]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
re PR middle-end/17503 (quadratic behaviour in invalid_mode_change_p)
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
96
97 /* Number of attempts to combine instructions in this function. */
98
99 static int combine_attempts;
100
101 /* Number of attempts that got as far as substitution in this function. */
102
103 static int combine_merges;
104
105 /* Number of instructions combined with added SETs in this function. */
106
107 static int combine_extras;
108
109 /* Number of instructions combined in this function. */
110
111 static int combine_successes;
112
113 /* Totals over entire compilation. */
114
115 static int total_attempts, total_merges, total_extras, total_successes;
116
117 \f
118 /* Vector mapping INSN_UIDs to cuids.
119 The cuids are like uids but increase monotonically always.
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
124
125 static int *uid_cuid;
126 static int max_uid_cuid;
127
128 /* Get the cuid of an insn. */
129
130 #define INSN_CUID(INSN) \
131 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
132
133 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
135
136 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
138
139 /* Maximum register number, which is the size of the tables below. */
140
141 static unsigned int combine_max_regno;
142
143 struct reg_stat {
144 /* Record last point of death of (hard or pseudo) register n. */
145 rtx last_death;
146
147 /* Record last point of modification of (hard or pseudo) register n. */
148 rtx last_set;
149
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
155
156 We use an approach similar to that used by cse, but change it in the
157 following ways:
158
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
162
163 Therefore, we maintain the following fields:
164
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
172 register's value
173
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
177 table.
178
179 (The next two parameters are out of date).
180
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
183
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
188
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
192
193 /* Record last value assigned to (hard or pseudo) register n. */
194
195 rtx last_set_value;
196
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
199
200 int last_set_table_tick;
201
202 /* Record the value of label_tick when the value for register n is placed in
203 last_set_value. */
204
205 int last_set_label;
206
207 /* These fields are maintained in parallel with last_set_value and are
208 used to store the mode in which the register was last set, the bits
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
211
212 unsigned HOST_WIDE_INT last_set_nonzero_bits;
213 char last_set_sign_bit_copies;
214 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
215
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
219
220 char last_set_invalid;
221
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
226
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
230 zero.
231
232 If an entry is zero, it means that we don't know anything special. */
233
234 unsigned char sign_bit_copies;
235
236 unsigned HOST_WIDE_INT nonzero_bits;
237 };
238
239 static struct reg_stat *reg_stat;
240
241 /* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
243
244 static int mem_last_set;
245
246 /* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
248
249 static int last_call_cuid;
250
251 /* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
256
257 static rtx subst_insn;
258
259 /* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
265
266 static int subst_low_cuid;
267
268 /* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
270
271 static HARD_REG_SET newpat_used_regs;
272
273 /* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
275 that location. */
276
277 static rtx added_links_insn;
278
279 /* Basic block in which we are performing combines. */
280 static basic_block this_basic_block;
281
282 /* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
284 those blocks as starting points. */
285 static sbitmap refresh_blocks;
286 \f
287 /* The following array records the insn_rtx_cost for every insn
288 in the instruction stream. */
289
290 static int *uid_insn_cost;
291
292 /* Length of the currently allocated uid_insn_cost array. */
293
294 static int last_insn_cost;
295
296 /* Incremented for each label. */
297
298 static int label_tick;
299
300 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
302
303 static enum machine_mode nonzero_bits_mode;
304
305 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
309 in a loop. */
310
311 static int nonzero_sign_valid;
312
313 \f
314 /* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
317
318 struct undo
319 {
320 struct undo *next;
321 int is_int;
322 union {rtx r; int i;} old_contents;
323 union {rtx *r; int *i;} where;
324 };
325
326 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
328
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too. */
331
332 struct undobuf
333 {
334 struct undo *undos;
335 struct undo *frees;
336 rtx other_insn;
337 };
338
339 static struct undobuf undobuf;
340
341 /* Number of times the pseudo being substituted for
342 was found and replaced. */
343
344 static int n_occurrences;
345
346 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
347 enum machine_mode,
348 unsigned HOST_WIDE_INT,
349 unsigned HOST_WIDE_INT *);
350 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
351 enum machine_mode,
352 unsigned int, unsigned int *);
353 static void do_SUBST (rtx *, rtx);
354 static void do_SUBST_INT (int *, int);
355 static void init_reg_last (void);
356 static void setup_incoming_promotions (void);
357 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
358 static int cant_combine_insn_p (rtx);
359 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
360 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
361 static int contains_muldiv (rtx);
362 static rtx try_combine (rtx, rtx, rtx, int *);
363 static void undo_all (void);
364 static void undo_commit (void);
365 static rtx *find_split_point (rtx *, rtx);
366 static rtx subst (rtx, rtx, rtx, int, int);
367 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
368 static rtx simplify_if_then_else (rtx);
369 static rtx simplify_set (rtx);
370 static rtx simplify_logical (rtx);
371 static rtx expand_compound_operation (rtx);
372 static rtx expand_field_assignment (rtx);
373 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
374 rtx, unsigned HOST_WIDE_INT, int, int, int);
375 static rtx extract_left_shift (rtx, int);
376 static rtx make_compound_operation (rtx, enum rtx_code);
377 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx force_to_mode (rtx, enum machine_mode,
380 unsigned HOST_WIDE_INT, rtx, int);
381 static rtx if_then_else_cond (rtx, rtx *, rtx *);
382 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
383 static int rtx_equal_for_field_assignment_p (rtx, rtx);
384 static rtx make_field_assignment (rtx);
385 static rtx apply_distributive_law (rtx);
386 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
387 unsigned HOST_WIDE_INT);
388 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392 static int recog_for_combine (rtx *, rtx, rtx *);
393 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
394 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
395 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396 static void update_table_tick (rtx);
397 static void record_value_for_reg (rtx, rtx, rtx);
398 static void check_promoted_subreg (rtx, rtx);
399 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400 static void record_dead_and_set_regs (rtx);
401 static int get_last_value_validate (rtx *, rtx, int, int);
402 static rtx get_last_value (rtx);
403 static int use_crosses_set_p (rtx, int);
404 static void reg_dead_at_p_1 (rtx, rtx, void *);
405 static int reg_dead_at_p (rtx, rtx);
406 static void move_deaths (rtx, rtx, int, rtx, rtx *);
407 static int reg_bitfield_target_p (rtx, rtx);
408 static void distribute_notes (rtx, rtx, rtx, rtx);
409 static void distribute_links (rtx);
410 static void mark_used_regs_combine (rtx);
411 static int insn_cuid (rtx);
412 static void record_promoted_value (rtx, rtx);
413 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414 static enum rtx_code combine_reversed_comparison_code (rtx);
415 static int unmentioned_reg_p_1 (rtx *, void *);
416 static bool unmentioned_reg_p (rtx, rtx);
417 \f
418
419 /* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421 #undef RTL_HOOKS_GEN_LOWPART
422 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
423
424 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
425 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
426
427 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
429
430 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
431
432 \f
433 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
437 the undo table. */
438
439 static void
440 do_SUBST (rtx *into, rtx newval)
441 {
442 struct undo *buf;
443 rtx oldval = *into;
444
445 if (oldval == newval)
446 return;
447
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
454 && GET_CODE (newval) == CONST_INT)
455 {
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
458 gcc_assert (INTVAL (newval)
459 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
460
461 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
462 CONST_INT is not valid, because after the replacement, the
463 original mode would be gone. Unfortunately, we can't tell
464 when do_SUBST is called to replace the operand thereof, so we
465 perform this test on oldval instead, checking whether an
466 invalid replacement took place before we got here. */
467 gcc_assert (!(GET_CODE (oldval) == SUBREG
468 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
469 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
470 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
471 }
472
473 if (undobuf.frees)
474 buf = undobuf.frees, undobuf.frees = buf->next;
475 else
476 buf = xmalloc (sizeof (struct undo));
477
478 buf->is_int = 0;
479 buf->where.r = into;
480 buf->old_contents.r = oldval;
481 *into = newval;
482
483 buf->next = undobuf.undos, undobuf.undos = buf;
484 }
485
486 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
487
488 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
489 for the value of a HOST_WIDE_INT value (including CONST_INT) is
490 not safe. */
491
492 static void
493 do_SUBST_INT (int *into, int newval)
494 {
495 struct undo *buf;
496 int oldval = *into;
497
498 if (oldval == newval)
499 return;
500
501 if (undobuf.frees)
502 buf = undobuf.frees, undobuf.frees = buf->next;
503 else
504 buf = xmalloc (sizeof (struct undo));
505
506 buf->is_int = 1;
507 buf->where.i = into;
508 buf->old_contents.i = oldval;
509 *into = newval;
510
511 buf->next = undobuf.undos, undobuf.undos = buf;
512 }
513
514 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
515 \f
516 /* Subroutine of try_combine. Determine whether the combine replacement
517 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
518 that the original instruction sequence I1, I2 and I3. Note that I1
519 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
520 costs of all instructions can be estimated, and the replacements are
521 more expensive than the original sequence. */
522
523 static bool
524 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
525 {
526 int i1_cost, i2_cost, i3_cost;
527 int new_i2_cost, new_i3_cost;
528 int old_cost, new_cost;
529
530 /* Lookup the original insn_rtx_costs. */
531 i2_cost = INSN_UID (i2) <= last_insn_cost
532 ? uid_insn_cost[INSN_UID (i2)] : 0;
533 i3_cost = INSN_UID (i3) <= last_insn_cost
534 ? uid_insn_cost[INSN_UID (i3)] : 0;
535
536 if (i1)
537 {
538 i1_cost = INSN_UID (i1) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i1)] : 0;
540 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
541 ? i1_cost + i2_cost + i3_cost : 0;
542 }
543 else
544 {
545 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
546 i1_cost = 0;
547 }
548
549 /* Calculate the replacement insn_rtx_costs. */
550 new_i3_cost = insn_rtx_cost (newpat);
551 if (newi2pat)
552 {
553 new_i2_cost = insn_rtx_cost (newi2pat);
554 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
555 ? new_i2_cost + new_i3_cost : 0;
556 }
557 else
558 {
559 new_cost = new_i3_cost;
560 new_i2_cost = 0;
561 }
562
563 /* Disallow this recombination if both new_cost and old_cost are
564 greater than zero, and new_cost is greater than old cost. */
565 if (!undobuf.other_insn
566 && old_cost > 0
567 && new_cost > old_cost)
568 {
569 if (dump_file)
570 {
571 if (i1)
572 {
573 fprintf (dump_file,
574 "rejecting combination of insns %d, %d and %d\n",
575 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
576 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
577 i1_cost, i2_cost, i3_cost, old_cost);
578 }
579 else
580 {
581 fprintf (dump_file,
582 "rejecting combination of insns %d and %d\n",
583 INSN_UID (i2), INSN_UID (i3));
584 fprintf (dump_file, "original costs %d + %d = %d\n",
585 i2_cost, i3_cost, old_cost);
586 }
587
588 if (newi2pat)
589 {
590 fprintf (dump_file, "replacement costs %d + %d = %d\n",
591 new_i2_cost, new_i3_cost, new_cost);
592 }
593 else
594 fprintf (dump_file, "replacement cost %d\n", new_cost);
595 }
596
597 return false;
598 }
599
600 /* Update the uid_insn_cost array with the replacement costs. */
601 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
602 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
603 if (i1)
604 uid_insn_cost[INSN_UID (i1)] = 0;
605
606 return true;
607 }
608 \f
609 /* Main entry point for combiner. F is the first insn of the function.
610 NREGS is the first unused pseudo-reg number.
611
612 Return nonzero if the combiner has turned an indirect jump
613 instruction into a direct jump. */
614 int
615 combine_instructions (rtx f, unsigned int nregs)
616 {
617 rtx insn, next;
618 #ifdef HAVE_cc0
619 rtx prev;
620 #endif
621 int i;
622 rtx links, nextlinks;
623
624 int new_direct_jump_p = 0;
625
626 combine_attempts = 0;
627 combine_merges = 0;
628 combine_extras = 0;
629 combine_successes = 0;
630
631 combine_max_regno = nregs;
632
633 rtl_hooks = combine_rtl_hooks;
634
635 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
636
637 init_recog_no_volatile ();
638
639 /* Compute maximum uid value so uid_cuid can be allocated. */
640
641 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
642 if (INSN_UID (insn) > i)
643 i = INSN_UID (insn);
644
645 uid_cuid = xmalloc ((i + 1) * sizeof (int));
646 max_uid_cuid = i;
647
648 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
649
650 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
651 problems when, for example, we have j <<= 1 in a loop. */
652
653 nonzero_sign_valid = 0;
654
655 /* Compute the mapping from uids to cuids.
656 Cuids are numbers assigned to insns, like uids,
657 except that cuids increase monotonically through the code.
658
659 Scan all SETs and see if we can deduce anything about what
660 bits are known to be zero for some registers and how many copies
661 of the sign bit are known to exist for those registers.
662
663 Also set any known values so that we can use it while searching
664 for what bits are known to be set. */
665
666 label_tick = 1;
667
668 setup_incoming_promotions ();
669
670 refresh_blocks = sbitmap_alloc (last_basic_block);
671 sbitmap_zero (refresh_blocks);
672
673 /* Allocate array of current insn_rtx_costs. */
674 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
675 last_insn_cost = max_uid_cuid;
676
677 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
678 {
679 uid_cuid[INSN_UID (insn)] = ++i;
680 subst_low_cuid = i;
681 subst_insn = insn;
682
683 if (INSN_P (insn))
684 {
685 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
686 NULL);
687 record_dead_and_set_regs (insn);
688
689 #ifdef AUTO_INC_DEC
690 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
691 if (REG_NOTE_KIND (links) == REG_INC)
692 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
693 NULL);
694 #endif
695
696 /* Record the current insn_rtx_cost of this instruction. */
697 if (NONJUMP_INSN_P (insn))
698 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
699 if (dump_file)
700 fprintf(dump_file, "insn_cost %d: %d\n",
701 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
702 }
703
704 if (LABEL_P (insn))
705 label_tick++;
706 }
707
708 nonzero_sign_valid = 1;
709
710 /* Now scan all the insns in forward order. */
711
712 label_tick = 1;
713 last_call_cuid = 0;
714 mem_last_set = 0;
715 init_reg_last ();
716 setup_incoming_promotions ();
717
718 FOR_EACH_BB (this_basic_block)
719 {
720 for (insn = BB_HEAD (this_basic_block);
721 insn != NEXT_INSN (BB_END (this_basic_block));
722 insn = next ? next : NEXT_INSN (insn))
723 {
724 next = 0;
725
726 if (LABEL_P (insn))
727 label_tick++;
728
729 else if (INSN_P (insn))
730 {
731 /* See if we know about function return values before this
732 insn based upon SUBREG flags. */
733 check_promoted_subreg (insn, PATTERN (insn));
734
735 /* Try this insn with each insn it links back to. */
736
737 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
738 if ((next = try_combine (insn, XEXP (links, 0),
739 NULL_RTX, &new_direct_jump_p)) != 0)
740 goto retry;
741
742 /* Try each sequence of three linked insns ending with this one. */
743
744 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
745 {
746 rtx link = XEXP (links, 0);
747
748 /* If the linked insn has been replaced by a note, then there
749 is no point in pursuing this chain any further. */
750 if (NOTE_P (link))
751 continue;
752
753 for (nextlinks = LOG_LINKS (link);
754 nextlinks;
755 nextlinks = XEXP (nextlinks, 1))
756 if ((next = try_combine (insn, link,
757 XEXP (nextlinks, 0),
758 &new_direct_jump_p)) != 0)
759 goto retry;
760 }
761
762 #ifdef HAVE_cc0
763 /* Try to combine a jump insn that uses CC0
764 with a preceding insn that sets CC0, and maybe with its
765 logical predecessor as well.
766 This is how we make decrement-and-branch insns.
767 We need this special code because data flow connections
768 via CC0 do not get entered in LOG_LINKS. */
769
770 if (JUMP_P (insn)
771 && (prev = prev_nonnote_insn (insn)) != 0
772 && NONJUMP_INSN_P (prev)
773 && sets_cc0_p (PATTERN (prev)))
774 {
775 if ((next = try_combine (insn, prev,
776 NULL_RTX, &new_direct_jump_p)) != 0)
777 goto retry;
778
779 for (nextlinks = LOG_LINKS (prev); nextlinks;
780 nextlinks = XEXP (nextlinks, 1))
781 if ((next = try_combine (insn, prev,
782 XEXP (nextlinks, 0),
783 &new_direct_jump_p)) != 0)
784 goto retry;
785 }
786
787 /* Do the same for an insn that explicitly references CC0. */
788 if (NONJUMP_INSN_P (insn)
789 && (prev = prev_nonnote_insn (insn)) != 0
790 && NONJUMP_INSN_P (prev)
791 && sets_cc0_p (PATTERN (prev))
792 && GET_CODE (PATTERN (insn)) == SET
793 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
794 {
795 if ((next = try_combine (insn, prev,
796 NULL_RTX, &new_direct_jump_p)) != 0)
797 goto retry;
798
799 for (nextlinks = LOG_LINKS (prev); nextlinks;
800 nextlinks = XEXP (nextlinks, 1))
801 if ((next = try_combine (insn, prev,
802 XEXP (nextlinks, 0),
803 &new_direct_jump_p)) != 0)
804 goto retry;
805 }
806
807 /* Finally, see if any of the insns that this insn links to
808 explicitly references CC0. If so, try this insn, that insn,
809 and its predecessor if it sets CC0. */
810 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
811 if (NONJUMP_INSN_P (XEXP (links, 0))
812 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
813 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
814 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
815 && NONJUMP_INSN_P (prev)
816 && sets_cc0_p (PATTERN (prev))
817 && (next = try_combine (insn, XEXP (links, 0),
818 prev, &new_direct_jump_p)) != 0)
819 goto retry;
820 #endif
821
822 /* Try combining an insn with two different insns whose results it
823 uses. */
824 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
825 for (nextlinks = XEXP (links, 1); nextlinks;
826 nextlinks = XEXP (nextlinks, 1))
827 if ((next = try_combine (insn, XEXP (links, 0),
828 XEXP (nextlinks, 0),
829 &new_direct_jump_p)) != 0)
830 goto retry;
831
832 /* Try this insn with each REG_EQUAL note it links back to. */
833 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
834 {
835 rtx set, note;
836 rtx temp = XEXP (links, 0);
837 if ((set = single_set (temp)) != 0
838 && (note = find_reg_equal_equiv_note (temp)) != 0
839 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
840 /* Avoid using a register that may already been marked
841 dead by an earlier instruction. */
842 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
843 {
844 /* Temporarily replace the set's source with the
845 contents of the REG_EQUAL note. The insn will
846 be deleted or recognized by try_combine. */
847 rtx orig = SET_SRC (set);
848 SET_SRC (set) = XEXP (note, 0);
849 next = try_combine (insn, temp, NULL_RTX,
850 &new_direct_jump_p);
851 if (next)
852 goto retry;
853 SET_SRC (set) = orig;
854 }
855 }
856
857 if (!NOTE_P (insn))
858 record_dead_and_set_regs (insn);
859
860 retry:
861 ;
862 }
863 }
864 }
865 clear_bb_flags ();
866
867 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
868 BASIC_BLOCK (i)->flags |= BB_DIRTY);
869 new_direct_jump_p |= purge_all_dead_edges (0);
870 delete_noop_moves ();
871
872 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
873 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
874 | PROP_KILL_DEAD_CODE);
875
876 /* Clean up. */
877 sbitmap_free (refresh_blocks);
878 free (uid_insn_cost);
879 free (reg_stat);
880 free (uid_cuid);
881
882 {
883 struct undo *undo, *next;
884 for (undo = undobuf.frees; undo; undo = next)
885 {
886 next = undo->next;
887 free (undo);
888 }
889 undobuf.frees = 0;
890 }
891
892 total_attempts += combine_attempts;
893 total_merges += combine_merges;
894 total_extras += combine_extras;
895 total_successes += combine_successes;
896
897 nonzero_sign_valid = 0;
898 rtl_hooks = general_rtl_hooks;
899
900 /* Make recognizer allow volatile MEMs again. */
901 init_recog ();
902
903 return new_direct_jump_p;
904 }
905
906 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
907
908 static void
909 init_reg_last (void)
910 {
911 unsigned int i;
912 for (i = 0; i < combine_max_regno; i++)
913 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
914 }
915 \f
916 /* Set up any promoted values for incoming argument registers. */
917
918 static void
919 setup_incoming_promotions (void)
920 {
921 unsigned int regno;
922 rtx reg;
923 enum machine_mode mode;
924 int unsignedp;
925 rtx first = get_insns ();
926
927 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
928 {
929 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
930 /* Check whether this register can hold an incoming pointer
931 argument. FUNCTION_ARG_REGNO_P tests outgoing register
932 numbers, so translate if necessary due to register windows. */
933 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
934 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
935 {
936 record_value_for_reg
937 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
938 : SIGN_EXTEND),
939 GET_MODE (reg),
940 gen_rtx_CLOBBER (mode, const0_rtx)));
941 }
942 }
943 }
944 \f
945 /* Called via note_stores. If X is a pseudo that is narrower than
946 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
947
948 If we are setting only a portion of X and we can't figure out what
949 portion, assume all bits will be used since we don't know what will
950 be happening.
951
952 Similarly, set how many bits of X are known to be copies of the sign bit
953 at all locations in the function. This is the smallest number implied
954 by any set of X. */
955
956 static void
957 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
958 void *data ATTRIBUTE_UNUSED)
959 {
960 unsigned int num;
961
962 if (REG_P (x)
963 && REGNO (x) >= FIRST_PSEUDO_REGISTER
964 /* If this register is undefined at the start of the file, we can't
965 say what its contents were. */
966 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
967 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
968 {
969 if (set == 0 || GET_CODE (set) == CLOBBER)
970 {
971 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
972 reg_stat[REGNO (x)].sign_bit_copies = 1;
973 return;
974 }
975
976 /* If this is a complex assignment, see if we can convert it into a
977 simple assignment. */
978 set = expand_field_assignment (set);
979
980 /* If this is a simple assignment, or we have a paradoxical SUBREG,
981 set what we know about X. */
982
983 if (SET_DEST (set) == x
984 || (GET_CODE (SET_DEST (set)) == SUBREG
985 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
986 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
987 && SUBREG_REG (SET_DEST (set)) == x))
988 {
989 rtx src = SET_SRC (set);
990
991 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
992 /* If X is narrower than a word and SRC is a non-negative
993 constant that would appear negative in the mode of X,
994 sign-extend it for use in reg_stat[].nonzero_bits because some
995 machines (maybe most) will actually do the sign-extension
996 and this is the conservative approach.
997
998 ??? For 2.5, try to tighten up the MD files in this regard
999 instead of this kludge. */
1000
1001 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1002 && GET_CODE (src) == CONST_INT
1003 && INTVAL (src) > 0
1004 && 0 != (INTVAL (src)
1005 & ((HOST_WIDE_INT) 1
1006 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1007 src = GEN_INT (INTVAL (src)
1008 | ((HOST_WIDE_INT) (-1)
1009 << GET_MODE_BITSIZE (GET_MODE (x))));
1010 #endif
1011
1012 /* Don't call nonzero_bits if it cannot change anything. */
1013 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1014 reg_stat[REGNO (x)].nonzero_bits
1015 |= nonzero_bits (src, nonzero_bits_mode);
1016 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1017 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1018 || reg_stat[REGNO (x)].sign_bit_copies > num)
1019 reg_stat[REGNO (x)].sign_bit_copies = num;
1020 }
1021 else
1022 {
1023 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1024 reg_stat[REGNO (x)].sign_bit_copies = 1;
1025 }
1026 }
1027 }
1028 \f
1029 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1030 insns that were previously combined into I3 or that will be combined
1031 into the merger of INSN and I3.
1032
1033 Return 0 if the combination is not allowed for any reason.
1034
1035 If the combination is allowed, *PDEST will be set to the single
1036 destination of INSN and *PSRC to the single source, and this function
1037 will return 1. */
1038
1039 static int
1040 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1041 rtx *pdest, rtx *psrc)
1042 {
1043 int i;
1044 rtx set = 0, src, dest;
1045 rtx p;
1046 #ifdef AUTO_INC_DEC
1047 rtx link;
1048 #endif
1049 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1050 && next_active_insn (succ) == i3)
1051 : next_active_insn (insn) == i3);
1052
1053 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1054 or a PARALLEL consisting of such a SET and CLOBBERs.
1055
1056 If INSN has CLOBBER parallel parts, ignore them for our processing.
1057 By definition, these happen during the execution of the insn. When it
1058 is merged with another insn, all bets are off. If they are, in fact,
1059 needed and aren't also supplied in I3, they may be added by
1060 recog_for_combine. Otherwise, it won't match.
1061
1062 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1063 note.
1064
1065 Get the source and destination of INSN. If more than one, can't
1066 combine. */
1067
1068 if (GET_CODE (PATTERN (insn)) == SET)
1069 set = PATTERN (insn);
1070 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1071 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1072 {
1073 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1074 {
1075 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1076 rtx note;
1077
1078 switch (GET_CODE (elt))
1079 {
1080 /* This is important to combine floating point insns
1081 for the SH4 port. */
1082 case USE:
1083 /* Combining an isolated USE doesn't make sense.
1084 We depend here on combinable_i3pat to reject them. */
1085 /* The code below this loop only verifies that the inputs of
1086 the SET in INSN do not change. We call reg_set_between_p
1087 to verify that the REG in the USE does not change between
1088 I3 and INSN.
1089 If the USE in INSN was for a pseudo register, the matching
1090 insn pattern will likely match any register; combining this
1091 with any other USE would only be safe if we knew that the
1092 used registers have identical values, or if there was
1093 something to tell them apart, e.g. different modes. For
1094 now, we forgo such complicated tests and simply disallow
1095 combining of USES of pseudo registers with any other USE. */
1096 if (REG_P (XEXP (elt, 0))
1097 && GET_CODE (PATTERN (i3)) == PARALLEL)
1098 {
1099 rtx i3pat = PATTERN (i3);
1100 int i = XVECLEN (i3pat, 0) - 1;
1101 unsigned int regno = REGNO (XEXP (elt, 0));
1102
1103 do
1104 {
1105 rtx i3elt = XVECEXP (i3pat, 0, i);
1106
1107 if (GET_CODE (i3elt) == USE
1108 && REG_P (XEXP (i3elt, 0))
1109 && (REGNO (XEXP (i3elt, 0)) == regno
1110 ? reg_set_between_p (XEXP (elt, 0),
1111 PREV_INSN (insn), i3)
1112 : regno >= FIRST_PSEUDO_REGISTER))
1113 return 0;
1114 }
1115 while (--i >= 0);
1116 }
1117 break;
1118
1119 /* We can ignore CLOBBERs. */
1120 case CLOBBER:
1121 break;
1122
1123 case SET:
1124 /* Ignore SETs whose result isn't used but not those that
1125 have side-effects. */
1126 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1127 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1128 || INTVAL (XEXP (note, 0)) <= 0)
1129 && ! side_effects_p (elt))
1130 break;
1131
1132 /* If we have already found a SET, this is a second one and
1133 so we cannot combine with this insn. */
1134 if (set)
1135 return 0;
1136
1137 set = elt;
1138 break;
1139
1140 default:
1141 /* Anything else means we can't combine. */
1142 return 0;
1143 }
1144 }
1145
1146 if (set == 0
1147 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1148 so don't do anything with it. */
1149 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1150 return 0;
1151 }
1152 else
1153 return 0;
1154
1155 if (set == 0)
1156 return 0;
1157
1158 set = expand_field_assignment (set);
1159 src = SET_SRC (set), dest = SET_DEST (set);
1160
1161 /* Don't eliminate a store in the stack pointer. */
1162 if (dest == stack_pointer_rtx
1163 /* Don't combine with an insn that sets a register to itself if it has
1164 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1165 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1166 /* Can't merge an ASM_OPERANDS. */
1167 || GET_CODE (src) == ASM_OPERANDS
1168 /* Can't merge a function call. */
1169 || GET_CODE (src) == CALL
1170 /* Don't eliminate a function call argument. */
1171 || (CALL_P (i3)
1172 && (find_reg_fusage (i3, USE, dest)
1173 || (REG_P (dest)
1174 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1175 && global_regs[REGNO (dest)])))
1176 /* Don't substitute into an incremented register. */
1177 || FIND_REG_INC_NOTE (i3, dest)
1178 || (succ && FIND_REG_INC_NOTE (succ, dest))
1179 #if 0
1180 /* Don't combine the end of a libcall into anything. */
1181 /* ??? This gives worse code, and appears to be unnecessary, since no
1182 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1183 use REG_RETVAL notes for noconflict blocks, but other code here
1184 makes sure that those insns don't disappear. */
1185 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1186 #endif
1187 /* Make sure that DEST is not used after SUCC but before I3. */
1188 || (succ && ! all_adjacent
1189 && reg_used_between_p (dest, succ, i3))
1190 /* Make sure that the value that is to be substituted for the register
1191 does not use any registers whose values alter in between. However,
1192 If the insns are adjacent, a use can't cross a set even though we
1193 think it might (this can happen for a sequence of insns each setting
1194 the same destination; last_set of that register might point to
1195 a NOTE). If INSN has a REG_EQUIV note, the register is always
1196 equivalent to the memory so the substitution is valid even if there
1197 are intervening stores. Also, don't move a volatile asm or
1198 UNSPEC_VOLATILE across any other insns. */
1199 || (! all_adjacent
1200 && (((!MEM_P (src)
1201 || ! find_reg_note (insn, REG_EQUIV, src))
1202 && use_crosses_set_p (src, INSN_CUID (insn)))
1203 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1204 || GET_CODE (src) == UNSPEC_VOLATILE))
1205 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1206 better register allocation by not doing the combine. */
1207 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1208 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1209 /* Don't combine across a CALL_INSN, because that would possibly
1210 change whether the life span of some REGs crosses calls or not,
1211 and it is a pain to update that information.
1212 Exception: if source is a constant, moving it later can't hurt.
1213 Accept that special case, because it helps -fforce-addr a lot. */
1214 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1215 return 0;
1216
1217 /* DEST must either be a REG or CC0. */
1218 if (REG_P (dest))
1219 {
1220 /* If register alignment is being enforced for multi-word items in all
1221 cases except for parameters, it is possible to have a register copy
1222 insn referencing a hard register that is not allowed to contain the
1223 mode being copied and which would not be valid as an operand of most
1224 insns. Eliminate this problem by not combining with such an insn.
1225
1226 Also, on some machines we don't want to extend the life of a hard
1227 register. */
1228
1229 if (REG_P (src)
1230 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1231 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1232 /* Don't extend the life of a hard register unless it is
1233 user variable (if we have few registers) or it can't
1234 fit into the desired register (meaning something special
1235 is going on).
1236 Also avoid substituting a return register into I3, because
1237 reload can't handle a conflict with constraints of other
1238 inputs. */
1239 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1240 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1241 return 0;
1242 }
1243 else if (GET_CODE (dest) != CC0)
1244 return 0;
1245
1246
1247 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1248 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1249 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1250 {
1251 /* Don't substitute for a register intended as a clobberable
1252 operand. */
1253 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1254 if (rtx_equal_p (reg, dest))
1255 return 0;
1256
1257 /* If the clobber represents an earlyclobber operand, we must not
1258 substitute an expression containing the clobbered register.
1259 As we do not analyse the constraint strings here, we have to
1260 make the conservative assumption. However, if the register is
1261 a fixed hard reg, the clobber cannot represent any operand;
1262 we leave it up to the machine description to either accept or
1263 reject use-and-clobber patterns. */
1264 if (!REG_P (reg)
1265 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1266 || !fixed_regs[REGNO (reg)])
1267 if (reg_overlap_mentioned_p (reg, src))
1268 return 0;
1269 }
1270
1271 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1272 or not), reject, unless nothing volatile comes between it and I3 */
1273
1274 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1275 {
1276 /* Make sure succ doesn't contain a volatile reference. */
1277 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1278 return 0;
1279
1280 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1281 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1282 return 0;
1283 }
1284
1285 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1286 to be an explicit register variable, and was chosen for a reason. */
1287
1288 if (GET_CODE (src) == ASM_OPERANDS
1289 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1290 return 0;
1291
1292 /* If there are any volatile insns between INSN and I3, reject, because
1293 they might affect machine state. */
1294
1295 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1296 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1297 return 0;
1298
1299 /* If INSN or I2 contains an autoincrement or autodecrement,
1300 make sure that register is not used between there and I3,
1301 and not already used in I3 either.
1302 Also insist that I3 not be a jump; if it were one
1303 and the incremented register were spilled, we would lose. */
1304
1305 #ifdef AUTO_INC_DEC
1306 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1307 if (REG_NOTE_KIND (link) == REG_INC
1308 && (JUMP_P (i3)
1309 || reg_used_between_p (XEXP (link, 0), insn, i3)
1310 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1311 return 0;
1312 #endif
1313
1314 #ifdef HAVE_cc0
1315 /* Don't combine an insn that follows a CC0-setting insn.
1316 An insn that uses CC0 must not be separated from the one that sets it.
1317 We do, however, allow I2 to follow a CC0-setting insn if that insn
1318 is passed as I1; in that case it will be deleted also.
1319 We also allow combining in this case if all the insns are adjacent
1320 because that would leave the two CC0 insns adjacent as well.
1321 It would be more logical to test whether CC0 occurs inside I1 or I2,
1322 but that would be much slower, and this ought to be equivalent. */
1323
1324 p = prev_nonnote_insn (insn);
1325 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1326 && ! all_adjacent)
1327 return 0;
1328 #endif
1329
1330 /* If we get here, we have passed all the tests and the combination is
1331 to be allowed. */
1332
1333 *pdest = dest;
1334 *psrc = src;
1335
1336 return 1;
1337 }
1338 \f
1339 /* LOC is the location within I3 that contains its pattern or the component
1340 of a PARALLEL of the pattern. We validate that it is valid for combining.
1341
1342 One problem is if I3 modifies its output, as opposed to replacing it
1343 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1344 so would produce an insn that is not equivalent to the original insns.
1345
1346 Consider:
1347
1348 (set (reg:DI 101) (reg:DI 100))
1349 (set (subreg:SI (reg:DI 101) 0) <foo>)
1350
1351 This is NOT equivalent to:
1352
1353 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1354 (set (reg:DI 101) (reg:DI 100))])
1355
1356 Not only does this modify 100 (in which case it might still be valid
1357 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1358
1359 We can also run into a problem if I2 sets a register that I1
1360 uses and I1 gets directly substituted into I3 (not via I2). In that
1361 case, we would be getting the wrong value of I2DEST into I3, so we
1362 must reject the combination. This case occurs when I2 and I1 both
1363 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1364 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1365 of a SET must prevent combination from occurring.
1366
1367 Before doing the above check, we first try to expand a field assignment
1368 into a set of logical operations.
1369
1370 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1371 we place a register that is both set and used within I3. If more than one
1372 such register is detected, we fail.
1373
1374 Return 1 if the combination is valid, zero otherwise. */
1375
1376 static int
1377 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1378 int i1_not_in_src, rtx *pi3dest_killed)
1379 {
1380 rtx x = *loc;
1381
1382 if (GET_CODE (x) == SET)
1383 {
1384 rtx set = x ;
1385 rtx dest = SET_DEST (set);
1386 rtx src = SET_SRC (set);
1387 rtx inner_dest = dest;
1388
1389 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1390 || GET_CODE (inner_dest) == SUBREG
1391 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1392 inner_dest = XEXP (inner_dest, 0);
1393
1394 /* Check for the case where I3 modifies its output, as discussed
1395 above. We don't want to prevent pseudos from being combined
1396 into the address of a MEM, so only prevent the combination if
1397 i1 or i2 set the same MEM. */
1398 if ((inner_dest != dest &&
1399 (!MEM_P (inner_dest)
1400 || rtx_equal_p (i2dest, inner_dest)
1401 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1402 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1403 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1404
1405 /* This is the same test done in can_combine_p except we can't test
1406 all_adjacent; we don't have to, since this instruction will stay
1407 in place, thus we are not considering increasing the lifetime of
1408 INNER_DEST.
1409
1410 Also, if this insn sets a function argument, combining it with
1411 something that might need a spill could clobber a previous
1412 function argument; the all_adjacent test in can_combine_p also
1413 checks this; here, we do a more specific test for this case. */
1414
1415 || (REG_P (inner_dest)
1416 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1417 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1418 GET_MODE (inner_dest))))
1419 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1420 return 0;
1421
1422 /* If DEST is used in I3, it is being killed in this insn,
1423 so record that for later.
1424 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1425 STACK_POINTER_REGNUM, since these are always considered to be
1426 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1427 if (pi3dest_killed && REG_P (dest)
1428 && reg_referenced_p (dest, PATTERN (i3))
1429 && REGNO (dest) != FRAME_POINTER_REGNUM
1430 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1431 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1432 #endif
1433 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1434 && (REGNO (dest) != ARG_POINTER_REGNUM
1435 || ! fixed_regs [REGNO (dest)])
1436 #endif
1437 && REGNO (dest) != STACK_POINTER_REGNUM)
1438 {
1439 if (*pi3dest_killed)
1440 return 0;
1441
1442 *pi3dest_killed = dest;
1443 }
1444 }
1445
1446 else if (GET_CODE (x) == PARALLEL)
1447 {
1448 int i;
1449
1450 for (i = 0; i < XVECLEN (x, 0); i++)
1451 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1452 i1_not_in_src, pi3dest_killed))
1453 return 0;
1454 }
1455
1456 return 1;
1457 }
1458 \f
1459 /* Return 1 if X is an arithmetic expression that contains a multiplication
1460 and division. We don't count multiplications by powers of two here. */
1461
1462 static int
1463 contains_muldiv (rtx x)
1464 {
1465 switch (GET_CODE (x))
1466 {
1467 case MOD: case DIV: case UMOD: case UDIV:
1468 return 1;
1469
1470 case MULT:
1471 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1472 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1473 default:
1474 if (BINARY_P (x))
1475 return contains_muldiv (XEXP (x, 0))
1476 || contains_muldiv (XEXP (x, 1));
1477
1478 if (UNARY_P (x))
1479 return contains_muldiv (XEXP (x, 0));
1480
1481 return 0;
1482 }
1483 }
1484 \f
1485 /* Determine whether INSN can be used in a combination. Return nonzero if
1486 not. This is used in try_combine to detect early some cases where we
1487 can't perform combinations. */
1488
1489 static int
1490 cant_combine_insn_p (rtx insn)
1491 {
1492 rtx set;
1493 rtx src, dest;
1494
1495 /* If this isn't really an insn, we can't do anything.
1496 This can occur when flow deletes an insn that it has merged into an
1497 auto-increment address. */
1498 if (! INSN_P (insn))
1499 return 1;
1500
1501 /* Never combine loads and stores involving hard regs that are likely
1502 to be spilled. The register allocator can usually handle such
1503 reg-reg moves by tying. If we allow the combiner to make
1504 substitutions of likely-spilled regs, we may abort in reload.
1505 As an exception, we allow combinations involving fixed regs; these are
1506 not available to the register allocator so there's no risk involved. */
1507
1508 set = single_set (insn);
1509 if (! set)
1510 return 0;
1511 src = SET_SRC (set);
1512 dest = SET_DEST (set);
1513 if (GET_CODE (src) == SUBREG)
1514 src = SUBREG_REG (src);
1515 if (GET_CODE (dest) == SUBREG)
1516 dest = SUBREG_REG (dest);
1517 if (REG_P (src) && REG_P (dest)
1518 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1519 && ! fixed_regs[REGNO (src)]
1520 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1521 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1522 && ! fixed_regs[REGNO (dest)]
1523 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1524 return 1;
1525
1526 return 0;
1527 }
1528
1529 /* Adjust INSN after we made a change to its destination.
1530
1531 Changing the destination can invalidate notes that say something about
1532 the results of the insn and a LOG_LINK pointing to the insn. */
1533
1534 static void
1535 adjust_for_new_dest (rtx insn)
1536 {
1537 rtx *loc;
1538
1539 /* For notes, be conservative and simply remove them. */
1540 loc = &REG_NOTES (insn);
1541 while (*loc)
1542 {
1543 enum reg_note kind = REG_NOTE_KIND (*loc);
1544 if (kind == REG_EQUAL || kind == REG_EQUIV)
1545 *loc = XEXP (*loc, 1);
1546 else
1547 loc = &XEXP (*loc, 1);
1548 }
1549
1550 /* The new insn will have a destination that was previously the destination
1551 of an insn just above it. Call distribute_links to make a LOG_LINK from
1552 the next use of that destination. */
1553 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1554 }
1555
1556 /* Try to combine the insns I1 and I2 into I3.
1557 Here I1 and I2 appear earlier than I3.
1558 I1 can be zero; then we combine just I2 into I3.
1559
1560 If we are combining three insns and the resulting insn is not recognized,
1561 try splitting it into two insns. If that happens, I2 and I3 are retained
1562 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1563 are pseudo-deleted.
1564
1565 Return 0 if the combination does not work. Then nothing is changed.
1566 If we did the combination, return the insn at which combine should
1567 resume scanning.
1568
1569 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1570 new direct jump instruction. */
1571
1572 static rtx
1573 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1574 {
1575 /* New patterns for I3 and I2, respectively. */
1576 rtx newpat, newi2pat = 0;
1577 int substed_i2 = 0, substed_i1 = 0;
1578 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1579 int added_sets_1, added_sets_2;
1580 /* Total number of SETs to put into I3. */
1581 int total_sets;
1582 /* Nonzero if I2's body now appears in I3. */
1583 int i2_is_used;
1584 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1585 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1586 /* Contains I3 if the destination of I3 is used in its source, which means
1587 that the old life of I3 is being killed. If that usage is placed into
1588 I2 and not in I3, a REG_DEAD note must be made. */
1589 rtx i3dest_killed = 0;
1590 /* SET_DEST and SET_SRC of I2 and I1. */
1591 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1592 /* PATTERN (I2), or a copy of it in certain cases. */
1593 rtx i2pat;
1594 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1595 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1596 int i1_feeds_i3 = 0;
1597 /* Notes that must be added to REG_NOTES in I3 and I2. */
1598 rtx new_i3_notes, new_i2_notes;
1599 /* Notes that we substituted I3 into I2 instead of the normal case. */
1600 int i3_subst_into_i2 = 0;
1601 /* Notes that I1, I2 or I3 is a MULT operation. */
1602 int have_mult = 0;
1603 int swap_i2i3 = 0;
1604
1605 int maxreg;
1606 rtx temp;
1607 rtx link;
1608 int i;
1609
1610 /* Exit early if one of the insns involved can't be used for
1611 combinations. */
1612 if (cant_combine_insn_p (i3)
1613 || cant_combine_insn_p (i2)
1614 || (i1 && cant_combine_insn_p (i1))
1615 /* We also can't do anything if I3 has a
1616 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1617 libcall. */
1618 #if 0
1619 /* ??? This gives worse code, and appears to be unnecessary, since no
1620 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1621 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1622 #endif
1623 )
1624 return 0;
1625
1626 combine_attempts++;
1627 undobuf.other_insn = 0;
1628
1629 /* Reset the hard register usage information. */
1630 CLEAR_HARD_REG_SET (newpat_used_regs);
1631
1632 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1633 code below, set I1 to be the earlier of the two insns. */
1634 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1635 temp = i1, i1 = i2, i2 = temp;
1636
1637 added_links_insn = 0;
1638
1639 /* First check for one important special-case that the code below will
1640 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1641 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1642 we may be able to replace that destination with the destination of I3.
1643 This occurs in the common code where we compute both a quotient and
1644 remainder into a structure, in which case we want to do the computation
1645 directly into the structure to avoid register-register copies.
1646
1647 Note that this case handles both multiple sets in I2 and also
1648 cases where I2 has a number of CLOBBER or PARALLELs.
1649
1650 We make very conservative checks below and only try to handle the
1651 most common cases of this. For example, we only handle the case
1652 where I2 and I3 are adjacent to avoid making difficult register
1653 usage tests. */
1654
1655 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1656 && REG_P (SET_SRC (PATTERN (i3)))
1657 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1658 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1659 && GET_CODE (PATTERN (i2)) == PARALLEL
1660 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1661 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1662 below would need to check what is inside (and reg_overlap_mentioned_p
1663 doesn't support those codes anyway). Don't allow those destinations;
1664 the resulting insn isn't likely to be recognized anyway. */
1665 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1666 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1667 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1668 SET_DEST (PATTERN (i3)))
1669 && next_real_insn (i2) == i3)
1670 {
1671 rtx p2 = PATTERN (i2);
1672
1673 /* Make sure that the destination of I3,
1674 which we are going to substitute into one output of I2,
1675 is not used within another output of I2. We must avoid making this:
1676 (parallel [(set (mem (reg 69)) ...)
1677 (set (reg 69) ...)])
1678 which is not well-defined as to order of actions.
1679 (Besides, reload can't handle output reloads for this.)
