]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
combine.c (can_change_dest_mode): New function.
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
59
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
63
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
72
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
99 #include "timevar.h"
100 #include "tree-pass.h"
101
102 /* Number of attempts to combine instructions in this function. */
103
104 static int combine_attempts;
105
106 /* Number of attempts that got as far as substitution in this function. */
107
108 static int combine_merges;
109
110 /* Number of instructions combined with added SETs in this function. */
111
112 static int combine_extras;
113
114 /* Number of instructions combined in this function. */
115
116 static int combine_successes;
117
118 /* Totals over entire compilation. */
119
120 static int total_attempts, total_merges, total_extras, total_successes;
121
122 \f
123 /* Vector mapping INSN_UIDs to cuids.
124 The cuids are like uids but increase monotonically always.
125 Combine always uses cuids so that it can compare them.
126 But actually renumbering the uids, which we used to do,
127 proves to be a bad idea because it makes it hard to compare
128 the dumps produced by earlier passes with those from later passes. */
129
130 static int *uid_cuid;
131 static int max_uid_cuid;
132
133 /* Get the cuid of an insn. */
134
135 #define INSN_CUID(INSN) \
136 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
137
138 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
139 BITS_PER_WORD would invoke undefined behavior. Work around it. */
140
141 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
142 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
143
144 /* Maximum register number, which is the size of the tables below. */
145
146 static unsigned int combine_max_regno;
147
148 struct reg_stat {
149 /* Record last point of death of (hard or pseudo) register n. */
150 rtx last_death;
151
152 /* Record last point of modification of (hard or pseudo) register n. */
153 rtx last_set;
154
155 /* The next group of fields allows the recording of the last value assigned
156 to (hard or pseudo) register n. We use this information to see if an
157 operation being processed is redundant given a prior operation performed
158 on the register. For example, an `and' with a constant is redundant if
159 all the zero bits are already known to be turned off.
160
161 We use an approach similar to that used by cse, but change it in the
162 following ways:
163
164 (1) We do not want to reinitialize at each label.
165 (2) It is useful, but not critical, to know the actual value assigned
166 to a register. Often just its form is helpful.
167
168 Therefore, we maintain the following fields:
169
170 last_set_value the last value assigned
171 last_set_label records the value of label_tick when the
172 register was assigned
173 last_set_table_tick records the value of label_tick when a
174 value using the register is assigned
175 last_set_invalid set to nonzero when it is not valid
176 to use the value of this register in some
177 register's value
178
179 To understand the usage of these tables, it is important to understand
180 the distinction between the value in last_set_value being valid and
181 the register being validly contained in some other expression in the
182 table.
183
184 (The next two parameters are out of date).
185
186 reg_stat[i].last_set_value is valid if it is nonzero, and either
187 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188
189 Register I may validly appear in any expression returned for the value
190 of another register if reg_n_sets[i] is 1. It may also appear in the
191 value for register J if reg_stat[j].last_set_invalid is zero, or
192 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193
194 If an expression is found in the table containing a register which may
195 not validly appear in an expression, the register is replaced by
196 something that won't match, (clobber (const_int 0)). */
197
198 /* Record last value assigned to (hard or pseudo) register n. */
199
200 rtx last_set_value;
201
202 /* Record the value of label_tick when an expression involving register n
203 is placed in last_set_value. */
204
205 int last_set_table_tick;
206
207 /* Record the value of label_tick when the value for register n is placed in
208 last_set_value. */
209
210 int last_set_label;
211
212 /* These fields are maintained in parallel with last_set_value and are
213 used to store the mode in which the register was last set, the bits
214 that were known to be zero when it was last set, and the number of
215 sign bits copies it was known to have when it was last set. */
216
217 unsigned HOST_WIDE_INT last_set_nonzero_bits;
218 char last_set_sign_bit_copies;
219 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
220
221 /* Set nonzero if references to register n in expressions should not be
222 used. last_set_invalid is set nonzero when this register is being
223 assigned to and last_set_table_tick == label_tick. */
224
225 char last_set_invalid;
226
227 /* Some registers that are set more than once and used in more than one
228 basic block are nevertheless always set in similar ways. For example,
229 a QImode register may be loaded from memory in two places on a machine
230 where byte loads zero extend.
231
232 We record in the following fields if a register has some leading bits
233 that are always equal to the sign bit, and what we know about the
234 nonzero bits of a register, specifically which bits are known to be
235 zero.
236
237 If an entry is zero, it means that we don't know anything special. */
238
239 unsigned char sign_bit_copies;
240
241 unsigned HOST_WIDE_INT nonzero_bits;
242 };
243
244 static struct reg_stat *reg_stat;
245
246 /* Record the cuid of the last insn that invalidated memory
247 (anything that writes memory, and subroutine calls, but not pushes). */
248
249 static int mem_last_set;
250
251 /* Record the cuid of the last CALL_INSN
252 so we can tell whether a potential combination crosses any calls. */
253
254 static int last_call_cuid;
255
256 /* When `subst' is called, this is the insn that is being modified
257 (by combining in a previous insn). The PATTERN of this insn
258 is still the old pattern partially modified and it should not be
259 looked at, but this may be used to examine the successors of the insn
260 to judge whether a simplification is valid. */
261
262 static rtx subst_insn;
263
264 /* This is the lowest CUID that `subst' is currently dealing with.
265 get_last_value will not return a value if the register was set at or
266 after this CUID. If not for this mechanism, we could get confused if
267 I2 or I1 in try_combine were an insn that used the old value of a register
268 to obtain a new value. In that case, we might erroneously get the
269 new value of the register when we wanted the old one. */
270
271 static int subst_low_cuid;
272
273 /* This contains any hard registers that are used in newpat; reg_dead_at_p
274 must consider all these registers to be always live. */
275
276 static HARD_REG_SET newpat_used_regs;
277
278 /* This is an insn to which a LOG_LINKS entry has been added. If this
279 insn is the earlier than I2 or I3, combine should rescan starting at
280 that location. */
281
282 static rtx added_links_insn;
283
284 /* Basic block in which we are performing combines. */
285 static basic_block this_basic_block;
286
287 /* A bitmap indicating which blocks had registers go dead at entry.
288 After combine, we'll need to re-do global life analysis with
289 those blocks as starting points. */
290 static sbitmap refresh_blocks;
291 \f
292 /* The following array records the insn_rtx_cost for every insn
293 in the instruction stream. */
294
295 static int *uid_insn_cost;
296
297 /* Length of the currently allocated uid_insn_cost array. */
298
299 static int last_insn_cost;
300
301 /* Incremented for each label. */
302
303 static int label_tick;
304
305 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
306 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
307
308 static enum machine_mode nonzero_bits_mode;
309
310 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
311 be safely used. It is zero while computing them and after combine has
312 completed. This former test prevents propagating values based on
313 previously set values, which can be incorrect if a variable is modified
314 in a loop. */
315
316 static int nonzero_sign_valid;
317
318 \f
319 /* Record one modification to rtl structure
320 to be undone by storing old_contents into *where.
321 is_int is 1 if the contents are an int. */
322
323 struct undo
324 {
325 struct undo *next;
326 int is_int;
327 union {rtx r; int i;} old_contents;
328 union {rtx *r; int *i;} where;
329 };
330
331 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
332 num_undo says how many are currently recorded.
333
334 other_insn is nonzero if we have modified some other insn in the process
335 of working on subst_insn. It must be verified too. */
336
337 struct undobuf
338 {
339 struct undo *undos;
340 struct undo *frees;
341 rtx other_insn;
342 };
343
344 static struct undobuf undobuf;
345
346 /* Number of times the pseudo being substituted for
347 was found and replaced. */
348
349 static int n_occurrences;
350
351 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
352 enum machine_mode,
353 unsigned HOST_WIDE_INT,
354 unsigned HOST_WIDE_INT *);
355 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned int, unsigned int *);
358 static void do_SUBST (rtx *, rtx);
359 static void do_SUBST_INT (int *, int);
360 static void init_reg_last (void);
361 static void setup_incoming_promotions (void);
362 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
363 static int cant_combine_insn_p (rtx);
364 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
365 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
366 static int contains_muldiv (rtx);
367 static rtx try_combine (rtx, rtx, rtx, int *);
368 static void undo_all (void);
369 static void undo_commit (void);
370 static rtx *find_split_point (rtx *, rtx);
371 static rtx subst (rtx, rtx, rtx, int, int);
372 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
373 static rtx simplify_if_then_else (rtx);
374 static rtx simplify_set (rtx);
375 static rtx simplify_logical (rtx);
376 static rtx expand_compound_operation (rtx);
377 static rtx expand_field_assignment (rtx);
378 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
379 rtx, unsigned HOST_WIDE_INT, int, int, int);
380 static rtx extract_left_shift (rtx, int);
381 static rtx make_compound_operation (rtx, enum rtx_code);
382 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
383 unsigned HOST_WIDE_INT *);
384 static rtx force_to_mode (rtx, enum machine_mode,
385 unsigned HOST_WIDE_INT, rtx, int);
386 static rtx if_then_else_cond (rtx, rtx *, rtx *);
387 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
388 static int rtx_equal_for_field_assignment_p (rtx, rtx);
389 static rtx make_field_assignment (rtx);
390 static rtx apply_distributive_law (rtx);
391 static rtx distribute_and_simplify_rtx (rtx, int);
392 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
393 unsigned HOST_WIDE_INT);
394 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
395 HOST_WIDE_INT, enum machine_mode, int *);
396 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
397 int);
398 static int recog_for_combine (rtx *, rtx, rtx *);
399 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
400 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
401 static void update_table_tick (rtx);
402 static void record_value_for_reg (rtx, rtx, rtx);
403 static void check_promoted_subreg (rtx, rtx);
404 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
405 static void record_dead_and_set_regs (rtx);
406 static int get_last_value_validate (rtx *, rtx, int, int);
407 static rtx get_last_value (rtx);
408 static int use_crosses_set_p (rtx, int);
409 static void reg_dead_at_p_1 (rtx, rtx, void *);
410 static int reg_dead_at_p (rtx, rtx);
411 static void move_deaths (rtx, rtx, int, rtx, rtx *);
412 static int reg_bitfield_target_p (rtx, rtx);
413 static void distribute_notes (rtx, rtx, rtx, rtx);
414 static void distribute_links (rtx);
415 static void mark_used_regs_combine (rtx);
416 static int insn_cuid (rtx);
417 static void record_promoted_value (rtx, rtx);
418 static int unmentioned_reg_p_1 (rtx *, void *);
419 static bool unmentioned_reg_p (rtx, rtx);
420 \f
421
422 /* It is not safe to use ordinary gen_lowpart in combine.
423 See comments in gen_lowpart_for_combine. */
424 #undef RTL_HOOKS_GEN_LOWPART
425 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
426
427 /* Our implementation of gen_lowpart never emits a new pseudo. */
428 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
429 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
430
431 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
432 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
433
434 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
435 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
436
437 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
438
439 \f
440 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
441 insn. The substitution can be undone by undo_all. If INTO is already
442 set to NEWVAL, do not record this change. Because computing NEWVAL might
443 also call SUBST, we have to compute it before we put anything into
444 the undo table. */
445
446 static void
447 do_SUBST (rtx *into, rtx newval)
448 {
449 struct undo *buf;
450 rtx oldval = *into;
451
452 if (oldval == newval)
453 return;
454
455 /* We'd like to catch as many invalid transformations here as
456 possible. Unfortunately, there are way too many mode changes
457 that are perfectly valid, so we'd waste too much effort for
458 little gain doing the checks here. Focus on catching invalid
459 transformations involving integer constants. */
460 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
461 && GET_CODE (newval) == CONST_INT)
462 {
463 /* Sanity check that we're replacing oldval with a CONST_INT
464 that is a valid sign-extension for the original mode. */
465 gcc_assert (INTVAL (newval)
466 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
467
468 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
469 CONST_INT is not valid, because after the replacement, the
470 original mode would be gone. Unfortunately, we can't tell
471 when do_SUBST is called to replace the operand thereof, so we
472 perform this test on oldval instead, checking whether an
473 invalid replacement took place before we got here. */
474 gcc_assert (!(GET_CODE (oldval) == SUBREG
475 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
476 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
477 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
478 }
479
480 if (undobuf.frees)
481 buf = undobuf.frees, undobuf.frees = buf->next;
482 else
483 buf = xmalloc (sizeof (struct undo));
484
485 buf->is_int = 0;
486 buf->where.r = into;
487 buf->old_contents.r = oldval;
488 *into = newval;
489
490 buf->next = undobuf.undos, undobuf.undos = buf;
491 }
492
493 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
494
495 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
496 for the value of a HOST_WIDE_INT value (including CONST_INT) is
497 not safe. */
498
499 static void
500 do_SUBST_INT (int *into, int newval)
501 {
502 struct undo *buf;
503 int oldval = *into;
504
505 if (oldval == newval)
506 return;
507
508 if (undobuf.frees)
509 buf = undobuf.frees, undobuf.frees = buf->next;
510 else
511 buf = xmalloc (sizeof (struct undo));
512
513 buf->is_int = 1;
514 buf->where.i = into;
515 buf->old_contents.i = oldval;
516 *into = newval;
517
518 buf->next = undobuf.undos, undobuf.undos = buf;
519 }
520
521 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
522 \f
523 /* Subroutine of try_combine. Determine whether the combine replacement
524 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
525 that the original instruction sequence I1, I2 and I3. Note that I1
526 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
527 costs of all instructions can be estimated, and the replacements are
528 more expensive than the original sequence. */
529
530 static bool
531 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
532 {
533 int i1_cost, i2_cost, i3_cost;
534 int new_i2_cost, new_i3_cost;
535 int old_cost, new_cost;
536
537 /* Lookup the original insn_rtx_costs. */
538 i2_cost = INSN_UID (i2) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i2)] : 0;
540 i3_cost = INSN_UID (i3) <= last_insn_cost
541 ? uid_insn_cost[INSN_UID (i3)] : 0;
542
543 if (i1)
544 {
545 i1_cost = INSN_UID (i1) <= last_insn_cost
546 ? uid_insn_cost[INSN_UID (i1)] : 0;
547 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
548 ? i1_cost + i2_cost + i3_cost : 0;
549 }
550 else
551 {
552 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
553 i1_cost = 0;
554 }
555
556 /* Calculate the replacement insn_rtx_costs. */
557 new_i3_cost = insn_rtx_cost (newpat);
558 if (newi2pat)
559 {
560 new_i2_cost = insn_rtx_cost (newi2pat);
561 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
562 ? new_i2_cost + new_i3_cost : 0;
563 }
564 else
565 {
566 new_cost = new_i3_cost;
567 new_i2_cost = 0;
568 }
569
570 if (undobuf.other_insn)
571 {
572 int old_other_cost, new_other_cost;
573
574 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
575 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
576 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
577 if (old_other_cost > 0 && new_other_cost > 0)
578 {
579 old_cost += old_other_cost;
580 new_cost += new_other_cost;
581 }
582 else
583 old_cost = 0;
584 }
585
586 /* Disallow this recombination if both new_cost and old_cost are
587 greater than zero, and new_cost is greater than old cost. */
588 if (old_cost > 0
589 && new_cost > old_cost)
590 {
591 if (dump_file)
592 {
593 if (i1)
594 {
595 fprintf (dump_file,
596 "rejecting combination of insns %d, %d and %d\n",
597 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
598 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
599 i1_cost, i2_cost, i3_cost, old_cost);
600 }
601 else
602 {
603 fprintf (dump_file,
604 "rejecting combination of insns %d and %d\n",
605 INSN_UID (i2), INSN_UID (i3));
606 fprintf (dump_file, "original costs %d + %d = %d\n",
607 i2_cost, i3_cost, old_cost);
608 }
609
610 if (newi2pat)
611 {
612 fprintf (dump_file, "replacement costs %d + %d = %d\n",
613 new_i2_cost, new_i3_cost, new_cost);
614 }
615 else
616 fprintf (dump_file, "replacement cost %d\n", new_cost);
617 }
618
619 return false;
620 }
621
622 /* Update the uid_insn_cost array with the replacement costs. */
623 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
624 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
625 if (i1)
626 uid_insn_cost[INSN_UID (i1)] = 0;
627
628 return true;
629 }
630 \f
631 /* Main entry point for combiner. F is the first insn of the function.
632 NREGS is the first unused pseudo-reg number.
633
634 Return nonzero if the combiner has turned an indirect jump
635 instruction into a direct jump. */
636 int
637 combine_instructions (rtx f, unsigned int nregs)
638 {
639 rtx insn, next;
640 #ifdef HAVE_cc0
641 rtx prev;
642 #endif
643 int i;
644 unsigned int j = 0;
645 rtx links, nextlinks;
646 sbitmap_iterator sbi;
647
648 int new_direct_jump_p = 0;
649
650 combine_attempts = 0;
651 combine_merges = 0;
652 combine_extras = 0;
653 combine_successes = 0;
654
655 combine_max_regno = nregs;
656
657 rtl_hooks = combine_rtl_hooks;
658
659 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
660
661 init_recog_no_volatile ();
662
663 /* Compute maximum uid value so uid_cuid can be allocated. */
664
665 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
666 if (INSN_UID (insn) > i)
667 i = INSN_UID (insn);
668
669 uid_cuid = xmalloc ((i + 1) * sizeof (int));
670 max_uid_cuid = i;
671
672 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
673
674 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
675 problems when, for example, we have j <<= 1 in a loop. */
676
677 nonzero_sign_valid = 0;
678
679 /* Compute the mapping from uids to cuids.
680 Cuids are numbers assigned to insns, like uids,
681 except that cuids increase monotonically through the code.
682
683 Scan all SETs and see if we can deduce anything about what
684 bits are known to be zero for some registers and how many copies
685 of the sign bit are known to exist for those registers.
686
687 Also set any known values so that we can use it while searching
688 for what bits are known to be set. */
689
690 label_tick = 1;
691
692 setup_incoming_promotions ();
693
694 refresh_blocks = sbitmap_alloc (last_basic_block);
695 sbitmap_zero (refresh_blocks);
696
697 /* Allocate array of current insn_rtx_costs. */
698 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
699 last_insn_cost = max_uid_cuid;
700
701 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
702 {
703 uid_cuid[INSN_UID (insn)] = ++i;
704 subst_low_cuid = i;
705 subst_insn = insn;
706
707 if (INSN_P (insn))
708 {
709 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
710 NULL);
711 record_dead_and_set_regs (insn);
712
713 #ifdef AUTO_INC_DEC
714 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
715 if (REG_NOTE_KIND (links) == REG_INC)
716 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
717 NULL);
718 #endif
719
720 /* Record the current insn_rtx_cost of this instruction. */
721 if (NONJUMP_INSN_P (insn))
722 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
723 if (dump_file)
724 fprintf(dump_file, "insn_cost %d: %d\n",
725 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
726 }
727
728 if (LABEL_P (insn))
729 label_tick++;
730 }
731
732 nonzero_sign_valid = 1;
733
734 /* Now scan all the insns in forward order. */
735
736 label_tick = 1;
737 last_call_cuid = 0;
738 mem_last_set = 0;
739 init_reg_last ();
740 setup_incoming_promotions ();
741
742 FOR_EACH_BB (this_basic_block)
743 {
744 for (insn = BB_HEAD (this_basic_block);
745 insn != NEXT_INSN (BB_END (this_basic_block));
746 insn = next ? next : NEXT_INSN (insn))
747 {
748 next = 0;
749
750 if (LABEL_P (insn))
751 label_tick++;
752
753 else if (INSN_P (insn))
754 {
755 /* See if we know about function return values before this
756 insn based upon SUBREG flags. */
757 check_promoted_subreg (insn, PATTERN (insn));
758
759 /* Try this insn with each insn it links back to. */
760
761 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
762 if ((next = try_combine (insn, XEXP (links, 0),
763 NULL_RTX, &new_direct_jump_p)) != 0)
764 goto retry;
765
766 /* Try each sequence of three linked insns ending with this one. */
767
768 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
769 {
770 rtx link = XEXP (links, 0);
771
772 /* If the linked insn has been replaced by a note, then there
773 is no point in pursuing this chain any further. */
774 if (NOTE_P (link))
775 continue;
776
777 for (nextlinks = LOG_LINKS (link);
778 nextlinks;
779 nextlinks = XEXP (nextlinks, 1))
780 if ((next = try_combine (insn, link,
781 XEXP (nextlinks, 0),
782 &new_direct_jump_p)) != 0)
783 goto retry;
784 }
785
786 #ifdef HAVE_cc0
787 /* Try to combine a jump insn that uses CC0
788 with a preceding insn that sets CC0, and maybe with its
789 logical predecessor as well.
790 This is how we make decrement-and-branch insns.
791 We need this special code because data flow connections
792 via CC0 do not get entered in LOG_LINKS. */
793
794 if (JUMP_P (insn)
795 && (prev = prev_nonnote_insn (insn)) != 0
796 && NONJUMP_INSN_P (prev)
797 && sets_cc0_p (PATTERN (prev)))
798 {
799 if ((next = try_combine (insn, prev,
800 NULL_RTX, &new_direct_jump_p)) != 0)
801 goto retry;
802
803 for (nextlinks = LOG_LINKS (prev); nextlinks;
804 nextlinks = XEXP (nextlinks, 1))
805 if ((next = try_combine (insn, prev,
806 XEXP (nextlinks, 0),
807 &new_direct_jump_p)) != 0)
808 goto retry;
809 }
810
811 /* Do the same for an insn that explicitly references CC0. */
812 if (NONJUMP_INSN_P (insn)
813 && (prev = prev_nonnote_insn (insn)) != 0
814 && NONJUMP_INSN_P (prev)
815 && sets_cc0_p (PATTERN (prev))
816 && GET_CODE (PATTERN (insn)) == SET
817 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
818 {
819 if ((next = try_combine (insn, prev,
820 NULL_RTX, &new_direct_jump_p)) != 0)
821 goto retry;
822
823 for (nextlinks = LOG_LINKS (prev); nextlinks;
824 nextlinks = XEXP (nextlinks, 1))
825 if ((next = try_combine (insn, prev,
826 XEXP (nextlinks, 0),
827 &new_direct_jump_p)) != 0)
828 goto retry;
829 }
830
831 /* Finally, see if any of the insns that this insn links to
832 explicitly references CC0. If so, try this insn, that insn,
833 and its predecessor if it sets CC0. */
834 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
835 if (NONJUMP_INSN_P (XEXP (links, 0))
836 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
837 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
838 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
839 && NONJUMP_INSN_P (prev)
840 && sets_cc0_p (PATTERN (prev))
841 && (next = try_combine (insn, XEXP (links, 0),
842 prev, &new_direct_jump_p)) != 0)
843 goto retry;
844 #endif
845
846 /* Try combining an insn with two different insns whose results it
847 uses. */
848 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
849 for (nextlinks = XEXP (links, 1); nextlinks;
850 nextlinks = XEXP (nextlinks, 1))
851 if ((next = try_combine (insn, XEXP (links, 0),
852 XEXP (nextlinks, 0),
853 &new_direct_jump_p)) != 0)
854 goto retry;
855
856 /* Try this insn with each REG_EQUAL note it links back to. */
857 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
858 {
859 rtx set, note;
860 rtx temp = XEXP (links, 0);
861 if ((set = single_set (temp)) != 0
862 && (note = find_reg_equal_equiv_note (temp)) != 0
863 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
864 /* Avoid using a register that may already been marked
865 dead by an earlier instruction. */
866 && ! unmentioned_reg_p (note, SET_SRC (set))
867 && (GET_MODE (note) == VOIDmode
868 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
869 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
870 {
871 /* Temporarily replace the set's source with the
872 contents of the REG_EQUAL note. The insn will
873 be deleted or recognized by try_combine. */
874 rtx orig = SET_SRC (set);
875 SET_SRC (set) = note;
876 next = try_combine (insn, temp, NULL_RTX,
877 &new_direct_jump_p);
878 if (next)
879 goto retry;
880 SET_SRC (set) = orig;
881 }
882 }
883
884 if (!NOTE_P (insn))
885 record_dead_and_set_regs (insn);
886
887 retry:
888 ;
889 }
890 }
891 }
892 clear_bb_flags ();
893
894 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
895 BASIC_BLOCK (j)->flags |= BB_DIRTY;
896 new_direct_jump_p |= purge_all_dead_edges ();
897 delete_noop_moves ();
898
899 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
900 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
901 | PROP_KILL_DEAD_CODE);
902
903 /* Clean up. */
904 sbitmap_free (refresh_blocks);
905 free (uid_insn_cost);
906 free (reg_stat);
907 free (uid_cuid);
908
909 {
910 struct undo *undo, *next;
911 for (undo = undobuf.frees; undo; undo = next)
912 {
913 next = undo->next;
914 free (undo);
915 }
916 undobuf.frees = 0;
917 }
918
919 total_attempts += combine_attempts;
920 total_merges += combine_merges;
921 total_extras += combine_extras;
922 total_successes += combine_successes;
923
924 nonzero_sign_valid = 0;
925 rtl_hooks = general_rtl_hooks;
926
927 /* Make recognizer allow volatile MEMs again. */
928 init_recog ();
929
930 return new_direct_jump_p;
931 }
932
933 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
934
935 static void
936 init_reg_last (void)
937 {
938 unsigned int i;
939 for (i = 0; i < combine_max_regno; i++)
940 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
941 }
942 \f
943 /* Set up any promoted values for incoming argument registers. */
944
945 static void
946 setup_incoming_promotions (void)
947 {
948 unsigned int regno;
949 rtx reg;
950 enum machine_mode mode;
951 int unsignedp;
952 rtx first = get_insns ();
953
954 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
955 {
956 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
957 /* Check whether this register can hold an incoming pointer
958 argument. FUNCTION_ARG_REGNO_P tests outgoing register
959 numbers, so translate if necessary due to register windows. */
960 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
961 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
962 {
963 record_value_for_reg
964 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
965 : SIGN_EXTEND),
966 GET_MODE (reg),
967 gen_rtx_CLOBBER (mode, const0_rtx)));
968 }
969 }
970 }
971 \f
972 /* Called via note_stores. If X is a pseudo that is narrower than
973 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
974
975 If we are setting only a portion of X and we can't figure out what
976 portion, assume all bits will be used since we don't know what will
977 be happening.
978
979 Similarly, set how many bits of X are known to be copies of the sign bit
980 at all locations in the function. This is the smallest number implied
981 by any set of X. */
982
983 static void
984 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
985 void *data ATTRIBUTE_UNUSED)
986 {
987 unsigned int num;
988
989 if (REG_P (x)
990 && REGNO (x) >= FIRST_PSEUDO_REGISTER
991 /* If this register is undefined at the start of the file, we can't
992 say what its contents were. */
993 && ! REGNO_REG_SET_P
994 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
995 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
996 {
997 if (set == 0 || GET_CODE (set) == CLOBBER)
998 {
999 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1000 reg_stat[REGNO (x)].sign_bit_copies = 1;
1001 return;
1002 }
1003
1004 /* If this is a complex assignment, see if we can convert it into a
1005 simple assignment. */
1006 set = expand_field_assignment (set);
1007
1008 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1009 set what we know about X. */
1010
1011 if (SET_DEST (set) == x
1012 || (GET_CODE (SET_DEST (set)) == SUBREG
1013 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1014 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1015 && SUBREG_REG (SET_DEST (set)) == x))
1016 {
1017 rtx src = SET_SRC (set);
1018
1019 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1020 /* If X is narrower than a word and SRC is a non-negative
1021 constant that would appear negative in the mode of X,
1022 sign-extend it for use in reg_stat[].nonzero_bits because some
1023 machines (maybe most) will actually do the sign-extension
1024 and this is the conservative approach.
1025
1026 ??? For 2.5, try to tighten up the MD files in this regard
1027 instead of this kludge. */
1028
1029 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1030 && GET_CODE (src) == CONST_INT
1031 && INTVAL (src) > 0
1032 && 0 != (INTVAL (src)
1033 & ((HOST_WIDE_INT) 1
1034 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1035 src = GEN_INT (INTVAL (src)
1036 | ((HOST_WIDE_INT) (-1)
1037 << GET_MODE_BITSIZE (GET_MODE (x))));
1038 #endif
1039
1040 /* Don't call nonzero_bits if it cannot change anything. */
1041 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1042 reg_stat[REGNO (x)].nonzero_bits
1043 |= nonzero_bits (src, nonzero_bits_mode);
1044 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1045 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1046 || reg_stat[REGNO (x)].sign_bit_copies > num)
1047 reg_stat[REGNO (x)].sign_bit_copies = num;
1048 }
1049 else
1050 {
1051 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1052 reg_stat[REGNO (x)].sign_bit_copies = 1;
1053 }
1054 }
1055 }
1056 \f
1057 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1058 insns that were previously combined into I3 or that will be combined
1059 into the merger of INSN and I3.
1060
1061 Return 0 if the combination is not allowed for any reason.
1062
1063 If the combination is allowed, *PDEST will be set to the single
1064 destination of INSN and *PSRC to the single source, and this function
1065 will return 1. */
1066
1067 static int
1068 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1069 rtx *pdest, rtx *psrc)
1070 {
1071 int i;
1072 rtx set = 0, src, dest;
1073 rtx p;
1074 #ifdef AUTO_INC_DEC
1075 rtx link;
1076 #endif
1077 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1078 && next_active_insn (succ) == i3)
1079 : next_active_insn (insn) == i3);
1080
1081 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1082 or a PARALLEL consisting of such a SET and CLOBBERs.
1083
1084 If INSN has CLOBBER parallel parts, ignore them for our processing.
1085 By definition, these happen during the execution of the insn. When it
1086 is merged with another insn, all bets are off. If they are, in fact,
1087 needed and aren't also supplied in I3, they may be added by
1088 recog_for_combine. Otherwise, it won't match.
1089
1090 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1091 note.
1092
1093 Get the source and destination of INSN. If more than one, can't
1094 combine. */
1095
1096 if (GET_CODE (PATTERN (insn)) == SET)
1097 set = PATTERN (insn);
1098 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1099 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1100 {
1101 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1102 {
1103 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1104 rtx note;
1105
1106 switch (GET_CODE (elt))
1107 {
1108 /* This is important to combine floating point insns
1109 for the SH4 port. */
1110 case USE:
1111 /* Combining an isolated USE doesn't make sense.
1112 We depend here on combinable_i3pat to reject them. */
1113 /* The code below this loop only verifies that the inputs of
1114 the SET in INSN do not change. We call reg_set_between_p
1115 to verify that the REG in the USE does not change between
1116 I3 and INSN.
1117 If the USE in INSN was for a pseudo register, the matching
1118 insn pattern will likely match any register; combining this
1119 with any other USE would only be safe if we knew that the
1120 used registers have identical values, or if there was
1121 something to tell them apart, e.g. different modes. For
1122 now, we forgo such complicated tests and simply disallow
1123 combining of USES of pseudo registers with any other USE. */
1124 if (REG_P (XEXP (elt, 0))
1125 && GET_CODE (PATTERN (i3)) == PARALLEL)
1126 {
1127 rtx i3pat = PATTERN (i3);
1128 int i = XVECLEN (i3pat, 0) - 1;
1129 unsigned int regno = REGNO (XEXP (elt, 0));
1130
1131 do
1132 {
1133 rtx i3elt = XVECEXP (i3pat, 0, i);
1134
1135 if (GET_CODE (i3elt) == USE
1136 && REG_P (XEXP (i3elt, 0))
1137 && (REGNO (XEXP (i3elt, 0)) == regno
1138 ? reg_set_between_p (XEXP (elt, 0),
1139 PREV_INSN (insn), i3)
1140 : regno >= FIRST_PSEUDO_REGISTER))
1141 return 0;
1142 }
1143 while (--i >= 0);
1144 }
1145 break;
1146
1147 /* We can ignore CLOBBERs. */
1148 case CLOBBER:
1149 break;
1150
1151 case SET:
1152 /* Ignore SETs whose result isn't used but not those that
1153 have side-effects. */
1154 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1155 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1156 || INTVAL (XEXP (note, 0)) <= 0)
1157 && ! side_effects_p (elt))
1158 break;
1159
1160 /* If we have already found a SET, this is a second one and
1161 so we cannot combine with this insn. */
1162 if (set)
1163 return 0;
1164
1165 set = elt;
1166 break;
1167
1168 default:
1169 /* Anything else means we can't combine. */
1170 return 0;
1171 }
1172 }
1173
1174 if (set == 0
1175 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1176 so don't do anything with it. */
1177 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1178 return 0;
1179 }
1180 else
1181 return 0;
1182
1183 if (set == 0)
1184 return 0;
1185
1186 set = expand_field_assignment (set);
1187 src = SET_SRC (set), dest = SET_DEST (set);
1188
1189 /* Don't eliminate a store in the stack pointer. */
1190 if (dest == stack_pointer_rtx
1191 /* Don't combine with an insn that sets a register to itself if it has
1192 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1193 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1194 /* Can't merge an ASM_OPERANDS. */
1195 || GET_CODE (src) == ASM_OPERANDS
1196 /* Can't merge a function call. */
1197 || GET_CODE (src) == CALL
1198 /* Don't eliminate a function call argument. */
1199 || (CALL_P (i3)
1200 && (find_reg_fusage (i3, USE, dest)
1201 || (REG_P (dest)
1202 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1203 && global_regs[REGNO (dest)])))
1204 /* Don't substitute into an incremented register. */
1205 || FIND_REG_INC_NOTE (i3, dest)
1206 || (succ && FIND_REG_INC_NOTE (succ, dest))
1207 /* Don't substitute into a non-local goto, this confuses CFG. */
1208 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1209 #if 0
1210 /* Don't combine the end of a libcall into anything. */
1211 /* ??? This gives worse code, and appears to be unnecessary, since no
1212 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1213 use REG_RETVAL notes for noconflict blocks, but other code here
1214 makes sure that those insns don't disappear. */
1215 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1216 #endif
1217 /* Make sure that DEST is not used after SUCC but before I3. */
1218 || (succ && ! all_adjacent
1219 && reg_used_between_p (dest, succ, i3))
1220 /* Make sure that the value that is to be substituted for the register
1221 does not use any registers whose values alter in between. However,
1222 If the insns are adjacent, a use can't cross a set even though we
1223 think it might (this can happen for a sequence of insns each setting
1224 the same destination; last_set of that register might point to
1225 a NOTE). If INSN has a REG_EQUIV note, the register is always
1226 equivalent to the memory so the substitution is valid even if there
1227 are intervening stores. Also, don't move a volatile asm or
1228 UNSPEC_VOLATILE across any other insns. */
1229 || (! all_adjacent
1230 && (((!MEM_P (src)
1231 || ! find_reg_note (insn, REG_EQUIV, src))
1232 && use_crosses_set_p (src, INSN_CUID (insn)))
1233 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1234 || GET_CODE (src) == UNSPEC_VOLATILE))
1235 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1236 better register allocation by not doing the combine. */
1237 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1238 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1239 /* Don't combine across a CALL_INSN, because that would possibly
1240 change whether the life span of some REGs crosses calls or not,
1241 and it is a pain to update that information.
1242 Exception: if source is a constant, moving it later can't hurt.
1243 Accept that special case, because it helps -fforce-addr a lot. */
1244 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1245 return 0;
1246
1247 /* DEST must either be a REG or CC0. */
1248 if (REG_P (dest))
1249 {
1250 /* If register alignment is being enforced for multi-word items in all
1251 cases except for parameters, it is possible to have a register copy
1252 insn referencing a hard register that is not allowed to contain the
1253 mode being copied and which would not be valid as an operand of most
1254 insns. Eliminate this problem by not combining with such an insn.
1255
1256 Also, on some machines we don't want to extend the life of a hard
1257 register. */
1258
1259 if (REG_P (src)
1260 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1261 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1262 /* Don't extend the life of a hard register unless it is
1263 user variable (if we have few registers) or it can't
1264 fit into the desired register (meaning something special
1265 is going on).
1266 Also avoid substituting a return register into I3, because
1267 reload can't handle a conflict with constraints of other
1268 inputs. */
1269 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1270 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1271 return 0;
1272 }
1273 else if (GET_CODE (dest) != CC0)
1274 return 0;
1275
1276
1277 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1278 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1279 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1280 {
1281 /* Don't substitute for a register intended as a clobberable
1282 operand. */
1283 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1284 if (rtx_equal_p (reg, dest))
1285 return 0;
1286
1287 /* If the clobber represents an earlyclobber operand, we must not
1288 substitute an expression containing the clobbered register.
1289 As we do not analyze the constraint strings here, we have to
1290 make the conservative assumption. However, if the register is
1291 a fixed hard reg, the clobber cannot represent any operand;
1292 we leave it up to the machine description to either accept or
1293 reject use-and-clobber patterns. */
1294 if (!REG_P (reg)
1295 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1296 || !fixed_regs[REGNO (reg)])
1297 if (reg_overlap_mentioned_p (reg, src))
1298 return 0;
1299 }
1300
1301 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1302 or not), reject, unless nothing volatile comes between it and I3 */
1303
1304 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1305 {
1306 /* Make sure succ doesn't contain a volatile reference. */
1307 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1308 return 0;
1309
1310 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1311 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1312 return 0;
1313 }
1314
1315 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1316 to be an explicit register variable, and was chosen for a reason. */
1317
1318 if (GET_CODE (src) == ASM_OPERANDS
1319 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1320 return 0;
1321
1322 /* If there are any volatile insns between INSN and I3, reject, because
1323 they might affect machine state. */
1324
1325 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1326 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1327 return 0;
1328
1329 /* If INSN contains an autoincrement or autodecrement, make sure that
1330 register is not used between there and I3, and not already used in
1331 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1332 Also insist that I3 not be a jump; if it were one
1333 and the incremented register were spilled, we would lose. */
1334
1335 #ifdef AUTO_INC_DEC
1336 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1337 if (REG_NOTE_KIND (link) == REG_INC
1338 && (JUMP_P (i3)
1339 || reg_used_between_p (XEXP (link, 0), insn, i3)
1340 || (pred != NULL_RTX
1341 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1342 || (succ != NULL_RTX
1343 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1344 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1345 return 0;
1346 #endif
1347
1348 #ifdef HAVE_cc0
1349 /* Don't combine an insn that follows a CC0-setting insn.
1350 An insn that uses CC0 must not be separated from the one that sets it.
1351 We do, however, allow I2 to follow a CC0-setting insn if that insn
1352 is passed as I1; in that case it will be deleted also.
1353 We also allow combining in this case if all the insns are adjacent
1354 because that would leave the two CC0 insns adjacent as well.
1355 It would be more logical to test whether CC0 occurs inside I1 or I2,
1356 but that would be much slower, and this ought to be equivalent. */
1357
1358 p = prev_nonnote_insn (insn);
1359 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1360 && ! all_adjacent)
1361 return 0;
1362 #endif
1363
1364 /* If we get here, we have passed all the tests and the combination is
1365 to be allowed. */
1366
1367 *pdest = dest;
1368 *psrc = src;
1369
1370 return 1;
1371 }
1372 \f
1373 /* LOC is the location within I3 that contains its pattern or the component
1374 of a PARALLEL of the pattern. We validate that it is valid for combining.
1375
1376 One problem is if I3 modifies its output, as opposed to replacing it
1377 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1378 so would produce an insn that is not equivalent to the original insns.
1379
1380 Consider:
1381
1382 (set (reg:DI 101) (reg:DI 100))
1383 (set (subreg:SI (reg:DI 101) 0) <foo>)
1384
1385 This is NOT equivalent to:
1386
1387 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1388 (set (reg:DI 101) (reg:DI 100))])
1389
1390 Not only does this modify 100 (in which case it might still be valid
1391 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1392
1393 We can also run into a problem if I2 sets a register that I1
1394 uses and I1 gets directly substituted into I3 (not via I2). In that
1395 case, we would be getting the wrong value of I2DEST into I3, so we
1396 must reject the combination. This case occurs when I2 and I1 both
1397 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1398 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1399 of a SET must prevent combination from occurring.
1400
1401 Before doing the above check, we first try to expand a field assignment
1402 into a set of logical operations.
1403
1404 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1405 we place a register that is both set and used within I3. If more than one
1406 such register is detected, we fail.
1407
1408 Return 1 if the combination is valid, zero otherwise. */
1409
1410 static int
1411 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1412 int i1_not_in_src, rtx *pi3dest_killed)
1413 {
1414 rtx x = *loc;
1415
1416 if (GET_CODE (x) == SET)
1417 {
1418 rtx set = x ;
1419 rtx dest = SET_DEST (set);
1420 rtx src = SET_SRC (set);
1421 rtx inner_dest = dest;
1422
1423 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1424 || GET_CODE (inner_dest) == SUBREG
1425 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1426 inner_dest = XEXP (inner_dest, 0);
1427
1428 /* Check for the case where I3 modifies its output, as discussed
1429 above. We don't want to prevent pseudos from being combined
1430 into the address of a MEM, so only prevent the combination if
1431 i1 or i2 set the same MEM. */
1432 if ((inner_dest != dest &&
1433 (!MEM_P (inner_dest)
1434 || rtx_equal_p (i2dest, inner_dest)
1435 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1436 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1437 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1438
1439 /* This is the same test done in can_combine_p except we can't test
1440 all_adjacent; we don't have to, since this instruction will stay
1441 in place, thus we are not considering increasing the lifetime of
1442 INNER_DEST.
1443
1444 Also, if this insn sets a function argument, combining it with
1445 something that might need a spill could clobber a previous
1446 function argument; the all_adjacent test in can_combine_p also
1447 checks this; here, we do a more specific test for this case. */
1448
1449 || (REG_P (inner_dest)
1450 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1451 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1452 GET_MODE (inner_dest))))
1453 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1454 return 0;
1455
1456 /* If DEST is used in I3, it is being killed in this insn,
1457 so record that for later.
1458 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1459 STACK_POINTER_REGNUM, since these are always considered to be
1460 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1461 if (pi3dest_killed && REG_P (dest)
1462 && reg_referenced_p (dest, PATTERN (i3))
1463 && REGNO (dest) != FRAME_POINTER_REGNUM
1464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1465 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1466 #endif
1467 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1468 && (REGNO (dest) != ARG_POINTER_REGNUM
1469 || ! fixed_regs [REGNO (dest)])
1470 #endif
1471 && REGNO (dest) != STACK_POINTER_REGNUM)
1472 {
1473 if (*pi3dest_killed)
1474 return 0;
1475
1476 *pi3dest_killed = dest;
1477 }
1478 }
1479
1480 else if (GET_CODE (x) == PARALLEL)
1481 {
1482 int i;
1483
1484 for (i = 0; i < XVECLEN (x, 0); i++)
1485 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1486 i1_not_in_src, pi3dest_killed))
1487 return 0;
1488 }
1489
1490 return 1;
1491 }
1492 \f
1493 /* Return 1 if X is an arithmetic expression that contains a multiplication
1494 and division. We don't count multiplications by powers of two here. */
1495
1496 static int
1497 contains_muldiv (rtx x)
1498 {
1499 switch (GET_CODE (x))
1500 {
1501 case MOD: case DIV: case UMOD: case UDIV:
1502 return 1;
1503
1504 case MULT:
1505 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1506 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1507 default:
1508 if (BINARY_P (x))
1509 return contains_muldiv (XEXP (x, 0))
1510 || contains_muldiv (XEXP (x, 1));
1511
1512 if (UNARY_P (x))
1513 return contains_muldiv (XEXP (x, 0));
1514
1515 return 0;
1516 }
1517 }
1518 \f
1519 /* Determine whether INSN can be used in a combination. Return nonzero if
1520 not. This is used in try_combine to detect early some cases where we
1521 can't perform combinations. */
1522
1523 static int
1524 cant_combine_insn_p (rtx insn)
1525 {
1526 rtx set;
1527 rtx src, dest;
1528
1529 /* If this isn't really an insn, we can't do anything.
1530 This can occur when flow deletes an insn that it has merged into an
1531 auto-increment address. */
1532 if (! INSN_P (insn))
1533 return 1;
1534
1535 /* Never combine loads and stores involving hard regs that are likely
1536 to be spilled. The register allocator can usually handle such
1537 reg-reg moves by tying. If we allow the combiner to make
1538 substitutions of likely-spilled regs, reload might die.
1539 As an exception, we allow combinations involving fixed regs; these are
1540 not available to the register allocator so there's no risk involved. */
1541
1542 set = single_set (insn);
1543 if (! set)
1544 return 0;
1545 src = SET_SRC (set);
1546 dest = SET_DEST (set);
1547 if (GET_CODE (src) == SUBREG)
1548 src = SUBREG_REG (src);
1549 if (GET_CODE (dest) == SUBREG)
1550 dest = SUBREG_REG (dest);
1551 if (REG_P (src) && REG_P (dest)
1552 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1553 && ! fixed_regs[REGNO (src)]
1554 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1555 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1556 && ! fixed_regs[REGNO (dest)]
1557 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1558 return 1;
1559
1560 return 0;
1561 }
1562
1563 struct likely_spilled_retval_info
1564 {
1565 unsigned regno, nregs;
1566 unsigned mask;
1567 };
1568
1569 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1570 hard registers that are known to be written to / clobbered in full. */
1571 static void
1572 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1573 {
1574 struct likely_spilled_retval_info *info = data;
1575 unsigned regno, nregs;
1576 unsigned new_mask;
1577
1578 if (!REG_P (XEXP (set, 0)))
1579 return;
1580 regno = REGNO (x);
1581 if (regno >= info->regno + info->nregs)
1582 return;
1583 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1584 if (regno + nregs <= info->regno)
1585 return;
1586 new_mask = (2U << (nregs - 1)) - 1;
1587 if (regno < info->regno)
1588 new_mask >>= info->regno - regno;
1589 else
1590 new_mask <<= regno - info->regno;
1591 info->mask &= new_mask;
1592 }
1593
1594 /* Return nonzero iff part of the return value is live during INSN, and
1595 it is likely spilled. This can happen when more than one insn is needed
1596 to copy the return value, e.g. when we consider to combine into the
1597 second copy insn for a complex value. */
1598
1599 static int
1600 likely_spilled_retval_p (rtx insn)
1601 {
1602 rtx use = BB_END (this_basic_block);
1603 rtx reg, p;
1604 unsigned regno, nregs;
1605 /* We assume here that no machine mode needs more than
1606 32 hard registers when the value overlaps with a register
1607 for which FUNCTION_VALUE_REGNO_P is true. */
1608 unsigned mask;
1609 struct likely_spilled_retval_info info;
1610
1611 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1612 return 0;
1613 reg = XEXP (PATTERN (use), 0);
1614 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1615 return 0;
1616 regno = REGNO (reg);
1617 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1618 if (nregs == 1)
1619 return 0;
1620 mask = (2U << (nregs - 1)) - 1;
1621
1622 /* Disregard parts of the return value that are set later. */
1623 info.regno = regno;
1624 info.nregs = nregs;
1625 info.mask = mask;
1626 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1627 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1628 mask = info.mask;
1629
1630 /* Check if any of the (probably) live return value registers is
1631 likely spilled. */
1632 nregs --;
1633 do
1634 {
1635 if ((mask & 1 << nregs)
1636 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1637 return 1;
1638 } while (nregs--);
1639 return 0;
1640 }
1641
1642 /* Adjust INSN after we made a change to its destination.
