]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
re PR rtl-optimization/22258 (combine causes spill failure on return value register)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
99 #include "timevar.h"
100 #include "tree-pass.h"
101
102 /* Number of attempts to combine instructions in this function. */
103
104 static int combine_attempts;
105
106 /* Number of attempts that got as far as substitution in this function. */
107
108 static int combine_merges;
109
110 /* Number of instructions combined with added SETs in this function. */
111
112 static int combine_extras;
113
114 /* Number of instructions combined in this function. */
115
116 static int combine_successes;
117
118 /* Totals over entire compilation. */
119
120 static int total_attempts, total_merges, total_extras, total_successes;
121
122 \f
123 /* Vector mapping INSN_UIDs to cuids.
124 The cuids are like uids but increase monotonically always.
125 Combine always uses cuids so that it can compare them.
126 But actually renumbering the uids, which we used to do,
127 proves to be a bad idea because it makes it hard to compare
128 the dumps produced by earlier passes with those from later passes. */
129
130 static int *uid_cuid;
131 static int max_uid_cuid;
132
133 /* Get the cuid of an insn. */
134
135 #define INSN_CUID(INSN) \
136 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
137
138 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
139 BITS_PER_WORD would invoke undefined behavior. Work around it. */
140
141 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
142 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
143
144 /* Maximum register number, which is the size of the tables below. */
145
146 static unsigned int combine_max_regno;
147
148 struct reg_stat {
149 /* Record last point of death of (hard or pseudo) register n. */
150 rtx last_death;
151
152 /* Record last point of modification of (hard or pseudo) register n. */
153 rtx last_set;
154
155 /* The next group of fields allows the recording of the last value assigned
156 to (hard or pseudo) register n. We use this information to see if an
157 operation being processed is redundant given a prior operation performed
158 on the register. For example, an `and' with a constant is redundant if
159 all the zero bits are already known to be turned off.
160
161 We use an approach similar to that used by cse, but change it in the
162 following ways:
163
164 (1) We do not want to reinitialize at each label.
165 (2) It is useful, but not critical, to know the actual value assigned
166 to a register. Often just its form is helpful.
167
168 Therefore, we maintain the following fields:
169
170 last_set_value the last value assigned
171 last_set_label records the value of label_tick when the
172 register was assigned
173 last_set_table_tick records the value of label_tick when a
174 value using the register is assigned
175 last_set_invalid set to nonzero when it is not valid
176 to use the value of this register in some
177 register's value
178
179 To understand the usage of these tables, it is important to understand
180 the distinction between the value in last_set_value being valid and
181 the register being validly contained in some other expression in the
182 table.
183
184 (The next two parameters are out of date).
185
186 reg_stat[i].last_set_value is valid if it is nonzero, and either
187 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188
189 Register I may validly appear in any expression returned for the value
190 of another register if reg_n_sets[i] is 1. It may also appear in the
191 value for register J if reg_stat[j].last_set_invalid is zero, or
192 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193
194 If an expression is found in the table containing a register which may
195 not validly appear in an expression, the register is replaced by
196 something that won't match, (clobber (const_int 0)). */
197
198 /* Record last value assigned to (hard or pseudo) register n. */
199
200 rtx last_set_value;
201
202 /* Record the value of label_tick when an expression involving register n
203 is placed in last_set_value. */
204
205 int last_set_table_tick;
206
207 /* Record the value of label_tick when the value for register n is placed in
208 last_set_value. */
209
210 int last_set_label;
211
212 /* These fields are maintained in parallel with last_set_value and are
213 used to store the mode in which the register was last set, the bits
214 that were known to be zero when it was last set, and the number of
215 sign bits copies it was known to have when it was last set. */
216
217 unsigned HOST_WIDE_INT last_set_nonzero_bits;
218 char last_set_sign_bit_copies;
219 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
220
221 /* Set nonzero if references to register n in expressions should not be
222 used. last_set_invalid is set nonzero when this register is being
223 assigned to and last_set_table_tick == label_tick. */
224
225 char last_set_invalid;
226
227 /* Some registers that are set more than once and used in more than one
228 basic block are nevertheless always set in similar ways. For example,
229 a QImode register may be loaded from memory in two places on a machine
230 where byte loads zero extend.
231
232 We record in the following fields if a register has some leading bits
233 that are always equal to the sign bit, and what we know about the
234 nonzero bits of a register, specifically which bits are known to be
235 zero.
236
237 If an entry is zero, it means that we don't know anything special. */
238
239 unsigned char sign_bit_copies;
240
241 unsigned HOST_WIDE_INT nonzero_bits;
242 };
243
244 static struct reg_stat *reg_stat;
245
246 /* Record the cuid of the last insn that invalidated memory
247 (anything that writes memory, and subroutine calls, but not pushes). */
248
249 static int mem_last_set;
250
251 /* Record the cuid of the last CALL_INSN
252 so we can tell whether a potential combination crosses any calls. */
253
254 static int last_call_cuid;
255
256 /* When `subst' is called, this is the insn that is being modified
257 (by combining in a previous insn). The PATTERN of this insn
258 is still the old pattern partially modified and it should not be
259 looked at, but this may be used to examine the successors of the insn
260 to judge whether a simplification is valid. */
261
262 static rtx subst_insn;
263
264 /* This is the lowest CUID that `subst' is currently dealing with.
265 get_last_value will not return a value if the register was set at or
266 after this CUID. If not for this mechanism, we could get confused if
267 I2 or I1 in try_combine were an insn that used the old value of a register
268 to obtain a new value. In that case, we might erroneously get the
269 new value of the register when we wanted the old one. */
270
271 static int subst_low_cuid;
272
273 /* This contains any hard registers that are used in newpat; reg_dead_at_p
274 must consider all these registers to be always live. */
275
276 static HARD_REG_SET newpat_used_regs;
277
278 /* This is an insn to which a LOG_LINKS entry has been added. If this
279 insn is the earlier than I2 or I3, combine should rescan starting at
280 that location. */
281
282 static rtx added_links_insn;
283
284 /* Basic block in which we are performing combines. */
285 static basic_block this_basic_block;
286
287 /* A bitmap indicating which blocks had registers go dead at entry.
288 After combine, we'll need to re-do global life analysis with
289 those blocks as starting points. */
290 static sbitmap refresh_blocks;
291 \f
292 /* The following array records the insn_rtx_cost for every insn
293 in the instruction stream. */
294
295 static int *uid_insn_cost;
296
297 /* Length of the currently allocated uid_insn_cost array. */
298
299 static int last_insn_cost;
300
301 /* Incremented for each label. */
302
303 static int label_tick;
304
305 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
306 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
307
308 static enum machine_mode nonzero_bits_mode;
309
310 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
311 be safely used. It is zero while computing them and after combine has
312 completed. This former test prevents propagating values based on
313 previously set values, which can be incorrect if a variable is modified
314 in a loop. */
315
316 static int nonzero_sign_valid;
317
318 \f
319 /* Record one modification to rtl structure
320 to be undone by storing old_contents into *where.
321 is_int is 1 if the contents are an int. */
322
323 struct undo
324 {
325 struct undo *next;
326 int is_int;
327 union {rtx r; int i;} old_contents;
328 union {rtx *r; int *i;} where;
329 };
330
331 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
332 num_undo says how many are currently recorded.
333
334 other_insn is nonzero if we have modified some other insn in the process
335 of working on subst_insn. It must be verified too. */
336
337 struct undobuf
338 {
339 struct undo *undos;
340 struct undo *frees;
341 rtx other_insn;
342 };
343
344 static struct undobuf undobuf;
345
346 /* Number of times the pseudo being substituted for
347 was found and replaced. */
348
349 static int n_occurrences;
350
351 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
352 enum machine_mode,
353 unsigned HOST_WIDE_INT,
354 unsigned HOST_WIDE_INT *);
355 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned int, unsigned int *);
358 static void do_SUBST (rtx *, rtx);
359 static void do_SUBST_INT (int *, int);
360 static void init_reg_last (void);
361 static void setup_incoming_promotions (void);
362 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
363 static int cant_combine_insn_p (rtx);
364 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
365 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
366 static int contains_muldiv (rtx);
367 static rtx try_combine (rtx, rtx, rtx, int *);
368 static void undo_all (void);
369 static void undo_commit (void);
370 static rtx *find_split_point (rtx *, rtx);
371 static rtx subst (rtx, rtx, rtx, int, int);
372 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
373 static rtx simplify_if_then_else (rtx);
374 static rtx simplify_set (rtx);
375 static rtx simplify_logical (rtx);
376 static rtx expand_compound_operation (rtx);
377 static rtx expand_field_assignment (rtx);
378 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
379 rtx, unsigned HOST_WIDE_INT, int, int, int);
380 static rtx extract_left_shift (rtx, int);
381 static rtx make_compound_operation (rtx, enum rtx_code);
382 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
383 unsigned HOST_WIDE_INT *);
384 static rtx force_to_mode (rtx, enum machine_mode,
385 unsigned HOST_WIDE_INT, rtx, int);
386 static rtx if_then_else_cond (rtx, rtx *, rtx *);
387 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
388 static int rtx_equal_for_field_assignment_p (rtx, rtx);
389 static rtx make_field_assignment (rtx);
390 static rtx apply_distributive_law (rtx);
391 static rtx distribute_and_simplify_rtx (rtx, int);
392 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
393 unsigned HOST_WIDE_INT);
394 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
395 HOST_WIDE_INT, enum machine_mode, int *);
396 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
397 int);
398 static int recog_for_combine (rtx *, rtx, rtx *);
399 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
400 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
401 static void update_table_tick (rtx);
402 static void record_value_for_reg (rtx, rtx, rtx);
403 static void check_promoted_subreg (rtx, rtx);
404 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
405 static void record_dead_and_set_regs (rtx);
406 static int get_last_value_validate (rtx *, rtx, int, int);
407 static rtx get_last_value (rtx);
408 static int use_crosses_set_p (rtx, int);
409 static void reg_dead_at_p_1 (rtx, rtx, void *);
410 static int reg_dead_at_p (rtx, rtx);
411 static void move_deaths (rtx, rtx, int, rtx, rtx *);
412 static int reg_bitfield_target_p (rtx, rtx);
413 static void distribute_notes (rtx, rtx, rtx, rtx);
414 static void distribute_links (rtx);
415 static void mark_used_regs_combine (rtx);
416 static int insn_cuid (rtx);
417 static void record_promoted_value (rtx, rtx);
418 static int unmentioned_reg_p_1 (rtx *, void *);
419 static bool unmentioned_reg_p (rtx, rtx);
420 \f
421
422 /* It is not safe to use ordinary gen_lowpart in combine.
423 See comments in gen_lowpart_for_combine. */
424 #undef RTL_HOOKS_GEN_LOWPART
425 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
426
427 /* Our implementation of gen_lowpart never emits a new pseudo. */
428 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
429 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
430
431 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
432 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
433
434 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
435 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
436
437 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
438
439 \f
440 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
441 insn. The substitution can be undone by undo_all. If INTO is already
442 set to NEWVAL, do not record this change. Because computing NEWVAL might
443 also call SUBST, we have to compute it before we put anything into
444 the undo table. */
445
446 static void
447 do_SUBST (rtx *into, rtx newval)
448 {
449 struct undo *buf;
450 rtx oldval = *into;
451
452 if (oldval == newval)
453 return;
454
455 /* We'd like to catch as many invalid transformations here as
456 possible. Unfortunately, there are way too many mode changes
457 that are perfectly valid, so we'd waste too much effort for
458 little gain doing the checks here. Focus on catching invalid
459 transformations involving integer constants. */
460 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
461 && GET_CODE (newval) == CONST_INT)
462 {
463 /* Sanity check that we're replacing oldval with a CONST_INT
464 that is a valid sign-extension for the original mode. */
465 gcc_assert (INTVAL (newval)
466 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
467
468 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
469 CONST_INT is not valid, because after the replacement, the
470 original mode would be gone. Unfortunately, we can't tell
471 when do_SUBST is called to replace the operand thereof, so we
472 perform this test on oldval instead, checking whether an
473 invalid replacement took place before we got here. */
474 gcc_assert (!(GET_CODE (oldval) == SUBREG
475 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
476 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
477 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
478 }
479
480 if (undobuf.frees)
481 buf = undobuf.frees, undobuf.frees = buf->next;
482 else
483 buf = xmalloc (sizeof (struct undo));
484
485 buf->is_int = 0;
486 buf->where.r = into;
487 buf->old_contents.r = oldval;
488 *into = newval;
489
490 buf->next = undobuf.undos, undobuf.undos = buf;
491 }
492
493 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
494
495 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
496 for the value of a HOST_WIDE_INT value (including CONST_INT) is
497 not safe. */
498
499 static void
500 do_SUBST_INT (int *into, int newval)
501 {
502 struct undo *buf;
503 int oldval = *into;
504
505 if (oldval == newval)
506 return;
507
508 if (undobuf.frees)
509 buf = undobuf.frees, undobuf.frees = buf->next;
510 else
511 buf = xmalloc (sizeof (struct undo));
512
513 buf->is_int = 1;
514 buf->where.i = into;
515 buf->old_contents.i = oldval;
516 *into = newval;
517
518 buf->next = undobuf.undos, undobuf.undos = buf;
519 }
520
521 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
522 \f
523 /* Subroutine of try_combine. Determine whether the combine replacement
524 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
525 that the original instruction sequence I1, I2 and I3. Note that I1
526 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
527 costs of all instructions can be estimated, and the replacements are
528 more expensive than the original sequence. */
529
530 static bool
531 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
532 {
533 int i1_cost, i2_cost, i3_cost;
534 int new_i2_cost, new_i3_cost;
535 int old_cost, new_cost;
536
537 /* Lookup the original insn_rtx_costs. */
538 i2_cost = INSN_UID (i2) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i2)] : 0;
540 i3_cost = INSN_UID (i3) <= last_insn_cost
541 ? uid_insn_cost[INSN_UID (i3)] : 0;
542
543 if (i1)
544 {
545 i1_cost = INSN_UID (i1) <= last_insn_cost
546 ? uid_insn_cost[INSN_UID (i1)] : 0;
547 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
548 ? i1_cost + i2_cost + i3_cost : 0;
549 }
550 else
551 {
552 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
553 i1_cost = 0;
554 }
555
556 /* Calculate the replacement insn_rtx_costs. */
557 new_i3_cost = insn_rtx_cost (newpat);
558 if (newi2pat)
559 {
560 new_i2_cost = insn_rtx_cost (newi2pat);
561 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
562 ? new_i2_cost + new_i3_cost : 0;
563 }
564 else
565 {
566 new_cost = new_i3_cost;
567 new_i2_cost = 0;
568 }
569
570 if (undobuf.other_insn)
571 {
572 int old_other_cost, new_other_cost;
573
574 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
575 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
576 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
577 if (old_other_cost > 0 && new_other_cost > 0)
578 {
579 old_cost += old_other_cost;
580 new_cost += new_other_cost;
581 }
582 else
583 old_cost = 0;
584 }
585
586 /* Disallow this recombination if both new_cost and old_cost are
587 greater than zero, and new_cost is greater than old cost. */
588 if (old_cost > 0
589 && new_cost > old_cost)
590 {
591 if (dump_file)
592 {
593 if (i1)
594 {
595 fprintf (dump_file,
596 "rejecting combination of insns %d, %d and %d\n",
597 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
598 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
599 i1_cost, i2_cost, i3_cost, old_cost);
600 }
601 else
602 {
603 fprintf (dump_file,
604 "rejecting combination of insns %d and %d\n",
605 INSN_UID (i2), INSN_UID (i3));
606 fprintf (dump_file, "original costs %d + %d = %d\n",
607 i2_cost, i3_cost, old_cost);
608 }
609
610 if (newi2pat)
611 {
612 fprintf (dump_file, "replacement costs %d + %d = %d\n",
613 new_i2_cost, new_i3_cost, new_cost);
614 }
615 else
616 fprintf (dump_file, "replacement cost %d\n", new_cost);
617 }
618
619 return false;
620 }
621
622 /* Update the uid_insn_cost array with the replacement costs. */
623 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
624 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
625 if (i1)
626 uid_insn_cost[INSN_UID (i1)] = 0;
627
628 return true;
629 }
630 \f
631 /* Main entry point for combiner. F is the first insn of the function.
632 NREGS is the first unused pseudo-reg number.
633
634 Return nonzero if the combiner has turned an indirect jump
635 instruction into a direct jump. */
636 int
637 combine_instructions (rtx f, unsigned int nregs)
638 {
639 rtx insn, next;
640 #ifdef HAVE_cc0
641 rtx prev;
642 #endif
643 int i;
644 unsigned int j = 0;
645 rtx links, nextlinks;
646 sbitmap_iterator sbi;
647
648 int new_direct_jump_p = 0;
649
650 combine_attempts = 0;
651 combine_merges = 0;
652 combine_extras = 0;
653 combine_successes = 0;
654
655 combine_max_regno = nregs;
656
657 rtl_hooks = combine_rtl_hooks;
658
659 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
660
661 init_recog_no_volatile ();
662
663 /* Compute maximum uid value so uid_cuid can be allocated. */
664
665 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
666 if (INSN_UID (insn) > i)
667 i = INSN_UID (insn);
668
669 uid_cuid = xmalloc ((i + 1) * sizeof (int));
670 max_uid_cuid = i;
671
672 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
673
674 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
675 problems when, for example, we have j <<= 1 in a loop. */
676
677 nonzero_sign_valid = 0;
678
679 /* Compute the mapping from uids to cuids.
680 Cuids are numbers assigned to insns, like uids,
681 except that cuids increase monotonically through the code.
682
683 Scan all SETs and see if we can deduce anything about what
684 bits are known to be zero for some registers and how many copies
685 of the sign bit are known to exist for those registers.
686
687 Also set any known values so that we can use it while searching
688 for what bits are known to be set. */
689
690 label_tick = 1;
691
692 setup_incoming_promotions ();
693
694 refresh_blocks = sbitmap_alloc (last_basic_block);
695 sbitmap_zero (refresh_blocks);
696
697 /* Allocate array of current insn_rtx_costs. */
698 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
699 last_insn_cost = max_uid_cuid;
700
701 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
702 {
703 uid_cuid[INSN_UID (insn)] = ++i;
704 subst_low_cuid = i;
705 subst_insn = insn;
706
707 if (INSN_P (insn))
708 {
709 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
710 NULL);
711 record_dead_and_set_regs (insn);
712
713 #ifdef AUTO_INC_DEC
714 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
715 if (REG_NOTE_KIND (links) == REG_INC)
716 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
717 NULL);
718 #endif
719
720 /* Record the current insn_rtx_cost of this instruction. */
721 if (NONJUMP_INSN_P (insn))
722 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
723 if (dump_file)
724 fprintf(dump_file, "insn_cost %d: %d\n",
725 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
726 }
727
728 if (LABEL_P (insn))
729 label_tick++;
730 }
731
732 nonzero_sign_valid = 1;
733
734 /* Now scan all the insns in forward order. */
735
736 label_tick = 1;
737 last_call_cuid = 0;
738 mem_last_set = 0;
739 init_reg_last ();
740 setup_incoming_promotions ();
741
742 FOR_EACH_BB (this_basic_block)
743 {
744 for (insn = BB_HEAD (this_basic_block);
745 insn != NEXT_INSN (BB_END (this_basic_block));
746 insn = next ? next : NEXT_INSN (insn))
747 {
748 next = 0;
749
750 if (LABEL_P (insn))
751 label_tick++;
752
753 else if (INSN_P (insn))
754 {
755 /* See if we know about function return values before this
756 insn based upon SUBREG flags. */
757 check_promoted_subreg (insn, PATTERN (insn));
758
759 /* Try this insn with each insn it links back to. */
760
761 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
762 if ((next = try_combine (insn, XEXP (links, 0),
763 NULL_RTX, &new_direct_jump_p)) != 0)
764 goto retry;
765
766 /* Try each sequence of three linked insns ending with this one. */
767
768 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
769 {
770 rtx link = XEXP (links, 0);
771
772 /* If the linked insn has been replaced by a note, then there
773 is no point in pursuing this chain any further. */
774 if (NOTE_P (link))
775 continue;
776
777 for (nextlinks = LOG_LINKS (link);
778 nextlinks;
779 nextlinks = XEXP (nextlinks, 1))
780 if ((next = try_combine (insn, link,
781 XEXP (nextlinks, 0),
782 &new_direct_jump_p)) != 0)
783 goto retry;
784 }
785
786 #ifdef HAVE_cc0
787 /* Try to combine a jump insn that uses CC0
788 with a preceding insn that sets CC0, and maybe with its
789 logical predecessor as well.
790 This is how we make decrement-and-branch insns.
791 We need this special code because data flow connections
792 via CC0 do not get entered in LOG_LINKS. */
793
794 if (JUMP_P (insn)
795 && (prev = prev_nonnote_insn (insn)) != 0
796 && NONJUMP_INSN_P (prev)
797 && sets_cc0_p (PATTERN (prev)))
798 {
799 if ((next = try_combine (insn, prev,
800 NULL_RTX, &new_direct_jump_p)) != 0)
801 goto retry;
802
803 for (nextlinks = LOG_LINKS (prev); nextlinks;
804 nextlinks = XEXP (nextlinks, 1))
805 if ((next = try_combine (insn, prev,
806 XEXP (nextlinks, 0),
807 &new_direct_jump_p)) != 0)
808 goto retry;
809 }
810
811 /* Do the same for an insn that explicitly references CC0. */
812 if (NONJUMP_INSN_P (insn)
813 && (prev = prev_nonnote_insn (insn)) != 0
814 && NONJUMP_INSN_P (prev)
815 && sets_cc0_p (PATTERN (prev))
816 && GET_CODE (PATTERN (insn)) == SET
817 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
818 {
819 if ((next = try_combine (insn, prev,
820 NULL_RTX, &new_direct_jump_p)) != 0)
821 goto retry;
822
823 for (nextlinks = LOG_LINKS (prev); nextlinks;
824 nextlinks = XEXP (nextlinks, 1))
825 if ((next = try_combine (insn, prev,
826 XEXP (nextlinks, 0),
827 &new_direct_jump_p)) != 0)
828 goto retry;
829 }
830
831 /* Finally, see if any of the insns that this insn links to
832 explicitly references CC0. If so, try this insn, that insn,
833 and its predecessor if it sets CC0. */
834 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
835 if (NONJUMP_INSN_P (XEXP (links, 0))
836 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
837 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
838 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
839 && NONJUMP_INSN_P (prev)
840 && sets_cc0_p (PATTERN (prev))
841 && (next = try_combine (insn, XEXP (links, 0),
842 prev, &new_direct_jump_p)) != 0)
843 goto retry;
844 #endif
845
846 /* Try combining an insn with two different insns whose results it
847 uses. */
848 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
849 for (nextlinks = XEXP (links, 1); nextlinks;
850 nextlinks = XEXP (nextlinks, 1))
851 if ((next = try_combine (insn, XEXP (links, 0),
852 XEXP (nextlinks, 0),
853 &new_direct_jump_p)) != 0)
854 goto retry;
855
856 /* Try this insn with each REG_EQUAL note it links back to. */
857 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
858 {
859 rtx set, note;
860 rtx temp = XEXP (links, 0);
861 if ((set = single_set (temp)) != 0
862 && (note = find_reg_equal_equiv_note (temp)) != 0
863 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
864 /* Avoid using a register that may already been marked
865 dead by an earlier instruction. */
866 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
867 {
868 /* Temporarily replace the set's source with the
869 contents of the REG_EQUAL note. The insn will
870 be deleted or recognized by try_combine. */
871 rtx orig = SET_SRC (set);
872 SET_SRC (set) = XEXP (note, 0);
873 next = try_combine (insn, temp, NULL_RTX,
874 &new_direct_jump_p);
875 if (next)
876 goto retry;
877 SET_SRC (set) = orig;
878 }
879 }
880
881 if (!NOTE_P (insn))
882 record_dead_and_set_regs (insn);
883
884 retry:
885 ;
886 }
887 }
888 }
889 clear_bb_flags ();
890
891 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
892 BASIC_BLOCK (j)->flags |= BB_DIRTY;
893 new_direct_jump_p |= purge_all_dead_edges ();
894 delete_noop_moves ();
895
896 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
897 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
898 | PROP_KILL_DEAD_CODE);
899
900 /* Clean up. */
901 sbitmap_free (refresh_blocks);
902 free (uid_insn_cost);
903 free (reg_stat);
904 free (uid_cuid);
905
906 {
907 struct undo *undo, *next;
908 for (undo = undobuf.frees; undo; undo = next)
909 {
910 next = undo->next;
911 free (undo);
912 }
913 undobuf.frees = 0;
914 }
915
916 total_attempts += combine_attempts;
917 total_merges += combine_merges;
918 total_extras += combine_extras;
919 total_successes += combine_successes;
920
921 nonzero_sign_valid = 0;
922 rtl_hooks = general_rtl_hooks;
923
924 /* Make recognizer allow volatile MEMs again. */
925 init_recog ();
926
927 return new_direct_jump_p;
928 }
929
930 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
931
932 static void
933 init_reg_last (void)
934 {
935 unsigned int i;
936 for (i = 0; i < combine_max_regno; i++)
937 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
938 }
939 \f
940 /* Set up any promoted values for incoming argument registers. */
941
942 static void
943 setup_incoming_promotions (void)
944 {
945 unsigned int regno;
946 rtx reg;
947 enum machine_mode mode;
948 int unsignedp;
949 rtx first = get_insns ();
950
951 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
952 {
953 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
954 /* Check whether this register can hold an incoming pointer
955 argument. FUNCTION_ARG_REGNO_P tests outgoing register
956 numbers, so translate if necessary due to register windows. */
957 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
958 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
959 {
960 record_value_for_reg
961 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
962 : SIGN_EXTEND),
963 GET_MODE (reg),
964 gen_rtx_CLOBBER (mode, const0_rtx)));
965 }
966 }
967 }
968 \f
969 /* Called via note_stores. If X is a pseudo that is narrower than
970 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
971
972 If we are setting only a portion of X and we can't figure out what
973 portion, assume all bits will be used since we don't know what will
974 be happening.
975
976 Similarly, set how many bits of X are known to be copies of the sign bit
977 at all locations in the function. This is the smallest number implied
978 by any set of X. */
979
980 static void
981 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
982 void *data ATTRIBUTE_UNUSED)
983 {
984 unsigned int num;
985
986 if (REG_P (x)
987 && REGNO (x) >= FIRST_PSEUDO_REGISTER
988 /* If this register is undefined at the start of the file, we can't
989 say what its contents were. */
990 && ! REGNO_REG_SET_P
991 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
992 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
993 {
994 if (set == 0 || GET_CODE (set) == CLOBBER)
995 {
996 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
997 reg_stat[REGNO (x)].sign_bit_copies = 1;
998 return;
999 }
1000
1001 /* If this is a complex assignment, see if we can convert it into a
1002 simple assignment. */
1003 set = expand_field_assignment (set);
1004
1005 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1006 set what we know about X. */
1007
1008 if (SET_DEST (set) == x
1009 || (GET_CODE (SET_DEST (set)) == SUBREG
1010 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1011 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1012 && SUBREG_REG (SET_DEST (set)) == x))
1013 {
1014 rtx src = SET_SRC (set);
1015
1016 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1017 /* If X is narrower than a word and SRC is a non-negative
1018 constant that would appear negative in the mode of X,
1019 sign-extend it for use in reg_stat[].nonzero_bits because some
1020 machines (maybe most) will actually do the sign-extension
1021 and this is the conservative approach.
1022
1023 ??? For 2.5, try to tighten up the MD files in this regard
1024 instead of this kludge. */
1025
1026 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1027 && GET_CODE (src) == CONST_INT
1028 && INTVAL (src) > 0
1029 && 0 != (INTVAL (src)
1030 & ((HOST_WIDE_INT) 1
1031 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1032 src = GEN_INT (INTVAL (src)
1033 | ((HOST_WIDE_INT) (-1)
1034 << GET_MODE_BITSIZE (GET_MODE (x))));
1035 #endif
1036
1037 /* Don't call nonzero_bits if it cannot change anything. */
1038 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1039 reg_stat[REGNO (x)].nonzero_bits
1040 |= nonzero_bits (src, nonzero_bits_mode);
1041 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1042 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1043 || reg_stat[REGNO (x)].sign_bit_copies > num)
1044 reg_stat[REGNO (x)].sign_bit_copies = num;
1045 }
1046 else
1047 {
1048 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1049 reg_stat[REGNO (x)].sign_bit_copies = 1;
1050 }
1051 }
1052 }
1053 \f
1054 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1055 insns that were previously combined into I3 or that will be combined
1056 into the merger of INSN and I3.
1057
1058 Return 0 if the combination is not allowed for any reason.
1059
1060 If the combination is allowed, *PDEST will be set to the single
1061 destination of INSN and *PSRC to the single source, and this function
1062 will return 1. */
1063
1064 static int
1065 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1066 rtx *pdest, rtx *psrc)
1067 {
1068 int i;
1069 rtx set = 0, src, dest;
1070 rtx p;
1071 #ifdef AUTO_INC_DEC
1072 rtx link;
1073 #endif
1074 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1075 && next_active_insn (succ) == i3)
1076 : next_active_insn (insn) == i3);
1077
1078 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1079 or a PARALLEL consisting of such a SET and CLOBBERs.
1080
1081 If INSN has CLOBBER parallel parts, ignore them for our processing.
1082 By definition, these happen during the execution of the insn. When it
1083 is merged with another insn, all bets are off. If they are, in fact,
1084 needed and aren't also supplied in I3, they may be added by
1085 recog_for_combine. Otherwise, it won't match.
1086
1087 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1088 note.
1089
1090 Get the source and destination of INSN. If more than one, can't
1091 combine. */
1092
1093 if (GET_CODE (PATTERN (insn)) == SET)
1094 set = PATTERN (insn);
1095 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1096 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1097 {
1098 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1099 {
1100 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1101 rtx note;
1102
1103 switch (GET_CODE (elt))
1104 {
1105 /* This is important to combine floating point insns
1106 for the SH4 port. */
1107 case USE:
1108 /* Combining an isolated USE doesn't make sense.
1109 We depend here on combinable_i3pat to reject them. */
1110 /* The code below this loop only verifies that the inputs of
1111 the SET in INSN do not change. We call reg_set_between_p
1112 to verify that the REG in the USE does not change between
1113 I3 and INSN.
1114 If the USE in INSN was for a pseudo register, the matching
1115 insn pattern will likely match any register; combining this
1116 with any other USE would only be safe if we knew that the
1117 used registers have identical values, or if there was
1118 something to tell them apart, e.g. different modes. For
1119 now, we forgo such complicated tests and simply disallow
1120 combining of USES of pseudo registers with any other USE. */
1121 if (REG_P (XEXP (elt, 0))
1122 && GET_CODE (PATTERN (i3)) == PARALLEL)
1123 {
1124 rtx i3pat = PATTERN (i3);
1125 int i = XVECLEN (i3pat, 0) - 1;
1126 unsigned int regno = REGNO (XEXP (elt, 0));
1127
1128 do
1129 {
1130 rtx i3elt = XVECEXP (i3pat, 0, i);
1131
1132 if (GET_CODE (i3elt) == USE
1133 && REG_P (XEXP (i3elt, 0))
1134 && (REGNO (XEXP (i3elt, 0)) == regno
1135 ? reg_set_between_p (XEXP (elt, 0),
1136 PREV_INSN (insn), i3)
1137 : regno >= FIRST_PSEUDO_REGISTER))
1138 return 0;
1139 }
1140 while (--i >= 0);
1141 }
1142 break;
1143
1144 /* We can ignore CLOBBERs. */
1145 case CLOBBER:
1146 break;
1147
1148 case SET:
1149 /* Ignore SETs whose result isn't used but not those that
1150 have side-effects. */
1151 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1152 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1153 || INTVAL (XEXP (note, 0)) <= 0)
1154 && ! side_effects_p (elt))
1155 break;
1156
1157 /* If we have already found a SET, this is a second one and
1158 so we cannot combine with this insn. */
1159 if (set)
1160 return 0;
1161
1162 set = elt;
1163 break;
1164
1165 default:
1166 /* Anything else means we can't combine. */
1167 return 0;
1168 }
1169 }
1170
1171 if (set == 0
1172 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1173 so don't do anything with it. */
1174 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1175 return 0;
1176 }
1177 else
1178 return 0;
1179
1180 if (set == 0)
1181 return 0;
1182
1183 set = expand_field_assignment (set);
1184 src = SET_SRC (set), dest = SET_DEST (set);
1185
1186 /* Don't eliminate a store in the stack pointer. */
1187 if (dest == stack_pointer_rtx
1188 /* Don't combine with an insn that sets a register to itself if it has
1189 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1190 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1191 /* Can't merge an ASM_OPERANDS. */
1192 || GET_CODE (src) == ASM_OPERANDS
1193 /* Can't merge a function call. */
1194 || GET_CODE (src) == CALL
1195 /* Don't eliminate a function call argument. */
1196 || (CALL_P (i3)
1197 && (find_reg_fusage (i3, USE, dest)
1198 || (REG_P (dest)
1199 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1200 && global_regs[REGNO (dest)])))
1201 /* Don't substitute into an incremented register. */
1202 || FIND_REG_INC_NOTE (i3, dest)
1203 || (succ && FIND_REG_INC_NOTE (succ, dest))
1204 /* Don't substitute into a non-local goto, this confuses CFG. */
1205 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1206 #if 0
1207 /* Don't combine the end of a libcall into anything. */
1208 /* ??? This gives worse code, and appears to be unnecessary, since no
1209 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1210 use REG_RETVAL notes for noconflict blocks, but other code here
1211 makes sure that those insns don't disappear. */
1212 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1213 #endif
1214 /* Make sure that DEST is not used after SUCC but before I3. */
1215 || (succ && ! all_adjacent
1216 && reg_used_between_p (dest, succ, i3))
1217 /* Make sure that the value that is to be substituted for the register
1218 does not use any registers whose values alter in between. However,
1219 If the insns are adjacent, a use can't cross a set even though we
1220 think it might (this can happen for a sequence of insns each setting
1221 the same destination; last_set of that register might point to
1222 a NOTE). If INSN has a REG_EQUIV note, the register is always
1223 equivalent to the memory so the substitution is valid even if there
1224 are intervening stores. Also, don't move a volatile asm or
1225 UNSPEC_VOLATILE across any other insns. */
1226 || (! all_adjacent
1227 && (((!MEM_P (src)
1228 || ! find_reg_note (insn, REG_EQUIV, src))
1229 && use_crosses_set_p (src, INSN_CUID (insn)))
1230 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1231 || GET_CODE (src) == UNSPEC_VOLATILE))
1232 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1233 better register allocation by not doing the combine. */
1234 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1235 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1236 /* Don't combine across a CALL_INSN, because that would possibly
1237 change whether the life span of some REGs crosses calls or not,
1238 and it is a pain to update that information.
1239 Exception: if source is a constant, moving it later can't hurt.
1240 Accept that special case, because it helps -fforce-addr a lot. */
1241 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1242 return 0;
1243
1244 /* DEST must either be a REG or CC0. */
1245 if (REG_P (dest))
1246 {
1247 /* If register alignment is being enforced for multi-word items in all
1248 cases except for parameters, it is possible to have a register copy
1249 insn referencing a hard register that is not allowed to contain the
1250 mode being copied and which would not be valid as an operand of most
1251 insns. Eliminate this problem by not combining with such an insn.
1252
1253 Also, on some machines we don't want to extend the life of a hard
1254 register. */
1255
1256 if (REG_P (src)
1257 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1258 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1259 /* Don't extend the life of a hard register unless it is
1260 user variable (if we have few registers) or it can't
1261 fit into the desired register (meaning something special
1262 is going on).
1263 Also avoid substituting a return register into I3, because
1264 reload can't handle a conflict with constraints of other
1265 inputs. */
1266 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1267 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1268 return 0;
1269 }
1270 else if (GET_CODE (dest) != CC0)
1271 return 0;
1272
1273
1274 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1275 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1276 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1277 {
1278 /* Don't substitute for a register intended as a clobberable
1279 operand. */
1280 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1281 if (rtx_equal_p (reg, dest))
1282 return 0;
1283
1284 /* If the clobber represents an earlyclobber operand, we must not
1285 substitute an expression containing the clobbered register.
1286 As we do not analyze the constraint strings here, we have to
1287 make the conservative assumption. However, if the register is
1288 a fixed hard reg, the clobber cannot represent any operand;
1289 we leave it up to the machine description to either accept or
1290 reject use-and-clobber patterns. */
1291 if (!REG_P (reg)
1292 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1293 || !fixed_regs[REGNO (reg)])
1294 if (reg_overlap_mentioned_p (reg, src))
1295 return 0;
1296 }
1297
1298 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1299 or not), reject, unless nothing volatile comes between it and I3 */
1300
1301 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1302 {
1303 /* Make sure succ doesn't contain a volatile reference. */
1304 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1305 return 0;
1306
1307 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1308 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1309 return 0;
1310 }
1311
1312 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1313 to be an explicit register variable, and was chosen for a reason. */
1314
1315 if (GET_CODE (src) == ASM_OPERANDS
1316 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1317 return 0;
1318
1319 /* If there are any volatile insns between INSN and I3, reject, because
1320 they might affect machine state. */
1321
1322 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1323 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1324 return 0;
1325
1326 /* If INSN contains an autoincrement or autodecrement, make sure that
1327 register is not used between there and I3, and not already used in
1328 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1329 Also insist that I3 not be a jump; if it were one
1330 and the incremented register were spilled, we would lose. */
1331
1332 #ifdef AUTO_INC_DEC
1333 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1334 if (REG_NOTE_KIND (link) == REG_INC
1335 && (JUMP_P (i3)
1336 || reg_used_between_p (XEXP (link, 0), insn, i3)
1337 || (pred != NULL_RTX
1338 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1339 || (succ != NULL_RTX
1340 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1341 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1342 return 0;
1343 #endif
1344
1345 #ifdef HAVE_cc0
1346 /* Don't combine an insn that follows a CC0-setting insn.
1347 An insn that uses CC0 must not be separated from the one that sets it.
1348 We do, however, allow I2 to follow a CC0-setting insn if that insn
1349 is passed as I1; in that case it will be deleted also.
1350 We also allow combining in this case if all the insns are adjacent
1351 because that would leave the two CC0 insns adjacent as well.
1352 It would be more logical to test whether CC0 occurs inside I1 or I2,
1353 but that would be much slower, and this ought to be equivalent. */
1354
1355 p = prev_nonnote_insn (insn);
1356 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1357 && ! all_adjacent)
1358 return 0;
1359 #endif
1360
1361 /* If we get here, we have passed all the tests and the combination is
1362 to be allowed. */
1363
1364 *pdest = dest;
1365 *psrc = src;
1366
1367 return 1;
1368 }
1369 \f
1370 /* LOC is the location within I3 that contains its pattern or the component
1371 of a PARALLEL of the pattern. We validate that it is valid for combining.
1372
1373 One problem is if I3 modifies its output, as opposed to replacing it
1374 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1375 so would produce an insn that is not equivalent to the original insns.
1376
1377 Consider:
1378
1379 (set (reg:DI 101) (reg:DI 100))
1380 (set (subreg:SI (reg:DI 101) 0) <foo>)
1381
1382 This is NOT equivalent to:
1383
1384 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1385 (set (reg:DI 101) (reg:DI 100))])
1386
1387 Not only does this modify 100 (in which case it might still be valid
1388 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1389
1390 We can also run into a problem if I2 sets a register that I1
1391 uses and I1 gets directly substituted into I3 (not via I2). In that
1392 case, we would be getting the wrong value of I2DEST into I3, so we
1393 must reject the combination. This case occurs when I2 and I1 both
1394 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1395 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1396 of a SET must prevent combination from occurring.
1397
1398 Before doing the above check, we first try to expand a field assignment
1399 into a set of logical operations.
1400
1401 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1402 we place a register that is both set and used within I3. If more than one
1403 such register is detected, we fail.
1404
1405 Return 1 if the combination is valid, zero otherwise. */
1406
1407 static int
1408 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1409 int i1_not_in_src, rtx *pi3dest_killed)
1410 {
1411 rtx x = *loc;
1412
1413 if (GET_CODE (x) == SET)
1414 {
1415 rtx set = x ;
1416 rtx dest = SET_DEST (set);
1417 rtx src = SET_SRC (set);
1418 rtx inner_dest = dest;
1419
1420 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1421 || GET_CODE (inner_dest) == SUBREG
1422 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1423 inner_dest = XEXP (inner_dest, 0);
1424
1425 /* Check for the case where I3 modifies its output, as discussed
1426 above. We don't want to prevent pseudos from being combined
1427 into the address of a MEM, so only prevent the combination if
1428 i1 or i2 set the same MEM. */
1429 if ((inner_dest != dest &&
1430 (!MEM_P (inner_dest)
1431 || rtx_equal_p (i2dest, inner_dest)
1432 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1433 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1434 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1435
1436 /* This is the same test done in can_combine_p except we can't test
1437 all_adjacent; we don't have to, since this instruction will stay
1438 in place, thus we are not considering increasing the lifetime of
1439 INNER_DEST.
1440
1441 Also, if this insn sets a function argument, combining it with
1442 something that might need a spill could clobber a previous
1443 function argument; the all_adjacent test in can_combine_p also
1444 checks this; here, we do a more specific test for this case. */
1445
1446 || (REG_P (inner_dest)
1447 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1448 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1449 GET_MODE (inner_dest))))
1450 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1451 return 0;
1452
1453 /* If DEST is used in I3, it is being killed in this insn,
1454 so record that for later.
1455 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1456 STACK_POINTER_REGNUM, since these are always considered to be
1457 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1458 if (pi3dest_killed && REG_P (dest)
1459 && reg_referenced_p (dest, PATTERN (i3))
1460 && REGNO (dest) != FRAME_POINTER_REGNUM
1461 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1462 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1463 #endif
1464 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1465 && (REGNO (dest) != ARG_POINTER_REGNUM
1466 || ! fixed_regs [REGNO (dest)])
1467 #endif
1468 && REGNO (dest) != STACK_POINTER_REGNUM)
1469 {
1470 if (*pi3dest_killed)
1471 return 0;
1472
1473 *pi3dest_killed = dest;
1474 }
1475 }
1476
1477 else if (GET_CODE (x) == PARALLEL)
1478 {
1479 int i;
1480
1481 for (i = 0; i < XVECLEN (x, 0); i++)
1482 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1483 i1_not_in_src, pi3dest_killed))
1484 return 0;
1485 }
1486
1487 return 1;
1488 }
1489 \f
1490 /* Return 1 if X is an arithmetic expression that contains a multiplication
1491 and division. We don't count multiplications by powers of two here. */
1492
1493 static int
1494 contains_muldiv (rtx x)
1495 {
1496 switch (GET_CODE (x))
1497 {
1498 case MOD: case DIV: case UMOD: case UDIV:
1499 return 1;
1500
1501 case MULT:
1502 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1503 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1504 default:
1505 if (BINARY_P (x))
1506 return contains_muldiv (XEXP (x, 0))
1507 || contains_muldiv (XEXP (x, 1));
1508
1509 if (UNARY_P (x))
1510 return contains_muldiv (XEXP (x, 0));
1511
1512 return 0;
1513 }
1514 }
1515 \f
1516 /* Determine whether INSN can be used in a combination. Return nonzero if
1517 not. This is used in try_combine to detect early some cases where we
1518 can't perform combinations. */
1519
1520 static int
1521 cant_combine_insn_p (rtx insn)
1522 {
1523 rtx set;
1524 rtx src, dest;
1525
1526 /* If this isn't really an insn, we can't do anything.
1527 This can occur when flow deletes an insn that it has merged into an
1528 auto-increment address. */
1529 if (! INSN_P (insn))
1530 return 1;
1531
1532 /* Never combine loads and stores involving hard regs that are likely
1533 to be spilled. The register allocator can usually handle such
1534 reg-reg moves by tying. If we allow the combiner to make
1535 substitutions of likely-spilled regs, reload might die.
1536 As an exception, we allow combinations involving fixed regs; these are
1537 not available to the register allocator so there's no risk involved. */
1538
1539 set = single_set (insn);
1540 if (! set)
1541 return 0;
1542 src = SET_SRC (set);
1543 dest = SET_DEST (set);
1544 if (GET_CODE (src) == SUBREG)
1545 src = SUBREG_REG (src);
1546 if (GET_CODE (dest) == SUBREG)
1547 dest = SUBREG_REG (dest);
1548 if (REG_P (src) && REG_P (dest)
1549 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1550 && ! fixed_regs[REGNO (src)]
1551 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1552 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1553 && ! fixed_regs[REGNO (dest)]
1554 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1555 return 1;
1556
1557 return 0;
1558 }
1559
1560 struct likely_spilled_retval_info
1561 {
1562 unsigned regno, nregs;
1563 unsigned mask;
1564 };
1565
1566 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1567 hard registers that are known to be written to / clobbered in full. */
1568 static void
1569 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1570 {
1571 struct likely_spilled_retval_info *info = data;
1572 unsigned regno, nregs;
1573 unsigned new_mask;
1574
1575 if (!REG_P (XEXP (set, 0)))
1576 return;
1577 regno = REGNO (x);
1578 if (regno >= info->regno + info->nregs)
1579 return;
1580 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1581 if (regno + nregs <= info->regno)
1582 return;
1583 new_mask = (2U << (nregs - 1)) - 1;
1584 if (regno < info->regno)
1585 new_mask >>= info->regno - regno;
1586 else
1587 new_mask <<= regno - info->regno;
1588 info->mask &= new_mask;
1589 }
1590
1591 /* Return nonzero iff part of the return value is live during INSN, and
1592 it is likely spilled. This can happen when more than one insn is needed
1593 to copy the return value, e.g. when we consider to combine into the
1594 second copy insn for a complex value. */
1595
1596 static int
1597 likely_spilled_retval_p (rtx insn)
1598 {
1599 rtx use = BB_END (this_basic_block);
1600 rtx reg, p;
1601 unsigned regno, nregs;
1602 /* We assume here that no machine mode needs more than
1603 32 hard registers when the value overlaps with a register
1604 for which FUNCTION_VALUE_REGNO_P is true. */
1605 unsigned mask;
1606 struct likely_spilled_retval_info info;
1607
1608 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1609 return 0;
1610 reg = XEXP (PATTERN (use), 0);
1611 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1612 return 0;
1613 regno = REGNO (reg);
1614 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1615 if (nregs == 1)
1616 return 0;
1617 mask = (2U << (nregs - 1)) - 1;
1618
1619 /* Disregard parts of the return value that are set later. */
1620 info.regno = regno;
1621 info.nregs = nregs;
1622 info.mask = mask;
1623 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1624 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1625 mask = info.mask;
1626
1627 /* Check if any of the (probably) live return value registers is
1628 likely spilled. */
1629 nregs --;
1630 do
1631 {
1632 if ((mask & 1 << nregs)
1633 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1634 return 1;
1635 } while (nregs--);
1636 return 0;
1637 }
1638
1639 /* Adjust INSN after we made a change to its destination.