1680
1681 The problem can also happen if the dest of I3 is a memory ref,
1682 if another dest in I2 is an indirect memory ref. */
1683 for (i = 0; i < XVECLEN (p2, 0); i++)
1684 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1685 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1686 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1687 SET_DEST (XVECEXP (p2, 0, i))))
1688 break;
1689
1690 if (i == XVECLEN (p2, 0))
1691 for (i = 0; i < XVECLEN (p2, 0); i++)
1692 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1693 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1694 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1695 {
1696 combine_merges++;
1697
1698 subst_insn = i3;
1699 subst_low_cuid = INSN_CUID (i2);
1700
1701 added_sets_2 = added_sets_1 = 0;
1702 i2dest = SET_SRC (PATTERN (i3));
1703
1704 /* Replace the dest in I2 with our dest and make the resulting
1705 insn the new pattern for I3. Then skip to where we
1706 validate the pattern. Everything was set up above. */
1707 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1708 SET_DEST (PATTERN (i3)));
1709
1710 newpat = p2;
1711 i3_subst_into_i2 = 1;
1712 goto validate_replacement;
1713 }
1714 }
1715
1716 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1717 one of those words to another constant, merge them by making a new
1718 constant. */
1719 if (i1 == 0
1720 && (temp = single_set (i2)) != 0
1721 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1722 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1723 && REG_P (SET_DEST (temp))
1724 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1725 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1726 && GET_CODE (PATTERN (i3)) == SET
1727 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1728 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1729 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1730 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1731 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1732 {
1733 HOST_WIDE_INT lo, hi;
1734
1735 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1736 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1737 else
1738 {
1739 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1740 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1741 }
1742
1743 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1744 {
1745 /* We don't handle the case of the target word being wider
1746 than a host wide int. */
1747 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1748
1749 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1750 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1751 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1752 }
1753 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1754 hi = INTVAL (SET_SRC (PATTERN (i3)));
1755 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1756 {
1757 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1758 >> (HOST_BITS_PER_WIDE_INT - 1));
1759
1760 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1761 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1762 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1763 (INTVAL (SET_SRC (PATTERN (i3)))));
1764 if (hi == sign)
1765 hi = lo < 0 ? -1 : 0;
1766 }
1767 else
1768 /* We don't handle the case of the higher word not fitting
1769 entirely in either hi or lo. */
1770 gcc_unreachable ();
1771
1772 combine_merges++;
1773 subst_insn = i3;
1774 subst_low_cuid = INSN_CUID (i2);
1775 added_sets_2 = added_sets_1 = 0;
1776 i2dest = SET_DEST (temp);
1777
1778 SUBST (SET_SRC (temp),
1779 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1780
1781 newpat = PATTERN (i2);
1782 goto validate_replacement;
1783 }
1784
1785 #ifndef HAVE_cc0
1786 /* If we have no I1 and I2 looks like:
1787 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1788 (set Y OP)])
1789 make up a dummy I1 that is
1790 (set Y OP)
1791 and change I2 to be
1792 (set (reg:CC X) (compare:CC Y (const_int 0)))
1793
1794 (We can ignore any trailing CLOBBERs.)
1795
1796 This undoes a previous combination and allows us to match a branch-and-
1797 decrement insn. */
1798
1799 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1800 && XVECLEN (PATTERN (i2), 0) >= 2
1801 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1802 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1803 == MODE_CC)
1804 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1805 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1806 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1807 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1808 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1809 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1810 {
1811 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1812 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1813 break;
1814
1815 if (i == 1)
1816 {
1817 /* We make I1 with the same INSN_UID as I2. This gives it
1818 the same INSN_CUID for value tracking. Our fake I1 will
1819 never appear in the insn stream so giving it the same INSN_UID
1820 as I2 will not cause a problem. */
1821
1822 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1823 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1824 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1825 NULL_RTX);
1826
1827 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1828 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1829 SET_DEST (PATTERN (i1)));
1830 }
1831 }
1832 #endif
1833
1834 /* Verify that I2 and I1 are valid for combining. */
1835 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1836 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1837 {
1838 undo_all ();
1839 return 0;
1840 }
1841
1842 /* Record whether I2DEST is used in I2SRC and similarly for the other
1843 cases. Knowing this will help in register status updating below. */
1844 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1845 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1846 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1847
1848 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1849 in I2SRC. */
1850 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1851
1852 /* Ensure that I3's pattern can be the destination of combines. */
1853 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1854 i1 && i2dest_in_i1src && i1_feeds_i3,
1855 &i3dest_killed))
1856 {
1857 undo_all ();
1858 return 0;
1859 }
1860
1861 /* See if any of the insns is a MULT operation. Unless one is, we will
1862 reject a combination that is, since it must be slower. Be conservative
1863 here. */
1864 if (GET_CODE (i2src) == MULT
1865 || (i1 != 0 && GET_CODE (i1src) == MULT)
1866 || (GET_CODE (PATTERN (i3)) == SET
1867 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1868 have_mult = 1;
1869
1870 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1871 We used to do this EXCEPT in one case: I3 has a post-inc in an
1872 output operand. However, that exception can give rise to insns like
1873 mov r3,(r3)+
1874 which is a famous insn on the PDP-11 where the value of r3 used as the
1875 source was model-dependent. Avoid this sort of thing. */
1876
1877 #if 0
1878 if (!(GET_CODE (PATTERN (i3)) == SET
1879 && REG_P (SET_SRC (PATTERN (i3)))
1880 && MEM_P (SET_DEST (PATTERN (i3)))
1881 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1882 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1883 /* It's not the exception. */
1884 #endif
1885 #ifdef AUTO_INC_DEC
1886 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1887 if (REG_NOTE_KIND (link) == REG_INC
1888 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1889 || (i1 != 0
1890 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1891 {
1892 undo_all ();
1893 return 0;
1894 }
1895 #endif
1896
1897 /* See if the SETs in I1 or I2 need to be kept around in the merged
1898 instruction: whenever the value set there is still needed past I3.
1899 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1900
1901 For the SET in I1, we have two cases: If I1 and I2 independently
1902 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1903 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1904 in I1 needs to be kept around unless I1DEST dies or is set in either
1905 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1906 I1DEST. If so, we know I1 feeds into I2. */
1907
1908 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1909
1910 added_sets_1
1911 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1912 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1913
1914 /* If the set in I2 needs to be kept around, we must make a copy of
1915 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1916 PATTERN (I2), we are only substituting for the original I1DEST, not into
1917 an already-substituted copy. This also prevents making self-referential
1918 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1919 I2DEST. */
1920
1921 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1922 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1923 : PATTERN (i2));
1924
1925 if (added_sets_2)
1926 i2pat = copy_rtx (i2pat);
1927
1928 combine_merges++;
1929
1930 /* Substitute in the latest insn for the regs set by the earlier ones. */
1931
1932 maxreg = max_reg_num ();
1933
1934 subst_insn = i3;
1935
1936 /* It is possible that the source of I2 or I1 may be performing an
1937 unneeded operation, such as a ZERO_EXTEND of something that is known
1938 to have the high part zero. Handle that case by letting subst look at
1939 the innermost one of them.
1940
1941 Another way to do this would be to have a function that tries to
1942 simplify a single insn instead of merging two or more insns. We don't
1943 do this because of the potential of infinite loops and because
1944 of the potential extra memory required. However, doing it the way
1945 we are is a bit of a kludge and doesn't catch all cases.
1946
1947 But only do this if -fexpensive-optimizations since it slows things down
1948 and doesn't usually win. */
1949
1950 if (flag_expensive_optimizations)
1951 {
1952 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1953 if (i1)
1954 {
1955 subst_low_cuid = INSN_CUID (i1);
1956 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1957 }
1958 else
1959 {
1960 subst_low_cuid = INSN_CUID (i2);
1961 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1962 }
1963 }
1964
1965 #ifndef HAVE_cc0
1966 /* Many machines that don't use CC0 have insns that can both perform an
1967 arithmetic operation and set the condition code. These operations will
1968 be represented as a PARALLEL with the first element of the vector
1969 being a COMPARE of an arithmetic operation with the constant zero.
1970 The second element of the vector will set some pseudo to the result
1971 of the same arithmetic operation. If we simplify the COMPARE, we won't
1972 match such a pattern and so will generate an extra insn. Here we test
1973 for this case, where both the comparison and the operation result are
1974 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1975 I2SRC. Later we will make the PARALLEL that contains I2. */
1976
1977 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1978 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1979 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1980 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1981 {
1982 #ifdef SELECT_CC_MODE
1983 rtx *cc_use;
1984 enum machine_mode compare_mode;
1985 #endif
1986
1987 newpat = PATTERN (i3);
1988 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1989
1990 i2_is_used = 1;
1991
1992 #ifdef SELECT_CC_MODE
1993 /* See if a COMPARE with the operand we substituted in should be done
1994 with the mode that is currently being used. If not, do the same
1995 processing we do in `subst' for a SET; namely, if the destination
1996 is used only once, try to replace it with a register of the proper
1997 mode and also replace the COMPARE. */
1998 if (undobuf.other_insn == 0
1999 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2000 &undobuf.other_insn))
2001 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2002 i2src, const0_rtx))
2003 != GET_MODE (SET_DEST (newpat))))
2004 {
2005 unsigned int regno = REGNO (SET_DEST (newpat));
2006 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2007
2008 if (regno < FIRST_PSEUDO_REGISTER
2009 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2010 && ! REG_USERVAR_P (SET_DEST (newpat))))
2011 {
2012 if (regno >= FIRST_PSEUDO_REGISTER)
2013 SUBST (regno_reg_rtx[regno], new_dest);
2014
2015 SUBST (SET_DEST (newpat), new_dest);
2016 SUBST (XEXP (*cc_use, 0), new_dest);
2017 SUBST (SET_SRC (newpat),
2018 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2019 }
2020 else
2021 undobuf.other_insn = 0;
2022 }
2023 #endif
2024 }
2025 else
2026 #endif
2027 {
2028 n_occurrences = 0; /* `subst' counts here */
2029
2030 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2031 need to make a unique copy of I2SRC each time we substitute it
2032 to avoid self-referential rtl. */
2033
2034 subst_low_cuid = INSN_CUID (i2);
2035 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2036 ! i1_feeds_i3 && i1dest_in_i1src);
2037 substed_i2 = 1;
2038
2039 /* Record whether i2's body now appears within i3's body. */
2040 i2_is_used = n_occurrences;
2041 }
2042
2043 /* If we already got a failure, don't try to do more. Otherwise,
2044 try to substitute in I1 if we have it. */
2045
2046 if (i1 && GET_CODE (newpat) != CLOBBER)
2047 {
2048 /* Before we can do this substitution, we must redo the test done
2049 above (see detailed comments there) that ensures that I1DEST
2050 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2051
2052 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2053 0, (rtx*) 0))
2054 {
2055 undo_all ();
2056 return 0;
2057 }
2058
2059 n_occurrences = 0;
2060 subst_low_cuid = INSN_CUID (i1);
2061 newpat = subst (newpat, i1dest, i1src, 0, 0);
2062 substed_i1 = 1;
2063 }
2064
2065 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2066 to count all the ways that I2SRC and I1SRC can be used. */
2067 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2068 && i2_is_used + added_sets_2 > 1)
2069 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2070 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2071 > 1))
2072 /* Fail if we tried to make a new register (we used to abort, but there's
2073 really no reason to). */
2074 || max_reg_num () != maxreg
2075 /* Fail if we couldn't do something and have a CLOBBER. */
2076 || GET_CODE (newpat) == CLOBBER
2077 /* Fail if this new pattern is a MULT and we didn't have one before
2078 at the outer level. */
2079 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2080 && ! have_mult))
2081 {
2082 undo_all ();
2083 return 0;
2084 }
2085
2086 /* If the actions of the earlier insns must be kept
2087 in addition to substituting them into the latest one,
2088 we must make a new PARALLEL for the latest insn
2089 to hold additional the SETs. */
2090
2091 if (added_sets_1 || added_sets_2)
2092 {
2093 combine_extras++;
2094
2095 if (GET_CODE (newpat) == PARALLEL)
2096 {
2097 rtvec old = XVEC (newpat, 0);
2098 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2099 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2100 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2101 sizeof (old->elem[0]) * old->num_elem);
2102 }
2103 else
2104 {
2105 rtx old = newpat;
2106 total_sets = 1 + added_sets_1 + added_sets_2;
2107 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2108 XVECEXP (newpat, 0, 0) = old;
2109 }
2110
2111 if (added_sets_1)
2112 XVECEXP (newpat, 0, --total_sets)
2113 = (GET_CODE (PATTERN (i1)) == PARALLEL
2114 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2115
2116 if (added_sets_2)
2117 {
2118 /* If there is no I1, use I2's body as is. We used to also not do
2119 the subst call below if I2 was substituted into I3,
2120 but that could lose a simplification. */
2121 if (i1 == 0)
2122 XVECEXP (newpat, 0, --total_sets) = i2pat;
2123 else
2124 /* See comment where i2pat is assigned. */
2125 XVECEXP (newpat, 0, --total_sets)
2126 = subst (i2pat, i1dest, i1src, 0, 0);
2127 }
2128 }
2129
2130 /* We come here when we are replacing a destination in I2 with the
2131 destination of I3. */
2132 validate_replacement:
2133
2134 /* Note which hard regs this insn has as inputs. */
2135 mark_used_regs_combine (newpat);
2136
2137 /* Is the result of combination a valid instruction? */
2138 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2139
2140 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2141 the second SET's destination is a register that is unused and isn't
2142 marked as an instruction that might trap in an EH region. In that case,
2143 we just need the first SET. This can occur when simplifying a divmod
2144 insn. We *must* test for this case here because the code below that
2145 splits two independent SETs doesn't handle this case correctly when it
2146 updates the register status.
2147
2148 It's pointless doing this if we originally had two sets, one from
2149 i3, and one from i2. Combining then splitting the parallel results
2150 in the original i2 again plus an invalid insn (which we delete).
2151 The net effect is only to move instructions around, which makes
2152 debug info less accurate.
2153
2154 Also check the case where the first SET's destination is unused.
2155 That would not cause incorrect code, but does cause an unneeded
2156 insn to remain. */
2157
2158 if (insn_code_number < 0
2159 && !(added_sets_2 && i1 == 0)
2160 && GET_CODE (newpat) == PARALLEL
2161 && XVECLEN (newpat, 0) == 2
2162 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2163 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2164 && asm_noperands (newpat) < 0)
2165 {
2166 rtx set0 = XVECEXP (newpat, 0, 0);
2167 rtx set1 = XVECEXP (newpat, 0, 1);
2168 rtx note;
2169
2170 if (((REG_P (SET_DEST (set1))
2171 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2172 || (GET_CODE (SET_DEST (set1)) == SUBREG
2173 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2174 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2175 || INTVAL (XEXP (note, 0)) <= 0)
2176 && ! side_effects_p (SET_SRC (set1)))
2177 {
2178 newpat = set0;
2179 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2180 }
2181
2182 else if (((REG_P (SET_DEST (set0))
2183 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2184 || (GET_CODE (SET_DEST (set0)) == SUBREG
2185 && find_reg_note (i3, REG_UNUSED,
2186 SUBREG_REG (SET_DEST (set0)))))
2187 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2188 || INTVAL (XEXP (note, 0)) <= 0)
2189 && ! side_effects_p (SET_SRC (set0)))
2190 {
2191 newpat = set1;
2192 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2193
2194 if (insn_code_number >= 0)
2195 {
2196 /* If we will be able to accept this, we have made a
2197 change to the destination of I3. This requires us to
2198 do a few adjustments. */
2199
2200 PATTERN (i3) = newpat;
2201 adjust_for_new_dest (i3);
2202 }
2203 }
2204 }
2205
2206 /* If we were combining three insns and the result is a simple SET
2207 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2208 insns. There are two ways to do this. It can be split using a
2209 machine-specific method (like when you have an addition of a large
2210 constant) or by combine in the function find_split_point. */
2211
2212 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2213 && asm_noperands (newpat) < 0)
2214 {
2215 rtx m_split, *split;
2216 rtx ni2dest = i2dest;
2217
2218 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2219 use I2DEST as a scratch register will help. In the latter case,
2220 convert I2DEST to the mode of the source of NEWPAT if we can. */
2221
2222 m_split = split_insns (newpat, i3);
2223
2224 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2225 inputs of NEWPAT. */
2226
2227 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2228 possible to try that as a scratch reg. This would require adding
2229 more code to make it work though. */
2230
2231 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2232 {
2233 /* If I2DEST is a hard register or the only use of a pseudo,
2234 we can change its mode. */
2235 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2236 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2237 && REG_P (i2dest)
2238 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2239 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2240 && ! REG_USERVAR_P (i2dest))))
2241 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2242 REGNO (i2dest));
2243
2244 m_split = split_insns (gen_rtx_PARALLEL
2245 (VOIDmode,
2246 gen_rtvec (2, newpat,
2247 gen_rtx_CLOBBER (VOIDmode,
2248 ni2dest))),
2249 i3);
2250 /* If the split with the mode-changed register didn't work, try
2251 the original register. */
2252 if (! m_split && ni2dest != i2dest)
2253 {
2254 ni2dest = i2dest;
2255 m_split = split_insns (gen_rtx_PARALLEL
2256 (VOIDmode,
2257 gen_rtvec (2, newpat,
2258 gen_rtx_CLOBBER (VOIDmode,
2259 i2dest))),
2260 i3);
2261 }
2262 }
2263
2264 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2265 {
2266 m_split = PATTERN (m_split);
2267 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2268 if (insn_code_number >= 0)
2269 newpat = m_split;
2270 }
2271 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2272 && (next_real_insn (i2) == i3
2273 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2274 {
2275 rtx i2set, i3set;
2276 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2277 newi2pat = PATTERN (m_split);
2278
2279 i3set = single_set (NEXT_INSN (m_split));
2280 i2set = single_set (m_split);
2281
2282 /* In case we changed the mode of I2DEST, replace it in the
2283 pseudo-register table here. We can't do it above in case this
2284 code doesn't get executed and we do a split the other way. */
2285
2286 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2287 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2288
2289 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2290
2291 /* If I2 or I3 has multiple SETs, we won't know how to track
2292 register status, so don't use these insns. If I2's destination
2293 is used between I2 and I3, we also can't use these insns. */
2294
2295 if (i2_code_number >= 0 && i2set && i3set
2296 && (next_real_insn (i2) == i3
2297 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2298 insn_code_number = recog_for_combine (&newi3pat, i3,
2299 &new_i3_notes);
2300 if (insn_code_number >= 0)
2301 newpat = newi3pat;
2302
2303 /* It is possible that both insns now set the destination of I3.
2304 If so, we must show an extra use of it. */
2305
2306 if (insn_code_number >= 0)
2307 {
2308 rtx new_i3_dest = SET_DEST (i3set);
2309 rtx new_i2_dest = SET_DEST (i2set);
2310
2311 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2312 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2313 || GET_CODE (new_i3_dest) == SUBREG)
2314 new_i3_dest = XEXP (new_i3_dest, 0);
2315
2316 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2317 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2318 || GET_CODE (new_i2_dest) == SUBREG)
2319 new_i2_dest = XEXP (new_i2_dest, 0);
2320
2321 if (REG_P (new_i3_dest)
2322 && REG_P (new_i2_dest)
2323 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2324 REG_N_SETS (REGNO (new_i2_dest))++;
2325 }
2326 }
2327
2328 /* If we can split it and use I2DEST, go ahead and see if that
2329 helps things be recognized. Verify that none of the registers
2330 are set between I2 and I3. */
2331 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2332 #ifdef HAVE_cc0
2333 && REG_P (i2dest)
2334 #endif
2335 /* We need I2DEST in the proper mode. If it is a hard register
2336 or the only use of a pseudo, we can change its mode. */
2337 && (GET_MODE (*split) == GET_MODE (i2dest)
2338 || GET_MODE (*split) == VOIDmode
2339 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2340 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2341 && ! REG_USERVAR_P (i2dest)))
2342 && (next_real_insn (i2) == i3
2343 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2344 /* We can't overwrite I2DEST if its value is still used by
2345 NEWPAT. */
2346 && ! reg_referenced_p (i2dest, newpat))
2347 {
2348 rtx newdest = i2dest;
2349 enum rtx_code split_code = GET_CODE (*split);
2350 enum machine_mode split_mode = GET_MODE (*split);
2351
2352 /* Get NEWDEST as a register in the proper mode. We have already
2353 validated that we can do this. */
2354 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2355 {
2356 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2357
2358 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2359 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2360 }
2361
2362 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2363 an ASHIFT. This can occur if it was inside a PLUS and hence
2364 appeared to be a memory address. This is a kludge. */
2365 if (split_code == MULT
2366 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2367 && INTVAL (XEXP (*split, 1)) > 0
2368 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2369 {
2370 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2371 XEXP (*split, 0), GEN_INT (i)));
2372 /* Update split_code because we may not have a multiply
2373 anymore. */
2374 split_code = GET_CODE (*split);
2375 }
2376
2377 #ifdef INSN_SCHEDULING
2378 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2379 be written as a ZERO_EXTEND. */
2380 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2381 {
2382 #ifdef LOAD_EXTEND_OP
2383 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2384 what it really is. */
2385 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2386 == SIGN_EXTEND)
2387 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2388 SUBREG_REG (*split)));
2389 else
2390 #endif
2391 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2392 SUBREG_REG (*split)));
2393 }
2394 #endif
2395
2396 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2397 SUBST (*split, newdest);
2398 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2399
2400 /* If the split point was a MULT and we didn't have one before,
2401 don't use one now. */
2402 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2403 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2404 }
2405 }
2406
2407 /* Check for a case where we loaded from memory in a narrow mode and
2408 then sign extended it, but we need both registers. In that case,
2409 we have a PARALLEL with both loads from the same memory location.
2410 We can split this into a load from memory followed by a register-register
2411 copy. This saves at least one insn, more if register allocation can
2412 eliminate the copy.
2413
2414 We cannot do this if the destination of the first assignment is a
2415 condition code register or cc0. We eliminate this case by making sure
2416 the SET_DEST and SET_SRC have the same mode.
2417
2418 We cannot do this if the destination of the second assignment is
2419 a register that we have already assumed is zero-extended. Similarly
2420 for a SUBREG of such a register. */
2421
2422 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2423 && GET_CODE (newpat) == PARALLEL
2424 && XVECLEN (newpat, 0) == 2
2425 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2426 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2427 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2428 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2429 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2430 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2431 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2432 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2433 INSN_CUID (i2))
2434 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2435 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2436 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2437 (REG_P (temp)
2438 && reg_stat[REGNO (temp)].nonzero_bits != 0
2439 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2440 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2441 && (reg_stat[REGNO (temp)].nonzero_bits
2442 != GET_MODE_MASK (word_mode))))
2443 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2444 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2445 (REG_P (temp)
2446 && reg_stat[REGNO (temp)].nonzero_bits != 0
2447 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2448 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2449 && (reg_stat[REGNO (temp)].nonzero_bits
2450 != GET_MODE_MASK (word_mode)))))
2451 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2452 SET_SRC (XVECEXP (newpat, 0, 1)))
2453 && ! find_reg_note (i3, REG_UNUSED,
2454 SET_DEST (XVECEXP (newpat, 0, 0))))
2455 {
2456 rtx ni2dest;
2457
2458 newi2pat = XVECEXP (newpat, 0, 0);
2459 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2460 newpat = XVECEXP (newpat, 0, 1);
2461 SUBST (SET_SRC (newpat),
2462 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2463 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2464
2465 if (i2_code_number >= 0)
2466 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2467
2468 if (insn_code_number >= 0)
2469 swap_i2i3 = 1;
2470 }
2471
2472 /* Similarly, check for a case where we have a PARALLEL of two independent
2473 SETs but we started with three insns. In this case, we can do the sets
2474 as two separate insns. This case occurs when some SET allows two
2475 other insns to combine, but the destination of that SET is still live. */
2476
2477 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2478 && GET_CODE (newpat) == PARALLEL
2479 && XVECLEN (newpat, 0) == 2
2480 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2481 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2482 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2483 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2484 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2485 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2486 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2487 INSN_CUID (i2))
2488 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2489 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2490 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2491 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2492 XVECEXP (newpat, 0, 0))
2493 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2494 XVECEXP (newpat, 0, 1))
2495 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2496 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2497 {
2498 /* Normally, it doesn't matter which of the two is done first,
2499 but it does if one references cc0. In that case, it has to
2500 be first. */
2501 #ifdef HAVE_cc0
2502 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2503 {
2504 newi2pat = XVECEXP (newpat, 0, 0);
2505 newpat = XVECEXP (newpat, 0, 1);
2506 }
2507 else
2508 #endif
2509 {
2510 newi2pat = XVECEXP (newpat, 0, 1);
2511 newpat = XVECEXP (newpat, 0, 0);
2512 }
2513
2514 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2515
2516 if (i2_code_number >= 0)
2517 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2518 }
2519
2520 /* If it still isn't recognized, fail and change things back the way they
2521 were. */
2522 if ((insn_code_number < 0
2523 /* Is the result a reasonable ASM_OPERANDS? */
2524 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2525 {
2526 undo_all ();
2527 return 0;
2528 }
2529
2530 /* If we had to change another insn, make sure it is valid also. */
2531 if (undobuf.other_insn)
2532 {
2533 rtx other_pat = PATTERN (undobuf.other_insn);
2534 rtx new_other_notes;
2535 rtx note, next;
2536
2537 CLEAR_HARD_REG_SET (newpat_used_regs);
2538
2539 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2540 &new_other_notes);
2541
2542 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2543 {
2544 undo_all ();
2545 return 0;
2546 }
2547
2548 PATTERN (undobuf.other_insn) = other_pat;
2549
2550 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2551 are still valid. Then add any non-duplicate notes added by
2552 recog_for_combine. */
2553 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2554 {
2555 next = XEXP (note, 1);
2556
2557 if (REG_NOTE_KIND (note) == REG_UNUSED
2558 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2559 {
2560 if (REG_P (XEXP (note, 0)))
2561 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2562
2563 remove_note (undobuf.other_insn, note);
2564 }
2565 }
2566
2567 for (note = new_other_notes; note; note = XEXP (note, 1))
2568 if (REG_P (XEXP (note, 0)))
2569 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2570
2571 distribute_notes (new_other_notes, undobuf.other_insn,
2572 undobuf.other_insn, NULL_RTX);
2573 }
2574 #ifdef HAVE_cc0
2575 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2576 they are adjacent to each other or not. */
2577 {
2578 rtx p = prev_nonnote_insn (i3);
2579 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2580 && sets_cc0_p (newi2pat))
2581 {
2582 undo_all ();
2583 return 0;
2584 }
2585 }
2586 #endif
2587
2588 /* Only allow this combination if insn_rtx_costs reports that the
2589 replacement instructions are cheaper than the originals. */
2590 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2591 {
2592 undo_all ();
2593 return 0;
2594 }
2595
2596 /* We now know that we can do this combination. Merge the insns and
2597 update the status of registers and LOG_LINKS. */
2598
2599 if (swap_i2i3)
2600 {
2601 rtx insn;
2602 rtx link;
2603 rtx ni2dest;
2604
2605 /* I3 now uses what used to be its destination and which is now
2606 I2's destination. This requires us to do a few adjustments. */
2607 PATTERN (i3) = newpat;
2608 adjust_for_new_dest (i3);
2609
2610 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2611 so we still will.
2612
2613 However, some later insn might be using I2's dest and have
2614 a LOG_LINK pointing at I3. We must remove this link.
2615 The simplest way to remove the link is to point it at I1,
2616 which we know will be a NOTE. */
2617
2618 /* newi2pat is usually a SET here; however, recog_for_combine might
2619 have added some clobbers. */
2620 if (GET_CODE (newi2pat) == PARALLEL)
2621 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2622 else
2623 ni2dest = SET_DEST (newi2pat);
2624
2625 for (insn = NEXT_INSN (i3);
2626 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2627 || insn != BB_HEAD (this_basic_block->next_bb));
2628 insn = NEXT_INSN (insn))
2629 {
2630 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2631 {
2632 for (link = LOG_LINKS (insn); link;
2633 link = XEXP (link, 1))
2634 if (XEXP (link, 0) == i3)
2635 XEXP (link, 0) = i1;
2636
2637 break;
2638 }
2639 }
2640 }
2641
2642 {
2643 rtx i3notes, i2notes, i1notes = 0;
2644 rtx i3links, i2links, i1links = 0;
2645 rtx midnotes = 0;
2646 unsigned int regno;
2647
2648 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2649 clear them. */
2650 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2651 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2652 if (i1)
2653 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2654
2655 /* Ensure that we do not have something that should not be shared but
2656 occurs multiple times in the new insns. Check this by first
2657 resetting all the `used' flags and then copying anything is shared. */
2658
2659 reset_used_flags (i3notes);
2660 reset_used_flags (i2notes);
2661 reset_used_flags (i1notes);
2662 reset_used_flags (newpat);
2663 reset_used_flags (newi2pat);
2664 if (undobuf.other_insn)
2665 reset_used_flags (PATTERN (undobuf.other_insn));
2666
2667 i3notes = copy_rtx_if_shared (i3notes);
2668 i2notes = copy_rtx_if_shared (i2notes);
2669 i1notes = copy_rtx_if_shared (i1notes);
2670 newpat = copy_rtx_if_shared (newpat);
2671 newi2pat = copy_rtx_if_shared (newi2pat);
2672 if (undobuf.other_insn)
2673 reset_used_flags (PATTERN (undobuf.other_insn));
2674
2675 INSN_CODE (i3) = insn_code_number;
2676 PATTERN (i3) = newpat;
2677
2678 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2679 {
2680 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2681
2682 reset_used_flags (call_usage);
2683 call_usage = copy_rtx (call_usage);
2684
2685 if (substed_i2)
2686 replace_rtx (call_usage, i2dest, i2src);
2687
2688 if (substed_i1)
2689 replace_rtx (call_usage, i1dest, i1src);
2690
2691 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2692 }
2693
2694 if (undobuf.other_insn)
2695 INSN_CODE (undobuf.other_insn) = other_code_number;
2696
2697 /* We had one special case above where I2 had more than one set and
2698 we replaced a destination of one of those sets with the destination
2699 of I3. In that case, we have to update LOG_LINKS of insns later
2700 in this basic block. Note that this (expensive) case is rare.
2701
2702 Also, in this case, we must pretend that all REG_NOTEs for I2
2703 actually came from I3, so that REG_UNUSED notes from I2 will be
2704 properly handled. */
2705
2706 if (i3_subst_into_i2)
2707 {
2708 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2709 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2710 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2711 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2712 && ! find_reg_note (i2, REG_UNUSED,
2713 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2714 for (temp = NEXT_INSN (i2);
2715 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2716 || BB_HEAD (this_basic_block) != temp);
2717 temp = NEXT_INSN (temp))
2718 if (temp != i3 && INSN_P (temp))
2719 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2720 if (XEXP (link, 0) == i2)
2721 XEXP (link, 0) = i3;
2722
2723 if (i3notes)
2724 {
2725 rtx link = i3notes;
2726 while (XEXP (link, 1))
2727 link = XEXP (link, 1);
2728 XEXP (link, 1) = i2notes;
2729 }
2730 else
2731 i3notes = i2notes;
2732 i2notes = 0;
2733 }
2734
2735 LOG_LINKS (i3) = 0;
2736 REG_NOTES (i3) = 0;
2737 LOG_LINKS (i2) = 0;
2738 REG_NOTES (i2) = 0;
2739
2740 if (newi2pat)
2741 {
2742 INSN_CODE (i2) = i2_code_number;
2743 PATTERN (i2) = newi2pat;
2744 }
2745 else
2746 SET_INSN_DELETED (i2);
2747
2748 if (i1)
2749 {
2750 LOG_LINKS (i1) = 0;
2751 REG_NOTES (i1) = 0;
2752 SET_INSN_DELETED (i1);
2753 }
2754
2755 /* Get death notes for everything that is now used in either I3 or
2756 I2 and used to die in a previous insn. If we built two new
2757 patterns, move from I1 to I2 then I2 to I3 so that we get the
2758 proper movement on registers that I2 modifies. */
2759
2760 if (newi2pat)
2761 {
2762 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2763 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2764 }
2765 else
2766 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2767 i3, &midnotes);
2768
2769 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2770 if (i3notes)
2771 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2772 if (i2notes)
2773 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2774 if (i1notes)
2775 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2776 if (midnotes)
2777 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2778
2779 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2780 know these are REG_UNUSED and want them to go to the desired insn,
2781 so we always pass it as i3. We have not counted the notes in
2782 reg_n_deaths yet, so we need to do so now. */
2783
2784 if (newi2pat && new_i2_notes)
2785 {
2786 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2787 if (REG_P (XEXP (temp, 0)))
2788 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2789
2790 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2791 }
2792
2793 if (new_i3_notes)
2794 {
2795 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2796 if (REG_P (XEXP (temp, 0)))
2797 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2798
2799 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2800 }
2801
2802 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2803 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2804 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2805 in that case, it might delete I2. Similarly for I2 and I1.
2806 Show an additional death due to the REG_DEAD note we make here. If
2807 we discard it in distribute_notes, we will decrement it again. */
2808
2809 if (i3dest_killed)
2810 {
2811 if (REG_P (i3dest_killed))
2812 REG_N_DEATHS (REGNO (i3dest_killed))++;
2813
2814 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2815 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2816 NULL_RTX),
2817 NULL_RTX, i2, NULL_RTX);
2818 else
2819 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2820 NULL_RTX),
2821 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2822 }
2823
2824 if (i2dest_in_i2src)
2825 {
2826 if (REG_P (i2dest))
2827 REG_N_DEATHS (REGNO (i2dest))++;
2828
2829 if (newi2pat && reg_set_p (i2dest, newi2pat))
2830 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2831 NULL_RTX, i2, NULL_RTX);
2832 else
2833 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2834 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2835 }
2836
2837 if (i1dest_in_i1src)
2838 {
2839 if (REG_P (i1dest))
2840 REG_N_DEATHS (REGNO (i1dest))++;
2841
2842 if (newi2pat && reg_set_p (i1dest, newi2pat))
2843 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2844 NULL_RTX, i2, NULL_RTX);
2845 else
2846 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2847 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2848 }
2849
2850 distribute_links (i3links);
2851 distribute_links (i2links);
2852 distribute_links (i1links);
2853
2854 if (REG_P (i2dest))
2855 {
2856 rtx link;
2857 rtx i2_insn = 0, i2_val = 0, set;
2858
2859 /* The insn that used to set this register doesn't exist, and
2860 this life of the register may not exist either. See if one of
2861 I3's links points to an insn that sets I2DEST. If it does,
2862 that is now the last known value for I2DEST. If we don't update
2863 this and I2 set the register to a value that depended on its old
2864 contents, we will get confused. If this insn is used, thing
2865 will be set correctly in combine_instructions. */
2866
2867 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2868 if ((set = single_set (XEXP (link, 0))) != 0
2869 && rtx_equal_p (i2dest, SET_DEST (set)))
2870 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2871
2872 record_value_for_reg (i2dest, i2_insn, i2_val);
2873
2874 /* If the reg formerly set in I2 died only once and that was in I3,
2875 zero its use count so it won't make `reload' do any work. */
2876 if (! added_sets_2
2877 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2878 && ! i2dest_in_i2src)
2879 {
2880 regno = REGNO (i2dest);
2881 REG_N_SETS (regno)--;
2882 }
2883 }
2884
2885 if (i1 && REG_P (i1dest))
2886 {
2887 rtx link;
2888 rtx i1_insn = 0, i1_val = 0, set;
2889
2890 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2891 if ((set = single_set (XEXP (link, 0))) != 0
2892 && rtx_equal_p (i1dest, SET_DEST (set)))
2893 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2894
2895 record_value_for_reg (i1dest, i1_insn, i1_val);
2896
2897 regno = REGNO (i1dest);
2898 if (! added_sets_1 && ! i1dest_in_i1src)
2899 REG_N_SETS (regno)--;
2900 }
2901
2902 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2903 been made to this insn. The order of
2904 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2905 can affect nonzero_bits of newpat */
2906 if (newi2pat)
2907 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2908 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2909
2910 /* Set new_direct_jump_p if a new return or simple jump instruction
2911 has been created.
2912
2913 If I3 is now an unconditional jump, ensure that it has a
2914 BARRIER following it since it may have initially been a
2915 conditional jump. It may also be the last nonnote insn. */
2916
2917 if (returnjump_p (i3) || any_uncondjump_p (i3))
2918 {
2919 *new_direct_jump_p = 1;
2920 mark_jump_label (PATTERN (i3), i3, 0);
2921
2922 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2923 || !BARRIER_P (temp))
2924 emit_barrier_after (i3);
2925 }
2926
2927 if (undobuf.other_insn != NULL_RTX
2928 && (returnjump_p (undobuf.other_insn)
2929 || any_uncondjump_p (undobuf.other_insn)))
2930 {
2931 *new_direct_jump_p = 1;
2932
2933 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2934 || !BARRIER_P (temp))
2935 emit_barrier_after (undobuf.other_insn);
2936 }
2937
2938 /* An NOOP jump does not need barrier, but it does need cleaning up
2939 of CFG. */
2940 if (GET_CODE (newpat) == SET
2941 && SET_SRC (newpat) == pc_rtx
2942 && SET_DEST (newpat) == pc_rtx)
2943 *new_direct_jump_p = 1;
2944 }
2945
2946 combine_successes++;
2947 undo_commit ();
2948
2949 if (added_links_insn
2950 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2951 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2952 return added_links_insn;
2953 else
2954 return newi2pat ? i2 : i3;
2955 }
2956 \f
2957 /* Undo all the modifications recorded in undobuf. */
2958
2959 static void
2960 undo_all (void)
2961 {
2962 struct undo *undo, *next;
2963
2964 for (undo = undobuf.undos; undo; undo = next)
2965 {
2966 next = undo->next;
2967 if (undo->is_int)
2968 *undo->where.i = undo->old_contents.i;
2969 else
2970 *undo->where.r = undo->old_contents.r;
2971
2972 undo->next = undobuf.frees;
2973 undobuf.frees = undo;
2974 }
2975
2976 undobuf.undos = 0;
2977 }
2978
2979 /* We've committed to accepting the changes we made. Move all
2980 of the undos to the free list. */
2981
2982 static void
2983 undo_commit (void)
2984 {
2985 struct undo *undo, *next;
2986
2987 for (undo = undobuf.undos; undo; undo = next)
2988 {
2989 next = undo->next;
2990 undo->next = undobuf.frees;
2991 undobuf.frees = undo;
2992 }
2993 undobuf.undos = 0;
2994 }
2995
2996 \f
2997 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2998 where we have an arithmetic expression and return that point. LOC will
2999 be inside INSN.
3000
3001 try_combine will call this function to see if an insn can be split into
3002 two insns. */
3003
3004 static rtx *
3005 find_split_point (rtx *loc, rtx insn)
3006 {
3007 rtx x = *loc;
3008 enum rtx_code code = GET_CODE (x);
3009 rtx *split;
3010 unsigned HOST_WIDE_INT len = 0;
3011 HOST_WIDE_INT pos = 0;
3012 int unsignedp = 0;
3013 rtx inner = NULL_RTX;
3014
3015 /* First special-case some codes. */
3016 switch (code)
3017 {
3018 case SUBREG:
3019 #ifdef INSN_SCHEDULING
3020 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3021 point. */
3022 if (MEM_P (SUBREG_REG (x)))
3023 return loc;
3024 #endif
3025 return find_split_point (&SUBREG_REG (x), insn);
3026
3027 case MEM:
3028 #ifdef HAVE_lo_sum
3029 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3030 using LO_SUM and HIGH. */
3031 if (GET_CODE (XEXP (x, 0)) == CONST
3032 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3033 {
3034 SUBST (XEXP (x, 0),
3035 gen_rtx_LO_SUM (Pmode,
3036 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3037 XEXP (x, 0)));
3038 return &XEXP (XEXP (x, 0), 0);
3039 }
3040 #endif
3041
3042 /* If we have a PLUS whose second operand is a constant and the
3043 address is not valid, perhaps will can split it up using
3044 the machine-specific way to split large constants. We use
3045 the first pseudo-reg (one of the virtual regs) as a placeholder;
3046 it will not remain in the result. */
3047 if (GET_CODE (XEXP (x, 0)) == PLUS
3048 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3049 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3050 {
3051 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3052 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3053 subst_insn);
3054
3055 /* This should have produced two insns, each of which sets our
3056 placeholder. If the source of the second is a valid address,
3057 we can make put both sources together and make a split point
3058 in the middle. */
3059
3060 if (seq
3061 && NEXT_INSN (seq) != NULL_RTX
3062 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3063 && NONJUMP_INSN_P (seq)
3064 && GET_CODE (PATTERN (seq)) == SET
3065 && SET_DEST (PATTERN (seq)) == reg
3066 && ! reg_mentioned_p (reg,
3067 SET_SRC (PATTERN (seq)))
3068 && NONJUMP_INSN_P (NEXT_INSN (seq))
3069 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3070 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3071 && memory_address_p (GET_MODE (x),
3072 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3073 {
3074 rtx src1 = SET_SRC (PATTERN (seq));
3075 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3076
3077 /* Replace the placeholder in SRC2 with SRC1. If we can
3078 find where in SRC2 it was placed, that can become our
3079 split point and we can replace this address with SRC2.
3080 Just try two obvious places. */
3081
3082 src2 = replace_rtx (src2, reg, src1);
3083 split = 0;
3084 if (XEXP (src2, 0) == src1)
3085 split = &XEXP (src2, 0);
3086 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3087 && XEXP (XEXP (src2, 0), 0) == src1)
3088 split = &XEXP (XEXP (src2, 0), 0);
3089
3090 if (split)
3091 {
3092 SUBST (XEXP (x, 0), src2);
3093 return split;
3094 }
3095 }
3096
3097 /* If that didn't work, perhaps the first operand is complex and
3098 needs to be computed separately, so make a split point there.
3099 This will occur on machines that just support REG + CONST
3100 and have a constant moved through some previous computation. */
3101
3102 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3103 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3104 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3105 return &XEXP (XEXP (x, 0), 0);
3106 }
3107 break;
3108
3109 case SET:
3110 #ifdef HAVE_cc0
3111 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3112 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3113 we need to put the operand into a register. So split at that
3114 point. */
3115
3116 if (SET_DEST (x) == cc0_rtx
3117 && GET_CODE (SET_SRC (x)) != COMPARE
3118 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3119 && !OBJECT_P (SET_SRC (x))
3120 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3121 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3122 return &SET_SRC (x);
3123 #endif
3124
3125 /* See if we can split SET_SRC as it stands. */
3126 split = find_split_point (&SET_SRC (x), insn);
3127 if (split && split != &SET_SRC (x))
3128 return split;
3129
3130 /* See if we can split SET_DEST as it stands. */
3131 split = find_split_point (&SET_DEST (x), insn);
3132 if (split && split != &SET_DEST (x))
3133 return split;
3134
3135 /* See if this is a bitfield assignment with everything constant. If
3136 so, this is an IOR of an AND, so split it into that. */
3137 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3138 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3139 <= HOST_BITS_PER_WIDE_INT)
3140 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3141 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3142 && GET_CODE (SET_SRC (x)) == CONST_INT
3143 && ((INTVAL (XEXP (SET_DEST (x), 1))
3144 + INTVAL (XEXP (SET_DEST (x), 2)))
3145 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3146 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3147 {
3148 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3149 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3150 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3151 rtx dest = XEXP (SET_DEST (x), 0);
3152 enum machine_mode mode = GET_MODE (dest);
3153 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3154
3155 if (BITS_BIG_ENDIAN)
3156 pos = GET_MODE_BITSIZE (mode) - len - pos;
3157
3158 if (src == mask)
3159 SUBST (SET_SRC (x),
3160 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3161 else
3162 SUBST (SET_SRC (x),
3163 gen_binary (IOR, mode,
3164 gen_binary (AND, mode, dest,
3165 gen_int_mode (~(mask << pos),
3166 mode)),
3167 GEN_INT (src << pos)));
3168
3169 SUBST (SET_DEST (x), dest);
3170
3171 split = find_split_point (&SET_SRC (x), insn);
3172 if (split && split != &SET_SRC (x))
3173 return split;
3174 }
3175
3176 /* Otherwise, see if this is an operation that we can split into two.