1643
1644 Changing the destination can invalidate notes that say something about
1645 the results of the insn and a LOG_LINK pointing to the insn. */
1646
1647 static void
1648 adjust_for_new_dest (rtx insn)
1649 {
1650 rtx *loc;
1651
1652 /* For notes, be conservative and simply remove them. */
1653 loc = &REG_NOTES (insn);
1654 while (*loc)
1655 {
1656 enum reg_note kind = REG_NOTE_KIND (*loc);
1657 if (kind == REG_EQUAL || kind == REG_EQUIV)
1658 *loc = XEXP (*loc, 1);
1659 else
1660 loc = &XEXP (*loc, 1);
1661 }
1662
1663 /* The new insn will have a destination that was previously the destination
1664 of an insn just above it. Call distribute_links to make a LOG_LINK from
1665 the next use of that destination. */
1666 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1667 }
1668
1669 /* Return TRUE if combine can reuse reg X in mode MODE.
1670 ADDED_SETS is nonzero if the original set is still required. */
1671 static bool
1672 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1673 {
1674 unsigned int regno;
1675
1676 if (!REG_P(x))
1677 return false;
1678
1679 regno = REGNO (x);
1680 /* Allow hard registers if the new mode is legal, and occupies no more
1681 registers than the old mode. */
1682 if (regno < FIRST_PSEUDO_REGISTER)
1683 return (HARD_REGNO_MODE_OK (regno, mode)
1684 && (hard_regno_nregs[regno][GET_MODE (x)]
1685 >= hard_regno_nregs[regno][mode]));
1686
1687 /* Or a pseudo that is only used once. */
1688 return (REG_N_SETS (regno) == 1 && !added_sets
1689 && !REG_USERVAR_P (x));
1690 }
1691
1692 /* Try to combine the insns I1 and I2 into I3.
1693 Here I1 and I2 appear earlier than I3.
1694 I1 can be zero; then we combine just I2 into I3.
1695
1696 If we are combining three insns and the resulting insn is not recognized,
1697 try splitting it into two insns. If that happens, I2 and I3 are retained
1698 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1699 are pseudo-deleted.
1700
1701 Return 0 if the combination does not work. Then nothing is changed.
1702 If we did the combination, return the insn at which combine should
1703 resume scanning.
1704
1705 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1706 new direct jump instruction. */
1707
1708 static rtx
1709 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1710 {
1711 /* New patterns for I3 and I2, respectively. */
1712 rtx newpat, newi2pat = 0;
1713 rtvec newpat_vec_with_clobbers = 0;
1714 int substed_i2 = 0, substed_i1 = 0;
1715 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1716 int added_sets_1, added_sets_2;
1717 /* Total number of SETs to put into I3. */
1718 int total_sets;
1719 /* Nonzero if I2's body now appears in I3. */
1720 int i2_is_used;
1721 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1722 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1723 /* Contains I3 if the destination of I3 is used in its source, which means
1724 that the old life of I3 is being killed. If that usage is placed into
1725 I2 and not in I3, a REG_DEAD note must be made. */
1726 rtx i3dest_killed = 0;
1727 /* SET_DEST and SET_SRC of I2 and I1. */
1728 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1729 /* PATTERN (I2), or a copy of it in certain cases. */
1730 rtx i2pat;
1731 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1732 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1733 int i1_feeds_i3 = 0;
1734 /* Notes that must be added to REG_NOTES in I3 and I2. */
1735 rtx new_i3_notes, new_i2_notes;
1736 /* Notes that we substituted I3 into I2 instead of the normal case. */
1737 int i3_subst_into_i2 = 0;
1738 /* Notes that I1, I2 or I3 is a MULT operation. */
1739 int have_mult = 0;
1740 int swap_i2i3 = 0;
1741
1742 int maxreg;
1743 rtx temp;
1744 rtx link;
1745 int i;
1746
1747 /* Exit early if one of the insns involved can't be used for
1748 combinations. */
1749 if (cant_combine_insn_p (i3)
1750 || cant_combine_insn_p (i2)
1751 || (i1 && cant_combine_insn_p (i1))
1752 || likely_spilled_retval_p (i3)
1753 /* We also can't do anything if I3 has a
1754 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1755 libcall. */
1756 #if 0
1757 /* ??? This gives worse code, and appears to be unnecessary, since no
1758 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1759 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1760 #endif
1761 )
1762 return 0;
1763
1764 combine_attempts++;
1765 undobuf.other_insn = 0;
1766
1767 /* Reset the hard register usage information. */
1768 CLEAR_HARD_REG_SET (newpat_used_regs);
1769
1770 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1771 code below, set I1 to be the earlier of the two insns. */
1772 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1773 temp = i1, i1 = i2, i2 = temp;
1774
1775 added_links_insn = 0;
1776
1777 /* First check for one important special-case that the code below will
1778 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1779 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1780 we may be able to replace that destination with the destination of I3.
1781 This occurs in the common code where we compute both a quotient and
1782 remainder into a structure, in which case we want to do the computation
1783 directly into the structure to avoid register-register copies.
1784
1785 Note that this case handles both multiple sets in I2 and also
1786 cases where I2 has a number of CLOBBER or PARALLELs.
1787
1788 We make very conservative checks below and only try to handle the
1789 most common cases of this. For example, we only handle the case
1790 where I2 and I3 are adjacent to avoid making difficult register
1791 usage tests. */
1792
1793 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1794 && REG_P (SET_SRC (PATTERN (i3)))
1795 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1796 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1797 && GET_CODE (PATTERN (i2)) == PARALLEL
1798 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1799 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1800 below would need to check what is inside (and reg_overlap_mentioned_p
1801 doesn't support those codes anyway). Don't allow those destinations;
1802 the resulting insn isn't likely to be recognized anyway. */
1803 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1804 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1805 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1806 SET_DEST (PATTERN (i3)))
1807 && next_real_insn (i2) == i3)
1808 {
1809 rtx p2 = PATTERN (i2);
1810
1811 /* Make sure that the destination of I3,
1812 which we are going to substitute into one output of I2,
1813 is not used within another output of I2. We must avoid making this:
1814 (parallel [(set (mem (reg 69)) ...)
1815 (set (reg 69) ...)])
1816 which is not well-defined as to order of actions.
1817 (Besides, reload can't handle output reloads for this.)
1818
1819 The problem can also happen if the dest of I3 is a memory ref,
1820 if another dest in I2 is an indirect memory ref. */
1821 for (i = 0; i < XVECLEN (p2, 0); i++)
1822 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1823 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1824 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1825 SET_DEST (XVECEXP (p2, 0, i))))
1826 break;
1827
1828 if (i == XVECLEN (p2, 0))
1829 for (i = 0; i < XVECLEN (p2, 0); i++)
1830 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1831 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1832 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1833 {
1834 combine_merges++;
1835
1836 subst_insn = i3;
1837 subst_low_cuid = INSN_CUID (i2);
1838
1839 added_sets_2 = added_sets_1 = 0;
1840 i2dest = SET_SRC (PATTERN (i3));
1841
1842 /* Replace the dest in I2 with our dest and make the resulting
1843 insn the new pattern for I3. Then skip to where we
1844 validate the pattern. Everything was set up above. */
1845 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1846 SET_DEST (PATTERN (i3)));
1847
1848 newpat = p2;
1849 i3_subst_into_i2 = 1;
1850 goto validate_replacement;
1851 }
1852 }
1853
1854 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1855 one of those words to another constant, merge them by making a new
1856 constant. */
1857 if (i1 == 0
1858 && (temp = single_set (i2)) != 0
1859 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1860 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1861 && REG_P (SET_DEST (temp))
1862 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1863 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1864 && GET_CODE (PATTERN (i3)) == SET
1865 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1866 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1867 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1868 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1869 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1870 {
1871 HOST_WIDE_INT lo, hi;
1872
1873 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1874 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1875 else
1876 {
1877 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1878 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1879 }
1880
1881 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1882 {
1883 /* We don't handle the case of the target word being wider
1884 than a host wide int. */
1885 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1886
1887 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1888 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1889 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1890 }
1891 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1892 hi = INTVAL (SET_SRC (PATTERN (i3)));
1893 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1894 {
1895 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1896 >> (HOST_BITS_PER_WIDE_INT - 1));
1897
1898 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1899 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1900 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1901 (INTVAL (SET_SRC (PATTERN (i3)))));
1902 if (hi == sign)
1903 hi = lo < 0 ? -1 : 0;
1904 }
1905 else
1906 /* We don't handle the case of the higher word not fitting
1907 entirely in either hi or lo. */
1908 gcc_unreachable ();
1909
1910 combine_merges++;
1911 subst_insn = i3;
1912 subst_low_cuid = INSN_CUID (i2);
1913 added_sets_2 = added_sets_1 = 0;
1914 i2dest = SET_DEST (temp);
1915
1916 SUBST (SET_SRC (temp),
1917 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1918
1919 newpat = PATTERN (i2);
1920 goto validate_replacement;
1921 }
1922
1923 #ifndef HAVE_cc0
1924 /* If we have no I1 and I2 looks like:
1925 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1926 (set Y OP)])
1927 make up a dummy I1 that is
1928 (set Y OP)
1929 and change I2 to be
1930 (set (reg:CC X) (compare:CC Y (const_int 0)))
1931
1932 (We can ignore any trailing CLOBBERs.)
1933
1934 This undoes a previous combination and allows us to match a branch-and-
1935 decrement insn. */
1936
1937 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1938 && XVECLEN (PATTERN (i2), 0) >= 2
1939 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1940 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1941 == MODE_CC)
1942 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1943 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1944 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1945 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1946 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1947 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1948 {
1949 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1950 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1951 break;
1952
1953 if (i == 1)
1954 {
1955 /* We make I1 with the same INSN_UID as I2. This gives it
1956 the same INSN_CUID for value tracking. Our fake I1 will
1957 never appear in the insn stream so giving it the same INSN_UID
1958 as I2 will not cause a problem. */
1959
1960 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1961 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1962 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1963 NULL_RTX);
1964
1965 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1966 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1967 SET_DEST (PATTERN (i1)));
1968 }
1969 }
1970 #endif
1971
1972 /* Verify that I2 and I1 are valid for combining. */
1973 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1974 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1975 {
1976 undo_all ();
1977 return 0;
1978 }
1979
1980 /* Record whether I2DEST is used in I2SRC and similarly for the other
1981 cases. Knowing this will help in register status updating below. */
1982 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1983 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1984 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1985
1986 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1987 in I2SRC. */
1988 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1989
1990 /* Ensure that I3's pattern can be the destination of combines. */
1991 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1992 i1 && i2dest_in_i1src && i1_feeds_i3,
1993 &i3dest_killed))
1994 {
1995 undo_all ();
1996 return 0;
1997 }
1998
1999 /* See if any of the insns is a MULT operation. Unless one is, we will
2000 reject a combination that is, since it must be slower. Be conservative
2001 here. */
2002 if (GET_CODE (i2src) == MULT
2003 || (i1 != 0 && GET_CODE (i1src) == MULT)
2004 || (GET_CODE (PATTERN (i3)) == SET
2005 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2006 have_mult = 1;
2007
2008 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2009 We used to do this EXCEPT in one case: I3 has a post-inc in an
2010 output operand. However, that exception can give rise to insns like
2011 mov r3,(r3)+
2012 which is a famous insn on the PDP-11 where the value of r3 used as the
2013 source was model-dependent. Avoid this sort of thing. */
2014
2015 #if 0
2016 if (!(GET_CODE (PATTERN (i3)) == SET
2017 && REG_P (SET_SRC (PATTERN (i3)))
2018 && MEM_P (SET_DEST (PATTERN (i3)))
2019 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2020 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2021 /* It's not the exception. */
2022 #endif
2023 #ifdef AUTO_INC_DEC
2024 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2025 if (REG_NOTE_KIND (link) == REG_INC
2026 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2027 || (i1 != 0
2028 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2029 {
2030 undo_all ();
2031 return 0;
2032 }
2033 #endif
2034
2035 /* See if the SETs in I1 or I2 need to be kept around in the merged
2036 instruction: whenever the value set there is still needed past I3.
2037 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2038
2039 For the SET in I1, we have two cases: If I1 and I2 independently
2040 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2041 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2042 in I1 needs to be kept around unless I1DEST dies or is set in either
2043 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2044 I1DEST. If so, we know I1 feeds into I2. */
2045
2046 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2047
2048 added_sets_1
2049 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2050 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2051
2052 /* If the set in I2 needs to be kept around, we must make a copy of
2053 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2054 PATTERN (I2), we are only substituting for the original I1DEST, not into
2055 an already-substituted copy. This also prevents making self-referential
2056 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2057 I2DEST. */
2058
2059 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2060 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2061 : PATTERN (i2));
2062
2063 if (added_sets_2)
2064 i2pat = copy_rtx (i2pat);
2065
2066 combine_merges++;
2067
2068 /* Substitute in the latest insn for the regs set by the earlier ones. */
2069
2070 maxreg = max_reg_num ();
2071
2072 subst_insn = i3;
2073
2074 /* It is possible that the source of I2 or I1 may be performing an
2075 unneeded operation, such as a ZERO_EXTEND of something that is known
2076 to have the high part zero. Handle that case by letting subst look at
2077 the innermost one of them.
2078
2079 Another way to do this would be to have a function that tries to
2080 simplify a single insn instead of merging two or more insns. We don't
2081 do this because of the potential of infinite loops and because
2082 of the potential extra memory required. However, doing it the way
2083 we are is a bit of a kludge and doesn't catch all cases.
2084
2085 But only do this if -fexpensive-optimizations since it slows things down
2086 and doesn't usually win. */
2087
2088 if (flag_expensive_optimizations)
2089 {
2090 /* Pass pc_rtx so no substitutions are done, just simplifications. */
2091 if (i1)
2092 {
2093 subst_low_cuid = INSN_CUID (i1);
2094 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2095 }
2096 else
2097 {
2098 subst_low_cuid = INSN_CUID (i2);
2099 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2100 }
2101 }
2102
2103 #ifndef HAVE_cc0
2104 /* Many machines that don't use CC0 have insns that can both perform an
2105 arithmetic operation and set the condition code. These operations will
2106 be represented as a PARALLEL with the first element of the vector
2107 being a COMPARE of an arithmetic operation with the constant zero.
2108 The second element of the vector will set some pseudo to the result
2109 of the same arithmetic operation. If we simplify the COMPARE, we won't
2110 match such a pattern and so will generate an extra insn. Here we test
2111 for this case, where both the comparison and the operation result are
2112 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2113 I2SRC. Later we will make the PARALLEL that contains I2. */
2114
2115 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2116 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2117 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2118 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2119 {
2120 #ifdef SELECT_CC_MODE
2121 rtx *cc_use;
2122 enum machine_mode compare_mode;
2123 #endif
2124
2125 newpat = PATTERN (i3);
2126 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2127
2128 i2_is_used = 1;
2129
2130 #ifdef SELECT_CC_MODE
2131 /* See if a COMPARE with the operand we substituted in should be done
2132 with the mode that is currently being used. If not, do the same
2133 processing we do in `subst' for a SET; namely, if the destination
2134 is used only once, try to replace it with a register of the proper
2135 mode and also replace the COMPARE. */
2136 if (undobuf.other_insn == 0
2137 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2138 &undobuf.other_insn))
2139 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2140 i2src, const0_rtx))
2141 != GET_MODE (SET_DEST (newpat))))
2142 {
2143 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2144 compare_mode))
2145 {
2146 unsigned int regno = REGNO (SET_DEST (newpat));
2147 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2148
2149 if (regno >= FIRST_PSEUDO_REGISTER)
2150 SUBST (regno_reg_rtx[regno], new_dest);
2151
2152 SUBST (SET_DEST (newpat), new_dest);
2153 SUBST (XEXP (*cc_use, 0), new_dest);
2154 SUBST (SET_SRC (newpat),
2155 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2156 }
2157 else
2158 undobuf.other_insn = 0;
2159 }
2160 #endif
2161 }
2162 else
2163 #endif
2164 {
2165 n_occurrences = 0; /* `subst' counts here */
2166
2167 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2168 need to make a unique copy of I2SRC each time we substitute it
2169 to avoid self-referential rtl. */
2170
2171 subst_low_cuid = INSN_CUID (i2);
2172 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2173 ! i1_feeds_i3 && i1dest_in_i1src);
2174 substed_i2 = 1;
2175
2176 /* Record whether i2's body now appears within i3's body. */
2177 i2_is_used = n_occurrences;
2178 }
2179
2180 /* If we already got a failure, don't try to do more. Otherwise,
2181 try to substitute in I1 if we have it. */
2182
2183 if (i1 && GET_CODE (newpat) != CLOBBER)
2184 {
2185 /* Before we can do this substitution, we must redo the test done
2186 above (see detailed comments there) that ensures that I1DEST
2187 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2188
2189 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2190 0, (rtx*) 0))
2191 {
2192 undo_all ();
2193 return 0;
2194 }
2195
2196 n_occurrences = 0;
2197 subst_low_cuid = INSN_CUID (i1);
2198 newpat = subst (newpat, i1dest, i1src, 0, 0);
2199 substed_i1 = 1;
2200 }
2201
2202 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2203 to count all the ways that I2SRC and I1SRC can be used. */
2204 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2205 && i2_is_used + added_sets_2 > 1)
2206 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2207 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2208 > 1))
2209 /* Fail if we tried to make a new register. */
2210 || max_reg_num () != maxreg
2211 /* Fail if we couldn't do something and have a CLOBBER. */
2212 || GET_CODE (newpat) == CLOBBER
2213 /* Fail if this new pattern is a MULT and we didn't have one before
2214 at the outer level. */
2215 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2216 && ! have_mult))
2217 {
2218 undo_all ();
2219 return 0;
2220 }
2221
2222 /* If the actions of the earlier insns must be kept
2223 in addition to substituting them into the latest one,
2224 we must make a new PARALLEL for the latest insn
2225 to hold additional the SETs. */
2226
2227 if (added_sets_1 || added_sets_2)
2228 {
2229 combine_extras++;
2230
2231 if (GET_CODE (newpat) == PARALLEL)
2232 {
2233 rtvec old = XVEC (newpat, 0);
2234 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2235 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2236 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2237 sizeof (old->elem[0]) * old->num_elem);
2238 }
2239 else
2240 {
2241 rtx old = newpat;
2242 total_sets = 1 + added_sets_1 + added_sets_2;
2243 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2244 XVECEXP (newpat, 0, 0) = old;
2245 }
2246
2247 if (added_sets_1)
2248 XVECEXP (newpat, 0, --total_sets)
2249 = (GET_CODE (PATTERN (i1)) == PARALLEL
2250 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2251
2252 if (added_sets_2)
2253 {
2254 /* If there is no I1, use I2's body as is. We used to also not do
2255 the subst call below if I2 was substituted into I3,
2256 but that could lose a simplification. */
2257 if (i1 == 0)
2258 XVECEXP (newpat, 0, --total_sets) = i2pat;
2259 else
2260 /* See comment where i2pat is assigned. */
2261 XVECEXP (newpat, 0, --total_sets)
2262 = subst (i2pat, i1dest, i1src, 0, 0);
2263 }
2264 }
2265
2266 /* We come here when we are replacing a destination in I2 with the
2267 destination of I3. */
2268 validate_replacement:
2269
2270 /* Note which hard regs this insn has as inputs. */
2271 mark_used_regs_combine (newpat);
2272
2273 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2274 consider splitting this pattern, we might need these clobbers. */
2275 if (i1 && GET_CODE (newpat) == PARALLEL
2276 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2277 {
2278 int len = XVECLEN (newpat, 0);
2279
2280 newpat_vec_with_clobbers = rtvec_alloc (len);
2281 for (i = 0; i < len; i++)
2282 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2283 }
2284
2285 /* Is the result of combination a valid instruction? */
2286 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2287
2288 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2289 the second SET's destination is a register that is unused and isn't
2290 marked as an instruction that might trap in an EH region. In that case,
2291 we just need the first SET. This can occur when simplifying a divmod
2292 insn. We *must* test for this case here because the code below that
2293 splits two independent SETs doesn't handle this case correctly when it
2294 updates the register status.
2295
2296 It's pointless doing this if we originally had two sets, one from
2297 i3, and one from i2. Combining then splitting the parallel results
2298 in the original i2 again plus an invalid insn (which we delete).
2299 The net effect is only to move instructions around, which makes
2300 debug info less accurate.
2301
2302 Also check the case where the first SET's destination is unused.
2303 That would not cause incorrect code, but does cause an unneeded
2304 insn to remain. */
2305
2306 if (insn_code_number < 0
2307 && !(added_sets_2 && i1 == 0)
2308 && GET_CODE (newpat) == PARALLEL
2309 && XVECLEN (newpat, 0) == 2
2310 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2311 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2312 && asm_noperands (newpat) < 0)
2313 {
2314 rtx set0 = XVECEXP (newpat, 0, 0);
2315 rtx set1 = XVECEXP (newpat, 0, 1);
2316 rtx note;
2317
2318 if (((REG_P (SET_DEST (set1))
2319 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2320 || (GET_CODE (SET_DEST (set1)) == SUBREG
2321 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2322 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2323 || INTVAL (XEXP (note, 0)) <= 0)
2324 && ! side_effects_p (SET_SRC (set1)))
2325 {
2326 newpat = set0;
2327 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2328 }
2329
2330 else if (((REG_P (SET_DEST (set0))
2331 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2332 || (GET_CODE (SET_DEST (set0)) == SUBREG
2333 && find_reg_note (i3, REG_UNUSED,
2334 SUBREG_REG (SET_DEST (set0)))))
2335 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2336 || INTVAL (XEXP (note, 0)) <= 0)
2337 && ! side_effects_p (SET_SRC (set0)))
2338 {
2339 newpat = set1;
2340 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2341
2342 if (insn_code_number >= 0)
2343 {
2344 /* If we will be able to accept this, we have made a
2345 change to the destination of I3. This requires us to
2346 do a few adjustments. */
2347
2348 PATTERN (i3) = newpat;
2349 adjust_for_new_dest (i3);
2350 }
2351 }
2352 }
2353
2354 /* If we were combining three insns and the result is a simple SET
2355 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2356 insns. There are two ways to do this. It can be split using a
2357 machine-specific method (like when you have an addition of a large
2358 constant) or by combine in the function find_split_point. */
2359
2360 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2361 && asm_noperands (newpat) < 0)
2362 {
2363 rtx m_split, *split;
2364 rtx ni2dest = i2dest;
2365
2366 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2367 use I2DEST as a scratch register will help. In the latter case,
2368 convert I2DEST to the mode of the source of NEWPAT if we can. */
2369
2370 m_split = split_insns (newpat, i3);
2371
2372 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2373 inputs of NEWPAT. */
2374
2375 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2376 possible to try that as a scratch reg. This would require adding
2377 more code to make it work though. */
2378
2379 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2380 {
2381 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2382 /* If I2DEST is a hard register or the only use of a pseudo,
2383 we can change its mode. */
2384 if (new_mode != GET_MODE (i2dest)
2385 && new_mode != VOIDmode
2386 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2387 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2388 REGNO (i2dest));
2389
2390 m_split = split_insns (gen_rtx_PARALLEL
2391 (VOIDmode,
2392 gen_rtvec (2, newpat,
2393 gen_rtx_CLOBBER (VOIDmode,
2394 ni2dest))),
2395 i3);
2396 /* If the split with the mode-changed register didn't work, try
2397 the original register. */
2398 if (! m_split && ni2dest != i2dest)
2399 {
2400 ni2dest = i2dest;
2401 m_split = split_insns (gen_rtx_PARALLEL
2402 (VOIDmode,
2403 gen_rtvec (2, newpat,
2404 gen_rtx_CLOBBER (VOIDmode,
2405 i2dest))),
2406 i3);
2407 }
2408 }
2409
2410 /* If recog_for_combine has discarded clobbers, try to use them
2411 again for the split. */
2412 if (m_split == 0 && newpat_vec_with_clobbers)
2413 m_split
2414 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2415 newpat_vec_with_clobbers), i3);
2416
2417 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2418 {
2419 m_split = PATTERN (m_split);
2420 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2421 if (insn_code_number >= 0)
2422 newpat = m_split;
2423 }
2424 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2425 && (next_real_insn (i2) == i3
2426 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2427 {
2428 rtx i2set, i3set;
2429 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2430 newi2pat = PATTERN (m_split);
2431
2432 i3set = single_set (NEXT_INSN (m_split));
2433 i2set = single_set (m_split);
2434
2435 /* In case we changed the mode of I2DEST, replace it in the
2436 pseudo-register table here. We can't do it above in case this
2437 code doesn't get executed and we do a split the other way. */
2438
2439 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2440 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2441
2442 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2443
2444 /* If I2 or I3 has multiple SETs, we won't know how to track
2445 register status, so don't use these insns. If I2's destination
2446 is used between I2 and I3, we also can't use these insns. */
2447
2448 if (i2_code_number >= 0 && i2set && i3set
2449 && (next_real_insn (i2) == i3
2450 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2451 insn_code_number = recog_for_combine (&newi3pat, i3,
2452 &new_i3_notes);
2453 if (insn_code_number >= 0)
2454 newpat = newi3pat;
2455
2456 /* It is possible that both insns now set the destination of I3.
2457 If so, we must show an extra use of it. */
2458
2459 if (insn_code_number >= 0)
2460 {
2461 rtx new_i3_dest = SET_DEST (i3set);
2462 rtx new_i2_dest = SET_DEST (i2set);
2463
2464 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2465 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2466 || GET_CODE (new_i3_dest) == SUBREG)
2467 new_i3_dest = XEXP (new_i3_dest, 0);
2468
2469 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2470 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2471 || GET_CODE (new_i2_dest) == SUBREG)
2472 new_i2_dest = XEXP (new_i2_dest, 0);
2473
2474 if (REG_P (new_i3_dest)
2475 && REG_P (new_i2_dest)
2476 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2477 REG_N_SETS (REGNO (new_i2_dest))++;
2478 }
2479 }
2480
2481 /* If we can split it and use I2DEST, go ahead and see if that
2482 helps things be recognized. Verify that none of the registers
2483 are set between I2 and I3. */
2484 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2485 #ifdef HAVE_cc0
2486 && REG_P (i2dest)
2487 #endif
2488 /* We need I2DEST in the proper mode. If it is a hard register
2489 or the only use of a pseudo, we can change its mode.
2490 Make sure we don't change a hard register to have a mode that
2491 isn't valid for it, or change the number of registers. */
2492 && (GET_MODE (*split) == GET_MODE (i2dest)
2493 || GET_MODE (*split) == VOIDmode
2494 || can_change_dest_mode (i2dest, added_sets_2,
2495 GET_MODE (*split)))
2496 && (next_real_insn (i2) == i3
2497 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2498 /* We can't overwrite I2DEST if its value is still used by
2499 NEWPAT. */
2500 && ! reg_referenced_p (i2dest, newpat))
2501 {
2502 rtx newdest = i2dest;
2503 enum rtx_code split_code = GET_CODE (*split);
2504 enum machine_mode split_mode = GET_MODE (*split);
2505
2506 /* Get NEWDEST as a register in the proper mode. We have already
2507 validated that we can do this. */
2508 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2509 {
2510 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2511
2512 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2513 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2514 }
2515
2516 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2517 an ASHIFT. This can occur if it was inside a PLUS and hence
2518 appeared to be a memory address. This is a kludge. */
2519 if (split_code == MULT
2520 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2521 && INTVAL (XEXP (*split, 1)) > 0
2522 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2523 {
2524 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2525 XEXP (*split, 0), GEN_INT (i)));
2526 /* Update split_code because we may not have a multiply
2527 anymore. */
2528 split_code = GET_CODE (*split);
2529 }
2530
2531 #ifdef INSN_SCHEDULING
2532 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2533 be written as a ZERO_EXTEND. */
2534 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2535 {
2536 #ifdef LOAD_EXTEND_OP
2537 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2538 what it really is. */
2539 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2540 == SIGN_EXTEND)
2541 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2542 SUBREG_REG (*split)));
2543 else
2544 #endif
2545 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2546 SUBREG_REG (*split)));
2547 }
2548 #endif
2549
2550 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2551 SUBST (*split, newdest);
2552 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2553
2554 /* recog_for_combine might have added CLOBBERs to newi2pat.
2555 Make sure NEWPAT does not depend on the clobbered regs. */
2556 if (GET_CODE (newi2pat) == PARALLEL)
2557 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2558 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2559 {
2560 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2561 if (reg_overlap_mentioned_p (reg, newpat))
2562 {
2563 undo_all ();
2564 return 0;
2565 }
2566 }
2567
2568 /* If the split point was a MULT and we didn't have one before,
2569 don't use one now. */
2570 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2571 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2572 }
2573 }
2574
2575 /* Check for a case where we loaded from memory in a narrow mode and
2576 then sign extended it, but we need both registers. In that case,
2577 we have a PARALLEL with both loads from the same memory location.
2578 We can split this into a load from memory followed by a register-register
2579 copy. This saves at least one insn, more if register allocation can
2580 eliminate the copy.
2581
2582 We cannot do this if the destination of the first assignment is a
2583 condition code register or cc0. We eliminate this case by making sure
2584 the SET_DEST and SET_SRC have the same mode.
2585
2586 We cannot do this if the destination of the second assignment is
2587 a register that we have already assumed is zero-extended. Similarly
2588 for a SUBREG of such a register. */
2589
2590 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2591 && GET_CODE (newpat) == PARALLEL
2592 && XVECLEN (newpat, 0) == 2
2593 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2594 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2595 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2596 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2597 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2598 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2599 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2600 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2601 INSN_CUID (i2))
2602 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2603 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2604 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2605 (REG_P (temp)
2606 && reg_stat[REGNO (temp)].nonzero_bits != 0
2607 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2608 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2609 && (reg_stat[REGNO (temp)].nonzero_bits
2610 != GET_MODE_MASK (word_mode))))
2611 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2612 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2613 (REG_P (temp)
2614 && reg_stat[REGNO (temp)].nonzero_bits != 0
2615 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2616 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2617 && (reg_stat[REGNO (temp)].nonzero_bits
2618 != GET_MODE_MASK (word_mode)))))
2619 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2620 SET_SRC (XVECEXP (newpat, 0, 1)))
2621 && ! find_reg_note (i3, REG_UNUSED,
2622 SET_DEST (XVECEXP (newpat, 0, 0))))
2623 {
2624 rtx ni2dest;
2625
2626 newi2pat = XVECEXP (newpat, 0, 0);
2627 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2628 newpat = XVECEXP (newpat, 0, 1);
2629 SUBST (SET_SRC (newpat),
2630 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2631 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2632
2633 if (i2_code_number >= 0)
2634 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2635
2636 if (insn_code_number >= 0)
2637 swap_i2i3 = 1;
2638 }
2639
2640 /* Similarly, check for a case where we have a PARALLEL of two independent
2641 SETs but we started with three insns. In this case, we can do the sets
2642 as two separate insns. This case occurs when some SET allows two
2643 other insns to combine, but the destination of that SET is still live. */
2644
2645 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2646 && GET_CODE (newpat) == PARALLEL
2647 && XVECLEN (newpat, 0) == 2
2648 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2649 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2650 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2651 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2652 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2653 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2654 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2655 INSN_CUID (i2))
2656 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2657 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2658 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2659 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2660 XVECEXP (newpat, 0, 0))
2661 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2662 XVECEXP (newpat, 0, 1))
2663 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2664 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2665 {
2666 /* Normally, it doesn't matter which of the two is done first,
2667 but it does if one references cc0. In that case, it has to
2668 be first. */
2669 #ifdef HAVE_cc0
2670 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2671 {
2672 newi2pat = XVECEXP (newpat, 0, 0);
2673 newpat = XVECEXP (newpat, 0, 1);
2674 }
2675 else
2676 #endif
2677 {
2678 newi2pat = XVECEXP (newpat, 0, 1);
2679 newpat = XVECEXP (newpat, 0, 0);
2680 }
2681
2682 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2683
2684 if (i2_code_number >= 0)
2685 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2686 }
2687
2688 /* If it still isn't recognized, fail and change things back the way they
2689 were. */
2690 if ((insn_code_number < 0
2691 /* Is the result a reasonable ASM_OPERANDS? */
2692 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2693 {
2694 undo_all ();
2695 return 0;
2696 }
2697
2698 /* If we had to change another insn, make sure it is valid also. */
2699 if (undobuf.other_insn)
2700 {
2701 rtx other_pat = PATTERN (undobuf.other_insn);
2702 rtx new_other_notes;
2703 rtx note, next;
2704
2705 CLEAR_HARD_REG_SET (newpat_used_regs);
2706
2707 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2708 &new_other_notes);
2709
2710 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2711 {
2712 undo_all ();
2713 return 0;
2714 }
2715
2716 PATTERN (undobuf.other_insn) = other_pat;
2717
2718 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2719 are still valid. Then add any non-duplicate notes added by
2720 recog_for_combine. */
2721 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2722 {
2723 next = XEXP (note, 1);
2724
2725 if (REG_NOTE_KIND (note) == REG_UNUSED
2726 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2727 {
2728 if (REG_P (XEXP (note, 0)))
2729 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2730
2731 remove_note (undobuf.other_insn, note);
2732 }
2733 }
2734
2735 for (note = new_other_notes; note; note = XEXP (note, 1))
2736 if (REG_P (XEXP (note, 0)))
2737 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2738
2739 distribute_notes (new_other_notes, undobuf.other_insn,
2740 undobuf.other_insn, NULL_RTX);
2741 }
2742 #ifdef HAVE_cc0
2743 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2744 they are adjacent to each other or not. */
2745 {
2746 rtx p = prev_nonnote_insn (i3);
2747 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2748 && sets_cc0_p (newi2pat))
2749 {
2750 undo_all ();
2751 return 0;
2752 }
2753 }
2754 #endif
2755
2756 /* Only allow this combination if insn_rtx_costs reports that the
2757 replacement instructions are cheaper than the originals. */
2758 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2759 {
2760 undo_all ();
2761 return 0;
2762 }
2763
2764 /* We now know that we can do this combination. Merge the insns and
2765 update the status of registers and LOG_LINKS. */
2766
2767 if (swap_i2i3)
2768 {
2769 rtx insn;
2770 rtx link;
2771 rtx ni2dest;
2772
2773 /* I3 now uses what used to be its destination and which is now
2774 I2's destination. This requires us to do a few adjustments. */
2775 PATTERN (i3) = newpat;
2776 adjust_for_new_dest (i3);
2777
2778 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2779 so we still will.
2780
2781 However, some later insn might be using I2's dest and have
2782 a LOG_LINK pointing at I3. We must remove this link.
2783 The simplest way to remove the link is to point it at I1,
2784 which we know will be a NOTE. */
2785
2786 /* newi2pat is usually a SET here; however, recog_for_combine might
2787 have added some clobbers. */
2788 if (GET_CODE (newi2pat) == PARALLEL)
2789 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2790 else
2791 ni2dest = SET_DEST (newi2pat);
2792
2793 for (insn = NEXT_INSN (i3);
2794 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2795 || insn != BB_HEAD (this_basic_block->next_bb));
2796 insn = NEXT_INSN (insn))
2797 {
2798 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2799 {
2800 for (link = LOG_LINKS (insn); link;
2801 link = XEXP (link, 1))
2802 if (XEXP (link, 0) == i3)
2803 XEXP (link, 0) = i1;
2804
2805 break;
2806 }
2807 }
2808 }
2809
2810 {
2811 rtx i3notes, i2notes, i1notes = 0;
2812 rtx i3links, i2links, i1links = 0;
2813 rtx midnotes = 0;
2814 unsigned int regno;
2815
2816 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2817 clear them. */
2818 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2819 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2820 if (i1)
2821 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2822
2823 /* Ensure that we do not have something that should not be shared but
2824 occurs multiple times in the new insns. Check this by first
2825 resetting all the `used' flags and then copying anything is shared. */
2826
2827 reset_used_flags (i3notes);
2828 reset_used_flags (i2notes);
2829 reset_used_flags (i1notes);
2830 reset_used_flags (newpat);
2831 reset_used_flags (newi2pat);
2832 if (undobuf.other_insn)
2833 reset_used_flags (PATTERN (undobuf.other_insn));
2834
2835 i3notes = copy_rtx_if_shared (i3notes);
2836 i2notes = copy_rtx_if_shared (i2notes);
2837 i1notes = copy_rtx_if_shared (i1notes);
2838 newpat = copy_rtx_if_shared (newpat);
2839 newi2pat = copy_rtx_if_shared (newi2pat);
2840 if (undobuf.other_insn)
2841 reset_used_flags (PATTERN (undobuf.other_insn));
2842
2843 INSN_CODE (i3) = insn_code_number;
2844 PATTERN (i3) = newpat;
2845
2846 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2847 {
2848 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2849
2850 reset_used_flags (call_usage);
2851 call_usage = copy_rtx (call_usage);
2852
2853 if (substed_i2)
2854 replace_rtx (call_usage, i2dest, i2src);
2855
2856 if (substed_i1)
2857 replace_rtx (call_usage, i1dest, i1src);
2858
2859 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2860 }
2861
2862 if (undobuf.other_insn)
2863 INSN_CODE (undobuf.other_insn) = other_code_number;
2864
2865 /* We had one special case above where I2 had more than one set and
2866 we replaced a destination of one of those sets with the destination
2867 of I3. In that case, we have to update LOG_LINKS of insns later
2868 in this basic block. Note that this (expensive) case is rare.
2869
2870 Also, in this case, we must pretend that all REG_NOTEs for I2
2871 actually came from I3, so that REG_UNUSED notes from I2 will be
2872 properly handled. */
2873
2874 if (i3_subst_into_i2)
2875 {
2876 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2877 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2878 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2879 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2880 && ! find_reg_note (i2, REG_UNUSED,
2881 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2882 for (temp = NEXT_INSN (i2);
2883 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2884 || BB_HEAD (this_basic_block) != temp);
2885 temp = NEXT_INSN (temp))
2886 if (temp != i3 && INSN_P (temp))
2887 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2888 if (XEXP (link, 0) == i2)
2889 XEXP (link, 0) = i3;
2890
2891 if (i3notes)
2892 {
2893 rtx link = i3notes;
2894 while (XEXP (link, 1))
2895 link = XEXP (link, 1);
2896 XEXP (link, 1) = i2notes;
2897 }
2898 else
2899 i3notes = i2notes;
2900 i2notes = 0;
2901 }
2902
2903 LOG_LINKS (i3) = 0;
2904 REG_NOTES (i3) = 0;
2905 LOG_LINKS (i2) = 0;
2906 REG_NOTES (i2) = 0;
2907
2908 if (newi2pat)
2909 {
2910 INSN_CODE (i2) = i2_code_number;
2911 PATTERN (i2) = newi2pat;
2912 }
2913 else
2914 SET_INSN_DELETED (i2);
2915
2916 if (i1)
2917 {
2918 LOG_LINKS (i1) = 0;
2919 REG_NOTES (i1) = 0;
2920 SET_INSN_DELETED (i1);
2921 }
2922
2923 /* Get death notes for everything that is now used in either I3 or
2924 I2 and used to die in a previous insn. If we built two new
2925 patterns, move from I1 to I2 then I2 to I3 so that we get the
2926 proper movement on registers that I2 modifies. */
2927
2928 if (newi2pat)
2929 {
2930 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2931 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2932 }
2933 else
2934 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2935 i3, &midnotes);
2936
2937 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2938 if (i3notes)
2939 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2940 if (i2notes)
2941 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2942 if (i1notes)
2943 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2944 if (midnotes)
2945 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2946
2947 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2948 know these are REG_UNUSED and want them to go to the desired insn,
2949 so we always pass it as i3. We have not counted the notes in
2950 reg_n_deaths yet, so we need to do so now. */
2951
2952 if (newi2pat && new_i2_notes)
2953 {
2954 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2955 if (REG_P (XEXP (temp, 0)))
2956 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2957
2958 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2959 }
2960
2961 if (new_i3_notes)
2962 {
2963 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2964 if (REG_P (XEXP (temp, 0)))
2965 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2966
2967 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2968 }
2969
2970 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2971 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2972 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2973 in that case, it might delete I2. Similarly for I2 and I1.
2974 Show an additional death due to the REG_DEAD note we make here. If
2975 we discard it in distribute_notes, we will decrement it again. */
2976
2977 if (i3dest_killed)
2978 {
2979 if (REG_P (i3dest_killed))
2980 REG_N_DEATHS (REGNO (i3dest_killed))++;
2981
2982 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2983 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2984 NULL_RTX),
2985 NULL_RTX, i2, NULL_RTX);
2986 else
2987 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2988 NULL_RTX),
2989 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2990 }
2991
2992 if (i2dest_in_i2src)
2993 {
2994 if (REG_P (i2dest))
2995 REG_N_DEATHS (REGNO (i2dest))++;
2996
2997 if (newi2pat && reg_set_p (i2dest, newi2pat))
2998 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2999 NULL_RTX, i2, NULL_RTX);
3000 else
3001 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3002 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
3003 }
3004
3005 if (i1dest_in_i1src)
3006 {
3007 if (REG_P (i1dest))
3008 REG_N_DEATHS (REGNO (i1dest))++;
3009
3010 if (newi2pat && reg_set_p (i1dest, newi2pat))
3011 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3012 NULL_RTX, i2, NULL_RTX);
3013 else
3014 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3015 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
3016 }
3017
3018 distribute_links (i3links);
3019 distribute_links (i2links);
3020 distribute_links (i1links);
3021
3022 if (REG_P (i2dest))
3023 {
3024 rtx link;
3025 rtx i2_insn = 0, i2_val = 0, set;
3026
3027 /* The insn that used to set this register doesn't exist, and
3028 this life of the register may not exist either. See if one of
3029 I3's links points to an insn that sets I2DEST. If it does,
3030 that is now the last known value for I2DEST. If we don't update
3031 this and I2 set the register to a value that depended on its old
3032 contents, we will get confused. If this insn is used, thing
3033 will be set correctly in combine_instructions. */
3034
3035 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3036 if ((set = single_set (XEXP (link, 0))) != 0
3037 && rtx_equal_p (i2dest, SET_DEST (set)))
3038 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3039
3040 record_value_for_reg (i2dest, i2_insn, i2_val);
3041
3042 /* If the reg formerly set in I2 died only once and that was in I3,
3043 zero its use count so it won't make `reload' do any work. */
3044 if (! added_sets_2
3045 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3046 && ! i2dest_in_i2src)
3047 {
3048 regno = REGNO (i2dest);
3049 REG_N_SETS (regno)--;
3050 }
3051 }
3052
3053 if (i1 && REG_P (i1dest))
3054 {
3055 rtx link;
3056 rtx i1_insn = 0, i1_val = 0, set;
3057
3058 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3059 if ((set = single_set (XEXP (link, 0))) != 0
3060 && rtx_equal_p (i1dest, SET_DEST (set)))
3061 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3062
3063 record_value_for_reg (i1dest, i1_insn, i1_val);
3064
3065 regno = REGNO (i1dest);
3066 if (! added_sets_1 && ! i1dest_in_i1src)
3067 REG_N_SETS (regno)--;
3068 }
3069
3070 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3071 been made to this insn. The order of
3072 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3073 can affect nonzero_bits of newpat */
3074 if (newi2pat)
3075 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3076 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3077
3078 /* Set new_direct_jump_p if a new return or simple jump instruction
3079 has been created.
3080
3081 If I3 is now an unconditional jump, ensure that it has a
3082 BARRIER following it since it may have initially been a
3083 conditional jump. It may also be the last nonnote insn. */
3084
3085 if (returnjump_p (i3) || any_uncondjump_p (i3))
3086 {
3087 *new_direct_jump_p = 1;
3088 mark_jump_label (PATTERN (i3), i3, 0);
3089
3090 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3091 || !BARRIER_P (temp))
3092 emit_barrier_after (i3);
3093 }
3094
3095 if (undobuf.other_insn != NULL_RTX
3096 && (returnjump_p (undobuf.other_insn)
3097 || any_uncondjump_p (undobuf.other_insn)))
3098 {
3099 *new_direct_jump_p = 1;
3100
3101 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3102 || !BARRIER_P (temp))
3103 emit_barrier_after (undobuf.other_insn);
3104 }
3105
3106 /* An NOOP jump does not need barrier, but it does need cleaning up
3107 of CFG. */
3108 if (GET_CODE (newpat) == SET
3109 && SET_SRC (newpat) == pc_rtx
3110 && SET_DEST (newpat) == pc_rtx)
3111 *new_direct_jump_p = 1;
3112 }
3113
3114 combine_successes++;
3115 undo_commit ();
3116
3117 if (added_links_insn
3118 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3119 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3120 return added_links_insn;
3121 else
3122 return newi2pat ? i2 : i3;
3123 }
3124 \f
3125 /* Undo all the modifications recorded in undobuf. */
3126
3127 static void
3128 undo_all (void)
3129 {
3130 struct undo *undo, *next;
3131
3132 for (undo = undobuf.undos; undo; undo = next)
3133 {
3134 next = undo->next;
3135 if (undo->is_int)
3136 *undo->where.i = undo->old_contents.i;
3137 else
3138 *undo->where.r = undo->old_contents.r;
3139
3140 undo->next = undobuf.frees;
3141 undobuf.frees = undo;
3142 }
3143
3144 undobuf.undos = 0;
3145 }
3146
3147 /* We've committed to accepting the changes we made. Move all
3148 of the undos to the free list. */
3149
3150 static void
3151 undo_commit (void)
3152 {
3153 struct undo *undo, *next;
3154
3155 for (undo = undobuf.undos; undo; undo = next)
3156 {
3157 next = undo->next;
3158 undo->next = undobuf.frees;
3159 undobuf.frees = undo;
3160 }
3161 undobuf.undos = 0;
3162 }
3163
3164 \f
3165 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3166 where we have an arithmetic expression and return that point. LOC will
3167 be inside INSN.
3168
3169 try_combine will call this function to see if an insn can be split into
3170 two insns. */
3171
3172 static rtx *
3173 find_split_point (rtx *loc, rtx insn)
3174 {
3175 rtx x = *loc;
3176 enum rtx_code code = GET_CODE (x);
3177 rtx *split;
3178 unsigned HOST_WIDE_INT len = 0;
3179 HOST_WIDE_INT pos = 0;
3180 int unsignedp = 0;
3181 rtx inner = NULL_RTX;
3182
3183 /* First special-case some codes. */
3184 switch (code)
3185 {
3186 case SUBREG:
3187 #ifdef INSN_SCHEDULING
3188 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3189 point. */
3190 if (MEM_P (SUBREG_REG (x)))
3191 return loc;
3192 #endif
3193 return find_split_point (&SUBREG_REG (x), insn);
3194
3195 case MEM:
3196 #ifdef HAVE_lo_sum
3197 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3198 using LO_SUM and HIGH. */
3199 if (GET_CODE (XEXP (x, 0)) == CONST
3200 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3201 {
3202 SUBST (XEXP (x, 0),
3203 gen_rtx_LO_SUM (Pmode,
3204 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3205 XEXP (x, 0)));
3206 return &XEXP (XEXP (x, 0), 0);
3207 }
3208 #endif
3209
3210 /* If we have a PLUS whose second operand is a constant and the
3211 address is not valid, perhaps will can split it up using
3212 the machine-specific way to split large constants. We use
3213 the first pseudo-reg (one of the virtual regs) as a placeholder;
3214 it will not remain in the result. */
3215 if (GET_CODE (XEXP (x, 0)) == PLUS
3216 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3217 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3218 {
3219 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3220 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3221 subst_insn);
3222
3223 /* This should have produced two insns, each of which sets our
3224 placeholder. If the source of the second is a valid address,
3225 we can make put both sources together and make a split point
3226 in the middle. */
3227
3228 if (seq
3229 && NEXT_INSN (seq) != NULL_RTX
3230 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3231 && NONJUMP_INSN_P (seq)
3232 && GET_CODE (PATTERN (seq)) == SET
3233 && SET_DEST (PATTERN (seq)) == reg
3234 && ! reg_mentioned_p (reg,
3235 SET_SRC (PATTERN (seq)))
3236 && NONJUMP_INSN_P (NEXT_INSN (seq))
3237 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3238 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3239 && memory_address_p (GET_MODE (x),
3240 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3241 {
3242 rtx src1 = SET_SRC (PATTERN (seq));
3243 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3244
3245 /* Replace the placeholder in SRC2 with SRC1. If we can
3246 find where in SRC2 it was placed, that can become our
3247 split point and we can replace this address with SRC2.
