]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
(subst, simplify_and_const_int, significant_bits): Treat BYTE_LOADS_SIGN_EXTEND just...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This module is essentially the "combiner" phase of the U. of Arizona
22 Portable Optimizer, but redone to work on our list-structured
23 representation for RTL instead of their string representation.
24
25 The LOG_LINKS of each insn identify the most recent assignment
26 to each REG used in the insn. It is a list of previous insns,
27 each of which contains a SET for a REG that is used in this insn
28 and not used or set in between. LOG_LINKs never cross basic blocks.
29 They were set up by the preceding pass (lifetime analysis).
30
31 We try to combine each pair of insns joined by a logical link.
32 We also try to combine triples of insns A, B and C when
33 C has a link back to B and B has a link back to A.
34
35 LOG_LINKS does not have links for use of the CC0. They don't
36 need to, because the insn that sets the CC0 is always immediately
37 before the insn that tests it. So we always regard a branch
38 insn as having a logical link to the preceding insn. The same is true
39 for an insn explicitly using CC0.
40
41 We check (with use_crosses_set_p) to avoid combining in such a way
42 as to move a computation to a place where its value would be different.
43
44 Combination is done by mathematically substituting the previous
45 insn(s) values for the regs they set into the expressions in
46 the later insns that refer to these regs. If the result is a valid insn
47 for our target machine, according to the machine description,
48 we install it, delete the earlier insns, and update the data flow
49 information (LOG_LINKS and REG_NOTES) for what we did.
50
51 There are a few exceptions where the dataflow information created by
52 flow.c aren't completely updated:
53
54 - reg_live_length is not updated
55 - reg_n_refs is not adjusted in the rare case when a register is
56 no longer required in a computation
57 - there are extremely rare cases (see distribute_regnotes) when a
58 REG_DEAD note is lost
59 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
60 removed because there is no way to know which register it was
61 linking
62
63 To simplify substitution, we combine only when the earlier insn(s)
64 consist of only a single assignment. To simplify updating afterward,
65 we never combine when a subroutine call appears in the middle.
66
67 Since we do not represent assignments to CC0 explicitly except when that
68 is all an insn does, there is no LOG_LINKS entry in an insn that uses
69 the condition code for the insn that set the condition code.
70 Fortunately, these two insns must be consecutive.
71 Therefore, every JUMP_INSN is taken to have an implicit logical link
72 to the preceding insn. This is not quite right, since non-jumps can
73 also use the condition code; but in practice such insns would not
74 combine anyway. */
75
76 #include "config.h"
77 #include "gvarargs.h"
78 #include "rtl.h"
79 #include "flags.h"
80 #include "regs.h"
81 #include "expr.h"
82 #include "basic-block.h"
83 #include "insn-config.h"
84 #include "insn-flags.h"
85 #include "insn-codes.h"
86 #include "insn-attr.h"
87 #include "recog.h"
88 #include "real.h"
89 #include <stdio.h>
90
91 /* It is not safe to use ordinary gen_lowpart in combine.
92 Use gen_lowpart_for_combine instead. See comments there. */
93 #define gen_lowpart dont_use_gen_lowpart_you_dummy
94
95 /* Number of attempts to combine instructions in this function. */
96
97 static int combine_attempts;
98
99 /* Number of attempts that got as far as substitution in this function. */
100
101 static int combine_merges;
102
103 /* Number of instructions combined with added SETs in this function. */
104
105 static int combine_extras;
106
107 /* Number of instructions combined in this function. */
108
109 static int combine_successes;
110
111 /* Totals over entire compilation. */
112
113 static int total_attempts, total_merges, total_extras, total_successes;
114 \f
115 /* Vector mapping INSN_UIDs to cuids.
116 The cuids are like uids but increase monotonically always.
117 Combine always uses cuids so that it can compare them.
118 But actually renumbering the uids, which we used to do,
119 proves to be a bad idea because it makes it hard to compare
120 the dumps produced by earlier passes with those from later passes. */
121
122 static int *uid_cuid;
123
124 /* Get the cuid of an insn. */
125
126 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
127
128 /* Maximum register number, which is the size of the tables below. */
129
130 static int combine_max_regno;
131
132 /* Record last point of death of (hard or pseudo) register n. */
133
134 static rtx *reg_last_death;
135
136 /* Record last point of modification of (hard or pseudo) register n. */
137
138 static rtx *reg_last_set;
139
140 /* Record the cuid of the last insn that invalidated memory
141 (anything that writes memory, and subroutine calls, but not pushes). */
142
143 static int mem_last_set;
144
145 /* Record the cuid of the last CALL_INSN
146 so we can tell whether a potential combination crosses any calls. */
147
148 static int last_call_cuid;
149
150 /* When `subst' is called, this is the insn that is being modified
151 (by combining in a previous insn). The PATTERN of this insn
152 is still the old pattern partially modified and it should not be
153 looked at, but this may be used to examine the successors of the insn
154 to judge whether a simplification is valid. */
155
156 static rtx subst_insn;
157
158 /* This is the lowest CUID that `subst' is currently dealing with.
159 get_last_value will not return a value if the register was set at or
160 after this CUID. If not for this mechanism, we could get confused if
161 I2 or I1 in try_combine were an insn that used the old value of a register
162 to obtain a new value. In that case, we might erroneously get the
163 new value of the register when we wanted the old one. */
164
165 static int subst_low_cuid;
166
167 /* This is the value of undobuf.num_undo when we started processing this
168 substitution. This will prevent gen_rtx_combine from re-used a piece
169 from the previous expression. Doing so can produce circular rtl
170 structures. */
171
172 static int previous_num_undos;
173 \f
174 /* The next group of arrays allows the recording of the last value assigned
175 to (hard or pseudo) register n. We use this information to see if a
176 operation being processed is redundant given a prior operation performed
177 on the register. For example, an `and' with a constant is redundant if
178 all the zero bits are already known to be turned off.
179
180 We use an approach similar to that used by cse, but change it in the
181 following ways:
182
183 (1) We do not want to reinitialize at each label.
184 (2) It is useful, but not critical, to know the actual value assigned
185 to a register. Often just its form is helpful.
186
187 Therefore, we maintain the following arrays:
188
189 reg_last_set_value the last value assigned
190 reg_last_set_label records the value of label_tick when the
191 register was assigned
192 reg_last_set_table_tick records the value of label_tick when a
193 value using the register is assigned
194 reg_last_set_invalid set to non-zero when it is not valid
195 to use the value of this register in some
196 register's value
197
198 To understand the usage of these tables, it is important to understand
199 the distinction between the value in reg_last_set_value being valid
200 and the register being validly contained in some other expression in the
201 table.
202
203 Entry I in reg_last_set_value is valid if it is non-zero, and either
204 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
205
206 Register I may validly appear in any expression returned for the value
207 of another register if reg_n_sets[i] is 1. It may also appear in the
208 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
209 reg_last_set_invalid[j] is zero.
210
211 If an expression is found in the table containing a register which may
212 not validly appear in an expression, the register is replaced by
213 something that won't match, (clobber (const_int 0)).
214
215 reg_last_set_invalid[i] is set non-zero when register I is being assigned
216 to and reg_last_set_table_tick[i] == label_tick. */
217
218 /* Record last value assigned to (hard or pseudo) register n. */
219
220 static rtx *reg_last_set_value;
221
222 /* Record the value of label_tick when the value for register n is placed in
223 reg_last_set_value[n]. */
224
225 static short *reg_last_set_label;
226
227 /* Record the value of label_tick when an expression involving register n
228 is placed in reg_last_set_value. */
229
230 static short *reg_last_set_table_tick;
231
232 /* Set non-zero if references to register n in expressions should not be
233 used. */
234
235 static char *reg_last_set_invalid;
236
237 /* Incremented for each label. */
238
239 static short label_tick;
240
241 /* Some registers that are set more than once and used in more than one
242 basic block are nevertheless always set in similar ways. For example,
243 a QImode register may be loaded from memory in two places on a machine
244 where byte loads zero extend.
245
246 We record in the following array what we know about the significant
247 bits of a register, specifically which bits are known to be zero.
248
249 If an entry is zero, it means that we don't know anything special. */
250
251 static HOST_WIDE_INT *reg_significant;
252
253 /* Mode used to compute significance in reg_significant. It is the largest
254 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
255
256 static enum machine_mode significant_mode;
257
258 /* Nonzero if we know that a register has some leading bits that are always
259 equal to the sign bit. */
260
261 static char *reg_sign_bit_copies;
262
263 /* Nonzero when reg_significant and reg_sign_bit_copies can be safely used.
264 It is zero while computing them and after combine has completed. This
265 former test prevents propagating values based on previously set values,
266 which can be incorrect if a variable is modified in a loop. */
267
268 static int significant_valid;
269 \f
270 /* Record one modification to rtl structure
271 to be undone by storing old_contents into *where.
272 is_int is 1 if the contents are an int. */
273
274 struct undo
275 {
276 int is_int;
277 union {rtx rtx; int i;} old_contents;
278 union {rtx *rtx; int *i;} where;
279 };
280
281 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
282 num_undo says how many are currently recorded.
283
284 storage is nonzero if we must undo the allocation of new storage.
285 The value of storage is what to pass to obfree.
286
287 other_insn is nonzero if we have modified some other insn in the process
288 of working on subst_insn. It must be verified too. */
289
290 #define MAX_UNDO 50
291
292 struct undobuf
293 {
294 int num_undo;
295 char *storage;
296 struct undo undo[MAX_UNDO];
297 rtx other_insn;
298 };
299
300 static struct undobuf undobuf;
301
302 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
303 insn. The substitution can be undone by undo_all. If INTO is already
304 set to NEWVAL, do not record this change. Because computing NEWVAL might
305 also call SUBST, we have to compute it before we put anything into
306 the undo table. */
307
308 #define SUBST(INTO, NEWVAL) \
309 do { rtx _new = (NEWVAL); \
310 if (undobuf.num_undo < MAX_UNDO) \
311 { \
312 undobuf.undo[undobuf.num_undo].is_int = 0; \
313 undobuf.undo[undobuf.num_undo].where.rtx = &INTO; \
314 undobuf.undo[undobuf.num_undo].old_contents.rtx = INTO; \
315 INTO = _new; \
316 if (undobuf.undo[undobuf.num_undo].old_contents.rtx != INTO) \
317 undobuf.num_undo++; \
318 } \
319 } while (0)
320
321 /* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT
322 expression.
323 Note that substitution for the value of a CONST_INT is not safe. */
324
325 #define SUBST_INT(INTO, NEWVAL) \
326 do { if (undobuf.num_undo < MAX_UNDO) \
327 { \
328 undobuf.undo[undobuf.num_undo].is_int = 1; \
329 undobuf.undo[undobuf.num_undo].where.i = (int *) &INTO; \
330 undobuf.undo[undobuf.num_undo].old_contents.i = INTO; \
331 INTO = NEWVAL; \
332 if (undobuf.undo[undobuf.num_undo].old_contents.i != INTO) \
333 undobuf.num_undo++; \
334 } \
335 } while (0)
336
337 /* Number of times the pseudo being substituted for
338 was found and replaced. */
339
340 static int n_occurrences;
341
342 static void set_significant ();
343 static void move_deaths ();
344 rtx remove_death ();
345 static void record_value_for_reg ();
346 static void record_dead_and_set_regs ();
347 static int use_crosses_set_p ();
348 static rtx try_combine ();
349 static rtx *find_split_point ();
350 static rtx subst ();
351 static void undo_all ();
352 static int reg_dead_at_p ();
353 static rtx expand_compound_operation ();
354 static rtx expand_field_assignment ();
355 static rtx make_extraction ();
356 static int get_pos_from_mask ();
357 static rtx force_to_mode ();
358 static rtx known_cond ();
359 static rtx make_field_assignment ();
360 static rtx make_compound_operation ();
361 static rtx apply_distributive_law ();
362 static rtx simplify_and_const_int ();
363 static unsigned HOST_WIDE_INT significant_bits ();
364 static int num_sign_bit_copies ();
365 static int merge_outer_ops ();
366 static rtx simplify_shift_const ();
367 static int recog_for_combine ();
368 static rtx gen_lowpart_for_combine ();
369 static rtx gen_rtx_combine ();
370 static rtx gen_binary ();
371 static rtx gen_unary ();
372 static enum rtx_code simplify_comparison ();
373 static int reversible_comparison_p ();
374 static int get_last_value_validate ();
375 static rtx get_last_value ();
376 static void distribute_notes ();
377 static void distribute_links ();
378 \f
379 /* Main entry point for combiner. F is the first insn of the function.
380 NREGS is the first unused pseudo-reg number. */
381
382 void
383 combine_instructions (f, nregs)
384 rtx f;
385 int nregs;
386 {
387 register rtx insn, next, prev;
388 register int i;
389 register rtx links, nextlinks;
390
391 combine_attempts = 0;
392 combine_merges = 0;
393 combine_extras = 0;
394 combine_successes = 0;
395
396 combine_max_regno = nregs;
397
398 reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
399 reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
400 reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
401 reg_last_set_table_tick = (short *) alloca (nregs * sizeof (short));
402 reg_last_set_label = (short *) alloca (nregs * sizeof (short));
403 reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
404 reg_significant = (HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
405 reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
406
407 bzero (reg_last_death, nregs * sizeof (rtx));
408 bzero (reg_last_set, nregs * sizeof (rtx));
409 bzero (reg_last_set_value, nregs * sizeof (rtx));
410 bzero (reg_last_set_table_tick, nregs * sizeof (short));
411 bzero (reg_last_set_invalid, nregs * sizeof (char));
412 bzero (reg_significant, nregs * sizeof (HOST_WIDE_INT));
413 bzero (reg_sign_bit_copies, nregs * sizeof (char));
414
415 init_recog_no_volatile ();
416
417 /* Compute maximum uid value so uid_cuid can be allocated. */
418
419 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
420 if (INSN_UID (insn) > i)
421 i = INSN_UID (insn);
422
423 uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
424
425 significant_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
426
427 /* Don't use reg_significant when computing it. This can cause problems
428 when, for example, we have j <<= 1 in a loop. */
429
430 significant_valid = 0;
431
432 /* Compute the mapping from uids to cuids.
433 Cuids are numbers assigned to insns, like uids,
434 except that cuids increase monotonically through the code.
435
436 Scan all SETs and see if we can deduce anything about what
437 bits are significant for some registers. */
438
439 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
440 {
441 INSN_CUID (insn) = ++i;
442 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
443 note_stores (PATTERN (insn), set_significant);
444 }
445
446 significant_valid = 1;
447
448 /* Now scan all the insns in forward order. */
449
450 label_tick = 1;
451 last_call_cuid = 0;
452 mem_last_set = 0;
453
454 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
455 {
456 next = 0;
457
458 if (GET_CODE (insn) == CODE_LABEL)
459 label_tick++;
460
461 else if (GET_CODE (insn) == INSN
462 || GET_CODE (insn) == CALL_INSN
463 || GET_CODE (insn) == JUMP_INSN)
464 {
465 /* Try this insn with each insn it links back to. */
466
467 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
468 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
469 goto retry;
470
471 /* Try each sequence of three linked insns ending with this one. */
472
473 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
474 for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
475 nextlinks = XEXP (nextlinks, 1))
476 if ((next = try_combine (insn, XEXP (links, 0),
477 XEXP (nextlinks, 0))) != 0)
478 goto retry;
479
480 #ifdef HAVE_cc0
481 /* Try to combine a jump insn that uses CC0
482 with a preceding insn that sets CC0, and maybe with its
483 logical predecessor as well.
484 This is how we make decrement-and-branch insns.
485 We need this special code because data flow connections
486 via CC0 do not get entered in LOG_LINKS. */
487
488 if (GET_CODE (insn) == JUMP_INSN
489 && (prev = prev_nonnote_insn (insn)) != 0
490 && GET_CODE (prev) == INSN
491 && sets_cc0_p (PATTERN (prev)))
492 {
493 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
494 goto retry;
495
496 for (nextlinks = LOG_LINKS (prev); nextlinks;
497 nextlinks = XEXP (nextlinks, 1))
498 if ((next = try_combine (insn, prev,
499 XEXP (nextlinks, 0))) != 0)
500 goto retry;
501 }
502
503 /* Do the same for an insn that explicitly references CC0. */
504 if (GET_CODE (insn) == INSN
505 && (prev = prev_nonnote_insn (insn)) != 0
506 && GET_CODE (prev) == INSN
507 && sets_cc0_p (PATTERN (prev))
508 && GET_CODE (PATTERN (insn)) == SET
509 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
510 {
511 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
512 goto retry;
513
514 for (nextlinks = LOG_LINKS (prev); nextlinks;
515 nextlinks = XEXP (nextlinks, 1))
516 if ((next = try_combine (insn, prev,
517 XEXP (nextlinks, 0))) != 0)
518 goto retry;
519 }
520
521 /* Finally, see if any of the insns that this insn links to
522 explicitly references CC0. If so, try this insn, that insn,
523 and its predecessor if it sets CC0. */
524 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
525 if (GET_CODE (XEXP (links, 0)) == INSN
526 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
527 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
528 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
529 && GET_CODE (prev) == INSN
530 && sets_cc0_p (PATTERN (prev))
531 && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
532 goto retry;
533 #endif
534
535 /* Try combining an insn with two different insns whose results it
536 uses. */
537 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
538 for (nextlinks = XEXP (links, 1); nextlinks;
539 nextlinks = XEXP (nextlinks, 1))
540 if ((next = try_combine (insn, XEXP (links, 0),
541 XEXP (nextlinks, 0))) != 0)
542 goto retry;
543
544 if (GET_CODE (insn) != NOTE)
545 record_dead_and_set_regs (insn);
546
547 retry:
548 ;
549 }
550 }
551
552 total_attempts += combine_attempts;
553 total_merges += combine_merges;
554 total_extras += combine_extras;
555 total_successes += combine_successes;
556
557 significant_valid = 0;
558 }
559 \f
560 /* Called via note_stores. If X is a pseudo that is used in more than
561 one basic block, is narrower that HOST_BITS_PER_WIDE_INT, and is being
562 set, record what bits are significant. If we are clobbering X,
563 ignore this "set" because the clobbered value won't be used.
564
565 If we are setting only a portion of X and we can't figure out what
566 portion, assume all bits will be used since we don't know what will
567 be happening.
568
569 Similarly, set how many bits of X are known to be copies of the sign bit
570 at all locations in the function. This is the smallest number implied
571 by any set of X. */
572
573 static void
574 set_significant (x, set)
575 rtx x;
576 rtx set;
577 {
578 int num;
579
580 if (GET_CODE (x) == REG
581 && REGNO (x) >= FIRST_PSEUDO_REGISTER
582 && reg_n_sets[REGNO (x)] > 1
583 && reg_basic_block[REGNO (x)] < 0
584 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
585 {
586 if (GET_CODE (set) == CLOBBER)
587 return;
588
589 /* If this is a complex assignment, see if we can convert it into a
590 simple assignment. */
591 set = expand_field_assignment (set);
592 if (SET_DEST (set) == x)
593 {
594 reg_significant[REGNO (x)]
595 |= significant_bits (SET_SRC (set), significant_mode);
596 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
597 if (reg_sign_bit_copies[REGNO (x)] == 0
598 || reg_sign_bit_copies[REGNO (x)] > num)
599 reg_sign_bit_copies[REGNO (x)] = num;
600 }
601 else
602 {
603 reg_significant[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
604 reg_sign_bit_copies[REGNO (x)] = 0;
605 }
606 }
607 }
608 \f
609 /* See if INSN can be combined into I3. PRED and SUCC are optionally
610 insns that were previously combined into I3 or that will be combined
611 into the merger of INSN and I3.
612
613 Return 0 if the combination is not allowed for any reason.
614
615 If the combination is allowed, *PDEST will be set to the single
616 destination of INSN and *PSRC to the single source, and this function
617 will return 1. */
618
619 static int
620 can_combine_p (insn, i3, pred, succ, pdest, psrc)
621 rtx insn;
622 rtx i3;
623 rtx pred, succ;
624 rtx *pdest, *psrc;
625 {
626 int i;
627 rtx set = 0, src, dest;
628 rtx p, link;
629 int all_adjacent = (succ ? (next_active_insn (insn) == succ
630 && next_active_insn (succ) == i3)
631 : next_active_insn (insn) == i3);
632
633 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
634 or a PARALLEL consisting of such a SET and CLOBBERs.
635
636 If INSN has CLOBBER parallel parts, ignore them for our processing.
637 By definition, these happen during the execution of the insn. When it
638 is merged with another insn, all bets are off. If they are, in fact,
639 needed and aren't also supplied in I3, they may be added by
640 recog_for_combine. Otherwise, it won't match.
641
642 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
643 note.
644
645 Get the source and destination of INSN. If more than one, can't
646 combine. */
647
648 if (GET_CODE (PATTERN (insn)) == SET)
649 set = PATTERN (insn);
650 else if (GET_CODE (PATTERN (insn)) == PARALLEL
651 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
652 {
653 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
654 {
655 rtx elt = XVECEXP (PATTERN (insn), 0, i);
656
657 switch (GET_CODE (elt))
658 {
659 /* We can ignore CLOBBERs. */
660 case CLOBBER:
661 break;
662
663 case SET:
664 /* Ignore SETs whose result isn't used but not those that
665 have side-effects. */
666 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
667 && ! side_effects_p (elt))
668 break;
669
670 /* If we have already found a SET, this is a second one and
671 so we cannot combine with this insn. */
672 if (set)
673 return 0;
674
675 set = elt;
676 break;
677
678 default:
679 /* Anything else means we can't combine. */
680 return 0;
681 }
682 }
683
684 if (set == 0
685 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
686 so don't do anything with it. */
687 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
688 return 0;
689 }
690 else
691 return 0;
692
693 if (set == 0)
694 return 0;
695
696 set = expand_field_assignment (set);
697 src = SET_SRC (set), dest = SET_DEST (set);
698
699 /* Don't eliminate a store in the stack pointer. */
700 if (dest == stack_pointer_rtx
701 /* Don't install a subreg involving two modes not tieable.
702 It can worsen register allocation, and can even make invalid reload
703 insns, since the reg inside may need to be copied from in the
704 outside mode, and that may be invalid if it is an fp reg copied in
705 integer mode. As a special exception, we can allow this if
706 I3 is simply copying DEST, a REG, to CC0. */
707 || (GET_CODE (src) == SUBREG
708 && ! MODES_TIEABLE_P (GET_MODE (src), GET_MODE (SUBREG_REG (src)))
709 #ifdef HAVE_cc0
710 && ! (GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
711 && SET_DEST (PATTERN (i3)) == cc0_rtx
712 && GET_CODE (dest) == REG && dest == SET_SRC (PATTERN (i3)))
713 #endif
714 )
715 /* If we couldn't eliminate a field assignment, we can't combine. */
716 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
717 /* Don't combine with an insn that sets a register to itself if it has
718 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
719 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
720 /* Can't merge a function call. */
721 || GET_CODE (src) == CALL
722 /* Don't substitute into an incremented register. */
723 || FIND_REG_INC_NOTE (i3, dest)
724 || (succ && FIND_REG_INC_NOTE (succ, dest))
725 /* Don't combine the end of a libcall into anything. */
726 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
727 /* Make sure that DEST is not used after SUCC but before I3. */
728 || (succ && ! all_adjacent
729 && reg_used_between_p (dest, succ, i3))
730 /* Make sure that the value that is to be substituted for the register
731 does not use any registers whose values alter in between. However,
732 If the insns are adjacent, a use can't cross a set even though we
733 think it might (this can happen for a sequence of insns each setting
734 the same destination; reg_last_set of that register might point to
735 a NOTE). Also, don't move a volatile asm across any other insns. */
736 || (! all_adjacent
737 && (use_crosses_set_p (src, INSN_CUID (insn))
738 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))))
739 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
740 better register allocation by not doing the combine. */
741 || find_reg_note (i3, REG_NO_CONFLICT, dest)
742 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
743 /* Don't combine across a CALL_INSN, because that would possibly
744 change whether the life span of some REGs crosses calls or not,
745 and it is a pain to update that information.
746 Exception: if source is a constant, moving it later can't hurt.
747 Accept that special case, because it helps -fforce-addr a lot. */
748 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
749 return 0;
750
751 /* DEST must either be a REG or CC0. */
752 if (GET_CODE (dest) == REG)
753 {
754 /* If register alignment is being enforced for multi-word items in all
755 cases except for parameters, it is possible to have a register copy
756 insn referencing a hard register that is not allowed to contain the
757 mode being copied and which would not be valid as an operand of most
758 insns. Eliminate this problem by not combining with such an insn.
759
760 Also, on some machines we don't want to extend the life of a hard
761 register. */
762
763 if (GET_CODE (src) == REG
764 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
765 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
766 #ifdef SMALL_REGISTER_CLASSES
767 /* Don't extend the life of a hard register. */
768 || REGNO (src) < FIRST_PSEUDO_REGISTER
769 #else
770 || (REGNO (src) < FIRST_PSEUDO_REGISTER
771 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))
772 #endif
773 ))
774 return 0;
775 }
776 else if (GET_CODE (dest) != CC0)
777 return 0;
778
779 /* Don't substitute for a register intended as a clobberable operand. */
780 if (GET_CODE (PATTERN (i3)) == PARALLEL)
781 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
782 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
783 && rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest))
784 return 0;
785
786 /* If INSN contains anything volatile, or is an `asm' (whether volatile
787 or not), reject, unless nothing volatile comes between it and I3,
788 with the exception of SUCC. */
789
790 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
791 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
792 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
793 && p != succ && volatile_refs_p (PATTERN (p)))
794 return 0;
795
796 /* If INSN or I2 contains an autoincrement or autodecrement,
797 make sure that register is not used between there and I3,
798 and not already used in I3 either.
799 Also insist that I3 not be a jump; if it were one
800 and the incremented register were spilled, we would lose. */
801
802 #ifdef AUTO_INC_DEC
803 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
804 if (REG_NOTE_KIND (link) == REG_INC
805 && (GET_CODE (i3) == JUMP_INSN
806 || reg_used_between_p (XEXP (link, 0), insn, i3)
807 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
808 return 0;
809 #endif
810
811 #ifdef HAVE_cc0
812 /* Don't combine an insn that follows a CC0-setting insn.
813 An insn that uses CC0 must not be separated from the one that sets it.
814 We do, however, allow I2 to follow a CC0-setting insn if that insn
815 is passed as I1; in that case it will be deleted also.
816 We also allow combining in this case if all the insns are adjacent
817 because that would leave the two CC0 insns adjacent as well.
818 It would be more logical to test whether CC0 occurs inside I1 or I2,
819 but that would be much slower, and this ought to be equivalent. */
820
821 p = prev_nonnote_insn (insn);
822 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
823 && ! all_adjacent)
824 return 0;
825 #endif
826
827 /* If we get here, we have passed all the tests and the combination is
828 to be allowed. */
829
830 *pdest = dest;
831 *psrc = src;
832
833 return 1;
834 }
835 \f
836 /* LOC is the location within I3 that contains its pattern or the component
837 of a PARALLEL of the pattern. We validate that it is valid for combining.
838
839 One problem is if I3 modifies its output, as opposed to replacing it
840 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
841 so would produce an insn that is not equivalent to the original insns.
842
843 Consider:
844
845 (set (reg:DI 101) (reg:DI 100))
846 (set (subreg:SI (reg:DI 101) 0) <foo>)
847
848 This is NOT equivalent to:
849
850 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
851 (set (reg:DI 101) (reg:DI 100))])
852
853 Not only does this modify 100 (in which case it might still be valid
854 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
855
856 We can also run into a problem if I2 sets a register that I1
857 uses and I1 gets directly substituted into I3 (not via I2). In that
858 case, we would be getting the wrong value of I2DEST into I3, so we
859 must reject the combination. This case occurs when I2 and I1 both
860 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
861 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
862 of a SET must prevent combination from occurring.
863
864 On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
865 if the destination of a SET is a hard register.
866
867 Before doing the above check, we first try to expand a field assignment
868 into a set of logical operations.
869
870 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
871 we place a register that is both set and used within I3. If more than one
872 such register is detected, we fail.
873
874 Return 1 if the combination is valid, zero otherwise. */
875
876 static int
877 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
878 rtx i3;
879 rtx *loc;
880 rtx i2dest;
881 rtx i1dest;
882 int i1_not_in_src;
883 rtx *pi3dest_killed;
884 {
885 rtx x = *loc;
886
887 if (GET_CODE (x) == SET)
888 {
889 rtx set = expand_field_assignment (x);
890 rtx dest = SET_DEST (set);
891 rtx src = SET_SRC (set);
892 rtx inner_dest = dest, inner_src = src;
893
894 SUBST (*loc, set);
895
896 while (GET_CODE (inner_dest) == STRICT_LOW_PART
897 || GET_CODE (inner_dest) == SUBREG
898 || GET_CODE (inner_dest) == ZERO_EXTRACT)
899 inner_dest = XEXP (inner_dest, 0);
900
901 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
902 was added. */
903 #if 0
904 while (GET_CODE (inner_src) == STRICT_LOW_PART
905 || GET_CODE (inner_src) == SUBREG
906 || GET_CODE (inner_src) == ZERO_EXTRACT)
907 inner_src = XEXP (inner_src, 0);
908
909 /* If it is better that two different modes keep two different pseudos,
910 avoid combining them. This avoids producing the following pattern
911 on a 386:
912 (set (subreg:SI (reg/v:QI 21) 0)
913 (lshiftrt:SI (reg/v:SI 20)
914 (const_int 24)))
915 If that were made, reload could not handle the pair of
916 reg 20/21, since it would try to get any GENERAL_REGS
917 but some of them don't handle QImode. */
918
919 if (rtx_equal_p (inner_src, i2dest)
920 && GET_CODE (inner_dest) == REG
921 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
922 return 0;
923 #endif
924
925 /* Check for the case where I3 modifies its output, as
926 discussed above. */
927 if ((inner_dest != dest
928 && (reg_overlap_mentioned_p (i2dest, inner_dest)
929 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
930 /* This is the same test done in can_combine_p except that we
931 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
932 CALL operation. */
933 || (GET_CODE (inner_dest) == REG
934 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
935 #ifdef SMALL_REGISTER_CLASSES
936 && GET_CODE (src) != CALL
937 #else
938 && ! HARD_REGNO_MODE_OK (REGNO (inner_dest),
939 GET_MODE (inner_dest))
940 #endif
941 )
942
943 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
944 return 0;
945
946 /* If DEST is used in I3, it is being killed in this insn,
947 so record that for later. */
948 if (pi3dest_killed && GET_CODE (dest) == REG
949 && reg_referenced_p (dest, PATTERN (i3)))
950 {
951 if (*pi3dest_killed)
952 return 0;
953
954 *pi3dest_killed = dest;
955 }
956 }
957
958 else if (GET_CODE (x) == PARALLEL)
959 {
960 int i;
961
962 for (i = 0; i < XVECLEN (x, 0); i++)
963 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
964 i1_not_in_src, pi3dest_killed))
965 return 0;
966 }
967
968 return 1;
969 }
970 \f
971 /* Try to combine the insns I1 and I2 into I3.
972 Here I1 and I2 appear earlier than I3.
973 I1 can be zero; then we combine just I2 into I3.
974
975 It we are combining three insns and the resulting insn is not recognized,
976 try splitting it into two insns. If that happens, I2 and I3 are retained
977 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
978 are pseudo-deleted.
979
980 If we created two insns, return I2; otherwise return I3.
981 Return 0 if the combination does not work. Then nothing is changed. */
982
983 static rtx
984 try_combine (i3, i2, i1)
985 register rtx i3, i2, i1;
986 {
987 /* New patterns for I3 and I3, respectively. */
988 rtx newpat, newi2pat = 0;
989 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
990 int added_sets_1, added_sets_2;
991 /* Total number of SETs to put into I3. */
992 int total_sets;
993 /* Nonzero is I2's body now appears in I3. */
994 int i2_is_used;
995 /* INSN_CODEs for new I3, new I2, and user of condition code. */
996 int insn_code_number, i2_code_number, other_code_number;
997 /* Contains I3 if the destination of I3 is used in its source, which means
998 that the old life of I3 is being killed. If that usage is placed into
999 I2 and not in I3, a REG_DEAD note must be made. */
1000 rtx i3dest_killed = 0;
1001 /* SET_DEST and SET_SRC of I2 and I1. */
1002 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1003 /* PATTERN (I2), or a copy of it in certain cases. */
1004 rtx i2pat;
1005 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1006 int i2dest_in_i2src, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1007 int i1_feeds_i3 = 0;
1008 /* Notes that must be added to REG_NOTES in I3 and I2. */
1009 rtx new_i3_notes, new_i2_notes;
1010
1011 int maxreg;
1012 rtx temp;
1013 register rtx link;
1014 int i;
1015
1016 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1017 This can occur when flow deletes an insn that it has merged into an
1018 auto-increment address. We also can't do anything if I3 has a
1019 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1020 libcall. */
1021
1022 if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1023 || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1024 || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1025 || find_reg_note (i3, REG_LIBCALL, NULL_RTX))
1026 return 0;
1027
1028 combine_attempts++;
1029
1030 undobuf.num_undo = previous_num_undos = 0;
1031 undobuf.other_insn = 0;
1032
1033 /* Save the current high-water-mark so we can free storage if we didn't
1034 accept this combination. */
1035 undobuf.storage = (char *) oballoc (0);
1036
1037 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1038 code below, set I1 to be the earlier of the two insns. */
1039 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1040 temp = i1, i1 = i2, i2 = temp;
1041
1042 /* First check for one important special-case that the code below will
1043 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1044 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1045 we may be able to replace that destination with the destination of I3.
1046 This occurs in the common code where we compute both a quotient and
1047 remainder into a structure, in which case we want to do the computation
1048 directly into the structure to avoid register-register copies.
1049
1050 We make very conservative checks below and only try to handle the
1051 most common cases of this. For example, we only handle the case
1052 where I2 and I3 are adjacent to avoid making difficult register
1053 usage tests. */
1054
1055 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1056 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1057 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1058 #ifdef SMALL_REGISTER_CLASSES
1059 && (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1060 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER)
1061 #endif
1062 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1063 && GET_CODE (PATTERN (i2)) == PARALLEL
1064 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1065 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1066 below would need to check what is inside (and reg_overlap_mentioned_p
1067 doesn't support those codes anyway). Don't allow those destinations;
1068 the resulting insn isn't likely to be recognized anyway. */
1069 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1070 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1071 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1072 SET_DEST (PATTERN (i3)))
1073 && next_real_insn (i2) == i3)
1074 {
1075 rtx p2 = PATTERN (i2);
1076
1077 /* Make sure that the destination of I3,
1078 which we are going to substitute into one output of I2,
1079 is not used within another output of I2. We must avoid making this:
1080 (parallel [(set (mem (reg 69)) ...)
1081 (set (reg 69) ...)])
1082 which is not well-defined as to order of actions.
1083 (Besides, reload can't handle output reloads for this.)
1084
1085 The problem can also happen if the dest of I3 is a memory ref,
1086 if another dest in I2 is an indirect memory ref. */
1087 for (i = 0; i < XVECLEN (p2, 0); i++)
1088 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
1089 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1090 SET_DEST (XVECEXP (p2, 0, i))))
1091 break;
1092
1093 if (i == XVECLEN (p2, 0))
1094 for (i = 0; i < XVECLEN (p2, 0); i++)
1095 if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1096 {
1097 combine_merges++;
1098
1099 subst_insn = i3;
1100 subst_low_cuid = INSN_CUID (i2);
1101
1102 added_sets_2 = 0;
1103 i2dest = SET_SRC (PATTERN (i3));
1104
1105 /* Replace the dest in I2 with our dest and make the resulting
1106 insn the new pattern for I3. Then skip to where we
1107 validate the pattern. Everything was set up above. */
1108 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1109 SET_DEST (PATTERN (i3)));
1110
1111 newpat = p2;
1112 goto validate_replacement;
1113 }
1114 }
1115
1116 #ifndef HAVE_cc0
1117 /* If we have no I1 and I2 looks like:
1118 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1119 (set Y OP)])
1120 make up a dummy I1 that is
1121 (set Y OP)
1122 and change I2 to be
1123 (set (reg:CC X) (compare:CC Y (const_int 0)))
1124
1125 (We can ignore any trailing CLOBBERs.)
1126
1127 This undoes a previous combination and allows us to match a branch-and-
1128 decrement insn. */
1129
1130 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1131 && XVECLEN (PATTERN (i2), 0) >= 2
1132 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1133 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1134 == MODE_CC)
1135 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1136 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1137 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1138 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1139 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1140 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1141 {
1142 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1143 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1144 break;
1145
1146 if (i == 1)
1147 {
1148 /* We make I1 with the same INSN_UID as I2. This gives it
1149 the same INSN_CUID for value tracking. Our fake I1 will
1150 never appear in the insn stream so giving it the same INSN_UID
1151 as I2 will not cause a problem. */
1152
1153 i1 = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
1154 XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
1155
1156 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1157 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1158 SET_DEST (PATTERN (i1)));
1159 }
1160 }
1161 #endif
1162
1163 /* Verify that I2 and I1 are valid for combining. */
1164 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1165 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1166 {
1167 undo_all ();
1168 return 0;
1169 }
1170
1171 /* Record whether I2DEST is used in I2SRC and similarly for the other
1172 cases. Knowing this will help in register status updating below. */
1173 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1174 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1175 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1176
1177 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1178 in I2SRC. */
1179 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1180
1181 /* Ensure that I3's pattern can be the destination of combines. */
1182 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1183 i1 && i2dest_in_i1src && i1_feeds_i3,
1184 &i3dest_killed))
1185 {
1186 undo_all ();
1187 return 0;
1188 }
1189
1190 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1191 We used to do this EXCEPT in one case: I3 has a post-inc in an
1192 output operand. However, that exception can give rise to insns like
1193 mov r3,(r3)+
1194 which is a famous insn on the PDP-11 where the value of r3 used as the
1195 source was model-dependent. Avoid this sort of thing. */
1196
1197 #if 0
1198 if (!(GET_CODE (PATTERN (i3)) == SET
1199 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1200 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1201 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1202 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1203 /* It's not the exception. */
1204 #endif
1205 #ifdef AUTO_INC_DEC
1206 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1207 if (REG_NOTE_KIND (link) == REG_INC
1208 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1209 || (i1 != 0
1210 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1211 {
1212 undo_all ();
1213 return 0;
1214 }
1215 #endif
1216
1217 /* See if the SETs in I1 or I2 need to be kept around in the merged
1218 instruction: whenever the value set there is still needed past I3.
1219 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1220
1221 For the SET in I1, we have two cases: If I1 and I2 independently
1222 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1223 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1224 in I1 needs to be kept around unless I1DEST dies or is set in either
1225 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1226 I1DEST. If so, we know I1 feeds into I2. */
1227
1228 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1229
1230 added_sets_1
1231 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1232 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1233
1234 /* If the set in I2 needs to be kept around, we must make a copy of
1235 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1236 PATTERN (I2), we are only substituting for the original I1DEST, not into
1237 an already-substituted copy. This also prevents making self-referential
1238 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1239 I2DEST. */
1240
1241 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1242 ? gen_rtx (SET, VOIDmode, i2dest, i2src)
1243 : PATTERN (i2));
1244
1245 if (added_sets_2)
1246 i2pat = copy_rtx (i2pat);
1247
1248 combine_merges++;
1249
1250 /* Substitute in the latest insn for the regs set by the earlier ones. */
1251
1252 maxreg = max_reg_num ();
1253
1254 subst_insn = i3;
1255
1256 /* It is possible that the source of I2 or I1 may be performing an
1257 unneeded operation, such as a ZERO_EXTEND of something that is known
1258 to have the high part zero. Handle that case by letting subst look at
1259 the innermost one of them.