3177 If so, try to split that. */
3178 code = GET_CODE (SET_SRC (x));
3179
3180 switch (code)
3181 {
3182 case AND:
3183 /* If we are AND'ing with a large constant that is only a single
3184 bit and the result is only being used in a context where we
3185 need to know if it is zero or nonzero, replace it with a bit
3186 extraction. This will avoid the large constant, which might
3187 have taken more than one insn to make. If the constant were
3188 not a valid argument to the AND but took only one insn to make,
3189 this is no worse, but if it took more than one insn, it will
3190 be better. */
3191
3192 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3193 && REG_P (XEXP (SET_SRC (x), 0))
3194 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3195 && REG_P (SET_DEST (x))
3196 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3197 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3198 && XEXP (*split, 0) == SET_DEST (x)
3199 && XEXP (*split, 1) == const0_rtx)
3200 {
3201 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3202 XEXP (SET_SRC (x), 0),
3203 pos, NULL_RTX, 1, 1, 0, 0);
3204 if (extraction != 0)
3205 {
3206 SUBST (SET_SRC (x), extraction);
3207 return find_split_point (loc, insn);
3208 }
3209 }
3210 break;
3211
3212 case NE:
3213 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3214 is known to be on, this can be converted into a NEG of a shift. */
3215 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3216 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3217 && 1 <= (pos = exact_log2
3218 (nonzero_bits (XEXP (SET_SRC (x), 0),
3219 GET_MODE (XEXP (SET_SRC (x), 0))))))
3220 {
3221 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3222
3223 SUBST (SET_SRC (x),
3224 gen_rtx_NEG (mode,
3225 gen_rtx_LSHIFTRT (mode,
3226 XEXP (SET_SRC (x), 0),
3227 GEN_INT (pos))));
3228
3229 split = find_split_point (&SET_SRC (x), insn);
3230 if (split && split != &SET_SRC (x))
3231 return split;
3232 }
3233 break;
3234
3235 case SIGN_EXTEND:
3236 inner = XEXP (SET_SRC (x), 0);
3237
3238 /* We can't optimize if either mode is a partial integer
3239 mode as we don't know how many bits are significant
3240 in those modes. */
3241 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3242 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3243 break;
3244
3245 pos = 0;
3246 len = GET_MODE_BITSIZE (GET_MODE (inner));
3247 unsignedp = 0;
3248 break;
3249
3250 case SIGN_EXTRACT:
3251 case ZERO_EXTRACT:
3252 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3253 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3254 {
3255 inner = XEXP (SET_SRC (x), 0);
3256 len = INTVAL (XEXP (SET_SRC (x), 1));
3257 pos = INTVAL (XEXP (SET_SRC (x), 2));
3258
3259 if (BITS_BIG_ENDIAN)
3260 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3261 unsignedp = (code == ZERO_EXTRACT);
3262 }
3263 break;
3264
3265 default:
3266 break;
3267 }
3268
3269 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3270 {
3271 enum machine_mode mode = GET_MODE (SET_SRC (x));
3272
3273 /* For unsigned, we have a choice of a shift followed by an
3274 AND or two shifts. Use two shifts for field sizes where the
3275 constant might be too large. We assume here that we can
3276 always at least get 8-bit constants in an AND insn, which is
3277 true for every current RISC. */
3278
3279 if (unsignedp && len <= 8)
3280 {
3281 SUBST (SET_SRC (x),
3282 gen_rtx_AND (mode,
3283 gen_rtx_LSHIFTRT
3284 (mode, gen_lowpart (mode, inner),
3285 GEN_INT (pos)),
3286 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3287
3288 split = find_split_point (&SET_SRC (x), insn);
3289 if (split && split != &SET_SRC (x))
3290 return split;
3291 }
3292 else
3293 {
3294 SUBST (SET_SRC (x),
3295 gen_rtx_fmt_ee
3296 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3297 gen_rtx_ASHIFT (mode,
3298 gen_lowpart (mode, inner),
3299 GEN_INT (GET_MODE_BITSIZE (mode)
3300 - len - pos)),
3301 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3302
3303 split = find_split_point (&SET_SRC (x), insn);
3304 if (split && split != &SET_SRC (x))
3305 return split;
3306 }
3307 }
3308
3309 /* See if this is a simple operation with a constant as the second
3310 operand. It might be that this constant is out of range and hence
3311 could be used as a split point. */
3312 if (BINARY_P (SET_SRC (x))
3313 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3314 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3315 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3316 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3317 return &XEXP (SET_SRC (x), 1);
3318
3319 /* Finally, see if this is a simple operation with its first operand
3320 not in a register. The operation might require this operand in a
3321 register, so return it as a split point. We can always do this
3322 because if the first operand were another operation, we would have
3323 already found it as a split point. */
3324 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3325 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3326 return &XEXP (SET_SRC (x), 0);
3327
3328 return 0;
3329
3330 case AND:
3331 case IOR:
3332 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3333 it is better to write this as (not (ior A B)) so we can split it.
3334 Similarly for IOR. */
3335 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3336 {
3337 SUBST (*loc,
3338 gen_rtx_NOT (GET_MODE (x),
3339 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3340 GET_MODE (x),
3341 XEXP (XEXP (x, 0), 0),
3342 XEXP (XEXP (x, 1), 0))));
3343 return find_split_point (loc, insn);
3344 }
3345
3346 /* Many RISC machines have a large set of logical insns. If the
3347 second operand is a NOT, put it first so we will try to split the
3348 other operand first. */
3349 if (GET_CODE (XEXP (x, 1)) == NOT)
3350 {
3351 rtx tem = XEXP (x, 0);
3352 SUBST (XEXP (x, 0), XEXP (x, 1));
3353 SUBST (XEXP (x, 1), tem);
3354 }
3355 break;
3356
3357 default:
3358 break;
3359 }
3360
3361 /* Otherwise, select our actions depending on our rtx class. */
3362 switch (GET_RTX_CLASS (code))
3363 {
3364 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3365 case RTX_TERNARY:
3366 split = find_split_point (&XEXP (x, 2), insn);
3367 if (split)
3368 return split;
3369 /* ... fall through ... */
3370 case RTX_BIN_ARITH:
3371 case RTX_COMM_ARITH:
3372 case RTX_COMPARE:
3373 case RTX_COMM_COMPARE:
3374 split = find_split_point (&XEXP (x, 1), insn);
3375 if (split)
3376 return split;
3377 /* ... fall through ... */
3378 case RTX_UNARY:
3379 /* Some machines have (and (shift ...) ...) insns. If X is not
3380 an AND, but XEXP (X, 0) is, use it as our split point. */
3381 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3382 return &XEXP (x, 0);
3383
3384 split = find_split_point (&XEXP (x, 0), insn);
3385 if (split)
3386 return split;
3387 return loc;
3388
3389 default:
3390 /* Otherwise, we don't have a split point. */
3391 return 0;
3392 }
3393 }
3394 \f
3395 /* Throughout X, replace FROM with TO, and return the result.
3396 The result is TO if X is FROM;
3397 otherwise the result is X, but its contents may have been modified.
3398 If they were modified, a record was made in undobuf so that
3399 undo_all will (among other things) return X to its original state.
3400
3401 If the number of changes necessary is too much to record to undo,
3402 the excess changes are not made, so the result is invalid.
3403 The changes already made can still be undone.
3404 undobuf.num_undo is incremented for such changes, so by testing that
3405 the caller can tell whether the result is valid.
3406
3407 `n_occurrences' is incremented each time FROM is replaced.
3408
3409 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3410
3411 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3412 by copying if `n_occurrences' is nonzero. */
3413
3414 static rtx
3415 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3416 {
3417 enum rtx_code code = GET_CODE (x);
3418 enum machine_mode op0_mode = VOIDmode;
3419 const char *fmt;
3420 int len, i;
3421 rtx new;
3422
3423 /* Two expressions are equal if they are identical copies of a shared
3424 RTX or if they are both registers with the same register number
3425 and mode. */
3426
3427 #define COMBINE_RTX_EQUAL_P(X,Y) \
3428 ((X) == (Y) \
3429 || (REG_P (X) && REG_P (Y) \
3430 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3431
3432 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3433 {
3434 n_occurrences++;
3435 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3436 }
3437
3438 /* If X and FROM are the same register but different modes, they will
3439 not have been seen as equal above. However, flow.c will make a
3440 LOG_LINKS entry for that case. If we do nothing, we will try to
3441 rerecognize our original insn and, when it succeeds, we will
3442 delete the feeding insn, which is incorrect.
3443
3444 So force this insn not to match in this (rare) case. */
3445 if (! in_dest && code == REG && REG_P (from)
3446 && REGNO (x) == REGNO (from))
3447 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3448
3449 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3450 of which may contain things that can be combined. */
3451 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3452 return x;
3453
3454 /* It is possible to have a subexpression appear twice in the insn.
3455 Suppose that FROM is a register that appears within TO.
3456 Then, after that subexpression has been scanned once by `subst',
3457 the second time it is scanned, TO may be found. If we were
3458 to scan TO here, we would find FROM within it and create a
3459 self-referent rtl structure which is completely wrong. */
3460 if (COMBINE_RTX_EQUAL_P (x, to))
3461 return to;
3462
3463 /* Parallel asm_operands need special attention because all of the
3464 inputs are shared across the arms. Furthermore, unsharing the
3465 rtl results in recognition failures. Failure to handle this case
3466 specially can result in circular rtl.
3467
3468 Solve this by doing a normal pass across the first entry of the
3469 parallel, and only processing the SET_DESTs of the subsequent
3470 entries. Ug. */
3471
3472 if (code == PARALLEL
3473 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3474 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3475 {
3476 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3477
3478 /* If this substitution failed, this whole thing fails. */
3479 if (GET_CODE (new) == CLOBBER
3480 && XEXP (new, 0) == const0_rtx)
3481 return new;
3482
3483 SUBST (XVECEXP (x, 0, 0), new);
3484
3485 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3486 {
3487 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3488
3489 if (!REG_P (dest)
3490 && GET_CODE (dest) != CC0
3491 && GET_CODE (dest) != PC)
3492 {
3493 new = subst (dest, from, to, 0, unique_copy);
3494
3495 /* If this substitution failed, this whole thing fails. */
3496 if (GET_CODE (new) == CLOBBER
3497 && XEXP (new, 0) == const0_rtx)
3498 return new;
3499
3500 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3501 }
3502 }
3503 }
3504 else
3505 {
3506 len = GET_RTX_LENGTH (code);
3507 fmt = GET_RTX_FORMAT (code);
3508
3509 /* We don't need to process a SET_DEST that is a register, CC0,
3510 or PC, so set up to skip this common case. All other cases
3511 where we want to suppress replacing something inside a
3512 SET_SRC are handled via the IN_DEST operand. */
3513 if (code == SET
3514 && (REG_P (SET_DEST (x))
3515 || GET_CODE (SET_DEST (x)) == CC0
3516 || GET_CODE (SET_DEST (x)) == PC))
3517 fmt = "ie";
3518
3519 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3520 constant. */
3521 if (fmt[0] == 'e')
3522 op0_mode = GET_MODE (XEXP (x, 0));
3523
3524 for (i = 0; i < len; i++)
3525 {
3526 if (fmt[i] == 'E')
3527 {
3528 int j;
3529 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3530 {
3531 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3532 {
3533 new = (unique_copy && n_occurrences
3534 ? copy_rtx (to) : to);
3535 n_occurrences++;
3536 }
3537 else
3538 {
3539 new = subst (XVECEXP (x, i, j), from, to, 0,
3540 unique_copy);
3541
3542 /* If this substitution failed, this whole thing
3543 fails. */
3544 if (GET_CODE (new) == CLOBBER
3545 && XEXP (new, 0) == const0_rtx)
3546 return new;
3547 }
3548
3549 SUBST (XVECEXP (x, i, j), new);
3550 }
3551 }
3552 else if (fmt[i] == 'e')
3553 {
3554 /* If this is a register being set, ignore it. */
3555 new = XEXP (x, i);
3556 if (in_dest
3557 && (code == SUBREG || code == STRICT_LOW_PART
3558 || code == ZERO_EXTRACT)
3559 && i == 0
3560 && REG_P (new))
3561 ;
3562
3563 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3564 {
3565 /* In general, don't install a subreg involving two
3566 modes not tieable. It can worsen register
3567 allocation, and can even make invalid reload
3568 insns, since the reg inside may need to be copied
3569 from in the outside mode, and that may be invalid
3570 if it is an fp reg copied in integer mode.
3571
3572 We allow two exceptions to this: It is valid if
3573 it is inside another SUBREG and the mode of that
3574 SUBREG and the mode of the inside of TO is
3575 tieable and it is valid if X is a SET that copies
3576 FROM to CC0. */
3577
3578 if (GET_CODE (to) == SUBREG
3579 && ! MODES_TIEABLE_P (GET_MODE (to),
3580 GET_MODE (SUBREG_REG (to)))
3581 && ! (code == SUBREG
3582 && MODES_TIEABLE_P (GET_MODE (x),
3583 GET_MODE (SUBREG_REG (to))))
3584 #ifdef HAVE_cc0
3585 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3586 #endif
3587 )
3588 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3589
3590 #ifdef CANNOT_CHANGE_MODE_CLASS
3591 if (code == SUBREG
3592 && REG_P (to)
3593 && REGNO (to) < FIRST_PSEUDO_REGISTER
3594 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3595 GET_MODE (to),
3596 GET_MODE (x)))
3597 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3598 #endif
3599
3600 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3601 n_occurrences++;
3602 }
3603 else
3604 /* If we are in a SET_DEST, suppress most cases unless we
3605 have gone inside a MEM, in which case we want to
3606 simplify the address. We assume here that things that
3607 are actually part of the destination have their inner
3608 parts in the first expression. This is true for SUBREG,
3609 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3610 things aside from REG and MEM that should appear in a
3611 SET_DEST. */
3612 new = subst (XEXP (x, i), from, to,
3613 (((in_dest
3614 && (code == SUBREG || code == STRICT_LOW_PART
3615 || code == ZERO_EXTRACT))
3616 || code == SET)
3617 && i == 0), unique_copy);
3618
3619 /* If we found that we will have to reject this combination,
3620 indicate that by returning the CLOBBER ourselves, rather than
3621 an expression containing it. This will speed things up as
3622 well as prevent accidents where two CLOBBERs are considered
3623 to be equal, thus producing an incorrect simplification. */
3624
3625 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3626 return new;
3627
3628 if (GET_CODE (x) == SUBREG
3629 && (GET_CODE (new) == CONST_INT
3630 || GET_CODE (new) == CONST_DOUBLE))
3631 {
3632 enum machine_mode mode = GET_MODE (x);
3633
3634 x = simplify_subreg (GET_MODE (x), new,
3635 GET_MODE (SUBREG_REG (x)),
3636 SUBREG_BYTE (x));
3637 if (! x)
3638 x = gen_rtx_CLOBBER (mode, const0_rtx);
3639 }
3640 else if (GET_CODE (new) == CONST_INT
3641 && GET_CODE (x) == ZERO_EXTEND)
3642 {
3643 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3644 new, GET_MODE (XEXP (x, 0)));
3645 gcc_assert (x);
3646 }
3647 else
3648 SUBST (XEXP (x, i), new);
3649 }
3650 }
3651 }
3652
3653 /* Try to simplify X. If the simplification changed the code, it is likely
3654 that further simplification will help, so loop, but limit the number
3655 of repetitions that will be performed. */
3656
3657 for (i = 0; i < 4; i++)
3658 {
3659 /* If X is sufficiently simple, don't bother trying to do anything
3660 with it. */
3661 if (code != CONST_INT && code != REG && code != CLOBBER)
3662 x = combine_simplify_rtx (x, op0_mode, in_dest);
3663
3664 if (GET_CODE (x) == code)
3665 break;
3666
3667 code = GET_CODE (x);
3668
3669 /* We no longer know the original mode of operand 0 since we
3670 have changed the form of X) */
3671 op0_mode = VOIDmode;
3672 }
3673
3674 return x;
3675 }
3676 \f
3677 /* Simplify X, a piece of RTL. We just operate on the expression at the
3678 outer level; call `subst' to simplify recursively. Return the new
3679 expression.
3680
3681 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3682 if we are inside a SET_DEST. */
3683
3684 static rtx
3685 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3686 {
3687 enum rtx_code code = GET_CODE (x);
3688 enum machine_mode mode = GET_MODE (x);
3689 rtx temp;
3690 rtx reversed;
3691 int i;
3692
3693 /* If this is a commutative operation, put a constant last and a complex
3694 expression first. We don't need to do this for comparisons here. */
3695 if (COMMUTATIVE_ARITH_P (x)
3696 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3697 {
3698 temp = XEXP (x, 0);
3699 SUBST (XEXP (x, 0), XEXP (x, 1));
3700 SUBST (XEXP (x, 1), temp);
3701 }
3702
3703 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3704 sign extension of a PLUS with a constant, reverse the order of the sign
3705 extension and the addition. Note that this not the same as the original
3706 code, but overflow is undefined for signed values. Also note that the
3707 PLUS will have been partially moved "inside" the sign-extension, so that
3708 the first operand of X will really look like:
3709 (ashiftrt (plus (ashift A C4) C5) C4).
3710 We convert this to
3711 (plus (ashiftrt (ashift A C4) C2) C4)
3712 and replace the first operand of X with that expression. Later parts
3713 of this function may simplify the expression further.
3714
3715 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3716 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3717 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3718
3719 We do this to simplify address expressions. */
3720
3721 if ((code == PLUS || code == MINUS || code == MULT)
3722 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3723 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3724 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3725 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3726 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3727 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3728 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3729 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3730 XEXP (XEXP (XEXP (x, 0), 0), 1),
3731 XEXP (XEXP (x, 0), 1))) != 0)
3732 {
3733 rtx new
3734 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3735 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3736 INTVAL (XEXP (XEXP (x, 0), 1)));
3737
3738 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3739 INTVAL (XEXP (XEXP (x, 0), 1)));
3740
3741 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3742 }
3743
3744 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3745 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3746 things. Check for cases where both arms are testing the same
3747 condition.
3748
3749 Don't do anything if all operands are very simple. */
3750
3751 if ((BINARY_P (x)
3752 && ((!OBJECT_P (XEXP (x, 0))
3753 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3754 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3755 || (!OBJECT_P (XEXP (x, 1))
3756 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3757 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3758 || (UNARY_P (x)
3759 && (!OBJECT_P (XEXP (x, 0))
3760 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3761 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3762 {
3763 rtx cond, true_rtx, false_rtx;
3764
3765 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3766 if (cond != 0
3767 /* If everything is a comparison, what we have is highly unlikely
3768 to be simpler, so don't use it. */
3769 && ! (COMPARISON_P (x)
3770 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3771 {
3772 rtx cop1 = const0_rtx;
3773 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3774
3775 if (cond_code == NE && COMPARISON_P (cond))
3776 return x;
3777
3778 /* Simplify the alternative arms; this may collapse the true and
3779 false arms to store-flag values. Be careful to use copy_rtx
3780 here since true_rtx or false_rtx might share RTL with x as a
3781 result of the if_then_else_cond call above. */
3782 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3783 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3784
3785 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3786 is unlikely to be simpler. */
3787 if (general_operand (true_rtx, VOIDmode)
3788 && general_operand (false_rtx, VOIDmode))
3789 {
3790 enum rtx_code reversed;
3791
3792 /* Restarting if we generate a store-flag expression will cause
3793 us to loop. Just drop through in this case. */
3794
3795 /* If the result values are STORE_FLAG_VALUE and zero, we can
3796 just make the comparison operation. */
3797 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3798 x = gen_binary (cond_code, mode, cond, cop1);
3799 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3800 && ((reversed = reversed_comparison_code_parts
3801 (cond_code, cond, cop1, NULL))
3802 != UNKNOWN))
3803 x = gen_binary (reversed, mode, cond, cop1);
3804
3805 /* Likewise, we can make the negate of a comparison operation
3806 if the result values are - STORE_FLAG_VALUE and zero. */
3807 else if (GET_CODE (true_rtx) == CONST_INT
3808 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3809 && false_rtx == const0_rtx)
3810 x = simplify_gen_unary (NEG, mode,
3811 gen_binary (cond_code, mode, cond,
3812 cop1),
3813 mode);
3814 else if (GET_CODE (false_rtx) == CONST_INT
3815 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3816 && true_rtx == const0_rtx
3817 && ((reversed = reversed_comparison_code_parts
3818 (cond_code, cond, cop1, NULL))
3819 != UNKNOWN))
3820 x = simplify_gen_unary (NEG, mode,
3821 gen_binary (reversed, mode,
3822 cond, cop1),
3823 mode);
3824 else
3825 return gen_rtx_IF_THEN_ELSE (mode,
3826 gen_binary (cond_code, VOIDmode,
3827 cond, cop1),
3828 true_rtx, false_rtx);
3829
3830 code = GET_CODE (x);
3831 op0_mode = VOIDmode;
3832 }
3833 }
3834 }
3835
3836 /* Try to fold this expression in case we have constants that weren't
3837 present before. */
3838 temp = 0;
3839 switch (GET_RTX_CLASS (code))
3840 {
3841 case RTX_UNARY:
3842 if (op0_mode == VOIDmode)
3843 op0_mode = GET_MODE (XEXP (x, 0));
3844 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3845 break;
3846 case RTX_COMPARE:
3847 case RTX_COMM_COMPARE:
3848 {
3849 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3850 if (cmp_mode == VOIDmode)
3851 {
3852 cmp_mode = GET_MODE (XEXP (x, 1));
3853 if (cmp_mode == VOIDmode)
3854 cmp_mode = op0_mode;
3855 }
3856 temp = simplify_relational_operation (code, mode, cmp_mode,
3857 XEXP (x, 0), XEXP (x, 1));
3858 }
3859 break;
3860 case RTX_COMM_ARITH:
3861 case RTX_BIN_ARITH:
3862 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3863 break;
3864 case RTX_BITFIELD_OPS:
3865 case RTX_TERNARY:
3866 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3867 XEXP (x, 1), XEXP (x, 2));
3868 break;
3869 default:
3870 break;
3871 }
3872
3873 if (temp)
3874 {
3875 x = temp;
3876 code = GET_CODE (temp);
3877 op0_mode = VOIDmode;
3878 mode = GET_MODE (temp);
3879 }
3880
3881 /* First see if we can apply the inverse distributive law. */
3882 if (code == PLUS || code == MINUS
3883 || code == AND || code == IOR || code == XOR)
3884 {
3885 x = apply_distributive_law (x);
3886 code = GET_CODE (x);
3887 op0_mode = VOIDmode;
3888 }
3889
3890 /* If CODE is an associative operation not otherwise handled, see if we
3891 can associate some operands. This can win if they are constants or
3892 if they are logically related (i.e. (a & b) & a). */
3893 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3894 || code == AND || code == IOR || code == XOR
3895 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3896 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3897 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3898 {
3899 if (GET_CODE (XEXP (x, 0)) == code)
3900 {
3901 rtx other = XEXP (XEXP (x, 0), 0);
3902 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3903 rtx inner_op1 = XEXP (x, 1);
3904 rtx inner;
3905
3906 /* Make sure we pass the constant operand if any as the second
3907 one if this is a commutative operation. */
3908 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3909 {
3910 rtx tem = inner_op0;
3911 inner_op0 = inner_op1;
3912 inner_op1 = tem;
3913 }
3914 inner = simplify_binary_operation (code == MINUS ? PLUS
3915 : code == DIV ? MULT
3916 : code,
3917 mode, inner_op0, inner_op1);
3918
3919 /* For commutative operations, try the other pair if that one
3920 didn't simplify. */
3921 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3922 {
3923 other = XEXP (XEXP (x, 0), 1);
3924 inner = simplify_binary_operation (code, mode,
3925 XEXP (XEXP (x, 0), 0),
3926 XEXP (x, 1));
3927 }
3928
3929 if (inner)
3930 return gen_binary (code, mode, other, inner);
3931 }
3932 }
3933
3934 /* A little bit of algebraic simplification here. */
3935 switch (code)
3936 {
3937 case MEM:
3938 /* Ensure that our address has any ASHIFTs converted to MULT in case
3939 address-recognizing predicates are called later. */
3940 temp = make_compound_operation (XEXP (x, 0), MEM);
3941 SUBST (XEXP (x, 0), temp);
3942 break;
3943
3944 case SUBREG:
3945 if (op0_mode == VOIDmode)
3946 op0_mode = GET_MODE (SUBREG_REG (x));
3947
3948 /* See if this can be moved to simplify_subreg. */
3949 if (CONSTANT_P (SUBREG_REG (x))
3950 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3951 /* Don't call gen_lowpart if the inner mode
3952 is VOIDmode and we cannot simplify it, as SUBREG without
3953 inner mode is invalid. */
3954 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3955 || gen_lowpart_common (mode, SUBREG_REG (x))))
3956 return gen_lowpart (mode, SUBREG_REG (x));
3957
3958 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3959 break;
3960 {
3961 rtx temp;
3962 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3963 SUBREG_BYTE (x));
3964 if (temp)
3965 return temp;
3966 }
3967
3968 /* Don't change the mode of the MEM if that would change the meaning
3969 of the address. */
3970 if (MEM_P (SUBREG_REG (x))
3971 && (MEM_VOLATILE_P (SUBREG_REG (x))
3972 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3973 return gen_rtx_CLOBBER (mode, const0_rtx);
3974
3975 /* Note that we cannot do any narrowing for non-constants since
3976 we might have been counting on using the fact that some bits were
3977 zero. We now do this in the SET. */
3978
3979 break;
3980
3981 case NOT:
3982 if (GET_CODE (XEXP (x, 0)) == SUBREG
3983 && subreg_lowpart_p (XEXP (x, 0))
3984 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3985 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3986 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3987 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3988 {
3989 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3990
3991 x = gen_rtx_ROTATE (inner_mode,
3992 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3993 inner_mode),
3994 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3995 return gen_lowpart (mode, x);
3996 }
3997
3998 /* Apply De Morgan's laws to reduce number of patterns for machines
3999 with negating logical insns (and-not, nand, etc.). If result has
4000 only one NOT, put it first, since that is how the patterns are
4001 coded. */
4002
4003 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4004 {
4005 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4006 enum machine_mode op_mode;
4007
4008 op_mode = GET_MODE (in1);
4009 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4010
4011 op_mode = GET_MODE (in2);
4012 if (op_mode == VOIDmode)
4013 op_mode = mode;
4014 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4015
4016 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4017 {
4018 rtx tem = in2;
4019 in2 = in1; in1 = tem;
4020 }
4021
4022 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4023 mode, in1, in2);
4024 }
4025 break;
4026
4027 case NEG:
4028 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4029 if (GET_CODE (XEXP (x, 0)) == XOR
4030 && XEXP (XEXP (x, 0), 1) == const1_rtx
4031 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4032 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4033
4034 temp = expand_compound_operation (XEXP (x, 0));
4035
4036 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4037 replaced by (lshiftrt X C). This will convert
4038 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4039
4040 if (GET_CODE (temp) == ASHIFTRT
4041 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4042 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4043 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4044 INTVAL (XEXP (temp, 1)));
4045
4046 /* If X has only a single bit that might be nonzero, say, bit I, convert
4047 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4048 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4049 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4050 or a SUBREG of one since we'd be making the expression more
4051 complex if it was just a register. */
4052
4053 if (!REG_P (temp)
4054 && ! (GET_CODE (temp) == SUBREG
4055 && REG_P (SUBREG_REG (temp)))
4056 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4057 {
4058 rtx temp1 = simplify_shift_const
4059 (NULL_RTX, ASHIFTRT, mode,
4060 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4061 GET_MODE_BITSIZE (mode) - 1 - i),
4062 GET_MODE_BITSIZE (mode) - 1 - i);
4063
4064 /* If all we did was surround TEMP with the two shifts, we
4065 haven't improved anything, so don't use it. Otherwise,
4066 we are better off with TEMP1. */
4067 if (GET_CODE (temp1) != ASHIFTRT
4068 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4069 || XEXP (XEXP (temp1, 0), 0) != temp)
4070 return temp1;
4071 }
4072 break;
4073
4074 case TRUNCATE:
4075 /* We can't handle truncation to a partial integer mode here
4076 because we don't know the real bitsize of the partial
4077 integer mode. */
4078 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4079 break;
4080
4081 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4082 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4083 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4084 SUBST (XEXP (x, 0),
4085 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4086 GET_MODE_MASK (mode), NULL_RTX, 0));
4087
4088 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4089 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4090 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4091 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4092 return XEXP (XEXP (x, 0), 0);
4093
4094 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4095 (OP:SI foo:SI) if OP is NEG or ABS. */
4096 if ((GET_CODE (XEXP (x, 0)) == ABS
4097 || GET_CODE (XEXP (x, 0)) == NEG)
4098 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4099 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4100 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4101 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4102 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4103
4104 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4105 (truncate:SI x). */
4106 if (GET_CODE (XEXP (x, 0)) == SUBREG
4107 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4108 && subreg_lowpart_p (XEXP (x, 0)))
4109 return SUBREG_REG (XEXP (x, 0));
4110
4111 /* If we know that the value is already truncated, we can
4112 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4113 is nonzero for the corresponding modes. But don't do this
4114 for an (LSHIFTRT (MULT ...)) since this will cause problems
4115 with the umulXi3_highpart patterns. */
4116 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4117 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4118 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4119 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4120 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4121 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4122 return gen_lowpart (mode, XEXP (x, 0));
4123
4124 /* A truncate of a comparison can be replaced with a subreg if
4125 STORE_FLAG_VALUE permits. This is like the previous test,
4126 but it works even if the comparison is done in a mode larger
4127 than HOST_BITS_PER_WIDE_INT. */
4128 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4129 && COMPARISON_P (XEXP (x, 0))
4130 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4131 return gen_lowpart (mode, XEXP (x, 0));
4132
4133 /* Similarly, a truncate of a register whose value is a
4134 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4135 permits. */
4136 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4137 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4138 && (temp = get_last_value (XEXP (x, 0)))
4139 && COMPARISON_P (temp))
4140 return gen_lowpart (mode, XEXP (x, 0));
4141
4142 break;
4143
4144 case FLOAT_TRUNCATE:
4145 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4146 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4147 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4148 return XEXP (XEXP (x, 0), 0);
4149
4150 /* (float_truncate:SF (float_truncate:DF foo:XF))
4151 = (float_truncate:SF foo:XF).
4152 This may eliminate double rounding, so it is unsafe.
4153
4154 (float_truncate:SF (float_extend:XF foo:DF))
4155 = (float_truncate:SF foo:DF).
4156
4157 (float_truncate:DF (float_extend:XF foo:SF))
4158 = (float_extend:SF foo:DF). */
4159 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4160 && flag_unsafe_math_optimizations)
4161 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4162 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4163 0)))
4164 > GET_MODE_SIZE (mode)
4165 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4166 mode,
4167 XEXP (XEXP (x, 0), 0), mode);
4168
4169 /* (float_truncate (float x)) is (float x) */
4170 if (GET_CODE (XEXP (x, 0)) == FLOAT
4171 && (flag_unsafe_math_optimizations
4172 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4173 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4174 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4175 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4176 return simplify_gen_unary (FLOAT, mode,
4177 XEXP (XEXP (x, 0), 0),
4178 GET_MODE (XEXP (XEXP (x, 0), 0)));
4179
4180 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4181 (OP:SF foo:SF) if OP is NEG or ABS. */
4182 if ((GET_CODE (XEXP (x, 0)) == ABS
4183 || GET_CODE (XEXP (x, 0)) == NEG)
4184 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4185 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4186 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4187 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4188
4189 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4190 is (float_truncate:SF x). */
4191 if (GET_CODE (XEXP (x, 0)) == SUBREG
4192 && subreg_lowpart_p (XEXP (x, 0))
4193 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4194 return SUBREG_REG (XEXP (x, 0));
4195 break;
4196 case FLOAT_EXTEND:
4197 /* (float_extend (float_extend x)) is (float_extend x)
4198
4199 (float_extend (float x)) is (float x) assuming that double
4200 rounding can't happen.
4201 */
4202 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4203 || (GET_CODE (XEXP (x, 0)) == FLOAT
4204 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4205 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4206 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4207 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4208 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4209 XEXP (XEXP (x, 0), 0),
4210 GET_MODE (XEXP (XEXP (x, 0), 0)));
4211
4212 break;
4213 #ifdef HAVE_cc0
4214 case COMPARE:
4215 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4216 using cc0, in which case we want to leave it as a COMPARE
4217 so we can distinguish it from a register-register-copy. */
4218 if (XEXP (x, 1) == const0_rtx)
4219 return XEXP (x, 0);
4220
4221 /* x - 0 is the same as x unless x's mode has signed zeros and
4222 allows rounding towards -infinity. Under those conditions,
4223 0 - 0 is -0. */
4224 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4225 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4226 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4227 return XEXP (x, 0);
4228 break;
4229 #endif
4230
4231 case CONST:
4232 /* (const (const X)) can become (const X). Do it this way rather than
4233 returning the inner CONST since CONST can be shared with a
4234 REG_EQUAL note. */
4235 if (GET_CODE (XEXP (x, 0)) == CONST)
4236 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4237 break;
4238
4239 #ifdef HAVE_lo_sum
4240 case LO_SUM:
4241 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4242 can add in an offset. find_split_point will split this address up
4243 again if it doesn't match. */
4244 if (GET_CODE (XEXP (x, 0)) == HIGH
4245 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4246 return XEXP (x, 1);
4247 break;
4248 #endif
4249
4250 case PLUS:
4251 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4252 */
4253 if (GET_CODE (XEXP (x, 0)) == MULT
4254 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4255 {
4256 rtx in1, in2;
4257
4258 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4259 in2 = XEXP (XEXP (x, 0), 1);
4260 return gen_binary (MINUS, mode, XEXP (x, 1),
4261 gen_binary (MULT, mode, in1, in2));
4262 }
4263
4264 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4265 outermost. That's because that's the way indexed addresses are
4266 supposed to appear. This code used to check many more cases, but
4267 they are now checked elsewhere. */
4268 if (GET_CODE (XEXP (x, 0)) == PLUS
4269 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4270 return gen_binary (PLUS, mode,
4271 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4272 XEXP (x, 1)),
4273 XEXP (XEXP (x, 0), 1));
4274
4275 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4276 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4277 bit-field and can be replaced by either a sign_extend or a
4278 sign_extract. The `and' may be a zero_extend and the two
4279 <c>, -<c> constants may be reversed. */
4280 if (GET_CODE (XEXP (x, 0)) == XOR
4281 && GET_CODE (XEXP (x, 1)) == CONST_INT
4282 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4283 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4284 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4285 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4286 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4287 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4288 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4289 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4290 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4291 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4292 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4293 == (unsigned int) i + 1))))
4294 return simplify_shift_const
4295 (NULL_RTX, ASHIFTRT, mode,
4296 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4297 XEXP (XEXP (XEXP (x, 0), 0), 0),
4298 GET_MODE_BITSIZE (mode) - (i + 1)),
4299 GET_MODE_BITSIZE (mode) - (i + 1));
4300
4301 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4302 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4303 is 1. This produces better code than the alternative immediately
4304 below. */
4305 if (COMPARISON_P (XEXP (x, 0))
4306 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4307 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4308 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4309 XEXP (XEXP (x, 0), 0),
4310 XEXP (XEXP (x, 0), 1))))
4311 return
4312 simplify_gen_unary (NEG, mode, reversed, mode);
4313
4314 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4315 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4316 the bitsize of the mode - 1. This allows simplification of
4317 "a = (b & 8) == 0;" */
4318 if (XEXP (x, 1) == constm1_rtx
4319 && !REG_P (XEXP (x, 0))
4320 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4321 && REG_P (SUBREG_REG (XEXP (x, 0))))
4322 && nonzero_bits (XEXP (x, 0), mode) == 1)
4323 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4324 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4325 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4326 GET_MODE_BITSIZE (mode) - 1),
4327 GET_MODE_BITSIZE (mode) - 1);
4328
4329 /* If we are adding two things that have no bits in common, convert
4330 the addition into an IOR. This will often be further simplified,
4331 for example in cases like ((a & 1) + (a & 2)), which can
4332 become a & 3. */
4333
4334 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4335 && (nonzero_bits (XEXP (x, 0), mode)
4336 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4337 {
4338 /* Try to simplify the expression further. */
4339 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4340 temp = combine_simplify_rtx (tor, mode, in_dest);
4341
4342 /* If we could, great. If not, do not go ahead with the IOR
4343 replacement, since PLUS appears in many special purpose
4344 address arithmetic instructions. */
4345 if (GET_CODE (temp) != CLOBBER && temp != tor)
4346 return temp;
4347 }
4348 break;
4349
4350 case MINUS:
4351 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4352 by reversing the comparison code if valid. */
4353 if (STORE_FLAG_VALUE == 1
4354 && XEXP (x, 0) == const1_rtx
4355 && COMPARISON_P (XEXP (x, 1))
4356 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4357 XEXP (XEXP (x, 1), 0),
4358 XEXP (XEXP (x, 1), 1))))
4359 return reversed;
4360
4361 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4362 (and <foo> (const_int pow2-1)) */
4363 if (GET_CODE (XEXP (x, 1)) == AND
4364 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4365 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4366 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4367 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4368 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4369
4370 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4371 */
4372 if (GET_CODE (XEXP (x, 1)) == MULT
4373 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4374 {
4375 rtx in1, in2;
4376
4377 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4378 in2 = XEXP (XEXP (x, 1), 1);
4379 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4380 XEXP (x, 0));
4381 }
4382
4383 /* Canonicalize (minus (neg A) (mult B C)) to
4384 (minus (mult (neg B) C) A). */
4385 if (GET_CODE (XEXP (x, 1)) == MULT
4386 && GET_CODE (XEXP (x, 0)) == NEG)
4387 {
4388 rtx in1, in2;
4389
4390 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4391 in2 = XEXP (XEXP (x, 1), 1);
4392 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4393 XEXP (XEXP (x, 0), 0));
4394 }
4395
4396 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4397 integers. */
4398 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4399 return gen_binary (MINUS, mode,
4400 gen_binary (MINUS, mode, XEXP (x, 0),
4401 XEXP (XEXP (x, 1), 0)),
4402 XEXP (XEXP (x, 1), 1));
4403 break;
4404
4405 case MULT:
4406 /* If we have (mult (plus A B) C), apply the distributive law and then
4407 the inverse distributive law to see if things simplify. This
4408 occurs mostly in addresses, often when unrolling loops. */
4409
4410 if (GET_CODE (XEXP (x, 0)) == PLUS)
4411 {
4412 x = apply_distributive_law
4413 (gen_binary (PLUS, mode,
4414 gen_binary (MULT, mode,
4415 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4416 gen_binary (MULT, mode,
4417 XEXP (XEXP (x, 0), 1),
4418 copy_rtx (XEXP (x, 1)))));
4419
4420 if (GET_CODE (x) != MULT)
4421 return x;
4422 }
4423 /* Try simplify a*(b/c) as (a*b)/c. */
4424 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4425 && GET_CODE (XEXP (x, 0)) == DIV)
4426 {
4427 rtx tem = simplify_binary_operation (MULT, mode,
4428 XEXP (XEXP (x, 0), 0),
4429 XEXP (x, 1));
4430 if (tem)
4431 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4432 }
4433 break;
4434
4435 case UDIV:
4436 /* If this is a divide by a power of two, treat it as a shift if
4437 its first operand is a shift. */
4438 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4439 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4440 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4441 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4442 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4443 || GET_CODE (XEXP (x, 0)) == ROTATE
4444 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4445 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4446 break;
4447
4448 case EQ: case NE:
4449 case GT: case GTU: case GE: case GEU:
4450 case LT: case LTU: case LE: case LEU:
4451 case UNEQ: case LTGT:
4452 case UNGT: case UNGE:
4453 case UNLT: case UNLE:
4454 case UNORDERED: case ORDERED:
4455 /* If the first operand is a condition code, we can't do anything
4456 with it. */
4457 if (GET_CODE (XEXP (x, 0)) == COMPARE
4458 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4459 && ! CC0_P (XEXP (x, 0))))
4460 {
4461 rtx op0 = XEXP (x, 0);
4462 rtx op1 = XEXP (x, 1);
4463 enum rtx_code new_code;
4464
4465 if (GET_CODE (op0) == COMPARE)
4466 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4467
4468 /* Simplify our comparison, if possible. */
4469 new_code = simplify_comparison (code, &op0, &op1);
4470
4471 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4472 if only the low-order bit is possibly nonzero in X (such as when
4473 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4474 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4475 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4476 (plus X 1).
4477
4478 Remove any ZERO_EXTRACT we made when thinking this was a
4479 comparison. It may now be simpler to use, e.g., an AND. If a
4480 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4481 the call to make_compound_operation in the SET case. */
4482
4483 if (STORE_FLAG_VALUE == 1
4484 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4485 && op1 == const0_rtx
4486 && mode == GET_MODE (op0)
4487 && nonzero_bits (op0, mode) == 1)
4488 return gen_lowpart (mode,
4489 expand_compound_operation (op0));
4490
4491 else if (STORE_FLAG_VALUE == 1
4492 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4493 && op1 == const0_rtx
4494 && mode == GET_MODE (op0)
4495 && (num_sign_bit_copies (op0, mode)
4496 == GET_MODE_BITSIZE (mode)))
4497 {
4498 op0 = expand_compound_operation (op0);
4499 return simplify_gen_unary (NEG, mode,
4500 gen_lowpart (mode, op0),
4501 mode);
4502 }
4503
4504 else if (STORE_FLAG_VALUE == 1
4505 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4506 && op1 == const0_rtx
4507 && mode == GET_MODE (op0)
4508 && nonzero_bits (op0, mode) == 1)
4509 {
4510 op0 = expand_compound_operation (op0);
4511 return gen_binary (XOR, mode,
4512 gen_lowpart (mode, op0),
4513 const1_rtx);
4514 }
4515
4516 else if (STORE_FLAG_VALUE == 1
4517 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4518 && op1 == const0_rtx
4519 && mode == GET_MODE (op0)
4520 && (num_sign_bit_copies (op0, mode)
4521 == GET_MODE_BITSIZE (mode)))
4522 {
4523 op0 = expand_compound_operation (op0);
4524 return plus_constant (gen_lowpart (mode, op0), 1);
4525 }
4526
4527 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4528 those above. */
4529 if (STORE_FLAG_VALUE == -1
4530 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4531 && op1 == const0_rtx
4532 && (num_sign_bit_copies (op0, mode)
4533 == GET_MODE_BITSIZE (mode)))
4534 return gen_lowpart (mode,
4535 expand_compound_operation (op0));
4536
4537 else if (STORE_FLAG_VALUE == -1
4538 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4539 && op1 == const0_rtx
4540 && mode == GET_MODE (op0)
4541 && nonzero_bits (op0, mode) == 1)
4542 {
4543 op0 = expand_compound_operation (op0);
4544 return simplify_gen_unary (NEG, mode,
4545 gen_lowpart (mode, op0),
4546 mode);
4547 }
4548
4549 else if (STORE_FLAG_VALUE == -1
4550 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4551 && op1 == const0_rtx
4552 && mode == GET_MODE (op0)
4553 && (num_sign_bit_copies (op0, mode)
4554 == GET_MODE_BITSIZE (mode)))
4555 {
4556 op0 = expand_compound_operation (op0);
4557 return simplify_gen_unary (NOT, mode,
4558 gen_lowpart (mode, op0),
4559 mode);
4560 }
4561
4562 /* If X is 0/1, (eq X 0) is X-1. */
4563 else if (STORE_FLAG_VALUE == -1
4564 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4565 && op1 == const0_rtx
4566 && mode == GET_MODE (op0)
4567 && nonzero_bits (op0, mode) == 1)
4568 {
4569 op0 = expand_compound_operation (op0);
4570 return plus_constant (gen_lowpart (mode, op0), -1);
4571 }
4572
4573 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4574 one bit that might be nonzero, we can convert (ne x 0) to
4575 (ashift x c) where C puts the bit in the sign bit. Remove any
4576 AND with STORE_FLAG_VALUE when we are done, since we are only
4577 going to test the sign bit. */
4578 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4579 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4580 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4581 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4582 && op1 == const0_rtx
4583 && mode == GET_MODE (op0)
4584 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4585 {
4586 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4587 expand_compound_operation (op0),
4588 GET_MODE_BITSIZE (mode) - 1 - i);
4589 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4590 return XEXP (x, 0);
4591 else
4592 return x;
4593 }
4594
4595 /* If the code changed, return a whole new comparison. */
4596 if (new_code != code)
4597 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4598
4599 /* Otherwise, keep this operation, but maybe change its operands.