3248 Just try two obvious places. */
3249
3250 src2 = replace_rtx (src2, reg, src1);
3251 split = 0;
3252 if (XEXP (src2, 0) == src1)
3253 split = &XEXP (src2, 0);
3254 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3255 && XEXP (XEXP (src2, 0), 0) == src1)
3256 split = &XEXP (XEXP (src2, 0), 0);
3257
3258 if (split)
3259 {
3260 SUBST (XEXP (x, 0), src2);
3261 return split;
3262 }
3263 }
3264
3265 /* If that didn't work, perhaps the first operand is complex and
3266 needs to be computed separately, so make a split point there.
3267 This will occur on machines that just support REG + CONST
3268 and have a constant moved through some previous computation. */
3269
3270 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3271 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3272 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3273 return &XEXP (XEXP (x, 0), 0);
3274 }
3275 break;
3276
3277 case SET:
3278 #ifdef HAVE_cc0
3279 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3280 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3281 we need to put the operand into a register. So split at that
3282 point. */
3283
3284 if (SET_DEST (x) == cc0_rtx
3285 && GET_CODE (SET_SRC (x)) != COMPARE
3286 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3287 && !OBJECT_P (SET_SRC (x))
3288 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3289 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3290 return &SET_SRC (x);
3291 #endif
3292
3293 /* See if we can split SET_SRC as it stands. */
3294 split = find_split_point (&SET_SRC (x), insn);
3295 if (split && split != &SET_SRC (x))
3296 return split;
3297
3298 /* See if we can split SET_DEST as it stands. */
3299 split = find_split_point (&SET_DEST (x), insn);
3300 if (split && split != &SET_DEST (x))
3301 return split;
3302
3303 /* See if this is a bitfield assignment with everything constant. If
3304 so, this is an IOR of an AND, so split it into that. */
3305 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3306 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3307 <= HOST_BITS_PER_WIDE_INT)
3308 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3309 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3310 && GET_CODE (SET_SRC (x)) == CONST_INT
3311 && ((INTVAL (XEXP (SET_DEST (x), 1))
3312 + INTVAL (XEXP (SET_DEST (x), 2)))
3313 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3314 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3315 {
3316 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3317 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3318 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3319 rtx dest = XEXP (SET_DEST (x), 0);
3320 enum machine_mode mode = GET_MODE (dest);
3321 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3322
3323 if (BITS_BIG_ENDIAN)
3324 pos = GET_MODE_BITSIZE (mode) - len - pos;
3325
3326 if (src == mask)
3327 SUBST (SET_SRC (x),
3328 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3329 else
3330 {
3331 rtx negmask = gen_int_mode (~(mask << pos), mode);
3332 SUBST (SET_SRC (x),
3333 simplify_gen_binary (IOR, mode,
3334 simplify_gen_binary (AND, mode,
3335 dest, negmask),
3336 GEN_INT (src << pos)));
3337 }
3338
3339 SUBST (SET_DEST (x), dest);
3340
3341 split = find_split_point (&SET_SRC (x), insn);
3342 if (split && split != &SET_SRC (x))
3343 return split;
3344 }
3345
3346 /* Otherwise, see if this is an operation that we can split into two.
3347 If so, try to split that. */
3348 code = GET_CODE (SET_SRC (x));
3349
3350 switch (code)
3351 {
3352 case AND:
3353 /* If we are AND'ing with a large constant that is only a single
3354 bit and the result is only being used in a context where we
3355 need to know if it is zero or nonzero, replace it with a bit
3356 extraction. This will avoid the large constant, which might
3357 have taken more than one insn to make. If the constant were
3358 not a valid argument to the AND but took only one insn to make,
3359 this is no worse, but if it took more than one insn, it will
3360 be better. */
3361
3362 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3363 && REG_P (XEXP (SET_SRC (x), 0))
3364 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3365 && REG_P (SET_DEST (x))
3366 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3367 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3368 && XEXP (*split, 0) == SET_DEST (x)
3369 && XEXP (*split, 1) == const0_rtx)
3370 {
3371 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3372 XEXP (SET_SRC (x), 0),
3373 pos, NULL_RTX, 1, 1, 0, 0);
3374 if (extraction != 0)
3375 {
3376 SUBST (SET_SRC (x), extraction);
3377 return find_split_point (loc, insn);
3378 }
3379 }
3380 break;
3381
3382 case NE:
3383 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3384 is known to be on, this can be converted into a NEG of a shift. */
3385 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3386 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3387 && 1 <= (pos = exact_log2
3388 (nonzero_bits (XEXP (SET_SRC (x), 0),
3389 GET_MODE (XEXP (SET_SRC (x), 0))))))
3390 {
3391 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3392
3393 SUBST (SET_SRC (x),
3394 gen_rtx_NEG (mode,
3395 gen_rtx_LSHIFTRT (mode,
3396 XEXP (SET_SRC (x), 0),
3397 GEN_INT (pos))));
3398
3399 split = find_split_point (&SET_SRC (x), insn);
3400 if (split && split != &SET_SRC (x))
3401 return split;
3402 }
3403 break;
3404
3405 case SIGN_EXTEND:
3406 inner = XEXP (SET_SRC (x), 0);
3407
3408 /* We can't optimize if either mode is a partial integer
3409 mode as we don't know how many bits are significant
3410 in those modes. */
3411 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3412 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3413 break;
3414
3415 pos = 0;
3416 len = GET_MODE_BITSIZE (GET_MODE (inner));
3417 unsignedp = 0;
3418 break;
3419
3420 case SIGN_EXTRACT:
3421 case ZERO_EXTRACT:
3422 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3423 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3424 {
3425 inner = XEXP (SET_SRC (x), 0);
3426 len = INTVAL (XEXP (SET_SRC (x), 1));
3427 pos = INTVAL (XEXP (SET_SRC (x), 2));
3428
3429 if (BITS_BIG_ENDIAN)
3430 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3431 unsignedp = (code == ZERO_EXTRACT);
3432 }
3433 break;
3434
3435 default:
3436 break;
3437 }
3438
3439 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3440 {
3441 enum machine_mode mode = GET_MODE (SET_SRC (x));
3442
3443 /* For unsigned, we have a choice of a shift followed by an
3444 AND or two shifts. Use two shifts for field sizes where the
3445 constant might be too large. We assume here that we can
3446 always at least get 8-bit constants in an AND insn, which is
3447 true for every current RISC. */
3448
3449 if (unsignedp && len <= 8)
3450 {
3451 SUBST (SET_SRC (x),
3452 gen_rtx_AND (mode,
3453 gen_rtx_LSHIFTRT
3454 (mode, gen_lowpart (mode, inner),
3455 GEN_INT (pos)),
3456 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3457
3458 split = find_split_point (&SET_SRC (x), insn);
3459 if (split && split != &SET_SRC (x))
3460 return split;
3461 }
3462 else
3463 {
3464 SUBST (SET_SRC (x),
3465 gen_rtx_fmt_ee
3466 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3467 gen_rtx_ASHIFT (mode,
3468 gen_lowpart (mode, inner),
3469 GEN_INT (GET_MODE_BITSIZE (mode)
3470 - len - pos)),
3471 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3472
3473 split = find_split_point (&SET_SRC (x), insn);
3474 if (split && split != &SET_SRC (x))
3475 return split;
3476 }
3477 }
3478
3479 /* See if this is a simple operation with a constant as the second
3480 operand. It might be that this constant is out of range and hence
3481 could be used as a split point. */
3482 if (BINARY_P (SET_SRC (x))
3483 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3484 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3485 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3486 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3487 return &XEXP (SET_SRC (x), 1);
3488
3489 /* Finally, see if this is a simple operation with its first operand
3490 not in a register. The operation might require this operand in a
3491 register, so return it as a split point. We can always do this
3492 because if the first operand were another operation, we would have
3493 already found it as a split point. */
3494 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3495 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3496 return &XEXP (SET_SRC (x), 0);
3497
3498 return 0;
3499
3500 case AND:
3501 case IOR:
3502 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3503 it is better to write this as (not (ior A B)) so we can split it.
3504 Similarly for IOR. */
3505 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3506 {
3507 SUBST (*loc,
3508 gen_rtx_NOT (GET_MODE (x),
3509 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3510 GET_MODE (x),
3511 XEXP (XEXP (x, 0), 0),
3512 XEXP (XEXP (x, 1), 0))));
3513 return find_split_point (loc, insn);
3514 }
3515
3516 /* Many RISC machines have a large set of logical insns. If the
3517 second operand is a NOT, put it first so we will try to split the
3518 other operand first. */
3519 if (GET_CODE (XEXP (x, 1)) == NOT)
3520 {
3521 rtx tem = XEXP (x, 0);
3522 SUBST (XEXP (x, 0), XEXP (x, 1));
3523 SUBST (XEXP (x, 1), tem);
3524 }
3525 break;
3526
3527 default:
3528 break;
3529 }
3530
3531 /* Otherwise, select our actions depending on our rtx class. */
3532 switch (GET_RTX_CLASS (code))
3533 {
3534 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3535 case RTX_TERNARY:
3536 split = find_split_point (&XEXP (x, 2), insn);
3537 if (split)
3538 return split;
3539 /* ... fall through ... */
3540 case RTX_BIN_ARITH:
3541 case RTX_COMM_ARITH:
3542 case RTX_COMPARE:
3543 case RTX_COMM_COMPARE:
3544 split = find_split_point (&XEXP (x, 1), insn);
3545 if (split)
3546 return split;
3547 /* ... fall through ... */
3548 case RTX_UNARY:
3549 /* Some machines have (and (shift ...) ...) insns. If X is not
3550 an AND, but XEXP (X, 0) is, use it as our split point. */
3551 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3552 return &XEXP (x, 0);
3553
3554 split = find_split_point (&XEXP (x, 0), insn);
3555 if (split)
3556 return split;
3557 return loc;
3558
3559 default:
3560 /* Otherwise, we don't have a split point. */
3561 return 0;
3562 }
3563 }
3564 \f
3565 /* Throughout X, replace FROM with TO, and return the result.
3566 The result is TO if X is FROM;
3567 otherwise the result is X, but its contents may have been modified.
3568 If they were modified, a record was made in undobuf so that
3569 undo_all will (among other things) return X to its original state.
3570
3571 If the number of changes necessary is too much to record to undo,
3572 the excess changes are not made, so the result is invalid.
3573 The changes already made can still be undone.
3574 undobuf.num_undo is incremented for such changes, so by testing that
3575 the caller can tell whether the result is valid.
3576
3577 `n_occurrences' is incremented each time FROM is replaced.
3578
3579 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3580
3581 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3582 by copying if `n_occurrences' is nonzero. */
3583
3584 static rtx
3585 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3586 {
3587 enum rtx_code code = GET_CODE (x);
3588 enum machine_mode op0_mode = VOIDmode;
3589 const char *fmt;
3590 int len, i;
3591 rtx new;
3592
3593 /* Two expressions are equal if they are identical copies of a shared
3594 RTX or if they are both registers with the same register number
3595 and mode. */
3596
3597 #define COMBINE_RTX_EQUAL_P(X,Y) \
3598 ((X) == (Y) \
3599 || (REG_P (X) && REG_P (Y) \
3600 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3601
3602 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3603 {
3604 n_occurrences++;
3605 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3606 }
3607
3608 /* If X and FROM are the same register but different modes, they will
3609 not have been seen as equal above. However, flow.c will make a
3610 LOG_LINKS entry for that case. If we do nothing, we will try to
3611 rerecognize our original insn and, when it succeeds, we will
3612 delete the feeding insn, which is incorrect.
3613
3614 So force this insn not to match in this (rare) case. */
3615 if (! in_dest && code == REG && REG_P (from)
3616 && REGNO (x) == REGNO (from))
3617 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3618
3619 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3620 of which may contain things that can be combined. */
3621 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3622 return x;
3623
3624 /* It is possible to have a subexpression appear twice in the insn.
3625 Suppose that FROM is a register that appears within TO.
3626 Then, after that subexpression has been scanned once by `subst',
3627 the second time it is scanned, TO may be found. If we were
3628 to scan TO here, we would find FROM within it and create a
3629 self-referent rtl structure which is completely wrong. */
3630 if (COMBINE_RTX_EQUAL_P (x, to))
3631 return to;
3632
3633 /* Parallel asm_operands need special attention because all of the
3634 inputs are shared across the arms. Furthermore, unsharing the
3635 rtl results in recognition failures. Failure to handle this case
3636 specially can result in circular rtl.
3637
3638 Solve this by doing a normal pass across the first entry of the
3639 parallel, and only processing the SET_DESTs of the subsequent
3640 entries. Ug. */
3641
3642 if (code == PARALLEL
3643 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3644 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3645 {
3646 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3647
3648 /* If this substitution failed, this whole thing fails. */
3649 if (GET_CODE (new) == CLOBBER
3650 && XEXP (new, 0) == const0_rtx)
3651 return new;
3652
3653 SUBST (XVECEXP (x, 0, 0), new);
3654
3655 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3656 {
3657 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3658
3659 if (!REG_P (dest)
3660 && GET_CODE (dest) != CC0
3661 && GET_CODE (dest) != PC)
3662 {
3663 new = subst (dest, from, to, 0, unique_copy);
3664
3665 /* If this substitution failed, this whole thing fails. */
3666 if (GET_CODE (new) == CLOBBER
3667 && XEXP (new, 0) == const0_rtx)
3668 return new;
3669
3670 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3671 }
3672 }
3673 }
3674 else
3675 {
3676 len = GET_RTX_LENGTH (code);
3677 fmt = GET_RTX_FORMAT (code);
3678
3679 /* We don't need to process a SET_DEST that is a register, CC0,
3680 or PC, so set up to skip this common case. All other cases
3681 where we want to suppress replacing something inside a
3682 SET_SRC are handled via the IN_DEST operand. */
3683 if (code == SET
3684 && (REG_P (SET_DEST (x))
3685 || GET_CODE (SET_DEST (x)) == CC0
3686 || GET_CODE (SET_DEST (x)) == PC))
3687 fmt = "ie";
3688
3689 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3690 constant. */
3691 if (fmt[0] == 'e')
3692 op0_mode = GET_MODE (XEXP (x, 0));
3693
3694 for (i = 0; i < len; i++)
3695 {
3696 if (fmt[i] == 'E')
3697 {
3698 int j;
3699 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3700 {
3701 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3702 {
3703 new = (unique_copy && n_occurrences
3704 ? copy_rtx (to) : to);
3705 n_occurrences++;
3706 }
3707 else
3708 {
3709 new = subst (XVECEXP (x, i, j), from, to, 0,
3710 unique_copy);
3711
3712 /* If this substitution failed, this whole thing
3713 fails. */
3714 if (GET_CODE (new) == CLOBBER
3715 && XEXP (new, 0) == const0_rtx)
3716 return new;
3717 }
3718
3719 SUBST (XVECEXP (x, i, j), new);
3720 }
3721 }
3722 else if (fmt[i] == 'e')
3723 {
3724 /* If this is a register being set, ignore it. */
3725 new = XEXP (x, i);
3726 if (in_dest
3727 && i == 0
3728 && (((code == SUBREG || code == ZERO_EXTRACT)
3729 && REG_P (new))
3730 || code == STRICT_LOW_PART))
3731 ;
3732
3733 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3734 {
3735 /* In general, don't install a subreg involving two
3736 modes not tieable. It can worsen register
3737 allocation, and can even make invalid reload
3738 insns, since the reg inside may need to be copied
3739 from in the outside mode, and that may be invalid
3740 if it is an fp reg copied in integer mode.
3741
3742 We allow two exceptions to this: It is valid if
3743 it is inside another SUBREG and the mode of that
3744 SUBREG and the mode of the inside of TO is
3745 tieable and it is valid if X is a SET that copies
3746 FROM to CC0. */
3747
3748 if (GET_CODE (to) == SUBREG
3749 && ! MODES_TIEABLE_P (GET_MODE (to),
3750 GET_MODE (SUBREG_REG (to)))
3751 && ! (code == SUBREG
3752 && MODES_TIEABLE_P (GET_MODE (x),
3753 GET_MODE (SUBREG_REG (to))))
3754 #ifdef HAVE_cc0
3755 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3756 #endif
3757 )
3758 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3759
3760 #ifdef CANNOT_CHANGE_MODE_CLASS
3761 if (code == SUBREG
3762 && REG_P (to)
3763 && REGNO (to) < FIRST_PSEUDO_REGISTER
3764 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3765 GET_MODE (to),
3766 GET_MODE (x)))
3767 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3768 #endif
3769
3770 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3771 n_occurrences++;
3772 }
3773 else
3774 /* If we are in a SET_DEST, suppress most cases unless we
3775 have gone inside a MEM, in which case we want to
3776 simplify the address. We assume here that things that
3777 are actually part of the destination have their inner
3778 parts in the first expression. This is true for SUBREG,
3779 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3780 things aside from REG and MEM that should appear in a
3781 SET_DEST. */
3782 new = subst (XEXP (x, i), from, to,
3783 (((in_dest
3784 && (code == SUBREG || code == STRICT_LOW_PART
3785 || code == ZERO_EXTRACT))
3786 || code == SET)
3787 && i == 0), unique_copy);
3788
3789 /* If we found that we will have to reject this combination,
3790 indicate that by returning the CLOBBER ourselves, rather than
3791 an expression containing it. This will speed things up as
3792 well as prevent accidents where two CLOBBERs are considered
3793 to be equal, thus producing an incorrect simplification. */
3794
3795 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3796 return new;
3797
3798 if (GET_CODE (x) == SUBREG
3799 && (GET_CODE (new) == CONST_INT
3800 || GET_CODE (new) == CONST_DOUBLE))
3801 {
3802 enum machine_mode mode = GET_MODE (x);
3803
3804 x = simplify_subreg (GET_MODE (x), new,
3805 GET_MODE (SUBREG_REG (x)),
3806 SUBREG_BYTE (x));
3807 if (! x)
3808 x = gen_rtx_CLOBBER (mode, const0_rtx);
3809 }
3810 else if (GET_CODE (new) == CONST_INT
3811 && GET_CODE (x) == ZERO_EXTEND)
3812 {
3813 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3814 new, GET_MODE (XEXP (x, 0)));
3815 gcc_assert (x);
3816 }
3817 else
3818 SUBST (XEXP (x, i), new);
3819 }
3820 }
3821 }
3822
3823 /* Try to simplify X. If the simplification changed the code, it is likely
3824 that further simplification will help, so loop, but limit the number
3825 of repetitions that will be performed. */
3826
3827 for (i = 0; i < 4; i++)
3828 {
3829 /* If X is sufficiently simple, don't bother trying to do anything
3830 with it. */
3831 if (code != CONST_INT && code != REG && code != CLOBBER)
3832 x = combine_simplify_rtx (x, op0_mode, in_dest);
3833
3834 if (GET_CODE (x) == code)
3835 break;
3836
3837 code = GET_CODE (x);
3838
3839 /* We no longer know the original mode of operand 0 since we
3840 have changed the form of X) */
3841 op0_mode = VOIDmode;
3842 }
3843
3844 return x;
3845 }
3846 \f
3847 /* Simplify X, a piece of RTL. We just operate on the expression at the
3848 outer level; call `subst' to simplify recursively. Return the new
3849 expression.
3850
3851 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3852 if we are inside a SET_DEST. */
3853
3854 static rtx
3855 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3856 {
3857 enum rtx_code code = GET_CODE (x);
3858 enum machine_mode mode = GET_MODE (x);
3859 rtx temp;
3860 rtx reversed;
3861 int i;
3862
3863 /* If this is a commutative operation, put a constant last and a complex
3864 expression first. We don't need to do this for comparisons here. */
3865 if (COMMUTATIVE_ARITH_P (x)
3866 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3867 {
3868 temp = XEXP (x, 0);
3869 SUBST (XEXP (x, 0), XEXP (x, 1));
3870 SUBST (XEXP (x, 1), temp);
3871 }
3872
3873 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3874 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3875 things. Check for cases where both arms are testing the same
3876 condition.
3877
3878 Don't do anything if all operands are very simple. */
3879
3880 if ((BINARY_P (x)
3881 && ((!OBJECT_P (XEXP (x, 0))
3882 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3883 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3884 || (!OBJECT_P (XEXP (x, 1))
3885 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3886 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3887 || (UNARY_P (x)
3888 && (!OBJECT_P (XEXP (x, 0))
3889 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3890 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3891 {
3892 rtx cond, true_rtx, false_rtx;
3893
3894 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3895 if (cond != 0
3896 /* If everything is a comparison, what we have is highly unlikely
3897 to be simpler, so don't use it. */
3898 && ! (COMPARISON_P (x)
3899 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3900 {
3901 rtx cop1 = const0_rtx;
3902 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3903
3904 if (cond_code == NE && COMPARISON_P (cond))
3905 return x;
3906
3907 /* Simplify the alternative arms; this may collapse the true and
3908 false arms to store-flag values. Be careful to use copy_rtx
3909 here since true_rtx or false_rtx might share RTL with x as a
3910 result of the if_then_else_cond call above. */
3911 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3912 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3913
3914 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3915 is unlikely to be simpler. */
3916 if (general_operand (true_rtx, VOIDmode)
3917 && general_operand (false_rtx, VOIDmode))
3918 {
3919 enum rtx_code reversed;
3920
3921 /* Restarting if we generate a store-flag expression will cause
3922 us to loop. Just drop through in this case. */
3923
3924 /* If the result values are STORE_FLAG_VALUE and zero, we can
3925 just make the comparison operation. */
3926 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3927 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3928 cond, cop1);
3929 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3930 && ((reversed = reversed_comparison_code_parts
3931 (cond_code, cond, cop1, NULL))
3932 != UNKNOWN))
3933 x = simplify_gen_relational (reversed, mode, VOIDmode,
3934 cond, cop1);
3935
3936 /* Likewise, we can make the negate of a comparison operation
3937 if the result values are - STORE_FLAG_VALUE and zero. */
3938 else if (GET_CODE (true_rtx) == CONST_INT
3939 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3940 && false_rtx == const0_rtx)
3941 x = simplify_gen_unary (NEG, mode,
3942 simplify_gen_relational (cond_code,
3943 mode, VOIDmode,
3944 cond, cop1),
3945 mode);
3946 else if (GET_CODE (false_rtx) == CONST_INT
3947 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3948 && true_rtx == const0_rtx
3949 && ((reversed = reversed_comparison_code_parts
3950 (cond_code, cond, cop1, NULL))
3951 != UNKNOWN))
3952 x = simplify_gen_unary (NEG, mode,
3953 simplify_gen_relational (reversed,
3954 mode, VOIDmode,
3955 cond, cop1),
3956 mode);
3957 else
3958 return gen_rtx_IF_THEN_ELSE (mode,
3959 simplify_gen_relational (cond_code,
3960 mode,
3961 VOIDmode,
3962 cond,
3963 cop1),
3964 true_rtx, false_rtx);
3965
3966 code = GET_CODE (x);
3967 op0_mode = VOIDmode;
3968 }
3969 }
3970 }
3971
3972 /* Try to fold this expression in case we have constants that weren't
3973 present before. */
3974 temp = 0;
3975 switch (GET_RTX_CLASS (code))
3976 {
3977 case RTX_UNARY:
3978 if (op0_mode == VOIDmode)
3979 op0_mode = GET_MODE (XEXP (x, 0));
3980 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3981 break;
3982 case RTX_COMPARE:
3983 case RTX_COMM_COMPARE:
3984 {
3985 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3986 if (cmp_mode == VOIDmode)
3987 {
3988 cmp_mode = GET_MODE (XEXP (x, 1));
3989 if (cmp_mode == VOIDmode)
3990 cmp_mode = op0_mode;
3991 }
3992 temp = simplify_relational_operation (code, mode, cmp_mode,
3993 XEXP (x, 0), XEXP (x, 1));
3994 }
3995 break;
3996 case RTX_COMM_ARITH:
3997 case RTX_BIN_ARITH:
3998 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3999 break;
4000 case RTX_BITFIELD_OPS:
4001 case RTX_TERNARY:
4002 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4003 XEXP (x, 1), XEXP (x, 2));
4004 break;
4005 default:
4006 break;
4007 }
4008
4009 if (temp)
4010 {
4011 x = temp;
4012 code = GET_CODE (temp);
4013 op0_mode = VOIDmode;
4014 mode = GET_MODE (temp);
4015 }
4016
4017 /* First see if we can apply the inverse distributive law. */
4018 if (code == PLUS || code == MINUS
4019 || code == AND || code == IOR || code == XOR)
4020 {
4021 x = apply_distributive_law (x);
4022 code = GET_CODE (x);
4023 op0_mode = VOIDmode;
4024 }
4025
4026 /* If CODE is an associative operation not otherwise handled, see if we
4027 can associate some operands. This can win if they are constants or
4028 if they are logically related (i.e. (a & b) & a). */
4029 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4030 || code == AND || code == IOR || code == XOR
4031 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4032 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4033 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4034 {
4035 if (GET_CODE (XEXP (x, 0)) == code)
4036 {
4037 rtx other = XEXP (XEXP (x, 0), 0);
4038 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4039 rtx inner_op1 = XEXP (x, 1);
4040 rtx inner;
4041
4042 /* Make sure we pass the constant operand if any as the second
4043 one if this is a commutative operation. */
4044 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4045 {
4046 rtx tem = inner_op0;
4047 inner_op0 = inner_op1;
4048 inner_op1 = tem;
4049 }
4050 inner = simplify_binary_operation (code == MINUS ? PLUS
4051 : code == DIV ? MULT
4052 : code,
4053 mode, inner_op0, inner_op1);
4054
4055 /* For commutative operations, try the other pair if that one
4056 didn't simplify. */
4057 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4058 {
4059 other = XEXP (XEXP (x, 0), 1);
4060 inner = simplify_binary_operation (code, mode,
4061 XEXP (XEXP (x, 0), 0),
4062 XEXP (x, 1));
4063 }
4064
4065 if (inner)
4066 return simplify_gen_binary (code, mode, other, inner);
4067 }
4068 }
4069
4070 /* A little bit of algebraic simplification here. */
4071 switch (code)
4072 {
4073 case MEM:
4074 /* Ensure that our address has any ASHIFTs converted to MULT in case
4075 address-recognizing predicates are called later. */
4076 temp = make_compound_operation (XEXP (x, 0), MEM);
4077 SUBST (XEXP (x, 0), temp);
4078 break;
4079
4080 case SUBREG:
4081 if (op0_mode == VOIDmode)
4082 op0_mode = GET_MODE (SUBREG_REG (x));
4083
4084 /* See if this can be moved to simplify_subreg. */
4085 if (CONSTANT_P (SUBREG_REG (x))
4086 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4087 /* Don't call gen_lowpart if the inner mode
4088 is VOIDmode and we cannot simplify it, as SUBREG without
4089 inner mode is invalid. */
4090 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4091 || gen_lowpart_common (mode, SUBREG_REG (x))))
4092 return gen_lowpart (mode, SUBREG_REG (x));
4093
4094 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4095 break;
4096 {
4097 rtx temp;
4098 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4099 SUBREG_BYTE (x));
4100 if (temp)
4101 return temp;
4102 }
4103
4104 /* Don't change the mode of the MEM if that would change the meaning
4105 of the address. */
4106 if (MEM_P (SUBREG_REG (x))
4107 && (MEM_VOLATILE_P (SUBREG_REG (x))
4108 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4109 return gen_rtx_CLOBBER (mode, const0_rtx);
4110
4111 /* Note that we cannot do any narrowing for non-constants since
4112 we might have been counting on using the fact that some bits were
4113 zero. We now do this in the SET. */
4114
4115 break;
4116
4117 case NOT:
4118 if (GET_CODE (XEXP (x, 0)) == SUBREG
4119 && subreg_lowpart_p (XEXP (x, 0))
4120 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4121 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4122 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4123 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4124 {
4125 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4126
4127 x = gen_rtx_ROTATE (inner_mode,
4128 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4129 inner_mode),
4130 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4131 return gen_lowpart (mode, x);
4132 }
4133
4134 /* Apply De Morgan's laws to reduce number of patterns for machines
4135 with negating logical insns (and-not, nand, etc.). If result has
4136 only one NOT, put it first, since that is how the patterns are
4137 coded. */
4138
4139 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4140 {
4141 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4142 enum machine_mode op_mode;
4143
4144 op_mode = GET_MODE (in1);
4145 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4146
4147 op_mode = GET_MODE (in2);
4148 if (op_mode == VOIDmode)
4149 op_mode = mode;
4150 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4151
4152 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4153 {
4154 rtx tem = in2;
4155 in2 = in1; in1 = tem;
4156 }
4157
4158 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4159 mode, in1, in2);
4160 }
4161 break;
4162
4163 case NEG:
4164 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4165 if (GET_CODE (XEXP (x, 0)) == XOR
4166 && XEXP (XEXP (x, 0), 1) == const1_rtx
4167 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4168 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4169 constm1_rtx);
4170
4171 temp = expand_compound_operation (XEXP (x, 0));
4172
4173 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4174 replaced by (lshiftrt X C). This will convert
4175 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4176
4177 if (GET_CODE (temp) == ASHIFTRT
4178 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4179 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4180 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4181 INTVAL (XEXP (temp, 1)));
4182
4183 /* If X has only a single bit that might be nonzero, say, bit I, convert
4184 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4185 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4186 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4187 or a SUBREG of one since we'd be making the expression more
4188 complex if it was just a register. */
4189
4190 if (!REG_P (temp)
4191 && ! (GET_CODE (temp) == SUBREG
4192 && REG_P (SUBREG_REG (temp)))
4193 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4194 {
4195 rtx temp1 = simplify_shift_const
4196 (NULL_RTX, ASHIFTRT, mode,
4197 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4198 GET_MODE_BITSIZE (mode) - 1 - i),
4199 GET_MODE_BITSIZE (mode) - 1 - i);
4200
4201 /* If all we did was surround TEMP with the two shifts, we
4202 haven't improved anything, so don't use it. Otherwise,
4203 we are better off with TEMP1. */
4204 if (GET_CODE (temp1) != ASHIFTRT
4205 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4206 || XEXP (XEXP (temp1, 0), 0) != temp)
4207 return temp1;
4208 }
4209 break;
4210
4211 case TRUNCATE:
4212 /* We can't handle truncation to a partial integer mode here
4213 because we don't know the real bitsize of the partial
4214 integer mode. */
4215 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4216 break;
4217
4218 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4219 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4220 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4221 SUBST (XEXP (x, 0),
4222 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4223 GET_MODE_MASK (mode), NULL_RTX, 0));
4224
4225 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4226 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4227 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4228 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4229 return XEXP (XEXP (x, 0), 0);
4230
4231 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4232 (OP:SI foo:SI) if OP is NEG or ABS. */
4233 if ((GET_CODE (XEXP (x, 0)) == ABS
4234 || GET_CODE (XEXP (x, 0)) == NEG)
4235 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4236 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4237 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4238 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4239 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4240
4241 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4242 (truncate:SI x). */
4243 if (GET_CODE (XEXP (x, 0)) == SUBREG
4244 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4245 && subreg_lowpart_p (XEXP (x, 0)))
4246 return SUBREG_REG (XEXP (x, 0));
4247
4248 /* If we know that the value is already truncated, we can
4249 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4250 is nonzero for the corresponding modes. But don't do this
4251 for an (LSHIFTRT (MULT ...)) since this will cause problems
4252 with the umulXi3_highpart patterns. */
4253 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4254 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4255 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4256 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4257 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4258 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4259 return gen_lowpart (mode, XEXP (x, 0));
4260
4261 /* A truncate of a comparison can be replaced with a subreg if
4262 STORE_FLAG_VALUE permits. This is like the previous test,
4263 but it works even if the comparison is done in a mode larger
4264 than HOST_BITS_PER_WIDE_INT. */
4265 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4266 && COMPARISON_P (XEXP (x, 0))
4267 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4268 return gen_lowpart (mode, XEXP (x, 0));
4269
4270 /* Similarly, a truncate of a register whose value is a
4271 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4272 permits. */
4273 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4274 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4275 && (temp = get_last_value (XEXP (x, 0)))
4276 && COMPARISON_P (temp))
4277 return gen_lowpart (mode, XEXP (x, 0));
4278
4279 break;
4280
4281 case FLOAT_TRUNCATE:
4282 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4283 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4284 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4285 return XEXP (XEXP (x, 0), 0);
4286
4287 /* (float_truncate:SF (float_truncate:DF foo:XF))
4288 = (float_truncate:SF foo:XF).
4289 This may eliminate double rounding, so it is unsafe.
4290
4291 (float_truncate:SF (float_extend:XF foo:DF))
4292 = (float_truncate:SF foo:DF).
4293
4294 (float_truncate:DF (float_extend:XF foo:SF))
4295 = (float_extend:SF foo:DF). */
4296 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4297 && flag_unsafe_math_optimizations)
4298 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4299 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4300 0)))
4301 > GET_MODE_SIZE (mode)
4302 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4303 mode,
4304 XEXP (XEXP (x, 0), 0), mode);
4305
4306 /* (float_truncate (float x)) is (float x) */
4307 if (GET_CODE (XEXP (x, 0)) == FLOAT
4308 && (flag_unsafe_math_optimizations
4309 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4310 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4311 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4312 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4313 return simplify_gen_unary (FLOAT, mode,
4314 XEXP (XEXP (x, 0), 0),
4315 GET_MODE (XEXP (XEXP (x, 0), 0)));
4316
4317 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4318 (OP:SF foo:SF) if OP is NEG or ABS. */
4319 if ((GET_CODE (XEXP (x, 0)) == ABS
4320 || GET_CODE (XEXP (x, 0)) == NEG)
4321 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4322 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4323 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4324 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4325
4326 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4327 is (float_truncate:SF x). */
4328 if (GET_CODE (XEXP (x, 0)) == SUBREG
4329 && subreg_lowpart_p (XEXP (x, 0))
4330 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4331 return SUBREG_REG (XEXP (x, 0));
4332 break;
4333 case FLOAT_EXTEND:
4334 /* (float_extend (float_extend x)) is (float_extend x)
4335
4336 (float_extend (float x)) is (float x) assuming that double
4337 rounding can't happen.
4338 */
4339 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4340 || (GET_CODE (XEXP (x, 0)) == FLOAT
4341 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4342 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4343 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4344 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4345 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4346 XEXP (XEXP (x, 0), 0),
4347 GET_MODE (XEXP (XEXP (x, 0), 0)));
4348
4349 break;
4350 #ifdef HAVE_cc0
4351 case COMPARE:
4352 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4353 using cc0, in which case we want to leave it as a COMPARE
4354 so we can distinguish it from a register-register-copy. */
4355 if (XEXP (x, 1) == const0_rtx)
4356 return XEXP (x, 0);
4357
4358 /* x - 0 is the same as x unless x's mode has signed zeros and
4359 allows rounding towards -infinity. Under those conditions,
4360 0 - 0 is -0. */
4361 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4362 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4363 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4364 return XEXP (x, 0);
4365 break;
4366 #endif
4367
4368 case CONST:
4369 /* (const (const X)) can become (const X). Do it this way rather than
4370 returning the inner CONST since CONST can be shared with a
4371 REG_EQUAL note. */
4372 if (GET_CODE (XEXP (x, 0)) == CONST)
4373 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4374 break;
4375
4376 #ifdef HAVE_lo_sum
4377 case LO_SUM:
4378 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4379 can add in an offset. find_split_point will split this address up
4380 again if it doesn't match. */
4381 if (GET_CODE (XEXP (x, 0)) == HIGH
4382 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4383 return XEXP (x, 1);
4384 break;
4385 #endif
4386
4387 case PLUS:
4388 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4389 */
4390 if (GET_CODE (XEXP (x, 0)) == MULT
4391 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4392 {
4393 rtx in1, in2;
4394
4395 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4396 in2 = XEXP (XEXP (x, 0), 1);
4397 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4398 simplify_gen_binary (MULT, mode,
4399 in1, in2));
4400 }
4401
4402 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4403 outermost. That's because that's the way indexed addresses are
4404 supposed to appear. This code used to check many more cases, but
4405 they are now checked elsewhere. */
4406 if (GET_CODE (XEXP (x, 0)) == PLUS
4407 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4408 return simplify_gen_binary (PLUS, mode,
4409 simplify_gen_binary (PLUS, mode,
4410 XEXP (XEXP (x, 0), 0),
4411 XEXP (x, 1)),
4412 XEXP (XEXP (x, 0), 1));
4413
4414 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4415 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4416 bit-field and can be replaced by either a sign_extend or a
4417 sign_extract. The `and' may be a zero_extend and the two
4418 <c>, -<c> constants may be reversed. */
4419 if (GET_CODE (XEXP (x, 0)) == XOR
4420 && GET_CODE (XEXP (x, 1)) == CONST_INT
4421 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4422 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4423 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4424 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4425 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4426 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4427 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4428 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4429 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4430 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4431 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4432 == (unsigned int) i + 1))))
4433 return simplify_shift_const
4434 (NULL_RTX, ASHIFTRT, mode,
4435 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4436 XEXP (XEXP (XEXP (x, 0), 0), 0),
4437 GET_MODE_BITSIZE (mode) - (i + 1)),
4438 GET_MODE_BITSIZE (mode) - (i + 1));
4439
4440 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4441 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4442 is 1. This produces better code than the alternative immediately
4443 below. */
4444 if (COMPARISON_P (XEXP (x, 0))
4445 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4446 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4447 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4448 return
4449 simplify_gen_unary (NEG, mode, reversed, mode);
4450
4451 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4452 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4453 the bitsize of the mode - 1. This allows simplification of
4454 "a = (b & 8) == 0;" */
4455 if (XEXP (x, 1) == constm1_rtx
4456 && !REG_P (XEXP (x, 0))
4457 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4458 && REG_P (SUBREG_REG (XEXP (x, 0))))
4459 && nonzero_bits (XEXP (x, 0), mode) == 1)
4460 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4461 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4462 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4463 GET_MODE_BITSIZE (mode) - 1),
4464 GET_MODE_BITSIZE (mode) - 1);
4465
4466 /* If we are adding two things that have no bits in common, convert
4467 the addition into an IOR. This will often be further simplified,
4468 for example in cases like ((a & 1) + (a & 2)), which can
4469 become a & 3. */
4470
4471 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4472 && (nonzero_bits (XEXP (x, 0), mode)
4473 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4474 {
4475 /* Try to simplify the expression further. */
4476 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4477 temp = combine_simplify_rtx (tor, mode, in_dest);
4478
4479 /* If we could, great. If not, do not go ahead with the IOR
4480 replacement, since PLUS appears in many special purpose
4481 address arithmetic instructions. */
4482 if (GET_CODE (temp) != CLOBBER && temp != tor)
4483 return temp;
4484 }
4485 break;
4486
4487 case MINUS:
4488 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4489 by reversing the comparison code if valid. */
4490 if (STORE_FLAG_VALUE == 1
4491 && XEXP (x, 0) == const1_rtx
4492 && COMPARISON_P (XEXP (x, 1))
4493 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4494 return reversed;
4495
4496 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4497 (and <foo> (const_int pow2-1)) */
4498 if (GET_CODE (XEXP (x, 1)) == AND
4499 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4500 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4501 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4502 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4503 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4504
4505 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4506 */
4507 if (GET_CODE (XEXP (x, 1)) == MULT
4508 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4509 {
4510 rtx in1, in2;
4511
4512 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4513 in2 = XEXP (XEXP (x, 1), 1);
4514 return simplify_gen_binary (PLUS, mode,
4515 simplify_gen_binary (MULT, mode,
4516 in1, in2),
4517 XEXP (x, 0));
4518 }
4519
4520 /* Canonicalize (minus (neg A) (mult B C)) to
4521 (minus (mult (neg B) C) A). */
4522 if (GET_CODE (XEXP (x, 1)) == MULT
4523 && GET_CODE (XEXP (x, 0)) == NEG)
4524 {
4525 rtx in1, in2;
4526
4527 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4528 in2 = XEXP (XEXP (x, 1), 1);
4529 return simplify_gen_binary (MINUS, mode,
4530 simplify_gen_binary (MULT, mode,
4531 in1, in2),
4532 XEXP (XEXP (x, 0), 0));
4533 }
4534
4535 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4536 integers. */
4537 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4538 return simplify_gen_binary (MINUS, mode,
4539 simplify_gen_binary (MINUS, mode,
4540 XEXP (x, 0),
4541 XEXP (XEXP (x, 1), 0)),
4542 XEXP (XEXP (x, 1), 1));
4543 break;
4544
4545 case MULT:
4546 /* If we have (mult (plus A B) C), apply the distributive law and then
4547 the inverse distributive law to see if things simplify. This
4548 occurs mostly in addresses, often when unrolling loops. */
4549
4550 if (GET_CODE (XEXP (x, 0)) == PLUS)
4551 {
4552 rtx result = distribute_and_simplify_rtx (x, 0);
4553 if (result)
4554 return result;
4555 }
4556
4557 /* Try simplify a*(b/c) as (a*b)/c. */
4558 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4559 && GET_CODE (XEXP (x, 0)) == DIV)
4560 {
4561 rtx tem = simplify_binary_operation (MULT, mode,
4562 XEXP (XEXP (x, 0), 0),
4563 XEXP (x, 1));
4564 if (tem)
4565 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4566 }
4567 break;
4568
4569 case UDIV:
4570 /* If this is a divide by a power of two, treat it as a shift if
4571 its first operand is a shift. */
4572 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4573 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4574 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4575 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4576 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4577 || GET_CODE (XEXP (x, 0)) == ROTATE
4578 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4579 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4580 break;
4581
4582 case EQ: case NE:
4583 case GT: case GTU: case GE: case GEU:
4584 case LT: case LTU: case LE: case LEU:
4585 case UNEQ: case LTGT:
4586 case UNGT: case UNGE:
4587 case UNLT: case UNLE:
4588 case UNORDERED: case ORDERED:
4589 /* If the first operand is a condition code, we can't do anything
4590 with it. */
4591 if (GET_CODE (XEXP (x, 0)) == COMPARE
4592 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4593 && ! CC0_P (XEXP (x, 0))))
4594 {
4595 rtx op0 = XEXP (x, 0);
4596 rtx op1 = XEXP (x, 1);
4597 enum rtx_code new_code;
4598
4599 if (GET_CODE (op0) == COMPARE)
4600 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4601
4602 /* Simplify our comparison, if possible. */
4603 new_code = simplify_comparison (code, &op0, &op1);
4604
4605 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4606 if only the low-order bit is possibly nonzero in X (such as when
4607 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4608 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4609 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4610 (plus X 1).
4611
4612 Remove any ZERO_EXTRACT we made when thinking this was a
4613 comparison. It may now be simpler to use, e.g., an AND. If a
4614 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4615 the call to make_compound_operation in the SET case. */
4616
4617 if (STORE_FLAG_VALUE == 1
4618 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4619 && op1 == const0_rtx
4620 && mode == GET_MODE (op0)
4621 && nonzero_bits (op0, mode) == 1)
4622 return gen_lowpart (mode,
4623 expand_compound_operation (op0));
4624
4625 else if (STORE_FLAG_VALUE == 1
4626 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4627 && op1 == const0_rtx
4628 && mode == GET_MODE (op0)
4629 && (num_sign_bit_copies (op0, mode)
4630 == GET_MODE_BITSIZE (mode)))
4631 {
4632 op0 = expand_compound_operation (op0);
4633 return simplify_gen_unary (NEG, mode,
4634 gen_lowpart (mode, op0),
4635 mode);
4636 }
4637
4638 else if (STORE_FLAG_VALUE == 1
4639 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4640 && op1 == const0_rtx
4641 && mode == GET_MODE (op0)
4642 && nonzero_bits (op0, mode) == 1)
4643 {
4644 op0 = expand_compound_operation (op0);
4645 return simplify_gen_binary (XOR, mode,
4646 gen_lowpart (mode, op0),
4647 const1_rtx);
4648 }
4649
4650 else if (STORE_FLAG_VALUE == 1
4651 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4652 && op1 == const0_rtx
4653 && mode == GET_MODE (op0)
4654 && (num_sign_bit_copies (op0, mode)
4655 == GET_MODE_BITSIZE (mode)))
4656 {
4657 op0 = expand_compound_operation (op0);
4658 return plus_constant (gen_lowpart (mode, op0), 1);
4659 }
4660
4661 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4662 those above. */
4663 if (STORE_FLAG_VALUE == -1
4664 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4665 && op1 == const0_rtx
4666 && (num_sign_bit_copies (op0, mode)
4667 == GET_MODE_BITSIZE (mode)))
4668 return gen_lowpart (mode,
4669 expand_compound_operation (op0));
4670
4671 else if (STORE_FLAG_VALUE == -1
4672 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4673 && op1 == const0_rtx
4674 && mode == GET_MODE (op0)
4675 && nonzero_bits (op0, mode) == 1)
4676 {
4677 op0 = expand_compound_operation (op0);
4678 return simplify_gen_unary (NEG, mode,
4679 gen_lowpart (mode, op0),
4680 mode);
4681 }
4682
4683 else if (STORE_FLAG_VALUE == -1
4684 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4685 && op1 == const0_rtx
4686 && mode == GET_MODE (op0)
4687 && (num_sign_bit_copies (op0, mode)
4688 == GET_MODE_BITSIZE (mode)))
4689 {
4690 op0 = expand_compound_operation (op0);
4691 return simplify_gen_unary (NOT, mode,
4692 gen_lowpart (mode, op0),
4693 mode);
4694 }
4695
4696 /* If X is 0/1, (eq X 0) is X-1. */
4697 else if (STORE_FLAG_VALUE == -1
4698 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4699 && op1 == const0_rtx
4700 && mode == GET_MODE (op0)
4701 && nonzero_bits (op0, mode) == 1)
4702 {
4703 op0 = expand_compound_operation (op0);
4704 return plus_constant (gen_lowpart (mode, op0), -1);
4705 }
4706
4707 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4708 one bit that might be nonzero, we can convert (ne x 0) to
4709 (ashift x c) where C puts the bit in the sign bit. Remove any
4710 AND with STORE_FLAG_VALUE when we are done, since we are only
4711 going to test the sign bit. */
4712 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4713 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4714 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4715 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4716 && op1 == const0_rtx
4717 && mode == GET_MODE (op0)
4718 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4719 {
4720 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4721 expand_compound_operation (op0),
4722 GET_MODE_BITSIZE (mode) - 1 - i);
4723 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4724 return XEXP (x, 0);
4725 else
4726 return x;
4727 }
4728
4729 /* If the code changed, return a whole new comparison. */
4730 if (new_code != code)
4731 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4732
4733 /* Otherwise, keep this operation, but maybe change its operands.