1260
1261 Another way to do this would be to have a function that tries to
1262 simplify a single insn instead of merging two or more insns. We don't
1263 do this because of the potential of infinite loops and because
1264 of the potential extra memory required. However, doing it the way
1265 we are is a bit of a kludge and doesn't catch all cases.
1266
1267 But only do this if -fexpensive-optimizations since it slows things down
1268 and doesn't usually win. */
1269
1270 if (flag_expensive_optimizations)
1271 {
1272 /* Pass pc_rtx so no substitutions are done, just simplifications.
1273 The cases that we are interested in here do not involve the few
1274 cases were is_replaced is checked. */
1275 if (i1)
1276 {
1277 subst_low_cuid = INSN_CUID (i1);
1278 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1279 }
1280 else
1281 {
1282 subst_low_cuid = INSN_CUID (i2);
1283 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1284 }
1285
1286 previous_num_undos = undobuf.num_undo;
1287 }
1288
1289 #ifndef HAVE_cc0
1290 /* Many machines that don't use CC0 have insns that can both perform an
1291 arithmetic operation and set the condition code. These operations will
1292 be represented as a PARALLEL with the first element of the vector
1293 being a COMPARE of an arithmetic operation with the constant zero.
1294 The second element of the vector will set some pseudo to the result
1295 of the same arithmetic operation. If we simplify the COMPARE, we won't
1296 match such a pattern and so will generate an extra insn. Here we test
1297 for this case, where both the comparison and the operation result are
1298 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1299 I2SRC. Later we will make the PARALLEL that contains I2. */
1300
1301 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1302 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1303 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1304 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1305 {
1306 rtx *cc_use;
1307 enum machine_mode compare_mode;
1308
1309 newpat = PATTERN (i3);
1310 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1311
1312 i2_is_used = 1;
1313
1314 #ifdef EXTRA_CC_MODES
1315 /* See if a COMPARE with the operand we substituted in should be done
1316 with the mode that is currently being used. If not, do the same
1317 processing we do in `subst' for a SET; namely, if the destination
1318 is used only once, try to replace it with a register of the proper
1319 mode and also replace the COMPARE. */
1320 if (undobuf.other_insn == 0
1321 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1322 &undobuf.other_insn))
1323 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1324 i2src, const0_rtx))
1325 != GET_MODE (SET_DEST (newpat))))
1326 {
1327 int regno = REGNO (SET_DEST (newpat));
1328 rtx new_dest = gen_rtx (REG, compare_mode, regno);
1329
1330 if (regno < FIRST_PSEUDO_REGISTER
1331 || (reg_n_sets[regno] == 1 && ! added_sets_2
1332 && ! REG_USERVAR_P (SET_DEST (newpat))))
1333 {
1334 if (regno >= FIRST_PSEUDO_REGISTER)
1335 SUBST (regno_reg_rtx[regno], new_dest);
1336
1337 SUBST (SET_DEST (newpat), new_dest);
1338 SUBST (XEXP (*cc_use, 0), new_dest);
1339 SUBST (SET_SRC (newpat),
1340 gen_rtx_combine (COMPARE, compare_mode,
1341 i2src, const0_rtx));
1342 }
1343 else
1344 undobuf.other_insn = 0;
1345 }
1346 #endif
1347 }
1348 else
1349 #endif
1350 {
1351 n_occurrences = 0; /* `subst' counts here */
1352
1353 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1354 need to make a unique copy of I2SRC each time we substitute it
1355 to avoid self-referential rtl. */
1356
1357 subst_low_cuid = INSN_CUID (i2);
1358 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1359 ! i1_feeds_i3 && i1dest_in_i1src);
1360 previous_num_undos = undobuf.num_undo;
1361
1362 /* Record whether i2's body now appears within i3's body. */
1363 i2_is_used = n_occurrences;
1364 }
1365
1366 /* If we already got a failure, don't try to do more. Otherwise,
1367 try to substitute in I1 if we have it. */
1368
1369 if (i1 && GET_CODE (newpat) != CLOBBER)
1370 {
1371 /* Before we can do this substitution, we must redo the test done
1372 above (see detailed comments there) that ensures that I1DEST
1373 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1374
1375 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1376 0, NULL_PTR))
1377 {
1378 undo_all ();
1379 return 0;
1380 }
1381
1382 n_occurrences = 0;
1383 subst_low_cuid = INSN_CUID (i1);
1384 newpat = subst (newpat, i1dest, i1src, 0, 0);
1385 previous_num_undos = undobuf.num_undo;
1386 }
1387
1388 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1389 to count all the ways that I2SRC and I1SRC can be used. */
1390 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1391 && i2_is_used + added_sets_2 > 1)
1392 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1393 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1394 > 1))
1395 /* Fail if we tried to make a new register (we used to abort, but there's
1396 really no reason to). */
1397 || max_reg_num () != maxreg
1398 /* Fail if we couldn't do something and have a CLOBBER. */
1399 || GET_CODE (newpat) == CLOBBER)
1400 {
1401 undo_all ();
1402 return 0;
1403 }
1404
1405 /* If the actions of the earlier insns must be kept
1406 in addition to substituting them into the latest one,
1407 we must make a new PARALLEL for the latest insn
1408 to hold additional the SETs. */
1409
1410 if (added_sets_1 || added_sets_2)
1411 {
1412 combine_extras++;
1413
1414 if (GET_CODE (newpat) == PARALLEL)
1415 {
1416 rtvec old = XVEC (newpat, 0);
1417 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1418 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1419 bcopy (&old->elem[0], &XVECEXP (newpat, 0, 0),
1420 sizeof (old->elem[0]) * old->num_elem);
1421 }
1422 else
1423 {
1424 rtx old = newpat;
1425 total_sets = 1 + added_sets_1 + added_sets_2;
1426 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1427 XVECEXP (newpat, 0, 0) = old;
1428 }
1429
1430 if (added_sets_1)
1431 XVECEXP (newpat, 0, --total_sets)
1432 = (GET_CODE (PATTERN (i1)) == PARALLEL
1433 ? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
1434
1435 if (added_sets_2)
1436 {
1437 /* If there is no I1, use I2's body as is. We used to also not do
1438 the subst call below if I2 was substituted into I3,
1439 but that could lose a simplification. */
1440 if (i1 == 0)
1441 XVECEXP (newpat, 0, --total_sets) = i2pat;
1442 else
1443 /* See comment where i2pat is assigned. */
1444 XVECEXP (newpat, 0, --total_sets)
1445 = subst (i2pat, i1dest, i1src, 0, 0);
1446 }
1447 }
1448
1449 /* We come here when we are replacing a destination in I2 with the
1450 destination of I3. */
1451 validate_replacement:
1452
1453 /* Is the result of combination a valid instruction? */
1454 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1455
1456 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1457 the second SET's destination is a register that is unused. In that case,
1458 we just need the first SET. This can occur when simplifying a divmod
1459 insn. We *must* test for this case here because the code below that
1460 splits two independent SETs doesn't handle this case correctly when it
1461 updates the register status. Also check the case where the first
1462 SET's destination is unused. That would not cause incorrect code, but
1463 does cause an unneeded insn to remain. */
1464
1465 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1466 && XVECLEN (newpat, 0) == 2
1467 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1468 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1469 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
1470 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
1471 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
1472 && asm_noperands (newpat) < 0)
1473 {
1474 newpat = XVECEXP (newpat, 0, 0);
1475 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1476 }
1477
1478 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1479 && XVECLEN (newpat, 0) == 2
1480 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1481 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1482 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
1483 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
1484 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
1485 && asm_noperands (newpat) < 0)
1486 {
1487 newpat = XVECEXP (newpat, 0, 1);
1488 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1489 }
1490
1491 /* See if this is an XOR. If so, perhaps the problem is that the
1492 constant is out of range. Replace it with a complemented XOR with
1493 a complemented constant; it might be in range. */
1494
1495 else if (insn_code_number < 0 && GET_CODE (newpat) == SET
1496 && GET_CODE (SET_SRC (newpat)) == XOR
1497 && GET_CODE (XEXP (SET_SRC (newpat), 1)) == CONST_INT
1498 && ((temp = simplify_unary_operation (NOT,
1499 GET_MODE (SET_SRC (newpat)),
1500 XEXP (SET_SRC (newpat), 1),
1501 GET_MODE (SET_SRC (newpat))))
1502 != 0))
1503 {
1504 enum machine_mode i_mode = GET_MODE (SET_SRC (newpat));
1505 rtx pat
1506 = gen_rtx_combine (SET, VOIDmode, SET_DEST (newpat),
1507 gen_unary (NOT, i_mode,
1508 gen_binary (XOR, i_mode,
1509 XEXP (SET_SRC (newpat), 0),
1510 temp)));
1511
1512 insn_code_number = recog_for_combine (&pat, i3, &new_i3_notes);
1513 if (insn_code_number >= 0)
1514 newpat = pat;
1515 }
1516
1517 /* If we were combining three insns and the result is a simple SET
1518 with no ASM_OPERANDS that wasn't recognized, try to split it into two
1519 insns. There are two ways to do this. It can be split using a
1520 machine-specific method (like when you have an addition of a large
1521 constant) or by combine in the function find_split_point. */
1522
1523 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
1524 && asm_noperands (newpat) < 0)
1525 {
1526 rtx m_split, *split;
1527 rtx ni2dest = i2dest;
1528
1529 /* See if the MD file can split NEWPAT. If it can't, see if letting it
1530 use I2DEST as a scratch register will help. In the latter case,
1531 convert I2DEST to the mode of the source of NEWPAT if we can. */
1532
1533 m_split = split_insns (newpat, i3);
1534 if (m_split == 0)
1535 {
1536 /* If I2DEST is a hard register or the only use of a pseudo,
1537 we can change its mode. */
1538 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
1539 && GET_MODE (SET_DEST (newpat)) != VOIDmode
1540 && GET_CODE (i2dest) == REG
1541 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1542 || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
1543 && ! REG_USERVAR_P (i2dest))))
1544 ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)),
1545 REGNO (i2dest));
1546
1547 m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
1548 gen_rtvec (2, newpat,
1549 gen_rtx (CLOBBER,
1550 VOIDmode,
1551 ni2dest))),
1552 i3);
1553 }
1554
1555 if (m_split && GET_CODE (m_split) == SEQUENCE
1556 && XVECLEN (m_split, 0) == 2
1557 && (next_real_insn (i2) == i3
1558 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
1559 INSN_CUID (i2))))
1560 {
1561 rtx i2set, i3set;
1562 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
1563 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
1564
1565 i2set = single_set (newi2pat);
1566 i3set = single_set (newi3pat);
1567
1568 /* In case we changed the mode of I2DEST, replace it in the
1569 pseudo-register table here. We can't do it above in case this
1570 code doesn't get executed and we do a split the other way. */
1571
1572 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1573 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
1574
1575 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1576
1577 /* If I2 or I3 has multiple SETs, we won't know how to track
1578 register status, so don't use these insns. */
1579
1580 if (i2_code_number >= 0 && i2set && i3set)
1581 insn_code_number = recog_for_combine (&newi3pat, i3,
1582 &new_i3_notes);
1583
1584 if (insn_code_number >= 0)
1585 newpat = newi3pat;
1586
1587 /* It is possible that both insns now set the destination of I3.
1588 If so, we must show an extra use of it and update
1589 reg_significant. */
1590
1591 if (insn_code_number >= 0 && GET_CODE (SET_DEST (i3set)) == REG
1592 && GET_CODE (SET_DEST (i2set)) == REG
1593 && REGNO (SET_DEST (i3set)) == REGNO (SET_DEST (i2set)))
1594 {
1595 reg_n_sets[REGNO (SET_DEST (i2set))]++;
1596 set_significant (SET_DEST (i2set), i2set);
1597 set_significant (SET_DEST (i3set), i3set);
1598 }
1599 }
1600
1601 /* If we can split it and use I2DEST, go ahead and see if that
1602 helps things be recognized. Verify that none of the registers
1603 are set between I2 and I3. */
1604 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
1605 #ifdef HAVE_cc0
1606 && GET_CODE (i2dest) == REG
1607 #endif
1608 /* We need I2DEST in the proper mode. If it is a hard register
1609 or the only use of a pseudo, we can change its mode. */
1610 && (GET_MODE (*split) == GET_MODE (i2dest)
1611 || GET_MODE (*split) == VOIDmode
1612 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1613 || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
1614 && ! REG_USERVAR_P (i2dest)))
1615 && (next_real_insn (i2) == i3
1616 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
1617 /* We can't overwrite I2DEST if its value is still used by
1618 NEWPAT. */
1619 && ! reg_referenced_p (i2dest, newpat))
1620 {
1621 rtx newdest = i2dest;
1622
1623 /* Get NEWDEST as a register in the proper mode. We have already
1624 validated that we can do this. */
1625 if (GET_MODE (i2dest) != GET_MODE (*split)
1626 && GET_MODE (*split) != VOIDmode)
1627 {
1628 newdest = gen_rtx (REG, GET_MODE (*split), REGNO (i2dest));
1629
1630 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1631 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
1632 }
1633
1634 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
1635 an ASHIFT. This can occur if it was inside a PLUS and hence
1636 appeared to be a memory address. This is a kludge. */
1637 if (GET_CODE (*split) == MULT
1638 && GET_CODE (XEXP (*split, 1)) == CONST_INT
1639 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
1640 SUBST (*split, gen_rtx_combine (ASHIFT, GET_MODE (*split),
1641 XEXP (*split, 0), GEN_INT (i)));
1642
1643 #ifdef INSN_SCHEDULING
1644 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
1645 be written as a ZERO_EXTEND. */
1646 if (GET_CODE (*split) == SUBREG
1647 && GET_CODE (SUBREG_REG (*split)) == MEM)
1648 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, GET_MODE (*split),
1649 XEXP (*split, 0)));
1650 #endif
1651
1652 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
1653 SUBST (*split, newdest);
1654 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1655 if (i2_code_number >= 0)
1656 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1657 }
1658 }
1659
1660 /* Check for a case where we loaded from memory in a narrow mode and
1661 then sign extended it, but we need both registers. In that case,
1662 we have a PARALLEL with both loads from the same memory location.
1663 We can split this into a load from memory followed by a register-register
1664 copy. This saves at least one insn, more if register allocation can
1665 eliminate the copy. */
1666
1667 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
1668 && GET_CODE (newpat) == PARALLEL
1669 && XVECLEN (newpat, 0) == 2
1670 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1671 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
1672 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1673 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1674 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
1675 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1676 INSN_CUID (i2))
1677 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
1678 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
1679 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
1680 SET_SRC (XVECEXP (newpat, 0, 1)))
1681 && ! find_reg_note (i3, REG_UNUSED,
1682 SET_DEST (XVECEXP (newpat, 0, 0))))
1683 {
1684 newi2pat = XVECEXP (newpat, 0, 0);
1685 newpat = XVECEXP (newpat, 0, 1);
1686 SUBST (SET_SRC (newpat),
1687 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)),
1688 SET_DEST (newi2pat)));
1689 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1690 if (i2_code_number >= 0)
1691 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1692
1693 if (insn_code_number >= 0)
1694 {
1695 rtx insn;
1696 rtx link;
1697
1698 /* If we will be able to accept this, we have made a change to the
1699 destination of I3. This can invalidate a LOG_LINKS pointing
1700 to I3. No other part of combine.c makes such a transformation.
1701
1702 The new I3 will have a destination that was previously the
1703 destination of I1 or I2 and which was used in i2 or I3. Call
1704 distribute_links to make a LOG_LINK from the next use of
1705 that destination. */
1706
1707 PATTERN (i3) = newpat;
1708 distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX));
1709
1710 /* I3 now uses what used to be its destination and which is
1711 now I2's destination. That means we need a LOG_LINK from
1712 I3 to I2. But we used to have one, so we still will.
1713
1714 However, some later insn might be using I2's dest and have
1715 a LOG_LINK pointing at I3. We must remove this link.
1716 The simplest way to remove the link is to point it at I1,
1717 which we know will be a NOTE. */
1718
1719 for (insn = NEXT_INSN (i3);
1720 insn && GET_CODE (insn) != CODE_LABEL
1721 && GET_CODE (PREV_INSN (insn)) != JUMP_INSN;
1722 insn = NEXT_INSN (insn))
1723 {
1724 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1725 && reg_referenced_p (SET_DEST (newi2pat), PATTERN (insn)))
1726 {
1727 for (link = LOG_LINKS (insn); link;
1728 link = XEXP (link, 1))
1729 if (XEXP (link, 0) == i3)
1730 XEXP (link, 0) = i1;
1731
1732 break;
1733 }
1734 }
1735 }
1736 }
1737
1738 /* Similarly, check for a case where we have a PARALLEL of two independent
1739 SETs but we started with three insns. In this case, we can do the sets
1740 as two separate insns. This case occurs when some SET allows two
1741 other insns to combine, but the destination of that SET is still live. */
1742
1743 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
1744 && GET_CODE (newpat) == PARALLEL
1745 && XVECLEN (newpat, 0) == 2
1746 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1747 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
1748 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
1749 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1750 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
1751 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
1752 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1753 INSN_CUID (i2))
1754 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
1755 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
1756 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
1757 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
1758 XVECEXP (newpat, 0, 0))
1759 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
1760 XVECEXP (newpat, 0, 1)))
1761 {
1762 newi2pat = XVECEXP (newpat, 0, 1);
1763 newpat = XVECEXP (newpat, 0, 0);
1764
1765 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1766 if (i2_code_number >= 0)
1767 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1768 }
1769
1770 /* If it still isn't recognized, fail and change things back the way they
1771 were. */
1772 if ((insn_code_number < 0
1773 /* Is the result a reasonable ASM_OPERANDS? */
1774 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
1775 {
1776 undo_all ();
1777 return 0;
1778 }
1779
1780 /* If we had to change another insn, make sure it is valid also. */
1781 if (undobuf.other_insn)
1782 {
1783 rtx other_notes = REG_NOTES (undobuf.other_insn);
1784 rtx other_pat = PATTERN (undobuf.other_insn);
1785 rtx new_other_notes;
1786 rtx note, next;
1787
1788 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
1789 &new_other_notes);
1790
1791 if (other_code_number < 0 && ! check_asm_operands (other_pat))
1792 {
1793 undo_all ();
1794 return 0;
1795 }
1796
1797 PATTERN (undobuf.other_insn) = other_pat;
1798
1799 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
1800 are still valid. Then add any non-duplicate notes added by
1801 recog_for_combine. */
1802 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
1803 {
1804 next = XEXP (note, 1);
1805
1806 if (REG_NOTE_KIND (note) == REG_UNUSED
1807 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
1808 {
1809 if (GET_CODE (XEXP (note, 0)) == REG)
1810 reg_n_deaths[REGNO (XEXP (note, 0))]--;
1811
1812 remove_note (undobuf.other_insn, note);
1813 }
1814 }
1815
1816 for (note = new_other_notes; note; note = XEXP (note, 1))
1817 if (GET_CODE (XEXP (note, 0)) == REG)
1818 reg_n_deaths[REGNO (XEXP (note, 0))]++;
1819
1820 distribute_notes (new_other_notes, undobuf.other_insn,
1821 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
1822 }
1823
1824 /* We now know that we can do this combination. Merge the insns and
1825 update the status of registers and LOG_LINKS. */
1826
1827 {
1828 rtx i3notes, i2notes, i1notes = 0;
1829 rtx i3links, i2links, i1links = 0;
1830 rtx midnotes = 0;
1831 int all_adjacent = (next_real_insn (i2) == i3
1832 && (i1 == 0 || next_real_insn (i1) == i2));
1833 register int regno;
1834 /* Compute which registers we expect to eliminate. */
1835 rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
1836 ? 0 : i2dest);
1837 rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
1838
1839 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
1840 clear them. */
1841 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
1842 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
1843 if (i1)
1844 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
1845
1846 /* Ensure that we do not have something that should not be shared but
1847 occurs multiple times in the new insns. Check this by first
1848 resetting all the `used' flags and then copying anything is shared. */
1849
1850 reset_used_flags (i3notes);
1851 reset_used_flags (i2notes);
1852 reset_used_flags (i1notes);
1853 reset_used_flags (newpat);
1854 reset_used_flags (newi2pat);
1855 if (undobuf.other_insn)
1856 reset_used_flags (PATTERN (undobuf.other_insn));
1857
1858 i3notes = copy_rtx_if_shared (i3notes);
1859 i2notes = copy_rtx_if_shared (i2notes);
1860 i1notes = copy_rtx_if_shared (i1notes);
1861 newpat = copy_rtx_if_shared (newpat);
1862 newi2pat = copy_rtx_if_shared (newi2pat);
1863 if (undobuf.other_insn)
1864 reset_used_flags (PATTERN (undobuf.other_insn));
1865
1866 INSN_CODE (i3) = insn_code_number;
1867 PATTERN (i3) = newpat;
1868 if (undobuf.other_insn)
1869 INSN_CODE (undobuf.other_insn) = other_code_number;
1870
1871 /* We had one special case above where I2 had more than one set and
1872 we replaced a destination of one of those sets with the destination
1873 of I3. In that case, we have to update LOG_LINKS of insns later
1874 in this basic block. Note that this (expensive) case is rare. */
1875
1876 if (GET_CODE (PATTERN (i2)) == PARALLEL)
1877 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
1878 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
1879 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
1880 && ! find_reg_note (i2, REG_UNUSED,
1881 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
1882 {
1883 register rtx insn;
1884
1885 for (insn = NEXT_INSN (i2); insn; insn = NEXT_INSN (insn))
1886 {
1887 if (insn != i3 && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1888 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1889 if (XEXP (link, 0) == i2)
1890 XEXP (link, 0) = i3;
1891
1892 if (GET_CODE (insn) == CODE_LABEL
1893 || GET_CODE (insn) == JUMP_INSN)
1894 break;
1895 }
1896 }
1897
1898 LOG_LINKS (i3) = 0;
1899 REG_NOTES (i3) = 0;
1900 LOG_LINKS (i2) = 0;
1901 REG_NOTES (i2) = 0;
1902
1903 if (newi2pat)
1904 {
1905 INSN_CODE (i2) = i2_code_number;
1906 PATTERN (i2) = newi2pat;
1907 }
1908 else
1909 {
1910 PUT_CODE (i2, NOTE);
1911 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
1912 NOTE_SOURCE_FILE (i2) = 0;
1913 }
1914
1915 if (i1)
1916 {
1917 LOG_LINKS (i1) = 0;
1918 REG_NOTES (i1) = 0;
1919 PUT_CODE (i1, NOTE);
1920 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
1921 NOTE_SOURCE_FILE (i1) = 0;
1922 }
1923
1924 /* Get death notes for everything that is now used in either I3 or
1925 I2 and used to die in a previous insn. */
1926
1927 move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3, &midnotes);
1928 if (newi2pat)
1929 move_deaths (newi2pat, INSN_CUID (i1), i2, &midnotes);
1930
1931 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
1932 if (i3notes)
1933 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
1934 elim_i2, elim_i1);
1935 if (i2notes)
1936 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
1937 elim_i2, elim_i1);
1938 if (i1notes)
1939 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
1940 elim_i2, elim_i1);
1941 if (midnotes)
1942 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
1943 elim_i2, elim_i1);
1944
1945 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
1946 know these are REG_UNUSED and want them to go to the desired insn,
1947 so we always pass it as i3. We have not counted the notes in
1948 reg_n_deaths yet, so we need to do so now. */
1949
1950 if (newi2pat && new_i2_notes)
1951 {
1952 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
1953 if (GET_CODE (XEXP (temp, 0)) == REG)
1954 reg_n_deaths[REGNO (XEXP (temp, 0))]++;
1955
1956 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
1957 }
1958
1959 if (new_i3_notes)
1960 {
1961 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
1962 if (GET_CODE (XEXP (temp, 0)) == REG)
1963 reg_n_deaths[REGNO (XEXP (temp, 0))]++;
1964
1965 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
1966 }
1967
1968 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
1969 put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
1970 Show an additional death due to the REG_DEAD note we make here. If
1971 we discard it in distribute_notes, we will decrement it again. */
1972
1973 if (i3dest_killed)
1974 {
1975 if (GET_CODE (i3dest_killed) == REG)
1976 reg_n_deaths[REGNO (i3dest_killed)]++;
1977
1978 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
1979 NULL_RTX),
1980 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
1981 NULL_RTX, NULL_RTX);
1982 }
1983
1984 /* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
1985 I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
1986 we passed I3 in that case, it might delete I2. */
1987
1988 if (i2dest_in_i2src)
1989 {
1990 if (GET_CODE (i2dest) == REG)
1991 reg_n_deaths[REGNO (i2dest)]++;
1992
1993 if (newi2pat && reg_set_p (i2dest, newi2pat))
1994 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
1995 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
1996 else
1997 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
1998 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
1999 NULL_RTX, NULL_RTX);
2000 }
2001
2002 if (i1dest_in_i1src)
2003 {
2004 if (GET_CODE (i1dest) == REG)
2005 reg_n_deaths[REGNO (i1dest)]++;
2006
2007 if (newi2pat && reg_set_p (i1dest, newi2pat))
2008 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
2009 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2010 else
2011 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
2012 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2013 NULL_RTX, NULL_RTX);
2014 }
2015
2016 distribute_links (i3links);
2017 distribute_links (i2links);
2018 distribute_links (i1links);
2019
2020 if (GET_CODE (i2dest) == REG)
2021 {
2022 rtx link;
2023 rtx i2_insn = 0, i2_val = 0, set;
2024
2025 /* The insn that used to set this register doesn't exist, and
2026 this life of the register may not exist either. See if one of
2027 I3's links points to an insn that sets I2DEST. If it does,
2028 that is now the last known value for I2DEST. If we don't update
2029 this and I2 set the register to a value that depended on its old
2030 contents, we will get confused. If this insn is used, thing
2031 will be set correctly in combine_instructions. */
2032
2033 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2034 if ((set = single_set (XEXP (link, 0))) != 0
2035 && rtx_equal_p (i2dest, SET_DEST (set)))
2036 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2037
2038 record_value_for_reg (i2dest, i2_insn, i2_val);
2039
2040 /* If the reg formerly set in I2 died only once and that was in I3,
2041 zero its use count so it won't make `reload' do any work. */
2042 if (! added_sets_2 && newi2pat == 0)
2043 {
2044 regno = REGNO (i2dest);
2045 reg_n_sets[regno]--;
2046 if (reg_n_sets[regno] == 0
2047 && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
2048 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
2049 reg_n_refs[regno] = 0;
2050 }
2051 }
2052
2053 if (i1 && GET_CODE (i1dest) == REG)
2054 {
2055 rtx link;
2056 rtx i1_insn = 0, i1_val = 0, set;
2057
2058 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2059 if ((set = single_set (XEXP (link, 0))) != 0
2060 && rtx_equal_p (i1dest, SET_DEST (set)))
2061 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2062
2063 record_value_for_reg (i1dest, i1_insn, i1_val);
2064
2065 regno = REGNO (i1dest);
2066 if (! added_sets_1)
2067 {
2068 reg_n_sets[regno]--;
2069 if (reg_n_sets[regno] == 0
2070 && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
2071 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
2072 reg_n_refs[regno] = 0;
2073 }
2074 }
2075
2076 /* If I3 is now an unconditional jump, ensure that it has a
2077 BARRIER following it since it may have initially been a
2078 conditional jump. */
2079
2080 if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
2081 && GET_CODE (next_nonnote_insn (i3)) != BARRIER)
2082 emit_barrier_after (i3);
2083 }
2084
2085 combine_successes++;
2086
2087 return newi2pat ? i2 : i3;
2088 }
2089 \f
2090 /* Undo all the modifications recorded in undobuf. */
2091
2092 static void
2093 undo_all ()
2094 {
2095 register int i;
2096 if (undobuf.num_undo > MAX_UNDO)
2097 undobuf.num_undo = MAX_UNDO;
2098 for (i = undobuf.num_undo - 1; i >= 0; i--)
2099 {
2100 if (undobuf.undo[i].is_int)
2101 *undobuf.undo[i].where.i = undobuf.undo[i].old_contents.i;
2102 else
2103 *undobuf.undo[i].where.rtx = undobuf.undo[i].old_contents.rtx;
2104
2105 }
2106
2107 obfree (undobuf.storage);
2108 undobuf.num_undo = 0;
2109 }
2110 \f
2111 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2112 where we have an arithmetic expression and return that point. LOC will
2113 be inside INSN.
2114
2115 try_combine will call this function to see if an insn can be split into
2116 two insns. */
2117
2118 static rtx *
2119 find_split_point (loc, insn)
2120 rtx *loc;
2121 rtx insn;
2122 {
2123 rtx x = *loc;
2124 enum rtx_code code = GET_CODE (x);
2125 rtx *split;
2126 int len = 0, pos, unsignedp;
2127 rtx inner;
2128
2129 /* First special-case some codes. */
2130 switch (code)
2131 {
2132 case SUBREG:
2133 #ifdef INSN_SCHEDULING
2134 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2135 point. */
2136 if (GET_CODE (SUBREG_REG (x)) == MEM)
2137 return loc;
2138 #endif
2139 return find_split_point (&SUBREG_REG (x), insn);
2140
2141 case MEM:
2142 #ifdef HAVE_lo_sum
2143 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2144 using LO_SUM and HIGH. */
2145 if (GET_CODE (XEXP (x, 0)) == CONST
2146 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2147 {
2148 SUBST (XEXP (x, 0),
2149 gen_rtx_combine (LO_SUM, Pmode,
2150 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2151 XEXP (x, 0)));
2152 return &XEXP (XEXP (x, 0), 0);
2153 }
2154 #endif
2155
2156 /* If we have a PLUS whose second operand is a constant and the
2157 address is not valid, perhaps will can split it up using
2158 the machine-specific way to split large constants. We use
2159 the first psuedo-reg (one of the virtual regs) as a placeholder;
2160 it will not remain in the result. */
2161 if (GET_CODE (XEXP (x, 0)) == PLUS
2162 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2163 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2164 {
2165 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2166 rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
2167 subst_insn);
2168
2169 /* This should have produced two insns, each of which sets our
2170 placeholder. If the source of the second is a valid address,
2171 we can make put both sources together and make a split point
2172 in the middle. */
2173
2174 if (seq && XVECLEN (seq, 0) == 2
2175 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2176 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2177 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2178 && ! reg_mentioned_p (reg,
2179 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2180 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2181 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2182 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2183 && memory_address_p (GET_MODE (x),
2184 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2185 {
2186 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2187 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2188
2189 /* Replace the placeholder in SRC2 with SRC1. If we can
2190 find where in SRC2 it was placed, that can become our
2191 split point and we can replace this address with SRC2.
2192 Just try two obvious places. */
2193
2194 src2 = replace_rtx (src2, reg, src1);
2195 split = 0;
2196 if (XEXP (src2, 0) == src1)
2197 split = &XEXP (src2, 0);
2198 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2199 && XEXP (XEXP (src2, 0), 0) == src1)
2200 split = &XEXP (XEXP (src2, 0), 0);
2201
2202 if (split)
2203 {
2204 SUBST (XEXP (x, 0), src2);
2205 return split;
2206 }
2207 }
2208
2209 /* If that didn't work, perhaps the first operand is complex and
2210 needs to be computed separately, so make a split point there.
2211 This will occur on machines that just support REG + CONST
2212 and have a constant moved through some previous computation. */
2213
2214 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2215 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2216 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2217 == 'o')))
2218 return &XEXP (XEXP (x, 0), 0);
2219 }
2220 break;
2221
2222 case SET:
2223 #ifdef HAVE_cc0
2224 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2225 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2226 we need to put the operand into a register. So split at that
2227 point. */
2228
2229 if (SET_DEST (x) == cc0_rtx
2230 && GET_CODE (SET_SRC (x)) != COMPARE
2231 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2232 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2233 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2234 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2235 return &SET_SRC (x);
2236 #endif
2237
2238 /* See if we can split SET_SRC as it stands. */
2239 split = find_split_point (&SET_SRC (x), insn);
2240 if (split && split != &SET_SRC (x))
2241 return split;
2242
2243 /* See if this is a bitfield assignment with everything constant. If
2244 so, this is an IOR of an AND, so split it into that. */
2245 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2246 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2247 <= HOST_BITS_PER_WIDE_INT)
2248 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2249 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2250 && GET_CODE (SET_SRC (x)) == CONST_INT
2251 && ((INTVAL (XEXP (SET_DEST (x), 1))
2252 + INTVAL (XEXP (SET_DEST (x), 2)))
2253 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2254 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2255 {
2256 int pos = INTVAL (XEXP (SET_DEST (x), 2));
2257 int len = INTVAL (XEXP (SET_DEST (x), 1));
2258 int src = INTVAL (SET_SRC (x));
2259 rtx dest = XEXP (SET_DEST (x), 0);
2260 enum machine_mode mode = GET_MODE (dest);
2261 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2262
2263 #if BITS_BIG_ENDIAN
2264 pos = GET_MODE_BITSIZE (mode) - len - pos;
2265 #endif
2266
2267 if (src == mask)
2268 SUBST (SET_SRC (x),
2269 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2270 else
2271 SUBST (SET_SRC (x),
2272 gen_binary (IOR, mode,
2273 gen_binary (AND, mode, dest,
2274 GEN_INT (~ (mask << pos)
2275 & GET_MODE_MASK (mode))),
2276 GEN_INT (src << pos)));
2277
2278 SUBST (SET_DEST (x), dest);
2279
2280 split = find_split_point (&SET_SRC (x), insn);
2281 if (split && split != &SET_SRC (x))
2282 return split;
2283 }
2284
2285 /* Otherwise, see if this is an operation that we can split into two.
2286 If so, try to split that. */
2287 code = GET_CODE (SET_SRC (x));
2288
2289 switch (code)
2290 {
2291 case AND:
2292 /* If we are AND'ing with a large constant that is only a single
2293 bit and the result is only being used in a context where we
2294 need to know if it is zero or non-zero, replace it with a bit
2295 extraction. This will avoid the large constant, which might
2296 have taken more than one insn to make. If the constant were
2297 not a valid argument to the AND but took only one insn to make,
2298 this is no worse, but if it took more than one insn, it will
2299 be better. */
2300
2301 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2302 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2303 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
2304 && GET_CODE (SET_DEST (x)) == REG
2305 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
2306 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
2307 && XEXP (*split, 0) == SET_DEST (x)
2308 && XEXP (*split, 1) == const0_rtx)
2309 {
2310 SUBST (SET_SRC (x),
2311 make_extraction (GET_MODE (SET_DEST (x)),
2312 XEXP (SET_SRC (x), 0),
2313 pos, NULL_RTX, 1, 1, 0, 0));
2314 return find_split_point (loc, insn);
2315 }
2316 break;
2317
2318 case SIGN_EXTEND:
2319 inner = XEXP (SET_SRC (x), 0);
2320 pos = 0;
2321 len = GET_MODE_BITSIZE (GET_MODE (inner));
2322 unsignedp = 0;
2323 break;
2324
2325 case SIGN_EXTRACT:
2326 case ZERO_EXTRACT:
2327 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2328 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
2329 {
2330 inner = XEXP (SET_SRC (x), 0);
2331 len = INTVAL (XEXP (SET_SRC (x), 1));
2332 pos = INTVAL (XEXP (SET_SRC (x), 2));
2333
2334 #if BITS_BIG_ENDIAN
2335 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
2336 #endif
2337 unsignedp = (code == ZERO_EXTRACT);
2338 }
2339 break;
2340 }
2341
2342 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
2343 {
2344 enum machine_mode mode = GET_MODE (SET_SRC (x));
2345
2346 /* For unsigned, we have a choice of a shift followed by an
2347 AND or two shifts. Use two shifts for field sizes where the
2348 constant might be too large. We assume here that we can
2349 always at least get 8-bit constants in an AND insn, which is
2350 true for every current RISC. */
2351
2352 if (unsignedp && len <= 8)
2353 {
2354 SUBST (SET_SRC (x),
2355 gen_rtx_combine
2356 (AND, mode,
2357 gen_rtx_combine (LSHIFTRT, mode,
2358 gen_lowpart_for_combine (mode, inner),
2359 GEN_INT (pos)),
2360 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
2361
2362 split = find_split_point (&SET_SRC (x), insn);
2363 if (split && split != &SET_SRC (x))
2364 return split;
2365 }
2366 else
2367 {
2368 SUBST (SET_SRC (x),
2369 gen_rtx_combine
2370 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
2371 gen_rtx_combine (ASHIFT, mode,
2372 gen_lowpart_for_combine (mode, inner),
2373 GEN_INT (GET_MODE_BITSIZE (mode)
2374 - len - pos)),
2375 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
2376
2377 split = find_split_point (&SET_SRC (x), insn);
2378 if (split && split != &SET_SRC (x))
2379 return split;
2380 }
2381 }
2382
2383 /* See if this is a simple operation with a constant as the second
2384 operand. It might be that this constant is out of range and hence
2385 could be used as a split point. */
2386 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2387 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2388 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
2389 && CONSTANT_P (XEXP (SET_SRC (x), 1))
2390 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
2391 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
2392 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
2393 == 'o'))))
2394 return &XEXP (SET_SRC (x), 1);
2395
2396 /* Finally, see if this is a simple operation with its first operand
2397 not in a register. The operation might require this operand in a
2398 register, so return it as a split point. We can always do this
2399 because if the first operand were another operation, we would have
2400 already found it as a split point. */
2401 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2402 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2403 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
2404 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
2405 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
2406 return &XEXP (SET_SRC (x), 0);
2407
2408 return 0;
2409
2410 case AND:
2411 case IOR:
2412 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
2413 it is better to write this as (not (ior A B)) so we can split it.
2414 Similarly for IOR. */
2415 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
2416 {
2417 SUBST (*loc,
2418 gen_rtx_combine (NOT, GET_MODE (x),
2419 gen_rtx_combine (code == IOR ? AND : IOR,
2420 GET_MODE (x),
2421 XEXP (XEXP (x, 0), 0),
2422 XEXP (XEXP (x, 1), 0))));
2423 return find_split_point (loc, insn);
2424 }
2425
2426 /* Many RISC machines have a large set of logical insns. If the
2427 second operand is a NOT, put it first so we will try to split the
2428 other operand first. */
2429 if (GET_CODE (XEXP (x, 1)) == NOT)
2430 {
2431 rtx tem = XEXP (x, 0);
2432 SUBST (XEXP (x, 0), XEXP (x, 1));
2433 SUBST (XEXP (x, 1), tem);
2434 }
2435 break;
2436 }
2437
2438 /* Otherwise, select our actions depending on our rtx class. */
2439 switch (GET_RTX_CLASS (code))
2440 {
2441 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
2442 case '3':
2443 split = find_split_point (&XEXP (x, 2), insn);
2444 if (split)
2445 return split;
2446 /* ... fall through ... */
2447 case '2':
2448 case 'c':
2449 case '<':
2450 split = find_split_point (&XEXP (x, 1), insn);
2451 if (split)
2452 return split;
2453 /* ... fall through ... */
2454 case '1':
2455 /* Some machines have (and (shift ...) ...) insns. If X is not
2456 an AND, but XEXP (X, 0) is, use it as our split point. */
2457 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
2458 return &XEXP (x, 0);
2459
2460 split = find_split_point (&XEXP (x, 0), insn);
2461 if (split)
2462 return split;
2463 return loc;
2464 }
2465
2466 /* Otherwise, we don't have a split point. */
2467 return 0;
2468 }
2469 \f
2470 /* Throughout X, replace FROM with TO, and return the result.