4600 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4601 SUBST (XEXP (x, 0), op0);
4602 SUBST (XEXP (x, 1), op1);
4603 }
4604 break;
4605
4606 case IF_THEN_ELSE:
4607 return simplify_if_then_else (x);
4608
4609 case ZERO_EXTRACT:
4610 case SIGN_EXTRACT:
4611 case ZERO_EXTEND:
4612 case SIGN_EXTEND:
4613 /* If we are processing SET_DEST, we are done. */
4614 if (in_dest)
4615 return x;
4616
4617 return expand_compound_operation (x);
4618
4619 case SET:
4620 return simplify_set (x);
4621
4622 case AND:
4623 case IOR:
4624 case XOR:
4625 return simplify_logical (x);
4626
4627 case ABS:
4628 /* (abs (neg <foo>)) -> (abs <foo>) */
4629 if (GET_CODE (XEXP (x, 0)) == NEG)
4630 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4631
4632 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4633 do nothing. */
4634 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4635 break;
4636
4637 /* If operand is something known to be positive, ignore the ABS. */
4638 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4639 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4640 <= HOST_BITS_PER_WIDE_INT)
4641 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4642 & ((HOST_WIDE_INT) 1
4643 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4644 == 0)))
4645 return XEXP (x, 0);
4646
4647 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4648 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4649 return gen_rtx_NEG (mode, XEXP (x, 0));
4650
4651 break;
4652
4653 case FFS:
4654 /* (ffs (*_extend <X>)) = (ffs <X>) */
4655 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4656 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4657 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4658 break;
4659
4660 case POPCOUNT:
4661 case PARITY:
4662 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4663 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4664 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4665 break;
4666
4667 case FLOAT:
4668 /* (float (sign_extend <X>)) = (float <X>). */
4669 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4670 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4671 break;
4672
4673 case ASHIFT:
4674 case LSHIFTRT:
4675 case ASHIFTRT:
4676 case ROTATE:
4677 case ROTATERT:
4678 /* If this is a shift by a constant amount, simplify it. */
4679 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4680 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4681 INTVAL (XEXP (x, 1)));
4682
4683 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4684 SUBST (XEXP (x, 1),
4685 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4686 ((HOST_WIDE_INT) 1
4687 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4688 - 1,
4689 NULL_RTX, 0));
4690 break;
4691
4692 case VEC_SELECT:
4693 {
4694 rtx op0 = XEXP (x, 0);
4695 rtx op1 = XEXP (x, 1);
4696 int len;
4697
4698 gcc_assert (GET_CODE (op1) == PARALLEL);
4699 len = XVECLEN (op1, 0);
4700 if (len == 1
4701 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4702 && GET_CODE (op0) == VEC_CONCAT)
4703 {
4704 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4705
4706 /* Try to find the element in the VEC_CONCAT. */
4707 for (;;)
4708 {
4709 if (GET_MODE (op0) == GET_MODE (x))
4710 return op0;
4711 if (GET_CODE (op0) == VEC_CONCAT)
4712 {
4713 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4714 if (op0_size < offset)
4715 op0 = XEXP (op0, 0);
4716 else
4717 {
4718 offset -= op0_size;
4719 op0 = XEXP (op0, 1);
4720 }
4721 }
4722 else
4723 break;
4724 }
4725 }
4726 }
4727
4728 break;
4729
4730 default:
4731 break;
4732 }
4733
4734 return x;
4735 }
4736 \f
4737 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4738
4739 static rtx
4740 simplify_if_then_else (rtx x)
4741 {
4742 enum machine_mode mode = GET_MODE (x);
4743 rtx cond = XEXP (x, 0);
4744 rtx true_rtx = XEXP (x, 1);
4745 rtx false_rtx = XEXP (x, 2);
4746 enum rtx_code true_code = GET_CODE (cond);
4747 int comparison_p = COMPARISON_P (cond);
4748 rtx temp;
4749 int i;
4750 enum rtx_code false_code;
4751 rtx reversed;
4752
4753 /* Simplify storing of the truth value. */
4754 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4755 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4756
4757 /* Also when the truth value has to be reversed. */
4758 if (comparison_p
4759 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4760 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4761 XEXP (cond, 1))))
4762 return reversed;
4763
4764 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4765 in it is being compared against certain values. Get the true and false
4766 comparisons and see if that says anything about the value of each arm. */
4767
4768 if (comparison_p
4769 && ((false_code = combine_reversed_comparison_code (cond))
4770 != UNKNOWN)
4771 && REG_P (XEXP (cond, 0)))
4772 {
4773 HOST_WIDE_INT nzb;
4774 rtx from = XEXP (cond, 0);
4775 rtx true_val = XEXP (cond, 1);
4776 rtx false_val = true_val;
4777 int swapped = 0;
4778
4779 /* If FALSE_CODE is EQ, swap the codes and arms. */
4780
4781 if (false_code == EQ)
4782 {
4783 swapped = 1, true_code = EQ, false_code = NE;
4784 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4785 }
4786
4787 /* If we are comparing against zero and the expression being tested has
4788 only a single bit that might be nonzero, that is its value when it is
4789 not equal to zero. Similarly if it is known to be -1 or 0. */
4790
4791 if (true_code == EQ && true_val == const0_rtx
4792 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4793 false_code = EQ, false_val = GEN_INT (nzb);
4794 else if (true_code == EQ && true_val == const0_rtx
4795 && (num_sign_bit_copies (from, GET_MODE (from))
4796 == GET_MODE_BITSIZE (GET_MODE (from))))
4797 false_code = EQ, false_val = constm1_rtx;
4798
4799 /* Now simplify an arm if we know the value of the register in the
4800 branch and it is used in the arm. Be careful due to the potential
4801 of locally-shared RTL. */
4802
4803 if (reg_mentioned_p (from, true_rtx))
4804 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4805 from, true_val),
4806 pc_rtx, pc_rtx, 0, 0);
4807 if (reg_mentioned_p (from, false_rtx))
4808 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4809 from, false_val),
4810 pc_rtx, pc_rtx, 0, 0);
4811
4812 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4813 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4814
4815 true_rtx = XEXP (x, 1);
4816 false_rtx = XEXP (x, 2);
4817 true_code = GET_CODE (cond);
4818 }
4819
4820 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4821 reversed, do so to avoid needing two sets of patterns for
4822 subtract-and-branch insns. Similarly if we have a constant in the true
4823 arm, the false arm is the same as the first operand of the comparison, or
4824 the false arm is more complicated than the true arm. */
4825
4826 if (comparison_p
4827 && combine_reversed_comparison_code (cond) != UNKNOWN
4828 && (true_rtx == pc_rtx
4829 || (CONSTANT_P (true_rtx)
4830 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4831 || true_rtx == const0_rtx
4832 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4833 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4834 && !OBJECT_P (false_rtx))
4835 || reg_mentioned_p (true_rtx, false_rtx)
4836 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4837 {
4838 true_code = reversed_comparison_code (cond, NULL);
4839 SUBST (XEXP (x, 0),
4840 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4841 XEXP (cond, 1)));
4842
4843 SUBST (XEXP (x, 1), false_rtx);
4844 SUBST (XEXP (x, 2), true_rtx);
4845
4846 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4847 cond = XEXP (x, 0);
4848
4849 /* It is possible that the conditional has been simplified out. */
4850 true_code = GET_CODE (cond);
4851 comparison_p = COMPARISON_P (cond);
4852 }
4853
4854 /* If the two arms are identical, we don't need the comparison. */
4855
4856 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4857 return true_rtx;
4858
4859 /* Convert a == b ? b : a to "a". */
4860 if (true_code == EQ && ! side_effects_p (cond)
4861 && !HONOR_NANS (mode)
4862 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4863 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4864 return false_rtx;
4865 else if (true_code == NE && ! side_effects_p (cond)
4866 && !HONOR_NANS (mode)
4867 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4868 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4869 return true_rtx;
4870
4871 /* Look for cases where we have (abs x) or (neg (abs X)). */
4872
4873 if (GET_MODE_CLASS (mode) == MODE_INT
4874 && GET_CODE (false_rtx) == NEG
4875 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4876 && comparison_p
4877 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4878 && ! side_effects_p (true_rtx))
4879 switch (true_code)
4880 {
4881 case GT:
4882 case GE:
4883 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4884 case LT:
4885 case LE:
4886 return
4887 simplify_gen_unary (NEG, mode,
4888 simplify_gen_unary (ABS, mode, true_rtx, mode),
4889 mode);
4890 default:
4891 break;
4892 }
4893
4894 /* Look for MIN or MAX. */
4895
4896 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4897 && comparison_p
4898 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4899 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4900 && ! side_effects_p (cond))
4901 switch (true_code)
4902 {
4903 case GE:
4904 case GT:
4905 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4906 case LE:
4907 case LT:
4908 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4909 case GEU:
4910 case GTU:
4911 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4912 case LEU:
4913 case LTU:
4914 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4915 default:
4916 break;
4917 }
4918
4919 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4920 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4921 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4922 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4923 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4924 neither 1 or -1, but it isn't worth checking for. */
4925
4926 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4927 && comparison_p
4928 && GET_MODE_CLASS (mode) == MODE_INT
4929 && ! side_effects_p (x))
4930 {
4931 rtx t = make_compound_operation (true_rtx, SET);
4932 rtx f = make_compound_operation (false_rtx, SET);
4933 rtx cond_op0 = XEXP (cond, 0);
4934 rtx cond_op1 = XEXP (cond, 1);
4935 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4936 enum machine_mode m = mode;
4937 rtx z = 0, c1 = NULL_RTX;
4938
4939 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4940 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4941 || GET_CODE (t) == ASHIFT
4942 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4943 && rtx_equal_p (XEXP (t, 0), f))
4944 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4945
4946 /* If an identity-zero op is commutative, check whether there
4947 would be a match if we swapped the operands. */
4948 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4949 || GET_CODE (t) == XOR)
4950 && rtx_equal_p (XEXP (t, 1), f))
4951 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4952 else if (GET_CODE (t) == SIGN_EXTEND
4953 && (GET_CODE (XEXP (t, 0)) == PLUS
4954 || GET_CODE (XEXP (t, 0)) == MINUS
4955 || GET_CODE (XEXP (t, 0)) == IOR
4956 || GET_CODE (XEXP (t, 0)) == XOR
4957 || GET_CODE (XEXP (t, 0)) == ASHIFT
4958 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4959 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4960 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4961 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4962 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4963 && (num_sign_bit_copies (f, GET_MODE (f))
4964 > (unsigned int)
4965 (GET_MODE_BITSIZE (mode)
4966 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4967 {
4968 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4969 extend_op = SIGN_EXTEND;
4970 m = GET_MODE (XEXP (t, 0));
4971 }
4972 else if (GET_CODE (t) == SIGN_EXTEND
4973 && (GET_CODE (XEXP (t, 0)) == PLUS
4974 || GET_CODE (XEXP (t, 0)) == IOR
4975 || GET_CODE (XEXP (t, 0)) == XOR)
4976 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4977 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4978 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4979 && (num_sign_bit_copies (f, GET_MODE (f))
4980 > (unsigned int)
4981 (GET_MODE_BITSIZE (mode)
4982 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4983 {
4984 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4985 extend_op = SIGN_EXTEND;
4986 m = GET_MODE (XEXP (t, 0));
4987 }
4988 else if (GET_CODE (t) == ZERO_EXTEND
4989 && (GET_CODE (XEXP (t, 0)) == PLUS
4990 || GET_CODE (XEXP (t, 0)) == MINUS
4991 || GET_CODE (XEXP (t, 0)) == IOR
4992 || GET_CODE (XEXP (t, 0)) == XOR
4993 || GET_CODE (XEXP (t, 0)) == ASHIFT
4994 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4995 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4996 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4997 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4998 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4999 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5000 && ((nonzero_bits (f, GET_MODE (f))
5001 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5002 == 0))
5003 {
5004 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5005 extend_op = ZERO_EXTEND;
5006 m = GET_MODE (XEXP (t, 0));
5007 }
5008 else if (GET_CODE (t) == ZERO_EXTEND
5009 && (GET_CODE (XEXP (t, 0)) == PLUS
5010 || GET_CODE (XEXP (t, 0)) == IOR
5011 || GET_CODE (XEXP (t, 0)) == XOR)
5012 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5013 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5014 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5015 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5016 && ((nonzero_bits (f, GET_MODE (f))
5017 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5018 == 0))
5019 {
5020 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5021 extend_op = ZERO_EXTEND;
5022 m = GET_MODE (XEXP (t, 0));
5023 }
5024
5025 if (z)
5026 {
5027 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5028 pc_rtx, pc_rtx, 0, 0);
5029 temp = gen_binary (MULT, m, temp,
5030 gen_binary (MULT, m, c1, const_true_rtx));
5031 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5032 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5033
5034 if (extend_op != UNKNOWN)
5035 temp = simplify_gen_unary (extend_op, mode, temp, m);
5036
5037 return temp;
5038 }
5039 }
5040
5041 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5042 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5043 negation of a single bit, we can convert this operation to a shift. We
5044 can actually do this more generally, but it doesn't seem worth it. */
5045
5046 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5047 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5048 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5049 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5050 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5051 == GET_MODE_BITSIZE (mode))
5052 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5053 return
5054 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5055 gen_lowpart (mode, XEXP (cond, 0)), i);
5056
5057 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5058 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5059 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5060 && GET_MODE (XEXP (cond, 0)) == mode
5061 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5062 == nonzero_bits (XEXP (cond, 0), mode)
5063 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5064 return XEXP (cond, 0);
5065
5066 return x;
5067 }
5068 \f
5069 /* Simplify X, a SET expression. Return the new expression. */
5070
5071 static rtx
5072 simplify_set (rtx x)
5073 {
5074 rtx src = SET_SRC (x);
5075 rtx dest = SET_DEST (x);
5076 enum machine_mode mode
5077 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5078 rtx other_insn;
5079 rtx *cc_use;
5080
5081 /* (set (pc) (return)) gets written as (return). */
5082 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5083 return src;
5084
5085 /* Now that we know for sure which bits of SRC we are using, see if we can
5086 simplify the expression for the object knowing that we only need the
5087 low-order bits. */
5088
5089 if (GET_MODE_CLASS (mode) == MODE_INT
5090 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5091 {
5092 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5093 SUBST (SET_SRC (x), src);
5094 }
5095
5096 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5097 the comparison result and try to simplify it unless we already have used
5098 undobuf.other_insn. */
5099 if ((GET_MODE_CLASS (mode) == MODE_CC
5100 || GET_CODE (src) == COMPARE
5101 || CC0_P (dest))
5102 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5103 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5104 && COMPARISON_P (*cc_use)
5105 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5106 {
5107 enum rtx_code old_code = GET_CODE (*cc_use);
5108 enum rtx_code new_code;
5109 rtx op0, op1, tmp;
5110 int other_changed = 0;
5111 enum machine_mode compare_mode = GET_MODE (dest);
5112
5113 if (GET_CODE (src) == COMPARE)
5114 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5115 else
5116 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5117
5118 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5119 op0, op1);
5120 if (!tmp)
5121 new_code = old_code;
5122 else if (!CONSTANT_P (tmp))
5123 {
5124 new_code = GET_CODE (tmp);
5125 op0 = XEXP (tmp, 0);
5126 op1 = XEXP (tmp, 1);
5127 }
5128 else
5129 {
5130 rtx pat = PATTERN (other_insn);
5131 undobuf.other_insn = other_insn;
5132 SUBST (*cc_use, tmp);
5133
5134 /* Attempt to simplify CC user. */
5135 if (GET_CODE (pat) == SET)
5136 {
5137 rtx new = simplify_rtx (SET_SRC (pat));
5138 if (new != NULL_RTX)
5139 SUBST (SET_SRC (pat), new);
5140 }
5141
5142 /* Convert X into a no-op move. */
5143 SUBST (SET_DEST (x), pc_rtx);
5144 SUBST (SET_SRC (x), pc_rtx);
5145 return x;
5146 }
5147
5148 /* Simplify our comparison, if possible. */
5149 new_code = simplify_comparison (new_code, &op0, &op1);
5150
5151 #ifdef SELECT_CC_MODE
5152 /* If this machine has CC modes other than CCmode, check to see if we
5153 need to use a different CC mode here. */
5154 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5155 compare_mode = GET_MODE (op0);
5156 else
5157 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5158
5159 #ifndef HAVE_cc0
5160 /* If the mode changed, we have to change SET_DEST, the mode in the
5161 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5162 a hard register, just build new versions with the proper mode. If it
5163 is a pseudo, we lose unless it is only time we set the pseudo, in
5164 which case we can safely change its mode. */
5165 if (compare_mode != GET_MODE (dest))
5166 {
5167 unsigned int regno = REGNO (dest);
5168 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5169
5170 if (regno < FIRST_PSEUDO_REGISTER
5171 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5172 {
5173 if (regno >= FIRST_PSEUDO_REGISTER)
5174 SUBST (regno_reg_rtx[regno], new_dest);
5175
5176 SUBST (SET_DEST (x), new_dest);
5177 SUBST (XEXP (*cc_use, 0), new_dest);
5178 other_changed = 1;
5179
5180 dest = new_dest;
5181 }
5182 }
5183 #endif /* cc0 */
5184 #endif /* SELECT_CC_MODE */
5185
5186 /* If the code changed, we have to build a new comparison in
5187 undobuf.other_insn. */
5188 if (new_code != old_code)
5189 {
5190 int other_changed_previously = other_changed;
5191 unsigned HOST_WIDE_INT mask;
5192
5193 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5194 dest, const0_rtx));
5195 other_changed = 1;
5196
5197 /* If the only change we made was to change an EQ into an NE or
5198 vice versa, OP0 has only one bit that might be nonzero, and OP1
5199 is zero, check if changing the user of the condition code will
5200 produce a valid insn. If it won't, we can keep the original code
5201 in that insn by surrounding our operation with an XOR. */
5202
5203 if (((old_code == NE && new_code == EQ)
5204 || (old_code == EQ && new_code == NE))
5205 && ! other_changed_previously && op1 == const0_rtx
5206 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5207 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5208 {
5209 rtx pat = PATTERN (other_insn), note = 0;
5210
5211 if ((recog_for_combine (&pat, other_insn, &note) < 0
5212 && ! check_asm_operands (pat)))
5213 {
5214 PUT_CODE (*cc_use, old_code);
5215 other_changed = 0;
5216
5217 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5218 }
5219 }
5220 }
5221
5222 if (other_changed)
5223 undobuf.other_insn = other_insn;
5224
5225 #ifdef HAVE_cc0
5226 /* If we are now comparing against zero, change our source if
5227 needed. If we do not use cc0, we always have a COMPARE. */
5228 if (op1 == const0_rtx && dest == cc0_rtx)
5229 {
5230 SUBST (SET_SRC (x), op0);
5231 src = op0;
5232 }
5233 else
5234 #endif
5235
5236 /* Otherwise, if we didn't previously have a COMPARE in the
5237 correct mode, we need one. */
5238 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5239 {
5240 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5241 src = SET_SRC (x);
5242 }
5243 else
5244 {
5245 /* Otherwise, update the COMPARE if needed. */
5246 SUBST (XEXP (src, 0), op0);
5247 SUBST (XEXP (src, 1), op1);
5248 }
5249 }
5250 else
5251 {
5252 /* Get SET_SRC in a form where we have placed back any
5253 compound expressions. Then do the checks below. */
5254 src = make_compound_operation (src, SET);
5255 SUBST (SET_SRC (x), src);
5256 }
5257
5258 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5259 and X being a REG or (subreg (reg)), we may be able to convert this to
5260 (set (subreg:m2 x) (op)).
5261
5262 We can always do this if M1 is narrower than M2 because that means that
5263 we only care about the low bits of the result.
5264
5265 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5266 perform a narrower operation than requested since the high-order bits will
5267 be undefined. On machine where it is defined, this transformation is safe
5268 as long as M1 and M2 have the same number of words. */
5269
5270 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5271 && !OBJECT_P (SUBREG_REG (src))
5272 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5273 / UNITS_PER_WORD)
5274 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5275 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5276 #ifndef WORD_REGISTER_OPERATIONS
5277 && (GET_MODE_SIZE (GET_MODE (src))
5278 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5279 #endif
5280 #ifdef CANNOT_CHANGE_MODE_CLASS
5281 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5282 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5283 GET_MODE (SUBREG_REG (src)),
5284 GET_MODE (src)))
5285 #endif
5286 && (REG_P (dest)
5287 || (GET_CODE (dest) == SUBREG
5288 && REG_P (SUBREG_REG (dest)))))
5289 {
5290 SUBST (SET_DEST (x),
5291 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5292 dest));
5293 SUBST (SET_SRC (x), SUBREG_REG (src));
5294
5295 src = SET_SRC (x), dest = SET_DEST (x);
5296 }
5297
5298 #ifdef HAVE_cc0
5299 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5300 in SRC. */
5301 if (dest == cc0_rtx
5302 && GET_CODE (src) == SUBREG
5303 && subreg_lowpart_p (src)
5304 && (GET_MODE_BITSIZE (GET_MODE (src))
5305 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5306 {
5307 rtx inner = SUBREG_REG (src);
5308 enum machine_mode inner_mode = GET_MODE (inner);
5309
5310 /* Here we make sure that we don't have a sign bit on. */
5311 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5312 && (nonzero_bits (inner, inner_mode)
5313 < ((unsigned HOST_WIDE_INT) 1
5314 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5315 {
5316 SUBST (SET_SRC (x), inner);
5317 src = SET_SRC (x);
5318 }
5319 }
5320 #endif
5321
5322 #ifdef LOAD_EXTEND_OP
5323 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5324 would require a paradoxical subreg. Replace the subreg with a
5325 zero_extend to avoid the reload that would otherwise be required. */
5326
5327 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5328 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5329 && SUBREG_BYTE (src) == 0
5330 && (GET_MODE_SIZE (GET_MODE (src))
5331 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5332 && MEM_P (SUBREG_REG (src)))
5333 {
5334 SUBST (SET_SRC (x),
5335 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5336 GET_MODE (src), SUBREG_REG (src)));
5337
5338 src = SET_SRC (x);
5339 }
5340 #endif
5341
5342 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5343 are comparing an item known to be 0 or -1 against 0, use a logical
5344 operation instead. Check for one of the arms being an IOR of the other
5345 arm with some value. We compute three terms to be IOR'ed together. In
5346 practice, at most two will be nonzero. Then we do the IOR's. */
5347
5348 if (GET_CODE (dest) != PC
5349 && GET_CODE (src) == IF_THEN_ELSE
5350 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5351 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5352 && XEXP (XEXP (src, 0), 1) == const0_rtx
5353 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5354 #ifdef HAVE_conditional_move
5355 && ! can_conditionally_move_p (GET_MODE (src))
5356 #endif
5357 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5358 GET_MODE (XEXP (XEXP (src, 0), 0)))
5359 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5360 && ! side_effects_p (src))
5361 {
5362 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5363 ? XEXP (src, 1) : XEXP (src, 2));
5364 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5365 ? XEXP (src, 2) : XEXP (src, 1));
5366 rtx term1 = const0_rtx, term2, term3;
5367
5368 if (GET_CODE (true_rtx) == IOR
5369 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5370 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5371 else if (GET_CODE (true_rtx) == IOR
5372 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5373 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5374 else if (GET_CODE (false_rtx) == IOR
5375 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5376 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5377 else if (GET_CODE (false_rtx) == IOR
5378 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5379 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5380
5381 term2 = gen_binary (AND, GET_MODE (src),
5382 XEXP (XEXP (src, 0), 0), true_rtx);
5383 term3 = gen_binary (AND, GET_MODE (src),
5384 simplify_gen_unary (NOT, GET_MODE (src),
5385 XEXP (XEXP (src, 0), 0),
5386 GET_MODE (src)),
5387 false_rtx);
5388
5389 SUBST (SET_SRC (x),
5390 gen_binary (IOR, GET_MODE (src),
5391 gen_binary (IOR, GET_MODE (src), term1, term2),
5392 term3));
5393
5394 src = SET_SRC (x);
5395 }
5396
5397 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5398 whole thing fail. */
5399 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5400 return src;
5401 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5402 return dest;
5403 else
5404 /* Convert this into a field assignment operation, if possible. */
5405 return make_field_assignment (x);
5406 }
5407 \f
5408 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5409 result. */
5410
5411 static rtx
5412 simplify_logical (rtx x)
5413 {
5414 enum machine_mode mode = GET_MODE (x);
5415 rtx op0 = XEXP (x, 0);
5416 rtx op1 = XEXP (x, 1);
5417 rtx reversed;
5418
5419 switch (GET_CODE (x))
5420 {
5421 case AND:
5422 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5423 insn (and may simplify more). */
5424 if (GET_CODE (op0) == XOR
5425 && rtx_equal_p (XEXP (op0, 0), op1)
5426 && ! side_effects_p (op1))
5427 x = gen_binary (AND, mode,
5428 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5429 op1);
5430
5431 if (GET_CODE (op0) == XOR
5432 && rtx_equal_p (XEXP (op0, 1), op1)
5433 && ! side_effects_p (op1))
5434 x = gen_binary (AND, mode,
5435 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5436 op1);
5437
5438 /* Similarly for (~(A ^ B)) & A. */
5439 if (GET_CODE (op0) == NOT
5440 && GET_CODE (XEXP (op0, 0)) == XOR
5441 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5442 && ! side_effects_p (op1))
5443 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5444
5445 if (GET_CODE (op0) == NOT
5446 && GET_CODE (XEXP (op0, 0)) == XOR
5447 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5448 && ! side_effects_p (op1))
5449 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5450
5451 /* We can call simplify_and_const_int only if we don't lose
5452 any (sign) bits when converting INTVAL (op1) to
5453 "unsigned HOST_WIDE_INT". */
5454 if (GET_CODE (op1) == CONST_INT
5455 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5456 || INTVAL (op1) > 0))
5457 {
5458 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5459
5460 /* If we have (ior (and (X C1) C2)) and the next restart would be
5461 the last, simplify this by making C1 as small as possible
5462 and then exit. Only do this if C1 actually changes: for now
5463 this only saves memory but, should this transformation be
5464 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5465 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5466 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5467 && GET_CODE (op1) == CONST_INT
5468 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5469 return gen_binary (IOR, mode,
5470 gen_binary (AND, mode, XEXP (op0, 0),
5471 GEN_INT (INTVAL (XEXP (op0, 1))
5472 & ~INTVAL (op1))), op1);
5473
5474 if (GET_CODE (x) != AND)
5475 return x;
5476
5477 op0 = XEXP (x, 0);
5478 op1 = XEXP (x, 1);
5479 }
5480
5481 /* Convert (A | B) & A to A. */
5482 if (GET_CODE (op0) == IOR
5483 && (rtx_equal_p (XEXP (op0, 0), op1)
5484 || rtx_equal_p (XEXP (op0, 1), op1))
5485 && ! side_effects_p (XEXP (op0, 0))
5486 && ! side_effects_p (XEXP (op0, 1)))
5487 return op1;
5488
5489 /* In the following group of tests (and those in case IOR below),
5490 we start with some combination of logical operations and apply
5491 the distributive law followed by the inverse distributive law.
5492 Most of the time, this results in no change. However, if some of
5493 the operands are the same or inverses of each other, simplifications
5494 will result.
5495
5496 For example, (and (ior A B) (not B)) can occur as the result of
5497 expanding a bit field assignment. When we apply the distributive
5498 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5499 which then simplifies to (and (A (not B))).
5500
5501 If we have (and (ior A B) C), apply the distributive law and then
5502 the inverse distributive law to see if things simplify. */
5503
5504 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5505 {
5506 x = apply_distributive_law
5507 (gen_binary (GET_CODE (op0), mode,
5508 gen_binary (AND, mode, XEXP (op0, 0), op1),
5509 gen_binary (AND, mode, XEXP (op0, 1),
5510 copy_rtx (op1))));
5511 if (GET_CODE (x) != AND)
5512 return x;
5513 }
5514
5515 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5516 return apply_distributive_law
5517 (gen_binary (GET_CODE (op1), mode,
5518 gen_binary (AND, mode, XEXP (op1, 0), op0),
5519 gen_binary (AND, mode, XEXP (op1, 1),
5520 copy_rtx (op0))));
5521
5522 /* Similarly, taking advantage of the fact that
5523 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5524
5525 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5526 return apply_distributive_law
5527 (gen_binary (XOR, mode,
5528 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5529 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5530 XEXP (op1, 1))));
5531
5532 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5533 return apply_distributive_law
5534 (gen_binary (XOR, mode,
5535 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5536 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5537 break;
5538
5539 case IOR:
5540 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5541 if (GET_CODE (op1) == CONST_INT
5542 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5543 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5544 return op1;
5545
5546 /* Convert (A & B) | A to A. */
5547 if (GET_CODE (op0) == AND
5548 && (rtx_equal_p (XEXP (op0, 0), op1)
5549 || rtx_equal_p (XEXP (op0, 1), op1))
5550 && ! side_effects_p (XEXP (op0, 0))
5551 && ! side_effects_p (XEXP (op0, 1)))
5552 return op1;
5553
5554 /* If we have (ior (and A B) C), apply the distributive law and then
5555 the inverse distributive law to see if things simplify. */
5556
5557 if (GET_CODE (op0) == AND)
5558 {
5559 x = apply_distributive_law
5560 (gen_binary (AND, mode,
5561 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5562 gen_binary (IOR, mode, XEXP (op0, 1),
5563 copy_rtx (op1))));
5564
5565 if (GET_CODE (x) != IOR)
5566 return x;
5567 }
5568
5569 if (GET_CODE (op1) == AND)
5570 {
5571 x = apply_distributive_law
5572 (gen_binary (AND, mode,
5573 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5574 gen_binary (IOR, mode, XEXP (op1, 1),
5575 copy_rtx (op0))));
5576
5577 if (GET_CODE (x) != IOR)
5578 return x;
5579 }
5580
5581 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5582 mode size to (rotate A CX). */
5583
5584 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5585 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5586 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5587 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5588 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5589 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5590 == GET_MODE_BITSIZE (mode)))
5591 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5592 (GET_CODE (op0) == ASHIFT
5593 ? XEXP (op0, 1) : XEXP (op1, 1)));
5594
5595 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5596 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5597 does not affect any of the bits in OP1, it can really be done
5598 as a PLUS and we can associate. We do this by seeing if OP1
5599 can be safely shifted left C bits. */
5600 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5601 && GET_CODE (XEXP (op0, 0)) == PLUS
5602 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5603 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5604 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5605 {
5606 int count = INTVAL (XEXP (op0, 1));
5607 HOST_WIDE_INT mask = INTVAL (op1) << count;
5608
5609 if (mask >> count == INTVAL (op1)
5610 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5611 {
5612 SUBST (XEXP (XEXP (op0, 0), 1),
5613 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5614 return op0;
5615 }
5616 }
5617 break;
5618
5619 case XOR:
5620 /* If we are XORing two things that have no bits in common,
5621 convert them into an IOR. This helps to detect rotation encoded
5622 using those methods and possibly other simplifications. */
5623
5624 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5625 && (nonzero_bits (op0, mode)
5626 & nonzero_bits (op1, mode)) == 0)
5627 return (gen_binary (IOR, mode, op0, op1));
5628
5629 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5630 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5631 (NOT y). */
5632 {
5633 int num_negated = 0;
5634
5635 if (GET_CODE (op0) == NOT)
5636 num_negated++, op0 = XEXP (op0, 0);
5637 if (GET_CODE (op1) == NOT)
5638 num_negated++, op1 = XEXP (op1, 0);
5639
5640 if (num_negated == 2)
5641 {
5642 SUBST (XEXP (x, 0), op0);
5643 SUBST (XEXP (x, 1), op1);
5644 }
5645 else if (num_negated == 1)
5646 return
5647 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5648 mode);
5649 }
5650
5651 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5652 correspond to a machine insn or result in further simplifications
5653 if B is a constant. */
5654
5655 if (GET_CODE (op0) == AND
5656 && rtx_equal_p (XEXP (op0, 1), op1)
5657 && ! side_effects_p (op1))
5658 return gen_binary (AND, mode,
5659 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5660 op1);
5661
5662 else if (GET_CODE (op0) == AND
5663 && rtx_equal_p (XEXP (op0, 0), op1)
5664 && ! side_effects_p (op1))
5665 return gen_binary (AND, mode,
5666 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5667 op1);
5668
5669 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5670 comparison if STORE_FLAG_VALUE is 1. */
5671 if (STORE_FLAG_VALUE == 1
5672 && op1 == const1_rtx
5673 && COMPARISON_P (op0)
5674 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5675 XEXP (op0, 1))))
5676 return reversed;
5677
5678 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5679 is (lt foo (const_int 0)), so we can perform the above
5680 simplification if STORE_FLAG_VALUE is 1. */
5681
5682 if (STORE_FLAG_VALUE == 1
5683 && op1 == const1_rtx
5684 && GET_CODE (op0) == LSHIFTRT
5685 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5686 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5687 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5688
5689 /* (xor (comparison foo bar) (const_int sign-bit))
5690 when STORE_FLAG_VALUE is the sign bit. */
5691 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5692 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5693 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5694 && op1 == const_true_rtx
5695 && COMPARISON_P (op0)
5696 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5697 XEXP (op0, 1))))
5698 return reversed;
5699
5700 break;
5701
5702 default:
5703 gcc_unreachable ();
5704 }
5705
5706 return x;
5707 }
5708 \f
5709 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5710 operations" because they can be replaced with two more basic operations.
5711 ZERO_EXTEND is also considered "compound" because it can be replaced with
5712 an AND operation, which is simpler, though only one operation.
5713
5714 The function expand_compound_operation is called with an rtx expression
5715 and will convert it to the appropriate shifts and AND operations,
5716 simplifying at each stage.
5717
5718 The function make_compound_operation is called to convert an expression
5719 consisting of shifts and ANDs into the equivalent compound expression.
5720 It is the inverse of this function, loosely speaking. */
5721
5722 static rtx
5723 expand_compound_operation (rtx x)
5724 {
5725 unsigned HOST_WIDE_INT pos = 0, len;
5726 int unsignedp = 0;
5727 unsigned int modewidth;
5728 rtx tem;
5729
5730 switch (GET_CODE (x))
5731 {
5732 case ZERO_EXTEND:
5733 unsignedp = 1;
5734 case SIGN_EXTEND:
5735 /* We can't necessarily use a const_int for a multiword mode;
5736 it depends on implicitly extending the value.
5737 Since we don't know the right way to extend it,
5738 we can't tell whether the implicit way is right.
5739
5740 Even for a mode that is no wider than a const_int,
5741 we can't win, because we need to sign extend one of its bits through
5742 the rest of it, and we don't know which bit. */
5743 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5744 return x;
5745
5746 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5747 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5748 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5749 reloaded. If not for that, MEM's would very rarely be safe.
5750
5751 Reject MODEs bigger than a word, because we might not be able
5752 to reference a two-register group starting with an arbitrary register
5753 (and currently gen_lowpart might crash for a SUBREG). */
5754
5755 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5756 return x;
5757
5758 /* Reject MODEs that aren't scalar integers because turning vector
5759 or complex modes into shifts causes problems. */
5760
5761 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5762 return x;
5763
5764 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5765 /* If the inner object has VOIDmode (the only way this can happen
5766 is if it is an ASM_OPERANDS), we can't do anything since we don't
5767 know how much masking to do. */
5768 if (len == 0)
5769 return x;
5770
5771 break;
5772
5773 case ZERO_EXTRACT:
5774 unsignedp = 1;
5775 case SIGN_EXTRACT:
5776 /* If the operand is a CLOBBER, just return it. */
5777 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5778 return XEXP (x, 0);
5779
5780 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5781 || GET_CODE (XEXP (x, 2)) != CONST_INT
5782 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5783 return x;
5784
5785 /* Reject MODEs that aren't scalar integers because turning vector
5786 or complex modes into shifts causes problems. */
5787
5788 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5789 return x;
5790
5791 len = INTVAL (XEXP (x, 1));
5792 pos = INTVAL (XEXP (x, 2));
5793
5794 /* If this goes outside the object being extracted, replace the object
5795 with a (use (mem ...)) construct that only combine understands
5796 and is used only for this purpose. */
5797 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5798 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5799
5800 if (BITS_BIG_ENDIAN)
5801 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5802
5803 break;
5804
5805 default:
5806 return x;
5807 }
5808 /* Convert sign extension to zero extension, if we know that the high
5809 bit is not set, as this is easier to optimize. It will be converted
5810 back to cheaper alternative in make_extraction. */
5811 if (GET_CODE (x) == SIGN_EXTEND
5812 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5813 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5814 & ~(((unsigned HOST_WIDE_INT)
5815 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5816 >> 1))
5817 == 0)))
5818 {
5819 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5820 rtx temp2 = expand_compound_operation (temp);
5821
5822 /* Make sure this is a profitable operation. */
5823 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5824 return temp2;
5825 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5826 return temp;
5827 else
5828 return x;
5829 }
5830
5831 /* We can optimize some special cases of ZERO_EXTEND. */
5832 if (GET_CODE (x) == ZERO_EXTEND)
5833 {
5834 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5835 know that the last value didn't have any inappropriate bits
5836 set. */
5837 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5838 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5839 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5840 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5841 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5842 return XEXP (XEXP (x, 0), 0);
5843
5844 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5845 if (GET_CODE (XEXP (x, 0)) == SUBREG
5846 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5847 && subreg_lowpart_p (XEXP (x, 0))
5848 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5849 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5850 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5851 return SUBREG_REG (XEXP (x, 0));
5852
5853 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5854 is a comparison and STORE_FLAG_VALUE permits. This is like
5855 the first case, but it works even when GET_MODE (x) is larger
5856 than HOST_WIDE_INT. */
5857 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5858 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5859 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5860 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5861 <= HOST_BITS_PER_WIDE_INT)
5862 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5863 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5864 return XEXP (XEXP (x, 0), 0);
5865
5866 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5867 if (GET_CODE (XEXP (x, 0)) == SUBREG
5868 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5869 && subreg_lowpart_p (XEXP (x, 0))
5870 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5871 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5872 <= HOST_BITS_PER_WIDE_INT)
5873 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5874 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5875 return SUBREG_REG (XEXP (x, 0));
5876
5877 }
5878
5879 /* If we reach here, we want to return a pair of shifts. The inner
5880 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5881 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5882 logical depending on the value of UNSIGNEDP.
5883
5884 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5885 converted into an AND of a shift.
5886
5887 We must check for the case where the left shift would have a negative
5888 count. This can happen in a case like (x >> 31) & 255 on machines
5889 that can't shift by a constant. On those machines, we would first
5890 combine the shift with the AND to produce a variable-position
5891 extraction. Then the constant of 31 would be substituted in to produce
5892 a such a position. */
5893
5894 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5895 if (modewidth + len >= pos)
5896 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5897 GET_MODE (x),
5898 simplify_shift_const (NULL_RTX, ASHIFT,
5899 GET_MODE (x),
5900 XEXP (x, 0),
5901 modewidth - pos - len),
5902 modewidth - len);
5903
5904 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5905 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5906 simplify_shift_const (NULL_RTX, LSHIFTRT,
5907 GET_MODE (x),
5908 XEXP (x, 0), pos),
5909 ((HOST_WIDE_INT) 1 << len) - 1);
5910 else
5911 /* Any other cases we can't handle. */
5912 return x;
5913
5914 /* If we couldn't do this for some reason, return the original
5915 expression. */
5916 if (GET_CODE (tem) == CLOBBER)
5917 return x;
5918
5919 return tem;
5920 }
5921 \f
5922 /* X is a SET which contains an assignment of one object into
5923 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5924 or certain SUBREGS). If possible, convert it into a series of
5925 logical operations.
5926
5927 We half-heartedly support variable positions, but do not at all
5928 support variable lengths. */
5929
5930 static rtx
5931 expand_field_assignment (rtx x)
5932 {
5933 rtx inner;
5934 rtx pos; /* Always counts from low bit. */
5935 int len;
5936 rtx mask;
5937 enum machine_mode compute_mode;
5938
5939 /* Loop until we find something we can't simplify. */
5940 while (1)
5941 {
5942 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5943 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5944 {
5945 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5946 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5947 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5948 }
5949 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5950 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5951 {
5952 inner = XEXP (SET_DEST (x), 0);
5953 len = INTVAL (XEXP (SET_DEST (x), 1));
5954 pos = XEXP (SET_DEST (x), 2);
5955
5956 /* If the position is constant and spans the width of INNER,
5957 surround INNER with a USE to indicate this. */
5958 if (GET_CODE (pos) == CONST_INT
5959 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5960 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5961
5962 if (BITS_BIG_ENDIAN)
5963 {
5964 if (GET_CODE (pos) == CONST_INT)
5965 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5966 - INTVAL (pos));
5967 else if (GET_CODE (pos) == MINUS
5968 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5969 && (INTVAL (XEXP (pos, 1))
5970 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5971 /* If position is ADJUST - X, new position is X. */
5972 pos = XEXP (pos, 0);
5973 else
5974 pos = gen_binary (MINUS, GET_MODE (pos),
5975 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5976 - len),
5977 pos);
5978 }
5979 }
5980
5981 /* A SUBREG between two modes that occupy the same numbers of words
5982 can be done by moving the SUBREG to the source. */
5983 else if (GET_CODE (SET_DEST (x)) == SUBREG
5984 /* We need SUBREGs to compute nonzero_bits properly. */
5985 && nonzero_sign_valid
5986 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5987 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5988 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5989 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5990 {
5991 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5992 gen_lowpart
5993 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5994 SET_SRC (x)));
5995 continue;
5996 }
5997 else
5998 break;
5999
6000 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6001 inner = SUBREG_REG (inner);
6002
6003 compute_mode = GET_MODE (inner);
6004
6005 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6006 if (! SCALAR_INT_MODE_P (compute_mode))
6007 {
6008 enum machine_mode imode;
6009
6010 /* Don't do anything for vector or complex integral types. */
6011 if (! FLOAT_MODE_P (compute_mode))
6012 break;
6013
6014 /* Try to find an integral mode to pun with. */
6015 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6016 if (imode == BLKmode)
6017 break;
6018
6019 compute_mode = imode;
6020 inner = gen_lowpart (imode, inner);
6021 }
6022
6023 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6024 if (len < HOST_BITS_PER_WIDE_INT)
6025 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6026 else
6027 break;
6028
6029 /* Now compute the equivalent expression. Make a copy of INNER
6030 for the SET_DEST in case it is a MEM into which we will substitute;
6031 we don't want shared RTL in that case. */
6032 x = gen_rtx_SET
6033 (VOIDmode, copy_rtx (inner),
6034 gen_binary (IOR, compute_mode,
6035 gen_binary (AND, compute_mode,
6036 simplify_gen_unary (NOT, compute_mode,
6037 gen_binary (ASHIFT,
6038 compute_mode,
6039 mask, pos),
6040 compute_mode),
6041 inner),
6042 gen_binary (ASHIFT, compute_mode,
6043 gen_binary (AND, compute_mode,
6044 gen_lowpart
6045 (compute_mode, SET_SRC (x)),
6046 mask),
6047 pos)));
6048 }
6049
6050 return x;
6051 }
6052 \f
6053 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6054 it is an RTX that represents a variable starting position; otherwise,
6055 POS is the (constant) starting bit position (counted from the LSB).
6056
6057 INNER may be a USE. This will occur when we started with a bitfield
6058 that went outside the boundary of the object in memory, which is
6059 allowed on most machines. To isolate this case, we produce a USE
6060 whose mode is wide enough and surround the MEM with it. The only
6061 code that understands the USE is this routine. If it is not removed,
6062 it will cause the resulting insn not to match.
6063
6064 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6065 signed reference.
6066
6067 IN_DEST is nonzero if this is a reference in the destination of a
6068 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6069 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6070 be used.
6071
6072 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6073 ZERO_EXTRACT should be built even for bits starting at bit 0.
6074
6075 MODE is the desired mode of the result (if IN_DEST == 0).
6076
6077 The result is an RTX for the extraction or NULL_RTX if the target
6078 can't handle it. */
6079
6080 static rtx
6081 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6082 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6083 int in_dest, int in_compare)
6084 {
6085 /* This mode describes the size of the storage area
6086 to fetch the overall value from. Within that, we
6087 ignore the POS lowest bits, etc. */
6088 enum machine_mode is_mode = GET_MODE (inner);
6089 enum machine_mode inner_mode;
6090 enum machine_mode wanted_inner_mode = byte_mode;
6091 enum machine_mode wanted_inner_reg_mode = word_mode;
6092 enum machine_mode pos_mode = word_mode;
6093 enum machine_mode extraction_mode = word_mode;
6094 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6095 int spans_byte = 0;
6096 rtx new = 0;
6097 rtx orig_pos_rtx = pos_rtx;
6098 HOST_WIDE_INT orig_pos;
6099
6100 /* Get some information about INNER and get the innermost object. */
6101 if (GET_CODE (inner) == USE)
6102 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6103 /* We don't need to adjust the position because we set up the USE
6104 to pretend that it was a full-word object. */
6105 spans_byte = 1, inner = XEXP (inner, 0);
6106 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6107 {
6108 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6109 consider just the QI as the memory to extract from.
6110 The subreg adds or removes high bits; its mode is
6111 irrelevant to the meaning of this extraction,
6112 since POS and LEN count from the lsb. */
6113 if (MEM_P (SUBREG_REG (inner)))
6114 is_mode = GET_MODE (SUBREG_REG (inner));
6115 inner = SUBREG_REG (inner);
6116 }
6117 else if (GET_CODE (inner) == ASHIFT
6118 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6119 && pos_rtx == 0 && pos == 0
6120 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6121 {
6122 /* We're extracting the least significant bits of an rtx
6123 (ashift X (const_int C)), where LEN > C. Extract the
6124 least significant (LEN - C) bits of X, giving an rtx
6125 whose mode is MODE, then shift it left C times. */
6126 new = make_extraction (mode, XEXP (inner, 0),
6127 0, 0, len - INTVAL (XEXP (inner, 1)),
6128 unsignedp, in_dest, in_compare);
6129 if (new != 0)
6130 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6131 }
6132
6133 inner_mode = GET_MODE (inner);
6134
6135 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6136 pos = INTVAL (pos_rtx), pos_rtx = 0;
6137
6138 /* See if this can be done without an extraction. We never can if the
6139 width of the field is not the same as that of some integer mode. For
6140 registers, we can only avoid the extraction if the position is at the
6141 low-order bit and this is either not in the destination or we have the
6142 appropriate STRICT_LOW_PART operation available.
6143
6144 For MEM, we can avoid an extract if the field starts on an appropriate
6145 boundary and we can change the mode of the memory reference. However,
6146 we cannot directly access the MEM if we have a USE and the underlying
6147 MEM is not TMODE. This combination means that MEM was being used in a
6148 context where bits outside its mode were being referenced; that is only
6149 valid in bit-field insns. */
6150
6151 if (tmode != BLKmode
6152 && ! (spans_byte && inner_mode != tmode)
6153 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6154 && !MEM_P (inner)
6155 && (! in_dest
6156 || (REG_P (inner)
6157 && have_insn_for (STRICT_LOW_PART, tmode))))
6158 || (MEM_P (inner) && pos_rtx == 0
6159 && (pos
6160 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6161 : BITS_PER_UNIT)) == 0
6162 /* We can't do this if we are widening INNER_MODE (it
6163 may not be aligned, for one thing). */
6164 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6165 && (inner_mode == tmode
6166 || (! mode_dependent_address_p (XEXP (inner, 0))
6167 && ! MEM_VOLATILE_P (inner))))))
6168 {
6169 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6170 field. If the original and current mode are the same, we need not
6171 adjust the offset. Otherwise, we do if bytes big endian.
