]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
formatting tweaks
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 88, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #ifdef __STDC__
79 #include <stdarg.h>
80 #else
81 #include <varargs.h>
82 #endif
83
84 /* Must precede rtl.h for FFS. */
85 #include <stdio.h>
86
87 #include "rtl.h"
88 #include "flags.h"
89 #include "regs.h"
90 #include "hard-reg-set.h"
91 #include "expr.h"
92 #include "basic-block.h"
93 #include "insn-config.h"
94 #include "insn-flags.h"
95 #include "insn-codes.h"
96 #include "insn-attr.h"
97 #include "recog.h"
98 #include "real.h"
99
100 /* It is not safe to use ordinary gen_lowpart in combine.
101 Use gen_lowpart_for_combine instead. See comments there. */
102 #define gen_lowpart dont_use_gen_lowpart_you_dummy
103
104 /* Number of attempts to combine instructions in this function. */
105
106 static int combine_attempts;
107
108 /* Number of attempts that got as far as substitution in this function. */
109
110 static int combine_merges;
111
112 /* Number of instructions combined with added SETs in this function. */
113
114 static int combine_extras;
115
116 /* Number of instructions combined in this function. */
117
118 static int combine_successes;
119
120 /* Totals over entire compilation. */
121
122 static int total_attempts, total_merges, total_extras, total_successes;
123
124 /* Define a default value for REVERSIBLE_CC_MODE.
125 We can never assume that a condition code mode is safe to reverse unless
126 the md tells us so. */
127 #ifndef REVERSIBLE_CC_MODE
128 #define REVERSIBLE_CC_MODE(MODE) 0
129 #endif
130 \f
131 /* Vector mapping INSN_UIDs to cuids.
132 The cuids are like uids but increase monotonically always.
133 Combine always uses cuids so that it can compare them.
134 But actually renumbering the uids, which we used to do,
135 proves to be a bad idea because it makes it hard to compare
136 the dumps produced by earlier passes with those from later passes. */
137
138 static int *uid_cuid;
139 static int max_uid_cuid;
140
141 /* Get the cuid of an insn. */
142
143 #define INSN_CUID(INSN) \
144 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
145
146 /* Maximum register number, which is the size of the tables below. */
147
148 static int combine_max_regno;
149
150 /* Record last point of death of (hard or pseudo) register n. */
151
152 static rtx *reg_last_death;
153
154 /* Record last point of modification of (hard or pseudo) register n. */
155
156 static rtx *reg_last_set;
157
158 /* Record the cuid of the last insn that invalidated memory
159 (anything that writes memory, and subroutine calls, but not pushes). */
160
161 static int mem_last_set;
162
163 /* Record the cuid of the last CALL_INSN
164 so we can tell whether a potential combination crosses any calls. */
165
166 static int last_call_cuid;
167
168 /* When `subst' is called, this is the insn that is being modified
169 (by combining in a previous insn). The PATTERN of this insn
170 is still the old pattern partially modified and it should not be
171 looked at, but this may be used to examine the successors of the insn
172 to judge whether a simplification is valid. */
173
174 static rtx subst_insn;
175
176 /* This is an insn that belongs before subst_insn, but is not currently
177 on the insn chain. */
178
179 static rtx subst_prev_insn;
180
181 /* This is the lowest CUID that `subst' is currently dealing with.
182 get_last_value will not return a value if the register was set at or
183 after this CUID. If not for this mechanism, we could get confused if
184 I2 or I1 in try_combine were an insn that used the old value of a register
185 to obtain a new value. In that case, we might erroneously get the
186 new value of the register when we wanted the old one. */
187
188 static int subst_low_cuid;
189
190 /* This contains any hard registers that are used in newpat; reg_dead_at_p
191 must consider all these registers to be always live. */
192
193 static HARD_REG_SET newpat_used_regs;
194
195 /* This is an insn to which a LOG_LINKS entry has been added. If this
196 insn is the earlier than I2 or I3, combine should rescan starting at
197 that location. */
198
199 static rtx added_links_insn;
200
201 /* Basic block number of the block in which we are performing combines. */
202 static int this_basic_block;
203 \f
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
209
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
212
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
216
217 Therefore, we maintain the following arrays:
218
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
227
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
232
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
235
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
240
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
244
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
247
248 /* Record last value assigned to (hard or pseudo) register n. */
249
250 static rtx *reg_last_set_value;
251
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
254
255 static int *reg_last_set_label;
256
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
259
260 static int *reg_last_set_table_tick;
261
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
264
265 static char *reg_last_set_invalid;
266
267 /* Incremented for each label. */
268
269 static int label_tick;
270
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
275
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
278
279 If an entry is zero, it means that we don't know anything special. */
280
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
282
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
285
286 static enum machine_mode nonzero_bits_mode;
287
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
290
291 static char *reg_sign_bit_copies;
292
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
297
298 static int nonzero_sign_valid;
299
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
304
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
308 \f
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
312
313 struct undo
314 {
315 struct undo *next;
316 int is_int;
317 union {rtx r; int i;} old_contents;
318 union {rtx *r; int *i;} where;
319 };
320
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
323
324 storage is nonzero if we must undo the allocation of new storage.
325 The value of storage is what to pass to obfree.
326
327 other_insn is nonzero if we have modified some other insn in the process
328 of working on subst_insn. It must be verified too.
329
330 previous_undos is the value of undobuf.undos when we started processing
331 this substitution. This will prevent gen_rtx_combine from re-used a piece
332 from the previous expression. Doing so can produce circular rtl
333 structures. */
334
335 struct undobuf
336 {
337 char *storage;
338 struct undo *undos;
339 struct undo *frees;
340 struct undo *previous_undos;
341 rtx other_insn;
342 };
343
344 static struct undobuf undobuf;
345
346 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
347 insn. The substitution can be undone by undo_all. If INTO is already
348 set to NEWVAL, do not record this change. Because computing NEWVAL might
349 also call SUBST, we have to compute it before we put anything into
350 the undo table. */
351
352 #define SUBST(INTO, NEWVAL) \
353 do { rtx _new = (NEWVAL); \
354 struct undo *_buf; \
355 \
356 if (undobuf.frees) \
357 _buf = undobuf.frees, undobuf.frees = _buf->next; \
358 else \
359 _buf = (struct undo *) xmalloc (sizeof (struct undo)); \
360 \
361 _buf->is_int = 0; \
362 _buf->where.r = &INTO; \
363 _buf->old_contents.r = INTO; \
364 INTO = _new; \
365 if (_buf->old_contents.r == INTO) \
366 _buf->next = undobuf.frees, undobuf.frees = _buf; \
367 else \
368 _buf->next = undobuf.undos, undobuf.undos = _buf; \
369 } while (0)
370
371 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
372 for the value of a HOST_WIDE_INT value (including CONST_INT) is
373 not safe. */
374
375 #define SUBST_INT(INTO, NEWVAL) \
376 do { struct undo *_buf; \
377 \
378 if (undobuf.frees) \
379 _buf = undobuf.frees, undobuf.frees = _buf->next; \
380 else \
381 _buf = (struct undo *) xmalloc (sizeof (struct undo)); \
382 \
383 _buf->is_int = 1; \
384 _buf->where.i = (int *) &INTO; \
385 _buf->old_contents.i = INTO; \
386 INTO = NEWVAL; \
387 if (_buf->old_contents.i == INTO) \
388 _buf->next = undobuf.frees, undobuf.frees = _buf; \
389 else \
390 _buf->next = undobuf.undos, undobuf.undos = _buf; \
391 } while (0)
392
393 /* Number of times the pseudo being substituted for
394 was found and replaced. */
395
396 static int n_occurrences;
397
398 static void init_reg_last_arrays PROTO((void));
399 static void setup_incoming_promotions PROTO((void));
400 static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
401 static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
402 static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
403 static rtx try_combine PROTO((rtx, rtx, rtx));
404 static void undo_all PROTO((void));
405 static rtx *find_split_point PROTO((rtx *, rtx));
406 static rtx subst PROTO((rtx, rtx, rtx, int, int));
407 static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int));
408 static rtx simplify_if_then_else PROTO((rtx));
409 static rtx simplify_set PROTO((rtx));
410 static rtx simplify_logical PROTO((rtx, int));
411 static rtx expand_compound_operation PROTO((rtx));
412 static rtx expand_field_assignment PROTO((rtx));
413 static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
414 int, int, int));
415 static rtx extract_left_shift PROTO((rtx, int));
416 static rtx make_compound_operation PROTO((rtx, enum rtx_code));
417 static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
418 static rtx force_to_mode PROTO((rtx, enum machine_mode,
419 unsigned HOST_WIDE_INT, rtx, int));
420 static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *));
421 static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
422 static int rtx_equal_for_field_assignment_p PROTO((rtx, rtx));
423 static rtx make_field_assignment PROTO((rtx));
424 static rtx apply_distributive_law PROTO((rtx));
425 static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
426 unsigned HOST_WIDE_INT));
427 static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
428 static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
429 static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
430 enum rtx_code, HOST_WIDE_INT,
431 enum machine_mode, int *));
432 static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
433 rtx, int));
434 static int recog_for_combine PROTO((rtx *, rtx, rtx *, int *));
435 static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
436 static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
437 ...));
438 static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
439 rtx, rtx));
440 static rtx gen_unary PROTO((enum rtx_code, enum machine_mode,
441 enum machine_mode, rtx));
442 static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
443 static int reversible_comparison_p PROTO((rtx));
444 static void update_table_tick PROTO((rtx));
445 static void record_value_for_reg PROTO((rtx, rtx, rtx));
446 static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
447 static void record_dead_and_set_regs PROTO((rtx));
448 static int get_last_value_validate PROTO((rtx *, int, int));
449 static rtx get_last_value PROTO((rtx));
450 static int use_crosses_set_p PROTO((rtx, int));
451 static void reg_dead_at_p_1 PROTO((rtx, rtx));
452 static int reg_dead_at_p PROTO((rtx, rtx));
453 static void move_deaths PROTO((rtx, rtx, int, rtx, rtx *));
454 static int reg_bitfield_target_p PROTO((rtx, rtx));
455 static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
456 static void distribute_links PROTO((rtx));
457 static void mark_used_regs_combine PROTO((rtx));
458 static int insn_cuid PROTO((rtx));
459 \f
460 /* Main entry point for combiner. F is the first insn of the function.
461 NREGS is the first unused pseudo-reg number. */
462
463 void
464 combine_instructions (f, nregs)
465 rtx f;
466 int nregs;
467 {
468 register rtx insn, next, prev;
469 register int i;
470 register rtx links, nextlinks;
471
472 combine_attempts = 0;
473 combine_merges = 0;
474 combine_extras = 0;
475 combine_successes = 0;
476 undobuf.undos = undobuf.previous_undos = 0;
477
478 combine_max_regno = nregs;
479
480 reg_nonzero_bits
481 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
482 reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
483
484 bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
485 bzero (reg_sign_bit_copies, nregs * sizeof (char));
486
487 reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
488 reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
489 reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
490 reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
491 reg_last_set_label = (int *) alloca (nregs * sizeof (int));
492 reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
493 reg_last_set_mode
494 = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
495 reg_last_set_nonzero_bits
496 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
497 reg_last_set_sign_bit_copies
498 = (char *) alloca (nregs * sizeof (char));
499
500 init_reg_last_arrays ();
501
502 init_recog_no_volatile ();
503
504 /* Compute maximum uid value so uid_cuid can be allocated. */
505
506 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
507 if (INSN_UID (insn) > i)
508 i = INSN_UID (insn);
509
510 uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
511 max_uid_cuid = i;
512
513 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
514
515 /* Don't use reg_nonzero_bits when computing it. This can cause problems
516 when, for example, we have j <<= 1 in a loop. */
517
518 nonzero_sign_valid = 0;
519
520 /* Compute the mapping from uids to cuids.
521 Cuids are numbers assigned to insns, like uids,
522 except that cuids increase monotonically through the code.
523
524 Scan all SETs and see if we can deduce anything about what
525 bits are known to be zero for some registers and how many copies
526 of the sign bit are known to exist for those registers.
527
528 Also set any known values so that we can use it while searching
529 for what bits are known to be set. */
530
531 label_tick = 1;
532
533 /* We need to initialize it here, because record_dead_and_set_regs may call
534 get_last_value. */
535 subst_prev_insn = NULL_RTX;
536
537 setup_incoming_promotions ();
538
539 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
540 {
541 uid_cuid[INSN_UID (insn)] = ++i;
542 subst_low_cuid = i;
543 subst_insn = insn;
544
545 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
546 {
547 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
548 record_dead_and_set_regs (insn);
549
550 #ifdef AUTO_INC_DEC
551 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
552 if (REG_NOTE_KIND (links) == REG_INC)
553 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX);
554 #endif
555 }
556
557 if (GET_CODE (insn) == CODE_LABEL)
558 label_tick++;
559 }
560
561 nonzero_sign_valid = 1;
562
563 /* Now scan all the insns in forward order. */
564
565 this_basic_block = -1;
566 label_tick = 1;
567 last_call_cuid = 0;
568 mem_last_set = 0;
569 init_reg_last_arrays ();
570 setup_incoming_promotions ();
571
572 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
573 {
574 next = 0;
575
576 /* If INSN starts a new basic block, update our basic block number. */
577 if (this_basic_block + 1 < n_basic_blocks
578 && basic_block_head[this_basic_block + 1] == insn)
579 this_basic_block++;
580
581 if (GET_CODE (insn) == CODE_LABEL)
582 label_tick++;
583
584 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
585 {
586 /* Try this insn with each insn it links back to. */
587
588 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
589 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
590 goto retry;
591
592 /* Try each sequence of three linked insns ending with this one. */
593
594 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
595 for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
596 nextlinks = XEXP (nextlinks, 1))
597 if ((next = try_combine (insn, XEXP (links, 0),
598 XEXP (nextlinks, 0))) != 0)
599 goto retry;
600
601 #ifdef HAVE_cc0
602 /* Try to combine a jump insn that uses CC0
603 with a preceding insn that sets CC0, and maybe with its
604 logical predecessor as well.
605 This is how we make decrement-and-branch insns.
606 We need this special code because data flow connections
607 via CC0 do not get entered in LOG_LINKS. */
608
609 if (GET_CODE (insn) == JUMP_INSN
610 && (prev = prev_nonnote_insn (insn)) != 0
611 && GET_CODE (prev) == INSN
612 && sets_cc0_p (PATTERN (prev)))
613 {
614 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
615 goto retry;
616
617 for (nextlinks = LOG_LINKS (prev); nextlinks;
618 nextlinks = XEXP (nextlinks, 1))
619 if ((next = try_combine (insn, prev,
620 XEXP (nextlinks, 0))) != 0)
621 goto retry;
622 }
623
624 /* Do the same for an insn that explicitly references CC0. */
625 if (GET_CODE (insn) == INSN
626 && (prev = prev_nonnote_insn (insn)) != 0
627 && GET_CODE (prev) == INSN
628 && sets_cc0_p (PATTERN (prev))
629 && GET_CODE (PATTERN (insn)) == SET
630 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
631 {
632 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
633 goto retry;
634
635 for (nextlinks = LOG_LINKS (prev); nextlinks;
636 nextlinks = XEXP (nextlinks, 1))
637 if ((next = try_combine (insn, prev,
638 XEXP (nextlinks, 0))) != 0)
639 goto retry;
640 }
641
642 /* Finally, see if any of the insns that this insn links to
643 explicitly references CC0. If so, try this insn, that insn,
644 and its predecessor if it sets CC0. */
645 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
646 if (GET_CODE (XEXP (links, 0)) == INSN
647 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
648 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
649 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
650 && GET_CODE (prev) == INSN
651 && sets_cc0_p (PATTERN (prev))
652 && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
653 goto retry;
654 #endif
655
656 /* Try combining an insn with two different insns whose results it
657 uses. */
658 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
659 for (nextlinks = XEXP (links, 1); nextlinks;
660 nextlinks = XEXP (nextlinks, 1))
661 if ((next = try_combine (insn, XEXP (links, 0),
662 XEXP (nextlinks, 0))) != 0)
663 goto retry;
664
665 if (GET_CODE (insn) != NOTE)
666 record_dead_and_set_regs (insn);
667
668 retry:
669 ;
670 }
671 }
672
673 total_attempts += combine_attempts;
674 total_merges += combine_merges;
675 total_extras += combine_extras;
676 total_successes += combine_successes;
677
678 nonzero_sign_valid = 0;
679 }
680
681 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
682
683 static void
684 init_reg_last_arrays ()
685 {
686 int nregs = combine_max_regno;
687
688 bzero ((char *) reg_last_death, nregs * sizeof (rtx));
689 bzero ((char *) reg_last_set, nregs * sizeof (rtx));
690 bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
691 bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
692 bzero ((char *) reg_last_set_label, nregs * sizeof (int));
693 bzero (reg_last_set_invalid, nregs * sizeof (char));
694 bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
695 bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
696 bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
697 }
698 \f
699 /* Set up any promoted values for incoming argument registers. */
700
701 static void
702 setup_incoming_promotions ()
703 {
704 #ifdef PROMOTE_FUNCTION_ARGS
705 int regno;
706 rtx reg;
707 enum machine_mode mode;
708 int unsignedp;
709 rtx first = get_insns ();
710
711 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
712 if (FUNCTION_ARG_REGNO_P (regno)
713 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
714 record_value_for_reg (reg, first,
715 gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
716 GET_MODE (reg),
717 gen_rtx (CLOBBER, mode, const0_rtx)));
718 #endif
719 }
720 \f
721 /* Called via note_stores. If X is a pseudo that is narrower than
722 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
723
724 If we are setting only a portion of X and we can't figure out what
725 portion, assume all bits will be used since we don't know what will
726 be happening.
727
728 Similarly, set how many bits of X are known to be copies of the sign bit
729 at all locations in the function. This is the smallest number implied
730 by any set of X. */
731
732 static void
733 set_nonzero_bits_and_sign_copies (x, set)
734 rtx x;
735 rtx set;
736 {
737 int num;
738
739 if (GET_CODE (x) == REG
740 && REGNO (x) >= FIRST_PSEUDO_REGISTER
741 /* If this register is undefined at the start of the file, we can't
742 say what its contents were. */
743 && ! (basic_block_live_at_start[0][REGNO (x) / REGSET_ELT_BITS]
744 & ((REGSET_ELT_TYPE) 1 << (REGNO (x) % REGSET_ELT_BITS)))
745 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
746 {
747 if (set == 0 || GET_CODE (set) == CLOBBER)
748 {
749 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
750 reg_sign_bit_copies[REGNO (x)] = 1;
751 return;
752 }
753
754 /* If this is a complex assignment, see if we can convert it into a
755 simple assignment. */
756 set = expand_field_assignment (set);
757
758 /* If this is a simple assignment, or we have a paradoxical SUBREG,
759 set what we know about X. */
760
761 if (SET_DEST (set) == x
762 || (GET_CODE (SET_DEST (set)) == SUBREG
763 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
764 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
765 && SUBREG_REG (SET_DEST (set)) == x))
766 {
767 rtx src = SET_SRC (set);
768
769 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
770 /* If X is narrower than a word and SRC is a non-negative
771 constant that would appear negative in the mode of X,
772 sign-extend it for use in reg_nonzero_bits because some
773 machines (maybe most) will actually do the sign-extension
774 and this is the conservative approach.
775
776 ??? For 2.5, try to tighten up the MD files in this regard
777 instead of this kludge. */
778
779 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
780 && GET_CODE (src) == CONST_INT
781 && INTVAL (src) > 0
782 && 0 != (INTVAL (src)
783 & ((HOST_WIDE_INT) 1
784 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
785 src = GEN_INT (INTVAL (src)
786 | ((HOST_WIDE_INT) (-1)
787 << GET_MODE_BITSIZE (GET_MODE (x))));
788 #endif
789
790 reg_nonzero_bits[REGNO (x)]
791 |= nonzero_bits (src, nonzero_bits_mode);
792 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
793 if (reg_sign_bit_copies[REGNO (x)] == 0
794 || reg_sign_bit_copies[REGNO (x)] > num)
795 reg_sign_bit_copies[REGNO (x)] = num;
796 }
797 else
798 {
799 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
800 reg_sign_bit_copies[REGNO (x)] = 1;
801 }
802 }
803 }
804 \f
805 /* See if INSN can be combined into I3. PRED and SUCC are optionally
806 insns that were previously combined into I3 or that will be combined
807 into the merger of INSN and I3.
808
809 Return 0 if the combination is not allowed for any reason.
810
811 If the combination is allowed, *PDEST will be set to the single
812 destination of INSN and *PSRC to the single source, and this function
813 will return 1. */
814
815 static int
816 can_combine_p (insn, i3, pred, succ, pdest, psrc)
817 rtx insn;
818 rtx i3;
819 rtx pred, succ;
820 rtx *pdest, *psrc;
821 {
822 int i;
823 rtx set = 0, src, dest;
824 rtx p, link;
825 int all_adjacent = (succ ? (next_active_insn (insn) == succ
826 && next_active_insn (succ) == i3)
827 : next_active_insn (insn) == i3);
828
829 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
830 or a PARALLEL consisting of such a SET and CLOBBERs.
831
832 If INSN has CLOBBER parallel parts, ignore them for our processing.
833 By definition, these happen during the execution of the insn. When it
834 is merged with another insn, all bets are off. If they are, in fact,
835 needed and aren't also supplied in I3, they may be added by
836 recog_for_combine. Otherwise, it won't match.
837
838 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
839 note.
840
841 Get the source and destination of INSN. If more than one, can't
842 combine. */
843
844 if (GET_CODE (PATTERN (insn)) == SET)
845 set = PATTERN (insn);
846 else if (GET_CODE (PATTERN (insn)) == PARALLEL
847 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
848 {
849 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
850 {
851 rtx elt = XVECEXP (PATTERN (insn), 0, i);
852
853 switch (GET_CODE (elt))
854 {
855 /* We can ignore CLOBBERs. */
856 case CLOBBER:
857 break;
858
859 case SET:
860 /* Ignore SETs whose result isn't used but not those that
861 have side-effects. */
862 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
863 && ! side_effects_p (elt))
864 break;
865
866 /* If we have already found a SET, this is a second one and
867 so we cannot combine with this insn. */
868 if (set)
869 return 0;
870
871 set = elt;
872 break;
873
874 default:
875 /* Anything else means we can't combine. */
876 return 0;
877 }
878 }
879
880 if (set == 0
881 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
882 so don't do anything with it. */
883 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
884 return 0;
885 }
886 else
887 return 0;
888
889 if (set == 0)
890 return 0;
891
892 set = expand_field_assignment (set);
893 src = SET_SRC (set), dest = SET_DEST (set);
894
895 /* Don't eliminate a store in the stack pointer. */
896 if (dest == stack_pointer_rtx
897 /* If we couldn't eliminate a field assignment, we can't combine. */
898 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
899 /* Don't combine with an insn that sets a register to itself if it has
900 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
901 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
902 /* Can't merge a function call. */
903 || GET_CODE (src) == CALL
904 /* Don't eliminate a function call argument. */
905 || (GET_CODE (i3) == CALL_INSN
906 && (find_reg_fusage (i3, USE, dest)
907 || (GET_CODE (dest) == REG
908 && REGNO (dest) < FIRST_PSEUDO_REGISTER
909 && global_regs[REGNO (dest)])))
910 /* Don't substitute into an incremented register. */
911 || FIND_REG_INC_NOTE (i3, dest)
912 || (succ && FIND_REG_INC_NOTE (succ, dest))
913 /* Don't combine the end of a libcall into anything. */
914 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
915 /* Make sure that DEST is not used after SUCC but before I3. */
916 || (succ && ! all_adjacent
917 && reg_used_between_p (dest, succ, i3))
918 /* Make sure that the value that is to be substituted for the register
919 does not use any registers whose values alter in between. However,
920 If the insns are adjacent, a use can't cross a set even though we
921 think it might (this can happen for a sequence of insns each setting
922 the same destination; reg_last_set of that register might point to
923 a NOTE). If INSN has a REG_EQUIV note, the register is always
924 equivalent to the memory so the substitution is valid even if there
925 are intervening stores. Also, don't move a volatile asm or
926 UNSPEC_VOLATILE across any other insns. */
927 || (! all_adjacent
928 && (((GET_CODE (src) != MEM
929 || ! find_reg_note (insn, REG_EQUIV, src))
930 && use_crosses_set_p (src, INSN_CUID (insn)))
931 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
932 || GET_CODE (src) == UNSPEC_VOLATILE))
933 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
934 better register allocation by not doing the combine. */
935 || find_reg_note (i3, REG_NO_CONFLICT, dest)
936 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
937 /* Don't combine across a CALL_INSN, because that would possibly
938 change whether the life span of some REGs crosses calls or not,
939 and it is a pain to update that information.
940 Exception: if source is a constant, moving it later can't hurt.
941 Accept that special case, because it helps -fforce-addr a lot. */
942 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
943 return 0;
944
945 /* DEST must either be a REG or CC0. */
946 if (GET_CODE (dest) == REG)
947 {
948 /* If register alignment is being enforced for multi-word items in all
949 cases except for parameters, it is possible to have a register copy
950 insn referencing a hard register that is not allowed to contain the
951 mode being copied and which would not be valid as an operand of most
952 insns. Eliminate this problem by not combining with such an insn.
953
954 Also, on some machines we don't want to extend the life of a hard
955 register. */
956
957 if (GET_CODE (src) == REG
958 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
959 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
960 /* Don't extend the life of a hard register unless it is
961 user variable (if we have few registers) or it can't
962 fit into the desired register (meaning something special
963 is going on). */
964 || (REGNO (src) < FIRST_PSEUDO_REGISTER
965 && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
966 #ifdef SMALL_REGISTER_CLASSES
967 || ! REG_USERVAR_P (src)
968 #endif
969 ))))
970 return 0;
971 }
972 else if (GET_CODE (dest) != CC0)
973 return 0;
974
975 /* Don't substitute for a register intended as a clobberable operand.
976 Similarly, don't substitute an expression containing a register that
977 will be clobbered in I3. */
978 if (GET_CODE (PATTERN (i3)) == PARALLEL)
979 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
980 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
981 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
982 src)
983 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
984 return 0;
985
986 /* If INSN contains anything volatile, or is an `asm' (whether volatile
987 or not), reject, unless nothing volatile comes between it and I3,
988 with the exception of SUCC. */
989
990 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
991 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
992 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
993 && p != succ && volatile_refs_p (PATTERN (p)))
994 return 0;
995
996 /* If there are any volatile insns between INSN and I3, reject, because
997 they might affect machine state. */
998
999 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1000 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1001 && p != succ && volatile_insn_p (PATTERN (p)))
1002 return 0;
1003
1004 /* If INSN or I2 contains an autoincrement or autodecrement,
1005 make sure that register is not used between there and I3,
1006 and not already used in I3 either.
1007 Also insist that I3 not be a jump; if it were one
1008 and the incremented register were spilled, we would lose. */
1009
1010 #ifdef AUTO_INC_DEC
1011 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1012 if (REG_NOTE_KIND (link) == REG_INC
1013 && (GET_CODE (i3) == JUMP_INSN
1014 || reg_used_between_p (XEXP (link, 0), insn, i3)
1015 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1016 return 0;
1017 #endif
1018
1019 #ifdef HAVE_cc0
1020 /* Don't combine an insn that follows a CC0-setting insn.
1021 An insn that uses CC0 must not be separated from the one that sets it.
1022 We do, however, allow I2 to follow a CC0-setting insn if that insn
1023 is passed as I1; in that case it will be deleted also.
1024 We also allow combining in this case if all the insns are adjacent
1025 because that would leave the two CC0 insns adjacent as well.
1026 It would be more logical to test whether CC0 occurs inside I1 or I2,
1027 but that would be much slower, and this ought to be equivalent. */
1028
1029 p = prev_nonnote_insn (insn);
1030 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1031 && ! all_adjacent)
1032 return 0;
1033 #endif
1034
1035 /* If we get here, we have passed all the tests and the combination is
1036 to be allowed. */
1037
1038 *pdest = dest;
1039 *psrc = src;
1040
1041 return 1;
1042 }
1043 \f
1044 /* LOC is the location within I3 that contains its pattern or the component
1045 of a PARALLEL of the pattern. We validate that it is valid for combining.
1046
1047 One problem is if I3 modifies its output, as opposed to replacing it
1048 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1049 so would produce an insn that is not equivalent to the original insns.
1050
1051 Consider:
1052
1053 (set (reg:DI 101) (reg:DI 100))
1054 (set (subreg:SI (reg:DI 101) 0) <foo>)
1055
1056 This is NOT equivalent to:
1057
1058 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1059 (set (reg:DI 101) (reg:DI 100))])
1060
1061 Not only does this modify 100 (in which case it might still be valid
1062 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1063
1064 We can also run into a problem if I2 sets a register that I1
1065 uses and I1 gets directly substituted into I3 (not via I2). In that
1066 case, we would be getting the wrong value of I2DEST into I3, so we
1067 must reject the combination. This case occurs when I2 and I1 both
1068 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1069 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1070 of a SET must prevent combination from occurring.
1071
1072 On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
1073 if the destination of a SET is a hard register that isn't a user
1074 variable.
1075
1076 Before doing the above check, we first try to expand a field assignment
1077 into a set of logical operations.
1078
1079 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1080 we place a register that is both set and used within I3. If more than one
1081 such register is detected, we fail.
1082
1083 Return 1 if the combination is valid, zero otherwise. */
1084
1085 static int
1086 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1087 rtx i3;
1088 rtx *loc;
1089 rtx i2dest;
1090 rtx i1dest;
1091 int i1_not_in_src;
1092 rtx *pi3dest_killed;
1093 {
1094 rtx x = *loc;
1095
1096 if (GET_CODE (x) == SET)
1097 {
1098 rtx set = expand_field_assignment (x);
1099 rtx dest = SET_DEST (set);
1100 rtx src = SET_SRC (set);
1101 rtx inner_dest = dest, inner_src = src;
1102
1103 SUBST (*loc, set);
1104
1105 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1106 || GET_CODE (inner_dest) == SUBREG
1107 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1108 inner_dest = XEXP (inner_dest, 0);
1109
1110 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1111 was added. */
1112 #if 0
1113 while (GET_CODE (inner_src) == STRICT_LOW_PART
1114 || GET_CODE (inner_src) == SUBREG
1115 || GET_CODE (inner_src) == ZERO_EXTRACT)
1116 inner_src = XEXP (inner_src, 0);
1117
1118 /* If it is better that two different modes keep two different pseudos,
1119 avoid combining them. This avoids producing the following pattern
1120 on a 386:
1121 (set (subreg:SI (reg/v:QI 21) 0)
1122 (lshiftrt:SI (reg/v:SI 20)
1123 (const_int 24)))
1124 If that were made, reload could not handle the pair of
1125 reg 20/21, since it would try to get any GENERAL_REGS
1126 but some of them don't handle QImode. */
1127
1128 if (rtx_equal_p (inner_src, i2dest)
1129 && GET_CODE (inner_dest) == REG
1130 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1131 return 0;
1132 #endif
1133
1134 /* Check for the case where I3 modifies its output, as
1135 discussed above. */
1136 if ((inner_dest != dest
1137 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1138 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1139 /* This is the same test done in can_combine_p except that we
1140 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1141 CALL operation. */
1142 || (GET_CODE (inner_dest) == REG
1143 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1144 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1145 GET_MODE (inner_dest))
1146 #ifdef SMALL_REGISTER_CLASSES
1147 || (GET_CODE (src) != CALL && ! REG_USERVAR_P (inner_dest))
1148 #endif
1149 ))
1150 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1151 return 0;
1152
1153 /* If DEST is used in I3, it is being killed in this insn,
1154 so record that for later.
1155 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1156 STACK_POINTER_REGNUM, since these are always considered to be
1157 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1158 if (pi3dest_killed && GET_CODE (dest) == REG
1159 && reg_referenced_p (dest, PATTERN (i3))
1160 && REGNO (dest) != FRAME_POINTER_REGNUM
1161 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1162 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1163 #endif
1164 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1165 && (REGNO (dest) != ARG_POINTER_REGNUM
1166 || ! fixed_regs [REGNO (dest)])
1167 #endif
1168 && REGNO (dest) != STACK_POINTER_REGNUM)
1169 {
1170 if (*pi3dest_killed)
1171 return 0;
1172
1173 *pi3dest_killed = dest;
1174 }
1175 }
1176
1177 else if (GET_CODE (x) == PARALLEL)
1178 {
1179 int i;
1180
1181 for (i = 0; i < XVECLEN (x, 0); i++)
1182 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1183 i1_not_in_src, pi3dest_killed))
1184 return 0;
1185 }
1186
1187 return 1;
1188 }
1189 \f
1190 /* Try to combine the insns I1 and I2 into I3.
1191 Here I1 and I2 appear earlier than I3.
1192 I1 can be zero; then we combine just I2 into I3.
1193
1194 It we are combining three insns and the resulting insn is not recognized,
1195 try splitting it into two insns. If that happens, I2 and I3 are retained
1196 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1197 are pseudo-deleted.
1198
1199 Return 0 if the combination does not work. Then nothing is changed.
1200 If we did the combination, return the insn at which combine should
1201 resume scanning. */
1202
1203 static rtx
1204 try_combine (i3, i2, i1)
1205 register rtx i3, i2, i1;
1206 {
1207 /* New patterns for I3 and I3, respectively. */
1208 rtx newpat, newi2pat = 0;
1209 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1210 int added_sets_1, added_sets_2;
1211 /* Total number of SETs to put into I3. */
1212 int total_sets;
1213 /* Nonzero is I2's body now appears in I3. */
1214 int i2_is_used;
1215 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1216 int insn_code_number, i2_code_number, other_code_number;
1217 /* Contains I3 if the destination of I3 is used in its source, which means
1218 that the old life of I3 is being killed. If that usage is placed into
1219 I2 and not in I3, a REG_DEAD note must be made. */
1220 rtx i3dest_killed = 0;
1221 /* SET_DEST and SET_SRC of I2 and I1. */
1222 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1223 /* PATTERN (I2), or a copy of it in certain cases. */
1224 rtx i2pat;
1225 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1226 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1227 int i1_feeds_i3 = 0;
1228 /* Notes that must be added to REG_NOTES in I3 and I2. */
1229 rtx new_i3_notes, new_i2_notes;
1230 /* Notes that we substituted I3 into I2 instead of the normal case. */
1231 int i3_subst_into_i2 = 0;
1232 /* Notes that I1, I2 or I3 is a MULT operation. */
1233 int have_mult = 0;
1234 /* Number of clobbers of SCRATCH we had to add. */
1235 int i3_scratches = 0, i2_scratches = 0, other_scratches = 0;
1236
1237 int maxreg;
1238 rtx temp;
1239 register rtx link;
1240 int i;
1241
1242 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1243 This can occur when flow deletes an insn that it has merged into an
1244 auto-increment address. We also can't do anything if I3 has a
1245 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1246 libcall. */
1247
1248 if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1249 || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1250 || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1251 || find_reg_note (i3, REG_LIBCALL, NULL_RTX))
1252 return 0;
1253
1254 combine_attempts++;
1255
1256 undobuf.undos = undobuf.previous_undos = 0;
1257 undobuf.other_insn = 0;
1258
1259 /* Save the current high-water-mark so we can free storage if we didn't
1260 accept this combination. */
1261 undobuf.storage = (char *) oballoc (0);
1262
1263 /* Reset the hard register usage information. */
1264 CLEAR_HARD_REG_SET (newpat_used_regs);
1265
1266 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1267 code below, set I1 to be the earlier of the two insns. */
1268 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1269 temp = i1, i1 = i2, i2 = temp;
1270
1271 added_links_insn = 0;
1272
1273 /* First check for one important special-case that the code below will
1274 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1275 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1276 we may be able to replace that destination with the destination of I3.