2471 The result is TO if X is FROM;
2472 otherwise the result is X, but its contents may have been modified.
2473 If they were modified, a record was made in undobuf so that
2474 undo_all will (among other things) return X to its original state.
2475
2476 If the number of changes necessary is too much to record to undo,
2477 the excess changes are not made, so the result is invalid.
2478 The changes already made can still be undone.
2479 undobuf.num_undo is incremented for such changes, so by testing that
2480 the caller can tell whether the result is valid.
2481
2482 `n_occurrences' is incremented each time FROM is replaced.
2483
2484 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
2485
2486 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
2487 by copying if `n_occurrences' is non-zero. */
2488
2489 static rtx
2490 subst (x, from, to, in_dest, unique_copy)
2491 register rtx x, from, to;
2492 int in_dest;
2493 int unique_copy;
2494 {
2495 register char *fmt;
2496 register int len, i;
2497 register enum rtx_code code = GET_CODE (x), orig_code = code;
2498 rtx temp;
2499 enum machine_mode mode = GET_MODE (x);
2500 enum machine_mode op0_mode = VOIDmode;
2501 rtx other_insn;
2502 rtx *cc_use;
2503 int n_restarts = 0;
2504
2505 /* FAKE_EXTEND_SAFE_P (MODE, FROM) is 1 if (subreg:MODE FROM 0) is a safe
2506 replacement for (zero_extend:MODE FROM) or (sign_extend:MODE FROM).
2507 If it is 0, that cannot be done. We can now do this for any MEM
2508 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be reloaded.
2509 If not for that, MEM's would very rarely be safe. */
2510
2511 /* Reject MODEs bigger than a word, because we might not be able
2512 to reference a two-register group starting with an arbitrary register
2513 (and currently gen_lowpart might crash for a SUBREG). */
2514
2515 #define FAKE_EXTEND_SAFE_P(MODE, FROM) \
2516 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
2517
2518 /* Two expressions are equal if they are identical copies of a shared
2519 RTX or if they are both registers with the same register number
2520 and mode. */
2521
2522 #define COMBINE_RTX_EQUAL_P(X,Y) \
2523 ((X) == (Y) \
2524 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
2525 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
2526
2527 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
2528 {
2529 n_occurrences++;
2530 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
2531 }
2532
2533 /* If X and FROM are the same register but different modes, they will
2534 not have been seen as equal above. However, flow.c will make a
2535 LOG_LINKS entry for that case. If we do nothing, we will try to
2536 rerecognize our original insn and, when it succeeds, we will
2537 delete the feeding insn, which is incorrect.
2538
2539 So force this insn not to match in this (rare) case. */
2540 if (! in_dest && code == REG && GET_CODE (from) == REG
2541 && REGNO (x) == REGNO (from))
2542 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
2543
2544 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
2545 of which may contain things that can be combined. */
2546 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
2547 return x;
2548
2549 /* It is possible to have a subexpression appear twice in the insn.
2550 Suppose that FROM is a register that appears within TO.
2551 Then, after that subexpression has been scanned once by `subst',
2552 the second time it is scanned, TO may be found. If we were
2553 to scan TO here, we would find FROM within it and create a
2554 self-referent rtl structure which is completely wrong. */
2555 if (COMBINE_RTX_EQUAL_P (x, to))
2556 return to;
2557
2558 len = GET_RTX_LENGTH (code);
2559 fmt = GET_RTX_FORMAT (code);
2560
2561 /* We don't need to process a SET_DEST that is a register, CC0, or PC, so
2562 set up to skip this common case. All other cases where we want to
2563 suppress replacing something inside a SET_SRC are handled via the
2564 IN_DEST operand. */
2565 if (code == SET
2566 && (GET_CODE (SET_DEST (x)) == REG
2567 || GET_CODE (SET_DEST (x)) == CC0
2568 || GET_CODE (SET_DEST (x)) == PC))
2569 fmt = "ie";
2570
2571 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */
2572 if (fmt[0] == 'e')
2573 op0_mode = GET_MODE (XEXP (x, 0));
2574
2575 for (i = 0; i < len; i++)
2576 {
2577 if (fmt[i] == 'E')
2578 {
2579 register int j;
2580 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2581 {
2582 register rtx new;
2583 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
2584 {
2585 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2586 n_occurrences++;
2587 }
2588 else
2589 {
2590 new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
2591
2592 /* If this substitution failed, this whole thing fails. */
2593 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2594 return new;
2595 }
2596
2597 SUBST (XVECEXP (x, i, j), new);
2598 }
2599 }
2600 else if (fmt[i] == 'e')
2601 {
2602 register rtx new;
2603
2604 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
2605 {
2606 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2607 n_occurrences++;
2608 }
2609 else
2610 /* If we are in a SET_DEST, suppress most cases unless we
2611 have gone inside a MEM, in which case we want to
2612 simplify the address. We assume here that things that
2613 are actually part of the destination have their inner
2614 parts in the first expression. This is true for SUBREG,
2615 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
2616 things aside from REG and MEM that should appear in a
2617 SET_DEST. */
2618 new = subst (XEXP (x, i), from, to,
2619 (((in_dest
2620 && (code == SUBREG || code == STRICT_LOW_PART
2621 || code == ZERO_EXTRACT))
2622 || code == SET)
2623 && i == 0), unique_copy);
2624
2625 /* If we found that we will have to reject this combination,
2626 indicate that by returning the CLOBBER ourselves, rather than
2627 an expression containing it. This will speed things up as
2628 well as prevent accidents where two CLOBBERs are considered
2629 to be equal, thus producing an incorrect simplification. */
2630
2631 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2632 return new;
2633
2634 SUBST (XEXP (x, i), new);
2635 }
2636 }
2637
2638 /* We come back to here if we have replaced the expression with one of
2639 a different code and it is likely that further simplification will be
2640 possible. */
2641
2642 restart:
2643
2644 /* If we have restarted more than 4 times, we are probably looping, so
2645 give up. */
2646 if (++n_restarts > 4)
2647 return x;
2648
2649 /* If we are restarting at all, it means that we no longer know the
2650 original mode of operand 0 (since we have probably changed the
2651 form of X). */
2652
2653 if (n_restarts > 1)
2654 op0_mode = VOIDmode;
2655
2656 code = GET_CODE (x);
2657
2658 /* If this is a commutative operation, put a constant last and a complex
2659 expression first. We don't need to do this for comparisons here. */
2660 if (GET_RTX_CLASS (code) == 'c'
2661 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
2662 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
2663 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
2664 || (GET_CODE (XEXP (x, 0)) == SUBREG
2665 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
2666 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
2667 {
2668 temp = XEXP (x, 0);
2669 SUBST (XEXP (x, 0), XEXP (x, 1));
2670 SUBST (XEXP (x, 1), temp);
2671 }
2672
2673 /* If this is a simple operation applied to an IF_THEN_ELSE, try
2674 applying it to the arms of the IF_THEN_ELSE. This often simplifies
2675 things. Don't deal with operations that change modes here. */
2676
2677 if ((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c')
2678 && GET_CODE (XEXP (x, 0)) == IF_THEN_ELSE)
2679 {
2680 /* Don't do this by using SUBST inside X since we might be messing
2681 up a shared expression. */
2682 rtx cond = XEXP (XEXP (x, 0), 0);
2683 rtx t_arm = subst (gen_binary (code, mode, XEXP (XEXP (x, 0), 1),
2684 XEXP (x, 1)),
2685 pc_rtx, pc_rtx, 0, 0);
2686 rtx f_arm = subst (gen_binary (code, mode, XEXP (XEXP (x, 0), 2),
2687 XEXP (x, 1)),
2688 pc_rtx, pc_rtx, 0, 0);
2689
2690
2691 x = gen_rtx (IF_THEN_ELSE, mode, cond, t_arm, f_arm);
2692 goto restart;
2693 }
2694
2695 else if (GET_RTX_CLASS (code) == '1'
2696 && GET_CODE (XEXP (x, 0)) == IF_THEN_ELSE
2697 && GET_MODE (XEXP (x, 0)) == mode)
2698 {
2699 rtx cond = XEXP (XEXP (x, 0), 0);
2700 rtx t_arm = subst (gen_unary (code, mode, XEXP (XEXP (x, 0), 1)),
2701 pc_rtx, pc_rtx, 0, 0);
2702 rtx f_arm = subst (gen_unary (code, mode, XEXP (XEXP (x, 0), 2)),
2703 pc_rtx, pc_rtx, 0, 0);
2704
2705 x = gen_rtx_combine (IF_THEN_ELSE, mode, cond, t_arm, f_arm);
2706 goto restart;
2707 }
2708
2709 /* Try to fold this expression in case we have constants that weren't
2710 present before. */
2711 temp = 0;
2712 switch (GET_RTX_CLASS (code))
2713 {
2714 case '1':
2715 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
2716 break;
2717 case '<':
2718 temp = simplify_relational_operation (code, op0_mode,
2719 XEXP (x, 0), XEXP (x, 1));
2720 #ifdef FLOAT_STORE_FLAG_VALUE
2721 if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
2722 temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
2723 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
2724 #endif
2725 break;
2726 case 'c':
2727 case '2':
2728 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
2729 break;
2730 case 'b':
2731 case '3':
2732 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
2733 XEXP (x, 1), XEXP (x, 2));
2734 break;
2735 }
2736
2737 if (temp)
2738 x = temp, code = GET_CODE (temp);
2739
2740 /* First see if we can apply the inverse distributive law. */
2741 if (code == PLUS || code == MINUS || code == IOR || code == XOR)
2742 {
2743 x = apply_distributive_law (x);
2744 code = GET_CODE (x);
2745 }
2746
2747 /* If CODE is an associative operation not otherwise handled, see if we
2748 can associate some operands. This can win if they are constants or
2749 if they are logically related (i.e. (a & b) & a. */
2750 if ((code == PLUS || code == MINUS
2751 || code == MULT || code == AND || code == IOR || code == XOR
2752 || code == DIV || code == UDIV
2753 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
2754 && GET_MODE_CLASS (mode) == MODE_INT)
2755 {
2756 if (GET_CODE (XEXP (x, 0)) == code)
2757 {
2758 rtx other = XEXP (XEXP (x, 0), 0);
2759 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
2760 rtx inner_op1 = XEXP (x, 1);
2761 rtx inner;
2762
2763 /* Make sure we pass the constant operand if any as the second
2764 one if this is a commutative operation. */
2765 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
2766 {
2767 rtx tem = inner_op0;
2768 inner_op0 = inner_op1;
2769 inner_op1 = tem;
2770 }
2771 inner = simplify_binary_operation (code == MINUS ? PLUS
2772 : code == DIV ? MULT
2773 : code == UDIV ? MULT
2774 : code,
2775 mode, inner_op0, inner_op1);
2776
2777 /* For commutative operations, try the other pair if that one
2778 didn't simplify. */
2779 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
2780 {
2781 other = XEXP (XEXP (x, 0), 1);
2782 inner = simplify_binary_operation (code, mode,
2783 XEXP (XEXP (x, 0), 0),
2784 XEXP (x, 1));
2785 }
2786
2787 if (inner)
2788 {
2789 x = gen_binary (code, mode, other, inner);
2790 goto restart;
2791
2792 }
2793 }
2794 }
2795
2796 /* A little bit of algebraic simplification here. */
2797 switch (code)
2798 {
2799 case MEM:
2800 /* Ensure that our address has any ASHIFTs converted to MULT in case
2801 address-recognizing predicates are called later. */
2802 temp = make_compound_operation (XEXP (x, 0), MEM);
2803 SUBST (XEXP (x, 0), temp);
2804 break;
2805
2806 case SUBREG:
2807 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
2808 is paradoxical. If we can't do that safely, then it becomes
2809 something nonsensical so that this combination won't take place. */
2810
2811 if (GET_CODE (SUBREG_REG (x)) == MEM
2812 && (GET_MODE_SIZE (mode)
2813 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2814 {
2815 rtx inner = SUBREG_REG (x);
2816 int endian_offset = 0;
2817 /* Don't change the mode of the MEM
2818 if that would change the meaning of the address. */
2819 if (MEM_VOLATILE_P (SUBREG_REG (x))
2820 || mode_dependent_address_p (XEXP (inner, 0)))
2821 return gen_rtx (CLOBBER, mode, const0_rtx);
2822
2823 #if BYTES_BIG_ENDIAN
2824 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2825 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
2826 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
2827 endian_offset -= UNITS_PER_WORD - GET_MODE_SIZE (GET_MODE (inner));
2828 #endif
2829 /* Note if the plus_constant doesn't make a valid address
2830 then this combination won't be accepted. */
2831 x = gen_rtx (MEM, mode,
2832 plus_constant (XEXP (inner, 0),
2833 (SUBREG_WORD (x) * UNITS_PER_WORD
2834 + endian_offset)));
2835 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
2836 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
2837 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
2838 return x;
2839 }
2840
2841 /* If we are in a SET_DEST, these other cases can't apply. */
2842 if (in_dest)
2843 return x;
2844
2845 /* Changing mode twice with SUBREG => just change it once,
2846 or not at all if changing back to starting mode. */
2847 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
2848 {
2849 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
2850 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
2851 return SUBREG_REG (SUBREG_REG (x));
2852
2853 SUBST_INT (SUBREG_WORD (x),
2854 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
2855 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
2856 }
2857
2858 /* SUBREG of a hard register => just change the register number
2859 and/or mode. If the hard register is not valid in that mode,
2860 suppress this combination. */
2861
2862 if (GET_CODE (SUBREG_REG (x)) == REG
2863 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
2864 {
2865 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
2866 mode))
2867 return gen_rtx (REG, mode,
2868 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
2869 else
2870 return gen_rtx (CLOBBER, mode, const0_rtx);
2871 }
2872
2873 /* For a constant, try to pick up the part we want. Handle a full
2874 word and low-order part. Only do this if we are narrowing
2875 the constant; if it is being widened, we have no idea what
2876 the extra bits will have been set to. */
2877
2878 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
2879 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
2880 && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD
2881 && GET_MODE_CLASS (mode) == MODE_INT)
2882 {
2883 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
2884 0, op0_mode);
2885 if (temp)
2886 return temp;
2887 }
2888
2889 if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x)
2890 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (op0_mode))
2891 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
2892
2893 /* If we are narrowing the object, we need to see if we can simplify
2894 the expression for the object knowing that we only need the
2895 low-order bits. */
2896
2897 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2898 && subreg_lowpart_p (x))
2899 return force_to_mode (SUBREG_REG (x), mode, GET_MODE_BITSIZE (mode),
2900 NULL_RTX);
2901 break;
2902
2903 case NOT:
2904 /* (not (plus X -1)) can become (neg X). */
2905 if (GET_CODE (XEXP (x, 0)) == PLUS
2906 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
2907 {
2908 x = gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
2909 goto restart;
2910 }
2911
2912 /* Similarly, (not (neg X)) is (plus X -1). */
2913 if (GET_CODE (XEXP (x, 0)) == NEG)
2914 {
2915 x = gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
2916 goto restart;
2917 }
2918
2919 /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
2920 if (GET_CODE (XEXP (x, 0)) == XOR
2921 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2922 && (temp = simplify_unary_operation (NOT, mode,
2923 XEXP (XEXP (x, 0), 1),
2924 mode)) != 0)
2925 {
2926 SUBST (XEXP (XEXP (x, 0), 1), temp);
2927 return XEXP (x, 0);
2928 }
2929
2930 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
2931 other than 1, but that is not valid. We could do a similar
2932 simplification for (not (lshiftrt C X)) where C is just the sign bit,
2933 but this doesn't seem common enough to bother with. */
2934 if (GET_CODE (XEXP (x, 0)) == ASHIFT
2935 && XEXP (XEXP (x, 0), 0) == const1_rtx)
2936 {
2937 x = gen_rtx (ROTATE, mode, gen_unary (NOT, mode, const1_rtx),
2938 XEXP (XEXP (x, 0), 1));
2939 goto restart;
2940 }
2941
2942 if (GET_CODE (XEXP (x, 0)) == SUBREG
2943 && subreg_lowpart_p (XEXP (x, 0))
2944 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
2945 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
2946 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
2947 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
2948 {
2949 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
2950
2951 x = gen_rtx (ROTATE, inner_mode,
2952 gen_unary (NOT, inner_mode, const1_rtx),
2953 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
2954 x = gen_lowpart_for_combine (mode, x);
2955 goto restart;
2956 }
2957
2958 #if STORE_FLAG_VALUE == -1
2959 /* (not (comparison foo bar)) can be done by reversing the comparison
2960 code if valid. */
2961 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
2962 && reversible_comparison_p (XEXP (x, 0)))
2963 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
2964 mode, XEXP (XEXP (x, 0), 0),
2965 XEXP (XEXP (x, 0), 1));
2966 #endif
2967
2968 /* Apply De Morgan's laws to reduce number of patterns for machines
2969 with negating logical insns (and-not, nand, etc.). If result has
2970 only one NOT, put it first, since that is how the patterns are
2971 coded. */
2972
2973 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
2974 {
2975 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
2976
2977 if (GET_CODE (in1) == NOT)
2978 in1 = XEXP (in1, 0);
2979 else
2980 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
2981
2982 if (GET_CODE (in2) == NOT)
2983 in2 = XEXP (in2, 0);
2984 else if (GET_CODE (in2) == CONST_INT
2985 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
2986 in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
2987 else
2988 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
2989
2990 if (GET_CODE (in2) == NOT)
2991 {
2992 rtx tem = in2;
2993 in2 = in1; in1 = tem;
2994 }
2995
2996 x = gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
2997 mode, in1, in2);
2998 goto restart;
2999 }
3000 break;
3001
3002 case NEG:
3003 /* (neg (plus X 1)) can become (not X). */
3004 if (GET_CODE (XEXP (x, 0)) == PLUS
3005 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3006 {
3007 x = gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3008 goto restart;
3009 }
3010
3011 /* Similarly, (neg (not X)) is (plus X 1). */
3012 if (GET_CODE (XEXP (x, 0)) == NOT)
3013 {
3014 x = gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0), const1_rtx);
3015 goto restart;
3016 }
3017
3018 /* (neg (minus X Y)) can become (minus Y X). */
3019 if (GET_CODE (XEXP (x, 0)) == MINUS
3020 && (GET_MODE_CLASS (mode) != MODE_FLOAT
3021 /* x-y != -(y-x) with IEEE floating point. */
3022 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT))
3023 {
3024 x = gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3025 XEXP (XEXP (x, 0), 0));
3026 goto restart;
3027 }
3028
3029 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3030 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3031 && significant_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3032 {
3033 x = gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3034 goto restart;
3035 }
3036
3037 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3038 if we can then eliminate the NEG (e.g.,
3039 if the operand is a constant). */
3040
3041 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3042 {
3043 temp = simplify_unary_operation (NEG, mode,
3044 XEXP (XEXP (x, 0), 0), mode);
3045 if (temp)
3046 {
3047 SUBST (XEXP (XEXP (x, 0), 0), temp);
3048 return XEXP (x, 0);
3049 }
3050 }
3051
3052 temp = expand_compound_operation (XEXP (x, 0));
3053
3054 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3055 replaced by (lshiftrt X C). This will convert
3056 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3057
3058 if (GET_CODE (temp) == ASHIFTRT
3059 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3060 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3061 {
3062 x = simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3063 INTVAL (XEXP (temp, 1)));
3064 goto restart;
3065 }
3066
3067 /* If X has only a single bit significant, say, bit I, convert
3068 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3069 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3070 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3071 or a SUBREG of one since we'd be making the expression more
3072 complex if it was just a register. */
3073
3074 if (GET_CODE (temp) != REG
3075 && ! (GET_CODE (temp) == SUBREG
3076 && GET_CODE (SUBREG_REG (temp)) == REG)
3077 && (i = exact_log2 (significant_bits (temp, mode))) >= 0)
3078 {
3079 rtx temp1 = simplify_shift_const
3080 (NULL_RTX, ASHIFTRT, mode,
3081 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3082 GET_MODE_BITSIZE (mode) - 1 - i),
3083 GET_MODE_BITSIZE (mode) - 1 - i);
3084
3085 /* If all we did was surround TEMP with the two shifts, we
3086 haven't improved anything, so don't use it. Otherwise,
3087 we are better off with TEMP1. */
3088 if (GET_CODE (temp1) != ASHIFTRT
3089 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3090 || XEXP (XEXP (temp1, 0), 0) != temp)
3091 {
3092 x = temp1;
3093 goto restart;
3094 }
3095 }
3096 break;
3097
3098 case FLOAT_TRUNCATE:
3099 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
3100 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
3101 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3102 return XEXP (XEXP (x, 0), 0);
3103 break;
3104
3105 #ifdef HAVE_cc0
3106 case COMPARE:
3107 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3108 using cc0, in which case we want to leave it as a COMPARE
3109 so we can distinguish it from a register-register-copy. */
3110 if (XEXP (x, 1) == const0_rtx)
3111 return XEXP (x, 0);
3112
3113 /* In IEEE floating point, x-0 is not the same as x. */
3114 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3115 || GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) == MODE_INT)
3116 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
3117 return XEXP (x, 0);
3118 break;
3119 #endif
3120
3121 case CONST:
3122 /* (const (const X)) can become (const X). Do it this way rather than
3123 returning the inner CONST since CONST can be shared with a
3124 REG_EQUAL note. */
3125 if (GET_CODE (XEXP (x, 0)) == CONST)
3126 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3127 break;
3128
3129 #ifdef HAVE_lo_sum
3130 case LO_SUM:
3131 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
3132 can add in an offset. find_split_point will split this address up
3133 again if it doesn't match. */
3134 if (GET_CODE (XEXP (x, 0)) == HIGH
3135 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
3136 return XEXP (x, 1);
3137 break;
3138 #endif
3139
3140 case PLUS:
3141 /* If we have (plus (plus (A const) B)), associate it so that CONST is
3142 outermost. That's because that's the way indexed addresses are
3143 supposed to appear. This code used to check many more cases, but
3144 they are now checked elsewhere. */
3145 if (GET_CODE (XEXP (x, 0)) == PLUS
3146 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
3147 return gen_binary (PLUS, mode,
3148 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
3149 XEXP (x, 1)),
3150 XEXP (XEXP (x, 0), 1));
3151
3152 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
3153 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
3154 bit-field and can be replaced by either a sign_extend or a
3155 sign_extract. The `and' may be a zero_extend. */
3156 if (GET_CODE (XEXP (x, 0)) == XOR
3157 && GET_CODE (XEXP (x, 1)) == CONST_INT
3158 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3159 && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
3160 && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
3161 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3162 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
3163 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3164 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
3165 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
3166 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
3167 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
3168 == i + 1))))
3169 {
3170 x = simplify_shift_const
3171 (NULL_RTX, ASHIFTRT, mode,
3172 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3173 XEXP (XEXP (XEXP (x, 0), 0), 0),
3174 GET_MODE_BITSIZE (mode) - (i + 1)),
3175 GET_MODE_BITSIZE (mode) - (i + 1));
3176 goto restart;
3177 }
3178
3179 /* If only the low-order bit of X is significant, (plus x -1)
3180 can become (ashiftrt (ashift (xor x 1) C) C) where C is
3181 the bitsize of the mode - 1. This allows simplification of
3182 "a = (b & 8) == 0;" */
3183 if (XEXP (x, 1) == constm1_rtx
3184 && GET_CODE (XEXP (x, 0)) != REG
3185 && ! (GET_CODE (XEXP (x,0)) == SUBREG
3186 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
3187 && significant_bits (XEXP (x, 0), mode) == 1)
3188 {
3189 x = simplify_shift_const
3190 (NULL_RTX, ASHIFTRT, mode,
3191 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3192 gen_rtx_combine (XOR, mode,
3193 XEXP (x, 0), const1_rtx),
3194 GET_MODE_BITSIZE (mode) - 1),
3195 GET_MODE_BITSIZE (mode) - 1);
3196 goto restart;
3197 }
3198
3199 /* If we are adding two things that have no bits in common, convert
3200 the addition into an IOR. This will often be further simplified,
3201 for example in cases like ((a & 1) + (a & 2)), which can
3202 become a & 3. */
3203
3204 if ((significant_bits (XEXP (x, 0), mode)
3205 & significant_bits (XEXP (x, 1), mode)) == 0)
3206 {
3207 x = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
3208 goto restart;
3209 }
3210 break;
3211
3212 case MINUS:
3213 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
3214 (and <foo> (const_int pow2-1)) */
3215 if (GET_CODE (XEXP (x, 1)) == AND
3216 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3217 && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
3218 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3219 {
3220 x = simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
3221 - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
3222 goto restart;
3223 }
3224 break;
3225
3226 case MULT:
3227 /* If we have (mult (plus A B) C), apply the distributive law and then
3228 the inverse distributive law to see if things simplify. This
3229 occurs mostly in addresses, often when unrolling loops. */
3230
3231 if (GET_CODE (XEXP (x, 0)) == PLUS)
3232 {
3233 x = apply_distributive_law
3234 (gen_binary (PLUS, mode,
3235 gen_binary (MULT, mode,
3236 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
3237 gen_binary (MULT, mode,
3238 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
3239
3240 if (GET_CODE (x) != MULT)
3241 goto restart;
3242 }
3243
3244 /* If this is multiplication by a power of two and its first operand is
3245 a shift, treat the multiply as a shift to allow the shifts to
3246 possibly combine. */
3247 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3248 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
3249 && (GET_CODE (XEXP (x, 0)) == ASHIFT
3250 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
3251 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
3252 || GET_CODE (XEXP (x, 0)) == ROTATE
3253 || GET_CODE (XEXP (x, 0)) == ROTATERT))
3254 {
3255 x = simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0), i);
3256 goto restart;
3257 }
3258
3259 /* Convert (mult (ashift (const_int 1) A) B) to (ashift B A). */
3260 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3261 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3262 return gen_rtx_combine (ASHIFT, mode, XEXP (x, 1),
3263 XEXP (XEXP (x, 0), 1));
3264 break;
3265
3266 case UDIV:
3267 /* If this is a divide by a power of two, treat it as a shift if
3268 its first operand is a shift. */
3269 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3270 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
3271 && (GET_CODE (XEXP (x, 0)) == ASHIFT
3272 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
3273 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
3274 || GET_CODE (XEXP (x, 0)) == ROTATE
3275 || GET_CODE (XEXP (x, 0)) == ROTATERT))
3276 {
3277 x = simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
3278 goto restart;
3279 }
3280 break;
3281
3282 case EQ: case NE:
3283 case GT: case GTU: case GE: case GEU:
3284 case LT: case LTU: case LE: case LEU:
3285 /* If the first operand is a condition code, we can't do anything
3286 with it. */
3287 if (GET_CODE (XEXP (x, 0)) == COMPARE
3288 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
3289 #ifdef HAVE_cc0
3290 && XEXP (x, 0) != cc0_rtx
3291 #endif
3292 ))
3293 {
3294 rtx op0 = XEXP (x, 0);
3295 rtx op1 = XEXP (x, 1);
3296 enum rtx_code new_code;
3297
3298 if (GET_CODE (op0) == COMPARE)
3299 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
3300
3301 /* Simplify our comparison, if possible. */
3302 new_code = simplify_comparison (code, &op0, &op1);
3303
3304 #if STORE_FLAG_VALUE == 1
3305 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
3306 if only the low-order bit is significant in X (such as when
3307 X is a ZERO_EXTRACT of one bit. Similarly, we can convert
3308 EQ to (xor X 1). */
3309 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3310 && op1 == const0_rtx
3311 && significant_bits (op0, GET_MODE (op0)) == 1)
3312 return gen_lowpart_for_combine (mode, op0);
3313 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3314 && op1 == const0_rtx
3315 && significant_bits (op0, GET_MODE (op0)) == 1)
3316 return gen_rtx_combine (XOR, mode,
3317 gen_lowpart_for_combine (mode, op0),
3318 const1_rtx);
3319 #endif
3320
3321 #if STORE_FLAG_VALUE == -1
3322 /* If STORE_FLAG_VALUE is -1, we can convert (ne x 0)
3323 to (neg x) if only the low-order bit of X is significant.
3324 This converts (ne (zero_extract X 1 Y) 0) to
3325 (sign_extract X 1 Y). */
3326 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3327 && op1 == const0_rtx
3328 && significant_bits (op0, GET_MODE (op0)) == 1)
3329 {
3330 x = gen_rtx_combine (NEG, mode,
3331 gen_lowpart_for_combine (mode, op0));
3332 goto restart;
3333 }
3334 #endif
3335
3336 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
3337 one significant bit, we can convert (ne x 0) to (ashift x c)
3338 where C puts the bit in the sign bit. Remove any AND with
3339 STORE_FLAG_VALUE when we are done, since we are only going to
3340 test the sign bit. */
3341 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3342 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3343 && (STORE_FLAG_VALUE
3344 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
3345 && op1 == const0_rtx
3346 && mode == GET_MODE (op0)
3347 && (i = exact_log2 (significant_bits (op0, GET_MODE (op0)))) >= 0)
3348 {
3349 x = simplify_shift_const (NULL_RTX, ASHIFT, mode, op0,
3350 GET_MODE_BITSIZE (mode) - 1 - i);
3351 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
3352 return XEXP (x, 0);
3353 else
3354 return x;
3355 }
3356
3357 /* If the code changed, return a whole new comparison. */
3358 if (new_code != code)
3359 return gen_rtx_combine (new_code, mode, op0, op1);
3360
3361 /* Otherwise, keep this operation, but maybe change its operands.
3362 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
3363 SUBST (XEXP (x, 0), op0);
3364 SUBST (XEXP (x, 1), op1);
3365 }
3366 break;
3367
3368 case IF_THEN_ELSE:
3369 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register
3370 used in it is being compared against certain values. Get the
3371 true and false comparisons and see if that says anything about the
3372 value of each arm. */
3373
3374 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3375 && reversible_comparison_p (XEXP (x, 0))
3376 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG)
3377 {
3378 HOST_WIDE_INT sig;
3379 rtx from = XEXP (XEXP (x, 0), 0);
3380 enum rtx_code true_code = GET_CODE (XEXP (x, 0));
3381 enum rtx_code false_code = reverse_condition (true_code);
3382 rtx true_val = XEXP (XEXP (x, 0), 1);
3383 rtx false_val = true_val;
3384 rtx true_arm = XEXP (x, 1);
3385 rtx false_arm = XEXP (x, 2);
3386 int swapped = 0;
3387
3388 /* If FALSE_CODE is EQ, swap the codes and arms. */
3389
3390 if (false_code == EQ)
3391 {
3392 swapped = 1, true_code = EQ, false_code = NE;
3393 true_arm = XEXP (x, 2), false_arm = XEXP (x, 1);
3394 }
3395
3396 /* If we are comparing against zero and the expression being tested
3397 has only a single significant bit, that is its value when it is
3398 not equal to zero. Similarly if it is known to be -1 or 0. */
3399
3400 if (true_code == EQ && true_val == const0_rtx
3401 && exact_log2 (sig = significant_bits (from,
3402 GET_MODE (from))) >= 0)
3403 false_code = EQ, false_val = GEN_INT (sig);
3404 else if (true_code == EQ && true_val == const0_rtx
3405 && (num_sign_bit_copies (from, GET_MODE (from))
3406 == GET_MODE_BITSIZE (GET_MODE (from))))
3407 false_code = EQ, false_val = constm1_rtx;
3408
3409 /* Now simplify an arm if we know the value of the register
3410 in the branch and it is used in the arm. Be carefull due to
3411 the potential of locally-shared RTL. */
3412
3413 if (reg_mentioned_p (from, true_arm))
3414 true_arm = subst (known_cond (copy_rtx (true_arm), true_code,
3415 from, true_val),
3416 pc_rtx, pc_rtx, 0, 0);
3417 if (reg_mentioned_p (from, false_arm))
3418 false_arm = subst (known_cond (copy_rtx (false_arm), false_code,
3419 from, false_val),
3420 pc_rtx, pc_rtx, 0, 0);
3421
3422 SUBST (XEXP (x, 1), swapped ? false_arm : true_arm);
3423 SUBST (XEXP (x, 2), swapped ? true_arm : false_arm);
3424 }
3425
3426 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
3427 reversed, do so to avoid needing two sets of patterns for
3428 subtract-and-branch insns. Similarly if we have a constant in that
3429 position or if the third operand is the same as the first operand
3430 of the comparison. */
3431
3432 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3433 && reversible_comparison_p (XEXP (x, 0))
3434 && (XEXP (x, 1) == pc_rtx || GET_CODE (XEXP (x, 1)) == CONST_INT
3435 || rtx_equal_p (XEXP (x, 2), XEXP (XEXP (x, 0), 0))))
3436 {
3437 SUBST (XEXP (x, 0),
3438 gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
3439 GET_MODE (XEXP (x, 0)),
3440 XEXP (XEXP (x, 0), 0), XEXP (XEXP (x, 0), 1)));
3441
3442 temp = XEXP (x, 1);
3443 SUBST (XEXP (x, 1), XEXP (x, 2));
3444 SUBST (XEXP (x, 2), temp);
3445 }
3446
3447 /* If the two arms are identical, we don't need the comparison. */
3448
3449 if (rtx_equal_p (XEXP (x, 1), XEXP (x, 2))
3450 && ! side_effects_p (XEXP (x, 0)))
3451 return XEXP (x, 1);
3452
3453 /* Look for cases where we have (abs x) or (neg (abs X)). */
3454
3455 if (GET_MODE_CLASS (mode) == MODE_INT
3456 && GET_CODE (XEXP (x, 2)) == NEG
3457 && rtx_equal_p (XEXP (x, 1), XEXP (XEXP (x, 2), 0))
3458 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3459 && rtx_equal_p (XEXP (x, 1), XEXP (XEXP (x, 0), 0))
3460 && ! side_effects_p (XEXP (x, 1)))
3461 switch (GET_CODE (XEXP (x, 0)))
3462 {
3463 case GT:
3464 case GE:
3465 x = gen_unary (ABS, mode, XEXP (x, 1));
3466 goto restart;
3467 case LT:
3468 case LE:
3469 x = gen_unary (NEG, mode, gen_unary (ABS, mode, XEXP (x, 1)));
3470 goto restart;
3471 }
3472
3473 /* Look for MIN or MAX. */
3474
3475 if (GET_MODE_CLASS (mode) == MODE_INT
3476 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3477 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
3478 && rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 2))
3479 && ! side_effects_p (XEXP (x, 0)))
3480 switch (GET_CODE (XEXP (x, 0)))
3481 {
3482 case GE:
3483 case GT:
3484 x = gen_binary (SMAX, mode, XEXP (x, 1), XEXP (x, 2));
3485 goto restart;
3486 case LE:
3487 case LT:
3488 x = gen_binary (SMIN, mode, XEXP (x, 1), XEXP (x, 2));
3489 goto restart;
3490 case GEU:
3491 case GTU:
3492 x = gen_binary (UMAX, mode, XEXP (x, 1), XEXP (x, 2));
3493 goto restart;
3494 case LEU:
3495 case LTU:
3496 x = gen_binary (UMIN, mode, XEXP (x, 1), XEXP (x, 2));
3497 goto restart;
3498 }
3499
3500 /* If we have something like (if_then_else (ne A 0) (OP X C) X),
3501 A is known to be either 0 or 1, and OP is an identity when its
3502 second operand is zero, this can be done as (OP X (mult A C)).
3503 Similarly if A is known to be 0 or -1 and also similarly if we have
3504 a ZERO_EXTEND or SIGN_EXTEND as long as X is already extended (so
3505 we don't destroy it). */
3506
3507 if (mode != VOIDmode
3508 && (GET_CODE (XEXP (x, 0)) == EQ || GET_CODE (XEXP (x, 0)) == NE)
3509 && XEXP (XEXP (x, 0), 1) == const0_rtx
3510 && (significant_bits (XEXP (XEXP (x, 0), 0), mode) == 1
3511 || (num_sign_bit_copies (XEXP (XEXP (x, 0), 0), mode)
3512 == GET_MODE_BITSIZE (mode))))
3513 {
3514 rtx nz = make_compound_operation (GET_CODE (XEXP (x, 0)) == NE
3515 ? XEXP (x, 1) : XEXP (x, 2));
3516 rtx z = GET_CODE (XEXP (x, 0)) == NE ? XEXP (x, 2) : XEXP (x, 1);
3517 rtx dir = (significant_bits (XEXP (XEXP (x, 0), 0), mode) == 1
3518 ? const1_rtx : constm1_rtx);
3519 rtx c = 0;
3520 enum machine_mode m = mode;
3521 enum rtx_code op, extend_op = NULL;
3522
3523 if ((GET_CODE (nz) == PLUS || GET_CODE (nz) == MINUS
3524 || GET_CODE (nz) == IOR || GET_CODE (nz) == XOR
3525 || GET_CODE (nz) == ASHIFT
3526 || GET_CODE (nz) == LSHIFTRT || GET_CODE (nz) == ASHIFTRT)
3527 && rtx_equal_p (XEXP (nz, 0), z))
3528 c = XEXP (nz, 1), op = GET_CODE (nz);
3529 else if (GET_CODE (nz) == SIGN_EXTEND
3530 && (GET_CODE (XEXP (nz, 0)) == PLUS
3531 || GET_CODE (XEXP (nz, 0)) == MINUS
3532 || GET_CODE (XEXP (nz, 0)) == IOR
3533 || GET_CODE (XEXP (nz, 0)) == XOR
3534 || GET_CODE (XEXP (nz, 0)) == ASHIFT
3535 || GET_CODE (XEXP (nz, 0)) == LSHIFTRT
3536 || GET_CODE (XEXP (nz, 0)) == ASHIFTRT)
3537 && GET_CODE (XEXP (XEXP (nz, 0), 0)) == SUBREG
3538 && subreg_lowpart_p (XEXP (XEXP (nz, 0), 0))
3539 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (nz, 0), 0)), z)
3540 && (num_sign_bit_copies (z, GET_MODE (z))
3541 >= (GET_MODE_BITSIZE (mode)
3542 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (nz, 0), 0))))))
3543 {
3544 c = XEXP (XEXP (nz, 0), 1);
3545 op = GET_CODE (XEXP (nz, 0));
3546 extend_op = SIGN_EXTEND;
3547 m = GET_MODE (XEXP (nz, 0));
3548 }
3549 else if (GET_CODE (nz) == ZERO_EXTEND
3550 && (GET_CODE (XEXP (nz, 0)) == PLUS
3551 || GET_CODE (XEXP (nz, 0)) == MINUS
3552 || GET_CODE (XEXP (nz, 0)) == IOR
3553 || GET_CODE (XEXP (nz, 0)) == XOR
3554 || GET_CODE (XEXP (nz, 0)) == ASHIFT
3555 || GET_CODE (XEXP (nz, 0)) == LSHIFTRT
3556 || GET_CODE (XEXP (nz, 0)) == ASHIFTRT)
3557 && GET_CODE (XEXP (XEXP (nz, 0), 0)) == SUBREG
3558 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3559 && subreg_lowpart_p (XEXP (XEXP (nz, 0), 0))
3560 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (nz, 0), 0)), z)
3561 && ((significant_bits (z, GET_MODE (z))
3562 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (nz, 0), 0))))
3563 == 0))
3564 {
3565 c = XEXP (XEXP (nz, 0), 1);
3566 op = GET_CODE (XEXP (nz, 0));
3567 extend_op = ZERO_EXTEND;
3568 m = GET_MODE (XEXP (nz, 0));
3569 }
3570
3571 if (c && ! side_effects_p (c) && ! side_effects_p (z))
3572 {
3573 temp
3574 = gen_binary (MULT, m,
3575 gen_lowpart_for_combine (m,
3576 XEXP (XEXP (x, 0), 0)),
3577 gen_binary (MULT, m, c, dir));
3578
3579 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
3580
3581 if (extend_op != NULL)
3582 temp = gen_unary (extend_op, mode, temp);
3583
3584 return temp;
3585 }
3586 }
3587 break;
3588
3589 case ZERO_EXTRACT:
3590 case SIGN_EXTRACT:
3591 case ZERO_EXTEND:
3592 case SIGN_EXTEND:
3593 /* If we are processing SET_DEST, we are done. */
3594 if (in_dest)
3595 return x;
3596
3597 x = expand_compound_operation (x);
3598 if (GET_CODE (x) != code)
3599 goto restart;
3600 break;
3601
3602 case SET:
3603 /* (set (pc) (return)) gets written as (return). */
3604 if (GET_CODE (SET_DEST (x)) == PC && GET_CODE (SET_SRC (x)) == RETURN)
3605 return SET_SRC (x);
3606
3607 /* Convert this into a field assignment operation, if possible. */
3608 x = make_field_assignment (x);
3609
3610 /* If we are setting CC0 or if the source is a COMPARE, look for the
3611 use of the comparison result and try to simplify it unless we already
3612 have used undobuf.other_insn. */
3613 if ((GET_CODE (SET_SRC (x)) == COMPARE
3614 #ifdef HAVE_cc0
3615 || SET_DEST (x) == cc0_rtx
3616 #endif
3617 )
3618 && (cc_use = find_single_use (SET_DEST (x), subst_insn,
3619 &other_insn)) != 0
3620 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
3621 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
3622 && XEXP (*cc_use, 0) == SET_DEST (x))
3623 {
3624 enum rtx_code old_code = GET_CODE (*cc_use);
3625 enum rtx_code new_code;
3626 rtx op0, op1;
3627 int other_changed = 0;
3628 enum machine_mode compare_mode = GET_MODE (SET_DEST (x));
3629
3630 if (GET_CODE (SET_SRC (x)) == COMPARE)
3631 op0 = XEXP (SET_SRC (x), 0), op1 = XEXP (SET_SRC (x), 1);
3632 else
3633 op0 = SET_SRC (x), op1 = const0_rtx;
3634
3635 /* Simplify our comparison, if possible. */
3636 new_code = simplify_comparison (old_code, &op0, &op1);
3637
3638 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
3639 /* If this machine has CC modes other than CCmode, check to see
3640 if we need to use a different CC mode here. */
3641 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
3642
3643 /* If the mode changed, we have to change SET_DEST, the mode
3644 in the compare, and the mode in the place SET_DEST is used.