4734 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4735 SUBST (XEXP (x, 0), op0);
4736 SUBST (XEXP (x, 1), op1);
4737 }
4738 break;
4739
4740 case IF_THEN_ELSE:
4741 return simplify_if_then_else (x);
4742
4743 case ZERO_EXTRACT:
4744 case SIGN_EXTRACT:
4745 case ZERO_EXTEND:
4746 case SIGN_EXTEND:
4747 /* If we are processing SET_DEST, we are done. */
4748 if (in_dest)
4749 return x;
4750
4751 return expand_compound_operation (x);
4752
4753 case SET:
4754 return simplify_set (x);
4755
4756 case AND:
4757 case IOR:
4758 case XOR:
4759 return simplify_logical (x);
4760
4761 case ABS:
4762 /* (abs (neg <foo>)) -> (abs <foo>) */
4763 if (GET_CODE (XEXP (x, 0)) == NEG)
4764 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4765
4766 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4767 do nothing. */
4768 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4769 break;
4770
4771 /* If operand is something known to be positive, ignore the ABS. */
4772 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4773 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4774 <= HOST_BITS_PER_WIDE_INT)
4775 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4776 & ((HOST_WIDE_INT) 1
4777 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4778 == 0)))
4779 return XEXP (x, 0);
4780
4781 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4782 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4783 return gen_rtx_NEG (mode, XEXP (x, 0));
4784
4785 break;
4786
4787 case FFS:
4788 /* (ffs (*_extend <X>)) = (ffs <X>) */
4789 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4790 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4791 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4792 break;
4793
4794 case POPCOUNT:
4795 case PARITY:
4796 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4797 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4798 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4799 break;
4800
4801 case FLOAT:
4802 /* (float (sign_extend <X>)) = (float <X>). */
4803 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4804 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4805 break;
4806
4807 case ASHIFT:
4808 case LSHIFTRT:
4809 case ASHIFTRT:
4810 case ROTATE:
4811 case ROTATERT:
4812 /* If this is a shift by a constant amount, simplify it. */
4813 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4814 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4815 INTVAL (XEXP (x, 1)));
4816
4817 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4818 SUBST (XEXP (x, 1),
4819 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4820 ((HOST_WIDE_INT) 1
4821 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4822 - 1,
4823 NULL_RTX, 0));
4824 break;
4825
4826 case VEC_SELECT:
4827 {
4828 rtx op0 = XEXP (x, 0);
4829 rtx op1 = XEXP (x, 1);
4830 int len;
4831
4832 gcc_assert (GET_CODE (op1) == PARALLEL);
4833 len = XVECLEN (op1, 0);
4834 if (len == 1
4835 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4836 && GET_CODE (op0) == VEC_CONCAT)
4837 {
4838 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4839
4840 /* Try to find the element in the VEC_CONCAT. */
4841 for (;;)
4842 {
4843 if (GET_MODE (op0) == GET_MODE (x))
4844 return op0;
4845 if (GET_CODE (op0) == VEC_CONCAT)
4846 {
4847 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4848 if (offset < op0_size)
4849 op0 = XEXP (op0, 0);
4850 else
4851 {
4852 offset -= op0_size;
4853 op0 = XEXP (op0, 1);
4854 }
4855 }
4856 else
4857 break;
4858 }
4859 }
4860 }
4861
4862 break;
4863
4864 default:
4865 break;
4866 }
4867
4868 return x;
4869 }
4870 \f
4871 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4872
4873 static rtx
4874 simplify_if_then_else (rtx x)
4875 {
4876 enum machine_mode mode = GET_MODE (x);
4877 rtx cond = XEXP (x, 0);
4878 rtx true_rtx = XEXP (x, 1);
4879 rtx false_rtx = XEXP (x, 2);
4880 enum rtx_code true_code = GET_CODE (cond);
4881 int comparison_p = COMPARISON_P (cond);
4882 rtx temp;
4883 int i;
4884 enum rtx_code false_code;
4885 rtx reversed;
4886
4887 /* Simplify storing of the truth value. */
4888 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4889 return simplify_gen_relational (true_code, mode, VOIDmode,
4890 XEXP (cond, 0), XEXP (cond, 1));
4891
4892 /* Also when the truth value has to be reversed. */
4893 if (comparison_p
4894 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4895 && (reversed = reversed_comparison (cond, mode)))
4896 return reversed;
4897
4898 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4899 in it is being compared against certain values. Get the true and false
4900 comparisons and see if that says anything about the value of each arm. */
4901
4902 if (comparison_p
4903 && ((false_code = reversed_comparison_code (cond, NULL))
4904 != UNKNOWN)
4905 && REG_P (XEXP (cond, 0)))
4906 {
4907 HOST_WIDE_INT nzb;
4908 rtx from = XEXP (cond, 0);
4909 rtx true_val = XEXP (cond, 1);
4910 rtx false_val = true_val;
4911 int swapped = 0;
4912
4913 /* If FALSE_CODE is EQ, swap the codes and arms. */
4914
4915 if (false_code == EQ)
4916 {
4917 swapped = 1, true_code = EQ, false_code = NE;
4918 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4919 }
4920
4921 /* If we are comparing against zero and the expression being tested has
4922 only a single bit that might be nonzero, that is its value when it is
4923 not equal to zero. Similarly if it is known to be -1 or 0. */
4924
4925 if (true_code == EQ && true_val == const0_rtx
4926 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4927 false_code = EQ, false_val = GEN_INT (nzb);
4928 else if (true_code == EQ && true_val == const0_rtx
4929 && (num_sign_bit_copies (from, GET_MODE (from))
4930 == GET_MODE_BITSIZE (GET_MODE (from))))
4931 false_code = EQ, false_val = constm1_rtx;
4932
4933 /* Now simplify an arm if we know the value of the register in the
4934 branch and it is used in the arm. Be careful due to the potential
4935 of locally-shared RTL. */
4936
4937 if (reg_mentioned_p (from, true_rtx))
4938 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4939 from, true_val),
4940 pc_rtx, pc_rtx, 0, 0);
4941 if (reg_mentioned_p (from, false_rtx))
4942 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4943 from, false_val),
4944 pc_rtx, pc_rtx, 0, 0);
4945
4946 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4947 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4948
4949 true_rtx = XEXP (x, 1);
4950 false_rtx = XEXP (x, 2);
4951 true_code = GET_CODE (cond);
4952 }
4953
4954 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4955 reversed, do so to avoid needing two sets of patterns for
4956 subtract-and-branch insns. Similarly if we have a constant in the true
4957 arm, the false arm is the same as the first operand of the comparison, or
4958 the false arm is more complicated than the true arm. */
4959
4960 if (comparison_p
4961 && reversed_comparison_code (cond, NULL) != UNKNOWN
4962 && (true_rtx == pc_rtx
4963 || (CONSTANT_P (true_rtx)
4964 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4965 || true_rtx == const0_rtx
4966 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4967 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4968 && !OBJECT_P (false_rtx))
4969 || reg_mentioned_p (true_rtx, false_rtx)
4970 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4971 {
4972 true_code = reversed_comparison_code (cond, NULL);
4973 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4974 SUBST (XEXP (x, 1), false_rtx);
4975 SUBST (XEXP (x, 2), true_rtx);
4976
4977 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4978 cond = XEXP (x, 0);
4979
4980 /* It is possible that the conditional has been simplified out. */
4981 true_code = GET_CODE (cond);
4982 comparison_p = COMPARISON_P (cond);
4983 }
4984
4985 /* If the two arms are identical, we don't need the comparison. */
4986
4987 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4988 return true_rtx;
4989
4990 /* Convert a == b ? b : a to "a". */
4991 if (true_code == EQ && ! side_effects_p (cond)
4992 && !HONOR_NANS (mode)
4993 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4994 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4995 return false_rtx;
4996 else if (true_code == NE && ! side_effects_p (cond)
4997 && !HONOR_NANS (mode)
4998 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4999 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5000 return true_rtx;
5001
5002 /* Look for cases where we have (abs x) or (neg (abs X)). */
5003
5004 if (GET_MODE_CLASS (mode) == MODE_INT
5005 && GET_CODE (false_rtx) == NEG
5006 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5007 && comparison_p
5008 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5009 && ! side_effects_p (true_rtx))
5010 switch (true_code)
5011 {
5012 case GT:
5013 case GE:
5014 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5015 case LT:
5016 case LE:
5017 return
5018 simplify_gen_unary (NEG, mode,
5019 simplify_gen_unary (ABS, mode, true_rtx, mode),
5020 mode);
5021 default:
5022 break;
5023 }
5024
5025 /* Look for MIN or MAX. */
5026
5027 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5028 && comparison_p
5029 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5030 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5031 && ! side_effects_p (cond))
5032 switch (true_code)
5033 {
5034 case GE:
5035 case GT:
5036 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5037 case LE:
5038 case LT:
5039 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5040 case GEU:
5041 case GTU:
5042 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5043 case LEU:
5044 case LTU:
5045 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5046 default:
5047 break;
5048 }
5049
5050 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5051 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5052 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5053 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5054 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5055 neither 1 or -1, but it isn't worth checking for. */
5056
5057 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5058 && comparison_p
5059 && GET_MODE_CLASS (mode) == MODE_INT
5060 && ! side_effects_p (x))
5061 {
5062 rtx t = make_compound_operation (true_rtx, SET);
5063 rtx f = make_compound_operation (false_rtx, SET);
5064 rtx cond_op0 = XEXP (cond, 0);
5065 rtx cond_op1 = XEXP (cond, 1);
5066 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5067 enum machine_mode m = mode;
5068 rtx z = 0, c1 = NULL_RTX;
5069
5070 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5071 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5072 || GET_CODE (t) == ASHIFT
5073 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5074 && rtx_equal_p (XEXP (t, 0), f))
5075 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5076
5077 /* If an identity-zero op is commutative, check whether there
5078 would be a match if we swapped the operands. */
5079 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5080 || GET_CODE (t) == XOR)
5081 && rtx_equal_p (XEXP (t, 1), f))
5082 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5083 else if (GET_CODE (t) == SIGN_EXTEND
5084 && (GET_CODE (XEXP (t, 0)) == PLUS
5085 || GET_CODE (XEXP (t, 0)) == MINUS
5086 || GET_CODE (XEXP (t, 0)) == IOR
5087 || GET_CODE (XEXP (t, 0)) == XOR
5088 || GET_CODE (XEXP (t, 0)) == ASHIFT
5089 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5090 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5091 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5092 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5093 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5094 && (num_sign_bit_copies (f, GET_MODE (f))
5095 > (unsigned int)
5096 (GET_MODE_BITSIZE (mode)
5097 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5098 {
5099 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5100 extend_op = SIGN_EXTEND;
5101 m = GET_MODE (XEXP (t, 0));
5102 }
5103 else if (GET_CODE (t) == SIGN_EXTEND
5104 && (GET_CODE (XEXP (t, 0)) == PLUS
5105 || GET_CODE (XEXP (t, 0)) == IOR
5106 || GET_CODE (XEXP (t, 0)) == XOR)
5107 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5108 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5109 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5110 && (num_sign_bit_copies (f, GET_MODE (f))
5111 > (unsigned int)
5112 (GET_MODE_BITSIZE (mode)
5113 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5114 {
5115 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5116 extend_op = SIGN_EXTEND;
5117 m = GET_MODE (XEXP (t, 0));
5118 }
5119 else if (GET_CODE (t) == ZERO_EXTEND
5120 && (GET_CODE (XEXP (t, 0)) == PLUS
5121 || GET_CODE (XEXP (t, 0)) == MINUS
5122 || GET_CODE (XEXP (t, 0)) == IOR
5123 || GET_CODE (XEXP (t, 0)) == XOR
5124 || GET_CODE (XEXP (t, 0)) == ASHIFT
5125 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5126 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5127 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5128 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5129 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5130 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5131 && ((nonzero_bits (f, GET_MODE (f))
5132 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5133 == 0))
5134 {
5135 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5136 extend_op = ZERO_EXTEND;
5137 m = GET_MODE (XEXP (t, 0));
5138 }
5139 else if (GET_CODE (t) == ZERO_EXTEND
5140 && (GET_CODE (XEXP (t, 0)) == PLUS
5141 || GET_CODE (XEXP (t, 0)) == IOR
5142 || GET_CODE (XEXP (t, 0)) == XOR)
5143 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5144 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5145 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5146 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5147 && ((nonzero_bits (f, GET_MODE (f))
5148 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5149 == 0))
5150 {
5151 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5152 extend_op = ZERO_EXTEND;
5153 m = GET_MODE (XEXP (t, 0));
5154 }
5155
5156 if (z)
5157 {
5158 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5159 cond_op0, cond_op1),
5160 pc_rtx, pc_rtx, 0, 0);
5161 temp = simplify_gen_binary (MULT, m, temp,
5162 simplify_gen_binary (MULT, m, c1,
5163 const_true_rtx));
5164 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5165 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5166
5167 if (extend_op != UNKNOWN)
5168 temp = simplify_gen_unary (extend_op, mode, temp, m);
5169
5170 return temp;
5171 }
5172 }
5173
5174 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5175 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5176 negation of a single bit, we can convert this operation to a shift. We
5177 can actually do this more generally, but it doesn't seem worth it. */
5178
5179 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5180 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5181 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5182 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5183 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5184 == GET_MODE_BITSIZE (mode))
5185 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5186 return
5187 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5188 gen_lowpart (mode, XEXP (cond, 0)), i);
5189
5190 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5191 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5192 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5193 && GET_MODE (XEXP (cond, 0)) == mode
5194 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5195 == nonzero_bits (XEXP (cond, 0), mode)
5196 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5197 return XEXP (cond, 0);
5198
5199 return x;
5200 }
5201 \f
5202 /* Simplify X, a SET expression. Return the new expression. */
5203
5204 static rtx
5205 simplify_set (rtx x)
5206 {
5207 rtx src = SET_SRC (x);
5208 rtx dest = SET_DEST (x);
5209 enum machine_mode mode
5210 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5211 rtx other_insn;
5212 rtx *cc_use;
5213
5214 /* (set (pc) (return)) gets written as (return). */
5215 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5216 return src;
5217
5218 /* Now that we know for sure which bits of SRC we are using, see if we can
5219 simplify the expression for the object knowing that we only need the
5220 low-order bits. */
5221
5222 if (GET_MODE_CLASS (mode) == MODE_INT
5223 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5224 {
5225 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5226 SUBST (SET_SRC (x), src);
5227 }
5228
5229 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5230 the comparison result and try to simplify it unless we already have used
5231 undobuf.other_insn. */
5232 if ((GET_MODE_CLASS (mode) == MODE_CC
5233 || GET_CODE (src) == COMPARE
5234 || CC0_P (dest))
5235 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5236 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5237 && COMPARISON_P (*cc_use)
5238 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5239 {
5240 enum rtx_code old_code = GET_CODE (*cc_use);
5241 enum rtx_code new_code;
5242 rtx op0, op1, tmp;
5243 int other_changed = 0;
5244 enum machine_mode compare_mode = GET_MODE (dest);
5245
5246 if (GET_CODE (src) == COMPARE)
5247 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5248 else
5249 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5250
5251 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5252 op0, op1);
5253 if (!tmp)
5254 new_code = old_code;
5255 else if (!CONSTANT_P (tmp))
5256 {
5257 new_code = GET_CODE (tmp);
5258 op0 = XEXP (tmp, 0);
5259 op1 = XEXP (tmp, 1);
5260 }
5261 else
5262 {
5263 rtx pat = PATTERN (other_insn);
5264 undobuf.other_insn = other_insn;
5265 SUBST (*cc_use, tmp);
5266
5267 /* Attempt to simplify CC user. */
5268 if (GET_CODE (pat) == SET)
5269 {
5270 rtx new = simplify_rtx (SET_SRC (pat));
5271 if (new != NULL_RTX)
5272 SUBST (SET_SRC (pat), new);
5273 }
5274
5275 /* Convert X into a no-op move. */
5276 SUBST (SET_DEST (x), pc_rtx);
5277 SUBST (SET_SRC (x), pc_rtx);
5278 return x;
5279 }
5280
5281 /* Simplify our comparison, if possible. */
5282 new_code = simplify_comparison (new_code, &op0, &op1);
5283
5284 #ifdef SELECT_CC_MODE
5285 /* If this machine has CC modes other than CCmode, check to see if we
5286 need to use a different CC mode here. */
5287 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5288 compare_mode = GET_MODE (op0);
5289 else
5290 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5291
5292 #ifndef HAVE_cc0
5293 /* If the mode changed, we have to change SET_DEST, the mode in the
5294 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5295 a hard register, just build new versions with the proper mode. If it
5296 is a pseudo, we lose unless it is only time we set the pseudo, in
5297 which case we can safely change its mode. */
5298 if (compare_mode != GET_MODE (dest))
5299 {
5300 if (can_change_dest_mode (dest, 0, compare_mode))
5301 {
5302 unsigned int regno = REGNO (dest);
5303 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5304
5305 if (regno >= FIRST_PSEUDO_REGISTER)
5306 SUBST (regno_reg_rtx[regno], new_dest);
5307
5308 SUBST (SET_DEST (x), new_dest);
5309 SUBST (XEXP (*cc_use, 0), new_dest);
5310 other_changed = 1;
5311
5312 dest = new_dest;
5313 }
5314 }
5315 #endif /* cc0 */
5316 #endif /* SELECT_CC_MODE */
5317
5318 /* If the code changed, we have to build a new comparison in
5319 undobuf.other_insn. */
5320 if (new_code != old_code)
5321 {
5322 int other_changed_previously = other_changed;
5323 unsigned HOST_WIDE_INT mask;
5324
5325 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5326 dest, const0_rtx));
5327 other_changed = 1;
5328
5329 /* If the only change we made was to change an EQ into an NE or
5330 vice versa, OP0 has only one bit that might be nonzero, and OP1
5331 is zero, check if changing the user of the condition code will
5332 produce a valid insn. If it won't, we can keep the original code
5333 in that insn by surrounding our operation with an XOR. */
5334
5335 if (((old_code == NE && new_code == EQ)
5336 || (old_code == EQ && new_code == NE))
5337 && ! other_changed_previously && op1 == const0_rtx
5338 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5339 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5340 {
5341 rtx pat = PATTERN (other_insn), note = 0;
5342
5343 if ((recog_for_combine (&pat, other_insn, &note) < 0
5344 && ! check_asm_operands (pat)))
5345 {
5346 PUT_CODE (*cc_use, old_code);
5347 other_changed = 0;
5348
5349 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5350 op0, GEN_INT (mask));
5351 }
5352 }
5353 }
5354
5355 if (other_changed)
5356 undobuf.other_insn = other_insn;
5357
5358 #ifdef HAVE_cc0
5359 /* If we are now comparing against zero, change our source if
5360 needed. If we do not use cc0, we always have a COMPARE. */
5361 if (op1 == const0_rtx && dest == cc0_rtx)
5362 {
5363 SUBST (SET_SRC (x), op0);
5364 src = op0;
5365 }
5366 else
5367 #endif
5368
5369 /* Otherwise, if we didn't previously have a COMPARE in the
5370 correct mode, we need one. */
5371 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5372 {
5373 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5374 src = SET_SRC (x);
5375 }
5376 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5377 {
5378 SUBST(SET_SRC (x), op0);
5379 src = SET_SRC (x);
5380 }
5381 else
5382 {
5383 /* Otherwise, update the COMPARE if needed. */
5384 SUBST (XEXP (src, 0), op0);
5385 SUBST (XEXP (src, 1), op1);
5386 }
5387 }
5388 else
5389 {
5390 /* Get SET_SRC in a form where we have placed back any
5391 compound expressions. Then do the checks below. */
5392 src = make_compound_operation (src, SET);
5393 SUBST (SET_SRC (x), src);
5394 }
5395
5396 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5397 and X being a REG or (subreg (reg)), we may be able to convert this to
5398 (set (subreg:m2 x) (op)).
5399
5400 We can always do this if M1 is narrower than M2 because that means that
5401 we only care about the low bits of the result.
5402
5403 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5404 perform a narrower operation than requested since the high-order bits will
5405 be undefined. On machine where it is defined, this transformation is safe
5406 as long as M1 and M2 have the same number of words. */
5407
5408 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5409 && !OBJECT_P (SUBREG_REG (src))
5410 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5411 / UNITS_PER_WORD)
5412 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5413 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5414 #ifndef WORD_REGISTER_OPERATIONS
5415 && (GET_MODE_SIZE (GET_MODE (src))
5416 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5417 #endif
5418 #ifdef CANNOT_CHANGE_MODE_CLASS
5419 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5420 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5421 GET_MODE (SUBREG_REG (src)),
5422 GET_MODE (src)))
5423 #endif
5424 && (REG_P (dest)
5425 || (GET_CODE (dest) == SUBREG
5426 && REG_P (SUBREG_REG (dest)))))
5427 {
5428 SUBST (SET_DEST (x),
5429 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5430 dest));
5431 SUBST (SET_SRC (x), SUBREG_REG (src));
5432
5433 src = SET_SRC (x), dest = SET_DEST (x);
5434 }
5435
5436 #ifdef HAVE_cc0
5437 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5438 in SRC. */
5439 if (dest == cc0_rtx
5440 && GET_CODE (src) == SUBREG
5441 && subreg_lowpart_p (src)
5442 && (GET_MODE_BITSIZE (GET_MODE (src))
5443 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5444 {
5445 rtx inner = SUBREG_REG (src);
5446 enum machine_mode inner_mode = GET_MODE (inner);
5447
5448 /* Here we make sure that we don't have a sign bit on. */
5449 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5450 && (nonzero_bits (inner, inner_mode)
5451 < ((unsigned HOST_WIDE_INT) 1
5452 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5453 {
5454 SUBST (SET_SRC (x), inner);
5455 src = SET_SRC (x);
5456 }
5457 }
5458 #endif
5459
5460 #ifdef LOAD_EXTEND_OP
5461 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5462 would require a paradoxical subreg. Replace the subreg with a
5463 zero_extend to avoid the reload that would otherwise be required. */
5464
5465 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5466 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5467 && SUBREG_BYTE (src) == 0
5468 && (GET_MODE_SIZE (GET_MODE (src))
5469 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5470 && MEM_P (SUBREG_REG (src)))
5471 {
5472 SUBST (SET_SRC (x),
5473 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5474 GET_MODE (src), SUBREG_REG (src)));
5475
5476 src = SET_SRC (x);
5477 }
5478 #endif
5479
5480 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5481 are comparing an item known to be 0 or -1 against 0, use a logical
5482 operation instead. Check for one of the arms being an IOR of the other
5483 arm with some value. We compute three terms to be IOR'ed together. In
5484 practice, at most two will be nonzero. Then we do the IOR's. */
5485
5486 if (GET_CODE (dest) != PC
5487 && GET_CODE (src) == IF_THEN_ELSE
5488 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5489 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5490 && XEXP (XEXP (src, 0), 1) == const0_rtx
5491 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5492 #ifdef HAVE_conditional_move
5493 && ! can_conditionally_move_p (GET_MODE (src))
5494 #endif
5495 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5496 GET_MODE (XEXP (XEXP (src, 0), 0)))
5497 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5498 && ! side_effects_p (src))
5499 {
5500 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5501 ? XEXP (src, 1) : XEXP (src, 2));
5502 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5503 ? XEXP (src, 2) : XEXP (src, 1));
5504 rtx term1 = const0_rtx, term2, term3;
5505
5506 if (GET_CODE (true_rtx) == IOR
5507 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5508 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5509 else if (GET_CODE (true_rtx) == IOR
5510 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5511 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5512 else if (GET_CODE (false_rtx) == IOR
5513 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5514 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5515 else if (GET_CODE (false_rtx) == IOR
5516 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5517 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5518
5519 term2 = simplify_gen_binary (AND, GET_MODE (src),
5520 XEXP (XEXP (src, 0), 0), true_rtx);
5521 term3 = simplify_gen_binary (AND, GET_MODE (src),
5522 simplify_gen_unary (NOT, GET_MODE (src),
5523 XEXP (XEXP (src, 0), 0),
5524 GET_MODE (src)),
5525 false_rtx);
5526
5527 SUBST (SET_SRC (x),
5528 simplify_gen_binary (IOR, GET_MODE (src),
5529 simplify_gen_binary (IOR, GET_MODE (src),
5530 term1, term2),
5531 term3));
5532
5533 src = SET_SRC (x);
5534 }
5535
5536 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5537 whole thing fail. */
5538 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5539 return src;
5540 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5541 return dest;
5542 else
5543 /* Convert this into a field assignment operation, if possible. */
5544 return make_field_assignment (x);
5545 }
5546 \f
5547 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5548 result. */
5549
5550 static rtx
5551 simplify_logical (rtx x)
5552 {
5553 enum machine_mode mode = GET_MODE (x);
5554 rtx op0 = XEXP (x, 0);
5555 rtx op1 = XEXP (x, 1);
5556 rtx reversed;
5557
5558 switch (GET_CODE (x))
5559 {
5560 case AND:
5561 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5562 insn (and may simplify more). */
5563 if (GET_CODE (op0) == XOR
5564 && rtx_equal_p (XEXP (op0, 0), op1)
5565 && ! side_effects_p (op1))
5566 x = simplify_gen_binary (AND, mode,
5567 simplify_gen_unary (NOT, mode,
5568 XEXP (op0, 1), mode),
5569 op1);
5570
5571 if (GET_CODE (op0) == XOR
5572 && rtx_equal_p (XEXP (op0, 1), op1)
5573 && ! side_effects_p (op1))
5574 x = simplify_gen_binary (AND, mode,
5575 simplify_gen_unary (NOT, mode,
5576 XEXP (op0, 0), mode),
5577 op1);
5578
5579 /* Similarly for (~(A ^ B)) & A. */
5580 if (GET_CODE (op0) == NOT
5581 && GET_CODE (XEXP (op0, 0)) == XOR
5582 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5583 && ! side_effects_p (op1))
5584 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5585
5586 if (GET_CODE (op0) == NOT
5587 && GET_CODE (XEXP (op0, 0)) == XOR
5588 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5589 && ! side_effects_p (op1))
5590 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5591
5592 /* We can call simplify_and_const_int only if we don't lose
5593 any (sign) bits when converting INTVAL (op1) to
5594 "unsigned HOST_WIDE_INT". */
5595 if (GET_CODE (op1) == CONST_INT
5596 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5597 || INTVAL (op1) > 0))
5598 {
5599 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5600
5601 /* If we have (ior (and (X C1) C2)) and the next restart would be
5602 the last, simplify this by making C1 as small as possible
5603 and then exit. Only do this if C1 actually changes: for now
5604 this only saves memory but, should this transformation be
5605 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5606 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5607 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5608 && GET_CODE (op1) == CONST_INT
5609 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5610 return simplify_gen_binary (IOR, mode,
5611 simplify_gen_binary
5612 (AND, mode, XEXP (op0, 0),
5613 GEN_INT (INTVAL (XEXP (op0, 1))
5614 & ~INTVAL (op1))), op1);
5615
5616 if (GET_CODE (x) != AND)
5617 return x;
5618
5619 op0 = XEXP (x, 0);
5620 op1 = XEXP (x, 1);
5621 }
5622
5623 /* Convert (A | B) & A to A. */
5624 if (GET_CODE (op0) == IOR
5625 && (rtx_equal_p (XEXP (op0, 0), op1)
5626 || rtx_equal_p (XEXP (op0, 1), op1))
5627 && ! side_effects_p (XEXP (op0, 0))
5628 && ! side_effects_p (XEXP (op0, 1)))
5629 return op1;
5630
5631 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5632 apply the distributive law and then the inverse distributive
5633 law to see if things simplify. */
5634 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5635 {
5636 rtx result = distribute_and_simplify_rtx (x, 0);
5637 if (result)
5638 return result;
5639 }
5640 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5641 {
5642 rtx result = distribute_and_simplify_rtx (x, 1);
5643 if (result)
5644 return result;
5645 }
5646 break;
5647
5648 case IOR:
5649 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5650 if (GET_CODE (op1) == CONST_INT
5651 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5652 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5653 return op1;
5654
5655 /* Convert (A & B) | A to A. */
5656 if (GET_CODE (op0) == AND
5657 && (rtx_equal_p (XEXP (op0, 0), op1)
5658 || rtx_equal_p (XEXP (op0, 1), op1))
5659 && ! side_effects_p (XEXP (op0, 0))
5660 && ! side_effects_p (XEXP (op0, 1)))
5661 return op1;
5662
5663 /* If we have (ior (and A B) C), apply the distributive law and then
5664 the inverse distributive law to see if things simplify. */
5665
5666 if (GET_CODE (op0) == AND)
5667 {
5668 rtx result = distribute_and_simplify_rtx (x, 0);
5669 if (result)
5670 return result;
5671 }
5672
5673 if (GET_CODE (op1) == AND)
5674 {
5675 rtx result = distribute_and_simplify_rtx (x, 1);
5676 if (result)
5677 return result;
5678 }
5679
5680 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5681 mode size to (rotate A CX). */
5682
5683 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5684 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5685 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5686 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5687 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5688 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5689 == GET_MODE_BITSIZE (mode)))
5690 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5691 (GET_CODE (op0) == ASHIFT
5692 ? XEXP (op0, 1) : XEXP (op1, 1)));
5693
5694 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5695 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5696 does not affect any of the bits in OP1, it can really be done
5697 as a PLUS and we can associate. We do this by seeing if OP1
5698 can be safely shifted left C bits. */
5699 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5700 && GET_CODE (XEXP (op0, 0)) == PLUS
5701 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5702 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5703 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5704 {
5705 int count = INTVAL (XEXP (op0, 1));
5706 HOST_WIDE_INT mask = INTVAL (op1) << count;
5707
5708 if (mask >> count == INTVAL (op1)
5709 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5710 {
5711 SUBST (XEXP (XEXP (op0, 0), 1),
5712 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5713 return op0;
5714 }
5715 }
5716 break;
5717
5718 case XOR:
5719 /* If we are XORing two things that have no bits in common,
5720 convert them into an IOR. This helps to detect rotation encoded
5721 using those methods and possibly other simplifications. */
5722
5723 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5724 && (nonzero_bits (op0, mode)
5725 & nonzero_bits (op1, mode)) == 0)
5726 return (simplify_gen_binary (IOR, mode, op0, op1));
5727
5728 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5729 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5730 (NOT y). */
5731 {
5732 int num_negated = 0;
5733
5734 if (GET_CODE (op0) == NOT)
5735 num_negated++, op0 = XEXP (op0, 0);
5736 if (GET_CODE (op1) == NOT)
5737 num_negated++, op1 = XEXP (op1, 0);
5738
5739 if (num_negated == 2)
5740 {
5741 SUBST (XEXP (x, 0), op0);
5742 SUBST (XEXP (x, 1), op1);
5743 }
5744 else if (num_negated == 1)
5745 return
5746 simplify_gen_unary (NOT, mode,
5747 simplify_gen_binary (XOR, mode, op0, op1),
5748 mode);
5749 }
5750
5751 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5752 correspond to a machine insn or result in further simplifications
5753 if B is a constant. */
5754
5755 if (GET_CODE (op0) == AND
5756 && rtx_equal_p (XEXP (op0, 1), op1)
5757 && ! side_effects_p (op1))
5758 return simplify_gen_binary (AND, mode,
5759 simplify_gen_unary (NOT, mode,
5760 XEXP (op0, 0), mode),
5761 op1);
5762
5763 else if (GET_CODE (op0) == AND
5764 && rtx_equal_p (XEXP (op0, 0), op1)
5765 && ! side_effects_p (op1))
5766 return simplify_gen_binary (AND, mode,
5767 simplify_gen_unary (NOT, mode,
5768 XEXP (op0, 1), mode),
5769 op1);
5770
5771 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5772 comparison if STORE_FLAG_VALUE is 1. */
5773 if (STORE_FLAG_VALUE == 1
5774 && op1 == const1_rtx
5775 && COMPARISON_P (op0)
5776 && (reversed = reversed_comparison (op0, mode)))
5777 return reversed;
5778
5779 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5780 is (lt foo (const_int 0)), so we can perform the above
5781 simplification if STORE_FLAG_VALUE is 1. */
5782
5783 if (STORE_FLAG_VALUE == 1
5784 && op1 == const1_rtx
5785 && GET_CODE (op0) == LSHIFTRT
5786 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5787 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5788 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5789
5790 /* (xor (comparison foo bar) (const_int sign-bit))
5791 when STORE_FLAG_VALUE is the sign bit. */
5792 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5793 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5794 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5795 && op1 == const_true_rtx
5796 && COMPARISON_P (op0)
5797 && (reversed = reversed_comparison (op0, mode)))
5798 return reversed;
5799
5800 break;
5801
5802 default:
5803 gcc_unreachable ();
5804 }
5805
5806 return x;
5807 }
5808 \f
5809 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5810 operations" because they can be replaced with two more basic operations.
5811 ZERO_EXTEND is also considered "compound" because it can be replaced with
5812 an AND operation, which is simpler, though only one operation.
5813
5814 The function expand_compound_operation is called with an rtx expression
5815 and will convert it to the appropriate shifts and AND operations,
5816 simplifying at each stage.
5817
5818 The function make_compound_operation is called to convert an expression
5819 consisting of shifts and ANDs into the equivalent compound expression.
5820 It is the inverse of this function, loosely speaking. */
5821
5822 static rtx
5823 expand_compound_operation (rtx x)
5824 {
5825 unsigned HOST_WIDE_INT pos = 0, len;
5826 int unsignedp = 0;
5827 unsigned int modewidth;
5828 rtx tem;
5829
5830 switch (GET_CODE (x))
5831 {
5832 case ZERO_EXTEND:
5833 unsignedp = 1;
5834 case SIGN_EXTEND:
5835 /* We can't necessarily use a const_int for a multiword mode;
5836 it depends on implicitly extending the value.
5837 Since we don't know the right way to extend it,
5838 we can't tell whether the implicit way is right.
5839
5840 Even for a mode that is no wider than a const_int,
5841 we can't win, because we need to sign extend one of its bits through
5842 the rest of it, and we don't know which bit. */
5843 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5844 return x;
5845
5846 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5847 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5848 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5849 reloaded. If not for that, MEM's would very rarely be safe.
5850
5851 Reject MODEs bigger than a word, because we might not be able
5852 to reference a two-register group starting with an arbitrary register
5853 (and currently gen_lowpart might crash for a SUBREG). */
5854
5855 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5856 return x;
5857
5858 /* Reject MODEs that aren't scalar integers because turning vector
5859 or complex modes into shifts causes problems. */
5860
5861 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5862 return x;
5863
5864 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5865 /* If the inner object has VOIDmode (the only way this can happen
5866 is if it is an ASM_OPERANDS), we can't do anything since we don't
5867 know how much masking to do. */
5868 if (len == 0)
5869 return x;
5870
5871 break;
5872
5873 case ZERO_EXTRACT:
5874 unsignedp = 1;
5875
5876 /* ... fall through ... */
5877
5878 case SIGN_EXTRACT:
5879 /* If the operand is a CLOBBER, just return it. */
5880 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5881 return XEXP (x, 0);
5882
5883 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5884 || GET_CODE (XEXP (x, 2)) != CONST_INT
5885 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5886 return x;
5887
5888 /* Reject MODEs that aren't scalar integers because turning vector
5889 or complex modes into shifts causes problems. */
5890
5891 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5892 return x;
5893
5894 len = INTVAL (XEXP (x, 1));
5895 pos = INTVAL (XEXP (x, 2));
5896
5897 /* If this goes outside the object being extracted, replace the object
5898 with a (use (mem ...)) construct that only combine understands
5899 and is used only for this purpose. */
5900 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5901 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5902
5903 if (BITS_BIG_ENDIAN)
5904 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5905
5906 break;
5907
5908 default:
5909 return x;
5910 }
5911 /* Convert sign extension to zero extension, if we know that the high
5912 bit is not set, as this is easier to optimize. It will be converted
5913 back to cheaper alternative in make_extraction. */
5914 if (GET_CODE (x) == SIGN_EXTEND
5915 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5916 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5917 & ~(((unsigned HOST_WIDE_INT)
5918 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5919 >> 1))
5920 == 0)))
5921 {
5922 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5923 rtx temp2 = expand_compound_operation (temp);
5924
5925 /* Make sure this is a profitable operation. */
5926 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5927 return temp2;
5928 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5929 return temp;
5930 else
5931 return x;
5932 }
5933
5934 /* We can optimize some special cases of ZERO_EXTEND. */
5935 if (GET_CODE (x) == ZERO_EXTEND)
5936 {
5937 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5938 know that the last value didn't have any inappropriate bits
5939 set. */
5940 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5941 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5942 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5943 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5944 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5945 return XEXP (XEXP (x, 0), 0);
5946
5947 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5948 if (GET_CODE (XEXP (x, 0)) == SUBREG
5949 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5950 && subreg_lowpart_p (XEXP (x, 0))
5951 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5952 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5953 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5954 return SUBREG_REG (XEXP (x, 0));
5955
5956 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5957 is a comparison and STORE_FLAG_VALUE permits. This is like
5958 the first case, but it works even when GET_MODE (x) is larger
5959 than HOST_WIDE_INT. */
5960 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5961 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5962 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5963 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5964 <= HOST_BITS_PER_WIDE_INT)
5965 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5966 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5967 return XEXP (XEXP (x, 0), 0);
5968
5969 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5970 if (GET_CODE (XEXP (x, 0)) == SUBREG
5971 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5972 && subreg_lowpart_p (XEXP (x, 0))
5973 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5974 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5975 <= HOST_BITS_PER_WIDE_INT)
5976 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5977 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5978 return SUBREG_REG (XEXP (x, 0));
5979
5980 }
5981
5982 /* If we reach here, we want to return a pair of shifts. The inner
5983 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5984 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5985 logical depending on the value of UNSIGNEDP.
5986
5987 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5988 converted into an AND of a shift.
5989
5990 We must check for the case where the left shift would have a negative
5991 count. This can happen in a case like (x >> 31) & 255 on machines
5992 that can't shift by a constant. On those machines, we would first
5993 combine the shift with the AND to produce a variable-position
5994 extraction. Then the constant of 31 would be substituted in to produce
5995 a such a position. */
5996
5997 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5998 if (modewidth + len >= pos)
5999 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6000 GET_MODE (x),
6001 simplify_shift_const (NULL_RTX, ASHIFT,
6002 GET_MODE (x),
6003 XEXP (x, 0),
6004 modewidth - pos - len),
6005 modewidth - len);
6006
6007 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6008 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6009 simplify_shift_const (NULL_RTX, LSHIFTRT,
6010 GET_MODE (x),
6011 XEXP (x, 0), pos),
6012 ((HOST_WIDE_INT) 1 << len) - 1);
6013 else
6014 /* Any other cases we can't handle. */
6015 return x;
6016
6017 /* If we couldn't do this for some reason, return the original
6018 expression. */
6019 if (GET_CODE (tem) == CLOBBER)
6020 return x;
6021
6022 return tem;
6023 }
6024 \f
6025 /* X is a SET which contains an assignment of one object into
6026 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6027 or certain SUBREGS). If possible, convert it into a series of
6028 logical operations.
6029
6030 We half-heartedly support variable positions, but do not at all
6031 support variable lengths. */
6032
6033 static rtx
6034 expand_field_assignment (rtx x)
6035 {
6036 rtx inner;
6037 rtx pos; /* Always counts from low bit. */
6038 int len;
6039 rtx mask, cleared, masked;
6040 enum machine_mode compute_mode;
6041
6042 /* Loop until we find something we can't simplify. */
6043 while (1)
6044 {
6045 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6046 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6047 {
6048 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6049 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6050 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6051 }
6052 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6053 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6054 {
6055 inner = XEXP (SET_DEST (x), 0);
6056 len = INTVAL (XEXP (SET_DEST (x), 1));
6057 pos = XEXP (SET_DEST (x), 2);
6058
6059 /* If the position is constant and spans the width of INNER,
6060 surround INNER with a USE to indicate this. */
6061 if (GET_CODE (pos) == CONST_INT
6062 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6063 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6064
6065 if (BITS_BIG_ENDIAN)
6066 {
6067 if (GET_CODE (pos) == CONST_INT)
6068 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6069 - INTVAL (pos));
6070 else if (GET_CODE (pos) == MINUS
6071 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6072 && (INTVAL (XEXP (pos, 1))
6073 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6074 /* If position is ADJUST - X, new position is X. */
6075 pos = XEXP (pos, 0);
6076 else
6077 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6078 GEN_INT (GET_MODE_BITSIZE (
6079 GET_MODE (inner))
6080 - len),
6081 pos);
6082 }
6083 }
6084
6085 /* A SUBREG between two modes that occupy the same numbers of words
6086 can be done by moving the SUBREG to the source. */
6087 else if (GET_CODE (SET_DEST (x)) == SUBREG
6088 /* We need SUBREGs to compute nonzero_bits properly. */
6089 && nonzero_sign_valid
6090 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6091 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6092 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6093 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6094 {
6095 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6096 gen_lowpart
6097 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6098 SET_SRC (x)));
6099 continue;
6100 }
6101 else
6102 break;
6103
6104 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6105 inner = SUBREG_REG (inner);
6106
6107 compute_mode = GET_MODE (inner);
6108
6109 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6110 if (! SCALAR_INT_MODE_P (compute_mode))
6111 {
6112 enum machine_mode imode;
6113
6114 /* Don't do anything for vector or complex integral types. */
6115 if (! FLOAT_MODE_P (compute_mode))
6116 break;
6117
6118 /* Try to find an integral mode to pun with. */
6119 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6120 if (imode == BLKmode)
6121 break;
6122
6123 compute_mode = imode;
6124 inner = gen_lowpart (imode, inner);
6125 }
6126
6127 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6128 if (len >= HOST_BITS_PER_WIDE_INT)
6129 break;
6130
6131 /* Now compute the equivalent expression. Make a copy of INNER
6132 for the SET_DEST in case it is a MEM into which we will substitute;
6133 we don't want shared RTL in that case. */
6134 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6135 cleared = simplify_gen_binary (AND, compute_mode,
6136 simplify_gen_unary (NOT, compute_mode,
6137 simplify_gen_binary (ASHIFT,
6138 compute_mode,
6139 mask, pos),
6140 compute_mode),
6141 inner);
6142 masked = simplify_gen_binary (ASHIFT, compute_mode,
6143 simplify_gen_binary (
6144 AND, compute_mode,
6145 gen_lowpart (compute_mode, SET_SRC (x)),
6146 mask),
6147 pos);
6148
6149 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6150 simplify_gen_binary (IOR, compute_mode,
6151 cleared, masked));
6152 }
6153
6154 return x;
6155 }
6156 \f
6157 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6158 it is an RTX that represents a variable starting position; otherwise,
6159 POS is the (constant) starting bit position (counted from the LSB).
6160
6161 INNER may be a USE. This will occur when we started with a bitfield
6162 that went outside the boundary of the object in memory, which is
6163 allowed on most machines. To isolate this case, we produce a USE
6164 whose mode is wide enough and surround the MEM with it. The only
6165 code that understands the USE is this routine. If it is not removed,
6166 it will cause the resulting insn not to match.
6167
6168 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6169 signed reference.
6170
6171 IN_DEST is nonzero if this is a reference in the destination of a
6172 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6173 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6174 be used.
6175
6176 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6177 ZERO_EXTRACT should be built even for bits starting at bit 0.
6178
6179 MODE is the desired mode of the result (if IN_DEST == 0).
6180
6181 The result is an RTX for the extraction or NULL_RTX if the target
6182 can't handle it. */
6183
6184 static rtx
6185 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6186 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6187 int in_dest, int in_compare)
6188 {
6189 /* This mode describes the size of the storage area
6190 to fetch the overall value from. Within that, we
6191 ignore the POS lowest bits, etc. */
6192 enum machine_mode is_mode = GET_MODE (inner);
6193 enum machine_mode inner_mode;
6194 enum machine_mode wanted_inner_mode = byte_mode;
6195 enum machine_mode wanted_inner_reg_mode = word_mode;
6196 enum machine_mode pos_mode = word_mode;
6197 enum machine_mode extraction_mode = word_mode;
6198 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6199 int spans_byte = 0;
6200 rtx new = 0;
6201 rtx orig_pos_rtx = pos_rtx;
6202 HOST_WIDE_INT orig_pos;
6203
6204 /* Get some information about INNER and get the innermost object. */
6205 if (GET_CODE (inner) == USE)
6206 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6207 /* We don't need to adjust the position because we set up the USE
6208 to pretend that it was a full-word object. */
6209 spans_byte = 1, inner = XEXP (inner, 0);
6210 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6211 {
6212 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6213 consider just the QI as the memory to extract from.
6214 The subreg adds or removes high bits; its mode is
6215 irrelevant to the meaning of this extraction,
6216 since POS and LEN count from the lsb. */
6217 if (MEM_P (SUBREG_REG (inner)))
6218 is_mode = GET_MODE (SUBREG_REG (inner));
6219 inner = SUBREG_REG (inner);
6220 }
6221 else if (GET_CODE (inner) == ASHIFT
6222 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6223 && pos_rtx == 0 && pos == 0
6224 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6225 {
6226 /* We're extracting the least significant bits of an rtx
6227 (ashift X (const_int C)), where LEN > C. Extract the
6228 least significant (LEN - C) bits of X, giving an rtx
6229 whose mode is MODE, then shift it left C times. */
6230 new = make_extraction (mode, XEXP (inner, 0),
6231 0, 0, len - INTVAL (XEXP (inner, 1)),
6232 unsignedp, in_dest, in_compare);
6233 if (new != 0)
6234 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6235 }
6236
6237 inner_mode = GET_MODE (inner);
6238
6239 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6240 pos = INTVAL (pos_rtx), pos_rtx = 0;
6241
6242 /* See if this can be done without an extraction. We never can if the
6243 width of the field is not the same as that of some integer mode. For
6244 registers, we can only avoid the extraction if the position is at the
6245 low-order bit and this is either not in the destination or we have the
6246 appropriate STRICT_LOW_PART operation available.
6247
6248 For MEM, we can avoid an extract if the field starts on an appropriate
6249 boundary and we can change the mode of the memory reference. However,
6250 we cannot directly access the MEM if we have a USE and the underlying
6251 MEM is not TMODE. This combination means that MEM was being used in a
6252 context where bits outside its mode were being referenced; that is only
6253 valid in bit-field insns. */
6254
6255 if (tmode != BLKmode
6256 && ! (spans_byte && inner_mode != tmode)
6257 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6258 && !MEM_P (inner)
6259 && (! in_dest
6260 || (REG_P (inner)
6261 && have_insn_for (STRICT_LOW_PART, tmode))))
6262 || (MEM_P (inner) && pos_rtx == 0
6263 && (pos
6264 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6265 : BITS_PER_UNIT)) == 0
6266 /* We can't do this if we are widening INNER_MODE (it
6267 may not be aligned, for one thing). */
6268 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6269 && (inner_mode == tmode
6270 || (! mode_dependent_address_p (XEXP (inner, 0))
6271 && ! MEM_VOLATILE_P (inner))))))
6272 {
6273 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6274 field. If the original and current mode are the same, we need not
6275 adjust the offset. Otherwise, we do if bytes big endian.