1277 This occurs in the common code where we compute both a quotient and
1278 remainder into a structure, in which case we want to do the computation
1279 directly into the structure to avoid register-register copies.
1280
1281 We make very conservative checks below and only try to handle the
1282 most common cases of this. For example, we only handle the case
1283 where I2 and I3 are adjacent to avoid making difficult register
1284 usage tests. */
1285
1286 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1287 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1288 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1289 #ifdef SMALL_REGISTER_CLASSES
1290 && (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1291 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1292 || REG_USERVAR_P (SET_DEST (PATTERN (i3))))
1293 #endif
1294 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1295 && GET_CODE (PATTERN (i2)) == PARALLEL
1296 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1297 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1298 below would need to check what is inside (and reg_overlap_mentioned_p
1299 doesn't support those codes anyway). Don't allow those destinations;
1300 the resulting insn isn't likely to be recognized anyway. */
1301 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1302 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1303 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1304 SET_DEST (PATTERN (i3)))
1305 && next_real_insn (i2) == i3)
1306 {
1307 rtx p2 = PATTERN (i2);
1308
1309 /* Make sure that the destination of I3,
1310 which we are going to substitute into one output of I2,
1311 is not used within another output of I2. We must avoid making this:
1312 (parallel [(set (mem (reg 69)) ...)
1313 (set (reg 69) ...)])
1314 which is not well-defined as to order of actions.
1315 (Besides, reload can't handle output reloads for this.)
1316
1317 The problem can also happen if the dest of I3 is a memory ref,
1318 if another dest in I2 is an indirect memory ref. */
1319 for (i = 0; i < XVECLEN (p2, 0); i++)
1320 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1321 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1322 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1323 SET_DEST (XVECEXP (p2, 0, i))))
1324 break;
1325
1326 if (i == XVECLEN (p2, 0))
1327 for (i = 0; i < XVECLEN (p2, 0); i++)
1328 if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1329 {
1330 combine_merges++;
1331
1332 subst_insn = i3;
1333 subst_low_cuid = INSN_CUID (i2);
1334
1335 added_sets_2 = added_sets_1 = 0;
1336 i2dest = SET_SRC (PATTERN (i3));
1337
1338 /* Replace the dest in I2 with our dest and make the resulting
1339 insn the new pattern for I3. Then skip to where we
1340 validate the pattern. Everything was set up above. */
1341 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1342 SET_DEST (PATTERN (i3)));
1343
1344 newpat = p2;
1345 i3_subst_into_i2 = 1;
1346 goto validate_replacement;
1347 }
1348 }
1349
1350 #ifndef HAVE_cc0
1351 /* If we have no I1 and I2 looks like:
1352 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1353 (set Y OP)])
1354 make up a dummy I1 that is
1355 (set Y OP)
1356 and change I2 to be
1357 (set (reg:CC X) (compare:CC Y (const_int 0)))
1358
1359 (We can ignore any trailing CLOBBERs.)
1360
1361 This undoes a previous combination and allows us to match a branch-and-
1362 decrement insn. */
1363
1364 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1365 && XVECLEN (PATTERN (i2), 0) >= 2
1366 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1367 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1368 == MODE_CC)
1369 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1370 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1371 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1372 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1373 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1374 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1375 {
1376 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1377 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1378 break;
1379
1380 if (i == 1)
1381 {
1382 /* We make I1 with the same INSN_UID as I2. This gives it
1383 the same INSN_CUID for value tracking. Our fake I1 will
1384 never appear in the insn stream so giving it the same INSN_UID
1385 as I2 will not cause a problem. */
1386
1387 subst_prev_insn = i1
1388 = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
1389 XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
1390
1391 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1392 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1393 SET_DEST (PATTERN (i1)));
1394 }
1395 }
1396 #endif
1397
1398 /* Verify that I2 and I1 are valid for combining. */
1399 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1400 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1401 {
1402 undo_all ();
1403 return 0;
1404 }
1405
1406 /* Record whether I2DEST is used in I2SRC and similarly for the other
1407 cases. Knowing this will help in register status updating below. */
1408 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1409 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1410 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1411
1412 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1413 in I2SRC. */
1414 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1415
1416 /* Ensure that I3's pattern can be the destination of combines. */
1417 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1418 i1 && i2dest_in_i1src && i1_feeds_i3,
1419 &i3dest_killed))
1420 {
1421 undo_all ();
1422 return 0;
1423 }
1424
1425 /* See if any of the insns is a MULT operation. Unless one is, we will
1426 reject a combination that is, since it must be slower. Be conservative
1427 here. */
1428 if (GET_CODE (i2src) == MULT
1429 || (i1 != 0 && GET_CODE (i1src) == MULT)
1430 || (GET_CODE (PATTERN (i3)) == SET
1431 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1432 have_mult = 1;
1433
1434 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1435 We used to do this EXCEPT in one case: I3 has a post-inc in an
1436 output operand. However, that exception can give rise to insns like
1437 mov r3,(r3)+
1438 which is a famous insn on the PDP-11 where the value of r3 used as the
1439 source was model-dependent. Avoid this sort of thing. */
1440
1441 #if 0
1442 if (!(GET_CODE (PATTERN (i3)) == SET
1443 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1444 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1445 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1446 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1447 /* It's not the exception. */
1448 #endif
1449 #ifdef AUTO_INC_DEC
1450 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1451 if (REG_NOTE_KIND (link) == REG_INC
1452 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1453 || (i1 != 0
1454 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1455 {
1456 undo_all ();
1457 return 0;
1458 }
1459 #endif
1460
1461 /* See if the SETs in I1 or I2 need to be kept around in the merged
1462 instruction: whenever the value set there is still needed past I3.
1463 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1464
1465 For the SET in I1, we have two cases: If I1 and I2 independently
1466 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1467 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1468 in I1 needs to be kept around unless I1DEST dies or is set in either
1469 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1470 I1DEST. If so, we know I1 feeds into I2. */
1471
1472 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1473
1474 added_sets_1
1475 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1476 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1477
1478 /* If the set in I2 needs to be kept around, we must make a copy of
1479 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1480 PATTERN (I2), we are only substituting for the original I1DEST, not into
1481 an already-substituted copy. This also prevents making self-referential
1482 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1483 I2DEST. */
1484
1485 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1486 ? gen_rtx (SET, VOIDmode, i2dest, i2src)
1487 : PATTERN (i2));
1488
1489 if (added_sets_2)
1490 i2pat = copy_rtx (i2pat);
1491
1492 combine_merges++;
1493
1494 /* Substitute in the latest insn for the regs set by the earlier ones. */
1495
1496 maxreg = max_reg_num ();
1497
1498 subst_insn = i3;
1499
1500 /* It is possible that the source of I2 or I1 may be performing an
1501 unneeded operation, such as a ZERO_EXTEND of something that is known
1502 to have the high part zero. Handle that case by letting subst look at
1503 the innermost one of them.
1504
1505 Another way to do this would be to have a function that tries to
1506 simplify a single insn instead of merging two or more insns. We don't
1507 do this because of the potential of infinite loops and because
1508 of the potential extra memory required. However, doing it the way
1509 we are is a bit of a kludge and doesn't catch all cases.
1510
1511 But only do this if -fexpensive-optimizations since it slows things down
1512 and doesn't usually win. */
1513
1514 if (flag_expensive_optimizations)
1515 {
1516 /* Pass pc_rtx so no substitutions are done, just simplifications.
1517 The cases that we are interested in here do not involve the few
1518 cases were is_replaced is checked. */
1519 if (i1)
1520 {
1521 subst_low_cuid = INSN_CUID (i1);
1522 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1523 }
1524 else
1525 {
1526 subst_low_cuid = INSN_CUID (i2);
1527 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1528 }
1529
1530 undobuf.previous_undos = undobuf.undos;
1531 }
1532
1533 #ifndef HAVE_cc0
1534 /* Many machines that don't use CC0 have insns that can both perform an
1535 arithmetic operation and set the condition code. These operations will
1536 be represented as a PARALLEL with the first element of the vector
1537 being a COMPARE of an arithmetic operation with the constant zero.
1538 The second element of the vector will set some pseudo to the result
1539 of the same arithmetic operation. If we simplify the COMPARE, we won't
1540 match such a pattern and so will generate an extra insn. Here we test
1541 for this case, where both the comparison and the operation result are
1542 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1543 I2SRC. Later we will make the PARALLEL that contains I2. */
1544
1545 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1546 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1547 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1548 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1549 {
1550 rtx *cc_use;
1551 enum machine_mode compare_mode;
1552
1553 newpat = PATTERN (i3);
1554 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1555
1556 i2_is_used = 1;
1557
1558 #ifdef EXTRA_CC_MODES
1559 /* See if a COMPARE with the operand we substituted in should be done
1560 with the mode that is currently being used. If not, do the same
1561 processing we do in `subst' for a SET; namely, if the destination
1562 is used only once, try to replace it with a register of the proper
1563 mode and also replace the COMPARE. */
1564 if (undobuf.other_insn == 0
1565 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1566 &undobuf.other_insn))
1567 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1568 i2src, const0_rtx))
1569 != GET_MODE (SET_DEST (newpat))))
1570 {
1571 int regno = REGNO (SET_DEST (newpat));
1572 rtx new_dest = gen_rtx (REG, compare_mode, regno);
1573
1574 if (regno < FIRST_PSEUDO_REGISTER
1575 || (reg_n_sets[regno] == 1 && ! added_sets_2
1576 && ! REG_USERVAR_P (SET_DEST (newpat))))
1577 {
1578 if (regno >= FIRST_PSEUDO_REGISTER)
1579 SUBST (regno_reg_rtx[regno], new_dest);
1580
1581 SUBST (SET_DEST (newpat), new_dest);
1582 SUBST (XEXP (*cc_use, 0), new_dest);
1583 SUBST (SET_SRC (newpat),
1584 gen_rtx_combine (COMPARE, compare_mode,
1585 i2src, const0_rtx));
1586 }
1587 else
1588 undobuf.other_insn = 0;
1589 }
1590 #endif
1591 }
1592 else
1593 #endif
1594 {
1595 n_occurrences = 0; /* `subst' counts here */
1596
1597 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1598 need to make a unique copy of I2SRC each time we substitute it
1599 to avoid self-referential rtl. */
1600
1601 subst_low_cuid = INSN_CUID (i2);
1602 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1603 ! i1_feeds_i3 && i1dest_in_i1src);
1604 undobuf.previous_undos = undobuf.undos;
1605
1606 /* Record whether i2's body now appears within i3's body. */
1607 i2_is_used = n_occurrences;
1608 }
1609
1610 /* If we already got a failure, don't try to do more. Otherwise,
1611 try to substitute in I1 if we have it. */
1612
1613 if (i1 && GET_CODE (newpat) != CLOBBER)
1614 {
1615 /* Before we can do this substitution, we must redo the test done
1616 above (see detailed comments there) that ensures that I1DEST
1617 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1618
1619 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1620 0, NULL_PTR))
1621 {
1622 undo_all ();
1623 return 0;
1624 }
1625
1626 n_occurrences = 0;
1627 subst_low_cuid = INSN_CUID (i1);
1628 newpat = subst (newpat, i1dest, i1src, 0, 0);
1629 undobuf.previous_undos = undobuf.undos;
1630 }
1631
1632 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1633 to count all the ways that I2SRC and I1SRC can be used. */
1634 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1635 && i2_is_used + added_sets_2 > 1)
1636 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1637 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1638 > 1))
1639 /* Fail if we tried to make a new register (we used to abort, but there's
1640 really no reason to). */
1641 || max_reg_num () != maxreg
1642 /* Fail if we couldn't do something and have a CLOBBER. */
1643 || GET_CODE (newpat) == CLOBBER
1644 /* Fail if this new pattern is a MULT and we didn't have one before
1645 at the outer level. */
1646 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1647 && ! have_mult))
1648 {
1649 undo_all ();
1650 return 0;
1651 }
1652
1653 /* If the actions of the earlier insns must be kept
1654 in addition to substituting them into the latest one,
1655 we must make a new PARALLEL for the latest insn
1656 to hold additional the SETs. */
1657
1658 if (added_sets_1 || added_sets_2)
1659 {
1660 combine_extras++;
1661
1662 if (GET_CODE (newpat) == PARALLEL)
1663 {
1664 rtvec old = XVEC (newpat, 0);
1665 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1666 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1667 bcopy ((char *) &old->elem[0], (char *) &XVECEXP (newpat, 0, 0),
1668 sizeof (old->elem[0]) * old->num_elem);
1669 }
1670 else
1671 {
1672 rtx old = newpat;
1673 total_sets = 1 + added_sets_1 + added_sets_2;
1674 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1675 XVECEXP (newpat, 0, 0) = old;
1676 }
1677
1678 if (added_sets_1)
1679 XVECEXP (newpat, 0, --total_sets)
1680 = (GET_CODE (PATTERN (i1)) == PARALLEL
1681 ? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
1682
1683 if (added_sets_2)
1684 {
1685 /* If there is no I1, use I2's body as is. We used to also not do
1686 the subst call below if I2 was substituted into I3,
1687 but that could lose a simplification. */
1688 if (i1 == 0)
1689 XVECEXP (newpat, 0, --total_sets) = i2pat;
1690 else
1691 /* See comment where i2pat is assigned. */
1692 XVECEXP (newpat, 0, --total_sets)
1693 = subst (i2pat, i1dest, i1src, 0, 0);
1694 }
1695 }
1696
1697 /* We come here when we are replacing a destination in I2 with the
1698 destination of I3. */
1699 validate_replacement:
1700
1701 /* Note which hard regs this insn has as inputs. */
1702 mark_used_regs_combine (newpat);
1703
1704 /* Is the result of combination a valid instruction? */
1705 insn_code_number
1706 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1707
1708 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1709 the second SET's destination is a register that is unused. In that case,
1710 we just need the first SET. This can occur when simplifying a divmod
1711 insn. We *must* test for this case here because the code below that
1712 splits two independent SETs doesn't handle this case correctly when it
1713 updates the register status. Also check the case where the first
1714 SET's destination is unused. That would not cause incorrect code, but
1715 does cause an unneeded insn to remain. */
1716
1717 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1718 && XVECLEN (newpat, 0) == 2
1719 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1720 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1721 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
1722 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
1723 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
1724 && asm_noperands (newpat) < 0)
1725 {
1726 newpat = XVECEXP (newpat, 0, 0);
1727 insn_code_number
1728 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1729 }
1730
1731 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1732 && XVECLEN (newpat, 0) == 2
1733 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1734 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1735 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
1736 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
1737 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
1738 && asm_noperands (newpat) < 0)
1739 {
1740 newpat = XVECEXP (newpat, 0, 1);
1741 insn_code_number
1742 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1743 }
1744
1745 /* If we were combining three insns and the result is a simple SET
1746 with no ASM_OPERANDS that wasn't recognized, try to split it into two
1747 insns. There are two ways to do this. It can be split using a
1748 machine-specific method (like when you have an addition of a large
1749 constant) or by combine in the function find_split_point. */
1750
1751 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
1752 && asm_noperands (newpat) < 0)
1753 {
1754 rtx m_split, *split;
1755 rtx ni2dest = i2dest;
1756
1757 /* See if the MD file can split NEWPAT. If it can't, see if letting it
1758 use I2DEST as a scratch register will help. In the latter case,
1759 convert I2DEST to the mode of the source of NEWPAT if we can. */
1760
1761 m_split = split_insns (newpat, i3);
1762
1763 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
1764 inputs of NEWPAT. */
1765
1766 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
1767 possible to try that as a scratch reg. This would require adding
1768 more code to make it work though. */
1769
1770 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
1771 {
1772 /* If I2DEST is a hard register or the only use of a pseudo,
1773 we can change its mode. */
1774 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
1775 && GET_MODE (SET_DEST (newpat)) != VOIDmode
1776 && GET_CODE (i2dest) == REG
1777 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1778 || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
1779 && ! REG_USERVAR_P (i2dest))))
1780 ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)),
1781 REGNO (i2dest));
1782
1783 m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
1784 gen_rtvec (2, newpat,
1785 gen_rtx (CLOBBER,
1786 VOIDmode,
1787 ni2dest))),
1788 i3);
1789 }
1790
1791 if (m_split && GET_CODE (m_split) == SEQUENCE
1792 && XVECLEN (m_split, 0) == 2
1793 && (next_real_insn (i2) == i3
1794 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
1795 INSN_CUID (i2))))
1796 {
1797 rtx i2set, i3set;
1798 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
1799 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
1800
1801 i3set = single_set (XVECEXP (m_split, 0, 1));
1802 i2set = single_set (XVECEXP (m_split, 0, 0));
1803
1804 /* In case we changed the mode of I2DEST, replace it in the
1805 pseudo-register table here. We can't do it above in case this
1806 code doesn't get executed and we do a split the other way. */
1807
1808 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1809 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
1810
1811 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes,
1812 &i2_scratches);
1813
1814 /* If I2 or I3 has multiple SETs, we won't know how to track
1815 register status, so don't use these insns. If I2's destination
1816 is used between I2 and I3, we also can't use these insns. */
1817
1818 if (i2_code_number >= 0 && i2set && i3set
1819 && (next_real_insn (i2) == i3
1820 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
1821 insn_code_number = recog_for_combine (&newi3pat, i3, &new_i3_notes,
1822 &i3_scratches);
1823 if (insn_code_number >= 0)
1824 newpat = newi3pat;
1825
1826 /* It is possible that both insns now set the destination of I3.
1827 If so, we must show an extra use of it. */
1828
1829 if (insn_code_number >= 0)
1830 {
1831 rtx new_i3_dest = SET_DEST (i3set);
1832 rtx new_i2_dest = SET_DEST (i2set);
1833
1834 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
1835 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
1836 || GET_CODE (new_i3_dest) == SUBREG)
1837 new_i3_dest = XEXP (new_i3_dest, 0);
1838
1839 if (GET_CODE (new_i3_dest) == REG
1840 && GET_CODE (new_i2_dest) == REG
1841 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
1842 reg_n_sets[REGNO (SET_DEST (i2set))]++;
1843 }
1844 }
1845
1846 /* If we can split it and use I2DEST, go ahead and see if that
1847 helps things be recognized. Verify that none of the registers
1848 are set between I2 and I3. */
1849 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
1850 #ifdef HAVE_cc0
1851 && GET_CODE (i2dest) == REG
1852 #endif
1853 /* We need I2DEST in the proper mode. If it is a hard register
1854 or the only use of a pseudo, we can change its mode. */
1855 && (GET_MODE (*split) == GET_MODE (i2dest)
1856 || GET_MODE (*split) == VOIDmode
1857 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1858 || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
1859 && ! REG_USERVAR_P (i2dest)))
1860 && (next_real_insn (i2) == i3
1861 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
1862 /* We can't overwrite I2DEST if its value is still used by
1863 NEWPAT. */
1864 && ! reg_referenced_p (i2dest, newpat))
1865 {
1866 rtx newdest = i2dest;
1867 enum rtx_code split_code = GET_CODE (*split);
1868 enum machine_mode split_mode = GET_MODE (*split);
1869
1870 /* Get NEWDEST as a register in the proper mode. We have already
1871 validated that we can do this. */
1872 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
1873 {
1874 newdest = gen_rtx (REG, split_mode, REGNO (i2dest));
1875
1876 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1877 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
1878 }
1879
1880 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
1881 an ASHIFT. This can occur if it was inside a PLUS and hence
1882 appeared to be a memory address. This is a kludge. */
1883 if (split_code == MULT
1884 && GET_CODE (XEXP (*split, 1)) == CONST_INT
1885 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
1886 {
1887 SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
1888 XEXP (*split, 0), GEN_INT (i)));
1889 /* Update split_code because we may not have a multiply
1890 anymore. */
1891 split_code = GET_CODE (*split);
1892 }
1893
1894 #ifdef INSN_SCHEDULING
1895 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
1896 be written as a ZERO_EXTEND. */
1897 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
1898 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
1899 XEXP (*split, 0)));
1900 #endif
1901
1902 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
1903 SUBST (*split, newdest);
1904 i2_code_number
1905 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
1906
1907 /* If the split point was a MULT and we didn't have one before,
1908 don't use one now. */
1909 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
1910 insn_code_number
1911 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1912 }
1913 }
1914
1915 /* Check for a case where we loaded from memory in a narrow mode and
1916 then sign extended it, but we need both registers. In that case,
1917 we have a PARALLEL with both loads from the same memory location.
1918 We can split this into a load from memory followed by a register-register
1919 copy. This saves at least one insn, more if register allocation can
1920 eliminate the copy.
1921
1922 We cannot do this if the destination of the second assignment is
1923 a register that we have already assumed is zero-extended. Similarly
1924 for a SUBREG of such a register. */
1925
1926 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
1927 && GET_CODE (newpat) == PARALLEL
1928 && XVECLEN (newpat, 0) == 2
1929 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1930 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
1931 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1932 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1933 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
1934 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1935 INSN_CUID (i2))
1936 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
1937 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
1938 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
1939 (GET_CODE (temp) == REG
1940 && reg_nonzero_bits[REGNO (temp)] != 0
1941 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
1942 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
1943 && (reg_nonzero_bits[REGNO (temp)]
1944 != GET_MODE_MASK (word_mode))))
1945 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
1946 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
1947 (GET_CODE (temp) == REG
1948 && reg_nonzero_bits[REGNO (temp)] != 0
1949 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
1950 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
1951 && (reg_nonzero_bits[REGNO (temp)]
1952 != GET_MODE_MASK (word_mode)))))
1953 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
1954 SET_SRC (XVECEXP (newpat, 0, 1)))
1955 && ! find_reg_note (i3, REG_UNUSED,
1956 SET_DEST (XVECEXP (newpat, 0, 0))))
1957 {
1958 rtx ni2dest;
1959
1960 newi2pat = XVECEXP (newpat, 0, 0);
1961 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
1962 newpat = XVECEXP (newpat, 0, 1);
1963 SUBST (SET_SRC (newpat),
1964 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
1965 i2_code_number
1966 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
1967
1968 if (i2_code_number >= 0)
1969 insn_code_number
1970 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1971
1972 if (insn_code_number >= 0)
1973 {
1974 rtx insn;
1975 rtx link;
1976
1977 /* If we will be able to accept this, we have made a change to the
1978 destination of I3. This can invalidate a LOG_LINKS pointing
1979 to I3. No other part of combine.c makes such a transformation.
1980
1981 The new I3 will have a destination that was previously the
1982 destination of I1 or I2 and which was used in i2 or I3. Call
1983 distribute_links to make a LOG_LINK from the next use of
1984 that destination. */
1985
1986 PATTERN (i3) = newpat;
1987 distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX));
1988
1989 /* I3 now uses what used to be its destination and which is
1990 now I2's destination. That means we need a LOG_LINK from
1991 I3 to I2. But we used to have one, so we still will.
1992
1993 However, some later insn might be using I2's dest and have
1994 a LOG_LINK pointing at I3. We must remove this link.
1995 The simplest way to remove the link is to point it at I1,
1996 which we know will be a NOTE. */
1997
1998 for (insn = NEXT_INSN (i3);
1999 insn && (this_basic_block == n_basic_blocks - 1
2000 || insn != basic_block_head[this_basic_block + 1]);
2001 insn = NEXT_INSN (insn))
2002 {
2003 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2004 && reg_referenced_p (ni2dest, PATTERN (insn)))
2005 {
2006 for (link = LOG_LINKS (insn); link;
2007 link = XEXP (link, 1))
2008 if (XEXP (link, 0) == i3)
2009 XEXP (link, 0) = i1;
2010
2011 break;
2012 }
2013 }
2014 }
2015 }
2016
2017 /* Similarly, check for a case where we have a PARALLEL of two independent
2018 SETs but we started with three insns. In this case, we can do the sets
2019 as two separate insns. This case occurs when some SET allows two
2020 other insns to combine, but the destination of that SET is still live. */
2021
2022 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2023 && GET_CODE (newpat) == PARALLEL
2024 && XVECLEN (newpat, 0) == 2
2025 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2026 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2027 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2028 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2029 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2030 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2031 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2032 INSN_CUID (i2))
2033 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2034 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2035 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2036 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2037 XVECEXP (newpat, 0, 0))
2038 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2039 XVECEXP (newpat, 0, 1)))
2040 {
2041 newi2pat = XVECEXP (newpat, 0, 1);
2042 newpat = XVECEXP (newpat, 0, 0);
2043
2044 i2_code_number
2045 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
2046
2047 if (i2_code_number >= 0)
2048 insn_code_number
2049 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
2050 }
2051
2052 /* If it still isn't recognized, fail and change things back the way they
2053 were. */
2054 if ((insn_code_number < 0
2055 /* Is the result a reasonable ASM_OPERANDS? */
2056 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2057 {
2058 undo_all ();
2059 return 0;
2060 }
2061
2062 /* If we had to change another insn, make sure it is valid also. */
2063 if (undobuf.other_insn)
2064 {
2065 rtx other_pat = PATTERN (undobuf.other_insn);
2066 rtx new_other_notes;
2067 rtx note, next;
2068
2069 CLEAR_HARD_REG_SET (newpat_used_regs);
2070
2071 other_code_number
2072 = recog_for_combine (&other_pat, undobuf.other_insn,
2073 &new_other_notes, &other_scratches);
2074
2075 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2076 {
2077 undo_all ();
2078 return 0;
2079 }
2080
2081 PATTERN (undobuf.other_insn) = other_pat;
2082
2083 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2084 are still valid. Then add any non-duplicate notes added by
2085 recog_for_combine. */
2086 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2087 {
2088 next = XEXP (note, 1);
2089
2090 if (REG_NOTE_KIND (note) == REG_UNUSED
2091 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2092 {
2093 if (GET_CODE (XEXP (note, 0)) == REG)
2094 reg_n_deaths[REGNO (XEXP (note, 0))]--;
2095
2096 remove_note (undobuf.other_insn, note);
2097 }
2098 }
2099
2100 for (note = new_other_notes; note; note = XEXP (note, 1))
2101 if (GET_CODE (XEXP (note, 0)) == REG)
2102 reg_n_deaths[REGNO (XEXP (note, 0))]++;
2103
2104 distribute_notes (new_other_notes, undobuf.other_insn,
2105 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2106 }
2107
2108 /* We now know that we can do this combination. Merge the insns and
2109 update the status of registers and LOG_LINKS. */
2110
2111 {
2112 rtx i3notes, i2notes, i1notes = 0;
2113 rtx i3links, i2links, i1links = 0;
2114 rtx midnotes = 0;
2115 register int regno;
2116 /* Compute which registers we expect to eliminate. */
2117 rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
2118 ? 0 : i2dest);
2119 rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
2120
2121 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2122 clear them. */
2123 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2124 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2125 if (i1)
2126 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2127
2128 /* Ensure that we do not have something that should not be shared but
2129 occurs multiple times in the new insns. Check this by first
2130 resetting all the `used' flags and then copying anything is shared. */
2131
2132 reset_used_flags (i3notes);
2133 reset_used_flags (i2notes);
2134 reset_used_flags (i1notes);
2135 reset_used_flags (newpat);
2136 reset_used_flags (newi2pat);
2137 if (undobuf.other_insn)
2138 reset_used_flags (PATTERN (undobuf.other_insn));
2139
2140 i3notes = copy_rtx_if_shared (i3notes);
2141 i2notes = copy_rtx_if_shared (i2notes);
2142 i1notes = copy_rtx_if_shared (i1notes);
2143 newpat = copy_rtx_if_shared (newpat);
2144 newi2pat = copy_rtx_if_shared (newi2pat);
2145 if (undobuf.other_insn)
2146 reset_used_flags (PATTERN (undobuf.other_insn));
2147
2148 INSN_CODE (i3) = insn_code_number;
2149 PATTERN (i3) = newpat;
2150 if (undobuf.other_insn)
2151 INSN_CODE (undobuf.other_insn) = other_code_number;
2152
2153 /* We had one special case above where I2 had more than one set and
2154 we replaced a destination of one of those sets with the destination
2155 of I3. In that case, we have to update LOG_LINKS of insns later
2156 in this basic block. Note that this (expensive) case is rare.
2157
2158 Also, in this case, we must pretend that all REG_NOTEs for I2
2159 actually came from I3, so that REG_UNUSED notes from I2 will be
2160 properly handled. */
2161
2162 if (i3_subst_into_i2)
2163 {
2164 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2165 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2166 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2167 && ! find_reg_note (i2, REG_UNUSED,
2168 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2169 for (temp = NEXT_INSN (i2);
2170 temp && (this_basic_block == n_basic_blocks - 1
2171 || basic_block_head[this_basic_block] != temp);
2172 temp = NEXT_INSN (temp))
2173 if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
2174 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2175 if (XEXP (link, 0) == i2)
2176 XEXP (link, 0) = i3;
2177
2178 if (i3notes)
2179 {
2180 rtx link = i3notes;
2181 while (XEXP (link, 1))
2182 link = XEXP (link, 1);
2183 XEXP (link, 1) = i2notes;
2184 }
2185 else
2186 i3notes = i2notes;
2187 i2notes = 0;
2188 }
2189
2190 LOG_LINKS (i3) = 0;
2191 REG_NOTES (i3) = 0;
2192 LOG_LINKS (i2) = 0;
2193 REG_NOTES (i2) = 0;
2194
2195 if (newi2pat)
2196 {
2197 INSN_CODE (i2) = i2_code_number;
2198 PATTERN (i2) = newi2pat;
2199 }
2200 else
2201 {
2202 PUT_CODE (i2, NOTE);
2203 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2204 NOTE_SOURCE_FILE (i2) = 0;
2205 }
2206
2207 if (i1)
2208 {
2209 LOG_LINKS (i1) = 0;
2210 REG_NOTES (i1) = 0;
2211 PUT_CODE (i1, NOTE);
2212 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2213 NOTE_SOURCE_FILE (i1) = 0;
2214 }
2215
2216 /* Get death notes for everything that is now used in either I3 or
2217 I2 and used to die in a previous insn. If we built two new
2218 patterns, move from I1 to I2 then I2 to I3 so that we get the
2219 proper movement on registers that I2 modifies. */
2220
2221 if (newi2pat)
2222 {
2223 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2224 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2225 }
2226 else
2227 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2228 i3, &midnotes);
2229
2230 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2231 if (i3notes)
2232 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2233 elim_i2, elim_i1);
2234 if (i2notes)
2235 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2236 elim_i2, elim_i1);
2237 if (i1notes)
2238 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2239 elim_i2, elim_i1);
2240 if (midnotes)
2241 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2242 elim_i2, elim_i1);
2243
2244 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2245 know these are REG_UNUSED and want them to go to the desired insn,
2246 so we always pass it as i3. We have not counted the notes in
2247 reg_n_deaths yet, so we need to do so now. */
2248
2249 if (newi2pat && new_i2_notes)
2250 {
2251 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2252 if (GET_CODE (XEXP (temp, 0)) == REG)
2253 reg_n_deaths[REGNO (XEXP (temp, 0))]++;
2254
2255 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2256 }
2257
2258 if (new_i3_notes)
2259 {
2260 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2261 if (GET_CODE (XEXP (temp, 0)) == REG)
2262 reg_n_deaths[REGNO (XEXP (temp, 0))]++;
2263
2264 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2265 }
2266
2267 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2268 put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
2269 Show an additional death due to the REG_DEAD note we make here. If
2270 we discard it in distribute_notes, we will decrement it again. */
2271
2272 if (i3dest_killed)
2273 {
2274 if (GET_CODE (i3dest_killed) == REG)
2275 reg_n_deaths[REGNO (i3dest_killed)]++;
2276
2277 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
2278 NULL_RTX),
2279 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2280 NULL_RTX, NULL_RTX);
2281 }
2282
2283 /* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
2284 I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
2285 we passed I3 in that case, it might delete I2. */
2286
2287 if (i2dest_in_i2src)
2288 {
2289 if (GET_CODE (i2dest) == REG)
2290 reg_n_deaths[REGNO (i2dest)]++;
2291
2292 if (newi2pat && reg_set_p (i2dest, newi2pat))
2293 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
2294 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2295 else
2296 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
2297 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2298 NULL_RTX, NULL_RTX);
2299 }
2300
2301 if (i1dest_in_i1src)
2302 {
2303 if (GET_CODE (i1dest) == REG)
2304 reg_n_deaths[REGNO (i1dest)]++;
2305
2306 if (newi2pat && reg_set_p (i1dest, newi2pat))
2307 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
2308 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2309 else
2310 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
2311 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2312 NULL_RTX, NULL_RTX);
2313 }
2314
2315 distribute_links (i3links);
2316 distribute_links (i2links);
2317 distribute_links (i1links);
2318
2319 if (GET_CODE (i2dest) == REG)
2320 {
2321 rtx link;
2322 rtx i2_insn = 0, i2_val = 0, set;
2323
2324 /* The insn that used to set this register doesn't exist, and
2325 this life of the register may not exist either. See if one of
2326 I3's links points to an insn that sets I2DEST. If it does,
2327 that is now the last known value for I2DEST. If we don't update
2328 this and I2 set the register to a value that depended on its old
2329 contents, we will get confused. If this insn is used, thing
2330 will be set correctly in combine_instructions. */
2331
2332 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2333 if ((set = single_set (XEXP (link, 0))) != 0
2334 && rtx_equal_p (i2dest, SET_DEST (set)))
2335 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2336
2337 record_value_for_reg (i2dest, i2_insn, i2_val);
2338
2339 /* If the reg formerly set in I2 died only once and that was in I3,
2340 zero its use count so it won't make `reload' do any work. */
2341 if (! added_sets_2 && newi2pat == 0 && ! i2dest_in_i2src)
2342 {
2343 regno = REGNO (i2dest);
2344 reg_n_sets[regno]--;
2345 if (reg_n_sets[regno] == 0
2346 && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
2347 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
2348 reg_n_refs[regno] = 0;
2349 }
2350 }
2351
2352 if (i1 && GET_CODE (i1dest) == REG)
2353 {
2354 rtx link;
2355 rtx i1_insn = 0, i1_val = 0, set;
2356
2357 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2358 if ((set = single_set (XEXP (link, 0))) != 0
2359 && rtx_equal_p (i1dest, SET_DEST (set)))
2360 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2361
2362 record_value_for_reg (i1dest, i1_insn, i1_val);
2363
2364 regno = REGNO (i1dest);
2365 if (! added_sets_1 && ! i1dest_in_i1src)
2366 {
2367 reg_n_sets[regno]--;
2368 if (reg_n_sets[regno] == 0
2369 && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
2370 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
2371 reg_n_refs[regno] = 0;
2372 }
2373 }
2374
2375 /* Update reg_nonzero_bits et al for any changes that may have been made
2376 to this insn. */
2377
2378 note_stores (newpat, set_nonzero_bits_and_sign_copies);
2379 if (newi2pat)
2380 note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
2381
2382 /* If we added any (clobber (scratch)), add them to the max for a
2383 block. This is a very pessimistic calculation, since we might
2384 have had them already and this might not be the worst block, but
2385 it's not worth doing any better. */
2386 max_scratch += i3_scratches + i2_scratches + other_scratches;
2387
2388 /* If I3 is now an unconditional jump, ensure that it has a
2389 BARRIER following it since it may have initially been a
2390 conditional jump. It may also be the last nonnote insn. */
2391
2392 if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
2393 && ((temp = next_nonnote_insn (i3)) == NULL_RTX
2394 || GET_CODE (temp) != BARRIER))
2395 emit_barrier_after (i3);
2396 }
2397
2398 combine_successes++;
2399
2400 /* Clear this here, so that subsequent get_last_value calls are not
2401 affected. */
2402 subst_prev_insn = NULL_RTX;
2403
2404 if (added_links_insn
2405 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2406 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2407 return added_links_insn;
2408 else
2409 return newi2pat ? i2 : i3;
2410 }
2411 \f
2412 /* Undo all the modifications recorded in undobuf. */
2413
2414 static void
2415 undo_all ()
2416 {
2417 struct undo *undo, *next;
2418
2419 for (undo = undobuf.undos; undo; undo = next)
2420 {
2421 next = undo->next;
2422 if (undo->is_int)
2423 *undo->where.i = undo->old_contents.i;
2424 else
2425 *undo->where.r = undo->old_contents.r;
2426
2427 undo->next = undobuf.frees;
2428 undobuf.frees = undo;
2429 }
2430
2431 obfree (undobuf.storage);
2432 undobuf.undos = 0;
2433
2434 /* Clear this here, so that subsequent get_last_value calls are not
2435 affected. */
2436 subst_prev_insn = NULL_RTX;
2437 }
2438 \f
2439 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2440 where we have an arithmetic expression and return that point. LOC will
2441 be inside INSN.
