs[REGNO (dest)])))
1176 /* Don't substitute into an incremented register. */
1177 || FIND_REG_INC_NOTE (i3, dest)
1178 || (succ && FIND_REG_INC_NOTE (succ, dest))
1179 #if 0
1180 /* Don't combine the end of a libcall into anything. */
1181 /* ??? This gives worse code, and appears to be unnecessary, since no
1182 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1183 use REG_RETVAL notes for noconflict blocks, but other code here
1184 makes sure that those insns don't disappear. */
1185 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1186 #endif
1187 /* Make sure that DEST is not used after SUCC but before I3. */
1188 || (succ && ! all_adjacent
1189 && reg_used_between_p (dest, succ, i3))
1190 /* Make sure that the value that is to be substituted for the register
1191 does not use any registers whose values alter in between. However,
1192 If the insns are adjacent, a use can't cross a set even though we
1193 think it might (this can happen for a sequence of insns each setting
1194 the same destination; last_set of that register might point to
1195 a NOTE). If INSN has a REG_EQUIV note, the register is always
1196 equivalent to the memory so the substitution is valid even if there
1197 are intervening stores. Also, don't move a volatile asm or
1198 UNSPEC_VOLATILE across any other insns. */
1199 || (! all_adjacent
1200 && (((!MEM_P (src)
1201 || ! find_reg_note (insn, REG_EQUIV, src))
1202 && use_crosses_set_p (src, INSN_CUID (insn)))
1203 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1204 || GET_CODE (src) == UNSPEC_VOLATILE))
1205 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1206 better register allocation by not doing the combine. */
1207 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1208 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1209 /* Don't combine across a CALL_INSN, because that would possibly
1210 change whether the life span of some REGs crosses calls or not,
1211 and it is a pain to update that information.
1212 Exception: if source is a constant, moving it later can't hurt.
1213 Accept that special case, because it helps -fforce-addr a lot. */
1214 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1215 return 0;
1216
1217 /* DEST must either be a REG or CC0. */
1218 if (REG_P (dest))
1219 {
1220 /* If register alignment is being enforced for multi-word items in all
1221 cases except for parameters, it is possible to have a register copy
1222 insn referencing a hard register that is not allowed to contain the
1223 mode being copied and which would not be valid as an operand of most
1224 insns. Eliminate this problem by not combining with such an insn.
1225
1226 Also, on some machines we don't want to extend the life of a hard
1227 register. */
1228
1229 if (REG_P (src)
1230 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1231 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1232 /* Don't extend the life of a hard register unless it is
1233 user variable (if we have few registers) or it can't
1234 fit into the desired register (meaning something special
1235 is going on).
1236 Also avoid substituting a return register into I3, because
1237 reload can't handle a conflict with constraints of other
1238 inputs. */
1239 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1240 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1241 return 0;
1242 }
1243 else if (GET_CODE (dest) != CC0)
1244 return 0;
1245
1246
1247 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1248 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1249 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1250 {
1251 /* Don't substitute for a register intended as a clobberable
1252 operand. */
1253 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1254 if (rtx_equal_p (reg, dest))
1255 return 0;
1256
1257 /* If the clobber represents an earlyclobber operand, we must not
1258 substitute an expression containing the clobbered register.
1259 As we do not analyse the constraint strings here, we have to
1260 make the conservative assumption. However, if the register is
1261 a fixed hard reg, the clobber cannot represent any operand;
1262 we leave it up to the machine description to either accept or
1263 reject use-and-clobber patterns. */
1264 if (!REG_P (reg)
1265 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1266 || !fixed_regs[REGNO (reg)])
1267 if (reg_overlap_mentioned_p (reg, src))
1268 return 0;
1269 }
1270
1271 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1272 or not), reject, unless nothing volatile comes between it and I3 */
1273
1274 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1275 {
1276 /* Make sure succ doesn't contain a volatile reference. */
1277 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1278 return 0;
1279
1280 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1281 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1282 return 0;
1283 }
1284
1285 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1286 to be an explicit register variable, and was chosen for a reason. */
1287
1288 if (GET_CODE (src) == ASM_OPERANDS
1289 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1290 return 0;
1291
1292 /* If there are any volatile insns between INSN and I3, reject, because
1293 they might affect machine state. */
1294
1295 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1296 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1297 return 0;
1298
1299 /* If INSN or I2 contains an autoincrement or autodecrement,
1300 make sure that register is not used between there and I3,
1301 and not already used in I3 either.
1302 Also insist that I3 not be a jump; if it were one
1303 and the incremented register were spilled, we would lose. */
1304
1305 #ifdef AUTO_INC_DEC
1306 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1307 if (REG_NOTE_KIND (link) == REG_INC
1308 && (JUMP_P (i3)
1309 || reg_used_between_p (XEXP (link, 0), insn, i3)
1310 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1311 return 0;
1312 #endif
1313
1314 #ifdef HAVE_cc0
1315 /* Don't combine an insn that follows a CC0-setting insn.
1316 An insn that uses CC0 must not be separated from the one that sets it.
1317 We do, however, allow I2 to follow a CC0-setting insn if that insn
1318 is passed as I1; in that case it will be deleted also.
1319 We also allow combining in this case if all the insns are adjacent
1320 because that would leave the two CC0 insns adjacent as well.
1321 It would be more logical to test whether CC0 occurs inside I1 or I2,
1322 but that would be much slower, and this ought to be equivalent. */
1323
1324 p = prev_nonnote_insn (insn);
1325 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1326 && ! all_adjacent)
1327 return 0;
1328 #endif
1329
1330 /* If we get here, we have passed all the tests and the combination is
1331 to be allowed. */
1332
1333 *pdest = dest;
1334 *psrc = src;
1335
1336 return 1;
1337 }
1338 \f
1339 /* LOC is the location within I3 that contains its pattern or the component
1340 of a PARALLEL of the pattern. We validate that it is valid for combining.
1341
1342 One problem is if I3 modifies its output, as opposed to replacing it
1343 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1344 so would produce an insn that is not equivalent to the original insns.
1345
1346 Consider:
1347
1348 (set (reg:DI 101) (reg:DI 100))
1349 (set (subreg:SI (reg:DI 101) 0) <foo>)
1350
1351 This is NOT equivalent to:
1352
1353 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1354 (set (reg:DI 101) (reg:DI 100))])
1355
1356 Not only does this modify 100 (in which case it might still be valid
1357 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1358
1359 We can also run into a problem if I2 sets a register that I1
1360 uses and I1 gets directly substituted into I3 (not via I2). In that
1361 case, we would be getting the wrong value of I2DEST into I3, so we
1362 must reject the combination. This case occurs when I2 and I1 both
1363 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1364 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1365 of a SET must prevent combination from occurring.
1366
1367 Before doing the above check, we first try to expand a field assignment
1368 into a set of logical operations.
1369
1370 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1371 we place a register that is both set and used within I3. If more than one
1372 such register is detected, we fail.
1373
1374 Return 1 if the combination is valid, zero otherwise. */
1375
1376 static int
1377 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1378 int i1_not_in_src, rtx *pi3dest_killed)
1379 {
1380 rtx x = *loc;
1381
1382 if (GET_CODE (x) == SET)
1383 {
1384 rtx set = x ;
1385 rtx dest = SET_DEST (set);
1386 rtx src = SET_SRC (set);
1387 rtx inner_dest = dest;
1388
1389 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1390 || GET_CODE (inner_dest) == SUBREG
1391 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1392 inner_dest = XEXP (inner_dest, 0);
1393
1394 /* Check for the case where I3 modifies its output, as discussed
1395 above. We don't want to prevent pseudos from being combined
1396 into the address of a MEM, so only prevent the combination if
1397 i1 or i2 set the same MEM. */
1398 if ((inner_dest != dest &&
1399 (!MEM_P (inner_dest)
1400 || rtx_equal_p (i2dest, inner_dest)
1401 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1402 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1403 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1404
1405 /* This is the same test done in can_combine_p except we can't test
1406 all_adjacent; we don't have to, since this instruction will stay
1407 in place, thus we are not considering increasing the lifetime of
1408 INNER_DEST.
1409
1410 Also, if this insn sets a function argument, combining it with
1411 something that might need a spill could clobber a previous
1412 function argument; the all_adjacent test in can_combine_p also
1413 checks this; here, we do a more specific test for this case. */
1414
1415 || (REG_P (inner_dest)
1416 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1417 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1418 GET_MODE (inner_dest))))
1419 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1420 return 0;
1421
1422 /* If DEST is used in I3, it is being killed in this insn,
1423 so record that for later.
1424 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1425 STACK_POINTER_REGNUM, since these are always considered to be
1426 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1427 if (pi3dest_killed && REG_P (dest)
1428 && reg_referenced_p (dest, PATTERN (i3))
1429 && REGNO (dest) != FRAME_POINTER_REGNUM
1430 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1431 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1432 #endif
1433 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1434 && (REGNO (dest) != ARG_POINTER_REGNUM
1435 || ! fixed_regs [REGNO (dest)])
1436 #endif
1437 && REGNO (dest) != STACK_POINTER_REGNUM)
1438 {
1439 if (*pi3dest_killed)
1440 return 0;
1441
1442 *pi3dest_killed = dest;
1443 }
1444 }
1445
1446 else if (GET_CODE (x) == PARALLEL)
1447 {
1448 int i;
1449
1450 for (i = 0; i < XVECLEN (x, 0); i++)
1451 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1452 i1_not_in_src, pi3dest_killed))
1453 return 0;
1454 }
1455
1456 return 1;
1457 }
1458 \f
1459 /* Return 1 if X is an arithmetic expression that contains a multiplication
1460 and division. We don't count multiplications by powers of two here. */
1461
1462 static int
1463 contains_muldiv (rtx x)
1464 {
1465 switch (GET_CODE (x))
1466 {
1467 case MOD: case DIV: case UMOD: case UDIV:
1468 return 1;
1469
1470 case MULT:
1471 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1472 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1473 default:
1474 if (BINARY_P (x))
1475 return contains_muldiv (XEXP (x, 0))
1476 || contains_muldiv (XEXP (x, 1));
1477
1478 if (UNARY_P (x))
1479 return contains_muldiv (XEXP (x, 0));
1480
1481 return 0;
1482 }
1483 }
1484 \f
1485 /* Determine whether INSN can be used in a combination. Return nonzero if
1486 not. This is used in try_combine to detect early some cases where we
1487 can't perform combinations. */
1488
1489 static int
1490 cant_combine_insn_p (rtx insn)
1491 {
1492 rtx set;
1493 rtx src, dest;
1494
1495 /* If this isn't really an insn, we can't do anything.
1496 This can occur when flow deletes an insn that it has merged into an
1497 auto-increment address. */
1498 if (! INSN_P (insn))
1499 return 1;
1500
1501 /* Never combine loads and stores involving hard regs that are likely
1502 to be spilled. The register allocator can usually handle such
1503 reg-reg moves by tying. If we allow the combiner to make
1504 substitutions of likely-spilled regs, we may abort in reload.
1505 As an exception, we allow combinations involving fixed regs; these are
1506 not available to the register allocator so there's no risk involved. */
1507
1508 set = single_set (insn);
1509 if (! set)
1510 return 0;
1511 src = SET_SRC (set);
1512 dest = SET_DEST (set);
1513 if (GET_CODE (src) == SUBREG)
1514 src = SUBREG_REG (src);
1515 if (GET_CODE (dest) == SUBREG)
1516 dest = SUBREG_REG (dest);
1517 if (REG_P (src) && REG_P (dest)
1518 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1519 && ! fixed_regs[REGNO (src)]
1520 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1521 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1522 && ! fixed_regs[REGNO (dest)]
1523 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1524 return 1;
1525
1526 return 0;
1527 }
1528
1529 /* Adjust INSN after we made a change to its destination.
1530
1531 Changing the destination can invalidate notes that say something about
1532 the results of the insn and a LOG_LINK pointing to the insn. */
1533
1534 static void
1535 adjust_for_new_dest (rtx insn)
1536 {
1537 rtx *loc;
1538
1539 /* For notes, be conservative and simply remove them. */
1540 loc = &REG_NOTES (insn);
1541 while (*loc)
1542 {
1543 enum reg_note kind = REG_NOTE_KIND (*loc);
1544 if (kind == REG_EQUAL || kind == REG_EQUIV)
1545 *loc = XEXP (*loc, 1);
1546 else
1547 loc = &XEXP (*loc, 1);
1548 }
1549
1550 /* The new insn will have a destination that was previously the destination
1551 of an insn just above it. Call distribute_links to make a LOG_LINK from
1552 the next use of that destination. */
1553 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1554 }
1555
1556 /* Try to combine the insns I1 and I2 into I3.
1557 Here I1 and I2 appear earlier than I3.
1558 I1 can be zero; then we combine just I2 into I3.
1559
1560 If we are combining three insns and the resulting insn is not recognized,
1561 try splitting it into two insns. If that happens, I2 and I3 are retained
1562 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1563 are pseudo-deleted.
1564
1565 Return 0 if the combination does not work. Then nothing is changed.
1566 If we did the combination, return the insn at which combine should
1567 resume scanning.
1568
1569 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1570 new direct jump instruction. */
1571
1572 static rtx
1573 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1574 {
1575 /* New patterns for I3 and I2, respectively. */
1576 rtx newpat, newi2pat = 0;
1577 int substed_i2 = 0, substed_i1 = 0;
1578 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1579 int added_sets_1, added_sets_2;
1580 /* Total number of SETs to put into I3. */
1581 int total_sets;
1582 /* Nonzero if I2's body now appears in I3. */
1583 int i2_is_used;
1584 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1585 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1586 /* Contains I3 if the destination of I3 is used in its source, which means
1587 that the old life of I3 is being killed. If that usage is placed into
1588 I2 and not in I3, a REG_DEAD note must be made. */
1589 rtx i3dest_killed = 0;
1590 /* SET_DEST and SET_SRC of I2 and I1. */
1591 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1592 /* PATTERN (I2), or a copy of it in certain cases. */
1593 rtx i2pat;
1594 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1595 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1596 int i1_feeds_i3 = 0;
1597 /* Notes that must be added to REG_NOTES in I3 and I2. */
1598 rtx new_i3_notes, new_i2_notes;
1599 /* Notes that we substituted I3 into I2 instead of the normal case. */
1600 int i3_subst_into_i2 = 0;
1601 /* Notes that I1, I2 or I3 is a MULT operation. */
1602 int have_mult = 0;
1603 int swap_i2i3 = 0;
1604
1605 int maxreg;
1606 rtx temp;
1607 rtx link;
1608 int i;
1609
1610 /* Exit early if one of the insns involved can't be used for
1611 combinations. */
1612 if (cant_combine_insn_p (i3)
1613 || cant_combine_insn_p (i2)
1614 || (i1 && cant_combine_insn_p (i1))
1615 /* We also can't do anything if I3 has a
1616 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1617 libcall. */
1618 #if 0
1619 /* ??? This gives worse code, and appears to be unnecessary, since no
1620 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1621 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1622 #endif
1623 )
1624 return 0;
1625
1626 combine_attempts++;
1627 undobuf.other_insn = 0;
1628
1629 /* Reset the hard register usage information. */
1630 CLEAR_HARD_REG_SET (newpat_used_regs);
1631
1632 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1633 code below, set I1 to be the earlier of the two insns. */
1634 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1635 temp = i1, i1 = i2, i2 = temp;
1636
1637 added_links_insn = 0;
1638
1639 /* First check for one important special-case that the code below will
1640 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1641 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1642 we may be able to replace that destination with the destination of I3.
1643 This occurs in the common code where we compute both a quotient and
1644 remainder into a structure, in which case we want to do the computation
1645 directly into the structure to avoid register-register copies.
1646
1647 Note that this case handles both multiple sets in I2 and also
1648 cases where I2 has a number of CLOBBER or PARALLELs.
1649
1650 We make very conservative checks below and only try to handle the
1651 most common cases of this. For example, we only handle the case
1652 where I2 and I3 are adjacent to avoid making difficult register
1653 usage tests. */
1654
1655 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1656 && REG_P (SET_SRC (PATTERN (i3)))
1657 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1658 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1659 && GET_CODE (PATTERN (i2)) == PARALLEL
1660 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1661 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1662 below would need to check what is inside (and reg_overlap_mentioned_p
1663 doesn't support those codes anyway). Don't allow those destinations;
1664 the resulting insn isn't likely to be recognized anyway. */
1665 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1666 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1667 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1668 SET_DEST (PATTERN (i3)))
1669 && next_real_insn (i2) == i3)
1670 {
1671 rtx p2 = PATTERN (i2);
1672
1673 /* Make sure that the destination of I3,
1674 which we are going to substitute into one output of I2,
1675 is not used within another output of I2. We must avoid making this:
1676 (parallel [(set (mem (reg 69)) ...)
1677 (set (reg 69) ...)])
1678 which is not well-defined as to order of actions.
1679 (Besides, reload can't handle output reloads for this.)
1680
1681 The problem can also happen if the dest of I3 is a memory ref,
1682 if another dest in I2 is an indirect memory ref. */
1683 for (i = 0; i < XVECLEN (p2, 0); i++)
1684 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1685 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1686 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1687 SET_DEST (XVECEXP (p2, 0, i))))
1688 break;
1689
1690 if (i == XVECLEN (p2, 0))
1691 for (i = 0; i < XVECLEN (p2, 0); i++)
1692 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1693 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1694 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1695 {
1696 combine_merges++;
1697
1698 subst_insn = i3;
1699 subst_low_cuid = INSN_CUID (i2);
1700
1701 added_sets_2 = added_sets_1 = 0;
1702 i2dest = SET_SRC (PATTERN (i3));
1703
1704 /* Replace the dest in I2 with our dest and make the resulting
1705 insn the new pattern for I3. Then skip to where we
1706 validate the pattern. Everything was set up above. */
1707 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1708 SET_DEST (PATTERN (i3)));
1709
1710 newpat = p2;
1711 i3_subst_into_i2 = 1;
1712 goto validate_replacement;
1713 }
1714 }
1715
1716 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1717 one of those words to another constant, merge them by making a new
1718 constant. */
1719 if (i1 == 0
1720 && (temp = single_set (i2)) != 0
1721 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1722 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1723 && REG_P (SET_DEST (temp))
1724 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1725 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1726 && GET_CODE (PATTERN (i3)) == SET
1727 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1728 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1729 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1730 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1731 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1732 {
1733 HOST_WIDE_INT lo, hi;
1734
1735 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1736 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1737 else
1738 {
1739 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1740 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1741 }
1742
1743 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1744 {
1745 /* We don't handle the case of the target word being wider
1746 than a host wide int. */
1747 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1748
1749 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1750 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1751 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1752 }
1753 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1754 hi = INTVAL (SET_SRC (PATTERN (i3)));
1755 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1756 {
1757 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1758 >> (HOST_BITS_PER_WIDE_INT - 1));
1759
1760 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1761 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1762 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1763 (INTVAL (SET_SRC (PATTERN (i3)))));
1764 if (hi == sign)
1765 hi = lo < 0 ? -1 : 0;
1766 }
1767 else
1768 /* We don't handle the case of the higher word not fitting
1769 entirely in either hi or lo. */
1770 gcc_unreachable ();
1771
1772 combine_merges++;
1773 subst_insn = i3;
1774 subst_low_cuid = INSN_CUID (i2);
1775 added_sets_2 = added_sets_1 = 0;
1776 i2dest = SET_DEST (temp);
1777
1778 SUBST (SET_SRC (temp),
1779 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1780
1781 newpat = PATTERN (i2);
1782 goto validate_replacement;
1783 }
1784
1785 #ifndef HAVE_cc0
1786 /* If we have no I1 and I2 looks like:
1787 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1788 (set Y OP)])
1789 make up a dummy I1 that is
1790 (set Y OP)
1791 and change I2 to be
1792 (set (reg:CC X) (compare:CC Y (const_int 0)))
1793
1794 (We can ignore any trailing CLOBBERs.)
1795
1796 This undoes a previous combination and allows us to match a branch-and-
1797 decrement insn. */
1798
1799 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1800 && XVECLEN (PATTERN (i2), 0) >= 2
1801 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1802 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1803 == MODE_CC)
1804 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1805 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1806 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1807 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1808 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1809 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1810 {
1811 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1812 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1813 break;
1814
1815 if (i == 1)
1816 {
1817 /* We make I1 with the same INSN_UID as I2. This gives it
1818 the same INSN_CUID for value tracking. Our fake I1 will
1819 never appear in the insn stream so giving it the same INSN_UID
1820 as I2 will not cause a problem. */
1821
1822 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1823 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1824 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1825 NULL_RTX);
1826
1827 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1828 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1829 SET_DEST (PATTERN (i1)));
1830 }
1831 }
1832 #endif
1833
1834 /* Verify that I2 and I1 are valid for combining. */
1835 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1836 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1837 {
1838 undo_all ();
1839 return 0;
1840 }
1841
1842 /* Record whether I2DEST is used in I2SRC and similarly for the other
1843 cases. Knowing this will help in register status updating below. */
1844 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1845 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1846 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1847
1848 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1849 in I2SRC. */
1850 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1851
1852 /* Ensure that I3's pattern can be the destination of combines. */
1853 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1854 i1 && i2dest_in_i1src && i1_feeds_i3,
1855 &i3dest_killed))
1856 {
1857 undo_all ();
1858 return 0;
1859 }
1860
1861 /* See if any of the insns is a MULT operation. Unless one is, we will
1862 reject a combination that is, since it must be slower. Be conservative
1863 here. */
1864 if (GET_CODE (i2src) == MULT
1865 || (i1 != 0 && GET_CODE (i1src) == MULT)
1866 || (GET_CODE (PATTERN (i3)) == SET
1867 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1868 have_mult = 1;
1869
1870 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1871 We used to do this EXCEPT in one case: I3 has a post-inc in an
1872 output operand. However, that exception can give rise to insns like
1873 mov r3,(r3)+
1874 which is a famous insn on the PDP-11 where the value of r3 used as the
1875 source was model-dependent. Avoid this sort of thing. */
1876
1877 #if 0
1878 if (!(GET_CODE (PATTERN (i3)) == SET
1879 && REG_P (SET_SRC (PATTERN (i3)))
1880 && MEM_P (SET_DEST (PATTERN (i3)))
1881 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1882 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1883 /* It's not the exception. */
1884 #endif
1885 #ifdef AUTO_INC_DEC
1886 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1887 if (REG_NOTE_KIND (link) == REG_INC
1888 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1889 || (i1 != 0
1890 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1891 {
1892 undo_all ();
1893 return 0;
1894 }
1895 #endif
1896
1897 /* See if the SETs in I1 or I2 need to be kept around in the merged
1898 instruction: whenever the value set there is still needed past I3.
1899 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1900
1901 For the SET in I1, we have two cases: If I1 and I2 independently
1902 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1903 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1904 in I1 needs to be kept around unless I1DEST dies or is set in either
1905 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1906 I1DEST. If so, we know I1 feeds into I2. */
1907
1908 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1909
1910 added_sets_1
1911 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1912 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1913
1914 /* If the set in I2 needs to be kept around, we must make a copy of
1915 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1916 PATTERN (I2), we are only substituting for the original I1DEST, not into
1917 an already-substituted copy. This also prevents making self-referential
1918 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1919 I2DEST. */
1920
1921 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1922 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1923 : PATTERN (i2));
1924
1925 if (added_sets_2)
1926 i2pat = copy_rtx (i2pat);
1927
1928 combine_merges++;
1929
1930 /* Substitute in the latest insn for the regs set by the earlier ones. */
1931
1932 maxreg = max_reg_num ();
1933
1934 subst_insn = i3;
1935
1936 /* It is possible that the source of I2 or I1 may be performing an
1937 unneeded operation, such as a ZERO_EXTEND of something that is known
1938 to have the high part zero. Handle that case by letting subst look at
1939 the innermost one of them.
1940
1941 Another way to do this would be to have a function that tries to
1942 simplify a single insn instead of merging two or more insns. We don't
1943 do this because of the potential of infinite loops and because
1944 of the potential extra memory required. However, doing it the way
1945 we are is a bit of a kludge and doesn't catch all cases.
1946
1947 But only do this if -fexpensive-optimizations since it slows things down
1948 and doesn't usually win. */
1949
1950 if (flag_expensive_optimizations)
1951 {
1952 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1953 if (i1)
1954 {
1955 subst_low_cuid = INSN_CUID (i1);
1956 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1957 }
1958 else
1959 {
1960 subst_low_cuid = INSN_CUID (i2);
1961 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1962 }
1963 }
1964
1965 #ifndef HAVE_cc0
1966 /* Many machines that don't use CC0 have insns that can both perform an
1967 arithmetic operation and set the condition code. These operations will
1968 be represented as a PARALLEL with the first element of the vector
1969 being a COMPARE of an arithmetic operation with the constant zero.
1970 The second element of the vector will set some pseudo to the result
1971 of the same arithmetic operation. If we simplify the COMPARE, we won't
1972 match such a pattern and so will generate an extra insn. Here we test
1973 for this case, where both the comparison and the operation result are
1974 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1975 I2SRC. Later we will make the PARALLEL that contains I2. */
1976
1977 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1978 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1979 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1980 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1981 {
1982 #ifdef SELECT_CC_MODE
1983 rtx *cc_use;
1984 enum machine_mode compare_mode;
1985 #endif
1986
1987 newpat = PATTERN (i3);
1988 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1989
1990 i2_is_used = 1;
1991
1992 #ifdef SELECT_CC_MODE
1993 /* See if a COMPARE with the operand we substituted in should be done
1994 with the mode that is currently being used. If not, do the same
1995 processing we do in `subst' for a SET; namely, if the destination
1996 is used only once, try to replace it with a register of the proper
1997 mode and also replace the COMPARE. */
1998 if (undobuf.other_insn == 0
1999 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2000 &undobuf.other_insn))
2001 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2002 i2src, const0_rtx))
2003 != GET_MODE (SET_DEST (newpat))))
2004 {
2005 unsigned int regno = REGNO (SET_DEST (newpat));
2006 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2007
2008 if (regno < FIRST_PSEUDO_REGISTER
2009 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2010 && ! REG_USERVAR_P (SET_DEST (newpat))))
2011 {
2012 if (regno >= FIRST_PSEUDO_REGISTER)
2013 SUBST (regno_reg_rtx[regno], new_dest);
2014
2015 SUBST (SET_DEST (newpat), new_dest);
2016 SUBST (XEXP (*cc_use, 0), new_dest);
2017 SUBST (SET_SRC (newpat),
2018 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2019 }
2020 else
2021 undobuf.other_insn = 0;
2022 }
2023 #endif
2024 }
2025 else
2026 #endif
2027 {
2028 n_occurrences = 0; /* `subst' counts here */
2029
2030 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2031 need to make a unique copy of I2SRC each time we substitute it
2032 to avoid self-referential rtl. */
2033
2034 subst_low_cuid = INSN_CUID (i2);
2035 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2036 ! i1_feeds_i3 && i1dest_in_i1src);
2037 substed_i2 = 1;
2038
2039 /* Record whether i2's body now appears within i3's body. */
2040 i2_is_used = n_occurrences;
2041 }
2042
2043 /* If we already got a failure, don't try to do more. Otherwise,
2044 try to substitute in I1 if we have it. */
2045
2046 if (i1 && GET_CODE (newpat) != CLOBBER)
2047 {
2048 /* Before we can do this substitution, we must redo the test done
2049 above (see detailed comments there) that ensures that I1DEST
2050 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2051
2052 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2053 0, (rtx*) 0))
2054 {
2055 undo_all ();
2056 return 0;
2057 }
2058
2059 n_occurrences = 0;
2060 subst_low_cuid = INSN_CUID (i1);
2061 newpat = subst (newpat, i1dest, i1src, 0, 0);
2062 substed_i1 = 1;
2063 }
2064
2065 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2066 to count all the ways that I2SRC and I1SRC can be used. */
2067 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2068 && i2_is_used + added_sets_2 > 1)
2069 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2070 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2071 > 1))
2072 /* Fail if we tried to make a new register (we used to abort, but there's
2073 really no reason to). */
2074 || max_reg_num () != maxreg
2075 /* Fail if we couldn't do something and have a CLOBBER. */
2076 || GET_CODE (newpat) == CLOBBER
2077 /* Fail if this new pattern is a MULT and we didn't have one before
2078 at the outer level. */
2079 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2080 && ! have_mult))
2081 {
2082 undo_all ();
2083 return 0;
2084 }
2085
2086 /* If the actions of the earlier insns must be kept
2087 in addition to substituting them into the latest one,
2088 we must make a new PARALLEL for the latest insn
2089 to hold additional the SETs. */
2090
2091 if (added_sets_1 || added_sets_2)
2092 {
2093 combine_extras++;
2094
2095 if (GET_CODE (newpat) == PARALLEL)
2096 {
2097 rtvec old = XVEC (newpat, 0);
2098 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2099 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2100 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2101 sizeof (old->elem[0]) * old->num_elem);
2102 }
2103 else
2104 {
2105 rtx old = newpat;
2106 total_sets = 1 + added_sets_1 + added_sets_2;
2107 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2108 XVECEXP (newpat, 0, 0) = old;
2109 }
2110
2111 if (added_sets_1)
2112 XVECEXP (newpat, 0, --total_sets)
2113 = (GET_CODE (PATTERN (i1)) == PARALLEL
2114 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2115
2116 if (added_sets_2)
2117 {
2118 /* If there is no I1, use I2's body as is. We used to also not do
2119 the subst call below if I2 was substituted into I3,
2120 but that could lose a simplification. */
2121 if (i1 == 0)
2122 XVECEXP (newpat, 0, --total_sets) = i2pat;
2123 else
2124 /* See comment where i2pat is assigned. */
2125 XVECEXP (newpat, 0, --total_sets)
2126 = subst (i2pat, i1dest, i1src, 0, 0);
2127 }
2128 }
2129
2130 /* We come here when we are replacing a destination in I2 with the
2131 destination of I3. */
2132 validate_replacement:
2133
2134 /* Note which hard regs this insn has as inputs. */
2135 mark_used_regs_combine (newpat);
2136
2137 /* Is the result of combination a valid instruction? */
2138 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2139
2140 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2141 the second SET's destination is a register that is unused and isn't
2142 marked as an instruction that might trap in an EH region. In that case,
2143 we just need the first SET. This can occur when simplifying a divmod
2144 insn. We *must* test for this case here because the code below that
2145 splits two independent SETs doesn't handle this case correctly when it
2146 updates the register status.
2147
2148 It's pointless doing this if we originally had two sets, one from
2149 i3, and one from i2. Combining then splitting the parallel results
2150 in the original i2 again plus an invalid insn (which we delete).
2151 The net effect is only to move instructions around, which makes
2152 debug info less accurate.
2153
2154 Also check the case where the first SET's destination is unused.
2155 That would not cause incorrect code, but does cause an unneeded
2156 insn to remain. */
2157
2158 if (insn_code_number < 0
2159 && !(added_sets_2 && i1 == 0)
2160 && GET_CODE (newpat) == PARALLEL
2161 && XVECLEN (newpat, 0) == 2
2162 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2163 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2164 && asm_noperands (newpat) < 0)
2165 {
2166 rtx set0 = XVECEXP (newpat, 0, 0);
2167 rtx set1 = XVECEXP (newpat, 0, 1);
2168 rtx note;
2169
2170 if (((REG_P (SET_DEST (set1))
2171 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2172 || (GET_CODE (SET_DEST (set1)) == SUBREG
2173 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2174 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2175 || INTVAL (XEXP (note, 0)) <= 0)
2176 && ! side_effects_p (SET_SRC (set1)))
2177 {
2178 newpat = set0;
2179 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2180 }
2181
2182 else if (((REG_P (SET_DEST (set0))
2183 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2184 || (GET_CODE (SET_DEST (set0)) == SUBREG
2185 && find_reg_note (i3, REG_UNUSED,
2186 SUBREG_REG (SET_DEST (set0)))))
2187 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2188 || INTVAL (XEXP (note, 0)) <= 0)
2189 && ! side_effects_p (SET_SRC (set0)))
2190 {
2191 newpat = set1;
2192 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2193
2194 if (insn_code_number >= 0)
2195 {
2196 /* If we will be able to accept this, we have made a
2197 change to the destination of I3. This requires us to
2198 do a few adjustments. */
2199
2200 PATTERN (i3) = newpat;
2201 adjust_for_new_dest (i3);
2202 }
2203 }
2204 }
2205
2206 /* If we were combining three insns and the result is a simple SET
2207 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2208 insns. There are two ways to do this. It can be split using a
2209 machine-specific method (like when you have an addition of a large
2210 constant) or by combine in the function find_split_point. */
2211
2212 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2213 && asm_noperands (newpat) < 0)
2214 {
2215 rtx m_split, *split;
2216 rtx ni2dest = i2dest;
2217
2218 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2219 use I2DEST as a scratch register will help. In the latter case,
2220 convert I2DEST to the mode of the source of NEWPAT if we can. */
2221
2222 m_split = split_insns (newpat, i3);
2223
2224 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2225 inputs of NEWPAT. */
2226
2227 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2228 possible to try that as a scratch reg. This would require adding
2229 more code to make it work though. */
2230
2231 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2232 {
2233 /* If I2DEST is a hard register or the only use of a pseudo,
2234 we can change its mode. */
2235 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2236 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2237 && REG_P (i2dest)
2238 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2239 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2240 && ! REG_USERVAR_P (i2dest))))
2241 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2242 REGNO (i2dest));
2243
2244 m_split = split_insns (gen_rtx_PARALLEL
2245 (VOIDmode,
2246 gen_rtvec (2, newpat,
2247 gen_rtx_CLOBBER (VOIDmode,
2248 ni2dest))),
2249 i3);
2250 /* If the split with the mode-changed register didn't work, try
2251 the original register. */
2252 if (! m_split && ni2dest != i2dest)
2253 {
2254 ni2dest = i2dest;
2255 m_split = split_insns (gen_rtx_PARALLEL
2256 (VOIDmode,
2257 gen_rtvec (2, newpat,
2258 gen_rtx_CLOBBER (VOIDmode,
2259 i2dest))),
2260 i3);
2261 }
2262 }
2263
2264 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2265 {
2266 m_split = PATTERN (m_split);
2267 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2268 if (insn_code_number >= 0)
2269 newpat = m_split;
2270 }
2271 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2272 && (next_real_insn (i2) == i3
2273 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2274 {
2275 rtx i2set, i3set;
2276 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2277 newi2pat = PATTERN (m_split);
2278
2279 i3set = single_set (NEXT_INSN (m_split));
2280 i2set = single_set (m_split);
2281
2282 /* In case we changed the mode of I2DEST, replace it in the
2283 pseudo-register table here. We can't do it above in case this
2284 code doesn't get executed and we do a split the other way. */
2285
2286 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2287 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2288
2289 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2290
2291 /* If I2 or I3 has multiple SETs, we won't know how to track
2292 register status, so don't use these insns. If I2's destination
2293 is used between I2 and I3, we also can't use these insns. */
2294
2295 if (i2_code_number >= 0 && i2set && i3set
2296 && (next_real_insn (i2) == i3
2297 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2298 insn_code_number = recog_for_combine (&newi3pat, i3,
2299 &new_i3_notes);
2300 if (insn_code_number >= 0)
2301 newpat = newi3pat;
2302
2303 /* It is possible that both insns now set the destination of I3.
2304 If so, we must show an extra use of it. */
2305
2306 if (insn_code_number >= 0)
2307 {
2308 rtx new_i3_dest = SET_DEST (i3set);
2309 rtx new_i2_dest = SET_DEST (i2set);
2310
2311 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2312 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2313 || GET_CODE (new_i3_dest) == SUBREG)
2314 new_i3_dest = XEXP (new_i3_dest, 0);
2315
2316 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2317 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2318 || GET_CODE (new_i2_dest) == SUBREG)
2319 new_i2_dest = XEXP (new_i2_dest, 0);
2320
2321 if (REG_P (new_i3_dest)
2322 && REG_P (new_i2_dest)
2323 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2324 REG_N_SETS (REGNO (new_i2_dest))++;
2325 }
2326 }
2327
2328 /* If we can split it and use I2DEST, go ahead and see if that
2329 helps things be recognized. Verify that none of the registers
2330 are set between I2 and I3. */
2331 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2332 #ifdef HAVE_cc0
2333 && REG_P (i2dest)
2334 #endif
2335 /* We need I2DEST in the proper mode. If it is a hard register
2336 or the only use of a pseudo, we can change its mode. */
2337 && (GET_MODE (*split) == GET_MODE (i2dest)
2338 || GET_MODE (*split) == VOIDmode
2339 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2340 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2341 && ! REG_USERVAR_P (i2dest)))
2342 && (next_real_insn (i2) == i3
2343 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2344 /* We can't overwrite I2DEST if its value is still used by
2345 NEWPAT. */
2346 && ! reg_referenced_p (i2dest, newpat))
2347 {
2348 rtx newdest = i2dest;
2349 enum rtx_code split_code = GET_CODE (*split);
2350 enum machine_mode split_mode = GET_MODE (*split);
2351
2352 /* Get NEWDEST as a register in the proper mode. We have already
2353 validated that we can do this. */
2354 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2355 {
2356 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2357
2358 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2359 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2360 }
2361
2362 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2363 an ASHIFT. This can occur if it was inside a PLUS and hence
2364 appeared to be a memory address. This is a kludge. */
2365 if (split_code == MULT
2366 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2367 && INTVAL (XEXP (*split, 1)) > 0
2368 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2369 {
2370 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2371 XEXP (*split, 0), GEN_INT (i)));
2372 /* Update split_code because we may not have a multiply
2373 anymore. */
2374 split_code = GET_CODE (*split);
2375 }
2376
2377 #ifdef INSN_SCHEDULING
2378 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2379 be written as a ZERO_EXTEND. */
2380 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2381 {
2382 #ifdef LOAD_EXTEND_OP
2383 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2384 what it really is. */
2385 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2386 == SIGN_EXTEND)
2387 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2388 SUBREG_REG (*split)));
2389 else
2390 #endif
2391 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2392 SUBREG_REG (*split)));
2393 }
2394 #endif
2395
2396 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2397 SUBST (*split, newdest);
2398 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2399
2400 /* If the split point was a MULT and we didn't have one before,
2401 don't use one now. */
2402 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2403 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2404 }
2405 }
2406
2407 /* Check for a case where we loaded from memory in a narrow mode and
2408 then sign extended it, but we need both registers. In that case,
2409 we have a PARALLEL with both loads from the same memory location.
2410 We can split this into a load from memory followed by a register-register
2411 copy. This saves at least one insn, more if register allocation can
2412 eliminate the copy.
2413
2414 We cannot do this if the destination of the first assignment is a
2415 condition code register or cc0. We eliminate this case by making sure
2416 the SET_DEST and SET_SRC have the same mode.
2417
2418 We cannot do this if the destination of the second assignment is
2419 a register that we have already assumed is zero-extended. Similarly
2420 for a SUBREG of such a register. */
2421
2422 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2423 && GET_CODE (newpat) == PARALLEL
2424 && XVECLEN (newpat, 0) == 2
2425 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2426 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2427 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2428 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2429 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2430 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2431 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2432 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2433 INSN_CUID (i2))
2434 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2435 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2436 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2437 (REG_P (temp)
2438 && reg_stat[REGNO (temp)].nonzero_bits != 0
2439 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2440 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2441 && (reg_stat[REGNO (temp)].nonzero_bits
2442 != GET_MODE_MASK (word_mode))))
2443 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2444 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2445 (REG_P (temp)
2446 && reg_stat[REGNO (temp)].nonzero_bits != 0
2447 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2448 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2449 && (reg_stat[REGNO (temp)].nonzero_bits
2450 != GET_MODE_MASK (word_mode)))))
2451 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2452 SET_SRC (XVECEXP (newpat, 0, 1)))
2453 && ! find_reg_note (i3, REG_UNUSED,
2454 SET_DEST (XVECEXP (newpat, 0, 0))))
2455 {
2456 rtx ni2dest;
2457
2458 newi2pat = XVECEXP (newpat, 0, 0);
2459 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2460 newpat = XVECEXP (newpat, 0, 1);
2461 SUBST (SET_SRC (newpat),
2462 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2463 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2464
2465 if (i2_code_number >= 0)
2466 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2467
2468 if (insn_code_number >= 0)
2469 swap_i2i3 = 1;
2470 }
2471
2472 /* Similarly, check for a case where we have a PARALLEL of two independent
2473 SETs but we started with three insns. In this case, we can do the sets
2474 as two separate insns. This case occurs when some SET allows two
2475 other insns to combine, but the destination of that SET is still live. */
2476
2477 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2478 && GET_CODE (newpat) == PARALLEL
2479 && XVECLEN (newpat, 0) == 2
2480 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2481 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2482 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2483 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2484 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2485 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2486 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2487 INSN_CUID (i2))
2488 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2489 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2490 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2491 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2492 XVECEXP (newpat, 0, 0))
2493 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2494 XVECEXP (newpat, 0, 1))
2495 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2496 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2497 {
2498 /* Normally, it doesn't matter which of the two is done first,
2499 but it does if one references cc0. In that case, it has to
2500 be first. */
2501 #ifdef HAVE_cc0
2502 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2503 {
2504 newi2pat = XVECEXP (newpat, 0, 0);
2505 newpat = XVECEXP (newpat, 0, 1);
2506 }
2507 else
2508 #endif
2509 {
2510 newi2pat = XVECEXP (newpat, 0, 1);
2511 newpat = XVECEXP (newpat, 0, 0);
2512 }
2513
2514 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2515
2516 if (i2_code_number >= 0)
2517 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2518 }
2519
2520 /* If it still isn't recognized, fail and change things back the way they
2521 were. */
2522 if ((insn_code_number < 0
2523 /* Is the result a reasonable ASM_OPERANDS? */
2524 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2525 {
2526 undo_all ();
2527 return 0;
2528 }
2529
2530 /* If we had to change another insn, make sure it is valid also. */
2531 if (undobuf.other_insn)
2532 {
2533 rtx other_pat = PATTERN (undobuf.other_insn);
2534 rtx new_other_notes;
2535 rtx note, next;
2536
2537 CLEAR_HARD_REG_SET (newpat_used_regs);
2538
2539 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2540 &new_other_notes);
2541
2542 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2543 {
2544 undo_all ();
2545 return 0;
2546 }
2547
2548 PATTERN (undobuf.other_insn) = other_pat;
2549
2550 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2551 are still valid. Then add any non-duplicate notes added by
2552 recog_for_combine. */
2553 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2554 {
2555 next = XEXP (note, 1);
2556
2557 if (REG_NOTE_KIND (note) == REG_UNUSED
2558 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2559 {
2560 if (REG_P (XEXP (note, 0)))
2561 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2562
2563 remove_note (undobuf.other_insn, note);
2564 }
2565 }
2566
2567 for (note = new_other_notes; note; note = XEXP (note, 1))
2568 if (REG_P (XEXP (note, 0)))
2569 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2570
2571 distribute_notes (new_other_notes, undobuf.other_insn,
2572 undobuf.other_insn, NULL_RTX);
2573 }
2574 #ifdef HAVE_cc0
2575 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2576 they are adjacent to each other or not. */
2577 {
2578 rtx p = prev_nonnote_insn (i3);
2579 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2580 && sets_cc0_p (newi2pat))
2581 {
2582 undo_all ();
2583 return 0;
2584 }
2585 }
2586 #endif
2587
2588 /* Only allow this combination if insn_rtx_costs reports that the
2589 replacement instructions are cheaper than the originals. */
2590 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2591 {
2592 undo_all ();
2593 return 0;
2594 }
2595
2596 /* We now know that we can do this combination. Merge the insns and
2597 update the status of registers and LOG_LINKS. */
2598
2599 if (swap_i2i3)
2600 {
2601 rtx insn;
2602 rtx link;
2603 rtx ni2dest;
2604
2605 /* I3 now uses what used to be its destination and which is now
2606 I2's destination. This requires us to do a few adjustments. */
2607 PATTERN (i3) = newpat;
2608 adjust_for_new_dest (i3);
2609
2610 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2611 so we still will.