6276
6277 If INNER is not a MEM, get a piece consisting of just the field
6278 of interest (in this case POS % BITS_PER_WORD must be 0). */
6279
6280 if (MEM_P (inner))
6281 {
6282 HOST_WIDE_INT offset;
6283
6284 /* POS counts from lsb, but make OFFSET count in memory order. */
6285 if (BYTES_BIG_ENDIAN)
6286 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6287 else
6288 offset = pos / BITS_PER_UNIT;
6289
6290 new = adjust_address_nv (inner, tmode, offset);
6291 }
6292 else if (REG_P (inner))
6293 {
6294 if (tmode != inner_mode)
6295 {
6296 /* We can't call gen_lowpart in a DEST since we
6297 always want a SUBREG (see below) and it would sometimes
6298 return a new hard register. */
6299 if (pos || in_dest)
6300 {
6301 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6302
6303 if (WORDS_BIG_ENDIAN
6304 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6305 final_word = ((GET_MODE_SIZE (inner_mode)
6306 - GET_MODE_SIZE (tmode))
6307 / UNITS_PER_WORD) - final_word;
6308
6309 final_word *= UNITS_PER_WORD;
6310 if (BYTES_BIG_ENDIAN &&
6311 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6312 final_word += (GET_MODE_SIZE (inner_mode)
6313 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6314
6315 /* Avoid creating invalid subregs, for example when
6316 simplifying (x>>32)&255. */
6317 if (final_word >= GET_MODE_SIZE (inner_mode))
6318 return NULL_RTX;
6319
6320 new = gen_rtx_SUBREG (tmode, inner, final_word);
6321 }
6322 else
6323 new = gen_lowpart (tmode, inner);
6324 }
6325 else
6326 new = inner;
6327 }
6328 else
6329 new = force_to_mode (inner, tmode,
6330 len >= HOST_BITS_PER_WIDE_INT
6331 ? ~(unsigned HOST_WIDE_INT) 0
6332 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6333 NULL_RTX, 0);
6334
6335 /* If this extraction is going into the destination of a SET,
6336 make a STRICT_LOW_PART unless we made a MEM. */
6337
6338 if (in_dest)
6339 return (MEM_P (new) ? new
6340 : (GET_CODE (new) != SUBREG
6341 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6342 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6343
6344 if (mode == tmode)
6345 return new;
6346
6347 if (GET_CODE (new) == CONST_INT)
6348 return gen_int_mode (INTVAL (new), mode);
6349
6350 /* If we know that no extraneous bits are set, and that the high
6351 bit is not set, convert the extraction to the cheaper of
6352 sign and zero extension, that are equivalent in these cases. */
6353 if (flag_expensive_optimizations
6354 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6355 && ((nonzero_bits (new, tmode)
6356 & ~(((unsigned HOST_WIDE_INT)
6357 GET_MODE_MASK (tmode))
6358 >> 1))
6359 == 0)))
6360 {
6361 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6362 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6363
6364 /* Prefer ZERO_EXTENSION, since it gives more information to
6365 backends. */
6366 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6367 return temp;
6368 return temp1;
6369 }
6370
6371 /* Otherwise, sign- or zero-extend unless we already are in the
6372 proper mode. */
6373
6374 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6375 mode, new));
6376 }
6377
6378 /* Unless this is a COMPARE or we have a funny memory reference,
6379 don't do anything with zero-extending field extracts starting at
6380 the low-order bit since they are simple AND operations. */
6381 if (pos_rtx == 0 && pos == 0 && ! in_dest
6382 && ! in_compare && ! spans_byte && unsignedp)
6383 return 0;
6384
6385 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6386 we would be spanning bytes or if the position is not a constant and the
6387 length is not 1. In all other cases, we would only be going outside
6388 our object in cases when an original shift would have been
6389 undefined. */
6390 if (! spans_byte && MEM_P (inner)
6391 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6392 || (pos_rtx != 0 && len != 1)))
6393 return 0;
6394
6395 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6396 and the mode for the result. */
6397 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6398 {
6399 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6400 pos_mode = mode_for_extraction (EP_insv, 2);
6401 extraction_mode = mode_for_extraction (EP_insv, 3);
6402 }
6403
6404 if (! in_dest && unsignedp
6405 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6406 {
6407 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6408 pos_mode = mode_for_extraction (EP_extzv, 3);
6409 extraction_mode = mode_for_extraction (EP_extzv, 0);
6410 }
6411
6412 if (! in_dest && ! unsignedp
6413 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6414 {
6415 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6416 pos_mode = mode_for_extraction (EP_extv, 3);
6417 extraction_mode = mode_for_extraction (EP_extv, 0);
6418 }
6419
6420 /* Never narrow an object, since that might not be safe. */
6421
6422 if (mode != VOIDmode
6423 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6424 extraction_mode = mode;
6425
6426 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6427 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6428 pos_mode = GET_MODE (pos_rtx);
6429
6430 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6431 if we have to change the mode of memory and cannot, the desired mode is
6432 EXTRACTION_MODE. */
6433 if (!MEM_P (inner))
6434 wanted_inner_mode = wanted_inner_reg_mode;
6435 else if (inner_mode != wanted_inner_mode
6436 && (mode_dependent_address_p (XEXP (inner, 0))
6437 || MEM_VOLATILE_P (inner)))
6438 wanted_inner_mode = extraction_mode;
6439
6440 orig_pos = pos;
6441
6442 if (BITS_BIG_ENDIAN)
6443 {
6444 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6445 BITS_BIG_ENDIAN style. If position is constant, compute new
6446 position. Otherwise, build subtraction.
6447 Note that POS is relative to the mode of the original argument.
6448 If it's a MEM we need to recompute POS relative to that.
6449 However, if we're extracting from (or inserting into) a register,
6450 we want to recompute POS relative to wanted_inner_mode. */
6451 int width = (MEM_P (inner)
6452 ? GET_MODE_BITSIZE (is_mode)
6453 : GET_MODE_BITSIZE (wanted_inner_mode));
6454
6455 if (pos_rtx == 0)
6456 pos = width - len - pos;
6457 else
6458 pos_rtx
6459 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6460 /* POS may be less than 0 now, but we check for that below.
6461 Note that it can only be less than 0 if !MEM_P (inner). */
6462 }
6463
6464 /* If INNER has a wider mode, make it smaller. If this is a constant
6465 extract, try to adjust the byte to point to the byte containing
6466 the value. */
6467 if (wanted_inner_mode != VOIDmode
6468 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6469 && ((MEM_P (inner)
6470 && (inner_mode == wanted_inner_mode
6471 || (! mode_dependent_address_p (XEXP (inner, 0))
6472 && ! MEM_VOLATILE_P (inner))))))
6473 {
6474 int offset = 0;
6475
6476 /* The computations below will be correct if the machine is big
6477 endian in both bits and bytes or little endian in bits and bytes.
6478 If it is mixed, we must adjust. */
6479
6480 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6481 adjust OFFSET to compensate. */
6482 if (BYTES_BIG_ENDIAN
6483 && ! spans_byte
6484 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6485 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6486
6487 /* If this is a constant position, we can move to the desired byte. */
6488 if (pos_rtx == 0)
6489 {
6490 offset += pos / BITS_PER_UNIT;
6491 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6492 }
6493
6494 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6495 && ! spans_byte
6496 && is_mode != wanted_inner_mode)
6497 offset = (GET_MODE_SIZE (is_mode)
6498 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6499
6500 if (offset != 0 || inner_mode != wanted_inner_mode)
6501 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6502 }
6503
6504 /* If INNER is not memory, we can always get it into the proper mode. If we
6505 are changing its mode, POS must be a constant and smaller than the size
6506 of the new mode. */
6507 else if (!MEM_P (inner))
6508 {
6509 if (GET_MODE (inner) != wanted_inner_mode
6510 && (pos_rtx != 0
6511 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6512 return 0;
6513
6514 inner = force_to_mode (inner, wanted_inner_mode,
6515 pos_rtx
6516 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6517 ? ~(unsigned HOST_WIDE_INT) 0
6518 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6519 << orig_pos),
6520 NULL_RTX, 0);
6521 }
6522
6523 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6524 have to zero extend. Otherwise, we can just use a SUBREG. */
6525 if (pos_rtx != 0
6526 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6527 {
6528 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6529
6530 /* If we know that no extraneous bits are set, and that the high
6531 bit is not set, convert extraction to cheaper one - either
6532 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6533 cases. */
6534 if (flag_expensive_optimizations
6535 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6536 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6537 & ~(((unsigned HOST_WIDE_INT)
6538 GET_MODE_MASK (GET_MODE (pos_rtx)))
6539 >> 1))
6540 == 0)))
6541 {
6542 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6543
6544 /* Prefer ZERO_EXTENSION, since it gives more information to
6545 backends. */
6546 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6547 temp = temp1;
6548 }
6549 pos_rtx = temp;
6550 }
6551 else if (pos_rtx != 0
6552 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6553 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6554
6555 /* Make POS_RTX unless we already have it and it is correct. If we don't
6556 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6557 be a CONST_INT. */
6558 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6559 pos_rtx = orig_pos_rtx;
6560
6561 else if (pos_rtx == 0)
6562 pos_rtx = GEN_INT (pos);
6563
6564 /* Make the required operation. See if we can use existing rtx. */
6565 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6566 extraction_mode, inner, GEN_INT (len), pos_rtx);
6567 if (! in_dest)
6568 new = gen_lowpart (mode, new);
6569
6570 return new;
6571 }
6572 \f
6573 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6574 with any other operations in X. Return X without that shift if so. */
6575
6576 static rtx
6577 extract_left_shift (rtx x, int count)
6578 {
6579 enum rtx_code code = GET_CODE (x);
6580 enum machine_mode mode = GET_MODE (x);
6581 rtx tem;
6582
6583 switch (code)
6584 {
6585 case ASHIFT:
6586 /* This is the shift itself. If it is wide enough, we will return
6587 either the value being shifted if the shift count is equal to
6588 COUNT or a shift for the difference. */
6589 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6590 && INTVAL (XEXP (x, 1)) >= count)
6591 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6592 INTVAL (XEXP (x, 1)) - count);
6593 break;
6594
6595 case NEG: case NOT:
6596 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6597 return simplify_gen_unary (code, mode, tem, mode);
6598
6599 break;
6600
6601 case PLUS: case IOR: case XOR: case AND:
6602 /* If we can safely shift this constant and we find the inner shift,
6603 make a new operation. */
6604 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6605 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6606 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6607 return simplify_gen_binary (code, mode, tem,
6608 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6609
6610 break;
6611
6612 default:
6613 break;
6614 }
6615
6616 return 0;
6617 }
6618 \f
6619 /* Look at the expression rooted at X. Look for expressions
6620 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6621 Form these expressions.
6622
6623 Return the new rtx, usually just X.
6624
6625 Also, for machines like the VAX that don't have logical shift insns,
6626 try to convert logical to arithmetic shift operations in cases where
6627 they are equivalent. This undoes the canonicalizations to logical
6628 shifts done elsewhere.
6629
6630 We try, as much as possible, to re-use rtl expressions to save memory.
6631
6632 IN_CODE says what kind of expression we are processing. Normally, it is
6633 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6634 being kludges), it is MEM. When processing the arguments of a comparison
6635 or a COMPARE against zero, it is COMPARE. */
6636
6637 static rtx
6638 make_compound_operation (rtx x, enum rtx_code in_code)
6639 {
6640 enum rtx_code code = GET_CODE (x);
6641 enum machine_mode mode = GET_MODE (x);
6642 int mode_width = GET_MODE_BITSIZE (mode);
6643 rtx rhs, lhs;
6644 enum rtx_code next_code;
6645 int i;
6646 rtx new = 0;
6647 rtx tem;
6648 const char *fmt;
6649
6650 /* Select the code to be used in recursive calls. Once we are inside an
6651 address, we stay there. If we have a comparison, set to COMPARE,
6652 but once inside, go back to our default of SET. */
6653
6654 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6655 : ((code == COMPARE || COMPARISON_P (x))
6656 && XEXP (x, 1) == const0_rtx) ? COMPARE
6657 : in_code == COMPARE ? SET : in_code);
6658
6659 /* Process depending on the code of this operation. If NEW is set
6660 nonzero, it will be returned. */
6661
6662 switch (code)
6663 {
6664 case ASHIFT:
6665 /* Convert shifts by constants into multiplications if inside
6666 an address. */
6667 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6668 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6669 && INTVAL (XEXP (x, 1)) >= 0)
6670 {
6671 new = make_compound_operation (XEXP (x, 0), next_code);
6672 new = gen_rtx_MULT (mode, new,
6673 GEN_INT ((HOST_WIDE_INT) 1
6674 << INTVAL (XEXP (x, 1))));
6675 }
6676 break;
6677
6678 case AND:
6679 /* If the second operand is not a constant, we can't do anything
6680 with it. */
6681 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6682 break;
6683
6684 /* If the constant is a power of two minus one and the first operand
6685 is a logical right shift, make an extraction. */
6686 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6687 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6688 {
6689 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6690 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6691 0, in_code == COMPARE);
6692 }
6693
6694 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6695 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6696 && subreg_lowpart_p (XEXP (x, 0))
6697 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6698 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6699 {
6700 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6701 next_code);
6702 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6703 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6704 0, in_code == COMPARE);
6705 }
6706 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6707 else if ((GET_CODE (XEXP (x, 0)) == XOR
6708 || GET_CODE (XEXP (x, 0)) == IOR)
6709 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6710 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6711 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6712 {
6713 /* Apply the distributive law, and then try to make extractions. */
6714 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6715 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6716 XEXP (x, 1)),
6717 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6718 XEXP (x, 1)));
6719 new = make_compound_operation (new, in_code);
6720 }
6721
6722 /* If we are have (and (rotate X C) M) and C is larger than the number
6723 of bits in M, this is an extraction. */
6724
6725 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6726 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6727 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6728 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6729 {
6730 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6731 new = make_extraction (mode, new,
6732 (GET_MODE_BITSIZE (mode)
6733 - INTVAL (XEXP (XEXP (x, 0), 1))),
6734 NULL_RTX, i, 1, 0, in_code == COMPARE);
6735 }
6736
6737 /* On machines without logical shifts, if the operand of the AND is
6738 a logical shift and our mask turns off all the propagated sign
6739 bits, we can replace the logical shift with an arithmetic shift. */
6740 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6741 && !have_insn_for (LSHIFTRT, mode)
6742 && have_insn_for (ASHIFTRT, mode)
6743 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6744 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6745 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6746 && mode_width <= HOST_BITS_PER_WIDE_INT)
6747 {
6748 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6749
6750 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6751 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6752 SUBST (XEXP (x, 0),
6753 gen_rtx_ASHIFTRT (mode,
6754 make_compound_operation
6755 (XEXP (XEXP (x, 0), 0), next_code),
6756 XEXP (XEXP (x, 0), 1)));
6757 }
6758
6759 /* If the constant is one less than a power of two, this might be
6760 representable by an extraction even if no shift is present.
6761 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6762 we are in a COMPARE. */
6763 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6764 new = make_extraction (mode,
6765 make_compound_operation (XEXP (x, 0),
6766 next_code),
6767 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6768
6769 /* If we are in a comparison and this is an AND with a power of two,
6770 convert this into the appropriate bit extract. */
6771 else if (in_code == COMPARE
6772 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6773 new = make_extraction (mode,
6774 make_compound_operation (XEXP (x, 0),
6775 next_code),
6776 i, NULL_RTX, 1, 1, 0, 1);
6777
6778 break;
6779
6780 case LSHIFTRT:
6781 /* If the sign bit is known to be zero, replace this with an
6782 arithmetic shift. */
6783 if (have_insn_for (ASHIFTRT, mode)
6784 && ! have_insn_for (LSHIFTRT, mode)
6785 && mode_width <= HOST_BITS_PER_WIDE_INT
6786 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6787 {
6788 new = gen_rtx_ASHIFTRT (mode,
6789 make_compound_operation (XEXP (x, 0),
6790 next_code),
6791 XEXP (x, 1));
6792 break;
6793 }
6794
6795 /* ... fall through ... */
6796
6797 case ASHIFTRT:
6798 lhs = XEXP (x, 0);
6799 rhs = XEXP (x, 1);
6800
6801 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6802 this is a SIGN_EXTRACT. */
6803 if (GET_CODE (rhs) == CONST_INT
6804 && GET_CODE (lhs) == ASHIFT
6805 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6806 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6807 {
6808 new = make_compound_operation (XEXP (lhs, 0), next_code);
6809 new = make_extraction (mode, new,
6810 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6811 NULL_RTX, mode_width - INTVAL (rhs),
6812 code == LSHIFTRT, 0, in_code == COMPARE);
6813 break;
6814 }
6815
6816 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6817 If so, try to merge the shifts into a SIGN_EXTEND. We could
6818 also do this for some cases of SIGN_EXTRACT, but it doesn't
6819 seem worth the effort; the case checked for occurs on Alpha. */
6820
6821 if (!OBJECT_P (lhs)
6822 && ! (GET_CODE (lhs) == SUBREG
6823 && (OBJECT_P (SUBREG_REG (lhs))))
6824 && GET_CODE (rhs) == CONST_INT
6825 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6826 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6827 new = make_extraction (mode, make_compound_operation (new, next_code),
6828 0, NULL_RTX, mode_width - INTVAL (rhs),
6829 code == LSHIFTRT, 0, in_code == COMPARE);
6830
6831 break;
6832
6833 case SUBREG:
6834 /* Call ourselves recursively on the inner expression. If we are
6835 narrowing the object and it has a different RTL code from
6836 what it originally did, do this SUBREG as a force_to_mode. */
6837
6838 tem = make_compound_operation (SUBREG_REG (x), in_code);
6839
6840 {
6841 rtx simplified;
6842 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6843 SUBREG_BYTE (x));
6844
6845 if (simplified)
6846 tem = simplified;
6847
6848 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6849 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6850 && subreg_lowpart_p (x))
6851 {
6852 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6853 NULL_RTX, 0);
6854
6855 /* If we have something other than a SUBREG, we might have
6856 done an expansion, so rerun ourselves. */
6857 if (GET_CODE (newer) != SUBREG)
6858 newer = make_compound_operation (newer, in_code);
6859
6860 return newer;
6861 }
6862
6863 if (simplified)
6864 return tem;
6865 }
6866 break;
6867
6868 default:
6869 break;
6870 }
6871
6872 if (new)
6873 {
6874 x = gen_lowpart (mode, new);
6875 code = GET_CODE (x);
6876 }
6877
6878 /* Now recursively process each operand of this operation. */
6879 fmt = GET_RTX_FORMAT (code);
6880 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6881 if (fmt[i] == 'e')
6882 {
6883 new = make_compound_operation (XEXP (x, i), next_code);
6884 SUBST (XEXP (x, i), new);
6885 }
6886
6887 return x;
6888 }
6889 \f
6890 /* Given M see if it is a value that would select a field of bits
6891 within an item, but not the entire word. Return -1 if not.
6892 Otherwise, return the starting position of the field, where 0 is the
6893 low-order bit.
6894
6895 *PLEN is set to the length of the field. */
6896
6897 static int
6898 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6899 {
6900 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6901 int pos = exact_log2 (m & -m);
6902 int len = 0;
6903
6904 if (pos >= 0)
6905 /* Now shift off the low-order zero bits and see if we have a
6906 power of two minus 1. */
6907 len = exact_log2 ((m >> pos) + 1);
6908
6909 if (len <= 0)
6910 pos = -1;
6911
6912 *plen = len;
6913 return pos;
6914 }
6915 \f
6916 /* See if X can be simplified knowing that we will only refer to it in
6917 MODE and will only refer to those bits that are nonzero in MASK.
6918 If other bits are being computed or if masking operations are done
6919 that select a superset of the bits in MASK, they can sometimes be
6920 ignored.
6921
6922 Return a possibly simplified expression, but always convert X to
6923 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6924
6925 Also, if REG is nonzero and X is a register equal in value to REG,
6926 replace X with REG.
6927
6928 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6929 are all off in X. This is used when X will be complemented, by either
6930 NOT, NEG, or XOR. */
6931
6932 static rtx
6933 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6934 rtx reg, int just_select)
6935 {
6936 enum rtx_code code = GET_CODE (x);
6937 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6938 enum machine_mode op_mode;
6939 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6940 rtx op0, op1, temp;
6941
6942 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6943 code below will do the wrong thing since the mode of such an
6944 expression is VOIDmode.
6945
6946 Also do nothing if X is a CLOBBER; this can happen if X was
6947 the return value from a call to gen_lowpart. */
6948 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6949 return x;
6950
6951 /* We want to perform the operation is its present mode unless we know
6952 that the operation is valid in MODE, in which case we do the operation
6953 in MODE. */
6954 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6955 && have_insn_for (code, mode))
6956 ? mode : GET_MODE (x));
6957
6958 /* It is not valid to do a right-shift in a narrower mode
6959 than the one it came in with. */
6960 if ((code == LSHIFTRT || code == ASHIFTRT)
6961 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6962 op_mode = GET_MODE (x);
6963
6964 /* Truncate MASK to fit OP_MODE. */
6965 if (op_mode)
6966 mask &= GET_MODE_MASK (op_mode);
6967
6968 /* When we have an arithmetic operation, or a shift whose count we
6969 do not know, we need to assume that all bits up to the highest-order
6970 bit in MASK will be needed. This is how we form such a mask. */
6971 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6972 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6973 else
6974 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6975 - 1);
6976
6977 /* Determine what bits of X are guaranteed to be (non)zero. */
6978 nonzero = nonzero_bits (x, mode);
6979
6980 /* If none of the bits in X are needed, return a zero. */
6981 if (! just_select && (nonzero & mask) == 0)
6982 x = const0_rtx;
6983
6984 /* If X is a CONST_INT, return a new one. Do this here since the
6985 test below will fail. */
6986 if (GET_CODE (x) == CONST_INT)
6987 {
6988 if (SCALAR_INT_MODE_P (mode))
6989 return gen_int_mode (INTVAL (x) & mask, mode);
6990 else
6991 {
6992 x = GEN_INT (INTVAL (x) & mask);
6993 return gen_lowpart_common (mode, x);
6994 }
6995 }
6996
6997 /* If X is narrower than MODE and we want all the bits in X's mode, just
6998 get X in the proper mode. */
6999 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7000 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7001 return gen_lowpart (mode, x);
7002
7003 switch (code)
7004 {
7005 case CLOBBER:
7006 /* If X is a (clobber (const_int)), return it since we know we are
7007 generating something that won't match. */
7008 return x;
7009
7010 case USE:
7011 /* X is a (use (mem ..)) that was made from a bit-field extraction that
7012 spanned the boundary of the MEM. If we are now masking so it is
7013 within that boundary, we don't need the USE any more. */
7014 if (! BITS_BIG_ENDIAN
7015 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7016 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7017 break;
7018
7019 case SIGN_EXTEND:
7020 case ZERO_EXTEND:
7021 case ZERO_EXTRACT:
7022 case SIGN_EXTRACT:
7023 x = expand_compound_operation (x);
7024 if (GET_CODE (x) != code)
7025 return force_to_mode (x, mode, mask, reg, next_select);
7026 break;
7027
7028 case REG:
7029 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
7030 || rtx_equal_p (reg, get_last_value (x))))
7031 x = reg;
7032 break;
7033
7034 case SUBREG:
7035 if (subreg_lowpart_p (x)
7036 /* We can ignore the effect of this SUBREG if it narrows the mode or
7037 if the constant masks to zero all the bits the mode doesn't
7038 have. */
7039 && ((GET_MODE_SIZE (GET_MODE (x))
7040 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7041 || (0 == (mask
7042 & GET_MODE_MASK (GET_MODE (x))
7043 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7044 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
7045 break;
7046
7047 case AND:
7048 /* If this is an AND with a constant, convert it into an AND
7049 whose constant is the AND of that constant with MASK. If it
7050 remains an AND of MASK, delete it since it is redundant. */
7051
7052 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7053 {
7054 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7055 mask & INTVAL (XEXP (x, 1)));
7056
7057 /* If X is still an AND, see if it is an AND with a mask that
7058 is just some low-order bits. If so, and it is MASK, we don't
7059 need it. */
7060
7061 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7062 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7063 == mask))
7064 x = XEXP (x, 0);
7065
7066 /* If it remains an AND, try making another AND with the bits
7067 in the mode mask that aren't in MASK turned on. If the
7068 constant in the AND is wide enough, this might make a
7069 cheaper constant. */
7070
7071 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7072 && GET_MODE_MASK (GET_MODE (x)) != mask
7073 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7074 {
7075 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7076 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7077 int width = GET_MODE_BITSIZE (GET_MODE (x));
7078 rtx y;
7079
7080 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7081 number, sign extend it. */
7082 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7083 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7084 cval |= (HOST_WIDE_INT) -1 << width;
7085
7086 y = simplify_gen_binary (AND, GET_MODE (x),
7087 XEXP (x, 0), GEN_INT (cval));
7088 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7089 x = y;
7090 }
7091
7092 break;
7093 }
7094
7095 goto binop;
7096
7097 case PLUS:
7098 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7099 low-order bits (as in an alignment operation) and FOO is already
7100 aligned to that boundary, mask C1 to that boundary as well.
7101 This may eliminate that PLUS and, later, the AND. */
7102
7103 {
7104 unsigned int width = GET_MODE_BITSIZE (mode);
7105 unsigned HOST_WIDE_INT smask = mask;
7106
7107 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7108 number, sign extend it. */
7109
7110 if (width < HOST_BITS_PER_WIDE_INT
7111 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7112 smask |= (HOST_WIDE_INT) -1 << width;
7113
7114 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7115 && exact_log2 (- smask) >= 0
7116 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7117 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7118 return force_to_mode (plus_constant (XEXP (x, 0),
7119 (INTVAL (XEXP (x, 1)) & smask)),
7120 mode, smask, reg, next_select);
7121 }
7122
7123 /* ... fall through ... */
7124
7125 case MULT:
7126 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7127 most significant bit in MASK since carries from those bits will
7128 affect the bits we are interested in. */
7129 mask = fuller_mask;
7130 goto binop;
7131
7132 case MINUS:
7133 /* If X is (minus C Y) where C's least set bit is larger than any bit
7134 in the mask, then we may replace with (neg Y). */
7135 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7136 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7137 & -INTVAL (XEXP (x, 0))))
7138 > mask))
7139 {
7140 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7141 GET_MODE (x));
7142 return force_to_mode (x, mode, mask, reg, next_select);
7143 }
7144
7145 /* Similarly, if C contains every bit in the fuller_mask, then we may
7146 replace with (not Y). */
7147 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7148 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7149 == INTVAL (XEXP (x, 0))))
7150 {
7151 x = simplify_gen_unary (NOT, GET_MODE (x),
7152 XEXP (x, 1), GET_MODE (x));
7153 return force_to_mode (x, mode, mask, reg, next_select);
7154 }
7155
7156 mask = fuller_mask;
7157 goto binop;
7158
7159 case IOR:
7160 case XOR:
7161 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7162 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7163 operation which may be a bitfield extraction. Ensure that the
7164 constant we form is not wider than the mode of X. */
7165
7166 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7167 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7168 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7169 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7170 && GET_CODE (XEXP (x, 1)) == CONST_INT
7171 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7172 + floor_log2 (INTVAL (XEXP (x, 1))))
7173 < GET_MODE_BITSIZE (GET_MODE (x)))
7174 && (INTVAL (XEXP (x, 1))
7175 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7176 {
7177 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7178 << INTVAL (XEXP (XEXP (x, 0), 1)));
7179 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7180 XEXP (XEXP (x, 0), 0), temp);
7181 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7182 XEXP (XEXP (x, 0), 1));
7183 return force_to_mode (x, mode, mask, reg, next_select);
7184 }
7185
7186 binop:
7187 /* For most binary operations, just propagate into the operation and
7188 change the mode if we have an operation of that mode. */
7189
7190 op0 = gen_lowpart (op_mode,
7191 force_to_mode (XEXP (x, 0), mode, mask,
7192 reg, next_select));
7193 op1 = gen_lowpart (op_mode,
7194 force_to_mode (XEXP (x, 1), mode, mask,
7195 reg, next_select));
7196
7197 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7198 x = simplify_gen_binary (code, op_mode, op0, op1);
7199 break;
7200
7201 case ASHIFT:
7202 /* For left shifts, do the same, but just for the first operand.
7203 However, we cannot do anything with shifts where we cannot
7204 guarantee that the counts are smaller than the size of the mode
7205 because such a count will have a different meaning in a
7206 wider mode. */
7207
7208 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7209 && INTVAL (XEXP (x, 1)) >= 0
7210 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7211 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7212 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7213 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7214 break;
7215
7216 /* If the shift count is a constant and we can do arithmetic in
7217 the mode of the shift, refine which bits we need. Otherwise, use the
7218 conservative form of the mask. */
7219 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7220 && INTVAL (XEXP (x, 1)) >= 0
7221 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7222 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7223 mask >>= INTVAL (XEXP (x, 1));
7224 else
7225 mask = fuller_mask;
7226
7227 op0 = gen_lowpart (op_mode,
7228 force_to_mode (XEXP (x, 0), op_mode,
7229 mask, reg, next_select));
7230
7231 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7232 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7233 break;
7234
7235 case LSHIFTRT:
7236 /* Here we can only do something if the shift count is a constant,
7237 this shift constant is valid for the host, and we can do arithmetic
7238 in OP_MODE. */
7239
7240 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7241 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7242 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7243 {
7244 rtx inner = XEXP (x, 0);
7245 unsigned HOST_WIDE_INT inner_mask;
7246
7247 /* Select the mask of the bits we need for the shift operand. */
7248 inner_mask = mask << INTVAL (XEXP (x, 1));
7249
7250 /* We can only change the mode of the shift if we can do arithmetic
7251 in the mode of the shift and INNER_MASK is no wider than the
7252 width of X's mode. */
7253 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7254 op_mode = GET_MODE (x);
7255
7256 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7257
7258 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7259 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7260 }
7261
7262 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7263 shift and AND produces only copies of the sign bit (C2 is one less
7264 than a power of two), we can do this with just a shift. */
7265
7266 if (GET_CODE (x) == LSHIFTRT
7267 && GET_CODE (XEXP (x, 1)) == CONST_INT
7268 /* The shift puts one of the sign bit copies in the least significant
7269 bit. */
7270 && ((INTVAL (XEXP (x, 1))
7271 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7272 >= GET_MODE_BITSIZE (GET_MODE (x)))
7273 && exact_log2 (mask + 1) >= 0
7274 /* Number of bits left after the shift must be more than the mask
7275 needs. */
7276 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7277 <= GET_MODE_BITSIZE (GET_MODE (x)))
7278 /* Must be more sign bit copies than the mask needs. */
7279 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7280 >= exact_log2 (mask + 1)))
7281 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7282 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7283 - exact_log2 (mask + 1)));
7284
7285 goto shiftrt;
7286
7287 case ASHIFTRT:
7288 /* If we are just looking for the sign bit, we don't need this shift at
7289 all, even if it has a variable count. */
7290 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7291 && (mask == ((unsigned HOST_WIDE_INT) 1
7292 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7293 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7294
7295 /* If this is a shift by a constant, get a mask that contains those bits
7296 that are not copies of the sign bit. We then have two cases: If
7297 MASK only includes those bits, this can be a logical shift, which may
7298 allow simplifications. If MASK is a single-bit field not within
7299 those bits, we are requesting a copy of the sign bit and hence can
7300 shift the sign bit to the appropriate location. */
7301
7302 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7303 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7304 {
7305 int i = -1;
7306
7307 /* If the considered data is wider than HOST_WIDE_INT, we can't
7308 represent a mask for all its bits in a single scalar.
7309 But we only care about the lower bits, so calculate these. */
7310
7311 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7312 {
7313 nonzero = ~(HOST_WIDE_INT) 0;
7314
7315 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7316 is the number of bits a full-width mask would have set.
7317 We need only shift if these are fewer than nonzero can
7318 hold. If not, we must keep all bits set in nonzero. */
7319
7320 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7321 < HOST_BITS_PER_WIDE_INT)
7322 nonzero >>= INTVAL (XEXP (x, 1))
7323 + HOST_BITS_PER_WIDE_INT
7324 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7325 }
7326 else
7327 {
7328 nonzero = GET_MODE_MASK (GET_MODE (x));
7329 nonzero >>= INTVAL (XEXP (x, 1));
7330 }
7331
7332 if ((mask & ~nonzero) == 0
7333 || (i = exact_log2 (mask)) >= 0)
7334 {
7335 x = simplify_shift_const
7336 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7337 i < 0 ? INTVAL (XEXP (x, 1))
7338 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7339
7340 if (GET_CODE (x) != ASHIFTRT)
7341 return force_to_mode (x, mode, mask, reg, next_select);
7342 }
7343 }
7344
7345 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7346 even if the shift count isn't a constant. */
7347 if (mask == 1)
7348 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7349 XEXP (x, 0), XEXP (x, 1));
7350
7351 shiftrt:
7352
7353 /* If this is a zero- or sign-extension operation that just affects bits
7354 we don't care about, remove it. Be sure the call above returned
7355 something that is still a shift. */
7356
7357 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7358 && GET_CODE (XEXP (x, 1)) == CONST_INT
7359 && INTVAL (XEXP (x, 1)) >= 0
7360 && (INTVAL (XEXP (x, 1))
7361 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7362 && GET_CODE (XEXP (x, 0)) == ASHIFT
7363 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7364 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7365 reg, next_select);
7366
7367 break;
7368
7369 case ROTATE:
7370 case ROTATERT:
7371 /* If the shift count is constant and we can do computations
7372 in the mode of X, compute where the bits we care about are.
7373 Otherwise, we can't do anything. Don't change the mode of
7374 the shift or propagate MODE into the shift, though. */
7375 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7376 && INTVAL (XEXP (x, 1)) >= 0)
7377 {
7378 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7379 GET_MODE (x), GEN_INT (mask),
7380 XEXP (x, 1));
7381 if (temp && GET_CODE (temp) == CONST_INT)
7382 SUBST (XEXP (x, 0),
7383 force_to_mode (XEXP (x, 0), GET_MODE (x),
7384 INTVAL (temp), reg, next_select));
7385 }
7386 break;
7387
7388 case NEG:
7389 /* If we just want the low-order bit, the NEG isn't needed since it
7390 won't change the low-order bit. */
7391 if (mask == 1)
7392 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7393
7394 /* We need any bits less significant than the most significant bit in
7395 MASK since carries from those bits will affect the bits we are
7396 interested in. */
7397 mask = fuller_mask;
7398 goto unop;
7399
7400 case NOT:
7401 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7402 same as the XOR case above. Ensure that the constant we form is not
7403 wider than the mode of X. */
7404
7405 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7406 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7407 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7408 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7409 < GET_MODE_BITSIZE (GET_MODE (x)))
7410 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7411 {
7412 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7413 GET_MODE (x));
7414 temp = simplify_gen_binary (XOR, GET_MODE (x),
7415 XEXP (XEXP (x, 0), 0), temp);
7416 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7417 temp, XEXP (XEXP (x, 0), 1));
7418
7419 return force_to_mode (x, mode, mask, reg, next_select);
7420 }
7421
7422 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7423 use the full mask inside the NOT. */
7424 mask = fuller_mask;
7425
7426 unop:
7427 op0 = gen_lowpart (op_mode,
7428 force_to_mode (XEXP (x, 0), mode, mask,
7429 reg, next_select));
7430 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7431 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7432 break;
7433
7434 case NE:
7435 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7436 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7437 which is equal to STORE_FLAG_VALUE. */
7438 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7439 && GET_MODE (XEXP (x, 0)) == mode
7440 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7441 && (nonzero_bits (XEXP (x, 0), mode)
7442 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7443 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7444
7445 break;
7446
7447 case IF_THEN_ELSE:
7448 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7449 written in a narrower mode. We play it safe and do not do so. */
7450
7451 SUBST (XEXP (x, 1),
7452 gen_lowpart (GET_MODE (x),
7453 force_to_mode (XEXP (x, 1), mode,
7454 mask, reg, next_select)));
7455 SUBST (XEXP (x, 2),
7456 gen_lowpart (GET_MODE (x),
7457 force_to_mode (XEXP (x, 2), mode,
7458 mask, reg, next_select)));
7459 break;
7460
7461 default:
7462 break;
7463 }
7464
7465 /* Ensure we return a value of the proper mode. */
7466 return gen_lowpart (mode, x);
7467 }
7468 \f
7469 /* Return nonzero if X is an expression that has one of two values depending on
7470 whether some other value is zero or nonzero. In that case, we return the
7471 value that is being tested, *PTRUE is set to the value if the rtx being
7472 returned has a nonzero value, and *PFALSE is set to the other alternative.
7473
7474 If we return zero, we set *PTRUE and *PFALSE to X. */
7475
7476 static rtx
7477 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7478 {
7479 enum machine_mode mode = GET_MODE (x);
7480 enum rtx_code code = GET_CODE (x);
7481 rtx cond0, cond1, true0, true1, false0, false1;
7482 unsigned HOST_WIDE_INT nz;
7483
7484 /* If we are comparing a value against zero, we are done. */
7485 if ((code == NE || code == EQ)
7486 && XEXP (x, 1) == const0_rtx)
7487 {
7488 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7489 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7490 return XEXP (x, 0);
7491 }
7492
7493 /* If this is a unary operation whose operand has one of two values, apply
7494 our opcode to compute those values. */
7495 else if (UNARY_P (x)
7496 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7497 {
7498 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7499 *pfalse = simplify_gen_unary (code, mode, false0,
7500 GET_MODE (XEXP (x, 0)));
7501 return cond0;
7502 }
7503
7504 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7505 make can't possibly match and would suppress other optimizations. */
7506 else if (code == COMPARE)
7507 ;
7508
7509 /* If this is a binary operation, see if either side has only one of two
7510 values. If either one does or if both do and they are conditional on
7511 the same value, compute the new true and false values. */
7512 else if (BINARY_P (x))
7513 {
7514 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7515 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7516
7517 if ((cond0 != 0 || cond1 != 0)
7518 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7519 {
7520 /* If if_then_else_cond returned zero, then true/false are the
7521 same rtl. We must copy one of them to prevent invalid rtl
7522 sharing. */
7523 if (cond0 == 0)
7524 true0 = copy_rtx (true0);
7525 else if (cond1 == 0)
7526 true1 = copy_rtx (true1);
7527
7528 if (COMPARISON_P (x))
7529 {
7530 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7531 true0, true1);
7532 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7533 false0, false1);
7534 }
7535 else
7536 {
7537 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7538 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7539 }
7540
7541 return cond0 ? cond0 : cond1;
7542 }
7543
7544 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7545 operands is zero when the other is nonzero, and vice-versa,
7546 and STORE_FLAG_VALUE is 1 or -1. */
7547
7548 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7549 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7550 || code == UMAX)
7551 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7552 {
7553 rtx op0 = XEXP (XEXP (x, 0), 1);
7554 rtx op1 = XEXP (XEXP (x, 1), 1);
7555
7556 cond0 = XEXP (XEXP (x, 0), 0);
7557 cond1 = XEXP (XEXP (x, 1), 0);
7558
7559 if (COMPARISON_P (cond0)
7560 && COMPARISON_P (cond1)
7561 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7562 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7563 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7564 || ((swap_condition (GET_CODE (cond0))
7565 == reversed_comparison_code (cond1, NULL))
7566 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7567 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7568 && ! side_effects_p (x))
7569 {
7570 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7571 *pfalse = simplify_gen_binary (MULT, mode,
7572 (code == MINUS
7573 ? simplify_gen_unary (NEG, mode,
7574 op1, mode)
7575 : op1),
7576 const_true_rtx);
7577 return cond0;
7578 }
7579 }
7580
7581 /* Similarly for MULT, AND and UMIN, except that for these the result
7582 is always zero. */
7583 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7584 && (code == MULT || code == AND || code == UMIN)
7585 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7586 {
7587 cond0 = XEXP (XEXP (x, 0), 0);
7588 cond1 = XEXP (XEXP (x, 1), 0);
7589
7590 if (COMPARISON_P (cond0)
7591 && COMPARISON_P (cond1)
7592 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7593 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7594 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7595 || ((swap_condition (GET_CODE (cond0))
7596 == reversed_comparison_code (cond1, NULL))
7597 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7598 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7599 && ! side_effects_p (x))
7600 {
7601 *ptrue = *pfalse = const0_rtx;
7602 return cond0;
7603 }
7604 }
7605 }
7606
7607 else if (code == IF_THEN_ELSE)
7608 {
7609 /* If we have IF_THEN_ELSE already, extract the condition and
7610 canonicalize it if it is NE or EQ. */
7611 cond0 = XEXP (x, 0);
7612 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7613 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7614 return XEXP (cond0, 0);
7615 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7616 {
7617 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7618 return XEXP (cond0, 0);
7619 }
7620 else
7621 return cond0;
7622 }
7623
7624 /* If X is a SUBREG, we can narrow both the true and false values
7625 if the inner expression, if there is a condition. */
7626 else if (code == SUBREG
7627 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7628 &true0, &false0)))
7629 {
7630 true0 = simplify_gen_subreg (mode, true0,
7631 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7632 false0 = simplify_gen_subreg (mode, false0,
7633 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7634 if (true0 && false0)
7635 {
7636 *ptrue = true0;
7637 *pfalse = false0;
7638 return cond0;
7639 }
7640 }
7641
7642 /* If X is a constant, this isn't special and will cause confusions
7643 if we treat it as such. Likewise if it is equivalent to a constant. */
7644 else if (CONSTANT_P (x)
7645 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7646 ;
7647
7648 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7649 will be least confusing to the rest of the compiler. */
7650 else if (mode == BImode)
7651 {
7652 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7653 return x;
7654 }
7655
7656 /* If X is known to be either 0 or -1, those are the true and
7657 false values when testing X. */
7658 else if (x == constm1_rtx || x == const0_rtx
7659 || (mode != VOIDmode
7660 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7661 {
7662 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7663 return x;
7664 }
7665
7666 /* Likewise for 0 or a single bit. */
7667 else if (SCALAR_INT_MODE_P (mode)
7668 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7669 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7670 {
7671 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7672 return x;
7673 }
7674
7675 /* Otherwise fail; show no condition with true and false values the same. */
7676 *ptrue = *pfalse = x;
7677 return 0;
7678 }
7679 \f
7680 /* Return the value of expression X given the fact that condition COND
7681 is known to be true when applied to REG as its first operand and VAL
7682 as its second. X is known to not be shared and so can be modified in
7683 place.
7684
7685 We only handle the simplest cases, and specifically those cases that
7686 arise with IF_THEN_ELSE expressions. */
7687
7688 static rtx
7689 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7690 {
7691 enum rtx_code code = GET_CODE (x);
7692 rtx temp;
7693 const char *fmt;
7694 int i, j;
7695
7696 if (side_effects_p (x))
7697 return x;
7698
7699 /* If either operand of the condition is a floating point value,
7700 then we have to avoid collapsing an EQ comparison. */
7701 if (cond == EQ
7702 && rtx_equal_p (x, reg)
7703 && ! FLOAT_MODE_P (GET_MODE (x))
7704 && ! FLOAT_MODE_P (GET_MODE (val)))
7705 return val;
7706
7707 if (cond == UNEQ && rtx_equal_p (x, reg))
7708 return val;
7709
7710 /* If X is (abs REG) and we know something about REG's relationship
7711 with zero, we may be able to simplify this. */
7712
7713 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7714 switch (cond)
7715 {
7716 case GE: case GT: case EQ:
7717 return XEXP (x, 0);
7718 case LT: case LE:
7719 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7720 XEXP (x, 0),
7721 GET_MODE (XEXP (x, 0)));
7722 default:
7723 break;
7724 }
7725
7726 /* The only other cases we handle are MIN, MAX, and comparisons if the
7727 operands are the same as REG and VAL. */
7728
7729 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7730 {
7731 if (rtx_equal_p (XEXP (x, 0), val))
7732 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7733
7734 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7735 {
7736 if (COMPARISON_P (x))
7737 {
7738 if (comparison_dominates_p (cond, code))
7739 return const_true_rtx;
7740
7741 code = reversed_comparison_code (x, NULL);
7742 if (code != UNKNOWN
7743 && comparison_dominates_p (cond, code))
7744 return const0_rtx;
7745 else
7746 return x;
7747 }
7748 else if (code == SMAX || code == SMIN
7749 || code == UMIN || code == UMAX)
7750 {
7751 int unsignedp = (code == UMIN || code == UMAX);
7752
7753 /* Do not reverse the condition when it is NE or EQ.
7754 This is because we cannot conclude anything about
7755 the value of 'SMAX (x, y)' when x is not equal to y,
7756 but we can when x equals y. */
7757 if ((code == SMAX || code == UMAX)
7758 && ! (cond == EQ || cond == NE))
7759 cond = reverse_condition (cond);
7760
7761 switch (cond)
7762 {
7763 case GE: case GT:
7764 return unsignedp ? x : XEXP (x, 1);
7765 case LE: case LT:
7766 return unsignedp ? x : XEXP (x, 0);
7767 case GEU: case GTU:
7768 return unsignedp ? XEXP (x, 1) : x;
7769 case LEU: case LTU:
7770 return unsignedp ? XEXP (x, 0) : x;
7771 default:
7772 break;
7773 }
7774 }
7775 }
7776 }
7777 else if (code == SUBREG)
7778 {
7779 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7780 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7781
7782 if (SUBREG_REG (x) != r)
7783 {
7784 /* We must simplify subreg here, before we lose track of the
7785 original inner_mode. */
7786 new = simplify_subreg (GET_MODE (x), r,
7787 inner_mode, SUBREG_BYTE (x));
7788 if (new)
7789 return new;
7790 else
7791 SUBST (SUBREG_REG (x), r);
7792 }
7793
7794 return x;
7795 }
7796 /* We don't have to handle SIGN_EXTEND here, because even in the
7797 case of replacing something with a modeless CONST_INT, a
7798 CONST_INT is already (supposed to be) a valid sign extension for
7799 its narrower mode, which implies it's already properly
7800 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7801 story is different. */
7802 else if (code == ZERO_EXTEND)
7803 {
7804 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7805 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7806
7807 if (XEXP (x, 0) != r)
7808 {
7809 /* We must simplify the zero_extend here, before we lose
7810 track of the original inner_mode. */
7811 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7812 r, inner_mode);
7813 if (new)
7814 return new;
7815 else
7816 SUBST (XEXP (x, 0), r);
7817 }
7818
7819 return x;
7820 }
7821
7822 fmt = GET_RTX_FORMAT (code);
7823 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7824 {
7825 if (fmt[i] == 'e')
7826 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7827 else if (fmt[i] == 'E')
7828 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7829 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7830 cond, reg, val));
7831 }
7832
7833 return x;
7834 }
7835 \f
7836 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7837 assignment as a field assignment. */
7838
7839 static int
7840 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7841 {
7842 if (x == y || rtx_equal_p (x, y))
7843 return 1;
7844
7845 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7846 return 0;
7847
7848 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7849 Note that all SUBREGs of MEM are paradoxical; otherwise they
7850 would have been rewritten. */
7851 if (MEM_P (x) && GET_CODE (y) == SUBREG
7852 && MEM_P (SUBREG_REG (y))
7853 && rtx_equal_p (SUBREG_REG (y),
7854 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7855 return 1;
7856
7857 if (MEM_P (y) && GET_CODE (x) == SUBREG
7858 && MEM_P (SUBREG_REG (x))
7859 && rtx_equal_p (SUBREG_REG (x),
7860 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7861 return 1;
7862
7863 /* We used to see if get_last_value of X and Y were the same but that's
7864 not correct. In one direction, we'll cause the assignment to have
7865 the wrong destination and in the case, we'll import a register into this
7866 insn that might have already have been dead. So fail if none of the
7867 above cases are true. */
7868 return 0;
7869 }
7870 \f
7871 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7872 Return that assignment if so.