2442
2443 try_combine will call this function to see if an insn can be split into
2444 two insns. */
2445
2446 static rtx *
2447 find_split_point (loc, insn)
2448 rtx *loc;
2449 rtx insn;
2450 {
2451 rtx x = *loc;
2452 enum rtx_code code = GET_CODE (x);
2453 rtx *split;
2454 int len = 0, pos, unsignedp;
2455 rtx inner;
2456
2457 /* First special-case some codes. */
2458 switch (code)
2459 {
2460 case SUBREG:
2461 #ifdef INSN_SCHEDULING
2462 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2463 point. */
2464 if (GET_CODE (SUBREG_REG (x)) == MEM)
2465 return loc;
2466 #endif
2467 return find_split_point (&SUBREG_REG (x), insn);
2468
2469 case MEM:
2470 #ifdef HAVE_lo_sum
2471 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2472 using LO_SUM and HIGH. */
2473 if (GET_CODE (XEXP (x, 0)) == CONST
2474 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2475 {
2476 SUBST (XEXP (x, 0),
2477 gen_rtx_combine (LO_SUM, Pmode,
2478 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2479 XEXP (x, 0)));
2480 return &XEXP (XEXP (x, 0), 0);
2481 }
2482 #endif
2483
2484 /* If we have a PLUS whose second operand is a constant and the
2485 address is not valid, perhaps will can split it up using
2486 the machine-specific way to split large constants. We use
2487 the first pseudo-reg (one of the virtual regs) as a placeholder;
2488 it will not remain in the result. */
2489 if (GET_CODE (XEXP (x, 0)) == PLUS
2490 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2491 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2492 {
2493 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2494 rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
2495 subst_insn);
2496
2497 /* This should have produced two insns, each of which sets our
2498 placeholder. If the source of the second is a valid address,
2499 we can make put both sources together and make a split point
2500 in the middle. */
2501
2502 if (seq && XVECLEN (seq, 0) == 2
2503 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2504 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2505 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2506 && ! reg_mentioned_p (reg,
2507 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2508 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2509 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2510 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2511 && memory_address_p (GET_MODE (x),
2512 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2513 {
2514 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2515 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2516
2517 /* Replace the placeholder in SRC2 with SRC1. If we can
2518 find where in SRC2 it was placed, that can become our
2519 split point and we can replace this address with SRC2.
2520 Just try two obvious places. */
2521
2522 src2 = replace_rtx (src2, reg, src1);
2523 split = 0;
2524 if (XEXP (src2, 0) == src1)
2525 split = &XEXP (src2, 0);
2526 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2527 && XEXP (XEXP (src2, 0), 0) == src1)
2528 split = &XEXP (XEXP (src2, 0), 0);
2529
2530 if (split)
2531 {
2532 SUBST (XEXP (x, 0), src2);
2533 return split;
2534 }
2535 }
2536
2537 /* If that didn't work, perhaps the first operand is complex and
2538 needs to be computed separately, so make a split point there.
2539 This will occur on machines that just support REG + CONST
2540 and have a constant moved through some previous computation. */
2541
2542 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2543 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2544 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2545 == 'o')))
2546 return &XEXP (XEXP (x, 0), 0);
2547 }
2548 break;
2549
2550 case SET:
2551 #ifdef HAVE_cc0
2552 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2553 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2554 we need to put the operand into a register. So split at that
2555 point. */
2556
2557 if (SET_DEST (x) == cc0_rtx
2558 && GET_CODE (SET_SRC (x)) != COMPARE
2559 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2560 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2561 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2562 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2563 return &SET_SRC (x);
2564 #endif
2565
2566 /* See if we can split SET_SRC as it stands. */
2567 split = find_split_point (&SET_SRC (x), insn);
2568 if (split && split != &SET_SRC (x))
2569 return split;
2570
2571 /* See if we can split SET_DEST as it stands. */
2572 split = find_split_point (&SET_DEST (x), insn);
2573 if (split && split != &SET_DEST (x))
2574 return split;
2575
2576 /* See if this is a bitfield assignment with everything constant. If
2577 so, this is an IOR of an AND, so split it into that. */
2578 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2579 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2580 <= HOST_BITS_PER_WIDE_INT)
2581 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2582 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2583 && GET_CODE (SET_SRC (x)) == CONST_INT
2584 && ((INTVAL (XEXP (SET_DEST (x), 1))
2585 + INTVAL (XEXP (SET_DEST (x), 2)))
2586 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2587 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2588 {
2589 int pos = INTVAL (XEXP (SET_DEST (x), 2));
2590 int len = INTVAL (XEXP (SET_DEST (x), 1));
2591 int src = INTVAL (SET_SRC (x));
2592 rtx dest = XEXP (SET_DEST (x), 0);
2593 enum machine_mode mode = GET_MODE (dest);
2594 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2595
2596 if (BITS_BIG_ENDIAN)
2597 pos = GET_MODE_BITSIZE (mode) - len - pos;
2598
2599 if (src == mask)
2600 SUBST (SET_SRC (x),
2601 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2602 else
2603 SUBST (SET_SRC (x),
2604 gen_binary (IOR, mode,
2605 gen_binary (AND, mode, dest,
2606 GEN_INT (~ (mask << pos)
2607 & GET_MODE_MASK (mode))),
2608 GEN_INT (src << pos)));
2609
2610 SUBST (SET_DEST (x), dest);
2611
2612 split = find_split_point (&SET_SRC (x), insn);
2613 if (split && split != &SET_SRC (x))
2614 return split;
2615 }
2616
2617 /* Otherwise, see if this is an operation that we can split into two.
2618 If so, try to split that. */
2619 code = GET_CODE (SET_SRC (x));
2620
2621 switch (code)
2622 {
2623 case AND:
2624 /* If we are AND'ing with a large constant that is only a single
2625 bit and the result is only being used in a context where we
2626 need to know if it is zero or non-zero, replace it with a bit
2627 extraction. This will avoid the large constant, which might
2628 have taken more than one insn to make. If the constant were
2629 not a valid argument to the AND but took only one insn to make,
2630 this is no worse, but if it took more than one insn, it will
2631 be better. */
2632
2633 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2634 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2635 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
2636 && GET_CODE (SET_DEST (x)) == REG
2637 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
2638 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
2639 && XEXP (*split, 0) == SET_DEST (x)
2640 && XEXP (*split, 1) == const0_rtx)
2641 {
2642 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
2643 XEXP (SET_SRC (x), 0),
2644 pos, NULL_RTX, 1, 1, 0, 0);
2645 if (extraction != 0)
2646 {
2647 SUBST (SET_SRC (x), extraction);
2648 return find_split_point (loc, insn);
2649 }
2650 }
2651 break;
2652
2653 case SIGN_EXTEND:
2654 inner = XEXP (SET_SRC (x), 0);
2655 pos = 0;
2656 len = GET_MODE_BITSIZE (GET_MODE (inner));
2657 unsignedp = 0;
2658 break;
2659
2660 case SIGN_EXTRACT:
2661 case ZERO_EXTRACT:
2662 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2663 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
2664 {
2665 inner = XEXP (SET_SRC (x), 0);
2666 len = INTVAL (XEXP (SET_SRC (x), 1));
2667 pos = INTVAL (XEXP (SET_SRC (x), 2));
2668
2669 if (BITS_BIG_ENDIAN)
2670 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
2671 unsignedp = (code == ZERO_EXTRACT);
2672 }
2673 break;
2674 }
2675
2676 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
2677 {
2678 enum machine_mode mode = GET_MODE (SET_SRC (x));
2679
2680 /* For unsigned, we have a choice of a shift followed by an
2681 AND or two shifts. Use two shifts for field sizes where the
2682 constant might be too large. We assume here that we can
2683 always at least get 8-bit constants in an AND insn, which is
2684 true for every current RISC. */
2685
2686 if (unsignedp && len <= 8)
2687 {
2688 SUBST (SET_SRC (x),
2689 gen_rtx_combine
2690 (AND, mode,
2691 gen_rtx_combine (LSHIFTRT, mode,
2692 gen_lowpart_for_combine (mode, inner),
2693 GEN_INT (pos)),
2694 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
2695
2696 split = find_split_point (&SET_SRC (x), insn);
2697 if (split && split != &SET_SRC (x))
2698 return split;
2699 }
2700 else
2701 {
2702 SUBST (SET_SRC (x),
2703 gen_rtx_combine
2704 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
2705 gen_rtx_combine (ASHIFT, mode,
2706 gen_lowpart_for_combine (mode, inner),
2707 GEN_INT (GET_MODE_BITSIZE (mode)
2708 - len - pos)),
2709 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
2710
2711 split = find_split_point (&SET_SRC (x), insn);
2712 if (split && split != &SET_SRC (x))
2713 return split;
2714 }
2715 }
2716
2717 /* See if this is a simple operation with a constant as the second
2718 operand. It might be that this constant is out of range and hence
2719 could be used as a split point. */
2720 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2721 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2722 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
2723 && CONSTANT_P (XEXP (SET_SRC (x), 1))
2724 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
2725 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
2726 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
2727 == 'o'))))
2728 return &XEXP (SET_SRC (x), 1);
2729
2730 /* Finally, see if this is a simple operation with its first operand
2731 not in a register. The operation might require this operand in a
2732 register, so return it as a split point. We can always do this
2733 because if the first operand were another operation, we would have
2734 already found it as a split point. */
2735 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2736 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2737 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
2738 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
2739 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
2740 return &XEXP (SET_SRC (x), 0);
2741
2742 return 0;
2743
2744 case AND:
2745 case IOR:
2746 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
2747 it is better to write this as (not (ior A B)) so we can split it.
2748 Similarly for IOR. */
2749 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
2750 {
2751 SUBST (*loc,
2752 gen_rtx_combine (NOT, GET_MODE (x),
2753 gen_rtx_combine (code == IOR ? AND : IOR,
2754 GET_MODE (x),
2755 XEXP (XEXP (x, 0), 0),
2756 XEXP (XEXP (x, 1), 0))));
2757 return find_split_point (loc, insn);
2758 }
2759
2760 /* Many RISC machines have a large set of logical insns. If the
2761 second operand is a NOT, put it first so we will try to split the
2762 other operand first. */
2763 if (GET_CODE (XEXP (x, 1)) == NOT)
2764 {
2765 rtx tem = XEXP (x, 0);
2766 SUBST (XEXP (x, 0), XEXP (x, 1));
2767 SUBST (XEXP (x, 1), tem);
2768 }
2769 break;
2770 }
2771
2772 /* Otherwise, select our actions depending on our rtx class. */
2773 switch (GET_RTX_CLASS (code))
2774 {
2775 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
2776 case '3':
2777 split = find_split_point (&XEXP (x, 2), insn);
2778 if (split)
2779 return split;
2780 /* ... fall through ... */
2781 case '2':
2782 case 'c':
2783 case '<':
2784 split = find_split_point (&XEXP (x, 1), insn);
2785 if (split)
2786 return split;
2787 /* ... fall through ... */
2788 case '1':
2789 /* Some machines have (and (shift ...) ...) insns. If X is not
2790 an AND, but XEXP (X, 0) is, use it as our split point. */
2791 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
2792 return &XEXP (x, 0);
2793
2794 split = find_split_point (&XEXP (x, 0), insn);
2795 if (split)
2796 return split;
2797 return loc;
2798 }
2799
2800 /* Otherwise, we don't have a split point. */
2801 return 0;
2802 }
2803 \f
2804 /* Throughout X, replace FROM with TO, and return the result.
2805 The result is TO if X is FROM;
2806 otherwise the result is X, but its contents may have been modified.
2807 If they were modified, a record was made in undobuf so that
2808 undo_all will (among other things) return X to its original state.
2809
2810 If the number of changes necessary is too much to record to undo,
2811 the excess changes are not made, so the result is invalid.
2812 The changes already made can still be undone.
2813 undobuf.num_undo is incremented for such changes, so by testing that
2814 the caller can tell whether the result is valid.
2815
2816 `n_occurrences' is incremented each time FROM is replaced.
2817
2818 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
2819
2820 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
2821 by copying if `n_occurrences' is non-zero. */
2822
2823 static rtx
2824 subst (x, from, to, in_dest, unique_copy)
2825 register rtx x, from, to;
2826 int in_dest;
2827 int unique_copy;
2828 {
2829 register enum rtx_code code = GET_CODE (x);
2830 enum machine_mode op0_mode = VOIDmode;
2831 register char *fmt;
2832 register int len, i;
2833 rtx new;
2834
2835 /* Two expressions are equal if they are identical copies of a shared
2836 RTX or if they are both registers with the same register number
2837 and mode. */
2838
2839 #define COMBINE_RTX_EQUAL_P(X,Y) \
2840 ((X) == (Y) \
2841 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
2842 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
2843
2844 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
2845 {
2846 n_occurrences++;
2847 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
2848 }
2849
2850 /* If X and FROM are the same register but different modes, they will
2851 not have been seen as equal above. However, flow.c will make a
2852 LOG_LINKS entry for that case. If we do nothing, we will try to
2853 rerecognize our original insn and, when it succeeds, we will
2854 delete the feeding insn, which is incorrect.
2855
2856 So force this insn not to match in this (rare) case. */
2857 if (! in_dest && code == REG && GET_CODE (from) == REG
2858 && REGNO (x) == REGNO (from))
2859 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
2860
2861 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
2862 of which may contain things that can be combined. */
2863 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
2864 return x;
2865
2866 /* It is possible to have a subexpression appear twice in the insn.
2867 Suppose that FROM is a register that appears within TO.
2868 Then, after that subexpression has been scanned once by `subst',
2869 the second time it is scanned, TO may be found. If we were
2870 to scan TO here, we would find FROM within it and create a
2871 self-referent rtl structure which is completely wrong. */
2872 if (COMBINE_RTX_EQUAL_P (x, to))
2873 return to;
2874
2875 len = GET_RTX_LENGTH (code);
2876 fmt = GET_RTX_FORMAT (code);
2877
2878 /* We don't need to process a SET_DEST that is a register, CC0, or PC, so
2879 set up to skip this common case. All other cases where we want to
2880 suppress replacing something inside a SET_SRC are handled via the
2881 IN_DEST operand. */
2882 if (code == SET
2883 && (GET_CODE (SET_DEST (x)) == REG
2884 || GET_CODE (SET_DEST (x)) == CC0
2885 || GET_CODE (SET_DEST (x)) == PC))
2886 fmt = "ie";
2887
2888 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
2889 constant. */
2890 if (fmt[0] == 'e')
2891 op0_mode = GET_MODE (XEXP (x, 0));
2892
2893 for (i = 0; i < len; i++)
2894 {
2895 if (fmt[i] == 'E')
2896 {
2897 register int j;
2898 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2899 {
2900 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
2901 {
2902 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2903 n_occurrences++;
2904 }
2905 else
2906 {
2907 new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
2908
2909 /* If this substitution failed, this whole thing fails. */
2910 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2911 return new;
2912 }
2913
2914 SUBST (XVECEXP (x, i, j), new);
2915 }
2916 }
2917 else if (fmt[i] == 'e')
2918 {
2919 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
2920 {
2921 /* In general, don't install a subreg involving two modes not
2922 tieable. It can worsen register allocation, and can even
2923 make invalid reload insns, since the reg inside may need to
2924 be copied from in the outside mode, and that may be invalid
2925 if it is an fp reg copied in integer mode.
2926
2927 We allow two exceptions to this: It is valid if it is inside
2928 another SUBREG and the mode of that SUBREG and the mode of
2929 the inside of TO is tieable and it is valid if X is a SET
2930 that copies FROM to CC0. */
2931 if (GET_CODE (to) == SUBREG
2932 && ! MODES_TIEABLE_P (GET_MODE (to),
2933 GET_MODE (SUBREG_REG (to)))
2934 && ! (code == SUBREG
2935 && MODES_TIEABLE_P (GET_MODE (x),
2936 GET_MODE (SUBREG_REG (to))))
2937 #ifdef HAVE_cc0
2938 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
2939 #endif
2940 )
2941 return gen_rtx (CLOBBER, VOIDmode, const0_rtx);
2942
2943 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2944 n_occurrences++;
2945 }
2946 else
2947 /* If we are in a SET_DEST, suppress most cases unless we
2948 have gone inside a MEM, in which case we want to
2949 simplify the address. We assume here that things that
2950 are actually part of the destination have their inner
2951 parts in the first expression. This is true for SUBREG,
2952 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
2953 things aside from REG and MEM that should appear in a
2954 SET_DEST. */
2955 new = subst (XEXP (x, i), from, to,
2956 (((in_dest
2957 && (code == SUBREG || code == STRICT_LOW_PART
2958 || code == ZERO_EXTRACT))
2959 || code == SET)
2960 && i == 0), unique_copy);
2961
2962 /* If we found that we will have to reject this combination,
2963 indicate that by returning the CLOBBER ourselves, rather than
2964 an expression containing it. This will speed things up as
2965 well as prevent accidents where two CLOBBERs are considered
2966 to be equal, thus producing an incorrect simplification. */
2967
2968 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2969 return new;
2970
2971 SUBST (XEXP (x, i), new);
2972 }
2973 }
2974
2975 /* Try to simplify X. If the simplification changed the code, it is likely
2976 that further simplification will help, so loop, but limit the number
2977 of repetitions that will be performed. */
2978
2979 for (i = 0; i < 4; i++)
2980 {
2981 /* If X is sufficiently simple, don't bother trying to do anything
2982 with it. */
2983 if (code != CONST_INT && code != REG && code != CLOBBER)
2984 x = simplify_rtx (x, op0_mode, i == 3, in_dest);
2985
2986 if (GET_CODE (x) == code)
2987 break;
2988
2989 code = GET_CODE (x);
2990
2991 /* We no longer know the original mode of operand 0 since we
2992 have changed the form of X) */
2993 op0_mode = VOIDmode;
2994 }
2995
2996 return x;
2997 }
2998 \f
2999 /* Simplify X, a piece of RTL. We just operate on the expression at the
3000 outer level; call `subst' to simplify recursively. Return the new
3001 expression.
3002
3003 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3004 will be the iteration even if an expression with a code different from
3005 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3006
3007 static rtx
3008 simplify_rtx (x, op0_mode, last, in_dest)
3009 rtx x;
3010 enum machine_mode op0_mode;
3011 int last;
3012 int in_dest;
3013 {
3014 enum rtx_code code = GET_CODE (x);
3015 enum machine_mode mode = GET_MODE (x);
3016 rtx temp;
3017 int i;
3018
3019 /* If this is a commutative operation, put a constant last and a complex
3020 expression first. We don't need to do this for comparisons here. */
3021 if (GET_RTX_CLASS (code) == 'c'
3022 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
3023 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
3024 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
3025 || (GET_CODE (XEXP (x, 0)) == SUBREG
3026 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
3027 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
3028 {
3029 temp = XEXP (x, 0);
3030 SUBST (XEXP (x, 0), XEXP (x, 1));
3031 SUBST (XEXP (x, 1), temp);
3032 }
3033
3034 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3035 sign extension of a PLUS with a constant, reverse the order of the sign
3036 extension and the addition. Note that this not the same as the original
3037 code, but overflow is undefined for signed values. Also note that the
3038 PLUS will have been partially moved "inside" the sign-extension, so that
3039 the first operand of X will really look like:
3040 (ashiftrt (plus (ashift A C4) C5) C4).
3041 We convert this to
3042 (plus (ashiftrt (ashift A C4) C2) C4)
3043 and replace the first operand of X with that expression. Later parts
3044 of this function may simplify the expression further.
3045
3046 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3047 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3048 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3049
3050 We do this to simplify address expressions. */
3051
3052 if ((code == PLUS || code == MINUS || code == MULT)
3053 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3054 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3055 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3056 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3057 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3058 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3059 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3060 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3061 XEXP (XEXP (XEXP (x, 0), 0), 1),
3062 XEXP (XEXP (x, 0), 1))) != 0)
3063 {
3064 rtx new
3065 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3066 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3067 INTVAL (XEXP (XEXP (x, 0), 1)));
3068
3069 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3070 INTVAL (XEXP (XEXP (x, 0), 1)));
3071
3072 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3073 }
3074
3075 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3076 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3077 things. Check for cases where both arms are testing the same
3078 condition.
3079
3080 Don't do anything if all operands are very simple. */
3081
3082 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3083 || GET_RTX_CLASS (code) == '<')
3084 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3085 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3086 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3087 == 'o')))
3088 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3089 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3090 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3091 == 'o')))))
3092 || (GET_RTX_CLASS (code) == '1'
3093 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3094 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3095 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3096 == 'o'))))))
3097 {
3098 rtx cond, true, false;
3099
3100 cond = if_then_else_cond (x, &true, &false);
3101 if (cond != 0)
3102 {
3103 rtx cop1 = const0_rtx;
3104 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3105
3106 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3107 return x;
3108
3109 /* Simplify the alternative arms; this may collapse the true and
3110 false arms to store-flag values. */
3111 true = subst (true, pc_rtx, pc_rtx, 0, 0);
3112 false = subst (false, pc_rtx, pc_rtx, 0, 0);
3113
3114 /* Restarting if we generate a store-flag expression will cause
3115 us to loop. Just drop through in this case. */
3116
3117 /* If the result values are STORE_FLAG_VALUE and zero, we can
3118 just make the comparison operation. */
3119 if (true == const_true_rtx && false == const0_rtx)
3120 x = gen_binary (cond_code, mode, cond, cop1);
3121 else if (true == const0_rtx && false == const_true_rtx)
3122 x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
3123
3124 /* Likewise, we can make the negate of a comparison operation
3125 if the result values are - STORE_FLAG_VALUE and zero. */
3126 else if (GET_CODE (true) == CONST_INT
3127 && INTVAL (true) == - STORE_FLAG_VALUE
3128 && false == const0_rtx)
3129 x = gen_unary (NEG, mode, mode,
3130 gen_binary (cond_code, mode, cond, cop1));
3131 else if (GET_CODE (false) == CONST_INT
3132 && INTVAL (false) == - STORE_FLAG_VALUE
3133 && true == const0_rtx)
3134 x = gen_unary (NEG, mode, mode,
3135 gen_binary (reverse_condition (cond_code),
3136 mode, cond, cop1));
3137 else
3138 return gen_rtx (IF_THEN_ELSE, mode,
3139 gen_binary (cond_code, VOIDmode, cond, cop1),
3140 true, false);
3141
3142 code = GET_CODE (x);
3143 op0_mode = VOIDmode;
3144 }
3145 }
3146
3147 /* Try to fold this expression in case we have constants that weren't
3148 present before. */
3149 temp = 0;
3150 switch (GET_RTX_CLASS (code))
3151 {
3152 case '1':
3153 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3154 break;
3155 case '<':
3156 temp = simplify_relational_operation (code, op0_mode,
3157 XEXP (x, 0), XEXP (x, 1));
3158 #ifdef FLOAT_STORE_FLAG_VALUE
3159 if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
3160 temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
3161 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
3162 #endif
3163 break;
3164 case 'c':
3165 case '2':
3166 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3167 break;
3168 case 'b':
3169 case '3':
3170 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3171 XEXP (x, 1), XEXP (x, 2));
3172 break;
3173 }
3174
3175 if (temp)
3176 x = temp, code = GET_CODE (temp);
3177
3178 /* First see if we can apply the inverse distributive law. */
3179 if (code == PLUS || code == MINUS
3180 || code == AND || code == IOR || code == XOR)
3181 {
3182 x = apply_distributive_law (x);
3183 code = GET_CODE (x);
3184 }
3185
3186 /* If CODE is an associative operation not otherwise handled, see if we
3187 can associate some operands. This can win if they are constants or
3188 if they are logically related (i.e. (a & b) & a. */
3189 if ((code == PLUS || code == MINUS
3190 || code == MULT || code == AND || code == IOR || code == XOR
3191 || code == DIV || code == UDIV
3192 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3193 && INTEGRAL_MODE_P (mode))
3194 {
3195 if (GET_CODE (XEXP (x, 0)) == code)
3196 {
3197 rtx other = XEXP (XEXP (x, 0), 0);
3198 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3199 rtx inner_op1 = XEXP (x, 1);
3200 rtx inner;
3201
3202 /* Make sure we pass the constant operand if any as the second
3203 one if this is a commutative operation. */
3204 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3205 {
3206 rtx tem = inner_op0;
3207 inner_op0 = inner_op1;
3208 inner_op1 = tem;
3209 }
3210 inner = simplify_binary_operation (code == MINUS ? PLUS
3211 : code == DIV ? MULT
3212 : code == UDIV ? MULT
3213 : code,
3214 mode, inner_op0, inner_op1);
3215
3216 /* For commutative operations, try the other pair if that one
3217 didn't simplify. */
3218 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3219 {
3220 other = XEXP (XEXP (x, 0), 1);
3221 inner = simplify_binary_operation (code, mode,
3222 XEXP (XEXP (x, 0), 0),
3223 XEXP (x, 1));
3224 }
3225
3226 if (inner)
3227 return gen_binary (code, mode, other, inner);
3228 }
3229 }
3230
3231 /* A little bit of algebraic simplification here. */
3232 switch (code)
3233 {
3234 case MEM:
3235 /* Ensure that our address has any ASHIFTs converted to MULT in case
3236 address-recognizing predicates are called later. */
3237 temp = make_compound_operation (XEXP (x, 0), MEM);
3238 SUBST (XEXP (x, 0), temp);
3239 break;
3240
3241 case SUBREG:
3242 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3243 is paradoxical. If we can't do that safely, then it becomes
3244 something nonsensical so that this combination won't take place. */
3245
3246 if (GET_CODE (SUBREG_REG (x)) == MEM
3247 && (GET_MODE_SIZE (mode)
3248 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3249 {
3250 rtx inner = SUBREG_REG (x);
3251 int endian_offset = 0;
3252 /* Don't change the mode of the MEM
3253 if that would change the meaning of the address. */
3254 if (MEM_VOLATILE_P (SUBREG_REG (x))
3255 || mode_dependent_address_p (XEXP (inner, 0)))
3256 return gen_rtx (CLOBBER, mode, const0_rtx);
3257
3258 if (BYTES_BIG_ENDIAN)
3259 {
3260 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3261 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3262 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3263 endian_offset -= (UNITS_PER_WORD
3264 - GET_MODE_SIZE (GET_MODE (inner)));
3265 }
3266 /* Note if the plus_constant doesn't make a valid address
3267 then this combination won't be accepted. */
3268 x = gen_rtx (MEM, mode,
3269 plus_constant (XEXP (inner, 0),
3270 (SUBREG_WORD (x) * UNITS_PER_WORD
3271 + endian_offset)));
3272 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
3273 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
3274 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
3275 return x;
3276 }
3277
3278 /* If we are in a SET_DEST, these other cases can't apply. */
3279 if (in_dest)
3280 return x;
3281
3282 /* Changing mode twice with SUBREG => just change it once,
3283 or not at all if changing back to starting mode. */
3284 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3285 {
3286 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3287 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3288 return SUBREG_REG (SUBREG_REG (x));
3289
3290 SUBST_INT (SUBREG_WORD (x),
3291 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3292 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3293 }
3294
3295 /* SUBREG of a hard register => just change the register number
3296 and/or mode. If the hard register is not valid in that mode,
3297 suppress this combination. If the hard register is the stack,
3298 frame, or argument pointer, leave this as a SUBREG. */
3299
3300 if (GET_CODE (SUBREG_REG (x)) == REG
3301 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3302 && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3303 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3304 && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3305 #endif
3306 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3307 && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3308 #endif
3309 && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3310 {
3311 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3312 mode))
3313 return gen_rtx (REG, mode,
3314 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3315 else
3316 return gen_rtx (CLOBBER, mode, const0_rtx);
3317 }
3318
3319 /* For a constant, try to pick up the part we want. Handle a full
3320 word and low-order part. Only do this if we are narrowing
3321 the constant; if it is being widened, we have no idea what
3322 the extra bits will have been set to. */
3323
3324 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3325 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3326 && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD
3327 && GET_MODE_CLASS (mode) == MODE_INT)
3328 {
3329 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3330 0, op0_mode);
3331 if (temp)
3332 return temp;
3333 }
3334
3335 /* If we want a subreg of a constant, at offset 0,
3336 take the low bits. On a little-endian machine, that's
3337 always valid. On a big-endian machine, it's valid
3338 only if the constant's mode fits in one word. */
3339 if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x)
3340 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (op0_mode)
3341 && (! WORDS_BIG_ENDIAN
3342 || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3343 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3344
3345 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3346 since we are saying that the high bits don't matter. */
3347 if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3348 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3349 return SUBREG_REG (x);
3350
3351 /* Note that we cannot do any narrowing for non-constants since
3352 we might have been counting on using the fact that some bits were
3353 zero. We now do this in the SET. */
3354
3355 break;
3356
3357 case NOT:
3358 /* (not (plus X -1)) can become (neg X). */
3359 if (GET_CODE (XEXP (x, 0)) == PLUS
3360 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3361 return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3362
3363 /* Similarly, (not (neg X)) is (plus X -1). */
3364 if (GET_CODE (XEXP (x, 0)) == NEG)
3365 return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3366 constm1_rtx);
3367
3368 /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
3369 if (GET_CODE (XEXP (x, 0)) == XOR
3370 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3371 && (temp = simplify_unary_operation (NOT, mode,
3372 XEXP (XEXP (x, 0), 1),
3373 mode)) != 0)
3374 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3375
3376 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3377 other than 1, but that is not valid. We could do a similar
3378 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3379 but this doesn't seem common enough to bother with. */
3380 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3381 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3382 return gen_rtx (ROTATE, mode, gen_unary (NOT, mode, mode, const1_rtx),
3383 XEXP (XEXP (x, 0), 1));
3384
3385 if (GET_CODE (XEXP (x, 0)) == SUBREG
3386 && subreg_lowpart_p (XEXP (x, 0))
3387 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3388 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3389 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3390 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3391 {
3392 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3393
3394 x = gen_rtx (ROTATE, inner_mode,
3395 gen_unary (NOT, inner_mode, inner_mode, const1_rtx),
3396 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3397 return gen_lowpart_for_combine (mode, x);
3398 }
3399
3400 #if STORE_FLAG_VALUE == -1
3401 /* (not (comparison foo bar)) can be done by reversing the comparison
3402 code if valid. */
3403 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3404 && reversible_comparison_p (XEXP (x, 0)))
3405 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3406 mode, XEXP (XEXP (x, 0), 0),
3407 XEXP (XEXP (x, 0), 1));
3408
3409 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3410 is (lt foo (const_int 0)), so we can perform the above
3411 simplification. */
3412
3413 if (XEXP (x, 1) == const1_rtx
3414 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3415 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3416 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3417 return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3418 #endif
3419
3420 /* Apply De Morgan's laws to reduce number of patterns for machines
3421 with negating logical insns (and-not, nand, etc.). If result has
3422 only one NOT, put it first, since that is how the patterns are
3423 coded. */
3424
3425 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3426 {
3427 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3428
3429 if (GET_CODE (in1) == NOT)
3430 in1 = XEXP (in1, 0);
3431 else
3432 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
3433
3434 if (GET_CODE (in2) == NOT)
3435 in2 = XEXP (in2, 0);
3436 else if (GET_CODE (in2) == CONST_INT
3437 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3438 in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
3439 else
3440 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
3441
3442 if (GET_CODE (in2) == NOT)
3443 {
3444 rtx tem = in2;
3445 in2 = in1; in1 = tem;
3446 }
3447
3448 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3449 mode, in1, in2);
3450 }
3451 break;
3452
3453 case NEG:
3454 /* (neg (plus X 1)) can become (not X). */
3455 if (GET_CODE (XEXP (x, 0)) == PLUS
3456 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3457 return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3458
3459 /* Similarly, (neg (not X)) is (plus X 1). */
3460 if (GET_CODE (XEXP (x, 0)) == NOT)
3461 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3462
3463 /* (neg (minus X Y)) can become (minus Y X). */
3464 if (GET_CODE (XEXP (x, 0)) == MINUS
3465 && (! FLOAT_MODE_P (mode)
3466 /* x-y != -(y-x) with IEEE floating point. */
3467 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3468 || flag_fast_math))
3469 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3470 XEXP (XEXP (x, 0), 0));
3471
3472 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3473 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3474 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3475 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3476
3477 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3478 if we can then eliminate the NEG (e.g.,
3479 if the operand is a constant). */
3480
3481 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3482 {
3483 temp = simplify_unary_operation (NEG, mode,
3484 XEXP (XEXP (x, 0), 0), mode);
3485 if (temp)
3486 {
3487 SUBST (XEXP (XEXP (x, 0), 0), temp);
3488 return XEXP (x, 0);
3489 }
3490 }
3491
3492 temp = expand_compound_operation (XEXP (x, 0));
3493
3494 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3495 replaced by (lshiftrt X C). This will convert
3496 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3497
3498 if (GET_CODE (temp) == ASHIFTRT
3499 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3500 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3501 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3502 INTVAL (XEXP (temp, 1)));
3503
3504 /* If X has only a single bit that might be nonzero, say, bit I, convert
3505 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3506 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3507 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3508 or a SUBREG of one since we'd be making the expression more
3509 complex if it was just a register. */
3510
3511 if (GET_CODE (temp) != REG
3512 && ! (GET_CODE (temp) == SUBREG
3513 && GET_CODE (SUBREG_REG (temp)) == REG)
3514 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3515 {
3516 rtx temp1 = simplify_shift_const
3517 (NULL_RTX, ASHIFTRT, mode,
3518 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3519 GET_MODE_BITSIZE (mode) - 1 - i),
3520 GET_MODE_BITSIZE (mode) - 1 - i);
3521
3522 /* If all we did was surround TEMP with the two shifts, we
3523 haven't improved anything, so don't use it. Otherwise,
3524 we are better off with TEMP1. */
3525 if (GET_CODE (temp1) != ASHIFTRT
3526 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3527 || XEXP (XEXP (temp1, 0), 0) != temp)
3528 return temp1;
3529 }
3530 break;
3531
3532 case TRUNCATE:
3533 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3534 SUBST (XEXP (x, 0),
3535 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3536 GET_MODE_MASK (mode), NULL_RTX, 0));
3537 break;
3538
3539 case FLOAT_TRUNCATE:
3540 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
3541 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
3542 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3543 return XEXP (XEXP (x, 0), 0);
3544
3545 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
3546 (OP:SF foo:SF) if OP is NEG or ABS. */
3547 if ((GET_CODE (XEXP (x, 0)) == ABS
3548 || GET_CODE (XEXP (x, 0)) == NEG)
3549 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
3550 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3551 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3552 XEXP (XEXP (XEXP (x, 0), 0), 0));
3553
3554 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
3555 is (float_truncate:SF x). */
3556 if (GET_CODE (XEXP (x, 0)) == SUBREG
3557 && subreg_lowpart_p (XEXP (x, 0))
3558 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
3559 return SUBREG_REG (XEXP (x, 0));
3560 break;
3561
3562 #ifdef HAVE_cc0
3563 case COMPARE:
3564 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3565 using cc0, in which case we want to leave it as a COMPARE
3566 so we can distinguish it from a register-register-copy. */
3567 if (XEXP (x, 1) == const0_rtx)
3568 return XEXP (x, 0);
3569
3570 /* In IEEE floating point, x-0 is not the same as x. */
3571 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3572 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
3573 || flag_fast_math)
3574 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
3575 return XEXP (x, 0);
3576 break;
3577 #endif
3578
3579 case CONST:
3580 /* (const (const X)) can become (const X). Do it this way rather than
3581 returning the inner CONST since CONST can be shared with a
3582 REG_EQUAL note. */
3583 if (GET_CODE (XEXP (x, 0)) == CONST)
3584 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3585 break;
3586
3587 #ifdef HAVE_lo_sum
3588 case LO_SUM:
3589 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
3590 can add in an offset. find_split_point will split this address up
3591 again if it doesn't match. */
3592 if (GET_CODE (XEXP (x, 0)) == HIGH
3593 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
3594 return XEXP (x, 1);
3595 break;
3596 #endif
3597
3598 case PLUS:
3599 /* If we have (plus (plus (A const) B)), associate it so that CONST is
3600 outermost. That's because that's the way indexed addresses are
3601 supposed to appear. This code used to check many more cases, but
3602 they are now checked elsewhere. */
3603 if (GET_CODE (XEXP (x, 0)) == PLUS
3604 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
3605 return gen_binary (PLUS, mode,
3606 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
3607 XEXP (x, 1)),
3608 XEXP (XEXP (x, 0), 1));
3609
3610 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
3611 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
3612 bit-field and can be replaced by either a sign_extend or a
3613 sign_extract. The `and' may be a zero_extend. */
3614 if (GET_CODE (XEXP (x, 0)) == XOR
3615 && GET_CODE (XEXP (x, 1)) == CONST_INT
3616 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3617 && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
3618 && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
3619 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3620 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
3621 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3622 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
3623 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
3624 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
3625 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
3626 == i + 1))))
3627 return simplify_shift_const
3628 (NULL_RTX, ASHIFTRT, mode,
3629 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3630 XEXP (XEXP (XEXP (x, 0), 0), 0),
3631 GET_MODE_BITSIZE (mode) - (i + 1)),
3632 GET_MODE_BITSIZE (mode) - (i + 1));
3633
3634 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
3635 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
3636 is 1. This produces better code than the alternative immediately
3637 below. */
3638 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3639 && reversible_comparison_p (XEXP (x, 0))
3640 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
3641 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
3642 return
3643 gen_unary (NEG, mode, mode,
3644 gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
3645 mode, XEXP (XEXP (x, 0), 0),
3646 XEXP (XEXP (x, 0), 1)));
3647
3648 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
3649 can become (ashiftrt (ashift (xor x 1) C) C) where C is
3650 the bitsize of the mode - 1. This allows simplification of
3651 "a = (b & 8) == 0;" */
3652 if (XEXP (x, 1) == constm1_rtx
3653 && GET_CODE (XEXP (x, 0)) != REG
3654 && ! (GET_CODE (XEXP (x,0)) == SUBREG
3655 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
3656 && nonzero_bits (XEXP (x, 0), mode) == 1)
3657 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
3658 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3659 gen_rtx_combine (XOR, mode,
3660 XEXP (x, 0), const1_rtx),
3661 GET_MODE_BITSIZE (mode) - 1),
3662 GET_MODE_BITSIZE (mode) - 1);
3663
3664 /* If we are adding two things that have no bits in common, convert
3665 the addition into an IOR. This will often be further simplified,
3666 for example in cases like ((a & 1) + (a & 2)), which can
3667 become a & 3. */
3668
3669 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3670 && (nonzero_bits (XEXP (x, 0), mode)
3671 & nonzero_bits (XEXP (x, 1), mode)) == 0)
3672 return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
3673 break;
3674
3675 case MINUS:
3676 #if STORE_FLAG_VALUE == 1
3677 /* (minus 1 (comparison foo bar)) can be done by reversing the comparison
3678 code if valid. */
3679 if (XEXP (x, 0) == const1_rtx
3680 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
3681 && reversible_comparison_p (XEXP (x, 1)))
3682 return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
3683 mode, XEXP (XEXP (x, 1), 0),
3684 XEXP (XEXP (x, 1), 1));
3685 #endif
3686
3687 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
3688 (and <foo> (const_int pow2-1)) */
3689 if (GET_CODE (XEXP (x, 1)) == AND
3690 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3691 && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
3692 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3693 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
3694 - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
3695
3696 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
3697 integers. */
3698 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
3699 return gen_binary (MINUS, mode,
3700 gen_binary (MINUS, mode, XEXP (x, 0),
3701 XEXP (XEXP (x, 1), 0)),
3702 XEXP (XEXP (x, 1), 1));
3703 break;
3704
3705 case MULT:
3706 /* If we have (mult (plus A B) C), apply the distributive law and then
3707 the inverse distributive law to see if things simplify. This
3708 occurs mostly in addresses, often when unrolling loops. */
3709
3710 if (GET_CODE (XEXP (x, 0)) == PLUS)
3711 {
3712 x = apply_distributive_law
3713 (gen_binary (PLUS, mode,
3714 gen_binary (MULT, mode,
3715 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
3716 gen_binary (MULT, mode,
3717 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
3718
3719 if (GET_CODE (x) != MULT)
3720 return x;
3721 }
3722 break;
3723
3724 case UDIV:
3725 /* If this is a divide by a power of two, treat it as a shift if
3726 its first operand is a shift. */
3727 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3728 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
3729 && (GET_CODE (XEXP (x, 0)) == ASHIFT
3730 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
3731 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
3732 || GET_CODE (XEXP (x, 0)) == ROTATE
3733 || GET_CODE (XEXP (x, 0)) == ROTATERT))
3734 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
3735 break;
3736
3737 case EQ: case NE:
3738 case GT: case GTU: case GE: case GEU:
3739 case LT: case LTU: case LE: case LEU:
3740 /* If the first operand is a condition code, we can't do anything
3741 with it. */
3742 if (GET_CODE (XEXP (x, 0)) == COMPARE
3743 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
3744 #ifdef HAVE_cc0
3745 && XEXP (x, 0) != cc0_rtx
3746 #endif
3747 ))
3748 {
3749 rtx op0 = XEXP (x, 0);
3750 rtx op1 = XEXP (x, 1);
3751 enum rtx_code new_code;
3752
3753 if (GET_CODE (op0) == COMPARE)
3754 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
3755
3756 /* Simplify our comparison, if possible. */
3757 new_code = simplify_comparison (code, &op0, &op1);
3758
3759 #if STORE_FLAG_VALUE == 1
3760 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
3761 if only the low-order bit is possibly nonzero in X (such as when
3762 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
3763 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
3764 known to be either 0 or -1, NE becomes a NEG and EQ becomes
3765 (plus X 1).