1640
1641 Changing the destination can invalidate notes that say something about
1642 the results of the insn and a LOG_LINK pointing to the insn. */
1643
1644 static void
1645 adjust_for_new_dest (rtx insn)
1646 {
1647 rtx *loc;
1648
1649 /* For notes, be conservative and simply remove them. */
1650 loc = &REG_NOTES (insn);
1651 while (*loc)
1652 {
1653 enum reg_note kind = REG_NOTE_KIND (*loc);
1654 if (kind == REG_EQUAL || kind == REG_EQUIV)
1655 *loc = XEXP (*loc, 1);
1656 else
1657 loc = &XEXP (*loc, 1);
1658 }
1659
1660 /* The new insn will have a destination that was previously the destination
1661 of an insn just above it. Call distribute_links to make a LOG_LINK from
1662 the next use of that destination. */
1663 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1664 }
1665
1666 /* Try to combine the insns I1 and I2 into I3.
1667 Here I1 and I2 appear earlier than I3.
1668 I1 can be zero; then we combine just I2 into I3.
1669
1670 If we are combining three insns and the resulting insn is not recognized,
1671 try splitting it into two insns. If that happens, I2 and I3 are retained
1672 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1673 are pseudo-deleted.
1674
1675 Return 0 if the combination does not work. Then nothing is changed.
1676 If we did the combination, return the insn at which combine should
1677 resume scanning.
1678
1679 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1680 new direct jump instruction. */
1681
1682 static rtx
1683 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1684 {
1685 /* New patterns for I3 and I2, respectively. */
1686 rtx newpat, newi2pat = 0;
1687 rtvec newpat_vec_with_clobbers = 0;
1688 int substed_i2 = 0, substed_i1 = 0;
1689 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1690 int added_sets_1, added_sets_2;
1691 /* Total number of SETs to put into I3. */
1692 int total_sets;
1693 /* Nonzero if I2's body now appears in I3. */
1694 int i2_is_used;
1695 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1696 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1697 /* Contains I3 if the destination of I3 is used in its source, which means
1698 that the old life of I3 is being killed. If that usage is placed into
1699 I2 and not in I3, a REG_DEAD note must be made. */
1700 rtx i3dest_killed = 0;
1701 /* SET_DEST and SET_SRC of I2 and I1. */
1702 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1703 /* PATTERN (I2), or a copy of it in certain cases. */
1704 rtx i2pat;
1705 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1706 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1707 int i1_feeds_i3 = 0;
1708 /* Notes that must be added to REG_NOTES in I3 and I2. */
1709 rtx new_i3_notes, new_i2_notes;
1710 /* Notes that we substituted I3 into I2 instead of the normal case. */
1711 int i3_subst_into_i2 = 0;
1712 /* Notes that I1, I2 or I3 is a MULT operation. */
1713 int have_mult = 0;
1714 int swap_i2i3 = 0;
1715
1716 int maxreg;
1717 rtx temp;
1718 rtx link;
1719 int i;
1720
1721 /* Exit early if one of the insns involved can't be used for
1722 combinations. */
1723 if (cant_combine_insn_p (i3)
1724 || cant_combine_insn_p (i2)
1725 || (i1 && cant_combine_insn_p (i1))
1726 || likely_spilled_retval_p (i3)
1727 /* We also can't do anything if I3 has a
1728 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1729 libcall. */
1730 #if 0
1731 /* ??? This gives worse code, and appears to be unnecessary, since no
1732 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1733 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1734 #endif
1735 )
1736 return 0;
1737
1738 combine_attempts++;
1739 undobuf.other_insn = 0;
1740
1741 /* Reset the hard register usage information. */
1742 CLEAR_HARD_REG_SET (newpat_used_regs);
1743
1744 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1745 code below, set I1 to be the earlier of the two insns. */
1746 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1747 temp = i1, i1 = i2, i2 = temp;
1748
1749 added_links_insn = 0;
1750
1751 /* First check for one important special-case that the code below will
1752 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1753 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1754 we may be able to replace that destination with the destination of I3.
1755 This occurs in the common code where we compute both a quotient and
1756 remainder into a structure, in which case we want to do the computation
1757 directly into the structure to avoid register-register copies.
1758
1759 Note that this case handles both multiple sets in I2 and also
1760 cases where I2 has a number of CLOBBER or PARALLELs.
1761
1762 We make very conservative checks below and only try to handle the
1763 most common cases of this. For example, we only handle the case
1764 where I2 and I3 are adjacent to avoid making difficult register
1765 usage tests. */
1766
1767 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1768 && REG_P (SET_SRC (PATTERN (i3)))
1769 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1770 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1771 && GET_CODE (PATTERN (i2)) == PARALLEL
1772 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1773 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1774 below would need to check what is inside (and reg_overlap_mentioned_p
1775 doesn't support those codes anyway). Don't allow those destinations;
1776 the resulting insn isn't likely to be recognized anyway. */
1777 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1778 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1779 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1780 SET_DEST (PATTERN (i3)))
1781 && next_real_insn (i2) == i3)
1782 {
1783 rtx p2 = PATTERN (i2);
1784
1785 /* Make sure that the destination of I3,
1786 which we are going to substitute into one output of I2,
1787 is not used within another output of I2. We must avoid making this:
1788 (parallel [(set (mem (reg 69)) ...)
1789 (set (reg 69) ...)])
1790 which is not well-defined as to order of actions.
1791 (Besides, reload can't handle output reloads for this.)
1792
1793 The problem can also happen if the dest of I3 is a memory ref,
1794 if another dest in I2 is an indirect memory ref. */
1795 for (i = 0; i < XVECLEN (p2, 0); i++)
1796 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1797 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1798 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1799 SET_DEST (XVECEXP (p2, 0, i))))
1800 break;
1801
1802 if (i == XVECLEN (p2, 0))
1803 for (i = 0; i < XVECLEN (p2, 0); i++)
1804 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1805 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1806 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1807 {
1808 combine_merges++;
1809
1810 subst_insn = i3;
1811 subst_low_cuid = INSN_CUID (i2);
1812
1813 added_sets_2 = added_sets_1 = 0;
1814 i2dest = SET_SRC (PATTERN (i3));
1815
1816 /* Replace the dest in I2 with our dest and make the resulting
1817 insn the new pattern for I3. Then skip to where we
1818 validate the pattern. Everything was set up above. */
1819 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1820 SET_DEST (PATTERN (i3)));
1821
1822 newpat = p2;
1823 i3_subst_into_i2 = 1;
1824 goto validate_replacement;
1825 }
1826 }
1827
1828 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1829 one of those words to another constant, merge them by making a new
1830 constant. */
1831 if (i1 == 0
1832 && (temp = single_set (i2)) != 0
1833 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1834 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1835 && REG_P (SET_DEST (temp))
1836 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1837 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1838 && GET_CODE (PATTERN (i3)) == SET
1839 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1840 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1841 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1842 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1843 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1844 {
1845 HOST_WIDE_INT lo, hi;
1846
1847 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1848 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1849 else
1850 {
1851 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1852 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1853 }
1854
1855 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1856 {
1857 /* We don't handle the case of the target word being wider
1858 than a host wide int. */
1859 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1860
1861 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1862 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1863 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1864 }
1865 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1866 hi = INTVAL (SET_SRC (PATTERN (i3)));
1867 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1868 {
1869 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1870 >> (HOST_BITS_PER_WIDE_INT - 1));
1871
1872 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1873 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1874 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1875 (INTVAL (SET_SRC (PATTERN (i3)))));
1876 if (hi == sign)
1877 hi = lo < 0 ? -1 : 0;
1878 }
1879 else
1880 /* We don't handle the case of the higher word not fitting
1881 entirely in either hi or lo. */
1882 gcc_unreachable ();
1883
1884 combine_merges++;
1885 subst_insn = i3;
1886 subst_low_cuid = INSN_CUID (i2);
1887 added_sets_2 = added_sets_1 = 0;
1888 i2dest = SET_DEST (temp);
1889
1890 SUBST (SET_SRC (temp),
1891 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1892
1893 newpat = PATTERN (i2);
1894 goto validate_replacement;
1895 }
1896
1897 #ifndef HAVE_cc0
1898 /* If we have no I1 and I2 looks like:
1899 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1900 (set Y OP)])
1901 make up a dummy I1 that is
1902 (set Y OP)
1903 and change I2 to be
1904 (set (reg:CC X) (compare:CC Y (const_int 0)))
1905
1906 (We can ignore any trailing CLOBBERs.)
1907
1908 This undoes a previous combination and allows us to match a branch-and-
1909 decrement insn. */
1910
1911 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1912 && XVECLEN (PATTERN (i2), 0) >= 2
1913 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1914 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1915 == MODE_CC)
1916 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1917 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1918 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1919 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1920 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1921 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1922 {
1923 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1924 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1925 break;
1926
1927 if (i == 1)
1928 {
1929 /* We make I1 with the same INSN_UID as I2. This gives it
1930 the same INSN_CUID for value tracking. Our fake I1 will
1931 never appear in the insn stream so giving it the same INSN_UID
1932 as I2 will not cause a problem. */
1933
1934 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1935 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1936 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1937 NULL_RTX);
1938
1939 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1940 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1941 SET_DEST (PATTERN (i1)));
1942 }
1943 }
1944 #endif
1945
1946 /* Verify that I2 and I1 are valid for combining. */
1947 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1948 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1949 {
1950 undo_all ();
1951 return 0;
1952 }
1953
1954 /* Record whether I2DEST is used in I2SRC and similarly for the other
1955 cases. Knowing this will help in register status updating below. */
1956 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1957 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1958 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1959
1960 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1961 in I2SRC. */
1962 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1963
1964 /* Ensure that I3's pattern can be the destination of combines. */
1965 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1966 i1 && i2dest_in_i1src && i1_feeds_i3,
1967 &i3dest_killed))
1968 {
1969 undo_all ();
1970 return 0;
1971 }
1972
1973 /* See if any of the insns is a MULT operation. Unless one is, we will
1974 reject a combination that is, since it must be slower. Be conservative
1975 here. */
1976 if (GET_CODE (i2src) == MULT
1977 || (i1 != 0 && GET_CODE (i1src) == MULT)
1978 || (GET_CODE (PATTERN (i3)) == SET
1979 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1980 have_mult = 1;
1981
1982 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1983 We used to do this EXCEPT in one case: I3 has a post-inc in an
1984 output operand. However, that exception can give rise to insns like
1985 mov r3,(r3)+
1986 which is a famous insn on the PDP-11 where the value of r3 used as the
1987 source was model-dependent. Avoid this sort of thing. */
1988
1989 #if 0
1990 if (!(GET_CODE (PATTERN (i3)) == SET
1991 && REG_P (SET_SRC (PATTERN (i3)))
1992 && MEM_P (SET_DEST (PATTERN (i3)))
1993 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1994 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1995 /* It's not the exception. */
1996 #endif
1997 #ifdef AUTO_INC_DEC
1998 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1999 if (REG_NOTE_KIND (link) == REG_INC
2000 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2001 || (i1 != 0
2002 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2003 {
2004 undo_all ();
2005 return 0;
2006 }
2007 #endif
2008
2009 /* See if the SETs in I1 or I2 need to be kept around in the merged
2010 instruction: whenever the value set there is still needed past I3.
2011 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2012
2013 For the SET in I1, we have two cases: If I1 and I2 independently
2014 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2015 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2016 in I1 needs to be kept around unless I1DEST dies or is set in either
2017 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2018 I1DEST. If so, we know I1 feeds into I2. */
2019
2020 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2021
2022 added_sets_1
2023 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2024 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2025
2026 /* If the set in I2 needs to be kept around, we must make a copy of
2027 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2028 PATTERN (I2), we are only substituting for the original I1DEST, not into
2029 an already-substituted copy. This also prevents making self-referential
2030 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2031 I2DEST. */
2032
2033 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2034 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2035 : PATTERN (i2));
2036
2037 if (added_sets_2)
2038 i2pat = copy_rtx (i2pat);
2039
2040 combine_merges++;
2041
2042 /* Substitute in the latest insn for the regs set by the earlier ones. */
2043
2044 maxreg = max_reg_num ();
2045
2046 subst_insn = i3;
2047
2048 /* It is possible that the source of I2 or I1 may be performing an
2049 unneeded operation, such as a ZERO_EXTEND of something that is known
2050 to have the high part zero. Handle that case by letting subst look at
2051 the innermost one of them.
2052
2053 Another way to do this would be to have a function that tries to
2054 simplify a single insn instead of merging two or more insns. We don't
2055 do this because of the potential of infinite loops and because
2056 of the potential extra memory required. However, doing it the way
2057 we are is a bit of a kludge and doesn't catch all cases.
2058
2059 But only do this if -fexpensive-optimizations since it slows things down
2060 and doesn't usually win. */
2061
2062 if (flag_expensive_optimizations)
2063 {
2064 /* Pass pc_rtx so no substitutions are done, just simplifications. */
2065 if (i1)
2066 {
2067 subst_low_cuid = INSN_CUID (i1);
2068 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2069 }
2070 else
2071 {
2072 subst_low_cuid = INSN_CUID (i2);
2073 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2074 }
2075 }
2076
2077 #ifndef HAVE_cc0
2078 /* Many machines that don't use CC0 have insns that can both perform an
2079 arithmetic operation and set the condition code. These operations will
2080 be represented as a PARALLEL with the first element of the vector
2081 being a COMPARE of an arithmetic operation with the constant zero.
2082 The second element of the vector will set some pseudo to the result
2083 of the same arithmetic operation. If we simplify the COMPARE, we won't
2084 match such a pattern and so will generate an extra insn. Here we test
2085 for this case, where both the comparison and the operation result are
2086 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2087 I2SRC. Later we will make the PARALLEL that contains I2. */
2088
2089 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2090 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2091 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2092 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2093 {
2094 #ifdef SELECT_CC_MODE
2095 rtx *cc_use;
2096 enum machine_mode compare_mode;
2097 #endif
2098
2099 newpat = PATTERN (i3);
2100 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2101
2102 i2_is_used = 1;
2103
2104 #ifdef SELECT_CC_MODE
2105 /* See if a COMPARE with the operand we substituted in should be done
2106 with the mode that is currently being used. If not, do the same
2107 processing we do in `subst' for a SET; namely, if the destination
2108 is used only once, try to replace it with a register of the proper
2109 mode and also replace the COMPARE. */
2110 if (undobuf.other_insn == 0
2111 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2112 &undobuf.other_insn))
2113 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2114 i2src, const0_rtx))
2115 != GET_MODE (SET_DEST (newpat))))
2116 {
2117 unsigned int regno = REGNO (SET_DEST (newpat));
2118 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2119
2120 if (regno < FIRST_PSEUDO_REGISTER
2121 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2122 && ! REG_USERVAR_P (SET_DEST (newpat))))
2123 {
2124 if (regno >= FIRST_PSEUDO_REGISTER)
2125 SUBST (regno_reg_rtx[regno], new_dest);
2126
2127 SUBST (SET_DEST (newpat), new_dest);
2128 SUBST (XEXP (*cc_use, 0), new_dest);
2129 SUBST (SET_SRC (newpat),
2130 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2131 }
2132 else
2133 undobuf.other_insn = 0;
2134 }
2135 #endif
2136 }
2137 else
2138 #endif
2139 {
2140 n_occurrences = 0; /* `subst' counts here */
2141
2142 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2143 need to make a unique copy of I2SRC each time we substitute it
2144 to avoid self-referential rtl. */
2145
2146 subst_low_cuid = INSN_CUID (i2);
2147 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2148 ! i1_feeds_i3 && i1dest_in_i1src);
2149 substed_i2 = 1;
2150
2151 /* Record whether i2's body now appears within i3's body. */
2152 i2_is_used = n_occurrences;
2153 }
2154
2155 /* If we already got a failure, don't try to do more. Otherwise,
2156 try to substitute in I1 if we have it. */
2157
2158 if (i1 && GET_CODE (newpat) != CLOBBER)
2159 {
2160 /* Before we can do this substitution, we must redo the test done
2161 above (see detailed comments there) that ensures that I1DEST
2162 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2163
2164 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2165 0, (rtx*) 0))
2166 {
2167 undo_all ();
2168 return 0;
2169 }
2170
2171 n_occurrences = 0;
2172 subst_low_cuid = INSN_CUID (i1);
2173 newpat = subst (newpat, i1dest, i1src, 0, 0);
2174 substed_i1 = 1;
2175 }
2176
2177 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2178 to count all the ways that I2SRC and I1SRC can be used. */
2179 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2180 && i2_is_used + added_sets_2 > 1)
2181 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2182 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2183 > 1))
2184 /* Fail if we tried to make a new register. */
2185 || max_reg_num () != maxreg
2186 /* Fail if we couldn't do something and have a CLOBBER. */
2187 || GET_CODE (newpat) == CLOBBER
2188 /* Fail if this new pattern is a MULT and we didn't have one before
2189 at the outer level. */
2190 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2191 && ! have_mult))
2192 {
2193 undo_all ();
2194 return 0;
2195 }
2196
2197 /* If the actions of the earlier insns must be kept
2198 in addition to substituting them into the latest one,
2199 we must make a new PARALLEL for the latest insn
2200 to hold additional the SETs. */
2201
2202 if (added_sets_1 || added_sets_2)
2203 {
2204 combine_extras++;
2205
2206 if (GET_CODE (newpat) == PARALLEL)
2207 {
2208 rtvec old = XVEC (newpat, 0);
2209 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2210 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2211 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2212 sizeof (old->elem[0]) * old->num_elem);
2213 }
2214 else
2215 {
2216 rtx old = newpat;
2217 total_sets = 1 + added_sets_1 + added_sets_2;
2218 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2219 XVECEXP (newpat, 0, 0) = old;
2220 }
2221
2222 if (added_sets_1)
2223 XVECEXP (newpat, 0, --total_sets)
2224 = (GET_CODE (PATTERN (i1)) == PARALLEL
2225 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2226
2227 if (added_sets_2)
2228 {
2229 /* If there is no I1, use I2's body as is. We used to also not do
2230 the subst call below if I2 was substituted into I3,
2231 but that could lose a simplification. */
2232 if (i1 == 0)
2233 XVECEXP (newpat, 0, --total_sets) = i2pat;
2234 else
2235 /* See comment where i2pat is assigned. */
2236 XVECEXP (newpat, 0, --total_sets)
2237 = subst (i2pat, i1dest, i1src, 0, 0);
2238 }
2239 }
2240
2241 /* We come here when we are replacing a destination in I2 with the
2242 destination of I3. */
2243 validate_replacement:
2244
2245 /* Note which hard regs this insn has as inputs. */
2246 mark_used_regs_combine (newpat);
2247
2248 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2249 consider splitting this pattern, we might need these clobbers. */
2250 if (i1 && GET_CODE (newpat) == PARALLEL
2251 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2252 {
2253 int len = XVECLEN (newpat, 0);
2254
2255 newpat_vec_with_clobbers = rtvec_alloc (len);
2256 for (i = 0; i < len; i++)
2257 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2258 }
2259
2260 /* Is the result of combination a valid instruction? */
2261 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2262
2263 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2264 the second SET's destination is a register that is unused and isn't
2265 marked as an instruction that might trap in an EH region. In that case,
2266 we just need the first SET. This can occur when simplifying a divmod
2267 insn. We *must* test for this case here because the code below that
2268 splits two independent SETs doesn't handle this case correctly when it
2269 updates the register status.
2270
2271 It's pointless doing this if we originally had two sets, one from
2272 i3, and one from i2. Combining then splitting the parallel results
2273 in the original i2 again plus an invalid insn (which we delete).
2274 The net effect is only to move instructions around, which makes
2275 debug info less accurate.
2276
2277 Also check the case where the first SET's destination is unused.
2278 That would not cause incorrect code, but does cause an unneeded
2279 insn to remain. */
2280
2281 if (insn_code_number < 0
2282 && !(added_sets_2 && i1 == 0)
2283 && GET_CODE (newpat) == PARALLEL
2284 && XVECLEN (newpat, 0) == 2
2285 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2286 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2287 && asm_noperands (newpat) < 0)
2288 {
2289 rtx set0 = XVECEXP (newpat, 0, 0);
2290 rtx set1 = XVECEXP (newpat, 0, 1);
2291 rtx note;
2292
2293 if (((REG_P (SET_DEST (set1))
2294 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2295 || (GET_CODE (SET_DEST (set1)) == SUBREG
2296 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2297 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2298 || INTVAL (XEXP (note, 0)) <= 0)
2299 && ! side_effects_p (SET_SRC (set1)))
2300 {
2301 newpat = set0;
2302 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2303 }
2304
2305 else if (((REG_P (SET_DEST (set0))
2306 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2307 || (GET_CODE (SET_DEST (set0)) == SUBREG
2308 && find_reg_note (i3, REG_UNUSED,
2309 SUBREG_REG (SET_DEST (set0)))))
2310 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2311 || INTVAL (XEXP (note, 0)) <= 0)
2312 && ! side_effects_p (SET_SRC (set0)))
2313 {
2314 newpat = set1;
2315 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2316
2317 if (insn_code_number >= 0)
2318 {
2319 /* If we will be able to accept this, we have made a
2320 change to the destination of I3. This requires us to
2321 do a few adjustments. */
2322
2323 PATTERN (i3) = newpat;
2324 adjust_for_new_dest (i3);
2325 }
2326 }
2327 }
2328
2329 /* If we were combining three insns and the result is a simple SET
2330 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2331 insns. There are two ways to do this. It can be split using a
2332 machine-specific method (like when you have an addition of a large
2333 constant) or by combine in the function find_split_point. */
2334
2335 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2336 && asm_noperands (newpat) < 0)
2337 {
2338 rtx m_split, *split;
2339 rtx ni2dest = i2dest;
2340
2341 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2342 use I2DEST as a scratch register will help. In the latter case,
2343 convert I2DEST to the mode of the source of NEWPAT if we can. */
2344
2345 m_split = split_insns (newpat, i3);
2346
2347 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2348 inputs of NEWPAT. */
2349
2350 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2351 possible to try that as a scratch reg. This would require adding
2352 more code to make it work though. */
2353
2354 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2355 {
2356 /* If I2DEST is a hard register or the only use of a pseudo,
2357 we can change its mode. */
2358 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2359 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2360 && REG_P (i2dest)
2361 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2362 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2363 && ! REG_USERVAR_P (i2dest))))
2364 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2365 REGNO (i2dest));
2366
2367 m_split = split_insns (gen_rtx_PARALLEL
2368 (VOIDmode,
2369 gen_rtvec (2, newpat,
2370 gen_rtx_CLOBBER (VOIDmode,
2371 ni2dest))),
2372 i3);
2373 /* If the split with the mode-changed register didn't work, try
2374 the original register. */
2375 if (! m_split && ni2dest != i2dest)
2376 {
2377 ni2dest = i2dest;
2378 m_split = split_insns (gen_rtx_PARALLEL
2379 (VOIDmode,
2380 gen_rtvec (2, newpat,
2381 gen_rtx_CLOBBER (VOIDmode,
2382 i2dest))),
2383 i3);
2384 }
2385 }
2386
2387 /* If recog_for_combine has discarded clobbers, try to use them
2388 again for the split. */
2389 if (m_split == 0 && newpat_vec_with_clobbers)
2390 m_split
2391 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2392 newpat_vec_with_clobbers), i3);
2393
2394 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2395 {
2396 m_split = PATTERN (m_split);
2397 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2398 if (insn_code_number >= 0)
2399 newpat = m_split;
2400 }
2401 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2402 && (next_real_insn (i2) == i3
2403 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2404 {
2405 rtx i2set, i3set;
2406 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2407 newi2pat = PATTERN (m_split);
2408
2409 i3set = single_set (NEXT_INSN (m_split));
2410 i2set = single_set (m_split);
2411
2412 /* In case we changed the mode of I2DEST, replace it in the
2413 pseudo-register table here. We can't do it above in case this
2414 code doesn't get executed and we do a split the other way. */
2415
2416 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2417 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2418
2419 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2420
2421 /* If I2 or I3 has multiple SETs, we won't know how to track
2422 register status, so don't use these insns. If I2's destination
2423 is used between I2 and I3, we also can't use these insns. */
2424
2425 if (i2_code_number >= 0 && i2set && i3set
2426 && (next_real_insn (i2) == i3
2427 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2428 insn_code_number = recog_for_combine (&newi3pat, i3,
2429 &new_i3_notes);
2430 if (insn_code_number >= 0)
2431 newpat = newi3pat;
2432
2433 /* It is possible that both insns now set the destination of I3.
2434 If so, we must show an extra use of it. */
2435
2436 if (insn_code_number >= 0)
2437 {
2438 rtx new_i3_dest = SET_DEST (i3set);
2439 rtx new_i2_dest = SET_DEST (i2set);
2440
2441 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2442 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2443 || GET_CODE (new_i3_dest) == SUBREG)
2444 new_i3_dest = XEXP (new_i3_dest, 0);
2445
2446 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2447 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2448 || GET_CODE (new_i2_dest) == SUBREG)
2449 new_i2_dest = XEXP (new_i2_dest, 0);
2450
2451 if (REG_P (new_i3_dest)
2452 && REG_P (new_i2_dest)
2453 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2454 REG_N_SETS (REGNO (new_i2_dest))++;
2455 }
2456 }
2457
2458 /* If we can split it and use I2DEST, go ahead and see if that
2459 helps things be recognized. Verify that none of the registers
2460 are set between I2 and I3. */
2461 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2462 #ifdef HAVE_cc0
2463 && REG_P (i2dest)
2464 #endif
2465 /* We need I2DEST in the proper mode. If it is a hard register
2466 or the only use of a pseudo, we can change its mode.
2467 Make sure we don't change a hard register to have a mode that
2468 isn't valid for it, or change the number of registers. */
2469 && (GET_MODE (*split) == GET_MODE (i2dest)
2470 || GET_MODE (*split) == VOIDmode
2471 || (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2472 && HARD_REGNO_MODE_OK (REGNO (i2dest), GET_MODE (*split))
2473 && (hard_regno_nregs[REGNO (i2dest)][GET_MODE (i2dest)]
2474 == hard_regno_nregs[REGNO (i2dest)][GET_MODE (*split)]))
2475 || (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER
2476 && REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2477 && ! REG_USERVAR_P (i2dest)))
2478 && (next_real_insn (i2) == i3
2479 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2480 /* We can't overwrite I2DEST if its value is still used by
2481 NEWPAT. */
2482 && ! reg_referenced_p (i2dest, newpat))
2483 {
2484 rtx newdest = i2dest;
2485 enum rtx_code split_code = GET_CODE (*split);
2486 enum machine_mode split_mode = GET_MODE (*split);
2487
2488 /* Get NEWDEST as a register in the proper mode. We have already
2489 validated that we can do this. */
2490 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2491 {
2492 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2493
2494 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2495 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2496 }
2497
2498 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2499 an ASHIFT. This can occur if it was inside a PLUS and hence
2500 appeared to be a memory address. This is a kludge. */
2501 if (split_code == MULT
2502 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2503 && INTVAL (XEXP (*split, 1)) > 0
2504 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2505 {
2506 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2507 XEXP (*split, 0), GEN_INT (i)));
2508 /* Update split_code because we may not have a multiply
2509 anymore. */
2510 split_code = GET_CODE (*split);
2511 }
2512
2513 #ifdef INSN_SCHEDULING
2514 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2515 be written as a ZERO_EXTEND. */
2516 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2517 {
2518 #ifdef LOAD_EXTEND_OP
2519 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2520 what it really is. */
2521 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2522 == SIGN_EXTEND)
2523 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2524 SUBREG_REG (*split)));
2525 else
2526 #endif
2527 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2528 SUBREG_REG (*split)));
2529 }
2530 #endif
2531
2532 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2533 SUBST (*split, newdest);
2534 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2535
2536 /* recog_for_combine might have added CLOBBERs to newi2pat.
2537 Make sure NEWPAT does not depend on the clobbered regs. */
2538 if (GET_CODE (newi2pat) == PARALLEL)
2539 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2540 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2541 {
2542 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2543 if (reg_overlap_mentioned_p (reg, newpat))
2544 {
2545 undo_all ();
2546 return 0;
2547 }
2548 }
2549
2550 /* If the split point was a MULT and we didn't have one before,
2551 don't use one now. */
2552 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2553 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2554 }
2555 }
2556
2557 /* Check for a case where we loaded from memory in a narrow mode and
2558 then sign extended it, but we need both registers. In that case,
2559 we have a PARALLEL with both loads from the same memory location.
2560 We can split this into a load from memory followed by a register-register
2561 copy. This saves at least one insn, more if register allocation can
2562 eliminate the copy.
2563
2564 We cannot do this if the destination of the first assignment is a
2565 condition code register or cc0. We eliminate this case by making sure
2566 the SET_DEST and SET_SRC have the same mode.
2567
2568 We cannot do this if the destination of the second assignment is
2569 a register that we have already assumed is zero-extended. Similarly
2570 for a SUBREG of such a register. */
2571
2572 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2573 && GET_CODE (newpat) == PARALLEL
2574 && XVECLEN (newpat, 0) == 2
2575 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2576 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2577 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2578 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2579 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2580 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2581 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2582 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2583 INSN_CUID (i2))
2584 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2585 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2586 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2587 (REG_P (temp)
2588 && reg_stat[REGNO (temp)].nonzero_bits != 0
2589 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2590 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2591 && (reg_stat[REGNO (temp)].nonzero_bits
2592 != GET_MODE_MASK (word_mode))))
2593 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2594 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2595 (REG_P (temp)
2596 && reg_stat[REGNO (temp)].nonzero_bits != 0
2597 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2598 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2599 && (reg_stat[REGNO (temp)].nonzero_bits
2600 != GET_MODE_MASK (word_mode)))))
2601 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2602 SET_SRC (XVECEXP (newpat, 0, 1)))
2603 && ! find_reg_note (i3, REG_UNUSED,
2604 SET_DEST (XVECEXP (newpat, 0, 0))))
2605 {
2606 rtx ni2dest;
2607
2608 newi2pat = XVECEXP (newpat, 0, 0);
2609 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2610 newpat = XVECEXP (newpat, 0, 1);
2611 SUBST (SET_SRC (newpat),
2612 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2613 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2614
2615 if (i2_code_number >= 0)
2616 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2617
2618 if (insn_code_number >= 0)
2619 swap_i2i3 = 1;
2620 }
2621
2622 /* Similarly, check for a case where we have a PARALLEL of two independent
2623 SETs but we started with three insns. In this case, we can do the sets
2624 as two separate insns. This case occurs when some SET allows two
2625 other insns to combine, but the destination of that SET is still live. */
2626
2627 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2628 && GET_CODE (newpat) == PARALLEL
2629 && XVECLEN (newpat, 0) == 2
2630 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2631 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2632 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2633 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2634 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2635 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2636 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2637 INSN_CUID (i2))
2638 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2639 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2640 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2641 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2642 XVECEXP (newpat, 0, 0))
2643 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2644 XVECEXP (newpat, 0, 1))
2645 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2646 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2647 {
2648 /* Normally, it doesn't matter which of the two is done first,
2649 but it does if one references cc0. In that case, it has to
2650 be first. */
2651 #ifdef HAVE_cc0
2652 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2653 {
2654 newi2pat = XVECEXP (newpat, 0, 0);
2655 newpat = XVECEXP (newpat, 0, 1);
2656 }
2657 else
2658 #endif
2659 {
2660 newi2pat = XVECEXP (newpat, 0, 1);
2661 newpat = XVECEXP (newpat, 0, 0);
2662 }
2663
2664 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2665
2666 if (i2_code_number >= 0)
2667 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2668 }
2669
2670 /* If it still isn't recognized, fail and change things back the way they
2671 were. */
2672 if ((insn_code_number < 0
2673 /* Is the result a reasonable ASM_OPERANDS? */
2674 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2675 {
2676 undo_all ();
2677 return 0;
2678 }
2679
2680 /* If we had to change another insn, make sure it is valid also. */
2681 if (undobuf.other_insn)
2682 {
2683 rtx other_pat = PATTERN (undobuf.other_insn);
2684 rtx new_other_notes;
2685 rtx note, next;
2686
2687 CLEAR_HARD_REG_SET (newpat_used_regs);
2688
2689 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2690 &new_other_notes);
2691
2692 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2693 {
2694 undo_all ();
2695 return 0;
2696 }
2697
2698 PATTERN (undobuf.other_insn) = other_pat;
2699
2700 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2701 are still valid. Then add any non-duplicate notes added by
2702 recog_for_combine. */
2703 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2704 {
2705 next = XEXP (note, 1);
2706
2707 if (REG_NOTE_KIND (note) == REG_UNUSED
2708 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2709 {
2710 if (REG_P (XEXP (note, 0)))
2711 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2712
2713 remove_note (undobuf.other_insn, note);
2714 }
2715 }
2716
2717 for (note = new_other_notes; note; note = XEXP (note, 1))
2718 if (REG_P (XEXP (note, 0)))
2719 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2720
2721 distribute_notes (new_other_notes, undobuf.other_insn,
2722 undobuf.other_insn, NULL_RTX);
2723 }
2724 #ifdef HAVE_cc0
2725 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2726 they are adjacent to each other or not. */
2727 {
2728 rtx p = prev_nonnote_insn (i3);
2729 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2730 && sets_cc0_p (newi2pat))
2731 {
2732 undo_all ();
2733 return 0;
2734 }
2735 }
2736 #endif
2737
2738 /* Only allow this combination if insn_rtx_costs reports that the
2739 replacement instructions are cheaper than the originals. */
2740 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2741 {
2742 undo_all ();
2743 return 0;
2744 }
2745
2746 /* We now know that we can do this combination. Merge the insns and
2747 update the status of registers and LOG_LINKS. */
2748
2749 if (swap_i2i3)
2750 {
2751 rtx insn;
2752 rtx link;
2753 rtx ni2dest;
2754
2755 /* I3 now uses what used to be its destination and which is now
2756 I2's destination. This requires us to do a few adjustments. */
2757 PATTERN (i3) = newpat;
2758 adjust_for_new_dest (i3);
2759
2760 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2761 so we still will.
2762
2763 However, some later insn might be using I2's dest and have
2764 a LOG_LINK pointing at I3. We must remove this link.
2765 The simplest way to remove the link is to point it at I1,
2766 which we know will be a NOTE. */
2767
2768 /* newi2pat is usually a SET here; however, recog_for_combine might
2769 have added some clobbers. */
2770 if (GET_CODE (newi2pat) == PARALLEL)
2771 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2772 else
2773 ni2dest = SET_DEST (newi2pat);
2774
2775 for (insn = NEXT_INSN (i3);
2776 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2777 || insn != BB_HEAD (this_basic_block->next_bb));
2778 insn = NEXT_INSN (insn))
2779 {
2780 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2781 {
2782 for (link = LOG_LINKS (insn); link;
2783 link = XEXP (link, 1))
2784 if (XEXP (link, 0) == i3)
2785 XEXP (link, 0) = i1;
2786
2787 break;
2788 }
2789 }
2790 }
2791
2792 {
2793 rtx i3notes, i2notes, i1notes = 0;
2794 rtx i3links, i2links, i1links = 0;
2795 rtx midnotes = 0;
2796 unsigned int regno;
2797
2798 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2799 clear them. */
2800 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2801 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2802 if (i1)
2803 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2804
2805 /* Ensure that we do not have something that should not be shared but
2806 occurs multiple times in the new insns. Check this by first
2807 resetting all the `used' flags and then copying anything is shared. */
2808
2809 reset_used_flags (i3notes);
2810 reset_used_flags (i2notes);
2811 reset_used_flags (i1notes);
2812 reset_used_flags (newpat);
2813 reset_used_flags (newi2pat);
2814 if (undobuf.other_insn)
2815 reset_used_flags (PATTERN (undobuf.other_insn));
2816
2817 i3notes = copy_rtx_if_shared (i3notes);
2818 i2notes = copy_rtx_if_shared (i2notes);
2819 i1notes = copy_rtx_if_shared (i1notes);
2820 newpat = copy_rtx_if_shared (newpat);
2821 newi2pat = copy_rtx_if_shared (newi2pat);
2822 if (undobuf.other_insn)
2823 reset_used_flags (PATTERN (undobuf.other_insn));
2824
2825 INSN_CODE (i3) = insn_code_number;
2826 PATTERN (i3) = newpat;
2827
2828 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2829 {
2830 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2831
2832 reset_used_flags (call_usage);
2833 call_usage = copy_rtx (call_usage);
2834
2835 if (substed_i2)
2836 replace_rtx (call_usage, i2dest, i2src);
2837
2838 if (substed_i1)
2839 replace_rtx (call_usage, i1dest, i1src);
2840
2841 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2842 }
2843
2844 if (undobuf.other_insn)
2845 INSN_CODE (undobuf.other_insn) = other_code_number;
2846
2847 /* We had one special case above where I2 had more than one set and
2848 we replaced a destination of one of those sets with the destination
2849 of I3. In that case, we have to update LOG_LINKS of insns later
2850 in this basic block. Note that this (expensive) case is rare.
2851
2852 Also, in this case, we must pretend that all REG_NOTEs for I2
2853 actually came from I3, so that REG_UNUSED notes from I2 will be
2854 properly handled. */
2855
2856 if (i3_subst_into_i2)
2857 {
2858 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2859 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2860 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2861 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2862 && ! find_reg_note (i2, REG_UNUSED,
2863 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2864 for (temp = NEXT_INSN (i2);
2865 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2866 || BB_HEAD (this_basic_block) != temp);
2867 temp = NEXT_INSN (temp))
2868 if (temp != i3 && INSN_P (temp))
2869 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2870 if (XEXP (link, 0) == i2)
2871 XEXP (link, 0) = i3;
2872
2873 if (i3notes)
2874 {
2875 rtx link = i3notes;
2876 while (XEXP (link, 1))
2877 link = XEXP (link, 1);
2878 XEXP (link, 1) = i2notes;
2879 }
2880 else
2881 i3notes = i2notes;
2882 i2notes = 0;
2883 }
2884
2885 LOG_LINKS (i3) = 0;
2886 REG_NOTES (i3) = 0;
2887 LOG_LINKS (i2) = 0;
2888 REG_NOTES (i2) = 0;
2889
2890 if (newi2pat)
2891 {
2892 INSN_CODE (i2) = i2_code_number;
2893 PATTERN (i2) = newi2pat;
2894 }
2895 else
2896 SET_INSN_DELETED (i2);
2897
2898 if (i1)
2899 {
2900 LOG_LINKS (i1) = 0;
2901 REG_NOTES (i1) = 0;
2902 SET_INSN_DELETED (i1);
2903 }
2904
2905 /* Get death notes for everything that is now used in either I3 or
2906 I2 and used to die in a previous insn. If we built two new
2907 patterns, move from I1 to I2 then I2 to I3 so that we get the
2908 proper movement on registers that I2 modifies. */
2909
2910 if (newi2pat)
2911 {
2912 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2913 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2914 }
2915 else
2916 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2917 i3, &midnotes);
2918
2919 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2920 if (i3notes)
2921 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2922 if (i2notes)
2923 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2924 if (i1notes)
2925 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2926 if (midnotes)
2927 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2928
2929 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2930 know these are REG_UNUSED and want them to go to the desired insn,
2931 so we always pass it as i3. We have not counted the notes in
2932 reg_n_deaths yet, so we need to do so now. */
2933
2934 if (newi2pat && new_i2_notes)
2935 {
2936 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2937 if (REG_P (XEXP (temp, 0)))
2938 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2939
2940 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2941 }
2942
2943 if (new_i3_notes)
2944 {
2945 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2946 if (REG_P (XEXP (temp, 0)))
2947 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2948
2949 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2950 }
2951
2952 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2953 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2954 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2955 in that case, it might delete I2. Similarly for I2 and I1.
2956 Show an additional death due to the REG_DEAD note we make here. If
2957 we discard it in distribute_notes, we will decrement it again. */
2958
2959 if (i3dest_killed)
2960 {
2961 if (REG_P (i3dest_killed))
2962 REG_N_DEATHS (REGNO (i3dest_killed))++;
2963
2964 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2965 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2966 NULL_RTX),
2967 NULL_RTX, i2, NULL_RTX);
2968 else
2969 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2970 NULL_RTX),
2971 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2972 }
2973
2974 if (i2dest_in_i2src)
2975 {
2976 if (REG_P (i2dest))
2977 REG_N_DEATHS (REGNO (i2dest))++;
2978
2979 if (newi2pat && reg_set_p (i2dest, newi2pat))
2980 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2981 NULL_RTX, i2, NULL_RTX);
2982 else
2983 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2984 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2985 }
2986
2987 if (i1dest_in_i1src)
2988 {
2989 if (REG_P (i1dest))
2990 REG_N_DEATHS (REGNO (i1dest))++;
2991
2992 if (newi2pat && reg_set_p (i1dest, newi2pat))
2993 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2994 NULL_RTX, i2, NULL_RTX);
2995 else
2996 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2997 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2998 }
2999
3000 distribute_links (i3links);
3001 distribute_links (i2links);
3002 distribute_links (i1links);
3003
3004 if (REG_P (i2dest))
3005 {
3006 rtx link;
3007 rtx i2_insn = 0, i2_val = 0, set;
3008
3009 /* The insn that used to set this register doesn't exist, and
3010 this life of the register may not exist either. See if one of
3011 I3's links points to an insn that sets I2DEST. If it does,
3012 that is now the last known value for I2DEST. If we don't update
3013 this and I2 set the register to a value that depended on its old
3014 contents, we will get confused. If this insn is used, thing
3015 will be set correctly in combine_instructions. */
3016
3017 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3018 if ((set = single_set (XEXP (link, 0))) != 0
3019 && rtx_equal_p (i2dest, SET_DEST (set)))
3020 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3021
3022 record_value_for_reg (i2dest, i2_insn, i2_val);
3023
3024 /* If the reg formerly set in I2 died only once and that was in I3,
3025 zero its use count so it won't make `reload' do any work. */
3026 if (! added_sets_2
3027 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3028 && ! i2dest_in_i2src)
3029 {
3030 regno = REGNO (i2dest);
3031 REG_N_SETS (regno)--;
3032 }
3033 }
3034
3035 if (i1 && REG_P (i1dest))
3036 {
3037 rtx link;
3038 rtx i1_insn = 0, i1_val = 0, set;
3039
3040 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3041 if ((set = single_set (XEXP (link, 0))) != 0
3042 && rtx_equal_p (i1dest, SET_DEST (set)))
3043 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3044
3045 record_value_for_reg (i1dest, i1_insn, i1_val);
3046
3047 regno = REGNO (i1dest);
3048 if (! added_sets_1 && ! i1dest_in_i1src)
3049 REG_N_SETS (regno)--;
3050 }
3051
3052 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3053 been made to this insn. The order of
3054 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3055 can affect nonzero_bits of newpat */
3056 if (newi2pat)
3057 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3058 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3059
3060 /* Set new_direct_jump_p if a new return or simple jump instruction
3061 has been created.
3062
3063 If I3 is now an unconditional jump, ensure that it has a
3064 BARRIER following it since it may have initially been a
3065 conditional jump. It may also be the last nonnote insn. */
3066
3067 if (returnjump_p (i3) || any_uncondjump_p (i3))
3068 {
3069 *new_direct_jump_p = 1;
3070 mark_jump_label (PATTERN (i3), i3, 0);
3071
3072 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3073 || !BARRIER_P (temp))
3074 emit_barrier_after (i3);
3075 }
3076
3077 if (undobuf.other_insn != NULL_RTX
3078 && (returnjump_p (undobuf.other_insn)
3079 || any_uncondjump_p (undobuf.other_insn)))
3080 {
3081 *new_direct_jump_p = 1;
3082
3083 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3084 || !BARRIER_P (temp))
3085 emit_barrier_after (undobuf.other_insn);
3086 }
3087
3088 /* An NOOP jump does not need barrier, but it does need cleaning up
3089 of CFG. */
3090 if (GET_CODE (newpat) == SET
3091 && SET_SRC (newpat) == pc_rtx
3092 && SET_DEST (newpat) == pc_rtx)
3093 *new_direct_jump_p = 1;
3094 }
3095
3096 combine_successes++;
3097 undo_commit ();
3098
3099 if (added_links_insn
3100 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3101 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3102 return added_links_insn;
3103 else
3104 return newi2pat ? i2 : i3;
3105 }
3106 \f
3107 /* Undo all the modifications recorded in undobuf. */
3108
3109 static void
3110 undo_all (void)
3111 {
3112 struct undo *undo, *next;
3113
3114 for (undo = undobuf.undos; undo; undo = next)
3115 {
3116 next = undo->next;
3117 if (undo->is_int)
3118 *undo->where.i = undo->old_contents.i;
3119 else
3120 *undo->where.r = undo->old_contents.r;
3121
3122 undo->next = undobuf.frees;
3123 undobuf.frees = undo;
3124 }
3125
3126 undobuf.undos = 0;
3127 }
3128
3129 /* We've committed to accepting the changes we made. Move all
3130 of the undos to the free list. */
3131
3132 static void
3133 undo_commit (void)
3134 {
3135 struct undo *undo, *next;
3136
3137 for (undo = undobuf.undos; undo; undo = next)
3138 {
3139 next = undo->next;
3140 undo->next = undobuf.frees;
3141 undobuf.frees = undo;
3142 }
3143 undobuf.undos = 0;
3144 }
3145
3146 \f
3147 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3148 where we have an arithmetic expression and return that point. LOC will
3149 be inside INSN.
3150
3151 try_combine will call this function to see if an insn can be split into
3152 two insns. */
3153
3154 static rtx *
3155 find_split_point (rtx *loc, rtx insn)
3156 {
3157 rtx x = *loc;
3158 enum rtx_code code = GET_CODE (x);
3159 rtx *split;
3160 unsigned HOST_WIDE_INT len = 0;
3161 HOST_WIDE_INT pos = 0;
3162 int unsignedp = 0;
3163 rtx inner = NULL_RTX;
3164
3165 /* First special-case some codes. */
3166 switch (code)
3167 {
3168 case SUBREG:
3169 #ifdef INSN_SCHEDULING
3170 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3171 point. */
3172 if (MEM_P (SUBREG_REG (x)))
3173 return loc;
3174 #endif
3175 return find_split_point (&SUBREG_REG (x), insn);
3176
3177 case MEM:
3178 #ifdef HAVE_lo_sum
3179 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3180 using LO_SUM and HIGH. */
3181 if (GET_CODE (XEXP (x, 0)) == CONST
3182 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3183 {
3184 SUBST (XEXP (x, 0),
3185 gen_rtx_LO_SUM (Pmode,
3186 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3187 XEXP (x, 0)));
3188 return &XEXP (XEXP (x, 0), 0);
3189 }
3190 #endif
3191
3192 /* If we have a PLUS whose second operand is a constant and the
3193 address is not valid, perhaps will can split it up using
3194 the machine-specific way to split large constants. We use
3195 the first pseudo-reg (one of the virtual regs) as a placeholder;
3196 it will not remain in the result. */
3197 if (GET_CODE (XEXP (x, 0)) == PLUS
3198 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3199 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3200 {
3201 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3202 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3203 subst_insn);
3204
3205 /* This should have produced two insns, each of which sets our
3206 placeholder. If the source of the second is a valid address,
3207 we can make put both sources together and make a split point
3208 in the middle. */
3209
3210 if (seq
3211 && NEXT_INSN (seq) != NULL_RTX
3212 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3213 && NONJUMP_INSN_P (seq)
3214 && GET_CODE (PATTERN (seq)) == SET
3215 && SET_DEST (PATTERN (seq)) == reg
3216 && ! reg_mentioned_p (reg,
3217 SET_SRC (PATTERN (seq)))
3218 && NONJUMP_INSN_P (NEXT_INSN (seq))
3219 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3220 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3221 && memory_address_p (GET_MODE (x),
3222 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3223 {
3224 rtx src1 = SET_SRC (PATTERN (seq));
3225 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3226
3227 /* Replace the placeholder in SRC2 with SRC1. If we can
3228 find where in SRC2 it was placed, that can become our
3229 split point and we can replace this address with SRC2.