2612
2613 However, some later insn might be using I2's dest and have
2614 a LOG_LINK pointing at I3. We must remove this link.
2615 The simplest way to remove the link is to point it at I1,
2616 which we know will be a NOTE. */
2617
2618 /* newi2pat is usually a SET here; however, recog_for_combine might
2619 have added some clobbers. */
2620 if (GET_CODE (newi2pat) == PARALLEL)
2621 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2622 else
2623 ni2dest = SET_DEST (newi2pat);
2624
2625 for (insn = NEXT_INSN (i3);
2626 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2627 || insn != BB_HEAD (this_basic_block->next_bb));
2628 insn = NEXT_INSN (insn))
2629 {
2630 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2631 {
2632 for (link = LOG_LINKS (insn); link;
2633 link = XEXP (link, 1))
2634 if (XEXP (link, 0) == i3)
2635 XEXP (link, 0) = i1;
2636
2637 break;
2638 }
2639 }
2640 }
2641
2642 {
2643 rtx i3notes, i2notes, i1notes = 0;
2644 rtx i3links, i2links, i1links = 0;
2645 rtx midnotes = 0;
2646 unsigned int regno;
2647
2648 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2649 clear them. */
2650 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2651 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2652 if (i1)
2653 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2654
2655 /* Ensure that we do not have something that should not be shared but
2656 occurs multiple times in the new insns. Check this by first
2657 resetting all the `used' flags and then copying anything is shared. */
2658
2659 reset_used_flags (i3notes);
2660 reset_used_flags (i2notes);
2661 reset_used_flags (i1notes);
2662 reset_used_flags (newpat);
2663 reset_used_flags (newi2pat);
2664 if (undobuf.other_insn)
2665 reset_used_flags (PATTERN (undobuf.other_insn));
2666
2667 i3notes = copy_rtx_if_shared (i3notes);
2668 i2notes = copy_rtx_if_shared (i2notes);
2669 i1notes = copy_rtx_if_shared (i1notes);
2670 newpat = copy_rtx_if_shared (newpat);
2671 newi2pat = copy_rtx_if_shared (newi2pat);
2672 if (undobuf.other_insn)
2673 reset_used_flags (PATTERN (undobuf.other_insn));
2674
2675 INSN_CODE (i3) = insn_code_number;
2676 PATTERN (i3) = newpat;
2677
2678 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2679 {
2680 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2681
2682 reset_used_flags (call_usage);
2683 call_usage = copy_rtx (call_usage);
2684
2685 if (substed_i2)
2686 replace_rtx (call_usage, i2dest, i2src);
2687
2688 if (substed_i1)
2689 replace_rtx (call_usage, i1dest, i1src);
2690
2691 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2692 }
2693
2694 if (undobuf.other_insn)
2695 INSN_CODE (undobuf.other_insn) = other_code_number;
2696
2697 /* We had one special case above where I2 had more than one set and
2698 we replaced a destination of one of those sets with the destination
2699 of I3. In that case, we have to update LOG_LINKS of insns later
2700 in this basic block. Note that this (expensive) case is rare.
2701
2702 Also, in this case, we must pretend that all REG_NOTEs for I2
2703 actually came from I3, so that REG_UNUSED notes from I2 will be
2704 properly handled. */
2705
2706 if (i3_subst_into_i2)
2707 {
2708 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2709 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2710 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2711 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2712 && ! find_reg_note (i2, REG_UNUSED,
2713 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2714 for (temp = NEXT_INSN (i2);
2715 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2716 || BB_HEAD (this_basic_block) != temp);
2717 temp = NEXT_INSN (temp))
2718 if (temp != i3 && INSN_P (temp))
2719 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2720 if (XEXP (link, 0) == i2)
2721 XEXP (link, 0) = i3;
2722
2723 if (i3notes)
2724 {
2725 rtx link = i3notes;
2726 while (XEXP (link, 1))
2727 link = XEXP (link, 1);
2728 XEXP (link, 1) = i2notes;
2729 }
2730 else
2731 i3notes = i2notes;
2732 i2notes = 0;
2733 }
2734
2735 LOG_LINKS (i3) = 0;
2736 REG_NOTES (i3) = 0;
2737 LOG_LINKS (i2) = 0;
2738 REG_NOTES (i2) = 0;
2739
2740 if (newi2pat)
2741 {
2742 INSN_CODE (i2) = i2_code_number;
2743 PATTERN (i2) = newi2pat;
2744 }
2745 else
2746 SET_INSN_DELETED (i2);
2747
2748 if (i1)
2749 {
2750 LOG_LINKS (i1) = 0;
2751 REG_NOTES (i1) = 0;
2752 SET_INSN_DELETED (i1);
2753 }
2754
2755 /* Get death notes for everything that is now used in either I3 or
2756 I2 and used to die in a previous insn. If we built two new
2757 patterns, move from I1 to I2 then I2 to I3 so that we get the
2758 proper movement on registers that I2 modifies. */
2759
2760 if (newi2pat)
2761 {
2762 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2763 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2764 }
2765 else
2766 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2767 i3, &midnotes);
2768
2769 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2770 if (i3notes)
2771 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2772 if (i2notes)
2773 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2774 if (i1notes)
2775 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2776 if (midnotes)
2777 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2778
2779 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2780 know these are REG_UNUSED and want them to go to the desired insn,
2781 so we always pass it as i3. We have not counted the notes in
2782 reg_n_deaths yet, so we need to do so now. */
2783
2784 if (newi2pat && new_i2_notes)
2785 {
2786 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2787 if (REG_P (XEXP (temp, 0)))
2788 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2789
2790 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2791 }
2792
2793 if (new_i3_notes)
2794 {
2795 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2796 if (REG_P (XEXP (temp, 0)))
2797 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2798
2799 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2800 }
2801
2802 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2803 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2804 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2805 in that case, it might delete I2. Similarly for I2 and I1.
2806 Show an additional death due to the REG_DEAD note we make here. If
2807 we discard it in distribute_notes, we will decrement it again. */
2808
2809 if (i3dest_killed)
2810 {
2811 if (REG_P (i3dest_killed))
2812 REG_N_DEATHS (REGNO (i3dest_killed))++;
2813
2814 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2815 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2816 NULL_RTX),
2817 NULL_RTX, i2, NULL_RTX);
2818 else
2819 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2820 NULL_RTX),
2821 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2822 }
2823
2824 if (i2dest_in_i2src)
2825 {
2826 if (REG_P (i2dest))
2827 REG_N_DEATHS (REGNO (i2dest))++;
2828
2829 if (newi2pat && reg_set_p (i2dest, newi2pat))
2830 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2831 NULL_RTX, i2, NULL_RTX);
2832 else
2833 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2834 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2835 }
2836
2837 if (i1dest_in_i1src)
2838 {
2839 if (REG_P (i1dest))
2840 REG_N_DEATHS (REGNO (i1dest))++;
2841
2842 if (newi2pat && reg_set_p (i1dest, newi2pat))
2843 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2844 NULL_RTX, i2, NULL_RTX);
2845 else
2846 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2847 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2848 }
2849
2850 distribute_links (i3links);
2851 distribute_links (i2links);
2852 distribute_links (i1links);
2853
2854 if (REG_P (i2dest))
2855 {
2856 rtx link;
2857 rtx i2_insn = 0, i2_val = 0, set;
2858
2859 /* The insn that used to set this register doesn't exist, and
2860 this life of the register may not exist either. See if one of
2861 I3's links points to an insn that sets I2DEST. If it does,
2862 that is now the last known value for I2DEST. If we don't update
2863 this and I2 set the register to a value that depended on its old
2864 contents, we will get confused. If this insn is used, thing
2865 will be set correctly in combine_instructions. */
2866
2867 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2868 if ((set = single_set (XEXP (link, 0))) != 0
2869 && rtx_equal_p (i2dest, SET_DEST (set)))
2870 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2871
2872 record_value_for_reg (i2dest, i2_insn, i2_val);
2873
2874 /* If the reg formerly set in I2 died only once and that was in I3,
2875 zero its use count so it won't make `reload' do any work. */
2876 if (! added_sets_2
2877 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2878 && ! i2dest_in_i2src)
2879 {
2880 regno = REGNO (i2dest);
2881 REG_N_SETS (regno)--;
2882 }
2883 }
2884
2885 if (i1 && REG_P (i1dest))
2886 {
2887 rtx link;
2888 rtx i1_insn = 0, i1_val = 0, set;
2889
2890 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2891 if ((set = single_set (XEXP (link, 0))) != 0
2892 && rtx_equal_p (i1dest, SET_DEST (set)))
2893 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2894
2895 record_value_for_reg (i1dest, i1_insn, i1_val);
2896
2897 regno = REGNO (i1dest);
2898 if (! added_sets_1 && ! i1dest_in_i1src)
2899 REG_N_SETS (regno)--;
2900 }
2901
2902 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2903 been made to this insn. The order of
2904 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2905 can affect nonzero_bits of newpat */
2906 if (newi2pat)
2907 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2908 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2909
2910 /* Set new_direct_jump_p if a new return or simple jump instruction
2911 has been created.
2912
2913 If I3 is now an unconditional jump, ensure that it has a
2914 BARRIER following it since it may have initially been a
2915 conditional jump. It may also be the last nonnote insn. */
2916
2917 if (returnjump_p (i3) || any_uncondjump_p (i3))
2918 {
2919 *new_direct_jump_p = 1;
2920 mark_jump_label (PATTERN (i3), i3, 0);
2921
2922 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2923 || !BARRIER_P (temp))
2924 emit_barrier_after (i3);
2925 }
2926
2927 if (undobuf.other_insn != NULL_RTX
2928 && (returnjump_p (undobuf.other_insn)
2929 || any_uncondjump_p (undobuf.other_insn)))
2930 {
2931 *new_direct_jump_p = 1;
2932
2933 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2934 || !BARRIER_P (temp))
2935 emit_barrier_after (undobuf.other_insn);
2936 }
2937
2938 /* An NOOP jump does not need barrier, but it does need cleaning up
2939 of CFG. */
2940 if (GET_CODE (newpat) == SET
2941 && SET_SRC (newpat) == pc_rtx
2942 && SET_DEST (newpat) == pc_rtx)
2943 *new_direct_jump_p = 1;
2944 }
2945
2946 combine_successes++;
2947 undo_commit ();
2948
2949 if (added_links_insn
2950 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2951 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2952 return added_links_insn;
2953 else
2954 return newi2pat ? i2 : i3;
2955 }
2956 \f
2957 /* Undo all the modifications recorded in undobuf. */
2958
2959 static void
2960 undo_all (void)
2961 {
2962 struct undo *undo, *next;
2963
2964 for (undo = undobuf.undos; undo; undo = next)
2965 {
2966 next = undo->next;
2967 if (undo->is_int)
2968 *undo->where.i = undo->old_contents.i;
2969 else
2970 *undo->where.r = undo->old_contents.r;
2971
2972 undo->next = undobuf.frees;
2973 undobuf.frees = undo;
2974 }
2975
2976 undobuf.undos = 0;
2977 }
2978
2979 /* We've committed to accepting the changes we made. Move all
2980 of the undos to the free list. */
2981
2982 static void
2983 undo_commit (void)
2984 {
2985 struct undo *undo, *next;
2986
2987 for (undo = undobuf.undos; undo; undo = next)
2988 {
2989 next = undo->next;
2990 undo->next = undobuf.frees;
2991 undobuf.frees = undo;
2992 }
2993 undobuf.undos = 0;
2994 }
2995
2996 \f
2997 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2998 where we have an arithmetic expression and return that point. LOC will
2999 be inside INSN.
3000
3001 try_combine will call this function to see if an insn can be split into
3002 two insns. */
3003
3004 static rtx *
3005 find_split_point (rtx *loc, rtx insn)
3006 {
3007 rtx x = *loc;
3008 enum rtx_code code = GET_CODE (x);
3009 rtx *split;
3010 unsigned HOST_WIDE_INT len = 0;
3011 HOST_WIDE_INT pos = 0;
3012 int unsignedp = 0;
3013 rtx inner = NULL_RTX;
3014
3015 /* First special-case some codes. */
3016 switch (code)
3017 {
3018 case SUBREG:
3019 #ifdef INSN_SCHEDULING
3020 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3021 point. */
3022 if (MEM_P (SUBREG_REG (x)))
3023 return loc;
3024 #endif
3025 return find_split_point (&SUBREG_REG (x), insn);
3026
3027 case MEM:
3028 #ifdef HAVE_lo_sum
3029 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3030 using LO_SUM and HIGH. */
3031 if (GET_CODE (XEXP (x, 0)) == CONST
3032 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3033 {
3034 SUBST (XEXP (x, 0),
3035 gen_rtx_LO_SUM (Pmode,
3036 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3037 XEXP (x, 0)));
3038 return &XEXP (XEXP (x, 0), 0);
3039 }
3040 #endif
3041
3042 /* If we have a PLUS whose second operand is a constant and the
3043 address is not valid, perhaps will can split it up using
3044 the machine-specific way to split large constants. We use
3045 the first pseudo-reg (one of the virtual regs) as a placeholder;
3046 it will not remain in the result. */
3047 if (GET_CODE (XEXP (x, 0)) == PLUS
3048 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3049 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3050 {
3051 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3052 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3053 subst_insn);
3054
3055 /* This should have produced two insns, each of which sets our
3056 placeholder. If the source of the second is a valid address,
3057 we can make put both sources together and make a split point
3058 in the middle. */
3059
3060 if (seq
3061 && NEXT_INSN (seq) != NULL_RTX
3062 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3063 && NONJUMP_INSN_P (seq)
3064 && GET_CODE (PATTERN (seq)) == SET
3065 && SET_DEST (PATTERN (seq)) == reg
3066 && ! reg_mentioned_p (reg,
3067 SET_SRC (PATTERN (seq)))
3068 && NONJUMP_INSN_P (NEXT_INSN (seq))
3069 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3070 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3071 && memory_address_p (GET_MODE (x),
3072 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3073 {
3074 rtx src1 = SET_SRC (PATTERN (seq));
3075 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3076
3077 /* Replace the placeholder in SRC2 with SRC1. If we can
3078 find where in SRC2 it was placed, that can become our
3079 split point and we can replace this address with SRC2.
3080 Just try two obvious places. */
3081
3082 src2 = replace_rtx (src2, reg, src1);
3083 split = 0;
3084 if (XEXP (src2, 0) == src1)
3085 split = &XEXP (src2, 0);
3086 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3087 && XEXP (XEXP (src2, 0), 0) == src1)
3088 split = &XEXP (XEXP (src2, 0), 0);
3089
3090 if (split)
3091 {
3092 SUBST (XEXP (x, 0), src2);
3093 return split;
3094 }
3095 }
3096
3097 /* If that didn't work, perhaps the first operand is complex and
3098 needs to be computed separately, so make a split point there.
3099 This will occur on machines that just support REG + CONST
3100 and have a constant moved through some previous computation. */
3101
3102 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3103 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3104 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3105 return &XEXP (XEXP (x, 0), 0);
3106 }
3107 break;
3108
3109 case SET:
3110 #ifdef HAVE_cc0
3111 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3112 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3113 we need to put the operand into a register. So split at that
3114 point. */
3115
3116 if (SET_DEST (x) == cc0_rtx
3117 && GET_CODE (SET_SRC (x)) != COMPARE
3118 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3119 && !OBJECT_P (SET_SRC (x))
3120 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3121 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3122 return &SET_SRC (x);
3123 #endif
3124
3125 /* See if we can split SET_SRC as it stands. */
3126 split = find_split_point (&SET_SRC (x), insn);
3127 if (split && split != &SET_SRC (x))
3128 return split;
3129
3130 /* See if we can split SET_DEST as it stands. */
3131 split = find_split_point (&SET_DEST (x), insn);
3132 if (split && split != &SET_DEST (x))
3133 return split;
3134
3135 /* See if this is a bitfield assignment with everything constant. If
3136 so, this is an IOR of an AND, so split it into that. */
3137 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3138 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3139 <= HOST_BITS_PER_WIDE_INT)
3140 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3141 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3142 && GET_CODE (SET_SRC (x)) == CONST_INT
3143 && ((INTVAL (XEXP (SET_DEST (x), 1))
3144 + INTVAL (XEXP (SET_DEST (x), 2)))
3145 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3146 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3147 {
3148 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3149 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3150 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3151 rtx dest = XEXP (SET_DEST (x), 0);
3152 enum machine_mode mode = GET_MODE (dest);
3153 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3154
3155 if (BITS_BIG_ENDIAN)
3156 pos = GET_MODE_BITSIZE (mode) - len - pos;
3157
3158 if (src == mask)
3159 SUBST (SET_SRC (x),
3160 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3161 else
3162 SUBST (SET_SRC (x),
3163 gen_binary (IOR, mode,
3164 gen_binary (AND, mode, dest,
3165 gen_int_mode (~(mask << pos),
3166 mode)),
3167 GEN_INT (src << pos)));
3168
3169 SUBST (SET_DEST (x), dest);
3170
3171 split = find_split_point (&SET_SRC (x), insn);
3172 if (split && split != &SET_SRC (x))
3173 return split;
3174 }
3175
3176 /* Otherwise, see if this is an operation that we can split into two.
3177 If so, try to split that. */
3178 code = GET_CODE (SET_SRC (x));
3179
3180 switch (code)
3181 {
3182 case AND:
3183 /* If we are AND'ing with a large constant that is only a single
3184 bit and the result is only being used in a context where we
3185 need to know if it is zero or nonzero, replace it with a bit
3186 extraction. This will avoid the large constant, which might
3187 have taken more than one insn to make. If the constant were
3188 not a valid argument to the AND but took only one insn to make,
3189 this is no worse, but if it took more than one insn, it will
3190 be better. */
3191
3192 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3193 && REG_P (XEXP (SET_SRC (x), 0))
3194 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3195 && REG_P (SET_DEST (x))
3196 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3197 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3198 && XEXP (*split, 0) == SET_DEST (x)
3199 && XEXP (*split, 1) == const0_rtx)
3200 {
3201 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3202 XEXP (SET_SRC (x), 0),
3203 pos, NULL_RTX, 1, 1, 0, 0);
3204 if (extraction != 0)
3205 {
3206 SUBST (SET_SRC (x), extraction);
3207 return find_split_point (loc, insn);
3208 }
3209 }
3210 break;
3211
3212 case NE:
3213 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3214 is known to be on, this can be converted into a NEG of a shift. */
3215 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3216 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3217 && 1 <= (pos = exact_log2
3218 (nonzero_bits (XEXP (SET_SRC (x), 0),
3219 GET_MODE (XEXP (SET_SRC (x), 0))))))
3220 {
3221 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3222
3223 SUBST (SET_SRC (x),
3224 gen_rtx_NEG (mode,
3225 gen_rtx_LSHIFTRT (mode,
3226 XEXP (SET_SRC (x), 0),
3227 GEN_INT (pos))));
3228
3229 split = find_split_point (&SET_SRC (x), insn);
3230 if (split && split != &SET_SRC (x))
3231 return split;
3232 }
3233 break;
3234
3235 case SIGN_EXTEND:
3236 inner = XEXP (SET_SRC (x), 0);
3237
3238 /* We can't optimize if either mode is a partial integer
3239 mode as we don't know how many bits are significant
3240 in those modes. */
3241 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3242 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3243 break;
3244
3245 pos = 0;
3246 len = GET_MODE_BITSIZE (GET_MODE (inner));
3247 unsignedp = 0;
3248 break;
3249
3250 case SIGN_EXTRACT:
3251 case ZERO_EXTRACT:
3252 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3253 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3254 {
3255 inner = XEXP (SET_SRC (x), 0);
3256 len = INTVAL (XEXP (SET_SRC (x), 1));
3257 pos = INTVAL (XEXP (SET_SRC (x), 2));
3258
3259 if (BITS_BIG_ENDIAN)
3260 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3261 unsignedp = (code == ZERO_EXTRACT);
3262 }
3263 break;
3264
3265 default:
3266 break;
3267 }
3268
3269 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3270 {
3271 enum machine_mode mode = GET_MODE (SET_SRC (x));
3272
3273 /* For unsigned, we have a choice of a shift followed by an
3274 AND or two shifts. Use two shifts for field sizes where the
3275 constant might be too large. We assume here that we can
3276 always at least get 8-bit constants in an AND insn, which is
3277 true for every current RISC. */
3278
3279 if (unsignedp && len <= 8)
3280 {
3281 SUBST (SET_SRC (x),
3282 gen_rtx_AND (mode,
3283 gen_rtx_LSHIFTRT
3284 (mode, gen_lowpart (mode, inner),
3285 GEN_INT (pos)),
3286 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3287
3288 split = find_split_point (&SET_SRC (x), insn);
3289 if (split && split != &SET_SRC (x))
3290 return split;
3291 }
3292 else
3293 {
3294 SUBST (SET_SRC (x),
3295 gen_rtx_fmt_ee
3296 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3297 gen_rtx_ASHIFT (mode,
3298 gen_lowpart (mode, inner),
3299 GEN_INT (GET_MODE_BITSIZE (mode)
3300 - len - pos)),
3301 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3302
3303 split = find_split_point (&SET_SRC (x), insn);
3304 if (split && split != &SET_SRC (x))
3305 return split;
3306 }
3307 }
3308
3309 /* See if this is a simple operation with a constant as the second
3310 operand. It might be that this constant is out of range and hence
3311 could be used as a split point. */
3312 if (BINARY_P (SET_SRC (x))
3313 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3314 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3315 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3316 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3317 return &XEXP (SET_SRC (x), 1);
3318
3319 /* Finally, see if this is a simple operation with its first operand
3320 not in a register. The operation might require this operand in a
3321 register, so return it as a split point. We can always do this
3322 because if the first operand were another operation, we would have
3323 already found it as a split point. */
3324 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3325 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3326 return &XEXP (SET_SRC (x), 0);
3327
3328 return 0;
3329
3330 case AND:
3331 case IOR:
3332 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3333 it is better to write this as (not (ior A B)) so we can split it.
3334 Similarly for IOR. */
3335 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3336 {
3337 SUBST (*loc,
3338 gen_rtx_NOT (GET_MODE (x),
3339 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3340 GET_MODE (x),
3341 XEXP (XEXP (x, 0), 0),
3342 XEXP (XEXP (x, 1), 0))));
3343 return find_split_point (loc, insn);
3344 }
3345
3346 /* Many RISC machines have a large set of logical insns. If the
3347 second operand is a NOT, put it first so we will try to split the
3348 other operand first. */
3349 if (GET_CODE (XEXP (x, 1)) == NOT)
3350 {
3351 rtx tem = XEXP (x, 0);
3352 SUBST (XEXP (x, 0), XEXP (x, 1));
3353 SUBST (XEXP (x, 1), tem);
3354 }
3355 break;
3356
3357 default:
3358 break;
3359 }
3360
3361 /* Otherwise, select our actions depending on our rtx class. */
3362 switch (GET_RTX_CLASS (code))
3363 {
3364 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3365 case RTX_TERNARY:
3366 split = find_split_point (&XEXP (x, 2), insn);
3367 if (split)
3368 return split;
3369 /* ... fall through ... */
3370 case RTX_BIN_ARITH:
3371 case RTX_COMM_ARITH:
3372 case RTX_COMPARE:
3373 case RTX_COMM_COMPARE:
3374 split = find_split_point (&XEXP (x, 1), insn);
3375 if (split)
3376 return split;
3377 /* ... fall through ... */
3378 case RTX_UNARY:
3379 /* Some machines have (and (shift ...) ...) insns. If X is not
3380 an AND, but XEXP (X, 0) is, use it as our split point. */
3381 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3382 return &XEXP (x, 0);
3383
3384 split = find_split_point (&XEXP (x, 0), insn);
3385 if (split)
3386 return split;
3387 return loc;
3388
3389 default:
3390 /* Otherwise, we don't have a split point. */
3391 return 0;
3392 }
3393 }
3394 \f
3395 /* Throughout X, replace FROM with TO, and return the result.
3396 The result is TO if X is FROM;
3397 otherwise the result is X, but its contents may have been modified.
3398 If they were modified, a record was made in undobuf so that
3399 undo_all will (among other things) return X to its original state.
3400
3401 If the number of changes necessary is too much to record to undo,
3402 the excess changes are not made, so the result is invalid.
3403 The changes already made can still be undone.
3404 undobuf.num_undo is incremented for such changes, so by testing that
3405 the caller can tell whether the result is valid.
3406
3407 `n_occurrences' is incremented each time FROM is replaced.
3408
3409 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3410
3411 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3412 by copying if `n_occurrences' is nonzero. */
3413
3414 static rtx
3415 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3416 {
3417 enum rtx_code code = GET_CODE (x);
3418 enum machine_mode op0_mode = VOIDmode;
3419 const char *fmt;
3420 int len, i;
3421 rtx new;
3422
3423 /* Two expressions are equal if they are identical copies of a shared
3424 RTX or if they are both registers with the same register number
3425 and mode. */
3426
3427 #define COMBINE_RTX_EQUAL_P(X,Y) \
3428 ((X) == (Y) \
3429 || (REG_P (X) && REG_P (Y) \
3430 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3431
3432 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3433 {
3434 n_occurrences++;
3435 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3436 }
3437
3438 /* If X and FROM are the same register but different modes, they will
3439 not have been seen as equal above. However, flow.c will make a
3440 LOG_LINKS entry for that case. If we do nothing, we will try to
3441 rerecognize our original insn and, when it succeeds, we will
3442 delete the feeding insn, which is incorrect.
3443
3444 So force this insn not to match in this (rare) case. */
3445 if (! in_dest && code == REG && REG_P (from)
3446 && REGNO (x) == REGNO (from))
3447 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3448
3449 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3450 of which may contain things that can be combined. */
3451 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3452 return x;
3453
3454 /* It is possible to have a subexpression appear twice in the insn.
3455 Suppose that FROM is a register that appears within TO.
3456 Then, after that subexpression has been scanned once by `subst',
3457 the second time it is scanned, TO may be found. If we were
3458 to scan TO here, we would find FROM within it and create a
3459 self-referent rtl structure which is completely wrong. */
3460 if (COMBINE_RTX_EQUAL_P (x, to))
3461 return to;
3462
3463 /* Parallel asm_operands need special attention because all of the
3464 inputs are shared across the arms. Furthermore, unsharing the
3465 rtl results in recognition failures. Failure to handle this case
3466 specially can result in circular rtl.
3467
3468 Solve this by doing a normal pass across the first entry of the
3469 parallel, and only processing the SET_DESTs of the subsequent
3470 entries. Ug. */
3471
3472 if (code == PARALLEL
3473 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3474 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3475 {
3476 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3477
3478 /* If this substitution failed, this whole thing fails. */
3479 if (GET_CODE (new) == CLOBBER
3480 && XEXP (new, 0) == const0_rtx)
3481 return new;
3482
3483 SUBST (XVECEXP (x, 0, 0), new);
3484
3485 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3486 {
3487 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3488
3489 if (!REG_P (dest)
3490 && GET_CODE (dest) != CC0
3491 && GET_CODE (dest) != PC)
3492 {
3493 new = subst (dest, from, to, 0, unique_copy);
3494
3495 /* If this substitution failed, this whole thing fails. */
3496 if (GET_CODE (new) == CLOBBER
3497 && XEXP (new, 0) == const0_rtx)
3498 return new;
3499
3500 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3501 }
3502 }
3503 }
3504 else
3505 {
3506 len = GET_RTX_LENGTH (code);
3507 fmt = GET_RTX_FORMAT (code);
3508
3509 /* We don't need to process a SET_DEST that is a register, CC0,
3510 or PC, so set up to skip this common case. All other cases
3511 where we want to suppress replacing something inside a
3512 SET_SRC are handled via the IN_DEST operand. */
3513 if (code == SET
3514 && (REG_P (SET_DEST (x))
3515 || GET_CODE (SET_DEST (x)) == CC0
3516 || GET_CODE (SET_DEST (x)) == PC))
3517 fmt = "ie";
3518
3519 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3520 constant. */
3521 if (fmt[0] == 'e')
3522 op0_mode = GET_MODE (XEXP (x, 0));
3523
3524 for (i = 0; i < len; i++)
3525 {
3526 if (fmt[i] == 'E')
3527 {
3528 int j;
3529 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3530 {
3531 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3532 {
3533 new = (unique_copy && n_occurrences
3534 ? copy_rtx (to) : to);
3535 n_occurrences++;
3536 }
3537 else
3538 {
3539 new = subst (XVECEXP (x, i, j), from, to, 0,
3540 unique_copy);
3541
3542 /* If this substitution failed, this whole thing
3543 fails. */
3544 if (GET_CODE (new) == CLOBBER
3545 && XEXP (new, 0) == const0_rtx)
3546 return new;
3547 }
3548
3549 SUBST (XVECEXP (x, i, j), new);
3550 }
3551 }
3552 else if (fmt[i] == 'e')
3553 {
3554 /* If this is a register being set, ignore it. */
3555 new = XEXP (x, i);
3556 if (in_dest
3557 && (code == SUBREG || code == STRICT_LOW_PART
3558 || code == ZERO_EXTRACT)
3559 && i == 0
3560 && REG_P (new))
3561 ;
3562
3563 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3564 {
3565 /* In general, don't install a subreg involving two
3566 modes not tieable. It can worsen register
3567 allocation, and can even make invalid reload
3568 insns, since the reg inside may need to be copied
3569 from in the outside mode, and that may be invalid
3570 if it is an fp reg copied in integer mode.
3571
3572 We allow two exceptions to this: It is valid if
3573 it is inside another SUBREG and the mode of that
3574 SUBREG and the mode of the inside of TO is
3575 tieable and it is valid if X is a SET that copies
3576 FROM to CC0. */
3577
3578 if (GET_CODE (to) == SUBREG
3579 && ! MODES_TIEABLE_P (GET_MODE (to),
3580 GET_MODE (SUBREG_REG (to)))
3581 && ! (code == SUBREG
3582 && MODES_TIEABLE_P (GET_MODE (x),
3583 GET_MODE (SUBREG_REG (to))))
3584 #ifdef HAVE_cc0
3585 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3586 #endif
3587 )
3588 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3589
3590 #ifdef CANNOT_CHANGE_MODE_CLASS
3591 if (code == SUBREG
3592 && REG_P (to)
3593 && REGNO (to) < FIRST_PSEUDO_REGISTER
3594 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3595 GET_MODE (to),
3596 GET_MODE (x)))
3597 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3598 #endif
3599
3600 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3601 n_occurrences++;
3602 }
3603 else
3604 /* If we are in a SET_DEST, suppress most cases unless we
3605 have gone inside a MEM, in which case we want to
3606 simplify the address. We assume here that things that
3607 are actually part of the destination have their inner
3608 parts in the first expression. This is true for SUBREG,
3609 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3610 things aside from REG and MEM that should appear in a
3611 SET_DEST. */
3612 new = subst (XEXP (x, i), from, to,
3613 (((in_dest
3614 && (code == SUBREG || code == STRICT_LOW_PART
3615 || code == ZERO_EXTRACT))
3616 || code == SET)
3617 && i == 0), unique_copy);
3618
3619 /* If we found that we will have to reject this combination,
3620 indicate that by returning the CLOBBER ourselves, rather than
3621 an expression containing it. This will speed things up as
3622 well as prevent accidents where two CLOBBERs are considered
3623 to be equal, thus producing an incorrect simplification. */
3624
3625 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3626 return new;
3627
3628 if (GET_CODE (x) == SUBREG
3629 && (GET_CODE (new) == CONST_INT
3630 || GET_CODE (new) == CONST_DOUBLE))
3631 {
3632 enum machine_mode mode = GET_MODE (x);
3633
3634 x = simplify_subreg (GET_MODE (x), new,
3635 GET_MODE (SUBREG_REG (x)),
3636 SUBREG_BYTE (x));
3637 if (! x)
3638 x = gen_rtx_CLOBBER (mode, const0_rtx);
3639 }
3640 else if (GET_CODE (new) == CONST_INT
3641 && GET_CODE (x) == ZERO_EXTEND)
3642 {
3643 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3644 new, GET_MODE (XEXP (x, 0)));
3645 gcc_assert (x);
3646 }
3647 else
3648 SUBST (XEXP (x, i), new);
3649 }
3650 }
3651 }
3652
3653 /* Try to simplify X. If the simplification changed the code, it is likely
3654 that further simplification will help, so loop, but limit the number
3655 of repetitions that will be performed. */
3656
3657 for (i = 0; i < 4; i++)
3658 {
3659 /* If X is sufficiently simple, don't bother trying to do anything
3660 with it. */
3661 if (code != CONST_INT && code != REG && code != CLOBBER)
3662 x = combine_simplify_rtx (x, op0_mode, in_dest);
3663
3664 if (GET_CODE (x) == code)
3665 break;
3666
3667 code = GET_CODE (x);
3668
3669 /* We no longer know the original mode of operand 0 since we
3670 have changed the form of X) */
3671 op0_mode = VOIDmode;
3672 }
3673
3674 return x;
3675 }
3676 \f
3677 /* Simplify X, a piece of RTL. We just operate on the expression at the
3678 outer level; call `subst' to simplify recursively. Return the new
3679 expression.
3680
3681 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3682 if we are inside a SET_DEST. */
3683
3684 static rtx
3685 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3686 {
3687 enum rtx_code code = GET_CODE (x);
3688 enum machine_mode mode = GET_MODE (x);
3689 rtx temp;
3690 rtx reversed;
3691 int i;
3692
3693 /* If this is a commutative operation, put a constant last and a complex
3694 expression first. We don't need to do this for comparisons here. */
3695 if (COMMUTATIVE_ARITH_P (x)
3696 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3697 {
3698 temp = XEXP (x, 0);
3699 SUBST (XEXP (x, 0), XEXP (x, 1));
3700 SUBST (XEXP (x, 1), temp);
3701 }
3702
3703 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3704 sign extension of a PLUS with a constant, reverse the order of the sign
3705 extension and the addition. Note that this not the same as the original
3706 code, but overflow is undefined for signed values. Also note that the
3707 PLUS will have been partially moved "inside" the sign-extension, so that
3708 the first operand of X will really look like:
3709 (ashiftrt (plus (ashift A C4) C5) C4).
3710 We convert this to
3711 (plus (ashiftrt (ashift A C4) C2) C4)
3712 and replace the first operand of X with that expression. Later parts
3713 of this function may simplify the expression further.
3714
3715 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3716 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3717 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3718
3719 We do this to simplify address expressions. */
3720
3721 if ((code == PLUS || code == MINUS || code == MULT)
3722 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3723 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3724 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3725 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3726 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3727 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3728 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3729 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3730 XEXP (XEXP (XEXP (x, 0), 0), 1),
3731 XEXP (XEXP (x, 0), 1))) != 0)
3732 {
3733 rtx new
3734 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3735 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3736 INTVAL (XEXP (XEXP (x, 0), 1)));
3737
3738 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3739 INTVAL (XEXP (XEXP (x, 0), 1)));
3740
3741 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3742 }
3743
3744 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3745 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3746 things. Check for cases where both arms are testing the same
3747 condition.