3766
3767 Remove any ZERO_EXTRACT we made when thinking this was a
3768 comparison. It may now be simpler to use, e.g., an AND. If a
3769 ZERO_EXTRACT is indeed appropriate, it will be placed back by
3770 the call to make_compound_operation in the SET case. */
3771
3772 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3773 && op1 == const0_rtx
3774 && nonzero_bits (op0, mode) == 1)
3775 return gen_lowpart_for_combine (mode,
3776 expand_compound_operation (op0));
3777
3778 else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3779 && op1 == const0_rtx
3780 && (num_sign_bit_copies (op0, mode)
3781 == GET_MODE_BITSIZE (mode)))
3782 {
3783 op0 = expand_compound_operation (op0);
3784 return gen_unary (NEG, mode, mode,
3785 gen_lowpart_for_combine (mode, op0));
3786 }
3787
3788 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3789 && op1 == const0_rtx
3790 && nonzero_bits (op0, mode) == 1)
3791 {
3792 op0 = expand_compound_operation (op0);
3793 return gen_binary (XOR, mode,
3794 gen_lowpart_for_combine (mode, op0),
3795 const1_rtx);
3796 }
3797
3798 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3799 && op1 == const0_rtx
3800 && (num_sign_bit_copies (op0, mode)
3801 == GET_MODE_BITSIZE (mode)))
3802 {
3803 op0 = expand_compound_operation (op0);
3804 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
3805 }
3806 #endif
3807
3808 #if STORE_FLAG_VALUE == -1
3809 /* If STORE_FLAG_VALUE is -1, we have cases similar to
3810 those above. */
3811 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3812 && op1 == const0_rtx
3813 && (num_sign_bit_copies (op0, mode)
3814 == GET_MODE_BITSIZE (mode)))
3815 return gen_lowpart_for_combine (mode,
3816 expand_compound_operation (op0));
3817
3818 else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3819 && op1 == const0_rtx
3820 && nonzero_bits (op0, mode) == 1)
3821 {
3822 op0 = expand_compound_operation (op0);
3823 return gen_unary (NEG, mode, mode,
3824 gen_lowpart_for_combine (mode, op0));
3825 }
3826
3827 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3828 && op1 == const0_rtx
3829 && (num_sign_bit_copies (op0, mode)
3830 == GET_MODE_BITSIZE (mode)))
3831 {
3832 op0 = expand_compound_operation (op0);
3833 return gen_unary (NOT, mode, mode,
3834 gen_lowpart_for_combine (mode, op0));
3835 }
3836
3837 /* If X is 0/1, (eq X 0) is X-1. */
3838 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3839 && op1 == const0_rtx
3840 && nonzero_bits (op0, mode) == 1)
3841 {
3842 op0 = expand_compound_operation (op0);
3843 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
3844 }
3845 #endif
3846
3847 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
3848 one bit that might be nonzero, we can convert (ne x 0) to
3849 (ashift x c) where C puts the bit in the sign bit. Remove any
3850 AND with STORE_FLAG_VALUE when we are done, since we are only
3851 going to test the sign bit. */
3852 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3853 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3854 && (STORE_FLAG_VALUE
3855 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
3856 && op1 == const0_rtx
3857 && mode == GET_MODE (op0)
3858 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
3859 {
3860 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3861 expand_compound_operation (op0),
3862 GET_MODE_BITSIZE (mode) - 1 - i);
3863 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
3864 return XEXP (x, 0);
3865 else
3866 return x;
3867 }
3868
3869 /* If the code changed, return a whole new comparison. */
3870 if (new_code != code)
3871 return gen_rtx_combine (new_code, mode, op0, op1);
3872
3873 /* Otherwise, keep this operation, but maybe change its operands.
3874 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
3875 SUBST (XEXP (x, 0), op0);
3876 SUBST (XEXP (x, 1), op1);
3877 }
3878 break;
3879
3880 case IF_THEN_ELSE:
3881 return simplify_if_then_else (x);
3882
3883 case ZERO_EXTRACT:
3884 case SIGN_EXTRACT:
3885 case ZERO_EXTEND:
3886 case SIGN_EXTEND:
3887 /* If we are processing SET_DEST, we are done. */
3888 if (in_dest)
3889 return x;
3890
3891 return expand_compound_operation (x);
3892
3893 case SET:
3894 return simplify_set (x);
3895
3896 case AND:
3897 case IOR:
3898 case XOR:
3899 return simplify_logical (x, last);
3900
3901 case ABS:
3902 /* (abs (neg <foo>)) -> (abs <foo>) */
3903 if (GET_CODE (XEXP (x, 0)) == NEG)
3904 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3905
3906 /* If operand is something known to be positive, ignore the ABS. */
3907 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
3908 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
3909 <= HOST_BITS_PER_WIDE_INT)
3910 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3911 & ((HOST_WIDE_INT) 1
3912 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
3913 == 0)))
3914 return XEXP (x, 0);
3915
3916
3917 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
3918 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
3919 return gen_rtx_combine (NEG, mode, XEXP (x, 0));
3920
3921 break;
3922
3923 case FFS:
3924 /* (ffs (*_extend <X>)) = (ffs <X>) */
3925 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3926 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3927 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3928 break;
3929
3930 case FLOAT:
3931 /* (float (sign_extend <X>)) = (float <X>). */
3932 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
3933 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3934 break;
3935
3936 case ASHIFT:
3937 case LSHIFTRT:
3938 case ASHIFTRT:
3939 case ROTATE:
3940 case ROTATERT:
3941 /* If this is a shift by a constant amount, simplify it. */
3942 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
3943 return simplify_shift_const (x, code, mode, XEXP (x, 0),
3944 INTVAL (XEXP (x, 1)));
3945
3946 #ifdef SHIFT_COUNT_TRUNCATED
3947 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
3948 SUBST (XEXP (x, 1),
3949 force_to_mode (XEXP (x, 1), GET_MODE (x),
3950 ((HOST_WIDE_INT) 1
3951 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
3952 - 1,
3953 NULL_RTX, 0));
3954 #endif
3955
3956 break;
3957 }
3958
3959 return x;
3960 }
3961 \f
3962 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
3963
3964 static rtx
3965 simplify_if_then_else (x)
3966 rtx x;
3967 {
3968 enum machine_mode mode = GET_MODE (x);
3969 rtx cond = XEXP (x, 0);
3970 rtx true = XEXP (x, 1);
3971 rtx false = XEXP (x, 2);
3972 enum rtx_code true_code = GET_CODE (cond);
3973 int comparison_p = GET_RTX_CLASS (true_code) == '<';
3974 rtx temp;
3975 int i;
3976
3977 /* Simplify storing of the truth value. */
3978 if (comparison_p && true == const_true_rtx && false == const0_rtx)
3979 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
3980
3981 /* Also when the truth value has to be reversed. */
3982 if (comparison_p && reversible_comparison_p (cond)
3983 && true == const0_rtx && false == const_true_rtx)
3984 return gen_binary (reverse_condition (true_code),
3985 mode, XEXP (cond, 0), XEXP (cond, 1));
3986
3987 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
3988 in it is being compared against certain values. Get the true and false
3989 comparisons and see if that says anything about the value of each arm. */
3990
3991 if (comparison_p && reversible_comparison_p (cond)
3992 && GET_CODE (XEXP (cond, 0)) == REG)
3993 {
3994 HOST_WIDE_INT nzb;
3995 rtx from = XEXP (cond, 0);
3996 enum rtx_code false_code = reverse_condition (true_code);
3997 rtx true_val = XEXP (cond, 1);
3998 rtx false_val = true_val;
3999 int swapped = 0;
4000
4001 /* If FALSE_CODE is EQ, swap the codes and arms. */
4002
4003 if (false_code == EQ)
4004 {
4005 swapped = 1, true_code = EQ, false_code = NE;
4006 temp = true, true = false, false = temp;
4007 }
4008
4009 /* If we are comparing against zero and the expression being tested has
4010 only a single bit that might be nonzero, that is its value when it is
4011 not equal to zero. Similarly if it is known to be -1 or 0. */
4012
4013 if (true_code == EQ && true_val == const0_rtx
4014 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4015 false_code = EQ, false_val = GEN_INT (nzb);
4016 else if (true_code == EQ && true_val == const0_rtx
4017 && (num_sign_bit_copies (from, GET_MODE (from))
4018 == GET_MODE_BITSIZE (GET_MODE (from))))
4019 false_code = EQ, false_val = constm1_rtx;
4020
4021 /* Now simplify an arm if we know the value of the register in the
4022 branch and it is used in the arm. Be careful due to the potential
4023 of locally-shared RTL. */
4024
4025 if (reg_mentioned_p (from, true))
4026 true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
4027 pc_rtx, pc_rtx, 0, 0);
4028 if (reg_mentioned_p (from, false))
4029 false = subst (known_cond (copy_rtx (false), false_code,
4030 from, false_val),
4031 pc_rtx, pc_rtx, 0, 0);
4032
4033 SUBST (XEXP (x, 1), swapped ? false : true);
4034 SUBST (XEXP (x, 2), swapped ? true : false);
4035
4036 true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
4037 }
4038
4039 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4040 reversed, do so to avoid needing two sets of patterns for
4041 subtract-and-branch insns. Similarly if we have a constant in the true
4042 arm, the false arm is the same as the first operand of the comparison, or
4043 the false arm is more complicated than the true arm. */
4044
4045 if (comparison_p && reversible_comparison_p (cond)
4046 && (true == pc_rtx
4047 || (CONSTANT_P (true)
4048 && GET_CODE (false) != CONST_INT && false != pc_rtx)
4049 || true == const0_rtx
4050 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4051 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4052 || (GET_CODE (true) == SUBREG
4053 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4054 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4055 || reg_mentioned_p (true, false)
4056 || rtx_equal_p (false, XEXP (cond, 0))))
4057 {
4058 true_code = reverse_condition (true_code);
4059 SUBST (XEXP (x, 0),
4060 gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
4061 XEXP (cond, 1)));
4062
4063 SUBST (XEXP (x, 1), false);
4064 SUBST (XEXP (x, 2), true);
4065
4066 temp = true, true = false, false = temp, cond = XEXP (x, 0);
4067
4068 /* It is possible that the conditional has been simplified out. */
4069 true_code = GET_CODE (cond);
4070 comparison_p = GET_RTX_CLASS (true_code) == '<';
4071 }
4072
4073 /* If the two arms are identical, we don't need the comparison. */
4074
4075 if (rtx_equal_p (true, false) && ! side_effects_p (cond))
4076 return true;
4077
4078 /* Convert a == b ? b : a to "a". */
4079 if (true_code == EQ && ! side_effects_p (cond)
4080 && rtx_equal_p (XEXP (cond, 0), false)
4081 && rtx_equal_p (XEXP (cond, 1), true))
4082 return false;
4083 else if (true_code == NE && ! side_effects_p (cond)
4084 && rtx_equal_p (XEXP (cond, 0), true)
4085 && rtx_equal_p (XEXP (cond, 1), false))
4086 return true;
4087
4088 /* Look for cases where we have (abs x) or (neg (abs X)). */
4089
4090 if (GET_MODE_CLASS (mode) == MODE_INT
4091 && GET_CODE (false) == NEG
4092 && rtx_equal_p (true, XEXP (false, 0))
4093 && comparison_p
4094 && rtx_equal_p (true, XEXP (cond, 0))
4095 && ! side_effects_p (true))
4096 switch (true_code)
4097 {
4098 case GT:
4099 case GE:
4100 return gen_unary (ABS, mode, mode, true);
4101 case LT:
4102 case LE:
4103 return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
4104 }
4105
4106 /* Look for MIN or MAX. */
4107
4108 if ((! FLOAT_MODE_P (mode) || flag_fast_math)
4109 && comparison_p
4110 && rtx_equal_p (XEXP (cond, 0), true)
4111 && rtx_equal_p (XEXP (cond, 1), false)
4112 && ! side_effects_p (cond))
4113 switch (true_code)
4114 {
4115 case GE:
4116 case GT:
4117 return gen_binary (SMAX, mode, true, false);
4118 case LE:
4119 case LT:
4120 return gen_binary (SMIN, mode, true, false);
4121 case GEU:
4122 case GTU:
4123 return gen_binary (UMAX, mode, true, false);
4124 case LEU:
4125 case LTU:
4126 return gen_binary (UMIN, mode, true, false);
4127 }
4128
4129 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
4130
4131 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4132 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4133 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4134 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4135 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4136 neither of the above, but it isn't worth checking for. */
4137
4138 if (comparison_p && mode != VOIDmode && ! side_effects_p (x))
4139 {
4140 rtx t = make_compound_operation (true, SET);
4141 rtx f = make_compound_operation (false, SET);
4142 rtx cond_op0 = XEXP (cond, 0);
4143 rtx cond_op1 = XEXP (cond, 1);
4144 enum rtx_code op, extend_op = NIL;
4145 enum machine_mode m = mode;
4146 rtx z = 0, c1;
4147
4148 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4149 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4150 || GET_CODE (t) == ASHIFT
4151 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4152 && rtx_equal_p (XEXP (t, 0), f))
4153 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4154
4155 /* If an identity-zero op is commutative, check whether there
4156 would be a match if we swapped the operands. */
4157 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4158 || GET_CODE (t) == XOR)
4159 && rtx_equal_p (XEXP (t, 1), f))
4160 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4161 else if (GET_CODE (t) == SIGN_EXTEND
4162 && (GET_CODE (XEXP (t, 0)) == PLUS
4163 || GET_CODE (XEXP (t, 0)) == MINUS
4164 || GET_CODE (XEXP (t, 0)) == IOR
4165 || GET_CODE (XEXP (t, 0)) == XOR
4166 || GET_CODE (XEXP (t, 0)) == ASHIFT
4167 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4168 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4169 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4170 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4171 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4172 && (num_sign_bit_copies (f, GET_MODE (f))
4173 > (GET_MODE_BITSIZE (mode)
4174 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4175 {
4176 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4177 extend_op = SIGN_EXTEND;
4178 m = GET_MODE (XEXP (t, 0));
4179 }
4180 else if (GET_CODE (t) == SIGN_EXTEND
4181 && (GET_CODE (XEXP (t, 0)) == PLUS
4182 || GET_CODE (XEXP (t, 0)) == IOR
4183 || GET_CODE (XEXP (t, 0)) == XOR)
4184 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4185 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4186 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4187 && (num_sign_bit_copies (f, GET_MODE (f))
4188 > (GET_MODE_BITSIZE (mode)
4189 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4190 {
4191 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4192 extend_op = SIGN_EXTEND;
4193 m = GET_MODE (XEXP (t, 0));
4194 }
4195 else if (GET_CODE (t) == ZERO_EXTEND
4196 && (GET_CODE (XEXP (t, 0)) == PLUS
4197 || GET_CODE (XEXP (t, 0)) == MINUS
4198 || GET_CODE (XEXP (t, 0)) == IOR
4199 || GET_CODE (XEXP (t, 0)) == XOR
4200 || GET_CODE (XEXP (t, 0)) == ASHIFT
4201 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4202 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4203 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4204 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4205 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4206 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4207 && ((nonzero_bits (f, GET_MODE (f))
4208 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4209 == 0))
4210 {
4211 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4212 extend_op = ZERO_EXTEND;
4213 m = GET_MODE (XEXP (t, 0));
4214 }
4215 else if (GET_CODE (t) == ZERO_EXTEND
4216 && (GET_CODE (XEXP (t, 0)) == PLUS
4217 || GET_CODE (XEXP (t, 0)) == IOR
4218 || GET_CODE (XEXP (t, 0)) == XOR)
4219 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4220 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4221 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4222 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4223 && ((nonzero_bits (f, GET_MODE (f))
4224 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4225 == 0))
4226 {
4227 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4228 extend_op = ZERO_EXTEND;
4229 m = GET_MODE (XEXP (t, 0));
4230 }
4231
4232 if (z)
4233 {
4234 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4235 pc_rtx, pc_rtx, 0, 0);
4236 temp = gen_binary (MULT, m, temp,
4237 gen_binary (MULT, m, c1, const_true_rtx));
4238 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4239 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4240
4241 if (extend_op != NIL)
4242 temp = gen_unary (extend_op, mode, m, temp);
4243
4244 return temp;
4245 }
4246 }
4247 #endif
4248
4249 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4250 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4251 negation of a single bit, we can convert this operation to a shift. We
4252 can actually do this more generally, but it doesn't seem worth it. */
4253
4254 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4255 && false == const0_rtx && GET_CODE (true) == CONST_INT
4256 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4257 && (i = exact_log2 (INTVAL (true))) >= 0)
4258 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4259 == GET_MODE_BITSIZE (mode))
4260 && (i = exact_log2 (- INTVAL (true))) >= 0)))
4261 return
4262 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4263 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4264
4265 return x;
4266 }
4267 \f
4268 /* Simplify X, a SET expression. Return the new expression. */
4269
4270 static rtx
4271 simplify_set (x)
4272 rtx x;
4273 {
4274 rtx src = SET_SRC (x);
4275 rtx dest = SET_DEST (x);
4276 enum machine_mode mode
4277 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4278 rtx other_insn;
4279 rtx *cc_use;
4280
4281 /* (set (pc) (return)) gets written as (return). */
4282 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4283 return src;
4284
4285 /* Now that we know for sure which bits of SRC we are using, see if we can
4286 simplify the expression for the object knowing that we only need the
4287 low-order bits. */
4288
4289 if (GET_MODE_CLASS (mode) == MODE_INT)
4290 src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
4291
4292 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4293 the comparison result and try to simplify it unless we already have used
4294 undobuf.other_insn. */
4295 if ((GET_CODE (src) == COMPARE
4296 #ifdef HAVE_cc0
4297 || dest == cc0_rtx
4298 #endif
4299 )
4300 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4301 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4302 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4303 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4304 {
4305 enum rtx_code old_code = GET_CODE (*cc_use);
4306 enum rtx_code new_code;
4307 rtx op0, op1;
4308 int other_changed = 0;
4309 enum machine_mode compare_mode = GET_MODE (dest);
4310
4311 if (GET_CODE (src) == COMPARE)
4312 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4313 else
4314 op0 = src, op1 = const0_rtx;
4315
4316 /* Simplify our comparison, if possible. */
4317 new_code = simplify_comparison (old_code, &op0, &op1);
4318
4319 #ifdef EXTRA_CC_MODES
4320 /* If this machine has CC modes other than CCmode, check to see if we
4321 need to use a different CC mode here. */
4322 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4323 #endif /* EXTRA_CC_MODES */
4324
4325 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4326 /* If the mode changed, we have to change SET_DEST, the mode in the
4327 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4328 a hard register, just build new versions with the proper mode. If it
4329 is a pseudo, we lose unless it is only time we set the pseudo, in
4330 which case we can safely change its mode. */
4331 if (compare_mode != GET_MODE (dest))
4332 {
4333 int regno = REGNO (dest);
4334 rtx new_dest = gen_rtx (REG, compare_mode, regno);
4335
4336 if (regno < FIRST_PSEUDO_REGISTER
4337 || (reg_n_sets[regno] == 1 && ! REG_USERVAR_P (dest)))
4338 {
4339 if (regno >= FIRST_PSEUDO_REGISTER)
4340 SUBST (regno_reg_rtx[regno], new_dest);
4341
4342 SUBST (SET_DEST (x), new_dest);
4343 SUBST (XEXP (*cc_use, 0), new_dest);
4344 other_changed = 1;
4345
4346 dest = new_dest;
4347 }
4348 }
4349 #endif
4350
4351 /* If the code changed, we have to build a new comparison in
4352 undobuf.other_insn. */
4353 if (new_code != old_code)
4354 {
4355 unsigned HOST_WIDE_INT mask;
4356
4357 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
4358 dest, const0_rtx));
4359
4360 /* If the only change we made was to change an EQ into an NE or
4361 vice versa, OP0 has only one bit that might be nonzero, and OP1
4362 is zero, check if changing the user of the condition code will
4363 produce a valid insn. If it won't, we can keep the original code
4364 in that insn by surrounding our operation with an XOR. */
4365
4366 if (((old_code == NE && new_code == EQ)
4367 || (old_code == EQ && new_code == NE))
4368 && ! other_changed && op1 == const0_rtx
4369 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4370 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4371 {
4372 rtx pat = PATTERN (other_insn), note = 0;
4373 int scratches;
4374
4375 if ((recog_for_combine (&pat, other_insn, &note, &scratches) < 0
4376 && ! check_asm_operands (pat)))
4377 {
4378 PUT_CODE (*cc_use, old_code);
4379 other_insn = 0;
4380
4381 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4382 }
4383 }
4384
4385 other_changed = 1;
4386 }
4387
4388 if (other_changed)
4389 undobuf.other_insn = other_insn;
4390
4391 #ifdef HAVE_cc0
4392 /* If we are now comparing against zero, change our source if
4393 needed. If we do not use cc0, we always have a COMPARE. */
4394 if (op1 == const0_rtx && dest == cc0_rtx)
4395 {
4396 SUBST (SET_SRC (x), op0);
4397 src = op0;
4398 }
4399 else
4400 #endif
4401
4402 /* Otherwise, if we didn't previously have a COMPARE in the
4403 correct mode, we need one. */
4404 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
4405 {
4406 SUBST (SET_SRC (x),
4407 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
4408 src = SET_SRC (x);
4409 }
4410 else
4411 {
4412 /* Otherwise, update the COMPARE if needed. */
4413 SUBST (XEXP (src, 0), op0);
4414 SUBST (XEXP (src, 1), op1);
4415 }
4416 }
4417 else
4418 {
4419 /* Get SET_SRC in a form where we have placed back any
4420 compound expressions. Then do the checks below. */
4421 src = make_compound_operation (src, SET);
4422 SUBST (SET_SRC (x), src);
4423 }
4424
4425 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
4426 and X being a REG or (subreg (reg)), we may be able to convert this to
4427 (set (subreg:m2 x) (op)).
4428
4429 We can always do this if M1 is narrower than M2 because that means that
4430 we only care about the low bits of the result.
4431
4432 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
4433 perform a narrower operation that requested since the high-order bits will
4434 be undefined. On machine where it is defined, this transformation is safe
4435 as long as M1 and M2 have the same number of words. */
4436
4437 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4438 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
4439 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
4440 / UNITS_PER_WORD)
4441 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4442 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
4443 #ifndef WORD_REGISTER_OPERATIONS
4444 && (GET_MODE_SIZE (GET_MODE (src))
4445 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4446 #endif
4447 #ifdef CLASS_CANNOT_CHANGE_SIZE
4448 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
4449 && (TEST_HARD_REG_BIT
4450 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
4451 REGNO (dest)))
4452 && (GET_MODE_SIZE (GET_MODE (src))
4453 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4454 #endif
4455 && (GET_CODE (dest) == REG
4456 || (GET_CODE (dest) == SUBREG
4457 && GET_CODE (SUBREG_REG (dest)) == REG)))
4458 {
4459 SUBST (SET_DEST (x),
4460 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
4461 dest));
4462 SUBST (SET_SRC (x), SUBREG_REG (src));
4463
4464 src = SET_SRC (x), dest = SET_DEST (x);
4465 }
4466
4467 #ifdef LOAD_EXTEND_OP
4468 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
4469 would require a paradoxical subreg. Replace the subreg with a
4470 zero_extend to avoid the reload that would otherwise be required. */
4471
4472 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4473 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
4474 && SUBREG_WORD (src) == 0
4475 && (GET_MODE_SIZE (GET_MODE (src))
4476 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4477 && GET_CODE (SUBREG_REG (src)) == MEM)
4478 {
4479 SUBST (SET_SRC (x),
4480 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
4481 GET_MODE (src), XEXP (src, 0)));
4482
4483 src = SET_SRC (x);
4484 }
4485 #endif
4486
4487 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
4488 are comparing an item known to be 0 or -1 against 0, use a logical
4489 operation instead. Check for one of the arms being an IOR of the other
4490 arm with some value. We compute three terms to be IOR'ed together. In
4491 practice, at most two will be nonzero. Then we do the IOR's. */
4492
4493 if (GET_CODE (dest) != PC
4494 && GET_CODE (src) == IF_THEN_ELSE
4495 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
4496 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
4497 && XEXP (XEXP (src, 0), 1) == const0_rtx
4498 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
4499 #ifdef HAVE_conditional_move
4500 && ! can_conditionally_move_p (GET_MODE (src))
4501 #endif
4502 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
4503 GET_MODE (XEXP (XEXP (src, 0), 0)))
4504 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
4505 && ! side_effects_p (src))
4506 {
4507 rtx true = (GET_CODE (XEXP (src, 0)) == NE
4508 ? XEXP (src, 1) : XEXP (src, 2));
4509 rtx false = (GET_CODE (XEXP (src, 0)) == NE
4510 ? XEXP (src, 2) : XEXP (src, 1));
4511 rtx term1 = const0_rtx, term2, term3;
4512
4513 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
4514 term1 = false, true = XEXP (true, 1), false = const0_rtx;
4515 else if (GET_CODE (true) == IOR
4516 && rtx_equal_p (XEXP (true, 1), false))
4517 term1 = false, true = XEXP (true, 0), false = const0_rtx;
4518 else if (GET_CODE (false) == IOR
4519 && rtx_equal_p (XEXP (false, 0), true))
4520 term1 = true, false = XEXP (false, 1), true = const0_rtx;
4521 else if (GET_CODE (false) == IOR
4522 && rtx_equal_p (XEXP (false, 1), true))
4523 term1 = true, false = XEXP (false, 0), true = const0_rtx;
4524
4525 term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
4526 term3 = gen_binary (AND, GET_MODE (src),
4527 gen_unary (NOT, GET_MODE (src), GET_MODE (src),
4528 XEXP (XEXP (src, 0), 0)),
4529 false);
4530
4531 SUBST (SET_SRC (x),
4532 gen_binary (IOR, GET_MODE (src),
4533 gen_binary (IOR, GET_MODE (src), term1, term2),
4534 term3));
4535
4536 src = SET_SRC (x);
4537 }
4538
4539 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
4540 whole thing fail. */
4541 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
4542 return src;
4543 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
4544 return dest;
4545 else
4546 /* Convert this into a field assignment operation, if possible. */
4547 return make_field_assignment (x);
4548 }
4549 \f
4550 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
4551 result. LAST is nonzero if this is the last retry. */
4552
4553 static rtx
4554 simplify_logical (x, last)
4555 rtx x;
4556 int last;
4557 {
4558 enum machine_mode mode = GET_MODE (x);
4559 rtx op0 = XEXP (x, 0);
4560 rtx op1 = XEXP (x, 1);
4561
4562 switch (GET_CODE (x))
4563 {
4564 case AND:
4565 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
4566 insn (and may simplify more). */
4567 if (GET_CODE (op0) == XOR
4568 && rtx_equal_p (XEXP (op0, 0), op1)
4569 && ! side_effects_p (op1))
4570 x = gen_binary (AND, mode,
4571 gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
4572
4573 if (GET_CODE (op0) == XOR
4574 && rtx_equal_p (XEXP (op0, 1), op1)
4575 && ! side_effects_p (op1))
4576 x = gen_binary (AND, mode,
4577 gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
4578
4579 /* Similarly for (~ (A ^ B)) & A. */
4580 if (GET_CODE (op0) == NOT
4581 && GET_CODE (XEXP (op0, 0)) == XOR
4582 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
4583 && ! side_effects_p (op1))
4584 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
4585
4586 if (GET_CODE (op0) == NOT
4587 && GET_CODE (XEXP (op0, 0)) == XOR
4588 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
4589 && ! side_effects_p (op1))
4590 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
4591
4592 if (GET_CODE (op1) == CONST_INT)
4593 {
4594 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
4595
4596 /* If we have (ior (and (X C1) C2)) and the next restart would be
4597 the last, simplify this by making C1 as small as possible
4598 and then exit. */
4599 if (last
4600 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
4601 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4602 && GET_CODE (op1) == CONST_INT)
4603 return gen_binary (IOR, mode,
4604 gen_binary (AND, mode, XEXP (op0, 0),
4605 GEN_INT (INTVAL (XEXP (op0, 1))
4606 & ~ INTVAL (op1))), op1);
4607
4608 if (GET_CODE (x) != AND)
4609 return x;
4610
4611 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
4612 || GET_RTX_CLASS (GET_CODE (x)) == '2')
4613 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4614 }
4615
4616 /* Convert (A | B) & A to A. */
4617 if (GET_CODE (op0) == IOR
4618 && (rtx_equal_p (XEXP (op0, 0), op1)
4619 || rtx_equal_p (XEXP (op0, 1), op1))
4620 && ! side_effects_p (XEXP (op0, 0))
4621 && ! side_effects_p (XEXP (op0, 1)))
4622 return op1;
4623
4624 /* In the following group of tests (and those in case IOR below),
4625 we start with some combination of logical operations and apply
4626 the distributive law followed by the inverse distributive law.