3230 Just try two obvious places. */
3231
3232 src2 = replace_rtx (src2, reg, src1);
3233 split = 0;
3234 if (XEXP (src2, 0) == src1)
3235 split = &XEXP (src2, 0);
3236 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3237 && XEXP (XEXP (src2, 0), 0) == src1)
3238 split = &XEXP (XEXP (src2, 0), 0);
3239
3240 if (split)
3241 {
3242 SUBST (XEXP (x, 0), src2);
3243 return split;
3244 }
3245 }
3246
3247 /* If that didn't work, perhaps the first operand is complex and
3248 needs to be computed separately, so make a split point there.
3249 This will occur on machines that just support REG + CONST
3250 and have a constant moved through some previous computation. */
3251
3252 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3253 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3254 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3255 return &XEXP (XEXP (x, 0), 0);
3256 }
3257 break;
3258
3259 case SET:
3260 #ifdef HAVE_cc0
3261 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3262 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3263 we need to put the operand into a register. So split at that
3264 point. */
3265
3266 if (SET_DEST (x) == cc0_rtx
3267 && GET_CODE (SET_SRC (x)) != COMPARE
3268 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3269 && !OBJECT_P (SET_SRC (x))
3270 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3271 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3272 return &SET_SRC (x);
3273 #endif
3274
3275 /* See if we can split SET_SRC as it stands. */
3276 split = find_split_point (&SET_SRC (x), insn);
3277 if (split && split != &SET_SRC (x))
3278 return split;
3279
3280 /* See if we can split SET_DEST as it stands. */
3281 split = find_split_point (&SET_DEST (x), insn);
3282 if (split && split != &SET_DEST (x))
3283 return split;
3284
3285 /* See if this is a bitfield assignment with everything constant. If
3286 so, this is an IOR of an AND, so split it into that. */
3287 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3288 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3289 <= HOST_BITS_PER_WIDE_INT)
3290 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3291 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3292 && GET_CODE (SET_SRC (x)) == CONST_INT
3293 && ((INTVAL (XEXP (SET_DEST (x), 1))
3294 + INTVAL (XEXP (SET_DEST (x), 2)))
3295 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3296 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3297 {
3298 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3299 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3300 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3301 rtx dest = XEXP (SET_DEST (x), 0);
3302 enum machine_mode mode = GET_MODE (dest);
3303 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3304
3305 if (BITS_BIG_ENDIAN)
3306 pos = GET_MODE_BITSIZE (mode) - len - pos;
3307
3308 if (src == mask)
3309 SUBST (SET_SRC (x),
3310 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3311 else
3312 {
3313 rtx negmask = gen_int_mode (~(mask << pos), mode);
3314 SUBST (SET_SRC (x),
3315 simplify_gen_binary (IOR, mode,
3316 simplify_gen_binary (AND, mode,
3317 dest, negmask),
3318 GEN_INT (src << pos)));
3319 }
3320
3321 SUBST (SET_DEST (x), dest);
3322
3323 split = find_split_point (&SET_SRC (x), insn);
3324 if (split && split != &SET_SRC (x))
3325 return split;
3326 }
3327
3328 /* Otherwise, see if this is an operation that we can split into two.
3329 If so, try to split that. */
3330 code = GET_CODE (SET_SRC (x));
3331
3332 switch (code)
3333 {
3334 case AND:
3335 /* If we are AND'ing with a large constant that is only a single
3336 bit and the result is only being used in a context where we
3337 need to know if it is zero or nonzero, replace it with a bit
3338 extraction. This will avoid the large constant, which might
3339 have taken more than one insn to make. If the constant were
3340 not a valid argument to the AND but took only one insn to make,
3341 this is no worse, but if it took more than one insn, it will
3342 be better. */
3343
3344 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3345 && REG_P (XEXP (SET_SRC (x), 0))
3346 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3347 && REG_P (SET_DEST (x))
3348 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3349 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3350 && XEXP (*split, 0) == SET_DEST (x)
3351 && XEXP (*split, 1) == const0_rtx)
3352 {
3353 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3354 XEXP (SET_SRC (x), 0),
3355 pos, NULL_RTX, 1, 1, 0, 0);
3356 if (extraction != 0)
3357 {
3358 SUBST (SET_SRC (x), extraction);
3359 return find_split_point (loc, insn);
3360 }
3361 }
3362 break;
3363
3364 case NE:
3365 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3366 is known to be on, this can be converted into a NEG of a shift. */
3367 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3368 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3369 && 1 <= (pos = exact_log2
3370 (nonzero_bits (XEXP (SET_SRC (x), 0),
3371 GET_MODE (XEXP (SET_SRC (x), 0))))))
3372 {
3373 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3374
3375 SUBST (SET_SRC (x),
3376 gen_rtx_NEG (mode,
3377 gen_rtx_LSHIFTRT (mode,
3378 XEXP (SET_SRC (x), 0),
3379 GEN_INT (pos))));
3380
3381 split = find_split_point (&SET_SRC (x), insn);
3382 if (split && split != &SET_SRC (x))
3383 return split;
3384 }
3385 break;
3386
3387 case SIGN_EXTEND:
3388 inner = XEXP (SET_SRC (x), 0);
3389
3390 /* We can't optimize if either mode is a partial integer
3391 mode as we don't know how many bits are significant
3392 in those modes. */
3393 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3394 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3395 break;
3396
3397 pos = 0;
3398 len = GET_MODE_BITSIZE (GET_MODE (inner));
3399 unsignedp = 0;
3400 break;
3401
3402 case SIGN_EXTRACT:
3403 case ZERO_EXTRACT:
3404 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3405 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3406 {
3407 inner = XEXP (SET_SRC (x), 0);
3408 len = INTVAL (XEXP (SET_SRC (x), 1));
3409 pos = INTVAL (XEXP (SET_SRC (x), 2));
3410
3411 if (BITS_BIG_ENDIAN)
3412 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3413 unsignedp = (code == ZERO_EXTRACT);
3414 }
3415 break;
3416
3417 default:
3418 break;
3419 }
3420
3421 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3422 {
3423 enum machine_mode mode = GET_MODE (SET_SRC (x));
3424
3425 /* For unsigned, we have a choice of a shift followed by an
3426 AND or two shifts. Use two shifts for field sizes where the
3427 constant might be too large. We assume here that we can
3428 always at least get 8-bit constants in an AND insn, which is
3429 true for every current RISC. */
3430
3431 if (unsignedp && len <= 8)
3432 {
3433 SUBST (SET_SRC (x),
3434 gen_rtx_AND (mode,
3435 gen_rtx_LSHIFTRT
3436 (mode, gen_lowpart (mode, inner),
3437 GEN_INT (pos)),
3438 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3439
3440 split = find_split_point (&SET_SRC (x), insn);
3441 if (split && split != &SET_SRC (x))
3442 return split;
3443 }
3444 else
3445 {
3446 SUBST (SET_SRC (x),
3447 gen_rtx_fmt_ee
3448 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3449 gen_rtx_ASHIFT (mode,
3450 gen_lowpart (mode, inner),
3451 GEN_INT (GET_MODE_BITSIZE (mode)
3452 - len - pos)),
3453 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3454
3455 split = find_split_point (&SET_SRC (x), insn);
3456 if (split && split != &SET_SRC (x))
3457 return split;
3458 }
3459 }
3460
3461 /* See if this is a simple operation with a constant as the second
3462 operand. It might be that this constant is out of range and hence
3463 could be used as a split point. */
3464 if (BINARY_P (SET_SRC (x))
3465 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3466 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3467 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3468 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3469 return &XEXP (SET_SRC (x), 1);
3470
3471 /* Finally, see if this is a simple operation with its first operand
3472 not in a register. The operation might require this operand in a
3473 register, so return it as a split point. We can always do this
3474 because if the first operand were another operation, we would have
3475 already found it as a split point. */
3476 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3477 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3478 return &XEXP (SET_SRC (x), 0);
3479
3480 return 0;
3481
3482 case AND:
3483 case IOR:
3484 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3485 it is better to write this as (not (ior A B)) so we can split it.
3486 Similarly for IOR. */
3487 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3488 {
3489 SUBST (*loc,
3490 gen_rtx_NOT (GET_MODE (x),
3491 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3492 GET_MODE (x),
3493 XEXP (XEXP (x, 0), 0),
3494 XEXP (XEXP (x, 1), 0))));
3495 return find_split_point (loc, insn);
3496 }
3497
3498 /* Many RISC machines have a large set of logical insns. If the
3499 second operand is a NOT, put it first so we will try to split the
3500 other operand first. */
3501 if (GET_CODE (XEXP (x, 1)) == NOT)
3502 {
3503 rtx tem = XEXP (x, 0);
3504 SUBST (XEXP (x, 0), XEXP (x, 1));
3505 SUBST (XEXP (x, 1), tem);
3506 }
3507 break;
3508
3509 default:
3510 break;
3511 }
3512
3513 /* Otherwise, select our actions depending on our rtx class. */
3514 switch (GET_RTX_CLASS (code))
3515 {
3516 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3517 case RTX_TERNARY:
3518 split = find_split_point (&XEXP (x, 2), insn);
3519 if (split)
3520 return split;
3521 /* ... fall through ... */
3522 case RTX_BIN_ARITH:
3523 case RTX_COMM_ARITH:
3524 case RTX_COMPARE:
3525 case RTX_COMM_COMPARE:
3526 split = find_split_point (&XEXP (x, 1), insn);
3527 if (split)
3528 return split;
3529 /* ... fall through ... */
3530 case RTX_UNARY:
3531 /* Some machines have (and (shift ...) ...) insns. If X is not
3532 an AND, but XEXP (X, 0) is, use it as our split point. */
3533 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3534 return &XEXP (x, 0);
3535
3536 split = find_split_point (&XEXP (x, 0), insn);
3537 if (split)
3538 return split;
3539 return loc;
3540
3541 default:
3542 /* Otherwise, we don't have a split point. */
3543 return 0;
3544 }
3545 }
3546 \f
3547 /* Throughout X, replace FROM with TO, and return the result.
3548 The result is TO if X is FROM;
3549 otherwise the result is X, but its contents may have been modified.
3550 If they were modified, a record was made in undobuf so that
3551 undo_all will (among other things) return X to its original state.
3552
3553 If the number of changes necessary is too much to record to undo,
3554 the excess changes are not made, so the result is invalid.
3555 The changes already made can still be undone.
3556 undobuf.num_undo is incremented for such changes, so by testing that
3557 the caller can tell whether the result is valid.
3558
3559 `n_occurrences' is incremented each time FROM is replaced.
3560
3561 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3562
3563 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3564 by copying if `n_occurrences' is nonzero. */
3565
3566 static rtx
3567 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3568 {
3569 enum rtx_code code = GET_CODE (x);
3570 enum machine_mode op0_mode = VOIDmode;
3571 const char *fmt;
3572 int len, i;
3573 rtx new;
3574
3575 /* Two expressions are equal if they are identical copies of a shared
3576 RTX or if they are both registers with the same register number
3577 and mode. */
3578
3579 #define COMBINE_RTX_EQUAL_P(X,Y) \
3580 ((X) == (Y) \
3581 || (REG_P (X) && REG_P (Y) \
3582 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3583
3584 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3585 {
3586 n_occurrences++;
3587 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3588 }
3589
3590 /* If X and FROM are the same register but different modes, they will
3591 not have been seen as equal above. However, flow.c will make a
3592 LOG_LINKS entry for that case. If we do nothing, we will try to
3593 rerecognize our original insn and, when it succeeds, we will
3594 delete the feeding insn, which is incorrect.
3595
3596 So force this insn not to match in this (rare) case. */
3597 if (! in_dest && code == REG && REG_P (from)
3598 && REGNO (x) == REGNO (from))
3599 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3600
3601 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3602 of which may contain things that can be combined. */
3603 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3604 return x;
3605
3606 /* It is possible to have a subexpression appear twice in the insn.
3607 Suppose that FROM is a register that appears within TO.
3608 Then, after that subexpression has been scanned once by `subst',
3609 the second time it is scanned, TO may be found. If we were
3610 to scan TO here, we would find FROM within it and create a
3611 self-referent rtl structure which is completely wrong. */
3612 if (COMBINE_RTX_EQUAL_P (x, to))
3613 return to;
3614
3615 /* Parallel asm_operands need special attention because all of the
3616 inputs are shared across the arms. Furthermore, unsharing the
3617 rtl results in recognition failures. Failure to handle this case
3618 specially can result in circular rtl.
3619
3620 Solve this by doing a normal pass across the first entry of the
3621 parallel, and only processing the SET_DESTs of the subsequent
3622 entries. Ug. */
3623
3624 if (code == PARALLEL
3625 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3626 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3627 {
3628 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3629
3630 /* If this substitution failed, this whole thing fails. */
3631 if (GET_CODE (new) == CLOBBER
3632 && XEXP (new, 0) == const0_rtx)
3633 return new;
3634
3635 SUBST (XVECEXP (x, 0, 0), new);
3636
3637 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3638 {
3639 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3640
3641 if (!REG_P (dest)
3642 && GET_CODE (dest) != CC0
3643 && GET_CODE (dest) != PC)
3644 {
3645 new = subst (dest, from, to, 0, unique_copy);
3646
3647 /* If this substitution failed, this whole thing fails. */
3648 if (GET_CODE (new) == CLOBBER
3649 && XEXP (new, 0) == const0_rtx)
3650 return new;
3651
3652 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3653 }
3654 }
3655 }
3656 else
3657 {
3658 len = GET_RTX_LENGTH (code);
3659 fmt = GET_RTX_FORMAT (code);
3660
3661 /* We don't need to process a SET_DEST that is a register, CC0,
3662 or PC, so set up to skip this common case. All other cases
3663 where we want to suppress replacing something inside a
3664 SET_SRC are handled via the IN_DEST operand. */
3665 if (code == SET
3666 && (REG_P (SET_DEST (x))
3667 || GET_CODE (SET_DEST (x)) == CC0
3668 || GET_CODE (SET_DEST (x)) == PC))
3669 fmt = "ie";
3670
3671 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3672 constant. */
3673 if (fmt[0] == 'e')
3674 op0_mode = GET_MODE (XEXP (x, 0));
3675
3676 for (i = 0; i < len; i++)
3677 {
3678 if (fmt[i] == 'E')
3679 {
3680 int j;
3681 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3682 {
3683 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3684 {
3685 new = (unique_copy && n_occurrences
3686 ? copy_rtx (to) : to);
3687 n_occurrences++;
3688 }
3689 else
3690 {
3691 new = subst (XVECEXP (x, i, j), from, to, 0,
3692 unique_copy);
3693
3694 /* If this substitution failed, this whole thing
3695 fails. */
3696 if (GET_CODE (new) == CLOBBER
3697 && XEXP (new, 0) == const0_rtx)
3698 return new;
3699 }
3700
3701 SUBST (XVECEXP (x, i, j), new);
3702 }
3703 }
3704 else if (fmt[i] == 'e')
3705 {
3706 /* If this is a register being set, ignore it. */
3707 new = XEXP (x, i);
3708 if (in_dest
3709 && i == 0
3710 && (((code == SUBREG || code == ZERO_EXTRACT)
3711 && REG_P (new))
3712 || code == STRICT_LOW_PART))
3713 ;
3714
3715 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3716 {
3717 /* In general, don't install a subreg involving two
3718 modes not tieable. It can worsen register
3719 allocation, and can even make invalid reload
3720 insns, since the reg inside may need to be copied
3721 from in the outside mode, and that may be invalid
3722 if it is an fp reg copied in integer mode.
3723
3724 We allow two exceptions to this: It is valid if
3725 it is inside another SUBREG and the mode of that
3726 SUBREG and the mode of the inside of TO is
3727 tieable and it is valid if X is a SET that copies
3728 FROM to CC0. */
3729
3730 if (GET_CODE (to) == SUBREG
3731 && ! MODES_TIEABLE_P (GET_MODE (to),
3732 GET_MODE (SUBREG_REG (to)))
3733 && ! (code == SUBREG
3734 && MODES_TIEABLE_P (GET_MODE (x),
3735 GET_MODE (SUBREG_REG (to))))
3736 #ifdef HAVE_cc0
3737 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3738 #endif
3739 )
3740 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3741
3742 #ifdef CANNOT_CHANGE_MODE_CLASS
3743 if (code == SUBREG
3744 && REG_P (to)
3745 && REGNO (to) < FIRST_PSEUDO_REGISTER
3746 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3747 GET_MODE (to),
3748 GET_MODE (x)))
3749 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3750 #endif
3751
3752 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3753 n_occurrences++;
3754 }
3755 else
3756 /* If we are in a SET_DEST, suppress most cases unless we
3757 have gone inside a MEM, in which case we want to
3758 simplify the address. We assume here that things that
3759 are actually part of the destination have their inner
3760 parts in the first expression. This is true for SUBREG,
3761 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3762 things aside from REG and MEM that should appear in a
3763 SET_DEST. */
3764 new = subst (XEXP (x, i), from, to,
3765 (((in_dest
3766 && (code == SUBREG || code == STRICT_LOW_PART
3767 || code == ZERO_EXTRACT))
3768 || code == SET)
3769 && i == 0), unique_copy);
3770
3771 /* If we found that we will have to reject this combination,
3772 indicate that by returning the CLOBBER ourselves, rather than
3773 an expression containing it. This will speed things up as
3774 well as prevent accidents where two CLOBBERs are considered
3775 to be equal, thus producing an incorrect simplification. */
3776
3777 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3778 return new;
3779
3780 if (GET_CODE (x) == SUBREG
3781 && (GET_CODE (new) == CONST_INT
3782 || GET_CODE (new) == CONST_DOUBLE))
3783 {
3784 enum machine_mode mode = GET_MODE (x);
3785
3786 x = simplify_subreg (GET_MODE (x), new,
3787 GET_MODE (SUBREG_REG (x)),
3788 SUBREG_BYTE (x));
3789 if (! x)
3790 x = gen_rtx_CLOBBER (mode, const0_rtx);
3791 }
3792 else if (GET_CODE (new) == CONST_INT
3793 && GET_CODE (x) == ZERO_EXTEND)
3794 {
3795 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3796 new, GET_MODE (XEXP (x, 0)));
3797 gcc_assert (x);
3798 }
3799 else
3800 SUBST (XEXP (x, i), new);
3801 }
3802 }
3803 }
3804
3805 /* Try to simplify X. If the simplification changed the code, it is likely
3806 that further simplification will help, so loop, but limit the number
3807 of repetitions that will be performed. */
3808
3809 for (i = 0; i < 4; i++)
3810 {
3811 /* If X is sufficiently simple, don't bother trying to do anything
3812 with it. */
3813 if (code != CONST_INT && code != REG && code != CLOBBER)
3814 x = combine_simplify_rtx (x, op0_mode, in_dest);
3815
3816 if (GET_CODE (x) == code)
3817 break;
3818
3819 code = GET_CODE (x);
3820
3821 /* We no longer know the original mode of operand 0 since we
3822 have changed the form of X) */
3823 op0_mode = VOIDmode;
3824 }
3825
3826 return x;
3827 }
3828 \f
3829 /* Simplify X, a piece of RTL. We just operate on the expression at the
3830 outer level; call `subst' to simplify recursively. Return the new
3831 expression.
3832
3833 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3834 if we are inside a SET_DEST. */
3835
3836 static rtx
3837 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3838 {
3839 enum rtx_code code = GET_CODE (x);
3840 enum machine_mode mode = GET_MODE (x);
3841 rtx temp;
3842 rtx reversed;
3843 int i;
3844
3845 /* If this is a commutative operation, put a constant last and a complex
3846 expression first. We don't need to do this for comparisons here. */
3847 if (COMMUTATIVE_ARITH_P (x)
3848 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3849 {
3850 temp = XEXP (x, 0);
3851 SUBST (XEXP (x, 0), XEXP (x, 1));
3852 SUBST (XEXP (x, 1), temp);
3853 }
3854
3855 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3856 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3857 things. Check for cases where both arms are testing the same
3858 condition.
3859
3860 Don't do anything if all operands are very simple. */
3861
3862 if ((BINARY_P (x)
3863 && ((!OBJECT_P (XEXP (x, 0))
3864 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3865 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3866 || (!OBJECT_P (XEXP (x, 1))
3867 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3868 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3869 || (UNARY_P (x)
3870 && (!OBJECT_P (XEXP (x, 0))
3871 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3872 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3873 {
3874 rtx cond, true_rtx, false_rtx;
3875
3876 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3877 if (cond != 0
3878 /* If everything is a comparison, what we have is highly unlikely
3879 to be simpler, so don't use it. */
3880 && ! (COMPARISON_P (x)
3881 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3882 {
3883 rtx cop1 = const0_rtx;
3884 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3885
3886 if (cond_code == NE && COMPARISON_P (cond))
3887 return x;
3888
3889 /* Simplify the alternative arms; this may collapse the true and
3890 false arms to store-flag values. Be careful to use copy_rtx
3891 here since true_rtx or false_rtx might share RTL with x as a
3892 result of the if_then_else_cond call above. */
3893 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3894 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3895
3896 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3897 is unlikely to be simpler. */
3898 if (general_operand (true_rtx, VOIDmode)
3899 && general_operand (false_rtx, VOIDmode))
3900 {
3901 enum rtx_code reversed;
3902
3903 /* Restarting if we generate a store-flag expression will cause
3904 us to loop. Just drop through in this case. */
3905
3906 /* If the result values are STORE_FLAG_VALUE and zero, we can
3907 just make the comparison operation. */
3908 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3909 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3910 cond, cop1);
3911 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3912 && ((reversed = reversed_comparison_code_parts
3913 (cond_code, cond, cop1, NULL))
3914 != UNKNOWN))
3915 x = simplify_gen_relational (reversed, mode, VOIDmode,
3916 cond, cop1);
3917
3918 /* Likewise, we can make the negate of a comparison operation
3919 if the result values are - STORE_FLAG_VALUE and zero. */
3920 else if (GET_CODE (true_rtx) == CONST_INT
3921 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3922 && false_rtx == const0_rtx)
3923 x = simplify_gen_unary (NEG, mode,
3924 simplify_gen_relational (cond_code,
3925 mode, VOIDmode,
3926 cond, cop1),
3927 mode);
3928 else if (GET_CODE (false_rtx) == CONST_INT
3929 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3930 && true_rtx == const0_rtx
3931 && ((reversed = reversed_comparison_code_parts
3932 (cond_code, cond, cop1, NULL))
3933 != UNKNOWN))
3934 x = simplify_gen_unary (NEG, mode,
3935 simplify_gen_relational (reversed,
3936 mode, VOIDmode,
3937 cond, cop1),
3938 mode);
3939 else
3940 return gen_rtx_IF_THEN_ELSE (mode,
3941 simplify_gen_relational (cond_code,
3942 mode,
3943 VOIDmode,
3944 cond,
3945 cop1),
3946 true_rtx, false_rtx);
3947
3948 code = GET_CODE (x);
3949 op0_mode = VOIDmode;
3950 }
3951 }
3952 }
3953
3954 /* Try to fold this expression in case we have constants that weren't
3955 present before. */
3956 temp = 0;
3957 switch (GET_RTX_CLASS (code))
3958 {
3959 case RTX_UNARY:
3960 if (op0_mode == VOIDmode)
3961 op0_mode = GET_MODE (XEXP (x, 0));
3962 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3963 break;
3964 case RTX_COMPARE:
3965 case RTX_COMM_COMPARE:
3966 {
3967 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3968 if (cmp_mode == VOIDmode)
3969 {
3970 cmp_mode = GET_MODE (XEXP (x, 1));
3971 if (cmp_mode == VOIDmode)
3972 cmp_mode = op0_mode;
3973 }
3974 temp = simplify_relational_operation (code, mode, cmp_mode,
3975 XEXP (x, 0), XEXP (x, 1));
3976 }
3977 break;
3978 case RTX_COMM_ARITH:
3979 case RTX_BIN_ARITH:
3980 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3981 break;
3982 case RTX_BITFIELD_OPS:
3983 case RTX_TERNARY:
3984 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3985 XEXP (x, 1), XEXP (x, 2));
3986 break;
3987 default:
3988 break;
3989 }
3990
3991 if (temp)
3992 {
3993 x = temp;
3994 code = GET_CODE (temp);
3995 op0_mode = VOIDmode;
3996 mode = GET_MODE (temp);
3997 }
3998
3999 /* First see if we can apply the inverse distributive law. */
4000 if (code == PLUS || code == MINUS
4001 || code == AND || code == IOR || code == XOR)
4002 {
4003 x = apply_distributive_law (x);
4004 code = GET_CODE (x);
4005 op0_mode = VOIDmode;
4006 }
4007
4008 /* If CODE is an associative operation not otherwise handled, see if we
4009 can associate some operands. This can win if they are constants or
4010 if they are logically related (i.e. (a & b) & a). */
4011 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4012 || code == AND || code == IOR || code == XOR
4013 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4014 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4015 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4016 {
4017 if (GET_CODE (XEXP (x, 0)) == code)
4018 {
4019 rtx other = XEXP (XEXP (x, 0), 0);
4020 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4021 rtx inner_op1 = XEXP (x, 1);
4022 rtx inner;
4023
4024 /* Make sure we pass the constant operand if any as the second
4025 one if this is a commutative operation. */
4026 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4027 {
4028 rtx tem = inner_op0;
4029 inner_op0 = inner_op1;
4030 inner_op1 = tem;
4031 }
4032 inner = simplify_binary_operation (code == MINUS ? PLUS
4033 : code == DIV ? MULT
4034 : code,
4035 mode, inner_op0, inner_op1);
4036
4037 /* For commutative operations, try the other pair if that one
4038 didn't simplify. */
4039 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4040 {
4041 other = XEXP (XEXP (x, 0), 1);
4042 inner = simplify_binary_operation (code, mode,
4043 XEXP (XEXP (x, 0), 0),
4044 XEXP (x, 1));
4045 }
4046
4047 if (inner)
4048 return simplify_gen_binary (code, mode, other, inner);
4049 }
4050 }
4051
4052 /* A little bit of algebraic simplification here. */
4053 switch (code)
4054 {
4055 case MEM:
4056 /* Ensure that our address has any ASHIFTs converted to MULT in case
4057 address-recognizing predicates are called later. */
4058 temp = make_compound_operation (XEXP (x, 0), MEM);
4059 SUBST (XEXP (x, 0), temp);
4060 break;
4061
4062 case SUBREG:
4063 if (op0_mode == VOIDmode)
4064 op0_mode = GET_MODE (SUBREG_REG (x));
4065
4066 /* See if this can be moved to simplify_subreg. */
4067 if (CONSTANT_P (SUBREG_REG (x))
4068 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4069 /* Don't call gen_lowpart if the inner mode
4070 is VOIDmode and we cannot simplify it, as SUBREG without
4071 inner mode is invalid. */
4072 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4073 || gen_lowpart_common (mode, SUBREG_REG (x))))
4074 return gen_lowpart (mode, SUBREG_REG (x));
4075
4076 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4077 break;
4078 {
4079 rtx temp;
4080 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4081 SUBREG_BYTE (x));
4082 if (temp)
4083 return temp;
4084 }
4085
4086 /* Don't change the mode of the MEM if that would change the meaning
4087 of the address. */
4088 if (MEM_P (SUBREG_REG (x))
4089 && (MEM_VOLATILE_P (SUBREG_REG (x))
4090 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4091 return gen_rtx_CLOBBER (mode, const0_rtx);
4092
4093 /* Note that we cannot do any narrowing for non-constants since
4094 we might have been counting on using the fact that some bits were
4095 zero. We now do this in the SET. */
4096
4097 break;
4098
4099 case NOT:
4100 if (GET_CODE (XEXP (x, 0)) == SUBREG
4101 && subreg_lowpart_p (XEXP (x, 0))
4102 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4103 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4104 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4105 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4106 {
4107 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4108
4109 x = gen_rtx_ROTATE (inner_mode,
4110 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4111 inner_mode),
4112 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4113 return gen_lowpart (mode, x);
4114 }
4115
4116 /* Apply De Morgan's laws to reduce number of patterns for machines
4117 with negating logical insns (and-not, nand, etc.). If result has
4118 only one NOT, put it first, since that is how the patterns are
4119 coded. */
4120
4121 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4122 {
4123 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4124 enum machine_mode op_mode;
4125
4126 op_mode = GET_MODE (in1);
4127 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4128
4129 op_mode = GET_MODE (in2);
4130 if (op_mode == VOIDmode)
4131 op_mode = mode;
4132 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4133
4134 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4135 {
4136 rtx tem = in2;
4137 in2 = in1; in1 = tem;
4138 }
4139
4140 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4141 mode, in1, in2);
4142 }
4143 break;
4144
4145 case NEG:
4146 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4147 if (GET_CODE (XEXP (x, 0)) == XOR
4148 && XEXP (XEXP (x, 0), 1) == const1_rtx
4149 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4150 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4151 constm1_rtx);
4152
4153 temp = expand_compound_operation (XEXP (x, 0));
4154
4155 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4156 replaced by (lshiftrt X C). This will convert
4157 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4158
4159 if (GET_CODE (temp) == ASHIFTRT
4160 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4161 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4162 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4163 INTVAL (XEXP (temp, 1)));
4164
4165 /* If X has only a single bit that might be nonzero, say, bit I, convert
4166 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4167 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4168 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4169 or a SUBREG of one since we'd be making the expression more
4170 complex if it was just a register. */
4171
4172 if (!REG_P (temp)
4173 && ! (GET_CODE (temp) == SUBREG
4174 && REG_P (SUBREG_REG (temp)))
4175 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4176 {
4177 rtx temp1 = simplify_shift_const
4178 (NULL_RTX, ASHIFTRT, mode,
4179 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4180 GET_MODE_BITSIZE (mode) - 1 - i),
4181 GET_MODE_BITSIZE (mode) - 1 - i);
4182
4183 /* If all we did was surround TEMP with the two shifts, we
4184 haven't improved anything, so don't use it. Otherwise,
4185 we are better off with TEMP1. */
4186 if (GET_CODE (temp1) != ASHIFTRT
4187 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4188 || XEXP (XEXP (temp1, 0), 0) != temp)
4189 return temp1;
4190 }
4191 break;
4192
4193 case TRUNCATE:
4194 /* We can't handle truncation to a partial integer mode here
4195 because we don't know the real bitsize of the partial
4196 integer mode. */
4197 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4198 break;
4199
4200 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4201 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4202 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4203 SUBST (XEXP (x, 0),
4204 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4205 GET_MODE_MASK (mode), NULL_RTX, 0));
4206
4207 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4208 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4209 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4210 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4211 return XEXP (XEXP (x, 0), 0);
4212
4213 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4214 (OP:SI foo:SI) if OP is NEG or ABS. */
4215 if ((GET_CODE (XEXP (x, 0)) == ABS
4216 || GET_CODE (XEXP (x, 0)) == NEG)
4217 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4218 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4219 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4220 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4221 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4222
4223 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4224 (truncate:SI x). */
4225 if (GET_CODE (XEXP (x, 0)) == SUBREG
4226 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4227 && subreg_lowpart_p (XEXP (x, 0)))
4228 return SUBREG_REG (XEXP (x, 0));
4229
4230 /* If we know that the value is already truncated, we can
4231 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4232 is nonzero for the corresponding modes. But don't do this
4233 for an (LSHIFTRT (MULT ...)) since this will cause problems
4234 with the umulXi3_highpart patterns. */
4235 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4236 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4237 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4238 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4239 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4240 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4241 return gen_lowpart (mode, XEXP (x, 0));
4242
4243 /* A truncate of a comparison can be replaced with a subreg if
4244 STORE_FLAG_VALUE permits. This is like the previous test,
4245 but it works even if the comparison is done in a mode larger
4246 than HOST_BITS_PER_WIDE_INT. */
4247 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4248 && COMPARISON_P (XEXP (x, 0))
4249 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4250 return gen_lowpart (mode, XEXP (x, 0));
4251
4252 /* Similarly, a truncate of a register whose value is a
4253 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4254 permits. */
4255 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4256 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4257 && (temp = get_last_value (XEXP (x, 0)))
4258 && COMPARISON_P (temp))
4259 return gen_lowpart (mode, XEXP (x, 0));
4260
4261 break;
4262
4263 case FLOAT_TRUNCATE:
4264 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4265 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4266 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4267 return XEXP (XEXP (x, 0), 0);
4268
4269 /* (float_truncate:SF (float_truncate:DF foo:XF))
4270 = (float_truncate:SF foo:XF).
4271 This may eliminate double rounding, so it is unsafe.
4272
4273 (float_truncate:SF (float_extend:XF foo:DF))
4274 = (float_truncate:SF foo:DF).
4275
4276 (float_truncate:DF (float_extend:XF foo:SF))
4277 = (float_extend:SF foo:DF). */
4278 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4279 && flag_unsafe_math_optimizations)
4280 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4281 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4282 0)))
4283 > GET_MODE_SIZE (mode)
4284 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4285 mode,
4286 XEXP (XEXP (x, 0), 0), mode);
4287
4288 /* (float_truncate (float x)) is (float x) */
4289 if (GET_CODE (XEXP (x, 0)) == FLOAT
4290 && (flag_unsafe_math_optimizations
4291 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4292 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4293 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4294 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4295 return simplify_gen_unary (FLOAT, mode,
4296 XEXP (XEXP (x, 0), 0),
4297 GET_MODE (XEXP (XEXP (x, 0), 0)));
4298
4299 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4300 (OP:SF foo:SF) if OP is NEG or ABS. */
4301 if ((GET_CODE (XEXP (x, 0)) == ABS
4302 || GET_CODE (XEXP (x, 0)) == NEG)
4303 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4304 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4305 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4306 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4307
4308 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4309 is (float_truncate:SF x). */
4310 if (GET_CODE (XEXP (x, 0)) == SUBREG
4311 && subreg_lowpart_p (XEXP (x, 0))
4312 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4313 return SUBREG_REG (XEXP (x, 0));
4314 break;
4315 case FLOAT_EXTEND:
4316 /* (float_extend (float_extend x)) is (float_extend x)
4317
4318 (float_extend (float x)) is (float x) assuming that double
4319 rounding can't happen.
4320 */
4321 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4322 || (GET_CODE (XEXP (x, 0)) == FLOAT
4323 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4324 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4325 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4326 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4327 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4328 XEXP (XEXP (x, 0), 0),
4329 GET_MODE (XEXP (XEXP (x, 0), 0)));
4330
4331 break;
4332 #ifdef HAVE_cc0
4333 case COMPARE:
4334 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4335 using cc0, in which case we want to leave it as a COMPARE
4336 so we can distinguish it from a register-register-copy. */
4337 if (XEXP (x, 1) == const0_rtx)
4338 return XEXP (x, 0);
4339
4340 /* x - 0 is the same as x unless x's mode has signed zeros and
4341 allows rounding towards -infinity. Under those conditions,
4342 0 - 0 is -0. */
4343 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4344 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4345 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4346 return XEXP (x, 0);
4347 break;
4348 #endif
4349
4350 case CONST:
4351 /* (const (const X)) can become (const X). Do it this way rather than
4352 returning the inner CONST since CONST can be shared with a
4353 REG_EQUAL note. */
4354 if (GET_CODE (XEXP (x, 0)) == CONST)
4355 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4356 break;
4357
4358 #ifdef HAVE_lo_sum
4359 case LO_SUM:
4360 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4361 can add in an offset. find_split_point will split this address up
4362 again if it doesn't match. */
4363 if (GET_CODE (XEXP (x, 0)) == HIGH
4364 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4365 return XEXP (x, 1);
4366 break;
4367 #endif
4368
4369 case PLUS:
4370 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4371 */
4372 if (GET_CODE (XEXP (x, 0)) == MULT
4373 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4374 {
4375 rtx in1, in2;
4376
4377 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4378 in2 = XEXP (XEXP (x, 0), 1);
4379 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4380 simplify_gen_binary (MULT, mode,
4381 in1, in2));
4382 }
4383
4384 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4385 outermost. That's because that's the way indexed addresses are
4386 supposed to appear. This code used to check many more cases, but
4387 they are now checked elsewhere. */
4388 if (GET_CODE (XEXP (x, 0)) == PLUS
4389 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4390 return simplify_gen_binary (PLUS, mode,
4391 simplify_gen_binary (PLUS, mode,
4392 XEXP (XEXP (x, 0), 0),
4393 XEXP (x, 1)),
4394 XEXP (XEXP (x, 0), 1));
4395
4396 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4397 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4398 bit-field and can be replaced by either a sign_extend or a
4399 sign_extract. The `and' may be a zero_extend and the two
4400 <c>, -<c> constants may be reversed. */
4401 if (GET_CODE (XEXP (x, 0)) == XOR
4402 && GET_CODE (XEXP (x, 1)) == CONST_INT
4403 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4404 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4405 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4406 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4407 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4408 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4409 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4410 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4411 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4412 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4413 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4414 == (unsigned int) i + 1))))
4415 return simplify_shift_const
4416 (NULL_RTX, ASHIFTRT, mode,
4417 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4418 XEXP (XEXP (XEXP (x, 0), 0), 0),
4419 GET_MODE_BITSIZE (mode) - (i + 1)),
4420 GET_MODE_BITSIZE (mode) - (i + 1));
4421
4422 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4423 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4424 is 1. This produces better code than the alternative immediately
4425 below. */
4426 if (COMPARISON_P (XEXP (x, 0))
4427 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4428 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4429 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4430 return
4431 simplify_gen_unary (NEG, mode, reversed, mode);
4432
4433 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4434 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4435 the bitsize of the mode - 1. This allows simplification of
4436 "a = (b & 8) == 0;" */
4437 if (XEXP (x, 1) == constm1_rtx
4438 && !REG_P (XEXP (x, 0))
4439 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4440 && REG_P (SUBREG_REG (XEXP (x, 0))))
4441 && nonzero_bits (XEXP (x, 0), mode) == 1)
4442 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4443 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4444 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4445 GET_MODE_BITSIZE (mode) - 1),
4446 GET_MODE_BITSIZE (mode) - 1);
4447
4448 /* If we are adding two things that have no bits in common, convert
4449 the addition into an IOR. This will often be further simplified,
4450 for example in cases like ((a & 1) + (a & 2)), which can
4451 become a & 3. */
4452
4453 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4454 && (nonzero_bits (XEXP (x, 0), mode)
4455 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4456 {
4457 /* Try to simplify the expression further. */
4458 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4459 temp = combine_simplify_rtx (tor, mode, in_dest);
4460
4461 /* If we could, great. If not, do not go ahead with the IOR
4462 replacement, since PLUS appears in many special purpose
4463 address arithmetic instructions. */
4464 if (GET_CODE (temp) != CLOBBER && temp != tor)
4465 return temp;
4466 }
4467 break;
4468
4469 case MINUS:
4470 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4471 by reversing the comparison code if valid. */
4472 if (STORE_FLAG_VALUE == 1
4473 && XEXP (x, 0) == const1_rtx
4474 && COMPARISON_P (XEXP (x, 1))
4475 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4476 return reversed;
4477
4478 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4479 (and <foo> (const_int pow2-1)) */
4480 if (GET_CODE (XEXP (x, 1)) == AND
4481 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4482 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4483 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4484 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4485 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4486
4487 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4488 */
4489 if (GET_CODE (XEXP (x, 1)) == MULT
4490 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4491 {
4492 rtx in1, in2;
4493
4494 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4495 in2 = XEXP (XEXP (x, 1), 1);
4496 return simplify_gen_binary (PLUS, mode,
4497 simplify_gen_binary (MULT, mode,
4498 in1, in2),
4499 XEXP (x, 0));
4500 }
4501
4502 /* Canonicalize (minus (neg A) (mult B C)) to
4503 (minus (mult (neg B) C) A). */
4504 if (GET_CODE (XEXP (x, 1)) == MULT
4505 && GET_CODE (XEXP (x, 0)) == NEG)
4506 {
4507 rtx in1, in2;
4508
4509 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4510 in2 = XEXP (XEXP (x, 1), 1);
4511 return simplify_gen_binary (MINUS, mode,
4512 simplify_gen_binary (MULT, mode,
4513 in1, in2),
4514 XEXP (XEXP (x, 0), 0));
4515 }
4516
4517 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4518 integers. */
4519 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4520 return simplify_gen_binary (MINUS, mode,
4521 simplify_gen_binary (MINUS, mode,
4522 XEXP (x, 0),
4523 XEXP (XEXP (x, 1), 0)),
4524 XEXP (XEXP (x, 1), 1));
4525 break;
4526
4527 case MULT:
4528 /* If we have (mult (plus A B) C), apply the distributive law and then
4529 the inverse distributive law to see if things simplify. This
4530 occurs mostly in addresses, often when unrolling loops. */
4531
4532 if (GET_CODE (XEXP (x, 0)) == PLUS)
4533 {
4534 rtx result = distribute_and_simplify_rtx (x, 0);
4535 if (result)
4536 return result;
4537 }
4538
4539 /* Try simplify a*(b/c) as (a*b)/c. */
4540 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4541 && GET_CODE (XEXP (x, 0)) == DIV)
4542 {
4543 rtx tem = simplify_binary_operation (MULT, mode,
4544 XEXP (XEXP (x, 0), 0),
4545 XEXP (x, 1));
4546 if (tem)
4547 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4548 }
4549 break;
4550
4551 case UDIV:
4552 /* If this is a divide by a power of two, treat it as a shift if
4553 its first operand is a shift. */
4554 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4555 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4556 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4557 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4558 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4559 || GET_CODE (XEXP (x, 0)) == ROTATE
4560 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4561 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4562 break;
4563
4564 case EQ: case NE:
4565 case GT: case GTU: case GE: case GEU:
4566 case LT: case LTU: case LE: case LEU:
4567 case UNEQ: case LTGT:
4568 case UNGT: case UNGE:
4569 case UNLT: case UNLE:
4570 case UNORDERED: case ORDERED:
4571 /* If the first operand is a condition code, we can't do anything
4572 with it. */
4573 if (GET_CODE (XEXP (x, 0)) == COMPARE
4574 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4575 && ! CC0_P (XEXP (x, 0))))
4576 {
4577 rtx op0 = XEXP (x, 0);
4578 rtx op1 = XEXP (x, 1);
4579 enum rtx_code new_code;
4580
4581 if (GET_CODE (op0) == COMPARE)
4582 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4583
4584 /* Simplify our comparison, if possible. */
4585 new_code = simplify_comparison (code, &op0, &op1);
4586
4587 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4588 if only the low-order bit is possibly nonzero in X (such as when
4589 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4590 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4591 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4592 (plus X 1).
4593
4594 Remove any ZERO_EXTRACT we made when thinking this was a
4595 comparison. It may now be simpler to use, e.g., an AND. If a
4596 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4597 the call to make_compound_operation in the SET case. */
4598
4599 if (STORE_FLAG_VALUE == 1
4600 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4601 && op1 == const0_rtx
4602 && mode == GET_MODE (op0)
4603 && nonzero_bits (op0, mode) == 1)
4604 return gen_lowpart (mode,
4605 expand_compound_operation (op0));
4606
4607 else if (STORE_FLAG_VALUE == 1
4608 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4609 && op1 == const0_rtx
4610 && mode == GET_MODE (op0)
4611 && (num_sign_bit_copies (op0, mode)
4612 == GET_MODE_BITSIZE (mode)))
4613 {
4614 op0 = expand_compound_operation (op0);
4615 return simplify_gen_unary (NEG, mode,
4616 gen_lowpart (mode, op0),
4617 mode);
4618 }
4619
4620 else if (STORE_FLAG_VALUE == 1
4621 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4622 && op1 == const0_rtx
4623 && mode == GET_MODE (op0)
4624 && nonzero_bits (op0, mode) == 1)
4625 {
4626 op0 = expand_compound_operation (op0);
4627 return simplify_gen_binary (XOR, mode,
4628 gen_lowpart (mode, op0),
4629 const1_rtx);
4630 }
4631
4632 else if (STORE_FLAG_VALUE == 1
4633 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4634 && op1 == const0_rtx
4635 && mode == GET_MODE (op0)
4636 && (num_sign_bit_copies (op0, mode)
4637 == GET_MODE_BITSIZE (mode)))
4638 {
4639 op0 = expand_compound_operation (op0);
4640 return plus_constant (gen_lowpart (mode, op0), 1);
4641 }
4642
4643 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4644 those above. */
4645 if (STORE_FLAG_VALUE == -1
4646 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4647 && op1 == const0_rtx
4648 && (num_sign_bit_copies (op0, mode)
4649 == GET_MODE_BITSIZE (mode)))
4650 return gen_lowpart (mode,
4651 expand_compound_operation (op0));
4652
4653 else if (STORE_FLAG_VALUE == -1
4654 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4655 && op1 == const0_rtx
4656 && mode == GET_MODE (op0)
4657 && nonzero_bits (op0, mode) == 1)
4658 {
4659 op0 = expand_compound_operation (op0);
4660 return simplify_gen_unary (NEG, mode,
4661 gen_lowpart (mode, op0),
4662 mode);
4663 }
4664
4665 else if (STORE_FLAG_VALUE == -1
4666 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4667 && op1 == const0_rtx
4668 && mode == GET_MODE (op0)
4669 && (num_sign_bit_copies (op0, mode)
4670 == GET_MODE_BITSIZE (mode)))
4671 {
4672 op0 = expand_compound_operation (op0);
4673 return simplify_gen_unary (NOT, mode,
4674 gen_lowpart (mode, op0),
4675 mode);
4676 }
4677
4678 /* If X is 0/1, (eq X 0) is X-1. */
4679 else if (STORE_FLAG_VALUE == -1
4680 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4681 && op1 == const0_rtx
4682 && mode == GET_MODE (op0)
4683 && nonzero_bits (op0, mode) == 1)
4684 {
4685 op0 = expand_compound_operation (op0);
4686 return plus_constant (gen_lowpart (mode, op0), -1);
4687 }
4688
4689 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4690 one bit that might be nonzero, we can convert (ne x 0) to
4691 (ashift x c) where C puts the bit in the sign bit. Remove any
4692 AND with STORE_FLAG_VALUE when we are done, since we are only
4693 going to test the sign bit. */
4694 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4695 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4696 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4697 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4698 && op1 == const0_rtx
4699 && mode == GET_MODE (op0)
4700 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4701 {
4702 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4703 expand_compound_operation (op0),
4704 GET_MODE_BITSIZE (mode) - 1 - i);
4705 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4706 return XEXP (x, 0);
4707 else
4708 return x;
4709 }
4710
4711 /* If the code changed, return a whole new comparison. */
4712 if (new_code != code)
4713 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4714
4715 /* Otherwise, keep this operation, but maybe change its operands.