3748
3749 Don't do anything if all operands are very simple. */
3750
3751 if ((BINARY_P (x)
3752 && ((!OBJECT_P (XEXP (x, 0))
3753 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3754 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3755 || (!OBJECT_P (XEXP (x, 1))
3756 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3757 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3758 || (UNARY_P (x)
3759 && (!OBJECT_P (XEXP (x, 0))
3760 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3761 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3762 {
3763 rtx cond, true_rtx, false_rtx;
3764
3765 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3766 if (cond != 0
3767 /* If everything is a comparison, what we have is highly unlikely
3768 to be simpler, so don't use it. */
3769 && ! (COMPARISON_P (x)
3770 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3771 {
3772 rtx cop1 = const0_rtx;
3773 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3774
3775 if (cond_code == NE && COMPARISON_P (cond))
3776 return x;
3777
3778 /* Simplify the alternative arms; this may collapse the true and
3779 false arms to store-flag values. Be careful to use copy_rtx
3780 here since true_rtx or false_rtx might share RTL with x as a
3781 result of the if_then_else_cond call above. */
3782 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3783 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3784
3785 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3786 is unlikely to be simpler. */
3787 if (general_operand (true_rtx, VOIDmode)
3788 && general_operand (false_rtx, VOIDmode))
3789 {
3790 enum rtx_code reversed;
3791
3792 /* Restarting if we generate a store-flag expression will cause
3793 us to loop. Just drop through in this case. */
3794
3795 /* If the result values are STORE_FLAG_VALUE and zero, we can
3796 just make the comparison operation. */
3797 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3798 x = gen_binary (cond_code, mode, cond, cop1);
3799 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3800 && ((reversed = reversed_comparison_code_parts
3801 (cond_code, cond, cop1, NULL))
3802 != UNKNOWN))
3803 x = gen_binary (reversed, mode, cond, cop1);
3804
3805 /* Likewise, we can make the negate of a comparison operation
3806 if the result values are - STORE_FLAG_VALUE and zero. */
3807 else if (GET_CODE (true_rtx) == CONST_INT
3808 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3809 && false_rtx == const0_rtx)
3810 x = simplify_gen_unary (NEG, mode,
3811 gen_binary (cond_code, mode, cond,
3812 cop1),
3813 mode);
3814 else if (GET_CODE (false_rtx) == CONST_INT
3815 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3816 && true_rtx == const0_rtx
3817 && ((reversed = reversed_comparison_code_parts
3818 (cond_code, cond, cop1, NULL))
3819 != UNKNOWN))
3820 x = simplify_gen_unary (NEG, mode,
3821 gen_binary (reversed, mode,
3822 cond, cop1),
3823 mode);
3824 else
3825 return gen_rtx_IF_THEN_ELSE (mode,
3826 gen_binary (cond_code, VOIDmode,
3827 cond, cop1),
3828 true_rtx, false_rtx);
3829
3830 code = GET_CODE (x);
3831 op0_mode = VOIDmode;
3832 }
3833 }
3834 }
3835
3836 /* Try to fold this expression in case we have constants that weren't
3837 present before. */
3838 temp = 0;
3839 switch (GET_RTX_CLASS (code))
3840 {
3841 case RTX_UNARY:
3842 if (op0_mode == VOIDmode)
3843 op0_mode = GET_MODE (XEXP (x, 0));
3844 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3845 break;
3846 case RTX_COMPARE:
3847 case RTX_COMM_COMPARE:
3848 {
3849 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3850 if (cmp_mode == VOIDmode)
3851 {
3852 cmp_mode = GET_MODE (XEXP (x, 1));
3853 if (cmp_mode == VOIDmode)
3854 cmp_mode = op0_mode;
3855 }
3856 temp = simplify_relational_operation (code, mode, cmp_mode,
3857 XEXP (x, 0), XEXP (x, 1));
3858 }
3859 break;
3860 case RTX_COMM_ARITH:
3861 case RTX_BIN_ARITH:
3862 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3863 break;
3864 case RTX_BITFIELD_OPS:
3865 case RTX_TERNARY:
3866 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3867 XEXP (x, 1), XEXP (x, 2));
3868 break;
3869 default:
3870 break;
3871 }
3872
3873 if (temp)
3874 {
3875 x = temp;
3876 code = GET_CODE (temp);
3877 op0_mode = VOIDmode;
3878 mode = GET_MODE (temp);
3879 }
3880
3881 /* First see if we can apply the inverse distributive law. */
3882 if (code == PLUS || code == MINUS
3883 || code == AND || code == IOR || code == XOR)
3884 {
3885 x = apply_distributive_law (x);
3886 code = GET_CODE (x);
3887 op0_mode = VOIDmode;
3888 }
3889
3890 /* If CODE is an associative operation not otherwise handled, see if we
3891 can associate some operands. This can win if they are constants or
3892 if they are logically related (i.e. (a & b) & a). */
3893 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3894 || code == AND || code == IOR || code == XOR
3895 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3896 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3897 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3898 {
3899 if (GET_CODE (XEXP (x, 0)) == code)
3900 {
3901 rtx other = XEXP (XEXP (x, 0), 0);
3902 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3903 rtx inner_op1 = XEXP (x, 1);
3904 rtx inner;
3905
3906 /* Make sure we pass the constant operand if any as the second
3907 one if this is a commutative operation. */
3908 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3909 {
3910 rtx tem = inner_op0;
3911 inner_op0 = inner_op1;
3912 inner_op1 = tem;
3913 }
3914 inner = simplify_binary_operation (code == MINUS ? PLUS
3915 : code == DIV ? MULT
3916 : code,
3917 mode, inner_op0, inner_op1);
3918
3919 /* For commutative operations, try the other pair if that one
3920 didn't simplify. */
3921 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3922 {
3923 other = XEXP (XEXP (x, 0), 1);
3924 inner = simplify_binary_operation (code, mode,
3925 XEXP (XEXP (x, 0), 0),
3926 XEXP (x, 1));
3927 }
3928
3929 if (inner)
3930 return gen_binary (code, mode, other, inner);
3931 }
3932 }
3933
3934 /* A little bit of algebraic simplification here. */
3935 switch (code)
3936 {
3937 case MEM:
3938 /* Ensure that our address has any ASHIFTs converted to MULT in case
3939 address-recognizing predicates are called later. */
3940 temp = make_compound_operation (XEXP (x, 0), MEM);
3941 SUBST (XEXP (x, 0), temp);
3942 break;
3943
3944 case SUBREG:
3945 if (op0_mode == VOIDmode)
3946 op0_mode = GET_MODE (SUBREG_REG (x));
3947
3948 /* See if this can be moved to simplify_subreg. */
3949 if (CONSTANT_P (SUBREG_REG (x))
3950 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3951 /* Don't call gen_lowpart if the inner mode
3952 is VOIDmode and we cannot simplify it, as SUBREG without
3953 inner mode is invalid. */
3954 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3955 || gen_lowpart_common (mode, SUBREG_REG (x))))
3956 return gen_lowpart (mode, SUBREG_REG (x));
3957
3958 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3959 break;
3960 {
3961 rtx temp;
3962 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3963 SUBREG_BYTE (x));
3964 if (temp)
3965 return temp;
3966 }
3967
3968 /* Don't change the mode of the MEM if that would change the meaning
3969 of the address. */
3970 if (MEM_P (SUBREG_REG (x))
3971 && (MEM_VOLATILE_P (SUBREG_REG (x))
3972 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3973 return gen_rtx_CLOBBER (mode, const0_rtx);
3974
3975 /* Note that we cannot do any narrowing for non-constants since
3976 we might have been counting on using the fact that some bits were
3977 zero. We now do this in the SET. */
3978
3979 break;
3980
3981 case NOT:
3982 if (GET_CODE (XEXP (x, 0)) == SUBREG
3983 && subreg_lowpart_p (XEXP (x, 0))
3984 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3985 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3986 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3987 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3988 {
3989 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3990
3991 x = gen_rtx_ROTATE (inner_mode,
3992 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3993 inner_mode),
3994 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3995 return gen_lowpart (mode, x);
3996 }
3997
3998 /* Apply De Morgan's laws to reduce number of patterns for machines
3999 with negating logical insns (and-not, nand, etc.). If result has
4000 only one NOT, put it first, since that is how the patterns are
4001 coded. */
4002
4003 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4004 {
4005 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4006 enum machine_mode op_mode;
4007
4008 op_mode = GET_MODE (in1);
4009 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4010
4011 op_mode = GET_MODE (in2);
4012 if (op_mode == VOIDmode)
4013 op_mode = mode;
4014 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4015
4016 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4017 {
4018 rtx tem = in2;
4019 in2 = in1; in1 = tem;
4020 }
4021
4022 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4023 mode, in1, in2);
4024 }
4025 break;
4026
4027 case NEG:
4028 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4029 if (GET_CODE (XEXP (x, 0)) == XOR
4030 && XEXP (XEXP (x, 0), 1) == const1_rtx
4031 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4032 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4033
4034 temp = expand_compound_operation (XEXP (x, 0));
4035
4036 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4037 replaced by (lshiftrt X C). This will convert
4038 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4039
4040 if (GET_CODE (temp) == ASHIFTRT
4041 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4042 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4043 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4044 INTVAL (XEXP (temp, 1)));
4045
4046 /* If X has only a single bit that might be nonzero, say, bit I, convert
4047 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4048 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4049 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4050 or a SUBREG of one since we'd be making the expression more
4051 complex if it was just a register. */
4052
4053 if (!REG_P (temp)
4054 && ! (GET_CODE (temp) == SUBREG
4055 && REG_P (SUBREG_REG (temp)))
4056 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4057 {
4058 rtx temp1 = simplify_shift_const
4059 (NULL_RTX, ASHIFTRT, mode,
4060 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4061 GET_MODE_BITSIZE (mode) - 1 - i),
4062 GET_MODE_BITSIZE (mode) - 1 - i);
4063
4064 /* If all we did was surround TEMP with the two shifts, we
4065 haven't improved anything, so don't use it. Otherwise,
4066 we are better off with TEMP1. */
4067 if (GET_CODE (temp1) != ASHIFTRT
4068 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4069 || XEXP (XEXP (temp1, 0), 0) != temp)
4070 return temp1;
4071 }
4072 break;
4073
4074 case TRUNCATE:
4075 /* We can't handle truncation to a partial integer mode here
4076 because we don't know the real bitsize of the partial
4077 integer mode. */
4078 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4079 break;
4080
4081 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4082 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4083 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4084 SUBST (XEXP (x, 0),
4085 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4086 GET_MODE_MASK (mode), NULL_RTX, 0));
4087
4088 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4089 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4090 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4091 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4092 return XEXP (XEXP (x, 0), 0);
4093
4094 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4095 (OP:SI foo:SI) if OP is NEG or ABS. */
4096 if ((GET_CODE (XEXP (x, 0)) == ABS
4097 || GET_CODE (XEXP (x, 0)) == NEG)
4098 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4099 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4100 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4101 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4102 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4103
4104 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4105 (truncate:SI x). */
4106 if (GET_CODE (XEXP (x, 0)) == SUBREG
4107 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4108 && subreg_lowpart_p (XEXP (x, 0)))
4109 return SUBREG_REG (XEXP (x, 0));
4110
4111 /* If we know that the value is already truncated, we can
4112 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4113 is nonzero for the corresponding modes. But don't do this
4114 for an (LSHIFTRT (MULT ...)) since this will cause problems
4115 with the umulXi3_highpart patterns. */
4116 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4117 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4118 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4119 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4120 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4121 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4122 return gen_lowpart (mode, XEXP (x, 0));
4123
4124 /* A truncate of a comparison can be replaced with a subreg if
4125 STORE_FLAG_VALUE permits. This is like the previous test,
4126 but it works even if the comparison is done in a mode larger
4127 than HOST_BITS_PER_WIDE_INT. */
4128 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4129 && COMPARISON_P (XEXP (x, 0))
4130 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4131 return gen_lowpart (mode, XEXP (x, 0));
4132
4133 /* Similarly, a truncate of a register whose value is a
4134 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4135 permits. */
4136 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4137 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4138 && (temp = get_last_value (XEXP (x, 0)))
4139 && COMPARISON_P (temp))
4140 return gen_lowpart (mode, XEXP (x, 0));
4141
4142 break;
4143
4144 case FLOAT_TRUNCATE:
4145 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4146 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4147 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4148 return XEXP (XEXP (x, 0), 0);
4149
4150 /* (float_truncate:SF (float_truncate:DF foo:XF))
4151 = (float_truncate:SF foo:XF).
4152 This may eliminate double rounding, so it is unsafe.
4153
4154 (float_truncate:SF (float_extend:XF foo:DF))
4155 = (float_truncate:SF foo:DF).
4156
4157 (float_truncate:DF (float_extend:XF foo:SF))
4158 = (float_extend:SF foo:DF). */
4159 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4160 && flag_unsafe_math_optimizations)
4161 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4162 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4163 0)))
4164 > GET_MODE_SIZE (mode)
4165 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4166 mode,
4167 XEXP (XEXP (x, 0), 0), mode);
4168
4169 /* (float_truncate (float x)) is (float x) */
4170 if (GET_CODE (XEXP (x, 0)) == FLOAT
4171 && (flag_unsafe_math_optimizations
4172 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4173 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4174 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4175 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4176 return simplify_gen_unary (FLOAT, mode,
4177 XEXP (XEXP (x, 0), 0),
4178 GET_MODE (XEXP (XEXP (x, 0), 0)));
4179
4180 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4181 (OP:SF foo:SF) if OP is NEG or ABS. */
4182 if ((GET_CODE (XEXP (x, 0)) == ABS
4183 || GET_CODE (XEXP (x, 0)) == NEG)
4184 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4185 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4186 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4187 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4188
4189 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4190 is (float_truncate:SF x). */
4191 if (GET_CODE (XEXP (x, 0)) == SUBREG
4192 && subreg_lowpart_p (XEXP (x, 0))
4193 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4194 return SUBREG_REG (XEXP (x, 0));
4195 break;
4196 case FLOAT_EXTEND:
4197 /* (float_extend (float_extend x)) is (float_extend x)
4198
4199 (float_extend (float x)) is (float x) assuming that double
4200 rounding can't happen.
4201 */
4202 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4203 || (GET_CODE (XEXP (x, 0)) == FLOAT
4204 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4205 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4206 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4207 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4208 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4209 XEXP (XEXP (x, 0), 0),
4210 GET_MODE (XEXP (XEXP (x, 0), 0)));
4211
4212 break;
4213 #ifdef HAVE_cc0
4214 case COMPARE:
4215 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4216 using cc0, in which case we want to leave it as a COMPARE
4217 so we can distinguish it from a register-register-copy. */
4218 if (XEXP (x, 1) == const0_rtx)
4219 return XEXP (x, 0);
4220
4221 /* x - 0 is the same as x unless x's mode has signed zeros and
4222 allows rounding towards -infinity. Under those conditions,
4223 0 - 0 is -0. */
4224 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4225 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4226 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4227 return XEXP (x, 0);
4228 break;
4229 #endif
4230
4231 case CONST:
4232 /* (const (const X)) can become (const X). Do it this way rather than
4233 returning the inner CONST since CONST can be shared with a
4234 REG_EQUAL note. */
4235 if (GET_CODE (XEXP (x, 0)) == CONST)
4236 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4237 break;
4238
4239 #ifdef HAVE_lo_sum
4240 case LO_SUM:
4241 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4242 can add in an offset. find_split_point will split this address up
4243 again if it doesn't match. */
4244 if (GET_CODE (XEXP (x, 0)) == HIGH
4245 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4246 return XEXP (x, 1);
4247 break;
4248 #endif
4249
4250 case PLUS:
4251 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4252 */
4253 if (GET_CODE (XEXP (x, 0)) == MULT
4254 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4255 {
4256 rtx in1, in2;
4257
4258 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4259 in2 = XEXP (XEXP (x, 0), 1);
4260 return gen_binary (MINUS, mode, XEXP (x, 1),
4261 gen_binary (MULT, mode, in1, in2));
4262 }
4263
4264 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4265 outermost. That's because that's the way indexed addresses are
4266 supposed to appear. This code used to check many more cases, but
4267 they are now checked elsewhere. */
4268 if (GET_CODE (XEXP (x, 0)) == PLUS
4269 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4270 return gen_binary (PLUS, mode,
4271 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4272 XEXP (x, 1)),
4273 XEXP (XEXP (x, 0), 1));
4274
4275 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4276 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4277 bit-field and can be replaced by either a sign_extend or a
4278 sign_extract. The `and' may be a zero_extend and the two
4279 <c>, -<c> constants may be reversed. */
4280 if (GET_CODE (XEXP (x, 0)) == XOR
4281 && GET_CODE (XEXP (x, 1)) == CONST_INT
4282 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4283 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4284 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4285 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4286 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4287 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4288 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4289 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4290 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4291 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4292 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4293 == (unsigned int) i + 1))))
4294 return simplify_shift_const
4295 (NULL_RTX, ASHIFTRT, mode,
4296 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4297 XEXP (XEXP (XEXP (x, 0), 0), 0),
4298 GET_MODE_BITSIZE (mode) - (i + 1)),
4299 GET_MODE_BITSIZE (mode) - (i + 1));
4300
4301 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4302 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4303 is 1. This produces better code than the alternative immediately
4304 below. */
4305 if (COMPARISON_P (XEXP (x, 0))
4306 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4307 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4308 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4309 XEXP (XEXP (x, 0), 0),
4310 XEXP (XEXP (x, 0), 1))))
4311 return
4312 simplify_gen_unary (NEG, mode, reversed, mode);
4313
4314 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4315 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4316 the bitsize of the mode - 1. This allows simplification of
4317 "a = (b & 8) == 0;" */
4318 if (XEXP (x, 1) == constm1_rtx
4319 && !REG_P (XEXP (x, 0))
4320 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4321 && REG_P (SUBREG_REG (XEXP (x, 0))))
4322 && nonzero_bits (XEXP (x, 0), mode) == 1)
4323 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4324 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4325 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4326 GET_MODE_BITSIZE (mode) - 1),
4327 GET_MODE_BITSIZE (mode) - 1);
4328
4329 /* If we are adding two things that have no bits in common, convert
4330 the addition into an IOR. This will often be further simplified,
4331 for example in cases like ((a & 1) + (a & 2)), which can
4332 become a & 3. */
4333
4334 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4335 && (nonzero_bits (XEXP (x, 0), mode)
4336 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4337 {
4338 /* Try to simplify the expression further. */
4339 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4340 temp = combine_simplify_rtx (tor, mode, in_dest);
4341
4342 /* If we could, great. If not, do not go ahead with the IOR
4343 replacement, since PLUS appears in many special purpose
4344 address arithmetic instructions. */
4345 if (GET_CODE (temp) != CLOBBER && temp != tor)
4346 return temp;
4347 }
4348 break;
4349
4350 case MINUS:
4351 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4352 by reversing the comparison code if valid. */
4353 if (STORE_FLAG_VALUE == 1
4354 && XEXP (x, 0) == const1_rtx
4355 && COMPARISON_P (XEXP (x, 1))
4356 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4357 XEXP (XEXP (x, 1), 0),
4358 XEXP (XEXP (x, 1), 1))))
4359 return reversed;
4360
4361 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4362 (and <foo> (const_int pow2-1)) */
4363 if (GET_CODE (XEXP (x, 1)) == AND
4364 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4365 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4366 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4367 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4368 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4369
4370 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4371 */
4372 if (GET_CODE (XEXP (x, 1)) == MULT
4373 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4374 {
4375 rtx in1, in2;
4376
4377 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4378 in2 = XEXP (XEXP (x, 1), 1);
4379 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4380 XEXP (x, 0));
4381 }
4382
4383 /* Canonicalize (minus (neg A) (mult B C)) to
4384 (minus (mult (neg B) C) A). */
4385 if (GET_CODE (XEXP (x, 1)) == MULT
4386 && GET_CODE (XEXP (x, 0)) == NEG)
4387 {
4388 rtx in1, in2;
4389
4390 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4391 in2 = XEXP (XEXP (x, 1), 1);
4392 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4393 XEXP (XEXP (x, 0), 0));
4394 }
4395
4396 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4397 integers. */
4398 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4399 return gen_binary (MINUS, mode,
4400 gen_binary (MINUS, mode, XEXP (x, 0),
4401 XEXP (XEXP (x, 1), 0)),
4402 XEXP (XEXP (x, 1), 1));
4403 break;
4404
4405 case MULT:
4406 /* If we have (mult (plus A B) C), apply the distributive law and then
4407 the inverse distributive law to see if things simplify. This
4408 occurs mostly in addresses, often when unrolling loops. */
4409
4410 if (GET_CODE (XEXP (x, 0)) == PLUS)
4411 {
4412 x = apply_distributive_law
4413 (gen_binary (PLUS, mode,
4414 gen_binary (MULT, mode,
4415 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4416 gen_binary (MULT, mode,
4417 XEXP (XEXP (x, 0), 1),
4418 copy_rtx (XEXP (x, 1)))));
4419
4420 if (GET_CODE (x) != MULT)
4421 return x;
4422 }
4423 /* Try simplify a*(b/c) as (a*b)/c. */
4424 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4425 && GET_CODE (XEXP (x, 0)) == DIV)
4426 {
4427 rtx tem = simplify_binary_operation (MULT, mode,
4428 XEXP (XEXP (x, 0), 0),
4429 XEXP (x, 1));
4430 if (tem)
4431 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4432 }
4433 break;
4434
4435 case UDIV:
4436 /* If this is a divide by a power of two, treat it as a shift if
4437 its first operand is a shift. */
4438 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4439 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4440 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4441 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4442 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4443 || GET_CODE (XEXP (x, 0)) == ROTATE
4444 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4445 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4446 break;
4447
4448 case EQ: case NE:
4449 case GT: case GTU: case GE: case GEU:
4450 case LT: case LTU: case LE: case LEU:
4451 case UNEQ: case LTGT:
4452 case UNGT: case UNGE:
4453 case UNLT: case UNLE:
4454 case UNORDERED: case ORDERED:
4455 /* If the first operand is a condition code, we can't do anything
4456 with it. */
4457 if (GET_CODE (XEXP (x, 0)) == COMPARE
4458 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4459 && ! CC0_P (XEXP (x, 0))))
4460 {
4461 rtx op0 = XEXP (x, 0);
4462 rtx op1 = XEXP (x, 1);
4463 enum rtx_code new_code;
4464
4465 if (GET_CODE (op0) == COMPARE)
4466 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4467
4468 /* Simplify our comparison, if possible. */
4469 new_code = simplify_comparison (code, &op0, &op1);
4470
4471 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4472 if only the low-order bit is possibly nonzero in X (such as when
4473 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4474 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4475 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4476 (plus X 1).
4477
4478 Remove any ZERO_EXTRACT we made when thinking this was a
4479 comparison. It may now be simpler to use, e.g., an AND. If a
4480 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4481 the call to make_compound_operation in the SET case. */
4482
4483 if (STORE_FLAG_VALUE == 1
4484 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4485 && op1 == const0_rtx
4486 && mode == GET_MODE (op0)
4487 && nonzero_bits (op0, mode) == 1)
4488 return gen_lowpart (mode,
4489 expand_compound_operation (op0));
4490
4491 else if (STORE_FLAG_VALUE == 1
4492 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4493 && op1 == const0_rtx
4494 && mode == GET_MODE (op0)
4495 && (num_sign_bit_copies (op0, mode)
4496 == GET_MODE_BITSIZE (mode)))
4497 {
4498 op0 = expand_compound_operation (op0);
4499 return simplify_gen_unary (NEG, mode,
4500 gen_lowpart (mode, op0),
4501 mode);
4502 }
4503
4504 else if (STORE_FLAG_VALUE == 1
4505 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4506 && op1 == const0_rtx
4507 && mode == GET_MODE (op0)
4508 && nonzero_bits (op0, mode) == 1)
4509 {
4510 op0 = expand_compound_operation (op0);
4511 return gen_binary (XOR, mode,
4512 gen_lowpart (mode, op0),
4513 const1_rtx);
4514 }
4515
4516 else if (STORE_FLAG_VALUE == 1
4517 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4518 && op1 == const0_rtx
4519 && mode == GET_MODE (op0)
4520 && (num_sign_bit_copies (op0, mode)
4521 == GET_MODE_BITSIZE (mode)))
4522 {
4523 op0 = expand_compound_operation (op0);
4524 return plus_constant (gen_lowpart (mode, op0), 1);
4525 }
4526
4527 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4528 those above. */
4529 if (STORE_FLAG_VALUE == -1
4530 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4531 && op1 == const0_rtx
4532 && (num_sign_bit_copies (op0, mode)
4533 == GET_MODE_BITSIZE (mode)))
4534 return gen_lowpart (mode,
4535 expand_compound_operation (op0));
4536
4537 else if (STORE_FLAG_VALUE == -1
4538 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4539 && op1 == const0_rtx
4540 && mode == GET_MODE (op0)
4541 && nonzero_bits (op0, mode) == 1)
4542 {
4543 op0 = expand_compound_operation (op0);
4544 return simplify_gen_unary (NEG, mode,
4545 gen_lowpart (mode, op0),
4546 mode);
4547 }
4548
4549 else if (STORE_FLAG_VALUE == -1
4550 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4551 && op1 == const0_rtx
4552 && mode == GET_MODE (op0)
4553 && (num_sign_bit_copies (op0, mode)
4554 == GET_MODE_BITSIZE (mode)))
4555 {
4556 op0 = expand_compound_operation (op0);
4557 return simplify_gen_unary (NOT, mode,
4558 gen_lowpart (mode, op0),
4559 mode);
4560 }
4561
4562 /* If X is 0/1, (eq X 0) is X-1. */
4563 else if (STORE_FLAG_VALUE == -1
4564 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4565 && op1 == const0_rtx
4566 && mode == GET_MODE (op0)
4567 && nonzero_bits (op0, mode) == 1)
4568 {
4569 op0 = expand_compound_operation (op0);
4570 return plus_constant (gen_lowpart (mode, op0), -1);
4571 }
4572
4573 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4574 one bit that might be nonzero, we can convert (ne x 0) to
4575 (ashift x c) where C puts the bit in the sign bit. Remove any
4576 AND with STORE_FLAG_VALUE when we are done, since we are only
4577 going to test the sign bit. */
4578 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4579 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4580 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4581 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4582 && op1 == const0_rtx
4583 && mode == GET_MODE (op0)
4584 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4585 {
4586 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4587 expand_compound_operation (op0),
4588 GET_MODE_BITSIZE (mode) - 1 - i);
4589 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4590 return XEXP (x, 0);
4591 else
4592 return x;
4593 }
4594
4595 /* If the code changed, return a whole new comparison. */
4596 if (new_code != code)
4597 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4598
4599 /* Otherwise, keep this operation, but maybe change its operands.
4600 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4601 SUBST (XEXP (x, 0), op0);
4602 SUBST (XEXP (x, 1), op1);
4603 }
4604 break;
4605
4606 case IF_THEN_ELSE:
4607 return simplify_if_then_else (x);
4608
4609 case ZERO_EXTRACT:
4610 case SIGN_EXTRACT:
4611 case ZERO_EXTEND:
4612 case SIGN_EXTEND:
4613 /* If we are processing SET_DEST, we are done. */
4614 if (in_dest)
4615 return x;
4616
4617 return expand_compound_operation (x);
4618
4619 case SET:
4620 return simplify_set (x);
4621
4622 case AND:
4623 case IOR:
4624 case XOR:
4625 return simplify_logical (x);
4626
4627 case ABS:
4628 /* (abs (neg <foo>)) -> (abs <foo>) */
4629 if (GET_CODE (XEXP (x, 0)) == NEG)
4630 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4631
4632 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4633 do nothing. */
4634 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4635 break;
4636
4637 /* If operand is something known to be positive, ignore the ABS. */
4638 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4639 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4640 <= HOST_BITS_PER_WIDE_INT)
4641 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4642 & ((HOST_WIDE_INT) 1
4643 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4644 == 0)))
4645 return XEXP (x, 0);
4646
4647 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4648 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4649 return gen_rtx_NEG (mode, XEXP (x, 0));
4650
4651 break;
4652
4653 case FFS:
4654 /* (ffs (*_extend <X>)) = (ffs <X>) */
4655 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4656 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4657 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4658 break;
4659
4660 case POPCOUNT:
4661 case PARITY:
4662 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4663 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4664 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4665 break;
4666
4667 case FLOAT:
4668 /* (float (sign_extend <X>)) = (float <X>). */
4669 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4670 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4671 break;
4672
4673 case ASHIFT:
4674 case LSHIFTRT:
4675 case ASHIFTRT:
4676 case ROTATE:
4677 case ROTATERT:
4678 /* If this is a shift by a constant amount, simplify it. */
4679 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4680 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4681 INTVAL (XEXP (x, 1)));
4682
4683 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4684 SUBST (XEXP (x, 1),
4685 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4686 ((HOST_WIDE_INT) 1
4687 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4688 - 1,
4689 NULL_RTX, 0));
4690 break;
4691
4692 case VEC_SELECT:
4693 {
4694 rtx op0 = XEXP (x, 0);
4695 rtx op1 = XEXP (x, 1);
4696 int len;
4697
4698 gcc_assert (GET_CODE (op1) == PARALLEL);
4699 len = XVECLEN (op1, 0);
4700 if (len == 1
4701 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4702 && GET_CODE (op0) == VEC_CONCAT)
4703 {
4704 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4705
4706 /* Try to find the element in the VEC_CONCAT. */
4707 for (;;)
4708 {
4709 if (GET_MODE (op0) == GET_MODE (x))
4710 return op0;
4711 if (GET_CODE (op0) == VEC_CONCAT)
4712 {
4713 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4714 if (op0_size < offset)
4715 op0 = XEXP (op0, 0);
4716 else
4717 {
4718 offset -= op0_size;
4719 op0 = XEXP (op0, 1);
4720 }
4721 }
4722 else
4723 break;
4724 }
4725 }
4726 }
4727
4728 break;
4729
4730 default:
4731 break;
4732 }
4733
4734 return x;
4735 }
4736 \f
4737 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4738
4739 static rtx
4740 simplify_if_then_else (rtx x)
4741 {
4742 enum machine_mode mode = GET_MODE (x);
4743 rtx cond = XEXP (x, 0);
4744 rtx true_rtx = XEXP (x, 1);
4745 rtx false_rtx = XEXP (x, 2);
4746 enum rtx_code true_code = GET_CODE (cond);
4747 int comparison_p = COMPARISON_P (cond);
4748 rtx temp;
4749 int i;
4750 enum rtx_code false_code;
4751 rtx reversed;
4752
4753 /* Simplify storing of the truth value. */
4754 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4755 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4756
4757 /* Also when the truth value has to be reversed. */
4758 if (comparison_p
4759 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4760 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4761 XEXP (cond, 1))))
4762 return reversed;
4763
4764 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4765 in it is being compared against certain values. Get the true and false
4766 comparisons and see if that says anything about the value of each arm. */
4767
4768 if (comparison_p
4769 && ((false_code = combine_reversed_comparison_code (cond))
4770 != UNKNOWN)
4771 && REG_P (XEXP (cond, 0)))
4772 {
4773 HOST_WIDE_INT nzb;
4774 rtx from = XEXP (cond, 0);
4775 rtx true_val = XEXP (cond, 1);
4776 rtx false_val = true_val;
4777 int swapped = 0;
4778
4779 /* If FALSE_CODE is EQ, swap the codes and arms. */
4780
4781 if (false_code == EQ)
4782 {
4783 swapped = 1, true_code = EQ, false_code = NE;
4784 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4785 }
4786
4787 /* If we are comparing against zero and the expression being tested has
4788 only a single bit that might be nonzero, that is its value when it is
4789 not equal to zero. Similarly if it is known to be -1 or 0. */
4790
4791 if (true_code == EQ && true_val == const0_rtx
4792 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4793 false_code = EQ, false_val = GEN_INT (nzb);
4794 else if (true_code == EQ && true_val == const0_rtx
4795 && (num_sign_bit_copies (from, GET_MODE (from))
4796 == GET_MODE_BITSIZE (GET_MODE (from))))
4797 false_code = EQ, false_val = constm1_rtx;
4798
4799 /* Now simplify an arm if we know the value of the register in the
4800 branch and it is used in the arm. Be careful due to the potential
4801 of locally-shared RTL. */
4802
4803 if (reg_mentioned_p (from, true_rtx))
4804 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4805 from, true_val),
4806 pc_rtx, pc_rtx, 0, 0);
4807 if (reg_mentioned_p (from, false_rtx))
4808 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4809 from, false_val),
4810 pc_rtx, pc_rtx, 0, 0);
4811
4812 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4813 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4814
4815 true_rtx = XEXP (x, 1);
4816 false_rtx = XEXP (x, 2);
4817 true_code = GET_CODE (cond);
4818 }
4819
4820 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4821 reversed, do so to avoid needing two sets of patterns for
4822 subtract-and-branch insns. Similarly if we have a constant in the true
4823 arm, the false arm is the same as the first operand of the comparison, or
4824 the false arm is more complicated than the true arm. */
4825
4826 if (comparison_p
4827 && combine_reversed_comparison_code (cond) != UNKNOWN
4828 && (true_rtx == pc_rtx
4829 || (CONSTANT_P (true_rtx)
4830 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4831 || true_rtx == const0_rtx
4832 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4833 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4834 && !OBJECT_P (false_rtx))
4835 || reg_mentioned_p (true_rtx, false_rtx)
4836 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4837 {
4838 true_code = reversed_comparison_code (cond, NULL);
4839 SUBST (XEXP (x, 0),
4840 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4841 XEXP (cond, 1)));
4842
4843 SUBST (XEXP (x, 1), false_rtx);
4844 SUBST (XEXP (x, 2), true_rtx);
4845
4846 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4847 cond = XEXP (x, 0);
4848
4849 /* It is possible that the conditional has been simplified out. */
4850 true_code = GET_CODE (cond);
4851 comparison_p = COMPARISON_P (cond);
4852 }
4853
4854 /* If the two arms are identical, we don't need the comparison. */
4855
4856 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4857 return true_rtx;
4858
4859 /* Convert a == b ? b : a to "a". */
4860 if (true_code == EQ && ! side_effects_p (cond)
4861 && !HONOR_NANS (mode)
4862 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4863 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4864 return false_rtx;
4865 else if (true_code == NE && ! side_effects_p (cond)
4866 && !HONOR_NANS (mode)
4867 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4868 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4869 return true_rtx;
4870
4871 /* Look for cases where we have (abs x) or (neg (abs X)). */
4872
4873 if (GET_MODE_CLASS (mode) == MODE_INT
4874 && GET_CODE (false_rtx) == NEG
4875 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4876 && comparison_p
4877 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4878 && ! side_effects_p (true_rtx))
4879 switch (true_code)
4880 {
4881 case GT:
4882 case GE:
4883 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4884 case LT:
4885 case LE:
4886 return
4887 simplify_gen_unary (NEG, mode,
4888 simplify_gen_unary (ABS, mode, true_rtx, mode),
4889 mode);
4890 default:
4891 break;
4892 }
4893
4894 /* Look for MIN or MAX. */
4895
4896 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4897 && comparison_p
4898 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4899 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4900 && ! side_effects_p (cond))
4901 switch (true_code)
4902 {
4903 case GE:
4904 case GT:
4905 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4906 case LE:
4907 case LT:
4908 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4909 case GEU:
4910 case GTU:
4911 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4912 case LEU:
4913 case LTU:
4914 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4915 default:
4916 break;
4917 }
4918
4919 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4920 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4921 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4922 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4923 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4924 neither 1 or -1, but it isn't worth checking for. */
4925
4926 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4927 && comparison_p
4928 && GET_MODE_CLASS (mode) == MODE_INT
4929 && ! side_effects_p (x))
4930 {
4931 rtx t = make_compound_operation (true_rtx, SET);
4932 rtx f = make_compound_operation (false_rtx, SET);
4933 rtx cond_op0 = XEXP (cond, 0);
4934 rtx cond_op1 = XEXP (cond, 1);
4935 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4936 enum machine_mode m = mode;
4937 rtx z = 0, c1 = NULL_RTX;
4938
4939 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4940 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4941 || GET_CODE (t) == ASHIFT
4942 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4943 && rtx_equal_p (XEXP (t, 0), f))
4944 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4945
4946 /* If an identity-zero op is commutative, check whether there
4947 would be a match if we swapped the operands. */
4948 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4949 || GET_CODE (t) == XOR)
4950 && rtx_equal_p (XEXP (t, 1), f))
4951 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4952 else if (GET_CODE (t) == SIGN_EXTEND
4953 && (GET_CODE (XEXP (t, 0)) == PLUS
4954 || GET_CODE (XEXP (t, 0)) == MINUS
4955 || GET_CODE (XEXP (t, 0)) == IOR
4956 || GET_CODE (XEXP (t, 0)) == XOR
4957 || GET_CODE (XEXP (t, 0)) == ASHIFT
4958 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4959 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4960 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4961 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4962 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4963 && (num_sign_bit_copies (f, GET_MODE (f))
4964 > (unsigned int)
4965 (GET_MODE_BITSIZE (mode)
4966 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4967 {
4968 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4969 extend_op = SIGN_EXTEND;
4970 m = GET_MODE (XEXP (t, 0));
4971 }
4972 else if (GET_CODE (t) == SIGN_EXTEND
4973 && (GET_CODE (XEXP (t, 0)) == PLUS
4974 || GET_CODE (XEXP (t, 0)) == IOR
4975 || GET_CODE (XEXP (t, 0)) == XOR)
4976 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4977 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4978 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4979 && (num_sign_bit_copies (f, GET_MODE (f))
4980 > (unsigned int)
4981 (GET_MODE_BITSIZE (mode)
4982 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4983 {
4984 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4985 extend_op = SIGN_EXTEND;
4986 m = GET_MODE (XEXP (t, 0));
4987 }
4988 else if (GET_CODE (t) == ZERO_EXTEND
4989 && (GET_CODE (XEXP (t, 0)) == PLUS
4990 || GET_CODE (XEXP (t, 0)) == MINUS
4991 || GET_CODE (XEXP (t, 0)) == IOR
4992 || GET_CODE (XEXP (t, 0)) == XOR
4993 || GET_CODE (XEXP (t, 0)) == ASHIFT
4994 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4995 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4996 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4997 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4998 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4999 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5000 && ((nonzero_bits (f, GET_MODE (f))
5001 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5002 == 0))
5003 {
5004 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5005 extend_op = ZERO_EXTEND;
5006 m = GET_MODE (XEXP (t, 0));
5007 }
5008 else if (GET_CODE (t) == ZERO_EXTEND
5009 && (GET_CODE (XEXP (t, 0)) == PLUS
5010 || GET_CODE (XEXP (t, 0)) == IOR
5011 || GET_CODE (XEXP (t, 0)) == XOR)
5012 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5013 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5014 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5015 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5016 && ((nonzero_bits (f, GET_MODE (f))
5017 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5018 == 0))
5019 {
5020 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5021 extend_op = ZERO_EXTEND;
5022 m = GET_MODE (XEXP (t, 0));
5023 }
5024
5025 if (z)
5026 {
5027 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5028 pc_rtx, pc_rtx, 0, 0);
5029 temp = gen_binary (MULT, m, temp,
5030 gen_binary (MULT, m, c1, const_true_rtx));
5031 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5032 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5033
5034 if (extend_op != UNKNOWN)
5035 temp = simplify_gen_unary (extend_op, mode, temp, m);
5036
5037 return temp;
5038 }
5039 }
5040
5041 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5042 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5043 negation of a single bit, we can convert this operation to a shift. We
5044 can actually do this more generally, but it doesn't seem worth it. */
5045
5046 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5047 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5048 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5049 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5050 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5051 == GET_MODE_BITSIZE (mode))
5052 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5053 return
5054 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5055 gen_lowpart (mode, XEXP (cond, 0)), i);
5056
5057 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5058 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5059 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5060 && GET_MODE (XEXP (cond, 0)) == mode
5061 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5062 == nonzero_bits (XEXP (cond, 0), mode)
5063 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5064 return XEXP (cond, 0);
5065
5066 return x;
5067 }
5068 \f
5069 /* Simplify X, a SET expression. Return the new expression. */
5070
5071 static rtx
5072 simplify_set (rtx x)
5073 {
5074 rtx src = SET_SRC (x);
5075 rtx dest = SET_DEST (x);
5076 enum machine_mode mode
5077 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5078 rtx other_insn;
5079 rtx *cc_use;
5080
5081 /* (set (pc) (return)) gets written as (return). */
5082 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5083 return src;
5084
5085 /* Now that we know for sure which bits of SRC we are using, see if we can
5086 simplify the expression for the object knowing that we only need the
5087 low-order bits. */
5088
5089 if (GET_MODE_CLASS (mode) == MODE_INT
5090 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5091 {
5092 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5093 SUBST (SET_SRC (x), src);
5094 }
5095
5096 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5097 the comparison result and try to simplify it unless we already have used
5098 undobuf.other_insn. */
5099 if ((GET_MODE_CLASS (mode) == MODE_CC
5100 || GET_CODE (src) == COMPARE
5101 || CC0_P (dest))
5102 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5103 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5104 && COMPARISON_P (*cc_use)
5105 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5106 {
5107 enum rtx_code old_code = GET_CODE (*cc_use);
5108 enum rtx_code new_code;
5109 rtx op0, op1, tmp;
5110 int other_changed = 0;
5111 enum machine_mode compare_mode = GET_MODE (dest);
5112
5113 if (GET_CODE (src) == COMPARE)
5114 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5115 else
5116 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5117
5118 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5119 op0, op1);
5120 if (!tmp)
5121 new_code = old_code;
5122 else if (!CONSTANT_P (tmp))
5123 {
5124 new_code = GET_CODE (tmp);
5125 op0 = XEXP (tmp, 0);
5126 op1 = XEXP (tmp, 1);
5127 }
5128 else
5129 {
5130 rtx pat = PATTERN (other_insn);
5131 undobuf.other_insn = other_insn;
5132 SUBST (*cc_use, tmp);
5133
5134 /* Attempt to simplify CC user. */
5135 if (GET_CODE (pat) == SET)
5136 {
5137 rtx new = simplify_rtx (SET_SRC (pat));
5138 if (new != NULL_RTX)
5139 SUBST (SET_SRC (pat), new);
5140 }
5141
5142 /* Convert X into a no-op move. */
5143 SUBST (SET_DEST (x), pc_rtx);
5144 SUBST (SET_SRC (x), pc_rtx);
5145 return x;
5146 }
5147
5148 /* Simplify our comparison, if possible. */
5149 new_code = simplify_comparison (new_code, &op0, &op1);
5150
5151 #ifdef SELECT_CC_MODE
5152 /* If this machine has CC modes other than CCmode, check to see if we
5153 need to use a different CC mode here. */
5154 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5155 compare_mode = GET_MODE (op0);
5156 else
5157 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5158
5159 #ifndef HAVE_cc0
5160 /* If the mode changed, we have to change SET_DEST, the mode in the
5161 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5162 a hard register, just build new versions with the proper mode. If it
5163 is a pseudo, we lose unless it is only time we set the pseudo, in
5164 which case we can safely change its mode. */
5165 if (compare_mode != GET_MODE (dest))
5166 {
5167 unsigned int regno = REGNO (dest);
5168 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5169
5170 if (regno < FIRST_PSEUDO_REGISTER
5171 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5172 {
5173 if (regno >= FIRST_PSEUDO_REGISTER)
5174 SUBST (regno_reg_rtx[regno], new_dest);
5175
5176 SUBST (SET_DEST (x), new_dest);
5177 SUBST (XEXP (*cc_use, 0), new_dest);
5178 other_changed = 1;
5179
5180 dest = new_dest;
5181 }
5182 }
5183 #endif /* cc0 */
5184 #endif /* SELECT_CC_MODE */
5185
5186 /* If the code changed, we have to build a new comparison in
5187 undobuf.other_insn. */
5188 if (new_code != old_code)
5189 {
5190 int other_changed_previously = other_changed;
5191 unsigned HOST_WIDE_INT mask;
5192
5193 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5194 dest, const0_rtx));
5195 other_changed = 1;
5196
5197 /* If the only change we made was to change an EQ into an NE or
5198 vice versa, OP0 has only one bit that might be nonzero, and OP1
5199 is zero, check if changing the user of the condition code will
5200 produce a valid insn. If it won't, we can keep the original code
5201 in that insn by surrounding our operation with an XOR. */
5202
5203 if (((old_code == NE && new_code == EQ)
5204 || (old_code == EQ && new_code == NE))
5205 && ! other_changed_previously && op1 == const0_rtx
5206 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5207 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5208 {
5209 rtx pat = PATTERN (other_insn), note = 0;
5210
5211 if ((recog_for_combine (&pat, other_insn, &note) < 0
5212 && ! check_asm_operands (pat)))
5213 {
5214 PUT_CODE (*cc_use, old_code);
5215 other_changed = 0;
5216
5217 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5218 }
5219 }
5220 }
5221
5222 if (other_changed)
5223 undobuf.other_insn = other_insn;
5224
5225 #ifdef HAVE_cc0
5226 /* If we are now comparing against zero, change our source if
5227 needed. If we do not use cc0, we always have a COMPARE. */
5228 if (op1 == const0_rtx && dest == cc0_rtx)
5229 {
5230 SUBST (SET_SRC (x), op0);
5231 src = op0;
5232 }
5233 else
5234 #endif
5235
5236 /* Otherwise, if we didn't previously have a COMPARE in the
5237 correct mode, we need one. */
5238 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5239 {
5240 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5241 src = SET_SRC (x);
5242 }
5243 else
5244 {
5245 /* Otherwise, update the COMPARE if needed. */
5246 SUBST (XEXP (src, 0), op0);
5247 SUBST (XEXP (src, 1), op1);
5248 }
5249 }
5250 else
5251 {
5252 /* Get SET_SRC in a form where we have placed back any
5253 compound expressions. Then do the checks below. */
5254 src = make_compound_operation (src, SET);
5255 SUBST (SET_SRC (x), src);
5256 }
5257
5258 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5259 and X being a REG or (subreg (reg)), we may be able to convert this to
5260 (set (subreg:m2 x) (op)).
5261
5262 We can always do this if M1 is narrower than M2 because that means that
5263 we only care about the low bits of the result.