3645 If SET_DEST is a hard register, just build new versions with
3646 the proper mode. If it is a pseudo, we lose unless it is only
3647 time we set the pseudo, in which case we can safely change
3648 its mode. */
3649 if (compare_mode != GET_MODE (SET_DEST (x)))
3650 {
3651 int regno = REGNO (SET_DEST (x));
3652 rtx new_dest = gen_rtx (REG, compare_mode, regno);
3653
3654 if (regno < FIRST_PSEUDO_REGISTER
3655 || (reg_n_sets[regno] == 1
3656 && ! REG_USERVAR_P (SET_DEST (x))))
3657 {
3658 if (regno >= FIRST_PSEUDO_REGISTER)
3659 SUBST (regno_reg_rtx[regno], new_dest);
3660
3661 SUBST (SET_DEST (x), new_dest);
3662 SUBST (XEXP (*cc_use, 0), new_dest);
3663 other_changed = 1;
3664 }
3665 }
3666 #endif
3667
3668 /* If the code changed, we have to build a new comparison
3669 in undobuf.other_insn. */
3670 if (new_code != old_code)
3671 {
3672 unsigned mask;
3673
3674 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
3675 SET_DEST (x), const0_rtx));
3676
3677 /* If the only change we made was to change an EQ into an
3678 NE or vice versa, OP0 has only one significant bit,
3679 and OP1 is zero, check if changing the user of the condition
3680 code will produce a valid insn. If it won't, we can keep
3681 the original code in that insn by surrounding our operation
3682 with an XOR. */
3683
3684 if (((old_code == NE && new_code == EQ)
3685 || (old_code == EQ && new_code == NE))
3686 && ! other_changed && op1 == const0_rtx
3687 && (GET_MODE_BITSIZE (GET_MODE (op0))
3688 <= HOST_BITS_PER_WIDE_INT)
3689 && (exact_log2 (mask = significant_bits (op0,
3690 GET_MODE (op0)))
3691 >= 0))
3692 {
3693 rtx pat = PATTERN (other_insn), note = 0;
3694
3695 if ((recog_for_combine (&pat, undobuf.other_insn, &note) < 0
3696 && ! check_asm_operands (pat)))
3697 {
3698 PUT_CODE (*cc_use, old_code);
3699 other_insn = 0;
3700
3701 op0 = gen_binary (XOR, GET_MODE (op0), op0,
3702 GEN_INT (mask));
3703 }
3704 }
3705
3706 other_changed = 1;
3707 }
3708
3709 if (other_changed)
3710 undobuf.other_insn = other_insn;
3711
3712 #ifdef HAVE_cc0
3713 /* If we are now comparing against zero, change our source if
3714 needed. If we do not use cc0, we always have a COMPARE. */
3715 if (op1 == const0_rtx && SET_DEST (x) == cc0_rtx)
3716 SUBST (SET_SRC (x), op0);
3717 else
3718 #endif
3719
3720 /* Otherwise, if we didn't previously have a COMPARE in the
3721 correct mode, we need one. */
3722 if (GET_CODE (SET_SRC (x)) != COMPARE
3723 || GET_MODE (SET_SRC (x)) != compare_mode)
3724 SUBST (SET_SRC (x), gen_rtx_combine (COMPARE, compare_mode,
3725 op0, op1));
3726 else
3727 {
3728 /* Otherwise, update the COMPARE if needed. */
3729 SUBST (XEXP (SET_SRC (x), 0), op0);
3730 SUBST (XEXP (SET_SRC (x), 1), op1);
3731 }
3732 }
3733 else
3734 {
3735 /* Get SET_SRC in a form where we have placed back any
3736 compound expressions. Then do the checks below. */
3737 temp = make_compound_operation (SET_SRC (x), SET);
3738 SUBST (SET_SRC (x), temp);
3739 }
3740
3741 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some
3742 operation, and X being a REG or (subreg (reg)), we may be able to
3743 convert this to (set (subreg:m2 x) (op)).
3744
3745 We can always do this if M1 is narrower than M2 because that
3746 means that we only care about the low bits of the result.
3747
3748 However, on most machines (those with BYTE_LOADS_ZERO_EXTEND
3749 and BYTES_LOADS_SIGN_EXTEND not defined), we cannot perform a
3750 narrower operation that requested since the high-order bits will
3751 be undefined. On machine where BYTE_LOADS_*_EXTEND is defined,
3752 however, this transformation is safe as long as M1 and M2 have
3753 the same number of words. */
3754
3755 if (GET_CODE (SET_SRC (x)) == SUBREG
3756 && subreg_lowpart_p (SET_SRC (x))
3757 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) != 'o'
3758 && (((GET_MODE_SIZE (GET_MODE (SET_SRC (x))) + (UNITS_PER_WORD - 1))
3759 / UNITS_PER_WORD)
3760 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x))))
3761 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
3762 #if ! defined(BYTE_LOADS_ZERO_EXTEND) && ! defined (BYTE_LOADS_SIGN_EXTEND)
3763 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
3764 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x)))))
3765 #endif
3766 && (GET_CODE (SET_DEST (x)) == REG
3767 || (GET_CODE (SET_DEST (x)) == SUBREG
3768 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG)))
3769 {
3770 SUBST (SET_DEST (x),
3771 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_SRC (x))),
3772 SET_DEST (x)));
3773 SUBST (SET_SRC (x), SUBREG_REG (SET_SRC (x)));
3774 }
3775
3776 #ifdef BYTE_LOADS_ZERO_EXTEND
3777 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with
3778 M wider than N, this would require a paradoxical subreg.
3779 Replace the subreg with a zero_extend to avoid the reload that
3780 would otherwise be required. */
3781 if (GET_CODE (SET_SRC (x)) == SUBREG
3782 && subreg_lowpart_p (SET_SRC (x))
3783 && SUBREG_WORD (SET_SRC (x)) == 0
3784 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
3785 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x)))))
3786 && GET_CODE (SUBREG_REG (SET_SRC (x))) == MEM)
3787 SUBST (SET_SRC (x), gen_rtx_combine (ZERO_EXTEND,
3788 GET_MODE (SET_SRC (x)),
3789 XEXP (SET_SRC (x), 0)));
3790 #endif
3791
3792 #ifndef HAVE_conditional_move
3793
3794 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE,
3795 and we are comparing an item known to be 0 or -1 against 0, use a
3796 logical operation instead. Check for one of the arms being an IOR
3797 of the other arm with some value. We compute three terms to be
3798 IOR'ed together. In practice, at most two will be nonzero. Then
3799 we do the IOR's. */
3800
3801 if (GET_CODE (SET_SRC (x)) == IF_THEN_ELSE
3802 && (GET_CODE (XEXP (SET_SRC (x), 0)) == EQ
3803 || GET_CODE (XEXP (SET_SRC (x), 0)) == NE)
3804 && XEXP (XEXP (SET_SRC (x), 0), 1) == const0_rtx
3805 && (num_sign_bit_copies (XEXP (XEXP (SET_SRC (x), 0), 0),
3806 GET_MODE (XEXP (XEXP (SET_SRC (x), 0), 0)))
3807 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (SET_SRC (x), 0), 0))))
3808 && ! side_effects_p (SET_SRC (x)))
3809 {
3810 rtx true = (GET_CODE (XEXP (SET_SRC (x), 0)) == NE
3811 ? XEXP (SET_SRC (x), 1) : XEXP (SET_SRC (x), 2));
3812 rtx false = (GET_CODE (XEXP (SET_SRC (x), 0)) == NE
3813 ? XEXP (SET_SRC (x), 2) : XEXP (SET_SRC (x), 1));
3814 rtx term1 = const0_rtx, term2, term3;
3815
3816 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
3817 term1 = false, true = XEXP (true, 1), false = const0_rtx;
3818 else if (GET_CODE (true) == IOR
3819 && rtx_equal_p (XEXP (true, 1), false))
3820 term1 = false, true = XEXP (true, 0), false = const0_rtx;
3821 else if (GET_CODE (false) == IOR
3822 && rtx_equal_p (XEXP (false, 0), true))
3823 term1 = true, false = XEXP (false, 1), true = const0_rtx;
3824 else if (GET_CODE (false) == IOR
3825 && rtx_equal_p (XEXP (false, 1), true))
3826 term1 = true, false = XEXP (false, 0), true = const0_rtx;
3827
3828 term2 = gen_binary (AND, GET_MODE (SET_SRC (x)),
3829 XEXP (XEXP (SET_SRC (x), 0), 0), true);
3830 term3 = gen_binary (AND, GET_MODE (SET_SRC (x)),
3831 gen_unary (NOT, GET_MODE (SET_SRC (x)),
3832 XEXP (XEXP (SET_SRC (x), 0), 0)),
3833 false);
3834
3835 SUBST (SET_SRC (x),
3836 gen_binary (IOR, GET_MODE (SET_SRC (x)),
3837 gen_binary (IOR, GET_MODE (SET_SRC (x)),
3838 term1, term2),
3839 term3));
3840 }
3841 #endif
3842 break;
3843
3844 case AND:
3845 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
3846 {
3847 x = simplify_and_const_int (x, mode, XEXP (x, 0),
3848 INTVAL (XEXP (x, 1)));
3849
3850 /* If we have (ior (and (X C1) C2)) and the next restart would be
3851 the last, simplify this by making C1 as small as possible
3852 and then exit. */
3853 if (n_restarts >= 3 && GET_CODE (x) == IOR
3854 && GET_CODE (XEXP (x, 0)) == AND
3855 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3856 && GET_CODE (XEXP (x, 1)) == CONST_INT)
3857 {
3858 temp = gen_binary (AND, mode, XEXP (XEXP (x, 0), 0),
3859 GEN_INT (INTVAL (XEXP (XEXP (x, 0), 1))
3860 & ~ INTVAL (XEXP (x, 1))));
3861 return gen_binary (IOR, mode, temp, XEXP (x, 1));
3862 }
3863
3864 if (GET_CODE (x) != AND)
3865 goto restart;
3866 }
3867
3868 /* Convert (A | B) & A to A. */
3869 if (GET_CODE (XEXP (x, 0)) == IOR
3870 && (rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
3871 || rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1)))
3872 && ! side_effects_p (XEXP (XEXP (x, 0), 0))
3873 && ! side_effects_p (XEXP (XEXP (x, 0), 1)))
3874 return XEXP (x, 1);
3875
3876 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
3877 insn (and may simplify more). */
3878 else if (GET_CODE (XEXP (x, 0)) == XOR
3879 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
3880 && ! side_effects_p (XEXP (x, 1)))
3881 {
3882 x = gen_binary (AND, mode,
3883 gen_unary (NOT, mode, XEXP (XEXP (x, 0), 1)),
3884 XEXP (x, 1));
3885 goto restart;
3886 }
3887 else if (GET_CODE (XEXP (x, 0)) == XOR
3888 && rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1))
3889 && ! side_effects_p (XEXP (x, 1)))
3890 {
3891 x = gen_binary (AND, mode,
3892 gen_unary (NOT, mode, XEXP (XEXP (x, 0), 0)),
3893 XEXP (x, 1));
3894 goto restart;
3895 }
3896
3897 /* Similarly for (~ (A ^ B)) & A. */
3898 else if (GET_CODE (XEXP (x, 0)) == NOT
3899 && GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
3900 && rtx_equal_p (XEXP (XEXP (XEXP (x, 0), 0), 0), XEXP (x, 1))
3901 && ! side_effects_p (XEXP (x, 1)))
3902 {
3903 x = gen_binary (AND, mode, XEXP (XEXP (XEXP (x, 0), 0), 1),
3904 XEXP (x, 1));
3905 goto restart;
3906 }
3907 else if (GET_CODE (XEXP (x, 0)) == NOT
3908 && GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
3909 && rtx_equal_p (XEXP (XEXP (XEXP (x, 0), 0), 1), XEXP (x, 1))
3910 && ! side_effects_p (XEXP (x, 1)))
3911 {
3912 x = gen_binary (AND, mode, XEXP (XEXP (XEXP (x, 0), 0), 0),
3913 XEXP (x, 1));
3914 goto restart;
3915 }
3916
3917 /* If we have (and A B) with A not an object but that is known to
3918 be -1 or 0, this is equivalent to the expression
3919 (if_then_else (ne A (const_int 0)) B (const_int 0))
3920 We make this conversion because it may allow further
3921 simplifications and then allow use of conditional move insns.
3922 If the machine doesn't have condition moves, code in case SET
3923 will convert the IF_THEN_ELSE back to the logical operation.
3924 We build the IF_THEN_ELSE here in case further simplification
3925 is possible (e.g., we can convert it to ABS). */
3926
3927 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3928 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3929 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o')
3930 && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3931 == GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3932 {
3933 rtx op0 = XEXP (x, 0);
3934 rtx op1 = const0_rtx;
3935 enum rtx_code comp_code
3936 = simplify_comparison (NE, &op0, &op1);
3937
3938 x = gen_rtx_combine (IF_THEN_ELSE, mode,
3939 gen_binary (comp_code, VOIDmode, op0, op1),
3940 XEXP (x, 1), const0_rtx);
3941 goto restart;
3942 }
3943
3944 /* In the following group of tests (and those in case IOR below),
3945 we start with some combination of logical operations and apply
3946 the distributive law followed by the inverse distributive law.
3947 Most of the time, this results in no change. However, if some of
3948 the operands are the same or inverses of each other, simplifications
3949 will result.
3950
3951 For example, (and (ior A B) (not B)) can occur as the result of
3952 expanding a bit field assignment. When we apply the distributive
3953 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
3954 which then simplifies to (and (A (not B))). */
3955
3956 /* If we have (and (ior A B) C), apply the distributive law and then
3957 the inverse distributive law to see if things simplify. */
3958
3959 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == XOR)
3960 {
3961 x = apply_distributive_law
3962 (gen_binary (GET_CODE (XEXP (x, 0)), mode,
3963 gen_binary (AND, mode,
3964 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
3965 gen_binary (AND, mode,
3966 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
3967 if (GET_CODE (x) != AND)
3968 goto restart;
3969 }
3970
3971 if (GET_CODE (XEXP (x, 1)) == IOR || GET_CODE (XEXP (x, 1)) == XOR)
3972 {
3973 x = apply_distributive_law
3974 (gen_binary (GET_CODE (XEXP (x, 1)), mode,
3975 gen_binary (AND, mode,
3976 XEXP (XEXP (x, 1), 0), XEXP (x, 0)),
3977 gen_binary (AND, mode,
3978 XEXP (XEXP (x, 1), 1), XEXP (x, 0))));
3979 if (GET_CODE (x) != AND)
3980 goto restart;
3981 }
3982
3983 /* Similarly, taking advantage of the fact that
3984 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
3985
3986 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == XOR)
3987 {
3988 x = apply_distributive_law
3989 (gen_binary (XOR, mode,
3990 gen_binary (IOR, mode, XEXP (XEXP (x, 0), 0),
3991 XEXP (XEXP (x, 1), 0)),
3992 gen_binary (IOR, mode, XEXP (XEXP (x, 0), 0),
3993 XEXP (XEXP (x, 1), 1))));
3994 if (GET_CODE (x) != AND)
3995 goto restart;
3996 }
3997
3998 else if (GET_CODE (XEXP (x, 1)) == NOT && GET_CODE (XEXP (x, 0)) == XOR)
3999 {
4000 x = apply_distributive_law
4001 (gen_binary (XOR, mode,
4002 gen_binary (IOR, mode, XEXP (XEXP (x, 1), 0),
4003 XEXP (XEXP (x, 0), 0)),
4004 gen_binary (IOR, mode, XEXP (XEXP (x, 1), 0),
4005 XEXP (XEXP (x, 0), 1))));
4006 if (GET_CODE (x) != AND)
4007 goto restart;
4008 }
4009 break;
4010
4011 case IOR:
4012 /* (ior A C) is C if all significant bits of A are on in C. */
4013 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4014 && (significant_bits (XEXP (x, 0), mode)
4015 & ~ INTVAL (XEXP (x, 1))) == 0)
4016 return XEXP (x, 1);
4017
4018 /* Convert (A & B) | A to A. */
4019 if (GET_CODE (XEXP (x, 0)) == AND
4020 && (rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
4021 || rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1)))
4022 && ! side_effects_p (XEXP (XEXP (x, 0), 0))
4023 && ! side_effects_p (XEXP (XEXP (x, 0), 1)))
4024 return XEXP (x, 1);
4025
4026 /* If we have (ior (and A B) C), apply the distributive law and then
4027 the inverse distributive law to see if things simplify. */
4028
4029 if (GET_CODE (XEXP (x, 0)) == AND)
4030 {
4031 x = apply_distributive_law
4032 (gen_binary (AND, mode,
4033 gen_binary (IOR, mode,
4034 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4035 gen_binary (IOR, mode,
4036 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
4037
4038 if (GET_CODE (x) != IOR)
4039 goto restart;
4040 }
4041
4042 if (GET_CODE (XEXP (x, 1)) == AND)
4043 {
4044 x = apply_distributive_law
4045 (gen_binary (AND, mode,
4046 gen_binary (IOR, mode,
4047 XEXP (XEXP (x, 1), 0), XEXP (x, 0)),
4048 gen_binary (IOR, mode,
4049 XEXP (XEXP (x, 1), 1), XEXP (x, 0))));
4050
4051 if (GET_CODE (x) != IOR)
4052 goto restart;
4053 }
4054
4055 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
4056 mode size to (rotate A CX). */
4057
4058 if (((GET_CODE (XEXP (x, 0)) == ASHIFT
4059 && GET_CODE (XEXP (x, 1)) == LSHIFTRT)
4060 || (GET_CODE (XEXP (x, 1)) == ASHIFT
4061 && GET_CODE (XEXP (x, 0)) == LSHIFTRT))
4062 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (XEXP (x, 1), 0))
4063 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4064 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4065 && (INTVAL (XEXP (XEXP (x, 0), 1)) + INTVAL (XEXP (XEXP (x, 1), 1))
4066 == GET_MODE_BITSIZE (mode)))
4067 {
4068 rtx shift_count;
4069
4070 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4071 shift_count = XEXP (XEXP (x, 0), 1);
4072 else
4073 shift_count = XEXP (XEXP (x, 1), 1);
4074 x = gen_rtx (ROTATE, mode, XEXP (XEXP (x, 0), 0), shift_count);
4075 goto restart;
4076 }
4077 break;
4078
4079 case XOR:
4080 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
4081 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
4082 (NOT y). */
4083 {
4084 int num_negated = 0;
4085 rtx in1 = XEXP (x, 0), in2 = XEXP (x, 1);
4086
4087 if (GET_CODE (in1) == NOT)
4088 num_negated++, in1 = XEXP (in1, 0);
4089 if (GET_CODE (in2) == NOT)
4090 num_negated++, in2 = XEXP (in2, 0);
4091
4092 if (num_negated == 2)
4093 {
4094 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4095 SUBST (XEXP (x, 1), XEXP (XEXP (x, 1), 0));
4096 }
4097 else if (num_negated == 1)
4098 {
4099 x = gen_unary (NOT, mode,
4100 gen_binary (XOR, mode, in1, in2));
4101 goto restart;
4102 }
4103 }
4104
4105 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
4106 correspond to a machine insn or result in further simplifications
4107 if B is a constant. */
4108
4109 if (GET_CODE (XEXP (x, 0)) == AND
4110 && rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1))
4111 && ! side_effects_p (XEXP (x, 1)))
4112 {
4113 x = gen_binary (AND, mode,
4114 gen_unary (NOT, mode, XEXP (XEXP (x, 0), 0)),
4115 XEXP (x, 1));
4116 goto restart;
4117 }
4118 else if (GET_CODE (XEXP (x, 0)) == AND
4119 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
4120 && ! side_effects_p (XEXP (x, 1)))
4121 {
4122 x = gen_binary (AND, mode,
4123 gen_unary (NOT, mode, XEXP (XEXP (x, 0), 1)),
4124 XEXP (x, 1));
4125 goto restart;
4126 }
4127
4128
4129 #if STORE_FLAG_VALUE == 1
4130 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
4131 comparison. */
4132 if (XEXP (x, 1) == const1_rtx
4133 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4134 && reversible_comparison_p (XEXP (x, 0)))
4135 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
4136 mode, XEXP (XEXP (x, 0), 0),
4137 XEXP (XEXP (x, 0), 1));
4138 #endif
4139
4140 /* (xor (comparison foo bar) (const_int sign-bit))
4141 when STORE_FLAG_VALUE is the sign bit. */
4142 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4143 && (STORE_FLAG_VALUE
4144 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4145 && XEXP (x, 1) == const_true_rtx
4146 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4147 && reversible_comparison_p (XEXP (x, 0)))
4148 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
4149 mode, XEXP (XEXP (x, 0), 0),
4150 XEXP (XEXP (x, 0), 1));
4151 break;
4152
4153 case ABS:
4154 /* (abs (neg <foo>)) -> (abs <foo>) */
4155 if (GET_CODE (XEXP (x, 0)) == NEG)
4156 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4157
4158 /* If operand is something known to be positive, ignore the ABS. */
4159 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4160 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4161 <= HOST_BITS_PER_WIDE_INT)
4162 && ((significant_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4163 & ((HOST_WIDE_INT) 1
4164 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4165 == 0)))
4166 return XEXP (x, 0);
4167
4168
4169 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4170 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4171 {
4172 x = gen_rtx_combine (NEG, mode, XEXP (x, 0));
4173 goto restart;
4174 }
4175 break;
4176
4177 case FFS:
4178 /* (ffs (*_extend <X>)) = (ffs <X>) */
4179 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4180 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4181 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4182 break;
4183
4184 case FLOAT:
4185 /* (float (sign_extend <X>)) = (float <X>). */
4186 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4187 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4188 break;
4189
4190 case LSHIFT:
4191 case ASHIFT:
4192 case LSHIFTRT:
4193 case ASHIFTRT:
4194 case ROTATE:
4195 case ROTATERT:
4196 /* If this is a shift by a constant amount, simplify it. */
4197 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4198 {
4199 x = simplify_shift_const (x, code, mode, XEXP (x, 0),
4200 INTVAL (XEXP (x, 1)));
4201 if (GET_CODE (x) != code)
4202 goto restart;
4203 }
4204
4205 #ifdef SHIFT_COUNT_TRUNCATED
4206 else if (GET_CODE (XEXP (x, 1)) != REG)
4207 SUBST (XEXP (x, 1),
4208 force_to_mode (XEXP (x, 1), GET_MODE (x),
4209 exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))),
4210 NULL_RTX));
4211 #endif
4212
4213 break;
4214 }
4215
4216 return x;
4217 }
4218 \f
4219 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
4220 operations" because they can be replaced with two more basic operations.
4221 ZERO_EXTEND is also considered "compound" because it can be replaced with
4222 an AND operation, which is simpler, though only one operation.
4223
4224 The function expand_compound_operation is called with an rtx expression
4225 and will convert it to the appropriate shifts and AND operations,
4226 simplifying at each stage.
4227
4228 The function make_compound_operation is called to convert an expression
4229 consisting of shifts and ANDs into the equivalent compound expression.
4230 It is the inverse of this function, loosely speaking. */
4231
4232 static rtx
4233 expand_compound_operation (x)
4234 rtx x;
4235 {
4236 int pos = 0, len;
4237 int unsignedp = 0;
4238 int modewidth;
4239 rtx tem;
4240
4241 switch (GET_CODE (x))
4242 {
4243 case ZERO_EXTEND:
4244 unsignedp = 1;
4245 case SIGN_EXTEND:
4246 /* We can't necessarily use a const_int for a multiword mode;
4247 it depends on implicitly extending the value.
4248 Since we don't know the right way to extend it,
4249 we can't tell whether the implicit way is right.
4250
4251 Even for a mode that is no wider than a const_int,
4252 we can't win, because we need to sign extend one of its bits through
4253 the rest of it, and we don't know which bit. */
4254 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
4255 return x;
4256
4257 if (! FAKE_EXTEND_SAFE_P (GET_MODE (XEXP (x, 0)), XEXP (x, 0)))
4258 return x;
4259
4260 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
4261 /* If the inner object has VOIDmode (the only way this can happen
4262 is if it is a ASM_OPERANDS), we can't do anything since we don't
4263 know how much masking to do. */
4264 if (len == 0)
4265 return x;
4266
4267 break;
4268
4269 case ZERO_EXTRACT:
4270 unsignedp = 1;
4271 case SIGN_EXTRACT:
4272 /* If the operand is a CLOBBER, just return it. */
4273 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
4274 return XEXP (x, 0);
4275
4276 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4277 || GET_CODE (XEXP (x, 2)) != CONST_INT
4278 || GET_MODE (XEXP (x, 0)) == VOIDmode)
4279 return x;
4280
4281 len = INTVAL (XEXP (x, 1));
4282 pos = INTVAL (XEXP (x, 2));
4283
4284 /* If this goes outside the object being extracted, replace the object
4285 with a (use (mem ...)) construct that only combine understands
4286 and is used only for this purpose. */
4287 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4288 SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
4289
4290 #if BITS_BIG_ENDIAN
4291 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
4292 #endif
4293 break;
4294
4295 default:
4296 return x;
4297 }
4298
4299 /* If we reach here, we want to return a pair of shifts. The inner
4300 shift is a left shift of BITSIZE - POS - LEN bits. The outer
4301 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
4302 logical depending on the value of UNSIGNEDP.
4303
4304 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
4305 converted into an AND of a shift.
4306
4307 We must check for the case where the left shift would have a negative
4308 count. This can happen in a case like (x >> 31) & 255 on machines
4309 that can't shift by a constant. On those machines, we would first
4310 combine the shift with the AND to produce a variable-position
4311 extraction. Then the constant of 31 would be substituted in to produce
4312 a such a position. */
4313
4314 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
4315 if (modewidth >= pos - len)
4316 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
4317 GET_MODE (x),
4318 simplify_shift_const (NULL_RTX, ASHIFT,
4319 GET_MODE (x),
4320 XEXP (x, 0),
4321 modewidth - pos - len),
4322 modewidth - len);
4323
4324 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
4325 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
4326 simplify_shift_const (NULL_RTX, LSHIFTRT,
4327 GET_MODE (x),
4328 XEXP (x, 0), pos),
4329 ((HOST_WIDE_INT) 1 << len) - 1);
4330 else
4331 /* Any other cases we can't handle. */
4332 return x;
4333
4334
4335 /* If we couldn't do this for some reason, return the original
4336 expression. */
4337 if (GET_CODE (tem) == CLOBBER)
4338 return x;
4339
4340 return tem;
4341 }
4342 \f
4343 /* X is a SET which contains an assignment of one object into
4344 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
4345 or certain SUBREGS). If possible, convert it into a series of
4346 logical operations.
4347
4348 We half-heartedly support variable positions, but do not at all
4349 support variable lengths. */
4350
4351 static rtx
4352 expand_field_assignment (x)
4353 rtx x;
4354 {
4355 rtx inner;
4356 rtx pos; /* Always counts from low bit. */
4357 int len;
4358 rtx mask;
4359 enum machine_mode compute_mode;
4360
4361 /* Loop until we find something we can't simplify. */
4362 while (1)
4363 {
4364 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
4365 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
4366 {
4367 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
4368 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
4369 pos = const0_rtx;
4370 }
4371 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4372 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
4373 {
4374 inner = XEXP (SET_DEST (x), 0);
4375 len = INTVAL (XEXP (SET_DEST (x), 1));
4376 pos = XEXP (SET_DEST (x), 2);
4377
4378 /* If the position is constant and spans the width of INNER,
4379 surround INNER with a USE to indicate this. */
4380 if (GET_CODE (pos) == CONST_INT
4381 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
4382 inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
4383
4384 #if BITS_BIG_ENDIAN
4385 if (GET_CODE (pos) == CONST_INT)
4386 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
4387 - INTVAL (pos));
4388 else if (GET_CODE (pos) == MINUS
4389 && GET_CODE (XEXP (pos, 1)) == CONST_INT
4390 && (INTVAL (XEXP (pos, 1))
4391 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
4392 /* If position is ADJUST - X, new position is X. */
4393 pos = XEXP (pos, 0);
4394 else
4395 pos = gen_binary (MINUS, GET_MODE (pos),
4396 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
4397 - len),
4398 pos);
4399 #endif
4400 }
4401
4402 /* A SUBREG between two modes that occupy the same numbers of words
4403 can be done by moving the SUBREG to the source. */
4404 else if (GET_CODE (SET_DEST (x)) == SUBREG
4405 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
4406 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
4407 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
4408 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
4409 {
4410 x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
4411 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
4412 SET_SRC (x)));
4413 continue;
4414 }
4415 else
4416 break;
4417
4418 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
4419 inner = SUBREG_REG (inner);
4420
4421 compute_mode = GET_MODE (inner);
4422
4423 /* Compute a mask of LEN bits, if we can do this on the host machine. */
4424 if (len < HOST_BITS_PER_WIDE_INT)
4425 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
4426 else
4427 break;
4428
4429 /* Now compute the equivalent expression. Make a copy of INNER
4430 for the SET_DEST in case it is a MEM into which we will substitute;
4431 we don't want shared RTL in that case. */
4432 x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
4433 gen_binary (IOR, compute_mode,
4434 gen_binary (AND, compute_mode,
4435 gen_unary (NOT, compute_mode,
4436 gen_binary (ASHIFT,
4437 compute_mode,
4438 mask, pos)),
4439 inner),
4440 gen_binary (ASHIFT, compute_mode,
4441 gen_binary (AND, compute_mode,
4442 gen_lowpart_for_combine
4443 (compute_mode,
4444 SET_SRC (x)),
4445 mask),
4446 pos)));
4447 }
4448
4449 return x;
4450 }
4451 \f
4452 /* Return an RTX for a reference to LEN bits of INNER. POS is the starting
4453 bit position (counted from the LSB) if >= 0; otherwise POS_RTX represents
4454 the starting bit position.
4455
4456 INNER may be a USE. This will occur when we started with a bitfield
4457 that went outside the boundary of the object in memory, which is
4458 allowed on most machines. To isolate this case, we produce a USE
4459 whose mode is wide enough and surround the MEM with it. The only
4460 code that understands the USE is this routine. If it is not removed,
4461 it will cause the resulting insn not to match.
4462
4463 UNSIGNEDP is non-zero for an unsigned reference and zero for a
4464 signed reference.
4465
4466 IN_DEST is non-zero if this is a reference in the destination of a
4467 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
4468 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
4469 be used.
4470
4471 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
4472 ZERO_EXTRACT should be built even for bits starting at bit 0.
4473
4474 MODE is the desired mode of the result (if IN_DEST == 0). */
4475
4476 static rtx
4477 make_extraction (mode, inner, pos, pos_rtx, len,
4478 unsignedp, in_dest, in_compare)
4479 enum machine_mode mode;
4480 rtx inner;
4481 int pos;
4482 rtx pos_rtx;
4483 int len;
4484 int unsignedp;
4485 int in_dest, in_compare;
4486 {
4487 enum machine_mode is_mode = GET_MODE (inner);
4488 enum machine_mode inner_mode;
4489 enum machine_mode wanted_mem_mode = byte_mode;
4490 enum machine_mode pos_mode = word_mode;
4491 enum machine_mode extraction_mode = word_mode;
4492 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
4493 int spans_byte = 0;
4494 rtx new = 0;
4495
4496 /* Get some information about INNER and get the innermost object. */
4497 if (GET_CODE (inner) == USE)
4498 /* We don't need to adjust the position because we set up the USE
4499 to pretend that it was a full-word object. */
4500 spans_byte = 1, inner = XEXP (inner, 0);
4501 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
4502 inner = SUBREG_REG (inner);
4503
4504 inner_mode = GET_MODE (inner);
4505
4506 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
4507 pos = INTVAL (pos_rtx);
4508
4509 /* See if this can be done without an extraction. We never can if the
4510 width of the field is not the same as that of some integer mode. For
4511 registers, we can only avoid the extraction if the position is at the
4512 low-order bit and this is either not in the destination or we have the
4513 appropriate STRICT_LOW_PART operation available.
4514
4515 For MEM, we can avoid an extract if the field starts on an appropriate
4516 boundary and we can change the mode of the memory reference. However,
4517 we cannot directly access the MEM if we have a USE and the underlying
4518 MEM is not TMODE. This combination means that MEM was being used in a
4519 context where bits outside its mode were being referenced; that is only
4520 valid in bit-field insns. */
4521
4522 if (tmode != BLKmode
4523 && ! (spans_byte && inner_mode != tmode)
4524 && ((pos == 0 && GET_CODE (inner) != MEM
4525 && (! in_dest
4526 || (GET_CODE (inner) == REG
4527 && (movstrict_optab->handlers[(int) tmode].insn_code
4528 != CODE_FOR_nothing))))
4529 || (GET_CODE (inner) == MEM && pos >= 0
4530 && (pos
4531 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
4532 : BITS_PER_UNIT)) == 0
4533 /* We can't do this if we are widening INNER_MODE (it
4534 may not be aligned, for one thing). */
4535 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
4536 && (inner_mode == tmode
4537 || (! mode_dependent_address_p (XEXP (inner, 0))
4538 && ! MEM_VOLATILE_P (inner))))))
4539 {
4540 int offset = pos / BITS_PER_UNIT;
4541
4542 /* If INNER is a MEM, make a new MEM that encompasses just the desired
4543 field. If the original and current mode are the same, we need not
4544 adjust the offset. Otherwise, we do if bytes big endian.
4545
4546 If INNER is not a MEM, get a piece consisting of the just the field
4547 of interest (in this case POS must be 0). */
4548
4549 if (GET_CODE (inner) == MEM)
4550 {
4551 #if BYTES_BIG_ENDIAN
4552 if (inner_mode != tmode)
4553 offset = (GET_MODE_SIZE (inner_mode)
4554 - GET_MODE_SIZE (tmode) - offset);
4555 #endif
4556
4557 new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
4558 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
4559 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
4560 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
4561 }
4562 else if (GET_CODE (inner) == REG)
4563 /* We can't call gen_lowpart_for_combine here since we always want
4564 a SUBREG and it would sometimes return a new hard register. */
4565 new = gen_rtx (SUBREG, tmode, inner,
4566 (WORDS_BIG_ENDIAN
4567 && GET_MODE_SIZE (is_mode) > UNITS_PER_WORD)
4568 ? ((GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (tmode)
4569 / UNITS_PER_WORD))
4570 : 0);
4571 else
4572 new = force_to_mode (inner, tmode, len, NULL_RTX);
4573
4574 /* If this extraction is going into the destination of a SET,
4575 make a STRICT_LOW_PART unless we made a MEM. */
4576
4577 if (in_dest)
4578 return (GET_CODE (new) == MEM ? new
4579 : (GET_CODE (new) != SUBREG
4580 ? gen_rtx (CLOBBER, tmode, const0_rtx)
4581 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
4582
4583 /* Otherwise, sign- or zero-extend unless we already are in the
4584 proper mode. */
4585
4586 return (mode == tmode ? new
4587 : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
4588 mode, new));
4589 }
4590
4591 /* Unless this isin a COMPARE or we have a funny memory reference,
4592 don't do anything with field extracts starting at the low-order
4593 bit since they are simple AND operations. */
4594 if (pos == 0 && ! in_dest && ! in_compare && ! spans_byte)
4595 return 0;
4596
4597 /* Get the mode to use should INNER be a MEM, the mode for the position,
4598 and the mode for the result. */
4599 #ifdef HAVE_insv
4600 if (in_dest)
4601 {
4602 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
4603 pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
4604 extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
4605 }
4606 #endif
4607
4608 #ifdef HAVE_extzv
4609 if (! in_dest && unsignedp)
4610 {
4611 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
4612 pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
4613 extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
4614 }
4615 #endif
4616
4617 #ifdef HAVE_extv
4618 if (! in_dest && ! unsignedp)
4619 {
4620 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
4621 pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
4622 extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
4623 }
4624 #endif
4625
4626 /* Never narrow an object, since that might not be safe. */
4627
4628 if (mode != VOIDmode
4629 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
4630 extraction_mode = mode;
4631
4632 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
4633 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
4634 pos_mode = GET_MODE (pos_rtx);
4635
4636 /* If this is not from memory or we have to change the mode of memory and
4637 cannot, the desired mode is EXTRACTION_MODE. */
4638 if (GET_CODE (inner) != MEM
4639 || (inner_mode != wanted_mem_mode
4640 && (mode_dependent_address_p (XEXP (inner, 0))
4641 || MEM_VOLATILE_P (inner))))
4642 wanted_mem_mode = extraction_mode;
4643
4644 #if BITS_BIG_ENDIAN
4645 /* If position is constant, compute new position. Otherwise, build
4646 subtraction. */
4647 if (pos >= 0)
4648 pos = (MAX (GET_MODE_BITSIZE (is_mode), GET_MODE_BITSIZE (wanted_mem_mode))
4649 - len - pos);
4650 else
4651 pos_rtx
4652 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
4653 GEN_INT (MAX (GET_MODE_BITSIZE (is_mode),
4654 GET_MODE_BITSIZE (wanted_mem_mode))
4655 - len),
4656 pos_rtx);
4657 #endif
4658
4659 /* If INNER has a wider mode, make it smaller. If this is a constant
4660 extract, try to adjust the byte to point to the byte containing
4661 the value. */
4662 if (wanted_mem_mode != VOIDmode
4663 && GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode)
4664 && ((GET_CODE (inner) == MEM
4665 && (inner_mode == wanted_mem_mode
4666 || (! mode_dependent_address_p (XEXP (inner, 0))
4667 && ! MEM_VOLATILE_P (inner))))))
4668 {
4669 int offset = 0;
4670
4671 /* The computations below will be correct if the machine is big
4672 endian in both bits and bytes or little endian in bits and bytes.