4716 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4717 SUBST (XEXP (x, 0), op0);
4718 SUBST (XEXP (x, 1), op1);
4719 }
4720 break;
4721
4722 case IF_THEN_ELSE:
4723 return simplify_if_then_else (x);
4724
4725 case ZERO_EXTRACT:
4726 case SIGN_EXTRACT:
4727 case ZERO_EXTEND:
4728 case SIGN_EXTEND:
4729 /* If we are processing SET_DEST, we are done. */
4730 if (in_dest)
4731 return x;
4732
4733 return expand_compound_operation (x);
4734
4735 case SET:
4736 return simplify_set (x);
4737
4738 case AND:
4739 case IOR:
4740 case XOR:
4741 return simplify_logical (x);
4742
4743 case ABS:
4744 /* (abs (neg <foo>)) -> (abs <foo>) */
4745 if (GET_CODE (XEXP (x, 0)) == NEG)
4746 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4747
4748 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4749 do nothing. */
4750 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4751 break;
4752
4753 /* If operand is something known to be positive, ignore the ABS. */
4754 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4755 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4756 <= HOST_BITS_PER_WIDE_INT)
4757 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4758 & ((HOST_WIDE_INT) 1
4759 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4760 == 0)))
4761 return XEXP (x, 0);
4762
4763 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4764 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4765 return gen_rtx_NEG (mode, XEXP (x, 0));
4766
4767 break;
4768
4769 case FFS:
4770 /* (ffs (*_extend <X>)) = (ffs <X>) */
4771 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4772 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4773 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4774 break;
4775
4776 case POPCOUNT:
4777 case PARITY:
4778 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4779 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4780 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4781 break;
4782
4783 case FLOAT:
4784 /* (float (sign_extend <X>)) = (float <X>). */
4785 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4786 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4787 break;
4788
4789 case ASHIFT:
4790 case LSHIFTRT:
4791 case ASHIFTRT:
4792 case ROTATE:
4793 case ROTATERT:
4794 /* If this is a shift by a constant amount, simplify it. */
4795 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4796 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4797 INTVAL (XEXP (x, 1)));
4798
4799 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4800 SUBST (XEXP (x, 1),
4801 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4802 ((HOST_WIDE_INT) 1
4803 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4804 - 1,
4805 NULL_RTX, 0));
4806 break;
4807
4808 case VEC_SELECT:
4809 {
4810 rtx op0 = XEXP (x, 0);
4811 rtx op1 = XEXP (x, 1);
4812 int len;
4813
4814 gcc_assert (GET_CODE (op1) == PARALLEL);
4815 len = XVECLEN (op1, 0);
4816 if (len == 1
4817 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4818 && GET_CODE (op0) == VEC_CONCAT)
4819 {
4820 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4821
4822 /* Try to find the element in the VEC_CONCAT. */
4823 for (;;)
4824 {
4825 if (GET_MODE (op0) == GET_MODE (x))
4826 return op0;
4827 if (GET_CODE (op0) == VEC_CONCAT)
4828 {
4829 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4830 if (offset < op0_size)
4831 op0 = XEXP (op0, 0);
4832 else
4833 {
4834 offset -= op0_size;
4835 op0 = XEXP (op0, 1);
4836 }
4837 }
4838 else
4839 break;
4840 }
4841 }
4842 }
4843
4844 break;
4845
4846 default:
4847 break;
4848 }
4849
4850 return x;
4851 }
4852 \f
4853 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4854
4855 static rtx
4856 simplify_if_then_else (rtx x)
4857 {
4858 enum machine_mode mode = GET_MODE (x);
4859 rtx cond = XEXP (x, 0);
4860 rtx true_rtx = XEXP (x, 1);
4861 rtx false_rtx = XEXP (x, 2);
4862 enum rtx_code true_code = GET_CODE (cond);
4863 int comparison_p = COMPARISON_P (cond);
4864 rtx temp;
4865 int i;
4866 enum rtx_code false_code;
4867 rtx reversed;
4868
4869 /* Simplify storing of the truth value. */
4870 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4871 return simplify_gen_relational (true_code, mode, VOIDmode,
4872 XEXP (cond, 0), XEXP (cond, 1));
4873
4874 /* Also when the truth value has to be reversed. */
4875 if (comparison_p
4876 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4877 && (reversed = reversed_comparison (cond, mode)))
4878 return reversed;
4879
4880 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4881 in it is being compared against certain values. Get the true and false
4882 comparisons and see if that says anything about the value of each arm. */
4883
4884 if (comparison_p
4885 && ((false_code = reversed_comparison_code (cond, NULL))
4886 != UNKNOWN)
4887 && REG_P (XEXP (cond, 0)))
4888 {
4889 HOST_WIDE_INT nzb;
4890 rtx from = XEXP (cond, 0);
4891 rtx true_val = XEXP (cond, 1);
4892 rtx false_val = true_val;
4893 int swapped = 0;
4894
4895 /* If FALSE_CODE is EQ, swap the codes and arms. */
4896
4897 if (false_code == EQ)
4898 {
4899 swapped = 1, true_code = EQ, false_code = NE;
4900 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4901 }
4902
4903 /* If we are comparing against zero and the expression being tested has
4904 only a single bit that might be nonzero, that is its value when it is
4905 not equal to zero. Similarly if it is known to be -1 or 0. */
4906
4907 if (true_code == EQ && true_val == const0_rtx
4908 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4909 false_code = EQ, false_val = GEN_INT (nzb);
4910 else if (true_code == EQ && true_val == const0_rtx
4911 && (num_sign_bit_copies (from, GET_MODE (from))
4912 == GET_MODE_BITSIZE (GET_MODE (from))))
4913 false_code = EQ, false_val = constm1_rtx;
4914
4915 /* Now simplify an arm if we know the value of the register in the
4916 branch and it is used in the arm. Be careful due to the potential
4917 of locally-shared RTL. */
4918
4919 if (reg_mentioned_p (from, true_rtx))
4920 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4921 from, true_val),
4922 pc_rtx, pc_rtx, 0, 0);
4923 if (reg_mentioned_p (from, false_rtx))
4924 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4925 from, false_val),
4926 pc_rtx, pc_rtx, 0, 0);
4927
4928 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4929 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4930
4931 true_rtx = XEXP (x, 1);
4932 false_rtx = XEXP (x, 2);
4933 true_code = GET_CODE (cond);
4934 }
4935
4936 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4937 reversed, do so to avoid needing two sets of patterns for
4938 subtract-and-branch insns. Similarly if we have a constant in the true
4939 arm, the false arm is the same as the first operand of the comparison, or
4940 the false arm is more complicated than the true arm. */
4941
4942 if (comparison_p
4943 && reversed_comparison_code (cond, NULL) != UNKNOWN
4944 && (true_rtx == pc_rtx
4945 || (CONSTANT_P (true_rtx)
4946 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4947 || true_rtx == const0_rtx
4948 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4949 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4950 && !OBJECT_P (false_rtx))
4951 || reg_mentioned_p (true_rtx, false_rtx)
4952 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4953 {
4954 true_code = reversed_comparison_code (cond, NULL);
4955 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4956 SUBST (XEXP (x, 1), false_rtx);
4957 SUBST (XEXP (x, 2), true_rtx);
4958
4959 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4960 cond = XEXP (x, 0);
4961
4962 /* It is possible that the conditional has been simplified out. */
4963 true_code = GET_CODE (cond);
4964 comparison_p = COMPARISON_P (cond);
4965 }
4966
4967 /* If the two arms are identical, we don't need the comparison. */
4968
4969 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4970 return true_rtx;
4971
4972 /* Convert a == b ? b : a to "a". */
4973 if (true_code == EQ && ! side_effects_p (cond)
4974 && !HONOR_NANS (mode)
4975 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4976 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4977 return false_rtx;
4978 else if (true_code == NE && ! side_effects_p (cond)
4979 && !HONOR_NANS (mode)
4980 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4981 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4982 return true_rtx;
4983
4984 /* Look for cases where we have (abs x) or (neg (abs X)). */
4985
4986 if (GET_MODE_CLASS (mode) == MODE_INT
4987 && GET_CODE (false_rtx) == NEG
4988 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4989 && comparison_p
4990 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4991 && ! side_effects_p (true_rtx))
4992 switch (true_code)
4993 {
4994 case GT:
4995 case GE:
4996 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4997 case LT:
4998 case LE:
4999 return
5000 simplify_gen_unary (NEG, mode,
5001 simplify_gen_unary (ABS, mode, true_rtx, mode),
5002 mode);
5003 default:
5004 break;
5005 }
5006
5007 /* Look for MIN or MAX. */
5008
5009 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5010 && comparison_p
5011 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5012 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5013 && ! side_effects_p (cond))
5014 switch (true_code)
5015 {
5016 case GE:
5017 case GT:
5018 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5019 case LE:
5020 case LT:
5021 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5022 case GEU:
5023 case GTU:
5024 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5025 case LEU:
5026 case LTU:
5027 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5028 default:
5029 break;
5030 }
5031
5032 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5033 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5034 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5035 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5036 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5037 neither 1 or -1, but it isn't worth checking for. */
5038
5039 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5040 && comparison_p
5041 && GET_MODE_CLASS (mode) == MODE_INT
5042 && ! side_effects_p (x))
5043 {
5044 rtx t = make_compound_operation (true_rtx, SET);
5045 rtx f = make_compound_operation (false_rtx, SET);
5046 rtx cond_op0 = XEXP (cond, 0);
5047 rtx cond_op1 = XEXP (cond, 1);
5048 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5049 enum machine_mode m = mode;
5050 rtx z = 0, c1 = NULL_RTX;
5051
5052 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5053 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5054 || GET_CODE (t) == ASHIFT
5055 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5056 && rtx_equal_p (XEXP (t, 0), f))
5057 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5058
5059 /* If an identity-zero op is commutative, check whether there
5060 would be a match if we swapped the operands. */
5061 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5062 || GET_CODE (t) == XOR)
5063 && rtx_equal_p (XEXP (t, 1), f))
5064 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5065 else if (GET_CODE (t) == SIGN_EXTEND
5066 && (GET_CODE (XEXP (t, 0)) == PLUS
5067 || GET_CODE (XEXP (t, 0)) == MINUS
5068 || GET_CODE (XEXP (t, 0)) == IOR
5069 || GET_CODE (XEXP (t, 0)) == XOR
5070 || GET_CODE (XEXP (t, 0)) == ASHIFT
5071 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5072 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5073 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5074 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5075 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5076 && (num_sign_bit_copies (f, GET_MODE (f))
5077 > (unsigned int)
5078 (GET_MODE_BITSIZE (mode)
5079 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5080 {
5081 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5082 extend_op = SIGN_EXTEND;
5083 m = GET_MODE (XEXP (t, 0));
5084 }
5085 else if (GET_CODE (t) == SIGN_EXTEND
5086 && (GET_CODE (XEXP (t, 0)) == PLUS
5087 || GET_CODE (XEXP (t, 0)) == IOR
5088 || GET_CODE (XEXP (t, 0)) == XOR)
5089 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5090 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5091 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5092 && (num_sign_bit_copies (f, GET_MODE (f))
5093 > (unsigned int)
5094 (GET_MODE_BITSIZE (mode)
5095 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5096 {
5097 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5098 extend_op = SIGN_EXTEND;
5099 m = GET_MODE (XEXP (t, 0));
5100 }
5101 else if (GET_CODE (t) == ZERO_EXTEND
5102 && (GET_CODE (XEXP (t, 0)) == PLUS
5103 || GET_CODE (XEXP (t, 0)) == MINUS
5104 || GET_CODE (XEXP (t, 0)) == IOR
5105 || GET_CODE (XEXP (t, 0)) == XOR
5106 || GET_CODE (XEXP (t, 0)) == ASHIFT
5107 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5108 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5109 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5110 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5111 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5112 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5113 && ((nonzero_bits (f, GET_MODE (f))
5114 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5115 == 0))
5116 {
5117 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5118 extend_op = ZERO_EXTEND;
5119 m = GET_MODE (XEXP (t, 0));
5120 }
5121 else if (GET_CODE (t) == ZERO_EXTEND
5122 && (GET_CODE (XEXP (t, 0)) == PLUS
5123 || GET_CODE (XEXP (t, 0)) == IOR
5124 || GET_CODE (XEXP (t, 0)) == XOR)
5125 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5126 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5127 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5128 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5129 && ((nonzero_bits (f, GET_MODE (f))
5130 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5131 == 0))
5132 {
5133 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5134 extend_op = ZERO_EXTEND;
5135 m = GET_MODE (XEXP (t, 0));
5136 }
5137
5138 if (z)
5139 {
5140 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5141 cond_op0, cond_op1),
5142 pc_rtx, pc_rtx, 0, 0);
5143 temp = simplify_gen_binary (MULT, m, temp,
5144 simplify_gen_binary (MULT, m, c1,
5145 const_true_rtx));
5146 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5147 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5148
5149 if (extend_op != UNKNOWN)
5150 temp = simplify_gen_unary (extend_op, mode, temp, m);
5151
5152 return temp;
5153 }
5154 }
5155
5156 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5157 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5158 negation of a single bit, we can convert this operation to a shift. We
5159 can actually do this more generally, but it doesn't seem worth it. */
5160
5161 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5162 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5163 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5164 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5165 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5166 == GET_MODE_BITSIZE (mode))
5167 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5168 return
5169 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5170 gen_lowpart (mode, XEXP (cond, 0)), i);
5171
5172 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5173 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5174 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5175 && GET_MODE (XEXP (cond, 0)) == mode
5176 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5177 == nonzero_bits (XEXP (cond, 0), mode)
5178 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5179 return XEXP (cond, 0);
5180
5181 return x;
5182 }
5183 \f
5184 /* Simplify X, a SET expression. Return the new expression. */
5185
5186 static rtx
5187 simplify_set (rtx x)
5188 {
5189 rtx src = SET_SRC (x);
5190 rtx dest = SET_DEST (x);
5191 enum machine_mode mode
5192 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5193 rtx other_insn;
5194 rtx *cc_use;
5195
5196 /* (set (pc) (return)) gets written as (return). */
5197 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5198 return src;
5199
5200 /* Now that we know for sure which bits of SRC we are using, see if we can
5201 simplify the expression for the object knowing that we only need the
5202 low-order bits. */
5203
5204 if (GET_MODE_CLASS (mode) == MODE_INT
5205 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5206 {
5207 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5208 SUBST (SET_SRC (x), src);
5209 }
5210
5211 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5212 the comparison result and try to simplify it unless we already have used
5213 undobuf.other_insn. */
5214 if ((GET_MODE_CLASS (mode) == MODE_CC
5215 || GET_CODE (src) == COMPARE
5216 || CC0_P (dest))
5217 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5218 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5219 && COMPARISON_P (*cc_use)
5220 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5221 {
5222 enum rtx_code old_code = GET_CODE (*cc_use);
5223 enum rtx_code new_code;
5224 rtx op0, op1, tmp;
5225 int other_changed = 0;
5226 enum machine_mode compare_mode = GET_MODE (dest);
5227
5228 if (GET_CODE (src) == COMPARE)
5229 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5230 else
5231 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5232
5233 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5234 op0, op1);
5235 if (!tmp)
5236 new_code = old_code;
5237 else if (!CONSTANT_P (tmp))
5238 {
5239 new_code = GET_CODE (tmp);
5240 op0 = XEXP (tmp, 0);
5241 op1 = XEXP (tmp, 1);
5242 }
5243 else
5244 {
5245 rtx pat = PATTERN (other_insn);
5246 undobuf.other_insn = other_insn;
5247 SUBST (*cc_use, tmp);
5248
5249 /* Attempt to simplify CC user. */
5250 if (GET_CODE (pat) == SET)
5251 {
5252 rtx new = simplify_rtx (SET_SRC (pat));
5253 if (new != NULL_RTX)
5254 SUBST (SET_SRC (pat), new);
5255 }
5256
5257 /* Convert X into a no-op move. */
5258 SUBST (SET_DEST (x), pc_rtx);
5259 SUBST (SET_SRC (x), pc_rtx);
5260 return x;
5261 }
5262
5263 /* Simplify our comparison, if possible. */
5264 new_code = simplify_comparison (new_code, &op0, &op1);
5265
5266 #ifdef SELECT_CC_MODE
5267 /* If this machine has CC modes other than CCmode, check to see if we
5268 need to use a different CC mode here. */
5269 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5270 compare_mode = GET_MODE (op0);
5271 else
5272 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5273
5274 #ifndef HAVE_cc0
5275 /* If the mode changed, we have to change SET_DEST, the mode in the
5276 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5277 a hard register, just build new versions with the proper mode. If it
5278 is a pseudo, we lose unless it is only time we set the pseudo, in
5279 which case we can safely change its mode. */
5280 if (compare_mode != GET_MODE (dest))
5281 {
5282 unsigned int regno = REGNO (dest);
5283 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5284
5285 if (regno < FIRST_PSEUDO_REGISTER
5286 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5287 {
5288 if (regno >= FIRST_PSEUDO_REGISTER)
5289 SUBST (regno_reg_rtx[regno], new_dest);
5290
5291 SUBST (SET_DEST (x), new_dest);
5292 SUBST (XEXP (*cc_use, 0), new_dest);
5293 other_changed = 1;
5294
5295 dest = new_dest;
5296 }
5297 }
5298 #endif /* cc0 */
5299 #endif /* SELECT_CC_MODE */
5300
5301 /* If the code changed, we have to build a new comparison in
5302 undobuf.other_insn. */
5303 if (new_code != old_code)
5304 {
5305 int other_changed_previously = other_changed;
5306 unsigned HOST_WIDE_INT mask;
5307
5308 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5309 dest, const0_rtx));
5310 other_changed = 1;
5311
5312 /* If the only change we made was to change an EQ into an NE or
5313 vice versa, OP0 has only one bit that might be nonzero, and OP1
5314 is zero, check if changing the user of the condition code will
5315 produce a valid insn. If it won't, we can keep the original code
5316 in that insn by surrounding our operation with an XOR. */
5317
5318 if (((old_code == NE && new_code == EQ)
5319 || (old_code == EQ && new_code == NE))
5320 && ! other_changed_previously && op1 == const0_rtx
5321 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5322 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5323 {
5324 rtx pat = PATTERN (other_insn), note = 0;
5325
5326 if ((recog_for_combine (&pat, other_insn, &note) < 0
5327 && ! check_asm_operands (pat)))
5328 {
5329 PUT_CODE (*cc_use, old_code);
5330 other_changed = 0;
5331
5332 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5333 op0, GEN_INT (mask));
5334 }
5335 }
5336 }
5337
5338 if (other_changed)
5339 undobuf.other_insn = other_insn;
5340
5341 #ifdef HAVE_cc0
5342 /* If we are now comparing against zero, change our source if
5343 needed. If we do not use cc0, we always have a COMPARE. */
5344 if (op1 == const0_rtx && dest == cc0_rtx)
5345 {
5346 SUBST (SET_SRC (x), op0);
5347 src = op0;
5348 }
5349 else
5350 #endif
5351
5352 /* Otherwise, if we didn't previously have a COMPARE in the
5353 correct mode, we need one. */
5354 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5355 {
5356 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5357 src = SET_SRC (x);
5358 }
5359 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5360 {
5361 SUBST(SET_SRC (x), op0);
5362 src = SET_SRC (x);
5363 }
5364 else
5365 {
5366 /* Otherwise, update the COMPARE if needed. */
5367 SUBST (XEXP (src, 0), op0);
5368 SUBST (XEXP (src, 1), op1);
5369 }
5370 }
5371 else
5372 {
5373 /* Get SET_SRC in a form where we have placed back any
5374 compound expressions. Then do the checks below. */
5375 src = make_compound_operation (src, SET);
5376 SUBST (SET_SRC (x), src);
5377 }
5378
5379 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5380 and X being a REG or (subreg (reg)), we may be able to convert this to
5381 (set (subreg:m2 x) (op)).
5382
5383 We can always do this if M1 is narrower than M2 because that means that
5384 we only care about the low bits of the result.
5385
5386 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5387 perform a narrower operation than requested since the high-order bits will
5388 be undefined. On machine where it is defined, this transformation is safe
5389 as long as M1 and M2 have the same number of words. */
5390
5391 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5392 && !OBJECT_P (SUBREG_REG (src))
5393 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5394 / UNITS_PER_WORD)
5395 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5396 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5397 #ifndef WORD_REGISTER_OPERATIONS
5398 && (GET_MODE_SIZE (GET_MODE (src))
5399 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5400 #endif
5401 #ifdef CANNOT_CHANGE_MODE_CLASS
5402 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5403 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5404 GET_MODE (SUBREG_REG (src)),
5405 GET_MODE (src)))
5406 #endif
5407 && (REG_P (dest)
5408 || (GET_CODE (dest) == SUBREG
5409 && REG_P (SUBREG_REG (dest)))))
5410 {
5411 SUBST (SET_DEST (x),
5412 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5413 dest));
5414 SUBST (SET_SRC (x), SUBREG_REG (src));
5415
5416 src = SET_SRC (x), dest = SET_DEST (x);
5417 }
5418
5419 #ifdef HAVE_cc0
5420 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5421 in SRC. */
5422 if (dest == cc0_rtx
5423 && GET_CODE (src) == SUBREG
5424 && subreg_lowpart_p (src)
5425 && (GET_MODE_BITSIZE (GET_MODE (src))
5426 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5427 {
5428 rtx inner = SUBREG_REG (src);
5429 enum machine_mode inner_mode = GET_MODE (inner);
5430
5431 /* Here we make sure that we don't have a sign bit on. */
5432 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5433 && (nonzero_bits (inner, inner_mode)
5434 < ((unsigned HOST_WIDE_INT) 1
5435 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5436 {
5437 SUBST (SET_SRC (x), inner);
5438 src = SET_SRC (x);
5439 }
5440 }
5441 #endif
5442
5443 #ifdef LOAD_EXTEND_OP
5444 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5445 would require a paradoxical subreg. Replace the subreg with a
5446 zero_extend to avoid the reload that would otherwise be required. */
5447
5448 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5449 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5450 && SUBREG_BYTE (src) == 0
5451 && (GET_MODE_SIZE (GET_MODE (src))
5452 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5453 && MEM_P (SUBREG_REG (src)))
5454 {
5455 SUBST (SET_SRC (x),
5456 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5457 GET_MODE (src), SUBREG_REG (src)));
5458
5459 src = SET_SRC (x);
5460 }
5461 #endif
5462
5463 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5464 are comparing an item known to be 0 or -1 against 0, use a logical
5465 operation instead. Check for one of the arms being an IOR of the other
5466 arm with some value. We compute three terms to be IOR'ed together. In
5467 practice, at most two will be nonzero. Then we do the IOR's. */
5468
5469 if (GET_CODE (dest) != PC
5470 && GET_CODE (src) == IF_THEN_ELSE
5471 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5472 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5473 && XEXP (XEXP (src, 0), 1) == const0_rtx
5474 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5475 #ifdef HAVE_conditional_move
5476 && ! can_conditionally_move_p (GET_MODE (src))
5477 #endif
5478 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5479 GET_MODE (XEXP (XEXP (src, 0), 0)))
5480 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5481 && ! side_effects_p (src))
5482 {
5483 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5484 ? XEXP (src, 1) : XEXP (src, 2));
5485 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5486 ? XEXP (src, 2) : XEXP (src, 1));
5487 rtx term1 = const0_rtx, term2, term3;
5488
5489 if (GET_CODE (true_rtx) == IOR
5490 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5491 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5492 else if (GET_CODE (true_rtx) == IOR
5493 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5494 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5495 else if (GET_CODE (false_rtx) == IOR
5496 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5497 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5498 else if (GET_CODE (false_rtx) == IOR
5499 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5500 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5501
5502 term2 = simplify_gen_binary (AND, GET_MODE (src),
5503 XEXP (XEXP (src, 0), 0), true_rtx);
5504 term3 = simplify_gen_binary (AND, GET_MODE (src),
5505 simplify_gen_unary (NOT, GET_MODE (src),
5506 XEXP (XEXP (src, 0), 0),
5507 GET_MODE (src)),
5508 false_rtx);
5509
5510 SUBST (SET_SRC (x),
5511 simplify_gen_binary (IOR, GET_MODE (src),
5512 simplify_gen_binary (IOR, GET_MODE (src),
5513 term1, term2),
5514 term3));
5515
5516 src = SET_SRC (x);
5517 }
5518
5519 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5520 whole thing fail. */
5521 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5522 return src;
5523 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5524 return dest;
5525 else
5526 /* Convert this into a field assignment operation, if possible. */
5527 return make_field_assignment (x);
5528 }
5529 \f
5530 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5531 result. */
5532
5533 static rtx
5534 simplify_logical (rtx x)
5535 {
5536 enum machine_mode mode = GET_MODE (x);
5537 rtx op0 = XEXP (x, 0);
5538 rtx op1 = XEXP (x, 1);
5539 rtx reversed;
5540
5541 switch (GET_CODE (x))
5542 {
5543 case AND:
5544 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5545 insn (and may simplify more). */
5546 if (GET_CODE (op0) == XOR
5547 && rtx_equal_p (XEXP (op0, 0), op1)
5548 && ! side_effects_p (op1))
5549 x = simplify_gen_binary (AND, mode,
5550 simplify_gen_unary (NOT, mode,
5551 XEXP (op0, 1), mode),
5552 op1);
5553
5554 if (GET_CODE (op0) == XOR
5555 && rtx_equal_p (XEXP (op0, 1), op1)
5556 && ! side_effects_p (op1))
5557 x = simplify_gen_binary (AND, mode,
5558 simplify_gen_unary (NOT, mode,
5559 XEXP (op0, 0), mode),
5560 op1);
5561
5562 /* Similarly for (~(A ^ B)) & A. */
5563 if (GET_CODE (op0) == NOT
5564 && GET_CODE (XEXP (op0, 0)) == XOR
5565 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5566 && ! side_effects_p (op1))
5567 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5568
5569 if (GET_CODE (op0) == NOT
5570 && GET_CODE (XEXP (op0, 0)) == XOR
5571 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5572 && ! side_effects_p (op1))
5573 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5574
5575 /* We can call simplify_and_const_int only if we don't lose
5576 any (sign) bits when converting INTVAL (op1) to
5577 "unsigned HOST_WIDE_INT". */
5578 if (GET_CODE (op1) == CONST_INT
5579 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5580 || INTVAL (op1) > 0))
5581 {
5582 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5583
5584 /* If we have (ior (and (X C1) C2)) and the next restart would be
5585 the last, simplify this by making C1 as small as possible
5586 and then exit. Only do this if C1 actually changes: for now
5587 this only saves memory but, should this transformation be
5588 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5589 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5590 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5591 && GET_CODE (op1) == CONST_INT
5592 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5593 return simplify_gen_binary (IOR, mode,
5594 simplify_gen_binary
5595 (AND, mode, XEXP (op0, 0),
5596 GEN_INT (INTVAL (XEXP (op0, 1))
5597 & ~INTVAL (op1))), op1);
5598
5599 if (GET_CODE (x) != AND)
5600 return x;
5601
5602 op0 = XEXP (x, 0);
5603 op1 = XEXP (x, 1);
5604 }
5605
5606 /* Convert (A | B) & A to A. */
5607 if (GET_CODE (op0) == IOR
5608 && (rtx_equal_p (XEXP (op0, 0), op1)
5609 || rtx_equal_p (XEXP (op0, 1), op1))
5610 && ! side_effects_p (XEXP (op0, 0))
5611 && ! side_effects_p (XEXP (op0, 1)))
5612 return op1;
5613
5614 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5615 apply the distributive law and then the inverse distributive
5616 law to see if things simplify. */
5617 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5618 {
5619 rtx result = distribute_and_simplify_rtx (x, 0);
5620 if (result)
5621 return result;
5622 }
5623 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5624 {
5625 rtx result = distribute_and_simplify_rtx (x, 1);
5626 if (result)
5627 return result;
5628 }
5629 break;
5630
5631 case IOR:
5632 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5633 if (GET_CODE (op1) == CONST_INT
5634 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5635 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5636 return op1;
5637
5638 /* Convert (A & B) | A to A. */
5639 if (GET_CODE (op0) == AND
5640 && (rtx_equal_p (XEXP (op0, 0), op1)
5641 || rtx_equal_p (XEXP (op0, 1), op1))
5642 && ! side_effects_p (XEXP (op0, 0))
5643 && ! side_effects_p (XEXP (op0, 1)))
5644 return op1;
5645
5646 /* If we have (ior (and A B) C), apply the distributive law and then
5647 the inverse distributive law to see if things simplify. */
5648
5649 if (GET_CODE (op0) == AND)
5650 {
5651 rtx result = distribute_and_simplify_rtx (x, 0);
5652 if (result)
5653 return result;
5654 }
5655
5656 if (GET_CODE (op1) == AND)
5657 {
5658 rtx result = distribute_and_simplify_rtx (x, 1);
5659 if (result)
5660 return result;
5661 }
5662
5663 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5664 mode size to (rotate A CX). */
5665
5666 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5667 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5668 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5669 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5670 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5671 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5672 == GET_MODE_BITSIZE (mode)))
5673 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5674 (GET_CODE (op0) == ASHIFT
5675 ? XEXP (op0, 1) : XEXP (op1, 1)));
5676
5677 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5678 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5679 does not affect any of the bits in OP1, it can really be done
5680 as a PLUS and we can associate. We do this by seeing if OP1
5681 can be safely shifted left C bits. */
5682 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5683 && GET_CODE (XEXP (op0, 0)) == PLUS
5684 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5685 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5686 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5687 {
5688 int count = INTVAL (XEXP (op0, 1));
5689 HOST_WIDE_INT mask = INTVAL (op1) << count;
5690
5691 if (mask >> count == INTVAL (op1)
5692 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5693 {
5694 SUBST (XEXP (XEXP (op0, 0), 1),
5695 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5696 return op0;
5697 }
5698 }
5699 break;
5700
5701 case XOR:
5702 /* If we are XORing two things that have no bits in common,
5703 convert them into an IOR. This helps to detect rotation encoded
5704 using those methods and possibly other simplifications. */
5705
5706 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5707 && (nonzero_bits (op0, mode)
5708 & nonzero_bits (op1, mode)) == 0)
5709 return (simplify_gen_binary (IOR, mode, op0, op1));
5710
5711 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5712 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5713 (NOT y). */
5714 {
5715 int num_negated = 0;
5716
5717 if (GET_CODE (op0) == NOT)
5718 num_negated++, op0 = XEXP (op0, 0);
5719 if (GET_CODE (op1) == NOT)
5720 num_negated++, op1 = XEXP (op1, 0);
5721
5722 if (num_negated == 2)
5723 {
5724 SUBST (XEXP (x, 0), op0);
5725 SUBST (XEXP (x, 1), op1);
5726 }
5727 else if (num_negated == 1)
5728 return
5729 simplify_gen_unary (NOT, mode,
5730 simplify_gen_binary (XOR, mode, op0, op1),
5731 mode);
5732 }
5733
5734 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5735 correspond to a machine insn or result in further simplifications
5736 if B is a constant. */
5737
5738 if (GET_CODE (op0) == AND
5739 && rtx_equal_p (XEXP (op0, 1), op1)
5740 && ! side_effects_p (op1))
5741 return simplify_gen_binary (AND, mode,
5742 simplify_gen_unary (NOT, mode,
5743 XEXP (op0, 0), mode),
5744 op1);
5745
5746 else if (GET_CODE (op0) == AND
5747 && rtx_equal_p (XEXP (op0, 0), op1)
5748 && ! side_effects_p (op1))
5749 return simplify_gen_binary (AND, mode,
5750 simplify_gen_unary (NOT, mode,
5751 XEXP (op0, 1), mode),
5752 op1);
5753
5754 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5755 comparison if STORE_FLAG_VALUE is 1. */
5756 if (STORE_FLAG_VALUE == 1
5757 && op1 == const1_rtx
5758 && COMPARISON_P (op0)
5759 && (reversed = reversed_comparison (op0, mode)))
5760 return reversed;
5761
5762 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5763 is (lt foo (const_int 0)), so we can perform the above
5764 simplification if STORE_FLAG_VALUE is 1. */
5765
5766 if (STORE_FLAG_VALUE == 1
5767 && op1 == const1_rtx
5768 && GET_CODE (op0) == LSHIFTRT
5769 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5770 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5771 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5772
5773 /* (xor (comparison foo bar) (const_int sign-bit))
5774 when STORE_FLAG_VALUE is the sign bit. */
5775 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5776 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5777 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5778 && op1 == const_true_rtx
5779 && COMPARISON_P (op0)
5780 && (reversed = reversed_comparison (op0, mode)))
5781 return reversed;
5782
5783 break;
5784
5785 default:
5786 gcc_unreachable ();
5787 }
5788
5789 return x;
5790 }
5791 \f
5792 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5793 operations" because they can be replaced with two more basic operations.
5794 ZERO_EXTEND is also considered "compound" because it can be replaced with
5795 an AND operation, which is simpler, though only one operation.
5796
5797 The function expand_compound_operation is called with an rtx expression
5798 and will convert it to the appropriate shifts and AND operations,
5799 simplifying at each stage.
5800
5801 The function make_compound_operation is called to convert an expression
5802 consisting of shifts and ANDs into the equivalent compound expression.
5803 It is the inverse of this function, loosely speaking. */
5804
5805 static rtx
5806 expand_compound_operation (rtx x)
5807 {
5808 unsigned HOST_WIDE_INT pos = 0, len;
5809 int unsignedp = 0;
5810 unsigned int modewidth;
5811 rtx tem;
5812
5813 switch (GET_CODE (x))
5814 {
5815 case ZERO_EXTEND:
5816 unsignedp = 1;
5817 case SIGN_EXTEND:
5818 /* We can't necessarily use a const_int for a multiword mode;
5819 it depends on implicitly extending the value.
5820 Since we don't know the right way to extend it,
5821 we can't tell whether the implicit way is right.
5822
5823 Even for a mode that is no wider than a const_int,
5824 we can't win, because we need to sign extend one of its bits through
5825 the rest of it, and we don't know which bit. */
5826 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5827 return x;
5828
5829 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5830 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5831 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5832 reloaded. If not for that, MEM's would very rarely be safe.
5833
5834 Reject MODEs bigger than a word, because we might not be able
5835 to reference a two-register group starting with an arbitrary register
5836 (and currently gen_lowpart might crash for a SUBREG). */
5837
5838 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5839 return x;
5840
5841 /* Reject MODEs that aren't scalar integers because turning vector
5842 or complex modes into shifts causes problems. */
5843
5844 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5845 return x;
5846
5847 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5848 /* If the inner object has VOIDmode (the only way this can happen
5849 is if it is an ASM_OPERANDS), we can't do anything since we don't
5850 know how much masking to do. */
5851 if (len == 0)
5852 return x;
5853
5854 break;
5855
5856 case ZERO_EXTRACT:
5857 unsignedp = 1;
5858
5859 /* ... fall through ... */
5860
5861 case SIGN_EXTRACT:
5862 /* If the operand is a CLOBBER, just return it. */
5863 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5864 return XEXP (x, 0);
5865
5866 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5867 || GET_CODE (XEXP (x, 2)) != CONST_INT
5868 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5869 return x;
5870
5871 /* Reject MODEs that aren't scalar integers because turning vector
5872 or complex modes into shifts causes problems. */
5873
5874 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5875 return x;
5876
5877 len = INTVAL (XEXP (x, 1));
5878 pos = INTVAL (XEXP (x, 2));
5879
5880 /* If this goes outside the object being extracted, replace the object
5881 with a (use (mem ...)) construct that only combine understands
5882 and is used only for this purpose. */
5883 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5884 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5885
5886 if (BITS_BIG_ENDIAN)
5887 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5888
5889 break;
5890
5891 default:
5892 return x;
5893 }
5894 /* Convert sign extension to zero extension, if we know that the high
5895 bit is not set, as this is easier to optimize. It will be converted
5896 back to cheaper alternative in make_extraction. */
5897 if (GET_CODE (x) == SIGN_EXTEND
5898 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5899 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5900 & ~(((unsigned HOST_WIDE_INT)
5901 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5902 >> 1))
5903 == 0)))
5904 {
5905 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5906 rtx temp2 = expand_compound_operation (temp);
5907
5908 /* Make sure this is a profitable operation. */
5909 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5910 return temp2;
5911 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5912 return temp;
5913 else
5914 return x;
5915 }
5916
5917 /* We can optimize some special cases of ZERO_EXTEND. */
5918 if (GET_CODE (x) == ZERO_EXTEND)
5919 {
5920 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5921 know that the last value didn't have any inappropriate bits
5922 set. */
5923 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5924 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5925 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5926 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5927 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5928 return XEXP (XEXP (x, 0), 0);
5929
5930 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5931 if (GET_CODE (XEXP (x, 0)) == SUBREG
5932 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5933 && subreg_lowpart_p (XEXP (x, 0))
5934 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5935 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5936 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5937 return SUBREG_REG (XEXP (x, 0));
5938
5939 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5940 is a comparison and STORE_FLAG_VALUE permits. This is like
5941 the first case, but it works even when GET_MODE (x) is larger
5942 than HOST_WIDE_INT. */
5943 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5944 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5945 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5946 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5947 <= HOST_BITS_PER_WIDE_INT)
5948 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5949 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5950 return XEXP (XEXP (x, 0), 0);
5951
5952 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5953 if (GET_CODE (XEXP (x, 0)) == SUBREG
5954 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5955 && subreg_lowpart_p (XEXP (x, 0))
5956 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5957 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5958 <= HOST_BITS_PER_WIDE_INT)
5959 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5960 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5961 return SUBREG_REG (XEXP (x, 0));
5962
5963 }
5964
5965 /* If we reach here, we want to return a pair of shifts. The inner
5966 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5967 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5968 logical depending on the value of UNSIGNEDP.
5969
5970 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5971 converted into an AND of a shift.
5972
5973 We must check for the case where the left shift would have a negative
5974 count. This can happen in a case like (x >> 31) & 255 on machines
5975 that can't shift by a constant. On those machines, we would first
5976 combine the shift with the AND to produce a variable-position
5977 extraction. Then the constant of 31 would be substituted in to produce
5978 a such a position. */
5979
5980 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5981 if (modewidth + len >= pos)
5982 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5983 GET_MODE (x),
5984 simplify_shift_const (NULL_RTX, ASHIFT,
5985 GET_MODE (x),
5986 XEXP (x, 0),
5987 modewidth - pos - len),
5988 modewidth - len);
5989
5990 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5991 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5992 simplify_shift_const (NULL_RTX, LSHIFTRT,
5993 GET_MODE (x),
5994 XEXP (x, 0), pos),
5995 ((HOST_WIDE_INT) 1 << len) - 1);
5996 else
5997 /* Any other cases we can't handle. */
5998 return x;
5999
6000 /* If we couldn't do this for some reason, return the original
6001 expression. */
6002 if (GET_CODE (tem) == CLOBBER)
6003 return x;
6004
6005 return tem;
6006 }
6007 \f
6008 /* X is a SET which contains an assignment of one object into
6009 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6010 or certain SUBREGS). If possible, convert it into a series of
6011 logical operations.
6012
6013 We half-heartedly support variable positions, but do not at all
6014 support variable lengths. */
6015
6016 static rtx
6017 expand_field_assignment (rtx x)
6018 {
6019 rtx inner;
6020 rtx pos; /* Always counts from low bit. */
6021 int len;
6022 rtx mask, cleared, masked;
6023 enum machine_mode compute_mode;
6024
6025 /* Loop until we find something we can't simplify. */
6026 while (1)
6027 {
6028 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6029 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6030 {
6031 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6032 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6033 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6034 }
6035 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6036 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6037 {
6038 inner = XEXP (SET_DEST (x), 0);
6039 len = INTVAL (XEXP (SET_DEST (x), 1));
6040 pos = XEXP (SET_DEST (x), 2);
6041
6042 /* If the position is constant and spans the width of INNER,
6043 surround INNER with a USE to indicate this. */
6044 if (GET_CODE (pos) == CONST_INT
6045 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6046 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6047
6048 if (BITS_BIG_ENDIAN)
6049 {
6050 if (GET_CODE (pos) == CONST_INT)
6051 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6052 - INTVAL (pos));
6053 else if (GET_CODE (pos) == MINUS
6054 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6055 && (INTVAL (XEXP (pos, 1))
6056 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6057 /* If position is ADJUST - X, new position is X. */
6058 pos = XEXP (pos, 0);
6059 else
6060 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6061 GEN_INT (GET_MODE_BITSIZE (
6062 GET_MODE (inner))
6063 - len),
6064 pos);
6065 }
6066 }
6067
6068 /* A SUBREG between two modes that occupy the same numbers of words
6069 can be done by moving the SUBREG to the source. */
6070 else if (GET_CODE (SET_DEST (x)) == SUBREG
6071 /* We need SUBREGs to compute nonzero_bits properly. */
6072 && nonzero_sign_valid
6073 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6074 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6075 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6076 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6077 {
6078 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6079 gen_lowpart
6080 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6081 SET_SRC (x)));
6082 continue;
6083 }
6084 else
6085 break;
6086
6087 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6088 inner = SUBREG_REG (inner);
6089
6090 compute_mode = GET_MODE (inner);
6091
6092 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6093 if (! SCALAR_INT_MODE_P (compute_mode))
6094 {
6095 enum machine_mode imode;
6096
6097 /* Don't do anything for vector or complex integral types. */
6098 if (! FLOAT_MODE_P (compute_mode))
6099 break;
6100
6101 /* Try to find an integral mode to pun with. */
6102 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6103 if (imode == BLKmode)
6104 break;
6105
6106 compute_mode = imode;
6107 inner = gen_lowpart (imode, inner);
6108 }
6109
6110 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6111 if (len >= HOST_BITS_PER_WIDE_INT)
6112 break;
6113
6114 /* Now compute the equivalent expression. Make a copy of INNER
6115 for the SET_DEST in case it is a MEM into which we will substitute;
6116 we don't want shared RTL in that case. */
6117 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6118 cleared = simplify_gen_binary (AND, compute_mode,
6119 simplify_gen_unary (NOT, compute_mode,
6120 simplify_gen_binary (ASHIFT,
6121 compute_mode,
6122 mask, pos),
6123 compute_mode),
6124 inner);
6125 masked = simplify_gen_binary (ASHIFT, compute_mode,
6126 simplify_gen_binary (
6127 AND, compute_mode,
6128 gen_lowpart (compute_mode, SET_SRC (x)),
6129 mask),
6130 pos);
6131
6132 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6133 simplify_gen_binary (IOR, compute_mode,
6134 cleared, masked));
6135 }
6136
6137 return x;
6138 }
6139 \f
6140 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6141 it is an RTX that represents a variable starting position; otherwise,
6142 POS is the (constant) starting bit position (counted from the LSB).
6143
6144 INNER may be a USE. This will occur when we started with a bitfield
6145 that went outside the boundary of the object in memory, which is
6146 allowed on most machines. To isolate this case, we produce a USE
6147 whose mode is wide enough and surround the MEM with it. The only
6148 code that understands the USE is this routine. If it is not removed,
6149 it will cause the resulting insn not to match.
6150
6151 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6152 signed reference.
6153
6154 IN_DEST is nonzero if this is a reference in the destination of a
6155 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6156 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6157 be used.
6158
6159 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6160 ZERO_EXTRACT should be built even for bits starting at bit 0.
6161
6162 MODE is the desired mode of the result (if IN_DEST == 0).
6163
6164 The result is an RTX for the extraction or NULL_RTX if the target
6165 can't handle it. */
6166
6167 static rtx
6168 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6169 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6170 int in_dest, int in_compare)
6171 {
6172 /* This mode describes the size of the storage area
6173 to fetch the overall value from. Within that, we
6174 ignore the POS lowest bits, etc. */
6175 enum machine_mode is_mode = GET_MODE (inner);
6176 enum machine_mode inner_mode;
6177 enum machine_mode wanted_inner_mode = byte_mode;
6178 enum machine_mode wanted_inner_reg_mode = word_mode;
6179 enum machine_mode pos_mode = word_mode;
6180 enum machine_mode extraction_mode = word_mode;
6181 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6182 int spans_byte = 0;
6183 rtx new = 0;
6184 rtx orig_pos_rtx = pos_rtx;
6185 HOST_WIDE_INT orig_pos;
6186
6187 /* Get some information about INNER and get the innermost object. */
6188 if (GET_CODE (inner) == USE)
6189 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6190 /* We don't need to adjust the position because we set up the USE
6191 to pretend that it was a full-word object. */
6192 spans_byte = 1, inner = XEXP (inner, 0);
6193 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6194 {
6195 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6196 consider just the QI as the memory to extract from.
6197 The subreg adds or removes high bits; its mode is
6198 irrelevant to the meaning of this extraction,
6199 since POS and LEN count from the lsb. */
6200 if (MEM_P (SUBREG_REG (inner)))
6201 is_mode = GET_MODE (SUBREG_REG (inner));
6202 inner = SUBREG_REG (inner);
6203 }
6204 else if (GET_CODE (inner) == ASHIFT
6205 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6206 && pos_rtx == 0 && pos == 0
6207 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6208 {
6209 /* We're extracting the least significant bits of an rtx
6210 (ashift X (const_int C)), where LEN > C. Extract the
6211 least significant (LEN - C) bits of X, giving an rtx
6212 whose mode is MODE, then shift it left C times. */
6213 new = make_extraction (mode, XEXP (inner, 0),
6214 0, 0, len - INTVAL (XEXP (inner, 1)),
6215 unsignedp, in_dest, in_compare);
6216 if (new != 0)
6217 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6218 }
6219
6220 inner_mode = GET_MODE (inner);
6221
6222 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6223 pos = INTVAL (pos_rtx), pos_rtx = 0;
6224
6225 /* See if this can be done without an extraction. We never can if the
6226 width of the field is not the same as that of some integer mode. For
6227 registers, we can only avoid the extraction if the position is at the
6228 low-order bit and this is either not in the destination or we have the
6229 appropriate STRICT_LOW_PART operation available.
6230
6231 For MEM, we can avoid an extract if the field starts on an appropriate
6232 boundary and we can change the mode of the memory reference. However,
6233 we cannot directly access the MEM if we have a USE and the underlying
6234 MEM is not TMODE. This combination means that MEM was being used in a
6235 context where bits outside its mode were being referenced; that is only
6236 valid in bit-field insns. */
6237
6238 if (tmode != BLKmode
6239 && ! (spans_byte && inner_mode != tmode)
6240 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6241 && !MEM_P (inner)
6242 && (! in_dest
6243 || (REG_P (inner)
6244 && have_insn_for (STRICT_LOW_PART, tmode))))
6245 || (MEM_P (inner) && pos_rtx == 0
6246 && (pos
6247 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6248 : BITS_PER_UNIT)) == 0
6249 /* We can't do this if we are widening INNER_MODE (it
6250 may not be aligned, for one thing). */
6251 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6252 && (inner_mode == tmode
6253 || (! mode_dependent_address_p (XEXP (inner, 0))
6254 && ! MEM_VOLATILE_P (inner))))))
6255 {
6256 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6257 field. If the original and current mode are the same, we need not
6258 adjust the offset. Otherwise, we do if bytes big endian.