7873
7874 We only handle the most common cases. */
7875
7876 static rtx
7877 make_field_assignment (rtx x)
7878 {
7879 rtx dest = SET_DEST (x);
7880 rtx src = SET_SRC (x);
7881 rtx assign;
7882 rtx rhs, lhs;
7883 HOST_WIDE_INT c1;
7884 HOST_WIDE_INT pos;
7885 unsigned HOST_WIDE_INT len;
7886 rtx other;
7887 enum machine_mode mode;
7888
7889 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7890 a clear of a one-bit field. We will have changed it to
7891 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7892 for a SUBREG. */
7893
7894 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7895 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7896 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7897 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7898 {
7899 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7900 1, 1, 1, 0);
7901 if (assign != 0)
7902 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7903 return x;
7904 }
7905
7906 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7907 && subreg_lowpart_p (XEXP (src, 0))
7908 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7909 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7910 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7911 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7912 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7913 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7914 {
7915 assign = make_extraction (VOIDmode, dest, 0,
7916 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7917 1, 1, 1, 0);
7918 if (assign != 0)
7919 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7920 return x;
7921 }
7922
7923 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7924 one-bit field. */
7925 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7926 && XEXP (XEXP (src, 0), 0) == const1_rtx
7927 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7928 {
7929 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7930 1, 1, 1, 0);
7931 if (assign != 0)
7932 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7933 return x;
7934 }
7935
7936 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7937 SRC is an AND with all bits of that field set, then we can discard
7938 the AND. */
7939 if (GET_CODE (dest) == ZERO_EXTRACT
7940 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7941 && GET_CODE (src) == AND
7942 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7943 {
7944 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7945 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7946 unsigned HOST_WIDE_INT ze_mask;
7947
7948 if (width >= HOST_BITS_PER_WIDE_INT)
7949 ze_mask = -1;
7950 else
7951 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7952
7953 /* Complete overlap. We can remove the source AND. */
7954 if ((and_mask & ze_mask) == ze_mask)
7955 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7956
7957 /* Partial overlap. We can reduce the source AND. */
7958 if ((and_mask & ze_mask) != and_mask)
7959 {
7960 mode = GET_MODE (src);
7961 src = gen_rtx_AND (mode, XEXP (src, 0),
7962 gen_int_mode (and_mask & ze_mask, mode));
7963 return gen_rtx_SET (VOIDmode, dest, src);
7964 }
7965 }
7966
7967 /* The other case we handle is assignments into a constant-position
7968 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7969 a mask that has all one bits except for a group of zero bits and
7970 OTHER is known to have zeros where C1 has ones, this is such an
7971 assignment. Compute the position and length from C1. Shift OTHER
7972 to the appropriate position, force it to the required mode, and
7973 make the extraction. Check for the AND in both operands. */
7974
7975 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7976 return x;
7977
7978 rhs = expand_compound_operation (XEXP (src, 0));
7979 lhs = expand_compound_operation (XEXP (src, 1));
7980
7981 if (GET_CODE (rhs) == AND
7982 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7983 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7984 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7985 else if (GET_CODE (lhs) == AND
7986 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7987 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7988 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7989 else
7990 return x;
7991
7992 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7993 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7994 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7995 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7996 return x;
7997
7998 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7999 if (assign == 0)
8000 return x;
8001
8002 /* The mode to use for the source is the mode of the assignment, or of
8003 what is inside a possible STRICT_LOW_PART. */
8004 mode = (GET_CODE (assign) == STRICT_LOW_PART
8005 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8006
8007 /* Shift OTHER right POS places and make it the source, restricting it
8008 to the proper length and mode. */
8009
8010 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
8011 GET_MODE (src), other, pos),
8012 mode,
8013 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8014 ? ~(unsigned HOST_WIDE_INT) 0
8015 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8016 dest, 0);
8017
8018 /* If SRC is masked by an AND that does not make a difference in
8019 the value being stored, strip it. */
8020 if (GET_CODE (assign) == ZERO_EXTRACT
8021 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8022 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8023 && GET_CODE (src) == AND
8024 && GET_CODE (XEXP (src, 1)) == CONST_INT
8025 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8026 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8027 src = XEXP (src, 0);
8028
8029 return gen_rtx_SET (VOIDmode, assign, src);
8030 }
8031 \f
8032 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8033 if so. */
8034
8035 static rtx
8036 apply_distributive_law (rtx x)
8037 {
8038 enum rtx_code code = GET_CODE (x);
8039 enum rtx_code inner_code;
8040 rtx lhs, rhs, other;
8041 rtx tem;
8042
8043 /* Distributivity is not true for floating point as it can change the
8044 value. So we don't do it unless -funsafe-math-optimizations. */
8045 if (FLOAT_MODE_P (GET_MODE (x))
8046 && ! flag_unsafe_math_optimizations)
8047 return x;
8048
8049 /* The outer operation can only be one of the following: */
8050 if (code != IOR && code != AND && code != XOR
8051 && code != PLUS && code != MINUS)
8052 return x;
8053
8054 lhs = XEXP (x, 0);
8055 rhs = XEXP (x, 1);
8056
8057 /* If either operand is a primitive we can't do anything, so get out
8058 fast. */
8059 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8060 return x;
8061
8062 lhs = expand_compound_operation (lhs);
8063 rhs = expand_compound_operation (rhs);
8064 inner_code = GET_CODE (lhs);
8065 if (inner_code != GET_CODE (rhs))
8066 return x;
8067
8068 /* See if the inner and outer operations distribute. */
8069 switch (inner_code)
8070 {
8071 case LSHIFTRT:
8072 case ASHIFTRT:
8073 case AND:
8074 case IOR:
8075 /* These all distribute except over PLUS. */
8076 if (code == PLUS || code == MINUS)
8077 return x;
8078 break;
8079
8080 case MULT:
8081 if (code != PLUS && code != MINUS)
8082 return x;
8083 break;
8084
8085 case ASHIFT:
8086 /* This is also a multiply, so it distributes over everything. */
8087 break;
8088
8089 case SUBREG:
8090 /* Non-paradoxical SUBREGs distributes over all operations, provided
8091 the inner modes and byte offsets are the same, this is an extraction
8092 of a low-order part, we don't convert an fp operation to int or
8093 vice versa, and we would not be converting a single-word
8094 operation into a multi-word operation. The latter test is not
8095 required, but it prevents generating unneeded multi-word operations.
8096 Some of the previous tests are redundant given the latter test, but
8097 are retained because they are required for correctness.
8098
8099 We produce the result slightly differently in this case. */
8100
8101 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8102 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8103 || ! subreg_lowpart_p (lhs)
8104 || (GET_MODE_CLASS (GET_MODE (lhs))
8105 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8106 || (GET_MODE_SIZE (GET_MODE (lhs))
8107 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8108 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8109 return x;
8110
8111 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8112 SUBREG_REG (lhs), SUBREG_REG (rhs));
8113 return gen_lowpart (GET_MODE (x), tem);
8114
8115 default:
8116 return x;
8117 }
8118
8119 /* Set LHS and RHS to the inner operands (A and B in the example
8120 above) and set OTHER to the common operand (C in the example).
8121 There is only one way to do this unless the inner operation is
8122 commutative. */
8123 if (COMMUTATIVE_ARITH_P (lhs)
8124 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8125 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8126 else if (COMMUTATIVE_ARITH_P (lhs)
8127 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8128 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8129 else if (COMMUTATIVE_ARITH_P (lhs)
8130 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8131 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8132 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8133 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8134 else
8135 return x;
8136
8137 /* Form the new inner operation, seeing if it simplifies first. */
8138 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8139
8140 /* There is one exception to the general way of distributing:
8141 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8142 if (code == XOR && inner_code == IOR)
8143 {
8144 inner_code = AND;
8145 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8146 }
8147
8148 /* We may be able to continuing distributing the result, so call
8149 ourselves recursively on the inner operation before forming the
8150 outer operation, which we return. */
8151 return simplify_gen_binary (inner_code, GET_MODE (x),
8152 apply_distributive_law (tem), other);
8153 }
8154
8155 /* See if X is of the form (* (+ A B) C), and if so convert to
8156 (+ (* A C) (* B C)) and try to simplify.
8157
8158 Most of the time, this results in no change. However, if some of
8159 the operands are the same or inverses of each other, simplifications
8160 will result.
8161
8162 For example, (and (ior A B) (not B)) can occur as the result of
8163 expanding a bit field assignment. When we apply the distributive
8164 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8165 which then simplifies to (and (A (not B))).
8166
8167 Note that no checks happen on the validity of applying the inverse
8168 distributive law. This is pointless since we can do it in the
8169 few places where this routine is called.
8170
8171 N is the index of the term that is decomposed (the arithmetic operation,
8172 i.e. (+ A B) in the first example above). !N is the index of the term that
8173 is distributed, i.e. of C in the first example above. */
8174 static rtx
8175 distribute_and_simplify_rtx (rtx x, int n)
8176 {
8177 enum machine_mode mode;
8178 enum rtx_code outer_code, inner_code;
8179 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8180
8181 decomposed = XEXP (x, n);
8182 if (!ARITHMETIC_P (decomposed))
8183 return NULL_RTX;
8184
8185 mode = GET_MODE (x);
8186 outer_code = GET_CODE (x);
8187 distributed = XEXP (x, !n);
8188
8189 inner_code = GET_CODE (decomposed);
8190 inner_op0 = XEXP (decomposed, 0);
8191 inner_op1 = XEXP (decomposed, 1);
8192
8193 /* Special case (and (xor B C) (not A)), which is equivalent to
8194 (xor (ior A B) (ior A C)) */
8195 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8196 {
8197 distributed = XEXP (distributed, 0);
8198 outer_code = IOR;
8199 }
8200
8201 if (n == 0)
8202 {
8203 /* Distribute the second term. */
8204 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8205 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8206 }
8207 else
8208 {
8209 /* Distribute the first term. */
8210 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8211 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8212 }
8213
8214 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8215 new_op0, new_op1));
8216 if (GET_CODE (tmp) != outer_code
8217 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8218 return tmp;
8219
8220 return NULL_RTX;
8221 }
8222 \f
8223 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8224 in MODE.
8225
8226 Return an equivalent form, if different from X. Otherwise, return X. If
8227 X is zero, we are to always construct the equivalent form. */
8228
8229 static rtx
8230 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8231 unsigned HOST_WIDE_INT constop)
8232 {
8233 unsigned HOST_WIDE_INT nonzero;
8234 int i;
8235
8236 /* Simplify VAROP knowing that we will be only looking at some of the
8237 bits in it.
8238
8239 Note by passing in CONSTOP, we guarantee that the bits not set in
8240 CONSTOP are not significant and will never be examined. We must
8241 ensure that is the case by explicitly masking out those bits
8242 before returning. */
8243 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8244
8245 /* If VAROP is a CLOBBER, we will fail so return it. */
8246 if (GET_CODE (varop) == CLOBBER)
8247 return varop;
8248
8249 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8250 to VAROP and return the new constant. */
8251 if (GET_CODE (varop) == CONST_INT)
8252 return gen_int_mode (INTVAL (varop) & constop, mode);
8253
8254 /* See what bits may be nonzero in VAROP. Unlike the general case of
8255 a call to nonzero_bits, here we don't care about bits outside
8256 MODE. */
8257
8258 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8259
8260 /* Turn off all bits in the constant that are known to already be zero.
8261 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8262 which is tested below. */
8263
8264 constop &= nonzero;
8265
8266 /* If we don't have any bits left, return zero. */
8267 if (constop == 0)
8268 return const0_rtx;
8269
8270 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8271 a power of two, we can replace this with an ASHIFT. */
8272 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8273 && (i = exact_log2 (constop)) >= 0)
8274 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8275
8276 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8277 or XOR, then try to apply the distributive law. This may eliminate
8278 operations if either branch can be simplified because of the AND.
8279 It may also make some cases more complex, but those cases probably
8280 won't match a pattern either with or without this. */
8281
8282 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8283 return
8284 gen_lowpart
8285 (mode,
8286 apply_distributive_law
8287 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8288 simplify_and_const_int (NULL_RTX,
8289 GET_MODE (varop),
8290 XEXP (varop, 0),
8291 constop),
8292 simplify_and_const_int (NULL_RTX,
8293 GET_MODE (varop),
8294 XEXP (varop, 1),
8295 constop))));
8296
8297 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8298 the AND and see if one of the operands simplifies to zero. If so, we
8299 may eliminate it. */
8300
8301 if (GET_CODE (varop) == PLUS
8302 && exact_log2 (constop + 1) >= 0)
8303 {
8304 rtx o0, o1;
8305
8306 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8307 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8308 if (o0 == const0_rtx)
8309 return o1;
8310 if (o1 == const0_rtx)
8311 return o0;
8312 }
8313
8314 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8315 if we already had one (just check for the simplest cases). */
8316 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8317 && GET_MODE (XEXP (x, 0)) == mode
8318 && SUBREG_REG (XEXP (x, 0)) == varop)
8319 varop = XEXP (x, 0);
8320 else
8321 varop = gen_lowpart (mode, varop);
8322
8323 /* If we can't make the SUBREG, try to return what we were given. */
8324 if (GET_CODE (varop) == CLOBBER)
8325 return x ? x : varop;
8326
8327 /* If we are only masking insignificant bits, return VAROP. */
8328 if (constop == nonzero)
8329 x = varop;
8330 else
8331 {
8332 /* Otherwise, return an AND. */
8333 constop = trunc_int_for_mode (constop, mode);
8334 /* See how much, if any, of X we can use. */
8335 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8336 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8337
8338 else
8339 {
8340 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8341 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8342 SUBST (XEXP (x, 1), GEN_INT (constop));
8343
8344 SUBST (XEXP (x, 0), varop);
8345 }
8346 }
8347
8348 return x;
8349 }
8350 \f
8351 /* Given a REG, X, compute which bits in X can be nonzero.
8352 We don't care about bits outside of those defined in MODE.
8353
8354 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8355 a shift, AND, or zero_extract, we can do better. */
8356
8357 static rtx
8358 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8359 rtx known_x ATTRIBUTE_UNUSED,
8360 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8361 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8362 unsigned HOST_WIDE_INT *nonzero)
8363 {
8364 rtx tem;
8365
8366 /* If X is a register whose nonzero bits value is current, use it.
8367 Otherwise, if X is a register whose value we can find, use that
8368 value. Otherwise, use the previously-computed global nonzero bits
8369 for this register. */
8370
8371 if (reg_stat[REGNO (x)].last_set_value != 0
8372 && (reg_stat[REGNO (x)].last_set_mode == mode
8373 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8374 && GET_MODE_CLASS (mode) == MODE_INT))
8375 && (reg_stat[REGNO (x)].last_set_label == label_tick
8376 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8377 && REG_N_SETS (REGNO (x)) == 1
8378 && ! REGNO_REG_SET_P
8379 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8380 REGNO (x))))
8381 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8382 {
8383 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8384 return NULL;
8385 }
8386
8387 tem = get_last_value (x);
8388
8389 if (tem)
8390 {
8391 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8392 /* If X is narrower than MODE and TEM is a non-negative
8393 constant that would appear negative in the mode of X,
8394 sign-extend it for use in reg_nonzero_bits because some
8395 machines (maybe most) will actually do the sign-extension
8396 and this is the conservative approach.
8397
8398 ??? For 2.5, try to tighten up the MD files in this regard
8399 instead of this kludge. */
8400
8401 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8402 && GET_CODE (tem) == CONST_INT
8403 && INTVAL (tem) > 0
8404 && 0 != (INTVAL (tem)
8405 & ((HOST_WIDE_INT) 1
8406 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8407 tem = GEN_INT (INTVAL (tem)
8408 | ((HOST_WIDE_INT) (-1)
8409 << GET_MODE_BITSIZE (GET_MODE (x))));
8410 #endif
8411 return tem;
8412 }
8413 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8414 {
8415 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8416
8417 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8418 /* We don't know anything about the upper bits. */
8419 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8420 *nonzero &= mask;
8421 }
8422
8423 return NULL;
8424 }
8425
8426 /* Return the number of bits at the high-order end of X that are known to
8427 be equal to the sign bit. X will be used in mode MODE; if MODE is
8428 VOIDmode, X will be used in its own mode. The returned value will always
8429 be between 1 and the number of bits in MODE. */
8430
8431 static rtx
8432 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8433 rtx known_x ATTRIBUTE_UNUSED,
8434 enum machine_mode known_mode
8435 ATTRIBUTE_UNUSED,
8436 unsigned int known_ret ATTRIBUTE_UNUSED,
8437 unsigned int *result)
8438 {
8439 rtx tem;
8440
8441 if (reg_stat[REGNO (x)].last_set_value != 0
8442 && reg_stat[REGNO (x)].last_set_mode == mode
8443 && (reg_stat[REGNO (x)].last_set_label == label_tick
8444 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8445 && REG_N_SETS (REGNO (x)) == 1
8446 && ! REGNO_REG_SET_P
8447 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8448 REGNO (x))))
8449 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8450 {
8451 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8452 return NULL;
8453 }
8454
8455 tem = get_last_value (x);
8456 if (tem != 0)
8457 return tem;
8458
8459 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8460 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8461 *result = reg_stat[REGNO (x)].sign_bit_copies;
8462
8463 return NULL;
8464 }
8465 \f
8466 /* Return the number of "extended" bits there are in X, when interpreted
8467 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8468 unsigned quantities, this is the number of high-order zero bits.
8469 For signed quantities, this is the number of copies of the sign bit
8470 minus 1. In both case, this function returns the number of "spare"
8471 bits. For example, if two quantities for which this function returns
8472 at least 1 are added, the addition is known not to overflow.
8473
8474 This function will always return 0 unless called during combine, which
8475 implies that it must be called from a define_split. */
8476
8477 unsigned int
8478 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8479 {
8480 if (nonzero_sign_valid == 0)
8481 return 0;
8482
8483 return (unsignedp
8484 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8485 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8486 - floor_log2 (nonzero_bits (x, mode)))
8487 : 0)
8488 : num_sign_bit_copies (x, mode) - 1);
8489 }
8490 \f
8491 /* This function is called from `simplify_shift_const' to merge two
8492 outer operations. Specifically, we have already found that we need
8493 to perform operation *POP0 with constant *PCONST0 at the outermost
8494 position. We would now like to also perform OP1 with constant CONST1
8495 (with *POP0 being done last).
8496
8497 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8498 the resulting operation. *PCOMP_P is set to 1 if we would need to
8499 complement the innermost operand, otherwise it is unchanged.
8500
8501 MODE is the mode in which the operation will be done. No bits outside
8502 the width of this mode matter. It is assumed that the width of this mode
8503 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8504
8505 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8506 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8507 result is simply *PCONST0.
8508
8509 If the resulting operation cannot be expressed as one operation, we
8510 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8511
8512 static int
8513 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8514 {
8515 enum rtx_code op0 = *pop0;
8516 HOST_WIDE_INT const0 = *pconst0;
8517
8518 const0 &= GET_MODE_MASK (mode);
8519 const1 &= GET_MODE_MASK (mode);
8520
8521 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8522 if (op0 == AND)
8523 const1 &= const0;
8524
8525 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8526 if OP0 is SET. */
8527
8528 if (op1 == UNKNOWN || op0 == SET)
8529 return 1;
8530
8531 else if (op0 == UNKNOWN)
8532 op0 = op1, const0 = const1;
8533
8534 else if (op0 == op1)
8535 {
8536 switch (op0)
8537 {
8538 case AND:
8539 const0 &= const1;
8540 break;
8541 case IOR:
8542 const0 |= const1;
8543 break;
8544 case XOR:
8545 const0 ^= const1;
8546 break;
8547 case PLUS:
8548 const0 += const1;
8549 break;
8550 case NEG:
8551 op0 = UNKNOWN;
8552 break;
8553 default:
8554 break;
8555 }
8556 }
8557
8558 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8559 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8560 return 0;
8561
8562 /* If the two constants aren't the same, we can't do anything. The
8563 remaining six cases can all be done. */
8564 else if (const0 != const1)
8565 return 0;
8566
8567 else
8568 switch (op0)
8569 {
8570 case IOR:
8571 if (op1 == AND)
8572 /* (a & b) | b == b */
8573 op0 = SET;
8574 else /* op1 == XOR */
8575 /* (a ^ b) | b == a | b */
8576 {;}
8577 break;
8578
8579 case XOR:
8580 if (op1 == AND)
8581 /* (a & b) ^ b == (~a) & b */
8582 op0 = AND, *pcomp_p = 1;
8583 else /* op1 == IOR */
8584 /* (a | b) ^ b == a & ~b */
8585 op0 = AND, const0 = ~const0;
8586 break;
8587
8588 case AND:
8589 if (op1 == IOR)
8590 /* (a | b) & b == b */
8591 op0 = SET;
8592 else /* op1 == XOR */
8593 /* (a ^ b) & b) == (~a) & b */
8594 *pcomp_p = 1;
8595 break;
8596 default:
8597 break;
8598 }
8599
8600 /* Check for NO-OP cases. */
8601 const0 &= GET_MODE_MASK (mode);
8602 if (const0 == 0
8603 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8604 op0 = UNKNOWN;
8605 else if (const0 == 0 && op0 == AND)
8606 op0 = SET;
8607 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8608 && op0 == AND)
8609 op0 = UNKNOWN;
8610
8611 /* ??? Slightly redundant with the above mask, but not entirely.
8612 Moving this above means we'd have to sign-extend the mode mask
8613 for the final test. */
8614 const0 = trunc_int_for_mode (const0, mode);
8615
8616 *pop0 = op0;
8617 *pconst0 = const0;
8618
8619 return 1;
8620 }
8621 \f
8622 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8623 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8624 that we started with.
8625
8626 The shift is normally computed in the widest mode we find in VAROP, as
8627 long as it isn't a different number of words than RESULT_MODE. Exceptions
8628 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8629
8630 static rtx
8631 simplify_shift_const (rtx x, enum rtx_code code,
8632 enum machine_mode result_mode, rtx varop,
8633 int orig_count)
8634 {
8635 enum rtx_code orig_code = code;
8636 unsigned int count;
8637 int signed_count;
8638 enum machine_mode mode = result_mode;
8639 enum machine_mode shift_mode, tmode;
8640 unsigned int mode_words
8641 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8642 /* We form (outer_op (code varop count) (outer_const)). */
8643 enum rtx_code outer_op = UNKNOWN;
8644 HOST_WIDE_INT outer_const = 0;
8645 rtx const_rtx;
8646 int complement_p = 0;
8647 rtx new;
8648
8649 /* Make sure and truncate the "natural" shift on the way in. We don't
8650 want to do this inside the loop as it makes it more difficult to
8651 combine shifts. */
8652 if (SHIFT_COUNT_TRUNCATED)
8653 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8654
8655 /* If we were given an invalid count, don't do anything except exactly
8656 what was requested. */
8657
8658 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8659 {
8660 if (x)
8661 return x;
8662
8663 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8664 }
8665
8666 count = orig_count;
8667
8668 /* Unless one of the branches of the `if' in this loop does a `continue',
8669 we will `break' the loop after the `if'. */
8670
8671 while (count != 0)
8672 {
8673 /* If we have an operand of (clobber (const_int 0)), just return that
8674 value. */
8675 if (GET_CODE (varop) == CLOBBER)
8676 return varop;
8677
8678 /* If we discovered we had to complement VAROP, leave. Making a NOT
8679 here would cause an infinite loop. */
8680 if (complement_p)
8681 break;
8682
8683 /* Convert ROTATERT to ROTATE. */
8684 if (code == ROTATERT)
8685 {
8686 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8687 code = ROTATE;
8688 if (VECTOR_MODE_P (result_mode))
8689 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8690 else
8691 count = bitsize - count;
8692 }
8693
8694 /* We need to determine what mode we will do the shift in. If the
8695 shift is a right shift or a ROTATE, we must always do it in the mode
8696 it was originally done in. Otherwise, we can do it in MODE, the
8697 widest mode encountered. */
8698 shift_mode
8699 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8700 ? result_mode : mode);
8701
8702 /* Handle cases where the count is greater than the size of the mode
8703 minus 1. For ASHIFT, use the size minus one as the count (this can
8704 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8705 take the count modulo the size. For other shifts, the result is
8706 zero.
8707
8708 Since these shifts are being produced by the compiler by combining
8709 multiple operations, each of which are defined, we know what the
8710 result is supposed to be. */
8711
8712 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8713 {
8714 if (code == ASHIFTRT)
8715 count = GET_MODE_BITSIZE (shift_mode) - 1;
8716 else if (code == ROTATE || code == ROTATERT)
8717 count %= GET_MODE_BITSIZE (shift_mode);
8718 else
8719 {
8720 /* We can't simply return zero because there may be an
8721 outer op. */
8722 varop = const0_rtx;
8723 count = 0;
8724 break;
8725 }
8726 }
8727
8728 /* An arithmetic right shift of a quantity known to be -1 or 0
8729 is a no-op. */
8730 if (code == ASHIFTRT
8731 && (num_sign_bit_copies (varop, shift_mode)
8732 == GET_MODE_BITSIZE (shift_mode)))
8733 {
8734 count = 0;
8735 break;
8736 }
8737
8738 /* If we are doing an arithmetic right shift and discarding all but
8739 the sign bit copies, this is equivalent to doing a shift by the
8740 bitsize minus one. Convert it into that shift because it will often
8741 allow other simplifications. */
8742
8743 if (code == ASHIFTRT
8744 && (count + num_sign_bit_copies (varop, shift_mode)
8745 >= GET_MODE_BITSIZE (shift_mode)))
8746 count = GET_MODE_BITSIZE (shift_mode) - 1;
8747
8748 /* We simplify the tests below and elsewhere by converting
8749 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8750 `make_compound_operation' will convert it to an ASHIFTRT for
8751 those machines (such as VAX) that don't have an LSHIFTRT. */
8752 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8753 && code == ASHIFTRT
8754 && ((nonzero_bits (varop, shift_mode)
8755 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8756 == 0))
8757 code = LSHIFTRT;
8758
8759 if (code == LSHIFTRT
8760 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8761 && !(nonzero_bits (varop, shift_mode) >> count))
8762 varop = const0_rtx;
8763 if (code == ASHIFT
8764 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8765 && !((nonzero_bits (varop, shift_mode) << count)
8766 & GET_MODE_MASK (shift_mode)))
8767 varop = const0_rtx;
8768
8769 switch (GET_CODE (varop))
8770 {
8771 case SIGN_EXTEND:
8772 case ZERO_EXTEND:
8773 case SIGN_EXTRACT:
8774 case ZERO_EXTRACT:
8775 new = expand_compound_operation (varop);
8776 if (new != varop)
8777 {
8778 varop = new;
8779 continue;
8780 }
8781 break;
8782
8783 case MEM:
8784 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8785 minus the width of a smaller mode, we can do this with a
8786 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8787 if ((code == ASHIFTRT || code == LSHIFTRT)
8788 && ! mode_dependent_address_p (XEXP (varop, 0))
8789 && ! MEM_VOLATILE_P (varop)
8790 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8791 MODE_INT, 1)) != BLKmode)
8792 {
8793 new = adjust_address_nv (varop, tmode,
8794 BYTES_BIG_ENDIAN ? 0
8795 : count / BITS_PER_UNIT);
8796
8797 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8798 : ZERO_EXTEND, mode, new);
8799 count = 0;
8800 continue;
8801 }
8802 break;
8803
8804 case USE:
8805 /* Similar to the case above, except that we can only do this if
8806 the resulting mode is the same as that of the underlying
8807 MEM and adjust the address depending on the *bits* endianness
8808 because of the way that bit-field extract insns are defined. */
8809 if ((code == ASHIFTRT || code == LSHIFTRT)
8810 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8811 MODE_INT, 1)) != BLKmode
8812 && tmode == GET_MODE (XEXP (varop, 0)))
8813 {
8814 if (BITS_BIG_ENDIAN)
8815 new = XEXP (varop, 0);
8816 else
8817 {
8818 new = copy_rtx (XEXP (varop, 0));
8819 SUBST (XEXP (new, 0),
8820 plus_constant (XEXP (new, 0),
8821 count / BITS_PER_UNIT));
8822 }
8823
8824 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8825 : ZERO_EXTEND, mode, new);
8826 count = 0;
8827 continue;
8828 }
8829 break;
8830
8831 case SUBREG:
8832 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8833 the same number of words as what we've seen so far. Then store
8834 the widest mode in MODE. */
8835 if (subreg_lowpart_p (varop)
8836 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8837 > GET_MODE_SIZE (GET_MODE (varop)))
8838 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8839 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8840 == mode_words)
8841 {
8842 varop = SUBREG_REG (varop);
8843 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8844 mode = GET_MODE (varop);
8845 continue;
8846 }
8847 break;
8848
8849 case MULT:
8850 /* Some machines use MULT instead of ASHIFT because MULT
8851 is cheaper. But it is still better on those machines to
8852 merge two shifts into one. */
8853 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8854 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8855 {
8856 varop
8857 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8858 XEXP (varop, 0),
8859 GEN_INT (exact_log2 (
8860 INTVAL (XEXP (varop, 1)))));
8861 continue;
8862 }
8863 break;
8864
8865 case UDIV:
8866 /* Similar, for when divides are cheaper. */
8867 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8868 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8869 {
8870 varop
8871 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8872 XEXP (varop, 0),
8873 GEN_INT (exact_log2 (
8874 INTVAL (XEXP (varop, 1)))));
8875 continue;
8876 }
8877 break;
8878
8879 case ASHIFTRT:
8880 /* If we are extracting just the sign bit of an arithmetic
8881 right shift, that shift is not needed. However, the sign
8882 bit of a wider mode may be different from what would be
8883 interpreted as the sign bit in a narrower mode, so, if
8884 the result is narrower, don't discard the shift. */
8885 if (code == LSHIFTRT
8886 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8887 && (GET_MODE_BITSIZE (result_mode)
8888 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8889 {
8890 varop = XEXP (varop, 0);
8891 continue;
8892 }
8893
8894 /* ... fall through ... */
8895
8896 case LSHIFTRT:
8897 case ASHIFT:
8898 case ROTATE:
8899 /* Here we have two nested shifts. The result is usually the
8900 AND of a new shift with a mask. We compute the result below. */
8901 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8902 && INTVAL (XEXP (varop, 1)) >= 0
8903 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8904 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8905 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8906 {
8907 enum rtx_code first_code = GET_CODE (varop);
8908 unsigned int first_count = INTVAL (XEXP (varop, 1));
8909 unsigned HOST_WIDE_INT mask;
8910 rtx mask_rtx;
8911
8912 /* We have one common special case. We can't do any merging if
8913 the inner code is an ASHIFTRT of a smaller mode. However, if
8914 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8915 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8916 we can convert it to
8917 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8918 This simplifies certain SIGN_EXTEND operations. */
8919 if (code == ASHIFT && first_code == ASHIFTRT
8920 && count == (unsigned int)
8921 (GET_MODE_BITSIZE (result_mode)
8922 - GET_MODE_BITSIZE (GET_MODE (varop))))
8923 {
8924 /* C3 has the low-order C1 bits zero. */
8925
8926 mask = (GET_MODE_MASK (mode)
8927 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8928
8929 varop = simplify_and_const_int (NULL_RTX, result_mode,
8930 XEXP (varop, 0), mask);
8931 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8932 varop, count);
8933 count = first_count;
8934 code = ASHIFTRT;
8935 continue;
8936 }
8937
8938 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8939 than C1 high-order bits equal to the sign bit, we can convert
8940 this to either an ASHIFT or an ASHIFTRT depending on the
8941 two counts.
8942
8943 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8944
8945 if (code == ASHIFTRT && first_code == ASHIFT
8946 && GET_MODE (varop) == shift_mode
8947 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8948 > first_count))
8949 {
8950 varop = XEXP (varop, 0);
8951
8952 signed_count = count - first_count;
8953 if (signed_count < 0)
8954 count = -signed_count, code = ASHIFT;
8955 else
8956 count = signed_count;
8957
8958 continue;
8959 }
8960
8961 /* There are some cases we can't do. If CODE is ASHIFTRT,
8962 we can only do this if FIRST_CODE is also ASHIFTRT.
8963
8964 We can't do the case when CODE is ROTATE and FIRST_CODE is
8965 ASHIFTRT.
8966
8967 If the mode of this shift is not the mode of the outer shift,
8968 we can't do this if either shift is a right shift or ROTATE.
8969
8970 Finally, we can't do any of these if the mode is too wide
8971 unless the codes are the same.
8972
8973 Handle the case where the shift codes are the same
8974 first. */
8975
8976 if (code == first_code)
8977 {
8978 if (GET_MODE (varop) != result_mode
8979 && (code == ASHIFTRT || code == LSHIFTRT
8980 || code == ROTATE))
8981 break;
8982
8983 count += first_count;
8984 varop = XEXP (varop, 0);
8985 continue;
8986 }
8987
8988 if (code == ASHIFTRT
8989 || (code == ROTATE && first_code == ASHIFTRT)
8990 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8991 || (GET_MODE (varop) != result_mode
8992 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8993 || first_code == ROTATE
8994 || code == ROTATE)))
8995 break;
8996
8997 /* To compute the mask to apply after the shift, shift the
8998 nonzero bits of the inner shift the same way the
8999 outer shift will. */
9000
9001 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9002
9003 mask_rtx
9004 = simplify_binary_operation (code, result_mode, mask_rtx,
9005 GEN_INT (count));
9006
9007 /* Give up if we can't compute an outer operation to use. */
9008 if (mask_rtx == 0
9009 || GET_CODE (mask_rtx) != CONST_INT
9010 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9011 INTVAL (mask_rtx),
9012 result_mode, &complement_p))
9013 break;
9014
9015 /* If the shifts are in the same direction, we add the
9016 counts. Otherwise, we subtract them. */
9017 signed_count = count;
9018 if ((code == ASHIFTRT || code == LSHIFTRT)
9019 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9020 signed_count += first_count;
9021 else
9022 signed_count -= first_count;
9023
9024 /* If COUNT is positive, the new shift is usually CODE,
9025 except for the two exceptions below, in which case it is
9026 FIRST_CODE. If the count is negative, FIRST_CODE should
9027 always be used */
9028 if (signed_count > 0
9029 && ((first_code == ROTATE && code == ASHIFT)
9030 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9031 code = first_code, count = signed_count;
9032 else if (signed_count < 0)
9033 code = first_code, count = -signed_count;
9034 else
9035 count = signed_count;
9036
9037 varop = XEXP (varop, 0);
9038 continue;
9039 }
9040
9041 /* If we have (A << B << C) for any shift, we can convert this to
9042 (A << C << B). This wins if A is a constant. Only try this if
9043 B is not a constant. */
9044
9045 else if (GET_CODE (varop) == code
9046 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9047 && 0 != (new
9048 = simplify_binary_operation (code, mode,
9049 XEXP (varop, 0),
9050 GEN_INT (count))))
9051 {
9052 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9053 count = 0;
9054 continue;
9055 }
9056 break;
9057
9058 case NOT:
9059 /* Make this fit the case below. */
9060 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9061 GEN_INT (GET_MODE_MASK (mode)));
9062 continue;
9063
9064 case IOR:
9065 case AND:
9066 case XOR:
9067 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9068 with C the size of VAROP - 1 and the shift is logical if
9069 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9070 we have an (le X 0) operation. If we have an arithmetic shift
9071 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9072 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9073
9074 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9075 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9076 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9077 && (code == LSHIFTRT || code == ASHIFTRT)
9078 && count == (unsigned int)
9079 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9080 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9081 {
9082 count = 0;
9083 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9084 const0_rtx);
9085
9086 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9087 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9088
9089 continue;
9090 }
9091
9092 /* If we have (shift (logical)), move the logical to the outside
9093 to allow it to possibly combine with another logical and the
9094 shift to combine with another shift. This also canonicalizes to
9095 what a ZERO_EXTRACT looks like. Also, some machines have
9096 (and (shift)) insns. */
9097
9098 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9099 /* We can't do this if we have (ashiftrt (xor)) and the
9100 constant has its sign bit set in shift_mode. */
9101 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9102 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9103 shift_mode))
9104 && (new = simplify_binary_operation (code, result_mode,
9105 XEXP (varop, 1),
9106 GEN_INT (count))) != 0
9107 && GET_CODE (new) == CONST_INT
9108 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9109 INTVAL (new), result_mode, &complement_p))
9110 {
9111 varop = XEXP (varop, 0);
9112 continue;
9113 }
9114
9115 /* If we can't do that, try to simplify the shift in each arm of the
9116 logical expression, make a new logical expression, and apply
9117 the inverse distributive law. This also can't be done
9118 for some (ashiftrt (xor)). */
9119 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9120 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9121 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9122 shift_mode)))
9123 {
9124 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9125 XEXP (varop, 0), count);
9126 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9127 XEXP (varop, 1), count);
9128
9129 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9130 lhs, rhs);
9131 varop = apply_distributive_law (varop);
9132
9133 count = 0;
9134 continue;
9135 }
9136 break;
9137
9138 case EQ:
9139 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9140 says that the sign bit can be tested, FOO has mode MODE, C is
9141 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9142 that may be nonzero. */
9143 if (code == LSHIFTRT
9144 && XEXP (varop, 1) == const0_rtx
9145 && GET_MODE (XEXP (varop, 0)) == result_mode
9146 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9147 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9148 && ((STORE_FLAG_VALUE
9149 & ((HOST_WIDE_INT) 1
9150 < (GET_MODE_BITSIZE (result_mode) - 1))))
9151 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9152 && merge_outer_ops (&outer_op, &outer_const, XOR,
9153 (HOST_WIDE_INT) 1, result_mode,
9154 &complement_p))
9155 {
9156 varop = XEXP (varop, 0);
9157 count = 0;
9158 continue;
9159 }
9160 break;
9161
9162 case NEG:
9163 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9164 than the number of bits in the mode is equivalent to A. */
9165 if (code == LSHIFTRT
9166 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9167 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9168 {
9169 varop = XEXP (varop, 0);
9170 count = 0;
9171 continue;
9172 }
9173
9174 /* NEG commutes with ASHIFT since it is multiplication. Move the
9175 NEG outside to allow shifts to combine. */
9176 if (code == ASHIFT
9177 && merge_outer_ops (&outer_op, &outer_const, NEG,
9178 (HOST_WIDE_INT) 0, result_mode,
9179 &complement_p))
9180 {
9181 varop = XEXP (varop, 0);
9182 continue;
9183 }
9184 break;
9185
9186 case PLUS:
9187 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9188 is one less than the number of bits in the mode is
9189 equivalent to (xor A 1). */
9190 if (code == LSHIFTRT
9191 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9192 && XEXP (varop, 1) == constm1_rtx
9193 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9194 && merge_outer_ops (&outer_op, &outer_const, XOR,
9195 (HOST_WIDE_INT) 1, result_mode,
9196 &complement_p))
9197 {
9198 count = 0;
9199 varop = XEXP (varop, 0);
9200 continue;
9201 }
9202
9203 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9204 that might be nonzero in BAR are those being shifted out and those
9205 bits are known zero in FOO, we can replace the PLUS with FOO.
9206 Similarly in the other operand order. This code occurs when
9207 we are computing the size of a variable-size array. */
9208
9209 if ((code == ASHIFTRT || code == LSHIFTRT)
9210 && count < HOST_BITS_PER_WIDE_INT
9211 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9212 && (nonzero_bits (XEXP (varop, 1), result_mode)
9213 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9214 {
9215 varop = XEXP (varop, 0);
9216 continue;
9217 }
9218 else if ((code == ASHIFTRT || code == LSHIFTRT)
9219 && count < HOST_BITS_PER_WIDE_INT
9220 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9221 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9222 >> count)
9223 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9224 & nonzero_bits (XEXP (varop, 1),
9225 result_mode)))
9226 {
9227 varop = XEXP (varop, 1);
9228 continue;
9229 }
9230
9231 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9232 if (code == ASHIFT
9233 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9234 && (new = simplify_binary_operation (ASHIFT, result_mode,
9235 XEXP (varop, 1),
9236 GEN_INT (count))) != 0
9237 && GET_CODE (new) == CONST_INT
9238 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9239 INTVAL (new), result_mode, &complement_p))
9240 {
9241 varop = XEXP (varop, 0);
9242 continue;
9243 }
9244
9245 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9246 signbit', and attempt to change the PLUS to an XOR and move it to
9247 the outer operation as is done above in the AND/IOR/XOR case
9248 leg for shift(logical). See details in logical handling above
9249 for reasoning in doing so. */
9250 if (code == LSHIFTRT
9251 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9252 && mode_signbit_p (result_mode, XEXP (varop, 1))
9253 && (new = simplify_binary_operation (code, result_mode,
9254 XEXP (varop, 1),
9255 GEN_INT (count))) != 0
9256 && GET_CODE (new) == CONST_INT
9257 && merge_outer_ops (&outer_op, &outer_const, XOR,
9258 INTVAL (new), result_mode, &complement_p))
9259 {
9260 varop = XEXP (varop, 0);
9261 continue;
9262 }
9263
9264 break;
9265
9266 case MINUS:
9267 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9268 with C the size of VAROP - 1 and the shift is logical if
9269 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9270 we have a (gt X 0) operation. If the shift is arithmetic with
9271 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9272 we have a (neg (gt X 0)) operation. */
9273
9274 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9275 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9276 && count == (unsigned int)
9277 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9278 && (code == LSHIFTRT || code == ASHIFTRT)
9279 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9280 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9281 == count
9282 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9283 {
9284 count = 0;
9285 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9286 const0_rtx);
9287
9288 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9289 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9290
9291 continue;
9292 }
9293 break;
9294
9295 case TRUNCATE:
9296 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9297 if the truncate does not affect the value. */
9298 if (code == LSHIFTRT
9299 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9300 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9301 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9302 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9303 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9304 {
9305 rtx varop_inner = XEXP (varop, 0);
9306
9307 varop_inner
9308 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9309 XEXP (varop_inner, 0),
9310 GEN_INT
9311 (count + INTVAL (XEXP (varop_inner, 1))));
9312 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9313 count = 0;
9314 continue;
9315 }
9316 break;
9317
9318 default:
9319 break;
9320 }
9321
9322 break;
9323 }
9324
9325 /* We need to determine what mode to do the shift in. If the shift is
9326 a right shift or ROTATE, we must always do it in the mode it was
9327 originally done in. Otherwise, we can do it in MODE, the widest mode
9328 encountered. The code we care about is that of the shift that will
9329 actually be done, not the shift that was originally requested. */
9330 shift_mode
9331 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9332 ? result_mode : mode);
9333
9334 /* We have now finished analyzing the shift. The result should be
9335 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9336 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9337 to the result of the shift. OUTER_CONST is the relevant constant,
9338 but we must turn off all bits turned off in the shift.
9339
9340 If we were passed a value for X, see if we can use any pieces of
9341 it. If not, make new rtx. */
9342
9343 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9344 && GET_CODE (XEXP (x, 1)) == CONST_INT
9345 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9346 const_rtx = XEXP (x, 1);
9347 else
9348 const_rtx = GEN_INT (count);
9349
9350 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9351 && GET_MODE (XEXP (x, 0)) == shift_mode
9352 && SUBREG_REG (XEXP (x, 0)) == varop)
9353 varop = XEXP (x, 0);
9354 else if (GET_MODE (varop) != shift_mode)
9355 varop = gen_lowpart (shift_mode, varop);
9356
9357 /* If we can't make the SUBREG, try to return what we were given. */
9358 if (GET_CODE (varop) == CLOBBER)
9359 return x ? x : varop;
9360
9361 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9362 if (new != 0)
9363 x = new;
9364 else
9365 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9366
9367 /* If we have an outer operation and we just made a shift, it is
9368 possible that we could have simplified the shift were it not
9369 for the outer operation. So try to do the simplification
9370 recursively. */
9371
9372 if (outer_op != UNKNOWN && GET_CODE (x) == code
9373 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9374 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9375 INTVAL (XEXP (x, 1)));
9376
9377 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9378 turn off all the bits that the shift would have turned off. */
9379 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9380 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9381 GET_MODE_MASK (result_mode) >> orig_count);
9382
9383 /* Do the remainder of the processing in RESULT_MODE. */
9384 x = gen_lowpart (result_mode, x);
9385
9386 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9387 operation. */
9388 if (complement_p)
9389 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9390
9391 if (outer_op != UNKNOWN)
9392 {
9393 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9394 outer_const = trunc_int_for_mode (outer_const, result_mode);
9395
9396 if (outer_op == AND)
9397 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9398 else if (outer_op == SET)
9399 /* This means that we have determined that the result is
9400 equivalent to a constant. This should be rare. */
9401 x = GEN_INT (outer_const);
9402 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9403 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9404 else
9405 x = simplify_gen_binary (outer_op, result_mode, x,
9406 GEN_INT (outer_const));
9407 }
9408
9409 return x;
9410 }
9411 \f
9412 /* Like recog, but we receive the address of a pointer to a new pattern.
9413 We try to match the rtx that the pointer points to.
9414 If that fails, we may try to modify or replace the pattern,
9415 storing the replacement into the same pointer object.
9416
9417 Modifications include deletion or addition of CLOBBERs.
9418
9419 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9420 the CLOBBERs are placed.
9421
9422 The value is the final insn code from the pattern ultimately matched,
9423 or -1. */
9424
9425 static int
9426 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9427 {
9428 rtx pat = *pnewpat;
9429 int insn_code_number;
9430 int num_clobbers_to_add = 0;
9431 int i;
9432 rtx notes = 0;
9433 rtx old_notes, old_pat;
9434
9435 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9436 we use to indicate that something didn't match. If we find such a
9437 thing, force rejection. */
9438 if (GET_CODE (pat) == PARALLEL)
9439 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9440 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9441 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9442 return -1;
9443
9444 old_pat = PATTERN (insn);
9445 old_notes = REG_NOTES (insn);
9446 PATTERN (insn) = pat;
9447 REG_NOTES (insn) = 0;
9448
9449 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9450
9451 /* If it isn't, there is the possibility that we previously had an insn
9452 that clobbered some register as a side effect, but the combined
9453 insn doesn't need to do that. So try once more without the clobbers
9454 unless this represents an ASM insn. */
9455
9456 if (insn_code_number < 0 && ! check_asm_operands (pat)
9457 && GET_CODE (pat) == PARALLEL)
9458 {
9459 int pos;
9460
9461 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9462 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9463 {
9464 if (i != pos)
9465 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9466 pos++;
9467 }
9468
9469 SUBST_INT (XVECLEN (pat, 0), pos);
9470
9471 if (pos == 1)
9472 pat = XVECEXP (pat, 0, 0);
9473
9474 PATTERN (insn) = pat;
9475 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9476 }
9477 PATTERN (insn) = old_pat;
9478 REG_NOTES (insn) = old_notes;
9479
9480 /* Recognize all noop sets, these will be killed by followup pass. */
9481 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9482 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9483
9484 /* If we had any clobbers to add, make a new pattern than contains
9485 them. Then check to make sure that all of them are dead. */
9486 if (num_clobbers_to_add)
9487 {
9488 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9489 rtvec_alloc (GET_CODE (pat) == PARALLEL
9490 ? (XVECLEN (pat, 0)
9491 + num_clobbers_to_add)
9492 : num_clobbers_to_add + 1));
9493
9494 if (GET_CODE (pat) == PARALLEL)
9495 for (i = 0; i < XVECLEN (pat, 0); i++)
9496 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9497 else
9498 XVECEXP (newpat, 0, 0) = pat;
9499
9500 add_clobbers (newpat, insn_code_number);
9501
9502 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9503 i < XVECLEN (newpat, 0); i++)
9504 {
9505 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9506 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9507 return -1;
9508 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9509 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9510 }
9511 pat = newpat;
9512 }
9513
9514 *pnewpat = pat;
9515 *pnotes = notes;
9516
9517 return insn_code_number;
9518 }
9519 \f
9520 /* Like gen_lowpart_general but for use by combine. In combine it
9521 is not possible to create any new pseudoregs. However, it is
9522 safe to create invalid memory addresses, because combine will
9523 try to recognize them and all they will do is make the combine
9524 attempt fail.