4627 Most of the time, this results in no change. However, if some of
4628 the operands are the same or inverses of each other, simplifications
4629 will result.
4630
4631 For example, (and (ior A B) (not B)) can occur as the result of
4632 expanding a bit field assignment. When we apply the distributive
4633 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
4634 which then simplifies to (and (A (not B))).
4635
4636 If we have (and (ior A B) C), apply the distributive law and then
4637 the inverse distributive law to see if things simplify. */
4638
4639 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
4640 {
4641 x = apply_distributive_law
4642 (gen_binary (GET_CODE (op0), mode,
4643 gen_binary (AND, mode, XEXP (op0, 0), op1),
4644 gen_binary (AND, mode, XEXP (op0, 1), op1)));
4645 if (GET_CODE (x) != AND)
4646 return x;
4647 }
4648
4649 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
4650 return apply_distributive_law
4651 (gen_binary (GET_CODE (op1), mode,
4652 gen_binary (AND, mode, XEXP (op1, 0), op0),
4653 gen_binary (AND, mode, XEXP (op1, 1), op0)));
4654
4655 /* Similarly, taking advantage of the fact that
4656 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
4657
4658 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
4659 return apply_distributive_law
4660 (gen_binary (XOR, mode,
4661 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
4662 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
4663
4664 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
4665 return apply_distributive_law
4666 (gen_binary (XOR, mode,
4667 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
4668 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
4669 break;
4670
4671 case IOR:
4672 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
4673 if (GET_CODE (op1) == CONST_INT
4674 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4675 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
4676 return op1;
4677
4678 /* Convert (A & B) | A to A. */
4679 if (GET_CODE (op0) == AND
4680 && (rtx_equal_p (XEXP (op0, 0), op1)
4681 || rtx_equal_p (XEXP (op0, 1), op1))
4682 && ! side_effects_p (XEXP (op0, 0))
4683 && ! side_effects_p (XEXP (op0, 1)))
4684 return op1;
4685
4686 /* If we have (ior (and A B) C), apply the distributive law and then
4687 the inverse distributive law to see if things simplify. */
4688
4689 if (GET_CODE (op0) == AND)
4690 {
4691 x = apply_distributive_law
4692 (gen_binary (AND, mode,
4693 gen_binary (IOR, mode, XEXP (op0, 0), op1),
4694 gen_binary (IOR, mode, XEXP (op0, 1), op1)));
4695
4696 if (GET_CODE (x) != IOR)
4697 return x;
4698 }
4699
4700 if (GET_CODE (op1) == AND)
4701 {
4702 x = apply_distributive_law
4703 (gen_binary (AND, mode,
4704 gen_binary (IOR, mode, XEXP (op1, 0), op0),
4705 gen_binary (IOR, mode, XEXP (op1, 1), op0)));
4706
4707 if (GET_CODE (x) != IOR)
4708 return x;
4709 }
4710
4711 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
4712 mode size to (rotate A CX). */
4713
4714 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
4715 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
4716 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
4717 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4718 && GET_CODE (XEXP (op1, 1)) == CONST_INT
4719 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
4720 == GET_MODE_BITSIZE (mode)))
4721 return gen_rtx (ROTATE, mode, XEXP (op0, 0),
4722 (GET_CODE (op0) == ASHIFT
4723 ? XEXP (op0, 1) : XEXP (op1, 1)));
4724
4725 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
4726 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
4727 does not affect any of the bits in OP1, it can really be done
4728 as a PLUS and we can associate. We do this by seeing if OP1
4729 can be safely shifted left C bits. */
4730 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
4731 && GET_CODE (XEXP (op0, 0)) == PLUS
4732 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
4733 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4734 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
4735 {
4736 int count = INTVAL (XEXP (op0, 1));
4737 HOST_WIDE_INT mask = INTVAL (op1) << count;
4738
4739 if (mask >> count == INTVAL (op1)
4740 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
4741 {
4742 SUBST (XEXP (XEXP (op0, 0), 1),
4743 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
4744 return op0;
4745 }
4746 }
4747 break;
4748
4749 case XOR:
4750 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
4751 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
4752 (NOT y). */
4753 {
4754 int num_negated = 0;
4755
4756 if (GET_CODE (op0) == NOT)
4757 num_negated++, op0 = XEXP (op0, 0);
4758 if (GET_CODE (op1) == NOT)
4759 num_negated++, op1 = XEXP (op1, 0);
4760
4761 if (num_negated == 2)
4762 {
4763 SUBST (XEXP (x, 0), op0);
4764 SUBST (XEXP (x, 1), op1);
4765 }
4766 else if (num_negated == 1)
4767 return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
4768 }
4769
4770 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
4771 correspond to a machine insn or result in further simplifications
4772 if B is a constant. */
4773
4774 if (GET_CODE (op0) == AND
4775 && rtx_equal_p (XEXP (op0, 1), op1)
4776 && ! side_effects_p (op1))
4777 return gen_binary (AND, mode,
4778 gen_unary (NOT, mode, mode, XEXP (op0, 0)),
4779 op1);
4780
4781 else if (GET_CODE (op0) == AND
4782 && rtx_equal_p (XEXP (op0, 0), op1)
4783 && ! side_effects_p (op1))
4784 return gen_binary (AND, mode,
4785 gen_unary (NOT, mode, mode, XEXP (op0, 1)),
4786 op1);
4787
4788 #if STORE_FLAG_VALUE == 1
4789 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
4790 comparison. */
4791 if (op1 == const1_rtx
4792 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
4793 && reversible_comparison_p (op0))
4794 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
4795 mode, XEXP (op0, 0), XEXP (op0, 1));
4796
4797 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
4798 is (lt foo (const_int 0)), so we can perform the above
4799 simplification. */
4800
4801 if (op1 == const1_rtx
4802 && GET_CODE (op0) == LSHIFTRT
4803 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4804 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
4805 return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
4806 #endif
4807
4808 /* (xor (comparison foo bar) (const_int sign-bit))
4809 when STORE_FLAG_VALUE is the sign bit. */
4810 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4811 && (STORE_FLAG_VALUE
4812 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4813 && op1 == const_true_rtx
4814 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
4815 && reversible_comparison_p (op0))
4816 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
4817 mode, XEXP (op0, 0), XEXP (op0, 1));
4818 break;
4819 }
4820
4821 return x;
4822 }
4823 \f
4824 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
4825 operations" because they can be replaced with two more basic operations.
4826 ZERO_EXTEND is also considered "compound" because it can be replaced with
4827 an AND operation, which is simpler, though only one operation.
4828
4829 The function expand_compound_operation is called with an rtx expression
4830 and will convert it to the appropriate shifts and AND operations,
4831 simplifying at each stage.
4832
4833 The function make_compound_operation is called to convert an expression
4834 consisting of shifts and ANDs into the equivalent compound expression.
4835 It is the inverse of this function, loosely speaking. */
4836
4837 static rtx
4838 expand_compound_operation (x)
4839 rtx x;
4840 {
4841 int pos = 0, len;
4842 int unsignedp = 0;
4843 int modewidth;
4844 rtx tem;
4845
4846 switch (GET_CODE (x))
4847 {
4848 case ZERO_EXTEND:
4849 unsignedp = 1;
4850 case SIGN_EXTEND:
4851 /* We can't necessarily use a const_int for a multiword mode;
4852 it depends on implicitly extending the value.
4853 Since we don't know the right way to extend it,
4854 we can't tell whether the implicit way is right.
4855
4856 Even for a mode that is no wider than a const_int,
4857 we can't win, because we need to sign extend one of its bits through
4858 the rest of it, and we don't know which bit. */
4859 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
4860 return x;
4861
4862 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
4863 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
4864 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
4865 reloaded. If not for that, MEM's would very rarely be safe.
4866
4867 Reject MODEs bigger than a word, because we might not be able
4868 to reference a two-register group starting with an arbitrary register
4869 (and currently gen_lowpart might crash for a SUBREG). */
4870
4871 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
4872 return x;
4873
4874 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
4875 /* If the inner object has VOIDmode (the only way this can happen
4876 is if it is a ASM_OPERANDS), we can't do anything since we don't
4877 know how much masking to do. */
4878 if (len == 0)
4879 return x;
4880
4881 break;
4882
4883 case ZERO_EXTRACT:
4884 unsignedp = 1;
4885 case SIGN_EXTRACT:
4886 /* If the operand is a CLOBBER, just return it. */
4887 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
4888 return XEXP (x, 0);
4889
4890 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4891 || GET_CODE (XEXP (x, 2)) != CONST_INT
4892 || GET_MODE (XEXP (x, 0)) == VOIDmode)
4893 return x;
4894
4895 len = INTVAL (XEXP (x, 1));
4896 pos = INTVAL (XEXP (x, 2));
4897
4898 /* If this goes outside the object being extracted, replace the object
4899 with a (use (mem ...)) construct that only combine understands
4900 and is used only for this purpose. */
4901 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4902 SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
4903
4904 if (BITS_BIG_ENDIAN)
4905 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
4906
4907 break;
4908
4909 default:
4910 return x;
4911 }
4912
4913 /* If we reach here, we want to return a pair of shifts. The inner
4914 shift is a left shift of BITSIZE - POS - LEN bits. The outer
4915 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
4916 logical depending on the value of UNSIGNEDP.
4917
4918 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
4919 converted into an AND of a shift.
4920
4921 We must check for the case where the left shift would have a negative
4922 count. This can happen in a case like (x >> 31) & 255 on machines
4923 that can't shift by a constant. On those machines, we would first
4924 combine the shift with the AND to produce a variable-position
4925 extraction. Then the constant of 31 would be substituted in to produce
4926 a such a position. */
4927
4928 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
4929 if (modewidth >= pos - len)
4930 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
4931 GET_MODE (x),
4932 simplify_shift_const (NULL_RTX, ASHIFT,
4933 GET_MODE (x),
4934 XEXP (x, 0),
4935 modewidth - pos - len),
4936 modewidth - len);
4937
4938 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
4939 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
4940 simplify_shift_const (NULL_RTX, LSHIFTRT,
4941 GET_MODE (x),
4942 XEXP (x, 0), pos),
4943 ((HOST_WIDE_INT) 1 << len) - 1);
4944 else
4945 /* Any other cases we can't handle. */
4946 return x;
4947
4948
4949 /* If we couldn't do this for some reason, return the original
4950 expression. */
4951 if (GET_CODE (tem) == CLOBBER)
4952 return x;
4953
4954 return tem;
4955 }
4956 \f
4957 /* X is a SET which contains an assignment of one object into
4958 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
4959 or certain SUBREGS). If possible, convert it into a series of
4960 logical operations.
4961
4962 We half-heartedly support variable positions, but do not at all
4963 support variable lengths. */
4964
4965 static rtx
4966 expand_field_assignment (x)
4967 rtx x;
4968 {
4969 rtx inner;
4970 rtx pos; /* Always counts from low bit. */
4971 int len;
4972 rtx mask;
4973 enum machine_mode compute_mode;
4974
4975 /* Loop until we find something we can't simplify. */
4976 while (1)
4977 {
4978 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
4979 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
4980 {
4981 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
4982 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
4983 pos = GEN_INT (BITS_PER_WORD * SUBREG_WORD (XEXP (SET_DEST (x), 0)));
4984 }
4985 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4986 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
4987 {
4988 inner = XEXP (SET_DEST (x), 0);
4989 len = INTVAL (XEXP (SET_DEST (x), 1));
4990 pos = XEXP (SET_DEST (x), 2);
4991
4992 /* If the position is constant and spans the width of INNER,
4993 surround INNER with a USE to indicate this. */
4994 if (GET_CODE (pos) == CONST_INT
4995 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
4996 inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
4997
4998 if (BITS_BIG_ENDIAN)
4999 {
5000 if (GET_CODE (pos) == CONST_INT)
5001 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5002 - INTVAL (pos));
5003 else if (GET_CODE (pos) == MINUS
5004 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5005 && (INTVAL (XEXP (pos, 1))
5006 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5007 /* If position is ADJUST - X, new position is X. */
5008 pos = XEXP (pos, 0);
5009 else
5010 pos = gen_binary (MINUS, GET_MODE (pos),
5011 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5012 - len),
5013 pos);
5014 }
5015 }
5016
5017 /* A SUBREG between two modes that occupy the same numbers of words
5018 can be done by moving the SUBREG to the source. */
5019 else if (GET_CODE (SET_DEST (x)) == SUBREG
5020 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5021 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5022 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5023 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5024 {
5025 x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
5026 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
5027 SET_SRC (x)));
5028 continue;
5029 }
5030 else
5031 break;
5032
5033 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5034 inner = SUBREG_REG (inner);
5035
5036 compute_mode = GET_MODE (inner);
5037
5038 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5039 if (len < HOST_BITS_PER_WIDE_INT)
5040 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5041 else
5042 break;
5043
5044 /* Now compute the equivalent expression. Make a copy of INNER
5045 for the SET_DEST in case it is a MEM into which we will substitute;
5046 we don't want shared RTL in that case. */
5047 x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
5048 gen_binary (IOR, compute_mode,
5049 gen_binary (AND, compute_mode,
5050 gen_unary (NOT, compute_mode,
5051 compute_mode,
5052 gen_binary (ASHIFT,
5053 compute_mode,
5054 mask, pos)),
5055 inner),
5056 gen_binary (ASHIFT, compute_mode,
5057 gen_binary (AND, compute_mode,
5058 gen_lowpart_for_combine
5059 (compute_mode,
5060 SET_SRC (x)),
5061 mask),
5062 pos)));
5063 }
5064
5065 return x;
5066 }
5067 \f
5068 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5069 it is an RTX that represents a variable starting position; otherwise,
5070 POS is the (constant) starting bit position (counted from the LSB).
5071
5072 INNER may be a USE. This will occur when we started with a bitfield
5073 that went outside the boundary of the object in memory, which is
5074 allowed on most machines. To isolate this case, we produce a USE
5075 whose mode is wide enough and surround the MEM with it. The only
5076 code that understands the USE is this routine. If it is not removed,
5077 it will cause the resulting insn not to match.
5078
5079 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5080 signed reference.
5081
5082 IN_DEST is non-zero if this is a reference in the destination of a
5083 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5084 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5085 be used.
5086
5087 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5088 ZERO_EXTRACT should be built even for bits starting at bit 0.
5089
5090 MODE is the desired mode of the result (if IN_DEST == 0).
5091
5092 The result is an RTX for the extraction or NULL_RTX if the target
5093 can't handle it. */
5094
5095 static rtx
5096 make_extraction (mode, inner, pos, pos_rtx, len,
5097 unsignedp, in_dest, in_compare)
5098 enum machine_mode mode;
5099 rtx inner;
5100 int pos;
5101 rtx pos_rtx;
5102 int len;
5103 int unsignedp;
5104 int in_dest, in_compare;
5105 {
5106 /* This mode describes the size of the storage area
5107 to fetch the overall value from. Within that, we
5108 ignore the POS lowest bits, etc. */
5109 enum machine_mode is_mode = GET_MODE (inner);
5110 enum machine_mode inner_mode;
5111 enum machine_mode wanted_inner_mode = byte_mode;
5112 enum machine_mode wanted_inner_reg_mode = word_mode;
5113 enum machine_mode pos_mode = word_mode;
5114 enum machine_mode extraction_mode = word_mode;
5115 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5116 int spans_byte = 0;
5117 rtx new = 0;
5118 rtx orig_pos_rtx = pos_rtx;
5119 int orig_pos;
5120
5121 /* Get some information about INNER and get the innermost object. */
5122 if (GET_CODE (inner) == USE)
5123 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5124 /* We don't need to adjust the position because we set up the USE
5125 to pretend that it was a full-word object. */
5126 spans_byte = 1, inner = XEXP (inner, 0);
5127 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5128 {
5129 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5130 consider just the QI as the memory to extract from.
5131 The subreg adds or removes high bits; its mode is
5132 irrelevant to the meaning of this extraction,
5133 since POS and LEN count from the lsb. */
5134 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5135 is_mode = GET_MODE (SUBREG_REG (inner));
5136 inner = SUBREG_REG (inner);
5137 }
5138
5139 inner_mode = GET_MODE (inner);
5140
5141 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5142 pos = INTVAL (pos_rtx), pos_rtx = 0;
5143
5144 /* See if this can be done without an extraction. We never can if the
5145 width of the field is not the same as that of some integer mode. For
5146 registers, we can only avoid the extraction if the position is at the
5147 low-order bit and this is either not in the destination or we have the
5148 appropriate STRICT_LOW_PART operation available.
5149
5150 For MEM, we can avoid an extract if the field starts on an appropriate
5151 boundary and we can change the mode of the memory reference. However,
5152 we cannot directly access the MEM if we have a USE and the underlying
5153 MEM is not TMODE. This combination means that MEM was being used in a
5154 context where bits outside its mode were being referenced; that is only
5155 valid in bit-field insns. */
5156
5157 if (tmode != BLKmode
5158 && ! (spans_byte && inner_mode != tmode)
5159 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5160 && GET_CODE (inner) != MEM
5161 && (! in_dest
5162 || (GET_CODE (inner) == REG
5163 && (movstrict_optab->handlers[(int) tmode].insn_code
5164 != CODE_FOR_nothing))))
5165 || (GET_CODE (inner) == MEM && pos_rtx == 0
5166 && (pos
5167 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5168 : BITS_PER_UNIT)) == 0
5169 /* We can't do this if we are widening INNER_MODE (it
5170 may not be aligned, for one thing). */
5171 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5172 && (inner_mode == tmode
5173 || (! mode_dependent_address_p (XEXP (inner, 0))
5174 && ! MEM_VOLATILE_P (inner))))))
5175 {
5176 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5177 field. If the original and current mode are the same, we need not
5178 adjust the offset. Otherwise, we do if bytes big endian.
5179
5180 If INNER is not a MEM, get a piece consisting of just the field
5181 of interest (in this case POS % BITS_PER_WORD must be 0). */
5182
5183 if (GET_CODE (inner) == MEM)
5184 {
5185 int offset;
5186 /* POS counts from lsb, but make OFFSET count in memory order. */
5187 if (BYTES_BIG_ENDIAN)
5188 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5189 else
5190 offset = pos / BITS_PER_UNIT;
5191
5192 new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
5193 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
5194 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
5195 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
5196 }
5197 else if (GET_CODE (inner) == REG)
5198 {
5199 /* We can't call gen_lowpart_for_combine here since we always want
5200 a SUBREG and it would sometimes return a new hard register. */
5201 if (tmode != inner_mode)
5202 new = gen_rtx (SUBREG, tmode, inner,
5203 (WORDS_BIG_ENDIAN
5204 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
5205 ? (((GET_MODE_SIZE (inner_mode)
5206 - GET_MODE_SIZE (tmode))
5207 / UNITS_PER_WORD)
5208 - pos / BITS_PER_WORD)
5209 : pos / BITS_PER_WORD));
5210 else
5211 new = inner;
5212 }
5213 else
5214 new = force_to_mode (inner, tmode,
5215 len >= HOST_BITS_PER_WIDE_INT
5216 ? GET_MODE_MASK (tmode)
5217 : ((HOST_WIDE_INT) 1 << len) - 1,
5218 NULL_RTX, 0);
5219
5220 /* If this extraction is going into the destination of a SET,
5221 make a STRICT_LOW_PART unless we made a MEM. */
5222
5223 if (in_dest)
5224 return (GET_CODE (new) == MEM ? new
5225 : (GET_CODE (new) != SUBREG
5226 ? gen_rtx (CLOBBER, tmode, const0_rtx)
5227 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
5228
5229 /* Otherwise, sign- or zero-extend unless we already are in the
5230 proper mode. */
5231
5232 return (mode == tmode ? new
5233 : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5234 mode, new));
5235 }
5236
5237 /* Unless this is a COMPARE or we have a funny memory reference,
5238 don't do anything with zero-extending field extracts starting at
5239 the low-order bit since they are simple AND operations. */
5240 if (pos_rtx == 0 && pos == 0 && ! in_dest
5241 && ! in_compare && ! spans_byte && unsignedp)
5242 return 0;
5243
5244 /* Unless we are allowed to span bytes, reject this if we would be
5245 spanning bytes or if the position is not a constant and the length
5246 is not 1. In all other cases, we would only be going outside
5247 out object in cases when an original shift would have been
5248 undefined. */
5249 if (! spans_byte
5250 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
5251 || (pos_rtx != 0 && len != 1)))
5252 return 0;
5253
5254 /* Get the mode to use should INNER not be a MEM, the mode for the position,
5255 and the mode for the result. */
5256 #ifdef HAVE_insv
5257 if (in_dest)
5258 {
5259 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
5260 pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
5261 extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
5262 }
5263 #endif
5264
5265 #ifdef HAVE_extzv
5266 if (! in_dest && unsignedp)
5267 {
5268 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
5269 pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
5270 extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
5271 }
5272 #endif
5273
5274 #ifdef HAVE_extv
5275 if (! in_dest && ! unsignedp)
5276 {
5277 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
5278 pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
5279 extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
5280 }
5281 #endif
5282
5283 /* Never narrow an object, since that might not be safe. */
5284
5285 if (mode != VOIDmode
5286 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
5287 extraction_mode = mode;
5288
5289 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
5290 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5291 pos_mode = GET_MODE (pos_rtx);
5292
5293 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
5294 if we have to change the mode of memory and cannot, the desired mode is
5295 EXTRACTION_MODE. */
5296 if (GET_CODE (inner) != MEM)
5297 wanted_inner_mode = wanted_inner_reg_mode;
5298 else if (inner_mode != wanted_inner_mode
5299 && (mode_dependent_address_p (XEXP (inner, 0))
5300 || MEM_VOLATILE_P (inner)))
5301 wanted_inner_mode = extraction_mode;
5302
5303 orig_pos = pos;
5304
5305 if (BITS_BIG_ENDIAN)
5306 {
5307 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
5308 BITS_BIG_ENDIAN style. If position is constant, compute new
5309 position. Otherwise, build subtraction.
5310 Note that POS is relative to the mode of the original argument.
5311 If it's a MEM we need to recompute POS relative to that.
5312 However, if we're extracting from (or inserting into) a register,
5313 we want to recompute POS relative to wanted_inner_mode. */
5314 int width = (GET_CODE (inner) == MEM
5315 ? GET_MODE_BITSIZE (is_mode)
5316 : GET_MODE_BITSIZE (wanted_inner_mode));
5317
5318 if (pos_rtx == 0)
5319 pos = width - len - pos;
5320 else
5321 pos_rtx
5322 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
5323 GEN_INT (width - len), pos_rtx);
5324 /* POS may be less than 0 now, but we check for that below.
5325 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
5326 }
5327
5328 /* If INNER has a wider mode, make it smaller. If this is a constant
5329 extract, try to adjust the byte to point to the byte containing
5330 the value. */
5331 if (wanted_inner_mode != VOIDmode
5332 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
5333 && ((GET_CODE (inner) == MEM
5334 && (inner_mode == wanted_inner_mode
5335 || (! mode_dependent_address_p (XEXP (inner, 0))
5336 && ! MEM_VOLATILE_P (inner))))))
5337 {
5338 int offset = 0;
5339
5340 /* The computations below will be correct if the machine is big
5341 endian in both bits and bytes or little endian in bits and bytes.
5342 If it is mixed, we must adjust. */
5343
5344 /* If bytes are big endian and we had a paradoxical SUBREG, we must
5345 adjust OFFSET to compensate. */
5346 if (BYTES_BIG_ENDIAN
5347 && ! spans_byte
5348 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
5349 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
5350
5351 /* If this is a constant position, we can move to the desired byte. */
5352 if (pos_rtx == 0)
5353 {
5354 offset += pos / BITS_PER_UNIT;
5355 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
5356 }
5357
5358 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
5359 && ! spans_byte
5360 && is_mode != wanted_inner_mode)
5361 offset = (GET_MODE_SIZE (is_mode)
5362 - GET_MODE_SIZE (wanted_inner_mode) - offset);
5363
5364 if (offset != 0 || inner_mode != wanted_inner_mode)
5365 {
5366 rtx newmem = gen_rtx (MEM, wanted_inner_mode,
5367 plus_constant (XEXP (inner, 0), offset));
5368 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
5369 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
5370 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
5371 inner = newmem;
5372 }
5373 }
5374
5375 /* If INNER is not memory, we can always get it into the proper mode. If we
5376 are changing its mode, POS must be a constant and smaller than the size
5377 of the new mode. */
5378 else if (GET_CODE (inner) != MEM)
5379 {
5380 if (GET_MODE (inner) != wanted_inner_mode
5381 && (pos_rtx != 0
5382 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
5383 return 0;
5384
5385 inner = force_to_mode (inner, wanted_inner_mode,
5386 pos_rtx
5387 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
5388 ? GET_MODE_MASK (wanted_inner_mode)
5389 : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
5390 NULL_RTX, 0);
5391 }
5392
5393 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
5394 have to zero extend. Otherwise, we can just use a SUBREG. */
5395 if (pos_rtx != 0
5396 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
5397 pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
5398 else if (pos_rtx != 0
5399 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5400 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
5401
5402 /* Make POS_RTX unless we already have it and it is correct. If we don't
5403 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
5404 be a CONST_INT. */
5405 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
5406 pos_rtx = orig_pos_rtx;
5407
5408 else if (pos_rtx == 0)
5409 pos_rtx = GEN_INT (pos);
5410
5411 /* Make the required operation. See if we can use existing rtx. */
5412 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
5413 extraction_mode, inner, GEN_INT (len), pos_rtx);
5414 if (! in_dest)
5415 new = gen_lowpart_for_combine (mode, new);
5416
5417 return new;
5418 }
5419 \f
5420 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
5421 with any other operations in X. Return X without that shift if so. */
5422
5423 static rtx
5424 extract_left_shift (x, count)
5425 rtx x;
5426 int count;
5427 {
5428 enum rtx_code code = GET_CODE (x);
5429 enum machine_mode mode = GET_MODE (x);
5430 rtx tem;
5431
5432 switch (code)
5433 {
5434 case ASHIFT:
5435 /* This is the shift itself. If it is wide enough, we will return
5436 either the value being shifted if the shift count is equal to
5437 COUNT or a shift for the difference. */
5438 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5439 && INTVAL (XEXP (x, 1)) >= count)
5440 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
5441 INTVAL (XEXP (x, 1)) - count);
5442 break;
5443
5444 case NEG: case NOT:
5445 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5446 return gen_unary (code, mode, mode, tem);
5447
5448 break;
5449
5450 case PLUS: case IOR: case XOR: case AND:
5451 /* If we can safely shift this constant and we find the inner shift,
5452 make a new operation. */
5453 if (GET_CODE (XEXP (x,1)) == CONST_INT
5454 && (INTVAL (XEXP (x, 1)) & (((HOST_WIDE_INT) 1 << count)) - 1) == 0
5455 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5456 return gen_binary (code, mode, tem,
5457 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
5458
5459 break;
5460 }
5461
5462 return 0;
5463 }
5464 \f
5465 /* Look at the expression rooted at X. Look for expressions
5466 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
5467 Form these expressions.
5468
5469 Return the new rtx, usually just X.
5470
5471 Also, for machines like the Vax that don't have logical shift insns,
5472 try to convert logical to arithmetic shift operations in cases where
5473 they are equivalent. This undoes the canonicalizations to logical
5474 shifts done elsewhere.
5475
5476 We try, as much as possible, to re-use rtl expressions to save memory.
5477
5478 IN_CODE says what kind of expression we are processing. Normally, it is
5479 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
5480 being kludges), it is MEM. When processing the arguments of a comparison
5481 or a COMPARE against zero, it is COMPARE. */
5482
5483 static rtx
5484 make_compound_operation (x, in_code)
5485 rtx x;
5486 enum rtx_code in_code;
5487 {
5488 enum rtx_code code = GET_CODE (x);
5489 enum machine_mode mode = GET_MODE (x);
5490 int mode_width = GET_MODE_BITSIZE (mode);
5491 rtx rhs, lhs;
5492 enum rtx_code next_code;
5493 int i;
5494 rtx new = 0;
5495 rtx tem;
5496 char *fmt;
5497
5498 /* Select the code to be used in recursive calls. Once we are inside an
5499 address, we stay there. If we have a comparison, set to COMPARE,
5500 but once inside, go back to our default of SET. */
5501
5502 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
5503 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
5504 && XEXP (x, 1) == const0_rtx) ? COMPARE
5505 : in_code == COMPARE ? SET : in_code);
5506
5507 /* Process depending on the code of this operation. If NEW is set
5508 non-zero, it will be returned. */
5509
5510 switch (code)
5511 {
5512 case ASHIFT:
5513 /* Convert shifts by constants into multiplications if inside
5514 an address. */
5515 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
5516 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5517 && INTVAL (XEXP (x, 1)) >= 0)
5518 {
5519 new = make_compound_operation (XEXP (x, 0), next_code);
5520 new = gen_rtx_combine (MULT, mode, new,
5521 GEN_INT ((HOST_WIDE_INT) 1
5522 << INTVAL (XEXP (x, 1))));
5523 }
5524 break;
5525
5526 case AND:
5527 /* If the second operand is not a constant, we can't do anything
5528 with it. */
5529 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5530 break;
5531
5532 /* If the constant is a power of two minus one and the first operand
5533 is a logical right shift, make an extraction. */
5534 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
5535 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5536 {
5537 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5538 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
5539 0, in_code == COMPARE);
5540 }
5541
5542 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
5543 else if (GET_CODE (XEXP (x, 0)) == SUBREG
5544 && subreg_lowpart_p (XEXP (x, 0))
5545 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
5546 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5547 {
5548 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
5549 next_code);
5550 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
5551 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
5552 0, in_code == COMPARE);
5553 }
5554 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
5555 else if ((GET_CODE (XEXP (x, 0)) == XOR
5556 || GET_CODE (XEXP (x, 0)) == IOR)
5557 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
5558 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
5559 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5560 {
5561 /* Apply the distributive law, and then try to make extractions. */
5562 new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
5563 gen_rtx (AND, mode, XEXP (XEXP (x, 0), 0),
5564 XEXP (x, 1)),
5565 gen_rtx (AND, mode, XEXP (XEXP (x, 0), 1),
5566 XEXP (x, 1)));
5567 new = make_compound_operation (new, in_code);
5568 }
5569
5570 /* If we are have (and (rotate X C) M) and C is larger than the number
5571 of bits in M, this is an extraction. */
5572
5573 else if (GET_CODE (XEXP (x, 0)) == ROTATE
5574 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5575 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
5576 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
5577 {
5578 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5579 new = make_extraction (mode, new,
5580 (GET_MODE_BITSIZE (mode)
5581 - INTVAL (XEXP (XEXP (x, 0), 1))),
5582 NULL_RTX, i, 1, 0, in_code == COMPARE);
5583 }
5584
5585 /* On machines without logical shifts, if the operand of the AND is
5586 a logical shift and our mask turns off all the propagated sign
5587 bits, we can replace the logical shift with an arithmetic shift. */
5588 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
5589 && (lshr_optab->handlers[(int) mode].insn_code
5590 == CODE_FOR_nothing)
5591 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
5592 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5593 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
5594 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
5595 && mode_width <= HOST_BITS_PER_WIDE_INT)
5596 {
5597 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
5598
5599 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
5600 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
5601 SUBST (XEXP (x, 0),
5602 gen_rtx_combine (ASHIFTRT, mode,
5603 make_compound_operation (XEXP (XEXP (x, 0), 0),
5604 next_code),
5605 XEXP (XEXP (x, 0), 1)));
5606 }
5607
5608 /* If the constant is one less than a power of two, this might be
5609 representable by an extraction even if no shift is present.