6259
6260 If INNER is not a MEM, get a piece consisting of just the field
6261 of interest (in this case POS % BITS_PER_WORD must be 0). */
6262
6263 if (MEM_P (inner))
6264 {
6265 HOST_WIDE_INT offset;
6266
6267 /* POS counts from lsb, but make OFFSET count in memory order. */
6268 if (BYTES_BIG_ENDIAN)
6269 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6270 else
6271 offset = pos / BITS_PER_UNIT;
6272
6273 new = adjust_address_nv (inner, tmode, offset);
6274 }
6275 else if (REG_P (inner))
6276 {
6277 if (tmode != inner_mode)
6278 {
6279 /* We can't call gen_lowpart in a DEST since we
6280 always want a SUBREG (see below) and it would sometimes
6281 return a new hard register. */
6282 if (pos || in_dest)
6283 {
6284 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6285
6286 if (WORDS_BIG_ENDIAN
6287 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6288 final_word = ((GET_MODE_SIZE (inner_mode)
6289 - GET_MODE_SIZE (tmode))
6290 / UNITS_PER_WORD) - final_word;
6291
6292 final_word *= UNITS_PER_WORD;
6293 if (BYTES_BIG_ENDIAN &&
6294 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6295 final_word += (GET_MODE_SIZE (inner_mode)
6296 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6297
6298 /* Avoid creating invalid subregs, for example when
6299 simplifying (x>>32)&255. */
6300 if (final_word >= GET_MODE_SIZE (inner_mode))
6301 return NULL_RTX;
6302
6303 new = gen_rtx_SUBREG (tmode, inner, final_word);
6304 }
6305 else
6306 new = gen_lowpart (tmode, inner);
6307 }
6308 else
6309 new = inner;
6310 }
6311 else
6312 new = force_to_mode (inner, tmode,
6313 len >= HOST_BITS_PER_WIDE_INT
6314 ? ~(unsigned HOST_WIDE_INT) 0
6315 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6316 NULL_RTX, 0);
6317
6318 /* If this extraction is going into the destination of a SET,
6319 make a STRICT_LOW_PART unless we made a MEM. */
6320
6321 if (in_dest)
6322 return (MEM_P (new) ? new
6323 : (GET_CODE (new) != SUBREG
6324 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6325 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6326
6327 if (mode == tmode)
6328 return new;
6329
6330 if (GET_CODE (new) == CONST_INT)
6331 return gen_int_mode (INTVAL (new), mode);
6332
6333 /* If we know that no extraneous bits are set, and that the high
6334 bit is not set, convert the extraction to the cheaper of
6335 sign and zero extension, that are equivalent in these cases. */
6336 if (flag_expensive_optimizations
6337 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6338 && ((nonzero_bits (new, tmode)
6339 & ~(((unsigned HOST_WIDE_INT)
6340 GET_MODE_MASK (tmode))
6341 >> 1))
6342 == 0)))
6343 {
6344 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6345 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6346
6347 /* Prefer ZERO_EXTENSION, since it gives more information to
6348 backends. */
6349 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6350 return temp;
6351 return temp1;
6352 }
6353
6354 /* Otherwise, sign- or zero-extend unless we already are in the
6355 proper mode. */
6356
6357 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6358 mode, new));
6359 }
6360
6361 /* Unless this is a COMPARE or we have a funny memory reference,
6362 don't do anything with zero-extending field extracts starting at
6363 the low-order bit since they are simple AND operations. */
6364 if (pos_rtx == 0 && pos == 0 && ! in_dest
6365 && ! in_compare && ! spans_byte && unsignedp)
6366 return 0;
6367
6368 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6369 we would be spanning bytes or if the position is not a constant and the
6370 length is not 1. In all other cases, we would only be going outside
6371 our object in cases when an original shift would have been
6372 undefined. */
6373 if (! spans_byte && MEM_P (inner)
6374 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6375 || (pos_rtx != 0 && len != 1)))
6376 return 0;
6377
6378 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6379 and the mode for the result. */
6380 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6381 {
6382 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6383 pos_mode = mode_for_extraction (EP_insv, 2);
6384 extraction_mode = mode_for_extraction (EP_insv, 3);
6385 }
6386
6387 if (! in_dest && unsignedp
6388 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6389 {
6390 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6391 pos_mode = mode_for_extraction (EP_extzv, 3);
6392 extraction_mode = mode_for_extraction (EP_extzv, 0);
6393 }
6394
6395 if (! in_dest && ! unsignedp
6396 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6397 {
6398 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6399 pos_mode = mode_for_extraction (EP_extv, 3);
6400 extraction_mode = mode_for_extraction (EP_extv, 0);
6401 }
6402
6403 /* Never narrow an object, since that might not be safe. */
6404
6405 if (mode != VOIDmode
6406 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6407 extraction_mode = mode;
6408
6409 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6410 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6411 pos_mode = GET_MODE (pos_rtx);
6412
6413 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6414 if we have to change the mode of memory and cannot, the desired mode is
6415 EXTRACTION_MODE. */
6416 if (!MEM_P (inner))
6417 wanted_inner_mode = wanted_inner_reg_mode;
6418 else if (inner_mode != wanted_inner_mode
6419 && (mode_dependent_address_p (XEXP (inner, 0))
6420 || MEM_VOLATILE_P (inner)))
6421 wanted_inner_mode = extraction_mode;
6422
6423 orig_pos = pos;
6424
6425 if (BITS_BIG_ENDIAN)
6426 {
6427 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6428 BITS_BIG_ENDIAN style. If position is constant, compute new
6429 position. Otherwise, build subtraction.
6430 Note that POS is relative to the mode of the original argument.
6431 If it's a MEM we need to recompute POS relative to that.
6432 However, if we're extracting from (or inserting into) a register,
6433 we want to recompute POS relative to wanted_inner_mode. */
6434 int width = (MEM_P (inner)
6435 ? GET_MODE_BITSIZE (is_mode)
6436 : GET_MODE_BITSIZE (wanted_inner_mode));
6437
6438 if (pos_rtx == 0)
6439 pos = width - len - pos;
6440 else
6441 pos_rtx
6442 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6443 /* POS may be less than 0 now, but we check for that below.
6444 Note that it can only be less than 0 if !MEM_P (inner). */
6445 }
6446
6447 /* If INNER has a wider mode, make it smaller. If this is a constant
6448 extract, try to adjust the byte to point to the byte containing
6449 the value. */
6450 if (wanted_inner_mode != VOIDmode
6451 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6452 && ((MEM_P (inner)
6453 && (inner_mode == wanted_inner_mode
6454 || (! mode_dependent_address_p (XEXP (inner, 0))
6455 && ! MEM_VOLATILE_P (inner))))))
6456 {
6457 int offset = 0;
6458
6459 /* The computations below will be correct if the machine is big
6460 endian in both bits and bytes or little endian in bits and bytes.
6461 If it is mixed, we must adjust. */
6462
6463 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6464 adjust OFFSET to compensate. */
6465 if (BYTES_BIG_ENDIAN
6466 && ! spans_byte
6467 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6468 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6469
6470 /* If this is a constant position, we can move to the desired byte. */
6471 if (pos_rtx == 0)
6472 {
6473 offset += pos / BITS_PER_UNIT;
6474 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6475 }
6476
6477 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6478 && ! spans_byte
6479 && is_mode != wanted_inner_mode)
6480 offset = (GET_MODE_SIZE (is_mode)
6481 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6482
6483 if (offset != 0 || inner_mode != wanted_inner_mode)
6484 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6485 }
6486
6487 /* If INNER is not memory, we can always get it into the proper mode. If we
6488 are changing its mode, POS must be a constant and smaller than the size
6489 of the new mode. */
6490 else if (!MEM_P (inner))
6491 {
6492 if (GET_MODE (inner) != wanted_inner_mode
6493 && (pos_rtx != 0
6494 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6495 return 0;
6496
6497 inner = force_to_mode (inner, wanted_inner_mode,
6498 pos_rtx
6499 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6500 ? ~(unsigned HOST_WIDE_INT) 0
6501 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6502 << orig_pos),
6503 NULL_RTX, 0);
6504 }
6505
6506 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6507 have to zero extend. Otherwise, we can just use a SUBREG. */
6508 if (pos_rtx != 0
6509 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6510 {
6511 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6512
6513 /* If we know that no extraneous bits are set, and that the high
6514 bit is not set, convert extraction to cheaper one - either
6515 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6516 cases. */
6517 if (flag_expensive_optimizations
6518 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6519 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6520 & ~(((unsigned HOST_WIDE_INT)
6521 GET_MODE_MASK (GET_MODE (pos_rtx)))
6522 >> 1))
6523 == 0)))
6524 {
6525 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6526
6527 /* Prefer ZERO_EXTENSION, since it gives more information to
6528 backends. */
6529 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6530 temp = temp1;
6531 }
6532 pos_rtx = temp;
6533 }
6534 else if (pos_rtx != 0
6535 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6536 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6537
6538 /* Make POS_RTX unless we already have it and it is correct. If we don't
6539 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6540 be a CONST_INT. */
6541 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6542 pos_rtx = orig_pos_rtx;
6543
6544 else if (pos_rtx == 0)
6545 pos_rtx = GEN_INT (pos);
6546
6547 /* Make the required operation. See if we can use existing rtx. */
6548 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6549 extraction_mode, inner, GEN_INT (len), pos_rtx);
6550 if (! in_dest)
6551 new = gen_lowpart (mode, new);
6552
6553 return new;
6554 }
6555 \f
6556 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6557 with any other operations in X. Return X without that shift if so. */
6558
6559 static rtx
6560 extract_left_shift (rtx x, int count)
6561 {
6562 enum rtx_code code = GET_CODE (x);
6563 enum machine_mode mode = GET_MODE (x);
6564 rtx tem;
6565
6566 switch (code)
6567 {
6568 case ASHIFT:
6569 /* This is the shift itself. If it is wide enough, we will return
6570 either the value being shifted if the shift count is equal to
6571 COUNT or a shift for the difference. */
6572 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6573 && INTVAL (XEXP (x, 1)) >= count)
6574 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6575 INTVAL (XEXP (x, 1)) - count);
6576 break;
6577
6578 case NEG: case NOT:
6579 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6580 return simplify_gen_unary (code, mode, tem, mode);
6581
6582 break;
6583
6584 case PLUS: case IOR: case XOR: case AND:
6585 /* If we can safely shift this constant and we find the inner shift,
6586 make a new operation. */
6587 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6588 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6589 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6590 return simplify_gen_binary (code, mode, tem,
6591 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6592
6593 break;
6594
6595 default:
6596 break;
6597 }
6598
6599 return 0;
6600 }
6601 \f
6602 /* Look at the expression rooted at X. Look for expressions
6603 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6604 Form these expressions.
6605
6606 Return the new rtx, usually just X.
6607
6608 Also, for machines like the VAX that don't have logical shift insns,
6609 try to convert logical to arithmetic shift operations in cases where
6610 they are equivalent. This undoes the canonicalizations to logical
6611 shifts done elsewhere.
6612
6613 We try, as much as possible, to re-use rtl expressions to save memory.
6614
6615 IN_CODE says what kind of expression we are processing. Normally, it is
6616 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6617 being kludges), it is MEM. When processing the arguments of a comparison
6618 or a COMPARE against zero, it is COMPARE. */
6619
6620 static rtx
6621 make_compound_operation (rtx x, enum rtx_code in_code)
6622 {
6623 enum rtx_code code = GET_CODE (x);
6624 enum machine_mode mode = GET_MODE (x);
6625 int mode_width = GET_MODE_BITSIZE (mode);
6626 rtx rhs, lhs;
6627 enum rtx_code next_code;
6628 int i;
6629 rtx new = 0;
6630 rtx tem;
6631 const char *fmt;
6632
6633 /* Select the code to be used in recursive calls. Once we are inside an
6634 address, we stay there. If we have a comparison, set to COMPARE,
6635 but once inside, go back to our default of SET. */
6636
6637 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6638 : ((code == COMPARE || COMPARISON_P (x))
6639 && XEXP (x, 1) == const0_rtx) ? COMPARE
6640 : in_code == COMPARE ? SET : in_code);
6641
6642 /* Process depending on the code of this operation. If NEW is set
6643 nonzero, it will be returned. */
6644
6645 switch (code)
6646 {
6647 case ASHIFT:
6648 /* Convert shifts by constants into multiplications if inside
6649 an address. */
6650 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6651 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6652 && INTVAL (XEXP (x, 1)) >= 0)
6653 {
6654 new = make_compound_operation (XEXP (x, 0), next_code);
6655 new = gen_rtx_MULT (mode, new,
6656 GEN_INT ((HOST_WIDE_INT) 1
6657 << INTVAL (XEXP (x, 1))));
6658 }
6659 break;
6660
6661 case AND:
6662 /* If the second operand is not a constant, we can't do anything
6663 with it. */
6664 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6665 break;
6666
6667 /* If the constant is a power of two minus one and the first operand
6668 is a logical right shift, make an extraction. */
6669 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6670 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6671 {
6672 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6673 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6674 0, in_code == COMPARE);
6675 }
6676
6677 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6678 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6679 && subreg_lowpart_p (XEXP (x, 0))
6680 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6681 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6682 {
6683 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6684 next_code);
6685 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6686 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6687 0, in_code == COMPARE);
6688 }
6689 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6690 else if ((GET_CODE (XEXP (x, 0)) == XOR
6691 || GET_CODE (XEXP (x, 0)) == IOR)
6692 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6693 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6694 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6695 {
6696 /* Apply the distributive law, and then try to make extractions. */
6697 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6698 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6699 XEXP (x, 1)),
6700 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6701 XEXP (x, 1)));
6702 new = make_compound_operation (new, in_code);
6703 }
6704
6705 /* If we are have (and (rotate X C) M) and C is larger than the number
6706 of bits in M, this is an extraction. */
6707
6708 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6709 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6710 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6711 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6712 {
6713 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6714 new = make_extraction (mode, new,
6715 (GET_MODE_BITSIZE (mode)
6716 - INTVAL (XEXP (XEXP (x, 0), 1))),
6717 NULL_RTX, i, 1, 0, in_code == COMPARE);
6718 }
6719
6720 /* On machines without logical shifts, if the operand of the AND is
6721 a logical shift and our mask turns off all the propagated sign
6722 bits, we can replace the logical shift with an arithmetic shift. */
6723 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6724 && !have_insn_for (LSHIFTRT, mode)
6725 && have_insn_for (ASHIFTRT, mode)
6726 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6727 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6728 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6729 && mode_width <= HOST_BITS_PER_WIDE_INT)
6730 {
6731 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6732
6733 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6734 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6735 SUBST (XEXP (x, 0),
6736 gen_rtx_ASHIFTRT (mode,
6737 make_compound_operation
6738 (XEXP (XEXP (x, 0), 0), next_code),
6739 XEXP (XEXP (x, 0), 1)));
6740 }
6741
6742 /* If the constant is one less than a power of two, this might be
6743 representable by an extraction even if no shift is present.
6744 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6745 we are in a COMPARE. */
6746 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6747 new = make_extraction (mode,
6748 make_compound_operation (XEXP (x, 0),
6749 next_code),
6750 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6751
6752 /* If we are in a comparison and this is an AND with a power of two,
6753 convert this into the appropriate bit extract. */
6754 else if (in_code == COMPARE
6755 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6756 new = make_extraction (mode,
6757 make_compound_operation (XEXP (x, 0),
6758 next_code),
6759 i, NULL_RTX, 1, 1, 0, 1);
6760
6761 break;
6762
6763 case LSHIFTRT:
6764 /* If the sign bit is known to be zero, replace this with an
6765 arithmetic shift. */
6766 if (have_insn_for (ASHIFTRT, mode)
6767 && ! have_insn_for (LSHIFTRT, mode)
6768 && mode_width <= HOST_BITS_PER_WIDE_INT
6769 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6770 {
6771 new = gen_rtx_ASHIFTRT (mode,
6772 make_compound_operation (XEXP (x, 0),
6773 next_code),
6774 XEXP (x, 1));
6775 break;
6776 }
6777
6778 /* ... fall through ... */
6779
6780 case ASHIFTRT:
6781 lhs = XEXP (x, 0);
6782 rhs = XEXP (x, 1);
6783
6784 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6785 this is a SIGN_EXTRACT. */
6786 if (GET_CODE (rhs) == CONST_INT
6787 && GET_CODE (lhs) == ASHIFT
6788 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6789 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6790 {
6791 new = make_compound_operation (XEXP (lhs, 0), next_code);
6792 new = make_extraction (mode, new,
6793 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6794 NULL_RTX, mode_width - INTVAL (rhs),
6795 code == LSHIFTRT, 0, in_code == COMPARE);
6796 break;
6797 }
6798
6799 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6800 If so, try to merge the shifts into a SIGN_EXTEND. We could
6801 also do this for some cases of SIGN_EXTRACT, but it doesn't
6802 seem worth the effort; the case checked for occurs on Alpha. */
6803
6804 if (!OBJECT_P (lhs)
6805 && ! (GET_CODE (lhs) == SUBREG
6806 && (OBJECT_P (SUBREG_REG (lhs))))
6807 && GET_CODE (rhs) == CONST_INT
6808 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6809 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6810 new = make_extraction (mode, make_compound_operation (new, next_code),
6811 0, NULL_RTX, mode_width - INTVAL (rhs),
6812 code == LSHIFTRT, 0, in_code == COMPARE);
6813
6814 break;
6815
6816 case SUBREG:
6817 /* Call ourselves recursively on the inner expression. If we are
6818 narrowing the object and it has a different RTL code from
6819 what it originally did, do this SUBREG as a force_to_mode. */
6820
6821 tem = make_compound_operation (SUBREG_REG (x), in_code);
6822
6823 {
6824 rtx simplified;
6825 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6826 SUBREG_BYTE (x));
6827
6828 if (simplified)
6829 tem = simplified;
6830
6831 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6832 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6833 && subreg_lowpart_p (x))
6834 {
6835 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6836 NULL_RTX, 0);
6837
6838 /* If we have something other than a SUBREG, we might have
6839 done an expansion, so rerun ourselves. */
6840 if (GET_CODE (newer) != SUBREG)
6841 newer = make_compound_operation (newer, in_code);
6842
6843 return newer;
6844 }
6845
6846 if (simplified)
6847 return tem;
6848 }
6849 break;
6850
6851 default:
6852 break;
6853 }
6854
6855 if (new)
6856 {
6857 x = gen_lowpart (mode, new);
6858 code = GET_CODE (x);
6859 }
6860
6861 /* Now recursively process each operand of this operation. */
6862 fmt = GET_RTX_FORMAT (code);
6863 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6864 if (fmt[i] == 'e')
6865 {
6866 new = make_compound_operation (XEXP (x, i), next_code);
6867 SUBST (XEXP (x, i), new);
6868 }
6869
6870 return x;
6871 }
6872 \f
6873 /* Given M see if it is a value that would select a field of bits
6874 within an item, but not the entire word. Return -1 if not.
6875 Otherwise, return the starting position of the field, where 0 is the
6876 low-order bit.
6877
6878 *PLEN is set to the length of the field. */
6879
6880 static int
6881 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6882 {
6883 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6884 int pos = exact_log2 (m & -m);
6885 int len = 0;
6886
6887 if (pos >= 0)
6888 /* Now shift off the low-order zero bits and see if we have a
6889 power of two minus 1. */
6890 len = exact_log2 ((m >> pos) + 1);
6891
6892 if (len <= 0)
6893 pos = -1;
6894
6895 *plen = len;
6896 return pos;
6897 }
6898 \f
6899 /* See if X can be simplified knowing that we will only refer to it in
6900 MODE and will only refer to those bits that are nonzero in MASK.
6901 If other bits are being computed or if masking operations are done
6902 that select a superset of the bits in MASK, they can sometimes be
6903 ignored.
6904
6905 Return a possibly simplified expression, but always convert X to
6906 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6907
6908 Also, if REG is nonzero and X is a register equal in value to REG,
6909 replace X with REG.
6910
6911 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6912 are all off in X. This is used when X will be complemented, by either
6913 NOT, NEG, or XOR. */
6914
6915 static rtx
6916 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6917 rtx reg, int just_select)
6918 {
6919 enum rtx_code code = GET_CODE (x);
6920 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6921 enum machine_mode op_mode;
6922 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6923 rtx op0, op1, temp;
6924
6925 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6926 code below will do the wrong thing since the mode of such an
6927 expression is VOIDmode.
6928
6929 Also do nothing if X is a CLOBBER; this can happen if X was
6930 the return value from a call to gen_lowpart. */
6931 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6932 return x;
6933
6934 /* We want to perform the operation is its present mode unless we know
6935 that the operation is valid in MODE, in which case we do the operation
6936 in MODE. */
6937 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6938 && have_insn_for (code, mode))
6939 ? mode : GET_MODE (x));
6940
6941 /* It is not valid to do a right-shift in a narrower mode
6942 than the one it came in with. */
6943 if ((code == LSHIFTRT || code == ASHIFTRT)
6944 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6945 op_mode = GET_MODE (x);
6946
6947 /* Truncate MASK to fit OP_MODE. */
6948 if (op_mode)
6949 mask &= GET_MODE_MASK (op_mode);
6950
6951 /* When we have an arithmetic operation, or a shift whose count we
6952 do not know, we need to assume that all bits up to the highest-order
6953 bit in MASK will be needed. This is how we form such a mask. */
6954 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6955 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6956 else
6957 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6958 - 1);
6959
6960 /* Determine what bits of X are guaranteed to be (non)zero. */
6961 nonzero = nonzero_bits (x, mode);
6962
6963 /* If none of the bits in X are needed, return a zero. */
6964 if (! just_select && (nonzero & mask) == 0)
6965 x = const0_rtx;
6966
6967 /* If X is a CONST_INT, return a new one. Do this here since the
6968 test below will fail. */
6969 if (GET_CODE (x) == CONST_INT)
6970 {
6971 if (SCALAR_INT_MODE_P (mode))
6972 return gen_int_mode (INTVAL (x) & mask, mode);
6973 else
6974 {
6975 x = GEN_INT (INTVAL (x) & mask);
6976 return gen_lowpart_common (mode, x);
6977 }
6978 }
6979
6980 /* If X is narrower than MODE and we want all the bits in X's mode, just
6981 get X in the proper mode. */
6982 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6983 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6984 return gen_lowpart (mode, x);
6985
6986 switch (code)
6987 {
6988 case CLOBBER:
6989 /* If X is a (clobber (const_int)), return it since we know we are
6990 generating something that won't match. */
6991 return x;
6992
6993 case USE:
6994 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6995 spanned the boundary of the MEM. If we are now masking so it is
6996 within that boundary, we don't need the USE any more. */
6997 if (! BITS_BIG_ENDIAN
6998 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6999 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7000 break;
7001
7002 case SIGN_EXTEND:
7003 case ZERO_EXTEND:
7004 case ZERO_EXTRACT:
7005 case SIGN_EXTRACT:
7006 x = expand_compound_operation (x);
7007 if (GET_CODE (x) != code)
7008 return force_to_mode (x, mode, mask, reg, next_select);
7009 break;
7010
7011 case REG:
7012 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
7013 || rtx_equal_p (reg, get_last_value (x))))
7014 x = reg;
7015 break;
7016
7017 case SUBREG:
7018 if (subreg_lowpart_p (x)
7019 /* We can ignore the effect of this SUBREG if it narrows the mode or
7020 if the constant masks to zero all the bits the mode doesn't
7021 have. */
7022 && ((GET_MODE_SIZE (GET_MODE (x))
7023 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7024 || (0 == (mask
7025 & GET_MODE_MASK (GET_MODE (x))
7026 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7027 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
7028 break;
7029
7030 case AND:
7031 /* If this is an AND with a constant, convert it into an AND
7032 whose constant is the AND of that constant with MASK. If it
7033 remains an AND of MASK, delete it since it is redundant. */
7034
7035 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7036 {
7037 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7038 mask & INTVAL (XEXP (x, 1)));
7039
7040 /* If X is still an AND, see if it is an AND with a mask that
7041 is just some low-order bits. If so, and it is MASK, we don't
7042 need it. */
7043
7044 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7045 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7046 == mask))
7047 x = XEXP (x, 0);
7048
7049 /* If it remains an AND, try making another AND with the bits
7050 in the mode mask that aren't in MASK turned on. If the
7051 constant in the AND is wide enough, this might make a
7052 cheaper constant. */
7053
7054 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7055 && GET_MODE_MASK (GET_MODE (x)) != mask
7056 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7057 {
7058 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7059 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7060 int width = GET_MODE_BITSIZE (GET_MODE (x));
7061 rtx y;
7062
7063 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7064 number, sign extend it. */
7065 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7066 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7067 cval |= (HOST_WIDE_INT) -1 << width;
7068
7069 y = simplify_gen_binary (AND, GET_MODE (x),
7070 XEXP (x, 0), GEN_INT (cval));
7071 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7072 x = y;
7073 }
7074
7075 break;
7076 }
7077
7078 goto binop;
7079
7080 case PLUS:
7081 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7082 low-order bits (as in an alignment operation) and FOO is already
7083 aligned to that boundary, mask C1 to that boundary as well.
7084 This may eliminate that PLUS and, later, the AND. */
7085
7086 {
7087 unsigned int width = GET_MODE_BITSIZE (mode);
7088 unsigned HOST_WIDE_INT smask = mask;
7089
7090 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7091 number, sign extend it. */
7092
7093 if (width < HOST_BITS_PER_WIDE_INT
7094 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7095 smask |= (HOST_WIDE_INT) -1 << width;
7096
7097 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7098 && exact_log2 (- smask) >= 0
7099 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7100 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7101 return force_to_mode (plus_constant (XEXP (x, 0),
7102 (INTVAL (XEXP (x, 1)) & smask)),
7103 mode, smask, reg, next_select);
7104 }
7105
7106 /* ... fall through ... */
7107
7108 case MULT:
7109 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7110 most significant bit in MASK since carries from those bits will
7111 affect the bits we are interested in. */
7112 mask = fuller_mask;
7113 goto binop;
7114
7115 case MINUS:
7116 /* If X is (minus C Y) where C's least set bit is larger than any bit
7117 in the mask, then we may replace with (neg Y). */
7118 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7119 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7120 & -INTVAL (XEXP (x, 0))))
7121 > mask))
7122 {
7123 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7124 GET_MODE (x));
7125 return force_to_mode (x, mode, mask, reg, next_select);
7126 }
7127
7128 /* Similarly, if C contains every bit in the fuller_mask, then we may
7129 replace with (not Y). */
7130 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7131 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7132 == INTVAL (XEXP (x, 0))))
7133 {
7134 x = simplify_gen_unary (NOT, GET_MODE (x),
7135 XEXP (x, 1), GET_MODE (x));
7136 return force_to_mode (x, mode, mask, reg, next_select);
7137 }
7138
7139 mask = fuller_mask;
7140 goto binop;
7141
7142 case IOR:
7143 case XOR:
7144 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7145 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7146 operation which may be a bitfield extraction. Ensure that the
7147 constant we form is not wider than the mode of X. */
7148
7149 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7150 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7151 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7152 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7153 && GET_CODE (XEXP (x, 1)) == CONST_INT
7154 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7155 + floor_log2 (INTVAL (XEXP (x, 1))))
7156 < GET_MODE_BITSIZE (GET_MODE (x)))
7157 && (INTVAL (XEXP (x, 1))
7158 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7159 {
7160 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7161 << INTVAL (XEXP (XEXP (x, 0), 1)));
7162 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7163 XEXP (XEXP (x, 0), 0), temp);
7164 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7165 XEXP (XEXP (x, 0), 1));
7166 return force_to_mode (x, mode, mask, reg, next_select);
7167 }
7168
7169 binop:
7170 /* For most binary operations, just propagate into the operation and
7171 change the mode if we have an operation of that mode. */
7172
7173 op0 = gen_lowpart (op_mode,
7174 force_to_mode (XEXP (x, 0), mode, mask,
7175 reg, next_select));
7176 op1 = gen_lowpart (op_mode,
7177 force_to_mode (XEXP (x, 1), mode, mask,
7178 reg, next_select));
7179
7180 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7181 x = simplify_gen_binary (code, op_mode, op0, op1);
7182 break;
7183
7184 case ASHIFT:
7185 /* For left shifts, do the same, but just for the first operand.
7186 However, we cannot do anything with shifts where we cannot
7187 guarantee that the counts are smaller than the size of the mode
7188 because such a count will have a different meaning in a
7189 wider mode. */
7190
7191 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7192 && INTVAL (XEXP (x, 1)) >= 0
7193 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7194 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7195 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7196 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7197 break;
7198
7199 /* If the shift count is a constant and we can do arithmetic in
7200 the mode of the shift, refine which bits we need. Otherwise, use the
7201 conservative form of the mask. */
7202 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7203 && INTVAL (XEXP (x, 1)) >= 0
7204 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7205 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7206 mask >>= INTVAL (XEXP (x, 1));
7207 else
7208 mask = fuller_mask;
7209
7210 op0 = gen_lowpart (op_mode,
7211 force_to_mode (XEXP (x, 0), op_mode,
7212 mask, reg, next_select));
7213
7214 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7215 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7216 break;
7217
7218 case LSHIFTRT:
7219 /* Here we can only do something if the shift count is a constant,
7220 this shift constant is valid for the host, and we can do arithmetic
7221 in OP_MODE. */
7222
7223 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7224 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7225 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7226 {
7227 rtx inner = XEXP (x, 0);
7228 unsigned HOST_WIDE_INT inner_mask;
7229
7230 /* Select the mask of the bits we need for the shift operand. */
7231 inner_mask = mask << INTVAL (XEXP (x, 1));
7232
7233 /* We can only change the mode of the shift if we can do arithmetic
7234 in the mode of the shift and INNER_MASK is no wider than the
7235 width of X's mode. */
7236 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7237 op_mode = GET_MODE (x);
7238
7239 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7240
7241 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7242 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7243 }
7244
7245 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7246 shift and AND produces only copies of the sign bit (C2 is one less
7247 than a power of two), we can do this with just a shift. */
7248
7249 if (GET_CODE (x) == LSHIFTRT
7250 && GET_CODE (XEXP (x, 1)) == CONST_INT
7251 /* The shift puts one of the sign bit copies in the least significant
7252 bit. */
7253 && ((INTVAL (XEXP (x, 1))
7254 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7255 >= GET_MODE_BITSIZE (GET_MODE (x)))
7256 && exact_log2 (mask + 1) >= 0
7257 /* Number of bits left after the shift must be more than the mask
7258 needs. */
7259 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7260 <= GET_MODE_BITSIZE (GET_MODE (x)))
7261 /* Must be more sign bit copies than the mask needs. */
7262 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7263 >= exact_log2 (mask + 1)))
7264 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7265 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7266 - exact_log2 (mask + 1)));
7267
7268 goto shiftrt;
7269
7270 case ASHIFTRT:
7271 /* If we are just looking for the sign bit, we don't need this shift at
7272 all, even if it has a variable count. */
7273 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7274 && (mask == ((unsigned HOST_WIDE_INT) 1
7275 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7276 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7277
7278 /* If this is a shift by a constant, get a mask that contains those bits
7279 that are not copies of the sign bit. We then have two cases: If
7280 MASK only includes those bits, this can be a logical shift, which may
7281 allow simplifications. If MASK is a single-bit field not within
7282 those bits, we are requesting a copy of the sign bit and hence can
7283 shift the sign bit to the appropriate location. */
7284
7285 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7286 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7287 {
7288 int i = -1;
7289
7290 /* If the considered data is wider than HOST_WIDE_INT, we can't
7291 represent a mask for all its bits in a single scalar.
7292 But we only care about the lower bits, so calculate these. */
7293
7294 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7295 {
7296 nonzero = ~(HOST_WIDE_INT) 0;
7297
7298 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7299 is the number of bits a full-width mask would have set.
7300 We need only shift if these are fewer than nonzero can
7301 hold. If not, we must keep all bits set in nonzero. */
7302
7303 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7304 < HOST_BITS_PER_WIDE_INT)
7305 nonzero >>= INTVAL (XEXP (x, 1))
7306 + HOST_BITS_PER_WIDE_INT
7307 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7308 }
7309 else
7310 {
7311 nonzero = GET_MODE_MASK (GET_MODE (x));
7312 nonzero >>= INTVAL (XEXP (x, 1));
7313 }
7314
7315 if ((mask & ~nonzero) == 0
7316 || (i = exact_log2 (mask)) >= 0)
7317 {
7318 x = simplify_shift_const
7319 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7320 i < 0 ? INTVAL (XEXP (x, 1))
7321 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7322
7323 if (GET_CODE (x) != ASHIFTRT)
7324 return force_to_mode (x, mode, mask, reg, next_select);
7325 }
7326 }
7327
7328 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7329 even if the shift count isn't a constant. */
7330 if (mask == 1)
7331 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7332 XEXP (x, 0), XEXP (x, 1));
7333
7334 shiftrt:
7335
7336 /* If this is a zero- or sign-extension operation that just affects bits
7337 we don't care about, remove it. Be sure the call above returned
7338 something that is still a shift. */
7339
7340 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7341 && GET_CODE (XEXP (x, 1)) == CONST_INT
7342 && INTVAL (XEXP (x, 1)) >= 0
7343 && (INTVAL (XEXP (x, 1))
7344 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7345 && GET_CODE (XEXP (x, 0)) == ASHIFT
7346 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7347 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7348 reg, next_select);
7349
7350 break;
7351
7352 case ROTATE:
7353 case ROTATERT:
7354 /* If the shift count is constant and we can do computations
7355 in the mode of X, compute where the bits we care about are.
7356 Otherwise, we can't do anything. Don't change the mode of
7357 the shift or propagate MODE into the shift, though. */
7358 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7359 && INTVAL (XEXP (x, 1)) >= 0)
7360 {
7361 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7362 GET_MODE (x), GEN_INT (mask),
7363 XEXP (x, 1));
7364 if (temp && GET_CODE (temp) == CONST_INT)
7365 SUBST (XEXP (x, 0),
7366 force_to_mode (XEXP (x, 0), GET_MODE (x),
7367 INTVAL (temp), reg, next_select));
7368 }
7369 break;
7370
7371 case NEG:
7372 /* If we just want the low-order bit, the NEG isn't needed since it
7373 won't change the low-order bit. */
7374 if (mask == 1)
7375 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7376
7377 /* We need any bits less significant than the most significant bit in
7378 MASK since carries from those bits will affect the bits we are
7379 interested in. */
7380 mask = fuller_mask;
7381 goto unop;
7382
7383 case NOT:
7384 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7385 same as the XOR case above. Ensure that the constant we form is not
7386 wider than the mode of X. */
7387
7388 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7389 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7390 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7391 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7392 < GET_MODE_BITSIZE (GET_MODE (x)))
7393 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7394 {
7395 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7396 GET_MODE (x));
7397 temp = simplify_gen_binary (XOR, GET_MODE (x),
7398 XEXP (XEXP (x, 0), 0), temp);
7399 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7400 temp, XEXP (XEXP (x, 0), 1));
7401
7402 return force_to_mode (x, mode, mask, reg, next_select);
7403 }
7404
7405 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7406 use the full mask inside the NOT. */
7407 mask = fuller_mask;
7408
7409 unop:
7410 op0 = gen_lowpart (op_mode,
7411 force_to_mode (XEXP (x, 0), mode, mask,
7412 reg, next_select));
7413 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7414 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7415 break;
7416
7417 case NE:
7418 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7419 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7420 which is equal to STORE_FLAG_VALUE. */
7421 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7422 && GET_MODE (XEXP (x, 0)) == mode
7423 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7424 && (nonzero_bits (XEXP (x, 0), mode)
7425 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7426 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7427
7428 break;
7429
7430 case IF_THEN_ELSE:
7431 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7432 written in a narrower mode. We play it safe and do not do so. */
7433
7434 SUBST (XEXP (x, 1),
7435 gen_lowpart (GET_MODE (x),
7436 force_to_mode (XEXP (x, 1), mode,
7437 mask, reg, next_select)));
7438 SUBST (XEXP (x, 2),
7439 gen_lowpart (GET_MODE (x),
7440 force_to_mode (XEXP (x, 2), mode,
7441 mask, reg, next_select)));
7442 break;
7443
7444 default:
7445 break;
7446 }
7447
7448 /* Ensure we return a value of the proper mode. */
7449 return gen_lowpart (mode, x);
7450 }
7451 \f
7452 /* Return nonzero if X is an expression that has one of two values depending on
7453 whether some other value is zero or nonzero. In that case, we return the
7454 value that is being tested, *PTRUE is set to the value if the rtx being
7455 returned has a nonzero value, and *PFALSE is set to the other alternative.
7456
7457 If we return zero, we set *PTRUE and *PFALSE to X. */
7458
7459 static rtx
7460 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7461 {
7462 enum machine_mode mode = GET_MODE (x);
7463 enum rtx_code code = GET_CODE (x);
7464 rtx cond0, cond1, true0, true1, false0, false1;
7465 unsigned HOST_WIDE_INT nz;
7466
7467 /* If we are comparing a value against zero, we are done. */
7468 if ((code == NE || code == EQ)
7469 && XEXP (x, 1) == const0_rtx)
7470 {
7471 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7472 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7473 return XEXP (x, 0);
7474 }
7475
7476 /* If this is a unary operation whose operand has one of two values, apply
7477 our opcode to compute those values. */
7478 else if (UNARY_P (x)
7479 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7480 {
7481 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7482 *pfalse = simplify_gen_unary (code, mode, false0,
7483 GET_MODE (XEXP (x, 0)));
7484 return cond0;
7485 }
7486
7487 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7488 make can't possibly match and would suppress other optimizations. */
7489 else if (code == COMPARE)
7490 ;
7491
7492 /* If this is a binary operation, see if either side has only one of two
7493 values. If either one does or if both do and they are conditional on
7494 the same value, compute the new true and false values. */
7495 else if (BINARY_P (x))
7496 {
7497 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7498 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7499
7500 if ((cond0 != 0 || cond1 != 0)
7501 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7502 {
7503 /* If if_then_else_cond returned zero, then true/false are the
7504 same rtl. We must copy one of them to prevent invalid rtl
7505 sharing. */
7506 if (cond0 == 0)
7507 true0 = copy_rtx (true0);
7508 else if (cond1 == 0)
7509 true1 = copy_rtx (true1);
7510
7511 if (COMPARISON_P (x))
7512 {
7513 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7514 true0, true1);
7515 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7516 false0, false1);
7517 }
7518 else
7519 {
7520 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7521 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7522 }
7523
7524 return cond0 ? cond0 : cond1;
7525 }
7526
7527 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7528 operands is zero when the other is nonzero, and vice-versa,
7529 and STORE_FLAG_VALUE is 1 or -1. */
7530
7531 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7532 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7533 || code == UMAX)
7534 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7535 {
7536 rtx op0 = XEXP (XEXP (x, 0), 1);
7537 rtx op1 = XEXP (XEXP (x, 1), 1);
7538
7539 cond0 = XEXP (XEXP (x, 0), 0);
7540 cond1 = XEXP (XEXP (x, 1), 0);
7541
7542 if (COMPARISON_P (cond0)
7543 && COMPARISON_P (cond1)
7544 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7545 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7546 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7547 || ((swap_condition (GET_CODE (cond0))
7548 == reversed_comparison_code (cond1, NULL))
7549 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7550 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7551 && ! side_effects_p (x))
7552 {
7553 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7554 *pfalse = simplify_gen_binary (MULT, mode,
7555 (code == MINUS
7556 ? simplify_gen_unary (NEG, mode,
7557 op1, mode)
7558 : op1),
7559 const_true_rtx);
7560 return cond0;
7561 }
7562 }
7563
7564 /* Similarly for MULT, AND and UMIN, except that for these the result
7565 is always zero. */
7566 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7567 && (code == MULT || code == AND || code == UMIN)
7568 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7569 {
7570 cond0 = XEXP (XEXP (x, 0), 0);
7571 cond1 = XEXP (XEXP (x, 1), 0);
7572
7573 if (COMPARISON_P (cond0)
7574 && COMPARISON_P (cond1)
7575 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7576 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7577 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7578 || ((swap_condition (GET_CODE (cond0))
7579 == reversed_comparison_code (cond1, NULL))
7580 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7581 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7582 && ! side_effects_p (x))
7583 {
7584 *ptrue = *pfalse = const0_rtx;
7585 return cond0;
7586 }
7587 }
7588 }
7589
7590 else if (code == IF_THEN_ELSE)
7591 {
7592 /* If we have IF_THEN_ELSE already, extract the condition and
7593 canonicalize it if it is NE or EQ. */
7594 cond0 = XEXP (x, 0);
7595 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7596 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7597 return XEXP (cond0, 0);
7598 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7599 {
7600 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7601 return XEXP (cond0, 0);
7602 }
7603 else
7604 return cond0;
7605 }
7606
7607 /* If X is a SUBREG, we can narrow both the true and false values
7608 if the inner expression, if there is a condition. */
7609 else if (code == SUBREG
7610 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7611 &true0, &false0)))
7612 {
7613 true0 = simplify_gen_subreg (mode, true0,
7614 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7615 false0 = simplify_gen_subreg (mode, false0,
7616 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7617 if (true0 && false0)
7618 {
7619 *ptrue = true0;
7620 *pfalse = false0;
7621 return cond0;
7622 }
7623 }
7624
7625 /* If X is a constant, this isn't special and will cause confusions
7626 if we treat it as such. Likewise if it is equivalent to a constant. */
7627 else if (CONSTANT_P (x)
7628 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7629 ;
7630
7631 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7632 will be least confusing to the rest of the compiler. */
7633 else if (mode == BImode)
7634 {
7635 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7636 return x;
7637 }
7638
7639 /* If X is known to be either 0 or -1, those are the true and
7640 false values when testing X. */
7641 else if (x == constm1_rtx || x == const0_rtx
7642 || (mode != VOIDmode
7643 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7644 {
7645 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7646 return x;
7647 }
7648
7649 /* Likewise for 0 or a single bit. */
7650 else if (SCALAR_INT_MODE_P (mode)
7651 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7652 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7653 {
7654 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7655 return x;
7656 }
7657
7658 /* Otherwise fail; show no condition with true and false values the same. */
7659 *ptrue = *pfalse = x;
7660 return 0;
7661 }
7662 \f
7663 /* Return the value of expression X given the fact that condition COND
7664 is known to be true when applied to REG as its first operand and VAL
7665 as its second. X is known to not be shared and so can be modified in
7666 place.
7667
7668 We only handle the simplest cases, and specifically those cases that
7669 arise with IF_THEN_ELSE expressions. */
7670
7671 static rtx
7672 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7673 {
7674 enum rtx_code code = GET_CODE (x);
7675 rtx temp;
7676 const char *fmt;
7677 int i, j;
7678
7679 if (side_effects_p (x))
7680 return x;
7681
7682 /* If either operand of the condition is a floating point value,
7683 then we have to avoid collapsing an EQ comparison. */
7684 if (cond == EQ
7685 && rtx_equal_p (x, reg)
7686 && ! FLOAT_MODE_P (GET_MODE (x))
7687 && ! FLOAT_MODE_P (GET_MODE (val)))
7688 return val;
7689
7690 if (cond == UNEQ && rtx_equal_p (x, reg))
7691 return val;
7692
7693 /* If X is (abs REG) and we know something about REG's relationship
7694 with zero, we may be able to simplify this. */
7695
7696 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7697 switch (cond)
7698 {
7699 case GE: case GT: case EQ:
7700 return XEXP (x, 0);
7701 case LT: case LE:
7702 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7703 XEXP (x, 0),
7704 GET_MODE (XEXP (x, 0)));
7705 default:
7706 break;
7707 }
7708
7709 /* The only other cases we handle are MIN, MAX, and comparisons if the
7710 operands are the same as REG and VAL. */
7711
7712 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7713 {
7714 if (rtx_equal_p (XEXP (x, 0), val))
7715 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7716
7717 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7718 {
7719 if (COMPARISON_P (x))
7720 {
7721 if (comparison_dominates_p (cond, code))
7722 return const_true_rtx;
7723
7724 code = reversed_comparison_code (x, NULL);
7725 if (code != UNKNOWN
7726 && comparison_dominates_p (cond, code))
7727 return const0_rtx;
7728 else
7729 return x;
7730 }
7731 else if (code == SMAX || code == SMIN
7732 || code == UMIN || code == UMAX)
7733 {
7734 int unsignedp = (code == UMIN || code == UMAX);
7735
7736 /* Do not reverse the condition when it is NE or EQ.
7737 This is because we cannot conclude anything about
7738 the value of 'SMAX (x, y)' when x is not equal to y,
7739 but we can when x equals y. */
7740 if ((code == SMAX || code == UMAX)
7741 && ! (cond == EQ || cond == NE))
7742 cond = reverse_condition (cond);
7743
7744 switch (cond)
7745 {
7746 case GE: case GT:
7747 return unsignedp ? x : XEXP (x, 1);
7748 case LE: case LT:
7749 return unsignedp ? x : XEXP (x, 0);
7750 case GEU: case GTU:
7751 return unsignedp ? XEXP (x, 1) : x;
7752 case LEU: case LTU:
7753 return unsignedp ? XEXP (x, 0) : x;
7754 default:
7755 break;
7756 }
7757 }
7758 }
7759 }
7760 else if (code == SUBREG)
7761 {
7762 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7763 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7764
7765 if (SUBREG_REG (x) != r)
7766 {
7767 /* We must simplify subreg here, before we lose track of the
7768 original inner_mode. */
7769 new = simplify_subreg (GET_MODE (x), r,
7770 inner_mode, SUBREG_BYTE (x));
7771 if (new)
7772 return new;
7773 else
7774 SUBST (SUBREG_REG (x), r);
7775 }
7776
7777 return x;
7778 }
7779 /* We don't have to handle SIGN_EXTEND here, because even in the
7780 case of replacing something with a modeless CONST_INT, a
7781 CONST_INT is already (supposed to be) a valid sign extension for
7782 its narrower mode, which implies it's already properly
7783 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7784 story is different. */
7785 else if (code == ZERO_EXTEND)
7786 {
7787 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7788 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7789
7790 if (XEXP (x, 0) != r)
7791 {
7792 /* We must simplify the zero_extend here, before we lose
7793 track of the original inner_mode. */
7794 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7795 r, inner_mode);
7796 if (new)
7797 return new;
7798 else
7799 SUBST (XEXP (x, 0), r);
7800 }
7801
7802 return x;
7803 }
7804
7805 fmt = GET_RTX_FORMAT (code);
7806 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7807 {
7808 if (fmt[i] == 'e')
7809 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7810 else if (fmt[i] == 'E')
7811 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7812 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7813 cond, reg, val));
7814 }
7815
7816 return x;
7817 }
7818 \f
7819 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7820 assignment as a field assignment. */
7821
7822 static int
7823 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7824 {
7825 if (x == y || rtx_equal_p (x, y))
7826 return 1;
7827
7828 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7829 return 0;
7830
7831 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7832 Note that all SUBREGs of MEM are paradoxical; otherwise they
7833 would have been rewritten. */
7834 if (MEM_P (x) && GET_CODE (y) == SUBREG
7835 && MEM_P (SUBREG_REG (y))
7836 && rtx_equal_p (SUBREG_REG (y),
7837 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7838 return 1;
7839
7840 if (MEM_P (y) && GET_CODE (x) == SUBREG
7841 && MEM_P (SUBREG_REG (x))
7842 && rtx_equal_p (SUBREG_REG (x),
7843 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7844 return 1;
7845
7846 /* We used to see if get_last_value of X and Y were the same but that's
7847 not correct. In one direction, we'll cause the assignment to have
7848 the wrong destination and in the case, we'll import a register into this
7849 insn that might have already have been dead. So fail if none of the
7850 above cases are true. */
7851 return 0;
7852 }
7853 \f
7854 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7855 Return that assignment if so.