9525
9526 If for some reason this cannot do its job, an rtx
9527 (clobber (const_int 0)) is returned.
9528 An insn containing that will not be recognized. */
9529
9530 static rtx
9531 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9532 {
9533 enum machine_mode imode = GET_MODE (x);
9534 unsigned int osize = GET_MODE_SIZE (omode);
9535 unsigned int isize = GET_MODE_SIZE (imode);
9536 rtx result;
9537
9538 if (omode == imode)
9539 return x;
9540
9541 /* Return identity if this is a CONST or symbolic reference. */
9542 if (omode == Pmode
9543 && (GET_CODE (x) == CONST
9544 || GET_CODE (x) == SYMBOL_REF
9545 || GET_CODE (x) == LABEL_REF))
9546 return x;
9547
9548 /* We can only support MODE being wider than a word if X is a
9549 constant integer or has a mode the same size. */
9550 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9551 && ! ((imode == VOIDmode
9552 && (GET_CODE (x) == CONST_INT
9553 || GET_CODE (x) == CONST_DOUBLE))
9554 || isize == osize))
9555 goto fail;
9556
9557 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9558 won't know what to do. So we will strip off the SUBREG here and
9559 process normally. */
9560 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9561 {
9562 x = SUBREG_REG (x);
9563
9564 /* For use in case we fall down into the address adjustments
9565 further below, we need to adjust the known mode and size of
9566 x; imode and isize, since we just adjusted x. */
9567 imode = GET_MODE (x);
9568
9569 if (imode == omode)
9570 return x;
9571
9572 isize = GET_MODE_SIZE (imode);
9573 }
9574
9575 result = gen_lowpart_common (omode, x);
9576
9577 #ifdef CANNOT_CHANGE_MODE_CLASS
9578 if (result != 0 && GET_CODE (result) == SUBREG)
9579 record_subregs_of_mode (result);
9580 #endif
9581
9582 if (result)
9583 return result;
9584
9585 if (MEM_P (x))
9586 {
9587 int offset = 0;
9588
9589 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9590 address. */
9591 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9592 goto fail;
9593
9594 /* If we want to refer to something bigger than the original memref,
9595 generate a paradoxical subreg instead. That will force a reload
9596 of the original memref X. */
9597 if (isize < osize)
9598 return gen_rtx_SUBREG (omode, x, 0);
9599
9600 if (WORDS_BIG_ENDIAN)
9601 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9602
9603 /* Adjust the address so that the address-after-the-data is
9604 unchanged. */
9605 if (BYTES_BIG_ENDIAN)
9606 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9607
9608 return adjust_address_nv (x, omode, offset);
9609 }
9610
9611 /* If X is a comparison operator, rewrite it in a new mode. This
9612 probably won't match, but may allow further simplifications. */
9613 else if (COMPARISON_P (x))
9614 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9615
9616 /* If we couldn't simplify X any other way, just enclose it in a
9617 SUBREG. Normally, this SUBREG won't match, but some patterns may
9618 include an explicit SUBREG or we may simplify it further in combine. */
9619 else
9620 {
9621 int offset = 0;
9622 rtx res;
9623
9624 offset = subreg_lowpart_offset (omode, imode);
9625 if (imode == VOIDmode)
9626 {
9627 imode = int_mode_for_mode (omode);
9628 x = gen_lowpart_common (imode, x);
9629 if (x == NULL)
9630 goto fail;
9631 }
9632 res = simplify_gen_subreg (omode, x, imode, offset);
9633 if (res)
9634 return res;
9635 }
9636
9637 fail:
9638 return gen_rtx_CLOBBER (imode, const0_rtx);
9639 }
9640 \f
9641 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9642 comparison code that will be tested.
9643
9644 The result is a possibly different comparison code to use. *POP0 and
9645 *POP1 may be updated.
9646
9647 It is possible that we might detect that a comparison is either always
9648 true or always false. However, we do not perform general constant
9649 folding in combine, so this knowledge isn't useful. Such tautologies
9650 should have been detected earlier. Hence we ignore all such cases. */
9651
9652 static enum rtx_code
9653 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9654 {
9655 rtx op0 = *pop0;
9656 rtx op1 = *pop1;
9657 rtx tem, tem1;
9658 int i;
9659 enum machine_mode mode, tmode;
9660
9661 /* Try a few ways of applying the same transformation to both operands. */
9662 while (1)
9663 {
9664 #ifndef WORD_REGISTER_OPERATIONS
9665 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9666 so check specially. */
9667 if (code != GTU && code != GEU && code != LTU && code != LEU
9668 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9669 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9670 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9671 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9672 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9673 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9674 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9675 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9676 && XEXP (op0, 1) == XEXP (op1, 1)
9677 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9678 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9679 && (INTVAL (XEXP (op0, 1))
9680 == (GET_MODE_BITSIZE (GET_MODE (op0))
9681 - (GET_MODE_BITSIZE
9682 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9683 {
9684 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9685 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9686 }
9687 #endif
9688
9689 /* If both operands are the same constant shift, see if we can ignore the
9690 shift. We can if the shift is a rotate or if the bits shifted out of
9691 this shift are known to be zero for both inputs and if the type of
9692 comparison is compatible with the shift. */
9693 if (GET_CODE (op0) == GET_CODE (op1)
9694 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9695 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9696 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9697 && (code != GT && code != LT && code != GE && code != LE))
9698 || (GET_CODE (op0) == ASHIFTRT
9699 && (code != GTU && code != LTU
9700 && code != GEU && code != LEU)))
9701 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9702 && INTVAL (XEXP (op0, 1)) >= 0
9703 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9704 && XEXP (op0, 1) == XEXP (op1, 1))
9705 {
9706 enum machine_mode mode = GET_MODE (op0);
9707 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9708 int shift_count = INTVAL (XEXP (op0, 1));
9709
9710 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9711 mask &= (mask >> shift_count) << shift_count;
9712 else if (GET_CODE (op0) == ASHIFT)
9713 mask = (mask & (mask << shift_count)) >> shift_count;
9714
9715 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9716 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9717 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9718 else
9719 break;
9720 }
9721
9722 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9723 SUBREGs are of the same mode, and, in both cases, the AND would
9724 be redundant if the comparison was done in the narrower mode,
9725 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9726 and the operand's possibly nonzero bits are 0xffffff01; in that case
9727 if we only care about QImode, we don't need the AND). This case
9728 occurs if the output mode of an scc insn is not SImode and
9729 STORE_FLAG_VALUE == 1 (e.g., the 386).
9730
9731 Similarly, check for a case where the AND's are ZERO_EXTEND
9732 operations from some narrower mode even though a SUBREG is not
9733 present. */
9734
9735 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9736 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9737 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9738 {
9739 rtx inner_op0 = XEXP (op0, 0);
9740 rtx inner_op1 = XEXP (op1, 0);
9741 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9742 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9743 int changed = 0;
9744
9745 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9746 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9747 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9748 && (GET_MODE (SUBREG_REG (inner_op0))
9749 == GET_MODE (SUBREG_REG (inner_op1)))
9750 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9751 <= HOST_BITS_PER_WIDE_INT)
9752 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9753 GET_MODE (SUBREG_REG (inner_op0)))))
9754 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9755 GET_MODE (SUBREG_REG (inner_op1))))))
9756 {
9757 op0 = SUBREG_REG (inner_op0);
9758 op1 = SUBREG_REG (inner_op1);
9759
9760 /* The resulting comparison is always unsigned since we masked
9761 off the original sign bit. */
9762 code = unsigned_condition (code);
9763
9764 changed = 1;
9765 }
9766
9767 else if (c0 == c1)
9768 for (tmode = GET_CLASS_NARROWEST_MODE
9769 (GET_MODE_CLASS (GET_MODE (op0)));
9770 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9771 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9772 {
9773 op0 = gen_lowpart (tmode, inner_op0);
9774 op1 = gen_lowpart (tmode, inner_op1);
9775 code = unsigned_condition (code);
9776 changed = 1;
9777 break;
9778 }
9779
9780 if (! changed)
9781 break;
9782 }
9783
9784 /* If both operands are NOT, we can strip off the outer operation
9785 and adjust the comparison code for swapped operands; similarly for
9786 NEG, except that this must be an equality comparison. */
9787 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9788 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9789 && (code == EQ || code == NE)))
9790 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9791
9792 else
9793 break;
9794 }
9795
9796 /* If the first operand is a constant, swap the operands and adjust the
9797 comparison code appropriately, but don't do this if the second operand
9798 is already a constant integer. */
9799 if (swap_commutative_operands_p (op0, op1))
9800 {
9801 tem = op0, op0 = op1, op1 = tem;
9802 code = swap_condition (code);
9803 }
9804
9805 /* We now enter a loop during which we will try to simplify the comparison.
9806 For the most part, we only are concerned with comparisons with zero,
9807 but some things may really be comparisons with zero but not start
9808 out looking that way. */
9809
9810 while (GET_CODE (op1) == CONST_INT)
9811 {
9812 enum machine_mode mode = GET_MODE (op0);
9813 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9814 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9815 int equality_comparison_p;
9816 int sign_bit_comparison_p;
9817 int unsigned_comparison_p;
9818 HOST_WIDE_INT const_op;
9819
9820 /* We only want to handle integral modes. This catches VOIDmode,
9821 CCmode, and the floating-point modes. An exception is that we
9822 can handle VOIDmode if OP0 is a COMPARE or a comparison
9823 operation. */
9824
9825 if (GET_MODE_CLASS (mode) != MODE_INT
9826 && ! (mode == VOIDmode
9827 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9828 break;
9829
9830 /* Get the constant we are comparing against and turn off all bits
9831 not on in our mode. */
9832 const_op = INTVAL (op1);
9833 if (mode != VOIDmode)
9834 const_op = trunc_int_for_mode (const_op, mode);
9835 op1 = GEN_INT (const_op);
9836
9837 /* If we are comparing against a constant power of two and the value
9838 being compared can only have that single bit nonzero (e.g., it was
9839 `and'ed with that bit), we can replace this with a comparison
9840 with zero. */
9841 if (const_op
9842 && (code == EQ || code == NE || code == GE || code == GEU
9843 || code == LT || code == LTU)
9844 && mode_width <= HOST_BITS_PER_WIDE_INT
9845 && exact_log2 (const_op) >= 0
9846 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9847 {
9848 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9849 op1 = const0_rtx, const_op = 0;
9850 }
9851
9852 /* Similarly, if we are comparing a value known to be either -1 or
9853 0 with -1, change it to the opposite comparison against zero. */
9854
9855 if (const_op == -1
9856 && (code == EQ || code == NE || code == GT || code == LE
9857 || code == GEU || code == LTU)
9858 && num_sign_bit_copies (op0, mode) == mode_width)
9859 {
9860 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9861 op1 = const0_rtx, const_op = 0;
9862 }
9863
9864 /* Do some canonicalizations based on the comparison code. We prefer
9865 comparisons against zero and then prefer equality comparisons.
9866 If we can reduce the size of a constant, we will do that too. */
9867
9868 switch (code)
9869 {
9870 case LT:
9871 /* < C is equivalent to <= (C - 1) */
9872 if (const_op > 0)
9873 {
9874 const_op -= 1;
9875 op1 = GEN_INT (const_op);
9876 code = LE;
9877 /* ... fall through to LE case below. */
9878 }
9879 else
9880 break;
9881
9882 case LE:
9883 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9884 if (const_op < 0)
9885 {
9886 const_op += 1;
9887 op1 = GEN_INT (const_op);
9888 code = LT;
9889 }
9890
9891 /* If we are doing a <= 0 comparison on a value known to have
9892 a zero sign bit, we can replace this with == 0. */
9893 else if (const_op == 0
9894 && mode_width <= HOST_BITS_PER_WIDE_INT
9895 && (nonzero_bits (op0, mode)
9896 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9897 code = EQ;
9898 break;
9899
9900 case GE:
9901 /* >= C is equivalent to > (C - 1). */
9902 if (const_op > 0)
9903 {
9904 const_op -= 1;
9905 op1 = GEN_INT (const_op);
9906 code = GT;
9907 /* ... fall through to GT below. */
9908 }
9909 else
9910 break;
9911
9912 case GT:
9913 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9914 if (const_op < 0)
9915 {
9916 const_op += 1;
9917 op1 = GEN_INT (const_op);
9918 code = GE;
9919 }
9920
9921 /* If we are doing a > 0 comparison on a value known to have
9922 a zero sign bit, we can replace this with != 0. */
9923 else if (const_op == 0
9924 && mode_width <= HOST_BITS_PER_WIDE_INT
9925 && (nonzero_bits (op0, mode)
9926 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9927 code = NE;
9928 break;
9929
9930 case LTU:
9931 /* < C is equivalent to <= (C - 1). */
9932 if (const_op > 0)
9933 {
9934 const_op -= 1;
9935 op1 = GEN_INT (const_op);
9936 code = LEU;
9937 /* ... fall through ... */
9938 }
9939
9940 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9941 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9942 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9943 {
9944 const_op = 0, op1 = const0_rtx;
9945 code = GE;
9946 break;
9947 }
9948 else
9949 break;
9950
9951 case LEU:
9952 /* unsigned <= 0 is equivalent to == 0 */
9953 if (const_op == 0)
9954 code = EQ;
9955
9956 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9957 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9958 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9959 {
9960 const_op = 0, op1 = const0_rtx;
9961 code = GE;
9962 }
9963 break;
9964
9965 case GEU:
9966 /* >= C is equivalent to > (C - 1). */
9967 if (const_op > 1)
9968 {
9969 const_op -= 1;
9970 op1 = GEN_INT (const_op);
9971 code = GTU;
9972 /* ... fall through ... */
9973 }
9974
9975 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9976 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9977 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9978 {
9979 const_op = 0, op1 = const0_rtx;
9980 code = LT;
9981 break;
9982 }
9983 else
9984 break;
9985
9986 case GTU:
9987 /* unsigned > 0 is equivalent to != 0 */
9988 if (const_op == 0)
9989 code = NE;
9990
9991 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9992 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9993 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9994 {
9995 const_op = 0, op1 = const0_rtx;
9996 code = LT;
9997 }
9998 break;
9999
10000 default:
10001 break;
10002 }
10003
10004 /* Compute some predicates to simplify code below. */
10005
10006 equality_comparison_p = (code == EQ || code == NE);
10007 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10008 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10009 || code == GEU);
10010
10011 /* If this is a sign bit comparison and we can do arithmetic in
10012 MODE, say that we will only be needing the sign bit of OP0. */
10013 if (sign_bit_comparison_p
10014 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10015 op0 = force_to_mode (op0, mode,
10016 ((HOST_WIDE_INT) 1
10017 << (GET_MODE_BITSIZE (mode) - 1)),
10018 NULL_RTX, 0);
10019
10020 /* Now try cases based on the opcode of OP0. If none of the cases
10021 does a "continue", we exit this loop immediately after the
10022 switch. */
10023
10024 switch (GET_CODE (op0))
10025 {
10026 case ZERO_EXTRACT:
10027 /* If we are extracting a single bit from a variable position in
10028 a constant that has only a single bit set and are comparing it
10029 with zero, we can convert this into an equality comparison
10030 between the position and the location of the single bit. */
10031 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10032 have already reduced the shift count modulo the word size. */
10033 if (!SHIFT_COUNT_TRUNCATED
10034 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10035 && XEXP (op0, 1) == const1_rtx
10036 && equality_comparison_p && const_op == 0
10037 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10038 {
10039 if (BITS_BIG_ENDIAN)
10040 {
10041 enum machine_mode new_mode
10042 = mode_for_extraction (EP_extzv, 1);
10043 if (new_mode == MAX_MACHINE_MODE)
10044 i = BITS_PER_WORD - 1 - i;
10045 else
10046 {
10047 mode = new_mode;
10048 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10049 }
10050 }
10051
10052 op0 = XEXP (op0, 2);
10053 op1 = GEN_INT (i);
10054 const_op = i;
10055
10056 /* Result is nonzero iff shift count is equal to I. */
10057 code = reverse_condition (code);
10058 continue;
10059 }
10060
10061 /* ... fall through ... */
10062
10063 case SIGN_EXTRACT:
10064 tem = expand_compound_operation (op0);
10065 if (tem != op0)
10066 {
10067 op0 = tem;
10068 continue;
10069 }
10070 break;
10071
10072 case NOT:
10073 /* If testing for equality, we can take the NOT of the constant. */
10074 if (equality_comparison_p
10075 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10076 {
10077 op0 = XEXP (op0, 0);
10078 op1 = tem;
10079 continue;
10080 }
10081
10082 /* If just looking at the sign bit, reverse the sense of the
10083 comparison. */
10084 if (sign_bit_comparison_p)
10085 {
10086 op0 = XEXP (op0, 0);
10087 code = (code == GE ? LT : GE);
10088 continue;
10089 }
10090 break;
10091
10092 case NEG:
10093 /* If testing for equality, we can take the NEG of the constant. */
10094 if (equality_comparison_p
10095 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10096 {
10097 op0 = XEXP (op0, 0);
10098 op1 = tem;
10099 continue;
10100 }
10101
10102 /* The remaining cases only apply to comparisons with zero. */
10103 if (const_op != 0)
10104 break;
10105
10106 /* When X is ABS or is known positive,
10107 (neg X) is < 0 if and only if X != 0. */
10108
10109 if (sign_bit_comparison_p
10110 && (GET_CODE (XEXP (op0, 0)) == ABS
10111 || (mode_width <= HOST_BITS_PER_WIDE_INT
10112 && (nonzero_bits (XEXP (op0, 0), mode)
10113 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10114 {
10115 op0 = XEXP (op0, 0);
10116 code = (code == LT ? NE : EQ);
10117 continue;
10118 }
10119
10120 /* If we have NEG of something whose two high-order bits are the
10121 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10122 if (num_sign_bit_copies (op0, mode) >= 2)
10123 {
10124 op0 = XEXP (op0, 0);
10125 code = swap_condition (code);
10126 continue;
10127 }
10128 break;
10129
10130 case ROTATE:
10131 /* If we are testing equality and our count is a constant, we
10132 can perform the inverse operation on our RHS. */
10133 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10134 && (tem = simplify_binary_operation (ROTATERT, mode,
10135 op1, XEXP (op0, 1))) != 0)
10136 {
10137 op0 = XEXP (op0, 0);
10138 op1 = tem;
10139 continue;
10140 }
10141
10142 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10143 a particular bit. Convert it to an AND of a constant of that
10144 bit. This will be converted into a ZERO_EXTRACT. */
10145 if (const_op == 0 && sign_bit_comparison_p
10146 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10147 && mode_width <= HOST_BITS_PER_WIDE_INT)
10148 {
10149 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10150 ((HOST_WIDE_INT) 1
10151 << (mode_width - 1
10152 - INTVAL (XEXP (op0, 1)))));
10153 code = (code == LT ? NE : EQ);
10154 continue;
10155 }
10156
10157 /* Fall through. */
10158
10159 case ABS:
10160 /* ABS is ignorable inside an equality comparison with zero. */
10161 if (const_op == 0 && equality_comparison_p)
10162 {
10163 op0 = XEXP (op0, 0);
10164 continue;
10165 }
10166 break;
10167
10168 case SIGN_EXTEND:
10169 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10170 (compare FOO CONST) if CONST fits in FOO's mode and we
10171 are either testing inequality or have an unsigned
10172 comparison with ZERO_EXTEND or a signed comparison with
10173 SIGN_EXTEND. But don't do it if we don't have a compare
10174 insn of the given mode, since we'd have to revert it
10175 later on, and then we wouldn't know whether to sign- or
10176 zero-extend. */
10177 mode = GET_MODE (XEXP (op0, 0));
10178 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10179 && ! unsigned_comparison_p
10180 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10181 && ((unsigned HOST_WIDE_INT) const_op
10182 < (((unsigned HOST_WIDE_INT) 1
10183 << (GET_MODE_BITSIZE (mode) - 1))))
10184 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10185 {
10186 op0 = XEXP (op0, 0);
10187 continue;
10188 }
10189 break;
10190
10191 case SUBREG:
10192 /* Check for the case where we are comparing A - C1 with C2, that is
10193
10194 (subreg:MODE (plus (A) (-C1))) op (C2)
10195
10196 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10197 comparison in the wider mode. One of the following two conditions
10198 must be true in order for this to be valid:
10199
10200 1. The mode extension results in the same bit pattern being added
10201 on both sides and the comparison is equality or unsigned. As
10202 C2 has been truncated to fit in MODE, the pattern can only be
10203 all 0s or all 1s.
10204
10205 2. The mode extension results in the sign bit being copied on
10206 each side.
10207
10208 The difficulty here is that we have predicates for A but not for
10209 (A - C1) so we need to check that C1 is within proper bounds so
10210 as to perturbate A as little as possible. */
10211
10212 if (mode_width <= HOST_BITS_PER_WIDE_INT
10213 && subreg_lowpart_p (op0)
10214 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10215 && GET_CODE (SUBREG_REG (op0)) == PLUS
10216 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10217 {
10218 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10219 rtx a = XEXP (SUBREG_REG (op0), 0);
10220 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10221
10222 if ((c1 > 0
10223 && (unsigned HOST_WIDE_INT) c1
10224 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10225 && (equality_comparison_p || unsigned_comparison_p)
10226 /* (A - C1) zero-extends if it is positive and sign-extends
10227 if it is negative, C2 both zero- and sign-extends. */
10228 && ((0 == (nonzero_bits (a, inner_mode)
10229 & ~GET_MODE_MASK (mode))
10230 && const_op >= 0)
10231 /* (A - C1) sign-extends if it is positive and 1-extends
10232 if it is negative, C2 both sign- and 1-extends. */
10233 || (num_sign_bit_copies (a, inner_mode)
10234 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10235 - mode_width)
10236 && const_op < 0)))
10237 || ((unsigned HOST_WIDE_INT) c1
10238 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10239 /* (A - C1) always sign-extends, like C2. */
10240 && num_sign_bit_copies (a, inner_mode)
10241 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10242 - mode_width - 1)))
10243 {
10244 op0 = SUBREG_REG (op0);
10245 continue;
10246 }
10247 }
10248
10249 /* If the inner mode is narrower and we are extracting the low part,
10250 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10251 if (subreg_lowpart_p (op0)
10252 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10253 /* Fall through */ ;
10254 else
10255 break;
10256
10257 /* ... fall through ... */
10258
10259 case ZERO_EXTEND:
10260 mode = GET_MODE (XEXP (op0, 0));
10261 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10262 && (unsigned_comparison_p || equality_comparison_p)
10263 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10264 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10265 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10266 {
10267 op0 = XEXP (op0, 0);
10268 continue;
10269 }
10270 break;
10271
10272 case PLUS:
10273 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10274 this for equality comparisons due to pathological cases involving
10275 overflows. */
10276 if (equality_comparison_p
10277 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10278 op1, XEXP (op0, 1))))
10279 {
10280 op0 = XEXP (op0, 0);
10281 op1 = tem;
10282 continue;
10283 }
10284
10285 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10286 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10287 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10288 {
10289 op0 = XEXP (XEXP (op0, 0), 0);
10290 code = (code == LT ? EQ : NE);
10291 continue;
10292 }
10293 break;
10294
10295 case MINUS:
10296 /* We used to optimize signed comparisons against zero, but that
10297 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10298 arrive here as equality comparisons, or (GEU, LTU) are
10299 optimized away. No need to special-case them. */
10300
10301 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10302 (eq B (minus A C)), whichever simplifies. We can only do
10303 this for equality comparisons due to pathological cases involving
10304 overflows. */
10305 if (equality_comparison_p
10306 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10307 XEXP (op0, 1), op1)))
10308 {
10309 op0 = XEXP (op0, 0);
10310 op1 = tem;
10311 continue;
10312 }
10313
10314 if (equality_comparison_p
10315 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10316 XEXP (op0, 0), op1)))
10317 {
10318 op0 = XEXP (op0, 1);
10319 op1 = tem;
10320 continue;
10321 }
10322
10323 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10324 of bits in X minus 1, is one iff X > 0. */
10325 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10326 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10327 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10328 == mode_width - 1
10329 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10330 {
10331 op0 = XEXP (op0, 1);
10332 code = (code == GE ? LE : GT);
10333 continue;
10334 }
10335 break;
10336
10337 case XOR:
10338 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10339 if C is zero or B is a constant. */
10340 if (equality_comparison_p
10341 && 0 != (tem = simplify_binary_operation (XOR, mode,
10342 XEXP (op0, 1), op1)))
10343 {
10344 op0 = XEXP (op0, 0);
10345 op1 = tem;
10346 continue;
10347 }
10348 break;
10349
10350 case EQ: case NE:
10351 case UNEQ: case LTGT:
10352 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10353 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10354 case UNORDERED: case ORDERED:
10355 /* We can't do anything if OP0 is a condition code value, rather
10356 than an actual data value. */
10357 if (const_op != 0
10358 || CC0_P (XEXP (op0, 0))
10359 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10360 break;
10361
10362 /* Get the two operands being compared. */
10363 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10364 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10365 else
10366 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10367
10368 /* Check for the cases where we simply want the result of the
10369 earlier test or the opposite of that result. */
10370 if (code == NE || code == EQ
10371 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10372 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10373 && (STORE_FLAG_VALUE
10374 & (((HOST_WIDE_INT) 1
10375 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10376 && (code == LT || code == GE)))
10377 {
10378 enum rtx_code new_code;
10379 if (code == LT || code == NE)
10380 new_code = GET_CODE (op0);
10381 else
10382 new_code = reversed_comparison_code (op0, NULL);
10383
10384 if (new_code != UNKNOWN)
10385 {
10386 code = new_code;
10387 op0 = tem;
10388 op1 = tem1;
10389 continue;
10390 }
10391 }
10392 break;
10393
10394 case IOR:
10395 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10396 iff X <= 0. */
10397 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10398 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10399 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10400 {
10401 op0 = XEXP (op0, 1);
10402 code = (code == GE ? GT : LE);
10403 continue;
10404 }
10405 break;
10406
10407 case AND:
10408 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10409 will be converted to a ZERO_EXTRACT later. */
10410 if (const_op == 0 && equality_comparison_p
10411 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10412 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10413 {
10414 op0 = simplify_and_const_int
10415 (op0, mode, gen_rtx_LSHIFTRT (mode,
10416 XEXP (op0, 1),
10417 XEXP (XEXP (op0, 0), 1)),
10418 (HOST_WIDE_INT) 1);
10419 continue;
10420 }
10421
10422 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10423 zero and X is a comparison and C1 and C2 describe only bits set
10424 in STORE_FLAG_VALUE, we can compare with X. */
10425 if (const_op == 0 && equality_comparison_p
10426 && mode_width <= HOST_BITS_PER_WIDE_INT
10427 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10428 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10429 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10430 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10431 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10432 {
10433 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10434 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10435 if ((~STORE_FLAG_VALUE & mask) == 0
10436 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10437 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10438 && COMPARISON_P (tem))))
10439 {
10440 op0 = XEXP (XEXP (op0, 0), 0);
10441 continue;
10442 }
10443 }
10444
10445 /* If we are doing an equality comparison of an AND of a bit equal
10446 to the sign bit, replace this with a LT or GE comparison of
10447 the underlying value. */
10448 if (equality_comparison_p
10449 && const_op == 0
10450 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10451 && mode_width <= HOST_BITS_PER_WIDE_INT
10452 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10453 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10454 {
10455 op0 = XEXP (op0, 0);
10456 code = (code == EQ ? GE : LT);
10457 continue;
10458 }
10459
10460 /* If this AND operation is really a ZERO_EXTEND from a narrower
10461 mode, the constant fits within that mode, and this is either an
10462 equality or unsigned comparison, try to do this comparison in
10463 the narrower mode. */
10464 if ((equality_comparison_p || unsigned_comparison_p)
10465 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10466 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10467 & GET_MODE_MASK (mode))
10468 + 1)) >= 0
10469 && const_op >> i == 0
10470 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10471 {
10472 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10473 continue;
10474 }
10475
10476 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10477 fits in both M1 and M2 and the SUBREG is either paradoxical
10478 or represents the low part, permute the SUBREG and the AND
10479 and try again. */
10480 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10481 {
10482 unsigned HOST_WIDE_INT c1;
10483 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10484 /* Require an integral mode, to avoid creating something like
10485 (AND:SF ...). */
10486 if (SCALAR_INT_MODE_P (tmode)
10487 /* It is unsafe to commute the AND into the SUBREG if the
10488 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10489 not defined. As originally written the upper bits
10490 have a defined value due to the AND operation.
10491 However, if we commute the AND inside the SUBREG then
10492 they no longer have defined values and the meaning of
10493 the code has been changed. */
10494 && (0
10495 #ifdef WORD_REGISTER_OPERATIONS
10496 || (mode_width > GET_MODE_BITSIZE (tmode)
10497 && mode_width <= BITS_PER_WORD)
10498 #endif
10499 || (mode_width <= GET_MODE_BITSIZE (tmode)
10500 && subreg_lowpart_p (XEXP (op0, 0))))
10501 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10502 && mode_width <= HOST_BITS_PER_WIDE_INT
10503 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10504 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10505 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10506 && c1 != mask
10507 && c1 != GET_MODE_MASK (tmode))
10508 {
10509 op0 = simplify_gen_binary (AND, tmode,
10510 SUBREG_REG (XEXP (op0, 0)),
10511 gen_int_mode (c1, tmode));
10512 op0 = gen_lowpart (mode, op0);
10513 continue;
10514 }
10515 }
10516
10517 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10518 if (const_op == 0 && equality_comparison_p
10519 && XEXP (op0, 1) == const1_rtx
10520 && GET_CODE (XEXP (op0, 0)) == NOT)
10521 {
10522 op0 = simplify_and_const_int
10523 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10524 code = (code == NE ? EQ : NE);
10525 continue;
10526 }
10527
10528 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10529 (eq (and (lshiftrt X) 1) 0).
10530 Also handle the case where (not X) is expressed using xor. */
10531 if (const_op == 0 && equality_comparison_p
10532 && XEXP (op0, 1) == const1_rtx
10533 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10534 {
10535 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10536 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10537
10538 if (GET_CODE (shift_op) == NOT
10539 || (GET_CODE (shift_op) == XOR
10540 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10541 && GET_CODE (shift_count) == CONST_INT
10542 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10543 && (INTVAL (XEXP (shift_op, 1))
10544 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10545 {
10546 op0 = simplify_and_const_int
10547 (NULL_RTX, mode,
10548 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10549 (HOST_WIDE_INT) 1);
10550 code = (code == NE ? EQ : NE);
10551 continue;
10552 }
10553 }
10554 break;
10555
10556 case ASHIFT:
10557 /* If we have (compare (ashift FOO N) (const_int C)) and
10558 the high order N bits of FOO (N+1 if an inequality comparison)
10559 are known to be zero, we can do this by comparing FOO with C
10560 shifted right N bits so long as the low-order N bits of C are
10561 zero. */
10562 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10563 && INTVAL (XEXP (op0, 1)) >= 0
10564 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10565 < HOST_BITS_PER_WIDE_INT)
10566 && ((const_op
10567 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10568 && mode_width <= HOST_BITS_PER_WIDE_INT
10569 && (nonzero_bits (XEXP (op0, 0), mode)
10570 & ~(mask >> (INTVAL (XEXP (op0, 1))
10571 + ! equality_comparison_p))) == 0)
10572 {
10573 /* We must perform a logical shift, not an arithmetic one,
10574 as we want the top N bits of C to be zero. */
10575 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10576
10577 temp >>= INTVAL (XEXP (op0, 1));
10578 op1 = gen_int_mode (temp, mode);
10579 op0 = XEXP (op0, 0);
10580 continue;
10581 }
10582
10583 /* If we are doing a sign bit comparison, it means we are testing
10584 a particular bit. Convert it to the appropriate AND. */
10585 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10586 && mode_width <= HOST_BITS_PER_WIDE_INT)
10587 {
10588 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10589 ((HOST_WIDE_INT) 1
10590 << (mode_width - 1
10591 - INTVAL (XEXP (op0, 1)))));
10592 code = (code == LT ? NE : EQ);
10593 continue;
10594 }
10595
10596 /* If this an equality comparison with zero and we are shifting
10597 the low bit to the sign bit, we can convert this to an AND of the
10598 low-order bit. */
10599 if (const_op == 0 && equality_comparison_p
10600 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10601 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10602 == mode_width - 1)
10603 {
10604 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10605 (HOST_WIDE_INT) 1);
10606 continue;
10607 }
10608 break;
10609
10610 case ASHIFTRT:
10611 /* If this is an equality comparison with zero, we can do this
10612 as a logical shift, which might be much simpler. */
10613 if (equality_comparison_p && const_op == 0
10614 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10615 {
10616 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10617 XEXP (op0, 0),
10618 INTVAL (XEXP (op0, 1)));
10619 continue;
10620 }
10621
10622 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10623 do the comparison in a narrower mode. */
10624 if (! unsigned_comparison_p
10625 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10626 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10627 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10628 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10629 MODE_INT, 1)) != BLKmode
10630 && (((unsigned HOST_WIDE_INT) const_op
10631 + (GET_MODE_MASK (tmode) >> 1) + 1)
10632 <= GET_MODE_MASK (tmode)))
10633 {
10634 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10635 continue;
10636 }
10637
10638 /* Likewise if OP0 is a PLUS of a sign extension with a
10639 constant, which is usually represented with the PLUS
10640 between the shifts. */
10641 if (! unsigned_comparison_p
10642 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10643 && GET_CODE (XEXP (op0, 0)) == PLUS
10644 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10645 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10646 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10647 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10648 MODE_INT, 1)) != BLKmode
10649 && (((unsigned HOST_WIDE_INT) const_op
10650 + (GET_MODE_MASK (tmode) >> 1) + 1)
10651 <= GET_MODE_MASK (tmode)))
10652 {
10653 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10654 rtx add_const = XEXP (XEXP (op0, 0), 1);
10655 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10656 add_const, XEXP (op0, 1));
10657
10658 op0 = simplify_gen_binary (PLUS, tmode,
10659 gen_lowpart (tmode, inner),
10660 new_const);
10661 continue;
10662 }
10663
10664 /* ... fall through ... */
10665 case LSHIFTRT:
10666 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10667 the low order N bits of FOO are known to be zero, we can do this
10668 by comparing FOO with C shifted left N bits so long as no
10669 overflow occurs. */
10670 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10671 && INTVAL (XEXP (op0, 1)) >= 0
10672 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10673 && mode_width <= HOST_BITS_PER_WIDE_INT
10674 && (nonzero_bits (XEXP (op0, 0), mode)
10675 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10676 && (((unsigned HOST_WIDE_INT) const_op
10677 + (GET_CODE (op0) != LSHIFTRT
10678 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10679 + 1)
10680 : 0))
10681 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10682 {
10683 /* If the shift was logical, then we must make the condition
10684 unsigned. */
10685 if (GET_CODE (op0) == LSHIFTRT)
10686 code = unsigned_condition (code);
10687
10688 const_op <<= INTVAL (XEXP (op0, 1));
10689 op1 = GEN_INT (const_op);
10690 op0 = XEXP (op0, 0);
10691 continue;
10692 }
10693
10694 /* If we are using this shift to extract just the sign bit, we
10695 can replace this with an LT or GE comparison. */
10696 if (const_op == 0
10697 && (equality_comparison_p || sign_bit_comparison_p)
10698 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10699 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10700 == mode_width - 1)
10701 {
10702 op0 = XEXP (op0, 0);
10703 code = (code == NE || code == GT ? LT : GE);
10704 continue;
10705 }
10706 break;
10707
10708 default:
10709 break;
10710 }
10711
10712 break;
10713 }
10714
10715 /* Now make any compound operations involved in this comparison. Then,
10716 check for an outmost SUBREG on OP0 that is not doing anything or is
10717 paradoxical. The latter transformation must only be performed when
10718 it is known that the "extra" bits will be the same in op0 and op1 or
10719 that they don't matter. There are three cases to consider:
10720
10721 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10722 care bits and we can assume they have any convenient value. So
10723 making the transformation is safe.
10724
10725 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10726 In this case the upper bits of op0 are undefined. We should not make
10727 the simplification in that case as we do not know the contents of
10728 those bits.
10729
10730 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10731 UNKNOWN. In that case we know those bits are zeros or ones. We must
10732 also be sure that they are the same as the upper bits of op1.
10733
10734 We can never remove a SUBREG for a non-equality comparison because
10735 the sign bit is in a different place in the underlying object. */
10736
10737 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10738 op1 = make_compound_operation (op1, SET);
10739
10740 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10741 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10742 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10743 && (code == NE || code == EQ))
10744 {
10745 if (GET_MODE_SIZE (GET_MODE (op0))
10746 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10747 {
10748 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10749 implemented. */
10750 if (REG_P (SUBREG_REG (op0)))
10751 {
10752 op0 = SUBREG_REG (op0);
10753 op1 = gen_lowpart (GET_MODE (op0), op1);
10754 }
10755 }
10756 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10757 <= HOST_BITS_PER_WIDE_INT)
10758 && (nonzero_bits (SUBREG_REG (op0),
10759 GET_MODE (SUBREG_REG (op0)))
10760 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10761 {
10762 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10763
10764 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10765 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10766 op0 = SUBREG_REG (op0), op1 = tem;
10767 }
10768 }
10769
10770 /* We now do the opposite procedure: Some machines don't have compare
10771 insns in all modes. If OP0's mode is an integer mode smaller than a
10772 word and we can't do a compare in that mode, see if there is a larger
10773 mode for which we can do the compare. There are a number of cases in
10774 which we can use the wider mode. */
10775
10776 mode = GET_MODE (op0);
10777 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10778 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10779 && ! have_insn_for (COMPARE, mode))
10780 for (tmode = GET_MODE_WIDER_MODE (mode);
10781 (tmode != VOIDmode
10782 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10783 tmode = GET_MODE_WIDER_MODE (tmode))
10784 if (have_insn_for (COMPARE, tmode))
10785 {
10786 int zero_extended;
10787
10788 /* If the only nonzero bits in OP0 and OP1 are those in the
10789 narrower mode and this is an equality or unsigned comparison,
10790 we can use the wider mode. Similarly for sign-extended
10791 values, in which case it is true for all comparisons. */
10792 zero_extended = ((code == EQ || code == NE
10793 || code == GEU || code == GTU
10794 || code == LEU || code == LTU)
10795 && (nonzero_bits (op0, tmode)
10796 & ~GET_MODE_MASK (mode)) == 0
10797 && ((GET_CODE (op1) == CONST_INT
10798 || (nonzero_bits (op1, tmode)
10799 & ~GET_MODE_MASK (mode)) == 0)));
10800
10801 if (zero_extended
10802 || ((num_sign_bit_copies (op0, tmode)
10803 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10804 - GET_MODE_BITSIZE (mode)))
10805 && (num_sign_bit_copies (op1, tmode)
10806 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10807 - GET_MODE_BITSIZE (mode)))))
10808 {
10809 /* If OP0 is an AND and we don't have an AND in MODE either,
10810 make a new AND in the proper mode. */
10811 if (GET_CODE (op0) == AND
10812 && !have_insn_for (AND, mode))
10813 op0 = simplify_gen_binary (AND, tmode,
10814 gen_lowpart (tmode,
10815 XEXP (op0, 0)),
10816 gen_lowpart (tmode,
10817 XEXP (op0, 1)));
10818
10819 op0 = gen_lowpart (tmode, op0);
10820 if (zero_extended && GET_CODE (op1) == CONST_INT)
10821 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10822 op1 = gen_lowpart (tmode, op1);
10823 break;
10824 }
10825
10826 /* If this is a test for negative, we can make an explicit
10827 test of the sign bit. */
10828
10829 if (op1 == const0_rtx && (code == LT || code == GE)
10830 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10831 {
10832 op0 = simplify_gen_binary (AND, tmode,
10833 gen_lowpart (tmode, op0),
10834 GEN_INT ((HOST_WIDE_INT) 1
10835 << (GET_MODE_BITSIZE (mode)
10836 - 1)));
10837 code = (code == LT) ? NE : EQ;
10838 break;
10839 }
10840 }
10841
10842 #ifdef CANONICALIZE_COMPARISON
10843 /* If this machine only supports a subset of valid comparisons, see if we
10844 can convert an unsupported one into a supported one. */
10845 CANONICALIZE_COMPARISON (code, op0, op1);
10846 #endif
10847
10848 *pop0 = op0;
10849 *pop1 = op1;
10850
10851 return code;
10852 }
10853 \f
10854 /* Utility function for record_value_for_reg. Count number of
10855 rtxs in X. */
10856 static int
10857 count_rtxs (rtx x)
10858 {
10859 enum rtx_code code = GET_CODE (x);
10860 const char *fmt;
10861 int i, ret = 1;
10862
10863 if (GET_RTX_CLASS (code) == '2'
10864 || GET_RTX_CLASS (code) == 'c')
10865 {
10866 rtx x0 = XEXP (x, 0);
10867 rtx x1 = XEXP (x, 1);
10868
10869 if (x0 == x1)
10870 return 1 + 2 * count_rtxs (x0);
10871
10872 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10873 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10874 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10875 return 2 + 2 * count_rtxs (x0)
10876 + count_rtxs (x == XEXP (x1, 0)
10877 ? XEXP (x1, 1) : XEXP (x1, 0));
10878
10879 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10880 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10881 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10882 return 2 + 2 * count_rtxs (x1)
10883 + count_rtxs (x == XEXP (x0, 0)
10884 ? XEXP (x0, 1) : XEXP (x0, 0));
10885 }
10886
10887 fmt = GET_RTX_FORMAT (code);
10888 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10889 if (fmt[i] == 'e')
10890 ret += count_rtxs (XEXP (x, i));
10891
10892 return ret;
10893 }
10894 \f
10895 /* Utility function for following routine. Called when X is part of a value
10896 being stored into last_set_value. Sets last_set_table_tick
10897 for each register mentioned. Similar to mention_regs in cse.c */
10898
10899 static void
10900 update_table_tick (rtx x)
10901 {
10902 enum rtx_code code = GET_CODE (x);
10903 const char *fmt = GET_RTX_FORMAT (code);
10904 int i;
10905
10906 if (code == REG)
10907 {
10908 unsigned int regno = REGNO (x);
10909 unsigned int endregno
10910 = regno + (regno < FIRST_PSEUDO_REGISTER
10911 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10912 unsigned int r;
10913
10914 for (r = regno; r < endregno; r++)
10915 reg_stat[r].last_set_table_tick = label_tick;
10916
10917 return;
10918 }
10919
10920 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10921 /* Note that we can't have an "E" in values stored; see
10922 get_last_value_validate. */
10923 if (fmt[i] == 'e')
10924 {
10925 /* Check for identical subexpressions. If x contains
10926 identical subexpression we only have to traverse one of
10927 them. */
10928 if (i == 0 && ARITHMETIC_P (x))
10929 {
10930 /* Note that at this point x1 has already been
10931 processed. */
10932 rtx x0 = XEXP (x, 0);
10933 rtx x1 = XEXP (x, 1);
10934
10935 /* If x0 and x1 are identical then there is no need to
10936 process x0. */
10937 if (x0 == x1)
10938 break;
10939
10940 /* If x0 is identical to a subexpression of x1 then while
10941 processing x1, x0 has already been processed. Thus we
10942 are done with x. */
10943 if (ARITHMETIC_P (x1)
10944 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10945 break;
10946
10947 /* If x1 is identical to a subexpression of x0 then we
10948 still have to process the rest of x0. */
10949 if (ARITHMETIC_P (x0)
10950 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10951 {
10952 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10953 break;
10954 }
10955 }
10956
10957 update_table_tick (XEXP (x, i));
10958 }
10959 }
10960
10961 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10962 are saying that the register is clobbered and we no longer know its
10963 value. If INSN is zero, don't update reg_stat[].last_set; this is
10964 only permitted with VALUE also zero and is used to invalidate the
10965 register. */
10966
10967 static void
10968 record_value_for_reg (rtx reg, rtx insn, rtx value)
10969 {
10970 unsigned int regno = REGNO (reg);
10971 unsigned int endregno
10972 = regno + (regno < FIRST_PSEUDO_REGISTER
10973 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10974 unsigned int i;
10975
10976 /* If VALUE contains REG and we have a previous value for REG, substitute
10977 the previous value. */
10978 if (value && insn && reg_overlap_mentioned_p (reg, value))
10979 {
10980 rtx tem;
10981
10982 /* Set things up so get_last_value is allowed to see anything set up to
10983 our insn. */
10984 subst_low_cuid = INSN_CUID (insn);
10985 tem = get_last_value (reg);
10986
10987 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10988 it isn't going to be useful and will take a lot of time to process,
10989 so just use the CLOBBER. */
10990
10991 if (tem)
10992 {
10993 if (ARITHMETIC_P (tem)
10994 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10995 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10996 tem = XEXP (tem, 0);
10997 else if (count_occurrences (value, reg, 1) >= 2)
10998 {
10999 /* If there are two or more occurrences of REG in VALUE,
11000 prevent the value from growing too much. */
11001 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11002 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11003 }
11004
11005 value = replace_rtx (copy_rtx (value), reg, tem);
11006 }
11007 }
11008
11009 /* For each register modified, show we don't know its value, that
11010 we don't know about its bitwise content, that its value has been
11011 updated, and that we don't know the location of the death of the
11012 register. */
11013 for (i = regno; i < endregno; i++)
11014 {
11015 if (insn)
11016 reg_stat[i].last_set = insn;
11017
11018 reg_stat[i].last_set_value = 0;
11019 reg_stat[i].last_set_mode = 0;
11020 reg_stat[i].last_set_nonzero_bits = 0;
11021 reg_stat[i].last_set_sign_bit_copies = 0;
11022 reg_stat[i].last_death = 0;
11023 }
11024
11025 /* Mark registers that are being referenced in this value. */
11026 if (value)
11027 update_table_tick (value);
11028
11029 /* Now update the status of each register being set.