6172
6173 If INNER is not a MEM, get a piece consisting of just the field
6174 of interest (in this case POS % BITS_PER_WORD must be 0). */
6175
6176 if (MEM_P (inner))
6177 {
6178 HOST_WIDE_INT offset;
6179
6180 /* POS counts from lsb, but make OFFSET count in memory order. */
6181 if (BYTES_BIG_ENDIAN)
6182 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6183 else
6184 offset = pos / BITS_PER_UNIT;
6185
6186 new = adjust_address_nv (inner, tmode, offset);
6187 }
6188 else if (REG_P (inner))
6189 {
6190 if (tmode != inner_mode)
6191 {
6192 /* We can't call gen_lowpart in a DEST since we
6193 always want a SUBREG (see below) and it would sometimes
6194 return a new hard register. */
6195 if (pos || in_dest)
6196 {
6197 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6198
6199 if (WORDS_BIG_ENDIAN
6200 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6201 final_word = ((GET_MODE_SIZE (inner_mode)
6202 - GET_MODE_SIZE (tmode))
6203 / UNITS_PER_WORD) - final_word;
6204
6205 final_word *= UNITS_PER_WORD;
6206 if (BYTES_BIG_ENDIAN &&
6207 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6208 final_word += (GET_MODE_SIZE (inner_mode)
6209 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6210
6211 /* Avoid creating invalid subregs, for example when
6212 simplifying (x>>32)&255. */
6213 if (final_word >= GET_MODE_SIZE (inner_mode))
6214 return NULL_RTX;
6215
6216 new = gen_rtx_SUBREG (tmode, inner, final_word);
6217 }
6218 else
6219 new = gen_lowpart (tmode, inner);
6220 }
6221 else
6222 new = inner;
6223 }
6224 else
6225 new = force_to_mode (inner, tmode,
6226 len >= HOST_BITS_PER_WIDE_INT
6227 ? ~(unsigned HOST_WIDE_INT) 0
6228 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6229 NULL_RTX, 0);
6230
6231 /* If this extraction is going into the destination of a SET,
6232 make a STRICT_LOW_PART unless we made a MEM. */
6233
6234 if (in_dest)
6235 return (MEM_P (new) ? new
6236 : (GET_CODE (new) != SUBREG
6237 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6238 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6239
6240 if (mode == tmode)
6241 return new;
6242
6243 if (GET_CODE (new) == CONST_INT)
6244 return gen_int_mode (INTVAL (new), mode);
6245
6246 /* If we know that no extraneous bits are set, and that the high
6247 bit is not set, convert the extraction to the cheaper of
6248 sign and zero extension, that are equivalent in these cases. */
6249 if (flag_expensive_optimizations
6250 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6251 && ((nonzero_bits (new, tmode)
6252 & ~(((unsigned HOST_WIDE_INT)
6253 GET_MODE_MASK (tmode))
6254 >> 1))
6255 == 0)))
6256 {
6257 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6258 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6259
6260 /* Prefer ZERO_EXTENSION, since it gives more information to
6261 backends. */
6262 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6263 return temp;
6264 return temp1;
6265 }
6266
6267 /* Otherwise, sign- or zero-extend unless we already are in the
6268 proper mode. */
6269
6270 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6271 mode, new));
6272 }
6273
6274 /* Unless this is a COMPARE or we have a funny memory reference,
6275 don't do anything with zero-extending field extracts starting at
6276 the low-order bit since they are simple AND operations. */
6277 if (pos_rtx == 0 && pos == 0 && ! in_dest
6278 && ! in_compare && ! spans_byte && unsignedp)
6279 return 0;
6280
6281 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6282 we would be spanning bytes or if the position is not a constant and the
6283 length is not 1. In all other cases, we would only be going outside
6284 our object in cases when an original shift would have been
6285 undefined. */
6286 if (! spans_byte && MEM_P (inner)
6287 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6288 || (pos_rtx != 0 && len != 1)))
6289 return 0;
6290
6291 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6292 and the mode for the result. */
6293 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6294 {
6295 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6296 pos_mode = mode_for_extraction (EP_insv, 2);
6297 extraction_mode = mode_for_extraction (EP_insv, 3);
6298 }
6299
6300 if (! in_dest && unsignedp
6301 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6302 {
6303 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6304 pos_mode = mode_for_extraction (EP_extzv, 3);
6305 extraction_mode = mode_for_extraction (EP_extzv, 0);
6306 }
6307
6308 if (! in_dest && ! unsignedp
6309 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6310 {
6311 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6312 pos_mode = mode_for_extraction (EP_extv, 3);
6313 extraction_mode = mode_for_extraction (EP_extv, 0);
6314 }
6315
6316 /* Never narrow an object, since that might not be safe. */
6317
6318 if (mode != VOIDmode
6319 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6320 extraction_mode = mode;
6321
6322 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6323 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6324 pos_mode = GET_MODE (pos_rtx);
6325
6326 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6327 if we have to change the mode of memory and cannot, the desired mode is
6328 EXTRACTION_MODE. */
6329 if (!MEM_P (inner))
6330 wanted_inner_mode = wanted_inner_reg_mode;
6331 else if (inner_mode != wanted_inner_mode
6332 && (mode_dependent_address_p (XEXP (inner, 0))
6333 || MEM_VOLATILE_P (inner)))
6334 wanted_inner_mode = extraction_mode;
6335
6336 orig_pos = pos;
6337
6338 if (BITS_BIG_ENDIAN)
6339 {
6340 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6341 BITS_BIG_ENDIAN style. If position is constant, compute new
6342 position. Otherwise, build subtraction.
6343 Note that POS is relative to the mode of the original argument.
6344 If it's a MEM we need to recompute POS relative to that.
6345 However, if we're extracting from (or inserting into) a register,
6346 we want to recompute POS relative to wanted_inner_mode. */
6347 int width = (MEM_P (inner)
6348 ? GET_MODE_BITSIZE (is_mode)
6349 : GET_MODE_BITSIZE (wanted_inner_mode));
6350
6351 if (pos_rtx == 0)
6352 pos = width - len - pos;
6353 else
6354 pos_rtx
6355 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6356 /* POS may be less than 0 now, but we check for that below.
6357 Note that it can only be less than 0 if !MEM_P (inner). */
6358 }
6359
6360 /* If INNER has a wider mode, make it smaller. If this is a constant
6361 extract, try to adjust the byte to point to the byte containing
6362 the value. */
6363 if (wanted_inner_mode != VOIDmode
6364 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6365 && ((MEM_P (inner)
6366 && (inner_mode == wanted_inner_mode
6367 || (! mode_dependent_address_p (XEXP (inner, 0))
6368 && ! MEM_VOLATILE_P (inner))))))
6369 {
6370 int offset = 0;
6371
6372 /* The computations below will be correct if the machine is big
6373 endian in both bits and bytes or little endian in bits and bytes.
6374 If it is mixed, we must adjust. */
6375
6376 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6377 adjust OFFSET to compensate. */
6378 if (BYTES_BIG_ENDIAN
6379 && ! spans_byte
6380 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6381 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6382
6383 /* If this is a constant position, we can move to the desired byte. */
6384 if (pos_rtx == 0)
6385 {
6386 offset += pos / BITS_PER_UNIT;
6387 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6388 }
6389
6390 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6391 && ! spans_byte
6392 && is_mode != wanted_inner_mode)
6393 offset = (GET_MODE_SIZE (is_mode)
6394 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6395
6396 if (offset != 0 || inner_mode != wanted_inner_mode)
6397 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6398 }
6399
6400 /* If INNER is not memory, we can always get it into the proper mode. If we
6401 are changing its mode, POS must be a constant and smaller than the size
6402 of the new mode. */
6403 else if (!MEM_P (inner))
6404 {
6405 if (GET_MODE (inner) != wanted_inner_mode
6406 && (pos_rtx != 0
6407 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6408 return 0;
6409
6410 inner = force_to_mode (inner, wanted_inner_mode,
6411 pos_rtx
6412 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6413 ? ~(unsigned HOST_WIDE_INT) 0
6414 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6415 << orig_pos),
6416 NULL_RTX, 0);
6417 }
6418
6419 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6420 have to zero extend. Otherwise, we can just use a SUBREG. */
6421 if (pos_rtx != 0
6422 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6423 {
6424 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6425
6426 /* If we know that no extraneous bits are set, and that the high
6427 bit is not set, convert extraction to cheaper one - either
6428 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6429 cases. */
6430 if (flag_expensive_optimizations
6431 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6432 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6433 & ~(((unsigned HOST_WIDE_INT)
6434 GET_MODE_MASK (GET_MODE (pos_rtx)))
6435 >> 1))
6436 == 0)))
6437 {
6438 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6439
6440 /* Prefer ZERO_EXTENSION, since it gives more information to
6441 backends. */
6442 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6443 temp = temp1;
6444 }
6445 pos_rtx = temp;
6446 }
6447 else if (pos_rtx != 0
6448 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6449 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6450
6451 /* Make POS_RTX unless we already have it and it is correct. If we don't
6452 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6453 be a CONST_INT. */
6454 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6455 pos_rtx = orig_pos_rtx;
6456
6457 else if (pos_rtx == 0)
6458 pos_rtx = GEN_INT (pos);
6459
6460 /* Make the required operation. See if we can use existing rtx. */
6461 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6462 extraction_mode, inner, GEN_INT (len), pos_rtx);
6463 if (! in_dest)
6464 new = gen_lowpart (mode, new);
6465
6466 return new;
6467 }
6468 \f
6469 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6470 with any other operations in X. Return X without that shift if so. */
6471
6472 static rtx
6473 extract_left_shift (rtx x, int count)
6474 {
6475 enum rtx_code code = GET_CODE (x);
6476 enum machine_mode mode = GET_MODE (x);
6477 rtx tem;
6478
6479 switch (code)
6480 {
6481 case ASHIFT:
6482 /* This is the shift itself. If it is wide enough, we will return
6483 either the value being shifted if the shift count is equal to
6484 COUNT or a shift for the difference. */
6485 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6486 && INTVAL (XEXP (x, 1)) >= count)
6487 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6488 INTVAL (XEXP (x, 1)) - count);
6489 break;
6490
6491 case NEG: case NOT:
6492 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6493 return simplify_gen_unary (code, mode, tem, mode);
6494
6495 break;
6496
6497 case PLUS: case IOR: case XOR: case AND:
6498 /* If we can safely shift this constant and we find the inner shift,
6499 make a new operation. */
6500 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6501 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6502 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6503 return gen_binary (code, mode, tem,
6504 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6505
6506 break;
6507
6508 default:
6509 break;
6510 }
6511
6512 return 0;
6513 }
6514 \f
6515 /* Look at the expression rooted at X. Look for expressions
6516 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6517 Form these expressions.
6518
6519 Return the new rtx, usually just X.
6520
6521 Also, for machines like the VAX that don't have logical shift insns,
6522 try to convert logical to arithmetic shift operations in cases where
6523 they are equivalent. This undoes the canonicalizations to logical
6524 shifts done elsewhere.
6525
6526 We try, as much as possible, to re-use rtl expressions to save memory.
6527
6528 IN_CODE says what kind of expression we are processing. Normally, it is
6529 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6530 being kludges), it is MEM. When processing the arguments of a comparison
6531 or a COMPARE against zero, it is COMPARE. */
6532
6533 static rtx
6534 make_compound_operation (rtx x, enum rtx_code in_code)
6535 {
6536 enum rtx_code code = GET_CODE (x);
6537 enum machine_mode mode = GET_MODE (x);
6538 int mode_width = GET_MODE_BITSIZE (mode);
6539 rtx rhs, lhs;
6540 enum rtx_code next_code;
6541 int i;
6542 rtx new = 0;
6543 rtx tem;
6544 const char *fmt;
6545
6546 /* Select the code to be used in recursive calls. Once we are inside an
6547 address, we stay there. If we have a comparison, set to COMPARE,
6548 but once inside, go back to our default of SET. */
6549
6550 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6551 : ((code == COMPARE || COMPARISON_P (x))
6552 && XEXP (x, 1) == const0_rtx) ? COMPARE
6553 : in_code == COMPARE ? SET : in_code);
6554
6555 /* Process depending on the code of this operation. If NEW is set
6556 nonzero, it will be returned. */
6557
6558 switch (code)
6559 {
6560 case ASHIFT:
6561 /* Convert shifts by constants into multiplications if inside
6562 an address. */
6563 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6564 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6565 && INTVAL (XEXP (x, 1)) >= 0)
6566 {
6567 new = make_compound_operation (XEXP (x, 0), next_code);
6568 new = gen_rtx_MULT (mode, new,
6569 GEN_INT ((HOST_WIDE_INT) 1
6570 << INTVAL (XEXP (x, 1))));
6571 }
6572 break;
6573
6574 case AND:
6575 /* If the second operand is not a constant, we can't do anything
6576 with it. */
6577 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6578 break;
6579
6580 /* If the constant is a power of two minus one and the first operand
6581 is a logical right shift, make an extraction. */
6582 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6583 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6584 {
6585 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6586 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6587 0, in_code == COMPARE);
6588 }
6589
6590 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6591 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6592 && subreg_lowpart_p (XEXP (x, 0))
6593 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6594 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6595 {
6596 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6597 next_code);
6598 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6599 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6600 0, in_code == COMPARE);
6601 }
6602 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6603 else if ((GET_CODE (XEXP (x, 0)) == XOR
6604 || GET_CODE (XEXP (x, 0)) == IOR)
6605 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6606 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6607 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6608 {
6609 /* Apply the distributive law, and then try to make extractions. */
6610 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6611 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6612 XEXP (x, 1)),
6613 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6614 XEXP (x, 1)));
6615 new = make_compound_operation (new, in_code);
6616 }
6617
6618 /* If we are have (and (rotate X C) M) and C is larger than the number
6619 of bits in M, this is an extraction. */
6620
6621 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6622 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6623 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6624 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6625 {
6626 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6627 new = make_extraction (mode, new,
6628 (GET_MODE_BITSIZE (mode)
6629 - INTVAL (XEXP (XEXP (x, 0), 1))),
6630 NULL_RTX, i, 1, 0, in_code == COMPARE);
6631 }
6632
6633 /* On machines without logical shifts, if the operand of the AND is
6634 a logical shift and our mask turns off all the propagated sign
6635 bits, we can replace the logical shift with an arithmetic shift. */
6636 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6637 && !have_insn_for (LSHIFTRT, mode)
6638 && have_insn_for (ASHIFTRT, mode)
6639 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6640 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6641 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6642 && mode_width <= HOST_BITS_PER_WIDE_INT)
6643 {
6644 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6645
6646 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6647 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6648 SUBST (XEXP (x, 0),
6649 gen_rtx_ASHIFTRT (mode,
6650 make_compound_operation
6651 (XEXP (XEXP (x, 0), 0), next_code),
6652 XEXP (XEXP (x, 0), 1)));
6653 }
6654
6655 /* If the constant is one less than a power of two, this might be
6656 representable by an extraction even if no shift is present.
6657 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6658 we are in a COMPARE. */
6659 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6660 new = make_extraction (mode,
6661 make_compound_operation (XEXP (x, 0),
6662 next_code),
6663 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6664
6665 /* If we are in a comparison and this is an AND with a power of two,
6666 convert this into the appropriate bit extract. */
6667 else if (in_code == COMPARE
6668 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6669 new = make_extraction (mode,
6670 make_compound_operation (XEXP (x, 0),
6671 next_code),
6672 i, NULL_RTX, 1, 1, 0, 1);
6673
6674 break;
6675
6676 case LSHIFTRT:
6677 /* If the sign bit is known to be zero, replace this with an
6678 arithmetic shift. */
6679 if (have_insn_for (ASHIFTRT, mode)
6680 && ! have_insn_for (LSHIFTRT, mode)
6681 && mode_width <= HOST_BITS_PER_WIDE_INT
6682 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6683 {
6684 new = gen_rtx_ASHIFTRT (mode,
6685 make_compound_operation (XEXP (x, 0),
6686 next_code),
6687 XEXP (x, 1));
6688 break;
6689 }
6690
6691 /* ... fall through ... */
6692
6693 case ASHIFTRT:
6694 lhs = XEXP (x, 0);
6695 rhs = XEXP (x, 1);
6696
6697 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6698 this is a SIGN_EXTRACT. */
6699 if (GET_CODE (rhs) == CONST_INT
6700 && GET_CODE (lhs) == ASHIFT
6701 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6702 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6703 {
6704 new = make_compound_operation (XEXP (lhs, 0), next_code);
6705 new = make_extraction (mode, new,
6706 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6707 NULL_RTX, mode_width - INTVAL (rhs),
6708 code == LSHIFTRT, 0, in_code == COMPARE);
6709 break;
6710 }
6711
6712 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6713 If so, try to merge the shifts into a SIGN_EXTEND. We could
6714 also do this for some cases of SIGN_EXTRACT, but it doesn't
6715 seem worth the effort; the case checked for occurs on Alpha. */
6716
6717 if (!OBJECT_P (lhs)
6718 && ! (GET_CODE (lhs) == SUBREG
6719 && (OBJECT_P (SUBREG_REG (lhs))))
6720 && GET_CODE (rhs) == CONST_INT
6721 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6722 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6723 new = make_extraction (mode, make_compound_operation (new, next_code),
6724 0, NULL_RTX, mode_width - INTVAL (rhs),
6725 code == LSHIFTRT, 0, in_code == COMPARE);
6726
6727 break;
6728
6729 case SUBREG:
6730 /* Call ourselves recursively on the inner expression. If we are
6731 narrowing the object and it has a different RTL code from
6732 what it originally did, do this SUBREG as a force_to_mode. */
6733
6734 tem = make_compound_operation (SUBREG_REG (x), in_code);
6735 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6736 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6737 && subreg_lowpart_p (x))
6738 {
6739 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6740 NULL_RTX, 0);
6741
6742 /* If we have something other than a SUBREG, we might have
6743 done an expansion, so rerun ourselves. */
6744 if (GET_CODE (newer) != SUBREG)
6745 newer = make_compound_operation (newer, in_code);
6746
6747 return newer;
6748 }
6749
6750 /* If this is a paradoxical subreg, and the new code is a sign or
6751 zero extension, omit the subreg and widen the extension. If it
6752 is a regular subreg, we can still get rid of the subreg by not
6753 widening so much, or in fact removing the extension entirely. */
6754 if ((GET_CODE (tem) == SIGN_EXTEND
6755 || GET_CODE (tem) == ZERO_EXTEND)
6756 && subreg_lowpart_p (x))
6757 {
6758 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6759 || (GET_MODE_SIZE (mode) >
6760 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6761 {
6762 if (! SCALAR_INT_MODE_P (mode))
6763 break;
6764 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6765 }
6766 else
6767 tem = gen_lowpart (mode, XEXP (tem, 0));
6768 return tem;
6769 }
6770 break;
6771
6772 default:
6773 break;
6774 }
6775
6776 if (new)
6777 {
6778 x = gen_lowpart (mode, new);
6779 code = GET_CODE (x);
6780 }
6781
6782 /* Now recursively process each operand of this operation. */
6783 fmt = GET_RTX_FORMAT (code);
6784 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6785 if (fmt[i] == 'e')
6786 {
6787 new = make_compound_operation (XEXP (x, i), next_code);
6788 SUBST (XEXP (x, i), new);
6789 }
6790
6791 return x;
6792 }
6793 \f
6794 /* Given M see if it is a value that would select a field of bits
6795 within an item, but not the entire word. Return -1 if not.
6796 Otherwise, return the starting position of the field, where 0 is the
6797 low-order bit.
6798
6799 *PLEN is set to the length of the field. */
6800
6801 static int
6802 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6803 {
6804 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6805 int pos = exact_log2 (m & -m);
6806 int len = 0;
6807
6808 if (pos >= 0)
6809 /* Now shift off the low-order zero bits and see if we have a
6810 power of two minus 1. */
6811 len = exact_log2 ((m >> pos) + 1);
6812
6813 if (len <= 0)
6814 pos = -1;
6815
6816 *plen = len;
6817 return pos;
6818 }
6819 \f
6820 /* See if X can be simplified knowing that we will only refer to it in
6821 MODE and will only refer to those bits that are nonzero in MASK.
6822 If other bits are being computed or if masking operations are done
6823 that select a superset of the bits in MASK, they can sometimes be
6824 ignored.
6825
6826 Return a possibly simplified expression, but always convert X to
6827 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6828
6829 Also, if REG is nonzero and X is a register equal in value to REG,
6830 replace X with REG.
6831
6832 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6833 are all off in X. This is used when X will be complemented, by either
6834 NOT, NEG, or XOR. */
6835
6836 static rtx
6837 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6838 rtx reg, int just_select)
6839 {
6840 enum rtx_code code = GET_CODE (x);
6841 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6842 enum machine_mode op_mode;
6843 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6844 rtx op0, op1, temp;
6845
6846 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6847 code below will do the wrong thing since the mode of such an
6848 expression is VOIDmode.
6849
6850 Also do nothing if X is a CLOBBER; this can happen if X was
6851 the return value from a call to gen_lowpart. */
6852 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6853 return x;
6854
6855 /* We want to perform the operation is its present mode unless we know
6856 that the operation is valid in MODE, in which case we do the operation
6857 in MODE. */
6858 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6859 && have_insn_for (code, mode))
6860 ? mode : GET_MODE (x));
6861
6862 /* It is not valid to do a right-shift in a narrower mode
6863 than the one it came in with. */
6864 if ((code == LSHIFTRT || code == ASHIFTRT)
6865 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6866 op_mode = GET_MODE (x);
6867
6868 /* Truncate MASK to fit OP_MODE. */
6869 if (op_mode)
6870 mask &= GET_MODE_MASK (op_mode);
6871
6872 /* When we have an arithmetic operation, or a shift whose count we
6873 do not know, we need to assume that all bits up to the highest-order
6874 bit in MASK will be needed. This is how we form such a mask. */
6875 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6876 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6877 else
6878 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6879 - 1);
6880
6881 /* Determine what bits of X are guaranteed to be (non)zero. */
6882 nonzero = nonzero_bits (x, mode);
6883
6884 /* If none of the bits in X are needed, return a zero. */
6885 if (! just_select && (nonzero & mask) == 0)
6886 x = const0_rtx;
6887
6888 /* If X is a CONST_INT, return a new one. Do this here since the
6889 test below will fail. */
6890 if (GET_CODE (x) == CONST_INT)
6891 {
6892 if (SCALAR_INT_MODE_P (mode))
6893 return gen_int_mode (INTVAL (x) & mask, mode);
6894 else
6895 {
6896 x = GEN_INT (INTVAL (x) & mask);
6897 return gen_lowpart_common (mode, x);
6898 }
6899 }
6900
6901 /* If X is narrower than MODE and we want all the bits in X's mode, just
6902 get X in the proper mode. */
6903 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6904 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6905 return gen_lowpart (mode, x);
6906
6907 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6908 MASK are already known to be zero in X, we need not do anything. */
6909 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6910 return x;
6911
6912 switch (code)
6913 {
6914 case CLOBBER:
6915 /* If X is a (clobber (const_int)), return it since we know we are
6916 generating something that won't match. */
6917 return x;
6918
6919 case USE:
6920 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6921 spanned the boundary of the MEM. If we are now masking so it is
6922 within that boundary, we don't need the USE any more. */
6923 if (! BITS_BIG_ENDIAN
6924 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6925 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6926 break;
6927
6928 case SIGN_EXTEND:
6929 case ZERO_EXTEND:
6930 case ZERO_EXTRACT:
6931 case SIGN_EXTRACT:
6932 x = expand_compound_operation (x);
6933 if (GET_CODE (x) != code)
6934 return force_to_mode (x, mode, mask, reg, next_select);
6935 break;
6936
6937 case REG:
6938 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6939 || rtx_equal_p (reg, get_last_value (x))))
6940 x = reg;
6941 break;
6942
6943 case SUBREG:
6944 if (subreg_lowpart_p (x)
6945 /* We can ignore the effect of this SUBREG if it narrows the mode or
6946 if the constant masks to zero all the bits the mode doesn't
6947 have. */
6948 && ((GET_MODE_SIZE (GET_MODE (x))
6949 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6950 || (0 == (mask
6951 & GET_MODE_MASK (GET_MODE (x))
6952 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6953 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6954 break;
6955
6956 case AND:
6957 /* If this is an AND with a constant, convert it into an AND
6958 whose constant is the AND of that constant with MASK. If it
6959 remains an AND of MASK, delete it since it is redundant. */
6960
6961 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6962 {
6963 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6964 mask & INTVAL (XEXP (x, 1)));
6965
6966 /* If X is still an AND, see if it is an AND with a mask that
6967 is just some low-order bits. If so, and it is MASK, we don't
6968 need it. */
6969
6970 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6971 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6972 == mask))
6973 x = XEXP (x, 0);
6974
6975 /* If it remains an AND, try making another AND with the bits
6976 in the mode mask that aren't in MASK turned on. If the
6977 constant in the AND is wide enough, this might make a
6978 cheaper constant. */
6979
6980 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6981 && GET_MODE_MASK (GET_MODE (x)) != mask
6982 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6983 {
6984 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6985 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6986 int width = GET_MODE_BITSIZE (GET_MODE (x));
6987 rtx y;
6988
6989 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6990 number, sign extend it. */
6991 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6992 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6993 cval |= (HOST_WIDE_INT) -1 << width;
6994
6995 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6996 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6997 x = y;
6998 }
6999
7000 break;
7001 }
7002
7003 goto binop;
7004
7005 case PLUS:
7006 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7007 low-order bits (as in an alignment operation) and FOO is already
7008 aligned to that boundary, mask C1 to that boundary as well.
7009 This may eliminate that PLUS and, later, the AND. */
7010
7011 {
7012 unsigned int width = GET_MODE_BITSIZE (mode);
7013 unsigned HOST_WIDE_INT smask = mask;
7014
7015 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7016 number, sign extend it. */
7017
7018 if (width < HOST_BITS_PER_WIDE_INT
7019 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7020 smask |= (HOST_WIDE_INT) -1 << width;
7021
7022 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7023 && exact_log2 (- smask) >= 0
7024 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7025 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7026 return force_to_mode (plus_constant (XEXP (x, 0),
7027 (INTVAL (XEXP (x, 1)) & smask)),
7028 mode, smask, reg, next_select);
7029 }
7030
7031 /* ... fall through ... */
7032
7033 case MULT:
7034 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7035 most significant bit in MASK since carries from those bits will
7036 affect the bits we are interested in. */
7037 mask = fuller_mask;
7038 goto binop;
7039
7040 case MINUS:
7041 /* If X is (minus C Y) where C's least set bit is larger than any bit
7042 in the mask, then we may replace with (neg Y). */
7043 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7044 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7045 & -INTVAL (XEXP (x, 0))))
7046 > mask))
7047 {
7048 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7049 GET_MODE (x));
7050 return force_to_mode (x, mode, mask, reg, next_select);
7051 }
7052
7053 /* Similarly, if C contains every bit in the fuller_mask, then we may
7054 replace with (not Y). */
7055 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7056 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7057 == INTVAL (XEXP (x, 0))))
7058 {
7059 x = simplify_gen_unary (NOT, GET_MODE (x),
7060 XEXP (x, 1), GET_MODE (x));
7061 return force_to_mode (x, mode, mask, reg, next_select);
7062 }
7063
7064 mask = fuller_mask;
7065 goto binop;
7066
7067 case IOR:
7068 case XOR:
7069 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7070 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7071 operation which may be a bitfield extraction. Ensure that the
7072 constant we form is not wider than the mode of X. */
7073
7074 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7075 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7076 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7077 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7078 && GET_CODE (XEXP (x, 1)) == CONST_INT
7079 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7080 + floor_log2 (INTVAL (XEXP (x, 1))))
7081 < GET_MODE_BITSIZE (GET_MODE (x)))
7082 && (INTVAL (XEXP (x, 1))
7083 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7084 {
7085 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7086 << INTVAL (XEXP (XEXP (x, 0), 1)));
7087 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7088 XEXP (XEXP (x, 0), 0), temp);
7089 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7090 XEXP (XEXP (x, 0), 1));
7091 return force_to_mode (x, mode, mask, reg, next_select);
7092 }
7093
7094 binop:
7095 /* For most binary operations, just propagate into the operation and
7096 change the mode if we have an operation of that mode. */
7097
7098 op0 = gen_lowpart (op_mode,
7099 force_to_mode (XEXP (x, 0), mode, mask,
7100 reg, next_select));
7101 op1 = gen_lowpart (op_mode,
7102 force_to_mode (XEXP (x, 1), mode, mask,
7103 reg, next_select));
7104
7105 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7106 x = gen_binary (code, op_mode, op0, op1);
7107 break;
7108
7109 case ASHIFT:
7110 /* For left shifts, do the same, but just for the first operand.
7111 However, we cannot do anything with shifts where we cannot
7112 guarantee that the counts are smaller than the size of the mode
7113 because such a count will have a different meaning in a
7114 wider mode. */
7115
7116 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7117 && INTVAL (XEXP (x, 1)) >= 0
7118 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7119 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7120 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7121 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7122 break;
7123
7124 /* If the shift count is a constant and we can do arithmetic in
7125 the mode of the shift, refine which bits we need. Otherwise, use the
7126 conservative form of the mask. */
7127 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7128 && INTVAL (XEXP (x, 1)) >= 0
7129 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7130 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7131 mask >>= INTVAL (XEXP (x, 1));
7132 else
7133 mask = fuller_mask;
7134
7135 op0 = gen_lowpart (op_mode,
7136 force_to_mode (XEXP (x, 0), op_mode,
7137 mask, reg, next_select));
7138
7139 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7140 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7141 break;
7142
7143 case LSHIFTRT:
7144 /* Here we can only do something if the shift count is a constant,
7145 this shift constant is valid for the host, and we can do arithmetic
7146 in OP_MODE. */
7147
7148 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7149 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7150 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7151 {
7152 rtx inner = XEXP (x, 0);
7153 unsigned HOST_WIDE_INT inner_mask;
7154
7155 /* Select the mask of the bits we need for the shift operand. */
7156 inner_mask = mask << INTVAL (XEXP (x, 1));
7157
7158 /* We can only change the mode of the shift if we can do arithmetic
7159 in the mode of the shift and INNER_MASK is no wider than the
7160 width of X's mode. */
7161 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7162 op_mode = GET_MODE (x);
7163
7164 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7165
7166 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7167 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7168 }
7169
7170 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7171 shift and AND produces only copies of the sign bit (C2 is one less
7172 than a power of two), we can do this with just a shift. */
7173
7174 if (GET_CODE (x) == LSHIFTRT
7175 && GET_CODE (XEXP (x, 1)) == CONST_INT
7176 /* The shift puts one of the sign bit copies in the least significant
7177 bit. */
7178 && ((INTVAL (XEXP (x, 1))
7179 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7180 >= GET_MODE_BITSIZE (GET_MODE (x)))
7181 && exact_log2 (mask + 1) >= 0
7182 /* Number of bits left after the shift must be more than the mask
7183 needs. */
7184 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7185 <= GET_MODE_BITSIZE (GET_MODE (x)))
7186 /* Must be more sign bit copies than the mask needs. */
7187 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7188 >= exact_log2 (mask + 1)))
7189 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7190 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7191 - exact_log2 (mask + 1)));
7192
7193 goto shiftrt;
7194
7195 case ASHIFTRT:
7196 /* If we are just looking for the sign bit, we don't need this shift at
7197 all, even if it has a variable count. */
7198 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7199 && (mask == ((unsigned HOST_WIDE_INT) 1
7200 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7201 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7202
7203 /* If this is a shift by a constant, get a mask that contains those bits
7204 that are not copies of the sign bit. We then have two cases: If
7205 MASK only includes those bits, this can be a logical shift, which may
7206 allow simplifications. If MASK is a single-bit field not within
7207 those bits, we are requesting a copy of the sign bit and hence can
7208 shift the sign bit to the appropriate location. */
7209
7210 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7211 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7212 {
7213 int i = -1;
7214
7215 /* If the considered data is wider than HOST_WIDE_INT, we can't
7216 represent a mask for all its bits in a single scalar.
7217 But we only care about the lower bits, so calculate these. */
7218
7219 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7220 {
7221 nonzero = ~(HOST_WIDE_INT) 0;
7222
7223 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7224 is the number of bits a full-width mask would have set.
7225 We need only shift if these are fewer than nonzero can
7226 hold. If not, we must keep all bits set in nonzero. */
7227
7228 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7229 < HOST_BITS_PER_WIDE_INT)
7230 nonzero >>= INTVAL (XEXP (x, 1))
7231 + HOST_BITS_PER_WIDE_INT
7232 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7233 }
7234 else
7235 {
7236 nonzero = GET_MODE_MASK (GET_MODE (x));
7237 nonzero >>= INTVAL (XEXP (x, 1));
7238 }
7239
7240 if ((mask & ~nonzero) == 0
7241 || (i = exact_log2 (mask)) >= 0)
7242 {
7243 x = simplify_shift_const
7244 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7245 i < 0 ? INTVAL (XEXP (x, 1))
7246 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7247
7248 if (GET_CODE (x) != ASHIFTRT)
7249 return force_to_mode (x, mode, mask, reg, next_select);
7250 }
7251 }
7252
7253 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7254 even if the shift count isn't a constant. */
7255 if (mask == 1)
7256 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7257
7258 shiftrt:
7259
7260 /* If this is a zero- or sign-extension operation that just affects bits
7261 we don't care about, remove it. Be sure the call above returned
7262 something that is still a shift. */
7263
7264 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7265 && GET_CODE (XEXP (x, 1)) == CONST_INT
7266 && INTVAL (XEXP (x, 1)) >= 0
7267 && (INTVAL (XEXP (x, 1))
7268 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7269 && GET_CODE (XEXP (x, 0)) == ASHIFT
7270 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7271 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7272 reg, next_select);
7273
7274 break;
7275
7276 case ROTATE:
7277 case ROTATERT:
7278 /* If the shift count is constant and we can do computations
7279 in the mode of X, compute where the bits we care about are.
7280 Otherwise, we can't do anything. Don't change the mode of
7281 the shift or propagate MODE into the shift, though. */
7282 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7283 && INTVAL (XEXP (x, 1)) >= 0)
7284 {
7285 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7286 GET_MODE (x), GEN_INT (mask),
7287 XEXP (x, 1));
7288 if (temp && GET_CODE (temp) == CONST_INT)
7289 SUBST (XEXP (x, 0),
7290 force_to_mode (XEXP (x, 0), GET_MODE (x),
7291 INTVAL (temp), reg, next_select));
7292 }
7293 break;
7294
7295 case NEG:
7296 /* If we just want the low-order bit, the NEG isn't needed since it
7297 won't change the low-order bit. */
7298 if (mask == 1)
7299 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7300
7301 /* We need any bits less significant than the most significant bit in
7302 MASK since carries from those bits will affect the bits we are
7303 interested in. */
7304 mask = fuller_mask;
7305 goto unop;
7306
7307 case NOT:
7308 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7309 same as the XOR case above. Ensure that the constant we form is not
7310 wider than the mode of X. */
7311
7312 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7313 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7314 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7315 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7316 < GET_MODE_BITSIZE (GET_MODE (x)))
7317 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7318 {
7319 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7320 GET_MODE (x));
7321 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7322 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7323
7324 return force_to_mode (x, mode, mask, reg, next_select);
7325 }
7326
7327 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7328 use the full mask inside the NOT. */
7329 mask = fuller_mask;
7330
7331 unop:
7332 op0 = gen_lowpart (op_mode,
7333 force_to_mode (XEXP (x, 0), mode, mask,
7334 reg, next_select));
7335 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7336 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7337 break;
7338
7339 case NE:
7340 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7341 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7342 which is equal to STORE_FLAG_VALUE. */
7343 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7344 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7345 && (nonzero_bits (XEXP (x, 0), mode)
7346 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7347 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7348
7349 break;
7350
7351 case IF_THEN_ELSE:
7352 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7353 written in a narrower mode. We play it safe and do not do so. */
7354
7355 SUBST (XEXP (x, 1),
7356 gen_lowpart (GET_MODE (x),
7357 force_to_mode (XEXP (x, 1), mode,
7358 mask, reg, next_select)));
7359 SUBST (XEXP (x, 2),
7360 gen_lowpart (GET_MODE (x),
7361 force_to_mode (XEXP (x, 2), mode,
7362 mask, reg, next_select)));
7363 break;
7364
7365 default:
7366 break;
7367 }
7368
7369 /* Ensure we return a value of the proper mode. */
7370 return gen_lowpart (mode, x);
7371 }
7372 \f
7373 /* Return nonzero if X is an expression that has one of two values depending on
7374 whether some other value is zero or nonzero. In that case, we return the
7375 value that is being tested, *PTRUE is set to the value if the rtx being
7376 returned has a nonzero value, and *PFALSE is set to the other alternative.
7377
7378 If we return zero, we set *PTRUE and *PFALSE to X. */
7379
7380 static rtx
7381 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7382 {
7383 enum machine_mode mode = GET_MODE (x);
7384 enum rtx_code code = GET_CODE (x);
7385 rtx cond0, cond1, true0, true1, false0, false1;
7386 unsigned HOST_WIDE_INT nz;
7387
7388 /* If we are comparing a value against zero, we are done. */
7389 if ((code == NE || code == EQ)
7390 && XEXP (x, 1) == const0_rtx)
7391 {
7392 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7393 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7394 return XEXP (x, 0);
7395 }
7396
7397 /* If this is a unary operation whose operand has one of two values, apply
7398 our opcode to compute those values. */
7399 else if (UNARY_P (x)
7400 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7401 {
7402 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7403 *pfalse = simplify_gen_unary (code, mode, false0,
7404 GET_MODE (XEXP (x, 0)));
7405 return cond0;
7406 }
7407
7408 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7409 make can't possibly match and would suppress other optimizations. */
7410 else if (code == COMPARE)
7411 ;
7412
7413 /* If this is a binary operation, see if either side has only one of two
7414 values. If either one does or if both do and they are conditional on
7415 the same value, compute the new true and false values. */
7416 else if (BINARY_P (x))
7417 {
7418 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7419 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7420
7421 if ((cond0 != 0 || cond1 != 0)
7422 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7423 {
7424 /* If if_then_else_cond returned zero, then true/false are the
7425 same rtl. We must copy one of them to prevent invalid rtl
7426 sharing. */
7427 if (cond0 == 0)
7428 true0 = copy_rtx (true0);
7429 else if (cond1 == 0)
7430 true1 = copy_rtx (true1);
7431
7432 *ptrue = gen_binary (code, mode, true0, true1);
7433 *pfalse = gen_binary (code, mode, false0, false1);
7434 return cond0 ? cond0 : cond1;
7435 }
7436
7437 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7438 operands is zero when the other is nonzero, and vice-versa,
7439 and STORE_FLAG_VALUE is 1 or -1. */
7440
7441 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7442 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7443 || code == UMAX)
7444 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7445 {
7446 rtx op0 = XEXP (XEXP (x, 0), 1);
7447 rtx op1 = XEXP (XEXP (x, 1), 1);
7448
7449 cond0 = XEXP (XEXP (x, 0), 0);
7450 cond1 = XEXP (XEXP (x, 1), 0);
7451
7452 if (COMPARISON_P (cond0)
7453 && COMPARISON_P (cond1)
7454 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7455 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7456 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7457 || ((swap_condition (GET_CODE (cond0))
7458 == combine_reversed_comparison_code (cond1))
7459 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7460 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7461 && ! side_effects_p (x))
7462 {
7463 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7464 *pfalse = gen_binary (MULT, mode,
7465 (code == MINUS
7466 ? simplify_gen_unary (NEG, mode, op1,
7467 mode)
7468 : op1),
7469 const_true_rtx);
7470 return cond0;
7471 }
7472 }
7473
7474 /* Similarly for MULT, AND and UMIN, except that for these the result
7475 is always zero. */
7476 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7477 && (code == MULT || code == AND || code == UMIN)
7478 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7479 {
7480 cond0 = XEXP (XEXP (x, 0), 0);
7481 cond1 = XEXP (XEXP (x, 1), 0);
7482
7483 if (COMPARISON_P (cond0)
7484 && COMPARISON_P (cond1)
7485 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7486 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7487 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7488 || ((swap_condition (GET_CODE (cond0))
7489 == combine_reversed_comparison_code (cond1))
7490 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7491 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7492 && ! side_effects_p (x))
7493 {
7494 *ptrue = *pfalse = const0_rtx;
7495 return cond0;
7496 }
7497 }
7498 }
7499
7500 else if (code == IF_THEN_ELSE)
7501 {
7502 /* If we have IF_THEN_ELSE already, extract the condition and
7503 canonicalize it if it is NE or EQ. */
7504 cond0 = XEXP (x, 0);
7505 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7506 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7507 return XEXP (cond0, 0);
7508 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7509 {
7510 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7511 return XEXP (cond0, 0);
7512 }
7513 else
7514 return cond0;
7515 }
7516
7517 /* If X is a SUBREG, we can narrow both the true and false values
7518 if the inner expression, if there is a condition. */
7519 else if (code == SUBREG
7520 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7521 &true0, &false0)))
7522 {
7523 true0 = simplify_gen_subreg (mode, true0,
7524 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7525 false0 = simplify_gen_subreg (mode, false0,
7526 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7527 if (true0 && false0)
7528 {
7529 *ptrue = true0;
7530 *pfalse = false0;
7531 return cond0;
7532 }
7533 }
7534
7535 /* If X is a constant, this isn't special and will cause confusions
7536 if we treat it as such. Likewise if it is equivalent to a constant. */
7537 else if (CONSTANT_P (x)
7538 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7539 ;
7540
7541 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7542 will be least confusing to the rest of the compiler. */
7543 else if (mode == BImode)
7544 {
7545 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7546 return x;
7547 }
7548
7549 /* If X is known to be either 0 or -1, those are the true and
7550 false values when testing X. */
7551 else if (x == constm1_rtx || x == const0_rtx
7552 || (mode != VOIDmode
7553 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7554 {
7555 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7556 return x;
7557 }
7558
7559 /* Likewise for 0 or a single bit. */
7560 else if (SCALAR_INT_MODE_P (mode)
7561 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7562 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7563 {
7564 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7565 return x;
7566 }
7567
7568 /* Otherwise fail; show no condition with true and false values the same. */
7569 *ptrue = *pfalse = x;
7570 return 0;
7571 }
7572 \f
7573 /* Return the value of expression X given the fact that condition COND
7574 is known to be true when applied to REG as its first operand and VAL
7575 as its second. X is known to not be shared and so can be modified in
7576 place.
7577
7578 We only handle the simplest cases, and specifically those cases that
7579 arise with IF_THEN_ELSE expressions. */
7580
7581 static rtx
7582 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7583 {
7584 enum rtx_code code = GET_CODE (x);
7585 rtx temp;
7586 const char *fmt;
7587 int i, j;
7588
7589 if (side_effects_p (x))
7590 return x;
7591
7592 /* If either operand of the condition is a floating point value,
7593 then we have to avoid collapsing an EQ comparison. */
7594 if (cond == EQ
7595 && rtx_equal_p (x, reg)
7596 && ! FLOAT_MODE_P (GET_MODE (x))
7597 && ! FLOAT_MODE_P (GET_MODE (val)))
7598 return val;
7599
7600 if (cond == UNEQ && rtx_equal_p (x, reg))
7601 return val;
7602
7603 /* If X is (abs REG) and we know something about REG's relationship
7604 with zero, we may be able to simplify this. */
7605
7606 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7607 switch (cond)
7608 {
7609 case GE: case GT: case EQ:
7610 return XEXP (x, 0);
7611 case LT: case LE:
7612 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7613 XEXP (x, 0),
7614 GET_MODE (XEXP (x, 0)));
7615 default:
7616 break;
7617 }
7618
7619 /* The only other cases we handle are MIN, MAX, and comparisons if the
7620 operands are the same as REG and VAL. */
7621
7622 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7623 {
7624 if (rtx_equal_p (XEXP (x, 0), val))
7625 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7626
7627 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7628 {
7629 if (COMPARISON_P (x))
7630 {
7631 if (comparison_dominates_p (cond, code))
7632 return const_true_rtx;
7633
7634 code = combine_reversed_comparison_code (x);
7635 if (code != UNKNOWN
7636 && comparison_dominates_p (cond, code))
7637 return const0_rtx;
7638 else
7639 return x;
7640 }
7641 else if (code == SMAX || code == SMIN
7642 || code == UMIN || code == UMAX)
7643 {
7644 int unsignedp = (code == UMIN || code == UMAX);
7645
7646 /* Do not reverse the condition when it is NE or EQ.
7647 This is because we cannot conclude anything about
7648 the value of 'SMAX (x, y)' when x is not equal to y,
7649 but we can when x equals y. */
7650 if ((code == SMAX || code == UMAX)
7651 && ! (cond == EQ || cond == NE))
7652 cond = reverse_condition (cond);
7653
7654 switch (cond)
7655 {
7656 case GE: case GT:
7657 return unsignedp ? x : XEXP (x, 1);
7658 case LE: case LT:
7659 return unsignedp ? x : XEXP (x, 0);
7660 case GEU: case GTU:
7661 return unsignedp ? XEXP (x, 1) : x;
7662 case LEU: case LTU:
7663 return unsignedp ? XEXP (x, 0) : x;
7664 default:
7665 break;
7666 }
7667 }
7668 }
7669 }
7670 else if (code == SUBREG)
7671 {
7672 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7673 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7674
7675 if (SUBREG_REG (x) != r)
7676 {
7677 /* We must simplify subreg here, before we lose track of the
7678 original inner_mode. */
7679 new = simplify_subreg (GET_MODE (x), r,
7680 inner_mode, SUBREG_BYTE (x));
7681 if (new)
7682 return new;
7683 else
7684 SUBST (SUBREG_REG (x), r);
7685 }
7686
7687 return x;
7688 }
7689 /* We don't have to handle SIGN_EXTEND here, because even in the
7690 case of replacing something with a modeless CONST_INT, a
7691 CONST_INT is already (supposed to be) a valid sign extension for
7692 its narrower mode, which implies it's already properly
7693 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7694 story is different. */
7695 else if (code == ZERO_EXTEND)
7696 {
7697 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7698 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7699
7700 if (XEXP (x, 0) != r)
7701 {
7702 /* We must simplify the zero_extend here, before we lose
7703 track of the original inner_mode. */
7704 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7705 r, inner_mode);
7706 if (new)
7707 return new;
7708 else
7709 SUBST (XEXP (x, 0), r);
7710 }
7711
7712 return x;
7713 }
7714
7715 fmt = GET_RTX_FORMAT (code);
7716 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7717 {
7718 if (fmt[i] == 'e')
7719 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7720 else if (fmt[i] == 'E')
7721 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7722 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7723 cond, reg, val));
7724 }
7725
7726 return x;
7727 }
7728 \f
7729 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7730 assignment as a field assignment. */
7731
7732 static int
7733 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7734 {
7735 if (x == y || rtx_equal_p (x, y))
7736 return 1;
7737
7738 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7739 return 0;
7740
7741 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7742 Note that all SUBREGs of MEM are paradoxical; otherwise they
7743 would have been rewritten. */
7744 if (MEM_P (x) && GET_CODE (y) == SUBREG
7745 && MEM_P (SUBREG_REG (y))
7746 && rtx_equal_p (SUBREG_REG (y),
7747 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7748 return 1;
7749
7750 if (MEM_P (y) && GET_CODE (x) == SUBREG
7751 && MEM_P (SUBREG_REG (x))
7752 && rtx_equal_p (SUBREG_REG (x),
7753 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7754 return 1;
7755
7756 /* We used to see if get_last_value of X and Y were the same but that's
7757 not correct. In one direction, we'll cause the assignment to have
7758 the wrong destination and in the case, we'll import a register into this
7759 insn that might have already have been dead. So fail if none of the
7760 above cases are true. */
7761 return 0;
7762 }
7763 \f
7764 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7765 Return that assignment if so.