7856
7857 We only handle the most common cases. */
7858
7859 static rtx
7860 make_field_assignment (rtx x)
7861 {
7862 rtx dest = SET_DEST (x);
7863 rtx src = SET_SRC (x);
7864 rtx assign;
7865 rtx rhs, lhs;
7866 HOST_WIDE_INT c1;
7867 HOST_WIDE_INT pos;
7868 unsigned HOST_WIDE_INT len;
7869 rtx other;
7870 enum machine_mode mode;
7871
7872 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7873 a clear of a one-bit field. We will have changed it to
7874 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7875 for a SUBREG. */
7876
7877 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7878 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7879 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7880 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7881 {
7882 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7883 1, 1, 1, 0);
7884 if (assign != 0)
7885 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7886 return x;
7887 }
7888
7889 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7890 && subreg_lowpart_p (XEXP (src, 0))
7891 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7892 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7893 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7894 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7895 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7896 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7897 {
7898 assign = make_extraction (VOIDmode, dest, 0,
7899 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7900 1, 1, 1, 0);
7901 if (assign != 0)
7902 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7903 return x;
7904 }
7905
7906 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7907 one-bit field. */
7908 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7909 && XEXP (XEXP (src, 0), 0) == const1_rtx
7910 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7911 {
7912 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7913 1, 1, 1, 0);
7914 if (assign != 0)
7915 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7916 return x;
7917 }
7918
7919 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7920 SRC is an AND with all bits of that field set, then we can discard
7921 the AND. */
7922 if (GET_CODE (dest) == ZERO_EXTRACT
7923 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7924 && GET_CODE (src) == AND
7925 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7926 {
7927 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7928 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7929 unsigned HOST_WIDE_INT ze_mask;
7930
7931 if (width >= HOST_BITS_PER_WIDE_INT)
7932 ze_mask = -1;
7933 else
7934 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7935
7936 /* Complete overlap. We can remove the source AND. */
7937 if ((and_mask & ze_mask) == ze_mask)
7938 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7939
7940 /* Partial overlap. We can reduce the source AND. */
7941 if ((and_mask & ze_mask) != and_mask)
7942 {
7943 mode = GET_MODE (src);
7944 src = gen_rtx_AND (mode, XEXP (src, 0),
7945 gen_int_mode (and_mask & ze_mask, mode));
7946 return gen_rtx_SET (VOIDmode, dest, src);
7947 }
7948 }
7949
7950 /* The other case we handle is assignments into a constant-position
7951 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7952 a mask that has all one bits except for a group of zero bits and
7953 OTHER is known to have zeros where C1 has ones, this is such an
7954 assignment. Compute the position and length from C1. Shift OTHER
7955 to the appropriate position, force it to the required mode, and
7956 make the extraction. Check for the AND in both operands. */
7957
7958 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7959 return x;
7960
7961 rhs = expand_compound_operation (XEXP (src, 0));
7962 lhs = expand_compound_operation (XEXP (src, 1));
7963
7964 if (GET_CODE (rhs) == AND
7965 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7966 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7967 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7968 else if (GET_CODE (lhs) == AND
7969 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7970 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7971 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7972 else
7973 return x;
7974
7975 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7976 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7977 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7978 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7979 return x;
7980
7981 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7982 if (assign == 0)
7983 return x;
7984
7985 /* The mode to use for the source is the mode of the assignment, or of
7986 what is inside a possible STRICT_LOW_PART. */
7987 mode = (GET_CODE (assign) == STRICT_LOW_PART
7988 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7989
7990 /* Shift OTHER right POS places and make it the source, restricting it
7991 to the proper length and mode. */
7992
7993 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7994 GET_MODE (src), other, pos),
7995 mode,
7996 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7997 ? ~(unsigned HOST_WIDE_INT) 0
7998 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7999 dest, 0);
8000
8001 /* If SRC is masked by an AND that does not make a difference in
8002 the value being stored, strip it. */
8003 if (GET_CODE (assign) == ZERO_EXTRACT
8004 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8005 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8006 && GET_CODE (src) == AND
8007 && GET_CODE (XEXP (src, 1)) == CONST_INT
8008 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8009 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8010 src = XEXP (src, 0);
8011
8012 return gen_rtx_SET (VOIDmode, assign, src);
8013 }
8014 \f
8015 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8016 if so. */
8017
8018 static rtx
8019 apply_distributive_law (rtx x)
8020 {
8021 enum rtx_code code = GET_CODE (x);
8022 enum rtx_code inner_code;
8023 rtx lhs, rhs, other;
8024 rtx tem;
8025
8026 /* Distributivity is not true for floating point as it can change the
8027 value. So we don't do it unless -funsafe-math-optimizations. */
8028 if (FLOAT_MODE_P (GET_MODE (x))
8029 && ! flag_unsafe_math_optimizations)
8030 return x;
8031
8032 /* The outer operation can only be one of the following: */
8033 if (code != IOR && code != AND && code != XOR
8034 && code != PLUS && code != MINUS)
8035 return x;
8036
8037 lhs = XEXP (x, 0);
8038 rhs = XEXP (x, 1);
8039
8040 /* If either operand is a primitive we can't do anything, so get out
8041 fast. */
8042 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8043 return x;
8044
8045 lhs = expand_compound_operation (lhs);
8046 rhs = expand_compound_operation (rhs);
8047 inner_code = GET_CODE (lhs);
8048 if (inner_code != GET_CODE (rhs))
8049 return x;
8050
8051 /* See if the inner and outer operations distribute. */
8052 switch (inner_code)
8053 {
8054 case LSHIFTRT:
8055 case ASHIFTRT:
8056 case AND:
8057 case IOR:
8058 /* These all distribute except over PLUS. */
8059 if (code == PLUS || code == MINUS)
8060 return x;
8061 break;
8062
8063 case MULT:
8064 if (code != PLUS && code != MINUS)
8065 return x;
8066 break;
8067
8068 case ASHIFT:
8069 /* This is also a multiply, so it distributes over everything. */
8070 break;
8071
8072 case SUBREG:
8073 /* Non-paradoxical SUBREGs distributes over all operations, provided
8074 the inner modes and byte offsets are the same, this is an extraction
8075 of a low-order part, we don't convert an fp operation to int or
8076 vice versa, and we would not be converting a single-word
8077 operation into a multi-word operation. The latter test is not
8078 required, but it prevents generating unneeded multi-word operations.
8079 Some of the previous tests are redundant given the latter test, but
8080 are retained because they are required for correctness.
8081
8082 We produce the result slightly differently in this case. */
8083
8084 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8085 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8086 || ! subreg_lowpart_p (lhs)
8087 || (GET_MODE_CLASS (GET_MODE (lhs))
8088 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8089 || (GET_MODE_SIZE (GET_MODE (lhs))
8090 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8091 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8092 return x;
8093
8094 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8095 SUBREG_REG (lhs), SUBREG_REG (rhs));
8096 return gen_lowpart (GET_MODE (x), tem);
8097
8098 default:
8099 return x;
8100 }
8101
8102 /* Set LHS and RHS to the inner operands (A and B in the example
8103 above) and set OTHER to the common operand (C in the example).
8104 There is only one way to do this unless the inner operation is
8105 commutative. */
8106 if (COMMUTATIVE_ARITH_P (lhs)
8107 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8108 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8109 else if (COMMUTATIVE_ARITH_P (lhs)
8110 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8111 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8112 else if (COMMUTATIVE_ARITH_P (lhs)
8113 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8114 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8115 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8116 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8117 else
8118 return x;
8119
8120 /* Form the new inner operation, seeing if it simplifies first. */
8121 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8122
8123 /* There is one exception to the general way of distributing:
8124 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8125 if (code == XOR && inner_code == IOR)
8126 {
8127 inner_code = AND;
8128 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8129 }
8130
8131 /* We may be able to continuing distributing the result, so call
8132 ourselves recursively on the inner operation before forming the
8133 outer operation, which we return. */
8134 return simplify_gen_binary (inner_code, GET_MODE (x),
8135 apply_distributive_law (tem), other);
8136 }
8137
8138 /* See if X is of the form (* (+ A B) C), and if so convert to
8139 (+ (* A C) (* B C)) and try to simplify.
8140
8141 Most of the time, this results in no change. However, if some of
8142 the operands are the same or inverses of each other, simplifications
8143 will result.
8144
8145 For example, (and (ior A B) (not B)) can occur as the result of
8146 expanding a bit field assignment. When we apply the distributive
8147 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8148 which then simplifies to (and (A (not B))).
8149
8150 Note that no checks happen on the validity of applying the inverse
8151 distributive law. This is pointless since we can do it in the
8152 few places where this routine is called.
8153
8154 N is the index of the term that is decomposed (the arithmetic operation,
8155 i.e. (+ A B) in the first example above). !N is the index of the term that
8156 is distributed, i.e. of C in the first example above. */
8157 static rtx
8158 distribute_and_simplify_rtx (rtx x, int n)
8159 {
8160 enum machine_mode mode;
8161 enum rtx_code outer_code, inner_code;
8162 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8163
8164 decomposed = XEXP (x, n);
8165 if (!ARITHMETIC_P (decomposed))
8166 return NULL_RTX;
8167
8168 mode = GET_MODE (x);
8169 outer_code = GET_CODE (x);
8170 distributed = XEXP (x, !n);
8171
8172 inner_code = GET_CODE (decomposed);
8173 inner_op0 = XEXP (decomposed, 0);
8174 inner_op1 = XEXP (decomposed, 1);
8175
8176 /* Special case (and (xor B C) (not A)), which is equivalent to
8177 (xor (ior A B) (ior A C)) */
8178 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8179 {
8180 distributed = XEXP (distributed, 0);
8181 outer_code = IOR;
8182 }
8183
8184 if (n == 0)
8185 {
8186 /* Distribute the second term. */
8187 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8188 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8189 }
8190 else
8191 {
8192 /* Distribute the first term. */
8193 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8194 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8195 }
8196
8197 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8198 new_op0, new_op1));
8199 if (GET_CODE (tmp) != outer_code
8200 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8201 return tmp;
8202
8203 return NULL_RTX;
8204 }
8205 \f
8206 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8207 in MODE.
8208
8209 Return an equivalent form, if different from X. Otherwise, return X. If
8210 X is zero, we are to always construct the equivalent form. */
8211
8212 static rtx
8213 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8214 unsigned HOST_WIDE_INT constop)
8215 {
8216 unsigned HOST_WIDE_INT nonzero;
8217 int i;
8218
8219 /* Simplify VAROP knowing that we will be only looking at some of the
8220 bits in it.
8221
8222 Note by passing in CONSTOP, we guarantee that the bits not set in
8223 CONSTOP are not significant and will never be examined. We must
8224 ensure that is the case by explicitly masking out those bits
8225 before returning. */
8226 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8227
8228 /* If VAROP is a CLOBBER, we will fail so return it. */
8229 if (GET_CODE (varop) == CLOBBER)
8230 return varop;
8231
8232 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8233 to VAROP and return the new constant. */
8234 if (GET_CODE (varop) == CONST_INT)
8235 return gen_int_mode (INTVAL (varop) & constop, mode);
8236
8237 /* See what bits may be nonzero in VAROP. Unlike the general case of
8238 a call to nonzero_bits, here we don't care about bits outside
8239 MODE. */
8240
8241 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8242
8243 /* Turn off all bits in the constant that are known to already be zero.
8244 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8245 which is tested below. */
8246
8247 constop &= nonzero;
8248
8249 /* If we don't have any bits left, return zero. */
8250 if (constop == 0)
8251 return const0_rtx;
8252
8253 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8254 a power of two, we can replace this with an ASHIFT. */
8255 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8256 && (i = exact_log2 (constop)) >= 0)
8257 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8258
8259 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8260 or XOR, then try to apply the distributive law. This may eliminate
8261 operations if either branch can be simplified because of the AND.
8262 It may also make some cases more complex, but those cases probably
8263 won't match a pattern either with or without this. */
8264
8265 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8266 return
8267 gen_lowpart
8268 (mode,
8269 apply_distributive_law
8270 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8271 simplify_and_const_int (NULL_RTX,
8272 GET_MODE (varop),
8273 XEXP (varop, 0),
8274 constop),
8275 simplify_and_const_int (NULL_RTX,
8276 GET_MODE (varop),
8277 XEXP (varop, 1),
8278 constop))));
8279
8280 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8281 the AND and see if one of the operands simplifies to zero. If so, we
8282 may eliminate it. */
8283
8284 if (GET_CODE (varop) == PLUS
8285 && exact_log2 (constop + 1) >= 0)
8286 {
8287 rtx o0, o1;
8288
8289 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8290 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8291 if (o0 == const0_rtx)
8292 return o1;
8293 if (o1 == const0_rtx)
8294 return o0;
8295 }
8296
8297 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8298 if we already had one (just check for the simplest cases). */
8299 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8300 && GET_MODE (XEXP (x, 0)) == mode
8301 && SUBREG_REG (XEXP (x, 0)) == varop)
8302 varop = XEXP (x, 0);
8303 else
8304 varop = gen_lowpart (mode, varop);
8305
8306 /* If we can't make the SUBREG, try to return what we were given. */
8307 if (GET_CODE (varop) == CLOBBER)
8308 return x ? x : varop;
8309
8310 /* If we are only masking insignificant bits, return VAROP. */
8311 if (constop == nonzero)
8312 x = varop;
8313 else
8314 {
8315 /* Otherwise, return an AND. */
8316 constop = trunc_int_for_mode (constop, mode);
8317 /* See how much, if any, of X we can use. */
8318 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8319 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8320
8321 else
8322 {
8323 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8324 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8325 SUBST (XEXP (x, 1), GEN_INT (constop));
8326
8327 SUBST (XEXP (x, 0), varop);
8328 }
8329 }
8330
8331 return x;
8332 }
8333 \f
8334 /* Given a REG, X, compute which bits in X can be nonzero.
8335 We don't care about bits outside of those defined in MODE.
8336
8337 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8338 a shift, AND, or zero_extract, we can do better. */
8339
8340 static rtx
8341 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8342 rtx known_x ATTRIBUTE_UNUSED,
8343 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8344 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8345 unsigned HOST_WIDE_INT *nonzero)
8346 {
8347 rtx tem;
8348
8349 /* If X is a register whose nonzero bits value is current, use it.
8350 Otherwise, if X is a register whose value we can find, use that
8351 value. Otherwise, use the previously-computed global nonzero bits
8352 for this register. */
8353
8354 if (reg_stat[REGNO (x)].last_set_value != 0
8355 && (reg_stat[REGNO (x)].last_set_mode == mode
8356 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8357 && GET_MODE_CLASS (mode) == MODE_INT))
8358 && (reg_stat[REGNO (x)].last_set_label == label_tick
8359 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8360 && REG_N_SETS (REGNO (x)) == 1
8361 && ! REGNO_REG_SET_P
8362 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8363 REGNO (x))))
8364 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8365 {
8366 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8367 return NULL;
8368 }
8369
8370 tem = get_last_value (x);
8371
8372 if (tem)
8373 {
8374 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8375 /* If X is narrower than MODE and TEM is a non-negative
8376 constant that would appear negative in the mode of X,
8377 sign-extend it for use in reg_nonzero_bits because some
8378 machines (maybe most) will actually do the sign-extension
8379 and this is the conservative approach.
8380
8381 ??? For 2.5, try to tighten up the MD files in this regard
8382 instead of this kludge. */
8383
8384 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8385 && GET_CODE (tem) == CONST_INT
8386 && INTVAL (tem) > 0
8387 && 0 != (INTVAL (tem)
8388 & ((HOST_WIDE_INT) 1
8389 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8390 tem = GEN_INT (INTVAL (tem)
8391 | ((HOST_WIDE_INT) (-1)
8392 << GET_MODE_BITSIZE (GET_MODE (x))));
8393 #endif
8394 return tem;
8395 }
8396 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8397 {
8398 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8399
8400 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8401 /* We don't know anything about the upper bits. */
8402 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8403 *nonzero &= mask;
8404 }
8405
8406 return NULL;
8407 }
8408
8409 /* Return the number of bits at the high-order end of X that are known to
8410 be equal to the sign bit. X will be used in mode MODE; if MODE is
8411 VOIDmode, X will be used in its own mode. The returned value will always
8412 be between 1 and the number of bits in MODE. */
8413
8414 static rtx
8415 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8416 rtx known_x ATTRIBUTE_UNUSED,
8417 enum machine_mode known_mode
8418 ATTRIBUTE_UNUSED,
8419 unsigned int known_ret ATTRIBUTE_UNUSED,
8420 unsigned int *result)
8421 {
8422 rtx tem;
8423
8424 if (reg_stat[REGNO (x)].last_set_value != 0
8425 && reg_stat[REGNO (x)].last_set_mode == mode
8426 && (reg_stat[REGNO (x)].last_set_label == label_tick
8427 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8428 && REG_N_SETS (REGNO (x)) == 1
8429 && ! REGNO_REG_SET_P
8430 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8431 REGNO (x))))
8432 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8433 {
8434 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8435 return NULL;
8436 }
8437
8438 tem = get_last_value (x);
8439 if (tem != 0)
8440 return tem;
8441
8442 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8443 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8444 *result = reg_stat[REGNO (x)].sign_bit_copies;
8445
8446 return NULL;
8447 }
8448 \f
8449 /* Return the number of "extended" bits there are in X, when interpreted
8450 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8451 unsigned quantities, this is the number of high-order zero bits.
8452 For signed quantities, this is the number of copies of the sign bit
8453 minus 1. In both case, this function returns the number of "spare"
8454 bits. For example, if two quantities for which this function returns
8455 at least 1 are added, the addition is known not to overflow.
8456
8457 This function will always return 0 unless called during combine, which
8458 implies that it must be called from a define_split. */
8459
8460 unsigned int
8461 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8462 {
8463 if (nonzero_sign_valid == 0)
8464 return 0;
8465
8466 return (unsignedp
8467 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8468 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8469 - floor_log2 (nonzero_bits (x, mode)))
8470 : 0)
8471 : num_sign_bit_copies (x, mode) - 1);
8472 }
8473 \f
8474 /* This function is called from `simplify_shift_const' to merge two
8475 outer operations. Specifically, we have already found that we need
8476 to perform operation *POP0 with constant *PCONST0 at the outermost
8477 position. We would now like to also perform OP1 with constant CONST1
8478 (with *POP0 being done last).
8479
8480 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8481 the resulting operation. *PCOMP_P is set to 1 if we would need to
8482 complement the innermost operand, otherwise it is unchanged.
8483
8484 MODE is the mode in which the operation will be done. No bits outside
8485 the width of this mode matter. It is assumed that the width of this mode
8486 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8487
8488 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8489 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8490 result is simply *PCONST0.
8491
8492 If the resulting operation cannot be expressed as one operation, we
8493 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8494
8495 static int
8496 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8497 {
8498 enum rtx_code op0 = *pop0;
8499 HOST_WIDE_INT const0 = *pconst0;
8500
8501 const0 &= GET_MODE_MASK (mode);
8502 const1 &= GET_MODE_MASK (mode);
8503
8504 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8505 if (op0 == AND)
8506 const1 &= const0;
8507
8508 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8509 if OP0 is SET. */
8510
8511 if (op1 == UNKNOWN || op0 == SET)
8512 return 1;
8513
8514 else if (op0 == UNKNOWN)
8515 op0 = op1, const0 = const1;
8516
8517 else if (op0 == op1)
8518 {
8519 switch (op0)
8520 {
8521 case AND:
8522 const0 &= const1;
8523 break;
8524 case IOR:
8525 const0 |= const1;
8526 break;
8527 case XOR:
8528 const0 ^= const1;
8529 break;
8530 case PLUS:
8531 const0 += const1;
8532 break;
8533 case NEG:
8534 op0 = UNKNOWN;
8535 break;
8536 default:
8537 break;
8538 }
8539 }
8540
8541 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8542 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8543 return 0;
8544
8545 /* If the two constants aren't the same, we can't do anything. The
8546 remaining six cases can all be done. */
8547 else if (const0 != const1)
8548 return 0;
8549
8550 else
8551 switch (op0)
8552 {
8553 case IOR:
8554 if (op1 == AND)
8555 /* (a & b) | b == b */
8556 op0 = SET;
8557 else /* op1 == XOR */
8558 /* (a ^ b) | b == a | b */
8559 {;}
8560 break;
8561
8562 case XOR:
8563 if (op1 == AND)
8564 /* (a & b) ^ b == (~a) & b */
8565 op0 = AND, *pcomp_p = 1;
8566 else /* op1 == IOR */
8567 /* (a | b) ^ b == a & ~b */
8568 op0 = AND, const0 = ~const0;
8569 break;
8570
8571 case AND:
8572 if (op1 == IOR)
8573 /* (a | b) & b == b */
8574 op0 = SET;
8575 else /* op1 == XOR */
8576 /* (a ^ b) & b) == (~a) & b */
8577 *pcomp_p = 1;
8578 break;
8579 default:
8580 break;
8581 }
8582
8583 /* Check for NO-OP cases. */
8584 const0 &= GET_MODE_MASK (mode);
8585 if (const0 == 0
8586 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8587 op0 = UNKNOWN;
8588 else if (const0 == 0 && op0 == AND)
8589 op0 = SET;
8590 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8591 && op0 == AND)
8592 op0 = UNKNOWN;
8593
8594 /* ??? Slightly redundant with the above mask, but not entirely.
8595 Moving this above means we'd have to sign-extend the mode mask
8596 for the final test. */
8597 const0 = trunc_int_for_mode (const0, mode);
8598
8599 *pop0 = op0;
8600 *pconst0 = const0;
8601
8602 return 1;
8603 }
8604 \f
8605 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8606 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8607 that we started with.
8608
8609 The shift is normally computed in the widest mode we find in VAROP, as
8610 long as it isn't a different number of words than RESULT_MODE. Exceptions
8611 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8612
8613 static rtx
8614 simplify_shift_const (rtx x, enum rtx_code code,
8615 enum machine_mode result_mode, rtx varop,
8616 int orig_count)
8617 {
8618 enum rtx_code orig_code = code;
8619 unsigned int count;
8620 int signed_count;
8621 enum machine_mode mode = result_mode;
8622 enum machine_mode shift_mode, tmode;
8623 unsigned int mode_words
8624 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8625 /* We form (outer_op (code varop count) (outer_const)). */
8626 enum rtx_code outer_op = UNKNOWN;
8627 HOST_WIDE_INT outer_const = 0;
8628 rtx const_rtx;
8629 int complement_p = 0;
8630 rtx new;
8631
8632 /* Make sure and truncate the "natural" shift on the way in. We don't
8633 want to do this inside the loop as it makes it more difficult to
8634 combine shifts. */
8635 if (SHIFT_COUNT_TRUNCATED)
8636 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8637
8638 /* If we were given an invalid count, don't do anything except exactly
8639 what was requested. */
8640
8641 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8642 {
8643 if (x)
8644 return x;
8645
8646 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8647 }
8648
8649 count = orig_count;
8650
8651 /* Unless one of the branches of the `if' in this loop does a `continue',
8652 we will `break' the loop after the `if'. */
8653
8654 while (count != 0)
8655 {
8656 /* If we have an operand of (clobber (const_int 0)), just return that
8657 value. */
8658 if (GET_CODE (varop) == CLOBBER)
8659 return varop;
8660
8661 /* If we discovered we had to complement VAROP, leave. Making a NOT
8662 here would cause an infinite loop. */
8663 if (complement_p)
8664 break;
8665
8666 /* Convert ROTATERT to ROTATE. */
8667 if (code == ROTATERT)
8668 {
8669 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8670 code = ROTATE;
8671 if (VECTOR_MODE_P (result_mode))
8672 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8673 else
8674 count = bitsize - count;
8675 }
8676
8677 /* We need to determine what mode we will do the shift in. If the
8678 shift is a right shift or a ROTATE, we must always do it in the mode
8679 it was originally done in. Otherwise, we can do it in MODE, the
8680 widest mode encountered. */
8681 shift_mode
8682 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8683 ? result_mode : mode);
8684
8685 /* Handle cases where the count is greater than the size of the mode
8686 minus 1. For ASHIFT, use the size minus one as the count (this can
8687 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8688 take the count modulo the size. For other shifts, the result is
8689 zero.
8690
8691 Since these shifts are being produced by the compiler by combining
8692 multiple operations, each of which are defined, we know what the
8693 result is supposed to be. */
8694
8695 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8696 {
8697 if (code == ASHIFTRT)
8698 count = GET_MODE_BITSIZE (shift_mode) - 1;
8699 else if (code == ROTATE || code == ROTATERT)
8700 count %= GET_MODE_BITSIZE (shift_mode);
8701 else
8702 {
8703 /* We can't simply return zero because there may be an
8704 outer op. */
8705 varop = const0_rtx;
8706 count = 0;
8707 break;
8708 }
8709 }
8710
8711 /* An arithmetic right shift of a quantity known to be -1 or 0
8712 is a no-op. */
8713 if (code == ASHIFTRT
8714 && (num_sign_bit_copies (varop, shift_mode)
8715 == GET_MODE_BITSIZE (shift_mode)))
8716 {
8717 count = 0;
8718 break;
8719 }
8720
8721 /* If we are doing an arithmetic right shift and discarding all but
8722 the sign bit copies, this is equivalent to doing a shift by the
8723 bitsize minus one. Convert it into that shift because it will often
8724 allow other simplifications. */
8725
8726 if (code == ASHIFTRT
8727 && (count + num_sign_bit_copies (varop, shift_mode)
8728 >= GET_MODE_BITSIZE (shift_mode)))
8729 count = GET_MODE_BITSIZE (shift_mode) - 1;
8730
8731 /* We simplify the tests below and elsewhere by converting
8732 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8733 `make_compound_operation' will convert it to an ASHIFTRT for
8734 those machines (such as VAX) that don't have an LSHIFTRT. */
8735 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8736 && code == ASHIFTRT
8737 && ((nonzero_bits (varop, shift_mode)
8738 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8739 == 0))
8740 code = LSHIFTRT;
8741
8742 if (code == LSHIFTRT
8743 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8744 && !(nonzero_bits (varop, shift_mode) >> count))
8745 varop = const0_rtx;
8746 if (code == ASHIFT
8747 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8748 && !((nonzero_bits (varop, shift_mode) << count)
8749 & GET_MODE_MASK (shift_mode)))
8750 varop = const0_rtx;
8751
8752 switch (GET_CODE (varop))
8753 {
8754 case SIGN_EXTEND:
8755 case ZERO_EXTEND:
8756 case SIGN_EXTRACT:
8757 case ZERO_EXTRACT:
8758 new = expand_compound_operation (varop);
8759 if (new != varop)
8760 {
8761 varop = new;
8762 continue;
8763 }
8764 break;
8765
8766 case MEM:
8767 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8768 minus the width of a smaller mode, we can do this with a
8769 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8770 if ((code == ASHIFTRT || code == LSHIFTRT)
8771 && ! mode_dependent_address_p (XEXP (varop, 0))
8772 && ! MEM_VOLATILE_P (varop)
8773 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8774 MODE_INT, 1)) != BLKmode)
8775 {
8776 new = adjust_address_nv (varop, tmode,
8777 BYTES_BIG_ENDIAN ? 0
8778 : count / BITS_PER_UNIT);
8779
8780 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8781 : ZERO_EXTEND, mode, new);
8782 count = 0;
8783 continue;
8784 }
8785 break;
8786
8787 case USE:
8788 /* Similar to the case above, except that we can only do this if
8789 the resulting mode is the same as that of the underlying
8790 MEM and adjust the address depending on the *bits* endianness
8791 because of the way that bit-field extract insns are defined. */
8792 if ((code == ASHIFTRT || code == LSHIFTRT)
8793 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8794 MODE_INT, 1)) != BLKmode
8795 && tmode == GET_MODE (XEXP (varop, 0)))
8796 {
8797 if (BITS_BIG_ENDIAN)
8798 new = XEXP (varop, 0);
8799 else
8800 {
8801 new = copy_rtx (XEXP (varop, 0));
8802 SUBST (XEXP (new, 0),
8803 plus_constant (XEXP (new, 0),
8804 count / BITS_PER_UNIT));
8805 }
8806
8807 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8808 : ZERO_EXTEND, mode, new);
8809 count = 0;
8810 continue;
8811 }
8812 break;
8813
8814 case SUBREG:
8815 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8816 the same number of words as what we've seen so far. Then store
8817 the widest mode in MODE. */
8818 if (subreg_lowpart_p (varop)
8819 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8820 > GET_MODE_SIZE (GET_MODE (varop)))
8821 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8822 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8823 == mode_words)
8824 {
8825 varop = SUBREG_REG (varop);
8826 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8827 mode = GET_MODE (varop);
8828 continue;
8829 }
8830 break;
8831
8832 case MULT:
8833 /* Some machines use MULT instead of ASHIFT because MULT
8834 is cheaper. But it is still better on those machines to
8835 merge two shifts into one. */
8836 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8837 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8838 {
8839 varop
8840 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8841 XEXP (varop, 0),
8842 GEN_INT (exact_log2 (
8843 INTVAL (XEXP (varop, 1)))));
8844 continue;
8845 }
8846 break;
8847
8848 case UDIV:
8849 /* Similar, for when divides are cheaper. */
8850 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8851 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8852 {
8853 varop
8854 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8855 XEXP (varop, 0),
8856 GEN_INT (exact_log2 (
8857 INTVAL (XEXP (varop, 1)))));
8858 continue;
8859 }
8860 break;
8861
8862 case ASHIFTRT:
8863 /* If we are extracting just the sign bit of an arithmetic
8864 right shift, that shift is not needed. However, the sign
8865 bit of a wider mode may be different from what would be
8866 interpreted as the sign bit in a narrower mode, so, if
8867 the result is narrower, don't discard the shift. */
8868 if (code == LSHIFTRT
8869 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8870 && (GET_MODE_BITSIZE (result_mode)
8871 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8872 {
8873 varop = XEXP (varop, 0);
8874 continue;
8875 }
8876
8877 /* ... fall through ... */
8878
8879 case LSHIFTRT:
8880 case ASHIFT:
8881 case ROTATE:
8882 /* Here we have two nested shifts. The result is usually the
8883 AND of a new shift with a mask. We compute the result below. */
8884 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8885 && INTVAL (XEXP (varop, 1)) >= 0
8886 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8887 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8888 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8889 {
8890 enum rtx_code first_code = GET_CODE (varop);
8891 unsigned int first_count = INTVAL (XEXP (varop, 1));
8892 unsigned HOST_WIDE_INT mask;
8893 rtx mask_rtx;
8894
8895 /* We have one common special case. We can't do any merging if
8896 the inner code is an ASHIFTRT of a smaller mode. However, if
8897 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8898 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8899 we can convert it to
8900 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8901 This simplifies certain SIGN_EXTEND operations. */
8902 if (code == ASHIFT && first_code == ASHIFTRT
8903 && count == (unsigned int)
8904 (GET_MODE_BITSIZE (result_mode)
8905 - GET_MODE_BITSIZE (GET_MODE (varop))))
8906 {
8907 /* C3 has the low-order C1 bits zero. */
8908
8909 mask = (GET_MODE_MASK (mode)
8910 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8911
8912 varop = simplify_and_const_int (NULL_RTX, result_mode,
8913 XEXP (varop, 0), mask);
8914 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8915 varop, count);
8916 count = first_count;
8917 code = ASHIFTRT;
8918 continue;
8919 }
8920
8921 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8922 than C1 high-order bits equal to the sign bit, we can convert
8923 this to either an ASHIFT or an ASHIFTRT depending on the
8924 two counts.
8925
8926 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8927
8928 if (code == ASHIFTRT && first_code == ASHIFT
8929 && GET_MODE (varop) == shift_mode
8930 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8931 > first_count))
8932 {
8933 varop = XEXP (varop, 0);
8934
8935 signed_count = count - first_count;
8936 if (signed_count < 0)
8937 count = -signed_count, code = ASHIFT;
8938 else
8939 count = signed_count;
8940
8941 continue;
8942 }
8943
8944 /* There are some cases we can't do. If CODE is ASHIFTRT,
8945 we can only do this if FIRST_CODE is also ASHIFTRT.
8946
8947 We can't do the case when CODE is ROTATE and FIRST_CODE is
8948 ASHIFTRT.
8949
8950 If the mode of this shift is not the mode of the outer shift,
8951 we can't do this if either shift is a right shift or ROTATE.
8952
8953 Finally, we can't do any of these if the mode is too wide
8954 unless the codes are the same.
8955
8956 Handle the case where the shift codes are the same
8957 first. */
8958
8959 if (code == first_code)
8960 {
8961 if (GET_MODE (varop) != result_mode
8962 && (code == ASHIFTRT || code == LSHIFTRT
8963 || code == ROTATE))
8964 break;
8965
8966 count += first_count;
8967 varop = XEXP (varop, 0);
8968 continue;
8969 }
8970
8971 if (code == ASHIFTRT
8972 || (code == ROTATE && first_code == ASHIFTRT)
8973 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8974 || (GET_MODE (varop) != result_mode
8975 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8976 || first_code == ROTATE
8977 || code == ROTATE)))
8978 break;
8979
8980 /* To compute the mask to apply after the shift, shift the
8981 nonzero bits of the inner shift the same way the
8982 outer shift will. */
8983
8984 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8985
8986 mask_rtx
8987 = simplify_binary_operation (code, result_mode, mask_rtx,
8988 GEN_INT (count));
8989
8990 /* Give up if we can't compute an outer operation to use. */
8991 if (mask_rtx == 0
8992 || GET_CODE (mask_rtx) != CONST_INT
8993 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8994 INTVAL (mask_rtx),
8995 result_mode, &complement_p))
8996 break;
8997
8998 /* If the shifts are in the same direction, we add the
8999 counts. Otherwise, we subtract them. */
9000 signed_count = count;
9001 if ((code == ASHIFTRT || code == LSHIFTRT)
9002 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9003 signed_count += first_count;
9004 else
9005 signed_count -= first_count;
9006
9007 /* If COUNT is positive, the new shift is usually CODE,
9008 except for the two exceptions below, in which case it is
9009 FIRST_CODE. If the count is negative, FIRST_CODE should
9010 always be used */
9011 if (signed_count > 0
9012 && ((first_code == ROTATE && code == ASHIFT)
9013 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9014 code = first_code, count = signed_count;
9015 else if (signed_count < 0)
9016 code = first_code, count = -signed_count;
9017 else
9018 count = signed_count;
9019
9020 varop = XEXP (varop, 0);
9021 continue;
9022 }
9023
9024 /* If we have (A << B << C) for any shift, we can convert this to
9025 (A << C << B). This wins if A is a constant. Only try this if
9026 B is not a constant. */
9027
9028 else if (GET_CODE (varop) == code
9029 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9030 && 0 != (new
9031 = simplify_binary_operation (code, mode,
9032 XEXP (varop, 0),
9033 GEN_INT (count))))
9034 {
9035 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9036 count = 0;
9037 continue;
9038 }
9039 break;
9040
9041 case NOT:
9042 /* Make this fit the case below. */
9043 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9044 GEN_INT (GET_MODE_MASK (mode)));
9045 continue;
9046
9047 case IOR:
9048 case AND:
9049 case XOR:
9050 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9051 with C the size of VAROP - 1 and the shift is logical if
9052 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9053 we have an (le X 0) operation. If we have an arithmetic shift
9054 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9055 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9056
9057 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9058 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9059 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9060 && (code == LSHIFTRT || code == ASHIFTRT)
9061 && count == (unsigned int)
9062 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9063 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9064 {
9065 count = 0;
9066 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9067 const0_rtx);
9068
9069 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9070 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9071
9072 continue;
9073 }
9074
9075 /* If we have (shift (logical)), move the logical to the outside
9076 to allow it to possibly combine with another logical and the
9077 shift to combine with another shift. This also canonicalizes to
9078 what a ZERO_EXTRACT looks like. Also, some machines have
9079 (and (shift)) insns. */
9080
9081 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9082 /* We can't do this if we have (ashiftrt (xor)) and the
9083 constant has its sign bit set in shift_mode. */
9084 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9085 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9086 shift_mode))
9087 && (new = simplify_binary_operation (code, result_mode,
9088 XEXP (varop, 1),
9089 GEN_INT (count))) != 0
9090 && GET_CODE (new) == CONST_INT
9091 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9092 INTVAL (new), result_mode, &complement_p))
9093 {
9094 varop = XEXP (varop, 0);
9095 continue;
9096 }
9097
9098 /* If we can't do that, try to simplify the shift in each arm of the
9099 logical expression, make a new logical expression, and apply
9100 the inverse distributive law. This also can't be done
9101 for some (ashiftrt (xor)). */
9102 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9103 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9104 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9105 shift_mode)))
9106 {
9107 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9108 XEXP (varop, 0), count);
9109 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9110 XEXP (varop, 1), count);
9111
9112 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9113 lhs, rhs);
9114 varop = apply_distributive_law (varop);
9115
9116 count = 0;
9117 continue;
9118 }
9119 break;
9120
9121 case EQ:
9122 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9123 says that the sign bit can be tested, FOO has mode MODE, C is
9124 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9125 that may be nonzero. */
9126 if (code == LSHIFTRT
9127 && XEXP (varop, 1) == const0_rtx
9128 && GET_MODE (XEXP (varop, 0)) == result_mode
9129 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9130 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9131 && ((STORE_FLAG_VALUE
9132 & ((HOST_WIDE_INT) 1
9133 < (GET_MODE_BITSIZE (result_mode) - 1))))
9134 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9135 && merge_outer_ops (&outer_op, &outer_const, XOR,
9136 (HOST_WIDE_INT) 1, result_mode,
9137 &complement_p))
9138 {
9139 varop = XEXP (varop, 0);
9140 count = 0;
9141 continue;
9142 }
9143 break;
9144
9145 case NEG:
9146 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9147 than the number of bits in the mode is equivalent to A. */
9148 if (code == LSHIFTRT
9149 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9150 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9151 {
9152 varop = XEXP (varop, 0);
9153 count = 0;
9154 continue;
9155 }
9156
9157 /* NEG commutes with ASHIFT since it is multiplication. Move the
9158 NEG outside to allow shifts to combine. */
9159 if (code == ASHIFT
9160 && merge_outer_ops (&outer_op, &outer_const, NEG,
9161 (HOST_WIDE_INT) 0, result_mode,
9162 &complement_p))
9163 {
9164 varop = XEXP (varop, 0);
9165 continue;
9166 }
9167 break;
9168
9169 case PLUS:
9170 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9171 is one less than the number of bits in the mode is
9172 equivalent to (xor A 1). */
9173 if (code == LSHIFTRT
9174 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9175 && XEXP (varop, 1) == constm1_rtx
9176 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9177 && merge_outer_ops (&outer_op, &outer_const, XOR,
9178 (HOST_WIDE_INT) 1, result_mode,
9179 &complement_p))
9180 {
9181 count = 0;
9182 varop = XEXP (varop, 0);
9183 continue;
9184 }
9185
9186 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9187 that might be nonzero in BAR are those being shifted out and those
9188 bits are known zero in FOO, we can replace the PLUS with FOO.
9189 Similarly in the other operand order. This code occurs when
9190 we are computing the size of a variable-size array. */
9191
9192 if ((code == ASHIFTRT || code == LSHIFTRT)
9193 && count < HOST_BITS_PER_WIDE_INT
9194 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9195 && (nonzero_bits (XEXP (varop, 1), result_mode)
9196 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9197 {
9198 varop = XEXP (varop, 0);
9199 continue;
9200 }
9201 else if ((code == ASHIFTRT || code == LSHIFTRT)
9202 && count < HOST_BITS_PER_WIDE_INT
9203 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9204 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9205 >> count)
9206 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9207 & nonzero_bits (XEXP (varop, 1),
9208 result_mode)))
9209 {
9210 varop = XEXP (varop, 1);
9211 continue;
9212 }
9213
9214 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9215 if (code == ASHIFT
9216 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9217 && (new = simplify_binary_operation (ASHIFT, result_mode,
9218 XEXP (varop, 1),
9219 GEN_INT (count))) != 0
9220 && GET_CODE (new) == CONST_INT
9221 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9222 INTVAL (new), result_mode, &complement_p))
9223 {
9224 varop = XEXP (varop, 0);
9225 continue;
9226 }
9227
9228 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9229 signbit', and attempt to change the PLUS to an XOR and move it to
9230 the outer operation as is done above in the AND/IOR/XOR case
9231 leg for shift(logical). See details in logical handling above
9232 for reasoning in doing so. */
9233 if (code == LSHIFTRT
9234 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9235 && mode_signbit_p (result_mode, XEXP (varop, 1))
9236 && (new = simplify_binary_operation (code, result_mode,
9237 XEXP (varop, 1),
9238 GEN_INT (count))) != 0
9239 && GET_CODE (new) == CONST_INT
9240 && merge_outer_ops (&outer_op, &outer_const, XOR,
9241 INTVAL (new), result_mode, &complement_p))
9242 {
9243 varop = XEXP (varop, 0);
9244 continue;
9245 }
9246
9247 break;
9248
9249 case MINUS:
9250 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9251 with C the size of VAROP - 1 and the shift is logical if
9252 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9253 we have a (gt X 0) operation. If the shift is arithmetic with
9254 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9255 we have a (neg (gt X 0)) operation. */
9256
9257 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9258 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9259 && count == (unsigned int)
9260 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9261 && (code == LSHIFTRT || code == ASHIFTRT)
9262 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9263 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9264 == count
9265 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9266 {
9267 count = 0;
9268 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9269 const0_rtx);
9270
9271 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9272 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9273
9274 continue;
9275 }
9276 break;
9277
9278 case TRUNCATE:
9279 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9280 if the truncate does not affect the value. */
9281 if (code == LSHIFTRT
9282 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9283 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9284 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9285 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9286 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9287 {
9288 rtx varop_inner = XEXP (varop, 0);
9289
9290 varop_inner
9291 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9292 XEXP (varop_inner, 0),
9293 GEN_INT
9294 (count + INTVAL (XEXP (varop_inner, 1))));
9295 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9296 count = 0;
9297 continue;
9298 }
9299 break;
9300
9301 default:
9302 break;
9303 }
9304
9305 break;
9306 }
9307
9308 /* We need to determine what mode to do the shift in. If the shift is
9309 a right shift or ROTATE, we must always do it in the mode it was
9310 originally done in. Otherwise, we can do it in MODE, the widest mode
9311 encountered. The code we care about is that of the shift that will
9312 actually be done, not the shift that was originally requested. */
9313 shift_mode
9314 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9315 ? result_mode : mode);
9316
9317 /* We have now finished analyzing the shift. The result should be
9318 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9319 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9320 to the result of the shift. OUTER_CONST is the relevant constant,
9321 but we must turn off all bits turned off in the shift.
9322
9323 If we were passed a value for X, see if we can use any pieces of
9324 it. If not, make new rtx. */
9325
9326 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9327 && GET_CODE (XEXP (x, 1)) == CONST_INT
9328 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9329 const_rtx = XEXP (x, 1);
9330 else
9331 const_rtx = GEN_INT (count);
9332
9333 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9334 && GET_MODE (XEXP (x, 0)) == shift_mode
9335 && SUBREG_REG (XEXP (x, 0)) == varop)
9336 varop = XEXP (x, 0);
9337 else if (GET_MODE (varop) != shift_mode)
9338 varop = gen_lowpart (shift_mode, varop);
9339
9340 /* If we can't make the SUBREG, try to return what we were given. */
9341 if (GET_CODE (varop) == CLOBBER)
9342 return x ? x : varop;
9343
9344 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9345 if (new != 0)
9346 x = new;
9347 else
9348 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9349
9350 /* If we have an outer operation and we just made a shift, it is
9351 possible that we could have simplified the shift were it not
9352 for the outer operation. So try to do the simplification
9353 recursively. */
9354
9355 if (outer_op != UNKNOWN && GET_CODE (x) == code
9356 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9357 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9358 INTVAL (XEXP (x, 1)));
9359
9360 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9361 turn off all the bits that the shift would have turned off. */
9362 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9363 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9364 GET_MODE_MASK (result_mode) >> orig_count);
9365
9366 /* Do the remainder of the processing in RESULT_MODE. */
9367 x = gen_lowpart (result_mode, x);
9368
9369 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9370 operation. */
9371 if (complement_p)
9372 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9373
9374 if (outer_op != UNKNOWN)
9375 {
9376 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9377 outer_const = trunc_int_for_mode (outer_const, result_mode);
9378
9379 if (outer_op == AND)
9380 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9381 else if (outer_op == SET)
9382 /* This means that we have determined that the result is
9383 equivalent to a constant. This should be rare. */
9384 x = GEN_INT (outer_const);
9385 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9386 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9387 else
9388 x = simplify_gen_binary (outer_op, result_mode, x,
9389 GEN_INT (outer_const));
9390 }
9391
9392 return x;
9393 }
9394 \f
9395 /* Like recog, but we receive the address of a pointer to a new pattern.
9396 We try to match the rtx that the pointer points to.
9397 If that fails, we may try to modify or replace the pattern,
9398 storing the replacement into the same pointer object.
9399
9400 Modifications include deletion or addition of CLOBBERs.
9401
9402 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9403 the CLOBBERs are placed.
9404
9405 The value is the final insn code from the pattern ultimately matched,
9406 or -1. */
9407
9408 static int
9409 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9410 {
9411 rtx pat = *pnewpat;
9412 int insn_code_number;
9413 int num_clobbers_to_add = 0;
9414 int i;
9415 rtx notes = 0;
9416 rtx old_notes, old_pat;
9417
9418 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9419 we use to indicate that something didn't match. If we find such a
9420 thing, force rejection. */
9421 if (GET_CODE (pat) == PARALLEL)
9422 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9423 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9424 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9425 return -1;
9426
9427 old_pat = PATTERN (insn);
9428 old_notes = REG_NOTES (insn);
9429 PATTERN (insn) = pat;
9430 REG_NOTES (insn) = 0;
9431
9432 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9433
9434 /* If it isn't, there is the possibility that we previously had an insn
9435 that clobbered some register as a side effect, but the combined
9436 insn doesn't need to do that. So try once more without the clobbers
9437 unless this represents an ASM insn. */
9438
9439 if (insn_code_number < 0 && ! check_asm_operands (pat)
9440 && GET_CODE (pat) == PARALLEL)
9441 {
9442 int pos;
9443
9444 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9445 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9446 {
9447 if (i != pos)
9448 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9449 pos++;
9450 }
9451
9452 SUBST_INT (XVECLEN (pat, 0), pos);
9453
9454 if (pos == 1)
9455 pat = XVECEXP (pat, 0, 0);
9456
9457 PATTERN (insn) = pat;
9458 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9459 }
9460 PATTERN (insn) = old_pat;
9461 REG_NOTES (insn) = old_notes;
9462
9463 /* Recognize all noop sets, these will be killed by followup pass. */
9464 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9465 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9466
9467 /* If we had any clobbers to add, make a new pattern than contains
9468 them. Then check to make sure that all of them are dead. */
9469 if (num_clobbers_to_add)
9470 {
9471 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9472 rtvec_alloc (GET_CODE (pat) == PARALLEL
9473 ? (XVECLEN (pat, 0)
9474 + num_clobbers_to_add)
9475 : num_clobbers_to_add + 1));
9476
9477 if (GET_CODE (pat) == PARALLEL)
9478 for (i = 0; i < XVECLEN (pat, 0); i++)
9479 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9480 else
9481 XVECEXP (newpat, 0, 0) = pat;
9482
9483 add_clobbers (newpat, insn_code_number);
9484
9485 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9486 i < XVECLEN (newpat, 0); i++)
9487 {
9488 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9489 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9490 return -1;
9491 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9492 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9493 }
9494 pat = newpat;
9495 }
9496
9497 *pnewpat = pat;
9498 *pnotes = notes;
9499
9500 return insn_code_number;
9501 }
9502 \f
9503 /* Like gen_lowpart_general but for use by combine. In combine it
9504 is not possible to create any new pseudoregs. However, it is
9505 safe to create invalid memory addresses, because combine will
9506 try to recognize them and all they will do is make the combine
9507 attempt fail.