11030 If someone is using this register in this block, set this register
11031 to invalid since we will get confused between the two lives in this
11032 basic block. This makes using this register always invalid. In cse, we
11033 scan the table to invalidate all entries using this register, but this
11034 is too much work for us. */
11035
11036 for (i = regno; i < endregno; i++)
11037 {
11038 reg_stat[i].last_set_label = label_tick;
11039 if (value && reg_stat[i].last_set_table_tick == label_tick)
11040 reg_stat[i].last_set_invalid = 1;
11041 else
11042 reg_stat[i].last_set_invalid = 0;
11043 }
11044
11045 /* The value being assigned might refer to X (like in "x++;"). In that
11046 case, we must replace it with (clobber (const_int 0)) to prevent
11047 infinite loops. */
11048 if (value && ! get_last_value_validate (&value, insn,
11049 reg_stat[regno].last_set_label, 0))
11050 {
11051 value = copy_rtx (value);
11052 if (! get_last_value_validate (&value, insn,
11053 reg_stat[regno].last_set_label, 1))
11054 value = 0;
11055 }
11056
11057 /* For the main register being modified, update the value, the mode, the
11058 nonzero bits, and the number of sign bit copies. */
11059
11060 reg_stat[regno].last_set_value = value;
11061
11062 if (value)
11063 {
11064 enum machine_mode mode = GET_MODE (reg);
11065 subst_low_cuid = INSN_CUID (insn);
11066 reg_stat[regno].last_set_mode = mode;
11067 if (GET_MODE_CLASS (mode) == MODE_INT
11068 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11069 mode = nonzero_bits_mode;
11070 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11071 reg_stat[regno].last_set_sign_bit_copies
11072 = num_sign_bit_copies (value, GET_MODE (reg));
11073 }
11074 }
11075
11076 /* Called via note_stores from record_dead_and_set_regs to handle one
11077 SET or CLOBBER in an insn. DATA is the instruction in which the
11078 set is occurring. */
11079
11080 static void
11081 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11082 {
11083 rtx record_dead_insn = (rtx) data;
11084
11085 if (GET_CODE (dest) == SUBREG)
11086 dest = SUBREG_REG (dest);
11087
11088 if (REG_P (dest))
11089 {
11090 /* If we are setting the whole register, we know its value. Otherwise
11091 show that we don't know the value. We can handle SUBREG in
11092 some cases. */
11093 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11094 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11095 else if (GET_CODE (setter) == SET
11096 && GET_CODE (SET_DEST (setter)) == SUBREG
11097 && SUBREG_REG (SET_DEST (setter)) == dest
11098 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11099 && subreg_lowpart_p (SET_DEST (setter)))
11100 record_value_for_reg (dest, record_dead_insn,
11101 gen_lowpart (GET_MODE (dest),
11102 SET_SRC (setter)));
11103 else
11104 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11105 }
11106 else if (MEM_P (dest)
11107 /* Ignore pushes, they clobber nothing. */
11108 && ! push_operand (dest, GET_MODE (dest)))
11109 mem_last_set = INSN_CUID (record_dead_insn);
11110 }
11111
11112 /* Update the records of when each REG was most recently set or killed
11113 for the things done by INSN. This is the last thing done in processing
11114 INSN in the combiner loop.
11115
11116 We update reg_stat[], in particular fields last_set, last_set_value,
11117 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11118 last_death, and also the similar information mem_last_set (which insn
11119 most recently modified memory) and last_call_cuid (which insn was the
11120 most recent subroutine call). */
11121
11122 static void
11123 record_dead_and_set_regs (rtx insn)
11124 {
11125 rtx link;
11126 unsigned int i;
11127
11128 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11129 {
11130 if (REG_NOTE_KIND (link) == REG_DEAD
11131 && REG_P (XEXP (link, 0)))
11132 {
11133 unsigned int regno = REGNO (XEXP (link, 0));
11134 unsigned int endregno
11135 = regno + (regno < FIRST_PSEUDO_REGISTER
11136 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11137 : 1);
11138
11139 for (i = regno; i < endregno; i++)
11140 reg_stat[i].last_death = insn;
11141 }
11142 else if (REG_NOTE_KIND (link) == REG_INC)
11143 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11144 }
11145
11146 if (CALL_P (insn))
11147 {
11148 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11149 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11150 {
11151 reg_stat[i].last_set_value = 0;
11152 reg_stat[i].last_set_mode = 0;
11153 reg_stat[i].last_set_nonzero_bits = 0;
11154 reg_stat[i].last_set_sign_bit_copies = 0;
11155 reg_stat[i].last_death = 0;
11156 }
11157
11158 last_call_cuid = mem_last_set = INSN_CUID (insn);
11159
11160 /* Don't bother recording what this insn does. It might set the
11161 return value register, but we can't combine into a call
11162 pattern anyway, so there's no point trying (and it may cause
11163 a crash, if e.g. we wind up asking for last_set_value of a
11164 SUBREG of the return value register). */
11165 return;
11166 }
11167
11168 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11169 }
11170
11171 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11172 register present in the SUBREG, so for each such SUBREG go back and
11173 adjust nonzero and sign bit information of the registers that are
11174 known to have some zero/sign bits set.
11175
11176 This is needed because when combine blows the SUBREGs away, the
11177 information on zero/sign bits is lost and further combines can be
11178 missed because of that. */
11179
11180 static void
11181 record_promoted_value (rtx insn, rtx subreg)
11182 {
11183 rtx links, set;
11184 unsigned int regno = REGNO (SUBREG_REG (subreg));
11185 enum machine_mode mode = GET_MODE (subreg);
11186
11187 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11188 return;
11189
11190 for (links = LOG_LINKS (insn); links;)
11191 {
11192 insn = XEXP (links, 0);
11193 set = single_set (insn);
11194
11195 if (! set || !REG_P (SET_DEST (set))
11196 || REGNO (SET_DEST (set)) != regno
11197 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11198 {
11199 links = XEXP (links, 1);
11200 continue;
11201 }
11202
11203 if (reg_stat[regno].last_set == insn)
11204 {
11205 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11206 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11207 }
11208
11209 if (REG_P (SET_SRC (set)))
11210 {
11211 regno = REGNO (SET_SRC (set));
11212 links = LOG_LINKS (insn);
11213 }
11214 else
11215 break;
11216 }
11217 }
11218
11219 /* Scan X for promoted SUBREGs. For each one found,
11220 note what it implies to the registers used in it. */
11221
11222 static void
11223 check_promoted_subreg (rtx insn, rtx x)
11224 {
11225 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11226 && REG_P (SUBREG_REG (x)))
11227 record_promoted_value (insn, x);
11228 else
11229 {
11230 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11231 int i, j;
11232
11233 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11234 switch (format[i])
11235 {
11236 case 'e':
11237 check_promoted_subreg (insn, XEXP (x, i));
11238 break;
11239 case 'V':
11240 case 'E':
11241 if (XVEC (x, i) != 0)
11242 for (j = 0; j < XVECLEN (x, i); j++)
11243 check_promoted_subreg (insn, XVECEXP (x, i, j));
11244 break;
11245 }
11246 }
11247 }
11248 \f
11249 /* Utility routine for the following function. Verify that all the registers
11250 mentioned in *LOC are valid when *LOC was part of a value set when
11251 label_tick == TICK. Return 0 if some are not.
11252
11253 If REPLACE is nonzero, replace the invalid reference with
11254 (clobber (const_int 0)) and return 1. This replacement is useful because
11255 we often can get useful information about the form of a value (e.g., if
11256 it was produced by a shift that always produces -1 or 0) even though
11257 we don't know exactly what registers it was produced from. */
11258
11259 static int
11260 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11261 {
11262 rtx x = *loc;
11263 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11264 int len = GET_RTX_LENGTH (GET_CODE (x));
11265 int i;
11266
11267 if (REG_P (x))
11268 {
11269 unsigned int regno = REGNO (x);
11270 unsigned int endregno
11271 = regno + (regno < FIRST_PSEUDO_REGISTER
11272 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11273 unsigned int j;
11274
11275 for (j = regno; j < endregno; j++)
11276 if (reg_stat[j].last_set_invalid
11277 /* If this is a pseudo-register that was only set once and not
11278 live at the beginning of the function, it is always valid. */
11279 || (! (regno >= FIRST_PSEUDO_REGISTER
11280 && REG_N_SETS (regno) == 1
11281 && (! REGNO_REG_SET_P
11282 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11283 regno)))
11284 && reg_stat[j].last_set_label > tick))
11285 {
11286 if (replace)
11287 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11288 return replace;
11289 }
11290
11291 return 1;
11292 }
11293 /* If this is a memory reference, make sure that there were
11294 no stores after it that might have clobbered the value. We don't
11295 have alias info, so we assume any store invalidates it. */
11296 else if (MEM_P (x) && !MEM_READONLY_P (x)
11297 && INSN_CUID (insn) <= mem_last_set)
11298 {
11299 if (replace)
11300 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11301 return replace;
11302 }
11303
11304 for (i = 0; i < len; i++)
11305 {
11306 if (fmt[i] == 'e')
11307 {
11308 /* Check for identical subexpressions. If x contains
11309 identical subexpression we only have to traverse one of
11310 them. */
11311 if (i == 1 && ARITHMETIC_P (x))
11312 {
11313 /* Note that at this point x0 has already been checked
11314 and found valid. */
11315 rtx x0 = XEXP (x, 0);
11316 rtx x1 = XEXP (x, 1);
11317
11318 /* If x0 and x1 are identical then x is also valid. */
11319 if (x0 == x1)
11320 return 1;
11321
11322 /* If x1 is identical to a subexpression of x0 then
11323 while checking x0, x1 has already been checked. Thus
11324 it is valid and so as x. */
11325 if (ARITHMETIC_P (x0)
11326 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11327 return 1;
11328
11329 /* If x0 is identical to a subexpression of x1 then x is
11330 valid iff the rest of x1 is valid. */
11331 if (ARITHMETIC_P (x1)
11332 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11333 return
11334 get_last_value_validate (&XEXP (x1,
11335 x0 == XEXP (x1, 0) ? 1 : 0),
11336 insn, tick, replace);
11337 }
11338
11339 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11340 replace) == 0)
11341 return 0;
11342 }
11343 /* Don't bother with these. They shouldn't occur anyway. */
11344 else if (fmt[i] == 'E')
11345 return 0;
11346 }
11347
11348 /* If we haven't found a reason for it to be invalid, it is valid. */
11349 return 1;
11350 }
11351
11352 /* Get the last value assigned to X, if known. Some registers
11353 in the value may be replaced with (clobber (const_int 0)) if their value
11354 is known longer known reliably. */
11355
11356 static rtx
11357 get_last_value (rtx x)
11358 {
11359 unsigned int regno;
11360 rtx value;
11361
11362 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11363 then convert it to the desired mode. If this is a paradoxical SUBREG,
11364 we cannot predict what values the "extra" bits might have. */
11365 if (GET_CODE (x) == SUBREG
11366 && subreg_lowpart_p (x)
11367 && (GET_MODE_SIZE (GET_MODE (x))
11368 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11369 && (value = get_last_value (SUBREG_REG (x))) != 0)
11370 return gen_lowpart (GET_MODE (x), value);
11371
11372 if (!REG_P (x))
11373 return 0;
11374
11375 regno = REGNO (x);
11376 value = reg_stat[regno].last_set_value;
11377
11378 /* If we don't have a value, or if it isn't for this basic block and
11379 it's either a hard register, set more than once, or it's a live
11380 at the beginning of the function, return 0.
11381
11382 Because if it's not live at the beginning of the function then the reg
11383 is always set before being used (is never used without being set).
11384 And, if it's set only once, and it's always set before use, then all
11385 uses must have the same last value, even if it's not from this basic
11386 block. */
11387
11388 if (value == 0
11389 || (reg_stat[regno].last_set_label != label_tick
11390 && (regno < FIRST_PSEUDO_REGISTER
11391 || REG_N_SETS (regno) != 1
11392 || (REGNO_REG_SET_P
11393 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11394 regno)))))
11395 return 0;
11396
11397 /* If the value was set in a later insn than the ones we are processing,
11398 we can't use it even if the register was only set once. */
11399 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11400 return 0;
11401
11402 /* If the value has all its registers valid, return it. */
11403 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11404 reg_stat[regno].last_set_label, 0))
11405 return value;
11406
11407 /* Otherwise, make a copy and replace any invalid register with
11408 (clobber (const_int 0)). If that fails for some reason, return 0. */
11409
11410 value = copy_rtx (value);
11411 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11412 reg_stat[regno].last_set_label, 1))
11413 return value;
11414
11415 return 0;
11416 }
11417 \f
11418 /* Return nonzero if expression X refers to a REG or to memory
11419 that is set in an instruction more recent than FROM_CUID. */
11420
11421 static int
11422 use_crosses_set_p (rtx x, int from_cuid)
11423 {
11424 const char *fmt;
11425 int i;
11426 enum rtx_code code = GET_CODE (x);
11427
11428 if (code == REG)
11429 {
11430 unsigned int regno = REGNO (x);
11431 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11432 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11433
11434 #ifdef PUSH_ROUNDING
11435 /* Don't allow uses of the stack pointer to be moved,
11436 because we don't know whether the move crosses a push insn. */
11437 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11438 return 1;
11439 #endif
11440 for (; regno < endreg; regno++)
11441 if (reg_stat[regno].last_set
11442 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11443 return 1;
11444 return 0;
11445 }
11446
11447 if (code == MEM && mem_last_set > from_cuid)
11448 return 1;
11449
11450 fmt = GET_RTX_FORMAT (code);
11451
11452 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11453 {
11454 if (fmt[i] == 'E')
11455 {
11456 int j;
11457 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11458 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11459 return 1;
11460 }
11461 else if (fmt[i] == 'e'
11462 && use_crosses_set_p (XEXP (x, i), from_cuid))
11463 return 1;
11464 }
11465 return 0;
11466 }
11467 \f
11468 /* Define three variables used for communication between the following
11469 routines. */
11470
11471 static unsigned int reg_dead_regno, reg_dead_endregno;
11472 static int reg_dead_flag;
11473
11474 /* Function called via note_stores from reg_dead_at_p.
11475
11476 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11477 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11478
11479 static void
11480 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11481 {
11482 unsigned int regno, endregno;
11483
11484 if (!REG_P (dest))
11485 return;
11486
11487 regno = REGNO (dest);
11488 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11489 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11490
11491 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11492 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11493 }
11494
11495 /* Return nonzero if REG is known to be dead at INSN.
11496
11497 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11498 referencing REG, it is dead. If we hit a SET referencing REG, it is
11499 live. Otherwise, see if it is live or dead at the start of the basic
11500 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11501 must be assumed to be always live. */
11502
11503 static int
11504 reg_dead_at_p (rtx reg, rtx insn)
11505 {
11506 basic_block block;
11507 unsigned int i;
11508
11509 /* Set variables for reg_dead_at_p_1. */
11510 reg_dead_regno = REGNO (reg);
11511 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11512 ? hard_regno_nregs[reg_dead_regno]
11513 [GET_MODE (reg)]
11514 : 1);
11515
11516 reg_dead_flag = 0;
11517
11518 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11519 we allow the machine description to decide whether use-and-clobber
11520 patterns are OK. */
11521 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11522 {
11523 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11524 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11525 return 0;
11526 }
11527
11528 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11529 beginning of function. */
11530 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11531 insn = prev_nonnote_insn (insn))
11532 {
11533 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11534 if (reg_dead_flag)
11535 return reg_dead_flag == 1 ? 1 : 0;
11536
11537 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11538 return 1;
11539 }
11540
11541 /* Get the basic block that we were in. */
11542 if (insn == 0)
11543 block = ENTRY_BLOCK_PTR->next_bb;
11544 else
11545 {
11546 FOR_EACH_BB (block)
11547 if (insn == BB_HEAD (block))
11548 break;
11549
11550 if (block == EXIT_BLOCK_PTR)
11551 return 0;
11552 }
11553
11554 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11555 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11556 return 0;
11557
11558 return 1;
11559 }
11560 \f
11561 /* Note hard registers in X that are used. This code is similar to
11562 that in flow.c, but much simpler since we don't care about pseudos. */
11563
11564 static void
11565 mark_used_regs_combine (rtx x)
11566 {
11567 RTX_CODE code = GET_CODE (x);
11568 unsigned int regno;
11569 int i;
11570
11571 switch (code)
11572 {
11573 case LABEL_REF:
11574 case SYMBOL_REF:
11575 case CONST_INT:
11576 case CONST:
11577 case CONST_DOUBLE:
11578 case CONST_VECTOR:
11579 case PC:
11580 case ADDR_VEC:
11581 case ADDR_DIFF_VEC:
11582 case ASM_INPUT:
11583 #ifdef HAVE_cc0
11584 /* CC0 must die in the insn after it is set, so we don't need to take
11585 special note of it here. */
11586 case CC0:
11587 #endif
11588 return;
11589
11590 case CLOBBER:
11591 /* If we are clobbering a MEM, mark any hard registers inside the
11592 address as used. */
11593 if (MEM_P (XEXP (x, 0)))
11594 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11595 return;
11596
11597 case REG:
11598 regno = REGNO (x);
11599 /* A hard reg in a wide mode may really be multiple registers.
11600 If so, mark all of them just like the first. */
11601 if (regno < FIRST_PSEUDO_REGISTER)
11602 {
11603 unsigned int endregno, r;
11604
11605 /* None of this applies to the stack, frame or arg pointers. */
11606 if (regno == STACK_POINTER_REGNUM
11607 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11608 || regno == HARD_FRAME_POINTER_REGNUM
11609 #endif
11610 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11611 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11612 #endif
11613 || regno == FRAME_POINTER_REGNUM)
11614 return;
11615
11616 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11617 for (r = regno; r < endregno; r++)
11618 SET_HARD_REG_BIT (newpat_used_regs, r);
11619 }
11620 return;
11621
11622 case SET:
11623 {
11624 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11625 the address. */
11626 rtx testreg = SET_DEST (x);
11627
11628 while (GET_CODE (testreg) == SUBREG
11629 || GET_CODE (testreg) == ZERO_EXTRACT
11630 || GET_CODE (testreg) == STRICT_LOW_PART)
11631 testreg = XEXP (testreg, 0);
11632
11633 if (MEM_P (testreg))
11634 mark_used_regs_combine (XEXP (testreg, 0));
11635
11636 mark_used_regs_combine (SET_SRC (x));
11637 }
11638 return;
11639
11640 default:
11641 break;
11642 }
11643
11644 /* Recursively scan the operands of this expression. */
11645
11646 {
11647 const char *fmt = GET_RTX_FORMAT (code);
11648
11649 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11650 {
11651 if (fmt[i] == 'e')
11652 mark_used_regs_combine (XEXP (x, i));
11653 else if (fmt[i] == 'E')
11654 {
11655 int j;
11656
11657 for (j = 0; j < XVECLEN (x, i); j++)
11658 mark_used_regs_combine (XVECEXP (x, i, j));
11659 }
11660 }
11661 }
11662 }
11663 \f
11664 /* Remove register number REGNO from the dead registers list of INSN.
11665
11666 Return the note used to record the death, if there was one. */
11667
11668 rtx
11669 remove_death (unsigned int regno, rtx insn)
11670 {
11671 rtx note = find_regno_note (insn, REG_DEAD, regno);
11672
11673 if (note)
11674 {
11675 REG_N_DEATHS (regno)--;
11676 remove_note (insn, note);
11677 }
11678
11679 return note;
11680 }
11681
11682 /* For each register (hardware or pseudo) used within expression X, if its
11683 death is in an instruction with cuid between FROM_CUID (inclusive) and
11684 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11685 list headed by PNOTES.
11686
11687 That said, don't move registers killed by maybe_kill_insn.
11688
11689 This is done when X is being merged by combination into TO_INSN. These
11690 notes will then be distributed as needed. */
11691
11692 static void
11693 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11694 rtx *pnotes)
11695 {
11696 const char *fmt;
11697 int len, i;
11698 enum rtx_code code = GET_CODE (x);
11699
11700 if (code == REG)
11701 {
11702 unsigned int regno = REGNO (x);
11703 rtx where_dead = reg_stat[regno].last_death;
11704 rtx before_dead, after_dead;
11705
11706 /* Don't move the register if it gets killed in between from and to. */
11707 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11708 && ! reg_referenced_p (x, maybe_kill_insn))
11709 return;
11710
11711 /* WHERE_DEAD could be a USE insn made by combine, so first we
11712 make sure that we have insns with valid INSN_CUID values. */
11713 before_dead = where_dead;
11714 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11715 before_dead = PREV_INSN (before_dead);
11716
11717 after_dead = where_dead;
11718 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11719 after_dead = NEXT_INSN (after_dead);
11720
11721 if (before_dead && after_dead
11722 && INSN_CUID (before_dead) >= from_cuid
11723 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11724 || (where_dead != after_dead
11725 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11726 {
11727 rtx note = remove_death (regno, where_dead);
11728
11729 /* It is possible for the call above to return 0. This can occur
11730 when last_death points to I2 or I1 that we combined with.
11731 In that case make a new note.
11732
11733 We must also check for the case where X is a hard register
11734 and NOTE is a death note for a range of hard registers
11735 including X. In that case, we must put REG_DEAD notes for
11736 the remaining registers in place of NOTE. */
11737
11738 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11739 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11740 > GET_MODE_SIZE (GET_MODE (x))))
11741 {
11742 unsigned int deadregno = REGNO (XEXP (note, 0));
11743 unsigned int deadend
11744 = (deadregno + hard_regno_nregs[deadregno]
11745 [GET_MODE (XEXP (note, 0))]);
11746 unsigned int ourend
11747 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11748 unsigned int i;
11749
11750 for (i = deadregno; i < deadend; i++)
11751 if (i < regno || i >= ourend)
11752 REG_NOTES (where_dead)
11753 = gen_rtx_EXPR_LIST (REG_DEAD,
11754 regno_reg_rtx[i],
11755 REG_NOTES (where_dead));
11756 }
11757
11758 /* If we didn't find any note, or if we found a REG_DEAD note that
11759 covers only part of the given reg, and we have a multi-reg hard
11760 register, then to be safe we must check for REG_DEAD notes
11761 for each register other than the first. They could have
11762 their own REG_DEAD notes lying around. */
11763 else if ((note == 0
11764 || (note != 0
11765 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11766 < GET_MODE_SIZE (GET_MODE (x)))))
11767 && regno < FIRST_PSEUDO_REGISTER
11768 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11769 {
11770 unsigned int ourend
11771 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11772 unsigned int i, offset;
11773 rtx oldnotes = 0;
11774
11775 if (note)
11776 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11777 else
11778 offset = 1;
11779
11780 for (i = regno + offset; i < ourend; i++)
11781 move_deaths (regno_reg_rtx[i],
11782 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11783 }
11784
11785 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11786 {
11787 XEXP (note, 1) = *pnotes;
11788 *pnotes = note;
11789 }
11790 else
11791 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11792
11793 REG_N_DEATHS (regno)++;
11794 }
11795
11796 return;
11797 }
11798
11799 else if (GET_CODE (x) == SET)
11800 {
11801 rtx dest = SET_DEST (x);
11802
11803 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11804
11805 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11806 that accesses one word of a multi-word item, some
11807 piece of everything register in the expression is used by
11808 this insn, so remove any old death. */
11809 /* ??? So why do we test for equality of the sizes? */
11810
11811 if (GET_CODE (dest) == ZERO_EXTRACT
11812 || GET_CODE (dest) == STRICT_LOW_PART
11813 || (GET_CODE (dest) == SUBREG
11814 && (((GET_MODE_SIZE (GET_MODE (dest))
11815 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11816 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11817 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11818 {
11819 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11820 return;
11821 }
11822
11823 /* If this is some other SUBREG, we know it replaces the entire
11824 value, so use that as the destination. */
11825 if (GET_CODE (dest) == SUBREG)
11826 dest = SUBREG_REG (dest);
11827
11828 /* If this is a MEM, adjust deaths of anything used in the address.
11829 For a REG (the only other possibility), the entire value is
11830 being replaced so the old value is not used in this insn. */
11831
11832 if (MEM_P (dest))
11833 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11834 to_insn, pnotes);
11835 return;
11836 }
11837
11838 else if (GET_CODE (x) == CLOBBER)
11839 return;
11840
11841 len = GET_RTX_LENGTH (code);
11842 fmt = GET_RTX_FORMAT (code);
11843
11844 for (i = 0; i < len; i++)
11845 {
11846 if (fmt[i] == 'E')
11847 {
11848 int j;
11849 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11850 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11851 to_insn, pnotes);
11852 }
11853 else if (fmt[i] == 'e')
11854 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11855 }
11856 }
11857 \f
11858 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11859 pattern of an insn. X must be a REG. */
11860
11861 static int
11862 reg_bitfield_target_p (rtx x, rtx body)
11863 {
11864 int i;
11865
11866 if (GET_CODE (body) == SET)
11867 {
11868 rtx dest = SET_DEST (body);
11869 rtx target;
11870 unsigned int regno, tregno, endregno, endtregno;
11871
11872 if (GET_CODE (dest) == ZERO_EXTRACT)
11873 target = XEXP (dest, 0);
11874 else if (GET_CODE (dest) == STRICT_LOW_PART)
11875 target = SUBREG_REG (XEXP (dest, 0));
11876 else
11877 return 0;
11878
11879 if (GET_CODE (target) == SUBREG)
11880 target = SUBREG_REG (target);
11881
11882 if (!REG_P (target))
11883 return 0;
11884
11885 tregno = REGNO (target), regno = REGNO (x);
11886 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11887 return target == x;
11888
11889 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11890 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11891
11892 return endregno > tregno && regno < endtregno;
11893 }
11894
11895 else if (GET_CODE (body) == PARALLEL)
11896 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11897 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11898 return 1;
11899
11900 return 0;
11901 }
11902 \f
11903 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11904 as appropriate. I3 and I2 are the insns resulting from the combination
11905 insns including FROM (I2 may be zero).
11906
11907 Each note in the list is either ignored or placed on some insns, depending
11908 on the type of note. */
11909
11910 static void
11911 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11912 {
11913 rtx note, next_note;
11914 rtx tem;
11915
11916 for (note = notes; note; note = next_note)
11917 {
11918 rtx place = 0, place2 = 0;
11919
11920 /* If this NOTE references a pseudo register, ensure it references
11921 the latest copy of that register. */
11922 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11923 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11924 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11925
11926 next_note = XEXP (note, 1);
11927 switch (REG_NOTE_KIND (note))
11928 {
11929 case REG_BR_PROB:
11930 case REG_BR_PRED:
11931 /* Doesn't matter much where we put this, as long as it's somewhere.
11932 It is preferable to keep these notes on branches, which is most
11933 likely to be i3. */
11934 place = i3;
11935 break;
11936
11937 case REG_VALUE_PROFILE:
11938 /* Just get rid of this note, as it is unused later anyway. */
11939 break;
11940
11941 case REG_NON_LOCAL_GOTO:
11942 if (JUMP_P (i3))
11943 place = i3;
11944 else
11945 {
11946 gcc_assert (i2 && JUMP_P (i2));
11947 place = i2;
11948 }
11949 break;
11950
11951 case REG_EH_REGION:
11952 /* These notes must remain with the call or trapping instruction. */
11953 if (CALL_P (i3))
11954 place = i3;
11955 else if (i2 && CALL_P (i2))
11956 place = i2;
11957 else
11958 {
11959 gcc_assert (flag_non_call_exceptions);
11960 if (may_trap_p (i3))
11961 place = i3;
11962 else if (i2 && may_trap_p (i2))
11963 place = i2;
11964 /* ??? Otherwise assume we've combined things such that we
11965 can now prove that the instructions can't trap. Drop the
11966 note in this case. */
11967 }
11968 break;
11969
11970 case REG_NORETURN:
11971 case REG_SETJMP:
11972 /* These notes must remain with the call. It should not be
11973 possible for both I2 and I3 to be a call. */
11974 if (CALL_P (i3))
11975 place = i3;
11976 else
11977 {
11978 gcc_assert (i2 && CALL_P (i2));
11979 place = i2;
11980 }
11981 break;
11982
11983 case REG_UNUSED:
11984 /* Any clobbers for i3 may still exist, and so we must process
11985 REG_UNUSED notes from that insn.
11986
11987 Any clobbers from i2 or i1 can only exist if they were added by
11988 recog_for_combine. In that case, recog_for_combine created the
11989 necessary REG_UNUSED notes. Trying to keep any original
11990 REG_UNUSED notes from these insns can cause incorrect output
11991 if it is for the same register as the original i3 dest.
11992 In that case, we will notice that the register is set in i3,
11993 and then add a REG_UNUSED note for the destination of i3, which
11994 is wrong. However, it is possible to have REG_UNUSED notes from
11995 i2 or i1 for register which were both used and clobbered, so
11996 we keep notes from i2 or i1 if they will turn into REG_DEAD
11997 notes. */
11998
11999 /* If this register is set or clobbered in I3, put the note there
12000 unless there is one already. */
12001 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12002 {
12003 if (from_insn != i3)
12004 break;
12005
12006 if (! (REG_P (XEXP (note, 0))
12007 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12008 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12009 place = i3;
12010 }
12011 /* Otherwise, if this register is used by I3, then this register
12012 now dies here, so we must put a REG_DEAD note here unless there
12013 is one already. */
12014 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12015 && ! (REG_P (XEXP (note, 0))
12016 ? find_regno_note (i3, REG_DEAD,
12017 REGNO (XEXP (note, 0)))
12018 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12019 {
12020 PUT_REG_NOTE_KIND (note, REG_DEAD);
12021 place = i3;
12022 }
12023 break;
12024
12025 case REG_EQUAL:
12026 case REG_EQUIV:
12027 case REG_NOALIAS:
12028 /* These notes say something about results of an insn. We can
12029 only support them if they used to be on I3 in which case they
12030 remain on I3. Otherwise they are ignored.
12031
12032 If the note refers to an expression that is not a constant, we
12033 must also ignore the note since we cannot tell whether the
12034 equivalence is still true. It might be possible to do
12035 slightly better than this (we only have a problem if I2DEST
12036 or I1DEST is present in the expression), but it doesn't
12037 seem worth the trouble. */
12038
12039 if (from_insn == i3
12040 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12041 place = i3;
12042 break;
12043
12044 case REG_INC:
12045 case REG_NO_CONFLICT:
12046 /* These notes say something about how a register is used. They must
12047 be present on any use of the register in I2 or I3. */
12048 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12049 place = i3;
12050
12051 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12052 {
12053 if (place)
12054 place2 = i2;
12055 else
12056 place = i2;
12057 }
12058 break;
12059
12060 case REG_LABEL:
12061 /* This can show up in several ways -- either directly in the
12062 pattern, or hidden off in the constant pool with (or without?)
12063 a REG_EQUAL note. */
12064 /* ??? Ignore the without-reg_equal-note problem for now. */
12065 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12066 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12067 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12068 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12069 place = i3;
12070
12071 if (i2
12072 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12073 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12074 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12075 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12076 {
12077 if (place)
12078 place2 = i2;
12079 else
12080 place = i2;
12081 }
12082
12083 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12084 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12085 if (place && JUMP_P (place))
12086 {
12087 rtx label = JUMP_LABEL (place);
12088
12089 if (!label)
12090 JUMP_LABEL (place) = XEXP (note, 0);
12091 else
12092 {
12093 gcc_assert (label == XEXP (note, 0));
12094 if (LABEL_P (label))
12095 LABEL_NUSES (label)--;
12096 }
12097 place = 0;
12098 }
12099 if (place2 && JUMP_P (place2))
12100 {
12101 rtx label = JUMP_LABEL (place2);
12102
12103 if (!label)
12104 JUMP_LABEL (place2) = XEXP (note, 0);
12105 else
12106 {
12107 gcc_assert (label == XEXP (note, 0));
12108 if (LABEL_P (label))
12109 LABEL_NUSES (label)--;
12110 }
12111 place2 = 0;
12112 }
12113 break;
12114
12115 case REG_NONNEG:
12116 /* This note says something about the value of a register prior
12117 to the execution of an insn. It is too much trouble to see
12118 if the note is still correct in all situations. It is better
12119 to simply delete it. */
12120 break;
12121
12122 case REG_RETVAL:
12123 /* If the insn previously containing this note still exists,
12124 put it back where it was. Otherwise move it to the previous
12125 insn. Adjust the corresponding REG_LIBCALL note. */
12126 if (!NOTE_P (from_insn))
12127 place = from_insn;
12128 else
12129 {
12130 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12131 place = prev_real_insn (from_insn);
12132 if (tem && place)
12133 XEXP (tem, 0) = place;
12134 /* If we're deleting the last remaining instruction of a
12135 libcall sequence, don't add the notes. */
12136 else if (XEXP (note, 0) == from_insn)
12137 tem = place = 0;
12138 /* Don't add the dangling REG_RETVAL note. */
12139 else if (! tem)
12140 place = 0;
12141 }
12142 break;
12143
12144 case REG_LIBCALL:
12145 /* This is handled similarly to REG_RETVAL. */
12146 if (!NOTE_P (from_insn))
12147 place = from_insn;
12148 else
12149 {
12150 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12151 place = next_real_insn (from_insn);
12152 if (tem && place)
12153 XEXP (tem, 0) = place;
12154 /* If we're deleting the last remaining instruction of a
12155 libcall sequence, don't add the notes. */
12156 else if (XEXP (note, 0) == from_insn)
12157 tem = place = 0;
12158 /* Don't add the dangling REG_LIBCALL note. */
12159 else if (! tem)
12160 place = 0;
12161 }
12162 break;
12163
12164 case REG_DEAD:
12165 /* If the register is used as an input in I3, it dies there.
12166 Similarly for I2, if it is nonzero and adjacent to I3.
12167
12168 If the register is not used as an input in either I3 or I2
12169 and it is not one of the registers we were supposed to eliminate,
12170 there are two possibilities. We might have a non-adjacent I2
12171 or we might have somehow eliminated an additional register
12172 from a computation. For example, we might have had A & B where
12173 we discover that B will always be zero. In this case we will
12174 eliminate the reference to A.
12175
12176 In both cases, we must search to see if we can find a previous
12177 use of A and put the death note there. */
12178
12179 if (from_insn
12180 && CALL_P (from_insn)
12181 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12182 place = from_insn;
12183 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12184 place = i3;
12185 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12186 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12187 place = i2;
12188
12189 if (place == 0)
12190 {
12191 basic_block bb = this_basic_block;
12192
12193 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12194 {
12195 if (! INSN_P (tem))
12196 {
12197 if (tem == BB_HEAD (bb))
12198 break;
12199 continue;
12200 }
12201
12202 /* If the register is being set at TEM, see if that is all
12203 TEM is doing. If so, delete TEM. Otherwise, make this
12204 into a REG_UNUSED note instead. Don't delete sets to
12205 global register vars. */
12206 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12207 || !global_regs[REGNO (XEXP (note, 0))])
12208 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12209 {
12210 rtx set = single_set (tem);
12211 rtx inner_dest = 0;
12212 #ifdef HAVE_cc0
12213 rtx cc0_setter = NULL_RTX;
12214 #endif
12215
12216 if (set != 0)
12217 for (inner_dest = SET_DEST (set);
12218 (GET_CODE (inner_dest) == STRICT_LOW_PART
12219 || GET_CODE (inner_dest) == SUBREG
12220 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12221 inner_dest = XEXP (inner_dest, 0))
12222 ;
12223
12224 /* Verify that it was the set, and not a clobber that
12225 modified the register.
12226
12227 CC0 targets must be careful to maintain setter/user
12228 pairs. If we cannot delete the setter due to side
12229 effects, mark the user with an UNUSED note instead
12230 of deleting it. */
12231
12232 if (set != 0 && ! side_effects_p (SET_SRC (set))
12233 && rtx_equal_p (XEXP (note, 0), inner_dest)
12234 #ifdef HAVE_cc0
12235 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12236 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12237 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12238 #endif
12239 )
12240 {
12241 /* Move the notes and links of TEM elsewhere.
12242 This might delete other dead insns recursively.
12243 First set the pattern to something that won't use
12244 any register. */
12245 rtx old_notes = REG_NOTES (tem);
12246
12247 PATTERN (tem) = pc_rtx;
12248 REG_NOTES (tem) = NULL;
12249
12250 distribute_notes (old_notes, tem, tem, NULL_RTX);
12251 distribute_links (LOG_LINKS (tem));
12252
12253 SET_INSN_DELETED (tem);
12254
12255 #ifdef HAVE_cc0
12256 /* Delete the setter too. */
12257 if (cc0_setter)
12258 {
12259 PATTERN (cc0_setter) = pc_rtx;
12260 old_notes = REG_NOTES (cc0_setter);
12261 REG_NOTES (cc0_setter) = NULL;
12262
12263 distribute_notes (old_notes, cc0_setter,
12264 cc0_setter, NULL_RTX);
12265 distribute_links (LOG_LINKS (cc0_setter));
12266
12267 SET_INSN_DELETED (cc0_setter);
12268 }
12269 #endif
12270 }
12271 else
12272 {
12273 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12274
12275 /* If there isn't already a REG_UNUSED note, put one
12276 here. Do not place a REG_DEAD note, even if
12277 the register is also used here; that would not
12278 match the algorithm used in lifetime analysis
12279 and can cause the consistency check in the
12280 scheduler to fail. */
12281 if (! find_regno_note (tem, REG_UNUSED,
12282 REGNO (XEXP (note, 0))))
12283 place = tem;
12284 break;
12285 }
12286 }
12287 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12288 || (CALL_P (tem)
12289 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12290 {
12291 place = tem;
12292
12293 /* If we are doing a 3->2 combination, and we have a
12294 register which formerly died in i3 and was not used
12295 by i2, which now no longer dies in i3 and is used in
12296 i2 but does not die in i2, and place is between i2
12297 and i3, then we may need to move a link from place to
12298 i2. */
12299 if (i2 && INSN_UID (place) <= max_uid_cuid
12300 && INSN_CUID (place) > INSN_CUID (i2)
12301 && from_insn
12302 && INSN_CUID (from_insn) > INSN_CUID (i2)
12303 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12304 {
12305 rtx links = LOG_LINKS (place);
12306 LOG_LINKS (place) = 0;
12307 distribute_links (links);
12308 }
12309 break;
12310 }
12311
12312 if (tem == BB_HEAD (bb))
12313 break;
12314 }
12315
12316 /* We haven't found an insn for the death note and it
12317 is still a REG_DEAD note, but we have hit the beginning
12318 of the block. If the existing life info says the reg
12319 was dead, there's nothing left to do. Otherwise, we'll
12320 need to do a global life update after combine. */
12321 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12322 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12323 REGNO (XEXP (note, 0))))
12324 SET_BIT (refresh_blocks, this_basic_block->index);
12325 }
12326
12327 /* If the register is set or already dead at PLACE, we needn't do
12328 anything with this note if it is still a REG_DEAD note.
12329 We check here if it is set at all, not if is it totally replaced,
12330 which is what `dead_or_set_p' checks, so also check for it being
12331 set partially. */
12332
12333 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12334 {
12335 unsigned int regno = REGNO (XEXP (note, 0));
12336
12337 /* Similarly, if the instruction on which we want to place
12338 the note is a noop, we'll need do a global live update
12339 after we remove them in delete_noop_moves. */
12340 if (noop_move_p (place))
12341 SET_BIT (refresh_blocks, this_basic_block->index);
12342
12343 if (dead_or_set_p (place, XEXP (note, 0))
12344 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12345 {
12346 /* Unless the register previously died in PLACE, clear
12347 last_death. [I no longer understand why this is
12348 being done.] */
12349 if (reg_stat[regno].last_death != place)
12350 reg_stat[regno].last_death = 0;
12351 place = 0;
12352 }
12353 else
12354 reg_stat[regno].last_death = place;
12355
12356 /* If this is a death note for a hard reg that is occupying
12357 multiple registers, ensure that we are still using all
12358 parts of the object. If we find a piece of the object
12359 that is unused, we must arrange for an appropriate REG_DEAD
12360 note to be added for it. However, we can't just emit a USE
12361 and tag the note to it, since the register might actually
12362 be dead; so we recourse, and the recursive call then finds
12363 the previous insn that used this register. */
12364
12365 if (place && regno < FIRST_PSEUDO_REGISTER
12366 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12367 {
12368 unsigned int endregno
12369 = regno + hard_regno_nregs[regno]
12370 [GET_MODE (XEXP (note, 0))];
12371 int all_used = 1;
12372 unsigned int i;
12373
12374 for (i = regno; i < endregno; i++)
12375 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12376 && ! find_regno_fusage (place, USE, i))
12377 || dead_or_set_regno_p (place, i))
12378 all_used = 0;
12379
12380 if (! all_used)
12381 {
12382 /* Put only REG_DEAD notes for pieces that are
12383 not already dead or set. */
12384
12385 for (i = regno; i < endregno;
12386 i += hard_regno_nregs[i][reg_raw_mode[i]])
12387 {
12388 rtx piece = regno_reg_rtx[i];
12389 basic_block bb = this_basic_block;
12390
12391 if (! dead_or_set_p (place, piece)
12392 && ! reg_bitfield_target_p (piece,
12393 PATTERN (place)))
12394 {
12395 rtx new_note
12396 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12397
12398 distribute_notes (new_note, place, place,
12399 NULL_RTX);
12400 }
12401 else if (! refers_to_regno_p (i, i + 1,
12402 PATTERN (place), 0)
12403 && ! find_regno_fusage (place, USE, i))
12404 for (tem = PREV_INSN (place); ;
12405 tem = PREV_INSN (tem))
12406 {
12407 if (! INSN_P (tem))
12408 {
12409 if (tem == BB_HEAD (bb))
12410 {
12411 SET_BIT (refresh_blocks,
12412 this_basic_block->index);
12413 break;
12414 }
12415 continue;
12416 }
12417 if (dead_or_set_p (tem, piece)
12418 || reg_bitfield_target_p (piece,
12419 PATTERN (tem)))
12420 {
12421 REG_NOTES (tem)
12422 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12423 REG_NOTES (tem));
12424 break;
12425 }
12426 }
12427
12428 }
12429
12430 place = 0;
12431 }
12432 }
12433 }
12434 break;
12435
12436 default:
12437 /* Any other notes should not be present at this point in the
12438 compilation. */
12439 gcc_unreachable ();
12440 }
12441
12442 if (place)
12443 {
12444 XEXP (note, 1) = REG_NOTES (place);
12445 REG_NOTES (place) = note;
12446 }
12447 else if ((REG_NOTE_KIND (note) == REG_DEAD
12448 || REG_NOTE_KIND (note) == REG_UNUSED)
12449 && REG_P (XEXP (note, 0)))
12450 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12451
12452 if (place2)
12453 {
12454 if ((REG_NOTE_KIND (note) == REG_DEAD
12455 || REG_NOTE_KIND (note) == REG_UNUSED)
12456 && REG_P (XEXP (note, 0)))
12457 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12458
12459 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12460 REG_NOTE_KIND (note),
12461 XEXP (note, 0),
12462 REG_NOTES (place2));
12463 }
12464 }
12465 }
12466 \f
12467 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12468 I3, I2, and I1 to new locations. This is also called to add a link
12469 pointing at I3 when I3's destination is changed. */
12470
12471 static void
12472 distribute_links (rtx links)
12473 {
12474 rtx link, next_link;
12475
12476 for (link = links; link; link = next_link)
12477 {
12478 rtx place = 0;
12479 rtx insn;
12480 rtx set, reg;
12481
12482 next_link = XEXP (link, 1);
12483
12484 /* If the insn that this link points to is a NOTE or isn't a single
12485 set, ignore it. In the latter case, it isn't clear what we
12486 can do other than ignore the link, since we can't tell which
12487 register it was for. Such links wouldn't be used by combine
12488 anyway.
12489
12490 It is not possible for the destination of the target of the link to
12491 have been changed by combine. The only potential of this is if we
12492 replace I3, I2, and I1 by I3 and I2. But in that case the
12493 destination of I2 also remains unchanged. */
12494
12495 if (NOTE_P (XEXP (link, 0))
12496 || (set = single_set (XEXP (link, 0))) == 0)
12497 continue;
12498
12499 reg = SET_DEST (set);
12500 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12501 || GET_CODE (reg) == STRICT_LOW_PART)
12502 reg = XEXP (reg, 0);
12503
12504 /* A LOG_LINK is defined as being placed on the first insn that uses
12505 a register and points to the insn that sets the register. Start
12506 searching at the next insn after the target of the link and stop
12507 when we reach a set of the register or the end of the basic block.
12508
12509 Note that this correctly handles the link that used to point from
12510 I3 to I2. Also note that not much searching is typically done here
12511 since most links don't point very far away. */
12512
12513 for (insn = NEXT_INSN (XEXP (link, 0));
12514 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12515 || BB_HEAD (this_basic_block->next_bb) != insn));
12516 insn = NEXT_INSN (insn))
12517 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12518 {
12519 if (reg_referenced_p (reg, PATTERN (insn)))
12520 place = insn;
12521 break;
12522 }
12523 else if (CALL_P (insn)
12524 && find_reg_fusage (insn, USE, reg))
12525 {
12526 place = insn;
12527 break;
12528 }
12529 else if (INSN_P (insn) && reg_set_p (reg, insn))
12530 break;
12531
12532 /* If we found a place to put the link, place it there unless there
12533 is already a link to the same insn as LINK at that point. */
12534
12535 if (place)
12536 {
12537 rtx link2;
12538
12539 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12540 if (XEXP (link2, 0) == XEXP (link, 0))
12541 break;
12542
12543 if (link2 == 0)
12544 {
12545 XEXP (link, 1) = LOG_LINKS (place);
12546 LOG_LINKS (place) = link;
12547
12548 /* Set added_links_insn to the earliest insn we added a
12549 link to. */
12550 if (added_links_insn == 0
12551 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12552 added_links_insn = place;
12553 }
12554 }
12555 }
12556 }
12557 \f
12558 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12559 Check whether the expression pointer to by LOC is a register or
12560 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12561 Otherwise return zero. */
12562
12563 static int
12564 unmentioned_reg_p_1 (rtx *loc, void *expr)
12565 {
12566 rtx x = *loc;
12567
12568 if (x != NULL_RTX
12569 && (REG_P (x) || MEM_P (x))
12570 && ! reg_mentioned_p (x, (rtx) expr))
12571 return 1;
12572 return 0;
12573 }
12574
12575 /* Check for any register or memory mentioned in EQUIV that is not
12576 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12577 of EXPR where some registers may have been replaced by constants. */
12578
12579 static bool
12580 unmentioned_reg_p (rtx equiv, rtx expr)
12581 {
12582 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12583 }
12584 \f
12585 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12586
12587 static int
12588 insn_cuid (rtx insn)
12589 {
12590 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12591 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12592 insn = NEXT_INSN (insn);
12593
12594 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12595
12596 return INSN_CUID (insn);
12597 }
12598 \f
12599 void
12600 dump_combine_stats (FILE *file)
12601 {
12602 fprintf
12603 (file,
12604 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12605 combine_attempts, combine_merges, combine_extras, combine_successes);
12606 }
12607
12608 void
12609 dump_combine_total_stats (FILE *file)
12610 {
12611 fprintf
12612 (file,
12613 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12614 total_attempts, total_merges, total_extras, total_successes);
12615 }
12616 \f
12617
12618 static bool
12619 gate_handle_combine (void)
12620 {
12621 return (optimize > 0);
12622 }
12623
12624 /* Try combining insns through substitution. */
12625 static void
12626 rest_of_handle_combine (void)
12627 {
12628 int rebuild_jump_labels_after_combine
12629 = combine_instructions (get_insns (), max_reg_num ());
12630
12631 /* Combining insns may have turned an indirect jump into a
12632 direct jump. Rebuild the JUMP_LABEL fields of jumping
12633 instructions. */
12634 if (rebuild_jump_labels_after_combine)
12635 {
12636 timevar_push (TV_JUMP);
12637 rebuild_jump_labels (get_insns ());
12638 timevar_pop (TV_JUMP);
12639
12640 delete_dead_jumptables ();
12641 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12642 }
12643 }
12644
12645 struct tree_opt_pass pass_combine =
12646 {
12647 "combine", /* name */
12648 gate_handle_combine, /* gate */
12649 rest_of_handle_combine, /* execute */
12650 NULL, /* sub */
12651 NULL, /* next */
12652 0, /* static_pass_number */
12653 TV_COMBINE, /* tv_id */
12654 0, /* properties_required */
12655 0, /* properties_provided */
12656 0, /* properties_destroyed */
12657 0, /* todo_flags_start */
12658 TODO_dump_func |
12659 TODO_ggc_collect, /* todo_flags_finish */
12660 'c' /* letter */
12661 };
12662
This page took 0.694236 seconds and 6 git commands to generate.