5610 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
5611 we are in a COMPARE. */
5612 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5613 new = make_extraction (mode,
5614 make_compound_operation (XEXP (x, 0),
5615 next_code),
5616 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
5617
5618 /* If we are in a comparison and this is an AND with a power of two,
5619 convert this into the appropriate bit extract. */
5620 else if (in_code == COMPARE
5621 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5622 new = make_extraction (mode,
5623 make_compound_operation (XEXP (x, 0),
5624 next_code),
5625 i, NULL_RTX, 1, 1, 0, 1);
5626
5627 break;
5628
5629 case LSHIFTRT:
5630 /* If the sign bit is known to be zero, replace this with an
5631 arithmetic shift. */
5632 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
5633 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
5634 && mode_width <= HOST_BITS_PER_WIDE_INT
5635 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
5636 {
5637 new = gen_rtx_combine (ASHIFTRT, mode,
5638 make_compound_operation (XEXP (x, 0),
5639 next_code),
5640 XEXP (x, 1));
5641 break;
5642 }
5643
5644 /* ... fall through ... */
5645
5646 case ASHIFTRT:
5647 lhs = XEXP (x, 0);
5648 rhs = XEXP (x, 1);
5649
5650 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
5651 this is a SIGN_EXTRACT. */
5652 if (GET_CODE (rhs) == CONST_INT
5653 && GET_CODE (lhs) == ASHIFT
5654 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
5655 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
5656 {
5657 new = make_compound_operation (XEXP (lhs, 0), next_code);
5658 new = make_extraction (mode, new,
5659 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
5660 NULL_RTX, mode_width - INTVAL (rhs),
5661 code == LSHIFTRT, 0, in_code == COMPARE);
5662 }
5663
5664 /* See if we have operations between an ASHIFTRT and an ASHIFT.
5665 If so, try to merge the shifts into a SIGN_EXTEND. We could
5666 also do this for some cases of SIGN_EXTRACT, but it doesn't
5667 seem worth the effort; the case checked for occurs on Alpha. */
5668
5669 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
5670 && ! (GET_CODE (lhs) == SUBREG
5671 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
5672 && GET_CODE (rhs) == CONST_INT
5673 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
5674 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
5675 new = make_extraction (mode, make_compound_operation (new, next_code),
5676 0, NULL_RTX, mode_width - INTVAL (rhs),
5677 code == LSHIFTRT, 0, in_code == COMPARE);
5678
5679 break;
5680
5681 case SUBREG:
5682 /* Call ourselves recursively on the inner expression. If we are
5683 narrowing the object and it has a different RTL code from
5684 what it originally did, do this SUBREG as a force_to_mode. */
5685
5686 tem = make_compound_operation (SUBREG_REG (x), in_code);
5687 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
5688 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
5689 && subreg_lowpart_p (x))
5690 {
5691 rtx newer = force_to_mode (tem, mode,
5692 GET_MODE_MASK (mode), NULL_RTX, 0);
5693
5694 /* If we have something other than a SUBREG, we might have
5695 done an expansion, so rerun outselves. */
5696 if (GET_CODE (newer) != SUBREG)
5697 newer = make_compound_operation (newer, in_code);
5698
5699 return newer;
5700 }
5701 }
5702
5703 if (new)
5704 {
5705 x = gen_lowpart_for_combine (mode, new);
5706 code = GET_CODE (x);
5707 }
5708
5709 /* Now recursively process each operand of this operation. */
5710 fmt = GET_RTX_FORMAT (code);
5711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5712 if (fmt[i] == 'e')
5713 {
5714 new = make_compound_operation (XEXP (x, i), next_code);
5715 SUBST (XEXP (x, i), new);
5716 }
5717
5718 return x;
5719 }
5720 \f
5721 /* Given M see if it is a value that would select a field of bits
5722 within an item, but not the entire word. Return -1 if not.
5723 Otherwise, return the starting position of the field, where 0 is the
5724 low-order bit.
5725
5726 *PLEN is set to the length of the field. */
5727
5728 static int
5729 get_pos_from_mask (m, plen)
5730 unsigned HOST_WIDE_INT m;
5731 int *plen;
5732 {
5733 /* Get the bit number of the first 1 bit from the right, -1 if none. */
5734 int pos = exact_log2 (m & - m);
5735
5736 if (pos < 0)
5737 return -1;
5738
5739 /* Now shift off the low-order zero bits and see if we have a power of
5740 two minus 1. */
5741 *plen = exact_log2 ((m >> pos) + 1);
5742
5743 if (*plen <= 0)
5744 return -1;
5745
5746 return pos;
5747 }
5748 \f
5749 /* See if X can be simplified knowing that we will only refer to it in
5750 MODE and will only refer to those bits that are nonzero in MASK.
5751 If other bits are being computed or if masking operations are done
5752 that select a superset of the bits in MASK, they can sometimes be
5753 ignored.
5754
5755 Return a possibly simplified expression, but always convert X to
5756 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
5757
5758 Also, if REG is non-zero and X is a register equal in value to REG,
5759 replace X with REG.
5760
5761 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
5762 are all off in X. This is used when X will be complemented, by either
5763 NOT, NEG, or XOR. */
5764
5765 static rtx
5766 force_to_mode (x, mode, mask, reg, just_select)
5767 rtx x;
5768 enum machine_mode mode;
5769 unsigned HOST_WIDE_INT mask;
5770 rtx reg;
5771 int just_select;
5772 {
5773 enum rtx_code code = GET_CODE (x);
5774 int next_select = just_select || code == XOR || code == NOT || code == NEG;
5775 enum machine_mode op_mode;
5776 unsigned HOST_WIDE_INT fuller_mask, nonzero;
5777 rtx op0, op1, temp;
5778
5779 /* If this is a CALL, don't do anything. Some of the code below
5780 will do the wrong thing since the mode of a CALL is VOIDmode. */
5781 if (code == CALL)
5782 return x;
5783
5784 /* We want to perform the operation is its present mode unless we know
5785 that the operation is valid in MODE, in which case we do the operation
5786 in MODE. */
5787 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
5788 && code_to_optab[(int) code] != 0
5789 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5790 != CODE_FOR_nothing))
5791 ? mode : GET_MODE (x));
5792
5793 /* It is not valid to do a right-shift in a narrower mode
5794 than the one it came in with. */
5795 if ((code == LSHIFTRT || code == ASHIFTRT)
5796 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
5797 op_mode = GET_MODE (x);
5798
5799 /* Truncate MASK to fit OP_MODE. */
5800 if (op_mode)
5801 mask &= GET_MODE_MASK (op_mode);
5802
5803 /* When we have an arithmetic operation, or a shift whose count we
5804 do not know, we need to assume that all bit the up to the highest-order
5805 bit in MASK will be needed. This is how we form such a mask. */
5806 if (op_mode)
5807 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
5808 ? GET_MODE_MASK (op_mode)
5809 : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
5810 else
5811 fuller_mask = ~ (HOST_WIDE_INT) 0;
5812
5813 /* Determine what bits of X are guaranteed to be (non)zero. */
5814 nonzero = nonzero_bits (x, mode);
5815
5816 /* If none of the bits in X are needed, return a zero. */
5817 if (! just_select && (nonzero & mask) == 0)
5818 return const0_rtx;
5819
5820 /* If X is a CONST_INT, return a new one. Do this here since the
5821 test below will fail. */
5822 if (GET_CODE (x) == CONST_INT)
5823 {
5824 HOST_WIDE_INT cval = INTVAL (x) & mask;
5825 int width = GET_MODE_BITSIZE (mode);
5826
5827 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
5828 number, sign extend it. */
5829 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
5830 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
5831 cval |= (HOST_WIDE_INT) -1 << width;
5832
5833 return GEN_INT (cval);
5834 }
5835
5836 /* If X is narrower than MODE and we want all the bits in X's mode, just
5837 get X in the proper mode. */
5838 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
5839 && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
5840 return gen_lowpart_for_combine (mode, x);
5841
5842 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
5843 MASK are already known to be zero in X, we need not do anything. */
5844 if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
5845 return x;
5846
5847 switch (code)
5848 {
5849 case CLOBBER:
5850 /* If X is a (clobber (const_int)), return it since we know we are
5851 generating something that won't match. */
5852 return x;
5853
5854 case USE:
5855 /* X is a (use (mem ..)) that was made from a bit-field extraction that
5856 spanned the boundary of the MEM. If we are now masking so it is
5857 within that boundary, we don't need the USE any more. */
5858 if (! BITS_BIG_ENDIAN
5859 && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5860 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
5861 break;
5862
5863 case SIGN_EXTEND:
5864 case ZERO_EXTEND:
5865 case ZERO_EXTRACT:
5866 case SIGN_EXTRACT:
5867 x = expand_compound_operation (x);
5868 if (GET_CODE (x) != code)
5869 return force_to_mode (x, mode, mask, reg, next_select);
5870 break;
5871
5872 case REG:
5873 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
5874 || rtx_equal_p (reg, get_last_value (x))))
5875 x = reg;
5876 break;
5877
5878 case SUBREG:
5879 if (subreg_lowpart_p (x)
5880 /* We can ignore the effect of this SUBREG if it narrows the mode or
5881 if the constant masks to zero all the bits the mode doesn't
5882 have. */
5883 && ((GET_MODE_SIZE (GET_MODE (x))
5884 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
5885 || (0 == (mask
5886 & GET_MODE_MASK (GET_MODE (x))
5887 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
5888 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
5889 break;
5890
5891 case AND:
5892 /* If this is an AND with a constant, convert it into an AND
5893 whose constant is the AND of that constant with MASK. If it
5894 remains an AND of MASK, delete it since it is redundant. */
5895
5896 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5897 {
5898 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
5899 mask & INTVAL (XEXP (x, 1)));
5900
5901 /* If X is still an AND, see if it is an AND with a mask that
5902 is just some low-order bits. If so, and it is MASK, we don't
5903 need it. */
5904
5905 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
5906 && INTVAL (XEXP (x, 1)) == mask)
5907 x = XEXP (x, 0);
5908
5909 /* If it remains an AND, try making another AND with the bits
5910 in the mode mask that aren't in MASK turned on. If the
5911 constant in the AND is wide enough, this might make a
5912 cheaper constant. */
5913
5914 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
5915 && GET_MODE_MASK (GET_MODE (x)) != mask
5916 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
5917 {
5918 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
5919 | (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
5920 int width = GET_MODE_BITSIZE (GET_MODE (x));
5921 rtx y;
5922
5923 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
5924 number, sign extend it. */
5925 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
5926 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
5927 cval |= (HOST_WIDE_INT) -1 << width;
5928
5929 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
5930 if (rtx_cost (y, SET) < rtx_cost (x, SET))
5931 x = y;
5932 }
5933
5934 break;
5935 }
5936
5937 goto binop;
5938
5939 case PLUS:
5940 /* In (and (plus FOO C1) M), if M is a mask that just turns off
5941 low-order bits (as in an alignment operation) and FOO is already
5942 aligned to that boundary, mask C1 to that boundary as well.
5943 This may eliminate that PLUS and, later, the AND. */
5944
5945 {
5946 int width = GET_MODE_BITSIZE (mode);
5947 unsigned HOST_WIDE_INT smask = mask;
5948
5949 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
5950 number, sign extend it. */
5951
5952 if (width < HOST_BITS_PER_WIDE_INT
5953 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
5954 smask |= (HOST_WIDE_INT) -1 << width;
5955
5956 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5957 && exact_log2 (- smask) >= 0
5958 && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
5959 && (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
5960 return force_to_mode (plus_constant (XEXP (x, 0),
5961 INTVAL (XEXP (x, 1)) & mask),
5962 mode, mask, reg, next_select);
5963 }
5964
5965 /* ... fall through ... */
5966
5967 case MINUS:
5968 case MULT:
5969 /* For PLUS, MINUS and MULT, we need any bits less significant than the
5970 most significant bit in MASK since carries from those bits will
5971 affect the bits we are interested in. */
5972 mask = fuller_mask;
5973 goto binop;
5974
5975 case IOR:
5976 case XOR:
5977 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
5978 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
5979 operation which may be a bitfield extraction. Ensure that the
5980 constant we form is not wider than the mode of X. */
5981
5982 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
5983 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5984 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
5985 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
5986 && GET_CODE (XEXP (x, 1)) == CONST_INT
5987 && ((INTVAL (XEXP (XEXP (x, 0), 1))
5988 + floor_log2 (INTVAL (XEXP (x, 1))))
5989 < GET_MODE_BITSIZE (GET_MODE (x)))
5990 && (INTVAL (XEXP (x, 1))
5991 & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
5992 {
5993 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
5994 << INTVAL (XEXP (XEXP (x, 0), 1)));
5995 temp = gen_binary (GET_CODE (x), GET_MODE (x),
5996 XEXP (XEXP (x, 0), 0), temp);
5997 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
5998 XEXP (XEXP (x, 0), 1));
5999 return force_to_mode (x, mode, mask, reg, next_select);
6000 }
6001
6002 binop:
6003 /* For most binary operations, just propagate into the operation and
6004 change the mode if we have an operation of that mode. */
6005
6006 op0 = gen_lowpart_for_combine (op_mode,
6007 force_to_mode (XEXP (x, 0), mode, mask,
6008 reg, next_select));
6009 op1 = gen_lowpart_for_combine (op_mode,
6010 force_to_mode (XEXP (x, 1), mode, mask,
6011 reg, next_select));
6012
6013 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6014 MASK since OP1 might have been sign-extended but we never want
6015 to turn on extra bits, since combine might have previously relied
6016 on them being off. */
6017 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6018 && (INTVAL (op1) & mask) != 0)
6019 op1 = GEN_INT (INTVAL (op1) & mask);
6020
6021 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6022 x = gen_binary (code, op_mode, op0, op1);
6023 break;
6024
6025 case ASHIFT:
6026 /* For left shifts, do the same, but just for the first operand.
6027 However, we cannot do anything with shifts where we cannot
6028 guarantee that the counts are smaller than the size of the mode
6029 because such a count will have a different meaning in a
6030 wider mode. */
6031
6032 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6033 && INTVAL (XEXP (x, 1)) >= 0
6034 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6035 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6036 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6037 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6038 break;
6039
6040 /* If the shift count is a constant and we can do arithmetic in
6041 the mode of the shift, refine which bits we need. Otherwise, use the
6042 conservative form of the mask. */
6043 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6044 && INTVAL (XEXP (x, 1)) >= 0
6045 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6046 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6047 mask >>= INTVAL (XEXP (x, 1));
6048 else
6049 mask = fuller_mask;
6050
6051 op0 = gen_lowpart_for_combine (op_mode,
6052 force_to_mode (XEXP (x, 0), op_mode,
6053 mask, reg, next_select));
6054
6055 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6056 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6057 break;
6058
6059 case LSHIFTRT:
6060 /* Here we can only do something if the shift count is a constant,
6061 this shift constant is valid for the host, and we can do arithmetic
6062 in OP_MODE. */
6063
6064 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6065 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6066 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6067 {
6068 rtx inner = XEXP (x, 0);
6069
6070 /* Select the mask of the bits we need for the shift operand. */
6071 mask <<= INTVAL (XEXP (x, 1));
6072
6073 /* We can only change the mode of the shift if we can do arithmetic
6074 in the mode of the shift and MASK is no wider than the width of
6075 OP_MODE. */
6076 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6077 || (mask & ~ GET_MODE_MASK (op_mode)) != 0)
6078 op_mode = GET_MODE (x);
6079
6080 inner = force_to_mode (inner, op_mode, mask, reg, next_select);
6081
6082 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6083 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6084 }
6085
6086 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6087 shift and AND produces only copies of the sign bit (C2 is one less
6088 than a power of two), we can do this with just a shift. */
6089
6090 if (GET_CODE (x) == LSHIFTRT
6091 && GET_CODE (XEXP (x, 1)) == CONST_INT
6092 && ((INTVAL (XEXP (x, 1))
6093 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6094 >= GET_MODE_BITSIZE (GET_MODE (x)))
6095 && exact_log2 (mask + 1) >= 0
6096 && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6097 >= exact_log2 (mask + 1)))
6098 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6099 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6100 - exact_log2 (mask + 1)));
6101 break;
6102
6103 case ASHIFTRT:
6104 /* If we are just looking for the sign bit, we don't need this shift at
6105 all, even if it has a variable count. */
6106 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6107 && (mask == ((HOST_WIDE_INT) 1
6108 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6109 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6110
6111 /* If this is a shift by a constant, get a mask that contains those bits
6112 that are not copies of the sign bit. We then have two cases: If
6113 MASK only includes those bits, this can be a logical shift, which may
6114 allow simplifications. If MASK is a single-bit field not within
6115 those bits, we are requesting a copy of the sign bit and hence can
6116 shift the sign bit to the appropriate location. */
6117
6118 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6119 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6120 {
6121 int i = -1;
6122
6123 /* If the considered data is wider then HOST_WIDE_INT, we can't
6124 represent a mask for all its bits in a single scalar.
6125 But we only care about the lower bits, so calculate these. */
6126
6127 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6128 {
6129 nonzero = ~ (HOST_WIDE_INT) 0;
6130
6131 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6132 is the number of bits a full-width mask would have set.
6133 We need only shift if these are fewer than nonzero can
6134 hold. If not, we must keep all bits set in nonzero. */
6135
6136 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6137 < HOST_BITS_PER_WIDE_INT)
6138 nonzero >>= INTVAL (XEXP (x, 1))
6139 + HOST_BITS_PER_WIDE_INT
6140 - GET_MODE_BITSIZE (GET_MODE (x)) ;
6141 }
6142 else
6143 {
6144 nonzero = GET_MODE_MASK (GET_MODE (x));
6145 nonzero >>= INTVAL (XEXP (x, 1));
6146 }
6147
6148 if ((mask & ~ nonzero) == 0
6149 || (i = exact_log2 (mask)) >= 0)
6150 {
6151 x = simplify_shift_const
6152 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6153 i < 0 ? INTVAL (XEXP (x, 1))
6154 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
6155
6156 if (GET_CODE (x) != ASHIFTRT)
6157 return force_to_mode (x, mode, mask, reg, next_select);
6158 }
6159 }
6160
6161 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
6162 even if the shift count isn't a constant. */
6163 if (mask == 1)
6164 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
6165
6166 /* If this is a sign-extension operation that just affects bits
6167 we don't care about, remove it. Be sure the call above returned
6168 something that is still a shift. */
6169
6170 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
6171 && GET_CODE (XEXP (x, 1)) == CONST_INT
6172 && INTVAL (XEXP (x, 1)) >= 0
6173 && (INTVAL (XEXP (x, 1))
6174 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
6175 && GET_CODE (XEXP (x, 0)) == ASHIFT
6176 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6177 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
6178 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
6179 reg, next_select);
6180
6181 break;
6182
6183 case ROTATE:
6184 case ROTATERT:
6185 /* If the shift count is constant and we can do computations
6186 in the mode of X, compute where the bits we care about are.
6187 Otherwise, we can't do anything. Don't change the mode of
6188 the shift or propagate MODE into the shift, though. */
6189 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6190 && INTVAL (XEXP (x, 1)) >= 0)
6191 {
6192 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
6193 GET_MODE (x), GEN_INT (mask),
6194 XEXP (x, 1));
6195 if (temp && GET_CODE(temp) == CONST_INT)
6196 SUBST (XEXP (x, 0),
6197 force_to_mode (XEXP (x, 0), GET_MODE (x),
6198 INTVAL (temp), reg, next_select));
6199 }
6200 break;
6201
6202 case NEG:
6203 /* If we just want the low-order bit, the NEG isn't needed since it
6204 won't change the low-order bit. */
6205 if (mask == 1)
6206 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
6207
6208 /* We need any bits less significant than the most significant bit in
6209 MASK since carries from those bits will affect the bits we are
6210 interested in. */
6211 mask = fuller_mask;
6212 goto unop;
6213
6214 case NOT:
6215 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
6216 same as the XOR case above. Ensure that the constant we form is not
6217 wider than the mode of X. */
6218
6219 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6220 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6221 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6222 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
6223 < GET_MODE_BITSIZE (GET_MODE (x)))
6224 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
6225 {
6226 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
6227 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
6228 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
6229
6230 return force_to_mode (x, mode, mask, reg, next_select);
6231 }
6232
6233 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
6234 use the full mask inside the NOT. */
6235 mask = fuller_mask;
6236
6237 unop:
6238 op0 = gen_lowpart_for_combine (op_mode,
6239 force_to_mode (XEXP (x, 0), mode, mask,
6240 reg, next_select));
6241 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6242 x = gen_unary (code, op_mode, op_mode, op0);
6243 break;
6244
6245 case NE:
6246 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
6247 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
6248 which is in CONST. */
6249 if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
6250 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
6251 && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0)
6252 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6253
6254 break;
6255
6256 case IF_THEN_ELSE:
6257 /* We have no way of knowing if the IF_THEN_ELSE can itself be
6258 written in a narrower mode. We play it safe and do not do so. */
6259
6260 SUBST (XEXP (x, 1),
6261 gen_lowpart_for_combine (GET_MODE (x),
6262 force_to_mode (XEXP (x, 1), mode,
6263 mask, reg, next_select)));
6264 SUBST (XEXP (x, 2),
6265 gen_lowpart_for_combine (GET_MODE (x),
6266 force_to_mode (XEXP (x, 2), mode,
6267 mask, reg,next_select)));
6268 break;
6269 }
6270
6271 /* Ensure we return a value of the proper mode. */
6272 return gen_lowpart_for_combine (mode, x);
6273 }
6274 \f
6275 /* Return nonzero if X is an expression that has one of two values depending on
6276 whether some other value is zero or nonzero. In that case, we return the
6277 value that is being tested, *PTRUE is set to the value if the rtx being
6278 returned has a nonzero value, and *PFALSE is set to the other alternative.
6279
6280 If we return zero, we set *PTRUE and *PFALSE to X. */
6281
6282 static rtx
6283 if_then_else_cond (x, ptrue, pfalse)
6284 rtx x;
6285 rtx *ptrue, *pfalse;
6286 {
6287 enum machine_mode mode = GET_MODE (x);
6288 enum rtx_code code = GET_CODE (x);
6289 int size = GET_MODE_BITSIZE (mode);
6290 rtx cond0, cond1, true0, true1, false0, false1;
6291 unsigned HOST_WIDE_INT nz;
6292
6293 /* If this is a unary operation whose operand has one of two values, apply
6294 our opcode to compute those values. */
6295 if (GET_RTX_CLASS (code) == '1'
6296 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
6297 {
6298 *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
6299 *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
6300 return cond0;
6301 }
6302
6303 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
6304 make can't possibly match and would suppress other optimizations. */
6305 else if (code == COMPARE)
6306 ;
6307
6308 /* If this is a binary operation, see if either side has only one of two
6309 values. If either one does or if both do and they are conditional on
6310 the same value, compute the new true and false values. */
6311 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
6312 || GET_RTX_CLASS (code) == '<')
6313 {
6314 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
6315 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
6316
6317 if ((cond0 != 0 || cond1 != 0)
6318 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
6319 {
6320 *ptrue = gen_binary (code, mode, true0, true1);
6321 *pfalse = gen_binary (code, mode, false0, false1);
6322 return cond0 ? cond0 : cond1;
6323 }
6324
6325 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
6326
6327 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
6328 operands is zero when the other is non-zero, and vice-versa. */
6329
6330 if ((code == PLUS || code == IOR || code == XOR || code == MINUS
6331 || code == UMAX)
6332 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6333 {
6334 rtx op0 = XEXP (XEXP (x, 0), 1);
6335 rtx op1 = XEXP (XEXP (x, 1), 1);
6336
6337 cond0 = XEXP (XEXP (x, 0), 0);
6338 cond1 = XEXP (XEXP (x, 1), 0);
6339
6340 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6341 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6342 && reversible_comparison_p (cond1)
6343 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6344 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6345 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6346 || ((swap_condition (GET_CODE (cond0))
6347 == reverse_condition (GET_CODE (cond1)))
6348 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6349 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6350 && ! side_effects_p (x))
6351 {
6352 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
6353 *pfalse = gen_binary (MULT, mode,
6354 (code == MINUS
6355 ? gen_unary (NEG, mode, mode, op1) : op1),
6356 const_true_rtx);
6357 return cond0;
6358 }
6359 }
6360
6361 /* Similarly for MULT, AND and UMIN, execpt that for these the result
6362 is always zero. */
6363 if ((code == MULT || code == AND || code == UMIN)
6364 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6365 {
6366 cond0 = XEXP (XEXP (x, 0), 0);
6367 cond1 = XEXP (XEXP (x, 1), 0);
6368
6369 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6370 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6371 && reversible_comparison_p (cond1)
6372 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6373 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6374 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6375 || ((swap_condition (GET_CODE (cond0))
6376 == reverse_condition (GET_CODE (cond1)))
6377 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6378 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6379 && ! side_effects_p (x))
6380 {
6381 *ptrue = *pfalse = const0_rtx;
6382 return cond0;
6383 }
6384 }
6385 #endif
6386 }
6387
6388 else if (code == IF_THEN_ELSE)
6389 {
6390 /* If we have IF_THEN_ELSE already, extract the condition and
6391 canonicalize it if it is NE or EQ. */
6392 cond0 = XEXP (x, 0);
6393 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
6394 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
6395 return XEXP (cond0, 0);
6396 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
6397 {
6398 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
6399 return XEXP (cond0, 0);
6400 }
6401 else
6402 return cond0;
6403 }
6404
6405 /* If X is a normal SUBREG with both inner and outer modes integral,
6406 we can narrow both the true and false values of the inner expression,
6407 if there is a condition. */
6408 else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
6409 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
6410 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
6411 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
6412 &true0, &false0)))
6413 {
6414 *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6415 *pfalse
6416 = force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6417
6418 return cond0;
6419 }
6420
6421 /* If X is a constant, this isn't special and will cause confusions
6422 if we treat it as such. Likewise if it is equivalent to a constant. */
6423 else if (CONSTANT_P (x)
6424 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
6425 ;
6426
6427 /* If X is known to be either 0 or -1, those are the true and
6428 false values when testing X. */
6429 else if (num_sign_bit_copies (x, mode) == size)
6430 {
6431 *ptrue = constm1_rtx, *pfalse = const0_rtx;
6432 return x;
6433 }
6434
6435 /* Likewise for 0 or a single bit. */
6436 else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
6437 {
6438 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
6439 return x;
6440 }
6441
6442 /* Otherwise fail; show no condition with true and false values the same. */
6443 *ptrue = *pfalse = x;
6444 return 0;
6445 }
6446 \f
6447 /* Return the value of expression X given the fact that condition COND
6448 is known to be true when applied to REG as its first operand and VAL
6449 as its second. X is known to not be shared and so can be modified in
6450 place.
6451
6452 We only handle the simplest cases, and specifically those cases that
6453 arise with IF_THEN_ELSE expressions. */
6454
6455 static rtx
6456 known_cond (x, cond, reg, val)
6457 rtx x;
6458 enum rtx_code cond;
6459 rtx reg, val;
6460 {
6461 enum rtx_code code = GET_CODE (x);
6462 rtx temp;
6463 char *fmt;
6464 int i, j;
6465
6466 if (side_effects_p (x))
6467 return x;
6468
6469 if (cond == EQ && rtx_equal_p (x, reg))
6470 return val;
6471
6472 /* If X is (abs REG) and we know something about REG's relationship
6473 with zero, we may be able to simplify this. */
6474
6475 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
6476 switch (cond)
6477 {
6478 case GE: case GT: case EQ:
6479 return XEXP (x, 0);
6480 case LT: case LE:
6481 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
6482 XEXP (x, 0));
6483 }
6484
6485 /* The only other cases we handle are MIN, MAX, and comparisons if the
6486 operands are the same as REG and VAL. */
6487
6488 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
6489 {
6490 if (rtx_equal_p (XEXP (x, 0), val))
6491 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
6492
6493 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
6494 {
6495 if (GET_RTX_CLASS (code) == '<')
6496 return (comparison_dominates_p (cond, code) ? const_true_rtx
6497 : (comparison_dominates_p (cond,
6498 reverse_condition (code))
6499 ? const0_rtx : x));
6500
6501 else if (code == SMAX || code == SMIN
6502 || code == UMIN || code == UMAX)
6503 {
6504 int unsignedp = (code == UMIN || code == UMAX);
6505
6506 if (code == SMAX || code == UMAX)
6507 cond = reverse_condition (cond);
6508
6509 switch (cond)
6510 {
6511 case GE: case GT:
6512 return unsignedp ? x : XEXP (x, 1);
6513 case LE: case LT:
6514 return unsignedp ? x : XEXP (x, 0);
6515 case GEU: case GTU:
6516 return unsignedp ? XEXP (x, 1) : x;
6517 case LEU: case LTU:
6518 return unsignedp ? XEXP (x, 0) : x;
6519 }
6520 }
6521 }
6522 }
6523
6524 fmt = GET_RTX_FORMAT (code);
6525 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6526 {
6527 if (fmt[i] == 'e')
6528 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
6529 else if (fmt[i] == 'E')
6530 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6531 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
6532 cond, reg, val));
6533 }
6534
6535 return x;
6536 }
6537 \f
6538 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
6539 assignment as a field assignment. */
6540
6541 static int
6542 rtx_equal_for_field_assignment_p (x, y)
6543 rtx x;
6544 rtx y;
6545 {
6546 rtx last_x, last_y;
6547
6548 if (x == y || rtx_equal_p (x, y))
6549 return 1;
6550
6551 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
6552 return 0;
6553
6554 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
6555 Note that all SUBREGs of MEM are paradoxical; otherwise they
6556 would have been rewritten. */
6557 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
6558 && GET_CODE (SUBREG_REG (y)) == MEM
6559 && rtx_equal_p (SUBREG_REG (y),
6560 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
6561 return 1;
6562
6563 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
6564 && GET_CODE (SUBREG_REG (x)) == MEM
6565 && rtx_equal_p (SUBREG_REG (x),
6566 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
6567 return 1;
6568
6569 last_x = get_last_value (x);
6570 last_y = get_last_value (y);
6571
6572 return ((last_x != 0 && rtx_equal_for_field_assignment_p (last_x, y))
6573 || (last_y != 0 && rtx_equal_for_field_assignment_p (x, last_y))
6574 || (last_x != 0 && last_y != 0
6575 && rtx_equal_for_field_assignment_p (last_x, last_y)));
6576 }
6577 \f
6578 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
6579 Return that assignment if so.
6580
6581 We only handle the most common cases. */
6582
6583 static rtx
6584 make_field_assignment (x)
6585 rtx x;
6586 {
6587 rtx dest = SET_DEST (x);
6588 rtx src = SET_SRC (x);
6589 rtx assign;
6590 rtx rhs, lhs;
6591 HOST_WIDE_INT c1;
6592 int pos, len;
6593 rtx other;
6594 enum machine_mode mode;
6595
6596 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
6597 a clear of a one-bit field. We will have changed it to
6598 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
6599 for a SUBREG. */
6600
6601 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
6602 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
6603 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
6604 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
6605 {
6606 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
6607 1, 1, 1, 0);
6608 if (assign != 0)
6609 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
6610 return x;
6611 }
6612
6613 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
6614 && subreg_lowpart_p (XEXP (src, 0))
6615 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
6616 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
6617 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
6618 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
6619 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
6620 {
6621 assign = make_extraction (VOIDmode, dest, 0,
6622 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
6623 1, 1, 1, 0);
6624 if (assign != 0)
6625 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
6626 return x;
6627 }
6628
6629 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
6630 one-bit field. */
6631 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
6632 && XEXP (XEXP (src, 0), 0) == const1_rtx
6633 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
6634 {
6635 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
6636 1, 1, 1, 0);
6637 if (assign != 0)
6638 return gen_rtx (SET, VOIDmode, assign, const1_rtx);
6639 return x;
6640 }
6641
6642 /* The other case we handle is assignments into a constant-position
6643 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
6644 a mask that has all one bits except for a group of zero bits and
6645 OTHER is known to have zeros where C1 has ones, this is such an
6646 assignment. Compute the position and length from C1. Shift OTHER
6647 to the appropriate position, force it to the required mode, and
6648 make the extraction. Check for the AND in both operands. */
6649
6650 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
6651 return x;
6652
6653 rhs = expand_compound_operation (XEXP (src, 0));
6654 lhs = expand_compound_operation (XEXP (src, 1));
6655
6656 if (GET_CODE (rhs) == AND
6657 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
6658 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
6659 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
6660 else if (GET_CODE (lhs) == AND
6661 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6662 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
6663 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
6664 else
6665 return x;
6666
6667 pos = get_pos_from_mask ((~ c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
6668 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
6669 || (GET_MODE_BITSIZE (GET_MODE (other)) <= HOST_BITS_PER_WIDE_INT
6670 && (c1 & nonzero_bits (other, GET_MODE (other))) != 0))
6671 return x;
6672
6673 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
6674 if (assign == 0)
6675 return x;
6676
6677 /* The mode to use for the source is the mode of the assignment, or of
6678 what is inside a possible STRICT_LOW_PART. */
6679 mode = (GET_CODE (assign) == STRICT_LOW_PART
6680 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
6681
6682 /* Shift OTHER right POS places and make it the source, restricting it
6683 to the proper length and mode. */
6684
6685 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
6686 GET_MODE (src), other, pos),
6687 mode,
6688 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
6689 ? GET_MODE_MASK (mode)
6690 : ((HOST_WIDE_INT) 1 << len) - 1,
6691 dest, 0);
6692
6693 return gen_rtx_combine (SET, VOIDmode, assign, src);
6694 }
6695 \f
6696 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
6697 if so. */
6698
6699 static rtx
6700 apply_distributive_law (x)
6701 rtx x;
6702 {
6703 enum rtx_code code = GET_CODE (x);
6704 rtx lhs, rhs, other;
6705 rtx tem;
6706 enum rtx_code inner_code;
6707
6708 /* Distributivity is not true for floating point.
6709 It can change the value. So don't do it.
6710 -- rms and moshier@world.std.com. */
6711 if (FLOAT_MODE_P (GET_MODE (x)))
6712 return x;
6713
6714 /* The outer operation can only be one of the following: */
6715 if (code != IOR && code != AND && code != XOR
6716 && code != PLUS && code != MINUS)
6717 return x;
6718
6719 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
6720
6721 /* If either operand is a primitive we can't do anything, so get out
6722 fast. */
6723 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
6724 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
6725 return x;
6726
6727 lhs = expand_compound_operation (lhs);
6728 rhs = expand_compound_operation (rhs);
6729 inner_code = GET_CODE (lhs);
6730 if (inner_code != GET_CODE (rhs))
6731 return x;
6732
6733 /* See if the inner and outer operations distribute. */
6734 switch (inner_code)
6735 {
6736 case LSHIFTRT:
6737 case ASHIFTRT:
6738 case AND:
6739 case IOR:
6740 /* These all distribute except over PLUS. */
6741 if (code == PLUS || code == MINUS)
6742 return x;
6743 break;
6744
6745 case MULT:
6746 if (code != PLUS && code != MINUS)
6747 return x;
6748 break;
6749
6750 case ASHIFT:
6751 /* This is also a multiply, so it distributes over everything. */
6752 break;
6753
6754 case SUBREG:
6755 /* Non-paradoxical SUBREGs distributes over all operations, provided
6756 the inner modes and word numbers are the same, this is an extraction
6757 of a low-order part, we don't convert an fp operation to int or
6758 vice versa, and we would not be converting a single-word
6759 operation into a multi-word operation. The latter test is not
6760 required, but it prevents generating unneeded multi-word operations.