7766
7767 We only handle the most common cases. */
7768
7769 static rtx
7770 make_field_assignment (rtx x)
7771 {
7772 rtx dest = SET_DEST (x);
7773 rtx src = SET_SRC (x);
7774 rtx assign;
7775 rtx rhs, lhs;
7776 HOST_WIDE_INT c1;
7777 HOST_WIDE_INT pos;
7778 unsigned HOST_WIDE_INT len;
7779 rtx other;
7780 enum machine_mode mode;
7781
7782 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7783 a clear of a one-bit field. We will have changed it to
7784 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7785 for a SUBREG. */
7786
7787 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7788 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7789 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7790 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7791 {
7792 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7793 1, 1, 1, 0);
7794 if (assign != 0)
7795 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7796 return x;
7797 }
7798
7799 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7800 && subreg_lowpart_p (XEXP (src, 0))
7801 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7802 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7803 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7804 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7805 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7806 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7807 {
7808 assign = make_extraction (VOIDmode, dest, 0,
7809 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7810 1, 1, 1, 0);
7811 if (assign != 0)
7812 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7813 return x;
7814 }
7815
7816 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7817 one-bit field. */
7818 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7819 && XEXP (XEXP (src, 0), 0) == const1_rtx
7820 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7821 {
7822 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7823 1, 1, 1, 0);
7824 if (assign != 0)
7825 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7826 return x;
7827 }
7828
7829 /* The other case we handle is assignments into a constant-position
7830 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7831 a mask that has all one bits except for a group of zero bits and
7832 OTHER is known to have zeros where C1 has ones, this is such an
7833 assignment. Compute the position and length from C1. Shift OTHER
7834 to the appropriate position, force it to the required mode, and
7835 make the extraction. Check for the AND in both operands. */
7836
7837 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7838 return x;
7839
7840 rhs = expand_compound_operation (XEXP (src, 0));
7841 lhs = expand_compound_operation (XEXP (src, 1));
7842
7843 if (GET_CODE (rhs) == AND
7844 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7845 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7846 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7847 else if (GET_CODE (lhs) == AND
7848 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7849 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7850 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7851 else
7852 return x;
7853
7854 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7855 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7856 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7857 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7858 return x;
7859
7860 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7861 if (assign == 0)
7862 return x;
7863
7864 /* The mode to use for the source is the mode of the assignment, or of
7865 what is inside a possible STRICT_LOW_PART. */
7866 mode = (GET_CODE (assign) == STRICT_LOW_PART
7867 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7868
7869 /* Shift OTHER right POS places and make it the source, restricting it
7870 to the proper length and mode. */
7871
7872 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7873 GET_MODE (src), other, pos),
7874 mode,
7875 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7876 ? ~(unsigned HOST_WIDE_INT) 0
7877 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7878 dest, 0);
7879
7880 /* If SRC is masked by an AND that does not make a difference in
7881 the value being stored, strip it. */
7882 if (GET_CODE (assign) == ZERO_EXTRACT
7883 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7884 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7885 && GET_CODE (src) == AND
7886 && GET_CODE (XEXP (src, 1)) == CONST_INT
7887 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7888 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7889 src = XEXP (src, 0);
7890
7891 return gen_rtx_SET (VOIDmode, assign, src);
7892 }
7893 \f
7894 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7895 if so. */
7896
7897 static rtx
7898 apply_distributive_law (rtx x)
7899 {
7900 enum rtx_code code = GET_CODE (x);
7901 enum rtx_code inner_code;
7902 rtx lhs, rhs, other;
7903 rtx tem;
7904
7905 /* Distributivity is not true for floating point as it can change the
7906 value. So we don't do it unless -funsafe-math-optimizations. */
7907 if (FLOAT_MODE_P (GET_MODE (x))
7908 && ! flag_unsafe_math_optimizations)
7909 return x;
7910
7911 /* The outer operation can only be one of the following: */
7912 if (code != IOR && code != AND && code != XOR
7913 && code != PLUS && code != MINUS)
7914 return x;
7915
7916 lhs = XEXP (x, 0);
7917 rhs = XEXP (x, 1);
7918
7919 /* If either operand is a primitive we can't do anything, so get out
7920 fast. */
7921 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7922 return x;
7923
7924 lhs = expand_compound_operation (lhs);
7925 rhs = expand_compound_operation (rhs);
7926 inner_code = GET_CODE (lhs);
7927 if (inner_code != GET_CODE (rhs))
7928 return x;
7929
7930 /* See if the inner and outer operations distribute. */
7931 switch (inner_code)
7932 {
7933 case LSHIFTRT:
7934 case ASHIFTRT:
7935 case AND:
7936 case IOR:
7937 /* These all distribute except over PLUS. */
7938 if (code == PLUS || code == MINUS)
7939 return x;
7940 break;
7941
7942 case MULT:
7943 if (code != PLUS && code != MINUS)
7944 return x;
7945 break;
7946
7947 case ASHIFT:
7948 /* This is also a multiply, so it distributes over everything. */
7949 break;
7950
7951 case SUBREG:
7952 /* Non-paradoxical SUBREGs distributes over all operations, provided
7953 the inner modes and byte offsets are the same, this is an extraction
7954 of a low-order part, we don't convert an fp operation to int or
7955 vice versa, and we would not be converting a single-word
7956 operation into a multi-word operation. The latter test is not
7957 required, but it prevents generating unneeded multi-word operations.
7958 Some of the previous tests are redundant given the latter test, but
7959 are retained because they are required for correctness.
7960
7961 We produce the result slightly differently in this case. */
7962
7963 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7964 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7965 || ! subreg_lowpart_p (lhs)
7966 || (GET_MODE_CLASS (GET_MODE (lhs))
7967 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7968 || (GET_MODE_SIZE (GET_MODE (lhs))
7969 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7970 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7971 return x;
7972
7973 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7974 SUBREG_REG (lhs), SUBREG_REG (rhs));
7975 return gen_lowpart (GET_MODE (x), tem);
7976
7977 default:
7978 return x;
7979 }
7980
7981 /* Set LHS and RHS to the inner operands (A and B in the example
7982 above) and set OTHER to the common operand (C in the example).
7983 There is only one way to do this unless the inner operation is
7984 commutative. */
7985 if (COMMUTATIVE_ARITH_P (lhs)
7986 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7987 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7988 else if (COMMUTATIVE_ARITH_P (lhs)
7989 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7990 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7991 else if (COMMUTATIVE_ARITH_P (lhs)
7992 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7993 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7994 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7995 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7996 else
7997 return x;
7998
7999 /* Form the new inner operation, seeing if it simplifies first. */
8000 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8001
8002 /* There is one exception to the general way of distributing:
8003 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8004 if (code == XOR && inner_code == IOR)
8005 {
8006 inner_code = AND;
8007 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8008 }
8009
8010 /* We may be able to continuing distributing the result, so call
8011 ourselves recursively on the inner operation before forming the
8012 outer operation, which we return. */
8013 return gen_binary (inner_code, GET_MODE (x),
8014 apply_distributive_law (tem), other);
8015 }
8016 \f
8017 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8018 in MODE.
8019
8020 Return an equivalent form, if different from X. Otherwise, return X. If
8021 X is zero, we are to always construct the equivalent form. */
8022
8023 static rtx
8024 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8025 unsigned HOST_WIDE_INT constop)
8026 {
8027 unsigned HOST_WIDE_INT nonzero;
8028 int i;
8029
8030 /* Simplify VAROP knowing that we will be only looking at some of the
8031 bits in it.
8032
8033 Note by passing in CONSTOP, we guarantee that the bits not set in
8034 CONSTOP are not significant and will never be examined. We must
8035 ensure that is the case by explicitly masking out those bits
8036 before returning. */
8037 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8038
8039 /* If VAROP is a CLOBBER, we will fail so return it. */
8040 if (GET_CODE (varop) == CLOBBER)
8041 return varop;
8042
8043 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8044 to VAROP and return the new constant. */
8045 if (GET_CODE (varop) == CONST_INT)
8046 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8047
8048 /* See what bits may be nonzero in VAROP. Unlike the general case of
8049 a call to nonzero_bits, here we don't care about bits outside
8050 MODE. */
8051
8052 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8053
8054 /* Turn off all bits in the constant that are known to already be zero.
8055 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8056 which is tested below. */
8057
8058 constop &= nonzero;
8059
8060 /* If we don't have any bits left, return zero. */
8061 if (constop == 0)
8062 return const0_rtx;
8063
8064 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8065 a power of two, we can replace this with an ASHIFT. */
8066 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8067 && (i = exact_log2 (constop)) >= 0)
8068 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8069
8070 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8071 or XOR, then try to apply the distributive law. This may eliminate
8072 operations if either branch can be simplified because of the AND.
8073 It may also make some cases more complex, but those cases probably
8074 won't match a pattern either with or without this. */
8075
8076 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8077 return
8078 gen_lowpart
8079 (mode,
8080 apply_distributive_law
8081 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8082 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8083 XEXP (varop, 0), constop),
8084 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8085 XEXP (varop, 1), constop))));
8086
8087 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8088 the AND and see if one of the operands simplifies to zero. If so, we
8089 may eliminate it. */
8090
8091 if (GET_CODE (varop) == PLUS
8092 && exact_log2 (constop + 1) >= 0)
8093 {
8094 rtx o0, o1;
8095
8096 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8097 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8098 if (o0 == const0_rtx)
8099 return o1;
8100 if (o1 == const0_rtx)
8101 return o0;
8102 }
8103
8104 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8105 if we already had one (just check for the simplest cases). */
8106 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8107 && GET_MODE (XEXP (x, 0)) == mode
8108 && SUBREG_REG (XEXP (x, 0)) == varop)
8109 varop = XEXP (x, 0);
8110 else
8111 varop = gen_lowpart (mode, varop);
8112
8113 /* If we can't make the SUBREG, try to return what we were given. */
8114 if (GET_CODE (varop) == CLOBBER)
8115 return x ? x : varop;
8116
8117 /* If we are only masking insignificant bits, return VAROP. */
8118 if (constop == nonzero)
8119 x = varop;
8120 else
8121 {
8122 /* Otherwise, return an AND. */
8123 constop = trunc_int_for_mode (constop, mode);
8124 /* See how much, if any, of X we can use. */
8125 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8126 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8127
8128 else
8129 {
8130 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8131 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8132 SUBST (XEXP (x, 1), GEN_INT (constop));
8133
8134 SUBST (XEXP (x, 0), varop);
8135 }
8136 }
8137
8138 return x;
8139 }
8140 \f
8141 /* Given a REG, X, compute which bits in X can be nonzero.
8142 We don't care about bits outside of those defined in MODE.
8143
8144 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8145 a shift, AND, or zero_extract, we can do better. */
8146
8147 static rtx
8148 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8149 rtx known_x ATTRIBUTE_UNUSED,
8150 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8151 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8152 unsigned HOST_WIDE_INT *nonzero)
8153 {
8154 rtx tem;
8155
8156 /* If X is a register whose nonzero bits value is current, use it.
8157 Otherwise, if X is a register whose value we can find, use that
8158 value. Otherwise, use the previously-computed global nonzero bits
8159 for this register. */
8160
8161 if (reg_stat[REGNO (x)].last_set_value != 0
8162 && (reg_stat[REGNO (x)].last_set_mode == mode
8163 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8164 && GET_MODE_CLASS (mode) == MODE_INT))
8165 && (reg_stat[REGNO (x)].last_set_label == label_tick
8166 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8167 && REG_N_SETS (REGNO (x)) == 1
8168 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8169 REGNO (x))))
8170 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8171 {
8172 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8173 return NULL;
8174 }
8175
8176 tem = get_last_value (x);
8177
8178 if (tem)
8179 {
8180 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8181 /* If X is narrower than MODE and TEM is a non-negative
8182 constant that would appear negative in the mode of X,
8183 sign-extend it for use in reg_nonzero_bits because some
8184 machines (maybe most) will actually do the sign-extension
8185 and this is the conservative approach.
8186
8187 ??? For 2.5, try to tighten up the MD files in this regard
8188 instead of this kludge. */
8189
8190 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8191 && GET_CODE (tem) == CONST_INT
8192 && INTVAL (tem) > 0
8193 && 0 != (INTVAL (tem)
8194 & ((HOST_WIDE_INT) 1
8195 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8196 tem = GEN_INT (INTVAL (tem)
8197 | ((HOST_WIDE_INT) (-1)
8198 << GET_MODE_BITSIZE (GET_MODE (x))));
8199 #endif
8200 return tem;
8201 }
8202 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8203 {
8204 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8205
8206 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8207 /* We don't know anything about the upper bits. */
8208 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8209 *nonzero &= mask;
8210 }
8211
8212 return NULL;
8213 }
8214
8215 /* Return the number of bits at the high-order end of X that are known to
8216 be equal to the sign bit. X will be used in mode MODE; if MODE is
8217 VOIDmode, X will be used in its own mode. The returned value will always
8218 be between 1 and the number of bits in MODE. */
8219
8220 static rtx
8221 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8222 rtx known_x ATTRIBUTE_UNUSED,
8223 enum machine_mode known_mode
8224 ATTRIBUTE_UNUSED,
8225 unsigned int known_ret ATTRIBUTE_UNUSED,
8226 unsigned int *result)
8227 {
8228 rtx tem;
8229
8230 if (reg_stat[REGNO (x)].last_set_value != 0
8231 && reg_stat[REGNO (x)].last_set_mode == mode
8232 && (reg_stat[REGNO (x)].last_set_label == label_tick
8233 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8234 && REG_N_SETS (REGNO (x)) == 1
8235 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8236 REGNO (x))))
8237 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8238 {
8239 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8240 return NULL;
8241 }
8242
8243 tem = get_last_value (x);
8244 if (tem != 0)
8245 return tem;
8246
8247 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8248 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8249 *result = reg_stat[REGNO (x)].sign_bit_copies;
8250
8251 return NULL;
8252 }
8253 \f
8254 /* Return the number of "extended" bits there are in X, when interpreted
8255 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8256 unsigned quantities, this is the number of high-order zero bits.
8257 For signed quantities, this is the number of copies of the sign bit
8258 minus 1. In both case, this function returns the number of "spare"
8259 bits. For example, if two quantities for which this function returns
8260 at least 1 are added, the addition is known not to overflow.
8261
8262 This function will always return 0 unless called during combine, which
8263 implies that it must be called from a define_split. */
8264
8265 unsigned int
8266 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8267 {
8268 if (nonzero_sign_valid == 0)
8269 return 0;
8270
8271 return (unsignedp
8272 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8273 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8274 - floor_log2 (nonzero_bits (x, mode)))
8275 : 0)
8276 : num_sign_bit_copies (x, mode) - 1);
8277 }
8278 \f
8279 /* This function is called from `simplify_shift_const' to merge two
8280 outer operations. Specifically, we have already found that we need
8281 to perform operation *POP0 with constant *PCONST0 at the outermost
8282 position. We would now like to also perform OP1 with constant CONST1
8283 (with *POP0 being done last).
8284
8285 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8286 the resulting operation. *PCOMP_P is set to 1 if we would need to
8287 complement the innermost operand, otherwise it is unchanged.
8288
8289 MODE is the mode in which the operation will be done. No bits outside
8290 the width of this mode matter. It is assumed that the width of this mode
8291 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8292
8293 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8294 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8295 result is simply *PCONST0.
8296
8297 If the resulting operation cannot be expressed as one operation, we
8298 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8299
8300 static int
8301 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8302 {
8303 enum rtx_code op0 = *pop0;
8304 HOST_WIDE_INT const0 = *pconst0;
8305
8306 const0 &= GET_MODE_MASK (mode);
8307 const1 &= GET_MODE_MASK (mode);
8308
8309 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8310 if (op0 == AND)
8311 const1 &= const0;
8312
8313 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8314 if OP0 is SET. */
8315
8316 if (op1 == UNKNOWN || op0 == SET)
8317 return 1;
8318
8319 else if (op0 == UNKNOWN)
8320 op0 = op1, const0 = const1;
8321
8322 else if (op0 == op1)
8323 {
8324 switch (op0)
8325 {
8326 case AND:
8327 const0 &= const1;
8328 break;
8329 case IOR:
8330 const0 |= const1;
8331 break;
8332 case XOR:
8333 const0 ^= const1;
8334 break;
8335 case PLUS:
8336 const0 += const1;
8337 break;
8338 case NEG:
8339 op0 = UNKNOWN;
8340 break;
8341 default:
8342 break;
8343 }
8344 }
8345
8346 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8347 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8348 return 0;
8349
8350 /* If the two constants aren't the same, we can't do anything. The
8351 remaining six cases can all be done. */
8352 else if (const0 != const1)
8353 return 0;
8354
8355 else
8356 switch (op0)
8357 {
8358 case IOR:
8359 if (op1 == AND)
8360 /* (a & b) | b == b */
8361 op0 = SET;
8362 else /* op1 == XOR */
8363 /* (a ^ b) | b == a | b */
8364 {;}
8365 break;
8366
8367 case XOR:
8368 if (op1 == AND)
8369 /* (a & b) ^ b == (~a) & b */
8370 op0 = AND, *pcomp_p = 1;
8371 else /* op1 == IOR */
8372 /* (a | b) ^ b == a & ~b */
8373 op0 = AND, const0 = ~const0;
8374 break;
8375
8376 case AND:
8377 if (op1 == IOR)
8378 /* (a | b) & b == b */
8379 op0 = SET;
8380 else /* op1 == XOR */
8381 /* (a ^ b) & b) == (~a) & b */
8382 *pcomp_p = 1;
8383 break;
8384 default:
8385 break;
8386 }
8387
8388 /* Check for NO-OP cases. */
8389 const0 &= GET_MODE_MASK (mode);
8390 if (const0 == 0
8391 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8392 op0 = UNKNOWN;
8393 else if (const0 == 0 && op0 == AND)
8394 op0 = SET;
8395 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8396 && op0 == AND)
8397 op0 = UNKNOWN;
8398
8399 /* ??? Slightly redundant with the above mask, but not entirely.
8400 Moving this above means we'd have to sign-extend the mode mask
8401 for the final test. */
8402 const0 = trunc_int_for_mode (const0, mode);
8403
8404 *pop0 = op0;
8405 *pconst0 = const0;
8406
8407 return 1;
8408 }
8409 \f
8410 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8411 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8412 that we started with.
8413
8414 The shift is normally computed in the widest mode we find in VAROP, as
8415 long as it isn't a different number of words than RESULT_MODE. Exceptions
8416 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8417
8418 static rtx
8419 simplify_shift_const (rtx x, enum rtx_code code,
8420 enum machine_mode result_mode, rtx varop,
8421 int orig_count)
8422 {
8423 enum rtx_code orig_code = code;
8424 unsigned int count;
8425 int signed_count;
8426 enum machine_mode mode = result_mode;
8427 enum machine_mode shift_mode, tmode;
8428 unsigned int mode_words
8429 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8430 /* We form (outer_op (code varop count) (outer_const)). */
8431 enum rtx_code outer_op = UNKNOWN;
8432 HOST_WIDE_INT outer_const = 0;
8433 rtx const_rtx;
8434 int complement_p = 0;
8435 rtx new;
8436
8437 /* Make sure and truncate the "natural" shift on the way in. We don't
8438 want to do this inside the loop as it makes it more difficult to
8439 combine shifts. */
8440 if (SHIFT_COUNT_TRUNCATED)
8441 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8442
8443 /* If we were given an invalid count, don't do anything except exactly
8444 what was requested. */
8445
8446 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8447 {
8448 if (x)
8449 return x;
8450
8451 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8452 }
8453
8454 count = orig_count;
8455
8456 /* Unless one of the branches of the `if' in this loop does a `continue',
8457 we will `break' the loop after the `if'. */
8458
8459 while (count != 0)
8460 {
8461 /* If we have an operand of (clobber (const_int 0)), just return that
8462 value. */
8463 if (GET_CODE (varop) == CLOBBER)
8464 return varop;
8465
8466 /* If we discovered we had to complement VAROP, leave. Making a NOT
8467 here would cause an infinite loop. */
8468 if (complement_p)
8469 break;
8470
8471 /* Convert ROTATERT to ROTATE. */
8472 if (code == ROTATERT)
8473 {
8474 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8475 code = ROTATE;
8476 if (VECTOR_MODE_P (result_mode))
8477 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8478 else
8479 count = bitsize - count;
8480 }
8481
8482 /* We need to determine what mode we will do the shift in. If the
8483 shift is a right shift or a ROTATE, we must always do it in the mode
8484 it was originally done in. Otherwise, we can do it in MODE, the
8485 widest mode encountered. */
8486 shift_mode
8487 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8488 ? result_mode : mode);
8489
8490 /* Handle cases where the count is greater than the size of the mode
8491 minus 1. For ASHIFT, use the size minus one as the count (this can
8492 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8493 take the count modulo the size. For other shifts, the result is
8494 zero.
8495
8496 Since these shifts are being produced by the compiler by combining
8497 multiple operations, each of which are defined, we know what the
8498 result is supposed to be. */
8499
8500 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8501 {
8502 if (code == ASHIFTRT)
8503 count = GET_MODE_BITSIZE (shift_mode) - 1;
8504 else if (code == ROTATE || code == ROTATERT)
8505 count %= GET_MODE_BITSIZE (shift_mode);
8506 else
8507 {
8508 /* We can't simply return zero because there may be an
8509 outer op. */
8510 varop = const0_rtx;
8511 count = 0;
8512 break;
8513 }
8514 }
8515
8516 /* An arithmetic right shift of a quantity known to be -1 or 0
8517 is a no-op. */
8518 if (code == ASHIFTRT
8519 && (num_sign_bit_copies (varop, shift_mode)
8520 == GET_MODE_BITSIZE (shift_mode)))
8521 {
8522 count = 0;
8523 break;
8524 }
8525
8526 /* If we are doing an arithmetic right shift and discarding all but
8527 the sign bit copies, this is equivalent to doing a shift by the
8528 bitsize minus one. Convert it into that shift because it will often
8529 allow other simplifications. */
8530
8531 if (code == ASHIFTRT
8532 && (count + num_sign_bit_copies (varop, shift_mode)
8533 >= GET_MODE_BITSIZE (shift_mode)))
8534 count = GET_MODE_BITSIZE (shift_mode) - 1;
8535
8536 /* We simplify the tests below and elsewhere by converting
8537 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8538 `make_compound_operation' will convert it to an ASHIFTRT for
8539 those machines (such as VAX) that don't have an LSHIFTRT. */
8540 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8541 && code == ASHIFTRT
8542 && ((nonzero_bits (varop, shift_mode)
8543 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8544 == 0))
8545 code = LSHIFTRT;
8546
8547 if (code == LSHIFTRT
8548 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8549 && !(nonzero_bits (varop, shift_mode) >> count))
8550 varop = const0_rtx;
8551 if (code == ASHIFT
8552 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8553 && !((nonzero_bits (varop, shift_mode) << count)
8554 & GET_MODE_MASK (shift_mode)))
8555 varop = const0_rtx;
8556
8557 switch (GET_CODE (varop))
8558 {
8559 case SIGN_EXTEND:
8560 case ZERO_EXTEND:
8561 case SIGN_EXTRACT:
8562 case ZERO_EXTRACT:
8563 new = expand_compound_operation (varop);
8564 if (new != varop)
8565 {
8566 varop = new;
8567 continue;
8568 }
8569 break;
8570
8571 case MEM:
8572 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8573 minus the width of a smaller mode, we can do this with a
8574 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8575 if ((code == ASHIFTRT || code == LSHIFTRT)
8576 && ! mode_dependent_address_p (XEXP (varop, 0))
8577 && ! MEM_VOLATILE_P (varop)
8578 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8579 MODE_INT, 1)) != BLKmode)
8580 {
8581 new = adjust_address_nv (varop, tmode,
8582 BYTES_BIG_ENDIAN ? 0
8583 : count / BITS_PER_UNIT);
8584
8585 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8586 : ZERO_EXTEND, mode, new);
8587 count = 0;
8588 continue;
8589 }
8590 break;
8591
8592 case USE:
8593 /* Similar to the case above, except that we can only do this if
8594 the resulting mode is the same as that of the underlying
8595 MEM and adjust the address depending on the *bits* endianness
8596 because of the way that bit-field extract insns are defined. */
8597 if ((code == ASHIFTRT || code == LSHIFTRT)
8598 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8599 MODE_INT, 1)) != BLKmode
8600 && tmode == GET_MODE (XEXP (varop, 0)))
8601 {
8602 if (BITS_BIG_ENDIAN)
8603 new = XEXP (varop, 0);
8604 else
8605 {
8606 new = copy_rtx (XEXP (varop, 0));
8607 SUBST (XEXP (new, 0),
8608 plus_constant (XEXP (new, 0),
8609 count / BITS_PER_UNIT));
8610 }
8611
8612 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8613 : ZERO_EXTEND, mode, new);
8614 count = 0;
8615 continue;
8616 }
8617 break;
8618
8619 case SUBREG:
8620 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8621 the same number of words as what we've seen so far. Then store
8622 the widest mode in MODE. */
8623 if (subreg_lowpart_p (varop)
8624 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8625 > GET_MODE_SIZE (GET_MODE (varop)))
8626 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8627 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8628 == mode_words)
8629 {
8630 varop = SUBREG_REG (varop);
8631 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8632 mode = GET_MODE (varop);
8633 continue;
8634 }
8635 break;
8636
8637 case MULT:
8638 /* Some machines use MULT instead of ASHIFT because MULT
8639 is cheaper. But it is still better on those machines to
8640 merge two shifts into one. */
8641 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8642 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8643 {
8644 varop
8645 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8646 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8647 continue;
8648 }
8649 break;
8650
8651 case UDIV:
8652 /* Similar, for when divides are cheaper. */
8653 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8654 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8655 {
8656 varop
8657 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8658 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8659 continue;
8660 }
8661 break;
8662
8663 case ASHIFTRT:
8664 /* If we are extracting just the sign bit of an arithmetic
8665 right shift, that shift is not needed. However, the sign
8666 bit of a wider mode may be different from what would be
8667 interpreted as the sign bit in a narrower mode, so, if
8668 the result is narrower, don't discard the shift. */
8669 if (code == LSHIFTRT
8670 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8671 && (GET_MODE_BITSIZE (result_mode)
8672 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8673 {
8674 varop = XEXP (varop, 0);
8675 continue;
8676 }
8677
8678 /* ... fall through ... */
8679
8680 case LSHIFTRT:
8681 case ASHIFT:
8682 case ROTATE:
8683 /* Here we have two nested shifts. The result is usually the
8684 AND of a new shift with a mask. We compute the result below. */
8685 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8686 && INTVAL (XEXP (varop, 1)) >= 0
8687 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8688 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8689 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8690 {
8691 enum rtx_code first_code = GET_CODE (varop);
8692 unsigned int first_count = INTVAL (XEXP (varop, 1));
8693 unsigned HOST_WIDE_INT mask;
8694 rtx mask_rtx;
8695
8696 /* We have one common special case. We can't do any merging if
8697 the inner code is an ASHIFTRT of a smaller mode. However, if
8698 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8699 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8700 we can convert it to
8701 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8702 This simplifies certain SIGN_EXTEND operations. */
8703 if (code == ASHIFT && first_code == ASHIFTRT
8704 && count == (unsigned int)
8705 (GET_MODE_BITSIZE (result_mode)
8706 - GET_MODE_BITSIZE (GET_MODE (varop))))
8707 {
8708 /* C3 has the low-order C1 bits zero. */
8709
8710 mask = (GET_MODE_MASK (mode)
8711 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8712
8713 varop = simplify_and_const_int (NULL_RTX, result_mode,
8714 XEXP (varop, 0), mask);
8715 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8716 varop, count);
8717 count = first_count;
8718 code = ASHIFTRT;
8719 continue;
8720 }
8721
8722 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8723 than C1 high-order bits equal to the sign bit, we can convert
8724 this to either an ASHIFT or an ASHIFTRT depending on the
8725 two counts.
8726
8727 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8728
8729 if (code == ASHIFTRT && first_code == ASHIFT
8730 && GET_MODE (varop) == shift_mode
8731 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8732 > first_count))
8733 {
8734 varop = XEXP (varop, 0);
8735
8736 signed_count = count - first_count;
8737 if (signed_count < 0)
8738 count = -signed_count, code = ASHIFT;
8739 else
8740 count = signed_count;
8741
8742 continue;
8743 }
8744
8745 /* There are some cases we can't do. If CODE is ASHIFTRT,
8746 we can only do this if FIRST_CODE is also ASHIFTRT.
8747
8748 We can't do the case when CODE is ROTATE and FIRST_CODE is
8749 ASHIFTRT.
8750
8751 If the mode of this shift is not the mode of the outer shift,
8752 we can't do this if either shift is a right shift or ROTATE.
8753
8754 Finally, we can't do any of these if the mode is too wide
8755 unless the codes are the same.
8756
8757 Handle the case where the shift codes are the same
8758 first. */
8759
8760 if (code == first_code)
8761 {
8762 if (GET_MODE (varop) != result_mode
8763 && (code == ASHIFTRT || code == LSHIFTRT
8764 || code == ROTATE))
8765 break;
8766
8767 count += first_count;
8768 varop = XEXP (varop, 0);
8769 continue;
8770 }
8771
8772 if (code == ASHIFTRT
8773 || (code == ROTATE && first_code == ASHIFTRT)
8774 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8775 || (GET_MODE (varop) != result_mode
8776 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8777 || first_code == ROTATE
8778 || code == ROTATE)))
8779 break;
8780
8781 /* To compute the mask to apply after the shift, shift the
8782 nonzero bits of the inner shift the same way the
8783 outer shift will. */
8784
8785 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8786
8787 mask_rtx
8788 = simplify_binary_operation (code, result_mode, mask_rtx,
8789 GEN_INT (count));
8790
8791 /* Give up if we can't compute an outer operation to use. */
8792 if (mask_rtx == 0
8793 || GET_CODE (mask_rtx) != CONST_INT
8794 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8795 INTVAL (mask_rtx),
8796 result_mode, &complement_p))
8797 break;
8798
8799 /* If the shifts are in the same direction, we add the
8800 counts. Otherwise, we subtract them. */
8801 signed_count = count;
8802 if ((code == ASHIFTRT || code == LSHIFTRT)
8803 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8804 signed_count += first_count;
8805 else
8806 signed_count -= first_count;
8807
8808 /* If COUNT is positive, the new shift is usually CODE,
8809 except for the two exceptions below, in which case it is
8810 FIRST_CODE. If the count is negative, FIRST_CODE should
8811 always be used */
8812 if (signed_count > 0
8813 && ((first_code == ROTATE && code == ASHIFT)
8814 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8815 code = first_code, count = signed_count;
8816 else if (signed_count < 0)
8817 code = first_code, count = -signed_count;
8818 else
8819 count = signed_count;
8820
8821 varop = XEXP (varop, 0);
8822 continue;
8823 }
8824
8825 /* If we have (A << B << C) for any shift, we can convert this to
8826 (A << C << B). This wins if A is a constant. Only try this if
8827 B is not a constant. */
8828
8829 else if (GET_CODE (varop) == code
8830 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8831 && 0 != (new
8832 = simplify_binary_operation (code, mode,
8833 XEXP (varop, 0),
8834 GEN_INT (count))))
8835 {
8836 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8837 count = 0;
8838 continue;
8839 }
8840 break;
8841
8842 case NOT:
8843 /* Make this fit the case below. */
8844 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8845 GEN_INT (GET_MODE_MASK (mode)));
8846 continue;
8847
8848 case IOR:
8849 case AND:
8850 case XOR:
8851 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8852 with C the size of VAROP - 1 and the shift is logical if
8853 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8854 we have an (le X 0) operation. If we have an arithmetic shift
8855 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8856 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8857
8858 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8859 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8860 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8861 && (code == LSHIFTRT || code == ASHIFTRT)
8862 && count == (unsigned int)
8863 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8864 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8865 {
8866 count = 0;
8867 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8868 const0_rtx);
8869
8870 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8871 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8872
8873 continue;
8874 }
8875
8876 /* If we have (shift (logical)), move the logical to the outside
8877 to allow it to possibly combine with another logical and the
8878 shift to combine with another shift. This also canonicalizes to
8879 what a ZERO_EXTRACT looks like. Also, some machines have
8880 (and (shift)) insns. */
8881
8882 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8883 /* We can't do this if we have (ashiftrt (xor)) and the
8884 constant has its sign bit set in shift_mode. */
8885 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8886 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8887 shift_mode))
8888 && (new = simplify_binary_operation (code, result_mode,
8889 XEXP (varop, 1),
8890 GEN_INT (count))) != 0
8891 && GET_CODE (new) == CONST_INT
8892 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8893 INTVAL (new), result_mode, &complement_p))
8894 {
8895 varop = XEXP (varop, 0);
8896 continue;
8897 }
8898
8899 /* If we can't do that, try to simplify the shift in each arm of the
8900 logical expression, make a new logical expression, and apply
8901 the inverse distributive law. This also can't be done
8902 for some (ashiftrt (xor)). */
8903 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8904 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8905 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8906 shift_mode)))
8907 {
8908 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8909 XEXP (varop, 0), count);
8910 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8911 XEXP (varop, 1), count);
8912
8913 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8914 varop = apply_distributive_law (varop);
8915
8916 count = 0;
8917 continue;
8918 }
8919 break;
8920
8921 case EQ:
8922 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8923 says that the sign bit can be tested, FOO has mode MODE, C is
8924 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8925 that may be nonzero. */
8926 if (code == LSHIFTRT
8927 && XEXP (varop, 1) == const0_rtx
8928 && GET_MODE (XEXP (varop, 0)) == result_mode
8929 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8930 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8931 && ((STORE_FLAG_VALUE
8932 & ((HOST_WIDE_INT) 1
8933 < (GET_MODE_BITSIZE (result_mode) - 1))))
8934 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8935 && merge_outer_ops (&outer_op, &outer_const, XOR,
8936 (HOST_WIDE_INT) 1, result_mode,
8937 &complement_p))
8938 {
8939 varop = XEXP (varop, 0);
8940 count = 0;
8941 continue;
8942 }
8943 break;
8944
8945 case NEG:
8946 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8947 than the number of bits in the mode is equivalent to A. */
8948 if (code == LSHIFTRT
8949 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8950 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8951 {
8952 varop = XEXP (varop, 0);
8953 count = 0;
8954 continue;
8955 }
8956
8957 /* NEG commutes with ASHIFT since it is multiplication. Move the
8958 NEG outside to allow shifts to combine. */
8959 if (code == ASHIFT
8960 && merge_outer_ops (&outer_op, &outer_const, NEG,
8961 (HOST_WIDE_INT) 0, result_mode,
8962 &complement_p))
8963 {
8964 varop = XEXP (varop, 0);
8965 continue;
8966 }
8967 break;
8968
8969 case PLUS:
8970 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8971 is one less than the number of bits in the mode is
8972 equivalent to (xor A 1). */
8973 if (code == LSHIFTRT
8974 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8975 && XEXP (varop, 1) == constm1_rtx
8976 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8977 && merge_outer_ops (&outer_op, &outer_const, XOR,
8978 (HOST_WIDE_INT) 1, result_mode,
8979 &complement_p))
8980 {
8981 count = 0;
8982 varop = XEXP (varop, 0);
8983 continue;
8984 }
8985
8986 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8987 that might be nonzero in BAR are those being shifted out and those
8988 bits are known zero in FOO, we can replace the PLUS with FOO.
8989 Similarly in the other operand order. This code occurs when
8990 we are computing the size of a variable-size array. */
8991
8992 if ((code == ASHIFTRT || code == LSHIFTRT)
8993 && count < HOST_BITS_PER_WIDE_INT
8994 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8995 && (nonzero_bits (XEXP (varop, 1), result_mode)
8996 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8997 {
8998 varop = XEXP (varop, 0);
8999 continue;
9000 }
9001 else if ((code == ASHIFTRT || code == LSHIFTRT)
9002 && count < HOST_BITS_PER_WIDE_INT
9003 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9004 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9005 >> count)
9006 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9007 & nonzero_bits (XEXP (varop, 1),
9008 result_mode)))
9009 {
9010 varop = XEXP (varop, 1);
9011 continue;
9012 }
9013
9014 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9015 if (code == ASHIFT
9016 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9017 && (new = simplify_binary_operation (ASHIFT, result_mode,
9018 XEXP (varop, 1),
9019 GEN_INT (count))) != 0
9020 && GET_CODE (new) == CONST_INT
9021 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9022 INTVAL (new), result_mode, &complement_p))
9023 {
9024 varop = XEXP (varop, 0);
9025 continue;
9026 }
9027 break;
9028
9029 case MINUS:
9030 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9031 with C the size of VAROP - 1 and the shift is logical if
9032 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9033 we have a (gt X 0) operation. If the shift is arithmetic with
9034 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9035 we have a (neg (gt X 0)) operation. */
9036
9037 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9038 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9039 && count == (unsigned int)
9040 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9041 && (code == LSHIFTRT || code == ASHIFTRT)
9042 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9043 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9044 == count
9045 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9046 {
9047 count = 0;
9048 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9049 const0_rtx);
9050
9051 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9052 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9053
9054 continue;
9055 }
9056 break;
9057
9058 case TRUNCATE:
9059 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9060 if the truncate does not affect the value. */
9061 if (code == LSHIFTRT
9062 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9063 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9064 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9065 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9066 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9067 {
9068 rtx varop_inner = XEXP (varop, 0);
9069
9070 varop_inner
9071 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9072 XEXP (varop_inner, 0),
9073 GEN_INT
9074 (count + INTVAL (XEXP (varop_inner, 1))));
9075 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9076 count = 0;
9077 continue;
9078 }
9079 break;
9080
9081 default:
9082 break;
9083 }
9084
9085 break;
9086 }
9087
9088 /* We need to determine what mode to do the shift in. If the shift is
9089 a right shift or ROTATE, we must always do it in the mode it was
9090 originally done in. Otherwise, we can do it in MODE, the widest mode
9091 encountered. The code we care about is that of the shift that will
9092 actually be done, not the shift that was originally requested. */
9093 shift_mode
9094 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9095 ? result_mode : mode);
9096
9097 /* We have now finished analyzing the shift. The result should be
9098 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9099 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9100 to the result of the shift. OUTER_CONST is the relevant constant,
9101 but we must turn off all bits turned off in the shift.
9102
9103 If we were passed a value for X, see if we can use any pieces of
9104 it. If not, make new rtx. */
9105
9106 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9107 && GET_CODE (XEXP (x, 1)) == CONST_INT
9108 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9109 const_rtx = XEXP (x, 1);
9110 else
9111 const_rtx = GEN_INT (count);
9112
9113 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9114 && GET_MODE (XEXP (x, 0)) == shift_mode
9115 && SUBREG_REG (XEXP (x, 0)) == varop)
9116 varop = XEXP (x, 0);
9117 else if (GET_MODE (varop) != shift_mode)
9118 varop = gen_lowpart (shift_mode, varop);
9119
9120 /* If we can't make the SUBREG, try to return what we were given. */
9121 if (GET_CODE (varop) == CLOBBER)
9122 return x ? x : varop;
9123
9124 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9125 if (new != 0)
9126 x = new;
9127 else
9128 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9129
9130 /* If we have an outer operation and we just made a shift, it is
9131 possible that we could have simplified the shift were it not
9132 for the outer operation. So try to do the simplification
9133 recursively. */
9134
9135 if (outer_op != UNKNOWN && GET_CODE (x) == code
9136 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9137 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9138 INTVAL (XEXP (x, 1)));
9139
9140 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9141 turn off all the bits that the shift would have turned off. */
9142 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9143 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9144 GET_MODE_MASK (result_mode) >> orig_count);
9145
9146 /* Do the remainder of the processing in RESULT_MODE. */
9147 x = gen_lowpart (result_mode, x);
9148
9149 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9150 operation. */
9151 if (complement_p)
9152 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9153
9154 if (outer_op != UNKNOWN)
9155 {
9156 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9157 outer_const = trunc_int_for_mode (outer_const, result_mode);
9158
9159 if (outer_op == AND)
9160 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9161 else if (outer_op == SET)
9162 /* This means that we have determined that the result is
9163 equivalent to a constant. This should be rare. */
9164 x = GEN_INT (outer_const);
9165 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9166 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9167 else
9168 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9169 }
9170
9171 return x;
9172 }
9173 \f
9174 /* Like recog, but we receive the address of a pointer to a new pattern.
9175 We try to match the rtx that the pointer points to.
9176 If that fails, we may try to modify or replace the pattern,
9177 storing the replacement into the same pointer object.
9178
9179 Modifications include deletion or addition of CLOBBERs.
9180
9181 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9182 the CLOBBERs are placed.
9183
9184 The value is the final insn code from the pattern ultimately matched,
9185 or -1. */
9186
9187 static int
9188 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9189 {
9190 rtx pat = *pnewpat;
9191 int insn_code_number;
9192 int num_clobbers_to_add = 0;
9193 int i;
9194 rtx notes = 0;
9195 rtx old_notes, old_pat;
9196
9197 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9198 we use to indicate that something didn't match. If we find such a
9199 thing, force rejection. */
9200 if (GET_CODE (pat) == PARALLEL)
9201 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9202 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9203 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9204 return -1;
9205
9206 old_pat = PATTERN (insn);
9207 old_notes = REG_NOTES (insn);
9208 PATTERN (insn) = pat;
9209 REG_NOTES (insn) = 0;
9210
9211 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9212
9213 /* If it isn't, there is the possibility that we previously had an insn
9214 that clobbered some register as a side effect, but the combined
9215 insn doesn't need to do that. So try once more without the clobbers
9216 unless this represents an ASM insn. */
9217
9218 if (insn_code_number < 0 && ! check_asm_operands (pat)
9219 && GET_CODE (pat) == PARALLEL)
9220 {
9221 int pos;
9222
9223 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9224 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9225 {
9226 if (i != pos)
9227 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9228 pos++;
9229 }
9230
9231 SUBST_INT (XVECLEN (pat, 0), pos);
9232
9233 if (pos == 1)
9234 pat = XVECEXP (pat, 0, 0);
9235
9236 PATTERN (insn) = pat;
9237 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9238 }
9239 PATTERN (insn) = old_pat;
9240 REG_NOTES (insn) = old_notes;
9241
9242 /* Recognize all noop sets, these will be killed by followup pass. */
9243 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9244 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9245
9246 /* If we had any clobbers to add, make a new pattern than contains
9247 them. Then check to make sure that all of them are dead. */
9248 if (num_clobbers_to_add)
9249 {
9250 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9251 rtvec_alloc (GET_CODE (pat) == PARALLEL
9252 ? (XVECLEN (pat, 0)
9253 + num_clobbers_to_add)
9254 : num_clobbers_to_add + 1));
9255
9256 if (GET_CODE (pat) == PARALLEL)
9257 for (i = 0; i < XVECLEN (pat, 0); i++)
9258 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9259 else
9260 XVECEXP (newpat, 0, 0) = pat;
9261
9262 add_clobbers (newpat, insn_code_number);
9263
9264 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9265 i < XVECLEN (newpat, 0); i++)
9266 {
9267 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9268 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9269 return -1;
9270 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9271 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9272 }
9273 pat = newpat;
9274 }
9275
9276 *pnewpat = pat;
9277 *pnotes = notes;
9278
9279 return insn_code_number;
9280 }
9281 \f
9282 /* Like gen_lowpart_general but for use by combine. In combine it
9283 is not possible to create any new pseudoregs. However, it is
9284 safe to create invalid memory addresses, because combine will
9285 try to recognize them and all they will do is make the combine
9286 attempt fail.
9287
9288 If for some reason this cannot do its job, an rtx
9289 (clobber (const_int 0)) is returned.