5264
5265 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5266 perform a narrower operation than requested since the high-order bits will
5267 be undefined. On machine where it is defined, this transformation is safe
5268 as long as M1 and M2 have the same number of words. */
5269
5270 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5271 && !OBJECT_P (SUBREG_REG (src))
5272 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5273 / UNITS_PER_WORD)
5274 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5275 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5276 #ifndef WORD_REGISTER_OPERATIONS
5277 && (GET_MODE_SIZE (GET_MODE (src))
5278 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5279 #endif
5280 #ifdef CANNOT_CHANGE_MODE_CLASS
5281 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5282 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5283 GET_MODE (SUBREG_REG (src)),
5284 GET_MODE (src)))
5285 #endif
5286 && (REG_P (dest)
5287 || (GET_CODE (dest) == SUBREG
5288 && REG_P (SUBREG_REG (dest)))))
5289 {
5290 SUBST (SET_DEST (x),
5291 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5292 dest));
5293 SUBST (SET_SRC (x), SUBREG_REG (src));
5294
5295 src = SET_SRC (x), dest = SET_DEST (x);
5296 }
5297
5298 #ifdef HAVE_cc0
5299 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5300 in SRC. */
5301 if (dest == cc0_rtx
5302 && GET_CODE (src) == SUBREG
5303 && subreg_lowpart_p (src)
5304 && (GET_MODE_BITSIZE (GET_MODE (src))
5305 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5306 {
5307 rtx inner = SUBREG_REG (src);
5308 enum machine_mode inner_mode = GET_MODE (inner);
5309
5310 /* Here we make sure that we don't have a sign bit on. */
5311 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5312 && (nonzero_bits (inner, inner_mode)
5313 < ((unsigned HOST_WIDE_INT) 1
5314 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5315 {
5316 SUBST (SET_SRC (x), inner);
5317 src = SET_SRC (x);
5318 }
5319 }
5320 #endif
5321
5322 #ifdef LOAD_EXTEND_OP
5323 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5324 would require a paradoxical subreg. Replace the subreg with a
5325 zero_extend to avoid the reload that would otherwise be required. */
5326
5327 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5328 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5329 && SUBREG_BYTE (src) == 0
5330 && (GET_MODE_SIZE (GET_MODE (src))
5331 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5332 && MEM_P (SUBREG_REG (src)))
5333 {
5334 SUBST (SET_SRC (x),
5335 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5336 GET_MODE (src), SUBREG_REG (src)));
5337
5338 src = SET_SRC (x);
5339 }
5340 #endif
5341
5342 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5343 are comparing an item known to be 0 or -1 against 0, use a logical
5344 operation instead. Check for one of the arms being an IOR of the other
5345 arm with some value. We compute three terms to be IOR'ed together. In
5346 practice, at most two will be nonzero. Then we do the IOR's. */
5347
5348 if (GET_CODE (dest) != PC
5349 && GET_CODE (src) == IF_THEN_ELSE
5350 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5351 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5352 && XEXP (XEXP (src, 0), 1) == const0_rtx
5353 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5354 #ifdef HAVE_conditional_move
5355 && ! can_conditionally_move_p (GET_MODE (src))
5356 #endif
5357 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5358 GET_MODE (XEXP (XEXP (src, 0), 0)))
5359 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5360 && ! side_effects_p (src))
5361 {
5362 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5363 ? XEXP (src, 1) : XEXP (src, 2));
5364 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5365 ? XEXP (src, 2) : XEXP (src, 1));
5366 rtx term1 = const0_rtx, term2, term3;
5367
5368 if (GET_CODE (true_rtx) == IOR
5369 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5370 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5371 else if (GET_CODE (true_rtx) == IOR
5372 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5373 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5374 else if (GET_CODE (false_rtx) == IOR
5375 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5376 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5377 else if (GET_CODE (false_rtx) == IOR
5378 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5379 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5380
5381 term2 = gen_binary (AND, GET_MODE (src),
5382 XEXP (XEXP (src, 0), 0), true_rtx);
5383 term3 = gen_binary (AND, GET_MODE (src),
5384 simplify_gen_unary (NOT, GET_MODE (src),
5385 XEXP (XEXP (src, 0), 0),
5386 GET_MODE (src)),
5387 false_rtx);
5388
5389 SUBST (SET_SRC (x),
5390 gen_binary (IOR, GET_MODE (src),
5391 gen_binary (IOR, GET_MODE (src), term1, term2),
5392 term3));
5393
5394 src = SET_SRC (x);
5395 }
5396
5397 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5398 whole thing fail. */
5399 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5400 return src;
5401 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5402 return dest;
5403 else
5404 /* Convert this into a field assignment operation, if possible. */
5405 return make_field_assignment (x);
5406 }
5407 \f
5408 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5409 result. */
5410
5411 static rtx
5412 simplify_logical (rtx x)
5413 {
5414 enum machine_mode mode = GET_MODE (x);
5415 rtx op0 = XEXP (x, 0);
5416 rtx op1 = XEXP (x, 1);
5417 rtx reversed;
5418
5419 switch (GET_CODE (x))
5420 {
5421 case AND:
5422 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5423 insn (and may simplify more). */
5424 if (GET_CODE (op0) == XOR
5425 && rtx_equal_p (XEXP (op0, 0), op1)
5426 && ! side_effects_p (op1))
5427 x = gen_binary (AND, mode,
5428 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5429 op1);
5430
5431 if (GET_CODE (op0) == XOR
5432 && rtx_equal_p (XEXP (op0, 1), op1)
5433 && ! side_effects_p (op1))
5434 x = gen_binary (AND, mode,
5435 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5436 op1);
5437
5438 /* Similarly for (~(A ^ B)) & A. */
5439 if (GET_CODE (op0) == NOT
5440 && GET_CODE (XEXP (op0, 0)) == XOR
5441 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5442 && ! side_effects_p (op1))
5443 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5444
5445 if (GET_CODE (op0) == NOT
5446 && GET_CODE (XEXP (op0, 0)) == XOR
5447 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5448 && ! side_effects_p (op1))
5449 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5450
5451 /* We can call simplify_and_const_int only if we don't lose
5452 any (sign) bits when converting INTVAL (op1) to
5453 "unsigned HOST_WIDE_INT". */
5454 if (GET_CODE (op1) == CONST_INT
5455 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5456 || INTVAL (op1) > 0))
5457 {
5458 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5459
5460 /* If we have (ior (and (X C1) C2)) and the next restart would be
5461 the last, simplify this by making C1 as small as possible
5462 and then exit. Only do this if C1 actually changes: for now
5463 this only saves memory but, should this transformation be
5464 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5465 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5466 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5467 && GET_CODE (op1) == CONST_INT
5468 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5469 return gen_binary (IOR, mode,
5470 gen_binary (AND, mode, XEXP (op0, 0),
5471 GEN_INT (INTVAL (XEXP (op0, 1))
5472 & ~INTVAL (op1))), op1);
5473
5474 if (GET_CODE (x) != AND)
5475 return x;
5476
5477 op0 = XEXP (x, 0);
5478 op1 = XEXP (x, 1);
5479 }
5480
5481 /* Convert (A | B) & A to A. */
5482 if (GET_CODE (op0) == IOR
5483 && (rtx_equal_p (XEXP (op0, 0), op1)
5484 || rtx_equal_p (XEXP (op0, 1), op1))
5485 && ! side_effects_p (XEXP (op0, 0))
5486 && ! side_effects_p (XEXP (op0, 1)))
5487 return op1;
5488
5489 /* In the following group of tests (and those in case IOR below),
5490 we start with some combination of logical operations and apply
5491 the distributive law followed by the inverse distributive law.
5492 Most of the time, this results in no change. However, if some of
5493 the operands are the same or inverses of each other, simplifications
5494 will result.
5495
5496 For example, (and (ior A B) (not B)) can occur as the result of
5497 expanding a bit field assignment. When we apply the distributive
5498 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5499 which then simplifies to (and (A (not B))).
5500
5501 If we have (and (ior A B) C), apply the distributive law and then
5502 the inverse distributive law to see if things simplify. */
5503
5504 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5505 {
5506 x = apply_distributive_law
5507 (gen_binary (GET_CODE (op0), mode,
5508 gen_binary (AND, mode, XEXP (op0, 0), op1),
5509 gen_binary (AND, mode, XEXP (op0, 1),
5510 copy_rtx (op1))));
5511 if (GET_CODE (x) != AND)
5512 return x;
5513 }
5514
5515 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5516 return apply_distributive_law
5517 (gen_binary (GET_CODE (op1), mode,
5518 gen_binary (AND, mode, XEXP (op1, 0), op0),
5519 gen_binary (AND, mode, XEXP (op1, 1),
5520 copy_rtx (op0))));
5521
5522 /* Similarly, taking advantage of the fact that
5523 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5524
5525 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5526 return apply_distributive_law
5527 (gen_binary (XOR, mode,
5528 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5529 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5530 XEXP (op1, 1))));
5531
5532 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5533 return apply_distributive_law
5534 (gen_binary (XOR, mode,
5535 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5536 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5537 break;
5538
5539 case IOR:
5540 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5541 if (GET_CODE (op1) == CONST_INT
5542 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5543 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5544 return op1;
5545
5546 /* Convert (A & B) | A to A. */
5547 if (GET_CODE (op0) == AND
5548 && (rtx_equal_p (XEXP (op0, 0), op1)
5549 || rtx_equal_p (XEXP (op0, 1), op1))
5550 && ! side_effects_p (XEXP (op0, 0))
5551 && ! side_effects_p (XEXP (op0, 1)))
5552 return op1;
5553
5554 /* If we have (ior (and A B) C), apply the distributive law and then
5555 the inverse distributive law to see if things simplify. */
5556
5557 if (GET_CODE (op0) == AND)
5558 {
5559 x = apply_distributive_law
5560 (gen_binary (AND, mode,
5561 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5562 gen_binary (IOR, mode, XEXP (op0, 1),
5563 copy_rtx (op1))));
5564
5565 if (GET_CODE (x) != IOR)
5566 return x;
5567 }
5568
5569 if (GET_CODE (op1) == AND)
5570 {
5571 x = apply_distributive_law
5572 (gen_binary (AND, mode,
5573 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5574 gen_binary (IOR, mode, XEXP (op1, 1),
5575 copy_rtx (op0))));
5576
5577 if (GET_CODE (x) != IOR)
5578 return x;
5579 }
5580
5581 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5582 mode size to (rotate A CX). */
5583
5584 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5585 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5586 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5587 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5588 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5589 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5590 == GET_MODE_BITSIZE (mode)))
5591 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5592 (GET_CODE (op0) == ASHIFT
5593 ? XEXP (op0, 1) : XEXP (op1, 1)));
5594
5595 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5596 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5597 does not affect any of the bits in OP1, it can really be done
5598 as a PLUS and we can associate. We do this by seeing if OP1
5599 can be safely shifted left C bits. */
5600 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5601 && GET_CODE (XEXP (op0, 0)) == PLUS
5602 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5603 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5604 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5605 {
5606 int count = INTVAL (XEXP (op0, 1));
5607 HOST_WIDE_INT mask = INTVAL (op1) << count;
5608
5609 if (mask >> count == INTVAL (op1)
5610 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5611 {
5612 SUBST (XEXP (XEXP (op0, 0), 1),
5613 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5614 return op0;
5615 }
5616 }
5617 break;
5618
5619 case XOR:
5620 /* If we are XORing two things that have no bits in common,
5621 convert them into an IOR. This helps to detect rotation encoded
5622 using those methods and possibly other simplifications. */
5623
5624 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5625 && (nonzero_bits (op0, mode)
5626 & nonzero_bits (op1, mode)) == 0)
5627 return (gen_binary (IOR, mode, op0, op1));
5628
5629 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5630 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5631 (NOT y). */
5632 {
5633 int num_negated = 0;
5634
5635 if (GET_CODE (op0) == NOT)
5636 num_negated++, op0 = XEXP (op0, 0);
5637 if (GET_CODE (op1) == NOT)
5638 num_negated++, op1 = XEXP (op1, 0);
5639
5640 if (num_negated == 2)
5641 {
5642 SUBST (XEXP (x, 0), op0);
5643 SUBST (XEXP (x, 1), op1);
5644 }
5645 else if (num_negated == 1)
5646 return
5647 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5648 mode);
5649 }
5650
5651 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5652 correspond to a machine insn or result in further simplifications
5653 if B is a constant. */
5654
5655 if (GET_CODE (op0) == AND
5656 && rtx_equal_p (XEXP (op0, 1), op1)
5657 && ! side_effects_p (op1))
5658 return gen_binary (AND, mode,
5659 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5660 op1);
5661
5662 else if (GET_CODE (op0) == AND
5663 && rtx_equal_p (XEXP (op0, 0), op1)
5664 && ! side_effects_p (op1))
5665 return gen_binary (AND, mode,
5666 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5667 op1);
5668
5669 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5670 comparison if STORE_FLAG_VALUE is 1. */
5671 if (STORE_FLAG_VALUE == 1
5672 && op1 == const1_rtx
5673 && COMPARISON_P (op0)
5674 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5675 XEXP (op0, 1))))
5676 return reversed;
5677
5678 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5679 is (lt foo (const_int 0)), so we can perform the above
5680 simplification if STORE_FLAG_VALUE is 1. */
5681
5682 if (STORE_FLAG_VALUE == 1
5683 && op1 == const1_rtx
5684 && GET_CODE (op0) == LSHIFTRT
5685 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5686 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5687 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5688
5689 /* (xor (comparison foo bar) (const_int sign-bit))
5690 when STORE_FLAG_VALUE is the sign bit. */
5691 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5692 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5693 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5694 && op1 == const_true_rtx
5695 && COMPARISON_P (op0)
5696 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5697 XEXP (op0, 1))))
5698 return reversed;
5699
5700 break;
5701
5702 default:
5703 gcc_unreachable ();
5704 }
5705
5706 return x;
5707 }
5708 \f
5709 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5710 operations" because they can be replaced with two more basic operations.
5711 ZERO_EXTEND is also considered "compound" because it can be replaced with
5712 an AND operation, which is simpler, though only one operation.
5713
5714 The function expand_compound_operation is called with an rtx expression
5715 and will convert it to the appropriate shifts and AND operations,
5716 simplifying at each stage.
5717
5718 The function make_compound_operation is called to convert an expression
5719 consisting of shifts and ANDs into the equivalent compound expression.
5720 It is the inverse of this function, loosely speaking. */
5721
5722 static rtx
5723 expand_compound_operation (rtx x)
5724 {
5725 unsigned HOST_WIDE_INT pos = 0, len;
5726 int unsignedp = 0;
5727 unsigned int modewidth;
5728 rtx tem;
5729
5730 switch (GET_CODE (x))
5731 {
5732 case ZERO_EXTEND:
5733 unsignedp = 1;
5734 case SIGN_EXTEND:
5735 /* We can't necessarily use a const_int for a multiword mode;
5736 it depends on implicitly extending the value.
5737 Since we don't know the right way to extend it,
5738 we can't tell whether the implicit way is right.
5739
5740 Even for a mode that is no wider than a const_int,
5741 we can't win, because we need to sign extend one of its bits through
5742 the rest of it, and we don't know which bit. */
5743 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5744 return x;
5745
5746 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5747 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5748 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5749 reloaded. If not for that, MEM's would very rarely be safe.
5750
5751 Reject MODEs bigger than a word, because we might not be able
5752 to reference a two-register group starting with an arbitrary register
5753 (and currently gen_lowpart might crash for a SUBREG). */
5754
5755 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5756 return x;
5757
5758 /* Reject MODEs that aren't scalar integers because turning vector
5759 or complex modes into shifts causes problems. */
5760
5761 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5762 return x;
5763
5764 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5765 /* If the inner object has VOIDmode (the only way this can happen
5766 is if it is an ASM_OPERANDS), we can't do anything since we don't
5767 know how much masking to do. */
5768 if (len == 0)
5769 return x;
5770
5771 break;
5772
5773 case ZERO_EXTRACT:
5774 unsignedp = 1;
5775 case SIGN_EXTRACT:
5776 /* If the operand is a CLOBBER, just return it. */
5777 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5778 return XEXP (x, 0);
5779
5780 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5781 || GET_CODE (XEXP (x, 2)) != CONST_INT
5782 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5783 return x;
5784
5785 /* Reject MODEs that aren't scalar integers because turning vector
5786 or complex modes into shifts causes problems. */
5787
5788 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5789 return x;
5790
5791 len = INTVAL (XEXP (x, 1));
5792 pos = INTVAL (XEXP (x, 2));
5793
5794 /* If this goes outside the object being extracted, replace the object
5795 with a (use (mem ...)) construct that only combine understands
5796 and is used only for this purpose. */
5797 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5798 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5799
5800 if (BITS_BIG_ENDIAN)
5801 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5802
5803 break;
5804
5805 default:
5806 return x;
5807 }
5808 /* Convert sign extension to zero extension, if we know that the high
5809 bit is not set, as this is easier to optimize. It will be converted
5810 back to cheaper alternative in make_extraction. */
5811 if (GET_CODE (x) == SIGN_EXTEND
5812 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5813 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5814 & ~(((unsigned HOST_WIDE_INT)
5815 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5816 >> 1))
5817 == 0)))
5818 {
5819 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5820 rtx temp2 = expand_compound_operation (temp);
5821
5822 /* Make sure this is a profitable operation. */
5823 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5824 return temp2;
5825 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5826 return temp;
5827 else
5828 return x;
5829 }
5830
5831 /* We can optimize some special cases of ZERO_EXTEND. */
5832 if (GET_CODE (x) == ZERO_EXTEND)
5833 {
5834 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5835 know that the last value didn't have any inappropriate bits
5836 set. */
5837 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5838 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5839 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5840 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5841 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5842 return XEXP (XEXP (x, 0), 0);
5843
5844 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5845 if (GET_CODE (XEXP (x, 0)) == SUBREG
5846 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5847 && subreg_lowpart_p (XEXP (x, 0))
5848 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5849 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5850 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5851 return SUBREG_REG (XEXP (x, 0));
5852
5853 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5854 is a comparison and STORE_FLAG_VALUE permits. This is like
5855 the first case, but it works even when GET_MODE (x) is larger
5856 than HOST_WIDE_INT. */
5857 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5858 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5859 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5860 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5861 <= HOST_BITS_PER_WIDE_INT)
5862 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5863 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5864 return XEXP (XEXP (x, 0), 0);
5865
5866 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5867 if (GET_CODE (XEXP (x, 0)) == SUBREG
5868 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5869 && subreg_lowpart_p (XEXP (x, 0))
5870 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5871 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5872 <= HOST_BITS_PER_WIDE_INT)
5873 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5874 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5875 return SUBREG_REG (XEXP (x, 0));
5876
5877 }
5878
5879 /* If we reach here, we want to return a pair of shifts. The inner
5880 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5881 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5882 logical depending on the value of UNSIGNEDP.
5883
5884 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5885 converted into an AND of a shift.
5886
5887 We must check for the case where the left shift would have a negative
5888 count. This can happen in a case like (x >> 31) & 255 on machines
5889 that can't shift by a constant. On those machines, we would first
5890 combine the shift with the AND to produce a variable-position
5891 extraction. Then the constant of 31 would be substituted in to produce
5892 a such a position. */
5893
5894 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5895 if (modewidth + len >= pos)
5896 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5897 GET_MODE (x),
5898 simplify_shift_const (NULL_RTX, ASHIFT,
5899 GET_MODE (x),
5900 XEXP (x, 0),
5901 modewidth - pos - len),
5902 modewidth - len);
5903
5904 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5905 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5906 simplify_shift_const (NULL_RTX, LSHIFTRT,
5907 GET_MODE (x),
5908 XEXP (x, 0), pos),
5909 ((HOST_WIDE_INT) 1 << len) - 1);
5910 else
5911 /* Any other cases we can't handle. */
5912 return x;
5913
5914 /* If we couldn't do this for some reason, return the original
5915 expression. */
5916 if (GET_CODE (tem) == CLOBBER)
5917 return x;
5918
5919 return tem;
5920 }
5921 \f
5922 /* X is a SET which contains an assignment of one object into
5923 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5924 or certain SUBREGS). If possible, convert it into a series of
5925 logical operations.
5926
5927 We half-heartedly support variable positions, but do not at all
5928 support variable lengths. */
5929
5930 static rtx
5931 expand_field_assignment (rtx x)
5932 {
5933 rtx inner;
5934 rtx pos; /* Always counts from low bit. */
5935 int len;
5936 rtx mask;
5937 enum machine_mode compute_mode;
5938
5939 /* Loop until we find something we can't simplify. */
5940 while (1)
5941 {
5942 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5943 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5944 {
5945 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5946 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5947 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5948 }
5949 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5950 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5951 {
5952 inner = XEXP (SET_DEST (x), 0);
5953 len = INTVAL (XEXP (SET_DEST (x), 1));
5954 pos = XEXP (SET_DEST (x), 2);
5955
5956 /* If the position is constant and spans the width of INNER,
5957 surround INNER with a USE to indicate this. */
5958 if (GET_CODE (pos) == CONST_INT
5959 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5960 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5961
5962 if (BITS_BIG_ENDIAN)
5963 {
5964 if (GET_CODE (pos) == CONST_INT)
5965 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5966 - INTVAL (pos));
5967 else if (GET_CODE (pos) == MINUS
5968 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5969 && (INTVAL (XEXP (pos, 1))
5970 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5971 /* If position is ADJUST - X, new position is X. */
5972 pos = XEXP (pos, 0);
5973 else
5974 pos = gen_binary (MINUS, GET_MODE (pos),
5975 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5976 - len),
5977 pos);
5978 }
5979 }
5980
5981 /* A SUBREG between two modes that occupy the same numbers of words
5982 can be done by moving the SUBREG to the source. */
5983 else if (GET_CODE (SET_DEST (x)) == SUBREG
5984 /* We need SUBREGs to compute nonzero_bits properly. */
5985 && nonzero_sign_valid
5986 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5987 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5988 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5989 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5990 {
5991 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5992 gen_lowpart
5993 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5994 SET_SRC (x)));
5995 continue;
5996 }
5997 else
5998 break;
5999
6000 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6001 inner = SUBREG_REG (inner);
6002
6003 compute_mode = GET_MODE (inner);
6004
6005 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6006 if (! SCALAR_INT_MODE_P (compute_mode))
6007 {
6008 enum machine_mode imode;
6009
6010 /* Don't do anything for vector or complex integral types. */
6011 if (! FLOAT_MODE_P (compute_mode))
6012 break;
6013
6014 /* Try to find an integral mode to pun with. */
6015 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6016 if (imode == BLKmode)
6017 break;
6018
6019 compute_mode = imode;
6020 inner = gen_lowpart (imode, inner);
6021 }
6022
6023 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6024 if (len < HOST_BITS_PER_WIDE_INT)
6025 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6026 else
6027 break;
6028
6029 /* Now compute the equivalent expression. Make a copy of INNER
6030 for the SET_DEST in case it is a MEM into which we will substitute;
6031 we don't want shared RTL in that case. */
6032 x = gen_rtx_SET
6033 (VOIDmode, copy_rtx (inner),
6034 gen_binary (IOR, compute_mode,
6035 gen_binary (AND, compute_mode,
6036 simplify_gen_unary (NOT, compute_mode,
6037 gen_binary (ASHIFT,
6038 compute_mode,
6039 mask, pos),
6040 compute_mode),
6041 inner),
6042 gen_binary (ASHIFT, compute_mode,
6043 gen_binary (AND, compute_mode,
6044 gen_lowpart
6045 (compute_mode, SET_SRC (x)),
6046 mask),
6047 pos)));
6048 }
6049
6050 return x;
6051 }
6052 \f
6053 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6054 it is an RTX that represents a variable starting position; otherwise,
6055 POS is the (constant) starting bit position (counted from the LSB).
6056
6057 INNER may be a USE. This will occur when we started with a bitfield
6058 that went outside the boundary of the object in memory, which is
6059 allowed on most machines. To isolate this case, we produce a USE
6060 whose mode is wide enough and surround the MEM with it. The only
6061 code that understands the USE is this routine. If it is not removed,
6062 it will cause the resulting insn not to match.
6063
6064 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6065 signed reference.
6066
6067 IN_DEST is nonzero if this is a reference in the destination of a
6068 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6069 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6070 be used.
6071
6072 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6073 ZERO_EXTRACT should be built even for bits starting at bit 0.
6074
6075 MODE is the desired mode of the result (if IN_DEST == 0).
6076
6077 The result is an RTX for the extraction or NULL_RTX if the target
6078 can't handle it. */
6079
6080 static rtx
6081 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6082 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6083 int in_dest, int in_compare)
6084 {
6085 /* This mode describes the size of the storage area
6086 to fetch the overall value from. Within that, we
6087 ignore the POS lowest bits, etc. */
6088 enum machine_mode is_mode = GET_MODE (inner);
6089 enum machine_mode inner_mode;
6090 enum machine_mode wanted_inner_mode = byte_mode;
6091 enum machine_mode wanted_inner_reg_mode = word_mode;
6092 enum machine_mode pos_mode = word_mode;
6093 enum machine_mode extraction_mode = word_mode;
6094 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6095 int spans_byte = 0;
6096 rtx new = 0;
6097 rtx orig_pos_rtx = pos_rtx;
6098 HOST_WIDE_INT orig_pos;
6099
6100 /* Get some information about INNER and get the innermost object. */
6101 if (GET_CODE (inner) == USE)
6102 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6103 /* We don't need to adjust the position because we set up the USE
6104 to pretend that it was a full-word object. */
6105 spans_byte = 1, inner = XEXP (inner, 0);
6106 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6107 {
6108 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6109 consider just the QI as the memory to extract from.
6110 The subreg adds or removes high bits; its mode is
6111 irrelevant to the meaning of this extraction,
6112 since POS and LEN count from the lsb. */
6113 if (MEM_P (SUBREG_REG (inner)))
6114 is_mode = GET_MODE (SUBREG_REG (inner));
6115 inner = SUBREG_REG (inner);
6116 }
6117 else if (GET_CODE (inner) == ASHIFT
6118 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6119 && pos_rtx == 0 && pos == 0
6120 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6121 {
6122 /* We're extracting the least significant bits of an rtx
6123 (ashift X (const_int C)), where LEN > C. Extract the
6124 least significant (LEN - C) bits of X, giving an rtx
6125 whose mode is MODE, then shift it left C times. */
6126 new = make_extraction (mode, XEXP (inner, 0),
6127 0, 0, len - INTVAL (XEXP (inner, 1)),
6128 unsignedp, in_dest, in_compare);
6129 if (new != 0)
6130 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6131 }
6132
6133 inner_mode = GET_MODE (inner);
6134
6135 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6136 pos = INTVAL (pos_rtx), pos_rtx = 0;
6137
6138 /* See if this can be done without an extraction. We never can if the
6139 width of the field is not the same as that of some integer mode. For
6140 registers, we can only avoid the extraction if the position is at the
6141 low-order bit and this is either not in the destination or we have the
6142 appropriate STRICT_LOW_PART operation available.
6143
6144 For MEM, we can avoid an extract if the field starts on an appropriate
6145 boundary and we can change the mode of the memory reference. However,
6146 we cannot directly access the MEM if we have a USE and the underlying
6147 MEM is not TMODE. This combination means that MEM was being used in a
6148 context where bits outside its mode were being referenced; that is only
6149 valid in bit-field insns. */
6150
6151 if (tmode != BLKmode
6152 && ! (spans_byte && inner_mode != tmode)
6153 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6154 && !MEM_P (inner)
6155 && (! in_dest
6156 || (REG_P (inner)
6157 && have_insn_for (STRICT_LOW_PART, tmode))))
6158 || (MEM_P (inner) && pos_rtx == 0
6159 && (pos
6160 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6161 : BITS_PER_UNIT)) == 0
6162 /* We can't do this if we are widening INNER_MODE (it
6163 may not be aligned, for one thing). */
6164 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6165 && (inner_mode == tmode
6166 || (! mode_dependent_address_p (XEXP (inner, 0))
6167 && ! MEM_VOLATILE_P (inner))))))
6168 {
6169 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6170 field. If the original and current mode are the same, we need not
6171 adjust the offset. Otherwise, we do if bytes big endian.
6172
6173 If INNER is not a MEM, get a piece consisting of just the field
6174 of interest (in this case POS % BITS_PER_WORD must be 0). */
6175
6176 if (MEM_P (inner))
6177 {
6178 HOST_WIDE_INT offset;
6179
6180 /* POS counts from lsb, but make OFFSET count in memory order. */
6181 if (BYTES_BIG_ENDIAN)
6182 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6183 else
6184 offset = pos / BITS_PER_UNIT;
6185
6186 new = adjust_address_nv (inner, tmode, offset);
6187 }
6188 else if (REG_P (inner))
6189 {
6190 if (tmode != inner_mode)
6191 {
6192 /* We can't call gen_lowpart in a DEST since we
6193 always want a SUBREG (see below) and it would sometimes
6194 return a new hard register. */
6195 if (pos || in_dest)
6196 {
6197 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6198
6199 if (WORDS_BIG_ENDIAN
6200 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6201 final_word = ((GET_MODE_SIZE (inner_mode)
6202 - GET_MODE_SIZE (tmode))
6203 / UNITS_PER_WORD) - final_word;
6204
6205 final_word *= UNITS_PER_WORD;
6206 if (BYTES_BIG_ENDIAN &&
6207 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6208 final_word += (GET_MODE_SIZE (inner_mode)
6209 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6210
6211 /* Avoid creating invalid subregs, for example when
6212 simplifying (x>>32)&255. */
6213 if (final_word >= GET_MODE_SIZE (inner_mode))
6214 return NULL_RTX;
6215
6216 new = gen_rtx_SUBREG (tmode, inner, final_word);
6217 }
6218 else
6219 new = gen_lowpart (tmode, inner);
6220 }
6221 else
6222 new = inner;
6223 }
6224 else
6225 new = force_to_mode (inner, tmode,
6226 len >= HOST_BITS_PER_WIDE_INT
6227 ? ~(unsigned HOST_WIDE_INT) 0
6228 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6229 NULL_RTX, 0);
6230
6231 /* If this extraction is going into the destination of a SET,
6232 make a STRICT_LOW_PART unless we made a MEM. */
6233
6234 if (in_dest)
6235 return (MEM_P (new) ? new
6236 : (GET_CODE (new) != SUBREG
6237 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6238 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6239
6240 if (mode == tmode)
6241 return new;
6242
6243 if (GET_CODE (new) == CONST_INT)
6244 return gen_int_mode (INTVAL (new), mode);
6245
6246 /* If we know that no extraneous bits are set, and that the high
6247 bit is not set, convert the extraction to the cheaper of
6248 sign and zero extension, that are equivalent in these cases. */
6249 if (flag_expensive_optimizations
6250 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6251 && ((nonzero_bits (new, tmode)
6252 & ~(((unsigned HOST_WIDE_INT)
6253 GET_MODE_MASK (tmode))
6254 >> 1))
6255 == 0)))
6256 {
6257 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6258 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6259
6260 /* Prefer ZERO_EXTENSION, since it gives more information to
6261 backends. */
6262 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6263 return temp;
6264 return temp1;
6265 }
6266
6267 /* Otherwise, sign- or zero-extend unless we already are in the
6268 proper mode. */
6269
6270 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6271 mode, new));
6272 }
6273
6274 /* Unless this is a COMPARE or we have a funny memory reference,
6275 don't do anything with zero-extending field extracts starting at
6276 the low-order bit since they are simple AND operations. */
6277 if (pos_rtx == 0 && pos == 0 && ! in_dest
6278 && ! in_compare && ! spans_byte && unsignedp)
6279 return 0;
6280
6281 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6282 we would be spanning bytes or if the position is not a constant and the
6283 length is not 1. In all other cases, we would only be going outside
6284 our object in cases when an original shift would have been
6285 undefined. */
6286 if (! spans_byte && MEM_P (inner)
6287 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6288 || (pos_rtx != 0 && len != 1)))
6289 return 0;
6290
6291 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6292 and the mode for the result. */
6293 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6294 {
6295 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6296 pos_mode = mode_for_extraction (EP_insv, 2);
6297 extraction_mode = mode_for_extraction (EP_insv, 3);
6298 }
6299
6300 if (! in_dest && unsignedp
6301 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6302 {
6303 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6304 pos_mode = mode_for_extraction (EP_extzv, 3);
6305 extraction_mode = mode_for_extraction (EP_extzv, 0);
6306 }
6307
6308 if (! in_dest && ! unsignedp
6309 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6310 {
6311 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6312 pos_mode = mode_for_extraction (EP_extv, 3);
6313 extraction_mode = mode_for_extraction (EP_extv, 0);
6314 }
6315
6316 /* Never narrow an object, since that might not be safe. */
6317
6318 if (mode != VOIDmode
6319 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6320 extraction_mode = mode;
6321
6322 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6323 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6324 pos_mode = GET_MODE (pos_rtx);
6325
6326 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6327 if we have to change the mode of memory and cannot, the desired mode is
6328 EXTRACTION_MODE. */
6329 if (!MEM_P (inner))
6330 wanted_inner_mode = wanted_inner_reg_mode;
6331 else if (inner_mode != wanted_inner_mode
6332 && (mode_dependent_address_p (XEXP (inner, 0))
6333 || MEM_VOLATILE_P (inner)))
6334 wanted_inner_mode = extraction_mode;
6335
6336 orig_pos = pos;
6337
6338 if (BITS_BIG_ENDIAN)
6339 {
6340 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6341 BITS_BIG_ENDIAN style. If position is constant, compute new
6342 position. Otherwise, build subtraction.
6343 Note that POS is relative to the mode of the original argument.
6344 If it's a MEM we need to recompute POS relative to that.
6345 However, if we're extracting from (or inserting into) a register,
6346 we want to recompute POS relative to wanted_inner_mode. */
6347 int width = (MEM_P (inner)
6348 ? GET_MODE_BITSIZE (is_mode)
6349 : GET_MODE_BITSIZE (wanted_inner_mode));
6350
6351 if (pos_rtx == 0)
6352 pos = width - len - pos;
6353 else
6354 pos_rtx
6355 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6356 /* POS may be less than 0 now, but we check for that below.
6357 Note that it can only be less than 0 if !MEM_P (inner). */
6358 }
6359
6360 /* If INNER has a wider mode, make it smaller. If this is a constant
6361 extract, try to adjust the byte to point to the byte containing
6362 the value. */
6363 if (wanted_inner_mode != VOIDmode
6364 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6365 && ((MEM_P (inner)
6366 && (inner_mode == wanted_inner_mode
6367 || (! mode_dependent_address_p (XEXP (inner, 0))
6368 && ! MEM_VOLATILE_P (inner))))))
6369 {
6370 int offset = 0;
6371
6372 /* The computations below will be correct if the machine is big
6373 endian in both bits and bytes or little endian in bits and bytes.
6374 If it is mixed, we must adjust. */
6375
6376 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6377 adjust OFFSET to compensate. */
6378 if (BYTES_BIG_ENDIAN
6379 && ! spans_byte
6380 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6381 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6382
6383 /* If this is a constant position, we can move to the desired byte. */
6384 if (pos_rtx == 0)
6385 {
6386 offset += pos / BITS_PER_UNIT;
6387 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6388 }
6389
6390 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6391 && ! spans_byte
6392 && is_mode != wanted_inner_mode)
6393 offset = (GET_MODE_SIZE (is_mode)
6394 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6395
6396 if (offset != 0 || inner_mode != wanted_inner_mode)
6397 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6398 }
6399
6400 /* If INNER is not memory, we can always get it into the proper mode. If we
6401 are changing its mode, POS must be a constant and smaller than the size
6402 of the new mode. */
6403 else if (!MEM_P (inner))
6404 {
6405 if (GET_MODE (inner) != wanted_inner_mode
6406 && (pos_rtx != 0
6407 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6408 return 0;
6409
6410 inner = force_to_mode (inner, wanted_inner_mode,
6411 pos_rtx
6412 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6413 ? ~(unsigned HOST_WIDE_INT) 0
6414 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6415 << orig_pos),
6416 NULL_RTX, 0);
6417 }
6418
6419 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6420 have to zero extend. Otherwise, we can just use a SUBREG. */
6421 if (pos_rtx != 0
6422 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6423 {
6424 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6425
6426 /* If we know that no extraneous bits are set, and that the high
6427 bit is not set, convert extraction to cheaper one - either
6428 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6429 cases. */
6430 if (flag_expensive_optimizations
6431 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6432 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6433 & ~(((unsigned HOST_WIDE_INT)
6434 GET_MODE_MASK (GET_MODE (pos_rtx)))
6435 >> 1))
6436 == 0)))
6437 {
6438 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6439
6440 /* Prefer ZERO_EXTENSION, since it gives more information to
6441 backends. */
6442 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6443 temp = temp1;
6444 }
6445 pos_rtx = temp;
6446 }
6447 else if (pos_rtx != 0
6448 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6449 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6450
6451 /* Make POS_RTX unless we already have it and it is correct. If we don't
6452 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6453 be a CONST_INT. */
6454 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6455 pos_rtx = orig_pos_rtx;
6456
6457 else if (pos_rtx == 0)
6458 pos_rtx = GEN_INT (pos);
6459
6460 /* Make the required operation. See if we can use existing rtx. */
6461 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6462 extraction_mode, inner, GEN_INT (len), pos_rtx);
6463 if (! in_dest)
6464 new = gen_lowpart (mode, new);
6465
6466 return new;
6467 }
6468 \f
6469 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6470 with any other operations in X. Return X without that shift if so. */
6471
6472 static rtx
6473 extract_left_shift (rtx x, int count)
6474 {
6475 enum rtx_code code = GET_CODE (x);
6476 enum machine_mode mode = GET_MODE (x);
6477 rtx tem;
6478
6479 switch (code)
6480 {
6481 case ASHIFT:
6482 /* This is the shift itself. If it is wide enough, we will return
6483 either the value being shifted if the shift count is equal to
6484 COUNT or a shift for the difference. */
6485 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6486 && INTVAL (XEXP (x, 1)) >= count)
6487 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6488 INTVAL (XEXP (x, 1)) - count);
6489 break;
6490
6491 case NEG: case NOT:
6492 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6493 return simplify_gen_unary (code, mode, tem, mode);
6494
6495 break;
6496
6497 case PLUS: case IOR: case XOR: case AND:
6498 /* If we can safely shift this constant and we find the inner shift,
6499 make a new operation. */
6500 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6501 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6502 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6503 return gen_binary (code, mode, tem,
6504 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6505
6506 break;
6507
6508 default:
6509 break;
6510 }
6511
6512 return 0;
6513 }
6514 \f
6515 /* Look at the expression rooted at X. Look for expressions
6516 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6517 Form these expressions.
6518
6519 Return the new rtx, usually just X.
6520
6521 Also, for machines like the VAX that don't have logical shift insns,
6522 try to convert logical to arithmetic shift operations in cases where
6523 they are equivalent. This undoes the canonicalizations to logical
6524 shifts done elsewhere.
6525
6526 We try, as much as possible, to re-use rtl expressions to save memory.
6527
6528 IN_CODE says what kind of expression we are processing. Normally, it is
6529 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6530 being kludges), it is MEM. When processing the arguments of a comparison
6531 or a COMPARE against zero, it is COMPARE. */
6532
6533 static rtx
6534 make_compound_operation (rtx x, enum rtx_code in_code)
6535 {
6536 enum rtx_code code = GET_CODE (x);
6537 enum machine_mode mode = GET_MODE (x);
6538 int mode_width = GET_MODE_BITSIZE (mode);
6539 rtx rhs, lhs;
6540 enum rtx_code next_code;
6541 int i;
6542 rtx new = 0;
6543 rtx tem;
6544 const char *fmt;
6545
6546 /* Select the code to be used in recursive calls. Once we are inside an
6547 address, we stay there. If we have a comparison, set to COMPARE,
6548 but once inside, go back to our default of SET. */
6549
6550 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6551 : ((code == COMPARE || COMPARISON_P (x))
6552 && XEXP (x, 1) == const0_rtx) ? COMPARE
6553 : in_code == COMPARE ? SET : in_code);
6554
6555 /* Process depending on the code of this operation. If NEW is set
6556 nonzero, it will be returned. */
6557
6558 switch (code)
6559 {
6560 case ASHIFT:
6561 /* Convert shifts by constants into multiplications if inside
6562 an address. */
6563 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6564 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6565 && INTVAL (XEXP (x, 1)) >= 0)
6566 {
6567 new = make_compound_operation (XEXP (x, 0), next_code);
6568 new = gen_rtx_MULT (mode, new,
6569 GEN_INT ((HOST_WIDE_INT) 1
6570 << INTVAL (XEXP (x, 1))));
6571 }
6572 break;
6573
6574 case AND:
6575 /* If the second operand is not a constant, we can't do anything
6576 with it. */
6577 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6578 break;
6579
6580 /* If the constant is a power of two minus one and the first operand
6581 is a logical right shift, make an extraction. */
6582 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6583 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6584 {
6585 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6586 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6587 0, in_code == COMPARE);
6588 }
6589
6590 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6591 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6592 && subreg_lowpart_p (XEXP (x, 0))
6593 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6594 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6595 {
6596 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6597 next_code);
6598 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6599 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6600 0, in_code == COMPARE);
6601 }
6602 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6603 else if ((GET_CODE (XEXP (x, 0)) == XOR
6604 || GET_CODE (XEXP (x, 0)) == IOR)
6605 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6606 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6607 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6608 {
6609 /* Apply the distributive law, and then try to make extractions. */
6610 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6611 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6612 XEXP (x, 1)),
6613 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6614 XEXP (x, 1)));
6615 new = make_compound_operation (new, in_code);
6616 }
6617
6618 /* If we are have (and (rotate X C) M) and C is larger than the number
6619 of bits in M, this is an extraction. */
6620
6621 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6622 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6623 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6624 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6625 {
6626 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6627 new = make_extraction (mode, new,
6628 (GET_MODE_BITSIZE (mode)
6629 - INTVAL (XEXP (XEXP (x, 0), 1))),
6630 NULL_RTX, i, 1, 0, in_code == COMPARE);
6631 }
6632
6633 /* On machines without logical shifts, if the operand of the AND is
6634 a logical shift and our mask turns off all the propagated sign
6635 bits, we can replace the logical shift with an arithmetic shift. */
6636 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6637 && !have_insn_for (LSHIFTRT, mode)
6638 && have_insn_for (ASHIFTRT, mode)
6639 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6640 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6641 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6642 && mode_width <= HOST_BITS_PER_WIDE_INT)
6643 {
6644 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6645
6646 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6647 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6648 SUBST (XEXP (x, 0),
6649 gen_rtx_ASHIFTRT (mode,
6650 make_compound_operation
6651 (XEXP (XEXP (x, 0), 0), next_code),
6652 XEXP (XEXP (x, 0), 1)));
6653 }
6654
6655 /* If the constant is one less than a power of two, this might be
6656 representable by an extraction even if no shift is present.