6761 Some of the previous tests are redundant given the latter test, but
6762 are retained because they are required for correctness.
6763
6764 We produce the result slightly differently in this case. */
6765
6766 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
6767 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
6768 || ! subreg_lowpart_p (lhs)
6769 || (GET_MODE_CLASS (GET_MODE (lhs))
6770 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
6771 || (GET_MODE_SIZE (GET_MODE (lhs))
6772 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
6773 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
6774 return x;
6775
6776 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
6777 SUBREG_REG (lhs), SUBREG_REG (rhs));
6778 return gen_lowpart_for_combine (GET_MODE (x), tem);
6779
6780 default:
6781 return x;
6782 }
6783
6784 /* Set LHS and RHS to the inner operands (A and B in the example
6785 above) and set OTHER to the common operand (C in the example).
6786 These is only one way to do this unless the inner operation is
6787 commutative. */
6788 if (GET_RTX_CLASS (inner_code) == 'c'
6789 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
6790 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
6791 else if (GET_RTX_CLASS (inner_code) == 'c'
6792 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
6793 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
6794 else if (GET_RTX_CLASS (inner_code) == 'c'
6795 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
6796 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
6797 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
6798 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
6799 else
6800 return x;
6801
6802 /* Form the new inner operation, seeing if it simplifies first. */
6803 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
6804
6805 /* There is one exception to the general way of distributing:
6806 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
6807 if (code == XOR && inner_code == IOR)
6808 {
6809 inner_code = AND;
6810 other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
6811 }
6812
6813 /* We may be able to continuing distributing the result, so call
6814 ourselves recursively on the inner operation before forming the
6815 outer operation, which we return. */
6816 return gen_binary (inner_code, GET_MODE (x),
6817 apply_distributive_law (tem), other);
6818 }
6819 \f
6820 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
6821 in MODE.
6822
6823 Return an equivalent form, if different from X. Otherwise, return X. If
6824 X is zero, we are to always construct the equivalent form. */
6825
6826 static rtx
6827 simplify_and_const_int (x, mode, varop, constop)
6828 rtx x;
6829 enum machine_mode mode;
6830 rtx varop;
6831 unsigned HOST_WIDE_INT constop;
6832 {
6833 unsigned HOST_WIDE_INT nonzero;
6834 int width = GET_MODE_BITSIZE (mode);
6835 int i;
6836
6837 /* Simplify VAROP knowing that we will be only looking at some of the
6838 bits in it. */
6839 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
6840
6841 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
6842 CONST_INT, we are done. */
6843 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
6844 return varop;
6845
6846 /* See what bits may be nonzero in VAROP. Unlike the general case of
6847 a call to nonzero_bits, here we don't care about bits outside
6848 MODE. */
6849
6850 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
6851
6852 /* If this would be an entire word for the target, but is not for
6853 the host, then sign-extend on the host so that the number will look
6854 the same way on the host that it would on the target.
6855
6856 For example, when building a 64 bit alpha hosted 32 bit sparc
6857 targeted compiler, then we want the 32 bit unsigned value -1 to be
6858 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
6859 The later confuses the sparc backend. */
6860
6861 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
6862 && (nonzero & ((HOST_WIDE_INT) 1 << (width - 1))))
6863 nonzero |= ((HOST_WIDE_INT) (-1) << width);
6864
6865 /* Turn off all bits in the constant that are known to already be zero.
6866 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
6867 which is tested below. */
6868
6869 constop &= nonzero;
6870
6871 /* If we don't have any bits left, return zero. */
6872 if (constop == 0)
6873 return const0_rtx;
6874
6875 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
6876 a power of two, we can replace this with a ASHIFT. */
6877 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
6878 && (i = exact_log2 (constop)) >= 0)
6879 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
6880
6881 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
6882 or XOR, then try to apply the distributive law. This may eliminate
6883 operations if either branch can be simplified because of the AND.
6884 It may also make some cases more complex, but those cases probably
6885 won't match a pattern either with or without this. */
6886
6887 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
6888 return
6889 gen_lowpart_for_combine
6890 (mode,
6891 apply_distributive_law
6892 (gen_binary (GET_CODE (varop), GET_MODE (varop),
6893 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
6894 XEXP (varop, 0), constop),
6895 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
6896 XEXP (varop, 1), constop))));
6897
6898 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
6899 if we already had one (just check for the simplest cases). */
6900 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
6901 && GET_MODE (XEXP (x, 0)) == mode
6902 && SUBREG_REG (XEXP (x, 0)) == varop)
6903 varop = XEXP (x, 0);
6904 else
6905 varop = gen_lowpart_for_combine (mode, varop);
6906
6907 /* If we can't make the SUBREG, try to return what we were given. */
6908 if (GET_CODE (varop) == CLOBBER)
6909 return x ? x : varop;
6910
6911 /* If we are only masking insignificant bits, return VAROP. */
6912 if (constop == nonzero)
6913 x = varop;
6914
6915 /* Otherwise, return an AND. See how much, if any, of X we can use. */
6916 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
6917 x = gen_binary (AND, mode, varop, GEN_INT (constop));
6918
6919 else
6920 {
6921 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6922 || INTVAL (XEXP (x, 1)) != constop)
6923 SUBST (XEXP (x, 1), GEN_INT (constop));
6924
6925 SUBST (XEXP (x, 0), varop);
6926 }
6927
6928 return x;
6929 }
6930 \f
6931 /* Given an expression, X, compute which bits in X can be non-zero.
6932 We don't care about bits outside of those defined in MODE.
6933
6934 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
6935 a shift, AND, or zero_extract, we can do better. */
6936
6937 static unsigned HOST_WIDE_INT
6938 nonzero_bits (x, mode)
6939 rtx x;
6940 enum machine_mode mode;
6941 {
6942 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
6943 unsigned HOST_WIDE_INT inner_nz;
6944 enum rtx_code code;
6945 int mode_width = GET_MODE_BITSIZE (mode);
6946 rtx tem;
6947
6948 /* For floating-point values, assume all bits are needed. */
6949 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
6950 return nonzero;
6951
6952 /* If X is wider than MODE, use its mode instead. */
6953 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
6954 {
6955 mode = GET_MODE (x);
6956 nonzero = GET_MODE_MASK (mode);
6957 mode_width = GET_MODE_BITSIZE (mode);
6958 }
6959
6960 if (mode_width > HOST_BITS_PER_WIDE_INT)
6961 /* Our only callers in this case look for single bit values. So
6962 just return the mode mask. Those tests will then be false. */
6963 return nonzero;
6964
6965 #ifndef WORD_REGISTER_OPERATIONS
6966 /* If MODE is wider than X, but both are a single word for both the host
6967 and target machines, we can compute this from which bits of the
6968 object might be nonzero in its own mode, taking into account the fact
6969 that on many CISC machines, accessing an object in a wider mode
6970 causes the high-order bits to become undefined. So they are
6971 not known to be zero. */
6972
6973 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
6974 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
6975 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6976 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
6977 {
6978 nonzero &= nonzero_bits (x, GET_MODE (x));
6979 nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
6980 return nonzero;
6981 }
6982 #endif
6983
6984 code = GET_CODE (x);
6985 switch (code)
6986 {
6987 case REG:
6988 #ifdef POINTERS_EXTEND_UNSIGNED
6989 /* If pointers extend unsigned and this is a pointer in Pmode, say that
6990 all the bits above ptr_mode are known to be zero. */
6991 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
6992 && REGNO_POINTER_FLAG (REGNO (x)))
6993 nonzero &= GET_MODE_MASK (ptr_mode);
6994 #endif
6995
6996 #ifdef STACK_BOUNDARY
6997 /* If this is the stack pointer, we may know something about its
6998 alignment. If PUSH_ROUNDING is defined, it is possible for the
6999 stack to be momentarily aligned only to that amount, so we pick
7000 the least alignment. */
7001
7002 /* We can't check for arg_pointer_rtx here, because it is not
7003 guaranteed to have as much alignment as the stack pointer.
7004 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7005 alignment but the argument pointer has only 64 bit alignment. */
7006
7007 if (x == stack_pointer_rtx || x == frame_pointer_rtx
7008 || x == hard_frame_pointer_rtx
7009 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7010 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7011 {
7012 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7013
7014 #ifdef PUSH_ROUNDING
7015 if (REGNO (x) == STACK_POINTER_REGNUM)
7016 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7017 #endif
7018
7019 /* We must return here, otherwise we may get a worse result from
7020 one of the choices below. There is nothing useful below as
7021 far as the stack pointer is concerned. */
7022 return nonzero &= ~ (sp_alignment - 1);
7023 }
7024 #endif
7025
7026 /* If X is a register whose nonzero bits value is current, use it.
7027 Otherwise, if X is a register whose value we can find, use that
7028 value. Otherwise, use the previously-computed global nonzero bits
7029 for this register. */
7030
7031 if (reg_last_set_value[REGNO (x)] != 0
7032 && reg_last_set_mode[REGNO (x)] == mode
7033 && (reg_n_sets[REGNO (x)] == 1
7034 || reg_last_set_label[REGNO (x)] == label_tick)
7035 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7036 return reg_last_set_nonzero_bits[REGNO (x)];
7037
7038 tem = get_last_value (x);
7039
7040 if (tem)
7041 {
7042 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7043 /* If X is narrower than MODE and TEM is a non-negative
7044 constant that would appear negative in the mode of X,
7045 sign-extend it for use in reg_nonzero_bits because some
7046 machines (maybe most) will actually do the sign-extension
7047 and this is the conservative approach.
7048
7049 ??? For 2.5, try to tighten up the MD files in this regard
7050 instead of this kludge. */
7051
7052 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7053 && GET_CODE (tem) == CONST_INT
7054 && INTVAL (tem) > 0
7055 && 0 != (INTVAL (tem)
7056 & ((HOST_WIDE_INT) 1
7057 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7058 tem = GEN_INT (INTVAL (tem)
7059 | ((HOST_WIDE_INT) (-1)
7060 << GET_MODE_BITSIZE (GET_MODE (x))));
7061 #endif
7062 return nonzero_bits (tem, mode);
7063 }
7064 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7065 return reg_nonzero_bits[REGNO (x)] & nonzero;
7066 else
7067 return nonzero;
7068
7069 case CONST_INT:
7070 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7071 /* If X is negative in MODE, sign-extend the value. */
7072 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
7073 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
7074 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
7075 #endif
7076
7077 return INTVAL (x);
7078
7079 case MEM:
7080 #ifdef LOAD_EXTEND_OP
7081 /* In many, if not most, RISC machines, reading a byte from memory
7082 zeros the rest of the register. Noticing that fact saves a lot
7083 of extra zero-extends. */
7084 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
7085 nonzero &= GET_MODE_MASK (GET_MODE (x));
7086 #endif
7087 break;
7088
7089 case EQ: case NE:
7090 case GT: case GTU:
7091 case LT: case LTU:
7092 case GE: case GEU:
7093 case LE: case LEU:
7094
7095 /* If this produces an integer result, we know which bits are set.
7096 Code here used to clear bits outside the mode of X, but that is
7097 now done above. */
7098
7099 if (GET_MODE_CLASS (mode) == MODE_INT
7100 && mode_width <= HOST_BITS_PER_WIDE_INT)
7101 nonzero = STORE_FLAG_VALUE;
7102 break;
7103
7104 case NEG:
7105 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7106 == GET_MODE_BITSIZE (GET_MODE (x)))
7107 nonzero = 1;
7108
7109 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
7110 nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
7111 break;
7112
7113 case ABS:
7114 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7115 == GET_MODE_BITSIZE (GET_MODE (x)))
7116 nonzero = 1;
7117 break;
7118
7119 case TRUNCATE:
7120 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
7121 break;
7122
7123 case ZERO_EXTEND:
7124 nonzero &= nonzero_bits (XEXP (x, 0), mode);
7125 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7126 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7127 break;
7128
7129 case SIGN_EXTEND:
7130 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
7131 Otherwise, show all the bits in the outer mode but not the inner
7132 may be non-zero. */
7133 inner_nz = nonzero_bits (XEXP (x, 0), mode);
7134 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7135 {
7136 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7137 if (inner_nz &
7138 (((HOST_WIDE_INT) 1
7139 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
7140 inner_nz |= (GET_MODE_MASK (mode)
7141 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
7142 }
7143
7144 nonzero &= inner_nz;
7145 break;
7146
7147 case AND:
7148 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7149 & nonzero_bits (XEXP (x, 1), mode));
7150 break;
7151
7152 case XOR: case IOR:
7153 case UMIN: case UMAX: case SMIN: case SMAX:
7154 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7155 | nonzero_bits (XEXP (x, 1), mode));
7156 break;
7157
7158 case PLUS: case MINUS:
7159 case MULT:
7160 case DIV: case UDIV:
7161 case MOD: case UMOD:
7162 /* We can apply the rules of arithmetic to compute the number of
7163 high- and low-order zero bits of these operations. We start by
7164 computing the width (position of the highest-order non-zero bit)
7165 and the number of low-order zero bits for each value. */
7166 {
7167 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
7168 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
7169 int width0 = floor_log2 (nz0) + 1;
7170 int width1 = floor_log2 (nz1) + 1;
7171 int low0 = floor_log2 (nz0 & -nz0);
7172 int low1 = floor_log2 (nz1 & -nz1);
7173 HOST_WIDE_INT op0_maybe_minusp
7174 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7175 HOST_WIDE_INT op1_maybe_minusp
7176 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7177 int result_width = mode_width;
7178 int result_low = 0;
7179
7180 switch (code)
7181 {
7182 case PLUS:
7183 result_width = MAX (width0, width1) + 1;
7184 result_low = MIN (low0, low1);
7185 break;
7186 case MINUS:
7187 result_low = MIN (low0, low1);
7188 break;
7189 case MULT:
7190 result_width = width0 + width1;
7191 result_low = low0 + low1;
7192 break;
7193 case DIV:
7194 if (! op0_maybe_minusp && ! op1_maybe_minusp)
7195 result_width = width0;
7196 break;
7197 case UDIV:
7198 result_width = width0;
7199 break;
7200 case MOD:
7201 if (! op0_maybe_minusp && ! op1_maybe_minusp)
7202 result_width = MIN (width0, width1);
7203 result_low = MIN (low0, low1);
7204 break;
7205 case UMOD:
7206 result_width = MIN (width0, width1);
7207 result_low = MIN (low0, low1);
7208 break;
7209 }
7210
7211 if (result_width < mode_width)
7212 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
7213
7214 if (result_low > 0)
7215 nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
7216 }
7217 break;
7218
7219 case ZERO_EXTRACT:
7220 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7221 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7222 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
7223 break;
7224
7225 case SUBREG:
7226 /* If this is a SUBREG formed for a promoted variable that has
7227 been zero-extended, we know that at least the high-order bits
7228 are zero, though others might be too. */
7229
7230 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
7231 nonzero = (GET_MODE_MASK (GET_MODE (x))
7232 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
7233
7234 /* If the inner mode is a single word for both the host and target
7235 machines, we can compute this from which bits of the inner
7236 object might be nonzero. */
7237 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
7238 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7239 <= HOST_BITS_PER_WIDE_INT))
7240 {
7241 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
7242
7243 #ifndef WORD_REGISTER_OPERATIONS
7244 /* On many CISC machines, accessing an object in a wider mode
7245 causes the high-order bits to become undefined. So they are
7246 not known to be zero. */
7247 if (GET_MODE_SIZE (GET_MODE (x))
7248 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7249 nonzero |= (GET_MODE_MASK (GET_MODE (x))
7250 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
7251 #endif
7252 }
7253 break;
7254
7255 case ASHIFTRT:
7256 case LSHIFTRT:
7257 case ASHIFT:
7258 case ROTATE:
7259 /* The nonzero bits are in two classes: any bits within MODE
7260 that aren't in GET_MODE (x) are always significant. The rest of the
7261 nonzero bits are those that are significant in the operand of
7262 the shift when shifted the appropriate number of bits. This
7263 shows that high-order bits are cleared by the right shift and
7264 low-order bits by left shifts. */
7265 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7266 && INTVAL (XEXP (x, 1)) >= 0
7267 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7268 {
7269 enum machine_mode inner_mode = GET_MODE (x);
7270 int width = GET_MODE_BITSIZE (inner_mode);
7271 int count = INTVAL (XEXP (x, 1));
7272 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
7273 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
7274 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
7275 unsigned HOST_WIDE_INT outer = 0;
7276
7277 if (mode_width > width)
7278 outer = (op_nonzero & nonzero & ~ mode_mask);
7279
7280 if (code == LSHIFTRT)
7281 inner >>= count;
7282 else if (code == ASHIFTRT)
7283 {
7284 inner >>= count;
7285
7286 /* If the sign bit may have been nonzero before the shift, we
7287 need to mark all the places it could have been copied to
7288 by the shift as possibly nonzero. */
7289 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
7290 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
7291 }
7292 else if (code == ASHIFT)
7293 inner <<= count;
7294 else
7295 inner = ((inner << (count % width)
7296 | (inner >> (width - (count % width)))) & mode_mask);
7297
7298 nonzero &= (outer | inner);
7299 }
7300 break;
7301
7302 case FFS:
7303 /* This is at most the number of bits in the mode. */
7304 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
7305 break;
7306
7307 case IF_THEN_ELSE:
7308 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
7309 | nonzero_bits (XEXP (x, 2), mode));
7310 break;
7311 }
7312
7313 return nonzero;
7314 }
7315 \f
7316 /* Return the number of bits at the high-order end of X that are known to
7317 be equal to the sign bit. X will be used in mode MODE; if MODE is
7318 VOIDmode, X will be used in its own mode. The returned value will always
7319 be between 1 and the number of bits in MODE. */
7320
7321 static int
7322 num_sign_bit_copies (x, mode)
7323 rtx x;
7324 enum machine_mode mode;
7325 {
7326 enum rtx_code code = GET_CODE (x);
7327 int bitwidth;
7328 int num0, num1, result;
7329 unsigned HOST_WIDE_INT nonzero;
7330 rtx tem;
7331
7332 /* If we weren't given a mode, use the mode of X. If the mode is still
7333 VOIDmode, we don't know anything. Likewise if one of the modes is
7334 floating-point. */
7335
7336 if (mode == VOIDmode)
7337 mode = GET_MODE (x);
7338
7339 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
7340 return 1;
7341
7342 bitwidth = GET_MODE_BITSIZE (mode);
7343
7344 /* For a smaller object, just ignore the high bits. */
7345 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
7346 return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
7347 - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
7348
7349 #ifndef WORD_REGISTER_OPERATIONS
7350 /* If this machine does not do all register operations on the entire
7351 register and MODE is wider than the mode of X, we can say nothing
7352 at all about the high-order bits. */
7353 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
7354 return 1;
7355 #endif
7356
7357 switch (code)
7358 {
7359 case REG:
7360
7361 #ifdef POINTERS_EXTEND_UNSIGNED
7362 /* If pointers extend signed and this is a pointer in Pmode, say that
7363 all the bits above ptr_mode are known to be sign bit copies. */
7364 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
7365 && REGNO_POINTER_FLAG (REGNO (x)))
7366 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
7367 #endif
7368
7369 if (reg_last_set_value[REGNO (x)] != 0
7370 && reg_last_set_mode[REGNO (x)] == mode
7371 && (reg_n_sets[REGNO (x)] == 1
7372 || reg_last_set_label[REGNO (x)] == label_tick)
7373 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7374 return reg_last_set_sign_bit_copies[REGNO (x)];
7375
7376 tem = get_last_value (x);
7377 if (tem != 0)
7378 return num_sign_bit_copies (tem, mode);
7379
7380 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
7381 return reg_sign_bit_copies[REGNO (x)];
7382 break;
7383
7384 case MEM:
7385 #ifdef LOAD_EXTEND_OP
7386 /* Some RISC machines sign-extend all loads of smaller than a word. */
7387 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
7388 return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
7389 #endif
7390 break;
7391
7392 case CONST_INT:
7393 /* If the constant is negative, take its 1's complement and remask.
7394 Then see how many zero bits we have. */
7395 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
7396 if (bitwidth <= HOST_BITS_PER_WIDE_INT
7397 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7398 nonzero = (~ nonzero) & GET_MODE_MASK (mode);
7399
7400 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
7401
7402 case SUBREG:
7403 /* If this is a SUBREG for a promoted object that is sign-extended
7404 and we are looking at it in a wider mode, we know that at least the
7405 high-order bits are known to be sign bit copies. */
7406
7407 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
7408 return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
7409 num_sign_bit_copies (SUBREG_REG (x), mode));
7410
7411 /* For a smaller object, just ignore the high bits. */
7412 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
7413 {
7414 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
7415 return MAX (1, (num0
7416 - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7417 - bitwidth)));
7418 }
7419
7420 #ifdef WORD_REGISTER_OPERATIONS
7421 #ifdef LOAD_EXTEND_OP
7422 /* For paradoxical SUBREGs on machines where all register operations
7423 affect the entire register, just look inside. Note that we are
7424 passing MODE to the recursive call, so the number of sign bit copies
7425 will remain relative to that mode, not the inner mode. */
7426
7427 /* This works only if loads sign extend. Otherwise, if we get a
7428 reload for the inner part, it may be loaded from the stack, and
7429 then we lose all sign bit copies that existed before the store
7430 to the stack. */
7431
7432 if ((GET_MODE_SIZE (GET_MODE (x))
7433 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7434 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
7435 return num_sign_bit_copies (SUBREG_REG (x), mode);
7436 #endif
7437 #endif
7438 break;
7439
7440 case SIGN_EXTRACT:
7441 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7442 return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
7443 break;
7444
7445 case SIGN_EXTEND:
7446 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7447 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
7448
7449 case TRUNCATE:
7450 /* For a smaller object, just ignore the high bits. */
7451 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
7452 return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7453 - bitwidth)));
7454
7455 case NOT:
7456 return num_sign_bit_copies (XEXP (x, 0), mode);
7457
7458 case ROTATE: case ROTATERT:
7459 /* If we are rotating left by a number of bits less than the number
7460 of sign bit copies, we can just subtract that amount from the
7461 number. */
7462 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7463 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
7464 {
7465 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7466 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
7467 : bitwidth - INTVAL (XEXP (x, 1))));
7468 }
7469 break;
7470
7471 case NEG:
7472 /* In general, this subtracts one sign bit copy. But if the value
7473 is known to be positive, the number of sign bit copies is the
7474 same as that of the input. Finally, if the input has just one bit
7475 that might be nonzero, all the bits are copies of the sign bit. */
7476 nonzero = nonzero_bits (XEXP (x, 0), mode);
7477 if (nonzero == 1)
7478 return bitwidth;
7479
7480 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7481 if (num0 > 1
7482 && bitwidth <= HOST_BITS_PER_WIDE_INT
7483 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
7484 num0--;
7485
7486 return num0;
7487
7488 case IOR: case AND: case XOR:
7489 case SMIN: case SMAX: case UMIN: case UMAX:
7490 /* Logical operations will preserve the number of sign-bit copies.
7491 MIN and MAX operations always return one of the operands. */
7492 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7493 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7494 return MIN (num0, num1);
7495
7496 case PLUS: case MINUS:
7497 /* For addition and subtraction, we can have a 1-bit carry. However,
7498 if we are subtracting 1 from a positive number, there will not
7499 be such a carry. Furthermore, if the positive number is known to
7500 be 0 or 1, we know the result is either -1 or 0. */
7501
7502 if (code == PLUS && XEXP (x, 1) == constm1_rtx
7503 && bitwidth <= HOST_BITS_PER_WIDE_INT)
7504 {
7505 nonzero = nonzero_bits (XEXP (x, 0), mode);
7506 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
7507 return (nonzero == 1 || nonzero == 0 ? bitwidth
7508 : bitwidth - floor_log2 (nonzero) - 1);
7509 }
7510
7511 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7512 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7513 return MAX (1, MIN (num0, num1) - 1);
7514
7515 case MULT:
7516 /* The number of bits of the product is the sum of the number of
7517 bits of both terms. However, unless one of the terms if known
7518 to be positive, we must allow for an additional bit since negating
7519 a negative number can remove one sign bit copy. */
7520
7521 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7522 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7523
7524 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
7525 if (result > 0
7526 && bitwidth <= HOST_BITS_PER_WIDE_INT
7527 && ((nonzero_bits (XEXP (x, 0), mode)
7528 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7529 && ((nonzero_bits (XEXP (x, 1), mode)
7530 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
7531 result--;
7532
7533 return MAX (1, result);
7534
7535 case UDIV:
7536 /* The result must be <= the first operand. */
7537 return num_sign_bit_copies (XEXP (x, 0), mode);
7538
7539 case UMOD:
7540 /* The result must be <= the scond operand. */
7541 return num_sign_bit_copies (XEXP (x, 1), mode);
7542
7543 case DIV:
7544 /* Similar to unsigned division, except that we have to worry about
7545 the case where the divisor is negative, in which case we have
7546 to add 1. */
7547 result = num_sign_bit_copies (XEXP (x, 0), mode);
7548 if (result > 1
7549 && bitwidth <= HOST_BITS_PER_WIDE_INT
7550 && (nonzero_bits (XEXP (x, 1), mode)
7551 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7552 result --;
7553
7554 return result;
7555
7556 case MOD:
7557 result = num_sign_bit_copies (XEXP (x, 1), mode);
7558 if (result > 1
7559 && bitwidth <= HOST_BITS_PER_WIDE_INT
7560 && (nonzero_bits (XEXP (x, 1), mode)
7561 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7562 result --;
7563
7564 return result;
7565
7566 case ASHIFTRT:
7567 /* Shifts by a constant add to the number of bits equal to the
7568 sign bit. */
7569 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7570 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7571 && INTVAL (XEXP (x, 1)) > 0)
7572 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
7573
7574 return num0;
7575
7576 case ASHIFT:
7577 /* Left shifts destroy copies. */
7578 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7579 || INTVAL (XEXP (x, 1)) < 0
7580 || INTVAL (XEXP (x, 1)) >= bitwidth)
7581 return 1;
7582
7583 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7584 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
7585
7586 case IF_THEN_ELSE:
7587 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
7588 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
7589 return MIN (num0, num1);
7590
7591 #if STORE_FLAG_VALUE == -1
7592 case EQ: case NE: case GE: case GT: case LE: case LT:
7593 case GEU: case GTU: case LEU: case LTU:
7594 return bitwidth;
7595 #endif
7596 }
7597
7598 /* If we haven't been able to figure it out by one of the above rules,
7599 see if some of the high-order bits are known to be zero. If so,
7600 count those bits and return one less than that amount. If we can't
7601 safely compute the mask for this mode, always return BITWIDTH. */
7602
7603 if (bitwidth > HOST_BITS_PER_WIDE_INT)
7604 return 1;
7605
7606 nonzero = nonzero_bits (x, mode);
7607 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
7608 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
7609 }
7610 \f
7611 /* Return the number of "extended" bits there are in X, when interpreted
7612 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
7613 unsigned quantities, this is the number of high-order zero bits.
7614 For signed quantities, this is the number of copies of the sign bit
7615 minus 1. In both case, this function returns the number of "spare"
7616 bits. For example, if two quantities for which this function returns
7617 at least 1 are added, the addition is known not to overflow.
7618
7619 This function will always return 0 unless called during combine, which
7620 implies that it must be called from a define_split. */
7621
7622 int
7623 extended_count (x, mode, unsignedp)
7624 rtx x;
7625 enum machine_mode mode;
7626 int unsignedp;
7627 {
7628 if (nonzero_sign_valid == 0)
7629 return 0;
7630
7631 return (unsignedp
7632 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7633 && (GET_MODE_BITSIZE (mode) - 1
7634 - floor_log2 (nonzero_bits (x, mode))))
7635 : num_sign_bit_copies (x, mode) - 1);
7636 }
7637 \f
7638 /* This function is called from `simplify_shift_const' to merge two
7639 outer operations. Specifically, we have already found that we need
7640 to perform operation *POP0 with constant *PCONST0 at the outermost
7641 position. We would now like to also perform OP1 with constant CONST1
7642 (with *POP0 being done last).
7643
7644 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
7645 the resulting operation. *PCOMP_P is set to 1 if we would need to
7646 complement the innermost operand, otherwise it is unchanged.
7647
7648 MODE is the mode in which the operation will be done. No bits outside
7649 the width of this mode matter. It is assumed that the width of this mode
7650 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
7651
7652 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
7653 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
7654 result is simply *PCONST0.
7655
7656 If the resulting operation cannot be expressed as one operation, we
7657 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
7658
7659 static int
7660 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
7661 enum rtx_code *pop0;
7662 HOST_WIDE_INT *pconst0;
7663 enum rtx_code op1;
7664 HOST_WIDE_INT const1;
7665 enum machine_mode mode;
7666 int *pcomp_p;
7667 {
7668 enum rtx_code op0 = *pop0;
7669 HOST_WIDE_INT const0 = *pconst0;
7670 int width = GET_MODE_BITSIZE (mode);
7671
7672 const0 &= GET_MODE_MASK (mode);
7673 const1 &= GET_MODE_MASK (mode);
7674
7675 /* If OP0 is an AND, clear unimportant bits in CONST1. */
7676 if (op0 == AND)
7677 const1 &= const0;
7678
7679 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
7680 if OP0 is SET. */
7681
7682 if (op1 == NIL || op0 == SET)
7683 return 1;
7684
7685 else if (op0 == NIL)
7686 op0 = op1, const0 = const1;
7687
7688 else if (op0 == op1)
7689 {
7690 switch (op0)
7691 {
7692 case AND:
7693 const0 &= const1;
7694 break;
7695 case IOR:
7696 const0 |= const1;
7697 break;
7698 case XOR:
7699 const0 ^= const1;
7700 break;
7701 case PLUS:
7702 const0 += const1;
7703 break;
7704 case NEG:
7705 op0 = NIL;
7706 break;
7707 }
7708 }
7709
7710 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
7711 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
7712 return 0;
7713
7714 /* If the two constants aren't the same, we can't do anything. The
7715 remaining six cases can all be done. */
7716 else if (const0 != const1)
7717 return 0;
7718
7719 else
7720 switch (op0)
7721 {
7722 case IOR:
7723 if (op1 == AND)
7724 /* (a & b) | b == b */
7725 op0 = SET;
7726 else /* op1 == XOR */
7727 /* (a ^ b) | b == a | b */
7728 ;
7729 break;
7730
7731 case XOR:
7732 if (op1 == AND)
7733 /* (a & b) ^ b == (~a) & b */
7734 op0 = AND, *pcomp_p = 1;
7735 else /* op1 == IOR */
7736 /* (a | b) ^ b == a & ~b */
7737 op0 = AND, *pconst0 = ~ const0;
7738 break;
7739
7740 case AND:
7741 if (op1 == IOR)
7742 /* (a | b) & b == b */
7743 op0 = SET;
7744 else /* op1 == XOR */
7745 /* (a ^ b) & b) == (~a) & b */
7746 *pcomp_p = 1;
7747 break;
7748 }
7749
7750 /* Check for NO-OP cases. */
7751 const0 &= GET_MODE_MASK (mode);
7752 if (const0 == 0
7753 && (op0 == IOR || op0 == XOR || op0 == PLUS))
7754 op0 = NIL;
7755 else if (const0 == 0 && op0 == AND)
7756 op0 = SET;
7757 else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
7758 op0 = NIL;
7759
7760 /* If this would be an entire word for the target, but is not for
7761 the host, then sign-extend on the host so that the number will look
7762 the same way on the host that it would on the target.
7763
7764 For example, when building a 64 bit alpha hosted 32 bit sparc
7765 targeted compiler, then we want the 32 bit unsigned value -1 to be
7766 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
7767 The later confuses the sparc backend. */
7768
7769 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
7770 && (const0 & ((HOST_WIDE_INT) 1 << (width - 1))))
7771 const0 |= ((HOST_WIDE_INT) (-1) << width);
7772
7773 *pop0 = op0;
7774 *pconst0 = const0;
7775
7776 return 1;
7777 }
7778 \f
7779 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
7780 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
7781 that we started with.
7782
7783 The shift is normally computed in the widest mode we find in VAROP, as
7784 long as it isn't a different number of words than RESULT_MODE. Exceptions
7785 are ASHIFTRT and ROTATE, which are always done in their original mode, */
7786
7787 static rtx
7788 simplify_shift_const (x, code, result_mode, varop, count)
7789 rtx x;
7790 enum rtx_code code;
7791 enum machine_mode result_mode;
7792 rtx varop;
7793 int count;
7794 {
7795 enum rtx_code orig_code = code;
7796 int orig_count = count;
7797 enum machine_mode mode = result_mode;
7798 enum machine_mode shift_mode, tmode;
7799 int mode_words
7800 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
7801 /* We form (outer_op (code varop count) (outer_const)). */
7802 enum rtx_code outer_op = NIL;
7803 HOST_WIDE_INT outer_const = 0;
7804 rtx const_rtx;
7805 int complement_p = 0;
7806 rtx new;
7807
7808 /* If we were given an invalid count, don't do anything except exactly
7809 what was requested. */
7810
7811 if (count < 0 || count > GET_MODE_BITSIZE (mode))
7812 {
7813 if (x)
7814 return x;
7815
7816 return gen_rtx (code, mode, varop, GEN_INT (count));
7817 }
7818
7819 /* Unless one of the branches of the `if' in this loop does a `continue',
7820 we will `break' the loop after the `if'. */
7821
7822 while (count != 0)
7823 {
7824 /* If we have an operand of (clobber (const_int 0)), just return that
7825 value. */
7826 if (GET_CODE (varop) == CLOBBER)
7827 return varop;
7828
7829 /* If we discovered we had to complement VAROP, leave. Making a NOT
7830 here would cause an infinite loop. */
7831 if (complement_p)
7832 break;
7833
7834 /* Convert ROTATERT to ROTATE. */
7835 if (code == ROTATERT)
7836 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
7837
7838 /* We need to determine what mode we will do the shift in. If the
7839 shift is a right shift or a ROTATE, we must always do it in the mode
7840 it was originally done in. Otherwise, we can do it in MODE, the
7841 widest mode encountered. */
7842 shift_mode
7843 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
7844 ? result_mode : mode);
7845
7846 /* Handle cases where the count is greater than the size of the mode
7847 minus 1. For ASHIFT, use the size minus one as the count (this can
7848 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
7849 take the count modulo the size. For other shifts, the result is
7850 zero.