9290 An insn containing that will not be recognized. */
9291
9292 static rtx
9293 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9294 {
9295 rtx result;
9296
9297 if (GET_MODE (x) == mode)
9298 return x;
9299
9300 /* Return identity if this is a CONST or symbolic
9301 reference. */
9302 if (mode == Pmode
9303 && (GET_CODE (x) == CONST
9304 || GET_CODE (x) == SYMBOL_REF
9305 || GET_CODE (x) == LABEL_REF))
9306 return x;
9307
9308 /* We can only support MODE being wider than a word if X is a
9309 constant integer or has a mode the same size. */
9310
9311 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9312 && ! ((GET_MODE (x) == VOIDmode
9313 && (GET_CODE (x) == CONST_INT
9314 || GET_CODE (x) == CONST_DOUBLE))
9315 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9316 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9317
9318 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9319 won't know what to do. So we will strip off the SUBREG here and
9320 process normally. */
9321 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9322 {
9323 x = SUBREG_REG (x);
9324 if (GET_MODE (x) == mode)
9325 return x;
9326 }
9327
9328 result = gen_lowpart_common (mode, x);
9329 #ifdef CANNOT_CHANGE_MODE_CLASS
9330 if (result != 0 && GET_CODE (result) == SUBREG)
9331 record_subregs_of_mode (result);
9332 #endif
9333
9334 if (result)
9335 return result;
9336
9337 if (MEM_P (x))
9338 {
9339 int offset = 0;
9340
9341 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9342 address. */
9343 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9344 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9345
9346 /* If we want to refer to something bigger than the original memref,
9347 generate a paradoxical subreg instead. That will force a reload
9348 of the original memref X. */
9349 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9350 return gen_rtx_SUBREG (mode, x, 0);
9351
9352 if (WORDS_BIG_ENDIAN)
9353 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9354 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9355
9356 if (BYTES_BIG_ENDIAN)
9357 {
9358 /* Adjust the address so that the address-after-the-data is
9359 unchanged. */
9360 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9361 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9362 }
9363
9364 return adjust_address_nv (x, mode, offset);
9365 }
9366
9367 /* If X is a comparison operator, rewrite it in a new mode. This
9368 probably won't match, but may allow further simplifications. */
9369 else if (COMPARISON_P (x))
9370 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9371
9372 /* If we couldn't simplify X any other way, just enclose it in a
9373 SUBREG. Normally, this SUBREG won't match, but some patterns may
9374 include an explicit SUBREG or we may simplify it further in combine. */
9375 else
9376 {
9377 int offset = 0;
9378 rtx res;
9379 enum machine_mode sub_mode = GET_MODE (x);
9380
9381 offset = subreg_lowpart_offset (mode, sub_mode);
9382 if (sub_mode == VOIDmode)
9383 {
9384 sub_mode = int_mode_for_mode (mode);
9385 x = gen_lowpart_common (sub_mode, x);
9386 if (x == 0)
9387 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
9388 }
9389 res = simplify_gen_subreg (mode, x, sub_mode, offset);
9390 if (res)
9391 return res;
9392 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9393 }
9394 }
9395 \f
9396 /* These routines make binary and unary operations by first seeing if they
9397 fold; if not, a new expression is allocated. */
9398
9399 static rtx
9400 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9401 {
9402 rtx result;
9403 rtx tem;
9404
9405 if (GET_CODE (op0) == CLOBBER)
9406 return op0;
9407 else if (GET_CODE (op1) == CLOBBER)
9408 return op1;
9409
9410 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9411 && swap_commutative_operands_p (op0, op1))
9412 tem = op0, op0 = op1, op1 = tem;
9413
9414 if (GET_RTX_CLASS (code) == RTX_COMPARE
9415 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9416 {
9417 enum machine_mode op_mode = GET_MODE (op0);
9418
9419 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9420 just (REL_OP X Y). */
9421 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9422 {
9423 op1 = XEXP (op0, 1);
9424 op0 = XEXP (op0, 0);
9425 op_mode = GET_MODE (op0);
9426 }
9427
9428 if (op_mode == VOIDmode)
9429 op_mode = GET_MODE (op1);
9430 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9431 }
9432 else
9433 result = simplify_binary_operation (code, mode, op0, op1);
9434
9435 if (result)
9436 return result;
9437
9438 /* Put complex operands first and constants second. */
9439 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9440 && swap_commutative_operands_p (op0, op1))
9441 return gen_rtx_fmt_ee (code, mode, op1, op0);
9442
9443 /* If we are turning off bits already known off in OP0, we need not do
9444 an AND. */
9445 else if (code == AND && GET_CODE (op1) == CONST_INT
9446 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9447 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9448 return op0;
9449
9450 return gen_rtx_fmt_ee (code, mode, op0, op1);
9451 }
9452 \f
9453 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9454 comparison code that will be tested.
9455
9456 The result is a possibly different comparison code to use. *POP0 and
9457 *POP1 may be updated.
9458
9459 It is possible that we might detect that a comparison is either always
9460 true or always false. However, we do not perform general constant
9461 folding in combine, so this knowledge isn't useful. Such tautologies
9462 should have been detected earlier. Hence we ignore all such cases. */
9463
9464 static enum rtx_code
9465 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9466 {
9467 rtx op0 = *pop0;
9468 rtx op1 = *pop1;
9469 rtx tem, tem1;
9470 int i;
9471 enum machine_mode mode, tmode;
9472
9473 /* Try a few ways of applying the same transformation to both operands. */
9474 while (1)
9475 {
9476 #ifndef WORD_REGISTER_OPERATIONS
9477 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9478 so check specially. */
9479 if (code != GTU && code != GEU && code != LTU && code != LEU
9480 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9481 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9482 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9483 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9484 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9485 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9486 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9487 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9488 && XEXP (op0, 1) == XEXP (op1, 1)
9489 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9490 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9491 && (INTVAL (XEXP (op0, 1))
9492 == (GET_MODE_BITSIZE (GET_MODE (op0))
9493 - (GET_MODE_BITSIZE
9494 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9495 {
9496 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9497 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9498 }
9499 #endif
9500
9501 /* If both operands are the same constant shift, see if we can ignore the
9502 shift. We can if the shift is a rotate or if the bits shifted out of
9503 this shift are known to be zero for both inputs and if the type of
9504 comparison is compatible with the shift. */
9505 if (GET_CODE (op0) == GET_CODE (op1)
9506 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9507 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9508 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9509 && (code != GT && code != LT && code != GE && code != LE))
9510 || (GET_CODE (op0) == ASHIFTRT
9511 && (code != GTU && code != LTU
9512 && code != GEU && code != LEU)))
9513 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9514 && INTVAL (XEXP (op0, 1)) >= 0
9515 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9516 && XEXP (op0, 1) == XEXP (op1, 1))
9517 {
9518 enum machine_mode mode = GET_MODE (op0);
9519 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9520 int shift_count = INTVAL (XEXP (op0, 1));
9521
9522 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9523 mask &= (mask >> shift_count) << shift_count;
9524 else if (GET_CODE (op0) == ASHIFT)
9525 mask = (mask & (mask << shift_count)) >> shift_count;
9526
9527 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9528 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9529 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9530 else
9531 break;
9532 }
9533
9534 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9535 SUBREGs are of the same mode, and, in both cases, the AND would
9536 be redundant if the comparison was done in the narrower mode,
9537 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9538 and the operand's possibly nonzero bits are 0xffffff01; in that case
9539 if we only care about QImode, we don't need the AND). This case
9540 occurs if the output mode of an scc insn is not SImode and
9541 STORE_FLAG_VALUE == 1 (e.g., the 386).
9542
9543 Similarly, check for a case where the AND's are ZERO_EXTEND
9544 operations from some narrower mode even though a SUBREG is not
9545 present. */
9546
9547 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9548 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9549 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9550 {
9551 rtx inner_op0 = XEXP (op0, 0);
9552 rtx inner_op1 = XEXP (op1, 0);
9553 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9554 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9555 int changed = 0;
9556
9557 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9558 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9559 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9560 && (GET_MODE (SUBREG_REG (inner_op0))
9561 == GET_MODE (SUBREG_REG (inner_op1)))
9562 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9563 <= HOST_BITS_PER_WIDE_INT)
9564 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9565 GET_MODE (SUBREG_REG (inner_op0)))))
9566 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9567 GET_MODE (SUBREG_REG (inner_op1))))))
9568 {
9569 op0 = SUBREG_REG (inner_op0);
9570 op1 = SUBREG_REG (inner_op1);
9571
9572 /* The resulting comparison is always unsigned since we masked
9573 off the original sign bit. */
9574 code = unsigned_condition (code);
9575
9576 changed = 1;
9577 }
9578
9579 else if (c0 == c1)
9580 for (tmode = GET_CLASS_NARROWEST_MODE
9581 (GET_MODE_CLASS (GET_MODE (op0)));
9582 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9583 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9584 {
9585 op0 = gen_lowpart (tmode, inner_op0);
9586 op1 = gen_lowpart (tmode, inner_op1);
9587 code = unsigned_condition (code);
9588 changed = 1;
9589 break;
9590 }
9591
9592 if (! changed)
9593 break;
9594 }
9595
9596 /* If both operands are NOT, we can strip off the outer operation
9597 and adjust the comparison code for swapped operands; similarly for
9598 NEG, except that this must be an equality comparison. */
9599 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9600 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9601 && (code == EQ || code == NE)))
9602 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9603
9604 else
9605 break;
9606 }
9607
9608 /* If the first operand is a constant, swap the operands and adjust the
9609 comparison code appropriately, but don't do this if the second operand
9610 is already a constant integer. */
9611 if (swap_commutative_operands_p (op0, op1))
9612 {
9613 tem = op0, op0 = op1, op1 = tem;
9614 code = swap_condition (code);
9615 }
9616
9617 /* We now enter a loop during which we will try to simplify the comparison.
9618 For the most part, we only are concerned with comparisons with zero,
9619 but some things may really be comparisons with zero but not start
9620 out looking that way. */
9621
9622 while (GET_CODE (op1) == CONST_INT)
9623 {
9624 enum machine_mode mode = GET_MODE (op0);
9625 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9626 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9627 int equality_comparison_p;
9628 int sign_bit_comparison_p;
9629 int unsigned_comparison_p;
9630 HOST_WIDE_INT const_op;
9631
9632 /* We only want to handle integral modes. This catches VOIDmode,
9633 CCmode, and the floating-point modes. An exception is that we
9634 can handle VOIDmode if OP0 is a COMPARE or a comparison
9635 operation. */
9636
9637 if (GET_MODE_CLASS (mode) != MODE_INT
9638 && ! (mode == VOIDmode
9639 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9640 break;
9641
9642 /* Get the constant we are comparing against and turn off all bits
9643 not on in our mode. */
9644 const_op = INTVAL (op1);
9645 if (mode != VOIDmode)
9646 const_op = trunc_int_for_mode (const_op, mode);
9647 op1 = GEN_INT (const_op);
9648
9649 /* If we are comparing against a constant power of two and the value
9650 being compared can only have that single bit nonzero (e.g., it was
9651 `and'ed with that bit), we can replace this with a comparison
9652 with zero. */
9653 if (const_op
9654 && (code == EQ || code == NE || code == GE || code == GEU
9655 || code == LT || code == LTU)
9656 && mode_width <= HOST_BITS_PER_WIDE_INT
9657 && exact_log2 (const_op) >= 0
9658 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9659 {
9660 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9661 op1 = const0_rtx, const_op = 0;
9662 }
9663
9664 /* Similarly, if we are comparing a value known to be either -1 or
9665 0 with -1, change it to the opposite comparison against zero. */
9666
9667 if (const_op == -1
9668 && (code == EQ || code == NE || code == GT || code == LE
9669 || code == GEU || code == LTU)
9670 && num_sign_bit_copies (op0, mode) == mode_width)
9671 {
9672 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9673 op1 = const0_rtx, const_op = 0;
9674 }
9675
9676 /* Do some canonicalizations based on the comparison code. We prefer
9677 comparisons against zero and then prefer equality comparisons.
9678 If we can reduce the size of a constant, we will do that too. */
9679
9680 switch (code)
9681 {
9682 case LT:
9683 /* < C is equivalent to <= (C - 1) */
9684 if (const_op > 0)
9685 {
9686 const_op -= 1;
9687 op1 = GEN_INT (const_op);
9688 code = LE;
9689 /* ... fall through to LE case below. */
9690 }
9691 else
9692 break;
9693
9694 case LE:
9695 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9696 if (const_op < 0)
9697 {
9698 const_op += 1;
9699 op1 = GEN_INT (const_op);
9700 code = LT;
9701 }
9702
9703 /* If we are doing a <= 0 comparison on a value known to have
9704 a zero sign bit, we can replace this with == 0. */
9705 else if (const_op == 0
9706 && mode_width <= HOST_BITS_PER_WIDE_INT
9707 && (nonzero_bits (op0, mode)
9708 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9709 code = EQ;
9710 break;
9711
9712 case GE:
9713 /* >= C is equivalent to > (C - 1). */
9714 if (const_op > 0)
9715 {
9716 const_op -= 1;
9717 op1 = GEN_INT (const_op);
9718 code = GT;
9719 /* ... fall through to GT below. */
9720 }
9721 else
9722 break;
9723
9724 case GT:
9725 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9726 if (const_op < 0)
9727 {
9728 const_op += 1;
9729 op1 = GEN_INT (const_op);
9730 code = GE;
9731 }
9732
9733 /* If we are doing a > 0 comparison on a value known to have
9734 a zero sign bit, we can replace this with != 0. */
9735 else if (const_op == 0
9736 && mode_width <= HOST_BITS_PER_WIDE_INT
9737 && (nonzero_bits (op0, mode)
9738 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9739 code = NE;
9740 break;
9741
9742 case LTU:
9743 /* < C is equivalent to <= (C - 1). */
9744 if (const_op > 0)
9745 {
9746 const_op -= 1;
9747 op1 = GEN_INT (const_op);
9748 code = LEU;
9749 /* ... fall through ... */
9750 }
9751
9752 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9753 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9754 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9755 {
9756 const_op = 0, op1 = const0_rtx;
9757 code = GE;
9758 break;
9759 }
9760 else
9761 break;
9762
9763 case LEU:
9764 /* unsigned <= 0 is equivalent to == 0 */
9765 if (const_op == 0)
9766 code = EQ;
9767
9768 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9769 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9770 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9771 {
9772 const_op = 0, op1 = const0_rtx;
9773 code = GE;
9774 }
9775 break;
9776
9777 case GEU:
9778 /* >= C is equivalent to > (C - 1). */
9779 if (const_op > 1)
9780 {
9781 const_op -= 1;
9782 op1 = GEN_INT (const_op);
9783 code = GTU;
9784 /* ... fall through ... */
9785 }
9786
9787 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9788 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9789 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9790 {
9791 const_op = 0, op1 = const0_rtx;
9792 code = LT;
9793 break;
9794 }
9795 else
9796 break;
9797
9798 case GTU:
9799 /* unsigned > 0 is equivalent to != 0 */
9800 if (const_op == 0)
9801 code = NE;
9802
9803 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9804 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9805 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9806 {
9807 const_op = 0, op1 = const0_rtx;
9808 code = LT;
9809 }
9810 break;
9811
9812 default:
9813 break;
9814 }
9815
9816 /* Compute some predicates to simplify code below. */
9817
9818 equality_comparison_p = (code == EQ || code == NE);
9819 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9820 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9821 || code == GEU);
9822
9823 /* If this is a sign bit comparison and we can do arithmetic in
9824 MODE, say that we will only be needing the sign bit of OP0. */
9825 if (sign_bit_comparison_p
9826 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9827 op0 = force_to_mode (op0, mode,
9828 ((HOST_WIDE_INT) 1
9829 << (GET_MODE_BITSIZE (mode) - 1)),
9830 NULL_RTX, 0);
9831
9832 /* Now try cases based on the opcode of OP0. If none of the cases
9833 does a "continue", we exit this loop immediately after the
9834 switch. */
9835
9836 switch (GET_CODE (op0))
9837 {
9838 case ZERO_EXTRACT:
9839 /* If we are extracting a single bit from a variable position in
9840 a constant that has only a single bit set and are comparing it
9841 with zero, we can convert this into an equality comparison
9842 between the position and the location of the single bit. */
9843 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9844 have already reduced the shift count modulo the word size. */
9845 if (!SHIFT_COUNT_TRUNCATED
9846 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9847 && XEXP (op0, 1) == const1_rtx
9848 && equality_comparison_p && const_op == 0
9849 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9850 {
9851 if (BITS_BIG_ENDIAN)
9852 {
9853 enum machine_mode new_mode
9854 = mode_for_extraction (EP_extzv, 1);
9855 if (new_mode == MAX_MACHINE_MODE)
9856 i = BITS_PER_WORD - 1 - i;
9857 else
9858 {
9859 mode = new_mode;
9860 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9861 }
9862 }
9863
9864 op0 = XEXP (op0, 2);
9865 op1 = GEN_INT (i);
9866 const_op = i;
9867
9868 /* Result is nonzero iff shift count is equal to I. */
9869 code = reverse_condition (code);
9870 continue;
9871 }
9872
9873 /* ... fall through ... */
9874
9875 case SIGN_EXTRACT:
9876 tem = expand_compound_operation (op0);
9877 if (tem != op0)
9878 {
9879 op0 = tem;
9880 continue;
9881 }
9882 break;
9883
9884 case NOT:
9885 /* If testing for equality, we can take the NOT of the constant. */
9886 if (equality_comparison_p
9887 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9888 {
9889 op0 = XEXP (op0, 0);
9890 op1 = tem;
9891 continue;
9892 }
9893
9894 /* If just looking at the sign bit, reverse the sense of the
9895 comparison. */
9896 if (sign_bit_comparison_p)
9897 {
9898 op0 = XEXP (op0, 0);
9899 code = (code == GE ? LT : GE);
9900 continue;
9901 }
9902 break;
9903
9904 case NEG:
9905 /* If testing for equality, we can take the NEG of the constant. */
9906 if (equality_comparison_p
9907 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9908 {
9909 op0 = XEXP (op0, 0);
9910 op1 = tem;
9911 continue;
9912 }
9913
9914 /* The remaining cases only apply to comparisons with zero. */
9915 if (const_op != 0)
9916 break;
9917
9918 /* When X is ABS or is known positive,
9919 (neg X) is < 0 if and only if X != 0. */
9920
9921 if (sign_bit_comparison_p
9922 && (GET_CODE (XEXP (op0, 0)) == ABS
9923 || (mode_width <= HOST_BITS_PER_WIDE_INT
9924 && (nonzero_bits (XEXP (op0, 0), mode)
9925 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9926 {
9927 op0 = XEXP (op0, 0);
9928 code = (code == LT ? NE : EQ);
9929 continue;
9930 }
9931
9932 /* If we have NEG of something whose two high-order bits are the
9933 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9934 if (num_sign_bit_copies (op0, mode) >= 2)
9935 {
9936 op0 = XEXP (op0, 0);
9937 code = swap_condition (code);
9938 continue;
9939 }
9940 break;
9941
9942 case ROTATE:
9943 /* If we are testing equality and our count is a constant, we
9944 can perform the inverse operation on our RHS. */
9945 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9946 && (tem = simplify_binary_operation (ROTATERT, mode,
9947 op1, XEXP (op0, 1))) != 0)
9948 {
9949 op0 = XEXP (op0, 0);
9950 op1 = tem;
9951 continue;
9952 }
9953
9954 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9955 a particular bit. Convert it to an AND of a constant of that
9956 bit. This will be converted into a ZERO_EXTRACT. */
9957 if (const_op == 0 && sign_bit_comparison_p
9958 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9959 && mode_width <= HOST_BITS_PER_WIDE_INT)
9960 {
9961 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9962 ((HOST_WIDE_INT) 1
9963 << (mode_width - 1
9964 - INTVAL (XEXP (op0, 1)))));
9965 code = (code == LT ? NE : EQ);
9966 continue;
9967 }
9968
9969 /* Fall through. */
9970
9971 case ABS:
9972 /* ABS is ignorable inside an equality comparison with zero. */
9973 if (const_op == 0 && equality_comparison_p)
9974 {
9975 op0 = XEXP (op0, 0);
9976 continue;
9977 }
9978 break;
9979
9980 case SIGN_EXTEND:
9981 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9982 to (compare FOO CONST) if CONST fits in FOO's mode and we
9983 are either testing inequality or have an unsigned comparison
9984 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9985 if (! unsigned_comparison_p
9986 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9987 <= HOST_BITS_PER_WIDE_INT)
9988 && ((unsigned HOST_WIDE_INT) const_op
9989 < (((unsigned HOST_WIDE_INT) 1
9990 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9991 {
9992 op0 = XEXP (op0, 0);
9993 continue;
9994 }
9995 break;
9996
9997 case SUBREG:
9998 /* Check for the case where we are comparing A - C1 with C2,
9999 both constants are smaller than 1/2 the maximum positive
10000 value in MODE, and the comparison is equality or unsigned.
10001 In that case, if A is either zero-extended to MODE or has
10002 sufficient sign bits so that the high-order bit in MODE
10003 is a copy of the sign in the inner mode, we can prove that it is
10004 safe to do the operation in the wider mode. This simplifies
10005 many range checks. */
10006
10007 if (mode_width <= HOST_BITS_PER_WIDE_INT
10008 && subreg_lowpart_p (op0)
10009 && GET_CODE (SUBREG_REG (op0)) == PLUS
10010 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10011 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10012 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10013 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10014 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10015 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10016 GET_MODE (SUBREG_REG (op0)))
10017 & ~GET_MODE_MASK (mode))
10018 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10019 GET_MODE (SUBREG_REG (op0)))
10020 > (unsigned int)
10021 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10022 - GET_MODE_BITSIZE (mode)))))
10023 {
10024 op0 = SUBREG_REG (op0);
10025 continue;
10026 }
10027
10028 /* If the inner mode is narrower and we are extracting the low part,
10029 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10030 if (subreg_lowpart_p (op0)
10031 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10032 /* Fall through */ ;
10033 else
10034 break;
10035
10036 /* ... fall through ... */
10037
10038 case ZERO_EXTEND:
10039 if ((unsigned_comparison_p || equality_comparison_p)
10040 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10041 <= HOST_BITS_PER_WIDE_INT)
10042 && ((unsigned HOST_WIDE_INT) const_op
10043 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10044 {
10045 op0 = XEXP (op0, 0);
10046 continue;
10047 }
10048 break;
10049
10050 case PLUS:
10051 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10052 this for equality comparisons due to pathological cases involving
10053 overflows. */
10054 if (equality_comparison_p
10055 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10056 op1, XEXP (op0, 1))))
10057 {
10058 op0 = XEXP (op0, 0);
10059 op1 = tem;
10060 continue;
10061 }
10062
10063 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10064 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10065 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10066 {
10067 op0 = XEXP (XEXP (op0, 0), 0);
10068 code = (code == LT ? EQ : NE);
10069 continue;
10070 }
10071 break;
10072
10073 case MINUS:
10074 /* We used to optimize signed comparisons against zero, but that
10075 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10076 arrive here as equality comparisons, or (GEU, LTU) are
10077 optimized away. No need to special-case them. */
10078
10079 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10080 (eq B (minus A C)), whichever simplifies. We can only do
10081 this for equality comparisons due to pathological cases involving
10082 overflows. */
10083 if (equality_comparison_p
10084 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10085 XEXP (op0, 1), op1)))
10086 {
10087 op0 = XEXP (op0, 0);
10088 op1 = tem;
10089 continue;
10090 }
10091
10092 if (equality_comparison_p
10093 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10094 XEXP (op0, 0), op1)))
10095 {
10096 op0 = XEXP (op0, 1);
10097 op1 = tem;
10098 continue;
10099 }
10100
10101 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10102 of bits in X minus 1, is one iff X > 0. */
10103 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10104 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10105 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10106 == mode_width - 1
10107 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10108 {
10109 op0 = XEXP (op0, 1);
10110 code = (code == GE ? LE : GT);
10111 continue;
10112 }
10113 break;
10114
10115 case XOR:
10116 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10117 if C is zero or B is a constant. */
10118 if (equality_comparison_p
10119 && 0 != (tem = simplify_binary_operation (XOR, mode,
10120 XEXP (op0, 1), op1)))
10121 {
10122 op0 = XEXP (op0, 0);
10123 op1 = tem;
10124 continue;
10125 }
10126 break;
10127
10128 case EQ: case NE:
10129 case UNEQ: case LTGT:
10130 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10131 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10132 case UNORDERED: case ORDERED:
10133 /* We can't do anything if OP0 is a condition code value, rather
10134 than an actual data value. */
10135 if (const_op != 0
10136 || CC0_P (XEXP (op0, 0))
10137 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10138 break;
10139
10140 /* Get the two operands being compared. */
10141 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10142 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10143 else
10144 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10145
10146 /* Check for the cases where we simply want the result of the
10147 earlier test or the opposite of that result. */
10148 if (code == NE || code == EQ
10149 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10150 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10151 && (STORE_FLAG_VALUE
10152 & (((HOST_WIDE_INT) 1
10153 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10154 && (code == LT || code == GE)))
10155 {
10156 enum rtx_code new_code;
10157 if (code == LT || code == NE)
10158 new_code = GET_CODE (op0);
10159 else
10160 new_code = combine_reversed_comparison_code (op0);
10161
10162 if (new_code != UNKNOWN)
10163 {
10164 code = new_code;
10165 op0 = tem;
10166 op1 = tem1;
10167 continue;
10168 }
10169 }
10170 break;
10171
10172 case IOR:
10173 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10174 iff X <= 0. */
10175 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10176 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10177 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10178 {
10179 op0 = XEXP (op0, 1);
10180 code = (code == GE ? GT : LE);
10181 continue;
10182 }
10183 break;
10184
10185 case AND:
10186 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10187 will be converted to a ZERO_EXTRACT later. */
10188 if (const_op == 0 && equality_comparison_p
10189 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10190 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10191 {
10192 op0 = simplify_and_const_int
10193 (op0, mode, gen_rtx_LSHIFTRT (mode,
10194 XEXP (op0, 1),
10195 XEXP (XEXP (op0, 0), 1)),
10196 (HOST_WIDE_INT) 1);
10197 continue;
10198 }
10199
10200 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10201 zero and X is a comparison and C1 and C2 describe only bits set
10202 in STORE_FLAG_VALUE, we can compare with X. */
10203 if (const_op == 0 && equality_comparison_p
10204 && mode_width <= HOST_BITS_PER_WIDE_INT
10205 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10206 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10207 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10208 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10209 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10210 {
10211 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10212 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10213 if ((~STORE_FLAG_VALUE & mask) == 0
10214 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10215 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10216 && COMPARISON_P (tem))))
10217 {
10218 op0 = XEXP (XEXP (op0, 0), 0);
10219 continue;
10220 }
10221 }
10222
10223 /* If we are doing an equality comparison of an AND of a bit equal
10224 to the sign bit, replace this with a LT or GE comparison of
10225 the underlying value. */
10226 if (equality_comparison_p
10227 && const_op == 0
10228 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10229 && mode_width <= HOST_BITS_PER_WIDE_INT
10230 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10231 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10232 {
10233 op0 = XEXP (op0, 0);
10234 code = (code == EQ ? GE : LT);
10235 continue;
10236 }
10237
10238 /* If this AND operation is really a ZERO_EXTEND from a narrower
10239 mode, the constant fits within that mode, and this is either an
10240 equality or unsigned comparison, try to do this comparison in
10241 the narrower mode. */
10242 if ((equality_comparison_p || unsigned_comparison_p)
10243 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10244 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10245 & GET_MODE_MASK (mode))
10246 + 1)) >= 0
10247 && const_op >> i == 0
10248 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10249 {
10250 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10251 continue;
10252 }
10253
10254 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10255 fits in both M1 and M2 and the SUBREG is either paradoxical
10256 or represents the low part, permute the SUBREG and the AND
10257 and try again. */
10258 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10259 {
10260 unsigned HOST_WIDE_INT c1;
10261 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10262 /* Require an integral mode, to avoid creating something like
10263 (AND:SF ...). */
10264 if (SCALAR_INT_MODE_P (tmode)
10265 /* It is unsafe to commute the AND into the SUBREG if the
10266 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10267 not defined. As originally written the upper bits
10268 have a defined value due to the AND operation.
10269 However, if we commute the AND inside the SUBREG then
10270 they no longer have defined values and the meaning of
10271 the code has been changed. */
10272 && (0
10273 #ifdef WORD_REGISTER_OPERATIONS
10274 || (mode_width > GET_MODE_BITSIZE (tmode)
10275 && mode_width <= BITS_PER_WORD)
10276 #endif
10277 || (mode_width <= GET_MODE_BITSIZE (tmode)
10278 && subreg_lowpart_p (XEXP (op0, 0))))
10279 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10280 && mode_width <= HOST_BITS_PER_WIDE_INT
10281 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10282 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10283 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10284 && c1 != mask
10285 && c1 != GET_MODE_MASK (tmode))
10286 {
10287 op0 = gen_binary (AND, tmode,
10288 SUBREG_REG (XEXP (op0, 0)),
10289 gen_int_mode (c1, tmode));
10290 op0 = gen_lowpart (mode, op0);
10291 continue;
10292 }
10293 }
10294
10295 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10296 if (const_op == 0 && equality_comparison_p
10297 && XEXP (op0, 1) == const1_rtx
10298 && GET_CODE (XEXP (op0, 0)) == NOT)
10299 {
10300 op0 = simplify_and_const_int
10301 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10302 code = (code == NE ? EQ : NE);
10303 continue;
10304 }
10305
10306 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10307 (eq (and (lshiftrt X) 1) 0).
10308 Also handle the case where (not X) is expressed using xor. */
10309 if (const_op == 0 && equality_comparison_p
10310 && XEXP (op0, 1) == const1_rtx
10311 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10312 {
10313 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10314 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10315
10316 if (GET_CODE (shift_op) == NOT
10317 || (GET_CODE (shift_op) == XOR
10318 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10319 && GET_CODE (shift_count) == CONST_INT
10320 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10321 && (INTVAL (XEXP (shift_op, 1))
10322 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10323 {
10324 op0 = simplify_and_const_int
10325 (NULL_RTX, mode,
10326 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10327 (HOST_WIDE_INT) 1);
10328 code = (code == NE ? EQ : NE);
10329 continue;
10330 }
10331 }
10332 break;
10333
10334 case ASHIFT:
10335 /* If we have (compare (ashift FOO N) (const_int C)) and
10336 the high order N bits of FOO (N+1 if an inequality comparison)
10337 are known to be zero, we can do this by comparing FOO with C
10338 shifted right N bits so long as the low-order N bits of C are
10339 zero. */
10340 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10341 && INTVAL (XEXP (op0, 1)) >= 0
10342 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10343 < HOST_BITS_PER_WIDE_INT)
10344 && ((const_op
10345 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10346 && mode_width <= HOST_BITS_PER_WIDE_INT
10347 && (nonzero_bits (XEXP (op0, 0), mode)
10348 & ~(mask >> (INTVAL (XEXP (op0, 1))
10349 + ! equality_comparison_p))) == 0)
10350 {
10351 /* We must perform a logical shift, not an arithmetic one,
10352 as we want the top N bits of C to be zero. */
10353 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10354
10355 temp >>= INTVAL (XEXP (op0, 1));
10356 op1 = gen_int_mode (temp, mode);
10357 op0 = XEXP (op0, 0);
10358 continue;
10359 }
10360
10361 /* If we are doing a sign bit comparison, it means we are testing
10362 a particular bit. Convert it to the appropriate AND. */
10363 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10364 && mode_width <= HOST_BITS_PER_WIDE_INT)
10365 {
10366 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10367 ((HOST_WIDE_INT) 1
10368 << (mode_width - 1
10369 - INTVAL (XEXP (op0, 1)))));
10370 code = (code == LT ? NE : EQ);
10371 continue;
10372 }
10373
10374 /* If this an equality comparison with zero and we are shifting
10375 the low bit to the sign bit, we can convert this to an AND of the
10376 low-order bit. */
10377 if (const_op == 0 && equality_comparison_p
10378 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10379 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10380 == mode_width - 1)
10381 {
10382 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10383 (HOST_WIDE_INT) 1);
10384 continue;
10385 }
10386 break;
10387
10388 case ASHIFTRT:
10389 /* If this is an equality comparison with zero, we can do this
10390 as a logical shift, which might be much simpler. */
10391 if (equality_comparison_p && const_op == 0
10392 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10393 {
10394 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10395 XEXP (op0, 0),
10396 INTVAL (XEXP (op0, 1)));
10397 continue;
10398 }
10399
10400 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10401 do the comparison in a narrower mode. */
10402 if (! unsigned_comparison_p
10403 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10404 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10405 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10406 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10407 MODE_INT, 1)) != BLKmode
10408 && (((unsigned HOST_WIDE_INT) const_op
10409 + (GET_MODE_MASK (tmode) >> 1) + 1)
10410 <= GET_MODE_MASK (tmode)))
10411 {
10412 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10413 continue;
10414 }
10415
10416 /* Likewise if OP0 is a PLUS of a sign extension with a
10417 constant, which is usually represented with the PLUS
10418 between the shifts. */
10419 if (! unsigned_comparison_p
10420 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10421 && GET_CODE (XEXP (op0, 0)) == PLUS
10422 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10423 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10424 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10425 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10426 MODE_INT, 1)) != BLKmode
10427 && (((unsigned HOST_WIDE_INT) const_op
10428 + (GET_MODE_MASK (tmode) >> 1) + 1)
10429 <= GET_MODE_MASK (tmode)))
10430 {
10431 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10432 rtx add_const = XEXP (XEXP (op0, 0), 1);
10433 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10434 XEXP (op0, 1));
10435
10436 op0 = gen_binary (PLUS, tmode,
10437 gen_lowpart (tmode, inner),
10438 new_const);
10439 continue;
10440 }
10441
10442 /* ... fall through ... */
10443 case LSHIFTRT:
10444 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10445 the low order N bits of FOO are known to be zero, we can do this
10446 by comparing FOO with C shifted left N bits so long as no
10447 overflow occurs. */
10448 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10449 && INTVAL (XEXP (op0, 1)) >= 0
10450 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10451 && mode_width <= HOST_BITS_PER_WIDE_INT
10452 && (nonzero_bits (XEXP (op0, 0), mode)
10453 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10454 && (((unsigned HOST_WIDE_INT) const_op
10455 + (GET_CODE (op0) != LSHIFTRT
10456 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10457 + 1)
10458 : 0))
10459 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10460 {
10461 /* If the shift was logical, then we must make the condition
10462 unsigned. */
10463 if (GET_CODE (op0) == LSHIFTRT)
10464 code = unsigned_condition (code);
10465
10466 const_op <<= INTVAL (XEXP (op0, 1));
10467 op1 = GEN_INT (const_op);
10468 op0 = XEXP (op0, 0);
10469 continue;
10470 }
10471
10472 /* If we are using this shift to extract just the sign bit, we
10473 can replace this with an LT or GE comparison. */
10474 if (const_op == 0
10475 && (equality_comparison_p || sign_bit_comparison_p)
10476 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10477 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10478 == mode_width - 1)
10479 {
10480 op0 = XEXP (op0, 0);
10481 code = (code == NE || code == GT ? LT : GE);
10482 continue;
10483 }
10484 break;
10485
10486 default:
10487 break;
10488 }
10489
10490 break;
10491 }
10492
10493 /* Now make any compound operations involved in this comparison. Then,
10494 check for an outmost SUBREG on OP0 that is not doing anything or is
10495 paradoxical. The latter transformation must only be performed when
10496 it is known that the "extra" bits will be the same in op0 and op1 or
10497 that they don't matter. There are three cases to consider:
10498
10499 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10500 care bits and we can assume they have any convenient value. So
10501 making the transformation is safe.
10502
10503 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10504 In this case the upper bits of op0 are undefined. We should not make
10505 the simplification in that case as we do not know the contents of
10506 those bits.
10507
10508 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10509 UNKNOWN. In that case we know those bits are zeros or ones. We must
10510 also be sure that they are the same as the upper bits of op1.
10511
10512 We can never remove a SUBREG for a non-equality comparison because
10513 the sign bit is in a different place in the underlying object. */
10514
10515 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10516 op1 = make_compound_operation (op1, SET);
10517
10518 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10519 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10520 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10521 && (code == NE || code == EQ))
10522 {
10523 if (GET_MODE_SIZE (GET_MODE (op0))
10524 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10525 {
10526 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10527 implemented. */
10528 if (REG_P (SUBREG_REG (op0)))
10529 {
10530 op0 = SUBREG_REG (op0);
10531 op1 = gen_lowpart (GET_MODE (op0), op1);
10532 }
10533 }
10534 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10535 <= HOST_BITS_PER_WIDE_INT)
10536 && (nonzero_bits (SUBREG_REG (op0),
10537 GET_MODE (SUBREG_REG (op0)))
10538 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10539 {
10540 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10541
10542 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10543 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10544 op0 = SUBREG_REG (op0), op1 = tem;
10545 }
10546 }
10547
10548 /* We now do the opposite procedure: Some machines don't have compare
10549 insns in all modes. If OP0's mode is an integer mode smaller than a
10550 word and we can't do a compare in that mode, see if there is a larger
10551 mode for which we can do the compare. There are a number of cases in
10552 which we can use the wider mode. */
10553
10554 mode = GET_MODE (op0);
10555 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10556 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10557 && ! have_insn_for (COMPARE, mode))
10558 for (tmode = GET_MODE_WIDER_MODE (mode);
10559 (tmode != VOIDmode
10560 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10561 tmode = GET_MODE_WIDER_MODE (tmode))
10562 if (have_insn_for (COMPARE, tmode))
10563 {
10564 int zero_extended;
10565
10566 /* If the only nonzero bits in OP0 and OP1 are those in the
10567 narrower mode and this is an equality or unsigned comparison,
10568 we can use the wider mode. Similarly for sign-extended
10569 values, in which case it is true for all comparisons. */
10570 zero_extended = ((code == EQ || code == NE
10571 || code == GEU || code == GTU
10572 || code == LEU || code == LTU)
10573 && (nonzero_bits (op0, tmode)
10574 & ~GET_MODE_MASK (mode)) == 0
10575 && ((GET_CODE (op1) == CONST_INT
10576 || (nonzero_bits (op1, tmode)
10577 & ~GET_MODE_MASK (mode)) == 0)));
10578
10579 if (zero_extended
10580 || ((num_sign_bit_copies (op0, tmode)
10581 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10582 - GET_MODE_BITSIZE (mode)))
10583 && (num_sign_bit_copies (op1, tmode)
10584 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10585 - GET_MODE_BITSIZE (mode)))))
10586 {
10587 /* If OP0 is an AND and we don't have an AND in MODE either,
10588 make a new AND in the proper mode. */
10589 if (GET_CODE (op0) == AND
10590 && !have_insn_for (AND, mode))
10591 op0 = gen_binary (AND, tmode,
10592 gen_lowpart (tmode,
10593 XEXP (op0, 0)),
10594 gen_lowpart (tmode,
10595 XEXP (op0, 1)));
10596
10597 op0 = gen_lowpart (tmode, op0);
10598 if (zero_extended && GET_CODE (op1) == CONST_INT)
10599 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10600 op1 = gen_lowpart (tmode, op1);
10601 break;
10602 }
10603
10604 /* If this is a test for negative, we can make an explicit
10605 test of the sign bit. */
10606
10607 if (op1 == const0_rtx && (code == LT || code == GE)
10608 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10609 {
10610 op0 = gen_binary (AND, tmode,
10611 gen_lowpart (tmode, op0),
10612 GEN_INT ((HOST_WIDE_INT) 1
10613 << (GET_MODE_BITSIZE (mode) - 1)));
10614 code = (code == LT) ? NE : EQ;
10615 break;
10616 }
10617 }
10618
10619 #ifdef CANONICALIZE_COMPARISON
10620 /* If this machine only supports a subset of valid comparisons, see if we
10621 can convert an unsupported one into a supported one. */
10622 CANONICALIZE_COMPARISON (code, op0, op1);
10623 #endif
10624
10625 *pop0 = op0;
10626 *pop1 = op1;
10627
10628 return code;
10629 }
10630 \f
10631 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10632 searching backward. */
10633 static enum rtx_code
10634 combine_reversed_comparison_code (rtx exp)
10635 {
10636 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10637 rtx x;
10638
10639 if (code1 != UNKNOWN
10640 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10641 return code1;
10642 /* Otherwise try and find where the condition codes were last set and
10643 use that. */
10644 x = get_last_value (XEXP (exp, 0));
10645 if (!x || GET_CODE (x) != COMPARE)
10646 return UNKNOWN;
10647 return reversed_comparison_code_parts (GET_CODE (exp),
10648 XEXP (x, 0), XEXP (x, 1), NULL);
10649 }
10650
10651 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10652 Return NULL_RTX in case we fail to do the reversal. */
10653 static rtx
10654 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10655 {
10656 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10657 if (reversed_code == UNKNOWN)
10658 return NULL_RTX;
10659 else
10660 return gen_binary (reversed_code, mode, op0, op1);
10661 }
10662 \f
10663 /* Utility function for following routine. Called when X is part of a value
10664 being stored into last_set_value. Sets last_set_table_tick
10665 for each register mentioned. Similar to mention_regs in cse.c */
10666
10667 static void
10668 update_table_tick (rtx x)
10669 {
10670 enum rtx_code code = GET_CODE (x);
10671 const char *fmt = GET_RTX_FORMAT (code);
10672 int i;
10673
10674 if (code == REG)
10675 {
10676 unsigned int regno = REGNO (x);
10677 unsigned int endregno
10678 = regno + (regno < FIRST_PSEUDO_REGISTER
10679 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10680 unsigned int r;
10681
10682 for (r = regno; r < endregno; r++)
10683 reg_stat[r].last_set_table_tick = label_tick;
10684
10685 return;
10686 }
10687
10688 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10689 /* Note that we can't have an "E" in values stored; see
10690 get_last_value_validate. */
10691 if (fmt[i] == 'e')
10692 {
10693 /* Check for identical subexpressions. If x contains
10694 identical subexpression we only have to traverse one of
10695 them. */
10696 if (i == 0 && ARITHMETIC_P (x))
10697 {
10698 /* Note that at this point x1 has already been
10699 processed. */
10700 rtx x0 = XEXP (x, 0);
10701 rtx x1 = XEXP (x, 1);
10702
10703 /* If x0 and x1 are identical then there is no need to
10704 process x0. */
10705 if (x0 == x1)
10706 break;
10707
10708 /* If x0 is identical to a subexpression of x1 then while
10709 processing x1, x0 has already been processed. Thus we
10710 are done with x. */
10711 if (ARITHMETIC_P (x1)
10712 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10713 break;
10714
10715 /* If x1 is identical to a subexpression of x0 then we
10716 still have to process the rest of x0. */
10717 if (ARITHMETIC_P (x0)
10718 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10719 {
10720 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10721 break;
10722 }
10723 }
10724
10725 update_table_tick (XEXP (x, i));
10726 }
10727 }
10728
10729 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10730 are saying that the register is clobbered and we no longer know its
10731 value. If INSN is zero, don't update reg_stat[].last_set; this is
10732 only permitted with VALUE also zero and is used to invalidate the
10733 register. */
10734
10735 static void
10736 record_value_for_reg (rtx reg, rtx insn, rtx value)
10737 {
10738 unsigned int regno = REGNO (reg);
10739 unsigned int endregno
10740 = regno + (regno < FIRST_PSEUDO_REGISTER
10741 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10742 unsigned int i;
10743
10744 /* If VALUE contains REG and we have a previous value for REG, substitute
10745 the previous value. */
10746 if (value && insn && reg_overlap_mentioned_p (reg, value))
10747 {
10748 rtx tem;
10749
10750 /* Set things up so get_last_value is allowed to see anything set up to
10751 our insn. */
10752 subst_low_cuid = INSN_CUID (insn);
10753 tem = get_last_value (reg);
10754
10755 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10756 it isn't going to be useful and will take a lot of time to process,
10757 so just use the CLOBBER. */
10758
10759 if (tem)
10760 {
10761 if (ARITHMETIC_P (tem)
10762 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10763 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10764 tem = XEXP (tem, 0);
10765
10766 value = replace_rtx (copy_rtx (value), reg, tem);
10767 }
10768 }
10769
10770 /* For each register modified, show we don't know its value, that
10771 we don't know about its bitwise content, that its value has been
10772 updated, and that we don't know the location of the death of the
10773 register. */
10774 for (i = regno; i < endregno; i++)
10775 {
10776 if (insn)
10777 reg_stat[i].last_set = insn;
10778
10779 reg_stat[i].last_set_value = 0;
10780 reg_stat[i].last_set_mode = 0;
10781 reg_stat[i].last_set_nonzero_bits = 0;
10782 reg_stat[i].last_set_sign_bit_copies = 0;
10783 reg_stat[i].last_death = 0;
10784 }
10785
10786 /* Mark registers that are being referenced in this value. */
10787 if (value)
10788 update_table_tick (value);
10789
10790 /* Now update the status of each register being set.