6657 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6658 we are in a COMPARE. */
6659 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6660 new = make_extraction (mode,
6661 make_compound_operation (XEXP (x, 0),
6662 next_code),
6663 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6664
6665 /* If we are in a comparison and this is an AND with a power of two,
6666 convert this into the appropriate bit extract. */
6667 else if (in_code == COMPARE
6668 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6669 new = make_extraction (mode,
6670 make_compound_operation (XEXP (x, 0),
6671 next_code),
6672 i, NULL_RTX, 1, 1, 0, 1);
6673
6674 break;
6675
6676 case LSHIFTRT:
6677 /* If the sign bit is known to be zero, replace this with an
6678 arithmetic shift. */
6679 if (have_insn_for (ASHIFTRT, mode)
6680 && ! have_insn_for (LSHIFTRT, mode)
6681 && mode_width <= HOST_BITS_PER_WIDE_INT
6682 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6683 {
6684 new = gen_rtx_ASHIFTRT (mode,
6685 make_compound_operation (XEXP (x, 0),
6686 next_code),
6687 XEXP (x, 1));
6688 break;
6689 }
6690
6691 /* ... fall through ... */
6692
6693 case ASHIFTRT:
6694 lhs = XEXP (x, 0);
6695 rhs = XEXP (x, 1);
6696
6697 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6698 this is a SIGN_EXTRACT. */
6699 if (GET_CODE (rhs) == CONST_INT
6700 && GET_CODE (lhs) == ASHIFT
6701 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6702 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6703 {
6704 new = make_compound_operation (XEXP (lhs, 0), next_code);
6705 new = make_extraction (mode, new,
6706 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6707 NULL_RTX, mode_width - INTVAL (rhs),
6708 code == LSHIFTRT, 0, in_code == COMPARE);
6709 break;
6710 }
6711
6712 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6713 If so, try to merge the shifts into a SIGN_EXTEND. We could
6714 also do this for some cases of SIGN_EXTRACT, but it doesn't
6715 seem worth the effort; the case checked for occurs on Alpha. */
6716
6717 if (!OBJECT_P (lhs)
6718 && ! (GET_CODE (lhs) == SUBREG
6719 && (OBJECT_P (SUBREG_REG (lhs))))
6720 && GET_CODE (rhs) == CONST_INT
6721 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6722 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6723 new = make_extraction (mode, make_compound_operation (new, next_code),
6724 0, NULL_RTX, mode_width - INTVAL (rhs),
6725 code == LSHIFTRT, 0, in_code == COMPARE);
6726
6727 break;
6728
6729 case SUBREG:
6730 /* Call ourselves recursively on the inner expression. If we are
6731 narrowing the object and it has a different RTL code from
6732 what it originally did, do this SUBREG as a force_to_mode. */
6733
6734 tem = make_compound_operation (SUBREG_REG (x), in_code);
6735 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6736 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6737 && subreg_lowpart_p (x))
6738 {
6739 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6740 NULL_RTX, 0);
6741
6742 /* If we have something other than a SUBREG, we might have
6743 done an expansion, so rerun ourselves. */
6744 if (GET_CODE (newer) != SUBREG)
6745 newer = make_compound_operation (newer, in_code);
6746
6747 return newer;
6748 }
6749
6750 /* If this is a paradoxical subreg, and the new code is a sign or
6751 zero extension, omit the subreg and widen the extension. If it
6752 is a regular subreg, we can still get rid of the subreg by not
6753 widening so much, or in fact removing the extension entirely. */
6754 if ((GET_CODE (tem) == SIGN_EXTEND
6755 || GET_CODE (tem) == ZERO_EXTEND)
6756 && subreg_lowpart_p (x))
6757 {
6758 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6759 || (GET_MODE_SIZE (mode) >
6760 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6761 {
6762 if (! SCALAR_INT_MODE_P (mode))
6763 break;
6764 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6765 }
6766 else
6767 tem = gen_lowpart (mode, XEXP (tem, 0));
6768 return tem;
6769 }
6770 break;
6771
6772 default:
6773 break;
6774 }
6775
6776 if (new)
6777 {
6778 x = gen_lowpart (mode, new);
6779 code = GET_CODE (x);
6780 }
6781
6782 /* Now recursively process each operand of this operation. */
6783 fmt = GET_RTX_FORMAT (code);
6784 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6785 if (fmt[i] == 'e')
6786 {
6787 new = make_compound_operation (XEXP (x, i), next_code);
6788 SUBST (XEXP (x, i), new);
6789 }
6790
6791 return x;
6792 }
6793 \f
6794 /* Given M see if it is a value that would select a field of bits
6795 within an item, but not the entire word. Return -1 if not.
6796 Otherwise, return the starting position of the field, where 0 is the
6797 low-order bit.
6798
6799 *PLEN is set to the length of the field. */
6800
6801 static int
6802 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6803 {
6804 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6805 int pos = exact_log2 (m & -m);
6806 int len = 0;
6807
6808 if (pos >= 0)
6809 /* Now shift off the low-order zero bits and see if we have a
6810 power of two minus 1. */
6811 len = exact_log2 ((m >> pos) + 1);
6812
6813 if (len <= 0)
6814 pos = -1;
6815
6816 *plen = len;
6817 return pos;
6818 }
6819 \f
6820 /* See if X can be simplified knowing that we will only refer to it in
6821 MODE and will only refer to those bits that are nonzero in MASK.
6822 If other bits are being computed or if masking operations are done
6823 that select a superset of the bits in MASK, they can sometimes be
6824 ignored.
6825
6826 Return a possibly simplified expression, but always convert X to
6827 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6828
6829 Also, if REG is nonzero and X is a register equal in value to REG,
6830 replace X with REG.
6831
6832 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6833 are all off in X. This is used when X will be complemented, by either
6834 NOT, NEG, or XOR. */
6835
6836 static rtx
6837 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6838 rtx reg, int just_select)
6839 {
6840 enum rtx_code code = GET_CODE (x);
6841 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6842 enum machine_mode op_mode;
6843 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6844 rtx op0, op1, temp;
6845
6846 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6847 code below will do the wrong thing since the mode of such an
6848 expression is VOIDmode.
6849
6850 Also do nothing if X is a CLOBBER; this can happen if X was
6851 the return value from a call to gen_lowpart. */
6852 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6853 return x;
6854
6855 /* We want to perform the operation is its present mode unless we know
6856 that the operation is valid in MODE, in which case we do the operation
6857 in MODE. */
6858 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6859 && have_insn_for (code, mode))
6860 ? mode : GET_MODE (x));
6861
6862 /* It is not valid to do a right-shift in a narrower mode
6863 than the one it came in with. */
6864 if ((code == LSHIFTRT || code == ASHIFTRT)
6865 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6866 op_mode = GET_MODE (x);
6867
6868 /* Truncate MASK to fit OP_MODE. */
6869 if (op_mode)
6870 mask &= GET_MODE_MASK (op_mode);
6871
6872 /* When we have an arithmetic operation, or a shift whose count we
6873 do not know, we need to assume that all bits up to the highest-order
6874 bit in MASK will be needed. This is how we form such a mask. */
6875 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6876 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6877 else
6878 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6879 - 1);
6880
6881 /* Determine what bits of X are guaranteed to be (non)zero. */
6882 nonzero = nonzero_bits (x, mode);
6883
6884 /* If none of the bits in X are needed, return a zero. */
6885 if (! just_select && (nonzero & mask) == 0)
6886 x = const0_rtx;
6887
6888 /* If X is a CONST_INT, return a new one. Do this here since the
6889 test below will fail. */
6890 if (GET_CODE (x) == CONST_INT)
6891 {
6892 if (SCALAR_INT_MODE_P (mode))
6893 return gen_int_mode (INTVAL (x) & mask, mode);
6894 else
6895 {
6896 x = GEN_INT (INTVAL (x) & mask);
6897 return gen_lowpart_common (mode, x);
6898 }
6899 }
6900
6901 /* If X is narrower than MODE and we want all the bits in X's mode, just
6902 get X in the proper mode. */
6903 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6904 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6905 return gen_lowpart (mode, x);
6906
6907 switch (code)
6908 {
6909 case CLOBBER:
6910 /* If X is a (clobber (const_int)), return it since we know we are
6911 generating something that won't match. */
6912 return x;
6913
6914 case USE:
6915 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6916 spanned the boundary of the MEM. If we are now masking so it is
6917 within that boundary, we don't need the USE any more. */
6918 if (! BITS_BIG_ENDIAN
6919 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6920 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6921 break;
6922
6923 case SIGN_EXTEND:
6924 case ZERO_EXTEND:
6925 case ZERO_EXTRACT:
6926 case SIGN_EXTRACT:
6927 x = expand_compound_operation (x);
6928 if (GET_CODE (x) != code)
6929 return force_to_mode (x, mode, mask, reg, next_select);
6930 break;
6931
6932 case REG:
6933 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6934 || rtx_equal_p (reg, get_last_value (x))))
6935 x = reg;
6936 break;
6937
6938 case SUBREG:
6939 if (subreg_lowpart_p (x)
6940 /* We can ignore the effect of this SUBREG if it narrows the mode or
6941 if the constant masks to zero all the bits the mode doesn't
6942 have. */
6943 && ((GET_MODE_SIZE (GET_MODE (x))
6944 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6945 || (0 == (mask
6946 & GET_MODE_MASK (GET_MODE (x))
6947 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6948 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6949 break;
6950
6951 case AND:
6952 /* If this is an AND with a constant, convert it into an AND
6953 whose constant is the AND of that constant with MASK. If it
6954 remains an AND of MASK, delete it since it is redundant. */
6955
6956 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6957 {
6958 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6959 mask & INTVAL (XEXP (x, 1)));
6960
6961 /* If X is still an AND, see if it is an AND with a mask that
6962 is just some low-order bits. If so, and it is MASK, we don't
6963 need it. */
6964
6965 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6966 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6967 == mask))
6968 x = XEXP (x, 0);
6969
6970 /* If it remains an AND, try making another AND with the bits
6971 in the mode mask that aren't in MASK turned on. If the
6972 constant in the AND is wide enough, this might make a
6973 cheaper constant. */
6974
6975 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6976 && GET_MODE_MASK (GET_MODE (x)) != mask
6977 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6978 {
6979 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6980 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6981 int width = GET_MODE_BITSIZE (GET_MODE (x));
6982 rtx y;
6983
6984 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6985 number, sign extend it. */
6986 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6987 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6988 cval |= (HOST_WIDE_INT) -1 << width;
6989
6990 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6991 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6992 x = y;
6993 }
6994
6995 break;
6996 }
6997
6998 goto binop;
6999
7000 case PLUS:
7001 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7002 low-order bits (as in an alignment operation) and FOO is already
7003 aligned to that boundary, mask C1 to that boundary as well.
7004 This may eliminate that PLUS and, later, the AND. */
7005
7006 {
7007 unsigned int width = GET_MODE_BITSIZE (mode);
7008 unsigned HOST_WIDE_INT smask = mask;
7009
7010 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7011 number, sign extend it. */
7012
7013 if (width < HOST_BITS_PER_WIDE_INT
7014 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7015 smask |= (HOST_WIDE_INT) -1 << width;
7016
7017 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7018 && exact_log2 (- smask) >= 0
7019 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7020 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7021 return force_to_mode (plus_constant (XEXP (x, 0),
7022 (INTVAL (XEXP (x, 1)) & smask)),
7023 mode, smask, reg, next_select);
7024 }
7025
7026 /* ... fall through ... */
7027
7028 case MULT:
7029 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7030 most significant bit in MASK since carries from those bits will
7031 affect the bits we are interested in. */
7032 mask = fuller_mask;
7033 goto binop;
7034
7035 case MINUS:
7036 /* If X is (minus C Y) where C's least set bit is larger than any bit
7037 in the mask, then we may replace with (neg Y). */
7038 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7039 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7040 & -INTVAL (XEXP (x, 0))))
7041 > mask))
7042 {
7043 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7044 GET_MODE (x));
7045 return force_to_mode (x, mode, mask, reg, next_select);
7046 }
7047
7048 /* Similarly, if C contains every bit in the fuller_mask, then we may
7049 replace with (not Y). */
7050 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7051 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7052 == INTVAL (XEXP (x, 0))))
7053 {
7054 x = simplify_gen_unary (NOT, GET_MODE (x),
7055 XEXP (x, 1), GET_MODE (x));
7056 return force_to_mode (x, mode, mask, reg, next_select);
7057 }
7058
7059 mask = fuller_mask;
7060 goto binop;
7061
7062 case IOR:
7063 case XOR:
7064 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7065 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7066 operation which may be a bitfield extraction. Ensure that the
7067 constant we form is not wider than the mode of X. */
7068
7069 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7070 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7071 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7072 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7073 && GET_CODE (XEXP (x, 1)) == CONST_INT
7074 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7075 + floor_log2 (INTVAL (XEXP (x, 1))))
7076 < GET_MODE_BITSIZE (GET_MODE (x)))
7077 && (INTVAL (XEXP (x, 1))
7078 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7079 {
7080 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7081 << INTVAL (XEXP (XEXP (x, 0), 1)));
7082 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7083 XEXP (XEXP (x, 0), 0), temp);
7084 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7085 XEXP (XEXP (x, 0), 1));
7086 return force_to_mode (x, mode, mask, reg, next_select);
7087 }
7088
7089 binop:
7090 /* For most binary operations, just propagate into the operation and
7091 change the mode if we have an operation of that mode. */
7092
7093 op0 = gen_lowpart (op_mode,
7094 force_to_mode (XEXP (x, 0), mode, mask,
7095 reg, next_select));
7096 op1 = gen_lowpart (op_mode,
7097 force_to_mode (XEXP (x, 1), mode, mask,
7098 reg, next_select));
7099
7100 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7101 x = gen_binary (code, op_mode, op0, op1);
7102 break;
7103
7104 case ASHIFT:
7105 /* For left shifts, do the same, but just for the first operand.
7106 However, we cannot do anything with shifts where we cannot
7107 guarantee that the counts are smaller than the size of the mode
7108 because such a count will have a different meaning in a
7109 wider mode. */
7110
7111 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7112 && INTVAL (XEXP (x, 1)) >= 0
7113 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7114 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7115 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7116 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7117 break;
7118
7119 /* If the shift count is a constant and we can do arithmetic in
7120 the mode of the shift, refine which bits we need. Otherwise, use the
7121 conservative form of the mask. */
7122 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7123 && INTVAL (XEXP (x, 1)) >= 0
7124 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7125 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7126 mask >>= INTVAL (XEXP (x, 1));
7127 else
7128 mask = fuller_mask;
7129
7130 op0 = gen_lowpart (op_mode,
7131 force_to_mode (XEXP (x, 0), op_mode,
7132 mask, reg, next_select));
7133
7134 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7135 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7136 break;
7137
7138 case LSHIFTRT:
7139 /* Here we can only do something if the shift count is a constant,
7140 this shift constant is valid for the host, and we can do arithmetic
7141 in OP_MODE. */
7142
7143 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7144 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7145 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7146 {
7147 rtx inner = XEXP (x, 0);
7148 unsigned HOST_WIDE_INT inner_mask;
7149
7150 /* Select the mask of the bits we need for the shift operand. */
7151 inner_mask = mask << INTVAL (XEXP (x, 1));
7152
7153 /* We can only change the mode of the shift if we can do arithmetic
7154 in the mode of the shift and INNER_MASK is no wider than the
7155 width of X's mode. */
7156 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7157 op_mode = GET_MODE (x);
7158
7159 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7160
7161 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7162 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7163 }
7164
7165 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7166 shift and AND produces only copies of the sign bit (C2 is one less
7167 than a power of two), we can do this with just a shift. */
7168
7169 if (GET_CODE (x) == LSHIFTRT
7170 && GET_CODE (XEXP (x, 1)) == CONST_INT
7171 /* The shift puts one of the sign bit copies in the least significant
7172 bit. */
7173 && ((INTVAL (XEXP (x, 1))
7174 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7175 >= GET_MODE_BITSIZE (GET_MODE (x)))
7176 && exact_log2 (mask + 1) >= 0
7177 /* Number of bits left after the shift must be more than the mask
7178 needs. */
7179 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7180 <= GET_MODE_BITSIZE (GET_MODE (x)))
7181 /* Must be more sign bit copies than the mask needs. */
7182 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7183 >= exact_log2 (mask + 1)))
7184 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7185 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7186 - exact_log2 (mask + 1)));
7187
7188 goto shiftrt;
7189
7190 case ASHIFTRT:
7191 /* If we are just looking for the sign bit, we don't need this shift at
7192 all, even if it has a variable count. */
7193 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7194 && (mask == ((unsigned HOST_WIDE_INT) 1
7195 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7196 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7197
7198 /* If this is a shift by a constant, get a mask that contains those bits
7199 that are not copies of the sign bit. We then have two cases: If
7200 MASK only includes those bits, this can be a logical shift, which may
7201 allow simplifications. If MASK is a single-bit field not within
7202 those bits, we are requesting a copy of the sign bit and hence can
7203 shift the sign bit to the appropriate location. */
7204
7205 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7206 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7207 {
7208 int i = -1;
7209
7210 /* If the considered data is wider than HOST_WIDE_INT, we can't
7211 represent a mask for all its bits in a single scalar.
7212 But we only care about the lower bits, so calculate these. */
7213
7214 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7215 {
7216 nonzero = ~(HOST_WIDE_INT) 0;
7217
7218 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7219 is the number of bits a full-width mask would have set.
7220 We need only shift if these are fewer than nonzero can
7221 hold. If not, we must keep all bits set in nonzero. */
7222
7223 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7224 < HOST_BITS_PER_WIDE_INT)
7225 nonzero >>= INTVAL (XEXP (x, 1))
7226 + HOST_BITS_PER_WIDE_INT
7227 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7228 }
7229 else
7230 {
7231 nonzero = GET_MODE_MASK (GET_MODE (x));
7232 nonzero >>= INTVAL (XEXP (x, 1));
7233 }
7234
7235 if ((mask & ~nonzero) == 0
7236 || (i = exact_log2 (mask)) >= 0)
7237 {
7238 x = simplify_shift_const
7239 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7240 i < 0 ? INTVAL (XEXP (x, 1))
7241 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7242
7243 if (GET_CODE (x) != ASHIFTRT)
7244 return force_to_mode (x, mode, mask, reg, next_select);
7245 }
7246 }
7247
7248 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7249 even if the shift count isn't a constant. */
7250 if (mask == 1)
7251 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7252
7253 shiftrt:
7254
7255 /* If this is a zero- or sign-extension operation that just affects bits
7256 we don't care about, remove it. Be sure the call above returned
7257 something that is still a shift. */
7258
7259 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7260 && GET_CODE (XEXP (x, 1)) == CONST_INT
7261 && INTVAL (XEXP (x, 1)) >= 0
7262 && (INTVAL (XEXP (x, 1))
7263 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7264 && GET_CODE (XEXP (x, 0)) == ASHIFT
7265 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7266 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7267 reg, next_select);
7268
7269 break;
7270
7271 case ROTATE:
7272 case ROTATERT:
7273 /* If the shift count is constant and we can do computations
7274 in the mode of X, compute where the bits we care about are.
7275 Otherwise, we can't do anything. Don't change the mode of
7276 the shift or propagate MODE into the shift, though. */
7277 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7278 && INTVAL (XEXP (x, 1)) >= 0)
7279 {
7280 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7281 GET_MODE (x), GEN_INT (mask),
7282 XEXP (x, 1));
7283 if (temp && GET_CODE (temp) == CONST_INT)
7284 SUBST (XEXP (x, 0),
7285 force_to_mode (XEXP (x, 0), GET_MODE (x),
7286 INTVAL (temp), reg, next_select));
7287 }
7288 break;
7289
7290 case NEG:
7291 /* If we just want the low-order bit, the NEG isn't needed since it
7292 won't change the low-order bit. */
7293 if (mask == 1)
7294 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7295
7296 /* We need any bits less significant than the most significant bit in
7297 MASK since carries from those bits will affect the bits we are
7298 interested in. */
7299 mask = fuller_mask;
7300 goto unop;
7301
7302 case NOT:
7303 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7304 same as the XOR case above. Ensure that the constant we form is not
7305 wider than the mode of X. */
7306
7307 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7308 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7309 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7310 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7311 < GET_MODE_BITSIZE (GET_MODE (x)))
7312 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7313 {
7314 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7315 GET_MODE (x));
7316 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7317 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7318
7319 return force_to_mode (x, mode, mask, reg, next_select);
7320 }
7321
7322 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7323 use the full mask inside the NOT. */
7324 mask = fuller_mask;
7325
7326 unop:
7327 op0 = gen_lowpart (op_mode,
7328 force_to_mode (XEXP (x, 0), mode, mask,
7329 reg, next_select));
7330 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7331 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7332 break;
7333
7334 case NE:
7335 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7336 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7337 which is equal to STORE_FLAG_VALUE. */
7338 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7339 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7340 && (nonzero_bits (XEXP (x, 0), mode)
7341 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7342 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7343
7344 break;
7345
7346 case IF_THEN_ELSE:
7347 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7348 written in a narrower mode. We play it safe and do not do so. */
7349
7350 SUBST (XEXP (x, 1),
7351 gen_lowpart (GET_MODE (x),
7352 force_to_mode (XEXP (x, 1), mode,
7353 mask, reg, next_select)));
7354 SUBST (XEXP (x, 2),
7355 gen_lowpart (GET_MODE (x),
7356 force_to_mode (XEXP (x, 2), mode,
7357 mask, reg, next_select)));
7358 break;
7359
7360 default:
7361 break;
7362 }
7363
7364 /* Ensure we return a value of the proper mode. */
7365 return gen_lowpart (mode, x);
7366 }
7367 \f
7368 /* Return nonzero if X is an expression that has one of two values depending on
7369 whether some other value is zero or nonzero. In that case, we return the
7370 value that is being tested, *PTRUE is set to the value if the rtx being
7371 returned has a nonzero value, and *PFALSE is set to the other alternative.
7372
7373 If we return zero, we set *PTRUE and *PFALSE to X. */
7374
7375 static rtx
7376 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7377 {
7378 enum machine_mode mode = GET_MODE (x);
7379 enum rtx_code code = GET_CODE (x);
7380 rtx cond0, cond1, true0, true1, false0, false1;
7381 unsigned HOST_WIDE_INT nz;
7382
7383 /* If we are comparing a value against zero, we are done. */
7384 if ((code == NE || code == EQ)
7385 && XEXP (x, 1) == const0_rtx)
7386 {
7387 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7388 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7389 return XEXP (x, 0);
7390 }
7391
7392 /* If this is a unary operation whose operand has one of two values, apply
7393 our opcode to compute those values. */
7394 else if (UNARY_P (x)
7395 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7396 {
7397 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7398 *pfalse = simplify_gen_unary (code, mode, false0,
7399 GET_MODE (XEXP (x, 0)));
7400 return cond0;
7401 }
7402
7403 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7404 make can't possibly match and would suppress other optimizations. */
7405 else if (code == COMPARE)
7406 ;
7407
7408 /* If this is a binary operation, see if either side has only one of two
7409 values. If either one does or if both do and they are conditional on
7410 the same value, compute the new true and false values. */
7411 else if (BINARY_P (x))
7412 {
7413 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7414 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7415
7416 if ((cond0 != 0 || cond1 != 0)
7417 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7418 {
7419 /* If if_then_else_cond returned zero, then true/false are the
7420 same rtl. We must copy one of them to prevent invalid rtl
7421 sharing. */
7422 if (cond0 == 0)
7423 true0 = copy_rtx (true0);
7424 else if (cond1 == 0)
7425 true1 = copy_rtx (true1);
7426
7427 *ptrue = gen_binary (code, mode, true0, true1);
7428 *pfalse = gen_binary (code, mode, false0, false1);
7429 return cond0 ? cond0 : cond1;
7430 }
7431
7432 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7433 operands is zero when the other is nonzero, and vice-versa,
7434 and STORE_FLAG_VALUE is 1 or -1. */
7435
7436 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7437 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7438 || code == UMAX)
7439 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7440 {
7441 rtx op0 = XEXP (XEXP (x, 0), 1);
7442 rtx op1 = XEXP (XEXP (x, 1), 1);
7443
7444 cond0 = XEXP (XEXP (x, 0), 0);
7445 cond1 = XEXP (XEXP (x, 1), 0);
7446
7447 if (COMPARISON_P (cond0)
7448 && COMPARISON_P (cond1)
7449 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7450 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7451 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7452 || ((swap_condition (GET_CODE (cond0))
7453 == combine_reversed_comparison_code (cond1))
7454 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7455 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7456 && ! side_effects_p (x))
7457 {
7458 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7459 *pfalse = gen_binary (MULT, mode,
7460 (code == MINUS
7461 ? simplify_gen_unary (NEG, mode, op1,
7462 mode)
7463 : op1),
7464 const_true_rtx);
7465 return cond0;
7466 }
7467 }
7468
7469 /* Similarly for MULT, AND and UMIN, except that for these the result
7470 is always zero. */
7471 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7472 && (code == MULT || code == AND || code == UMIN)
7473 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7474 {
7475 cond0 = XEXP (XEXP (x, 0), 0);
7476 cond1 = XEXP (XEXP (x, 1), 0);
7477
7478 if (COMPARISON_P (cond0)
7479 && COMPARISON_P (cond1)
7480 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7481 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7482 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7483 || ((swap_condition (GET_CODE (cond0))
7484 == combine_reversed_comparison_code (cond1))
7485 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7486 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7487 && ! side_effects_p (x))
7488 {
7489 *ptrue = *pfalse = const0_rtx;
7490 return cond0;
7491 }
7492 }
7493 }
7494
7495 else if (code == IF_THEN_ELSE)
7496 {
7497 /* If we have IF_THEN_ELSE already, extract the condition and
7498 canonicalize it if it is NE or EQ. */
7499 cond0 = XEXP (x, 0);
7500 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7501 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7502 return XEXP (cond0, 0);
7503 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7504 {
7505 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7506 return XEXP (cond0, 0);
7507 }
7508 else
7509 return cond0;
7510 }
7511
7512 /* If X is a SUBREG, we can narrow both the true and false values
7513 if the inner expression, if there is a condition. */
7514 else if (code == SUBREG
7515 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7516 &true0, &false0)))
7517 {
7518 true0 = simplify_gen_subreg (mode, true0,
7519 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7520 false0 = simplify_gen_subreg (mode, false0,
7521 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7522 if (true0 && false0)
7523 {
7524 *ptrue = true0;
7525 *pfalse = false0;
7526 return cond0;
7527 }
7528 }
7529
7530 /* If X is a constant, this isn't special and will cause confusions
7531 if we treat it as such. Likewise if it is equivalent to a constant. */
7532 else if (CONSTANT_P (x)
7533 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7534 ;
7535
7536 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7537 will be least confusing to the rest of the compiler. */
7538 else if (mode == BImode)
7539 {
7540 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7541 return x;
7542 }
7543
7544 /* If X is known to be either 0 or -1, those are the true and
7545 false values when testing X. */
7546 else if (x == constm1_rtx || x == const0_rtx
7547 || (mode != VOIDmode
7548 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7549 {
7550 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7551 return x;
7552 }
7553
7554 /* Likewise for 0 or a single bit. */
7555 else if (SCALAR_INT_MODE_P (mode)
7556 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7557 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7558 {
7559 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7560 return x;
7561 }
7562
7563 /* Otherwise fail; show no condition with true and false values the same. */
7564 *ptrue = *pfalse = x;
7565 return 0;
7566 }
7567 \f
7568 /* Return the value of expression X given the fact that condition COND
7569 is known to be true when applied to REG as its first operand and VAL
7570 as its second. X is known to not be shared and so can be modified in
7571 place.
7572
7573 We only handle the simplest cases, and specifically those cases that
7574 arise with IF_THEN_ELSE expressions. */
7575
7576 static rtx
7577 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7578 {
7579 enum rtx_code code = GET_CODE (x);
7580 rtx temp;
7581 const char *fmt;
7582 int i, j;
7583
7584 if (side_effects_p (x))
7585 return x;
7586
7587 /* If either operand of the condition is a floating point value,
7588 then we have to avoid collapsing an EQ comparison. */
7589 if (cond == EQ
7590 && rtx_equal_p (x, reg)
7591 && ! FLOAT_MODE_P (GET_MODE (x))
7592 && ! FLOAT_MODE_P (GET_MODE (val)))
7593 return val;
7594
7595 if (cond == UNEQ && rtx_equal_p (x, reg))
7596 return val;
7597
7598 /* If X is (abs REG) and we know something about REG's relationship
7599 with zero, we may be able to simplify this. */
7600
7601 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7602 switch (cond)
7603 {
7604 case GE: case GT: case EQ:
7605 return XEXP (x, 0);
7606 case LT: case LE:
7607 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7608 XEXP (x, 0),
7609 GET_MODE (XEXP (x, 0)));
7610 default:
7611 break;
7612 }
7613
7614 /* The only other cases we handle are MIN, MAX, and comparisons if the
7615 operands are the same as REG and VAL. */
7616
7617 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7618 {
7619 if (rtx_equal_p (XEXP (x, 0), val))
7620 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7621
7622 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7623 {
7624 if (COMPARISON_P (x))
7625 {
7626 if (comparison_dominates_p (cond, code))
7627 return const_true_rtx;
7628
7629 code = combine_reversed_comparison_code (x);
7630 if (code != UNKNOWN
7631 && comparison_dominates_p (cond, code))
7632 return const0_rtx;
7633 else
7634 return x;
7635 }
7636 else if (code == SMAX || code == SMIN
7637 || code == UMIN || code == UMAX)
7638 {
7639 int unsignedp = (code == UMIN || code == UMAX);
7640
7641 /* Do not reverse the condition when it is NE or EQ.
7642 This is because we cannot conclude anything about
7643 the value of 'SMAX (x, y)' when x is not equal to y,
7644 but we can when x equals y. */
7645 if ((code == SMAX || code == UMAX)
7646 && ! (cond == EQ || cond == NE))
7647 cond = reverse_condition (cond);
7648
7649 switch (cond)
7650 {
7651 case GE: case GT:
7652 return unsignedp ? x : XEXP (x, 1);
7653 case LE: case LT:
7654 return unsignedp ? x : XEXP (x, 0);
7655 case GEU: case GTU:
7656 return unsignedp ? XEXP (x, 1) : x;
7657 case LEU: case LTU:
7658 return unsignedp ? XEXP (x, 0) : x;
7659 default:
7660 break;
7661 }
7662 }
7663 }
7664 }
7665 else if (code == SUBREG)
7666 {
7667 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7668 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7669
7670 if (SUBREG_REG (x) != r)
7671 {
7672 /* We must simplify subreg here, before we lose track of the
7673 original inner_mode. */
7674 new = simplify_subreg (GET_MODE (x), r,
7675 inner_mode, SUBREG_BYTE (x));
7676 if (new)
7677 return new;
7678 else
7679 SUBST (SUBREG_REG (x), r);
7680 }
7681
7682 return x;
7683 }
7684 /* We don't have to handle SIGN_EXTEND here, because even in the
7685 case of replacing something with a modeless CONST_INT, a
7686 CONST_INT is already (supposed to be) a valid sign extension for
7687 its narrower mode, which implies it's already properly
7688 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7689 story is different. */
7690 else if (code == ZERO_EXTEND)
7691 {
7692 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7693 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7694
7695 if (XEXP (x, 0) != r)
7696 {
7697 /* We must simplify the zero_extend here, before we lose
7698 track of the original inner_mode. */
7699 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7700 r, inner_mode);
7701 if (new)
7702 return new;
7703 else
7704 SUBST (XEXP (x, 0), r);
7705 }
7706
7707 return x;
7708 }
7709
7710 fmt = GET_RTX_FORMAT (code);
7711 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7712 {
7713 if (fmt[i] == 'e')
7714 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7715 else if (fmt[i] == 'E')
7716 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7717 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7718 cond, reg, val));
7719 }
7720
7721 return x;
7722 }
7723 \f
7724 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7725 assignment as a field assignment. */
7726
7727 static int
7728 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7729 {
7730 if (x == y || rtx_equal_p (x, y))
7731 return 1;
7732
7733 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7734 return 0;
7735
7736 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7737 Note that all SUBREGs of MEM are paradoxical; otherwise they
7738 would have been rewritten. */
7739 if (MEM_P (x) && GET_CODE (y) == SUBREG
7740 && MEM_P (SUBREG_REG (y))
7741 && rtx_equal_p (SUBREG_REG (y),
7742 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7743 return 1;
7744
7745 if (MEM_P (y) && GET_CODE (x) == SUBREG
7746 && MEM_P (SUBREG_REG (x))
7747 && rtx_equal_p (SUBREG_REG (x),
7748 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7749 return 1;
7750
7751 /* We used to see if get_last_value of X and Y were the same but that's
7752 not correct. In one direction, we'll cause the assignment to have
7753 the wrong destination and in the case, we'll import a register into this
7754 insn that might have already have been dead. So fail if none of the
7755 above cases are true. */
7756 return 0;
7757 }
7758 \f
7759 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7760 Return that assignment if so.
7761
7762 We only handle the most common cases. */
7763
7764 static rtx
7765 make_field_assignment (rtx x)
7766 {
7767 rtx dest = SET_DEST (x);
7768 rtx src = SET_SRC (x);
7769 rtx assign;
7770 rtx rhs, lhs;
7771 HOST_WIDE_INT c1;
7772 HOST_WIDE_INT pos;
7773 unsigned HOST_WIDE_INT len;
7774 rtx other;
7775 enum machine_mode mode;
7776
7777 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7778 a clear of a one-bit field. We will have changed it to
7779 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7780 for a SUBREG. */
7781
7782 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7783 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7784 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7785 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7786 {
7787 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7788 1, 1, 1, 0);
7789 if (assign != 0)
7790 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7791 return x;
7792 }
7793
7794 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7795 && subreg_lowpart_p (XEXP (src, 0))
7796 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7797 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7798 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7799 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7800 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7801 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7802 {
7803 assign = make_extraction (VOIDmode, dest, 0,
7804 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7805 1, 1, 1, 0);
7806 if (assign != 0)
7807 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7808 return x;
7809 }
7810
7811 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7812 one-bit field. */
7813 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7814 && XEXP (XEXP (src, 0), 0) == const1_rtx
7815 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7816 {
7817 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7818 1, 1, 1, 0);
7819 if (assign != 0)
7820 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7821 return x;
7822 }
7823
7824 /* The other case we handle is assignments into a constant-position
7825 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7826 a mask that has all one bits except for a group of zero bits and
7827 OTHER is known to have zeros where C1 has ones, this is such an
7828 assignment. Compute the position and length from C1. Shift OTHER
7829 to the appropriate position, force it to the required mode, and
7830 make the extraction. Check for the AND in both operands. */
7831
7832 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7833 return x;
7834
7835 rhs = expand_compound_operation (XEXP (src, 0));
7836 lhs = expand_compound_operation (XEXP (src, 1));
7837
7838 if (GET_CODE (rhs) == AND
7839 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7840 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7841 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7842 else if (GET_CODE (lhs) == AND
7843 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7844 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7845 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7846 else
7847 return x;
7848
7849 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7850 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7851 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7852 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7853 return x;
7854
7855 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7856 if (assign == 0)
7857 return x;
7858
7859 /* The mode to use for the source is the mode of the assignment, or of
7860 what is inside a possible STRICT_LOW_PART. */
7861 mode = (GET_CODE (assign) == STRICT_LOW_PART
7862 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7863
7864 /* Shift OTHER right POS places and make it the source, restricting it
7865 to the proper length and mode. */
7866
7867 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7868 GET_MODE (src), other, pos),
7869 mode,
7870 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7871 ? ~(unsigned HOST_WIDE_INT) 0
7872 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7873 dest, 0);
7874
7875 /* If SRC is masked by an AND that does not make a difference in
7876 the value being stored, strip it. */
7877 if (GET_CODE (assign) == ZERO_EXTRACT
7878 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7879 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7880 && GET_CODE (src) == AND
7881 && GET_CODE (XEXP (src, 1)) == CONST_INT
7882 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7883 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7884 src = XEXP (src, 0);
7885
7886 return gen_rtx_SET (VOIDmode, assign, src);
7887 }
7888 \f
7889 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7890 if so. */
7891
7892 static rtx
7893 apply_distributive_law (rtx x)
7894 {
7895 enum rtx_code code = GET_CODE (x);
7896 enum rtx_code inner_code;
7897 rtx lhs, rhs, other;
7898 rtx tem;
7899
7900 /* Distributivity is not true for floating point as it can change the
7901 value. So we don't do it unless -funsafe-math-optimizations. */
7902 if (FLOAT_MODE_P (GET_MODE (x))
7903 && ! flag_unsafe_math_optimizations)
7904 return x;
7905
7906 /* The outer operation can only be one of the following: */
7907 if (code != IOR && code != AND && code != XOR
7908 && code != PLUS && code != MINUS)
7909 return x;
7910
7911 lhs = XEXP (x, 0);
7912 rhs = XEXP (x, 1);
7913
7914 /* If either operand is a primitive we can't do anything, so get out
7915 fast. */
7916 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7917 return x;
7918
7919 lhs = expand_compound_operation (lhs);
7920 rhs = expand_compound_operation (rhs);
7921 inner_code = GET_CODE (lhs);
7922 if (inner_code != GET_CODE (rhs))
7923 return x;
7924
7925 /* See if the inner and outer operations distribute. */
7926 switch (inner_code)
7927 {
7928 case LSHIFTRT:
7929 case ASHIFTRT:
7930 case AND:
7931 case IOR:
7932 /* These all distribute except over PLUS. */
7933 if (code == PLUS || code == MINUS)
7934 return x;
7935 break;
7936
7937 case MULT:
7938 if (code != PLUS && code != MINUS)
7939 return x;
7940 break;
7941
7942 case ASHIFT:
7943 /* This is also a multiply, so it distributes over everything. */
7944 break;
7945
7946 case SUBREG:
7947 /* Non-paradoxical SUBREGs distributes over all operations, provided
7948 the inner modes and byte offsets are the same, this is an extraction
7949 of a low-order part, we don't convert an fp operation to int or
7950 vice versa, and we would not be converting a single-word
7951 operation into a multi-word operation. The latter test is not
7952 required, but it prevents generating unneeded multi-word operations.
7953 Some of the previous tests are redundant given the latter test, but
7954 are retained because they are required for correctness.
7955
7956 We produce the result slightly differently in this case. */
7957
7958 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7959 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7960 || ! subreg_lowpart_p (lhs)
7961 || (GET_MODE_CLASS (GET_MODE (lhs))
7962 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7963 || (GET_MODE_SIZE (GET_MODE (lhs))
7964 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7965 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7966 return x;
7967
7968 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7969 SUBREG_REG (lhs), SUBREG_REG (rhs));
7970 return gen_lowpart (GET_MODE (x), tem);
7971
7972 default:
7973 return x;
7974 }
7975
7976 /* Set LHS and RHS to the inner operands (A and B in the example
7977 above) and set OTHER to the common operand (C in the example).
7978 There is only one way to do this unless the inner operation is
7979 commutative. */
7980 if (COMMUTATIVE_ARITH_P (lhs)
7981 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7982 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7983 else if (COMMUTATIVE_ARITH_P (lhs)
7984 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7985 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7986 else if (COMMUTATIVE_ARITH_P (lhs)
7987 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7988 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7989 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7990 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7991 else
7992 return x;
7993
7994 /* Form the new inner operation, seeing if it simplifies first. */
7995 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7996
7997 /* There is one exception to the general way of distributing:
7998 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7999 if (code == XOR && inner_code == IOR)
8000 {
8001 inner_code = AND;
8002 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8003 }
8004
8005 /* We may be able to continuing distributing the result, so call
8006 ourselves recursively on the inner operation before forming the
8007 outer operation, which we return. */
8008 return gen_binary (inner_code, GET_MODE (x),
8009 apply_distributive_law (tem), other);
8010 }
8011 \f
8012 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8013 in MODE.
8014
8015 Return an equivalent form, if different from X. Otherwise, return X. If
8016 X is zero, we are to always construct the equivalent form. */
8017
8018 static rtx
8019 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8020 unsigned HOST_WIDE_INT constop)
8021 {
8022 unsigned HOST_WIDE_INT nonzero;
8023 int i;
8024
8025 /* Simplify VAROP knowing that we will be only looking at some of the
8026 bits in it.
8027
8028 Note by passing in CONSTOP, we guarantee that the bits not set in
8029 CONSTOP are not significant and will never be examined. We must
8030 ensure that is the case by explicitly masking out those bits
8031 before returning. */
8032 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8033
8034 /* If VAROP is a CLOBBER, we will fail so return it. */
8035 if (GET_CODE (varop) == CLOBBER)
8036 return varop;
8037
8038 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8039 to VAROP and return the new constant. */
8040 if (GET_CODE (varop) == CONST_INT)
8041 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8042
8043 /* See what bits may be nonzero in VAROP. Unlike the general case of
8044 a call to nonzero_bits, here we don't care about bits outside
8045 MODE. */
8046
8047 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8048
8049 /* Turn off all bits in the constant that are known to already be zero.
8050 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8051 which is tested below. */
8052
8053 constop &= nonzero;
8054
8055 /* If we don't have any bits left, return zero. */
8056 if (constop == 0)
8057 return const0_rtx;
8058
8059 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8060 a power of two, we can replace this with an ASHIFT. */
8061 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8062 && (i = exact_log2 (constop)) >= 0)
8063 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8064
8065 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8066 or XOR, then try to apply the distributive law. This may eliminate
8067 operations if either branch can be simplified because of the AND.
8068 It may also make some cases more complex, but those cases probably
8069 won't match a pattern either with or without this. */
8070
8071 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8072 return
8073 gen_lowpart
8074 (mode,
8075 apply_distributive_law
8076 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8077 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8078 XEXP (varop, 0), constop),
8079 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8080 XEXP (varop, 1), constop))));
8081
8082 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8083 the AND and see if one of the operands simplifies to zero. If so, we
8084 may eliminate it. */
8085
8086 if (GET_CODE (varop) == PLUS
8087 && exact_log2 (constop + 1) >= 0)
8088 {
8089 rtx o0, o1;
8090
8091 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8092 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8093 if (o0 == const0_rtx)
8094 return o1;
8095 if (o1 == const0_rtx)
8096 return o0;
8097 }
8098
8099 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8100 if we already had one (just check for the simplest cases). */
8101 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8102 && GET_MODE (XEXP (x, 0)) == mode
8103 && SUBREG_REG (XEXP (x, 0)) == varop)
8104 varop = XEXP (x, 0);
8105 else
8106 varop = gen_lowpart (mode, varop);
8107
8108 /* If we can't make the SUBREG, try to return what we were given. */
8109 if (GET_CODE (varop) == CLOBBER)
8110 return x ? x : varop;
8111
8112 /* If we are only masking insignificant bits, return VAROP. */
8113 if (constop == nonzero)
8114 x = varop;
8115 else
8116 {
8117 /* Otherwise, return an AND. */
8118 constop = trunc_int_for_mode (constop, mode);
8119 /* See how much, if any, of X we can use. */
8120 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8121 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8122
8123 else
8124 {
8125 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8126 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8127 SUBST (XEXP (x, 1), GEN_INT (constop));
8128
8129 SUBST (XEXP (x, 0), varop);
8130 }
8131 }
8132
8133 return x;
8134 }
8135 \f
8136 /* Given a REG, X, compute which bits in X can be nonzero.