4673 If it is mixed, we must adjust. */
4674
4675 #if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
4676 if (! spans_byte && is_mode != wanted_mem_mode)
4677 offset = (GET_MODE_SIZE (is_mode)
4678 - GET_MODE_SIZE (wanted_mem_mode) - offset);
4679 #endif
4680
4681 /* If bytes are big endian and we had a paradoxical SUBREG, we must
4682 adjust OFFSET to compensate. */
4683 #if BYTES_BIG_ENDIAN
4684 if (! spans_byte
4685 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
4686 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
4687 #endif
4688
4689 /* If this is a constant position, we can move to the desired byte. */
4690 if (pos >= 0)
4691 {
4692 offset += pos / BITS_PER_UNIT;
4693 pos %= GET_MODE_BITSIZE (wanted_mem_mode);
4694 }
4695
4696 if (offset != 0 || inner_mode != wanted_mem_mode)
4697 {
4698 rtx newmem = gen_rtx (MEM, wanted_mem_mode,
4699 plus_constant (XEXP (inner, 0), offset));
4700 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
4701 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
4702 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
4703 inner = newmem;
4704 }
4705 }
4706
4707 /* If INNER is not memory, we can always get it into the proper mode. */
4708 else if (GET_CODE (inner) != MEM)
4709 inner = force_to_mode (inner, extraction_mode,
4710 (pos < 0 ? GET_MODE_BITSIZE (extraction_mode)
4711 : len + pos),
4712 NULL_RTX);
4713
4714 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
4715 have to zero extend. Otherwise, we can just use a SUBREG. */
4716 if (pos < 0
4717 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
4718 pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
4719 else if (pos < 0
4720 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
4721 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
4722
4723 /* Make POS_RTX unless we already have it and it is correct. */
4724 if (pos_rtx == 0 || (pos >= 0 && INTVAL (pos_rtx) != pos))
4725 pos_rtx = GEN_INT (pos);
4726
4727 /* Make the required operation. See if we can use existing rtx. */
4728 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
4729 extraction_mode, inner, GEN_INT (len), pos_rtx);
4730 if (! in_dest)
4731 new = gen_lowpart_for_combine (mode, new);
4732
4733 return new;
4734 }
4735 \f
4736 /* Look at the expression rooted at X. Look for expressions
4737 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
4738 Form these expressions.
4739
4740 Return the new rtx, usually just X.
4741
4742 Also, for machines like the Vax that don't have logical shift insns,
4743 try to convert logical to arithmetic shift operations in cases where
4744 they are equivalent. This undoes the canonicalizations to logical
4745 shifts done elsewhere.
4746
4747 We try, as much as possible, to re-use rtl expressions to save memory.
4748
4749 IN_CODE says what kind of expression we are processing. Normally, it is
4750 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
4751 being kludges), it is MEM. When processing the arguments of a comparison
4752 or a COMPARE against zero, it is COMPARE. */
4753
4754 static rtx
4755 make_compound_operation (x, in_code)
4756 rtx x;
4757 enum rtx_code in_code;
4758 {
4759 enum rtx_code code = GET_CODE (x);
4760 enum machine_mode mode = GET_MODE (x);
4761 int mode_width = GET_MODE_BITSIZE (mode);
4762 enum rtx_code next_code;
4763 int i, count;
4764 rtx new = 0;
4765 char *fmt;
4766
4767 /* Select the code to be used in recursive calls. Once we are inside an
4768 address, we stay there. If we have a comparison, set to COMPARE,
4769 but once inside, go back to our default of SET. */
4770
4771 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
4772 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
4773 && XEXP (x, 1) == const0_rtx) ? COMPARE
4774 : in_code == COMPARE ? SET : in_code);
4775
4776 /* Process depending on the code of this operation. If NEW is set
4777 non-zero, it will be returned. */
4778
4779 switch (code)
4780 {
4781 case ASHIFT:
4782 case LSHIFT:
4783 /* Convert shifts by constants into multiplications if inside
4784 an address. */
4785 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
4786 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4787 && INTVAL (XEXP (x, 1)) >= 0)
4788 new = gen_rtx_combine (MULT, mode, XEXP (x, 0),
4789 GEN_INT ((HOST_WIDE_INT) 1
4790 << INTVAL (XEXP (x, 1))));
4791 break;
4792
4793 case AND:
4794 /* If the second operand is not a constant, we can't do anything
4795 with it. */
4796 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
4797 break;
4798
4799 /* If the constant is a power of two minus one and the first operand
4800 is a logical right shift, make an extraction. */
4801 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4802 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
4803 new = make_extraction (mode, XEXP (XEXP (x, 0), 0), -1,
4804 XEXP (XEXP (x, 0), 1), i, 1,
4805 0, in_code == COMPARE);
4806
4807 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
4808 else if (GET_CODE (XEXP (x, 0)) == SUBREG
4809 && subreg_lowpart_p (XEXP (x, 0))
4810 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
4811 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
4812 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))),
4813 XEXP (SUBREG_REG (XEXP (x, 0)), 0), -1,
4814 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
4815 0, in_code == COMPARE);
4816
4817
4818 /* If we are have (and (rotate X C) M) and C is larger than the number
4819 of bits in M, this is an extraction. */
4820
4821 else if (GET_CODE (XEXP (x, 0)) == ROTATE
4822 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4823 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
4824 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
4825 new = make_extraction (mode, XEXP (XEXP (x, 0), 0),
4826 (GET_MODE_BITSIZE (mode)
4827 - INTVAL (XEXP (XEXP (x, 0), 1))),
4828 NULL_RTX, i, 1, 0, in_code == COMPARE);
4829
4830 /* On machines without logical shifts, if the operand of the AND is
4831 a logical shift and our mask turns off all the propagated sign
4832 bits, we can replace the logical shift with an arithmetic shift. */
4833 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
4834 && (lshr_optab->handlers[(int) mode].insn_code
4835 == CODE_FOR_nothing)
4836 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
4837 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4838 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
4839 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
4840 && mode_width <= HOST_BITS_PER_WIDE_INT)
4841 {
4842 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
4843
4844 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
4845 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
4846 SUBST (XEXP (x, 0),
4847 gen_rtx_combine (ASHIFTRT, mode, XEXP (XEXP (x, 0), 0),
4848 XEXP (XEXP (x, 0), 1)));
4849 }
4850
4851 /* If the constant is one less than a power of two, this might be
4852 representable by an extraction even if no shift is present.
4853 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
4854 we are in a COMPARE. */
4855 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
4856 new = make_extraction (mode, XEXP (x, 0), 0, NULL_RTX, i, 1,
4857 0, in_code == COMPARE);
4858
4859 /* If we are in a comparison and this is an AND with a power of two,
4860 convert this into the appropriate bit extract. */
4861 else if (in_code == COMPARE
4862 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4863 new = make_extraction (mode, XEXP (x, 0), i, NULL_RTX, 1, 1, 0, 1);
4864
4865 break;
4866
4867 case LSHIFTRT:
4868 /* If the sign bit is known to be zero, replace this with an
4869 arithmetic shift. */
4870 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
4871 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
4872 && mode_width <= HOST_BITS_PER_WIDE_INT
4873 && (significant_bits (XEXP (x, 0), mode)
4874 & (1 << (mode_width - 1))) == 0)
4875 {
4876 new = gen_rtx_combine (ASHIFTRT, mode, XEXP (x, 0), XEXP (x, 1));
4877 break;
4878 }
4879
4880 /* ... fall through ... */
4881
4882 case ASHIFTRT:
4883 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
4884 this is a SIGN_EXTRACT. */
4885 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4886 && GET_CODE (XEXP (x, 0)) == ASHIFT
4887 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4888 && INTVAL (XEXP (x, 1)) >= INTVAL (XEXP (XEXP (x, 0), 1)))
4889 new = make_extraction (mode, XEXP (XEXP (x, 0), 0),
4890 (INTVAL (XEXP (x, 1))
4891 - INTVAL (XEXP (XEXP (x, 0), 1))),
4892 NULL_RTX, mode_width - INTVAL (XEXP (x, 1)),
4893 code == LSHIFTRT, 0, in_code == COMPARE);
4894
4895 /* Similarly if we have (ashifrt (OP (ashift foo C1) C3) C2). In these
4896 cases, we are better off returning a SIGN_EXTEND of the operation. */
4897
4898 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4899 && (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND
4900 || GET_CODE (XEXP (x, 0)) == XOR
4901 || GET_CODE (XEXP (x, 0)) == PLUS)
4902 && GET_CODE (XEXP (XEXP (x, 0), 0)) == ASHIFT
4903 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4904 && INTVAL (XEXP (x, 1)) >= INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4905 && INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)) < HOST_BITS_PER_WIDE_INT
4906 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4907 && (INTVAL (XEXP (XEXP (x, 0), 1))
4908 & (((HOST_WIDE_INT) 1
4909 << INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))) - 1)) == 0)
4910 {
4911 HOST_WIDE_INT newop1
4912 = (INTVAL (XEXP (XEXP (x, 0), 1))
4913 >> INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)));
4914
4915 new = make_extraction (mode,
4916 gen_binary (GET_CODE (XEXP (x, 0)), mode,
4917 XEXP (XEXP (XEXP (x, 0), 0), 0),
4918 GEN_INT (newop1)),
4919 (INTVAL (XEXP (x, 1))
4920 - INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))),
4921 NULL_RTX, mode_width - INTVAL (XEXP (x, 1)),
4922 code == LSHIFTRT, 0, in_code == COMPARE);
4923 }
4924
4925 /* Similarly for (ashiftrt (neg (ashift FOO C1)) C2). */
4926 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4927 && GET_CODE (XEXP (x, 0)) == NEG
4928 && GET_CODE (XEXP (XEXP (x, 0), 0)) == ASHIFT
4929 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4930 && INTVAL (XEXP (x, 1)) >= INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)))
4931 new = make_extraction (mode,
4932 gen_unary (GET_CODE (XEXP (x, 0)), mode,
4933 XEXP (XEXP (XEXP (x, 0), 0), 0)),
4934 (INTVAL (XEXP (x, 1))
4935 - INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))),
4936 NULL_RTX, mode_width - INTVAL (XEXP (x, 1)),
4937 code == LSHIFTRT, 0, in_code == COMPARE);
4938 break;
4939 }
4940
4941 if (new)
4942 {
4943 x = gen_lowpart_for_combine (mode, new);
4944 code = GET_CODE (x);
4945 }
4946
4947 /* Now recursively process each operand of this operation. */
4948 fmt = GET_RTX_FORMAT (code);
4949 for (i = 0; i < GET_RTX_LENGTH (code); i++)
4950 if (fmt[i] == 'e')
4951 {
4952 new = make_compound_operation (XEXP (x, i), next_code);
4953 SUBST (XEXP (x, i), new);
4954 }
4955
4956 return x;
4957 }
4958 \f
4959 /* Given M see if it is a value that would select a field of bits
4960 within an item, but not the entire word. Return -1 if not.
4961 Otherwise, return the starting position of the field, where 0 is the
4962 low-order bit.
4963
4964 *PLEN is set to the length of the field. */
4965
4966 static int
4967 get_pos_from_mask (m, plen)
4968 unsigned HOST_WIDE_INT m;
4969 int *plen;
4970 {
4971 /* Get the bit number of the first 1 bit from the right, -1 if none. */
4972 int pos = exact_log2 (m & - m);
4973
4974 if (pos < 0)
4975 return -1;
4976
4977 /* Now shift off the low-order zero bits and see if we have a power of
4978 two minus 1. */
4979 *plen = exact_log2 ((m >> pos) + 1);
4980
4981 if (*plen <= 0)
4982 return -1;
4983
4984 return pos;
4985 }
4986 \f
4987 /* Rewrite X so that it is an expression in MODE. We only care about the
4988 low-order BITS bits so we can ignore AND operations that just clear
4989 higher-order bits.
4990
4991 Also, if REG is non-zero and X is a register equal in value to REG,
4992 replace X with REG. */
4993
4994 static rtx
4995 force_to_mode (x, mode, bits, reg)
4996 rtx x;
4997 enum machine_mode mode;
4998 int bits;
4999 rtx reg;
5000 {
5001 enum rtx_code code = GET_CODE (x);
5002 enum machine_mode op_mode = mode;
5003
5004 /* If X is narrower than MODE or if BITS is larger than the size of MODE,
5005 just get X in the proper mode. */
5006
5007 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
5008 || bits > GET_MODE_BITSIZE (mode))
5009 return gen_lowpart_for_combine (mode, x);
5010
5011 switch (code)
5012 {
5013 case SIGN_EXTEND:
5014 case ZERO_EXTEND:
5015 case ZERO_EXTRACT:
5016 case SIGN_EXTRACT:
5017 x = expand_compound_operation (x);
5018 if (GET_CODE (x) != code)
5019 return force_to_mode (x, mode, bits, reg);
5020 break;
5021
5022 case REG:
5023 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
5024 || rtx_equal_p (reg, get_last_value (x))))
5025 x = reg;
5026 break;
5027
5028 case CONST_INT:
5029 if (bits < HOST_BITS_PER_WIDE_INT)
5030 x = GEN_INT (INTVAL (x) & (((HOST_WIDE_INT) 1 << bits) - 1));
5031 return x;
5032
5033 case SUBREG:
5034 /* Ignore low-order SUBREGs. */
5035 if (subreg_lowpart_p (x))
5036 return force_to_mode (SUBREG_REG (x), mode, bits, reg);
5037 break;
5038
5039 case AND:
5040 /* If this is an AND with a constant. Otherwise, we fall through to
5041 do the general binary case. */
5042
5043 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5044 {
5045 HOST_WIDE_INT mask = INTVAL (XEXP (x, 1));
5046 int len = exact_log2 (mask + 1);
5047 rtx op = XEXP (x, 0);
5048
5049 /* If this is masking some low-order bits, we may be able to
5050 impose a stricter constraint on what bits of the operand are
5051 required. */
5052
5053 op = force_to_mode (op, mode, len > 0 ? MIN (len, bits) : bits,
5054 reg);
5055
5056 if (bits < HOST_BITS_PER_WIDE_INT)
5057 mask &= ((HOST_WIDE_INT) 1 << bits) - 1;
5058
5059 /* If we have no AND in MODE, use the original mode for the
5060 operation. */
5061
5062 if (and_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
5063 op_mode = GET_MODE (x);
5064
5065 x = simplify_and_const_int (x, op_mode, op, mask);
5066
5067 /* If X is still an AND, see if it is an AND with a mask that
5068 is just some low-order bits. If so, and it is BITS wide (it
5069 can't be wider), we don't need it. */
5070
5071 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
5072 && bits < HOST_BITS_PER_WIDE_INT
5073 && INTVAL (XEXP (x, 1)) == ((HOST_WIDE_INT) 1 << bits) - 1)
5074 x = XEXP (x, 0);
5075
5076 break;
5077 }
5078
5079 /* ... fall through ... */
5080
5081 case PLUS:
5082 case MINUS:
5083 case MULT:
5084 case IOR:
5085 case XOR:
5086 /* For most binary operations, just propagate into the operation and
5087 change the mode if we have an operation of that mode. */
5088
5089 if ((code == PLUS
5090 && add_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
5091 || (code == MINUS
5092 && sub_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
5093 || (code == MULT && (smul_optab->handlers[(int) mode].insn_code
5094 == CODE_FOR_nothing))
5095 || (code == AND
5096 && and_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
5097 || (code == IOR
5098 && ior_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
5099 || (code == XOR && (xor_optab->handlers[(int) mode].insn_code
5100 == CODE_FOR_nothing)))
5101 op_mode = GET_MODE (x);
5102
5103 x = gen_binary (code, op_mode,
5104 gen_lowpart_for_combine (op_mode,
5105 force_to_mode (XEXP (x, 0),
5106 mode, bits,
5107 reg)),
5108 gen_lowpart_for_combine (op_mode,
5109 force_to_mode (XEXP (x, 1),
5110 mode, bits,
5111 reg)));
5112 break;
5113
5114 case ASHIFT:
5115 case LSHIFT:
5116 /* For left shifts, do the same, but just for the first operand.
5117 If the shift count is a constant, we need even fewer bits of the
5118 first operand. */
5119
5120 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) < bits)
5121 bits -= INTVAL (XEXP (x, 1));
5122
5123 if ((code == ASHIFT
5124 && ashl_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
5125 || (code == LSHIFT && (lshl_optab->handlers[(int) mode].insn_code
5126 == CODE_FOR_nothing)))
5127 op_mode = GET_MODE (x);
5128
5129 x = gen_binary (code, op_mode,
5130 gen_lowpart_for_combine (op_mode,
5131 force_to_mode (XEXP (x, 0),
5132 mode, bits,
5133 reg)),
5134 XEXP (x, 1));
5135 break;
5136
5137 case LSHIFTRT:
5138 /* Here we can only do something if the shift count is a constant and
5139 the count plus BITS is no larger than the width of MODE, we can do
5140 the shift in MODE. */
5141
5142 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5143 && INTVAL (XEXP (x, 1)) + bits <= GET_MODE_BITSIZE (mode))
5144 {
5145 rtx inner = force_to_mode (XEXP (x, 0), mode,
5146 bits + INTVAL (XEXP (x, 1)), reg);
5147
5148 if (lshr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
5149 op_mode = GET_MODE (x);
5150
5151 x = gen_binary (LSHIFTRT, op_mode,
5152 gen_lowpart_for_combine (op_mode, inner),
5153 XEXP (x, 1));
5154 }
5155 break;
5156
5157 case ASHIFTRT:
5158 /* If this is a sign-extension operation that just affects bits
5159 we don't care about, remove it. */
5160
5161 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5162 && INTVAL (XEXP (x, 1)) >= 0
5163 && INTVAL (XEXP (x, 1)) <= GET_MODE_BITSIZE (GET_MODE (x)) - bits
5164 && GET_CODE (XEXP (x, 0)) == ASHIFT
5165 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5166 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
5167 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, bits, reg);
5168 break;
5169
5170 case NEG:
5171 case NOT:
5172 if ((code == NEG
5173 && neg_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
5174 || (code == NOT && (one_cmpl_optab->handlers[(int) mode].insn_code
5175 == CODE_FOR_nothing)))
5176 op_mode = GET_MODE (x);
5177
5178 /* Handle these similarly to the way we handle most binary operations. */
5179 x = gen_unary (code, op_mode,
5180 gen_lowpart_for_combine (op_mode,
5181 force_to_mode (XEXP (x, 0), mode,
5182 bits, reg)));
5183 break;
5184
5185 case IF_THEN_ELSE:
5186 /* We have no way of knowing if the IF_THEN_ELSE can itself be
5187 written in a narrower mode. We play it safe and do not do so. */
5188
5189 SUBST (XEXP (x, 1),
5190 gen_lowpart_for_combine (GET_MODE (x),
5191 force_to_mode (XEXP (x, 1), mode,
5192 bits, reg)));
5193 SUBST (XEXP (x, 2),
5194 gen_lowpart_for_combine (GET_MODE (x),
5195 force_to_mode (XEXP (x, 2), mode,
5196 bits, reg)));
5197 break;
5198 }
5199
5200 /* Ensure we return a value of the proper mode. */
5201 return gen_lowpart_for_combine (mode, x);
5202 }
5203 \f
5204 /* Return the value of expression X given the fact that condition COND
5205 is known to be true when applied to REG as its first operand and VAL
5206 as its second. X is known to not be shared and so can be modified in
5207 place.
5208
5209 We only handle the simplest cases, and specifically those cases that
5210 arise with IF_THEN_ELSE expressions. */
5211
5212 static rtx
5213 known_cond (x, cond, reg, val)
5214 rtx x;
5215 enum rtx_code cond;
5216 rtx reg, val;
5217 {
5218 enum rtx_code code = GET_CODE (x);
5219 rtx new, temp;
5220 char *fmt;
5221 int i, j;
5222
5223 if (side_effects_p (x))
5224 return x;
5225
5226 if (cond == EQ && rtx_equal_p (x, reg))
5227 return val;
5228
5229 /* If X is (abs REG) and we know something about REG's relationship
5230 with zero, we may be able to simplify this. */
5231
5232 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
5233 switch (cond)
5234 {
5235 case GE: case GT: case EQ:
5236 return XEXP (x, 0);
5237 case LT: case LE:
5238 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), XEXP (x, 0));
5239 }
5240
5241 /* The only other cases we handle are MIN, MAX, and comparisons if the
5242 operands are the same as REG and VAL. */
5243
5244 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
5245 {
5246 if (rtx_equal_p (XEXP (x, 0), val))
5247 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
5248
5249 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
5250 {
5251 if (GET_RTX_CLASS (code) == '<')
5252 return (comparison_dominates_p (cond, code) ? const_true_rtx
5253 : (comparison_dominates_p (cond,
5254 reverse_condition (code))
5255 ? const0_rtx : x));
5256
5257 else if (code == SMAX || code == SMIN
5258 || code == UMIN || code == UMAX)
5259 {
5260 int unsignedp = (code == UMIN || code == UMAX);
5261
5262 if (code == SMAX || code == UMAX)
5263 cond = reverse_condition (cond);
5264
5265 switch (cond)
5266 {
5267 case GE: case GT:
5268 return unsignedp ? x : XEXP (x, 1);
5269 case LE: case LT:
5270 return unsignedp ? x : XEXP (x, 0);
5271 case GEU: case GTU:
5272 return unsignedp ? XEXP (x, 1) : x;
5273 case LEU: case LTU:
5274 return unsignedp ? XEXP (x, 0) : x;
5275 }
5276 }
5277 }
5278 }
5279
5280 fmt = GET_RTX_FORMAT (code);
5281 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5282 {
5283 if (fmt[i] == 'e')
5284 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
5285 else if (fmt[i] == 'E')
5286 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5287 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
5288 cond, reg, val));
5289 }
5290
5291 return x;
5292 }
5293 \f
5294 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
5295 Return that assignment if so.
5296
5297 We only handle the most common cases. */
5298
5299 static rtx
5300 make_field_assignment (x)
5301 rtx x;
5302 {
5303 rtx dest = SET_DEST (x);
5304 rtx src = SET_SRC (x);
5305 rtx ourdest;
5306 rtx assign;
5307 HOST_WIDE_INT c1;
5308 int pos, len;
5309 rtx other;
5310 enum machine_mode mode;
5311
5312 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
5313 a clear of a one-bit field. We will have changed it to
5314 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
5315 for a SUBREG. */
5316
5317 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
5318 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
5319 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
5320 && (rtx_equal_p (dest, XEXP (src, 1))
5321 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
5322 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
5323 {
5324 assign = make_extraction (VOIDmode, dest, -1, XEXP (XEXP (src, 0), 1),
5325 1, 1, 1, 0);
5326 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
5327 }
5328
5329 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
5330 && subreg_lowpart_p (XEXP (src, 0))
5331 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
5332 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
5333 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
5334 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
5335 && (rtx_equal_p (dest, XEXP (src, 1))
5336 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
5337 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
5338 {
5339 assign = make_extraction (VOIDmode, dest, -1,
5340 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
5341 1, 1, 1, 0);
5342 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
5343 }
5344
5345 /* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a
5346 one-bit field. */
5347 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
5348 && XEXP (XEXP (src, 0), 0) == const1_rtx
5349 && (rtx_equal_p (dest, XEXP (src, 1))
5350 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
5351 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
5352 {
5353 assign = make_extraction (VOIDmode, dest, -1, XEXP (XEXP (src, 0), 1),
5354 1, 1, 1, 0);
5355 return gen_rtx (SET, VOIDmode, assign, const1_rtx);
5356 }
5357
5358 /* The other case we handle is assignments into a constant-position
5359 field. They look like (ior (and DEST C1) OTHER). If C1 represents
5360 a mask that has all one bits except for a group of zero bits and
5361 OTHER is known to have zeros where C1 has ones, this is such an
5362 assignment. Compute the position and length from C1. Shift OTHER
5363 to the appropriate position, force it to the required mode, and
5364 make the extraction. Check for the AND in both operands. */
5365
5366 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND
5367 && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT
5368 && (rtx_equal_p (XEXP (XEXP (src, 0), 0), dest)
5369 || rtx_equal_p (XEXP (XEXP (src, 0), 0), get_last_value (dest))
5370 || rtx_equal_p (get_last_value (XEXP (XEXP (src, 0), 1)), dest)))
5371 c1 = INTVAL (XEXP (XEXP (src, 0), 1)), other = XEXP (src, 1);
5372 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == AND
5373 && GET_CODE (XEXP (XEXP (src, 1), 1)) == CONST_INT
5374 && (rtx_equal_p (XEXP (XEXP (src, 1), 0), dest)
5375 || rtx_equal_p (XEXP (XEXP (src, 1), 0), get_last_value (dest))
5376 || rtx_equal_p (get_last_value (XEXP (XEXP (src, 1), 0)),
5377 dest)))
5378 c1 = INTVAL (XEXP (XEXP (src, 1), 1)), other = XEXP (src, 0);
5379 else
5380 return x;
5381
5382 pos = get_pos_from_mask (~c1, &len);
5383 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
5384 || (c1 & significant_bits (other, GET_MODE (other))) != 0)
5385 return x;
5386
5387 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
5388
5389 /* The mode to use for the source is the mode of the assignment, or of
5390 what is inside a possible STRICT_LOW_PART. */
5391 mode = (GET_CODE (assign) == STRICT_LOW_PART
5392 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
5393
5394 /* Shift OTHER right POS places and make it the source, restricting it
5395 to the proper length and mode. */
5396
5397 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
5398 GET_MODE (src), other, pos),
5399 mode, len, dest);
5400
5401 return gen_rtx_combine (SET, VOIDmode, assign, src);
5402 }
5403 \f
5404 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
5405 if so. */
5406
5407 static rtx
5408 apply_distributive_law (x)
5409 rtx x;
5410 {
5411 enum rtx_code code = GET_CODE (x);
5412 rtx lhs, rhs, other;
5413 rtx tem;
5414 enum rtx_code inner_code;
5415
5416 /* The outer operation can only be one of the following: */
5417 if (code != IOR && code != AND && code != XOR
5418 && code != PLUS && code != MINUS)
5419 return x;
5420
5421 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
5422
5423 /* If either operand is a primitive we can't do anything, so get out fast. */
5424 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
5425 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
5426 return x;
5427
5428 lhs = expand_compound_operation (lhs);
5429 rhs = expand_compound_operation (rhs);
5430 inner_code = GET_CODE (lhs);
5431 if (inner_code != GET_CODE (rhs))
5432 return x;
5433
5434 /* See if the inner and outer operations distribute. */
5435 switch (inner_code)
5436 {
5437 case LSHIFTRT:
5438 case ASHIFTRT:
5439 case AND:
5440 case IOR:
5441 /* These all distribute except over PLUS. */
5442 if (code == PLUS || code == MINUS)
5443 return x;
5444 break;
5445
5446 case MULT:
5447 if (code != PLUS && code != MINUS)
5448 return x;
5449 break;
5450
5451 case ASHIFT:
5452 case LSHIFT:
5453 /* These are also multiplies, so they distribute over everything. */
5454 break;
5455
5456 case SUBREG:
5457 /* Non-paradoxical SUBREGs distributes over all operations, provided
5458 the inner modes and word numbers are the same, this is an extraction
5459 of a low-order part, we don't convert an fp operation to int or
5460 vice versa, and we would not be converting a single-word
5461 operation into a multi-word operation. The latter test is not
5462 required, but it prevents generating unneeded multi-word operations.
5463 Some of the previous tests are redundant given the latter test, but
5464 are retained because they are required for correctness.
5465
5466 We produce the result slightly differently in this case. */
5467
5468 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
5469 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
5470 || ! subreg_lowpart_p (lhs)
5471 || (GET_MODE_CLASS (GET_MODE (lhs))
5472 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
5473 || (GET_MODE_SIZE (GET_MODE (lhs))
5474 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
5475 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
5476 return x;
5477
5478 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
5479 SUBREG_REG (lhs), SUBREG_REG (rhs));
5480 return gen_lowpart_for_combine (GET_MODE (x), tem);
5481
5482 default:
5483 return x;
5484 }
5485
5486 /* Set LHS and RHS to the inner operands (A and B in the example
5487 above) and set OTHER to the common operand (C in the example).
5488 These is only one way to do this unless the inner operation is
5489 commutative. */
5490 if (GET_RTX_CLASS (inner_code) == 'c'
5491 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
5492 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
5493 else if (GET_RTX_CLASS (inner_code) == 'c'
5494 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
5495 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
5496 else if (GET_RTX_CLASS (inner_code) == 'c'
5497 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
5498 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
5499 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
5500 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
5501 else
5502 return x;
5503
5504 /* Form the new inner operation, seeing if it simplifies first. */
5505 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
5506
5507 /* There is one exception to the general way of distributing:
5508 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
5509 if (code == XOR && inner_code == IOR)
5510 {
5511 inner_code = AND;
5512 other = gen_unary (NOT, GET_MODE (x), other);
5513 }
5514
5515 /* We may be able to continuing distributing the result, so call
5516 ourselves recursively on the inner operation before forming the
5517 outer operation, which we return. */
5518 return gen_binary (inner_code, GET_MODE (x),
5519 apply_distributive_law (tem), other);
5520 }
5521 \f
5522 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
5523 in MODE.
5524
5525 Return an equivalent form, if different from X. Otherwise, return X. If
5526 X is zero, we are to always construct the equivalent form. */
5527
5528 static rtx
5529 simplify_and_const_int (x, mode, varop, constop)
5530 rtx x;
5531 enum machine_mode mode;
5532 rtx varop;
5533 unsigned HOST_WIDE_INT constop;
5534 {
5535 register enum machine_mode tmode;
5536 register rtx temp;
5537 unsigned HOST_WIDE_INT significant;
5538
5539 /* There is a large class of optimizations based on the principle that
5540 some operations produce results where certain bits are known to be zero,
5541 and hence are not significant to the AND. For example, if we have just
5542 done a left shift of one bit, the low-order bit is known to be zero and
5543 hence an AND with a mask of ~1 would not do anything.
5544
5545 At the end of the following loop, we set:
5546
5547 VAROP to be the item to be AND'ed with;
5548 CONSTOP to the constant value to AND it with. */
5549
5550 while (1)
5551 {
5552 /* If we ever encounter a mode wider than the host machine's widest
5553 integer size, we can't compute the masks accurately, so give up. */
5554 if (GET_MODE_BITSIZE (GET_MODE (varop)) > HOST_BITS_PER_WIDE_INT)
5555 break;
5556
5557 /* Unless one of the cases below does a `continue',
5558 a `break' will be executed to exit the loop. */
5559
5560 switch (GET_CODE (varop))
5561 {
5562 case CLOBBER:
5563 /* If VAROP is a (clobber (const_int)), return it since we know
5564 we are generating something that won't match. */
5565 return varop;
5566
5567 #if ! BITS_BIG_ENDIAN
5568 case USE:
5569 /* VAROP is a (use (mem ..)) that was made from a bit-field
5570 extraction that spanned the boundary of the MEM. If we are
5571 now masking so it is within that boundary, we don't need the
5572 USE any more. */
5573 if ((constop & ~ GET_MODE_MASK (GET_MODE (XEXP (varop, 0)))) == 0)
5574 {
5575 varop = XEXP (varop, 0);
5576 continue;
5577 }
5578 break;
5579 #endif
5580
5581 case SUBREG:
5582 if (subreg_lowpart_p (varop)
5583 /* We can ignore the effect this SUBREG if it narrows the mode
5584 or, on machines where byte operations extend, if the
5585 constant masks to zero all the bits the mode doesn't have. */
5586 && ((GET_MODE_SIZE (GET_MODE (varop))
5587 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop))))
5588 #if defined(BYTE_LOADS_ZERO_EXTEND) || defined(BYTE_LOADS_SIGN_EXTEND)
5589 || (0 == (constop
5590 & GET_MODE_MASK (GET_MODE (varop))
5591 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (varop)))))
5592 #endif
5593 ))
5594 {
5595 varop = SUBREG_REG (varop);
5596 continue;
5597 }
5598 break;
5599
5600 case ZERO_EXTRACT:
5601 case SIGN_EXTRACT:
5602 case ZERO_EXTEND:
5603 case SIGN_EXTEND:
5604 /* Try to expand these into a series of shifts and then work
5605 with that result. If we can't, for example, if the extract
5606 isn't at a fixed position, give up. */
5607 temp = expand_compound_operation (varop);
5608 if (temp != varop)
5609 {
5610 varop = temp;
5611 continue;
5612 }
5613 break;
5614
5615 case AND:
5616 if (GET_CODE (XEXP (varop, 1)) == CONST_INT)
5617 {
5618 constop &= INTVAL (XEXP (varop, 1));
5619 varop = XEXP (varop, 0);
5620 continue;
5621 }
5622 break;
5623
5624 case IOR:
5625 case XOR:
5626 /* If VAROP is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
5627 LSHIFT so we end up with an (and (lshiftrt (ior ...) ...) ...)
5628 operation which may be a bitfield extraction. */
5629
5630 if (GET_CODE (XEXP (varop, 0)) == LSHIFTRT
5631 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
5632 && INTVAL (XEXP (XEXP (varop, 0), 1)) >= 0
5633 && INTVAL (XEXP (XEXP (varop, 0), 1)) < HOST_BITS_PER_WIDE_INT
5634 && GET_CODE (XEXP (varop, 1)) == CONST_INT
5635 && (INTVAL (XEXP (varop, 1))
5636 & ~ significant_bits (XEXP (varop, 0),
5637 GET_MODE (varop)) == 0))
5638 {
5639 temp = GEN_INT ((INTVAL (XEXP (varop, 1)) & constop)
5640 << INTVAL (XEXP (XEXP (varop, 0), 1)));
5641 temp = gen_binary (GET_CODE (varop), GET_MODE (varop),
5642 XEXP (XEXP (varop, 0), 0), temp);
5643 varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
5644 temp, XEXP (varop, 1));
5645 continue;
5646 }
5647
5648 /* Apply the AND to both branches of the IOR or XOR, then try to
5649 apply the distributive law. This may eliminate operations
5650 if either branch can be simplified because of the AND.
5651 It may also make some cases more complex, but those cases
5652 probably won't match a pattern either with or without this. */
5653 return
5654 gen_lowpart_for_combine
5655 (mode, apply_distributive_law
5656 (gen_rtx_combine
5657 (GET_CODE (varop), GET_MODE (varop),
5658 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
5659 XEXP (varop, 0), constop),
5660 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
5661 XEXP (varop, 1), constop))));
5662
5663 case NOT:
5664 /* (and (not FOO)) is (and (xor FOO CONST_OP)) so if FOO is an
5665 LSHIFTRT we can do the same as above. */
5666
5667 if (GET_CODE (XEXP (varop, 0)) == LSHIFTRT
5668 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
5669 && INTVAL (XEXP (XEXP (varop, 0), 1)) >= 0
5670 && INTVAL (XEXP (XEXP (varop, 0), 1)) < HOST_BITS_PER_WIDE_INT)
5671 {
5672 temp = GEN_INT (constop << INTVAL (XEXP (XEXP (varop, 0), 1)));
5673 temp = gen_binary (XOR, GET_MODE (varop),
5674 XEXP (XEXP (varop, 0), 0), temp);
5675 varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
5676 temp, XEXP (XEXP (varop, 0), 1));
5677 continue;
5678 }
5679 break;
5680
5681 case ASHIFTRT:
5682 /* If we are just looking for the sign bit, we don't need this
5683 shift at all, even if it has a variable count. */
5684 if (constop == ((HOST_WIDE_INT) 1
5685 << (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)))
5686 {
5687 varop = XEXP (varop, 0);
5688 continue;
5689 }
5690
5691 /* If this is a shift by a constant, get a mask that contains
5692 those bits that are not copies of the sign bit. We then have
5693 two cases: If CONSTOP only includes those bits, this can be
5694 a logical shift, which may allow simplifications. If CONSTOP
5695 is a single-bit field not within those bits, we are requesting
5696 a copy of the sign bit and hence can shift the sign bit to
5697 the appropriate location. */
5698 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
5699 && INTVAL (XEXP (varop, 1)) >= 0
5700 && INTVAL (XEXP (varop, 1)) < HOST_BITS_PER_WIDE_INT)
5701 {
5702 int i = -1;
5703
5704 significant = GET_MODE_MASK (GET_MODE (varop));
5705 significant >>= INTVAL (XEXP (varop, 1));
5706
5707 if ((constop & ~significant) == 0
5708 || (i = exact_log2 (constop)) >= 0)
5709 {
5710 varop = simplify_shift_const
5711 (varop, LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
5712 i < 0 ? INTVAL (XEXP (varop, 1))
5713 : GET_MODE_BITSIZE (GET_MODE (varop)) - 1 - i);
5714 if (GET_CODE (varop) != ASHIFTRT)
5715 continue;
5716 }
5717 }
5718
5719 /* If our mask is 1, convert this to a LSHIFTRT. This can be done
5720 even if the shift count isn't a constant. */
5721 if (constop == 1)
5722 varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
5723 XEXP (varop, 0), XEXP (varop, 1));
5724 break;
5725
5726 case NE:
5727 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is
5728 included in STORE_FLAG_VALUE and FOO has no significant bits
5729 not in CONST. */
5730 if ((constop & ~ STORE_FLAG_VALUE) == 0
5731 && XEXP (varop, 0) == const0_rtx
5732 && (significant_bits (XEXP (varop, 0), mode) & ~ constop) == 0)
5733 {
5734 varop = XEXP (varop, 0);
5735 continue;
5736 }
5737 break;
5738
5739 case PLUS:
5740 /* In (and (plus FOO C1) M), if M is a mask that just turns off
5741 low-order bits (as in an alignment operation) and FOO is already
5742 aligned to that boundary, we can convert remove this AND
5743 and possibly the PLUS if it is now adding zero. */
5744 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
5745 && exact_log2 (-constop) >= 0
5746 && (significant_bits (XEXP (varop, 0), mode) & ~ constop) == 0)
5747 {
5748 varop = plus_constant (XEXP (varop, 0),
5749 INTVAL (XEXP (varop, 1)) & constop);
5750 constop = ~0;
5751 break;
5752 }
5753
5754 /* ... fall through ... */
5755
5756 case MINUS:
5757 /* In (and (plus (and FOO M1) BAR) M2), if M1 and M2 are one
5758 less than powers of two and M2 is narrower than M1, we can
5759 eliminate the inner AND. This occurs when incrementing
5760 bit fields. */
5761
5762 if (GET_CODE (XEXP (varop, 0)) == ZERO_EXTRACT
5763 || GET_CODE (XEXP (varop, 0)) == ZERO_EXTEND)
5764 SUBST (XEXP (varop, 0),
5765 expand_compound_operation (XEXP (varop, 0)));
5766
5767 if (GET_CODE (XEXP (varop, 0)) == AND
5768 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
5769 && exact_log2 (constop + 1) >= 0
5770 && exact_log2 (INTVAL (XEXP (XEXP (varop, 0), 1)) + 1) >= 0
5771 && (~ INTVAL (XEXP (XEXP (varop, 0), 1)) & constop) == 0)
5772 SUBST (XEXP (varop, 0), XEXP (XEXP (varop, 0), 0));
5773 break;
5774 }
5775
5776 break;
5777 }
5778
5779 /* If we have reached a constant, this whole thing is constant. */
5780 if (GET_CODE (varop) == CONST_INT)
5781 return GEN_INT (constop & INTVAL (varop));
5782
5783 /* See what bits are significant in VAROP. */
5784 significant = significant_bits (varop, mode);
5785
5786 /* Turn off all bits in the constant that are known to already be zero.