10791 If someone is using this register in this block, set this register
10792 to invalid since we will get confused between the two lives in this
10793 basic block. This makes using this register always invalid. In cse, we
10794 scan the table to invalidate all entries using this register, but this
10795 is too much work for us. */
10796
10797 for (i = regno; i < endregno; i++)
10798 {
10799 reg_stat[i].last_set_label = label_tick;
10800 if (value && reg_stat[i].last_set_table_tick == label_tick)
10801 reg_stat[i].last_set_invalid = 1;
10802 else
10803 reg_stat[i].last_set_invalid = 0;
10804 }
10805
10806 /* The value being assigned might refer to X (like in "x++;"). In that
10807 case, we must replace it with (clobber (const_int 0)) to prevent
10808 infinite loops. */
10809 if (value && ! get_last_value_validate (&value, insn,
10810 reg_stat[regno].last_set_label, 0))
10811 {
10812 value = copy_rtx (value);
10813 if (! get_last_value_validate (&value, insn,
10814 reg_stat[regno].last_set_label, 1))
10815 value = 0;
10816 }
10817
10818 /* For the main register being modified, update the value, the mode, the
10819 nonzero bits, and the number of sign bit copies. */
10820
10821 reg_stat[regno].last_set_value = value;
10822
10823 if (value)
10824 {
10825 enum machine_mode mode = GET_MODE (reg);
10826 subst_low_cuid = INSN_CUID (insn);
10827 reg_stat[regno].last_set_mode = mode;
10828 if (GET_MODE_CLASS (mode) == MODE_INT
10829 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10830 mode = nonzero_bits_mode;
10831 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10832 reg_stat[regno].last_set_sign_bit_copies
10833 = num_sign_bit_copies (value, GET_MODE (reg));
10834 }
10835 }
10836
10837 /* Called via note_stores from record_dead_and_set_regs to handle one
10838 SET or CLOBBER in an insn. DATA is the instruction in which the
10839 set is occurring. */
10840
10841 static void
10842 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10843 {
10844 rtx record_dead_insn = (rtx) data;
10845
10846 if (GET_CODE (dest) == SUBREG)
10847 dest = SUBREG_REG (dest);
10848
10849 if (REG_P (dest))
10850 {
10851 /* If we are setting the whole register, we know its value. Otherwise
10852 show that we don't know the value. We can handle SUBREG in
10853 some cases. */
10854 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10855 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10856 else if (GET_CODE (setter) == SET
10857 && GET_CODE (SET_DEST (setter)) == SUBREG
10858 && SUBREG_REG (SET_DEST (setter)) == dest
10859 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10860 && subreg_lowpart_p (SET_DEST (setter)))
10861 record_value_for_reg (dest, record_dead_insn,
10862 gen_lowpart (GET_MODE (dest),
10863 SET_SRC (setter)));
10864 else
10865 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10866 }
10867 else if (MEM_P (dest)
10868 /* Ignore pushes, they clobber nothing. */
10869 && ! push_operand (dest, GET_MODE (dest)))
10870 mem_last_set = INSN_CUID (record_dead_insn);
10871 }
10872
10873 /* Update the records of when each REG was most recently set or killed
10874 for the things done by INSN. This is the last thing done in processing
10875 INSN in the combiner loop.
10876
10877 We update reg_stat[], in particular fields last_set, last_set_value,
10878 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10879 last_death, and also the similar information mem_last_set (which insn
10880 most recently modified memory) and last_call_cuid (which insn was the
10881 most recent subroutine call). */
10882
10883 static void
10884 record_dead_and_set_regs (rtx insn)
10885 {
10886 rtx link;
10887 unsigned int i;
10888
10889 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10890 {
10891 if (REG_NOTE_KIND (link) == REG_DEAD
10892 && REG_P (XEXP (link, 0)))
10893 {
10894 unsigned int regno = REGNO (XEXP (link, 0));
10895 unsigned int endregno
10896 = regno + (regno < FIRST_PSEUDO_REGISTER
10897 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10898 : 1);
10899
10900 for (i = regno; i < endregno; i++)
10901 reg_stat[i].last_death = insn;
10902 }
10903 else if (REG_NOTE_KIND (link) == REG_INC)
10904 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10905 }
10906
10907 if (CALL_P (insn))
10908 {
10909 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10910 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
10911 {
10912 reg_stat[i].last_set_value = 0;
10913 reg_stat[i].last_set_mode = 0;
10914 reg_stat[i].last_set_nonzero_bits = 0;
10915 reg_stat[i].last_set_sign_bit_copies = 0;
10916 reg_stat[i].last_death = 0;
10917 }
10918
10919 last_call_cuid = mem_last_set = INSN_CUID (insn);
10920
10921 /* Don't bother recording what this insn does. It might set the
10922 return value register, but we can't combine into a call
10923 pattern anyway, so there's no point trying (and it may cause
10924 a crash, if e.g. we wind up asking for last_set_value of a
10925 SUBREG of the return value register). */
10926 return;
10927 }
10928
10929 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
10930 }
10931
10932 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10933 register present in the SUBREG, so for each such SUBREG go back and
10934 adjust nonzero and sign bit information of the registers that are
10935 known to have some zero/sign bits set.
10936
10937 This is needed because when combine blows the SUBREGs away, the
10938 information on zero/sign bits is lost and further combines can be
10939 missed because of that. */
10940
10941 static void
10942 record_promoted_value (rtx insn, rtx subreg)
10943 {
10944 rtx links, set;
10945 unsigned int regno = REGNO (SUBREG_REG (subreg));
10946 enum machine_mode mode = GET_MODE (subreg);
10947
10948 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
10949 return;
10950
10951 for (links = LOG_LINKS (insn); links;)
10952 {
10953 insn = XEXP (links, 0);
10954 set = single_set (insn);
10955
10956 if (! set || !REG_P (SET_DEST (set))
10957 || REGNO (SET_DEST (set)) != regno
10958 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
10959 {
10960 links = XEXP (links, 1);
10961 continue;
10962 }
10963
10964 if (reg_stat[regno].last_set == insn)
10965 {
10966 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
10967 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
10968 }
10969
10970 if (REG_P (SET_SRC (set)))
10971 {
10972 regno = REGNO (SET_SRC (set));
10973 links = LOG_LINKS (insn);
10974 }
10975 else
10976 break;
10977 }
10978 }
10979
10980 /* Scan X for promoted SUBREGs. For each one found,
10981 note what it implies to the registers used in it. */
10982
10983 static void
10984 check_promoted_subreg (rtx insn, rtx x)
10985 {
10986 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
10987 && REG_P (SUBREG_REG (x)))
10988 record_promoted_value (insn, x);
10989 else
10990 {
10991 const char *format = GET_RTX_FORMAT (GET_CODE (x));
10992 int i, j;
10993
10994 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
10995 switch (format[i])
10996 {
10997 case 'e':
10998 check_promoted_subreg (insn, XEXP (x, i));
10999 break;
11000 case 'V':
11001 case 'E':
11002 if (XVEC (x, i) != 0)
11003 for (j = 0; j < XVECLEN (x, i); j++)
11004 check_promoted_subreg (insn, XVECEXP (x, i, j));
11005 break;
11006 }
11007 }
11008 }
11009 \f
11010 /* Utility routine for the following function. Verify that all the registers
11011 mentioned in *LOC are valid when *LOC was part of a value set when
11012 label_tick == TICK. Return 0 if some are not.
11013
11014 If REPLACE is nonzero, replace the invalid reference with
11015 (clobber (const_int 0)) and return 1. This replacement is useful because
11016 we often can get useful information about the form of a value (e.g., if
11017 it was produced by a shift that always produces -1 or 0) even though
11018 we don't know exactly what registers it was produced from. */
11019
11020 static int
11021 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11022 {
11023 rtx x = *loc;
11024 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11025 int len = GET_RTX_LENGTH (GET_CODE (x));
11026 int i;
11027
11028 if (REG_P (x))
11029 {
11030 unsigned int regno = REGNO (x);
11031 unsigned int endregno
11032 = regno + (regno < FIRST_PSEUDO_REGISTER
11033 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11034 unsigned int j;
11035
11036 for (j = regno; j < endregno; j++)
11037 if (reg_stat[j].last_set_invalid
11038 /* If this is a pseudo-register that was only set once and not
11039 live at the beginning of the function, it is always valid. */
11040 || (! (regno >= FIRST_PSEUDO_REGISTER
11041 && REG_N_SETS (regno) == 1
11042 && (! REGNO_REG_SET_P
11043 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11044 && reg_stat[j].last_set_label > tick))
11045 {
11046 if (replace)
11047 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11048 return replace;
11049 }
11050
11051 return 1;
11052 }
11053 /* If this is a memory reference, make sure that there were
11054 no stores after it that might have clobbered the value. We don't
11055 have alias info, so we assume any store invalidates it. */
11056 else if (MEM_P (x) && !MEM_READONLY_P (x)
11057 && INSN_CUID (insn) <= mem_last_set)
11058 {
11059 if (replace)
11060 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11061 return replace;
11062 }
11063
11064 for (i = 0; i < len; i++)
11065 {
11066 if (fmt[i] == 'e')
11067 {
11068 /* Check for identical subexpressions. If x contains
11069 identical subexpression we only have to traverse one of
11070 them. */
11071 if (i == 1 && ARITHMETIC_P (x))
11072 {
11073 /* Note that at this point x0 has already been checked
11074 and found valid. */
11075 rtx x0 = XEXP (x, 0);
11076 rtx x1 = XEXP (x, 1);
11077
11078 /* If x0 and x1 are identical then x is also valid. */
11079 if (x0 == x1)
11080 return 1;
11081
11082 /* If x1 is identical to a subexpression of x0 then
11083 while checking x0, x1 has already been checked. Thus
11084 it is valid and so as x. */
11085 if (ARITHMETIC_P (x0)
11086 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11087 return 1;
11088
11089 /* If x0 is identical to a subexpression of x1 then x is
11090 valid iff the rest of x1 is valid. */
11091 if (ARITHMETIC_P (x1)
11092 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11093 return
11094 get_last_value_validate (&XEXP (x1,
11095 x0 == XEXP (x1, 0) ? 1 : 0),
11096 insn, tick, replace);
11097 }
11098
11099 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11100 replace) == 0)
11101 return 0;
11102 }
11103 /* Don't bother with these. They shouldn't occur anyway. */
11104 else if (fmt[i] == 'E')
11105 return 0;
11106 }
11107
11108 /* If we haven't found a reason for it to be invalid, it is valid. */
11109 return 1;
11110 }
11111
11112 /* Get the last value assigned to X, if known. Some registers
11113 in the value may be replaced with (clobber (const_int 0)) if their value
11114 is known longer known reliably. */
11115
11116 static rtx
11117 get_last_value (rtx x)
11118 {
11119 unsigned int regno;
11120 rtx value;
11121
11122 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11123 then convert it to the desired mode. If this is a paradoxical SUBREG,
11124 we cannot predict what values the "extra" bits might have. */
11125 if (GET_CODE (x) == SUBREG
11126 && subreg_lowpart_p (x)
11127 && (GET_MODE_SIZE (GET_MODE (x))
11128 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11129 && (value = get_last_value (SUBREG_REG (x))) != 0)
11130 return gen_lowpart (GET_MODE (x), value);
11131
11132 if (!REG_P (x))
11133 return 0;
11134
11135 regno = REGNO (x);
11136 value = reg_stat[regno].last_set_value;
11137
11138 /* If we don't have a value, or if it isn't for this basic block and
11139 it's either a hard register, set more than once, or it's a live
11140 at the beginning of the function, return 0.
11141
11142 Because if it's not live at the beginning of the function then the reg
11143 is always set before being used (is never used without being set).
11144 And, if it's set only once, and it's always set before use, then all
11145 uses must have the same last value, even if it's not from this basic
11146 block. */
11147
11148 if (value == 0
11149 || (reg_stat[regno].last_set_label != label_tick
11150 && (regno < FIRST_PSEUDO_REGISTER
11151 || REG_N_SETS (regno) != 1
11152 || (REGNO_REG_SET_P
11153 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11154 return 0;
11155
11156 /* If the value was set in a later insn than the ones we are processing,
11157 we can't use it even if the register was only set once. */
11158 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11159 return 0;
11160
11161 /* If the value has all its registers valid, return it. */
11162 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11163 reg_stat[regno].last_set_label, 0))
11164 return value;
11165
11166 /* Otherwise, make a copy and replace any invalid register with
11167 (clobber (const_int 0)). If that fails for some reason, return 0. */
11168
11169 value = copy_rtx (value);
11170 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11171 reg_stat[regno].last_set_label, 1))
11172 return value;
11173
11174 return 0;
11175 }
11176 \f
11177 /* Return nonzero if expression X refers to a REG or to memory
11178 that is set in an instruction more recent than FROM_CUID. */
11179
11180 static int
11181 use_crosses_set_p (rtx x, int from_cuid)
11182 {
11183 const char *fmt;
11184 int i;
11185 enum rtx_code code = GET_CODE (x);
11186
11187 if (code == REG)
11188 {
11189 unsigned int regno = REGNO (x);
11190 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11191 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11192
11193 #ifdef PUSH_ROUNDING
11194 /* Don't allow uses of the stack pointer to be moved,
11195 because we don't know whether the move crosses a push insn. */
11196 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11197 return 1;
11198 #endif
11199 for (; regno < endreg; regno++)
11200 if (reg_stat[regno].last_set
11201 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11202 return 1;
11203 return 0;
11204 }
11205
11206 if (code == MEM && mem_last_set > from_cuid)
11207 return 1;
11208
11209 fmt = GET_RTX_FORMAT (code);
11210
11211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11212 {
11213 if (fmt[i] == 'E')
11214 {
11215 int j;
11216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11217 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11218 return 1;
11219 }
11220 else if (fmt[i] == 'e'
11221 && use_crosses_set_p (XEXP (x, i), from_cuid))
11222 return 1;
11223 }
11224 return 0;
11225 }
11226 \f
11227 /* Define three variables used for communication between the following
11228 routines. */
11229
11230 static unsigned int reg_dead_regno, reg_dead_endregno;
11231 static int reg_dead_flag;
11232
11233 /* Function called via note_stores from reg_dead_at_p.
11234
11235 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11236 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11237
11238 static void
11239 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11240 {
11241 unsigned int regno, endregno;
11242
11243 if (!REG_P (dest))
11244 return;
11245
11246 regno = REGNO (dest);
11247 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11248 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11249
11250 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11251 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11252 }
11253
11254 /* Return nonzero if REG is known to be dead at INSN.
11255
11256 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11257 referencing REG, it is dead. If we hit a SET referencing REG, it is
11258 live. Otherwise, see if it is live or dead at the start of the basic
11259 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11260 must be assumed to be always live. */
11261
11262 static int
11263 reg_dead_at_p (rtx reg, rtx insn)
11264 {
11265 basic_block block;
11266 unsigned int i;
11267
11268 /* Set variables for reg_dead_at_p_1. */
11269 reg_dead_regno = REGNO (reg);
11270 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11271 ? hard_regno_nregs[reg_dead_regno]
11272 [GET_MODE (reg)]
11273 : 1);
11274
11275 reg_dead_flag = 0;
11276
11277 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11278 we allow the machine description to decide whether use-and-clobber
11279 patterns are OK. */
11280 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11281 {
11282 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11283 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11284 return 0;
11285 }
11286
11287 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11288 beginning of function. */
11289 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11290 insn = prev_nonnote_insn (insn))
11291 {
11292 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11293 if (reg_dead_flag)
11294 return reg_dead_flag == 1 ? 1 : 0;
11295
11296 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11297 return 1;
11298 }
11299
11300 /* Get the basic block that we were in. */
11301 if (insn == 0)
11302 block = ENTRY_BLOCK_PTR->next_bb;
11303 else
11304 {
11305 FOR_EACH_BB (block)
11306 if (insn == BB_HEAD (block))
11307 break;
11308
11309 if (block == EXIT_BLOCK_PTR)
11310 return 0;
11311 }
11312
11313 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11314 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11315 return 0;
11316
11317 return 1;
11318 }
11319 \f
11320 /* Note hard registers in X that are used. This code is similar to
11321 that in flow.c, but much simpler since we don't care about pseudos. */
11322
11323 static void
11324 mark_used_regs_combine (rtx x)
11325 {
11326 RTX_CODE code = GET_CODE (x);
11327 unsigned int regno;
11328 int i;
11329
11330 switch (code)
11331 {
11332 case LABEL_REF:
11333 case SYMBOL_REF:
11334 case CONST_INT:
11335 case CONST:
11336 case CONST_DOUBLE:
11337 case CONST_VECTOR:
11338 case PC:
11339 case ADDR_VEC:
11340 case ADDR_DIFF_VEC:
11341 case ASM_INPUT:
11342 #ifdef HAVE_cc0
11343 /* CC0 must die in the insn after it is set, so we don't need to take
11344 special note of it here. */
11345 case CC0:
11346 #endif
11347 return;
11348
11349 case CLOBBER:
11350 /* If we are clobbering a MEM, mark any hard registers inside the
11351 address as used. */
11352 if (MEM_P (XEXP (x, 0)))
11353 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11354 return;
11355
11356 case REG:
11357 regno = REGNO (x);
11358 /* A hard reg in a wide mode may really be multiple registers.
11359 If so, mark all of them just like the first. */
11360 if (regno < FIRST_PSEUDO_REGISTER)
11361 {
11362 unsigned int endregno, r;
11363
11364 /* None of this applies to the stack, frame or arg pointers. */
11365 if (regno == STACK_POINTER_REGNUM
11366 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11367 || regno == HARD_FRAME_POINTER_REGNUM
11368 #endif
11369 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11370 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11371 #endif
11372 || regno == FRAME_POINTER_REGNUM)
11373 return;
11374
11375 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11376 for (r = regno; r < endregno; r++)
11377 SET_HARD_REG_BIT (newpat_used_regs, r);
11378 }
11379 return;
11380
11381 case SET:
11382 {
11383 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11384 the address. */
11385 rtx testreg = SET_DEST (x);
11386
11387 while (GET_CODE (testreg) == SUBREG
11388 || GET_CODE (testreg) == ZERO_EXTRACT
11389 || GET_CODE (testreg) == SIGN_EXTRACT
11390 || GET_CODE (testreg) == STRICT_LOW_PART)
11391 testreg = XEXP (testreg, 0);
11392
11393 if (MEM_P (testreg))
11394 mark_used_regs_combine (XEXP (testreg, 0));
11395
11396 mark_used_regs_combine (SET_SRC (x));
11397 }
11398 return;
11399
11400 default:
11401 break;
11402 }
11403
11404 /* Recursively scan the operands of this expression. */
11405
11406 {
11407 const char *fmt = GET_RTX_FORMAT (code);
11408
11409 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11410 {
11411 if (fmt[i] == 'e')
11412 mark_used_regs_combine (XEXP (x, i));
11413 else if (fmt[i] == 'E')
11414 {
11415 int j;
11416
11417 for (j = 0; j < XVECLEN (x, i); j++)
11418 mark_used_regs_combine (XVECEXP (x, i, j));
11419 }
11420 }
11421 }
11422 }
11423 \f
11424 /* Remove register number REGNO from the dead registers list of INSN.
11425
11426 Return the note used to record the death, if there was one. */
11427
11428 rtx
11429 remove_death (unsigned int regno, rtx insn)
11430 {
11431 rtx note = find_regno_note (insn, REG_DEAD, regno);
11432
11433 if (note)
11434 {
11435 REG_N_DEATHS (regno)--;
11436 remove_note (insn, note);
11437 }
11438
11439 return note;
11440 }
11441
11442 /* For each register (hardware or pseudo) used within expression X, if its
11443 death is in an instruction with cuid between FROM_CUID (inclusive) and
11444 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11445 list headed by PNOTES.
11446
11447 That said, don't move registers killed by maybe_kill_insn.
11448
11449 This is done when X is being merged by combination into TO_INSN. These
11450 notes will then be distributed as needed. */
11451
11452 static void
11453 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11454 rtx *pnotes)
11455 {
11456 const char *fmt;
11457 int len, i;
11458 enum rtx_code code = GET_CODE (x);
11459
11460 if (code == REG)
11461 {
11462 unsigned int regno = REGNO (x);
11463 rtx where_dead = reg_stat[regno].last_death;
11464 rtx before_dead, after_dead;
11465
11466 /* Don't move the register if it gets killed in between from and to. */
11467 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11468 && ! reg_referenced_p (x, maybe_kill_insn))
11469 return;
11470
11471 /* WHERE_DEAD could be a USE insn made by combine, so first we
11472 make sure that we have insns with valid INSN_CUID values. */
11473 before_dead = where_dead;
11474 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11475 before_dead = PREV_INSN (before_dead);
11476
11477 after_dead = where_dead;
11478 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11479 after_dead = NEXT_INSN (after_dead);
11480
11481 if (before_dead && after_dead
11482 && INSN_CUID (before_dead) >= from_cuid
11483 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11484 || (where_dead != after_dead
11485 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11486 {
11487 rtx note = remove_death (regno, where_dead);
11488
11489 /* It is possible for the call above to return 0. This can occur
11490 when last_death points to I2 or I1 that we combined with.
11491 In that case make a new note.
11492
11493 We must also check for the case where X is a hard register
11494 and NOTE is a death note for a range of hard registers
11495 including X. In that case, we must put REG_DEAD notes for
11496 the remaining registers in place of NOTE. */
11497
11498 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11499 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11500 > GET_MODE_SIZE (GET_MODE (x))))
11501 {
11502 unsigned int deadregno = REGNO (XEXP (note, 0));
11503 unsigned int deadend
11504 = (deadregno + hard_regno_nregs[deadregno]
11505 [GET_MODE (XEXP (note, 0))]);
11506 unsigned int ourend
11507 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11508 unsigned int i;
11509
11510 for (i = deadregno; i < deadend; i++)
11511 if (i < regno || i >= ourend)
11512 REG_NOTES (where_dead)
11513 = gen_rtx_EXPR_LIST (REG_DEAD,
11514 regno_reg_rtx[i],
11515 REG_NOTES (where_dead));
11516 }
11517
11518 /* If we didn't find any note, or if we found a REG_DEAD note that
11519 covers only part of the given reg, and we have a multi-reg hard
11520 register, then to be safe we must check for REG_DEAD notes
11521 for each register other than the first. They could have
11522 their own REG_DEAD notes lying around. */
11523 else if ((note == 0
11524 || (note != 0
11525 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11526 < GET_MODE_SIZE (GET_MODE (x)))))
11527 && regno < FIRST_PSEUDO_REGISTER
11528 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11529 {
11530 unsigned int ourend
11531 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11532 unsigned int i, offset;
11533 rtx oldnotes = 0;
11534
11535 if (note)
11536 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11537 else
11538 offset = 1;
11539
11540 for (i = regno + offset; i < ourend; i++)
11541 move_deaths (regno_reg_rtx[i],
11542 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11543 }
11544
11545 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11546 {
11547 XEXP (note, 1) = *pnotes;
11548 *pnotes = note;
11549 }
11550 else
11551 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11552
11553 REG_N_DEATHS (regno)++;
11554 }
11555
11556 return;
11557 }
11558
11559 else if (GET_CODE (x) == SET)
11560 {
11561 rtx dest = SET_DEST (x);
11562
11563 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11564
11565 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11566 that accesses one word of a multi-word item, some
11567 piece of everything register in the expression is used by
11568 this insn, so remove any old death. */
11569 /* ??? So why do we test for equality of the sizes? */
11570
11571 if (GET_CODE (dest) == ZERO_EXTRACT
11572 || GET_CODE (dest) == STRICT_LOW_PART
11573 || (GET_CODE (dest) == SUBREG
11574 && (((GET_MODE_SIZE (GET_MODE (dest))
11575 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11576 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11577 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11578 {
11579 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11580 return;
11581 }
11582
11583 /* If this is some other SUBREG, we know it replaces the entire
11584 value, so use that as the destination. */
11585 if (GET_CODE (dest) == SUBREG)
11586 dest = SUBREG_REG (dest);
11587
11588 /* If this is a MEM, adjust deaths of anything used in the address.
11589 For a REG (the only other possibility), the entire value is
11590 being replaced so the old value is not used in this insn. */
11591
11592 if (MEM_P (dest))
11593 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11594 to_insn, pnotes);
11595 return;
11596 }
11597
11598 else if (GET_CODE (x) == CLOBBER)
11599 return;
11600
11601 len = GET_RTX_LENGTH (code);
11602 fmt = GET_RTX_FORMAT (code);
11603
11604 for (i = 0; i < len; i++)
11605 {
11606 if (fmt[i] == 'E')
11607 {
11608 int j;
11609 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11610 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11611 to_insn, pnotes);
11612 }
11613 else if (fmt[i] == 'e')
11614 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11615 }
11616 }
11617 \f
11618 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11619 pattern of an insn. X must be a REG. */
11620
11621 static int
11622 reg_bitfield_target_p (rtx x, rtx body)
11623 {
11624 int i;
11625
11626 if (GET_CODE (body) == SET)
11627 {
11628 rtx dest = SET_DEST (body);
11629 rtx target;
11630 unsigned int regno, tregno, endregno, endtregno;
11631
11632 if (GET_CODE (dest) == ZERO_EXTRACT)
11633 target = XEXP (dest, 0);
11634 else if (GET_CODE (dest) == STRICT_LOW_PART)
11635 target = SUBREG_REG (XEXP (dest, 0));
11636 else
11637 return 0;
11638
11639 if (GET_CODE (target) == SUBREG)
11640 target = SUBREG_REG (target);
11641
11642 if (!REG_P (target))
11643 return 0;
11644
11645 tregno = REGNO (target), regno = REGNO (x);
11646 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11647 return target == x;
11648
11649 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11650 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11651
11652 return endregno > tregno && regno < endtregno;
11653 }
11654
11655 else if (GET_CODE (body) == PARALLEL)
11656 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11657 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11658 return 1;
11659
11660 return 0;
11661 }
11662 \f
11663 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11664 as appropriate. I3 and I2 are the insns resulting from the combination
11665 insns including FROM (I2 may be zero).
11666
11667 Each note in the list is either ignored or placed on some insns, depending
11668 on the type of note. */
11669
11670 static void
11671 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11672 {
11673 rtx note, next_note;
11674 rtx tem;
11675
11676 for (note = notes; note; note = next_note)
11677 {
11678 rtx place = 0, place2 = 0;
11679
11680 /* If this NOTE references a pseudo register, ensure it references
11681 the latest copy of that register. */
11682 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11683 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11684 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11685
11686 next_note = XEXP (note, 1);
11687 switch (REG_NOTE_KIND (note))
11688 {
11689 case REG_BR_PROB:
11690 case REG_BR_PRED:
11691 /* Doesn't matter much where we put this, as long as it's somewhere.
11692 It is preferable to keep these notes on branches, which is most
11693 likely to be i3. */
11694 place = i3;
11695 break;
11696
11697 case REG_VALUE_PROFILE:
11698 /* Just get rid of this note, as it is unused later anyway. */
11699 break;
11700
11701 case REG_NON_LOCAL_GOTO:
11702 if (JUMP_P (i3))
11703 place = i3;
11704 else
11705 {
11706 gcc_assert (i2 && JUMP_P (i2));
11707 place = i2;
11708 }
11709 break;
11710
11711 case REG_EH_REGION:
11712 /* These notes must remain with the call or trapping instruction. */
11713 if (CALL_P (i3))
11714 place = i3;
11715 else if (i2 && CALL_P (i2))
11716 place = i2;
11717 else
11718 {
11719 gcc_assert (flag_non_call_exceptions);
11720 if (may_trap_p (i3))
11721 place = i3;
11722 else if (i2 && may_trap_p (i2))
11723 place = i2;
11724 /* ??? Otherwise assume we've combined things such that we
11725 can now prove that the instructions can't trap. Drop the
11726 note in this case. */
11727 }
11728 break;
11729
11730 case REG_ALWAYS_RETURN:
11731 case REG_NORETURN:
11732 case REG_SETJMP:
11733 /* These notes must remain with the call. It should not be
11734 possible for both I2 and I3 to be a call. */
11735 if (CALL_P (i3))
11736 place = i3;
11737 else
11738 {
11739 gcc_assert (i2 && CALL_P (i2));
11740 place = i2;
11741 }
11742 break;
11743
11744 case REG_UNUSED:
11745 /* Any clobbers for i3 may still exist, and so we must process
11746 REG_UNUSED notes from that insn.
11747
11748 Any clobbers from i2 or i1 can only exist if they were added by
11749 recog_for_combine. In that case, recog_for_combine created the
11750 necessary REG_UNUSED notes. Trying to keep any original
11751 REG_UNUSED notes from these insns can cause incorrect output
11752 if it is for the same register as the original i3 dest.
11753 In that case, we will notice that the register is set in i3,
11754 and then add a REG_UNUSED note for the destination of i3, which
11755 is wrong. However, it is possible to have REG_UNUSED notes from
11756 i2 or i1 for register which were both used and clobbered, so
11757 we keep notes from i2 or i1 if they will turn into REG_DEAD
11758 notes. */
11759
11760 /* If this register is set or clobbered in I3, put the note there
11761 unless there is one already. */
11762 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11763 {
11764 if (from_insn != i3)
11765 break;
11766
11767 if (! (REG_P (XEXP (note, 0))
11768 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11769 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11770 place = i3;
11771 }
11772 /* Otherwise, if this register is used by I3, then this register
11773 now dies here, so we must put a REG_DEAD note here unless there
11774 is one already. */
11775 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11776 && ! (REG_P (XEXP (note, 0))
11777 ? find_regno_note (i3, REG_DEAD,
11778 REGNO (XEXP (note, 0)))
11779 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11780 {
11781 PUT_REG_NOTE_KIND (note, REG_DEAD);
11782 place = i3;
11783 }
11784 break;
11785
11786 case REG_EQUAL:
11787 case REG_EQUIV:
11788 case REG_NOALIAS:
11789 /* These notes say something about results of an insn. We can
11790 only support them if they used to be on I3 in which case they
11791 remain on I3. Otherwise they are ignored.
11792
11793 If the note refers to an expression that is not a constant, we
11794 must also ignore the note since we cannot tell whether the
11795 equivalence is still true. It might be possible to do
11796 slightly better than this (we only have a problem if I2DEST
11797 or I1DEST is present in the expression), but it doesn't
11798 seem worth the trouble. */
11799
11800 if (from_insn == i3
11801 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11802 place = i3;
11803 break;
11804
11805 case REG_INC:
11806 case REG_NO_CONFLICT:
11807 /* These notes say something about how a register is used. They must
11808 be present on any use of the register in I2 or I3. */
11809 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11810 place = i3;
11811
11812 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11813 {
11814 if (place)
11815 place2 = i2;
11816 else
11817 place = i2;
11818 }
11819 break;
11820
11821 case REG_LABEL:
11822 /* This can show up in several ways -- either directly in the
11823 pattern, or hidden off in the constant pool with (or without?)
11824 a REG_EQUAL note. */
11825 /* ??? Ignore the without-reg_equal-note problem for now. */
11826 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11827 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11828 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11829 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11830 place = i3;
11831
11832 if (i2
11833 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11834 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11835 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11836 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11837 {
11838 if (place)
11839 place2 = i2;
11840 else
11841 place = i2;
11842 }
11843
11844 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11845 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11846 if (place && JUMP_P (place))
11847 {
11848 rtx label = JUMP_LABEL (place);
11849
11850 if (!label)
11851 JUMP_LABEL (place) = XEXP (note, 0);
11852 else
11853 {
11854 gcc_assert (label == XEXP (note, 0));
11855 if (LABEL_P (label))
11856 LABEL_NUSES (label)--;
11857 }
11858 place = 0;
11859 }
11860 if (place2 && JUMP_P (place2))
11861 {
11862 rtx label = JUMP_LABEL (place2);
11863
11864 if (!label)
11865 JUMP_LABEL (place2) = XEXP (note, 0);
11866 else
11867 {
11868 gcc_assert (label == XEXP (note, 0));
11869 if (LABEL_P (label))
11870 LABEL_NUSES (label)--;
11871 }
11872 place2 = 0;
11873 }
11874 break;
11875
11876 case REG_NONNEG:
11877 /* This note says something about the value of a register prior
11878 to the execution of an insn. It is too much trouble to see
11879 if the note is still correct in all situations. It is better
11880 to simply delete it. */
11881 break;
11882
11883 case REG_RETVAL:
11884 /* If the insn previously containing this note still exists,
11885 put it back where it was. Otherwise move it to the previous
11886 insn. Adjust the corresponding REG_LIBCALL note. */
11887 if (!NOTE_P (from_insn))
11888 place = from_insn;
11889 else
11890 {
11891 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11892 place = prev_real_insn (from_insn);
11893 if (tem && place)
11894 XEXP (tem, 0) = place;
11895 /* If we're deleting the last remaining instruction of a
11896 libcall sequence, don't add the notes. */
11897 else if (XEXP (note, 0) == from_insn)
11898 tem = place = 0;
11899 /* Don't add the dangling REG_RETVAL note. */
11900 else if (! tem)
11901 place = 0;
11902 }
11903 break;
11904
11905 case REG_LIBCALL:
11906 /* This is handled similarly to REG_RETVAL. */
11907 if (!NOTE_P (from_insn))
11908 place = from_insn;
11909 else
11910 {
11911 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11912 place = next_real_insn (from_insn);
11913 if (tem && place)
11914 XEXP (tem, 0) = place;
11915 /* If we're deleting the last remaining instruction of a
11916 libcall sequence, don't add the notes. */
11917 else if (XEXP (note, 0) == from_insn)
11918 tem = place = 0;
11919 /* Don't add the dangling REG_LIBCALL note. */
11920 else if (! tem)
11921 place = 0;
11922 }
11923 break;
11924
11925 case REG_DEAD:
11926 /* If the register is used as an input in I3, it dies there.
11927 Similarly for I2, if it is nonzero and adjacent to I3.
11928
11929 If the register is not used as an input in either I3 or I2
11930 and it is not one of the registers we were supposed to eliminate,
11931 there are two possibilities. We might have a non-adjacent I2
11932 or we might have somehow eliminated an additional register
11933 from a computation. For example, we might have had A & B where
11934 we discover that B will always be zero. In this case we will
11935 eliminate the reference to A.
11936
11937 In both cases, we must search to see if we can find a previous
11938 use of A and put the death note there. */
11939
11940 if (from_insn
11941 && CALL_P (from_insn)
11942 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11943 place = from_insn;
11944 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11945 place = i3;
11946 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11947 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11948 place = i2;
11949
11950 if (place == 0)
11951 {
11952 basic_block bb = this_basic_block;
11953
11954 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
11955 {
11956 if (! INSN_P (tem))
11957 {
11958 if (tem == BB_HEAD (bb))
11959 break;
11960 continue;
11961 }
11962
11963 /* If the register is being set at TEM, see if that is all
11964 TEM is doing. If so, delete TEM. Otherwise, make this
11965 into a REG_UNUSED note instead. Don't delete sets to
11966 global register vars. */
11967 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
11968 || !global_regs[REGNO (XEXP (note, 0))])
11969 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
11970 {
11971 rtx set = single_set (tem);
11972 rtx inner_dest = 0;
11973 #ifdef HAVE_cc0
11974 rtx cc0_setter = NULL_RTX;
11975 #endif
11976
11977 if (set != 0)
11978 for (inner_dest = SET_DEST (set);
11979 (GET_CODE (inner_dest) == STRICT_LOW_PART
11980 || GET_CODE (inner_dest) == SUBREG
11981 || GET_CODE (inner_dest) == ZERO_EXTRACT);
11982 inner_dest = XEXP (inner_dest, 0))
11983 ;
11984
11985 /* Verify that it was the set, and not a clobber that
11986 modified the register.
11987
11988 CC0 targets must be careful to maintain setter/user
11989 pairs. If we cannot delete the setter due to side
11990 effects, mark the user with an UNUSED note instead
11991 of deleting it. */
11992
11993 if (set != 0 && ! side_effects_p (SET_SRC (set))
11994 && rtx_equal_p (XEXP (note, 0), inner_dest)
11995 #ifdef HAVE_cc0
11996 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
11997 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
11998 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
11999 #endif
12000 )
12001 {
12002 /* Move the notes and links of TEM elsewhere.
12003 This might delete other dead insns recursively.
12004 First set the pattern to something that won't use
12005 any register. */
12006 rtx old_notes = REG_NOTES (tem);
12007
12008 PATTERN (tem) = pc_rtx;
12009 REG_NOTES (tem) = NULL;
12010
12011 distribute_notes (old_notes, tem, tem, NULL_RTX);
12012 distribute_links (LOG_LINKS (tem));
12013
12014 SET_INSN_DELETED (tem);
12015
12016 #ifdef HAVE_cc0
12017 /* Delete the setter too. */
12018 if (cc0_setter)
12019 {
12020 PATTERN (cc0_setter) = pc_rtx;
12021 old_notes = REG_NOTES (cc0_setter);
12022 REG_NOTES (cc0_setter) = NULL;
12023
12024 distribute_notes (old_notes, cc0_setter,
12025 cc0_setter, NULL_RTX);
12026 distribute_links (LOG_LINKS (cc0_setter));
12027
12028 SET_INSN_DELETED (cc0_setter);
12029 }
12030 #endif
12031 }
12032 else
12033 {
12034 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12035
12036 /* If there isn't already a REG_UNUSED note, put one
12037 here. Do not place a REG_DEAD note, even if
12038 the register is also used here; that would not
12039 match the algorithm used in lifetime analysis
12040 and can cause the consistency check in the
12041 scheduler to fail. */
12042 if (! find_regno_note (tem, REG_UNUSED,
12043 REGNO (XEXP (note, 0))))
12044 place = tem;
12045 break;
12046 }
12047 }
12048 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12049 || (CALL_P (tem)
12050 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12051 {
12052 place = tem;
12053
12054 /* If we are doing a 3->2 combination, and we have a
12055 register which formerly died in i3 and was not used
12056 by i2, which now no longer dies in i3 and is used in
12057 i2 but does not die in i2, and place is between i2
12058 and i3, then we may need to move a link from place to
12059 i2. */
12060 if (i2 && INSN_UID (place) <= max_uid_cuid
12061 && INSN_CUID (place) > INSN_CUID (i2)
12062 && from_insn
12063 && INSN_CUID (from_insn) > INSN_CUID (i2)
12064 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12065 {
12066 rtx links = LOG_LINKS (place);
12067 LOG_LINKS (place) = 0;
12068 distribute_links (links);
12069 }
12070 break;
12071 }
12072
12073 if (tem == BB_HEAD (bb))
12074 break;
12075 }
12076
12077 /* We haven't found an insn for the death note and it
12078 is still a REG_DEAD note, but we have hit the beginning
12079 of the block. If the existing life info says the reg
12080 was dead, there's nothing left to do. Otherwise, we'll
12081 need to do a global life update after combine. */
12082 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12083 && REGNO_REG_SET_P (bb->global_live_at_start,
12084 REGNO (XEXP (note, 0))))
12085 SET_BIT (refresh_blocks, this_basic_block->index);
12086 }
12087
12088 /* If the register is set or already dead at PLACE, we needn't do
12089 anything with this note if it is still a REG_DEAD note.
12090 We check here if it is set at all, not if is it totally replaced,
12091 which is what `dead_or_set_p' checks, so also check for it being
12092 set partially. */
12093
12094 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12095 {
12096 unsigned int regno = REGNO (XEXP (note, 0));
12097
12098 /* Similarly, if the instruction on which we want to place
12099 the note is a noop, we'll need do a global live update
12100 after we remove them in delete_noop_moves. */
12101 if (noop_move_p (place))
12102 SET_BIT (refresh_blocks, this_basic_block->index);
12103
12104 if (dead_or_set_p (place, XEXP (note, 0))
12105 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12106 {
12107 /* Unless the register previously died in PLACE, clear
12108 last_death. [I no longer understand why this is
12109 being done.] */
12110 if (reg_stat[regno].last_death != place)
12111 reg_stat[regno].last_death = 0;
12112 place = 0;
12113 }
12114 else
12115 reg_stat[regno].last_death = place;
12116
12117 /* If this is a death note for a hard reg that is occupying
12118 multiple registers, ensure that we are still using all
12119 parts of the object. If we find a piece of the object
12120 that is unused, we must arrange for an appropriate REG_DEAD
12121 note to be added for it. However, we can't just emit a USE
12122 and tag the note to it, since the register might actually
12123 be dead; so we recourse, and the recursive call then finds
12124 the previous insn that used this register. */
12125
12126 if (place && regno < FIRST_PSEUDO_REGISTER
12127 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12128 {
12129 unsigned int endregno
12130 = regno + hard_regno_nregs[regno]
12131 [GET_MODE (XEXP (note, 0))];
12132 int all_used = 1;
12133 unsigned int i;
12134
12135 for (i = regno; i < endregno; i++)
12136 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12137 && ! find_regno_fusage (place, USE, i))
12138 || dead_or_set_regno_p (place, i))
12139 all_used = 0;
12140
12141 if (! all_used)
12142 {
12143 /* Put only REG_DEAD notes for pieces that are
12144 not already dead or set. */
12145
12146 for (i = regno; i < endregno;
12147 i += hard_regno_nregs[i][reg_raw_mode[i]])
12148 {
12149 rtx piece = regno_reg_rtx[i];
12150 basic_block bb = this_basic_block;
12151
12152 if (! dead_or_set_p (place, piece)
12153 && ! reg_bitfield_target_p (piece,
12154 PATTERN (place)))
12155 {
12156 rtx new_note
12157 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12158
12159 distribute_notes (new_note, place, place,
12160 NULL_RTX);
12161 }
12162 else if (! refers_to_regno_p (i, i + 1,
12163 PATTERN (place), 0)
12164 && ! find_regno_fusage (place, USE, i))
12165 for (tem = PREV_INSN (place); ;
12166 tem = PREV_INSN (tem))
12167 {
12168 if (! INSN_P (tem))
12169 {
12170 if (tem == BB_HEAD (bb))
12171 {
12172 SET_BIT (refresh_blocks,
12173 this_basic_block->index);
12174 break;
12175 }
12176 continue;
12177 }
12178 if (dead_or_set_p (tem, piece)
12179 || reg_bitfield_target_p (piece,
12180 PATTERN (tem)))
12181 {
12182 REG_NOTES (tem)
12183 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12184 REG_NOTES (tem));
12185 break;
12186 }
12187 }
12188
12189 }
12190
12191 place = 0;
12192 }
12193 }
12194 }
12195 break;
12196
12197 default:
12198 /* Any other notes should not be present at this point in the
12199 compilation. */
12200 gcc_unreachable ();
12201 }
12202
12203 if (place)
12204 {
12205 XEXP (note, 1) = REG_NOTES (place);
12206 REG_NOTES (place) = note;
12207 }
12208 else if ((REG_NOTE_KIND (note) == REG_DEAD
12209 || REG_NOTE_KIND (note) == REG_UNUSED)
12210 && REG_P (XEXP (note, 0)))
12211 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12212
12213 if (place2)
12214 {
12215 if ((REG_NOTE_KIND (note) == REG_DEAD
12216 || REG_NOTE_KIND (note) == REG_UNUSED)
12217 && REG_P (XEXP (note, 0)))
12218 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12219
12220 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12221 REG_NOTE_KIND (note),
12222 XEXP (note, 0),
12223 REG_NOTES (place2));
12224 }
12225 }
12226 }
12227 \f
12228 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12229 I3, I2, and I1 to new locations. This is also called to add a link
12230 pointing at I3 when I3's destination is changed. */
12231
12232 static void
12233 distribute_links (rtx links)
12234 {
12235 rtx link, next_link;
12236
12237 for (link = links; link; link = next_link)
12238 {
12239 rtx place = 0;
12240 rtx insn;
12241 rtx set, reg;
12242
12243 next_link = XEXP (link, 1);
12244
12245 /* If the insn that this link points to is a NOTE or isn't a single
12246 set, ignore it. In the latter case, it isn't clear what we
12247 can do other than ignore the link, since we can't tell which
12248 register it was for. Such links wouldn't be used by combine
12249 anyway.
12250
12251 It is not possible for the destination of the target of the link to
12252 have been changed by combine. The only potential of this is if we
12253 replace I3, I2, and I1 by I3 and I2. But in that case the
12254 destination of I2 also remains unchanged. */
12255
12256 if (NOTE_P (XEXP (link, 0))
12257 || (set = single_set (XEXP (link, 0))) == 0)
12258 continue;
12259
12260 reg = SET_DEST (set);
12261 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12262 || GET_CODE (reg) == SIGN_EXTRACT
12263 || GET_CODE (reg) == STRICT_LOW_PART)
12264 reg = XEXP (reg, 0);
12265
12266 /* A LOG_LINK is defined as being placed on the first insn that uses
12267 a register and points to the insn that sets the register. Start
12268 searching at the next insn after the target of the link and stop
12269 when we reach a set of the register or the end of the basic block.
12270
12271 Note that this correctly handles the link that used to point from
12272 I3 to I2. Also note that not much searching is typically done here
12273 since most links don't point very far away. */
12274
12275 for (insn = NEXT_INSN (XEXP (link, 0));
12276 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12277 || BB_HEAD (this_basic_block->next_bb) != insn));
12278 insn = NEXT_INSN (insn))
12279 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12280 {
12281 if (reg_referenced_p (reg, PATTERN (insn)))
12282 place = insn;
12283 break;
12284 }
12285 else if (CALL_P (insn)
12286 && find_reg_fusage (insn, USE, reg))
12287 {
12288 place = insn;
12289 break;
12290 }
12291 else if (INSN_P (insn) && reg_set_p (reg, insn))
12292 break;
12293
12294 /* If we found a place to put the link, place it there unless there
12295 is already a link to the same insn as LINK at that point. */
12296
12297 if (place)
12298 {
12299 rtx link2;
12300
12301 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12302 if (XEXP (link2, 0) == XEXP (link, 0))
12303 break;
12304
12305 if (link2 == 0)
12306 {
12307 XEXP (link, 1) = LOG_LINKS (place);
12308 LOG_LINKS (place) = link;
12309
12310 /* Set added_links_insn to the earliest insn we added a
12311 link to. */
12312 if (added_links_insn == 0
12313 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12314 added_links_insn = place;
12315 }
12316 }
12317 }
12318 }
12319 \f
12320 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12321 Check whether the expression pointer to by LOC is a register or
12322 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12323 Otherwise return zero. */
12324
12325 static int
12326 unmentioned_reg_p_1 (rtx *loc, void *expr)
12327 {
12328 rtx x = *loc;
12329
12330 if (x != NULL_RTX
12331 && (REG_P (x) || MEM_P (x))
12332 && ! reg_mentioned_p (x, (rtx) expr))
12333 return 1;
12334 return 0;
12335 }
12336
12337 /* Check for any register or memory mentioned in EQUIV that is not
12338 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12339 of EXPR where some registers may have been replaced by constants. */
12340
12341 static bool
12342 unmentioned_reg_p (rtx equiv, rtx expr)
12343 {
12344 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12345 }
12346 \f
12347 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12348
12349 static int
12350 insn_cuid (rtx insn)
12351 {
12352 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12353 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12354 insn = NEXT_INSN (insn);
12355
12356 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12357
12358 return INSN_CUID (insn);
12359 }
12360 \f
12361 void
12362 dump_combine_stats (FILE *file)
12363 {
12364 fnotice
12365 (file,
12366 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12367 combine_attempts, combine_merges, combine_extras, combine_successes);
12368 }
12369
12370 void
12371 dump_combine_total_stats (FILE *file)
12372 {
12373 fnotice
12374 (file,
12375 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12376 total_attempts, total_merges, total_extras, total_successes);
12377 }
This page took 0.664775 seconds and 6 git commands to generate.