8137 We don't care about bits outside of those defined in MODE.
8138
8139 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8140 a shift, AND, or zero_extract, we can do better. */
8141
8142 static rtx
8143 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8144 rtx known_x ATTRIBUTE_UNUSED,
8145 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8146 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8147 unsigned HOST_WIDE_INT *nonzero)
8148 {
8149 rtx tem;
8150
8151 /* If X is a register whose nonzero bits value is current, use it.
8152 Otherwise, if X is a register whose value we can find, use that
8153 value. Otherwise, use the previously-computed global nonzero bits
8154 for this register. */
8155
8156 if (reg_stat[REGNO (x)].last_set_value != 0
8157 && (reg_stat[REGNO (x)].last_set_mode == mode
8158 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8159 && GET_MODE_CLASS (mode) == MODE_INT))
8160 && (reg_stat[REGNO (x)].last_set_label == label_tick
8161 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8162 && REG_N_SETS (REGNO (x)) == 1
8163 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8164 REGNO (x))))
8165 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8166 {
8167 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8168 return NULL;
8169 }
8170
8171 tem = get_last_value (x);
8172
8173 if (tem)
8174 {
8175 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8176 /* If X is narrower than MODE and TEM is a non-negative
8177 constant that would appear negative in the mode of X,
8178 sign-extend it for use in reg_nonzero_bits because some
8179 machines (maybe most) will actually do the sign-extension
8180 and this is the conservative approach.
8181
8182 ??? For 2.5, try to tighten up the MD files in this regard
8183 instead of this kludge. */
8184
8185 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8186 && GET_CODE (tem) == CONST_INT
8187 && INTVAL (tem) > 0
8188 && 0 != (INTVAL (tem)
8189 & ((HOST_WIDE_INT) 1
8190 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8191 tem = GEN_INT (INTVAL (tem)
8192 | ((HOST_WIDE_INT) (-1)
8193 << GET_MODE_BITSIZE (GET_MODE (x))));
8194 #endif
8195 return tem;
8196 }
8197 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8198 {
8199 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8200
8201 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8202 /* We don't know anything about the upper bits. */
8203 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8204 *nonzero &= mask;
8205 }
8206
8207 return NULL;
8208 }
8209
8210 /* Return the number of bits at the high-order end of X that are known to
8211 be equal to the sign bit. X will be used in mode MODE; if MODE is
8212 VOIDmode, X will be used in its own mode. The returned value will always
8213 be between 1 and the number of bits in MODE. */
8214
8215 static rtx
8216 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8217 rtx known_x ATTRIBUTE_UNUSED,
8218 enum machine_mode known_mode
8219 ATTRIBUTE_UNUSED,
8220 unsigned int known_ret ATTRIBUTE_UNUSED,
8221 unsigned int *result)
8222 {
8223 rtx tem;
8224
8225 if (reg_stat[REGNO (x)].last_set_value != 0
8226 && reg_stat[REGNO (x)].last_set_mode == mode
8227 && (reg_stat[REGNO (x)].last_set_label == label_tick
8228 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8229 && REG_N_SETS (REGNO (x)) == 1
8230 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8231 REGNO (x))))
8232 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8233 {
8234 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8235 return NULL;
8236 }
8237
8238 tem = get_last_value (x);
8239 if (tem != 0)
8240 return tem;
8241
8242 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8243 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8244 *result = reg_stat[REGNO (x)].sign_bit_copies;
8245
8246 return NULL;
8247 }
8248 \f
8249 /* Return the number of "extended" bits there are in X, when interpreted
8250 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8251 unsigned quantities, this is the number of high-order zero bits.
8252 For signed quantities, this is the number of copies of the sign bit
8253 minus 1. In both case, this function returns the number of "spare"
8254 bits. For example, if two quantities for which this function returns
8255 at least 1 are added, the addition is known not to overflow.
8256
8257 This function will always return 0 unless called during combine, which
8258 implies that it must be called from a define_split. */
8259
8260 unsigned int
8261 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8262 {
8263 if (nonzero_sign_valid == 0)
8264 return 0;
8265
8266 return (unsignedp
8267 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8268 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8269 - floor_log2 (nonzero_bits (x, mode)))
8270 : 0)
8271 : num_sign_bit_copies (x, mode) - 1);
8272 }
8273 \f
8274 /* This function is called from `simplify_shift_const' to merge two
8275 outer operations. Specifically, we have already found that we need
8276 to perform operation *POP0 with constant *PCONST0 at the outermost
8277 position. We would now like to also perform OP1 with constant CONST1
8278 (with *POP0 being done last).
8279
8280 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8281 the resulting operation. *PCOMP_P is set to 1 if we would need to
8282 complement the innermost operand, otherwise it is unchanged.
8283
8284 MODE is the mode in which the operation will be done. No bits outside
8285 the width of this mode matter. It is assumed that the width of this mode
8286 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8287
8288 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8289 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8290 result is simply *PCONST0.
8291
8292 If the resulting operation cannot be expressed as one operation, we
8293 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8294
8295 static int
8296 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8297 {
8298 enum rtx_code op0 = *pop0;
8299 HOST_WIDE_INT const0 = *pconst0;
8300
8301 const0 &= GET_MODE_MASK (mode);
8302 const1 &= GET_MODE_MASK (mode);
8303
8304 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8305 if (op0 == AND)
8306 const1 &= const0;
8307
8308 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8309 if OP0 is SET. */
8310
8311 if (op1 == UNKNOWN || op0 == SET)
8312 return 1;
8313
8314 else if (op0 == UNKNOWN)
8315 op0 = op1, const0 = const1;
8316
8317 else if (op0 == op1)
8318 {
8319 switch (op0)
8320 {
8321 case AND:
8322 const0 &= const1;
8323 break;
8324 case IOR:
8325 const0 |= const1;
8326 break;
8327 case XOR:
8328 const0 ^= const1;
8329 break;
8330 case PLUS:
8331 const0 += const1;
8332 break;
8333 case NEG:
8334 op0 = UNKNOWN;
8335 break;
8336 default:
8337 break;
8338 }
8339 }
8340
8341 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8342 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8343 return 0;
8344
8345 /* If the two constants aren't the same, we can't do anything. The
8346 remaining six cases can all be done. */
8347 else if (const0 != const1)
8348 return 0;
8349
8350 else
8351 switch (op0)
8352 {
8353 case IOR:
8354 if (op1 == AND)
8355 /* (a & b) | b == b */
8356 op0 = SET;
8357 else /* op1 == XOR */
8358 /* (a ^ b) | b == a | b */
8359 {;}
8360 break;
8361
8362 case XOR:
8363 if (op1 == AND)
8364 /* (a & b) ^ b == (~a) & b */
8365 op0 = AND, *pcomp_p = 1;
8366 else /* op1 == IOR */
8367 /* (a | b) ^ b == a & ~b */
8368 op0 = AND, const0 = ~const0;
8369 break;
8370
8371 case AND:
8372 if (op1 == IOR)
8373 /* (a | b) & b == b */
8374 op0 = SET;
8375 else /* op1 == XOR */
8376 /* (a ^ b) & b) == (~a) & b */
8377 *pcomp_p = 1;
8378 break;
8379 default:
8380 break;
8381 }
8382
8383 /* Check for NO-OP cases. */
8384 const0 &= GET_MODE_MASK (mode);
8385 if (const0 == 0
8386 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8387 op0 = UNKNOWN;
8388 else if (const0 == 0 && op0 == AND)
8389 op0 = SET;
8390 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8391 && op0 == AND)
8392 op0 = UNKNOWN;
8393
8394 /* ??? Slightly redundant with the above mask, but not entirely.
8395 Moving this above means we'd have to sign-extend the mode mask
8396 for the final test. */
8397 const0 = trunc_int_for_mode (const0, mode);
8398
8399 *pop0 = op0;
8400 *pconst0 = const0;
8401
8402 return 1;
8403 }
8404 \f
8405 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8406 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8407 that we started with.
8408
8409 The shift is normally computed in the widest mode we find in VAROP, as
8410 long as it isn't a different number of words than RESULT_MODE. Exceptions
8411 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8412
8413 static rtx
8414 simplify_shift_const (rtx x, enum rtx_code code,
8415 enum machine_mode result_mode, rtx varop,
8416 int orig_count)
8417 {
8418 enum rtx_code orig_code = code;
8419 unsigned int count;
8420 int signed_count;
8421 enum machine_mode mode = result_mode;
8422 enum machine_mode shift_mode, tmode;
8423 unsigned int mode_words
8424 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8425 /* We form (outer_op (code varop count) (outer_const)). */
8426 enum rtx_code outer_op = UNKNOWN;
8427 HOST_WIDE_INT outer_const = 0;
8428 rtx const_rtx;
8429 int complement_p = 0;
8430 rtx new;
8431
8432 /* Make sure and truncate the "natural" shift on the way in. We don't
8433 want to do this inside the loop as it makes it more difficult to
8434 combine shifts. */
8435 if (SHIFT_COUNT_TRUNCATED)
8436 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8437
8438 /* If we were given an invalid count, don't do anything except exactly
8439 what was requested. */
8440
8441 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8442 {
8443 if (x)
8444 return x;
8445
8446 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8447 }
8448
8449 count = orig_count;
8450
8451 /* Unless one of the branches of the `if' in this loop does a `continue',
8452 we will `break' the loop after the `if'. */
8453
8454 while (count != 0)
8455 {
8456 /* If we have an operand of (clobber (const_int 0)), just return that
8457 value. */
8458 if (GET_CODE (varop) == CLOBBER)
8459 return varop;
8460
8461 /* If we discovered we had to complement VAROP, leave. Making a NOT
8462 here would cause an infinite loop. */
8463 if (complement_p)
8464 break;
8465
8466 /* Convert ROTATERT to ROTATE. */
8467 if (code == ROTATERT)
8468 {
8469 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8470 code = ROTATE;
8471 if (VECTOR_MODE_P (result_mode))
8472 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8473 else
8474 count = bitsize - count;
8475 }
8476
8477 /* We need to determine what mode we will do the shift in. If the
8478 shift is a right shift or a ROTATE, we must always do it in the mode
8479 it was originally done in. Otherwise, we can do it in MODE, the
8480 widest mode encountered. */
8481 shift_mode
8482 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8483 ? result_mode : mode);
8484
8485 /* Handle cases where the count is greater than the size of the mode
8486 minus 1. For ASHIFT, use the size minus one as the count (this can
8487 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8488 take the count modulo the size. For other shifts, the result is
8489 zero.
8490
8491 Since these shifts are being produced by the compiler by combining
8492 multiple operations, each of which are defined, we know what the
8493 result is supposed to be. */
8494
8495 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8496 {
8497 if (code == ASHIFTRT)
8498 count = GET_MODE_BITSIZE (shift_mode) - 1;
8499 else if (code == ROTATE || code == ROTATERT)
8500 count %= GET_MODE_BITSIZE (shift_mode);
8501 else
8502 {
8503 /* We can't simply return zero because there may be an
8504 outer op. */
8505 varop = const0_rtx;
8506 count = 0;
8507 break;
8508 }
8509 }
8510
8511 /* An arithmetic right shift of a quantity known to be -1 or 0
8512 is a no-op. */
8513 if (code == ASHIFTRT
8514 && (num_sign_bit_copies (varop, shift_mode)
8515 == GET_MODE_BITSIZE (shift_mode)))
8516 {
8517 count = 0;
8518 break;
8519 }
8520
8521 /* If we are doing an arithmetic right shift and discarding all but
8522 the sign bit copies, this is equivalent to doing a shift by the
8523 bitsize minus one. Convert it into that shift because it will often
8524 allow other simplifications. */
8525
8526 if (code == ASHIFTRT
8527 && (count + num_sign_bit_copies (varop, shift_mode)
8528 >= GET_MODE_BITSIZE (shift_mode)))
8529 count = GET_MODE_BITSIZE (shift_mode) - 1;
8530
8531 /* We simplify the tests below and elsewhere by converting
8532 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8533 `make_compound_operation' will convert it to an ASHIFTRT for
8534 those machines (such as VAX) that don't have an LSHIFTRT. */
8535 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8536 && code == ASHIFTRT
8537 && ((nonzero_bits (varop, shift_mode)
8538 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8539 == 0))
8540 code = LSHIFTRT;
8541
8542 if (code == LSHIFTRT
8543 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8544 && !(nonzero_bits (varop, shift_mode) >> count))
8545 varop = const0_rtx;
8546 if (code == ASHIFT
8547 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8548 && !((nonzero_bits (varop, shift_mode) << count)
8549 & GET_MODE_MASK (shift_mode)))
8550 varop = const0_rtx;
8551
8552 switch (GET_CODE (varop))
8553 {
8554 case SIGN_EXTEND:
8555 case ZERO_EXTEND:
8556 case SIGN_EXTRACT:
8557 case ZERO_EXTRACT:
8558 new = expand_compound_operation (varop);
8559 if (new != varop)
8560 {
8561 varop = new;
8562 continue;
8563 }
8564 break;
8565
8566 case MEM:
8567 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8568 minus the width of a smaller mode, we can do this with a
8569 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8570 if ((code == ASHIFTRT || code == LSHIFTRT)
8571 && ! mode_dependent_address_p (XEXP (varop, 0))
8572 && ! MEM_VOLATILE_P (varop)
8573 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8574 MODE_INT, 1)) != BLKmode)
8575 {
8576 new = adjust_address_nv (varop, tmode,
8577 BYTES_BIG_ENDIAN ? 0
8578 : count / BITS_PER_UNIT);
8579
8580 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8581 : ZERO_EXTEND, mode, new);
8582 count = 0;
8583 continue;
8584 }
8585 break;
8586
8587 case USE:
8588 /* Similar to the case above, except that we can only do this if
8589 the resulting mode is the same as that of the underlying
8590 MEM and adjust the address depending on the *bits* endianness
8591 because of the way that bit-field extract insns are defined. */
8592 if ((code == ASHIFTRT || code == LSHIFTRT)
8593 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8594 MODE_INT, 1)) != BLKmode
8595 && tmode == GET_MODE (XEXP (varop, 0)))
8596 {
8597 if (BITS_BIG_ENDIAN)
8598 new = XEXP (varop, 0);
8599 else
8600 {
8601 new = copy_rtx (XEXP (varop, 0));
8602 SUBST (XEXP (new, 0),
8603 plus_constant (XEXP (new, 0),
8604 count / BITS_PER_UNIT));
8605 }
8606
8607 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8608 : ZERO_EXTEND, mode, new);
8609 count = 0;
8610 continue;
8611 }
8612 break;
8613
8614 case SUBREG:
8615 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8616 the same number of words as what we've seen so far. Then store
8617 the widest mode in MODE. */
8618 if (subreg_lowpart_p (varop)
8619 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8620 > GET_MODE_SIZE (GET_MODE (varop)))
8621 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8622 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8623 == mode_words)
8624 {
8625 varop = SUBREG_REG (varop);
8626 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8627 mode = GET_MODE (varop);
8628 continue;
8629 }
8630 break;
8631
8632 case MULT:
8633 /* Some machines use MULT instead of ASHIFT because MULT
8634 is cheaper. But it is still better on those machines to
8635 merge two shifts into one. */
8636 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8637 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8638 {
8639 varop
8640 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8641 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8642 continue;
8643 }
8644 break;
8645
8646 case UDIV:
8647 /* Similar, for when divides are cheaper. */
8648 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8649 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8650 {
8651 varop
8652 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8653 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8654 continue;
8655 }
8656 break;
8657
8658 case ASHIFTRT:
8659 /* If we are extracting just the sign bit of an arithmetic
8660 right shift, that shift is not needed. However, the sign
8661 bit of a wider mode may be different from what would be
8662 interpreted as the sign bit in a narrower mode, so, if
8663 the result is narrower, don't discard the shift. */
8664 if (code == LSHIFTRT
8665 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8666 && (GET_MODE_BITSIZE (result_mode)
8667 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8668 {
8669 varop = XEXP (varop, 0);
8670 continue;
8671 }
8672
8673 /* ... fall through ... */
8674
8675 case LSHIFTRT:
8676 case ASHIFT:
8677 case ROTATE:
8678 /* Here we have two nested shifts. The result is usually the
8679 AND of a new shift with a mask. We compute the result below. */
8680 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8681 && INTVAL (XEXP (varop, 1)) >= 0
8682 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8683 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8684 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8685 {
8686 enum rtx_code first_code = GET_CODE (varop);
8687 unsigned int first_count = INTVAL (XEXP (varop, 1));
8688 unsigned HOST_WIDE_INT mask;
8689 rtx mask_rtx;
8690
8691 /* We have one common special case. We can't do any merging if
8692 the inner code is an ASHIFTRT of a smaller mode. However, if
8693 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8694 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8695 we can convert it to
8696 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8697 This simplifies certain SIGN_EXTEND operations. */
8698 if (code == ASHIFT && first_code == ASHIFTRT
8699 && count == (unsigned int)
8700 (GET_MODE_BITSIZE (result_mode)
8701 - GET_MODE_BITSIZE (GET_MODE (varop))))
8702 {
8703 /* C3 has the low-order C1 bits zero. */
8704
8705 mask = (GET_MODE_MASK (mode)
8706 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8707
8708 varop = simplify_and_const_int (NULL_RTX, result_mode,
8709 XEXP (varop, 0), mask);
8710 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8711 varop, count);
8712 count = first_count;
8713 code = ASHIFTRT;
8714 continue;
8715 }
8716
8717 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8718 than C1 high-order bits equal to the sign bit, we can convert
8719 this to either an ASHIFT or an ASHIFTRT depending on the
8720 two counts.
8721
8722 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8723
8724 if (code == ASHIFTRT && first_code == ASHIFT
8725 && GET_MODE (varop) == shift_mode
8726 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8727 > first_count))
8728 {
8729 varop = XEXP (varop, 0);
8730
8731 signed_count = count - first_count;
8732 if (signed_count < 0)
8733 count = -signed_count, code = ASHIFT;
8734 else
8735 count = signed_count;
8736
8737 continue;
8738 }
8739
8740 /* There are some cases we can't do. If CODE is ASHIFTRT,
8741 we can only do this if FIRST_CODE is also ASHIFTRT.
8742
8743 We can't do the case when CODE is ROTATE and FIRST_CODE is
8744 ASHIFTRT.
8745
8746 If the mode of this shift is not the mode of the outer shift,
8747 we can't do this if either shift is a right shift or ROTATE.
8748
8749 Finally, we can't do any of these if the mode is too wide
8750 unless the codes are the same.
8751
8752 Handle the case where the shift codes are the same
8753 first. */
8754
8755 if (code == first_code)
8756 {
8757 if (GET_MODE (varop) != result_mode
8758 && (code == ASHIFTRT || code == LSHIFTRT
8759 || code == ROTATE))
8760 break;
8761
8762 count += first_count;
8763 varop = XEXP (varop, 0);
8764 continue;
8765 }
8766
8767 if (code == ASHIFTRT
8768 || (code == ROTATE && first_code == ASHIFTRT)
8769 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8770 || (GET_MODE (varop) != result_mode
8771 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8772 || first_code == ROTATE
8773 || code == ROTATE)))
8774 break;
8775
8776 /* To compute the mask to apply after the shift, shift the
8777 nonzero bits of the inner shift the same way the
8778 outer shift will. */
8779
8780 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8781
8782 mask_rtx
8783 = simplify_binary_operation (code, result_mode, mask_rtx,
8784 GEN_INT (count));
8785
8786 /* Give up if we can't compute an outer operation to use. */
8787 if (mask_rtx == 0
8788 || GET_CODE (mask_rtx) != CONST_INT
8789 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8790 INTVAL (mask_rtx),
8791 result_mode, &complement_p))
8792 break;
8793
8794 /* If the shifts are in the same direction, we add the
8795 counts. Otherwise, we subtract them. */
8796 signed_count = count;
8797 if ((code == ASHIFTRT || code == LSHIFTRT)
8798 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8799 signed_count += first_count;
8800 else
8801 signed_count -= first_count;
8802
8803 /* If COUNT is positive, the new shift is usually CODE,
8804 except for the two exceptions below, in which case it is
8805 FIRST_CODE. If the count is negative, FIRST_CODE should
8806 always be used */
8807 if (signed_count > 0
8808 && ((first_code == ROTATE && code == ASHIFT)
8809 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8810 code = first_code, count = signed_count;
8811 else if (signed_count < 0)
8812 code = first_code, count = -signed_count;
8813 else
8814 count = signed_count;
8815
8816 varop = XEXP (varop, 0);
8817 continue;
8818 }
8819
8820 /* If we have (A << B << C) for any shift, we can convert this to
8821 (A << C << B). This wins if A is a constant. Only try this if
8822 B is not a constant. */
8823
8824 else if (GET_CODE (varop) == code
8825 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8826 && 0 != (new
8827 = simplify_binary_operation (code, mode,
8828 XEXP (varop, 0),
8829 GEN_INT (count))))
8830 {
8831 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8832 count = 0;
8833 continue;
8834 }
8835 break;
8836
8837 case NOT:
8838 /* Make this fit the case below. */
8839 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8840 GEN_INT (GET_MODE_MASK (mode)));
8841 continue;
8842
8843 case IOR:
8844 case AND:
8845 case XOR:
8846 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8847 with C the size of VAROP - 1 and the shift is logical if
8848 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8849 we have an (le X 0) operation. If we have an arithmetic shift
8850 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8851 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8852
8853 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8854 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8855 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8856 && (code == LSHIFTRT || code == ASHIFTRT)
8857 && count == (unsigned int)
8858 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8859 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8860 {
8861 count = 0;
8862 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8863 const0_rtx);
8864
8865 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8866 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8867
8868 continue;
8869 }
8870
8871 /* If we have (shift (logical)), move the logical to the outside
8872 to allow it to possibly combine with another logical and the
8873 shift to combine with another shift. This also canonicalizes to
8874 what a ZERO_EXTRACT looks like. Also, some machines have
8875 (and (shift)) insns. */
8876
8877 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8878 /* We can't do this if we have (ashiftrt (xor)) and the
8879 constant has its sign bit set in shift_mode. */
8880 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8881 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8882 shift_mode))
8883 && (new = simplify_binary_operation (code, result_mode,
8884 XEXP (varop, 1),
8885 GEN_INT (count))) != 0
8886 && GET_CODE (new) == CONST_INT
8887 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8888 INTVAL (new), result_mode, &complement_p))
8889 {
8890 varop = XEXP (varop, 0);
8891 continue;
8892 }
8893
8894 /* If we can't do that, try to simplify the shift in each arm of the
8895 logical expression, make a new logical expression, and apply
8896 the inverse distributive law. This also can't be done
8897 for some (ashiftrt (xor)). */
8898 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8899 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8900 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8901 shift_mode)))
8902 {
8903 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8904 XEXP (varop, 0), count);
8905 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8906 XEXP (varop, 1), count);
8907
8908 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8909 varop = apply_distributive_law (varop);
8910
8911 count = 0;
8912 continue;
8913 }
8914 break;
8915
8916 case EQ:
8917 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8918 says that the sign bit can be tested, FOO has mode MODE, C is
8919 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8920 that may be nonzero. */
8921 if (code == LSHIFTRT
8922 && XEXP (varop, 1) == const0_rtx
8923 && GET_MODE (XEXP (varop, 0)) == result_mode
8924 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8925 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8926 && ((STORE_FLAG_VALUE
8927 & ((HOST_WIDE_INT) 1
8928 < (GET_MODE_BITSIZE (result_mode) - 1))))
8929 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8930 && merge_outer_ops (&outer_op, &outer_const, XOR,
8931 (HOST_WIDE_INT) 1, result_mode,
8932 &complement_p))
8933 {
8934 varop = XEXP (varop, 0);
8935 count = 0;
8936 continue;
8937 }
8938 break;
8939
8940 case NEG:
8941 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8942 than the number of bits in the mode is equivalent to A. */
8943 if (code == LSHIFTRT
8944 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8945 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8946 {
8947 varop = XEXP (varop, 0);
8948 count = 0;
8949 continue;
8950 }
8951
8952 /* NEG commutes with ASHIFT since it is multiplication. Move the
8953 NEG outside to allow shifts to combine. */
8954 if (code == ASHIFT
8955 && merge_outer_ops (&outer_op, &outer_const, NEG,
8956 (HOST_WIDE_INT) 0, result_mode,
8957 &complement_p))
8958 {
8959 varop = XEXP (varop, 0);
8960 continue;
8961 }
8962 break;
8963
8964 case PLUS:
8965 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8966 is one less than the number of bits in the mode is
8967 equivalent to (xor A 1). */
8968 if (code == LSHIFTRT
8969 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8970 && XEXP (varop, 1) == constm1_rtx
8971 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8972 && merge_outer_ops (&outer_op, &outer_const, XOR,
8973 (HOST_WIDE_INT) 1, result_mode,
8974 &complement_p))
8975 {
8976 count = 0;
8977 varop = XEXP (varop, 0);
8978 continue;
8979 }
8980
8981 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8982 that might be nonzero in BAR are those being shifted out and those
8983 bits are known zero in FOO, we can replace the PLUS with FOO.
8984 Similarly in the other operand order. This code occurs when
8985 we are computing the size of a variable-size array. */
8986
8987 if ((code == ASHIFTRT || code == LSHIFTRT)
8988 && count < HOST_BITS_PER_WIDE_INT
8989 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8990 && (nonzero_bits (XEXP (varop, 1), result_mode)
8991 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8992 {
8993 varop = XEXP (varop, 0);
8994 continue;
8995 }
8996 else if ((code == ASHIFTRT || code == LSHIFTRT)
8997 && count < HOST_BITS_PER_WIDE_INT
8998 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8999 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9000 >> count)
9001 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9002 & nonzero_bits (XEXP (varop, 1),
9003 result_mode)))
9004 {
9005 varop = XEXP (varop, 1);
9006 continue;
9007 }
9008
9009 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9010 if (code == ASHIFT
9011 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9012 && (new = simplify_binary_operation (ASHIFT, result_mode,
9013 XEXP (varop, 1),
9014 GEN_INT (count))) != 0
9015 && GET_CODE (new) == CONST_INT
9016 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9017 INTVAL (new), result_mode, &complement_p))
9018 {
9019 varop = XEXP (varop, 0);
9020 continue;
9021 }
9022 break;
9023
9024 case MINUS:
9025 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9026 with C the size of VAROP - 1 and the shift is logical if
9027 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9028 we have a (gt X 0) operation. If the shift is arithmetic with
9029 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9030 we have a (neg (gt X 0)) operation. */
9031
9032 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9033 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9034 && count == (unsigned int)
9035 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9036 && (code == LSHIFTRT || code == ASHIFTRT)
9037 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9038 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9039 == count
9040 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9041 {
9042 count = 0;
9043 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9044 const0_rtx);
9045
9046 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9047 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9048
9049 continue;
9050 }
9051 break;
9052
9053 case TRUNCATE:
9054 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9055 if the truncate does not affect the value. */
9056 if (code == LSHIFTRT
9057 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9058 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9059 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9060 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9061 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9062 {
9063 rtx varop_inner = XEXP (varop, 0);
9064
9065 varop_inner
9066 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9067 XEXP (varop_inner, 0),
9068 GEN_INT
9069 (count + INTVAL (XEXP (varop_inner, 1))));
9070 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9071 count = 0;
9072 continue;
9073 }
9074 break;
9075
9076 default:
9077 break;
9078 }
9079
9080 break;
9081 }
9082
9083 /* We need to determine what mode to do the shift in. If the shift is
9084 a right shift or ROTATE, we must always do it in the mode it was
9085 originally done in. Otherwise, we can do it in MODE, the widest mode
9086 encountered. The code we care about is that of the shift that will
9087 actually be done, not the shift that was originally requested. */
9088 shift_mode
9089 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9090 ? result_mode : mode);
9091
9092 /* We have now finished analyzing the shift. The result should be
9093 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9094 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9095 to the result of the shift. OUTER_CONST is the relevant constant,
9096 but we must turn off all bits turned off in the shift.
9097
9098 If we were passed a value for X, see if we can use any pieces of
9099 it. If not, make new rtx. */
9100
9101 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9102 && GET_CODE (XEXP (x, 1)) == CONST_INT
9103 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9104 const_rtx = XEXP (x, 1);
9105 else
9106 const_rtx = GEN_INT (count);
9107
9108 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9109 && GET_MODE (XEXP (x, 0)) == shift_mode
9110 && SUBREG_REG (XEXP (x, 0)) == varop)
9111 varop = XEXP (x, 0);
9112 else if (GET_MODE (varop) != shift_mode)
9113 varop = gen_lowpart (shift_mode, varop);
9114
9115 /* If we can't make the SUBREG, try to return what we were given. */
9116 if (GET_CODE (varop) == CLOBBER)
9117 return x ? x : varop;
9118
9119 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9120 if (new != 0)
9121 x = new;
9122 else
9123 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9124
9125 /* If we have an outer operation and we just made a shift, it is
9126 possible that we could have simplified the shift were it not
9127 for the outer operation. So try to do the simplification
9128 recursively. */
9129
9130 if (outer_op != UNKNOWN && GET_CODE (x) == code
9131 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9132 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9133 INTVAL (XEXP (x, 1)));
9134
9135 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9136 turn off all the bits that the shift would have turned off. */
9137 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9138 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9139 GET_MODE_MASK (result_mode) >> orig_count);
9140
9141 /* Do the remainder of the processing in RESULT_MODE. */
9142 x = gen_lowpart (result_mode, x);
9143
9144 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9145 operation. */
9146 if (complement_p)
9147 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9148
9149 if (outer_op != UNKNOWN)
9150 {
9151 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9152 outer_const = trunc_int_for_mode (outer_const, result_mode);
9153
9154 if (outer_op == AND)
9155 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9156 else if (outer_op == SET)
9157 /* This means that we have determined that the result is
9158 equivalent to a constant. This should be rare. */
9159 x = GEN_INT (outer_const);
9160 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9161 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9162 else
9163 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9164 }
9165
9166 return x;
9167 }
9168 \f
9169 /* Like recog, but we receive the address of a pointer to a new pattern.
9170 We try to match the rtx that the pointer points to.
9171 If that fails, we may try to modify or replace the pattern,
9172 storing the replacement into the same pointer object.
9173
9174 Modifications include deletion or addition of CLOBBERs.
9175
9176 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9177 the CLOBBERs are placed.
9178
9179 The value is the final insn code from the pattern ultimately matched,
9180 or -1. */
9181
9182 static int
9183 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9184 {
9185 rtx pat = *pnewpat;
9186 int insn_code_number;
9187 int num_clobbers_to_add = 0;
9188 int i;
9189 rtx notes = 0;
9190 rtx old_notes, old_pat;
9191
9192 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9193 we use to indicate that something didn't match. If we find such a
9194 thing, force rejection. */
9195 if (GET_CODE (pat) == PARALLEL)
9196 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9197 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9198 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9199 return -1;
9200
9201 old_pat = PATTERN (insn);
9202 old_notes = REG_NOTES (insn);
9203 PATTERN (insn) = pat;
9204 REG_NOTES (insn) = 0;
9205
9206 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9207
9208 /* If it isn't, there is the possibility that we previously had an insn
9209 that clobbered some register as a side effect, but the combined
9210 insn doesn't need to do that. So try once more without the clobbers
9211 unless this represents an ASM insn. */
9212
9213 if (insn_code_number < 0 && ! check_asm_operands (pat)
9214 && GET_CODE (pat) == PARALLEL)
9215 {
9216 int pos;
9217
9218 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9219 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9220 {
9221 if (i != pos)
9222 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9223 pos++;
9224 }
9225
9226 SUBST_INT (XVECLEN (pat, 0), pos);
9227
9228 if (pos == 1)
9229 pat = XVECEXP (pat, 0, 0);
9230
9231 PATTERN (insn) = pat;
9232 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9233 }
9234 PATTERN (insn) = old_pat;
9235 REG_NOTES (insn) = old_notes;
9236
9237 /* Recognize all noop sets, these will be killed by followup pass. */
9238 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9239 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9240
9241 /* If we had any clobbers to add, make a new pattern than contains
9242 them. Then check to make sure that all of them are dead. */
9243 if (num_clobbers_to_add)
9244 {
9245 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9246 rtvec_alloc (GET_CODE (pat) == PARALLEL
9247 ? (XVECLEN (pat, 0)
9248 + num_clobbers_to_add)
9249 : num_clobbers_to_add + 1));
9250
9251 if (GET_CODE (pat) == PARALLEL)
9252 for (i = 0; i < XVECLEN (pat, 0); i++)
9253 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9254 else
9255 XVECEXP (newpat, 0, 0) = pat;
9256
9257 add_clobbers (newpat, insn_code_number);
9258
9259 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9260 i < XVECLEN (newpat, 0); i++)
9261 {
9262 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9263 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9264 return -1;
9265 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9266 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9267 }
9268 pat = newpat;
9269 }
9270
9271 *pnewpat = pat;
9272 *pnotes = notes;
9273
9274 return insn_code_number;
9275 }
9276 \f
9277 /* Like gen_lowpart_general but for use by combine. In combine it
9278 is not possible to create any new pseudoregs. However, it is
9279 safe to create invalid memory addresses, because combine will
9280 try to recognize them and all they will do is make the combine
9281 attempt fail.
9282
9283 If for some reason this cannot do its job, an rtx
9284 (clobber (const_int 0)) is returned.
9285 An insn containing that will not be recognized. */
9286
9287 static rtx
9288 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9289 {
9290 rtx result;
9291
9292 if (GET_MODE (x) == mode)
9293 return x;
9294
9295 /* Return identity if this is a CONST or symbolic
9296 reference. */
9297 if (mode == Pmode
9298 && (GET_CODE (x) == CONST
9299 || GET_CODE (x) == SYMBOL_REF
9300 || GET_CODE (x) == LABEL_REF))
9301 return x;
9302
9303 /* We can only support MODE being wider than a word if X is a
9304 constant integer or has a mode the same size. */
9305
9306 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9307 && ! ((GET_MODE (x) == VOIDmode
9308 && (GET_CODE (x) == CONST_INT
9309 || GET_CODE (x) == CONST_DOUBLE))
9310 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9311 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9312
9313 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9314 won't know what to do. So we will strip off the SUBREG here and
9315 process normally. */
9316 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9317 {
9318 x = SUBREG_REG (x);
9319 if (GET_MODE (x) == mode)
9320 return x;
9321 }
9322
9323 result = gen_lowpart_common (mode, x);
9324 #ifdef CANNOT_CHANGE_MODE_CLASS
9325 if (result != 0 && GET_CODE (result) == SUBREG)
9326 record_subregs_of_mode (result);
9327 #endif
9328
9329 if (result)
9330 return result;
9331
9332 if (MEM_P (x))
9333 {
9334 int offset = 0;
9335
9336 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9337 address. */
9338 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9339 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9340
9341 /* If we want to refer to something bigger than the original memref,
9342 generate a paradoxical subreg instead. That will force a reload
9343 of the original memref X. */
9344 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9345 return gen_rtx_SUBREG (mode, x, 0);
9346
9347 if (WORDS_BIG_ENDIAN)
9348 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9349 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9350
9351 if (BYTES_BIG_ENDIAN)
9352 {
9353 /* Adjust the address so that the address-after-the-data is
9354 unchanged. */
9355 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9356 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9357 }
9358
9359 return adjust_address_nv (x, mode, offset);
9360 }
9361
9362 /* If X is a comparison operator, rewrite it in a new mode. This
9363 probably won't match, but may allow further simplifications. */
9364 else if (COMPARISON_P (x))
9365 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9366
9367 /* If we couldn't simplify X any other way, just enclose it in a
9368 SUBREG. Normally, this SUBREG won't match, but some patterns may
9369 include an explicit SUBREG or we may simplify it further in combine. */
9370 else
9371 {
9372 int offset = 0;
9373 rtx res;
9374 enum machine_mode sub_mode = GET_MODE (x);
9375
9376 offset = subreg_lowpart_offset (mode, sub_mode);
9377 if (sub_mode == VOIDmode)
9378 {
9379 sub_mode = int_mode_for_mode (mode);
9380 x = gen_lowpart_common (sub_mode, x);
9381 if (x == 0)
9382 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
9383 }
9384 res = simplify_gen_subreg (mode, x, sub_mode, offset);
9385 if (res)
9386 return res;
9387 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9388 }
9389 }
9390 \f
9391 /* These routines make binary and unary operations by first seeing if they
9392 fold; if not, a new expression is allocated. */
9393
9394 static rtx
9395 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9396 {
9397 rtx result;
9398 rtx tem;
9399
9400 if (GET_CODE (op0) == CLOBBER)
9401 return op0;
9402 else if (GET_CODE (op1) == CLOBBER)
9403 return op1;
9404
9405 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9406 && swap_commutative_operands_p (op0, op1))
9407 tem = op0, op0 = op1, op1 = tem;
9408
9409 if (GET_RTX_CLASS (code) == RTX_COMPARE
9410 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9411 {
9412 enum machine_mode op_mode = GET_MODE (op0);
9413
9414 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9415 just (REL_OP X Y). */
9416 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9417 {
9418 op1 = XEXP (op0, 1);
9419 op0 = XEXP (op0, 0);
9420 op_mode = GET_MODE (op0);
9421 }
9422
9423 if (op_mode == VOIDmode)
9424 op_mode = GET_MODE (op1);
9425 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9426 }
9427 else
9428 result = simplify_binary_operation (code, mode, op0, op1);
9429
9430 if (result)
9431 return result;
9432
9433 /* Put complex operands first and constants second. */
9434 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9435 && swap_commutative_operands_p (op0, op1))
9436 return gen_rtx_fmt_ee (code, mode, op1, op0);
9437
9438 /* If we are turning off bits already known off in OP0, we need not do
9439 an AND. */
9440 else if (code == AND && GET_CODE (op1) == CONST_INT
9441 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9442 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9443 return op0;
9444
9445 return gen_rtx_fmt_ee (code, mode, op0, op1);
9446 }
9447 \f
9448 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9449 comparison code that will be tested.
9450
9451 The result is a possibly different comparison code to use. *POP0 and
9452 *POP1 may be updated.
9453
9454 It is possible that we might detect that a comparison is either always
9455 true or always false. However, we do not perform general constant
9456 folding in combine, so this knowledge isn't useful. Such tautologies
9457 should have been detected earlier. Hence we ignore all such cases. */
9458
9459 static enum rtx_code
9460 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9461 {
9462 rtx op0 = *pop0;
9463 rtx op1 = *pop1;
9464 rtx tem, tem1;
9465 int i;
9466 enum machine_mode mode, tmode;
9467
9468 /* Try a few ways of applying the same transformation to both operands. */
9469 while (1)
9470 {
9471 #ifndef WORD_REGISTER_OPERATIONS
9472 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9473 so check specially. */
9474 if (code != GTU && code != GEU && code != LTU && code != LEU
9475 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9476 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9477 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9478 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9479 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9480 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9481 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9482 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9483 && XEXP (op0, 1) == XEXP (op1, 1)
9484 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9485 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9486 && (INTVAL (XEXP (op0, 1))
9487 == (GET_MODE_BITSIZE (GET_MODE (op0))
9488 - (GET_MODE_BITSIZE
9489 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9490 {
9491 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9492 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9493 }
9494 #endif
9495
9496 /* If both operands are the same constant shift, see if we can ignore the
9497 shift. We can if the shift is a rotate or if the bits shifted out of
9498 this shift are known to be zero for both inputs and if the type of
9499 comparison is compatible with the shift. */
9500 if (GET_CODE (op0) == GET_CODE (op1)
9501 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9502 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9503 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9504 && (code != GT && code != LT && code != GE && code != LE))
9505 || (GET_CODE (op0) == ASHIFTRT
9506 && (code != GTU && code != LTU
9507 && code != GEU && code != LEU)))
9508 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9509 && INTVAL (XEXP (op0, 1)) >= 0
9510 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9511 && XEXP (op0, 1) == XEXP (op1, 1))
9512 {
9513 enum machine_mode mode = GET_MODE (op0);
9514 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9515 int shift_count = INTVAL (XEXP (op0, 1));
9516
9517 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9518 mask &= (mask >> shift_count) << shift_count;
9519 else if (GET_CODE (op0) == ASHIFT)
9520 mask = (mask & (mask << shift_count)) >> shift_count;
9521
9522 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9523 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9524 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9525 else
9526 break;
9527 }
9528
9529 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9530 SUBREGs are of the same mode, and, in both cases, the AND would
9531 be redundant if the comparison was done in the narrower mode,
9532 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9533 and the operand's possibly nonzero bits are 0xffffff01; in that case
9534 if we only care about QImode, we don't need the AND). This case
9535 occurs if the output mode of an scc insn is not SImode and
9536 STORE_FLAG_VALUE == 1 (e.g., the 386).
9537
9538 Similarly, check for a case where the AND's are ZERO_EXTEND
9539 operations from some narrower mode even though a SUBREG is not
9540 present. */
9541
9542 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9543 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9544 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9545 {
9546 rtx inner_op0 = XEXP (op0, 0);
9547 rtx inner_op1 = XEXP (op1, 0);
9548 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9549 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9550 int changed = 0;
9551
9552 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9553 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9554 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9555 && (GET_MODE (SUBREG_REG (inner_op0))
9556 == GET_MODE (SUBREG_REG (inner_op1)))
9557 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9558 <= HOST_BITS_PER_WIDE_INT)
9559 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9560 GET_MODE (SUBREG_REG (inner_op0)))))
9561 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9562 GET_MODE (SUBREG_REG (inner_op1))))))
9563 {
9564 op0 = SUBREG_REG (inner_op0);
9565 op1 = SUBREG_REG (inner_op1);
9566
9567 /* The resulting comparison is always unsigned since we masked
9568 off the original sign bit. */
9569 code = unsigned_condition (code);
9570
9571 changed = 1;
9572 }
9573
9574 else if (c0 == c1)
9575 for (tmode = GET_CLASS_NARROWEST_MODE
9576 (GET_MODE_CLASS (GET_MODE (op0)));
9577 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9578 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9579 {
9580 op0 = gen_lowpart (tmode, inner_op0);
9581 op1 = gen_lowpart (tmode, inner_op1);
9582 code = unsigned_condition (code);
9583 changed = 1;
9584 break;
9585 }
9586
9587 if (! changed)
9588 break;
9589 }
9590
9591 /* If both operands are NOT, we can strip off the outer operation
9592 and adjust the comparison code for swapped operands; similarly for
9593 NEG, except that this must be an equality comparison. */
9594 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9595 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9596 && (code == EQ || code == NE)))
9597 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9598
9599 else
9600 break;
9601 }
9602
9603 /* If the first operand is a constant, swap the operands and adjust the
9604 comparison code appropriately, but don't do this if the second operand
9605 is already a constant integer. */
9606 if (swap_commutative_operands_p (op0, op1))
9607 {
9608 tem = op0, op0 = op1, op1 = tem;
9609 code = swap_condition (code);
9610 }
9611
9612 /* We now enter a loop during which we will try to simplify the comparison.