9508
9509 If for some reason this cannot do its job, an rtx
9510 (clobber (const_int 0)) is returned.
9511 An insn containing that will not be recognized. */
9512
9513 static rtx
9514 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9515 {
9516 enum machine_mode imode = GET_MODE (x);
9517 unsigned int osize = GET_MODE_SIZE (omode);
9518 unsigned int isize = GET_MODE_SIZE (imode);
9519 rtx result;
9520
9521 if (omode == imode)
9522 return x;
9523
9524 /* Return identity if this is a CONST or symbolic reference. */
9525 if (omode == Pmode
9526 && (GET_CODE (x) == CONST
9527 || GET_CODE (x) == SYMBOL_REF
9528 || GET_CODE (x) == LABEL_REF))
9529 return x;
9530
9531 /* We can only support MODE being wider than a word if X is a
9532 constant integer or has a mode the same size. */
9533 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9534 && ! ((imode == VOIDmode
9535 && (GET_CODE (x) == CONST_INT
9536 || GET_CODE (x) == CONST_DOUBLE))
9537 || isize == osize))
9538 goto fail;
9539
9540 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9541 won't know what to do. So we will strip off the SUBREG here and
9542 process normally. */
9543 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9544 {
9545 x = SUBREG_REG (x);
9546
9547 /* For use in case we fall down into the address adjustments
9548 further below, we need to adjust the known mode and size of
9549 x; imode and isize, since we just adjusted x. */
9550 imode = GET_MODE (x);
9551
9552 if (imode == omode)
9553 return x;
9554
9555 isize = GET_MODE_SIZE (imode);
9556 }
9557
9558 result = gen_lowpart_common (omode, x);
9559
9560 #ifdef CANNOT_CHANGE_MODE_CLASS
9561 if (result != 0 && GET_CODE (result) == SUBREG)
9562 record_subregs_of_mode (result);
9563 #endif
9564
9565 if (result)
9566 return result;
9567
9568 if (MEM_P (x))
9569 {
9570 int offset = 0;
9571
9572 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9573 address. */
9574 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9575 goto fail;
9576
9577 /* If we want to refer to something bigger than the original memref,
9578 generate a paradoxical subreg instead. That will force a reload
9579 of the original memref X. */
9580 if (isize < osize)
9581 return gen_rtx_SUBREG (omode, x, 0);
9582
9583 if (WORDS_BIG_ENDIAN)
9584 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9585
9586 /* Adjust the address so that the address-after-the-data is
9587 unchanged. */
9588 if (BYTES_BIG_ENDIAN)
9589 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9590
9591 return adjust_address_nv (x, omode, offset);
9592 }
9593
9594 /* If X is a comparison operator, rewrite it in a new mode. This
9595 probably won't match, but may allow further simplifications. */
9596 else if (COMPARISON_P (x))
9597 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9598
9599 /* If we couldn't simplify X any other way, just enclose it in a
9600 SUBREG. Normally, this SUBREG won't match, but some patterns may
9601 include an explicit SUBREG or we may simplify it further in combine. */
9602 else
9603 {
9604 int offset = 0;
9605 rtx res;
9606
9607 offset = subreg_lowpart_offset (omode, imode);
9608 if (imode == VOIDmode)
9609 {
9610 imode = int_mode_for_mode (omode);
9611 x = gen_lowpart_common (imode, x);
9612 if (x == NULL)
9613 goto fail;
9614 }
9615 res = simplify_gen_subreg (omode, x, imode, offset);
9616 if (res)
9617 return res;
9618 }
9619
9620 fail:
9621 return gen_rtx_CLOBBER (imode, const0_rtx);
9622 }
9623 \f
9624 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9625 comparison code that will be tested.
9626
9627 The result is a possibly different comparison code to use. *POP0 and
9628 *POP1 may be updated.
9629
9630 It is possible that we might detect that a comparison is either always
9631 true or always false. However, we do not perform general constant
9632 folding in combine, so this knowledge isn't useful. Such tautologies
9633 should have been detected earlier. Hence we ignore all such cases. */
9634
9635 static enum rtx_code
9636 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9637 {
9638 rtx op0 = *pop0;
9639 rtx op1 = *pop1;
9640 rtx tem, tem1;
9641 int i;
9642 enum machine_mode mode, tmode;
9643
9644 /* Try a few ways of applying the same transformation to both operands. */
9645 while (1)
9646 {
9647 #ifndef WORD_REGISTER_OPERATIONS
9648 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9649 so check specially. */
9650 if (code != GTU && code != GEU && code != LTU && code != LEU
9651 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9652 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9653 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9654 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9655 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9656 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9657 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9658 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9659 && XEXP (op0, 1) == XEXP (op1, 1)
9660 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9661 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9662 && (INTVAL (XEXP (op0, 1))
9663 == (GET_MODE_BITSIZE (GET_MODE (op0))
9664 - (GET_MODE_BITSIZE
9665 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9666 {
9667 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9668 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9669 }
9670 #endif
9671
9672 /* If both operands are the same constant shift, see if we can ignore the
9673 shift. We can if the shift is a rotate or if the bits shifted out of
9674 this shift are known to be zero for both inputs and if the type of
9675 comparison is compatible with the shift. */
9676 if (GET_CODE (op0) == GET_CODE (op1)
9677 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9678 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9679 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9680 && (code != GT && code != LT && code != GE && code != LE))
9681 || (GET_CODE (op0) == ASHIFTRT
9682 && (code != GTU && code != LTU
9683 && code != GEU && code != LEU)))
9684 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9685 && INTVAL (XEXP (op0, 1)) >= 0
9686 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9687 && XEXP (op0, 1) == XEXP (op1, 1))
9688 {
9689 enum machine_mode mode = GET_MODE (op0);
9690 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9691 int shift_count = INTVAL (XEXP (op0, 1));
9692
9693 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9694 mask &= (mask >> shift_count) << shift_count;
9695 else if (GET_CODE (op0) == ASHIFT)
9696 mask = (mask & (mask << shift_count)) >> shift_count;
9697
9698 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9699 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9700 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9701 else
9702 break;
9703 }
9704
9705 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9706 SUBREGs are of the same mode, and, in both cases, the AND would
9707 be redundant if the comparison was done in the narrower mode,
9708 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9709 and the operand's possibly nonzero bits are 0xffffff01; in that case
9710 if we only care about QImode, we don't need the AND). This case
9711 occurs if the output mode of an scc insn is not SImode and
9712 STORE_FLAG_VALUE == 1 (e.g., the 386).
9713
9714 Similarly, check for a case where the AND's are ZERO_EXTEND
9715 operations from some narrower mode even though a SUBREG is not
9716 present. */
9717
9718 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9719 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9720 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9721 {
9722 rtx inner_op0 = XEXP (op0, 0);
9723 rtx inner_op1 = XEXP (op1, 0);
9724 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9725 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9726 int changed = 0;
9727
9728 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9729 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9730 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9731 && (GET_MODE (SUBREG_REG (inner_op0))
9732 == GET_MODE (SUBREG_REG (inner_op1)))
9733 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9734 <= HOST_BITS_PER_WIDE_INT)
9735 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9736 GET_MODE (SUBREG_REG (inner_op0)))))
9737 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9738 GET_MODE (SUBREG_REG (inner_op1))))))
9739 {
9740 op0 = SUBREG_REG (inner_op0);
9741 op1 = SUBREG_REG (inner_op1);
9742
9743 /* The resulting comparison is always unsigned since we masked
9744 off the original sign bit. */
9745 code = unsigned_condition (code);
9746
9747 changed = 1;
9748 }
9749
9750 else if (c0 == c1)
9751 for (tmode = GET_CLASS_NARROWEST_MODE
9752 (GET_MODE_CLASS (GET_MODE (op0)));
9753 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9754 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9755 {
9756 op0 = gen_lowpart (tmode, inner_op0);
9757 op1 = gen_lowpart (tmode, inner_op1);
9758 code = unsigned_condition (code);
9759 changed = 1;
9760 break;
9761 }
9762
9763 if (! changed)
9764 break;
9765 }
9766
9767 /* If both operands are NOT, we can strip off the outer operation
9768 and adjust the comparison code for swapped operands; similarly for
9769 NEG, except that this must be an equality comparison. */
9770 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9771 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9772 && (code == EQ || code == NE)))
9773 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9774
9775 else
9776 break;
9777 }
9778
9779 /* If the first operand is a constant, swap the operands and adjust the
9780 comparison code appropriately, but don't do this if the second operand
9781 is already a constant integer. */
9782 if (swap_commutative_operands_p (op0, op1))
9783 {
9784 tem = op0, op0 = op1, op1 = tem;
9785 code = swap_condition (code);
9786 }
9787
9788 /* We now enter a loop during which we will try to simplify the comparison.
9789 For the most part, we only are concerned with comparisons with zero,
9790 but some things may really be comparisons with zero but not start
9791 out looking that way. */
9792
9793 while (GET_CODE (op1) == CONST_INT)
9794 {
9795 enum machine_mode mode = GET_MODE (op0);
9796 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9797 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9798 int equality_comparison_p;
9799 int sign_bit_comparison_p;
9800 int unsigned_comparison_p;
9801 HOST_WIDE_INT const_op;
9802
9803 /* We only want to handle integral modes. This catches VOIDmode,
9804 CCmode, and the floating-point modes. An exception is that we
9805 can handle VOIDmode if OP0 is a COMPARE or a comparison
9806 operation. */
9807
9808 if (GET_MODE_CLASS (mode) != MODE_INT
9809 && ! (mode == VOIDmode
9810 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9811 break;
9812
9813 /* Get the constant we are comparing against and turn off all bits
9814 not on in our mode. */
9815 const_op = INTVAL (op1);
9816 if (mode != VOIDmode)
9817 const_op = trunc_int_for_mode (const_op, mode);
9818 op1 = GEN_INT (const_op);
9819
9820 /* If we are comparing against a constant power of two and the value
9821 being compared can only have that single bit nonzero (e.g., it was
9822 `and'ed with that bit), we can replace this with a comparison
9823 with zero. */
9824 if (const_op
9825 && (code == EQ || code == NE || code == GE || code == GEU
9826 || code == LT || code == LTU)
9827 && mode_width <= HOST_BITS_PER_WIDE_INT
9828 && exact_log2 (const_op) >= 0
9829 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9830 {
9831 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9832 op1 = const0_rtx, const_op = 0;
9833 }
9834
9835 /* Similarly, if we are comparing a value known to be either -1 or
9836 0 with -1, change it to the opposite comparison against zero. */
9837
9838 if (const_op == -1
9839 && (code == EQ || code == NE || code == GT || code == LE
9840 || code == GEU || code == LTU)
9841 && num_sign_bit_copies (op0, mode) == mode_width)
9842 {
9843 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9844 op1 = const0_rtx, const_op = 0;
9845 }
9846
9847 /* Do some canonicalizations based on the comparison code. We prefer
9848 comparisons against zero and then prefer equality comparisons.
9849 If we can reduce the size of a constant, we will do that too. */
9850
9851 switch (code)
9852 {
9853 case LT:
9854 /* < C is equivalent to <= (C - 1) */
9855 if (const_op > 0)
9856 {
9857 const_op -= 1;
9858 op1 = GEN_INT (const_op);
9859 code = LE;
9860 /* ... fall through to LE case below. */
9861 }
9862 else
9863 break;
9864
9865 case LE:
9866 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9867 if (const_op < 0)
9868 {
9869 const_op += 1;
9870 op1 = GEN_INT (const_op);
9871 code = LT;
9872 }
9873
9874 /* If we are doing a <= 0 comparison on a value known to have
9875 a zero sign bit, we can replace this with == 0. */
9876 else if (const_op == 0
9877 && mode_width <= HOST_BITS_PER_WIDE_INT
9878 && (nonzero_bits (op0, mode)
9879 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9880 code = EQ;
9881 break;
9882
9883 case GE:
9884 /* >= C is equivalent to > (C - 1). */
9885 if (const_op > 0)
9886 {
9887 const_op -= 1;
9888 op1 = GEN_INT (const_op);
9889 code = GT;
9890 /* ... fall through to GT below. */
9891 }
9892 else
9893 break;
9894
9895 case GT:
9896 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9897 if (const_op < 0)
9898 {
9899 const_op += 1;
9900 op1 = GEN_INT (const_op);
9901 code = GE;
9902 }
9903
9904 /* If we are doing a > 0 comparison on a value known to have
9905 a zero sign bit, we can replace this with != 0. */
9906 else if (const_op == 0
9907 && mode_width <= HOST_BITS_PER_WIDE_INT
9908 && (nonzero_bits (op0, mode)
9909 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9910 code = NE;
9911 break;
9912
9913 case LTU:
9914 /* < C is equivalent to <= (C - 1). */
9915 if (const_op > 0)
9916 {
9917 const_op -= 1;
9918 op1 = GEN_INT (const_op);
9919 code = LEU;
9920 /* ... fall through ... */
9921 }
9922
9923 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9924 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9925 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9926 {
9927 const_op = 0, op1 = const0_rtx;
9928 code = GE;
9929 break;
9930 }
9931 else
9932 break;
9933
9934 case LEU:
9935 /* unsigned <= 0 is equivalent to == 0 */
9936 if (const_op == 0)
9937 code = EQ;
9938
9939 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9940 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9941 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9942 {
9943 const_op = 0, op1 = const0_rtx;
9944 code = GE;
9945 }
9946 break;
9947
9948 case GEU:
9949 /* >= C is equivalent to > (C - 1). */
9950 if (const_op > 1)
9951 {
9952 const_op -= 1;
9953 op1 = GEN_INT (const_op);
9954 code = GTU;
9955 /* ... fall through ... */
9956 }
9957
9958 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9959 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9960 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9961 {
9962 const_op = 0, op1 = const0_rtx;
9963 code = LT;
9964 break;
9965 }
9966 else
9967 break;
9968
9969 case GTU:
9970 /* unsigned > 0 is equivalent to != 0 */
9971 if (const_op == 0)
9972 code = NE;
9973
9974 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9975 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9976 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9977 {
9978 const_op = 0, op1 = const0_rtx;
9979 code = LT;
9980 }
9981 break;
9982
9983 default:
9984 break;
9985 }
9986
9987 /* Compute some predicates to simplify code below. */
9988
9989 equality_comparison_p = (code == EQ || code == NE);
9990 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9991 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9992 || code == GEU);
9993
9994 /* If this is a sign bit comparison and we can do arithmetic in
9995 MODE, say that we will only be needing the sign bit of OP0. */
9996 if (sign_bit_comparison_p
9997 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9998 op0 = force_to_mode (op0, mode,
9999 ((HOST_WIDE_INT) 1
10000 << (GET_MODE_BITSIZE (mode) - 1)),
10001 NULL_RTX, 0);
10002
10003 /* Now try cases based on the opcode of OP0. If none of the cases
10004 does a "continue", we exit this loop immediately after the
10005 switch. */
10006
10007 switch (GET_CODE (op0))
10008 {
10009 case ZERO_EXTRACT:
10010 /* If we are extracting a single bit from a variable position in
10011 a constant that has only a single bit set and are comparing it
10012 with zero, we can convert this into an equality comparison
10013 between the position and the location of the single bit. */
10014 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10015 have already reduced the shift count modulo the word size. */
10016 if (!SHIFT_COUNT_TRUNCATED
10017 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10018 && XEXP (op0, 1) == const1_rtx
10019 && equality_comparison_p && const_op == 0
10020 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10021 {
10022 if (BITS_BIG_ENDIAN)
10023 {
10024 enum machine_mode new_mode
10025 = mode_for_extraction (EP_extzv, 1);
10026 if (new_mode == MAX_MACHINE_MODE)
10027 i = BITS_PER_WORD - 1 - i;
10028 else
10029 {
10030 mode = new_mode;
10031 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10032 }
10033 }
10034
10035 op0 = XEXP (op0, 2);
10036 op1 = GEN_INT (i);
10037 const_op = i;
10038
10039 /* Result is nonzero iff shift count is equal to I. */
10040 code = reverse_condition (code);
10041 continue;
10042 }
10043
10044 /* ... fall through ... */
10045
10046 case SIGN_EXTRACT:
10047 tem = expand_compound_operation (op0);
10048 if (tem != op0)
10049 {
10050 op0 = tem;
10051 continue;
10052 }
10053 break;
10054
10055 case NOT:
10056 /* If testing for equality, we can take the NOT of the constant. */
10057 if (equality_comparison_p
10058 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10059 {
10060 op0 = XEXP (op0, 0);
10061 op1 = tem;
10062 continue;
10063 }
10064
10065 /* If just looking at the sign bit, reverse the sense of the
10066 comparison. */
10067 if (sign_bit_comparison_p)
10068 {
10069 op0 = XEXP (op0, 0);
10070 code = (code == GE ? LT : GE);
10071 continue;
10072 }
10073 break;
10074
10075 case NEG:
10076 /* If testing for equality, we can take the NEG of the constant. */
10077 if (equality_comparison_p
10078 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10079 {
10080 op0 = XEXP (op0, 0);
10081 op1 = tem;
10082 continue;
10083 }
10084
10085 /* The remaining cases only apply to comparisons with zero. */
10086 if (const_op != 0)
10087 break;
10088
10089 /* When X is ABS or is known positive,
10090 (neg X) is < 0 if and only if X != 0. */
10091
10092 if (sign_bit_comparison_p
10093 && (GET_CODE (XEXP (op0, 0)) == ABS
10094 || (mode_width <= HOST_BITS_PER_WIDE_INT
10095 && (nonzero_bits (XEXP (op0, 0), mode)
10096 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10097 {
10098 op0 = XEXP (op0, 0);
10099 code = (code == LT ? NE : EQ);
10100 continue;
10101 }
10102
10103 /* If we have NEG of something whose two high-order bits are the
10104 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10105 if (num_sign_bit_copies (op0, mode) >= 2)
10106 {
10107 op0 = XEXP (op0, 0);
10108 code = swap_condition (code);
10109 continue;
10110 }
10111 break;
10112
10113 case ROTATE:
10114 /* If we are testing equality and our count is a constant, we
10115 can perform the inverse operation on our RHS. */
10116 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10117 && (tem = simplify_binary_operation (ROTATERT, mode,
10118 op1, XEXP (op0, 1))) != 0)
10119 {
10120 op0 = XEXP (op0, 0);
10121 op1 = tem;
10122 continue;
10123 }
10124
10125 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10126 a particular bit. Convert it to an AND of a constant of that
10127 bit. This will be converted into a ZERO_EXTRACT. */
10128 if (const_op == 0 && sign_bit_comparison_p
10129 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10130 && mode_width <= HOST_BITS_PER_WIDE_INT)
10131 {
10132 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10133 ((HOST_WIDE_INT) 1
10134 << (mode_width - 1
10135 - INTVAL (XEXP (op0, 1)))));
10136 code = (code == LT ? NE : EQ);
10137 continue;
10138 }
10139
10140 /* Fall through. */
10141
10142 case ABS:
10143 /* ABS is ignorable inside an equality comparison with zero. */
10144 if (const_op == 0 && equality_comparison_p)
10145 {
10146 op0 = XEXP (op0, 0);
10147 continue;
10148 }
10149 break;
10150
10151 case SIGN_EXTEND:
10152 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10153 (compare FOO CONST) if CONST fits in FOO's mode and we
10154 are either testing inequality or have an unsigned
10155 comparison with ZERO_EXTEND or a signed comparison with
10156 SIGN_EXTEND. But don't do it if we don't have a compare
10157 insn of the given mode, since we'd have to revert it
10158 later on, and then we wouldn't know whether to sign- or
10159 zero-extend. */
10160 mode = GET_MODE (XEXP (op0, 0));
10161 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10162 && ! unsigned_comparison_p
10163 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10164 && ((unsigned HOST_WIDE_INT) const_op
10165 < (((unsigned HOST_WIDE_INT) 1
10166 << (GET_MODE_BITSIZE (mode) - 1))))
10167 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10168 {
10169 op0 = XEXP (op0, 0);
10170 continue;
10171 }
10172 break;
10173
10174 case SUBREG:
10175 /* Check for the case where we are comparing A - C1 with C2, that is
10176
10177 (subreg:MODE (plus (A) (-C1))) op (C2)
10178
10179 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10180 comparison in the wider mode. One of the following two conditions
10181 must be true in order for this to be valid:
10182
10183 1. The mode extension results in the same bit pattern being added
10184 on both sides and the comparison is equality or unsigned. As
10185 C2 has been truncated to fit in MODE, the pattern can only be
10186 all 0s or all 1s.
10187
10188 2. The mode extension results in the sign bit being copied on
10189 each side.
10190
10191 The difficulty here is that we have predicates for A but not for
10192 (A - C1) so we need to check that C1 is within proper bounds so
10193 as to perturbate A as little as possible. */
10194
10195 if (mode_width <= HOST_BITS_PER_WIDE_INT
10196 && subreg_lowpart_p (op0)
10197 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10198 && GET_CODE (SUBREG_REG (op0)) == PLUS
10199 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10200 {
10201 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10202 rtx a = XEXP (SUBREG_REG (op0), 0);
10203 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10204
10205 if ((c1 > 0
10206 && (unsigned HOST_WIDE_INT) c1
10207 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10208 && (equality_comparison_p || unsigned_comparison_p)
10209 /* (A - C1) zero-extends if it is positive and sign-extends
10210 if it is negative, C2 both zero- and sign-extends. */
10211 && ((0 == (nonzero_bits (a, inner_mode)
10212 & ~GET_MODE_MASK (mode))
10213 && const_op >= 0)
10214 /* (A - C1) sign-extends if it is positive and 1-extends
10215 if it is negative, C2 both sign- and 1-extends. */
10216 || (num_sign_bit_copies (a, inner_mode)
10217 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10218 - mode_width)
10219 && const_op < 0)))
10220 || ((unsigned HOST_WIDE_INT) c1
10221 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10222 /* (A - C1) always sign-extends, like C2. */
10223 && num_sign_bit_copies (a, inner_mode)
10224 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10225 - mode_width - 1)))
10226 {
10227 op0 = SUBREG_REG (op0);
10228 continue;
10229 }
10230 }
10231
10232 /* If the inner mode is narrower and we are extracting the low part,
10233 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10234 if (subreg_lowpart_p (op0)
10235 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10236 /* Fall through */ ;
10237 else
10238 break;
10239
10240 /* ... fall through ... */
10241
10242 case ZERO_EXTEND:
10243 mode = GET_MODE (XEXP (op0, 0));
10244 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10245 && (unsigned_comparison_p || equality_comparison_p)
10246 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10247 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10248 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10249 {
10250 op0 = XEXP (op0, 0);
10251 continue;
10252 }
10253 break;
10254
10255 case PLUS:
10256 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10257 this for equality comparisons due to pathological cases involving
10258 overflows. */
10259 if (equality_comparison_p
10260 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10261 op1, XEXP (op0, 1))))
10262 {
10263 op0 = XEXP (op0, 0);
10264 op1 = tem;
10265 continue;
10266 }
10267
10268 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10269 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10270 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10271 {
10272 op0 = XEXP (XEXP (op0, 0), 0);
10273 code = (code == LT ? EQ : NE);
10274 continue;
10275 }
10276 break;
10277
10278 case MINUS:
10279 /* We used to optimize signed comparisons against zero, but that
10280 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10281 arrive here as equality comparisons, or (GEU, LTU) are
10282 optimized away. No need to special-case them. */
10283
10284 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10285 (eq B (minus A C)), whichever simplifies. We can only do
10286 this for equality comparisons due to pathological cases involving
10287 overflows. */
10288 if (equality_comparison_p
10289 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10290 XEXP (op0, 1), op1)))
10291 {
10292 op0 = XEXP (op0, 0);
10293 op1 = tem;
10294 continue;
10295 }
10296
10297 if (equality_comparison_p
10298 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10299 XEXP (op0, 0), op1)))
10300 {
10301 op0 = XEXP (op0, 1);
10302 op1 = tem;
10303 continue;
10304 }
10305
10306 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10307 of bits in X minus 1, is one iff X > 0. */
10308 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10309 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10310 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10311 == mode_width - 1
10312 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10313 {
10314 op0 = XEXP (op0, 1);
10315 code = (code == GE ? LE : GT);
10316 continue;
10317 }
10318 break;
10319
10320 case XOR:
10321 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10322 if C is zero or B is a constant. */
10323 if (equality_comparison_p
10324 && 0 != (tem = simplify_binary_operation (XOR, mode,
10325 XEXP (op0, 1), op1)))
10326 {
10327 op0 = XEXP (op0, 0);
10328 op1 = tem;
10329 continue;
10330 }
10331 break;
10332
10333 case EQ: case NE:
10334 case UNEQ: case LTGT:
10335 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10336 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10337 case UNORDERED: case ORDERED:
10338 /* We can't do anything if OP0 is a condition code value, rather
10339 than an actual data value. */
10340 if (const_op != 0
10341 || CC0_P (XEXP (op0, 0))
10342 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10343 break;
10344
10345 /* Get the two operands being compared. */
10346 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10347 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10348 else
10349 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10350
10351 /* Check for the cases where we simply want the result of the
10352 earlier test or the opposite of that result. */
10353 if (code == NE || code == EQ
10354 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10355 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10356 && (STORE_FLAG_VALUE
10357 & (((HOST_WIDE_INT) 1
10358 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10359 && (code == LT || code == GE)))
10360 {
10361 enum rtx_code new_code;
10362 if (code == LT || code == NE)
10363 new_code = GET_CODE (op0);
10364 else
10365 new_code = reversed_comparison_code (op0, NULL);
10366
10367 if (new_code != UNKNOWN)
10368 {
10369 code = new_code;
10370 op0 = tem;
10371 op1 = tem1;
10372 continue;
10373 }
10374 }
10375 break;
10376
10377 case IOR:
10378 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10379 iff X <= 0. */
10380 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10381 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10382 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10383 {
10384 op0 = XEXP (op0, 1);
10385 code = (code == GE ? GT : LE);
10386 continue;
10387 }
10388 break;
10389
10390 case AND:
10391 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10392 will be converted to a ZERO_EXTRACT later. */
10393 if (const_op == 0 && equality_comparison_p
10394 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10395 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10396 {
10397 op0 = simplify_and_const_int
10398 (op0, mode, gen_rtx_LSHIFTRT (mode,
10399 XEXP (op0, 1),
10400 XEXP (XEXP (op0, 0), 1)),
10401 (HOST_WIDE_INT) 1);
10402 continue;
10403 }
10404
10405 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10406 zero and X is a comparison and C1 and C2 describe only bits set
10407 in STORE_FLAG_VALUE, we can compare with X. */
10408 if (const_op == 0 && equality_comparison_p
10409 && mode_width <= HOST_BITS_PER_WIDE_INT
10410 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10411 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10412 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10413 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10414 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10415 {
10416 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10417 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10418 if ((~STORE_FLAG_VALUE & mask) == 0
10419 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10420 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10421 && COMPARISON_P (tem))))
10422 {
10423 op0 = XEXP (XEXP (op0, 0), 0);
10424 continue;
10425 }
10426 }
10427
10428 /* If we are doing an equality comparison of an AND of a bit equal
10429 to the sign bit, replace this with a LT or GE comparison of
10430 the underlying value. */
10431 if (equality_comparison_p
10432 && const_op == 0
10433 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10434 && mode_width <= HOST_BITS_PER_WIDE_INT
10435 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10436 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10437 {
10438 op0 = XEXP (op0, 0);
10439 code = (code == EQ ? GE : LT);
10440 continue;
10441 }
10442
10443 /* If this AND operation is really a ZERO_EXTEND from a narrower
10444 mode, the constant fits within that mode, and this is either an
10445 equality or unsigned comparison, try to do this comparison in
10446 the narrower mode. */
10447 if ((equality_comparison_p || unsigned_comparison_p)
10448 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10449 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10450 & GET_MODE_MASK (mode))
10451 + 1)) >= 0
10452 && const_op >> i == 0
10453 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10454 {
10455 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10456 continue;
10457 }
10458
10459 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10460 fits in both M1 and M2 and the SUBREG is either paradoxical
10461 or represents the low part, permute the SUBREG and the AND
10462 and try again. */
10463 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10464 {
10465 unsigned HOST_WIDE_INT c1;
10466 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10467 /* Require an integral mode, to avoid creating something like
10468 (AND:SF ...). */
10469 if (SCALAR_INT_MODE_P (tmode)
10470 /* It is unsafe to commute the AND into the SUBREG if the
10471 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10472 not defined. As originally written the upper bits
10473 have a defined value due to the AND operation.
10474 However, if we commute the AND inside the SUBREG then
10475 they no longer have defined values and the meaning of
10476 the code has been changed. */
10477 && (0
10478 #ifdef WORD_REGISTER_OPERATIONS
10479 || (mode_width > GET_MODE_BITSIZE (tmode)
10480 && mode_width <= BITS_PER_WORD)
10481 #endif
10482 || (mode_width <= GET_MODE_BITSIZE (tmode)
10483 && subreg_lowpart_p (XEXP (op0, 0))))
10484 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10485 && mode_width <= HOST_BITS_PER_WIDE_INT
10486 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10487 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10488 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10489 && c1 != mask
10490 && c1 != GET_MODE_MASK (tmode))
10491 {
10492 op0 = simplify_gen_binary (AND, tmode,
10493 SUBREG_REG (XEXP (op0, 0)),
10494 gen_int_mode (c1, tmode));
10495 op0 = gen_lowpart (mode, op0);
10496 continue;
10497 }
10498 }
10499
10500 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10501 if (const_op == 0 && equality_comparison_p
10502 && XEXP (op0, 1) == const1_rtx
10503 && GET_CODE (XEXP (op0, 0)) == NOT)
10504 {
10505 op0 = simplify_and_const_int
10506 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10507 code = (code == NE ? EQ : NE);
10508 continue;
10509 }
10510
10511 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10512 (eq (and (lshiftrt X) 1) 0).
10513 Also handle the case where (not X) is expressed using xor. */
10514 if (const_op == 0 && equality_comparison_p
10515 && XEXP (op0, 1) == const1_rtx
10516 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10517 {
10518 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10519 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10520
10521 if (GET_CODE (shift_op) == NOT
10522 || (GET_CODE (shift_op) == XOR
10523 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10524 && GET_CODE (shift_count) == CONST_INT
10525 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10526 && (INTVAL (XEXP (shift_op, 1))
10527 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10528 {
10529 op0 = simplify_and_const_int
10530 (NULL_RTX, mode,
10531 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10532 (HOST_WIDE_INT) 1);
10533 code = (code == NE ? EQ : NE);
10534 continue;
10535 }
10536 }
10537 break;
10538
10539 case ASHIFT:
10540 /* If we have (compare (ashift FOO N) (const_int C)) and
10541 the high order N bits of FOO (N+1 if an inequality comparison)
10542 are known to be zero, we can do this by comparing FOO with C
10543 shifted right N bits so long as the low-order N bits of C are
10544 zero. */
10545 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10546 && INTVAL (XEXP (op0, 1)) >= 0
10547 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10548 < HOST_BITS_PER_WIDE_INT)
10549 && ((const_op
10550 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10551 && mode_width <= HOST_BITS_PER_WIDE_INT
10552 && (nonzero_bits (XEXP (op0, 0), mode)
10553 & ~(mask >> (INTVAL (XEXP (op0, 1))
10554 + ! equality_comparison_p))) == 0)
10555 {
10556 /* We must perform a logical shift, not an arithmetic one,
10557 as we want the top N bits of C to be zero. */
10558 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10559
10560 temp >>= INTVAL (XEXP (op0, 1));
10561 op1 = gen_int_mode (temp, mode);
10562 op0 = XEXP (op0, 0);
10563 continue;
10564 }
10565
10566 /* If we are doing a sign bit comparison, it means we are testing
10567 a particular bit. Convert it to the appropriate AND. */
10568 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10569 && mode_width <= HOST_BITS_PER_WIDE_INT)
10570 {
10571 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10572 ((HOST_WIDE_INT) 1
10573 << (mode_width - 1
10574 - INTVAL (XEXP (op0, 1)))));
10575 code = (code == LT ? NE : EQ);
10576 continue;
10577 }
10578
10579 /* If this an equality comparison with zero and we are shifting
10580 the low bit to the sign bit, we can convert this to an AND of the
10581 low-order bit. */
10582 if (const_op == 0 && equality_comparison_p
10583 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10584 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10585 == mode_width - 1)
10586 {
10587 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10588 (HOST_WIDE_INT) 1);
10589 continue;
10590 }
10591 break;
10592
10593 case ASHIFTRT:
10594 /* If this is an equality comparison with zero, we can do this
10595 as a logical shift, which might be much simpler. */
10596 if (equality_comparison_p && const_op == 0
10597 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10598 {
10599 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10600 XEXP (op0, 0),
10601 INTVAL (XEXP (op0, 1)));
10602 continue;
10603 }
10604
10605 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10606 do the comparison in a narrower mode. */
10607 if (! unsigned_comparison_p
10608 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10609 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10610 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10611 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10612 MODE_INT, 1)) != BLKmode
10613 && (((unsigned HOST_WIDE_INT) const_op
10614 + (GET_MODE_MASK (tmode) >> 1) + 1)
10615 <= GET_MODE_MASK (tmode)))
10616 {
10617 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10618 continue;
10619 }
10620
10621 /* Likewise if OP0 is a PLUS of a sign extension with a
10622 constant, which is usually represented with the PLUS
10623 between the shifts. */
10624 if (! unsigned_comparison_p
10625 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10626 && GET_CODE (XEXP (op0, 0)) == PLUS
10627 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10628 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10629 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10630 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10631 MODE_INT, 1)) != BLKmode
10632 && (((unsigned HOST_WIDE_INT) const_op
10633 + (GET_MODE_MASK (tmode) >> 1) + 1)
10634 <= GET_MODE_MASK (tmode)))
10635 {
10636 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10637 rtx add_const = XEXP (XEXP (op0, 0), 1);
10638 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10639 add_const, XEXP (op0, 1));
10640
10641 op0 = simplify_gen_binary (PLUS, tmode,
10642 gen_lowpart (tmode, inner),
10643 new_const);
10644 continue;
10645 }
10646
10647 /* ... fall through ... */
10648 case LSHIFTRT:
10649 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10650 the low order N bits of FOO are known to be zero, we can do this
10651 by comparing FOO with C shifted left N bits so long as no
10652 overflow occurs. */
10653 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10654 && INTVAL (XEXP (op0, 1)) >= 0
10655 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10656 && mode_width <= HOST_BITS_PER_WIDE_INT
10657 && (nonzero_bits (XEXP (op0, 0), mode)
10658 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10659 && (((unsigned HOST_WIDE_INT) const_op
10660 + (GET_CODE (op0) != LSHIFTRT
10661 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10662 + 1)
10663 : 0))
10664 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10665 {
10666 /* If the shift was logical, then we must make the condition
10667 unsigned. */
10668 if (GET_CODE (op0) == LSHIFTRT)
10669 code = unsigned_condition (code);
10670
10671 const_op <<= INTVAL (XEXP (op0, 1));
10672 op1 = GEN_INT (const_op);
10673 op0 = XEXP (op0, 0);
10674 continue;
10675 }
10676
10677 /* If we are using this shift to extract just the sign bit, we
10678 can replace this with an LT or GE comparison. */
10679 if (const_op == 0
10680 && (equality_comparison_p || sign_bit_comparison_p)
10681 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10682 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10683 == mode_width - 1)
10684 {
10685 op0 = XEXP (op0, 0);
10686 code = (code == NE || code == GT ? LT : GE);
10687 continue;
10688 }
10689 break;
10690
10691 default:
10692 break;
10693 }
10694
10695 break;
10696 }
10697
10698 /* Now make any compound operations involved in this comparison. Then,
10699 check for an outmost SUBREG on OP0 that is not doing anything or is
10700 paradoxical. The latter transformation must only be performed when
10701 it is known that the "extra" bits will be the same in op0 and op1 or
10702 that they don't matter. There are three cases to consider:
10703
10704 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10705 care bits and we can assume they have any convenient value. So
10706 making the transformation is safe.
10707
10708 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10709 In this case the upper bits of op0 are undefined. We should not make
10710 the simplification in that case as we do not know the contents of
10711 those bits.
10712
10713 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10714 UNKNOWN. In that case we know those bits are zeros or ones. We must
10715 also be sure that they are the same as the upper bits of op1.
10716
10717 We can never remove a SUBREG for a non-equality comparison because
10718 the sign bit is in a different place in the underlying object. */
10719
10720 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10721 op1 = make_compound_operation (op1, SET);
10722
10723 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10724 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10725 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10726 && (code == NE || code == EQ))
10727 {
10728 if (GET_MODE_SIZE (GET_MODE (op0))
10729 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10730 {
10731 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10732 implemented. */
10733 if (REG_P (SUBREG_REG (op0)))
10734 {
10735 op0 = SUBREG_REG (op0);
10736 op1 = gen_lowpart (GET_MODE (op0), op1);
10737 }
10738 }
10739 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10740 <= HOST_BITS_PER_WIDE_INT)
10741 && (nonzero_bits (SUBREG_REG (op0),
10742 GET_MODE (SUBREG_REG (op0)))
10743 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10744 {
10745 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10746
10747 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10748 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10749 op0 = SUBREG_REG (op0), op1 = tem;
10750 }
10751 }
10752
10753 /* We now do the opposite procedure: Some machines don't have compare
10754 insns in all modes. If OP0's mode is an integer mode smaller than a
10755 word and we can't do a compare in that mode, see if there is a larger
10756 mode for which we can do the compare. There are a number of cases in
10757 which we can use the wider mode. */
10758
10759 mode = GET_MODE (op0);
10760 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10761 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10762 && ! have_insn_for (COMPARE, mode))
10763 for (tmode = GET_MODE_WIDER_MODE (mode);
10764 (tmode != VOIDmode
10765 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10766 tmode = GET_MODE_WIDER_MODE (tmode))
10767 if (have_insn_for (COMPARE, tmode))
10768 {
10769 int zero_extended;
10770
10771 /* If the only nonzero bits in OP0 and OP1 are those in the
10772 narrower mode and this is an equality or unsigned comparison,
10773 we can use the wider mode. Similarly for sign-extended
10774 values, in which case it is true for all comparisons. */
10775 zero_extended = ((code == EQ || code == NE
10776 || code == GEU || code == GTU
10777 || code == LEU || code == LTU)
10778 && (nonzero_bits (op0, tmode)
10779 & ~GET_MODE_MASK (mode)) == 0
10780 && ((GET_CODE (op1) == CONST_INT
10781 || (nonzero_bits (op1, tmode)
10782 & ~GET_MODE_MASK (mode)) == 0)));
10783
10784 if (zero_extended
10785 || ((num_sign_bit_copies (op0, tmode)
10786 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10787 - GET_MODE_BITSIZE (mode)))
10788 && (num_sign_bit_copies (op1, tmode)
10789 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10790 - GET_MODE_BITSIZE (mode)))))
10791 {
10792 /* If OP0 is an AND and we don't have an AND in MODE either,
10793 make a new AND in the proper mode. */
10794 if (GET_CODE (op0) == AND
10795 && !have_insn_for (AND, mode))
10796 op0 = simplify_gen_binary (AND, tmode,
10797 gen_lowpart (tmode,
10798 XEXP (op0, 0)),
10799 gen_lowpart (tmode,
10800 XEXP (op0, 1)));
10801
10802 op0 = gen_lowpart (tmode, op0);
10803 if (zero_extended && GET_CODE (op1) == CONST_INT)
10804 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10805 op1 = gen_lowpart (tmode, op1);
10806 break;
10807 }
10808
10809 /* If this is a test for negative, we can make an explicit
10810 test of the sign bit. */
10811
10812 if (op1 == const0_rtx && (code == LT || code == GE)
10813 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10814 {
10815 op0 = simplify_gen_binary (AND, tmode,
10816 gen_lowpart (tmode, op0),
10817 GEN_INT ((HOST_WIDE_INT) 1
10818 << (GET_MODE_BITSIZE (mode)
10819 - 1)));
10820 code = (code == LT) ? NE : EQ;
10821 break;
10822 }
10823 }
10824
10825 #ifdef CANONICALIZE_COMPARISON
10826 /* If this machine only supports a subset of valid comparisons, see if we
10827 can convert an unsupported one into a supported one. */
10828 CANONICALIZE_COMPARISON (code, op0, op1);
10829 #endif
10830
10831 *pop0 = op0;
10832 *pop1 = op1;
10833
10834 return code;
10835 }
10836 \f
10837 /* Utility function for record_value_for_reg. Count number of
10838 rtxs in X. */
10839 static int
10840 count_rtxs (rtx x)
10841 {
10842 enum rtx_code code = GET_CODE (x);
10843 const char *fmt;
10844 int i, ret = 1;
10845
10846 if (GET_RTX_CLASS (code) == '2'
10847 || GET_RTX_CLASS (code) == 'c')
10848 {
10849 rtx x0 = XEXP (x, 0);
10850 rtx x1 = XEXP (x, 1);
10851
10852 if (x0 == x1)
10853 return 1 + 2 * count_rtxs (x0);
10854
10855 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10856 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10857 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10858 return 2 + 2 * count_rtxs (x0)
10859 + count_rtxs (x == XEXP (x1, 0)
10860 ? XEXP (x1, 1) : XEXP (x1, 0));
10861
10862 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10863 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10864 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10865 return 2 + 2 * count_rtxs (x1)
10866 + count_rtxs (x == XEXP (x0, 0)
10867 ? XEXP (x0, 1) : XEXP (x0, 0));
10868 }
10869
10870 fmt = GET_RTX_FORMAT (code);
10871 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10872 if (fmt[i] == 'e')
10873 ret += count_rtxs (XEXP (x, i));
10874
10875 return ret;
10876 }
10877 \f
10878 /* Utility function for following routine. Called when X is part of a value
10879 being stored into last_set_value. Sets last_set_table_tick
10880 for each register mentioned. Similar to mention_regs in cse.c */
10881
10882 static void
10883 update_table_tick (rtx x)
10884 {
10885 enum rtx_code code = GET_CODE (x);
10886 const char *fmt = GET_RTX_FORMAT (code);
10887 int i;
10888
10889 if (code == REG)
10890 {
10891 unsigned int regno = REGNO (x);
10892 unsigned int endregno
10893 = regno + (regno < FIRST_PSEUDO_REGISTER
10894 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10895 unsigned int r;
10896
10897 for (r = regno; r < endregno; r++)
10898 reg_stat[r].last_set_table_tick = label_tick;
10899
10900 return;
10901 }
10902
10903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10904 /* Note that we can't have an "E" in values stored; see
10905 get_last_value_validate. */
10906 if (fmt[i] == 'e')
10907 {
10908 /* Check for identical subexpressions. If x contains
10909 identical subexpression we only have to traverse one of
10910 them. */
10911 if (i == 0 && ARITHMETIC_P (x))
10912 {
10913 /* Note that at this point x1 has already been
10914 processed. */
10915 rtx x0 = XEXP (x, 0);
10916 rtx x1 = XEXP (x, 1);
10917
10918 /* If x0 and x1 are identical then there is no need to
10919 process x0. */
10920 if (x0 == x1)
10921 break;
10922
10923 /* If x0 is identical to a subexpression of x1 then while
10924 processing x1, x0 has already been processed. Thus we
10925 are done with x. */
10926 if (ARITHMETIC_P (x1)
10927 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10928 break;
10929
10930 /* If x1 is identical to a subexpression of x0 then we
10931 still have to process the rest of x0. */
10932 if (ARITHMETIC_P (x0)
10933 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10934 {
10935 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10936 break;
10937 }
10938 }
10939
10940 update_table_tick (XEXP (x, i));
10941 }
10942 }
10943
10944 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10945 are saying that the register is clobbered and we no longer know its
10946 value. If INSN is zero, don't update reg_stat[].last_set; this is
10947 only permitted with VALUE also zero and is used to invalidate the
10948 register. */
10949
10950 static void
10951 record_value_for_reg (rtx reg, rtx insn, rtx value)
10952 {
10953 unsigned int regno = REGNO (reg);
10954 unsigned int endregno
10955 = regno + (regno < FIRST_PSEUDO_REGISTER
10956 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10957 unsigned int i;
10958
10959 /* If VALUE contains REG and we have a previous value for REG, substitute
10960 the previous value. */
10961 if (value && insn && reg_overlap_mentioned_p (reg, value))
10962 {
10963 rtx tem;
10964
10965 /* Set things up so get_last_value is allowed to see anything set up to
10966 our insn. */
10967 subst_low_cuid = INSN_CUID (insn);
10968 tem = get_last_value (reg);
10969
10970 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10971 it isn't going to be useful and will take a lot of time to process,
10972 so just use the CLOBBER. */
10973
10974 if (tem)
10975 {
10976 if (ARITHMETIC_P (tem)
10977 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10978 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10979 tem = XEXP (tem, 0);
10980 else if (count_occurrences (value, reg, 1) >= 2)
10981 {
10982 /* If there are two or more occurrences of REG in VALUE,
10983 prevent the value from growing too much. */
10984 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10985 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10986 }
10987
10988 value = replace_rtx (copy_rtx (value), reg, tem);
10989 }
10990 }
10991
10992 /* For each register modified, show we don't know its value, that
10993 we don't know about its bitwise content, that its value has been
10994 updated, and that we don't know the location of the death of the
10995 register. */
10996 for (i = regno; i < endregno; i++)
10997 {
10998 if (insn)
10999 reg_stat[i].last_set = insn;
11000
11001 reg_stat[i].last_set_value = 0;
11002 reg_stat[i].last_set_mode = 0;
11003 reg_stat[i].last_set_nonzero_bits = 0;
11004 reg_stat[i].last_set_sign_bit_copies = 0;
11005 reg_stat[i].last_death = 0;
11006 }
11007
11008 /* Mark registers that are being referenced in this value. */
11009 if (value)
11010 update_table_tick (value);
11011
11012 /* Now update the status of each register being set.