5787 Thus, if the AND isn't needed at all, we will have CONSTOP == SIGNIFICANT
5788 which is tested below. */
5789
5790 constop &= significant;
5791
5792 /* If we don't have any bits left, return zero. */
5793 if (constop == 0)
5794 return const0_rtx;
5795
5796 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
5797 if we already had one (just check for the simplest cases). */
5798 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
5799 && GET_MODE (XEXP (x, 0)) == mode
5800 && SUBREG_REG (XEXP (x, 0)) == varop)
5801 varop = XEXP (x, 0);
5802 else
5803 varop = gen_lowpart_for_combine (mode, varop);
5804
5805 /* If we can't make the SUBREG, try to return what we were given. */
5806 if (GET_CODE (varop) == CLOBBER)
5807 return x ? x : varop;
5808
5809 /* If we are only masking insignificant bits, return VAROP. */
5810 if (constop == significant)
5811 x = varop;
5812
5813 /* Otherwise, return an AND. See how much, if any, of X we can use. */
5814 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
5815 x = gen_rtx_combine (AND, mode, varop, GEN_INT (constop));
5816
5817 else
5818 {
5819 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5820 || INTVAL (XEXP (x, 1)) != constop)
5821 SUBST (XEXP (x, 1), GEN_INT (constop));
5822
5823 SUBST (XEXP (x, 0), varop);
5824 }
5825
5826 return x;
5827 }
5828 \f
5829 /* Given an expression, X, compute which bits in X can be non-zero.
5830 We don't care about bits outside of those defined in MODE.
5831
5832 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
5833 a shift, AND, or zero_extract, we can do better. */
5834
5835 static unsigned HOST_WIDE_INT
5836 significant_bits (x, mode)
5837 rtx x;
5838 enum machine_mode mode;
5839 {
5840 unsigned HOST_WIDE_INT significant = GET_MODE_MASK (mode);
5841 unsigned HOST_WIDE_INT inner_sig;
5842 enum rtx_code code;
5843 int mode_width = GET_MODE_BITSIZE (mode);
5844 rtx tem;
5845
5846 /* If X is wider than MODE, use its mode instead. */
5847 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
5848 {
5849 mode = GET_MODE (x);
5850 significant = GET_MODE_MASK (mode);
5851 mode_width = GET_MODE_BITSIZE (mode);
5852 }
5853
5854 if (mode_width > HOST_BITS_PER_WIDE_INT)
5855 /* Our only callers in this case look for single bit values. So
5856 just return the mode mask. Those tests will then be false. */
5857 return significant;
5858
5859 code = GET_CODE (x);
5860 switch (code)
5861 {
5862 case REG:
5863 #ifdef STACK_BOUNDARY
5864 /* If this is the stack pointer, we may know something about its
5865 alignment. If PUSH_ROUNDING is defined, it is possible for the
5866 stack to be momentarily aligned only to that amount, so we pick
5867 the least alignment. */
5868
5869 if (x == stack_pointer_rtx)
5870 {
5871 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
5872
5873 #ifdef PUSH_ROUNDING
5874 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
5875 #endif
5876
5877 return significant & ~ (sp_alignment - 1);
5878 }
5879 #endif
5880
5881 /* If X is a register whose value we can find, use that value.
5882 Otherwise, use the previously-computed significant bits for this
5883 register. */
5884
5885 tem = get_last_value (x);
5886 if (tem)
5887 return significant_bits (tem, mode);
5888 else if (significant_valid && reg_significant[REGNO (x)])
5889 return reg_significant[REGNO (x)] & significant;
5890 else
5891 return significant;
5892
5893 case CONST_INT:
5894 return INTVAL (x);
5895
5896 #ifdef BYTE_LOADS_ZERO_EXTEND
5897 case MEM:
5898 /* In many, if not most, RISC machines, reading a byte from memory
5899 zeros the rest of the register. Noticing that fact saves a lot
5900 of extra zero-extends. */
5901 significant &= GET_MODE_MASK (GET_MODE (x));
5902 break;
5903 #endif
5904
5905 #if STORE_FLAG_VALUE == 1
5906 case EQ: case NE:
5907 case GT: case GTU:
5908 case LT: case LTU:
5909 case GE: case GEU:
5910 case LE: case LEU:
5911
5912 if (GET_MODE_CLASS (mode) == MODE_INT)
5913 significant = 1;
5914
5915 /* A comparison operation only sets the bits given by its mode. The
5916 rest are set undefined. */
5917 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
5918 significant |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
5919 break;
5920 #endif
5921
5922 case NEG:
5923 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5924 == GET_MODE_BITSIZE (GET_MODE (x)))
5925 significant = 1;
5926
5927 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
5928 significant |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
5929 break;
5930
5931 case ABS:
5932 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
5933 == GET_MODE_BITSIZE (GET_MODE (x)))
5934 significant = 1;
5935 break;
5936
5937 case TRUNCATE:
5938 significant &= (significant_bits (XEXP (x, 0), mode)
5939 & GET_MODE_MASK (mode));
5940 break;
5941
5942 case ZERO_EXTEND:
5943 significant &= significant_bits (XEXP (x, 0), mode);
5944 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
5945 significant &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
5946 break;
5947
5948 case SIGN_EXTEND:
5949 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
5950 Otherwise, show all the bits in the outer mode but not the inner
5951 may be non-zero. */
5952 inner_sig = significant_bits (XEXP (x, 0), mode);
5953 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
5954 {
5955 inner_sig &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
5956 if (inner_sig &
5957 (((HOST_WIDE_INT) 1
5958 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
5959 inner_sig |= (GET_MODE_MASK (mode)
5960 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
5961 }
5962
5963 significant &= inner_sig;
5964 break;
5965
5966 case AND:
5967 significant &= (significant_bits (XEXP (x, 0), mode)
5968 & significant_bits (XEXP (x, 1), mode));
5969 break;
5970
5971 case XOR: case IOR:
5972 case UMIN: case UMAX: case SMIN: case SMAX:
5973 significant &= (significant_bits (XEXP (x, 0), mode)
5974 | significant_bits (XEXP (x, 1), mode));
5975 break;
5976
5977 case PLUS: case MINUS:
5978 case MULT:
5979 case DIV: case UDIV:
5980 case MOD: case UMOD:
5981 /* We can apply the rules of arithmetic to compute the number of
5982 high- and low-order zero bits of these operations. We start by
5983 computing the width (position of the highest-order non-zero bit)
5984 and the number of low-order zero bits for each value. */
5985 {
5986 unsigned HOST_WIDE_INT sig0 = significant_bits (XEXP (x, 0), mode);
5987 unsigned HOST_WIDE_INT sig1 = significant_bits (XEXP (x, 1), mode);
5988 int width0 = floor_log2 (sig0) + 1;
5989 int width1 = floor_log2 (sig1) + 1;
5990 int low0 = floor_log2 (sig0 & -sig0);
5991 int low1 = floor_log2 (sig1 & -sig1);
5992 int op0_maybe_minusp = (sig0 & (1 << (mode_width - 1)));
5993 int op1_maybe_minusp = (sig1 & (1 << (mode_width - 1)));
5994 int result_width = mode_width;
5995 int result_low = 0;
5996
5997 switch (code)
5998 {
5999 case PLUS:
6000 result_width = MAX (width0, width1) + 1;
6001 result_low = MIN (low0, low1);
6002 break;
6003 case MINUS:
6004 result_low = MIN (low0, low1);
6005 break;
6006 case MULT:
6007 result_width = width0 + width1;
6008 result_low = low0 + low1;
6009 break;
6010 case DIV:
6011 if (! op0_maybe_minusp && ! op1_maybe_minusp)
6012 result_width = width0;
6013 break;
6014 case UDIV:
6015 result_width = width0;
6016 break;
6017 case MOD:
6018 if (! op0_maybe_minusp && ! op1_maybe_minusp)
6019 result_width = MIN (width0, width1);
6020 result_low = MIN (low0, low1);
6021 break;
6022 case UMOD:
6023 result_width = MIN (width0, width1);
6024 result_low = MIN (low0, low1);
6025 break;
6026 }
6027
6028 if (result_width < mode_width)
6029 significant &= ((HOST_WIDE_INT) 1 << result_width) - 1;
6030
6031 if (result_low > 0)
6032 significant &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
6033 }
6034 break;
6035
6036 case ZERO_EXTRACT:
6037 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6038 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6039 significant &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
6040 break;
6041
6042 case SUBREG:
6043 /* If the inner mode is a single word for both the host and target
6044 machines, we can compute this from which bits of the inner
6045 object are known significant. */
6046 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
6047 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
6048 <= HOST_BITS_PER_WIDE_INT))
6049 {
6050 significant &= significant_bits (SUBREG_REG (x), mode);
6051 #if ! defined(BYTE_LOADS_ZERO_EXTEND) && ! defined(BYTE_LOADS_SIGN_EXTEND)
6052 /* On many CISC machines, accessing an object in a wider mode
6053 causes the high-order bits to become undefined. So they are
6054 not known to be zero. */
6055 if (GET_MODE_SIZE (GET_MODE (x))
6056 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6057 significant |= (GET_MODE_MASK (GET_MODE (x))
6058 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
6059 #endif
6060 }
6061 break;
6062
6063 case ASHIFTRT:
6064 case LSHIFTRT:
6065 case ASHIFT:
6066 case LSHIFT:
6067 case ROTATE:
6068 /* The significant bits are in two classes: any bits within MODE
6069 that aren't in GET_MODE (x) are always significant. The rest of the
6070 significant bits are those that are significant in the operand of
6071 the shift when shifted the appropriate number of bits. This
6072 shows that high-order bits are cleared by the right shift and
6073 low-order bits by left shifts. */
6074 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6075 && INTVAL (XEXP (x, 1)) >= 0
6076 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6077 {
6078 enum machine_mode inner_mode = GET_MODE (x);
6079 int width = GET_MODE_BITSIZE (inner_mode);
6080 int count = INTVAL (XEXP (x, 1));
6081 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
6082 unsigned HOST_WIDE_INT op_significant
6083 = significant_bits (XEXP (x, 0), mode);
6084 unsigned HOST_WIDE_INT inner = op_significant & mode_mask;
6085 unsigned HOST_WIDE_INT outer = 0;
6086
6087 if (mode_width > width)
6088 outer = (op_significant & significant & ~ mode_mask);
6089
6090 if (code == LSHIFTRT)
6091 inner >>= count;
6092 else if (code == ASHIFTRT)
6093 {
6094 inner >>= count;
6095
6096 /* If the sign bit was significant at before the shift, we
6097 need to mark all the places it could have been copied to
6098 by the shift significant. */
6099 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
6100 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
6101 }
6102 else if (code == LSHIFT || code == ASHIFT)
6103 inner <<= count;
6104 else
6105 inner = ((inner << (count % width)
6106 | (inner >> (width - (count % width)))) & mode_mask);
6107
6108 significant &= (outer | inner);
6109 }
6110 break;
6111
6112 case FFS:
6113 /* This is at most the number of bits in the mode. */
6114 significant = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
6115 break;
6116
6117 case IF_THEN_ELSE:
6118 significant &= (significant_bits (XEXP (x, 1), mode)
6119 | significant_bits (XEXP (x, 2), mode));
6120 break;
6121 }
6122
6123 return significant;
6124 }
6125 \f
6126 /* Return the number of bits at the high-order end of X that are known to
6127 be equal to the sign bit. This number will always be between 1 and
6128 the number of bits in the mode of X. MODE is the mode to be used
6129 if X is VOIDmode. */
6130
6131 static int
6132 num_sign_bit_copies (x, mode)
6133 rtx x;
6134 enum machine_mode mode;
6135 {
6136 enum rtx_code code = GET_CODE (x);
6137 int bitwidth;
6138 int num0, num1, result;
6139 unsigned HOST_WIDE_INT sig;
6140 rtx tem;
6141
6142 /* If we weren't given a mode, use the mode of X. If the mode is still
6143 VOIDmode, we don't know anything. */
6144
6145 if (mode == VOIDmode)
6146 mode = GET_MODE (x);
6147
6148 if (mode == VOIDmode)
6149 return 0;
6150
6151 bitwidth = GET_MODE_BITSIZE (mode);
6152
6153 switch (code)
6154 {
6155 case REG:
6156 if (significant_valid && reg_sign_bit_copies[REGNO (x)] != 0)
6157 return reg_sign_bit_copies[REGNO (x)];
6158
6159 tem = get_last_value (x);
6160 if (tem != 0)
6161 return num_sign_bit_copies (tem, mode);
6162 break;
6163
6164 #ifdef BYTE_LOADS_SIGN_EXTEND
6165 case MEM:
6166 /* Some RISC machines sign-extend all loads of smaller than a word. */
6167 return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
6168 #endif
6169
6170 case CONST_INT:
6171 /* If the constant is negative, take its 1's complement and remask.
6172 Then see how many zero bits we have. */
6173 sig = INTVAL (x) & GET_MODE_MASK (mode);
6174 if (sig & ((HOST_WIDE_INT) 1 << (bitwidth - 1)))
6175 sig = (~ sig) & GET_MODE_MASK (mode);
6176
6177 return (sig == 0 ? bitwidth : bitwidth - floor_log2 (sig) - 1);
6178
6179 case SUBREG:
6180 /* For a smaller object, just ignore the high bits. */
6181 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
6182 {
6183 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
6184 return MAX (1, (num0
6185 - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
6186 - bitwidth)));
6187 }
6188
6189 #if defined(BYTE_LOADS_ZERO_EXTEND) || defined(BYTE_LOADS_SIGN_EXTEND)
6190 /* For paradoxical SUBREGs, just look inside since, on machines with
6191 one of these defined, we assume that operations are actually
6192 performed on the full register. Note that we are passing MODE
6193 to the recursive call, so the number of sign bit copies will
6194 remain relative to that mode, not the inner mode. */
6195
6196 if (GET_MODE_SIZE (GET_MODE (x))
6197 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6198 return num_sign_bit_copies (SUBREG_REG (x), mode);
6199 #endif
6200
6201 break;
6202
6203 case SIGN_EXTRACT:
6204 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6205 return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
6206 break;
6207
6208 case SIGN_EXTEND:
6209 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6210 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
6211
6212 case TRUNCATE:
6213 /* For a smaller object, just ignore the high bits. */
6214 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
6215 return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6216 - bitwidth)));
6217
6218 case NOT:
6219 return num_sign_bit_copies (XEXP (x, 0), mode);
6220
6221 case ROTATE: case ROTATERT:
6222 /* If we are rotating left by a number of bits less than the number
6223 of sign bit copies, we can just subtract that amount from the
6224 number. */
6225 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6226 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
6227 {
6228 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
6229 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
6230 : bitwidth - INTVAL (XEXP (x, 1))));
6231 }
6232 break;
6233
6234 case NEG:
6235 /* In general, this subtracts one sign bit copy. But if the value
6236 is known to be positive, the number of sign bit copies is the
6237 same as that of the input. Finally, if the input has just one
6238 significant bit, all the bits are copies of the sign bit. */
6239 sig = significant_bits (XEXP (x, 0), mode);
6240 if (sig == 1)
6241 return bitwidth;
6242
6243 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
6244 if (num0 > 1
6245 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & sig))
6246 num0--;
6247
6248 return num0;
6249
6250 case IOR: case AND: case XOR:
6251 case SMIN: case SMAX: case UMIN: case UMAX:
6252 /* Logical operations will preserve the number of sign-bit copies.
6253 MIN and MAX operations always return one of the operands. */
6254 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
6255 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
6256 return MIN (num0, num1);
6257
6258 case PLUS: case MINUS:
6259 /* For addition and subtraction, we can have a 1-bit carry. However,
6260 if we are subtracting 1 from a positive number, there will not
6261 be such a carry. Furthermore, if the positive number is known to
6262 be 0 or 1, we know the result is either -1 or 0. */
6263
6264 if (code == PLUS && XEXP (x, 1) == constm1_rtx)
6265 {
6266 sig = significant_bits (XEXP (x, 0), mode);
6267 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & sig) == 0)
6268 return (sig == 1 || sig == 0 ? bitwidth
6269 : bitwidth - floor_log2 (sig));
6270 }
6271
6272 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
6273 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
6274 return MAX (1, MIN (num0, num1) - 1);
6275
6276 case MULT:
6277 /* The number of bits of the product is the sum of the number of
6278 bits of both terms. However, unless one of the terms if known
6279 to be positive, we must allow for an additional bit since negating
6280 a negative number can remove one sign bit copy. */
6281
6282 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
6283 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
6284
6285 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
6286 if (result > 0
6287 && ((significant_bits (XEXP (x, 0), mode)
6288 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
6289 && (significant_bits (XEXP (x, 1), mode)
6290 & ((HOST_WIDE_INT) 1 << (bitwidth - 1)) != 0))
6291 result--;
6292
6293 return MAX (1, result);
6294
6295 case UDIV:
6296 /* The result must be <= the first operand. */
6297 return num_sign_bit_copies (XEXP (x, 0), mode);
6298
6299 case UMOD:
6300 /* The result must be <= the scond operand. */
6301 return num_sign_bit_copies (XEXP (x, 1), mode);
6302
6303 case DIV:
6304 /* Similar to unsigned division, except that we have to worry about
6305 the case where the divisor is negative, in which case we have
6306 to add 1. */
6307 result = num_sign_bit_copies (XEXP (x, 0), mode);
6308 if (result > 1
6309 && (significant_bits (XEXP (x, 1), mode)
6310 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
6311 result --;
6312
6313 return result;
6314
6315 case MOD:
6316 result = num_sign_bit_copies (XEXP (x, 1), mode);
6317 if (result > 1
6318 && (significant_bits (XEXP (x, 1), mode)
6319 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
6320 result --;
6321
6322 return result;
6323
6324 case ASHIFTRT:
6325 /* Shifts by a constant add to the number of bits equal to the
6326 sign bit. */
6327 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
6328 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6329 && INTVAL (XEXP (x, 1)) > 0)
6330 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
6331
6332 return num0;
6333
6334 case ASHIFT:
6335 case LSHIFT:
6336 /* Left shifts destroy copies. */
6337 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6338 || INTVAL (XEXP (x, 1)) < 0
6339 || INTVAL (XEXP (x, 1)) >= bitwidth)
6340 return 1;
6341
6342 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
6343 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
6344
6345 case IF_THEN_ELSE:
6346 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
6347 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
6348 return MIN (num0, num1);
6349
6350 #if STORE_FLAG_VALUE == -1
6351 case EQ: case NE: case GE: case GT: case LE: case LT:
6352 case GEU: case GTU: case LEU: case LTU:
6353 return bitwidth;
6354 #endif
6355 }
6356
6357 /* If we haven't been able to figure it out by one of the above rules,
6358 see if some of the high-order bits are known to be zero. If so,
6359 count those bits and return one less than that amount. */
6360
6361 sig = significant_bits (x, mode);
6362 return sig == GET_MODE_MASK (mode) ? 1 : bitwidth - floor_log2 (sig) - 1;
6363 }
6364 \f
6365 /* Return the number of "extended" bits there are in X, when interpreted
6366 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
6367 unsigned quantities, this is the number of high-order zero bits.
6368 For signed quantities, this is the number of copies of the sign bit
6369 minus 1. In both case, this function returns the number of "spare"
6370 bits. For example, if two quantities for which this function returns
6371 at least 1 are added, the addition is known not to overflow.
6372
6373 This function will always return 0 unless called during combine, which
6374 implies that it must be called from a define_split. */
6375
6376 int
6377 extended_count (x, mode, unsignedp)
6378 rtx x;
6379 enum machine_mode mode;
6380 int unsignedp;
6381 {
6382 if (significant_valid == 0)
6383 return 0;
6384
6385 return (unsignedp
6386 ? (GET_MODE_BITSIZE (mode) - 1
6387 - floor_log2 (significant_bits (x, mode)))
6388 : num_sign_bit_copies (x, mode) - 1);
6389 }
6390 \f
6391 /* This function is called from `simplify_shift_const' to merge two
6392 outer operations. Specifically, we have already found that we need
6393 to perform operation *POP0 with constant *PCONST0 at the outermost
6394 position. We would now like to also perform OP1 with constant CONST1
6395 (with *POP0 being done last).
6396
6397 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
6398 the resulting operation. *PCOMP_P is set to 1 if we would need to
6399 complement the innermost operand, otherwise it is unchanged.
6400
6401 MODE is the mode in which the operation will be done. No bits outside
6402 the width of this mode matter. It is assumed that the width of this mode
6403 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
6404
6405 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
6406 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
6407 result is simply *PCONST0.
6408
6409 If the resulting operation cannot be expressed as one operation, we
6410 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
6411
6412 static int
6413 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
6414 enum rtx_code *pop0;
6415 HOST_WIDE_INT *pconst0;
6416 enum rtx_code op1;
6417 HOST_WIDE_INT const1;
6418 enum machine_mode mode;
6419 int *pcomp_p;
6420 {
6421 enum rtx_code op0 = *pop0;
6422 HOST_WIDE_INT const0 = *pconst0;
6423
6424 const0 &= GET_MODE_MASK (mode);
6425 const1 &= GET_MODE_MASK (mode);
6426
6427 /* If OP0 is an AND, clear unimportant bits in CONST1. */
6428 if (op0 == AND)
6429 const1 &= const0;
6430
6431 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
6432 if OP0 is SET. */
6433
6434 if (op1 == NIL || op0 == SET)
6435 return 1;
6436
6437 else if (op0 == NIL)
6438 op0 = op1, const0 = const1;
6439
6440 else if (op0 == op1)
6441 {
6442 switch (op0)
6443 {
6444 case AND:
6445 const0 &= const1;
6446 break;
6447 case IOR:
6448 const0 |= const1;
6449 break;
6450 case XOR:
6451 const0 ^= const1;
6452 break;
6453 case PLUS:
6454 const0 += const1;
6455 break;
6456 case NEG:
6457 op0 = NIL;
6458 break;
6459 }
6460 }
6461
6462 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
6463 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
6464 return 0;
6465
6466 /* If the two constants aren't the same, we can't do anything. The
6467 remaining six cases can all be done. */
6468 else if (const0 != const1)
6469 return 0;
6470
6471 else
6472 switch (op0)
6473 {
6474 case IOR:
6475 if (op1 == AND)
6476 /* (a & b) | b == b */
6477 op0 = SET;
6478 else /* op1 == XOR */
6479 /* (a ^ b) | b == a | b */
6480 ;
6481 break;
6482
6483 case XOR:
6484 if (op1 == AND)
6485 /* (a & b) ^ b == (~a) & b */
6486 op0 = AND, *pcomp_p = 1;
6487 else /* op1 == IOR */
6488 /* (a | b) ^ b == a & ~b */
6489 op0 = AND, *pconst0 = ~ const0;
6490 break;
6491
6492 case AND:
6493 if (op1 == IOR)
6494 /* (a | b) & b == b */
6495 op0 = SET;
6496 else /* op1 == XOR */
6497 /* (a ^ b) & b) == (~a) & b */
6498 *pcomp_p = 1;
6499 break;
6500 }
6501
6502 /* Check for NO-OP cases. */
6503 const0 &= GET_MODE_MASK (mode);
6504 if (const0 == 0
6505 && (op0 == IOR || op0 == XOR || op0 == PLUS))
6506 op0 = NIL;
6507 else if (const0 == 0 && op0 == AND)
6508 op0 = SET;
6509 else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
6510 op0 = NIL;
6511
6512 *pop0 = op0;
6513 *pconst0 = const0;
6514
6515 return 1;
6516 }
6517 \f
6518 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
6519 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
6520 that we started with.
6521
6522 The shift is normally computed in the widest mode we find in VAROP, as
6523 long as it isn't a different number of words than RESULT_MODE. Exceptions
6524 are ASHIFTRT and ROTATE, which are always done in their original mode, */
6525
6526 static rtx
6527 simplify_shift_const (x, code, result_mode, varop, count)
6528 rtx x;
6529 enum rtx_code code;
6530 enum machine_mode result_mode;
6531 rtx varop;
6532 int count;
6533 {
6534 enum rtx_code orig_code = code;
6535 int orig_count = count;
6536 enum machine_mode mode = result_mode;
6537 enum machine_mode shift_mode, tmode;
6538 int mode_words
6539 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
6540 /* We form (outer_op (code varop count) (outer_const)). */
6541 enum rtx_code outer_op = NIL;
6542 HOST_WIDE_INT outer_const;
6543 rtx const_rtx;
6544 int complement_p = 0;
6545 rtx new;
6546
6547 /* If we were given an invalid count, don't do anything except exactly
6548 what was requested. */
6549
6550 if (count < 0 || count > GET_MODE_BITSIZE (mode))
6551 {
6552 if (x)
6553 return x;
6554
6555 return gen_rtx (code, mode, varop, GEN_INT (count));
6556 }
6557
6558 /* Unless one of the branches of the `if' in this loop does a `continue',
6559 we will `break' the loop after the `if'. */
6560
6561 while (count != 0)
6562 {
6563 /* If we have an operand of (clobber (const_int 0)), just return that
6564 value. */
6565 if (GET_CODE (varop) == CLOBBER)
6566 return varop;
6567
6568 /* If we discovered we had to complement VAROP, leave. Making a NOT
6569 here would cause an infinite loop. */
6570 if (complement_p)
6571 break;
6572
6573 /* Convert ROTATETRT to ROTATE. */
6574 if (code == ROTATERT)
6575 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
6576
6577 /* Canonicalize LSHIFT to ASHIFT. */
6578 if (code == LSHIFT)
6579 code = ASHIFT;
6580
6581 /* We need to determine what mode we will do the shift in. If the
6582 shift is a ASHIFTRT or ROTATE, we must always do it in the mode it
6583 was originally done in. Otherwise, we can do it in MODE, the widest
6584 mode encountered. */
6585 shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
6586
6587 /* Handle cases where the count is greater than the size of the mode
6588 minus 1. For ASHIFT, use the size minus one as the count (this can
6589 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
6590 take the count modulo the size. For other shifts, the result is
6591 zero.
6592
6593 Since these shifts are being produced by the compiler by combining
6594 multiple operations, each of which are defined, we know what the
6595 result is supposed to be. */
6596
6597 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
6598 {
6599 if (code == ASHIFTRT)
6600 count = GET_MODE_BITSIZE (shift_mode) - 1;
6601 else if (code == ROTATE || code == ROTATERT)
6602 count %= GET_MODE_BITSIZE (shift_mode);
6603 else
6604 {
6605 /* We can't simply return zero because there may be an
6606 outer op. */
6607 varop = const0_rtx;
6608 count = 0;
6609 break;
6610 }
6611 }
6612
6613 /* Negative counts are invalid and should not have been made (a
6614 programmer-specified negative count should have been handled
6615 above). */
6616 else if (count < 0)
6617 abort ();
6618
6619 /* An arithmetic right shift of a quantity known to be -1 or 0
6620 is a no-op. */
6621 if (code == ASHIFTRT
6622 && (num_sign_bit_copies (varop, shift_mode)
6623 == GET_MODE_BITSIZE (shift_mode)))
6624 {
6625 count = 0;
6626 break;
6627 }
6628
6629 /* We simplify the tests below and elsewhere by converting
6630 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
6631 `make_compound_operation' will convert it to a ASHIFTRT for
6632 those machines (such as Vax) that don't have a LSHIFTRT. */
6633 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
6634 && code == ASHIFTRT
6635 && ((significant_bits (varop, shift_mode)
6636 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
6637 == 0))
6638 code = LSHIFTRT;
6639
6640 switch (GET_CODE (varop))
6641 {
6642 case SIGN_EXTEND:
6643 case ZERO_EXTEND:
6644 case SIGN_EXTRACT:
6645 case ZERO_EXTRACT:
6646 new = expand_compound_operation (varop);
6647 if (new != varop)
6648 {
6649 varop = new;
6650 continue;
6651 }
6652 break;
6653
6654 case MEM:
6655 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
6656 minus the width of a smaller mode, we can do this with a
6657 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
6658 if ((code == ASHIFTRT || code == LSHIFTRT)
6659 && ! mode_dependent_address_p (XEXP (varop, 0))
6660 && ! MEM_VOLATILE_P (varop)
6661 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
6662 MODE_INT, 1)) != BLKmode)
6663 {
6664 #if BYTES_BIG_ENDIAN
6665 new = gen_rtx (MEM, tmode, XEXP (varop, 0));
6666 #else
6667 new = gen_rtx (MEM, tmode,
6668 plus_constant (XEXP (varop, 0),
6669 count / BITS_PER_UNIT));
6670 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
6671 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
6672 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
6673 #endif
6674 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
6675 : ZERO_EXTEND, mode, new);
6676 count = 0;
6677 continue;
6678 }
6679 break;
6680
6681 case USE:
6682 /* Similar to the case above, except that we can only do this if
6683 the resulting mode is the same as that of the underlying
6684 MEM and adjust the address depending on the *bits* endianness
6685 because of the way that bit-field extract insns are defined. */
6686 if ((code == ASHIFTRT || code == LSHIFTRT)
6687 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
6688 MODE_INT, 1)) != BLKmode
6689 && tmode == GET_MODE (XEXP (varop, 0)))
6690 {
6691 #if BITS_BIG_ENDIAN
6692 new = XEXP (varop, 0);
6693 #else
6694 new = copy_rtx (XEXP (varop, 0));
6695 SUBST (XEXP (new, 0),
6696 plus_constant (XEXP (new, 0),
6697 count / BITS_PER_UNIT));
6698 #endif
6699
6700 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
6701 : ZERO_EXTEND, mode, new);
6702 count = 0;
6703 continue;
6704 }
6705 break;
6706
6707 case SUBREG:
6708 /* If VAROP is a SUBREG, strip it as long as the inner operand has
6709 the same number of words as what we've seen so far. Then store
6710 the widest mode in MODE. */
6711 if (SUBREG_WORD (varop) == 0
6712 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
6713 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6714 == mode_words))
6715 {
6716 varop = SUBREG_REG (varop);
6717 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
6718 mode = GET_MODE (varop);
6719 continue;
6720 }
6721 break;
6722
6723 case MULT:
6724 /* Some machines use MULT instead of ASHIFT because MULT
6725 is cheaper. But it is still better on those machines to
6726 merge two shifts into one. */
6727 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
6728 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
6729 {
6730 varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
6731 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
6732 continue;
6733 }
6734 break;
6735
6736 case UDIV:
6737 /* Similar, for when divides are cheaper. */
6738 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
6739 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
6740 {
6741 varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
6742 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
6743 continue;
6744 }
6745 break;
6746
6747 case ASHIFTRT:
6748 /* If we are extracting just the sign bit of an arithmetic right
6749 shift, that shift is not needed. */
6750 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
6751 {
6752 varop = XEXP (varop, 0);
6753 continue;
6754 }
6755
6756 /* ... fall through ... */
6757
6758 case LSHIFTRT:
6759 case ASHIFT:
6760 case LSHIFT:
6761 case ROTATE:
6762 /* Here we have two nested shifts. The result is usually the
6763 AND of a new shift with a mask. We compute the result below. */
6764 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
6765 && INTVAL (XEXP (varop, 1)) >= 0
6766 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
6767 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
6768 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6769 {
6770 enum rtx_code first_code = GET_CODE (varop);
6771 int first_count = INTVAL (XEXP (varop, 1));
6772 unsigned HOST_WIDE_INT mask;
6773 rtx mask_rtx;
6774 rtx inner;
6775
6776 if (first_code == LSHIFT)
6777 first_code = ASHIFT;
6778
6779 /* We have one common special case. We can't do any merging if
6780 the inner code is an ASHIFTRT of a smaller mode. However, if
6781 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
6782 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
6783 we can convert it to
6784 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
6785 This simplifies certain SIGN_EXTEND operations. */
6786 if (code == ASHIFT && first_code == ASHIFTRT
6787 && (GET_MODE_BITSIZE (result_mode)
6788 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
6789 {
6790 /* C3 has the low-order C1 bits zero. */
6791
6792 mask = (GET_MODE_MASK (mode)
6793 & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
6794
6795 varop = simplify_and_const_int (NULL_RTX, result_mode,
6796 XEXP (varop, 0), mask);
6797 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
6798 varop, count);
6799 count = first_count;
6800 code = ASHIFTRT;
6801 continue;
6802 }
6803
6804 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
6805 than C1 high-order bits equal to the sign bit, we can convert
6806 this to either an ASHIFT or a ASHIFTRT depending on the
6807 two counts.
6808
6809 We cannot do this if VAROP's mode is not SHIFT_MODE. */
6810
6811 if (code == ASHIFTRT && first_code == ASHIFT
6812 && GET_MODE (varop) == shift_mode
6813 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
6814 > first_count))
6815 {
6816 count -= first_count;
6817 if (count < 0)
6818 count = - count, code = ASHIFT;
6819 varop = XEXP (varop, 0);
6820 continue;
6821 }
6822
6823 /* There are some cases we can't do. If CODE is ASHIFTRT,
6824 we can only do this if FIRST_CODE is also ASHIFTRT.
6825
6826 We can't do the case when CODE is ROTATE and FIRST_CODE is
6827 ASHIFTRT.
6828
6829 If the mode of this shift is not the mode of the outer shift,
6830 we can't do this if either shift is ASHIFTRT or ROTATE.
6831
6832 Finally, we can't do any of these if the mode is too wide
6833 unless the codes are the same.
6834
6835 Handle the case where the shift codes are the same
6836 first. */
6837
6838 if (code == first_code)
6839 {
6840 if (GET_MODE (varop) != result_mode
6841 && (code == ASHIFTRT || code == ROTATE))
6842 break;
6843
6844 count += first_count;
6845 varop = XEXP (varop, 0);
6846 continue;
6847 }
6848
6849 if (code == ASHIFTRT
6850 || (code == ROTATE && first_code == ASHIFTRT)
6851 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
6852 || (GET_MODE (varop) != result_mode
6853 && (first_code == ASHIFTRT || first_code == ROTATE
6854 || code == ROTATE)))
6855 break;
6856
6857 /* To compute the mask to apply after the shift, shift the
6858 significant bits of the inner shift the same way the
6859 outer shift will. */
6860
6861 mask_rtx = GEN_INT (significant_bits (varop, GET_MODE (varop)));
6862
6863 mask_rtx
6864 = simplify_binary_operation (code, result_mode, mask_rtx,
6865 GEN_INT (count));
6866
6867 /* Give up if we can't compute an outer operation to use. */
6868 if (mask_rtx == 0
6869 || GET_CODE (mask_rtx) != CONST_INT
6870 || ! merge_outer_ops (&outer_op, &outer_const, AND,
6871 INTVAL (mask_rtx),
6872 result_mode, &complement_p))
6873 break;
6874
6875 /* If the shifts are in the same direction, we add the
6876 counts. Otherwise, we subtract them. */
6877 if ((code == ASHIFTRT || code == LSHIFTRT)
6878 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
6879 count += first_count;
6880 else
6881 count -= first_count;
6882
6883 /* If COUNT is positive, the new shift is usually CODE,
6884 except for the two exceptions below, in which case it is
6885 FIRST_CODE. If the count is negative, FIRST_CODE should
6886 always be used */
6887 if (count > 0
6888 && ((first_code == ROTATE && code == ASHIFT)
6889 || (first_code == ASHIFTRT && code == LSHIFTRT)))
6890 code = first_code;
6891 else if (count < 0)
6892 code = first_code, count = - count;
6893
6894 varop = XEXP (varop, 0);
6895 continue;
6896 }
6897
6898 /* If we have (A << B << C) for any shift, we can convert this to
6899 (A << C << B). This wins if A is a constant. Only try this if
6900 B is not a constant. */
6901
6902 else if (GET_CODE (varop) == code
6903 && GET_CODE (XEXP (varop, 1)) != CONST_INT
6904 && 0 != (new
6905 = simplify_binary_operation (code, mode,
6906 XEXP (varop, 0),
6907 GEN_INT (count))))
6908 {
6909 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
6910 count = 0;
6911 continue;
6912 }
6913 break;
6914
6915 case NOT:
6916 /* Make this fit the case below. */
6917 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
6918 GEN_INT (GET_MODE_MASK (mode)));
6919 continue;
6920
6921 case IOR:
6922 case AND:
6923 case XOR:
6924 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
6925 with C the size of VAROP - 1 and the shift is logical if
6926 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
6927 we have an (le X 0) operation. If we have an arithmetic shift
6928 and STORE_FLAG_VALUE is 1 or we have a logical shift with
6929 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
6930
6931 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
6932 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
6933 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6934 && (code == LSHIFTRT || code == ASHIFTRT)
6935 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
6936 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
6937 {
6938 count = 0;
6939 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
6940 const0_rtx);
6941
6942 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
6943 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
6944
6945 continue;
6946 }
6947
6948 /* If we have (shift (logical)), move the logical to the outside
6949 to allow it to possibly combine with another logical and the
6950 shift to combine with another shift. This also canonicalizes to
6951 what a ZERO_EXTRACT looks like. Also, some machines have
6952 (and (shift)) insns. */
6953
6954 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
6955 && (new = simplify_binary_operation (code, result_mode,
6956 XEXP (varop, 1),
6957 GEN_INT (count))) != 0
6958 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
6959 INTVAL (new), result_mode, &complement_p))
6960 {
6961 varop = XEXP (varop, 0);
6962 continue;
6963 }
6964
6965 /* If we can't do that, try to simplify the shift in each arm of the
6966 logical expression, make a new logical expression, and apply
6967 the inverse distributive law. */
6968 {
6969 rtx lhs = simplify_shift_const (NULL_RTX, code, result_mode,
6970 XEXP (varop, 0), count);
6971 rtx rhs = simplify_shift_const (NULL_RTX, code, result_mode,
6972 XEXP (varop, 1), count);
6973
6974 varop = gen_binary (GET_CODE (varop), result_mode, lhs, rhs);
6975 varop = apply_distributive_law (varop);
6976
6977 count = 0;
6978 }
6979 break;
6980
6981 case EQ:
6982 /* convert (lshift (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
6983 says that the sign bit can be tested, FOO has mode MODE, C is
6984 GET_MODE_BITSIZE (MODE) - 1, and FOO has only the low-order bit
6985 significant. */
6986 if (code == LSHIFT
6987 && XEXP (varop, 1) == const0_rtx
6988 && GET_MODE (XEXP (varop, 0)) == result_mode
6989 && count == GET_MODE_BITSIZE (result_mode) - 1
6990 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
6991 && ((STORE_FLAG_VALUE
6992 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
6993 && significant_bits (XEXP (varop, 0), result_mode) == 1
6994 && merge_outer_ops (&outer_op, &outer_const, XOR,
6995 (HOST_WIDE_INT) 1, result_mode,
6996 &complement_p))
6997 {
6998 varop = XEXP (varop, 0);
6999 count = 0;
7000 continue;
7001 }
7002 break;
7003
7004 case NEG:
7005 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
7006 than the number of bits in the mode is equivalent to A. */
7007 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
7008 && significant_bits (XEXP (varop, 0), result_mode) == 1)
7009 {
7010 varop = XEXP (varop, 0);
7011 count = 0;
7012 continue;
7013 }
7014
7015 /* NEG commutes with ASHIFT since it is multiplication. Move the
7016 NEG outside to allow shifts to combine. */
7017 if (code == ASHIFT
7018 && merge_outer_ops (&outer_op, &outer_const, NEG,
7019 (HOST_WIDE_INT) 0, result_mode,
7020 &complement_p))
7021 {
7022 varop = XEXP (varop, 0);
7023 continue;
7024 }
7025 break;
7026
7027 case PLUS:
7028 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
7029 is one less than the number of bits in the mode is
7030 equivalent to (xor A 1). */
7031 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
7032 && XEXP (varop, 1) == constm1_rtx
7033 && significant_bits (XEXP (varop, 0), result_mode) == 1
7034 && merge_outer_ops (&outer_op, &outer_const, XOR,
7035 (HOST_WIDE_INT) 1, result_mode,
7036 &complement_p))
7037 {
7038 count = 0;
7039 varop = XEXP (varop, 0);
7040 continue;
7041 }
7042
7043 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
7044 significant in BAR are those being shifted out and those
7045 bits are known zero in FOO, we can replace the PLUS with FOO.