9613 For the most part, we only are concerned with comparisons with zero,
9614 but some things may really be comparisons with zero but not start
9615 out looking that way. */
9616
9617 while (GET_CODE (op1) == CONST_INT)
9618 {
9619 enum machine_mode mode = GET_MODE (op0);
9620 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9621 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9622 int equality_comparison_p;
9623 int sign_bit_comparison_p;
9624 int unsigned_comparison_p;
9625 HOST_WIDE_INT const_op;
9626
9627 /* We only want to handle integral modes. This catches VOIDmode,
9628 CCmode, and the floating-point modes. An exception is that we
9629 can handle VOIDmode if OP0 is a COMPARE or a comparison
9630 operation. */
9631
9632 if (GET_MODE_CLASS (mode) != MODE_INT
9633 && ! (mode == VOIDmode
9634 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9635 break;
9636
9637 /* Get the constant we are comparing against and turn off all bits
9638 not on in our mode. */
9639 const_op = INTVAL (op1);
9640 if (mode != VOIDmode)
9641 const_op = trunc_int_for_mode (const_op, mode);
9642 op1 = GEN_INT (const_op);
9643
9644 /* If we are comparing against a constant power of two and the value
9645 being compared can only have that single bit nonzero (e.g., it was
9646 `and'ed with that bit), we can replace this with a comparison
9647 with zero. */
9648 if (const_op
9649 && (code == EQ || code == NE || code == GE || code == GEU
9650 || code == LT || code == LTU)
9651 && mode_width <= HOST_BITS_PER_WIDE_INT
9652 && exact_log2 (const_op) >= 0
9653 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9654 {
9655 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9656 op1 = const0_rtx, const_op = 0;
9657 }
9658
9659 /* Similarly, if we are comparing a value known to be either -1 or
9660 0 with -1, change it to the opposite comparison against zero. */
9661
9662 if (const_op == -1
9663 && (code == EQ || code == NE || code == GT || code == LE
9664 || code == GEU || code == LTU)
9665 && num_sign_bit_copies (op0, mode) == mode_width)
9666 {
9667 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9668 op1 = const0_rtx, const_op = 0;
9669 }
9670
9671 /* Do some canonicalizations based on the comparison code. We prefer
9672 comparisons against zero and then prefer equality comparisons.
9673 If we can reduce the size of a constant, we will do that too. */
9674
9675 switch (code)
9676 {
9677 case LT:
9678 /* < C is equivalent to <= (C - 1) */
9679 if (const_op > 0)
9680 {
9681 const_op -= 1;
9682 op1 = GEN_INT (const_op);
9683 code = LE;
9684 /* ... fall through to LE case below. */
9685 }
9686 else
9687 break;
9688
9689 case LE:
9690 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9691 if (const_op < 0)
9692 {
9693 const_op += 1;
9694 op1 = GEN_INT (const_op);
9695 code = LT;
9696 }
9697
9698 /* If we are doing a <= 0 comparison on a value known to have
9699 a zero sign bit, we can replace this with == 0. */
9700 else if (const_op == 0
9701 && mode_width <= HOST_BITS_PER_WIDE_INT
9702 && (nonzero_bits (op0, mode)
9703 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9704 code = EQ;
9705 break;
9706
9707 case GE:
9708 /* >= C is equivalent to > (C - 1). */
9709 if (const_op > 0)
9710 {
9711 const_op -= 1;
9712 op1 = GEN_INT (const_op);
9713 code = GT;
9714 /* ... fall through to GT below. */
9715 }
9716 else
9717 break;
9718
9719 case GT:
9720 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9721 if (const_op < 0)
9722 {
9723 const_op += 1;
9724 op1 = GEN_INT (const_op);
9725 code = GE;
9726 }
9727
9728 /* If we are doing a > 0 comparison on a value known to have
9729 a zero sign bit, we can replace this with != 0. */
9730 else if (const_op == 0
9731 && mode_width <= HOST_BITS_PER_WIDE_INT
9732 && (nonzero_bits (op0, mode)
9733 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9734 code = NE;
9735 break;
9736
9737 case LTU:
9738 /* < C is equivalent to <= (C - 1). */
9739 if (const_op > 0)
9740 {
9741 const_op -= 1;
9742 op1 = GEN_INT (const_op);
9743 code = LEU;
9744 /* ... fall through ... */
9745 }
9746
9747 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9748 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9749 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9750 {
9751 const_op = 0, op1 = const0_rtx;
9752 code = GE;
9753 break;
9754 }
9755 else
9756 break;
9757
9758 case LEU:
9759 /* unsigned <= 0 is equivalent to == 0 */
9760 if (const_op == 0)
9761 code = EQ;
9762
9763 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9764 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9765 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9766 {
9767 const_op = 0, op1 = const0_rtx;
9768 code = GE;
9769 }
9770 break;
9771
9772 case GEU:
9773 /* >= C is equivalent to > (C - 1). */
9774 if (const_op > 1)
9775 {
9776 const_op -= 1;
9777 op1 = GEN_INT (const_op);
9778 code = GTU;
9779 /* ... fall through ... */
9780 }
9781
9782 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9783 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9784 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9785 {
9786 const_op = 0, op1 = const0_rtx;
9787 code = LT;
9788 break;
9789 }
9790 else
9791 break;
9792
9793 case GTU:
9794 /* unsigned > 0 is equivalent to != 0 */
9795 if (const_op == 0)
9796 code = NE;
9797
9798 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9799 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9800 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9801 {
9802 const_op = 0, op1 = const0_rtx;
9803 code = LT;
9804 }
9805 break;
9806
9807 default:
9808 break;
9809 }
9810
9811 /* Compute some predicates to simplify code below. */
9812
9813 equality_comparison_p = (code == EQ || code == NE);
9814 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9815 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9816 || code == GEU);
9817
9818 /* If this is a sign bit comparison and we can do arithmetic in
9819 MODE, say that we will only be needing the sign bit of OP0. */
9820 if (sign_bit_comparison_p
9821 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9822 op0 = force_to_mode (op0, mode,
9823 ((HOST_WIDE_INT) 1
9824 << (GET_MODE_BITSIZE (mode) - 1)),
9825 NULL_RTX, 0);
9826
9827 /* Now try cases based on the opcode of OP0. If none of the cases
9828 does a "continue", we exit this loop immediately after the
9829 switch. */
9830
9831 switch (GET_CODE (op0))
9832 {
9833 case ZERO_EXTRACT:
9834 /* If we are extracting a single bit from a variable position in
9835 a constant that has only a single bit set and are comparing it
9836 with zero, we can convert this into an equality comparison
9837 between the position and the location of the single bit. */
9838 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9839 have already reduced the shift count modulo the word size. */
9840 if (!SHIFT_COUNT_TRUNCATED
9841 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9842 && XEXP (op0, 1) == const1_rtx
9843 && equality_comparison_p && const_op == 0
9844 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9845 {
9846 if (BITS_BIG_ENDIAN)
9847 {
9848 enum machine_mode new_mode
9849 = mode_for_extraction (EP_extzv, 1);
9850 if (new_mode == MAX_MACHINE_MODE)
9851 i = BITS_PER_WORD - 1 - i;
9852 else
9853 {
9854 mode = new_mode;
9855 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9856 }
9857 }
9858
9859 op0 = XEXP (op0, 2);
9860 op1 = GEN_INT (i);
9861 const_op = i;
9862
9863 /* Result is nonzero iff shift count is equal to I. */
9864 code = reverse_condition (code);
9865 continue;
9866 }
9867
9868 /* ... fall through ... */
9869
9870 case SIGN_EXTRACT:
9871 tem = expand_compound_operation (op0);
9872 if (tem != op0)
9873 {
9874 op0 = tem;
9875 continue;
9876 }
9877 break;
9878
9879 case NOT:
9880 /* If testing for equality, we can take the NOT of the constant. */
9881 if (equality_comparison_p
9882 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9883 {
9884 op0 = XEXP (op0, 0);
9885 op1 = tem;
9886 continue;
9887 }
9888
9889 /* If just looking at the sign bit, reverse the sense of the
9890 comparison. */
9891 if (sign_bit_comparison_p)
9892 {
9893 op0 = XEXP (op0, 0);
9894 code = (code == GE ? LT : GE);
9895 continue;
9896 }
9897 break;
9898
9899 case NEG:
9900 /* If testing for equality, we can take the NEG of the constant. */
9901 if (equality_comparison_p
9902 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9903 {
9904 op0 = XEXP (op0, 0);
9905 op1 = tem;
9906 continue;
9907 }
9908
9909 /* The remaining cases only apply to comparisons with zero. */
9910 if (const_op != 0)
9911 break;
9912
9913 /* When X is ABS or is known positive,
9914 (neg X) is < 0 if and only if X != 0. */
9915
9916 if (sign_bit_comparison_p
9917 && (GET_CODE (XEXP (op0, 0)) == ABS
9918 || (mode_width <= HOST_BITS_PER_WIDE_INT
9919 && (nonzero_bits (XEXP (op0, 0), mode)
9920 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9921 {
9922 op0 = XEXP (op0, 0);
9923 code = (code == LT ? NE : EQ);
9924 continue;
9925 }
9926
9927 /* If we have NEG of something whose two high-order bits are the
9928 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9929 if (num_sign_bit_copies (op0, mode) >= 2)
9930 {
9931 op0 = XEXP (op0, 0);
9932 code = swap_condition (code);
9933 continue;
9934 }
9935 break;
9936
9937 case ROTATE:
9938 /* If we are testing equality and our count is a constant, we
9939 can perform the inverse operation on our RHS. */
9940 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9941 && (tem = simplify_binary_operation (ROTATERT, mode,
9942 op1, XEXP (op0, 1))) != 0)
9943 {
9944 op0 = XEXP (op0, 0);
9945 op1 = tem;
9946 continue;
9947 }
9948
9949 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9950 a particular bit. Convert it to an AND of a constant of that
9951 bit. This will be converted into a ZERO_EXTRACT. */
9952 if (const_op == 0 && sign_bit_comparison_p
9953 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9954 && mode_width <= HOST_BITS_PER_WIDE_INT)
9955 {
9956 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9957 ((HOST_WIDE_INT) 1
9958 << (mode_width - 1
9959 - INTVAL (XEXP (op0, 1)))));
9960 code = (code == LT ? NE : EQ);
9961 continue;
9962 }
9963
9964 /* Fall through. */
9965
9966 case ABS:
9967 /* ABS is ignorable inside an equality comparison with zero. */
9968 if (const_op == 0 && equality_comparison_p)
9969 {
9970 op0 = XEXP (op0, 0);
9971 continue;
9972 }
9973 break;
9974
9975 case SIGN_EXTEND:
9976 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9977 to (compare FOO CONST) if CONST fits in FOO's mode and we
9978 are either testing inequality or have an unsigned comparison
9979 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9980 if (! unsigned_comparison_p
9981 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9982 <= HOST_BITS_PER_WIDE_INT)
9983 && ((unsigned HOST_WIDE_INT) const_op
9984 < (((unsigned HOST_WIDE_INT) 1
9985 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9986 {
9987 op0 = XEXP (op0, 0);
9988 continue;
9989 }
9990 break;
9991
9992 case SUBREG:
9993 /* Check for the case where we are comparing A - C1 with C2,
9994 both constants are smaller than 1/2 the maximum positive
9995 value in MODE, and the comparison is equality or unsigned.
9996 In that case, if A is either zero-extended to MODE or has
9997 sufficient sign bits so that the high-order bit in MODE
9998 is a copy of the sign in the inner mode, we can prove that it is
9999 safe to do the operation in the wider mode. This simplifies
10000 many range checks. */
10001
10002 if (mode_width <= HOST_BITS_PER_WIDE_INT
10003 && subreg_lowpart_p (op0)
10004 && GET_CODE (SUBREG_REG (op0)) == PLUS
10005 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10006 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10007 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10008 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10009 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10010 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10011 GET_MODE (SUBREG_REG (op0)))
10012 & ~GET_MODE_MASK (mode))
10013 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10014 GET_MODE (SUBREG_REG (op0)))
10015 > (unsigned int)
10016 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10017 - GET_MODE_BITSIZE (mode)))))
10018 {
10019 op0 = SUBREG_REG (op0);
10020 continue;
10021 }
10022
10023 /* If the inner mode is narrower and we are extracting the low part,
10024 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10025 if (subreg_lowpart_p (op0)
10026 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10027 /* Fall through */ ;
10028 else
10029 break;
10030
10031 /* ... fall through ... */
10032
10033 case ZERO_EXTEND:
10034 if ((unsigned_comparison_p || equality_comparison_p)
10035 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10036 <= HOST_BITS_PER_WIDE_INT)
10037 && ((unsigned HOST_WIDE_INT) const_op
10038 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10039 {
10040 op0 = XEXP (op0, 0);
10041 continue;
10042 }
10043 break;
10044
10045 case PLUS:
10046 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10047 this for equality comparisons due to pathological cases involving
10048 overflows. */
10049 if (equality_comparison_p
10050 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10051 op1, XEXP (op0, 1))))
10052 {
10053 op0 = XEXP (op0, 0);
10054 op1 = tem;
10055 continue;
10056 }
10057
10058 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10059 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10060 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10061 {
10062 op0 = XEXP (XEXP (op0, 0), 0);
10063 code = (code == LT ? EQ : NE);
10064 continue;
10065 }
10066 break;
10067
10068 case MINUS:
10069 /* We used to optimize signed comparisons against zero, but that
10070 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10071 arrive here as equality comparisons, or (GEU, LTU) are
10072 optimized away. No need to special-case them. */
10073
10074 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10075 (eq B (minus A C)), whichever simplifies. We can only do
10076 this for equality comparisons due to pathological cases involving
10077 overflows. */
10078 if (equality_comparison_p
10079 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10080 XEXP (op0, 1), op1)))
10081 {
10082 op0 = XEXP (op0, 0);
10083 op1 = tem;
10084 continue;
10085 }
10086
10087 if (equality_comparison_p
10088 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10089 XEXP (op0, 0), op1)))
10090 {
10091 op0 = XEXP (op0, 1);
10092 op1 = tem;
10093 continue;
10094 }
10095
10096 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10097 of bits in X minus 1, is one iff X > 0. */
10098 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10099 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10100 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10101 == mode_width - 1
10102 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10103 {
10104 op0 = XEXP (op0, 1);
10105 code = (code == GE ? LE : GT);
10106 continue;
10107 }
10108 break;
10109
10110 case XOR:
10111 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10112 if C is zero or B is a constant. */
10113 if (equality_comparison_p
10114 && 0 != (tem = simplify_binary_operation (XOR, mode,
10115 XEXP (op0, 1), op1)))
10116 {
10117 op0 = XEXP (op0, 0);
10118 op1 = tem;
10119 continue;
10120 }
10121 break;
10122
10123 case EQ: case NE:
10124 case UNEQ: case LTGT:
10125 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10126 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10127 case UNORDERED: case ORDERED:
10128 /* We can't do anything if OP0 is a condition code value, rather
10129 than an actual data value. */
10130 if (const_op != 0
10131 || CC0_P (XEXP (op0, 0))
10132 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10133 break;
10134
10135 /* Get the two operands being compared. */
10136 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10137 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10138 else
10139 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10140
10141 /* Check for the cases where we simply want the result of the
10142 earlier test or the opposite of that result. */
10143 if (code == NE || code == EQ
10144 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10145 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10146 && (STORE_FLAG_VALUE
10147 & (((HOST_WIDE_INT) 1
10148 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10149 && (code == LT || code == GE)))
10150 {
10151 enum rtx_code new_code;
10152 if (code == LT || code == NE)
10153 new_code = GET_CODE (op0);
10154 else
10155 new_code = combine_reversed_comparison_code (op0);
10156
10157 if (new_code != UNKNOWN)
10158 {
10159 code = new_code;
10160 op0 = tem;
10161 op1 = tem1;
10162 continue;
10163 }
10164 }
10165 break;
10166
10167 case IOR:
10168 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10169 iff X <= 0. */
10170 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10171 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10172 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10173 {
10174 op0 = XEXP (op0, 1);
10175 code = (code == GE ? GT : LE);
10176 continue;
10177 }
10178 break;
10179
10180 case AND:
10181 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10182 will be converted to a ZERO_EXTRACT later. */
10183 if (const_op == 0 && equality_comparison_p
10184 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10185 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10186 {
10187 op0 = simplify_and_const_int
10188 (op0, mode, gen_rtx_LSHIFTRT (mode,
10189 XEXP (op0, 1),
10190 XEXP (XEXP (op0, 0), 1)),
10191 (HOST_WIDE_INT) 1);
10192 continue;
10193 }
10194
10195 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10196 zero and X is a comparison and C1 and C2 describe only bits set
10197 in STORE_FLAG_VALUE, we can compare with X. */
10198 if (const_op == 0 && equality_comparison_p
10199 && mode_width <= HOST_BITS_PER_WIDE_INT
10200 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10201 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10202 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10203 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10204 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10205 {
10206 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10207 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10208 if ((~STORE_FLAG_VALUE & mask) == 0
10209 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10210 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10211 && COMPARISON_P (tem))))
10212 {
10213 op0 = XEXP (XEXP (op0, 0), 0);
10214 continue;
10215 }
10216 }
10217
10218 /* If we are doing an equality comparison of an AND of a bit equal
10219 to the sign bit, replace this with a LT or GE comparison of
10220 the underlying value. */
10221 if (equality_comparison_p
10222 && const_op == 0
10223 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10224 && mode_width <= HOST_BITS_PER_WIDE_INT
10225 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10226 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10227 {
10228 op0 = XEXP (op0, 0);
10229 code = (code == EQ ? GE : LT);
10230 continue;
10231 }
10232
10233 /* If this AND operation is really a ZERO_EXTEND from a narrower
10234 mode, the constant fits within that mode, and this is either an
10235 equality or unsigned comparison, try to do this comparison in
10236 the narrower mode. */
10237 if ((equality_comparison_p || unsigned_comparison_p)
10238 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10239 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10240 & GET_MODE_MASK (mode))
10241 + 1)) >= 0
10242 && const_op >> i == 0
10243 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10244 {
10245 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10246 continue;
10247 }
10248
10249 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10250 fits in both M1 and M2 and the SUBREG is either paradoxical
10251 or represents the low part, permute the SUBREG and the AND
10252 and try again. */
10253 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10254 {
10255 unsigned HOST_WIDE_INT c1;
10256 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10257 /* Require an integral mode, to avoid creating something like
10258 (AND:SF ...). */
10259 if (SCALAR_INT_MODE_P (tmode)
10260 /* It is unsafe to commute the AND into the SUBREG if the
10261 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10262 not defined. As originally written the upper bits
10263 have a defined value due to the AND operation.
10264 However, if we commute the AND inside the SUBREG then
10265 they no longer have defined values and the meaning of
10266 the code has been changed. */
10267 && (0
10268 #ifdef WORD_REGISTER_OPERATIONS
10269 || (mode_width > GET_MODE_BITSIZE (tmode)
10270 && mode_width <= BITS_PER_WORD)
10271 #endif
10272 || (mode_width <= GET_MODE_BITSIZE (tmode)
10273 && subreg_lowpart_p (XEXP (op0, 0))))
10274 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10275 && mode_width <= HOST_BITS_PER_WIDE_INT
10276 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10277 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10278 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10279 && c1 != mask
10280 && c1 != GET_MODE_MASK (tmode))
10281 {
10282 op0 = gen_binary (AND, tmode,
10283 SUBREG_REG (XEXP (op0, 0)),
10284 gen_int_mode (c1, tmode));
10285 op0 = gen_lowpart (mode, op0);
10286 continue;
10287 }
10288 }
10289
10290 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10291 if (const_op == 0 && equality_comparison_p
10292 && XEXP (op0, 1) == const1_rtx
10293 && GET_CODE (XEXP (op0, 0)) == NOT)
10294 {
10295 op0 = simplify_and_const_int
10296 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10297 code = (code == NE ? EQ : NE);
10298 continue;
10299 }
10300
10301 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10302 (eq (and (lshiftrt X) 1) 0).
10303 Also handle the case where (not X) is expressed using xor. */
10304 if (const_op == 0 && equality_comparison_p
10305 && XEXP (op0, 1) == const1_rtx
10306 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10307 {
10308 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10309 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10310
10311 if (GET_CODE (shift_op) == NOT
10312 || (GET_CODE (shift_op) == XOR
10313 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10314 && GET_CODE (shift_count) == CONST_INT
10315 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10316 && (INTVAL (XEXP (shift_op, 1))
10317 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10318 {
10319 op0 = simplify_and_const_int
10320 (NULL_RTX, mode,
10321 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10322 (HOST_WIDE_INT) 1);
10323 code = (code == NE ? EQ : NE);
10324 continue;
10325 }
10326 }
10327 break;
10328
10329 case ASHIFT:
10330 /* If we have (compare (ashift FOO N) (const_int C)) and
10331 the high order N bits of FOO (N+1 if an inequality comparison)
10332 are known to be zero, we can do this by comparing FOO with C
10333 shifted right N bits so long as the low-order N bits of C are
10334 zero. */
10335 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10336 && INTVAL (XEXP (op0, 1)) >= 0
10337 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10338 < HOST_BITS_PER_WIDE_INT)
10339 && ((const_op
10340 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10341 && mode_width <= HOST_BITS_PER_WIDE_INT
10342 && (nonzero_bits (XEXP (op0, 0), mode)
10343 & ~(mask >> (INTVAL (XEXP (op0, 1))
10344 + ! equality_comparison_p))) == 0)
10345 {
10346 /* We must perform a logical shift, not an arithmetic one,
10347 as we want the top N bits of C to be zero. */
10348 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10349
10350 temp >>= INTVAL (XEXP (op0, 1));
10351 op1 = gen_int_mode (temp, mode);
10352 op0 = XEXP (op0, 0);
10353 continue;
10354 }
10355
10356 /* If we are doing a sign bit comparison, it means we are testing
10357 a particular bit. Convert it to the appropriate AND. */
10358 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10359 && mode_width <= HOST_BITS_PER_WIDE_INT)
10360 {
10361 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10362 ((HOST_WIDE_INT) 1
10363 << (mode_width - 1
10364 - INTVAL (XEXP (op0, 1)))));
10365 code = (code == LT ? NE : EQ);
10366 continue;
10367 }
10368
10369 /* If this an equality comparison with zero and we are shifting
10370 the low bit to the sign bit, we can convert this to an AND of the
10371 low-order bit. */
10372 if (const_op == 0 && equality_comparison_p
10373 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10374 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10375 == mode_width - 1)
10376 {
10377 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10378 (HOST_WIDE_INT) 1);
10379 continue;
10380 }
10381 break;
10382
10383 case ASHIFTRT:
10384 /* If this is an equality comparison with zero, we can do this
10385 as a logical shift, which might be much simpler. */
10386 if (equality_comparison_p && const_op == 0
10387 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10388 {
10389 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10390 XEXP (op0, 0),
10391 INTVAL (XEXP (op0, 1)));
10392 continue;
10393 }
10394
10395 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10396 do the comparison in a narrower mode. */
10397 if (! unsigned_comparison_p
10398 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10399 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10400 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10401 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10402 MODE_INT, 1)) != BLKmode
10403 && (((unsigned HOST_WIDE_INT) const_op
10404 + (GET_MODE_MASK (tmode) >> 1) + 1)
10405 <= GET_MODE_MASK (tmode)))
10406 {
10407 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10408 continue;
10409 }
10410
10411 /* Likewise if OP0 is a PLUS of a sign extension with a
10412 constant, which is usually represented with the PLUS
10413 between the shifts. */
10414 if (! unsigned_comparison_p
10415 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10416 && GET_CODE (XEXP (op0, 0)) == PLUS
10417 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10418 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10419 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10420 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10421 MODE_INT, 1)) != BLKmode
10422 && (((unsigned HOST_WIDE_INT) const_op
10423 + (GET_MODE_MASK (tmode) >> 1) + 1)
10424 <= GET_MODE_MASK (tmode)))
10425 {
10426 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10427 rtx add_const = XEXP (XEXP (op0, 0), 1);
10428 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10429 XEXP (op0, 1));
10430
10431 op0 = gen_binary (PLUS, tmode,
10432 gen_lowpart (tmode, inner),
10433 new_const);
10434 continue;
10435 }
10436
10437 /* ... fall through ... */
10438 case LSHIFTRT:
10439 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10440 the low order N bits of FOO are known to be zero, we can do this
10441 by comparing FOO with C shifted left N bits so long as no
10442 overflow occurs. */
10443 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10444 && INTVAL (XEXP (op0, 1)) >= 0
10445 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10446 && mode_width <= HOST_BITS_PER_WIDE_INT
10447 && (nonzero_bits (XEXP (op0, 0), mode)
10448 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10449 && (((unsigned HOST_WIDE_INT) const_op
10450 + (GET_CODE (op0) != LSHIFTRT
10451 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10452 + 1)
10453 : 0))
10454 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10455 {
10456 /* If the shift was logical, then we must make the condition
10457 unsigned. */
10458 if (GET_CODE (op0) == LSHIFTRT)
10459 code = unsigned_condition (code);
10460
10461 const_op <<= INTVAL (XEXP (op0, 1));
10462 op1 = GEN_INT (const_op);
10463 op0 = XEXP (op0, 0);
10464 continue;
10465 }
10466
10467 /* If we are using this shift to extract just the sign bit, we
10468 can replace this with an LT or GE comparison. */
10469 if (const_op == 0
10470 && (equality_comparison_p || sign_bit_comparison_p)
10471 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10472 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10473 == mode_width - 1)
10474 {
10475 op0 = XEXP (op0, 0);
10476 code = (code == NE || code == GT ? LT : GE);
10477 continue;
10478 }
10479 break;
10480
10481 default:
10482 break;
10483 }
10484
10485 break;
10486 }
10487
10488 /* Now make any compound operations involved in this comparison. Then,
10489 check for an outmost SUBREG on OP0 that is not doing anything or is
10490 paradoxical. The latter transformation must only be performed when
10491 it is known that the "extra" bits will be the same in op0 and op1 or
10492 that they don't matter. There are three cases to consider:
10493
10494 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10495 care bits and we can assume they have any convenient value. So
10496 making the transformation is safe.
10497
10498 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10499 In this case the upper bits of op0 are undefined. We should not make
10500 the simplification in that case as we do not know the contents of
10501 those bits.
10502
10503 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10504 UNKNOWN. In that case we know those bits are zeros or ones. We must
10505 also be sure that they are the same as the upper bits of op1.
10506
10507 We can never remove a SUBREG for a non-equality comparison because
10508 the sign bit is in a different place in the underlying object. */
10509
10510 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10511 op1 = make_compound_operation (op1, SET);
10512
10513 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10514 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10515 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10516 && (code == NE || code == EQ))
10517 {
10518 if (GET_MODE_SIZE (GET_MODE (op0))
10519 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10520 {
10521 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10522 implemented. */
10523 if (REG_P (SUBREG_REG (op0)))
10524 {
10525 op0 = SUBREG_REG (op0);
10526 op1 = gen_lowpart (GET_MODE (op0), op1);
10527 }
10528 }
10529 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10530 <= HOST_BITS_PER_WIDE_INT)
10531 && (nonzero_bits (SUBREG_REG (op0),
10532 GET_MODE (SUBREG_REG (op0)))
10533 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10534 {
10535 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10536
10537 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10538 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10539 op0 = SUBREG_REG (op0), op1 = tem;
10540 }
10541 }
10542
10543 /* We now do the opposite procedure: Some machines don't have compare
10544 insns in all modes. If OP0's mode is an integer mode smaller than a
10545 word and we can't do a compare in that mode, see if there is a larger
10546 mode for which we can do the compare. There are a number of cases in
10547 which we can use the wider mode. */
10548
10549 mode = GET_MODE (op0);
10550 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10551 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10552 && ! have_insn_for (COMPARE, mode))
10553 for (tmode = GET_MODE_WIDER_MODE (mode);
10554 (tmode != VOIDmode
10555 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10556 tmode = GET_MODE_WIDER_MODE (tmode))
10557 if (have_insn_for (COMPARE, tmode))
10558 {
10559 int zero_extended;
10560
10561 /* If the only nonzero bits in OP0 and OP1 are those in the
10562 narrower mode and this is an equality or unsigned comparison,
10563 we can use the wider mode. Similarly for sign-extended
10564 values, in which case it is true for all comparisons. */
10565 zero_extended = ((code == EQ || code == NE
10566 || code == GEU || code == GTU
10567 || code == LEU || code == LTU)
10568 && (nonzero_bits (op0, tmode)
10569 & ~GET_MODE_MASK (mode)) == 0
10570 && ((GET_CODE (op1) == CONST_INT
10571 || (nonzero_bits (op1, tmode)
10572 & ~GET_MODE_MASK (mode)) == 0)));
10573
10574 if (zero_extended
10575 || ((num_sign_bit_copies (op0, tmode)
10576 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10577 - GET_MODE_BITSIZE (mode)))
10578 && (num_sign_bit_copies (op1, tmode)
10579 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10580 - GET_MODE_BITSIZE (mode)))))
10581 {
10582 /* If OP0 is an AND and we don't have an AND in MODE either,
10583 make a new AND in the proper mode. */
10584 if (GET_CODE (op0) == AND
10585 && !have_insn_for (AND, mode))
10586 op0 = gen_binary (AND, tmode,
10587 gen_lowpart (tmode,
10588 XEXP (op0, 0)),
10589 gen_lowpart (tmode,
10590 XEXP (op0, 1)));
10591
10592 op0 = gen_lowpart (tmode, op0);
10593 if (zero_extended && GET_CODE (op1) == CONST_INT)
10594 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10595 op1 = gen_lowpart (tmode, op1);
10596 break;
10597 }
10598
10599 /* If this is a test for negative, we can make an explicit
10600 test of the sign bit. */
10601
10602 if (op1 == const0_rtx && (code == LT || code == GE)
10603 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10604 {
10605 op0 = gen_binary (AND, tmode,
10606 gen_lowpart (tmode, op0),
10607 GEN_INT ((HOST_WIDE_INT) 1
10608 << (GET_MODE_BITSIZE (mode) - 1)));
10609 code = (code == LT) ? NE : EQ;
10610 break;
10611 }
10612 }
10613
10614 #ifdef CANONICALIZE_COMPARISON
10615 /* If this machine only supports a subset of valid comparisons, see if we
10616 can convert an unsupported one into a supported one. */
10617 CANONICALIZE_COMPARISON (code, op0, op1);
10618 #endif
10619
10620 *pop0 = op0;
10621 *pop1 = op1;
10622
10623 return code;
10624 }
10625 \f
10626 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10627 searching backward. */
10628 static enum rtx_code
10629 combine_reversed_comparison_code (rtx exp)
10630 {
10631 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10632 rtx x;
10633
10634 if (code1 != UNKNOWN
10635 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10636 return code1;
10637 /* Otherwise try and find where the condition codes were last set and
10638 use that. */
10639 x = get_last_value (XEXP (exp, 0));
10640 if (!x || GET_CODE (x) != COMPARE)
10641 return UNKNOWN;
10642 return reversed_comparison_code_parts (GET_CODE (exp),
10643 XEXP (x, 0), XEXP (x, 1), NULL);
10644 }
10645
10646 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10647 Return NULL_RTX in case we fail to do the reversal. */
10648 static rtx
10649 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10650 {
10651 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10652 if (reversed_code == UNKNOWN)
10653 return NULL_RTX;
10654 else
10655 return gen_binary (reversed_code, mode, op0, op1);
10656 }
10657 \f
10658 /* Utility function for following routine. Called when X is part of a value
10659 being stored into last_set_value. Sets last_set_table_tick
10660 for each register mentioned. Similar to mention_regs in cse.c */
10661
10662 static void
10663 update_table_tick (rtx x)
10664 {
10665 enum rtx_code code = GET_CODE (x);
10666 const char *fmt = GET_RTX_FORMAT (code);
10667 int i;
10668
10669 if (code == REG)
10670 {
10671 unsigned int regno = REGNO (x);
10672 unsigned int endregno
10673 = regno + (regno < FIRST_PSEUDO_REGISTER
10674 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10675 unsigned int r;
10676
10677 for (r = regno; r < endregno; r++)
10678 reg_stat[r].last_set_table_tick = label_tick;
10679
10680 return;
10681 }
10682
10683 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10684 /* Note that we can't have an "E" in values stored; see
10685 get_last_value_validate. */
10686 if (fmt[i] == 'e')
10687 {
10688 /* Check for identical subexpressions. If x contains
10689 identical subexpression we only have to traverse one of
10690 them. */
10691 if (i == 0 && ARITHMETIC_P (x))
10692 {
10693 /* Note that at this point x1 has already been
10694 processed. */
10695 rtx x0 = XEXP (x, 0);
10696 rtx x1 = XEXP (x, 1);
10697
10698 /* If x0 and x1 are identical then there is no need to
10699 process x0. */
10700 if (x0 == x1)
10701 break;
10702
10703 /* If x0 is identical to a subexpression of x1 then while
10704 processing x1, x0 has already been processed. Thus we
10705 are done with x. */
10706 if (ARITHMETIC_P (x1)
10707 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10708 break;
10709
10710 /* If x1 is identical to a subexpression of x0 then we
10711 still have to process the rest of x0. */
10712 if (ARITHMETIC_P (x0)
10713 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10714 {
10715 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10716 break;
10717 }
10718 }
10719
10720 update_table_tick (XEXP (x, i));
10721 }
10722 }
10723
10724 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10725 are saying that the register is clobbered and we no longer know its
10726 value. If INSN is zero, don't update reg_stat[].last_set; this is
10727 only permitted with VALUE also zero and is used to invalidate the
10728 register. */
10729
10730 static void
10731 record_value_for_reg (rtx reg, rtx insn, rtx value)
10732 {
10733 unsigned int regno = REGNO (reg);
10734 unsigned int endregno
10735 = regno + (regno < FIRST_PSEUDO_REGISTER
10736 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10737 unsigned int i;
10738
10739 /* If VALUE contains REG and we have a previous value for REG, substitute
10740 the previous value. */
10741 if (value && insn && reg_overlap_mentioned_p (reg, value))
10742 {
10743 rtx tem;
10744
10745 /* Set things up so get_last_value is allowed to see anything set up to
10746 our insn. */
10747 subst_low_cuid = INSN_CUID (insn);
10748 tem = get_last_value (reg);
10749
10750 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10751 it isn't going to be useful and will take a lot of time to process,
10752 so just use the CLOBBER. */
10753
10754 if (tem)
10755 {
10756 if (ARITHMETIC_P (tem)
10757 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10758 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10759 tem = XEXP (tem, 0);
10760
10761 value = replace_rtx (copy_rtx (value), reg, tem);
10762 }
10763 }
10764
10765 /* For each register modified, show we don't know its value, that
10766 we don't know about its bitwise content, that its value has been
10767 updated, and that we don't know the location of the death of the
10768 register. */
10769 for (i = regno; i < endregno; i++)
10770 {
10771 if (insn)
10772 reg_stat[i].last_set = insn;
10773
10774 reg_stat[i].last_set_value = 0;
10775 reg_stat[i].last_set_mode = 0;
10776 reg_stat[i].last_set_nonzero_bits = 0;
10777 reg_stat[i].last_set_sign_bit_copies = 0;
10778 reg_stat[i].last_death = 0;
10779 }
10780
10781 /* Mark registers that are being referenced in this value. */
10782 if (value)
10783 update_table_tick (value);
10784
10785 /* Now update the status of each register being set.
10786 If someone is using this register in this block, set this register
10787 to invalid since we will get confused between the two lives in this
10788 basic block. This makes using this register always invalid. In cse, we
10789 scan the table to invalidate all entries using this register, but this
10790 is too much work for us. */
10791
10792 for (i = regno; i < endregno; i++)
10793 {
10794 reg_stat[i].last_set_label = label_tick;
10795 if (value && reg_stat[i].last_set_table_tick == label_tick)
10796 reg_stat[i].last_set_invalid = 1;
10797 else
10798 reg_stat[i].last_set_invalid = 0;
10799 }
10800
10801 /* The value being assigned might refer to X (like in "x++;"). In that
10802 case, we must replace it with (clobber (const_int 0)) to prevent
10803 infinite loops. */
10804 if (value && ! get_last_value_validate (&value, insn,
10805 reg_stat[regno].last_set_label, 0))
10806 {
10807 value = copy_rtx (value);
10808 if (! get_last_value_validate (&value, insn,
10809 reg_stat[regno].last_set_label, 1))
10810 value = 0;
10811 }
10812
10813 /* For the main register being modified, update the value, the mode, the
10814 nonzero bits, and the number of sign bit copies. */
10815
10816 reg_stat[regno].last_set_value = value;
10817
10818 if (value)
10819 {
10820 enum machine_mode mode = GET_MODE (reg);
10821 subst_low_cuid = INSN_CUID (insn);
10822 reg_stat[regno].last_set_mode = mode;
10823 if (GET_MODE_CLASS (mode) == MODE_INT
10824 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10825 mode = nonzero_bits_mode;
10826 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10827 reg_stat[regno].last_set_sign_bit_copies
10828 = num_sign_bit_copies (value, GET_MODE (reg));
10829 }
10830 }
10831
10832 /* Called via note_stores from record_dead_and_set_regs to handle one
10833 SET or CLOBBER in an insn. DATA is the instruction in which the
10834 set is occurring. */
10835
10836 static void
10837 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10838 {
10839 rtx record_dead_insn = (rtx) data;
10840
10841 if (GET_CODE (dest) == SUBREG)
10842 dest = SUBREG_REG (dest);
10843
10844 if (REG_P (dest))
10845 {
10846 /* If we are setting the whole register, we know its value. Otherwise
10847 show that we don't know the value. We can handle SUBREG in
10848 some cases. */
10849 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10850 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10851 else if (GET_CODE (setter) == SET
10852 && GET_CODE (SET_DEST (setter)) == SUBREG
10853 && SUBREG_REG (SET_DEST (setter)) == dest
10854 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10855 && subreg_lowpart_p (SET_DEST (setter)))
10856 record_value_for_reg (dest, record_dead_insn,
10857 gen_lowpart (GET_MODE (dest),
10858 SET_SRC (setter)));
10859 else
10860 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10861 }
10862 else if (MEM_P (dest)
10863 /* Ignore pushes, they clobber nothing. */
10864 && ! push_operand (dest, GET_MODE (dest)))
10865 mem_last_set = INSN_CUID (record_dead_insn);
10866 }
10867
10868 /* Update the records of when each REG was most recently set or killed
10869 for the things done by INSN. This is the last thing done in processing
10870 INSN in the combiner loop.
10871
10872 We update reg_stat[], in particular fields last_set, last_set_value,
10873 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10874 last_death, and also the similar information mem_last_set (which insn
10875 most recently modified memory) and last_call_cuid (which insn was the
10876 most recent subroutine call). */
10877
10878 static void
10879 record_dead_and_set_regs (rtx insn)
10880 {
10881 rtx link;
10882 unsigned int i;
10883
10884 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10885 {
10886 if (REG_NOTE_KIND (link) == REG_DEAD
10887 && REG_P (XEXP (link, 0)))
10888 {
10889 unsigned int regno = REGNO (XEXP (link, 0));
10890 unsigned int endregno
10891 = regno + (regno < FIRST_PSEUDO_REGISTER
10892 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10893 : 1);
10894
10895 for (i = regno; i < endregno; i++)
10896 reg_stat[i].last_death = insn;
10897 }
10898 else if (REG_NOTE_KIND (link) == REG_INC)
10899 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10900 }
10901
10902 if (CALL_P (insn))
10903 {
10904 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10905 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
10906 {
10907 reg_stat[i].last_set_value = 0;
10908 reg_stat[i].last_set_mode = 0;
10909 reg_stat[i].last_set_nonzero_bits = 0;
10910 reg_stat[i].last_set_sign_bit_copies = 0;
10911 reg_stat[i].last_death = 0;
10912 }
10913
10914 last_call_cuid = mem_last_set = INSN_CUID (insn);
10915
10916 /* Don't bother recording what this insn does. It might set the
10917 return value register, but we can't combine into a call
10918 pattern anyway, so there's no point trying (and it may cause
10919 a crash, if e.g. we wind up asking for last_set_value of a
10920 SUBREG of the return value register). */
10921 return;
10922 }
10923
10924 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
10925 }
10926
10927 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10928 register present in the SUBREG, so for each such SUBREG go back and
10929 adjust nonzero and sign bit information of the registers that are
10930 known to have some zero/sign bits set.