11013 If someone is using this register in this block, set this register
11014 to invalid since we will get confused between the two lives in this
11015 basic block. This makes using this register always invalid. In cse, we
11016 scan the table to invalidate all entries using this register, but this
11017 is too much work for us. */
11018
11019 for (i = regno; i < endregno; i++)
11020 {
11021 reg_stat[i].last_set_label = label_tick;
11022 if (value && reg_stat[i].last_set_table_tick == label_tick)
11023 reg_stat[i].last_set_invalid = 1;
11024 else
11025 reg_stat[i].last_set_invalid = 0;
11026 }
11027
11028 /* The value being assigned might refer to X (like in "x++;"). In that
11029 case, we must replace it with (clobber (const_int 0)) to prevent
11030 infinite loops. */
11031 if (value && ! get_last_value_validate (&value, insn,
11032 reg_stat[regno].last_set_label, 0))
11033 {
11034 value = copy_rtx (value);
11035 if (! get_last_value_validate (&value, insn,
11036 reg_stat[regno].last_set_label, 1))
11037 value = 0;
11038 }
11039
11040 /* For the main register being modified, update the value, the mode, the
11041 nonzero bits, and the number of sign bit copies. */
11042
11043 reg_stat[regno].last_set_value = value;
11044
11045 if (value)
11046 {
11047 enum machine_mode mode = GET_MODE (reg);
11048 subst_low_cuid = INSN_CUID (insn);
11049 reg_stat[regno].last_set_mode = mode;
11050 if (GET_MODE_CLASS (mode) == MODE_INT
11051 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11052 mode = nonzero_bits_mode;
11053 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11054 reg_stat[regno].last_set_sign_bit_copies
11055 = num_sign_bit_copies (value, GET_MODE (reg));
11056 }
11057 }
11058
11059 /* Called via note_stores from record_dead_and_set_regs to handle one
11060 SET or CLOBBER in an insn. DATA is the instruction in which the
11061 set is occurring. */
11062
11063 static void
11064 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11065 {
11066 rtx record_dead_insn = (rtx) data;
11067
11068 if (GET_CODE (dest) == SUBREG)
11069 dest = SUBREG_REG (dest);
11070
11071 if (REG_P (dest))
11072 {
11073 /* If we are setting the whole register, we know its value. Otherwise
11074 show that we don't know the value. We can handle SUBREG in
11075 some cases. */
11076 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11077 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11078 else if (GET_CODE (setter) == SET
11079 && GET_CODE (SET_DEST (setter)) == SUBREG
11080 && SUBREG_REG (SET_DEST (setter)) == dest
11081 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11082 && subreg_lowpart_p (SET_DEST (setter)))
11083 record_value_for_reg (dest, record_dead_insn,
11084 gen_lowpart (GET_MODE (dest),
11085 SET_SRC (setter)));
11086 else
11087 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11088 }
11089 else if (MEM_P (dest)
11090 /* Ignore pushes, they clobber nothing. */
11091 && ! push_operand (dest, GET_MODE (dest)))
11092 mem_last_set = INSN_CUID (record_dead_insn);
11093 }
11094
11095 /* Update the records of when each REG was most recently set or killed
11096 for the things done by INSN. This is the last thing done in processing
11097 INSN in the combiner loop.
11098
11099 We update reg_stat[], in particular fields last_set, last_set_value,
11100 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11101 last_death, and also the similar information mem_last_set (which insn
11102 most recently modified memory) and last_call_cuid (which insn was the
11103 most recent subroutine call). */
11104
11105 static void
11106 record_dead_and_set_regs (rtx insn)
11107 {
11108 rtx link;
11109 unsigned int i;
11110
11111 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11112 {
11113 if (REG_NOTE_KIND (link) == REG_DEAD
11114 && REG_P (XEXP (link, 0)))
11115 {
11116 unsigned int regno = REGNO (XEXP (link, 0));
11117 unsigned int endregno
11118 = regno + (regno < FIRST_PSEUDO_REGISTER
11119 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11120 : 1);
11121
11122 for (i = regno; i < endregno; i++)
11123 reg_stat[i].last_death = insn;
11124 }
11125 else if (REG_NOTE_KIND (link) == REG_INC)
11126 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11127 }
11128
11129 if (CALL_P (insn))
11130 {
11131 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11132 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11133 {
11134 reg_stat[i].last_set_value = 0;
11135 reg_stat[i].last_set_mode = 0;
11136 reg_stat[i].last_set_nonzero_bits = 0;
11137 reg_stat[i].last_set_sign_bit_copies = 0;
11138 reg_stat[i].last_death = 0;
11139 }
11140
11141 last_call_cuid = mem_last_set = INSN_CUID (insn);
11142
11143 /* Don't bother recording what this insn does. It might set the
11144 return value register, but we can't combine into a call
11145 pattern anyway, so there's no point trying (and it may cause
11146 a crash, if e.g. we wind up asking for last_set_value of a
11147 SUBREG of the return value register). */
11148 return;
11149 }
11150
11151 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11152 }
11153
11154 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11155 register present in the SUBREG, so for each such SUBREG go back and
11156 adjust nonzero and sign bit information of the registers that are
11157 known to have some zero/sign bits set.
11158
11159 This is needed because when combine blows the SUBREGs away, the
11160 information on zero/sign bits is lost and further combines can be
11161 missed because of that. */
11162
11163 static void
11164 record_promoted_value (rtx insn, rtx subreg)
11165 {
11166 rtx links, set;
11167 unsigned int regno = REGNO (SUBREG_REG (subreg));
11168 enum machine_mode mode = GET_MODE (subreg);
11169
11170 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11171 return;
11172
11173 for (links = LOG_LINKS (insn); links;)
11174 {
11175 insn = XEXP (links, 0);
11176 set = single_set (insn);
11177
11178 if (! set || !REG_P (SET_DEST (set))
11179 || REGNO (SET_DEST (set)) != regno
11180 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11181 {
11182 links = XEXP (links, 1);
11183 continue;
11184 }
11185
11186 if (reg_stat[regno].last_set == insn)
11187 {
11188 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11189 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11190 }
11191
11192 if (REG_P (SET_SRC (set)))
11193 {
11194 regno = REGNO (SET_SRC (set));
11195 links = LOG_LINKS (insn);
11196 }
11197 else
11198 break;
11199 }
11200 }
11201
11202 /* Scan X for promoted SUBREGs. For each one found,
11203 note what it implies to the registers used in it. */
11204
11205 static void
11206 check_promoted_subreg (rtx insn, rtx x)
11207 {
11208 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11209 && REG_P (SUBREG_REG (x)))
11210 record_promoted_value (insn, x);
11211 else
11212 {
11213 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11214 int i, j;
11215
11216 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11217 switch (format[i])
11218 {
11219 case 'e':
11220 check_promoted_subreg (insn, XEXP (x, i));
11221 break;
11222 case 'V':
11223 case 'E':
11224 if (XVEC (x, i) != 0)
11225 for (j = 0; j < XVECLEN (x, i); j++)
11226 check_promoted_subreg (insn, XVECEXP (x, i, j));
11227 break;
11228 }
11229 }
11230 }
11231 \f
11232 /* Utility routine for the following function. Verify that all the registers
11233 mentioned in *LOC are valid when *LOC was part of a value set when
11234 label_tick == TICK. Return 0 if some are not.
11235
11236 If REPLACE is nonzero, replace the invalid reference with
11237 (clobber (const_int 0)) and return 1. This replacement is useful because
11238 we often can get useful information about the form of a value (e.g., if
11239 it was produced by a shift that always produces -1 or 0) even though
11240 we don't know exactly what registers it was produced from. */
11241
11242 static int
11243 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11244 {
11245 rtx x = *loc;
11246 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11247 int len = GET_RTX_LENGTH (GET_CODE (x));
11248 int i;
11249
11250 if (REG_P (x))
11251 {
11252 unsigned int regno = REGNO (x);
11253 unsigned int endregno
11254 = regno + (regno < FIRST_PSEUDO_REGISTER
11255 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11256 unsigned int j;
11257
11258 for (j = regno; j < endregno; j++)
11259 if (reg_stat[j].last_set_invalid
11260 /* If this is a pseudo-register that was only set once and not
11261 live at the beginning of the function, it is always valid. */
11262 || (! (regno >= FIRST_PSEUDO_REGISTER
11263 && REG_N_SETS (regno) == 1
11264 && (! REGNO_REG_SET_P
11265 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11266 regno)))
11267 && reg_stat[j].last_set_label > tick))
11268 {
11269 if (replace)
11270 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11271 return replace;
11272 }
11273
11274 return 1;
11275 }
11276 /* If this is a memory reference, make sure that there were
11277 no stores after it that might have clobbered the value. We don't
11278 have alias info, so we assume any store invalidates it. */
11279 else if (MEM_P (x) && !MEM_READONLY_P (x)
11280 && INSN_CUID (insn) <= mem_last_set)
11281 {
11282 if (replace)
11283 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11284 return replace;
11285 }
11286
11287 for (i = 0; i < len; i++)
11288 {
11289 if (fmt[i] == 'e')
11290 {
11291 /* Check for identical subexpressions. If x contains
11292 identical subexpression we only have to traverse one of
11293 them. */
11294 if (i == 1 && ARITHMETIC_P (x))
11295 {
11296 /* Note that at this point x0 has already been checked
11297 and found valid. */
11298 rtx x0 = XEXP (x, 0);
11299 rtx x1 = XEXP (x, 1);
11300
11301 /* If x0 and x1 are identical then x is also valid. */
11302 if (x0 == x1)
11303 return 1;
11304
11305 /* If x1 is identical to a subexpression of x0 then
11306 while checking x0, x1 has already been checked. Thus
11307 it is valid and so as x. */
11308 if (ARITHMETIC_P (x0)
11309 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11310 return 1;
11311
11312 /* If x0 is identical to a subexpression of x1 then x is
11313 valid iff the rest of x1 is valid. */
11314 if (ARITHMETIC_P (x1)
11315 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11316 return
11317 get_last_value_validate (&XEXP (x1,
11318 x0 == XEXP (x1, 0) ? 1 : 0),
11319 insn, tick, replace);
11320 }
11321
11322 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11323 replace) == 0)
11324 return 0;
11325 }
11326 /* Don't bother with these. They shouldn't occur anyway. */
11327 else if (fmt[i] == 'E')
11328 return 0;
11329 }
11330
11331 /* If we haven't found a reason for it to be invalid, it is valid. */
11332 return 1;
11333 }
11334
11335 /* Get the last value assigned to X, if known. Some registers
11336 in the value may be replaced with (clobber (const_int 0)) if their value
11337 is known longer known reliably. */
11338
11339 static rtx
11340 get_last_value (rtx x)
11341 {
11342 unsigned int regno;
11343 rtx value;
11344
11345 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11346 then convert it to the desired mode. If this is a paradoxical SUBREG,
11347 we cannot predict what values the "extra" bits might have. */
11348 if (GET_CODE (x) == SUBREG
11349 && subreg_lowpart_p (x)
11350 && (GET_MODE_SIZE (GET_MODE (x))
11351 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11352 && (value = get_last_value (SUBREG_REG (x))) != 0)
11353 return gen_lowpart (GET_MODE (x), value);
11354
11355 if (!REG_P (x))
11356 return 0;
11357
11358 regno = REGNO (x);
11359 value = reg_stat[regno].last_set_value;
11360
11361 /* If we don't have a value, or if it isn't for this basic block and
11362 it's either a hard register, set more than once, or it's a live
11363 at the beginning of the function, return 0.
11364
11365 Because if it's not live at the beginning of the function then the reg
11366 is always set before being used (is never used without being set).
11367 And, if it's set only once, and it's always set before use, then all
11368 uses must have the same last value, even if it's not from this basic
11369 block. */
11370
11371 if (value == 0
11372 || (reg_stat[regno].last_set_label != label_tick
11373 && (regno < FIRST_PSEUDO_REGISTER
11374 || REG_N_SETS (regno) != 1
11375 || (REGNO_REG_SET_P
11376 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11377 regno)))))
11378 return 0;
11379
11380 /* If the value was set in a later insn than the ones we are processing,
11381 we can't use it even if the register was only set once. */
11382 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11383 return 0;
11384
11385 /* If the value has all its registers valid, return it. */
11386 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11387 reg_stat[regno].last_set_label, 0))
11388 return value;
11389
11390 /* Otherwise, make a copy and replace any invalid register with
11391 (clobber (const_int 0)). If that fails for some reason, return 0. */
11392
11393 value = copy_rtx (value);
11394 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11395 reg_stat[regno].last_set_label, 1))
11396 return value;
11397
11398 return 0;
11399 }
11400 \f
11401 /* Return nonzero if expression X refers to a REG or to memory
11402 that is set in an instruction more recent than FROM_CUID. */
11403
11404 static int
11405 use_crosses_set_p (rtx x, int from_cuid)
11406 {
11407 const char *fmt;
11408 int i;
11409 enum rtx_code code = GET_CODE (x);
11410
11411 if (code == REG)
11412 {
11413 unsigned int regno = REGNO (x);
11414 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11415 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11416
11417 #ifdef PUSH_ROUNDING
11418 /* Don't allow uses of the stack pointer to be moved,
11419 because we don't know whether the move crosses a push insn. */
11420 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11421 return 1;
11422 #endif
11423 for (; regno < endreg; regno++)
11424 if (reg_stat[regno].last_set
11425 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11426 return 1;
11427 return 0;
11428 }
11429
11430 if (code == MEM && mem_last_set > from_cuid)
11431 return 1;
11432
11433 fmt = GET_RTX_FORMAT (code);
11434
11435 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11436 {
11437 if (fmt[i] == 'E')
11438 {
11439 int j;
11440 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11441 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11442 return 1;
11443 }
11444 else if (fmt[i] == 'e'
11445 && use_crosses_set_p (XEXP (x, i), from_cuid))
11446 return 1;
11447 }
11448 return 0;
11449 }
11450 \f
11451 /* Define three variables used for communication between the following
11452 routines. */
11453
11454 static unsigned int reg_dead_regno, reg_dead_endregno;
11455 static int reg_dead_flag;
11456
11457 /* Function called via note_stores from reg_dead_at_p.
11458
11459 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11460 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11461
11462 static void
11463 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11464 {
11465 unsigned int regno, endregno;
11466
11467 if (!REG_P (dest))
11468 return;
11469
11470 regno = REGNO (dest);
11471 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11472 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11473
11474 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11475 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11476 }
11477
11478 /* Return nonzero if REG is known to be dead at INSN.
11479
11480 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11481 referencing REG, it is dead. If we hit a SET referencing REG, it is
11482 live. Otherwise, see if it is live or dead at the start of the basic
11483 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11484 must be assumed to be always live. */
11485
11486 static int
11487 reg_dead_at_p (rtx reg, rtx insn)
11488 {
11489 basic_block block;
11490 unsigned int i;
11491
11492 /* Set variables for reg_dead_at_p_1. */
11493 reg_dead_regno = REGNO (reg);
11494 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11495 ? hard_regno_nregs[reg_dead_regno]
11496 [GET_MODE (reg)]
11497 : 1);
11498
11499 reg_dead_flag = 0;
11500
11501 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11502 we allow the machine description to decide whether use-and-clobber
11503 patterns are OK. */
11504 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11505 {
11506 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11507 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11508 return 0;
11509 }
11510
11511 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11512 beginning of function. */
11513 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11514 insn = prev_nonnote_insn (insn))
11515 {
11516 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11517 if (reg_dead_flag)
11518 return reg_dead_flag == 1 ? 1 : 0;
11519
11520 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11521 return 1;
11522 }
11523
11524 /* Get the basic block that we were in. */
11525 if (insn == 0)
11526 block = ENTRY_BLOCK_PTR->next_bb;
11527 else
11528 {
11529 FOR_EACH_BB (block)
11530 if (insn == BB_HEAD (block))
11531 break;
11532
11533 if (block == EXIT_BLOCK_PTR)
11534 return 0;
11535 }
11536
11537 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11538 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11539 return 0;
11540
11541 return 1;
11542 }
11543 \f
11544 /* Note hard registers in X that are used. This code is similar to
11545 that in flow.c, but much simpler since we don't care about pseudos. */
11546
11547 static void
11548 mark_used_regs_combine (rtx x)
11549 {
11550 RTX_CODE code = GET_CODE (x);
11551 unsigned int regno;
11552 int i;
11553
11554 switch (code)
11555 {
11556 case LABEL_REF:
11557 case SYMBOL_REF:
11558 case CONST_INT:
11559 case CONST:
11560 case CONST_DOUBLE:
11561 case CONST_VECTOR:
11562 case PC:
11563 case ADDR_VEC:
11564 case ADDR_DIFF_VEC:
11565 case ASM_INPUT:
11566 #ifdef HAVE_cc0
11567 /* CC0 must die in the insn after it is set, so we don't need to take
11568 special note of it here. */
11569 case CC0:
11570 #endif
11571 return;
11572
11573 case CLOBBER:
11574 /* If we are clobbering a MEM, mark any hard registers inside the
11575 address as used. */
11576 if (MEM_P (XEXP (x, 0)))
11577 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11578 return;
11579
11580 case REG:
11581 regno = REGNO (x);
11582 /* A hard reg in a wide mode may really be multiple registers.
11583 If so, mark all of them just like the first. */
11584 if (regno < FIRST_PSEUDO_REGISTER)
11585 {
11586 unsigned int endregno, r;
11587
11588 /* None of this applies to the stack, frame or arg pointers. */
11589 if (regno == STACK_POINTER_REGNUM
11590 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11591 || regno == HARD_FRAME_POINTER_REGNUM
11592 #endif
11593 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11594 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11595 #endif
11596 || regno == FRAME_POINTER_REGNUM)
11597 return;
11598
11599 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11600 for (r = regno; r < endregno; r++)
11601 SET_HARD_REG_BIT (newpat_used_regs, r);
11602 }
11603 return;
11604
11605 case SET:
11606 {
11607 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11608 the address. */
11609 rtx testreg = SET_DEST (x);
11610
11611 while (GET_CODE (testreg) == SUBREG
11612 || GET_CODE (testreg) == ZERO_EXTRACT
11613 || GET_CODE (testreg) == STRICT_LOW_PART)
11614 testreg = XEXP (testreg, 0);
11615
11616 if (MEM_P (testreg))
11617 mark_used_regs_combine (XEXP (testreg, 0));
11618
11619 mark_used_regs_combine (SET_SRC (x));
11620 }
11621 return;
11622
11623 default:
11624 break;
11625 }
11626
11627 /* Recursively scan the operands of this expression. */
11628
11629 {
11630 const char *fmt = GET_RTX_FORMAT (code);
11631
11632 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11633 {
11634 if (fmt[i] == 'e')
11635 mark_used_regs_combine (XEXP (x, i));
11636 else if (fmt[i] == 'E')
11637 {
11638 int j;
11639
11640 for (j = 0; j < XVECLEN (x, i); j++)
11641 mark_used_regs_combine (XVECEXP (x, i, j));
11642 }
11643 }
11644 }
11645 }
11646 \f
11647 /* Remove register number REGNO from the dead registers list of INSN.
11648
11649 Return the note used to record the death, if there was one. */
11650
11651 rtx
11652 remove_death (unsigned int regno, rtx insn)
11653 {
11654 rtx note = find_regno_note (insn, REG_DEAD, regno);
11655
11656 if (note)
11657 {
11658 REG_N_DEATHS (regno)--;
11659 remove_note (insn, note);
11660 }
11661
11662 return note;
11663 }
11664
11665 /* For each register (hardware or pseudo) used within expression X, if its
11666 death is in an instruction with cuid between FROM_CUID (inclusive) and
11667 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11668 list headed by PNOTES.
11669
11670 That said, don't move registers killed by maybe_kill_insn.
11671
11672 This is done when X is being merged by combination into TO_INSN. These
11673 notes will then be distributed as needed. */
11674
11675 static void
11676 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11677 rtx *pnotes)
11678 {
11679 const char *fmt;
11680 int len, i;
11681 enum rtx_code code = GET_CODE (x);
11682
11683 if (code == REG)
11684 {
11685 unsigned int regno = REGNO (x);
11686 rtx where_dead = reg_stat[regno].last_death;
11687 rtx before_dead, after_dead;
11688
11689 /* Don't move the register if it gets killed in between from and to. */
11690 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11691 && ! reg_referenced_p (x, maybe_kill_insn))
11692 return;
11693
11694 /* WHERE_DEAD could be a USE insn made by combine, so first we
11695 make sure that we have insns with valid INSN_CUID values. */
11696 before_dead = where_dead;
11697 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11698 before_dead = PREV_INSN (before_dead);
11699
11700 after_dead = where_dead;
11701 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11702 after_dead = NEXT_INSN (after_dead);
11703
11704 if (before_dead && after_dead
11705 && INSN_CUID (before_dead) >= from_cuid
11706 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11707 || (where_dead != after_dead
11708 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11709 {
11710 rtx note = remove_death (regno, where_dead);
11711
11712 /* It is possible for the call above to return 0. This can occur
11713 when last_death points to I2 or I1 that we combined with.
11714 In that case make a new note.
11715
11716 We must also check for the case where X is a hard register
11717 and NOTE is a death note for a range of hard registers
11718 including X. In that case, we must put REG_DEAD notes for
11719 the remaining registers in place of NOTE. */
11720
11721 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11722 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11723 > GET_MODE_SIZE (GET_MODE (x))))
11724 {
11725 unsigned int deadregno = REGNO (XEXP (note, 0));
11726 unsigned int deadend
11727 = (deadregno + hard_regno_nregs[deadregno]
11728 [GET_MODE (XEXP (note, 0))]);
11729 unsigned int ourend
11730 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11731 unsigned int i;
11732
11733 for (i = deadregno; i < deadend; i++)
11734 if (i < regno || i >= ourend)
11735 REG_NOTES (where_dead)
11736 = gen_rtx_EXPR_LIST (REG_DEAD,
11737 regno_reg_rtx[i],
11738 REG_NOTES (where_dead));
11739 }
11740
11741 /* If we didn't find any note, or if we found a REG_DEAD note that
11742 covers only part of the given reg, and we have a multi-reg hard
11743 register, then to be safe we must check for REG_DEAD notes
11744 for each register other than the first. They could have
11745 their own REG_DEAD notes lying around. */
11746 else if ((note == 0
11747 || (note != 0
11748 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11749 < GET_MODE_SIZE (GET_MODE (x)))))
11750 && regno < FIRST_PSEUDO_REGISTER
11751 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11752 {
11753 unsigned int ourend
11754 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11755 unsigned int i, offset;
11756 rtx oldnotes = 0;
11757
11758 if (note)
11759 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11760 else
11761 offset = 1;
11762
11763 for (i = regno + offset; i < ourend; i++)
11764 move_deaths (regno_reg_rtx[i],
11765 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11766 }
11767
11768 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11769 {
11770 XEXP (note, 1) = *pnotes;
11771 *pnotes = note;
11772 }
11773 else
11774 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11775
11776 REG_N_DEATHS (regno)++;
11777 }
11778
11779 return;
11780 }
11781
11782 else if (GET_CODE (x) == SET)
11783 {
11784 rtx dest = SET_DEST (x);
11785
11786 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11787
11788 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11789 that accesses one word of a multi-word item, some
11790 piece of everything register in the expression is used by
11791 this insn, so remove any old death. */
11792 /* ??? So why do we test for equality of the sizes? */
11793
11794 if (GET_CODE (dest) == ZERO_EXTRACT
11795 || GET_CODE (dest) == STRICT_LOW_PART
11796 || (GET_CODE (dest) == SUBREG
11797 && (((GET_MODE_SIZE (GET_MODE (dest))
11798 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11799 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11800 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11801 {
11802 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11803 return;
11804 }
11805
11806 /* If this is some other SUBREG, we know it replaces the entire
11807 value, so use that as the destination. */
11808 if (GET_CODE (dest) == SUBREG)
11809 dest = SUBREG_REG (dest);
11810
11811 /* If this is a MEM, adjust deaths of anything used in the address.
11812 For a REG (the only other possibility), the entire value is
11813 being replaced so the old value is not used in this insn. */
11814
11815 if (MEM_P (dest))
11816 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11817 to_insn, pnotes);
11818 return;
11819 }
11820
11821 else if (GET_CODE (x) == CLOBBER)
11822 return;
11823
11824 len = GET_RTX_LENGTH (code);
11825 fmt = GET_RTX_FORMAT (code);
11826
11827 for (i = 0; i < len; i++)
11828 {
11829 if (fmt[i] == 'E')
11830 {
11831 int j;
11832 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11833 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11834 to_insn, pnotes);
11835 }
11836 else if (fmt[i] == 'e')
11837 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11838 }
11839 }
11840 \f
11841 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11842 pattern of an insn. X must be a REG. */
11843
11844 static int
11845 reg_bitfield_target_p (rtx x, rtx body)
11846 {
11847 int i;
11848
11849 if (GET_CODE (body) == SET)
11850 {
11851 rtx dest = SET_DEST (body);
11852 rtx target;
11853 unsigned int regno, tregno, endregno, endtregno;
11854
11855 if (GET_CODE (dest) == ZERO_EXTRACT)
11856 target = XEXP (dest, 0);
11857 else if (GET_CODE (dest) == STRICT_LOW_PART)
11858 target = SUBREG_REG (XEXP (dest, 0));
11859 else
11860 return 0;
11861
11862 if (GET_CODE (target) == SUBREG)
11863 target = SUBREG_REG (target);
11864
11865 if (!REG_P (target))
11866 return 0;
11867
11868 tregno = REGNO (target), regno = REGNO (x);
11869 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11870 return target == x;
11871
11872 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11873 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11874
11875 return endregno > tregno && regno < endtregno;
11876 }
11877
11878 else if (GET_CODE (body) == PARALLEL)
11879 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11880 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11881 return 1;
11882
11883 return 0;
11884 }
11885 \f
11886 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11887 as appropriate. I3 and I2 are the insns resulting from the combination
11888 insns including FROM (I2 may be zero).
11889
11890 Each note in the list is either ignored or placed on some insns, depending
11891 on the type of note. */
11892
11893 static void
11894 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11895 {
11896 rtx note, next_note;
11897 rtx tem;
11898
11899 for (note = notes; note; note = next_note)
11900 {
11901 rtx place = 0, place2 = 0;
11902
11903 /* If this NOTE references a pseudo register, ensure it references
11904 the latest copy of that register. */
11905 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11906 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11907 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11908
11909 next_note = XEXP (note, 1);
11910 switch (REG_NOTE_KIND (note))
11911 {
11912 case REG_BR_PROB:
11913 case REG_BR_PRED:
11914 /* Doesn't matter much where we put this, as long as it's somewhere.
11915 It is preferable to keep these notes on branches, which is most
11916 likely to be i3. */
11917 place = i3;
11918 break;
11919
11920 case REG_VALUE_PROFILE:
11921 /* Just get rid of this note, as it is unused later anyway. */
11922 break;
11923
11924 case REG_NON_LOCAL_GOTO:
11925 if (JUMP_P (i3))
11926 place = i3;
11927 else
11928 {
11929 gcc_assert (i2 && JUMP_P (i2));
11930 place = i2;
11931 }
11932 break;
11933
11934 case REG_EH_REGION:
11935 /* These notes must remain with the call or trapping instruction. */
11936 if (CALL_P (i3))
11937 place = i3;
11938 else if (i2 && CALL_P (i2))
11939 place = i2;
11940 else
11941 {
11942 gcc_assert (flag_non_call_exceptions);
11943 if (may_trap_p (i3))
11944 place = i3;
11945 else if (i2 && may_trap_p (i2))
11946 place = i2;
11947 /* ??? Otherwise assume we've combined things such that we
11948 can now prove that the instructions can't trap. Drop the
11949 note in this case. */
11950 }
11951 break;
11952
11953 case REG_NORETURN:
11954 case REG_SETJMP:
11955 /* These notes must remain with the call. It should not be
11956 possible for both I2 and I3 to be a call. */
11957 if (CALL_P (i3))
11958 place = i3;
11959 else
11960 {
11961 gcc_assert (i2 && CALL_P (i2));
11962 place = i2;
11963 }
11964 break;
11965
11966 case REG_UNUSED:
11967 /* Any clobbers for i3 may still exist, and so we must process
11968 REG_UNUSED notes from that insn.
11969
11970 Any clobbers from i2 or i1 can only exist if they were added by
11971 recog_for_combine. In that case, recog_for_combine created the
11972 necessary REG_UNUSED notes. Trying to keep any original
11973 REG_UNUSED notes from these insns can cause incorrect output
11974 if it is for the same register as the original i3 dest.
11975 In that case, we will notice that the register is set in i3,
11976 and then add a REG_UNUSED note for the destination of i3, which
11977 is wrong. However, it is possible to have REG_UNUSED notes from
11978 i2 or i1 for register which were both used and clobbered, so
11979 we keep notes from i2 or i1 if they will turn into REG_DEAD
11980 notes. */
11981
11982 /* If this register is set or clobbered in I3, put the note there
11983 unless there is one already. */
11984 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11985 {
11986 if (from_insn != i3)
11987 break;
11988
11989 if (! (REG_P (XEXP (note, 0))
11990 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11991 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11992 place = i3;
11993 }
11994 /* Otherwise, if this register is used by I3, then this register
11995 now dies here, so we must put a REG_DEAD note here unless there
11996 is one already. */
11997 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11998 && ! (REG_P (XEXP (note, 0))
11999 ? find_regno_note (i3, REG_DEAD,
12000 REGNO (XEXP (note, 0)))
12001 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12002 {
12003 PUT_REG_NOTE_KIND (note, REG_DEAD);
12004 place = i3;
12005 }
12006 break;
12007
12008 case REG_EQUAL:
12009 case REG_EQUIV:
12010 case REG_NOALIAS:
12011 /* These notes say something about results of an insn. We can
12012 only support them if they used to be on I3 in which case they
12013 remain on I3. Otherwise they are ignored.
12014
12015 If the note refers to an expression that is not a constant, we
12016 must also ignore the note since we cannot tell whether the
12017 equivalence is still true. It might be possible to do
12018 slightly better than this (we only have a problem if I2DEST
12019 or I1DEST is present in the expression), but it doesn't
12020 seem worth the trouble. */
12021
12022 if (from_insn == i3
12023 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12024 place = i3;
12025 break;
12026
12027 case REG_INC:
12028 case REG_NO_CONFLICT:
12029 /* These notes say something about how a register is used. They must
12030 be present on any use of the register in I2 or I3. */
12031 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12032 place = i3;
12033
12034 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12035 {
12036 if (place)
12037 place2 = i2;
12038 else
12039 place = i2;
12040 }
12041 break;
12042
12043 case REG_LABEL:
12044 /* This can show up in several ways -- either directly in the
12045 pattern, or hidden off in the constant pool with (or without?)
12046 a REG_EQUAL note. */
12047 /* ??? Ignore the without-reg_equal-note problem for now. */
12048 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12049 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12050 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12051 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12052 place = i3;
12053
12054 if (i2
12055 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12056 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12057 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12058 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12059 {
12060 if (place)
12061 place2 = i2;
12062 else
12063 place = i2;
12064 }
12065
12066 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12067 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12068 if (place && JUMP_P (place))
12069 {
12070 rtx label = JUMP_LABEL (place);
12071
12072 if (!label)
12073 JUMP_LABEL (place) = XEXP (note, 0);
12074 else
12075 {
12076 gcc_assert (label == XEXP (note, 0));
12077 if (LABEL_P (label))
12078 LABEL_NUSES (label)--;
12079 }
12080 place = 0;
12081 }
12082 if (place2 && JUMP_P (place2))
12083 {
12084 rtx label = JUMP_LABEL (place2);
12085
12086 if (!label)
12087 JUMP_LABEL (place2) = XEXP (note, 0);
12088 else
12089 {
12090 gcc_assert (label == XEXP (note, 0));
12091 if (LABEL_P (label))
12092 LABEL_NUSES (label)--;
12093 }
12094 place2 = 0;
12095 }
12096 break;
12097
12098 case REG_NONNEG:
12099 /* This note says something about the value of a register prior
12100 to the execution of an insn. It is too much trouble to see
12101 if the note is still correct in all situations. It is better
12102 to simply delete it. */
12103 break;
12104
12105 case REG_RETVAL:
12106 /* If the insn previously containing this note still exists,
12107 put it back where it was. Otherwise move it to the previous
12108 insn. Adjust the corresponding REG_LIBCALL note. */
12109 if (!NOTE_P (from_insn))
12110 place = from_insn;
12111 else
12112 {
12113 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12114 place = prev_real_insn (from_insn);
12115 if (tem && place)
12116 XEXP (tem, 0) = place;
12117 /* If we're deleting the last remaining instruction of a
12118 libcall sequence, don't add the notes. */
12119 else if (XEXP (note, 0) == from_insn)
12120 tem = place = 0;
12121 /* Don't add the dangling REG_RETVAL note. */
12122 else if (! tem)
12123 place = 0;
12124 }
12125 break;
12126
12127 case REG_LIBCALL:
12128 /* This is handled similarly to REG_RETVAL. */
12129 if (!NOTE_P (from_insn))
12130 place = from_insn;
12131 else
12132 {
12133 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12134 place = next_real_insn (from_insn);
12135 if (tem && place)
12136 XEXP (tem, 0) = place;
12137 /* If we're deleting the last remaining instruction of a
12138 libcall sequence, don't add the notes. */
12139 else if (XEXP (note, 0) == from_insn)
12140 tem = place = 0;
12141 /* Don't add the dangling REG_LIBCALL note. */
12142 else if (! tem)
12143 place = 0;
12144 }
12145 break;
12146
12147 case REG_DEAD:
12148 /* If the register is used as an input in I3, it dies there.
12149 Similarly for I2, if it is nonzero and adjacent to I3.
12150
12151 If the register is not used as an input in either I3 or I2
12152 and it is not one of the registers we were supposed to eliminate,
12153 there are two possibilities. We might have a non-adjacent I2
12154 or we might have somehow eliminated an additional register
12155 from a computation. For example, we might have had A & B where
12156 we discover that B will always be zero. In this case we will
12157 eliminate the reference to A.
12158
12159 In both cases, we must search to see if we can find a previous
12160 use of A and put the death note there. */
12161
12162 if (from_insn
12163 && CALL_P (from_insn)
12164 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12165 place = from_insn;
12166 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12167 place = i3;
12168 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12169 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12170 place = i2;
12171
12172 if (place == 0)
12173 {
12174 basic_block bb = this_basic_block;
12175
12176 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12177 {
12178 if (! INSN_P (tem))
12179 {
12180 if (tem == BB_HEAD (bb))
12181 break;
12182 continue;
12183 }
12184
12185 /* If the register is being set at TEM, see if that is all
12186 TEM is doing. If so, delete TEM. Otherwise, make this
12187 into a REG_UNUSED note instead. Don't delete sets to
12188 global register vars. */
12189 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12190 || !global_regs[REGNO (XEXP (note, 0))])
12191 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12192 {
12193 rtx set = single_set (tem);
12194 rtx inner_dest = 0;
12195 #ifdef HAVE_cc0
12196 rtx cc0_setter = NULL_RTX;
12197 #endif
12198
12199 if (set != 0)
12200 for (inner_dest = SET_DEST (set);
12201 (GET_CODE (inner_dest) == STRICT_LOW_PART
12202 || GET_CODE (inner_dest) == SUBREG
12203 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12204 inner_dest = XEXP (inner_dest, 0))
12205 ;
12206
12207 /* Verify that it was the set, and not a clobber that
12208 modified the register.
12209
12210 CC0 targets must be careful to maintain setter/user
12211 pairs. If we cannot delete the setter due to side
12212 effects, mark the user with an UNUSED note instead
12213 of deleting it. */
12214
12215 if (set != 0 && ! side_effects_p (SET_SRC (set))
12216 && rtx_equal_p (XEXP (note, 0), inner_dest)
12217 #ifdef HAVE_cc0
12218 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12219 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12220 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12221 #endif
12222 )
12223 {
12224 /* Move the notes and links of TEM elsewhere.
12225 This might delete other dead insns recursively.
12226 First set the pattern to something that won't use
12227 any register. */
12228 rtx old_notes = REG_NOTES (tem);
12229
12230 PATTERN (tem) = pc_rtx;
12231 REG_NOTES (tem) = NULL;
12232
12233 distribute_notes (old_notes, tem, tem, NULL_RTX);
12234 distribute_links (LOG_LINKS (tem));
12235
12236 SET_INSN_DELETED (tem);
12237
12238 #ifdef HAVE_cc0
12239 /* Delete the setter too. */
12240 if (cc0_setter)
12241 {
12242 PATTERN (cc0_setter) = pc_rtx;
12243 old_notes = REG_NOTES (cc0_setter);
12244 REG_NOTES (cc0_setter) = NULL;
12245
12246 distribute_notes (old_notes, cc0_setter,
12247 cc0_setter, NULL_RTX);
12248 distribute_links (LOG_LINKS (cc0_setter));
12249
12250 SET_INSN_DELETED (cc0_setter);
12251 }
12252 #endif
12253 }
12254 else
12255 {
12256 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12257
12258 /* If there isn't already a REG_UNUSED note, put one
12259 here. Do not place a REG_DEAD note, even if
12260 the register is also used here; that would not
12261 match the algorithm used in lifetime analysis
12262 and can cause the consistency check in the
12263 scheduler to fail. */
12264 if (! find_regno_note (tem, REG_UNUSED,
12265 REGNO (XEXP (note, 0))))
12266 place = tem;
12267 break;
12268 }
12269 }
12270 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12271 || (CALL_P (tem)
12272 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12273 {
12274 place = tem;
12275
12276 /* If we are doing a 3->2 combination, and we have a
12277 register which formerly died in i3 and was not used
12278 by i2, which now no longer dies in i3 and is used in
12279 i2 but does not die in i2, and place is between i2
12280 and i3, then we may need to move a link from place to
12281 i2. */
12282 if (i2 && INSN_UID (place) <= max_uid_cuid
12283 && INSN_CUID (place) > INSN_CUID (i2)
12284 && from_insn
12285 && INSN_CUID (from_insn) > INSN_CUID (i2)
12286 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12287 {
12288 rtx links = LOG_LINKS (place);
12289 LOG_LINKS (place) = 0;
12290 distribute_links (links);
12291 }
12292 break;
12293 }
12294
12295 if (tem == BB_HEAD (bb))
12296 break;
12297 }
12298
12299 /* We haven't found an insn for the death note and it
12300 is still a REG_DEAD note, but we have hit the beginning
12301 of the block. If the existing life info says the reg
12302 was dead, there's nothing left to do. Otherwise, we'll
12303 need to do a global life update after combine. */
12304 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12305 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12306 REGNO (XEXP (note, 0))))
12307 SET_BIT (refresh_blocks, this_basic_block->index);
12308 }
12309
12310 /* If the register is set or already dead at PLACE, we needn't do
12311 anything with this note if it is still a REG_DEAD note.
12312 We check here if it is set at all, not if is it totally replaced,
12313 which is what `dead_or_set_p' checks, so also check for it being
12314 set partially. */
12315
12316 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12317 {
12318 unsigned int regno = REGNO (XEXP (note, 0));
12319
12320 /* Similarly, if the instruction on which we want to place
12321 the note is a noop, we'll need do a global live update
12322 after we remove them in delete_noop_moves. */
12323 if (noop_move_p (place))
12324 SET_BIT (refresh_blocks, this_basic_block->index);
12325
12326 if (dead_or_set_p (place, XEXP (note, 0))
12327 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12328 {
12329 /* Unless the register previously died in PLACE, clear
12330 last_death. [I no longer understand why this is
12331 being done.] */
12332 if (reg_stat[regno].last_death != place)
12333 reg_stat[regno].last_death = 0;
12334 place = 0;
12335 }
12336 else
12337 reg_stat[regno].last_death = place;
12338
12339 /* If this is a death note for a hard reg that is occupying
12340 multiple registers, ensure that we are still using all
12341 parts of the object. If we find a piece of the object
12342 that is unused, we must arrange for an appropriate REG_DEAD
12343 note to be added for it. However, we can't just emit a USE
12344 and tag the note to it, since the register might actually
12345 be dead; so we recourse, and the recursive call then finds
12346 the previous insn that used this register. */
12347
12348 if (place && regno < FIRST_PSEUDO_REGISTER
12349 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12350 {
12351 unsigned int endregno
12352 = regno + hard_regno_nregs[regno]
12353 [GET_MODE (XEXP (note, 0))];
12354 int all_used = 1;
12355 unsigned int i;
12356
12357 for (i = regno; i < endregno; i++)
12358 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12359 && ! find_regno_fusage (place, USE, i))
12360 || dead_or_set_regno_p (place, i))
12361 all_used = 0;
12362
12363 if (! all_used)
12364 {
12365 /* Put only REG_DEAD notes for pieces that are
12366 not already dead or set. */
12367
12368 for (i = regno; i < endregno;
12369 i += hard_regno_nregs[i][reg_raw_mode[i]])
12370 {
12371 rtx piece = regno_reg_rtx[i];
12372 basic_block bb = this_basic_block;
12373
12374 if (! dead_or_set_p (place, piece)
12375 && ! reg_bitfield_target_p (piece,
12376 PATTERN (place)))
12377 {
12378 rtx new_note
12379 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12380
12381 distribute_notes (new_note, place, place,
12382 NULL_RTX);
12383 }
12384 else if (! refers_to_regno_p (i, i + 1,
12385 PATTERN (place), 0)
12386 && ! find_regno_fusage (place, USE, i))
12387 for (tem = PREV_INSN (place); ;
12388 tem = PREV_INSN (tem))
12389 {
12390 if (! INSN_P (tem))
12391 {
12392 if (tem == BB_HEAD (bb))
12393 {
12394 SET_BIT (refresh_blocks,
12395 this_basic_block->index);
12396 break;
12397 }
12398 continue;
12399 }
12400 if (dead_or_set_p (tem, piece)
12401 || reg_bitfield_target_p (piece,
12402 PATTERN (tem)))
12403 {
12404 REG_NOTES (tem)
12405 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12406 REG_NOTES (tem));
12407 break;
12408 }
12409 }
12410
12411 }
12412
12413 place = 0;
12414 }
12415 }
12416 }
12417 break;
12418
12419 default:
12420 /* Any other notes should not be present at this point in the
12421 compilation. */
12422 gcc_unreachable ();
12423 }
12424
12425 if (place)
12426 {
12427 XEXP (note, 1) = REG_NOTES (place);
12428 REG_NOTES (place) = note;
12429 }
12430 else if ((REG_NOTE_KIND (note) == REG_DEAD
12431 || REG_NOTE_KIND (note) == REG_UNUSED)
12432 && REG_P (XEXP (note, 0)))
12433 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12434
12435 if (place2)
12436 {
12437 if ((REG_NOTE_KIND (note) == REG_DEAD
12438 || REG_NOTE_KIND (note) == REG_UNUSED)
12439 && REG_P (XEXP (note, 0)))
12440 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12441
12442 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12443 REG_NOTE_KIND (note),
12444 XEXP (note, 0),
12445 REG_NOTES (place2));
12446 }
12447 }
12448 }
12449 \f
12450 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12451 I3, I2, and I1 to new locations. This is also called to add a link
12452 pointing at I3 when I3's destination is changed. */
12453
12454 static void
12455 distribute_links (rtx links)
12456 {
12457 rtx link, next_link;
12458
12459 for (link = links; link; link = next_link)
12460 {
12461 rtx place = 0;
12462 rtx insn;
12463 rtx set, reg;
12464
12465 next_link = XEXP (link, 1);
12466
12467 /* If the insn that this link points to is a NOTE or isn't a single
12468 set, ignore it. In the latter case, it isn't clear what we
12469 can do other than ignore the link, since we can't tell which
12470 register it was for. Such links wouldn't be used by combine
12471 anyway.
12472
12473 It is not possible for the destination of the target of the link to
12474 have been changed by combine. The only potential of this is if we
12475 replace I3, I2, and I1 by I3 and I2. But in that case the
12476 destination of I2 also remains unchanged. */
12477
12478 if (NOTE_P (XEXP (link, 0))
12479 || (set = single_set (XEXP (link, 0))) == 0)
12480 continue;
12481
12482 reg = SET_DEST (set);
12483 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12484 || GET_CODE (reg) == STRICT_LOW_PART)
12485 reg = XEXP (reg, 0);
12486
12487 /* A LOG_LINK is defined as being placed on the first insn that uses
12488 a register and points to the insn that sets the register. Start
12489 searching at the next insn after the target of the link and stop
12490 when we reach a set of the register or the end of the basic block.
12491
12492 Note that this correctly handles the link that used to point from
12493 I3 to I2. Also note that not much searching is typically done here
12494 since most links don't point very far away. */
12495
12496 for (insn = NEXT_INSN (XEXP (link, 0));
12497 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12498 || BB_HEAD (this_basic_block->next_bb) != insn));
12499 insn = NEXT_INSN (insn))
12500 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12501 {
12502 if (reg_referenced_p (reg, PATTERN (insn)))
12503 place = insn;
12504 break;
12505 }
12506 else if (CALL_P (insn)
12507 && find_reg_fusage (insn, USE, reg))
12508 {
12509 place = insn;
12510 break;
12511 }
12512 else if (INSN_P (insn) && reg_set_p (reg, insn))
12513 break;
12514
12515 /* If we found a place to put the link, place it there unless there
12516 is already a link to the same insn as LINK at that point. */
12517
12518 if (place)
12519 {
12520 rtx link2;
12521
12522 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12523 if (XEXP (link2, 0) == XEXP (link, 0))
12524 break;
12525
12526 if (link2 == 0)
12527 {
12528 XEXP (link, 1) = LOG_LINKS (place);
12529 LOG_LINKS (place) = link;
12530
12531 /* Set added_links_insn to the earliest insn we added a
12532 link to. */
12533 if (added_links_insn == 0
12534 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12535 added_links_insn = place;
12536 }
12537 }
12538 }
12539 }
12540 \f
12541 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12542 Check whether the expression pointer to by LOC is a register or
12543 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12544 Otherwise return zero. */
12545
12546 static int
12547 unmentioned_reg_p_1 (rtx *loc, void *expr)
12548 {
12549 rtx x = *loc;
12550
12551 if (x != NULL_RTX
12552 && (REG_P (x) || MEM_P (x))
12553 && ! reg_mentioned_p (x, (rtx) expr))
12554 return 1;
12555 return 0;
12556 }
12557
12558 /* Check for any register or memory mentioned in EQUIV that is not
12559 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12560 of EXPR where some registers may have been replaced by constants. */
12561
12562 static bool
12563 unmentioned_reg_p (rtx equiv, rtx expr)
12564 {
12565 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12566 }
12567 \f
12568 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12569
12570 static int
12571 insn_cuid (rtx insn)
12572 {
12573 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12574 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12575 insn = NEXT_INSN (insn);
12576
12577 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12578
12579 return INSN_CUID (insn);
12580 }
12581 \f
12582 void
12583 dump_combine_stats (FILE *file)
12584 {
12585 fprintf
12586 (file,
12587 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12588 combine_attempts, combine_merges, combine_extras, combine_successes);
12589 }
12590
12591 void
12592 dump_combine_total_stats (FILE *file)
12593 {
12594 fprintf
12595 (file,
12596 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12597 total_attempts, total_merges, total_extras, total_successes);
12598 }
12599 \f
12600
12601 static bool
12602 gate_handle_combine (void)
12603 {
12604 return (optimize > 0);
12605 }
12606
12607 /* Try combining insns through substitution. */
12608 static void
12609 rest_of_handle_combine (void)
12610 {
12611 int rebuild_jump_labels_after_combine
12612 = combine_instructions (get_insns (), max_reg_num ());
12613
12614 /* Combining insns may have turned an indirect jump into a
12615 direct jump. Rebuild the JUMP_LABEL fields of jumping
12616 instructions. */
12617 if (rebuild_jump_labels_after_combine)
12618 {
12619 timevar_push (TV_JUMP);
12620 rebuild_jump_labels (get_insns ());
12621 timevar_pop (TV_JUMP);
12622
12623 delete_dead_jumptables ();
12624 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12625 }
12626 }
12627
12628 struct tree_opt_pass pass_combine =
12629 {
12630 "combine", /* name */
12631 gate_handle_combine, /* gate */
12632 rest_of_handle_combine, /* execute */
12633 NULL, /* sub */
12634 NULL, /* next */
12635 0, /* static_pass_number */
12636 TV_COMBINE, /* tv_id */
12637 0, /* properties_required */
12638 0, /* properties_provided */
12639 0, /* properties_destroyed */
12640 0, /* todo_flags_start */
12641 TODO_dump_func |
12642 TODO_ggc_collect, /* todo_flags_finish */
12643 'c' /* letter */
12644 };
12645
This page took 0.669432 seconds and 6 git commands to generate.