7046 Similarly in the other operand order. This code occurs when
7047 we are computing the size of a variable-size array. */
7048
7049 if ((code == ASHIFTRT || code == LSHIFTRT)
7050 && count < HOST_BITS_PER_WIDE_INT
7051 && significant_bits (XEXP (varop, 1), result_mode) >> count == 0
7052 && (significant_bits (XEXP (varop, 1), result_mode)
7053 & significant_bits (XEXP (varop, 0), result_mode)) == 0)
7054 {
7055 varop = XEXP (varop, 0);
7056 continue;
7057 }
7058 else if ((code == ASHIFTRT || code == LSHIFTRT)
7059 && count < HOST_BITS_PER_WIDE_INT
7060 && 0 == (significant_bits (XEXP (varop, 0), result_mode)
7061 >> count)
7062 && 0 == (significant_bits (XEXP (varop, 0), result_mode)
7063 & significant_bits (XEXP (varop, 1),
7064 result_mode)))
7065 {
7066 varop = XEXP (varop, 1);
7067 continue;
7068 }
7069
7070 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
7071 if (code == ASHIFT
7072 && GET_CODE (XEXP (varop, 1)) == CONST_INT
7073 && (new = simplify_binary_operation (ASHIFT, result_mode,
7074 XEXP (varop, 1),
7075 GEN_INT (count))) != 0
7076 && merge_outer_ops (&outer_op, &outer_const, PLUS,
7077 INTVAL (new), result_mode, &complement_p))
7078 {
7079 varop = XEXP (varop, 0);
7080 continue;
7081 }
7082 break;
7083
7084 case MINUS:
7085 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
7086 with C the size of VAROP - 1 and the shift is logical if
7087 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
7088 we have a (gt X 0) operation. If the shift is arithmetic with
7089 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
7090 we have a (neg (gt X 0)) operation. */
7091
7092 if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT
7093 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
7094 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7095 && (code == LSHIFTRT || code == ASHIFTRT)
7096 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
7097 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
7098 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
7099 {
7100 count = 0;
7101 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
7102 const0_rtx);
7103
7104 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
7105 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
7106
7107 continue;
7108 }
7109 break;
7110 }
7111
7112 break;
7113 }
7114
7115 /* We need to determine what mode to do the shift in. If the shift is
7116 a ASHIFTRT or ROTATE, we must always do it in the mode it was originally
7117 done in. Otherwise, we can do it in MODE, the widest mode encountered.
7118 The code we care about is that of the shift that will actually be done,
7119 not the shift that was originally requested. */
7120 shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
7121
7122 /* We have now finished analyzing the shift. The result should be
7123 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
7124 OUTER_OP is non-NIL, it is an operation that needs to be applied
7125 to the result of the shift. OUTER_CONST is the relevant constant,
7126 but we must turn off all bits turned off in the shift.
7127
7128 If we were passed a value for X, see if we can use any pieces of
7129 it. If not, make new rtx. */
7130
7131 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
7132 && GET_CODE (XEXP (x, 1)) == CONST_INT
7133 && INTVAL (XEXP (x, 1)) == count)
7134 const_rtx = XEXP (x, 1);
7135 else
7136 const_rtx = GEN_INT (count);
7137
7138 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7139 && GET_MODE (XEXP (x, 0)) == shift_mode
7140 && SUBREG_REG (XEXP (x, 0)) == varop)
7141 varop = XEXP (x, 0);
7142 else if (GET_MODE (varop) != shift_mode)
7143 varop = gen_lowpart_for_combine (shift_mode, varop);
7144
7145 /* If we can't make the SUBREG, try to return what we were given. */
7146 if (GET_CODE (varop) == CLOBBER)
7147 return x ? x : varop;
7148
7149 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
7150 if (new != 0)
7151 x = new;
7152 else
7153 {
7154 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
7155 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
7156
7157 SUBST (XEXP (x, 0), varop);
7158 SUBST (XEXP (x, 1), const_rtx);
7159 }
7160
7161 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
7162 turn off all the bits that the shift would have turned off. */
7163 if (orig_code == LSHIFTRT && result_mode != shift_mode)
7164 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
7165 GET_MODE_MASK (result_mode) >> orig_count);
7166
7167 /* Do the remainder of the processing in RESULT_MODE. */
7168 x = gen_lowpart_for_combine (result_mode, x);
7169
7170 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
7171 operation. */
7172 if (complement_p)
7173 x = gen_unary (NOT, result_mode, x);
7174
7175 if (outer_op != NIL)
7176 {
7177 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
7178 outer_const &= GET_MODE_MASK (result_mode);
7179
7180 if (outer_op == AND)
7181 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
7182 else if (outer_op == SET)
7183 /* This means that we have determined that the result is
7184 equivalent to a constant. This should be rare. */
7185 x = GEN_INT (outer_const);
7186 else if (GET_RTX_CLASS (outer_op) == '1')
7187 x = gen_unary (outer_op, result_mode, x);
7188 else
7189 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
7190 }
7191
7192 return x;
7193 }
7194 \f
7195 /* Like recog, but we receive the address of a pointer to a new pattern.
7196 We try to match the rtx that the pointer points to.
7197 If that fails, we may try to modify or replace the pattern,
7198 storing the replacement into the same pointer object.
7199
7200 Modifications include deletion or addition of CLOBBERs.
7201
7202 PNOTES is a pointer to a location where any REG_UNUSED notes added for
7203 the CLOBBERs are placed.
7204
7205 The value is the final insn code from the pattern ultimately matched,
7206 or -1. */
7207
7208 static int
7209 recog_for_combine (pnewpat, insn, pnotes)
7210 rtx *pnewpat;
7211 rtx insn;
7212 rtx *pnotes;
7213 {
7214 register rtx pat = *pnewpat;
7215 int insn_code_number;
7216 int num_clobbers_to_add = 0;
7217 int i;
7218 rtx notes = 0;
7219
7220 /* Is the result of combination a valid instruction? */
7221 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
7222
7223 /* If it isn't, there is the possibility that we previously had an insn
7224 that clobbered some register as a side effect, but the combined
7225 insn doesn't need to do that. So try once more without the clobbers
7226 unless this represents an ASM insn. */
7227
7228 if (insn_code_number < 0 && ! check_asm_operands (pat)
7229 && GET_CODE (pat) == PARALLEL)
7230 {
7231 int pos;
7232
7233 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
7234 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
7235 {
7236 if (i != pos)
7237 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
7238 pos++;
7239 }
7240
7241 SUBST_INT (XVECLEN (pat, 0), pos);
7242
7243 if (pos == 1)
7244 pat = XVECEXP (pat, 0, 0);
7245
7246 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
7247 }
7248
7249 /* If we had any clobbers to add, make a new pattern than contains
7250 them. Then check to make sure that all of them are dead. */
7251 if (num_clobbers_to_add)
7252 {
7253 rtx newpat = gen_rtx (PARALLEL, VOIDmode,
7254 gen_rtvec (GET_CODE (pat) == PARALLEL
7255 ? XVECLEN (pat, 0) + num_clobbers_to_add
7256 : num_clobbers_to_add + 1));
7257
7258 if (GET_CODE (pat) == PARALLEL)
7259 for (i = 0; i < XVECLEN (pat, 0); i++)
7260 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
7261 else
7262 XVECEXP (newpat, 0, 0) = pat;
7263
7264 add_clobbers (newpat, insn_code_number);
7265
7266 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
7267 i < XVECLEN (newpat, 0); i++)
7268 {
7269 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
7270 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
7271 return -1;
7272 notes = gen_rtx (EXPR_LIST, REG_UNUSED,
7273 XEXP (XVECEXP (newpat, 0, i), 0), notes);
7274 }
7275 pat = newpat;
7276 }
7277
7278 *pnewpat = pat;
7279 *pnotes = notes;
7280
7281 return insn_code_number;
7282 }
7283 \f
7284 /* Like gen_lowpart but for use by combine. In combine it is not possible
7285 to create any new pseudoregs. However, it is safe to create
7286 invalid memory addresses, because combine will try to recognize
7287 them and all they will do is make the combine attempt fail.
7288
7289 If for some reason this cannot do its job, an rtx
7290 (clobber (const_int 0)) is returned.
7291 An insn containing that will not be recognized. */
7292
7293 #undef gen_lowpart
7294
7295 static rtx
7296 gen_lowpart_for_combine (mode, x)
7297 enum machine_mode mode;
7298 register rtx x;
7299 {
7300 rtx result;
7301
7302 if (GET_MODE (x) == mode)
7303 return x;
7304
7305 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
7306 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
7307
7308 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
7309 won't know what to do. So we will strip off the SUBREG here and
7310 process normally. */
7311 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
7312 {
7313 x = SUBREG_REG (x);
7314 if (GET_MODE (x) == mode)
7315 return x;
7316 }
7317
7318 result = gen_lowpart_common (mode, x);
7319 if (result)
7320 return result;
7321
7322 if (GET_CODE (x) == MEM)
7323 {
7324 register int offset = 0;
7325 rtx new;
7326
7327 /* Refuse to work on a volatile memory ref or one with a mode-dependent
7328 address. */
7329 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
7330 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
7331
7332 /* If we want to refer to something bigger than the original memref,
7333 generate a perverse subreg instead. That will force a reload
7334 of the original memref X. */
7335 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
7336 return gen_rtx (SUBREG, mode, x, 0);
7337
7338 #if WORDS_BIG_ENDIAN
7339 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
7340 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
7341 #endif
7342 #if BYTES_BIG_ENDIAN
7343 /* Adjust the address so that the address-after-the-data
7344 is unchanged. */
7345 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
7346 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
7347 #endif
7348 new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
7349 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
7350 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
7351 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
7352 return new;
7353 }
7354
7355 /* If X is a comparison operator, rewrite it in a new mode. This
7356 probably won't match, but may allow further simplifications. */
7357 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
7358 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
7359
7360 /* If we couldn't simplify X any other way, just enclose it in a
7361 SUBREG. Normally, this SUBREG won't match, but some patterns may
7362 include an explicit SUBREG or we may simplify it further in combine. */
7363 else
7364 {
7365 int word = 0;
7366
7367 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
7368 word = ((GET_MODE_SIZE (GET_MODE (x))
7369 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
7370 / UNITS_PER_WORD);
7371 return gen_rtx (SUBREG, mode, x, word);
7372 }
7373 }
7374 \f
7375 /* Make an rtx expression. This is a subset of gen_rtx and only supports
7376 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
7377
7378 If the identical expression was previously in the insn (in the undobuf),
7379 it will be returned. Only if it is not found will a new expression
7380 be made. */
7381
7382 /*VARARGS2*/
7383 static rtx
7384 gen_rtx_combine (va_alist)
7385 va_dcl
7386 {
7387 va_list p;
7388 enum rtx_code code;
7389 enum machine_mode mode;
7390 int n_args;
7391 rtx args[3];
7392 int i, j;
7393 char *fmt;
7394 rtx rt;
7395
7396 va_start (p);
7397 code = va_arg (p, enum rtx_code);
7398 mode = va_arg (p, enum machine_mode);
7399 n_args = GET_RTX_LENGTH (code);
7400 fmt = GET_RTX_FORMAT (code);
7401
7402 if (n_args == 0 || n_args > 3)
7403 abort ();
7404
7405 /* Get each arg and verify that it is supposed to be an expression. */
7406 for (j = 0; j < n_args; j++)
7407 {
7408 if (*fmt++ != 'e')
7409 abort ();
7410
7411 args[j] = va_arg (p, rtx);
7412 }
7413
7414 /* See if this is in undobuf. Be sure we don't use objects that came
7415 from another insn; this could produce circular rtl structures. */
7416
7417 for (i = previous_num_undos; i < undobuf.num_undo; i++)
7418 if (!undobuf.undo[i].is_int
7419 && GET_CODE (undobuf.undo[i].old_contents.rtx) == code
7420 && GET_MODE (undobuf.undo[i].old_contents.rtx) == mode)
7421 {
7422 for (j = 0; j < n_args; j++)
7423 if (XEXP (undobuf.undo[i].old_contents.rtx, j) != args[j])
7424 break;
7425
7426 if (j == n_args)
7427 return undobuf.undo[i].old_contents.rtx;
7428 }
7429
7430 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
7431 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
7432 rt = rtx_alloc (code);
7433 PUT_MODE (rt, mode);
7434 XEXP (rt, 0) = args[0];
7435 if (n_args > 1)
7436 {
7437 XEXP (rt, 1) = args[1];
7438 if (n_args > 2)
7439 XEXP (rt, 2) = args[2];
7440 }
7441 return rt;
7442 }
7443
7444 /* These routines make binary and unary operations by first seeing if they
7445 fold; if not, a new expression is allocated. */
7446
7447 static rtx
7448 gen_binary (code, mode, op0, op1)
7449 enum rtx_code code;
7450 enum machine_mode mode;
7451 rtx op0, op1;
7452 {
7453 rtx result;
7454 rtx tem;
7455
7456 if (GET_RTX_CLASS (code) == 'c'
7457 && (GET_CODE (op0) == CONST_INT
7458 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
7459 tem = op0, op0 = op1, op1 = tem;
7460
7461 if (GET_RTX_CLASS (code) == '<')
7462 {
7463 enum machine_mode op_mode = GET_MODE (op0);
7464 if (op_mode == VOIDmode)
7465 op_mode = GET_MODE (op1);
7466 result = simplify_relational_operation (code, op_mode, op0, op1);
7467 }
7468 else
7469 result = simplify_binary_operation (code, mode, op0, op1);
7470
7471 if (result)
7472 return result;
7473
7474 /* Put complex operands first and constants second. */
7475 if (GET_RTX_CLASS (code) == 'c'
7476 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
7477 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
7478 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
7479 || (GET_CODE (op0) == SUBREG
7480 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
7481 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
7482 return gen_rtx_combine (code, mode, op1, op0);
7483
7484 return gen_rtx_combine (code, mode, op0, op1);
7485 }
7486
7487 static rtx
7488 gen_unary (code, mode, op0)
7489 enum rtx_code code;
7490 enum machine_mode mode;
7491 rtx op0;
7492 {
7493 rtx result = simplify_unary_operation (code, mode, op0, mode);
7494
7495 if (result)
7496 return result;
7497
7498 return gen_rtx_combine (code, mode, op0);
7499 }
7500 \f
7501 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
7502 comparison code that will be tested.
7503
7504 The result is a possibly different comparison code to use. *POP0 and
7505 *POP1 may be updated.
7506
7507 It is possible that we might detect that a comparison is either always
7508 true or always false. However, we do not perform general constant
7509 folding in combine, so this knowledge isn't useful. Such tautologies
7510 should have been detected earlier. Hence we ignore all such cases. */
7511
7512 static enum rtx_code
7513 simplify_comparison (code, pop0, pop1)
7514 enum rtx_code code;
7515 rtx *pop0;
7516 rtx *pop1;
7517 {
7518 rtx op0 = *pop0;
7519 rtx op1 = *pop1;
7520 rtx tem, tem1;
7521 int i;
7522 enum machine_mode mode, tmode;
7523
7524 /* Try a few ways of applying the same transformation to both operands. */
7525 while (1)
7526 {
7527 /* If both operands are the same constant shift, see if we can ignore the
7528 shift. We can if the shift is a rotate or if the bits shifted out of
7529 this shift are not significant for either input and if the type of
7530 comparison is compatible with the shift. */
7531 if (GET_CODE (op0) == GET_CODE (op1)
7532 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
7533 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
7534 || ((GET_CODE (op0) == LSHIFTRT
7535 || GET_CODE (op0) == ASHIFT || GET_CODE (op0) == LSHIFT)
7536 && (code != GT && code != LT && code != GE && code != LE))
7537 || (GET_CODE (op0) == ASHIFTRT
7538 && (code != GTU && code != LTU
7539 && code != GEU && code != GEU)))
7540 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7541 && INTVAL (XEXP (op0, 1)) >= 0
7542 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
7543 && XEXP (op0, 1) == XEXP (op1, 1))
7544 {
7545 enum machine_mode mode = GET_MODE (op0);
7546 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7547 int shift_count = INTVAL (XEXP (op0, 1));
7548
7549 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
7550 mask &= (mask >> shift_count) << shift_count;
7551 else if (GET_CODE (op0) == ASHIFT || GET_CODE (op0) == LSHIFT)
7552 mask = (mask & (mask << shift_count)) >> shift_count;
7553
7554 if ((significant_bits (XEXP (op0, 0), mode) & ~ mask) == 0
7555 && (significant_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
7556 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
7557 else
7558 break;
7559 }
7560
7561 /* If both operands are AND's of a paradoxical SUBREG by constant, the
7562 SUBREGs are of the same mode, and, in both cases, the AND would
7563 be redundant if the comparison was done in the narrower mode,
7564 do the comparison in the narrower mode (e.g., we are AND'ing with 1
7565 and the operand's significant bits are 0xffffff01; in that case if
7566 we only care about QImode, we don't need the AND). This case occurs
7567 if the output mode of an scc insn is not SImode and
7568 STORE_FLAG_VALUE == 1 (e.g., the 386). */
7569
7570 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
7571 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7572 && GET_CODE (XEXP (op1, 1)) == CONST_INT
7573 && GET_CODE (XEXP (op0, 0)) == SUBREG
7574 && GET_CODE (XEXP (op1, 0)) == SUBREG
7575 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
7576 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
7577 && (GET_MODE (SUBREG_REG (XEXP (op0, 0)))
7578 == GET_MODE (SUBREG_REG (XEXP (op1, 0))))
7579 && (significant_bits (SUBREG_REG (XEXP (op0, 0)),
7580 GET_MODE (SUBREG_REG (XEXP (op0, 0))))
7581 & ~ INTVAL (XEXP (op0, 1))) == 0
7582 && (significant_bits (SUBREG_REG (XEXP (op1, 0)),
7583 GET_MODE (SUBREG_REG (XEXP (op1, 0))))
7584 & ~ INTVAL (XEXP (op1, 1))) == 0)
7585 {
7586 op0 = SUBREG_REG (XEXP (op0, 0));
7587 op1 = SUBREG_REG (XEXP (op1, 0));
7588
7589 /* the resulting comparison is always unsigned since we masked off
7590 the original sign bit. */
7591 code = unsigned_condition (code);
7592 }
7593 else
7594 break;
7595 }
7596
7597 /* If the first operand is a constant, swap the operands and adjust the
7598 comparison code appropriately. */
7599 if (CONSTANT_P (op0))
7600 {
7601 tem = op0, op0 = op1, op1 = tem;
7602 code = swap_condition (code);
7603 }
7604
7605 /* We now enter a loop during which we will try to simplify the comparison.
7606 For the most part, we only are concerned with comparisons with zero,
7607 but some things may really be comparisons with zero but not start
7608 out looking that way. */
7609
7610 while (GET_CODE (op1) == CONST_INT)
7611 {
7612 enum machine_mode mode = GET_MODE (op0);
7613 int mode_width = GET_MODE_BITSIZE (mode);
7614 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7615 int equality_comparison_p;
7616 int sign_bit_comparison_p;
7617 int unsigned_comparison_p;
7618 HOST_WIDE_INT const_op;
7619
7620 /* We only want to handle integral modes. This catches VOIDmode,
7621 CCmode, and the floating-point modes. An exception is that we
7622 can handle VOIDmode if OP0 is a COMPARE or a comparison
7623 operation. */
7624
7625 if (GET_MODE_CLASS (mode) != MODE_INT
7626 && ! (mode == VOIDmode
7627 && (GET_CODE (op0) == COMPARE
7628 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
7629 break;
7630
7631 /* Get the constant we are comparing against and turn off all bits
7632 not on in our mode. */
7633 const_op = INTVAL (op1);
7634 if (mode_width <= HOST_BITS_PER_WIDE_INT)
7635 const_op &= mask;
7636
7637 /* If we are comparing against a constant power of two and the value
7638 being compared has only that single significant bit (e.g., it was
7639 `and'ed with that bit), we can replace this with a comparison
7640 with zero. */
7641 if (const_op
7642 && (code == EQ || code == NE || code == GE || code == GEU
7643 || code == LT || code == LTU)
7644 && mode_width <= HOST_BITS_PER_WIDE_INT
7645 && exact_log2 (const_op) >= 0
7646 && significant_bits (op0, mode) == const_op)
7647 {
7648 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
7649 op1 = const0_rtx, const_op = 0;
7650 }
7651
7652 /* Similarly, if we are comparing a value known to be either -1 or
7653 0 with -1, change it to the opposite comparison against zero. */
7654
7655 if (const_op == -1
7656 && (code == EQ || code == NE || code == GT || code == LE
7657 || code == GEU || code == LTU)
7658 && num_sign_bit_copies (op0, mode) == mode_width)
7659 {
7660 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
7661 op1 = const0_rtx, const_op = 0;
7662 }
7663
7664 /* Do some canonicalizations based on the comparison code. We prefer
7665 comparisons against zero and then prefer equality comparisons.
7666 If we can reduce the size of a constant, we will do that too. */
7667
7668 switch (code)
7669 {
7670 case LT:
7671 /* < C is equivalent to <= (C - 1) */
7672 if (const_op > 0)
7673 {
7674 const_op -= 1;
7675 op1 = GEN_INT (const_op);
7676 code = LE;
7677 /* ... fall through to LE case below. */
7678 }
7679 else
7680 break;
7681
7682 case LE:
7683 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
7684 if (const_op < 0)
7685 {
7686 const_op += 1;
7687 op1 = GEN_INT (const_op);
7688 code = LT;
7689 }
7690
7691 /* If we are doing a <= 0 comparison on a value known to have
7692 a zero sign bit, we can replace this with == 0. */
7693 else if (const_op == 0
7694 && mode_width <= HOST_BITS_PER_WIDE_INT
7695 && (significant_bits (op0, mode)
7696 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
7697 code = EQ;
7698 break;
7699
7700 case GE:
7701 /* >= C is equivalent to > (C - 1). */
7702 if (const_op > 0)
7703 {
7704 const_op -= 1;
7705 op1 = GEN_INT (const_op);
7706 code = GT;
7707 /* ... fall through to GT below. */
7708 }
7709 else
7710 break;
7711
7712 case GT:
7713 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
7714 if (const_op < 0)
7715 {
7716 const_op += 1;
7717 op1 = GEN_INT (const_op);
7718 code = GE;
7719 }
7720
7721 /* If we are doing a > 0 comparison on a value known to have
7722 a zero sign bit, we can replace this with != 0. */
7723 else if (const_op == 0
7724 && mode_width <= HOST_BITS_PER_WIDE_INT
7725 && (significant_bits (op0, mode)
7726 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
7727 code = NE;
7728 break;
7729
7730 case LTU:
7731 /* < C is equivalent to <= (C - 1). */
7732 if (const_op > 0)
7733 {
7734 const_op -= 1;
7735 op1 = GEN_INT (const_op);
7736 code = LEU;
7737 /* ... fall through ... */
7738 }
7739
7740 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
7741 else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
7742 {
7743 const_op = 0, op1 = const0_rtx;
7744 code = GE;
7745 break;
7746 }
7747 else
7748 break;
7749
7750 case LEU:
7751 /* unsigned <= 0 is equivalent to == 0 */
7752 if (const_op == 0)
7753 code = EQ;
7754
7755 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
7756 else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
7757 {
7758 const_op = 0, op1 = const0_rtx;
7759 code = GE;
7760 }
7761 break;
7762
7763 case GEU:
7764 /* >= C is equivalent to < (C - 1). */
7765 if (const_op > 1)
7766 {
7767 const_op -= 1;
7768 op1 = GEN_INT (const_op);
7769 code = GTU;
7770 /* ... fall through ... */
7771 }
7772
7773 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
7774 else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
7775 {
7776 const_op = 0, op1 = const0_rtx;
7777 code = LT;
7778 }
7779 else
7780 break;
7781
7782 case GTU:
7783 /* unsigned > 0 is equivalent to != 0 */
7784 if (const_op == 0)
7785 code = NE;
7786
7787 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
7788 else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
7789 {
7790 const_op = 0, op1 = const0_rtx;
7791 code = LT;
7792 }
7793 break;
7794 }
7795
7796 /* Compute some predicates to simplify code below. */
7797
7798 equality_comparison_p = (code == EQ || code == NE);
7799 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
7800 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
7801 || code == LEU);
7802
7803 /* Now try cases based on the opcode of OP0. If none of the cases
7804 does a "continue", we exit this loop immediately after the
7805 switch. */
7806
7807 switch (GET_CODE (op0))
7808 {
7809 case ZERO_EXTRACT:
7810 /* If we are extracting a single bit from a variable position in
7811 a constant that has only a single bit set and are comparing it
7812 with zero, we can convert this into an equality comparison
7813 between the position and the location of the single bit. We can't
7814 do this if bit endian and we don't have an extzv since we then
7815 can't know what mode to use for the endianness adjustment. */
7816
7817 #if ! BITS_BIG_ENDIAN || defined (HAVE_extzv)
7818 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
7819 && XEXP (op0, 1) == const1_rtx
7820 && equality_comparison_p && const_op == 0
7821 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
7822 {
7823 #if BITS_BIG_ENDIAN
7824 i = (GET_MODE_BITSIZE
7825 (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
7826 #endif
7827
7828 op0 = XEXP (op0, 2);
7829 op1 = GEN_INT (i);
7830 const_op = i;
7831
7832 /* Result is nonzero iff shift count is equal to I. */
7833 code = reverse_condition (code);
7834 continue;
7835 }
7836 #endif
7837
7838 /* ... fall through ... */
7839
7840 case SIGN_EXTRACT:
7841 tem = expand_compound_operation (op0);
7842 if (tem != op0)
7843 {
7844 op0 = tem;
7845 continue;
7846 }
7847 break;
7848
7849 case NOT:
7850 /* If testing for equality, we can take the NOT of the constant. */
7851 if (equality_comparison_p
7852 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
7853 {
7854 op0 = XEXP (op0, 0);
7855 op1 = tem;
7856 continue;
7857 }
7858
7859 /* If just looking at the sign bit, reverse the sense of the
7860 comparison. */
7861 if (sign_bit_comparison_p)
7862 {
7863 op0 = XEXP (op0, 0);
7864 code = (code == GE ? LT : GE);
7865 continue;
7866 }
7867 break;
7868
7869 case NEG:
7870 /* If testing for equality, we can take the NEG of the constant. */
7871 if (equality_comparison_p
7872 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
7873 {
7874 op0 = XEXP (op0, 0);
7875 op1 = tem;
7876 continue;
7877 }
7878
7879 /* The remaining cases only apply to comparisons with zero. */
7880 if (const_op != 0)
7881 break;
7882
7883 /* When X is ABS or is known positive,
7884 (neg X) is < 0 if and only if X != 0. */
7885
7886 if (sign_bit_comparison_p
7887 && (GET_CODE (XEXP (op0, 0)) == ABS
7888 || (mode_width <= HOST_BITS_PER_WIDE_INT
7889 && (significant_bits (XEXP (op0, 0), mode)
7890 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
7891 {
7892 op0 = XEXP (op0, 0);
7893 code = (code == LT ? NE : EQ);
7894 continue;
7895 }
7896
7897 /* If we have NEG of something that is the result of a
7898 SIGN_EXTEND, SIGN_EXTRACT, or ASHIFTRT, we know that the
7899 two high-order bits must be the same and hence that
7900 "(-a) < 0" is equivalent to "a > 0". Otherwise, we can't
7901 do this. */
7902 if (GET_CODE (XEXP (op0, 0)) == SIGN_EXTEND
7903 || (GET_CODE (XEXP (op0, 0)) == SIGN_EXTRACT
7904 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
7905 && (INTVAL (XEXP (XEXP (op0, 0), 1))
7906 < GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (op0, 0), 0)))))
7907 || (GET_CODE (XEXP (op0, 0)) == ASHIFTRT
7908 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
7909 && XEXP (XEXP (op0, 0), 1) != const0_rtx)
7910 || ((tem = get_last_value (XEXP (op0, 0))) != 0
7911 && (GET_CODE (tem) == SIGN_EXTEND
7912 || (GET_CODE (tem) == SIGN_EXTRACT
7913 && GET_CODE (XEXP (tem, 1)) == CONST_INT
7914 && (INTVAL (XEXP (tem, 1))
7915 < GET_MODE_BITSIZE (GET_MODE (XEXP (tem, 0)))))
7916 || (GET_CODE (tem) == ASHIFTRT
7917 && GET_CODE (XEXP (tem, 1)) == CONST_INT
7918 && XEXP (tem, 1) != const0_rtx))))
7919 {
7920 op0 = XEXP (op0, 0);
7921 code = swap_condition (code);
7922 continue;
7923 }
7924 break;
7925
7926 case ROTATE:
7927 /* If we are testing equality and our count is a constant, we
7928 can perform the inverse operation on our RHS. */
7929 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
7930 && (tem = simplify_binary_operation (ROTATERT, mode,
7931 op1, XEXP (op0, 1))) != 0)
7932 {
7933 op0 = XEXP (op0, 0);
7934 op1 = tem;
7935 continue;
7936 }
7937
7938 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
7939 a particular bit. Convert it to an AND of a constant of that
7940 bit. This will be converted into a ZERO_EXTRACT. */
7941 if (const_op == 0 && sign_bit_comparison_p
7942 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7943 && mode_width <= HOST_BITS_PER_WIDE_INT)
7944 {
7945 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
7946 ((HOST_WIDE_INT) 1
7947 << (mode_width - 1
7948 - INTVAL (XEXP (op0, 1)))));
7949 code = (code == LT ? NE : EQ);
7950 continue;
7951 }
7952
7953 /* ... fall through ... */
7954
7955 case ABS:
7956 /* ABS is ignorable inside an equality comparison with zero. */
7957 if (const_op == 0 && equality_comparison_p)
7958 {
7959 op0 = XEXP (op0, 0);
7960 continue;
7961 }
7962 break;
7963
7964
7965 case SIGN_EXTEND:
7966 /* Can simplify (compare (zero/sign_extend FOO) CONST)
7967 to (compare FOO CONST) if CONST fits in FOO's mode and we
7968 are either testing inequality or have an unsigned comparison
7969 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
7970 if (! unsigned_comparison_p
7971 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
7972 <= HOST_BITS_PER_WIDE_INT)
7973 && ((unsigned HOST_WIDE_INT) const_op
7974 < (((HOST_WIDE_INT) 1
7975 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
7976 {
7977 op0 = XEXP (op0, 0);
7978 continue;
7979 }
7980 break;
7981
7982 case SUBREG:
7983 /* Check for the case where we are comparing A - C1 with C2,
7984 both constants are smaller than 1/2 the maxium positive
7985 value in MODE, and the comparison is equality or unsigned.