10931
10932 This is needed because when combine blows the SUBREGs away, the
10933 information on zero/sign bits is lost and further combines can be
10934 missed because of that. */
10935
10936 static void
10937 record_promoted_value (rtx insn, rtx subreg)
10938 {
10939 rtx links, set;
10940 unsigned int regno = REGNO (SUBREG_REG (subreg));
10941 enum machine_mode mode = GET_MODE (subreg);
10942
10943 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
10944 return;
10945
10946 for (links = LOG_LINKS (insn); links;)
10947 {
10948 insn = XEXP (links, 0);
10949 set = single_set (insn);
10950
10951 if (! set || !REG_P (SET_DEST (set))
10952 || REGNO (SET_DEST (set)) != regno
10953 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
10954 {
10955 links = XEXP (links, 1);
10956 continue;
10957 }
10958
10959 if (reg_stat[regno].last_set == insn)
10960 {
10961 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
10962 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
10963 }
10964
10965 if (REG_P (SET_SRC (set)))
10966 {
10967 regno = REGNO (SET_SRC (set));
10968 links = LOG_LINKS (insn);
10969 }
10970 else
10971 break;
10972 }
10973 }
10974
10975 /* Scan X for promoted SUBREGs. For each one found,
10976 note what it implies to the registers used in it. */
10977
10978 static void
10979 check_promoted_subreg (rtx insn, rtx x)
10980 {
10981 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
10982 && REG_P (SUBREG_REG (x)))
10983 record_promoted_value (insn, x);
10984 else
10985 {
10986 const char *format = GET_RTX_FORMAT (GET_CODE (x));
10987 int i, j;
10988
10989 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
10990 switch (format[i])
10991 {
10992 case 'e':
10993 check_promoted_subreg (insn, XEXP (x, i));
10994 break;
10995 case 'V':
10996 case 'E':
10997 if (XVEC (x, i) != 0)
10998 for (j = 0; j < XVECLEN (x, i); j++)
10999 check_promoted_subreg (insn, XVECEXP (x, i, j));
11000 break;
11001 }
11002 }
11003 }
11004 \f
11005 /* Utility routine for the following function. Verify that all the registers
11006 mentioned in *LOC are valid when *LOC was part of a value set when
11007 label_tick == TICK. Return 0 if some are not.
11008
11009 If REPLACE is nonzero, replace the invalid reference with
11010 (clobber (const_int 0)) and return 1. This replacement is useful because
11011 we often can get useful information about the form of a value (e.g., if
11012 it was produced by a shift that always produces -1 or 0) even though
11013 we don't know exactly what registers it was produced from. */
11014
11015 static int
11016 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11017 {
11018 rtx x = *loc;
11019 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11020 int len = GET_RTX_LENGTH (GET_CODE (x));
11021 int i;
11022
11023 if (REG_P (x))
11024 {
11025 unsigned int regno = REGNO (x);
11026 unsigned int endregno
11027 = regno + (regno < FIRST_PSEUDO_REGISTER
11028 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11029 unsigned int j;
11030
11031 for (j = regno; j < endregno; j++)
11032 if (reg_stat[j].last_set_invalid
11033 /* If this is a pseudo-register that was only set once and not
11034 live at the beginning of the function, it is always valid. */
11035 || (! (regno >= FIRST_PSEUDO_REGISTER
11036 && REG_N_SETS (regno) == 1
11037 && (! REGNO_REG_SET_P
11038 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11039 && reg_stat[j].last_set_label > tick))
11040 {
11041 if (replace)
11042 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11043 return replace;
11044 }
11045
11046 return 1;
11047 }
11048 /* If this is a memory reference, make sure that there were
11049 no stores after it that might have clobbered the value. We don't
11050 have alias info, so we assume any store invalidates it. */
11051 else if (MEM_P (x) && !MEM_READONLY_P (x)
11052 && INSN_CUID (insn) <= mem_last_set)
11053 {
11054 if (replace)
11055 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11056 return replace;
11057 }
11058
11059 for (i = 0; i < len; i++)
11060 {
11061 if (fmt[i] == 'e')
11062 {
11063 /* Check for identical subexpressions. If x contains
11064 identical subexpression we only have to traverse one of
11065 them. */
11066 if (i == 1 && ARITHMETIC_P (x))
11067 {
11068 /* Note that at this point x0 has already been checked
11069 and found valid. */
11070 rtx x0 = XEXP (x, 0);
11071 rtx x1 = XEXP (x, 1);
11072
11073 /* If x0 and x1 are identical then x is also valid. */
11074 if (x0 == x1)
11075 return 1;
11076
11077 /* If x1 is identical to a subexpression of x0 then
11078 while checking x0, x1 has already been checked. Thus
11079 it is valid and so as x. */
11080 if (ARITHMETIC_P (x0)
11081 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11082 return 1;
11083
11084 /* If x0 is identical to a subexpression of x1 then x is
11085 valid iff the rest of x1 is valid. */
11086 if (ARITHMETIC_P (x1)
11087 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11088 return
11089 get_last_value_validate (&XEXP (x1,
11090 x0 == XEXP (x1, 0) ? 1 : 0),
11091 insn, tick, replace);
11092 }
11093
11094 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11095 replace) == 0)
11096 return 0;
11097 }
11098 /* Don't bother with these. They shouldn't occur anyway. */
11099 else if (fmt[i] == 'E')
11100 return 0;
11101 }
11102
11103 /* If we haven't found a reason for it to be invalid, it is valid. */
11104 return 1;
11105 }
11106
11107 /* Get the last value assigned to X, if known. Some registers
11108 in the value may be replaced with (clobber (const_int 0)) if their value
11109 is known longer known reliably. */
11110
11111 static rtx
11112 get_last_value (rtx x)
11113 {
11114 unsigned int regno;
11115 rtx value;
11116
11117 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11118 then convert it to the desired mode. If this is a paradoxical SUBREG,
11119 we cannot predict what values the "extra" bits might have. */
11120 if (GET_CODE (x) == SUBREG
11121 && subreg_lowpart_p (x)
11122 && (GET_MODE_SIZE (GET_MODE (x))
11123 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11124 && (value = get_last_value (SUBREG_REG (x))) != 0)
11125 return gen_lowpart (GET_MODE (x), value);
11126
11127 if (!REG_P (x))
11128 return 0;
11129
11130 regno = REGNO (x);
11131 value = reg_stat[regno].last_set_value;
11132
11133 /* If we don't have a value, or if it isn't for this basic block and
11134 it's either a hard register, set more than once, or it's a live
11135 at the beginning of the function, return 0.
11136
11137 Because if it's not live at the beginning of the function then the reg
11138 is always set before being used (is never used without being set).
11139 And, if it's set only once, and it's always set before use, then all
11140 uses must have the same last value, even if it's not from this basic
11141 block. */
11142
11143 if (value == 0
11144 || (reg_stat[regno].last_set_label != label_tick
11145 && (regno < FIRST_PSEUDO_REGISTER
11146 || REG_N_SETS (regno) != 1
11147 || (REGNO_REG_SET_P
11148 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11149 return 0;
11150
11151 /* If the value was set in a later insn than the ones we are processing,
11152 we can't use it even if the register was only set once. */
11153 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11154 return 0;
11155
11156 /* If the value has all its registers valid, return it. */
11157 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11158 reg_stat[regno].last_set_label, 0))
11159 return value;
11160
11161 /* Otherwise, make a copy and replace any invalid register with
11162 (clobber (const_int 0)). If that fails for some reason, return 0. */
11163
11164 value = copy_rtx (value);
11165 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11166 reg_stat[regno].last_set_label, 1))
11167 return value;
11168
11169 return 0;
11170 }
11171 \f
11172 /* Return nonzero if expression X refers to a REG or to memory
11173 that is set in an instruction more recent than FROM_CUID. */
11174
11175 static int
11176 use_crosses_set_p (rtx x, int from_cuid)
11177 {
11178 const char *fmt;
11179 int i;
11180 enum rtx_code code = GET_CODE (x);
11181
11182 if (code == REG)
11183 {
11184 unsigned int regno = REGNO (x);
11185 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11186 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11187
11188 #ifdef PUSH_ROUNDING
11189 /* Don't allow uses of the stack pointer to be moved,
11190 because we don't know whether the move crosses a push insn. */
11191 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11192 return 1;
11193 #endif
11194 for (; regno < endreg; regno++)
11195 if (reg_stat[regno].last_set
11196 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11197 return 1;
11198 return 0;
11199 }
11200
11201 if (code == MEM && mem_last_set > from_cuid)
11202 return 1;
11203
11204 fmt = GET_RTX_FORMAT (code);
11205
11206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11207 {
11208 if (fmt[i] == 'E')
11209 {
11210 int j;
11211 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11212 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11213 return 1;
11214 }
11215 else if (fmt[i] == 'e'
11216 && use_crosses_set_p (XEXP (x, i), from_cuid))
11217 return 1;
11218 }
11219 return 0;
11220 }
11221 \f
11222 /* Define three variables used for communication between the following
11223 routines. */
11224
11225 static unsigned int reg_dead_regno, reg_dead_endregno;
11226 static int reg_dead_flag;
11227
11228 /* Function called via note_stores from reg_dead_at_p.
11229
11230 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11231 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11232
11233 static void
11234 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11235 {
11236 unsigned int regno, endregno;
11237
11238 if (!REG_P (dest))
11239 return;
11240
11241 regno = REGNO (dest);
11242 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11243 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11244
11245 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11246 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11247 }
11248
11249 /* Return nonzero if REG is known to be dead at INSN.
11250
11251 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11252 referencing REG, it is dead. If we hit a SET referencing REG, it is
11253 live. Otherwise, see if it is live or dead at the start of the basic
11254 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11255 must be assumed to be always live. */
11256
11257 static int
11258 reg_dead_at_p (rtx reg, rtx insn)
11259 {
11260 basic_block block;
11261 unsigned int i;
11262
11263 /* Set variables for reg_dead_at_p_1. */
11264 reg_dead_regno = REGNO (reg);
11265 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11266 ? hard_regno_nregs[reg_dead_regno]
11267 [GET_MODE (reg)]
11268 : 1);
11269
11270 reg_dead_flag = 0;
11271
11272 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11273 we allow the machine description to decide whether use-and-clobber
11274 patterns are OK. */
11275 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11276 {
11277 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11278 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11279 return 0;
11280 }
11281
11282 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11283 beginning of function. */
11284 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11285 insn = prev_nonnote_insn (insn))
11286 {
11287 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11288 if (reg_dead_flag)
11289 return reg_dead_flag == 1 ? 1 : 0;
11290
11291 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11292 return 1;
11293 }
11294
11295 /* Get the basic block that we were in. */
11296 if (insn == 0)
11297 block = ENTRY_BLOCK_PTR->next_bb;
11298 else
11299 {
11300 FOR_EACH_BB (block)
11301 if (insn == BB_HEAD (block))
11302 break;
11303
11304 if (block == EXIT_BLOCK_PTR)
11305 return 0;
11306 }
11307
11308 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11309 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11310 return 0;
11311
11312 return 1;
11313 }
11314 \f
11315 /* Note hard registers in X that are used. This code is similar to
11316 that in flow.c, but much simpler since we don't care about pseudos. */
11317
11318 static void
11319 mark_used_regs_combine (rtx x)
11320 {
11321 RTX_CODE code = GET_CODE (x);
11322 unsigned int regno;
11323 int i;
11324
11325 switch (code)
11326 {
11327 case LABEL_REF:
11328 case SYMBOL_REF:
11329 case CONST_INT:
11330 case CONST:
11331 case CONST_DOUBLE:
11332 case CONST_VECTOR:
11333 case PC:
11334 case ADDR_VEC:
11335 case ADDR_DIFF_VEC:
11336 case ASM_INPUT:
11337 #ifdef HAVE_cc0
11338 /* CC0 must die in the insn after it is set, so we don't need to take
11339 special note of it here. */
11340 case CC0:
11341 #endif
11342 return;
11343
11344 case CLOBBER:
11345 /* If we are clobbering a MEM, mark any hard registers inside the
11346 address as used. */
11347 if (MEM_P (XEXP (x, 0)))
11348 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11349 return;
11350
11351 case REG:
11352 regno = REGNO (x);
11353 /* A hard reg in a wide mode may really be multiple registers.
11354 If so, mark all of them just like the first. */
11355 if (regno < FIRST_PSEUDO_REGISTER)
11356 {
11357 unsigned int endregno, r;
11358
11359 /* None of this applies to the stack, frame or arg pointers. */
11360 if (regno == STACK_POINTER_REGNUM
11361 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11362 || regno == HARD_FRAME_POINTER_REGNUM
11363 #endif
11364 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11365 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11366 #endif
11367 || regno == FRAME_POINTER_REGNUM)
11368 return;
11369
11370 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11371 for (r = regno; r < endregno; r++)
11372 SET_HARD_REG_BIT (newpat_used_regs, r);
11373 }
11374 return;
11375
11376 case SET:
11377 {
11378 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11379 the address. */
11380 rtx testreg = SET_DEST (x);
11381
11382 while (GET_CODE (testreg) == SUBREG
11383 || GET_CODE (testreg) == ZERO_EXTRACT
11384 || GET_CODE (testreg) == SIGN_EXTRACT
11385 || GET_CODE (testreg) == STRICT_LOW_PART)
11386 testreg = XEXP (testreg, 0);
11387
11388 if (MEM_P (testreg))
11389 mark_used_regs_combine (XEXP (testreg, 0));
11390
11391 mark_used_regs_combine (SET_SRC (x));
11392 }
11393 return;
11394
11395 default:
11396 break;
11397 }
11398
11399 /* Recursively scan the operands of this expression. */
11400
11401 {
11402 const char *fmt = GET_RTX_FORMAT (code);
11403
11404 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11405 {
11406 if (fmt[i] == 'e')
11407 mark_used_regs_combine (XEXP (x, i));
11408 else if (fmt[i] == 'E')
11409 {
11410 int j;
11411
11412 for (j = 0; j < XVECLEN (x, i); j++)
11413 mark_used_regs_combine (XVECEXP (x, i, j));
11414 }
11415 }
11416 }
11417 }
11418 \f
11419 /* Remove register number REGNO from the dead registers list of INSN.
11420
11421 Return the note used to record the death, if there was one. */
11422
11423 rtx
11424 remove_death (unsigned int regno, rtx insn)
11425 {
11426 rtx note = find_regno_note (insn, REG_DEAD, regno);
11427
11428 if (note)
11429 {
11430 REG_N_DEATHS (regno)--;
11431 remove_note (insn, note);
11432 }
11433
11434 return note;
11435 }
11436
11437 /* For each register (hardware or pseudo) used within expression X, if its
11438 death is in an instruction with cuid between FROM_CUID (inclusive) and
11439 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11440 list headed by PNOTES.
11441
11442 That said, don't move registers killed by maybe_kill_insn.
11443
11444 This is done when X is being merged by combination into TO_INSN. These
11445 notes will then be distributed as needed. */
11446
11447 static void
11448 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11449 rtx *pnotes)
11450 {
11451 const char *fmt;
11452 int len, i;
11453 enum rtx_code code = GET_CODE (x);
11454
11455 if (code == REG)
11456 {
11457 unsigned int regno = REGNO (x);
11458 rtx where_dead = reg_stat[regno].last_death;
11459 rtx before_dead, after_dead;
11460
11461 /* Don't move the register if it gets killed in between from and to. */
11462 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11463 && ! reg_referenced_p (x, maybe_kill_insn))
11464 return;
11465
11466 /* WHERE_DEAD could be a USE insn made by combine, so first we
11467 make sure that we have insns with valid INSN_CUID values. */
11468 before_dead = where_dead;
11469 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11470 before_dead = PREV_INSN (before_dead);
11471
11472 after_dead = where_dead;
11473 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11474 after_dead = NEXT_INSN (after_dead);
11475
11476 if (before_dead && after_dead
11477 && INSN_CUID (before_dead) >= from_cuid
11478 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11479 || (where_dead != after_dead
11480 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11481 {
11482 rtx note = remove_death (regno, where_dead);
11483
11484 /* It is possible for the call above to return 0. This can occur
11485 when last_death points to I2 or I1 that we combined with.
11486 In that case make a new note.
11487
11488 We must also check for the case where X is a hard register
11489 and NOTE is a death note for a range of hard registers
11490 including X. In that case, we must put REG_DEAD notes for
11491 the remaining registers in place of NOTE. */
11492
11493 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11494 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11495 > GET_MODE_SIZE (GET_MODE (x))))
11496 {
11497 unsigned int deadregno = REGNO (XEXP (note, 0));
11498 unsigned int deadend
11499 = (deadregno + hard_regno_nregs[deadregno]
11500 [GET_MODE (XEXP (note, 0))]);
11501 unsigned int ourend
11502 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11503 unsigned int i;
11504
11505 for (i = deadregno; i < deadend; i++)
11506 if (i < regno || i >= ourend)
11507 REG_NOTES (where_dead)
11508 = gen_rtx_EXPR_LIST (REG_DEAD,
11509 regno_reg_rtx[i],
11510 REG_NOTES (where_dead));
11511 }
11512
11513 /* If we didn't find any note, or if we found a REG_DEAD note that
11514 covers only part of the given reg, and we have a multi-reg hard
11515 register, then to be safe we must check for REG_DEAD notes
11516 for each register other than the first. They could have
11517 their own REG_DEAD notes lying around. */
11518 else if ((note == 0
11519 || (note != 0
11520 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11521 < GET_MODE_SIZE (GET_MODE (x)))))
11522 && regno < FIRST_PSEUDO_REGISTER
11523 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11524 {
11525 unsigned int ourend
11526 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11527 unsigned int i, offset;
11528 rtx oldnotes = 0;
11529
11530 if (note)
11531 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11532 else
11533 offset = 1;
11534
11535 for (i = regno + offset; i < ourend; i++)
11536 move_deaths (regno_reg_rtx[i],
11537 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11538 }
11539
11540 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11541 {
11542 XEXP (note, 1) = *pnotes;
11543 *pnotes = note;
11544 }
11545 else
11546 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11547
11548 REG_N_DEATHS (regno)++;
11549 }
11550
11551 return;
11552 }
11553
11554 else if (GET_CODE (x) == SET)
11555 {
11556 rtx dest = SET_DEST (x);
11557
11558 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11559
11560 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11561 that accesses one word of a multi-word item, some
11562 piece of everything register in the expression is used by
11563 this insn, so remove any old death. */
11564 /* ??? So why do we test for equality of the sizes? */
11565
11566 if (GET_CODE (dest) == ZERO_EXTRACT
11567 || GET_CODE (dest) == STRICT_LOW_PART
11568 || (GET_CODE (dest) == SUBREG
11569 && (((GET_MODE_SIZE (GET_MODE (dest))
11570 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11571 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11572 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11573 {
11574 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11575 return;
11576 }
11577
11578 /* If this is some other SUBREG, we know it replaces the entire
11579 value, so use that as the destination. */
11580 if (GET_CODE (dest) == SUBREG)
11581 dest = SUBREG_REG (dest);
11582
11583 /* If this is a MEM, adjust deaths of anything used in the address.
11584 For a REG (the only other possibility), the entire value is
11585 being replaced so the old value is not used in this insn. */
11586
11587 if (MEM_P (dest))
11588 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11589 to_insn, pnotes);
11590 return;
11591 }
11592
11593 else if (GET_CODE (x) == CLOBBER)
11594 return;
11595
11596 len = GET_RTX_LENGTH (code);
11597 fmt = GET_RTX_FORMAT (code);
11598
11599 for (i = 0; i < len; i++)
11600 {
11601 if (fmt[i] == 'E')
11602 {
11603 int j;
11604 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11605 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11606 to_insn, pnotes);
11607 }
11608 else if (fmt[i] == 'e')
11609 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11610 }
11611 }
11612 \f
11613 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11614 pattern of an insn. X must be a REG. */
11615
11616 static int
11617 reg_bitfield_target_p (rtx x, rtx body)
11618 {
11619 int i;
11620
11621 if (GET_CODE (body) == SET)
11622 {
11623 rtx dest = SET_DEST (body);
11624 rtx target;
11625 unsigned int regno, tregno, endregno, endtregno;
11626
11627 if (GET_CODE (dest) == ZERO_EXTRACT)
11628 target = XEXP (dest, 0);
11629 else if (GET_CODE (dest) == STRICT_LOW_PART)
11630 target = SUBREG_REG (XEXP (dest, 0));
11631 else
11632 return 0;
11633
11634 if (GET_CODE (target) == SUBREG)
11635 target = SUBREG_REG (target);
11636
11637 if (!REG_P (target))
11638 return 0;
11639
11640 tregno = REGNO (target), regno = REGNO (x);
11641 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11642 return target == x;
11643
11644 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11645 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11646
11647 return endregno > tregno && regno < endtregno;
11648 }
11649
11650 else if (GET_CODE (body) == PARALLEL)
11651 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11652 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11653 return 1;
11654
11655 return 0;
11656 }
11657 \f
11658 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11659 as appropriate. I3 and I2 are the insns resulting from the combination
11660 insns including FROM (I2 may be zero).
11661
11662 Each note in the list is either ignored or placed on some insns, depending
11663 on the type of note. */
11664
11665 static void
11666 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11667 {
11668 rtx note, next_note;
11669 rtx tem;
11670
11671 for (note = notes; note; note = next_note)
11672 {
11673 rtx place = 0, place2 = 0;
11674
11675 /* If this NOTE references a pseudo register, ensure it references
11676 the latest copy of that register. */
11677 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11678 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11679 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11680
11681 next_note = XEXP (note, 1);
11682 switch (REG_NOTE_KIND (note))
11683 {
11684 case REG_BR_PROB:
11685 case REG_BR_PRED:
11686 /* Doesn't matter much where we put this, as long as it's somewhere.
11687 It is preferable to keep these notes on branches, which is most
11688 likely to be i3. */
11689 place = i3;
11690 break;
11691
11692 case REG_VALUE_PROFILE:
11693 /* Just get rid of this note, as it is unused later anyway. */
11694 break;
11695
11696 case REG_NON_LOCAL_GOTO:
11697 if (JUMP_P (i3))
11698 place = i3;
11699 else
11700 {
11701 gcc_assert (i2 && JUMP_P (i2));
11702 place = i2;
11703 }
11704 break;
11705
11706 case REG_EH_REGION:
11707 /* These notes must remain with the call or trapping instruction. */
11708 if (CALL_P (i3))
11709 place = i3;
11710 else if (i2 && CALL_P (i2))
11711 place = i2;
11712 else
11713 {
11714 gcc_assert (flag_non_call_exceptions);
11715 if (may_trap_p (i3))
11716 place = i3;
11717 else if (i2 && may_trap_p (i2))
11718 place = i2;
11719 /* ??? Otherwise assume we've combined things such that we
11720 can now prove that the instructions can't trap. Drop the
11721 note in this case. */
11722 }
11723 break;
11724
11725 case REG_ALWAYS_RETURN:
11726 case REG_NORETURN:
11727 case REG_SETJMP:
11728 /* These notes must remain with the call. It should not be
11729 possible for both I2 and I3 to be a call. */
11730 if (CALL_P (i3))
11731 place = i3;
11732 else
11733 {
11734 gcc_assert (i2 && CALL_P (i2));
11735 place = i2;
11736 }
11737 break;
11738
11739 case REG_UNUSED:
11740 /* Any clobbers for i3 may still exist, and so we must process
11741 REG_UNUSED notes from that insn.
11742
11743 Any clobbers from i2 or i1 can only exist if they were added by
11744 recog_for_combine. In that case, recog_for_combine created the
11745 necessary REG_UNUSED notes. Trying to keep any original
11746 REG_UNUSED notes from these insns can cause incorrect output
11747 if it is for the same register as the original i3 dest.
11748 In that case, we will notice that the register is set in i3,
11749 and then add a REG_UNUSED note for the destination of i3, which
11750 is wrong. However, it is possible to have REG_UNUSED notes from
11751 i2 or i1 for register which were both used and clobbered, so
11752 we keep notes from i2 or i1 if they will turn into REG_DEAD
11753 notes. */
11754
11755 /* If this register is set or clobbered in I3, put the note there
11756 unless there is one already. */
11757 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11758 {
11759 if (from_insn != i3)
11760 break;
11761
11762 if (! (REG_P (XEXP (note, 0))
11763 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11764 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11765 place = i3;
11766 }
11767 /* Otherwise, if this register is used by I3, then this register
11768 now dies here, so we must put a REG_DEAD note here unless there
11769 is one already. */
11770 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11771 && ! (REG_P (XEXP (note, 0))
11772 ? find_regno_note (i3, REG_DEAD,
11773 REGNO (XEXP (note, 0)))
11774 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11775 {
11776 PUT_REG_NOTE_KIND (note, REG_DEAD);
11777 place = i3;
11778 }
11779 break;
11780
11781 case REG_EQUAL:
11782 case REG_EQUIV:
11783 case REG_NOALIAS:
11784 /* These notes say something about results of an insn. We can
11785 only support them if they used to be on I3 in which case they
11786 remain on I3. Otherwise they are ignored.
11787
11788 If the note refers to an expression that is not a constant, we
11789 must also ignore the note since we cannot tell whether the
11790 equivalence is still true. It might be possible to do
11791 slightly better than this (we only have a problem if I2DEST
11792 or I1DEST is present in the expression), but it doesn't
11793 seem worth the trouble. */
11794
11795 if (from_insn == i3
11796 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11797 place = i3;
11798 break;
11799
11800 case REG_INC:
11801 case REG_NO_CONFLICT:
11802 /* These notes say something about how a register is used. They must
11803 be present on any use of the register in I2 or I3. */
11804 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11805 place = i3;
11806
11807 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11808 {
11809 if (place)
11810 place2 = i2;
11811 else
11812 place = i2;
11813 }
11814 break;
11815
11816 case REG_LABEL:
11817 /* This can show up in several ways -- either directly in the
11818 pattern, or hidden off in the constant pool with (or without?)
11819 a REG_EQUAL note. */
11820 /* ??? Ignore the without-reg_equal-note problem for now. */
11821 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11822 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11823 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11824 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11825 place = i3;
11826
11827 if (i2
11828 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11829 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11830 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11831 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11832 {
11833 if (place)
11834 place2 = i2;
11835 else
11836 place = i2;
11837 }
11838
11839 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11840 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11841 if (place && JUMP_P (place))
11842 {
11843 rtx label = JUMP_LABEL (place);
11844
11845 if (!label)
11846 JUMP_LABEL (place) = XEXP (note, 0);
11847 else
11848 {
11849 gcc_assert (label == XEXP (note, 0));
11850 if (LABEL_P (label))
11851 LABEL_NUSES (label)--;
11852 }
11853 place = 0;
11854 }
11855 if (place2 && JUMP_P (place2))
11856 {
11857 rtx label = JUMP_LABEL (place2);
11858
11859 if (!label)
11860 JUMP_LABEL (place2) = XEXP (note, 0);
11861 else
11862 {
11863 gcc_assert (label == XEXP (note, 0));
11864 if (LABEL_P (label))
11865 LABEL_NUSES (label)--;
11866 }
11867 place2 = 0;
11868 }
11869 break;
11870
11871 case REG_NONNEG:
11872 /* This note says something about the value of a register prior
11873 to the execution of an insn. It is too much trouble to see
11874 if the note is still correct in all situations. It is better
11875 to simply delete it. */
11876 break;
11877
11878 case REG_RETVAL:
11879 /* If the insn previously containing this note still exists,
11880 put it back where it was. Otherwise move it to the previous
11881 insn. Adjust the corresponding REG_LIBCALL note. */
11882 if (!NOTE_P (from_insn))
11883 place = from_insn;
11884 else
11885 {
11886 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11887 place = prev_real_insn (from_insn);
11888 if (tem && place)
11889 XEXP (tem, 0) = place;
11890 /* If we're deleting the last remaining instruction of a
11891 libcall sequence, don't add the notes. */
11892 else if (XEXP (note, 0) == from_insn)
11893 tem = place = 0;
11894 /* Don't add the dangling REG_RETVAL note. */
11895 else if (! tem)
11896 place = 0;
11897 }
11898 break;
11899
11900 case REG_LIBCALL:
11901 /* This is handled similarly to REG_RETVAL. */
11902 if (!NOTE_P (from_insn))
11903 place = from_insn;
11904 else
11905 {
11906 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11907 place = next_real_insn (from_insn);
11908 if (tem && place)
11909 XEXP (tem, 0) = place;
11910 /* If we're deleting the last remaining instruction of a
11911 libcall sequence, don't add the notes. */
11912 else if (XEXP (note, 0) == from_insn)
11913 tem = place = 0;
11914 /* Don't add the dangling REG_LIBCALL note. */
11915 else if (! tem)
11916 place = 0;
11917 }
11918 break;
11919
11920 case REG_DEAD:
11921 /* If the register is used as an input in I3, it dies there.
11922 Similarly for I2, if it is nonzero and adjacent to I3.
11923
11924 If the register is not used as an input in either I3 or I2
11925 and it is not one of the registers we were supposed to eliminate,
11926 there are two possibilities. We might have a non-adjacent I2
11927 or we might have somehow eliminated an additional register
11928 from a computation. For example, we might have had A & B where
11929 we discover that B will always be zero. In this case we will
11930 eliminate the reference to A.
11931
11932 In both cases, we must search to see if we can find a previous
11933 use of A and put the death note there. */
11934
11935 if (from_insn
11936 && CALL_P (from_insn)
11937 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11938 place = from_insn;
11939 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11940 place = i3;
11941 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11942 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11943 place = i2;
11944
11945 if (place == 0)
11946 {
11947 basic_block bb = this_basic_block;
11948
11949 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
11950 {
11951 if (! INSN_P (tem))
11952 {
11953 if (tem == BB_HEAD (bb))
11954 break;
11955 continue;
11956 }
11957
11958 /* If the register is being set at TEM, see if that is all
11959 TEM is doing. If so, delete TEM. Otherwise, make this
11960 into a REG_UNUSED note instead. Don't delete sets to
11961 global register vars. */
11962 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
11963 || !global_regs[REGNO (XEXP (note, 0))])
11964 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
11965 {
11966 rtx set = single_set (tem);
11967 rtx inner_dest = 0;
11968 #ifdef HAVE_cc0
11969 rtx cc0_setter = NULL_RTX;
11970 #endif
11971
11972 if (set != 0)
11973 for (inner_dest = SET_DEST (set);
11974 (GET_CODE (inner_dest) == STRICT_LOW_PART
11975 || GET_CODE (inner_dest) == SUBREG
11976 || GET_CODE (inner_dest) == ZERO_EXTRACT);
11977 inner_dest = XEXP (inner_dest, 0))
11978 ;
11979
11980 /* Verify that it was the set, and not a clobber that
11981 modified the register.
11982
11983 CC0 targets must be careful to maintain setter/user
11984 pairs. If we cannot delete the setter due to side
11985 effects, mark the user with an UNUSED note instead
11986 of deleting it. */
11987
11988 if (set != 0 && ! side_effects_p (SET_SRC (set))
11989 && rtx_equal_p (XEXP (note, 0), inner_dest)
11990 #ifdef HAVE_cc0
11991 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
11992 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
11993 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
11994 #endif
11995 )
11996 {
11997 /* Move the notes and links of TEM elsewhere.
11998 This might delete other dead insns recursively.
11999 First set the pattern to something that won't use
12000 any register. */
12001 rtx old_notes = REG_NOTES (tem);
12002
12003 PATTERN (tem) = pc_rtx;
12004 REG_NOTES (tem) = NULL;
12005
12006 distribute_notes (old_notes, tem, tem, NULL_RTX);
12007 distribute_links (LOG_LINKS (tem));
12008
12009 SET_INSN_DELETED (tem);
12010
12011 #ifdef HAVE_cc0
12012 /* Delete the setter too. */
12013 if (cc0_setter)
12014 {
12015 PATTERN (cc0_setter) = pc_rtx;
12016 old_notes = REG_NOTES (cc0_setter);
12017 REG_NOTES (cc0_setter) = NULL;
12018
12019 distribute_notes (old_notes, cc0_setter,
12020 cc0_setter, NULL_RTX);
12021 distribute_links (LOG_LINKS (cc0_setter));
12022
12023 SET_INSN_DELETED (cc0_setter);
12024 }
12025 #endif
12026 }
12027 else
12028 {
12029 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12030
12031 /* If there isn't already a REG_UNUSED note, put one
12032 here. Do not place a REG_DEAD note, even if
12033 the register is also used here; that would not
12034 match the algorithm used in lifetime analysis
12035 and can cause the consistency check in the
12036 scheduler to fail. */
12037 if (! find_regno_note (tem, REG_UNUSED,
12038 REGNO (XEXP (note, 0))))
12039 place = tem;
12040 break;
12041 }
12042 }
12043 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12044 || (CALL_P (tem)
12045 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12046 {
12047 place = tem;
12048
12049 /* If we are doing a 3->2 combination, and we have a
12050 register which formerly died in i3 and was not used
12051 by i2, which now no longer dies in i3 and is used in
12052 i2 but does not die in i2, and place is between i2
12053 and i3, then we may need to move a link from place to
12054 i2. */
12055 if (i2 && INSN_UID (place) <= max_uid_cuid
12056 && INSN_CUID (place) > INSN_CUID (i2)
12057 && from_insn
12058 && INSN_CUID (from_insn) > INSN_CUID (i2)
12059 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12060 {
12061 rtx links = LOG_LINKS (place);
12062 LOG_LINKS (place) = 0;
12063 distribute_links (links);
12064 }
12065 break;
12066 }
12067
12068 if (tem == BB_HEAD (bb))
12069 break;
12070 }
12071
12072 /* We haven't found an insn for the death note and it
12073 is still a REG_DEAD note, but we have hit the beginning
12074 of the block. If the existing life info says the reg
12075 was dead, there's nothing left to do. Otherwise, we'll
12076 need to do a global life update after combine. */
12077 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12078 && REGNO_REG_SET_P (bb->global_live_at_start,
12079 REGNO (XEXP (note, 0))))
12080 SET_BIT (refresh_blocks, this_basic_block->index);
12081 }
12082
12083 /* If the register is set or already dead at PLACE, we needn't do
12084 anything with this note if it is still a REG_DEAD note.
12085 We check here if it is set at all, not if is it totally replaced,
12086 which is what `dead_or_set_p' checks, so also check for it being
12087 set partially. */
12088
12089 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12090 {
12091 unsigned int regno = REGNO (XEXP (note, 0));
12092
12093 /* Similarly, if the instruction on which we want to place
12094 the note is a noop, we'll need do a global live update
12095 after we remove them in delete_noop_moves. */
12096 if (noop_move_p (place))
12097 SET_BIT (refresh_blocks, this_basic_block->index);
12098
12099 if (dead_or_set_p (place, XEXP (note, 0))
12100 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12101 {
12102 /* Unless the register previously died in PLACE, clear
12103 last_death. [I no longer understand why this is
12104 being done.] */
12105 if (reg_stat[regno].last_death != place)
12106 reg_stat[regno].last_death = 0;
12107 place = 0;
12108 }
12109 else
12110 reg_stat[regno].last_death = place;
12111
12112 /* If this is a death note for a hard reg that is occupying
12113 multiple registers, ensure that we are still using all
12114 parts of the object. If we find a piece of the object
12115 that is unused, we must arrange for an appropriate REG_DEAD
12116 note to be added for it. However, we can't just emit a USE
12117 and tag the note to it, since the register might actually
12118 be dead; so we recourse, and the recursive call then finds
12119 the previous insn that used this register. */
12120
12121 if (place && regno < FIRST_PSEUDO_REGISTER
12122 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12123 {
12124 unsigned int endregno
12125 = regno + hard_regno_nregs[regno]
12126 [GET_MODE (XEXP (note, 0))];
12127 int all_used = 1;
12128 unsigned int i;
12129
12130 for (i = regno; i < endregno; i++)
12131 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12132 && ! find_regno_fusage (place, USE, i))
12133 || dead_or_set_regno_p (place, i))
12134 all_used = 0;
12135
12136 if (! all_used)
12137 {
12138 /* Put only REG_DEAD notes for pieces that are
12139 not already dead or set. */
12140
12141 for (i = regno; i < endregno;
12142 i += hard_regno_nregs[i][reg_raw_mode[i]])
12143 {
12144 rtx piece = regno_reg_rtx[i];
12145 basic_block bb = this_basic_block;
12146
12147 if (! dead_or_set_p (place, piece)
12148 && ! reg_bitfield_target_p (piece,
12149 PATTERN (place)))
12150 {
12151 rtx new_note
12152 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12153
12154 distribute_notes (new_note, place, place,
12155 NULL_RTX);
12156 }
12157 else if (! refers_to_regno_p (i, i + 1,
12158 PATTERN (place), 0)
12159 && ! find_regno_fusage (place, USE, i))
12160 for (tem = PREV_INSN (place); ;
12161 tem = PREV_INSN (tem))
12162 {
12163 if (! INSN_P (tem))
12164 {
12165 if (tem == BB_HEAD (bb))
12166 {
12167 SET_BIT (refresh_blocks,
12168 this_basic_block->index);
12169 break;
12170 }
12171 continue;
12172 }
12173 if (dead_or_set_p (tem, piece)
12174 || reg_bitfield_target_p (piece,
12175 PATTERN (tem)))
12176 {
12177 REG_NOTES (tem)
12178 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12179 REG_NOTES (tem));
12180 break;
12181 }
12182 }
12183
12184 }
12185
12186 place = 0;
12187 }
12188 }
12189 }
12190 break;
12191
12192 default:
12193 /* Any other notes should not be present at this point in the
12194 compilation. */
12195 gcc_unreachable ();
12196 }
12197
12198 if (place)
12199 {
12200 XEXP (note, 1) = REG_NOTES (place);
12201 REG_NOTES (place) = note;
12202 }
12203 else if ((REG_NOTE_KIND (note) == REG_DEAD
12204 || REG_NOTE_KIND (note) == REG_UNUSED)
12205 && REG_P (XEXP (note, 0)))
12206 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12207
12208 if (place2)
12209 {
12210 if ((REG_NOTE_KIND (note) == REG_DEAD
12211 || REG_NOTE_KIND (note) == REG_UNUSED)
12212 && REG_P (XEXP (note, 0)))
12213 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12214
12215 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12216 REG_NOTE_KIND (note),
12217 XEXP (note, 0),
12218 REG_NOTES (place2));
12219 }
12220 }
12221 }
12222 \f
12223 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12224 I3, I2, and I1 to new locations. This is also called to add a link
12225 pointing at I3 when I3's destination is changed. */
12226
12227 static void
12228 distribute_links (rtx links)
12229 {
12230 rtx link, next_link;
12231
12232 for (link = links; link; link = next_link)
12233 {
12234 rtx place = 0;
12235 rtx insn;
12236 rtx set, reg;
12237
12238 next_link = XEXP (link, 1);
12239
12240 /* If the insn that this link points to is a NOTE or isn't a single
12241 set, ignore it. In the latter case, it isn't clear what we
12242 can do other than ignore the link, since we can't tell which
12243 register it was for. Such links wouldn't be used by combine
12244 anyway.
12245
12246 It is not possible for the destination of the target of the link to
12247 have been changed by combine. The only potential of this is if we
12248 replace I3, I2, and I1 by I3 and I2. But in that case the
12249 destination of I2 also remains unchanged. */
12250
12251 if (NOTE_P (XEXP (link, 0))
12252 || (set = single_set (XEXP (link, 0))) == 0)
12253 continue;
12254
12255 reg = SET_DEST (set);
12256 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12257 || GET_CODE (reg) == SIGN_EXTRACT
12258 || GET_CODE (reg) == STRICT_LOW_PART)
12259 reg = XEXP (reg, 0);
12260
12261 /* A LOG_LINK is defined as being placed on the first insn that uses
12262 a register and points to the insn that sets the register. Start
12263 searching at the next insn after the target of the link and stop
12264 when we reach a set of the register or the end of the basic block.
12265
12266 Note that this correctly handles the link that used to point from
12267 I3 to I2. Also note that not much searching is typically done here
12268 since most links don't point very far away. */
12269
12270 for (insn = NEXT_INSN (XEXP (link, 0));
12271 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12272 || BB_HEAD (this_basic_block->next_bb) != insn));
12273 insn = NEXT_INSN (insn))
12274 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12275 {
12276 if (reg_referenced_p (reg, PATTERN (insn)))
12277 place = insn;
12278 break;
12279 }
12280 else if (CALL_P (insn)
12281 && find_reg_fusage (insn, USE, reg))
12282 {
12283 place = insn;
12284 break;
12285 }
12286 else if (INSN_P (insn) && reg_set_p (reg, insn))
12287 break;
12288
12289 /* If we found a place to put the link, place it there unless there
12290 is already a link to the same insn as LINK at that point. */
12291
12292 if (place)
12293 {
12294 rtx link2;
12295
12296 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12297 if (XEXP (link2, 0) == XEXP (link, 0))
12298 break;
12299
12300 if (link2 == 0)
12301 {
12302 XEXP (link, 1) = LOG_LINKS (place);
12303 LOG_LINKS (place) = link;
12304
12305 /* Set added_links_insn to the earliest insn we added a
12306 link to. */
12307 if (added_links_insn == 0
12308 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12309 added_links_insn = place;
12310 }
12311 }
12312 }
12313 }
12314 \f
12315 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12316 Check whether the expression pointer to by LOC is a register or
12317 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12318 Otherwise return zero. */
12319
12320 static int
12321 unmentioned_reg_p_1 (rtx *loc, void *expr)
12322 {
12323 rtx x = *loc;
12324
12325 if (x != NULL_RTX
12326 && (REG_P (x) || MEM_P (x))
12327 && ! reg_mentioned_p (x, (rtx) expr))
12328 return 1;
12329 return 0;
12330 }
12331
12332 /* Check for any register or memory mentioned in EQUIV that is not
12333 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12334 of EXPR where some registers may have been replaced by constants. */
12335
12336 static bool
12337 unmentioned_reg_p (rtx equiv, rtx expr)
12338 {
12339 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12340 }
12341 \f
12342 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12343
12344 static int
12345 insn_cuid (rtx insn)
12346 {
12347 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12348 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12349 insn = NEXT_INSN (insn);
12350
12351 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12352
12353 return INSN_CUID (insn);
12354 }
12355 \f
12356 void
12357 dump_combine_stats (FILE *file)
12358 {
12359 fnotice
12360 (file,
12361 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12362 combine_attempts, combine_merges, combine_extras, combine_successes);
12363 }
12364
12365 void
12366 dump_combine_total_stats (FILE *file)
12367 {
12368 fnotice
12369 (file,
12370 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12371 total_attempts, total_merges, total_extras, total_successes);
12372 }
This page took 0.631132 seconds and 6 git commands to generate.