7986 In that case, if A is either zero-extended to MODE or has
7987 sufficient sign bits so that the high-order bit in MODE
7988 is a copy of the sign in the inner mode, we can prove that it is
7989 safe to do the operation in the wider mode. This simplifies
7990 many range checks. */
7991
7992 if (mode_width <= HOST_BITS_PER_WIDE_INT
7993 && subreg_lowpart_p (op0)
7994 && GET_CODE (SUBREG_REG (op0)) == PLUS
7995 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
7996 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
7997 && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
7998 < GET_MODE_MASK (mode) / 2)
7999 && (unsigned) const_op < GET_MODE_MASK (mode) / 2
8000 && (0 == (significant_bits (XEXP (SUBREG_REG (op0), 0),
8001 GET_MODE (SUBREG_REG (op0)))
8002 & ~ GET_MODE_MASK (mode))
8003 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
8004 GET_MODE (SUBREG_REG (op0)))
8005 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
8006 - GET_MODE_BITSIZE (mode)))))
8007 {
8008 op0 = SUBREG_REG (op0);
8009 continue;
8010 }
8011
8012 /* If the inner mode is narrower and we are extracting the low part,
8013 we can treat the SUBREG as if it were a ZERO_EXTEND. */
8014 if (subreg_lowpart_p (op0)
8015 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
8016 /* Fall through */ ;
8017 else
8018 break;
8019
8020 /* ... fall through ... */
8021
8022 case ZERO_EXTEND:
8023 if ((unsigned_comparison_p || equality_comparison_p)
8024 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8025 <= HOST_BITS_PER_WIDE_INT)
8026 && ((unsigned HOST_WIDE_INT) const_op
8027 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
8028 {
8029 op0 = XEXP (op0, 0);
8030 continue;
8031 }
8032 break;
8033
8034 case PLUS:
8035 /* (eq (plus X C1) C2) -> (eq X (minus C2 C1)). We can only do
8036 this for equality comparisons due to pathological cases involving
8037 overflows. */
8038 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
8039 && (tem = simplify_binary_operation (MINUS, mode, op1,
8040 XEXP (op0, 1))) != 0)
8041 {
8042 op0 = XEXP (op0, 0);
8043 op1 = tem;
8044 continue;
8045 }
8046
8047 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
8048 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
8049 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
8050 {
8051 op0 = XEXP (XEXP (op0, 0), 0);
8052 code = (code == LT ? EQ : NE);
8053 continue;
8054 }
8055 break;
8056
8057 case MINUS:
8058 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
8059 of bits in X minus 1, is one iff X > 0. */
8060 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
8061 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
8062 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
8063 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
8064 {
8065 op0 = XEXP (op0, 1);
8066 code = (code == GE ? LE : GT);
8067 continue;
8068 }
8069 break;
8070
8071 case XOR:
8072 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
8073 if C is zero or B is a constant. */
8074 if (equality_comparison_p
8075 && 0 != (tem = simplify_binary_operation (XOR, mode,
8076 XEXP (op0, 1), op1)))
8077 {
8078 op0 = XEXP (op0, 0);
8079 op1 = tem;
8080 continue;
8081 }
8082 break;
8083
8084 case EQ: case NE:
8085 case LT: case LTU: case LE: case LEU:
8086 case GT: case GTU: case GE: case GEU:
8087 /* We can't do anything if OP0 is a condition code value, rather
8088 than an actual data value. */
8089 if (const_op != 0
8090 #ifdef HAVE_cc0
8091 || XEXP (op0, 0) == cc0_rtx
8092 #endif
8093 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
8094 break;
8095
8096 /* Get the two operands being compared. */
8097 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
8098 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
8099 else
8100 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
8101
8102 /* Check for the cases where we simply want the result of the
8103 earlier test or the opposite of that result. */
8104 if (code == NE
8105 || (code == EQ && reversible_comparison_p (op0))
8106 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
8107 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
8108 && (STORE_FLAG_VALUE
8109 & (((HOST_WIDE_INT) 1
8110 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
8111 && (code == LT
8112 || (code == GE && reversible_comparison_p (op0)))))
8113 {
8114 code = (code == LT || code == NE
8115 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
8116 op0 = tem, op1 = tem1;
8117 continue;
8118 }
8119 break;
8120
8121 case IOR:
8122 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
8123 iff X <= 0. */
8124 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
8125 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
8126 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
8127 {
8128 op0 = XEXP (op0, 1);
8129 code = (code == GE ? GT : LE);
8130 continue;
8131 }
8132 break;
8133
8134 case AND:
8135 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
8136 will be converted to a ZERO_EXTRACT later. */
8137 if (const_op == 0 && equality_comparison_p
8138 && (GET_CODE (XEXP (op0, 0)) == ASHIFT
8139 || GET_CODE (XEXP (op0, 0)) == LSHIFT)
8140 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
8141 {
8142 op0 = simplify_and_const_int
8143 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
8144 XEXP (op0, 1),
8145 XEXP (XEXP (op0, 0), 1)),
8146 (HOST_WIDE_INT) 1);
8147 continue;
8148 }
8149
8150 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
8151 zero and X is a comparison and C1 and C2 describe only bits set
8152 in STORE_FLAG_VALUE, we can compare with X. */
8153 if (const_op == 0 && equality_comparison_p
8154 && mode_width <= HOST_BITS_PER_WIDE_INT
8155 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8156 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
8157 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
8158 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
8159 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8160 {
8161 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
8162 << INTVAL (XEXP (XEXP (op0, 0), 1)));
8163 if ((~ STORE_FLAG_VALUE & mask) == 0
8164 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
8165 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
8166 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
8167 {
8168 op0 = XEXP (XEXP (op0, 0), 0);
8169 continue;
8170 }
8171 }
8172
8173 /* If we are doing an equality comparison of an AND of a bit equal
8174 to the sign bit, replace this with a LT or GE comparison of
8175 the underlying value. */
8176 if (equality_comparison_p
8177 && const_op == 0
8178 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8179 && mode_width <= HOST_BITS_PER_WIDE_INT
8180 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
8181 == (HOST_WIDE_INT) 1 << (mode_width - 1)))
8182 {
8183 op0 = XEXP (op0, 0);
8184 code = (code == EQ ? GE : LT);
8185 continue;
8186 }
8187
8188 /* If this AND operation is really a ZERO_EXTEND from a narrower
8189 mode, the constant fits within that mode, and this is either an
8190 equality or unsigned comparison, try to do this comparison in
8191 the narrower mode. */
8192 if ((equality_comparison_p || unsigned_comparison_p)
8193 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8194 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
8195 & GET_MODE_MASK (mode))
8196 + 1)) >= 0
8197 && const_op >> i == 0
8198 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
8199 {
8200 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
8201 continue;
8202 }
8203 break;
8204
8205 case ASHIFT:
8206 case LSHIFT:
8207 /* If we have (compare (xshift FOO N) (const_int C)) and
8208 the high order N bits of FOO (N+1 if an inequality comparison)
8209 are not significant, we can do this by comparing FOO with C
8210 shifted right N bits so long as the low-order N bits of C are
8211 zero. */
8212 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
8213 && INTVAL (XEXP (op0, 1)) >= 0
8214 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
8215 < HOST_BITS_PER_WIDE_INT)
8216 && ((const_op
8217 & ((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1) == 0)
8218 && mode_width <= HOST_BITS_PER_WIDE_INT
8219 && (significant_bits (XEXP (op0, 0), mode)
8220 & ~ (mask >> (INTVAL (XEXP (op0, 1))
8221 + ! equality_comparison_p))) == 0)
8222 {
8223 const_op >>= INTVAL (XEXP (op0, 1));
8224 op1 = GEN_INT (const_op);
8225 op0 = XEXP (op0, 0);
8226 continue;
8227 }
8228
8229 /* If we are doing a sign bit comparison, it means we are testing
8230 a particular bit. Convert it to the appropriate AND. */
8231 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
8232 && mode_width <= HOST_BITS_PER_WIDE_INT)
8233 {
8234 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
8235 ((HOST_WIDE_INT) 1
8236 << (mode_width - 1
8237 - INTVAL (XEXP (op0, 1)))));
8238 code = (code == LT ? NE : EQ);
8239 continue;
8240 }
8241
8242 /* If this an equality comparison with zero and we are shifting
8243 the low bit to the sign bit, we can convert this to an AND of the
8244 low-order bit. */
8245 if (const_op == 0 && equality_comparison_p
8246 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8247 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
8248 {
8249 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
8250 (HOST_WIDE_INT) 1);
8251 continue;
8252 }
8253 break;
8254
8255 case ASHIFTRT:
8256 /* If this is an equality comparison with zero, we can do this
8257 as a logical shift, which might be much simpler. */
8258 if (equality_comparison_p && const_op == 0
8259 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
8260 {
8261 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
8262 XEXP (op0, 0),
8263 INTVAL (XEXP (op0, 1)));
8264 continue;
8265 }
8266
8267 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
8268 do the comparison in a narrower mode. */
8269 if (! unsigned_comparison_p
8270 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8271 && GET_CODE (XEXP (op0, 0)) == ASHIFT
8272 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
8273 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
8274 MODE_INT, 1)) != VOIDmode
8275 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
8276 || ((unsigned HOST_WIDE_INT) - const_op
8277 <= GET_MODE_MASK (tmode))))
8278 {
8279 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
8280 continue;
8281 }
8282
8283 /* ... fall through ... */
8284 case LSHIFTRT:
8285 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
8286 the low order N bits of FOO are not significant, we can do this
8287 by comparing FOO with C shifted left N bits so long as no
8288 overflow occurs. */
8289 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
8290 && INTVAL (XEXP (op0, 1)) >= 0
8291 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
8292 && mode_width <= HOST_BITS_PER_WIDE_INT
8293 && (significant_bits (XEXP (op0, 0), mode)
8294 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
8295 && (const_op == 0
8296 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
8297 < mode_width)))
8298 {
8299 const_op <<= INTVAL (XEXP (op0, 1));
8300 op1 = GEN_INT (const_op);
8301 op0 = XEXP (op0, 0);
8302 continue;
8303 }
8304
8305 /* If we are using this shift to extract just the sign bit, we
8306 can replace this with an LT or GE comparison. */
8307 if (const_op == 0
8308 && (equality_comparison_p || sign_bit_comparison_p)
8309 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8310 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
8311 {
8312 op0 = XEXP (op0, 0);
8313 code = (code == NE || code == GT ? LT : GE);
8314 continue;
8315 }
8316 break;
8317 }
8318
8319 break;
8320 }
8321
8322 /* Now make any compound operations involved in this comparison. Then,
8323 check for an outmost SUBREG on OP0 that isn't doing anything or is
8324 paradoxical. The latter case can only occur when it is known that the
8325 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
8326 We can never remove a SUBREG for a non-equality comparison because the
8327 sign bit is in a different place in the underlying object. */
8328
8329 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
8330 op1 = make_compound_operation (op1, SET);
8331
8332 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
8333 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
8334 && (code == NE || code == EQ)
8335 && ((GET_MODE_SIZE (GET_MODE (op0))
8336 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
8337 {
8338 op0 = SUBREG_REG (op0);
8339 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
8340 }
8341
8342 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
8343 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
8344 && (code == NE || code == EQ)
8345 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
8346 && (significant_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
8347 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
8348 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
8349 op1),
8350 (significant_bits (tem, GET_MODE (SUBREG_REG (op0)))
8351 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
8352 op0 = SUBREG_REG (op0), op1 = tem;
8353
8354 /* We now do the opposite procedure: Some machines don't have compare
8355 insns in all modes. If OP0's mode is an integer mode smaller than a
8356 word and we can't do a compare in that mode, see if there is a larger
8357 mode for which we can do the compare. There are a number of cases in
8358 which we can use the wider mode. */
8359
8360 mode = GET_MODE (op0);
8361 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
8362 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
8363 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
8364 for (tmode = GET_MODE_WIDER_MODE (mode);
8365 (tmode != VOIDmode
8366 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
8367 tmode = GET_MODE_WIDER_MODE (tmode))
8368 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
8369 {
8370 /* If the only significant bits in OP0 and OP1 are those in the
8371 narrower mode and this is an equality or unsigned comparison,
8372 we can use the wider mode. Similarly for sign-extended
8373 values and equality or signed comparisons. */
8374 if (((code == EQ || code == NE
8375 || code == GEU || code == GTU || code == LEU || code == LTU)
8376 && ((significant_bits (op0, tmode) & ~ GET_MODE_MASK (mode))
8377 == 0)
8378 && ((significant_bits (op1, tmode) & ~ GET_MODE_MASK (mode))
8379 == 0))
8380 || ((code == EQ || code == NE
8381 || code == GE || code == GT || code == LE || code == LT)
8382 && (num_sign_bit_copies (op0, tmode)
8383 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
8384 && (num_sign_bit_copies (op1, tmode)
8385 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
8386 {
8387 op0 = gen_lowpart_for_combine (tmode, op0);
8388 op1 = gen_lowpart_for_combine (tmode, op1);
8389 break;
8390 }
8391
8392 /* If this is a test for negative, we can make an explicit
8393 test of the sign bit. */
8394
8395 if (op1 == const0_rtx && (code == LT || code == GE)
8396 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8397 {
8398 op0 = gen_binary (AND, tmode,
8399 gen_lowpart_for_combine (tmode, op0),
8400 GEN_INT ((HOST_WIDE_INT) 1
8401 << (GET_MODE_BITSIZE (mode) - 1)));
8402 code = (code == LT) ? NE : EQ;
8403 break;
8404 }
8405 }
8406
8407 *pop0 = op0;
8408 *pop1 = op1;
8409
8410 return code;
8411 }
8412 \f
8413 /* Return 1 if we know that X, a comparison operation, is not operating
8414 on a floating-point value or is EQ or NE, meaning that we can safely
8415 reverse it. */
8416
8417 static int
8418 reversible_comparison_p (x)
8419 rtx x;
8420 {
8421 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
8422 || GET_CODE (x) == NE || GET_CODE (x) == EQ)
8423 return 1;
8424
8425 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
8426 {
8427 case MODE_INT:
8428 return 1;
8429
8430 case MODE_CC:
8431 x = get_last_value (XEXP (x, 0));
8432 return (x && GET_CODE (x) == COMPARE
8433 && GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) == MODE_INT);
8434 }
8435
8436 return 0;
8437 }
8438 \f
8439 /* Utility function for following routine. Called when X is part of a value
8440 being stored into reg_last_set_value. Sets reg_last_set_table_tick
8441 for each register mentioned. Similar to mention_regs in cse.c */
8442
8443 static void
8444 update_table_tick (x)
8445 rtx x;
8446 {
8447 register enum rtx_code code = GET_CODE (x);
8448 register char *fmt = GET_RTX_FORMAT (code);
8449 register int i;
8450
8451 if (code == REG)
8452 {
8453 int regno = REGNO (x);
8454 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
8455 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
8456
8457 for (i = regno; i < endregno; i++)
8458 reg_last_set_table_tick[i] = label_tick;
8459
8460 return;
8461 }
8462
8463 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8464 /* Note that we can't have an "E" in values stored; see
8465 get_last_value_validate. */
8466 if (fmt[i] == 'e')
8467 update_table_tick (XEXP (x, i));
8468 }
8469
8470 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
8471 are saying that the register is clobbered and we no longer know its
8472 value. If INSN is zero, don't update reg_last_set; this call is normally
8473 done with VALUE also zero to invalidate the register. */
8474
8475 static void
8476 record_value_for_reg (reg, insn, value)
8477 rtx reg;
8478 rtx insn;
8479 rtx value;
8480 {
8481 int regno = REGNO (reg);
8482 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
8483 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
8484 int i;
8485
8486 /* If VALUE contains REG and we have a previous value for REG, substitute
8487 the previous value. */
8488 if (value && insn && reg_overlap_mentioned_p (reg, value))
8489 {
8490 rtx tem;
8491
8492 /* Set things up so get_last_value is allowed to see anything set up to
8493 our insn. */
8494 subst_low_cuid = INSN_CUID (insn);
8495 tem = get_last_value (reg);
8496
8497 if (tem)
8498 value = replace_rtx (copy_rtx (value), reg, tem);
8499 }
8500
8501 /* For each register modified, show we don't know its value, that
8502 its value has been updated, and that we don't know the location of
8503 the death of the register. */
8504 for (i = regno; i < endregno; i ++)
8505 {
8506 if (insn)
8507 reg_last_set[i] = insn;
8508 reg_last_set_value[i] = 0;
8509 reg_last_death[i] = 0;
8510 }
8511
8512 /* Mark registers that are being referenced in this value. */
8513 if (value)
8514 update_table_tick (value);
8515
8516 /* Now update the status of each register being set.
8517 If someone is using this register in this block, set this register
8518 to invalid since we will get confused between the two lives in this
8519 basic block. This makes using this register always invalid. In cse, we
8520 scan the table to invalidate all entries using this register, but this
8521 is too much work for us. */
8522
8523 for (i = regno; i < endregno; i++)
8524 {
8525 reg_last_set_label[i] = label_tick;
8526 if (value && reg_last_set_table_tick[i] == label_tick)
8527 reg_last_set_invalid[i] = 1;
8528 else
8529 reg_last_set_invalid[i] = 0;
8530 }
8531
8532 /* The value being assigned might refer to X (like in "x++;"). In that
8533 case, we must replace it with (clobber (const_int 0)) to prevent
8534 infinite loops. */
8535 if (value && ! get_last_value_validate (&value,
8536 reg_last_set_label[regno], 0))
8537 {
8538 value = copy_rtx (value);
8539 if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
8540 value = 0;
8541 }
8542
8543 /* For the main register being modified, update the value. */
8544 reg_last_set_value[regno] = value;
8545
8546 }
8547
8548 /* Used for communication between the following two routines. */
8549 static rtx record_dead_insn;
8550
8551 /* Called via note_stores from record_dead_and_set_regs to handle one
8552 SET or CLOBBER in an insn. */
8553
8554 static void
8555 record_dead_and_set_regs_1 (dest, setter)
8556 rtx dest, setter;
8557 {
8558 if (GET_CODE (dest) == REG)
8559 {
8560 /* If we are setting the whole register, we know its value. Otherwise
8561 show that we don't know the value. We can handle SUBREG in
8562 some cases. */
8563 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
8564 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
8565 else if (GET_CODE (setter) == SET
8566 && GET_CODE (SET_DEST (setter)) == SUBREG
8567 && SUBREG_REG (SET_DEST (setter)) == dest
8568 && subreg_lowpart_p (SET_DEST (setter)))
8569 record_value_for_reg (dest, record_dead_insn,
8570 gen_lowpart_for_combine (GET_MODE (dest),
8571 SET_SRC (setter)));
8572 else
8573 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
8574 }
8575 else if (GET_CODE (dest) == MEM
8576 /* Ignore pushes, they clobber nothing. */
8577 && ! push_operand (dest, GET_MODE (dest)))
8578 mem_last_set = INSN_CUID (record_dead_insn);
8579 }
8580
8581 /* Update the records of when each REG was most recently set or killed
8582 for the things done by INSN. This is the last thing done in processing
8583 INSN in the combiner loop.
8584
8585 We update reg_last_set, reg_last_set_value, reg_last_death, and also the
8586 similar information mem_last_set (which insn most recently modified memory)
8587 and last_call_cuid (which insn was the most recent subroutine call). */
8588
8589 static void
8590 record_dead_and_set_regs (insn)
8591 rtx insn;
8592 {
8593 register rtx link;
8594 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
8595 {
8596 if (REG_NOTE_KIND (link) == REG_DEAD)
8597 reg_last_death[REGNO (XEXP (link, 0))] = insn;
8598 else if (REG_NOTE_KIND (link) == REG_INC)
8599 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
8600 }
8601
8602 if (GET_CODE (insn) == CALL_INSN)
8603 last_call_cuid = mem_last_set = INSN_CUID (insn);
8604
8605 record_dead_insn = insn;
8606 note_stores (PATTERN (insn), record_dead_and_set_regs_1);
8607 }
8608 \f
8609 /* Utility routine for the following function. Verify that all the registers
8610 mentioned in *LOC are valid when *LOC was part of a value set when
8611 label_tick == TICK. Return 0 if some are not.
8612
8613 If REPLACE is non-zero, replace the invalid reference with
8614 (clobber (const_int 0)) and return 1. This replacement is useful because
8615 we often can get useful information about the form of a value (e.g., if
8616 it was produced by a shift that always produces -1 or 0) even though
8617 we don't know exactly what registers it was produced from. */
8618
8619 static int
8620 get_last_value_validate (loc, tick, replace)
8621 rtx *loc;
8622 int tick;
8623 int replace;
8624 {
8625 rtx x = *loc;
8626 char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8627 int len = GET_RTX_LENGTH (GET_CODE (x));
8628 int i;
8629
8630 if (GET_CODE (x) == REG)
8631 {
8632 int regno = REGNO (x);
8633 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
8634 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
8635 int j;
8636
8637 for (j = regno; j < endregno; j++)
8638 if (reg_last_set_invalid[j]
8639 /* If this is a pseudo-register that was only set once, it is
8640 always valid. */
8641 || (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
8642 && reg_last_set_label[j] > tick))
8643 {
8644 if (replace)
8645 *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
8646 return replace;
8647 }
8648
8649 return 1;
8650 }
8651
8652 for (i = 0; i < len; i++)
8653 if ((fmt[i] == 'e'
8654 && get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
8655 /* Don't bother with these. They shouldn't occur anyway. */
8656 || fmt[i] == 'E')
8657 return 0;
8658
8659 /* If we haven't found a reason for it to be invalid, it is valid. */
8660 return 1;
8661 }
8662
8663 /* Get the last value assigned to X, if known. Some registers
8664 in the value may be replaced with (clobber (const_int 0)) if their value
8665 is known longer known reliably. */
8666
8667 static rtx
8668 get_last_value (x)
8669 rtx x;
8670 {
8671 int regno;
8672 rtx value;
8673
8674 /* If this is a non-paradoxical SUBREG, get the value of its operand and
8675 then convert it to the desired mode. If this is a paradoxical SUBREG,
8676 we cannot predict what values the "extra" bits might have. */
8677 if (GET_CODE (x) == SUBREG
8678 && subreg_lowpart_p (x)
8679 && (GET_MODE_SIZE (GET_MODE (x))
8680 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8681 && (value = get_last_value (SUBREG_REG (x))) != 0)
8682 return gen_lowpart_for_combine (GET_MODE (x), value);
8683
8684 if (GET_CODE (x) != REG)
8685 return 0;
8686
8687 regno = REGNO (x);
8688 value = reg_last_set_value[regno];
8689
8690 /* If we don't have a value or if it isn't for this basic block, return 0. */
8691
8692 if (value == 0
8693 || (reg_n_sets[regno] != 1
8694 && (reg_last_set_label[regno] != label_tick)))
8695 return 0;
8696
8697 /* If the value was set in a later insn that the ones we are processing,
8698 we can't use it, but make a quick check to see if the previous insn
8699 set it to something. This is commonly the case when the same pseudo
8700 is used by repeated insns. */
8701
8702 if (reg_n_sets[regno] != 1
8703 && INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
8704 {
8705 rtx insn, set;
8706
8707 for (insn = prev_nonnote_insn (subst_insn);
8708 insn && INSN_CUID (insn) >= subst_low_cuid;
8709 insn = prev_nonnote_insn (insn))
8710 ;
8711
8712 if (insn
8713 && (set = single_set (insn)) != 0
8714 && rtx_equal_p (SET_DEST (set), x))
8715 {
8716 value = SET_SRC (set);
8717
8718 /* Make sure that VALUE doesn't reference X. Replace any
8719 expliit references with a CLOBBER. If there are any remaining
8720 references (rare), don't use the value. */
8721
8722 if (reg_mentioned_p (x, value))
8723 value = replace_rtx (copy_rtx (value), x,
8724 gen_rtx (CLOBBER, GET_MODE (x), const0_rtx));
8725
8726 if (reg_overlap_mentioned_p (x, value))
8727 return 0;
8728 }
8729 else
8730 return 0;
8731 }
8732
8733 /* If the value has all its registers valid, return it. */
8734 if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
8735 return value;
8736
8737 /* Otherwise, make a copy and replace any invalid register with
8738 (clobber (const_int 0)). If that fails for some reason, return 0. */
8739
8740 value = copy_rtx (value);
8741 if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
8742 return value;
8743
8744 return 0;
8745 }
8746 \f
8747 /* Return nonzero if expression X refers to a REG or to memory
8748 that is set in an instruction more recent than FROM_CUID. */
8749
8750 static int
8751 use_crosses_set_p (x, from_cuid)
8752 register rtx x;
8753 int from_cuid;
8754 {
8755 register char *fmt;
8756 register int i;
8757 register enum rtx_code code = GET_CODE (x);
8758
8759 if (code == REG)
8760 {
8761 register int regno = REGNO (x);
8762 #ifdef PUSH_ROUNDING
8763 /* Don't allow uses of the stack pointer to be moved,
8764 because we don't know whether the move crosses a push insn. */
8765 if (regno == STACK_POINTER_REGNUM)
8766 return 1;
8767 #endif
8768 return (reg_last_set[regno]
8769 && INSN_CUID (reg_last_set[regno]) > from_cuid);
8770 }
8771
8772 if (code == MEM && mem_last_set > from_cuid)
8773 return 1;
8774
8775 fmt = GET_RTX_FORMAT (code);
8776
8777 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8778 {
8779 if (fmt[i] == 'E')
8780 {
8781 register int j;
8782 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8783 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
8784 return 1;
8785 }
8786 else if (fmt[i] == 'e'
8787 && use_crosses_set_p (XEXP (x, i), from_cuid))
8788 return 1;
8789 }
8790 return 0;
8791 }
8792 \f
8793 /* Define three variables used for communication between the following
8794 routines. */
8795
8796 static int reg_dead_regno, reg_dead_endregno;
8797 static int reg_dead_flag;
8798
8799 /* Function called via note_stores from reg_dead_at_p.
8800
8801 If DEST is within [reg_dead_rengno, reg_dead_endregno), set
8802 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
8803
8804 static void
8805 reg_dead_at_p_1 (dest, x)
8806 rtx dest;
8807 rtx x;
8808 {
8809 int regno, endregno;
8810
8811 if (GET_CODE (dest) != REG)
8812 return;
8813
8814 regno = REGNO (dest);
8815 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
8816 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
8817
8818 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
8819 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
8820 }
8821
8822 /* Return non-zero if REG is known to be dead at INSN.
8823
8824 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
8825 referencing REG, it is dead. If we hit a SET referencing REG, it is
8826 live. Otherwise, see if it is live or dead at the start of the basic
8827 block we are in. */
8828
8829 static int
8830 reg_dead_at_p (reg, insn)
8831 rtx reg;
8832 rtx insn;
8833 {
8834 int block, i;
8835
8836 /* Set variables for reg_dead_at_p_1. */
8837 reg_dead_regno = REGNO (reg);
8838 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
8839 ? HARD_REGNO_NREGS (reg_dead_regno,
8840 GET_MODE (reg))
8841 : 1);
8842
8843 reg_dead_flag = 0;
8844
8845 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
8846 beginning of function. */
8847 for (; insn && GET_CODE (insn) != CODE_LABEL;
8848 insn = prev_nonnote_insn (insn))
8849 {
8850 note_stores (PATTERN (insn), reg_dead_at_p_1);
8851 if (reg_dead_flag)
8852 return reg_dead_flag == 1 ? 1 : 0;
8853
8854 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
8855 return 1;
8856 }
8857
8858 /* Get the basic block number that we were in. */
8859 if (insn == 0)
8860 block = 0;
8861 else
8862 {
8863 for (block = 0; block < n_basic_blocks; block++)
8864 if (insn == basic_block_head[block])
8865 break;
8866
8867 if (block == n_basic_blocks)
8868 return 0;
8869 }
8870
8871 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
8872 if (basic_block_live_at_start[block][i / REGSET_ELT_BITS]
8873 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
8874 return 0;
8875
8876 return 1;
8877 }
8878 \f
8879 /* Remove register number REGNO from the dead registers list of INSN.
8880
8881 Return the note used to record the death, if there was one. */
8882
8883 rtx
8884 remove_death (regno, insn)
8885 int regno;
8886 rtx insn;
8887 {
8888 register rtx note = find_regno_note (insn, REG_DEAD, regno);
8889
8890 if (note)
8891 {
8892 reg_n_deaths[regno]--;
8893 remove_note (insn, note);
8894 }
8895
8896 return note;
8897 }
8898
8899 /* For each register (hardware or pseudo) used within expression X, if its
8900 death is in an instruction with cuid between FROM_CUID (inclusive) and
8901 TO_INSN (exclusive), put a REG_DEAD note for that register in the
8902 list headed by PNOTES.
8903
8904 This is done when X is being merged by combination into TO_INSN. These
8905 notes will then be distributed as needed. */
8906
8907 static void
8908 move_deaths (x, from_cuid, to_insn, pnotes)
8909 rtx x;
8910 int from_cuid;
8911 rtx to_insn;
8912 rtx *pnotes;
8913 {
8914 register char *fmt;
8915 register int len, i;
8916 register enum rtx_code code = GET_CODE (x);
8917
8918 if (code == REG)
8919 {
8920 register int regno = REGNO (x);
8921 register rtx where_dead = reg_last_death[regno];
8922
8923 if (where_dead && INSN_CUID (where_dead) >= from_cuid
8924 && INSN_CUID (where_dead) < INSN_CUID (to_insn))
8925 {
8926 rtx note = remove_death (regno, reg_last_death[regno]);
8927
8928 /* It is possible for the call above to return 0. This can occur
8929 when reg_last_death points to I2 or I1 that we combined with.
8930 In that case make a new note. */
8931
8932 if (note)
8933 {
8934 XEXP (note, 1) = *pnotes;
8935 *pnotes = note;
8936 }
8937 else
8938 *pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
8939
8940 reg_n_deaths[regno]++;
8941 }
8942
8943 return;
8944 }
8945
8946 else if (GET_CODE (x) == SET)
8947 {
8948 rtx dest = SET_DEST (x);
8949
8950 move_deaths (SET_SRC (x), from_cuid, to_insn, pnotes);
8951
8952 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
8953 that accesses one word of a multi-word item, some
8954 piece of everything register in the expression is used by
8955 this insn, so remove any old death. */
8956
8957 if (GET_CODE (dest) == ZERO_EXTRACT
8958 || GET_CODE (dest) == STRICT_LOW_PART
8959 || (GET_CODE (dest) == SUBREG
8960 && (((GET_MODE_SIZE (GET_MODE (dest))
8961 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
8962 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
8963 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
8964 {
8965 move_deaths (dest, from_cuid, to_insn, pnotes);
8966 return;
8967 }
8968
8969 /* If this is some other SUBREG, we know it replaces the entire
8970 value, so use that as the destination. */
8971 if (GET_CODE (dest) == SUBREG)
8972 dest = SUBREG_REG (dest);
8973
8974 /* If this is a MEM, adjust deaths of anything used in the address.
8975 For a REG (the only other possibility), the entire value is
8976 being replaced so the old value is not used in this insn. */
8977
8978 if (GET_CODE (dest) == MEM)
8979 move_deaths (XEXP (dest, 0), from_cuid, to_insn, pnotes);
8980 return;
8981 }
8982
8983 else if (GET_CODE (x) == CLOBBER)
8984 return;
8985
8986 len = GET_RTX_LENGTH (code);
8987 fmt = GET_RTX_FORMAT (code);
8988
8989 for (i = 0; i < len; i++)
8990 {
8991 if (fmt[i] == 'E')
8992 {
8993 register int j;
8994 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8995 move_deaths (XVECEXP (x, i, j), from_cuid, to_insn, pnotes);
8996 }
8997 else if (fmt[i] == 'e')
8998 move_deaths (XEXP (x, i), from_cuid, to_insn, pnotes);
8999 }
9000 }
9001 \f
9002 /* Return 1 if X is the target of a bit-field assignment in BODY, the
9003 pattern of an insn. X must be a REG. */
9004
9005 static int
9006 reg_bitfield_target_p (x, body)
9007 rtx x;
9008 rtx body;
9009 {
9010 int i;
9011
9012 if (GET_CODE (body) == SET)
9013 {
9014 rtx dest = SET_DEST (body);
9015 rtx target;
9016 int regno, tregno, endregno, endtregno;
9017
9018 if (GET_CODE (dest) == ZERO_EXTRACT)
9019 target = XEXP (dest, 0);
9020 else if (GET_CODE (dest) == STRICT_LOW_PART)
9021 target = SUBREG_REG (XEXP (dest, 0));
9022 else
9023 return 0;
9024
9025 if (GET_CODE (target) == SUBREG)
9026 target = SUBREG_REG (target);
9027
9028 if (GET_CODE (target) != REG)
9029 return 0;
9030
9031 tregno = REGNO (target), regno = REGNO (x);
9032 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
9033 return target == x;
9034
9035 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
9036 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
9037
9038 return endregno > tregno && regno < endtregno;
9039 }
9040
9041 else if (GET_CODE (body) == PARALLEL)
9042 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
9043 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
9044 return 1;
9045
9046 return 0;
9047 }
9048 \f
9049 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
9050 as appropriate. I3 and I2 are the insns resulting from the combination
9051 insns including FROM (I2 may be zero).
9052
9053 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
9054 not need REG_DEAD notes because they are being substituted for. This
9055 saves searching in the most common cases.
9056
9057 Each note in the list is either ignored or placed on some insns, depending
9058 on the type of note. */
9059
9060 static void
9061 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
9062 rtx notes;
9063 rtx from_insn;
9064 rtx i3, i2;
9065 rtx elim_i2, elim_i1;
9066 {
9067 rtx note, next_note;
9068 rtx tem;
9069
9070 for (note = notes; note; note = next_note)
9071 {
9072 rtx place = 0, place2 = 0;
9073
9074 /* If this NOTE references a pseudo register, ensure it references
9075 the latest copy of that register. */
9076 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
9077 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
9078 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
9079
9080 next_note = XEXP (note, 1);
9081 switch (REG_NOTE_KIND (note))
9082 {
9083 case REG_UNUSED:
9084 /* If this register is set or clobbered in I3, put the note there
9085 unless there is one already. */
9086 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
9087 {
9088 if (! (GET_CODE (XEXP (note, 0)) == REG
9089 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
9090 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
9091 place = i3;
9092 }
9093 /* Otherwise, if this register is used by I3, then this register
9094 now dies here, so we must put a REG_DEAD note here unless there
9095 is one already. */
9096 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
9097 && ! (GET_CODE (XEXP (note, 0)) == REG
9098 ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
9099 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
9100 {
9101 PUT_REG_NOTE_KIND (note, REG_DEAD);
9102 place = i3;
9103 }
9104 break;
9105
9106 case REG_EQUAL:
9107 case REG_EQUIV:
9108 case REG_NONNEG:
9109 /* These notes say something about results of an insn. We can
9110 only support them if they used to be on I3 in which case they
9111 remain on I3. Otherwise they are ignored.
9112
9113 If the note refers to an expression that is not a constant, we
9114 must also ignore the note since we cannot tell whether the
9115 equivalence is still true. It might be possible to do
9116 slightly better than this (we only have a problem if I2DEST
9117 or I1DEST is present in the expression), but it doesn't
9118 seem worth the trouble. */
9119
9120 if (from_insn == i3
9121 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
9122 place = i3;
9123 break;
9124
9125 case REG_INC:
9126 case REG_NO_CONFLICT:
9127 case REG_LABEL:
9128 /* These notes say something about how a register is used. They must
9129 be present on any use of the register in I2 or I3. */
9130 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
9131 place = i3;
9132
9133 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
9134 {
9135 if (place)
9136 place2 = i2;
9137 else
9138 place = i2;
9139 }
9140 break;
9141
9142 case REG_WAS_0:
9143 /* It is too much trouble to try to see if this note is still
9144 correct in all situations. It is better to simply delete it. */
9145 break;
9146
9147 case REG_RETVAL:
9148 /* If the insn previously containing this note still exists,
9149 put it back where it was. Otherwise move it to the previous
9150 insn. Adjust the corresponding REG_LIBCALL note. */
9151 if (GET_CODE (from_insn) != NOTE)
9152 place = from_insn;
9153 else
9154 {
9155 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
9156 place = prev_real_insn (from_insn);
9157 if (tem && place)
9158 XEXP (tem, 0) = place;
9159 }
9160 break;
9161
9162 case REG_LIBCALL:
9163 /* This is handled similarly to REG_RETVAL. */
9164 if (GET_CODE (from_insn) != NOTE)
9165 place = from_insn;
9166 else
9167 {
9168 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
9169 place = next_real_insn (from_insn);
9170 if (tem && place)
9171 XEXP (tem, 0) = place;
9172 }
9173 break;
9174
9175 case REG_DEAD:
9176 /* If the register is used as an input in I3, it dies there.
9177 Similarly for I2, if it is non-zero and adjacent to I3.
9178
9179 If the register is not used as an input in either I3 or I2
9180 and it is not one of the registers we were supposed to eliminate,
9181 there are two possibilities. We might have a non-adjacent I2
9182 or we might have somehow eliminated an additional register
9183 from a computation. For example, we might have had A & B where
9184 we discover that B will always be zero. In this case we will
9185 eliminate the reference to A.
9186
9187 In both cases, we must search to see if we can find a previous
9188 use of A and put the death note there. */
9189
9190 if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
9191 place = i3;
9192 else if (i2 != 0 && next_nonnote_insn (i2) == i3
9193 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
9194 place = i2;
9195
9196 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
9197 break;
9198
9199 /* If the register is used in both I2 and I3 and it dies in I3,
9200 we might have added another reference to it. If reg_n_refs
9201 was 2, bump it to 3. This has to be correct since the
9202 register must have been set somewhere. The reason this is
9203 done is because local-alloc.c treats 2 references as a
9204 special case. */
9205
9206 if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
9207 && reg_n_refs[REGNO (XEXP (note, 0))]== 2
9208 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
9209 reg_n_refs[REGNO (XEXP (note, 0))] = 3;
9210
9211 if (place == 0)
9212 for (tem = prev_nonnote_insn (i3);
9213 tem && (GET_CODE (tem) == INSN
9214 || GET_CODE (tem) == CALL_INSN);
9215 tem = prev_nonnote_insn (tem))
9216 {
9217 /* If the register is being set at TEM, see if that is all
9218 TEM is doing. If so, delete TEM. Otherwise, make this
9219 into a REG_UNUSED note instead. */
9220 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
9221 {
9222 rtx set = single_set (tem);
9223
9224 /* Verify that it was the set, and not a clobber that
9225 modified the register. */
9226
9227 if (set != 0 && ! side_effects_p (SET_SRC (set))
9228 && rtx_equal_p (XEXP (note, 0), SET_DEST (set)))
9229 {
9230 /* Move the notes and links of TEM elsewhere.
9231 This might delete other dead insns recursively.
9232 First set the pattern to something that won't use
9233 any register. */
9234
9235 PATTERN (tem) = pc_rtx;
9236
9237 distribute_notes (REG_NOTES (tem), tem, tem,
9238 NULL_RTX, NULL_RTX, NULL_RTX);
9239 distribute_links (LOG_LINKS (tem));
9240
9241 PUT_CODE (tem, NOTE);
9242 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
9243 NOTE_SOURCE_FILE (tem) = 0;
9244 }
9245 else
9246 {
9247 PUT_REG_NOTE_KIND (note, REG_UNUSED);
9248
9249 /* If there isn't already a REG_UNUSED note, put one
9250 here. */
9251 if (! find_regno_note (tem, REG_UNUSED,
9252 REGNO (XEXP (note, 0))))
9253 place = tem;
9254 break;
9255 }
9256 }
9257 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem)))
9258 {
9259 place = tem;
9260 break;
9261 }
9262 }
9263
9264 /* If the register is set or already dead at PLACE, we needn't do
9265 anything with this note if it is still a REG_DEAD note.
9266
9267 Note that we cannot use just `dead_or_set_p' here since we can
9268 convert an assignment to a register into a bit-field assignment.
9269 Therefore, we must also omit the note if the register is the
9270 target of a bitfield assignment. */
9271
9272 if (place && REG_NOTE_KIND (note) == REG_DEAD)
9273 {
9274 int regno = REGNO (XEXP (note, 0));
9275
9276 if (dead_or_set_p (place, XEXP (note, 0))
9277 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
9278 {
9279 /* Unless the register previously died in PLACE, clear
9280 reg_last_death. [I no longer understand why this is
9281 being done.] */
9282 if (reg_last_death[regno] != place)
9283 reg_last_death[regno] = 0;
9284 place = 0;
9285 }
9286 else
9287 reg_last_death[regno] = place;
9288
9289 /* If this is a death note for a hard reg that is occupying
9290 multiple registers, ensure that we are still using all
9291 parts of the object. If we find a piece of the object
9292 that is unused, we must add a USE for that piece before
9293 PLACE and put the appropriate REG_DEAD note on it.
9294
9295 An alternative would be to put a REG_UNUSED for the pieces
9296 on the insn that set the register, but that can't be done if
9297 it is not in the same block. It is simpler, though less
9298 efficient, to add the USE insns. */
9299
9300 if (place && regno < FIRST_PSEUDO_REGISTER
9301 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
9302 {
9303 int endregno
9304 = regno + HARD_REGNO_NREGS (regno,
9305 GET_MODE (XEXP (note, 0)));
9306 int all_used = 1;
9307 int i;
9308
9309 for (i = regno; i < endregno; i++)
9310 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0))
9311 {
9312 rtx piece = gen_rtx (REG, word_mode, i);
9313 rtx p;
9314
9315 /* See if we already placed a USE note for this
9316 register in front of PLACE. */
9317 for (p = place;
9318 GET_CODE (PREV_INSN (p)) == INSN
9319 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
9320 p = PREV_INSN (p))
9321 if (rtx_equal_p (piece,
9322 XEXP (PATTERN (PREV_INSN (p)), 0)))
9323 {
9324 p = 0;
9325 break;
9326 }
9327
9328 if (p)
9329 {
9330 rtx use_insn
9331 = emit_insn_before (gen_rtx (USE, VOIDmode,
9332 piece),
9333 p);
9334 REG_NOTES (use_insn)
9335 = gen_rtx (EXPR_LIST, REG_DEAD, piece,
9336 REG_NOTES (use_insn));
9337 }
9338
9339 all_used = 0;
9340 }
9341
9342 if (! all_used)
9343 {
9344 /* Put only REG_DEAD notes for pieces that are
9345 still used and that are not already dead or set. */
9346
9347 for (i = regno; i < endregno; i++)
9348 {
9349 rtx piece = gen_rtx (REG, word_mode, i);
9350
9351 if (reg_referenced_p (piece, PATTERN (place))
9352 && ! dead_or_set_p (place, piece)
9353 && ! reg_bitfield_target_p (piece,
9354 PATTERN (place)))
9355 REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
9356 piece,
9357 REG_NOTES (place));
9358 }
9359
9360 place = 0;
9361 }
9362 }
9363 }
9364 break;
9365
9366 default:
9367 /* Any other notes should not be present at this point in the
9368 compilation. */
9369 abort ();
9370 }
9371
9372 if (place)
9373 {
9374 XEXP (note, 1) = REG_NOTES (place);
9375 REG_NOTES (place) = note;
9376 }
9377 else if ((REG_NOTE_KIND (note) == REG_DEAD
9378 || REG_NOTE_KIND (note) == REG_UNUSED)
9379 && GET_CODE (XEXP (note, 0)) == REG)
9380 reg_n_deaths[REGNO (XEXP (note, 0))]--;
9381
9382 if (place2)
9383 {
9384 if ((REG_NOTE_KIND (note) == REG_DEAD
9385 || REG_NOTE_KIND (note) == REG_UNUSED)
9386 && GET_CODE (XEXP (note, 0)) == REG)
9387 reg_n_deaths[REGNO (XEXP (note, 0))]++;
9388
9389 REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
9390 XEXP (note, 0), REG_NOTES (place2));
9391 }
9392 }
9393 }
9394 \f
9395 /* Similarly to above, distribute the LOG_LINKS that used to be present on
9396 I3, I2, and I1 to new locations. This is also called in one case to
9397 add a link pointing at I3 when I3's destination is changed. */
9398
9399 static void
9400 distribute_links (links)
9401 rtx links;
9402 {
9403 rtx link, next_link;
9404
9405 for (link = links; link; link = next_link)
9406 {
9407 rtx place = 0;
9408 rtx insn;
9409 rtx set, reg;
9410
9411 next_link = XEXP (link, 1);
9412
9413 /* If the insn that this link points to is a NOTE or isn't a single
9414 set, ignore it. In the latter case, it isn't clear what we
9415 can do other than ignore the link, since we can't tell which
9416 register it was for. Such links wouldn't be used by combine
9417 anyway.
9418
9419 It is not possible for the destination of the target of the link to
9420 have been changed by combine. The only potential of this is if we
9421 replace I3, I2, and I1 by I3 and I2. But in that case the
9422 destination of I2 also remains unchanged. */
9423
9424 if (GET_CODE (XEXP (link, 0)) == NOTE
9425 || (set = single_set (XEXP (link, 0))) == 0)
9426 continue;
9427
9428 reg = SET_DEST (set);
9429 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
9430 || GET_CODE (reg) == SIGN_EXTRACT
9431 || GET_CODE (reg) == STRICT_LOW_PART)
9432 reg = XEXP (reg, 0);
9433
9434 /* A LOG_LINK is defined as being placed on the first insn that uses
9435 a register and points to the insn that sets the register. Start
9436 searching at the next insn after the target of the link and stop
9437 when we reach a set of the register or the end of the basic block.
9438
9439 Note that this correctly handles the link that used to point from
9440 I3 to I2. Also note that not much searching is typically done here
9441 since most links don't point very far away. */
9442
9443 for (insn = NEXT_INSN (XEXP (link, 0));
9444 (insn && GET_CODE (insn) != CODE_LABEL
9445 && GET_CODE (PREV_INSN (insn)) != JUMP_INSN);
9446 insn = NEXT_INSN (insn))
9447 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
9448 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
9449 {
9450 if (reg_referenced_p (reg, PATTERN (insn)))
9451 place = insn;
9452 break;
9453 }
9454
9455 /* If we found a place to put the link, place it there unless there
9456 is already a link to the same insn as LINK at that point. */
9457
9458 if (place)
9459 {
9460 rtx link2;
9461
9462 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
9463 if (XEXP (link2, 0) == XEXP (link, 0))
9464 break;
9465
9466 if (link2 == 0)
9467 {
9468 XEXP (link, 1) = LOG_LINKS (place);
9469 LOG_LINKS (place) = link;
9470 }
9471 }
9472 }
9473 }
9474 \f
9475 void
9476 dump_combine_stats (file)
9477 FILE *file;
9478 {
9479 fprintf
9480 (file,
9481 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
9482 combine_attempts, combine_merges, combine_extras, combine_successes);
9483 }
9484
9485 void
9486 dump_combine_total_stats (file)
9487 FILE *file;
9488 {
9489 fprintf
9490 (file,
9491 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
9492 total_attempts, total_merges, total_extras, total_successes);
9493 }
This page took 0.533194 seconds and 6 git commands to generate.