7851
7852 Since these shifts are being produced by the compiler by combining
7853 multiple operations, each of which are defined, we know what the
7854 result is supposed to be. */
7855
7856 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
7857 {
7858 if (code == ASHIFTRT)
7859 count = GET_MODE_BITSIZE (shift_mode) - 1;
7860 else if (code == ROTATE || code == ROTATERT)
7861 count %= GET_MODE_BITSIZE (shift_mode);
7862 else
7863 {
7864 /* We can't simply return zero because there may be an
7865 outer op. */
7866 varop = const0_rtx;
7867 count = 0;
7868 break;
7869 }
7870 }
7871
7872 /* Negative counts are invalid and should not have been made (a
7873 programmer-specified negative count should have been handled
7874 above). */
7875 else if (count < 0)
7876 abort ();
7877
7878 /* An arithmetic right shift of a quantity known to be -1 or 0
7879 is a no-op. */
7880 if (code == ASHIFTRT
7881 && (num_sign_bit_copies (varop, shift_mode)
7882 == GET_MODE_BITSIZE (shift_mode)))
7883 {
7884 count = 0;
7885 break;
7886 }
7887
7888 /* If we are doing an arithmetic right shift and discarding all but
7889 the sign bit copies, this is equivalent to doing a shift by the
7890 bitsize minus one. Convert it into that shift because it will often
7891 allow other simplifications. */
7892
7893 if (code == ASHIFTRT
7894 && (count + num_sign_bit_copies (varop, shift_mode)
7895 >= GET_MODE_BITSIZE (shift_mode)))
7896 count = GET_MODE_BITSIZE (shift_mode) - 1;
7897
7898 /* We simplify the tests below and elsewhere by converting
7899 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
7900 `make_compound_operation' will convert it to a ASHIFTRT for
7901 those machines (such as Vax) that don't have a LSHIFTRT. */
7902 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
7903 && code == ASHIFTRT
7904 && ((nonzero_bits (varop, shift_mode)
7905 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
7906 == 0))
7907 code = LSHIFTRT;
7908
7909 switch (GET_CODE (varop))
7910 {
7911 case SIGN_EXTEND:
7912 case ZERO_EXTEND:
7913 case SIGN_EXTRACT:
7914 case ZERO_EXTRACT:
7915 new = expand_compound_operation (varop);
7916 if (new != varop)
7917 {
7918 varop = new;
7919 continue;
7920 }
7921 break;
7922
7923 case MEM:
7924 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
7925 minus the width of a smaller mode, we can do this with a
7926 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
7927 if ((code == ASHIFTRT || code == LSHIFTRT)
7928 && ! mode_dependent_address_p (XEXP (varop, 0))
7929 && ! MEM_VOLATILE_P (varop)
7930 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
7931 MODE_INT, 1)) != BLKmode)
7932 {
7933 if (BYTES_BIG_ENDIAN)
7934 new = gen_rtx (MEM, tmode, XEXP (varop, 0));
7935 else
7936 new = gen_rtx (MEM, tmode,
7937 plus_constant (XEXP (varop, 0),
7938 count / BITS_PER_UNIT));
7939 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
7940 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
7941 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
7942 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
7943 : ZERO_EXTEND, mode, new);
7944 count = 0;
7945 continue;
7946 }
7947 break;
7948
7949 case USE:
7950 /* Similar to the case above, except that we can only do this if
7951 the resulting mode is the same as that of the underlying
7952 MEM and adjust the address depending on the *bits* endianness
7953 because of the way that bit-field extract insns are defined. */
7954 if ((code == ASHIFTRT || code == LSHIFTRT)
7955 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
7956 MODE_INT, 1)) != BLKmode
7957 && tmode == GET_MODE (XEXP (varop, 0)))
7958 {
7959 if (BITS_BIG_ENDIAN)
7960 new = XEXP (varop, 0);
7961 else
7962 {
7963 new = copy_rtx (XEXP (varop, 0));
7964 SUBST (XEXP (new, 0),
7965 plus_constant (XEXP (new, 0),
7966 count / BITS_PER_UNIT));
7967 }
7968
7969 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
7970 : ZERO_EXTEND, mode, new);
7971 count = 0;
7972 continue;
7973 }
7974 break;
7975
7976 case SUBREG:
7977 /* If VAROP is a SUBREG, strip it as long as the inner operand has
7978 the same number of words as what we've seen so far. Then store
7979 the widest mode in MODE. */
7980 if (subreg_lowpart_p (varop)
7981 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
7982 > GET_MODE_SIZE (GET_MODE (varop)))
7983 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
7984 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7985 == mode_words))
7986 {
7987 varop = SUBREG_REG (varop);
7988 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
7989 mode = GET_MODE (varop);
7990 continue;
7991 }
7992 break;
7993
7994 case MULT:
7995 /* Some machines use MULT instead of ASHIFT because MULT
7996 is cheaper. But it is still better on those machines to
7997 merge two shifts into one. */
7998 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
7999 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8000 {
8001 varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8002 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
8003 continue;
8004 }
8005 break;
8006
8007 case UDIV:
8008 /* Similar, for when divides are cheaper. */
8009 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8010 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8011 {
8012 varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8013 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8014 continue;
8015 }
8016 break;
8017
8018 case ASHIFTRT:
8019 /* If we are extracting just the sign bit of an arithmetic right
8020 shift, that shift is not needed. */
8021 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
8022 {
8023 varop = XEXP (varop, 0);
8024 continue;
8025 }
8026
8027 /* ... fall through ... */
8028
8029 case LSHIFTRT:
8030 case ASHIFT:
8031 case ROTATE:
8032 /* Here we have two nested shifts. The result is usually the
8033 AND of a new shift with a mask. We compute the result below. */
8034 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8035 && INTVAL (XEXP (varop, 1)) >= 0
8036 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8037 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8038 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8039 {
8040 enum rtx_code first_code = GET_CODE (varop);
8041 int first_count = INTVAL (XEXP (varop, 1));
8042 unsigned HOST_WIDE_INT mask;
8043 rtx mask_rtx;
8044
8045 /* We have one common special case. We can't do any merging if
8046 the inner code is an ASHIFTRT of a smaller mode. However, if
8047 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8048 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8049 we can convert it to
8050 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8051 This simplifies certain SIGN_EXTEND operations. */
8052 if (code == ASHIFT && first_code == ASHIFTRT
8053 && (GET_MODE_BITSIZE (result_mode)
8054 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
8055 {
8056 /* C3 has the low-order C1 bits zero. */
8057
8058 mask = (GET_MODE_MASK (mode)
8059 & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
8060
8061 varop = simplify_and_const_int (NULL_RTX, result_mode,
8062 XEXP (varop, 0), mask);
8063 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8064 varop, count);
8065 count = first_count;
8066 code = ASHIFTRT;
8067 continue;
8068 }
8069
8070 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8071 than C1 high-order bits equal to the sign bit, we can convert
8072 this to either an ASHIFT or a ASHIFTRT depending on the
8073 two counts.
8074
8075 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8076
8077 if (code == ASHIFTRT && first_code == ASHIFT
8078 && GET_MODE (varop) == shift_mode
8079 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8080 > first_count))
8081 {
8082 count -= first_count;
8083 if (count < 0)
8084 count = - count, code = ASHIFT;
8085 varop = XEXP (varop, 0);
8086 continue;
8087 }
8088
8089 /* There are some cases we can't do. If CODE is ASHIFTRT,
8090 we can only do this if FIRST_CODE is also ASHIFTRT.
8091
8092 We can't do the case when CODE is ROTATE and FIRST_CODE is
8093 ASHIFTRT.
8094
8095 If the mode of this shift is not the mode of the outer shift,
8096 we can't do this if either shift is a right shift or ROTATE.
8097
8098 Finally, we can't do any of these if the mode is too wide
8099 unless the codes are the same.
8100
8101 Handle the case where the shift codes are the same
8102 first. */
8103
8104 if (code == first_code)
8105 {
8106 if (GET_MODE (varop) != result_mode
8107 && (code == ASHIFTRT || code == LSHIFTRT
8108 || code == ROTATE))
8109 break;
8110
8111 count += first_count;
8112 varop = XEXP (varop, 0);
8113 continue;
8114 }
8115
8116 if (code == ASHIFTRT
8117 || (code == ROTATE && first_code == ASHIFTRT)
8118 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8119 || (GET_MODE (varop) != result_mode
8120 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8121 || first_code == ROTATE
8122 || code == ROTATE)))
8123 break;
8124
8125 /* To compute the mask to apply after the shift, shift the
8126 nonzero bits of the inner shift the same way the
8127 outer shift will. */
8128
8129 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8130
8131 mask_rtx
8132 = simplify_binary_operation (code, result_mode, mask_rtx,
8133 GEN_INT (count));
8134
8135 /* Give up if we can't compute an outer operation to use. */
8136 if (mask_rtx == 0
8137 || GET_CODE (mask_rtx) != CONST_INT
8138 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8139 INTVAL (mask_rtx),
8140 result_mode, &complement_p))
8141 break;
8142
8143 /* If the shifts are in the same direction, we add the
8144 counts. Otherwise, we subtract them. */
8145 if ((code == ASHIFTRT || code == LSHIFTRT)
8146 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8147 count += first_count;
8148 else
8149 count -= first_count;
8150
8151 /* If COUNT is positive, the new shift is usually CODE,
8152 except for the two exceptions below, in which case it is
8153 FIRST_CODE. If the count is negative, FIRST_CODE should
8154 always be used */
8155 if (count > 0
8156 && ((first_code == ROTATE && code == ASHIFT)
8157 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8158 code = first_code;
8159 else if (count < 0)
8160 code = first_code, count = - count;
8161
8162 varop = XEXP (varop, 0);
8163 continue;
8164 }
8165
8166 /* If we have (A << B << C) for any shift, we can convert this to
8167 (A << C << B). This wins if A is a constant. Only try this if
8168 B is not a constant. */
8169
8170 else if (GET_CODE (varop) == code
8171 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8172 && 0 != (new
8173 = simplify_binary_operation (code, mode,
8174 XEXP (varop, 0),
8175 GEN_INT (count))))
8176 {
8177 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
8178 count = 0;
8179 continue;
8180 }
8181 break;
8182
8183 case NOT:
8184 /* Make this fit the case below. */
8185 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
8186 GEN_INT (GET_MODE_MASK (mode)));
8187 continue;
8188
8189 case IOR:
8190 case AND:
8191 case XOR:
8192 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8193 with C the size of VAROP - 1 and the shift is logical if
8194 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8195 we have an (le X 0) operation. If we have an arithmetic shift
8196 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8197 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8198
8199 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8200 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8201 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8202 && (code == LSHIFTRT || code == ASHIFTRT)
8203 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8204 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8205 {
8206 count = 0;
8207 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
8208 const0_rtx);
8209
8210 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8211 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8212
8213 continue;
8214 }
8215
8216 /* If we have (shift (logical)), move the logical to the outside
8217 to allow it to possibly combine with another logical and the
8218 shift to combine with another shift. This also canonicalizes to
8219 what a ZERO_EXTRACT looks like. Also, some machines have
8220 (and (shift)) insns. */
8221
8222 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8223 && (new = simplify_binary_operation (code, result_mode,
8224 XEXP (varop, 1),
8225 GEN_INT (count))) != 0
8226 && GET_CODE(new) == CONST_INT
8227 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8228 INTVAL (new), result_mode, &complement_p))
8229 {
8230 varop = XEXP (varop, 0);
8231 continue;
8232 }
8233
8234 /* If we can't do that, try to simplify the shift in each arm of the
8235 logical expression, make a new logical expression, and apply
8236 the inverse distributive law. */
8237 {
8238 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8239 XEXP (varop, 0), count);
8240 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8241 XEXP (varop, 1), count);
8242
8243 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8244 varop = apply_distributive_law (varop);
8245
8246 count = 0;
8247 }
8248 break;
8249
8250 case EQ:
8251 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8252 says that the sign bit can be tested, FOO has mode MODE, C is
8253 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8254 that may be nonzero. */
8255 if (code == LSHIFTRT
8256 && XEXP (varop, 1) == const0_rtx
8257 && GET_MODE (XEXP (varop, 0)) == result_mode
8258 && count == GET_MODE_BITSIZE (result_mode) - 1
8259 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8260 && ((STORE_FLAG_VALUE
8261 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
8262 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8263 && merge_outer_ops (&outer_op, &outer_const, XOR,
8264 (HOST_WIDE_INT) 1, result_mode,
8265 &complement_p))
8266 {
8267 varop = XEXP (varop, 0);
8268 count = 0;
8269 continue;
8270 }
8271 break;
8272
8273 case NEG:
8274 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8275 than the number of bits in the mode is equivalent to A. */
8276 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8277 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8278 {
8279 varop = XEXP (varop, 0);
8280 count = 0;
8281 continue;
8282 }
8283
8284 /* NEG commutes with ASHIFT since it is multiplication. Move the
8285 NEG outside to allow shifts to combine. */
8286 if (code == ASHIFT
8287 && merge_outer_ops (&outer_op, &outer_const, NEG,
8288 (HOST_WIDE_INT) 0, result_mode,
8289 &complement_p))
8290 {
8291 varop = XEXP (varop, 0);
8292 continue;
8293 }
8294 break;
8295
8296 case PLUS:
8297 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8298 is one less than the number of bits in the mode is
8299 equivalent to (xor A 1). */
8300 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8301 && XEXP (varop, 1) == constm1_rtx
8302 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8303 && merge_outer_ops (&outer_op, &outer_const, XOR,
8304 (HOST_WIDE_INT) 1, result_mode,
8305 &complement_p))
8306 {
8307 count = 0;
8308 varop = XEXP (varop, 0);
8309 continue;
8310 }
8311
8312 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8313 that might be nonzero in BAR are those being shifted out and those
8314 bits are known zero in FOO, we can replace the PLUS with FOO.
8315 Similarly in the other operand order. This code occurs when
8316 we are computing the size of a variable-size array. */
8317
8318 if ((code == ASHIFTRT || code == LSHIFTRT)
8319 && count < HOST_BITS_PER_WIDE_INT
8320 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8321 && (nonzero_bits (XEXP (varop, 1), result_mode)
8322 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8323 {
8324 varop = XEXP (varop, 0);
8325 continue;
8326 }
8327 else if ((code == ASHIFTRT || code == LSHIFTRT)
8328 && count < HOST_BITS_PER_WIDE_INT
8329 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8330 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8331 >> count)
8332 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8333 & nonzero_bits (XEXP (varop, 1),
8334 result_mode)))
8335 {
8336 varop = XEXP (varop, 1);
8337 continue;
8338 }
8339
8340 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
8341 if (code == ASHIFT
8342 && GET_CODE (XEXP (varop, 1)) == CONST_INT
8343 && (new = simplify_binary_operation (ASHIFT, result_mode,
8344 XEXP (varop, 1),
8345 GEN_INT (count))) != 0
8346 && GET_CODE(new) == CONST_INT
8347 && merge_outer_ops (&outer_op, &outer_const, PLUS,
8348 INTVAL (new), result_mode, &complement_p))
8349 {
8350 varop = XEXP (varop, 0);
8351 continue;
8352 }
8353 break;
8354
8355 case MINUS:
8356 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
8357 with C the size of VAROP - 1 and the shift is logical if
8358 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8359 we have a (gt X 0) operation. If the shift is arithmetic with
8360 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
8361 we have a (neg (gt X 0)) operation. */
8362
8363 if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT
8364 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8365 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8366 && (code == LSHIFTRT || code == ASHIFTRT)
8367 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8368 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
8369 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8370 {
8371 count = 0;
8372 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
8373 const0_rtx);
8374
8375 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8376 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8377
8378 continue;
8379 }
8380 break;
8381 }
8382
8383 break;
8384 }
8385
8386 /* We need to determine what mode to do the shift in. If the shift is
8387 a right shift or ROTATE, we must always do it in the mode it was
8388 originally done in. Otherwise, we can do it in MODE, the widest mode
8389 encountered. The code we care about is that of the shift that will
8390 actually be done, not the shift that was originally requested. */
8391 shift_mode
8392 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8393 ? result_mode : mode);
8394
8395 /* We have now finished analyzing the shift. The result should be
8396 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
8397 OUTER_OP is non-NIL, it is an operation that needs to be applied
8398 to the result of the shift. OUTER_CONST is the relevant constant,
8399 but we must turn off all bits turned off in the shift.
8400
8401 If we were passed a value for X, see if we can use any pieces of
8402 it. If not, make new rtx. */
8403
8404 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
8405 && GET_CODE (XEXP (x, 1)) == CONST_INT
8406 && INTVAL (XEXP (x, 1)) == count)
8407 const_rtx = XEXP (x, 1);
8408 else
8409 const_rtx = GEN_INT (count);
8410
8411 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8412 && GET_MODE (XEXP (x, 0)) == shift_mode
8413 && SUBREG_REG (XEXP (x, 0)) == varop)
8414 varop = XEXP (x, 0);
8415 else if (GET_MODE (varop) != shift_mode)
8416 varop = gen_lowpart_for_combine (shift_mode, varop);
8417
8418 /* If we can't make the SUBREG, try to return what we were given. */
8419 if (GET_CODE (varop) == CLOBBER)
8420 return x ? x : varop;
8421
8422 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
8423 if (new != 0)
8424 x = new;
8425 else
8426 {
8427 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
8428 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
8429
8430 SUBST (XEXP (x, 0), varop);
8431 SUBST (XEXP (x, 1), const_rtx);
8432 }
8433
8434 /* If we have an outer operation and we just made a shift, it is
8435 possible that we could have simplified the shift were it not
8436 for the outer operation. So try to do the simplification
8437 recursively. */
8438
8439 if (outer_op != NIL && GET_CODE (x) == code
8440 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8441 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
8442 INTVAL (XEXP (x, 1)));
8443
8444 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
8445 turn off all the bits that the shift would have turned off. */
8446 if (orig_code == LSHIFTRT && result_mode != shift_mode)
8447 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
8448 GET_MODE_MASK (result_mode) >> orig_count);
8449
8450 /* Do the remainder of the processing in RESULT_MODE. */
8451 x = gen_lowpart_for_combine (result_mode, x);
8452
8453 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
8454 operation. */
8455 if (complement_p)
8456 x = gen_unary (NOT, result_mode, result_mode, x);
8457
8458 if (outer_op != NIL)
8459 {
8460 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
8461 {
8462 int width = GET_MODE_BITSIZE (result_mode);
8463
8464 outer_const &= GET_MODE_MASK (result_mode);
8465
8466 /* If this would be an entire word for the target, but is not for
8467 the host, then sign-extend on the host so that the number will
8468 look the same way on the host that it would on the target.
8469
8470 For example, when building a 64 bit alpha hosted 32 bit sparc
8471 targeted compiler, then we want the 32 bit unsigned value -1 to be
8472 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
8473 The later confuses the sparc backend. */
8474
8475 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
8476 && (outer_const & ((HOST_WIDE_INT) 1 << (width - 1))))
8477 outer_const |= ((HOST_WIDE_INT) (-1) << width);
8478 }
8479
8480 if (outer_op == AND)
8481 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
8482 else if (outer_op == SET)
8483 /* This means that we have determined that the result is
8484 equivalent to a constant. This should be rare. */
8485 x = GEN_INT (outer_const);
8486 else if (GET_RTX_CLASS (outer_op) == '1')
8487 x = gen_unary (outer_op, result_mode, result_mode, x);
8488 else
8489 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
8490 }
8491
8492 return x;
8493 }
8494 \f
8495 /* Like recog, but we receive the address of a pointer to a new pattern.
8496 We try to match the rtx that the pointer points to.
8497 If that fails, we may try to modify or replace the pattern,
8498 storing the replacement into the same pointer object.
8499
8500 Modifications include deletion or addition of CLOBBERs.
8501
8502 PNOTES is a pointer to a location where any REG_UNUSED notes added for
8503 the CLOBBERs are placed.
8504
8505 PADDED_SCRATCHES is set to the number of (clobber (scratch)) patterns
8506 we had to add.
8507
8508 The value is the final insn code from the pattern ultimately matched,
8509 or -1. */
8510
8511 static int
8512 recog_for_combine (pnewpat, insn, pnotes, padded_scratches)
8513 rtx *pnewpat;
8514 rtx insn;
8515 rtx *pnotes;
8516 int *padded_scratches;
8517 {
8518 register rtx pat = *pnewpat;
8519 int insn_code_number;
8520 int num_clobbers_to_add = 0;
8521 int i;
8522 rtx notes = 0;
8523
8524 *padded_scratches = 0;
8525
8526 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
8527 we use to indicate that something didn't match. If we find such a
8528 thing, force rejection. */
8529 if (GET_CODE (pat) == PARALLEL)
8530 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8531 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
8532 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
8533 return -1;
8534
8535 /* Is the result of combination a valid instruction? */
8536 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
8537
8538 /* If it isn't, there is the possibility that we previously had an insn
8539 that clobbered some register as a side effect, but the combined
8540 insn doesn't need to do that. So try once more without the clobbers
8541 unless this represents an ASM insn. */
8542
8543 if (insn_code_number < 0 && ! check_asm_operands (pat)
8544 && GET_CODE (pat) == PARALLEL)
8545 {
8546 int pos;
8547
8548 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
8549 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
8550 {
8551 if (i != pos)
8552 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
8553 pos++;
8554 }
8555
8556 SUBST_INT (XVECLEN (pat, 0), pos);
8557
8558 if (pos == 1)
8559 pat = XVECEXP (pat, 0, 0);
8560
8561 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
8562 }
8563
8564 /* If we had any clobbers to add, make a new pattern than contains
8565 them. Then check to make sure that all of them are dead. */
8566 if (num_clobbers_to_add)
8567 {
8568 rtx newpat = gen_rtx (PARALLEL, VOIDmode,
8569 gen_rtvec (GET_CODE (pat) == PARALLEL
8570 ? XVECLEN (pat, 0) + num_clobbers_to_add
8571 : num_clobbers_to_add + 1));
8572
8573 if (GET_CODE (pat) == PARALLEL)
8574 for (i = 0; i < XVECLEN (pat, 0); i++)
8575 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
8576 else
8577 XVECEXP (newpat, 0, 0) = pat;
8578
8579 add_clobbers (newpat, insn_code_number);
8580
8581 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
8582 i < XVECLEN (newpat, 0); i++)
8583 {
8584 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
8585 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
8586 return -1;
8587 else if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == SCRATCH)
8588 (*padded_scratches)++;
8589 notes = gen_rtx (EXPR_LIST, REG_UNUSED,
8590 XEXP (XVECEXP (newpat, 0, i), 0), notes);
8591 }
8592 pat = newpat;
8593 }
8594
8595 *pnewpat = pat;
8596 *pnotes = notes;
8597
8598 return insn_code_number;
8599 }
8600 \f
8601 /* Like gen_lowpart but for use by combine. In combine it is not possible
8602 to create any new pseudoregs. However, it is safe to create
8603 invalid memory addresses, because combine will try to recognize
8604 them and all they will do is make the combine attempt fail.
8605
8606 If for some reason this cannot do its job, an rtx
8607 (clobber (const_int 0)) is returned.
8608 An insn containing that will not be recognized. */
8609
8610 #undef gen_lowpart
8611
8612 static rtx
8613 gen_lowpart_for_combine (mode, x)
8614 enum machine_mode mode;
8615 register rtx x;
8616 {
8617 rtx result;
8618
8619 if (GET_MODE (x) == mode)
8620 return x;
8621
8622 /* We can only support MODE being wider than a word if X is a
8623 constant integer or has a mode the same size. */
8624
8625 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
8626 && ! ((GET_MODE (x) == VOIDmode
8627 && (GET_CODE (x) == CONST_INT
8628 || GET_CODE (x) == CONST_DOUBLE))
8629 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
8630 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
8631
8632 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
8633 won't know what to do. So we will strip off the SUBREG here and
8634 process normally. */
8635 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
8636 {
8637 x = SUBREG_REG (x);
8638 if (GET_MODE (x) == mode)
8639 return x;
8640 }
8641
8642 result = gen_lowpart_common (mode, x);
8643 if (result != 0
8644 && GET_CODE (result) == SUBREG
8645 && GET_CODE (SUBREG_REG (result)) == REG
8646 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
8647 && (GET_MODE_SIZE (GET_MODE (result))
8648 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (result)))))
8649 reg_changes_size[REGNO (SUBREG_REG (result))] = 1;
8650
8651 if (result)
8652 return result;
8653
8654 if (GET_CODE (x) == MEM)
8655 {
8656 register int offset = 0;
8657 rtx new;
8658
8659 /* Refuse to work on a volatile memory ref or one with a mode-dependent
8660 address. */
8661 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
8662 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
8663
8664 /* If we want to refer to something bigger than the original memref,
8665 generate a perverse subreg instead. That will force a reload
8666 of the original memref X. */
8667 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
8668 return gen_rtx (SUBREG, mode, x, 0);
8669
8670 if (WORDS_BIG_ENDIAN)
8671 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
8672 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
8673 if (BYTES_BIG_ENDIAN)
8674 {
8675 /* Adjust the address so that the address-after-the-data is
8676 unchanged. */
8677 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
8678 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
8679 }
8680 new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
8681 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
8682 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
8683 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
8684 return new;
8685 }
8686
8687 /* If X is a comparison operator, rewrite it in a new mode. This
8688 probably won't match, but may allow further simplifications. */
8689 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
8690 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
8691
8692 /* If we couldn't simplify X any other way, just enclose it in a
8693 SUBREG. Normally, this SUBREG won't match, but some patterns may
8694 include an explicit SUBREG or we may simplify it further in combine. */
8695 else
8696 {
8697 int word = 0;
8698
8699 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
8700 word = ((GET_MODE_SIZE (GET_MODE (x))
8701 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
8702 / UNITS_PER_WORD);
8703 return gen_rtx (SUBREG, mode, x, word);
8704 }
8705 }
8706 \f
8707 /* Make an rtx expression. This is a subset of gen_rtx and only supports
8708 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
8709
8710 If the identical expression was previously in the insn (in the undobuf),
8711 it will be returned. Only if it is not found will a new expression
8712 be made. */
8713
8714 /*VARARGS2*/
8715 static rtx
8716 gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
8717 {
8718 #ifndef __STDC__
8719 enum rtx_code code;
8720 enum machine_mode mode;
8721 #endif
8722 va_list p;
8723 int n_args;
8724 rtx args[3];
8725 int i, j;
8726 char *fmt;
8727 rtx rt;
8728 struct undo *undo;
8729
8730 VA_START (p, mode);
8731
8732 #ifndef __STDC__
8733 code = va_arg (p, enum rtx_code);
8734 mode = va_arg (p, enum machine_mode);
8735 #endif
8736
8737 n_args = GET_RTX_LENGTH (code);
8738 fmt = GET_RTX_FORMAT (code);
8739
8740 if (n_args == 0 || n_args > 3)
8741 abort ();
8742
8743 /* Get each arg and verify that it is supposed to be an expression. */
8744 for (j = 0; j < n_args; j++)
8745 {
8746 if (*fmt++ != 'e')
8747 abort ();
8748
8749 args[j] = va_arg (p, rtx);
8750 }
8751
8752 /* See if this is in undobuf. Be sure we don't use objects that came
8753 from another insn; this could produce circular rtl structures. */
8754
8755 for (undo = undobuf.undos; undo != undobuf.previous_undos; undo = undo->next)
8756 if (!undo->is_int
8757 && GET_CODE (undo->old_contents.r) == code
8758 && GET_MODE (undo->old_contents.r) == mode)
8759 {
8760 for (j = 0; j < n_args; j++)
8761 if (XEXP (undo->old_contents.r, j) != args[j])
8762 break;
8763
8764 if (j == n_args)
8765 return undo->old_contents.r;
8766 }
8767
8768 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
8769 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
8770 rt = rtx_alloc (code);
8771 PUT_MODE (rt, mode);
8772 XEXP (rt, 0) = args[0];
8773 if (n_args > 1)
8774 {
8775 XEXP (rt, 1) = args[1];
8776 if (n_args > 2)
8777 XEXP (rt, 2) = args[2];
8778 }
8779 return rt;
8780 }
8781
8782 /* These routines make binary and unary operations by first seeing if they
8783 fold; if not, a new expression is allocated. */
8784
8785 static rtx
8786 gen_binary (code, mode, op0, op1)
8787 enum rtx_code code;
8788 enum machine_mode mode;
8789 rtx op0, op1;
8790 {
8791 rtx result;
8792 rtx tem;
8793
8794 if (GET_RTX_CLASS (code) == 'c'
8795 && (GET_CODE (op0) == CONST_INT
8796 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
8797 tem = op0, op0 = op1, op1 = tem;
8798
8799 if (GET_RTX_CLASS (code) == '<')
8800 {
8801 enum machine_mode op_mode = GET_MODE (op0);
8802
8803 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
8804 just (REL_OP X Y). */
8805 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
8806 {
8807 op1 = XEXP (op0, 1);
8808 op0 = XEXP (op0, 0);
8809 op_mode = GET_MODE (op0);
8810 }
8811
8812 if (op_mode == VOIDmode)
8813 op_mode = GET_MODE (op1);
8814 result = simplify_relational_operation (code, op_mode, op0, op1);
8815 }
8816 else
8817 result = simplify_binary_operation (code, mode, op0, op1);
8818
8819 if (result)
8820 return result;
8821
8822 /* Put complex operands first and constants second. */
8823 if (GET_RTX_CLASS (code) == 'c'
8824 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
8825 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
8826 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
8827 || (GET_CODE (op0) == SUBREG
8828 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
8829 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
8830 return gen_rtx_combine (code, mode, op1, op0);
8831
8832 return gen_rtx_combine (code, mode, op0, op1);
8833 }
8834
8835 static rtx
8836 gen_unary (code, mode, op0_mode, op0)
8837 enum rtx_code code;
8838 enum machine_mode mode, op0_mode;
8839 rtx op0;
8840 {
8841 rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
8842
8843 if (result)
8844 return result;
8845
8846 return gen_rtx_combine (code, mode, op0);
8847 }
8848 \f
8849 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
8850 comparison code that will be tested.
8851
8852 The result is a possibly different comparison code to use. *POP0 and
8853 *POP1 may be updated.
8854
8855 It is possible that we might detect that a comparison is either always
8856 true or always false. However, we do not perform general constant
8857 folding in combine, so this knowledge isn't useful. Such tautologies
8858 should have been detected earlier. Hence we ignore all such cases. */
8859
8860 static enum rtx_code
8861 simplify_comparison (code, pop0, pop1)
8862 enum rtx_code code;
8863 rtx *pop0;
8864 rtx *pop1;
8865 {
8866 rtx op0 = *pop0;
8867 rtx op1 = *pop1;
8868 rtx tem, tem1;
8869 int i;
8870 enum machine_mode mode, tmode;
8871
8872 /* Try a few ways of applying the same transformation to both operands. */
8873 while (1)
8874 {
8875 #ifndef WORD_REGISTER_OPERATIONS
8876 /* The test below this one won't handle SIGN_EXTENDs on these machines,
8877 so check specially. */
8878 if (code != GTU && code != GEU && code != LTU && code != LEU
8879 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
8880 && GET_CODE (XEXP (op0, 0)) == ASHIFT
8881 && GET_CODE (XEXP (op1, 0)) == ASHIFT
8882 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
8883 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
8884 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
8885 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
8886 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8887 && GET_CODE (XEXP (op1, 1)) == CONST_INT
8888 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
8889 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
8890 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
8891 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
8892 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
8893 && (INTVAL (XEXP (op0, 1))
8894 == (GET_MODE_BITSIZE (GET_MODE (op0))
8895 - (GET_MODE_BITSIZE
8896 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
8897 {
8898 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
8899 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
8900 }
8901 #endif
8902
8903 /* If both operands are the same constant shift, see if we can ignore the
8904 shift. We can if the shift is a rotate or if the bits shifted out of
8905 this shift are known to be zero for both inputs and if the type of
8906 comparison is compatible with the shift. */
8907 if (GET_CODE (op0) == GET_CODE (op1)
8908 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
8909 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
8910 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
8911 && (code != GT && code != LT && code != GE && code != LE))
8912 || (GET_CODE (op0) == ASHIFTRT
8913 && (code != GTU && code != LTU
8914 && code != GEU && code != GEU)))
8915 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8916 && INTVAL (XEXP (op0, 1)) >= 0
8917 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
8918 && XEXP (op0, 1) == XEXP (op1, 1))
8919 {
8920 enum machine_mode mode = GET_MODE (op0);
8921 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8922 int shift_count = INTVAL (XEXP (op0, 1));
8923
8924 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
8925 mask &= (mask >> shift_count) << shift_count;
8926 else if (GET_CODE (op0) == ASHIFT)
8927 mask = (mask & (mask << shift_count)) >> shift_count;
8928
8929 if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
8930 && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
8931 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
8932 else
8933 break;
8934 }
8935
8936 /* If both operands are AND's of a paradoxical SUBREG by constant, the
8937 SUBREGs are of the same mode, and, in both cases, the AND would
8938 be redundant if the comparison was done in the narrower mode,
8939 do the comparison in the narrower mode (e.g., we are AND'ing with 1
8940 and the operand's possibly nonzero bits are 0xffffff01; in that case
8941 if we only care about QImode, we don't need the AND). This case
8942 occurs if the output mode of an scc insn is not SImode and
8943 STORE_FLAG_VALUE == 1 (e.g., the 386).
8944
8945 Similarly, check for a case where the AND's are ZERO_EXTEND
8946 operations from some narrower mode even though a SUBREG is not
8947 present. */
8948
8949 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
8950 && GET_CODE (XEXP (op0, 1)) == CONST_INT
8951 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
8952 {
8953 rtx inner_op0 = XEXP (op0, 0);
8954 rtx inner_op1 = XEXP (op1, 0);
8955 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
8956 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
8957 int changed = 0;
8958
8959 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
8960 && (GET_MODE_SIZE (GET_MODE (inner_op0))
8961 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
8962 && (GET_MODE (SUBREG_REG (inner_op0))
8963 == GET_MODE (SUBREG_REG (inner_op1)))
8964 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
8965 <= HOST_BITS_PER_WIDE_INT)
8966 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
8967 GET_MODE (SUBREG_REG (op0)))))
8968 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
8969 GET_MODE (SUBREG_REG (inner_op1))))))
8970 {
8971 op0 = SUBREG_REG (inner_op0);
8972 op1 = SUBREG_REG (inner_op1);
8973
8974 /* The resulting comparison is always unsigned since we masked
8975 off the original sign bit. */
8976 code = unsigned_condition (code);
8977
8978 changed = 1;
8979 }
8980
8981 else if (c0 == c1)
8982 for (tmode = GET_CLASS_NARROWEST_MODE
8983 (GET_MODE_CLASS (GET_MODE (op0)));
8984 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
8985 if (c0 == GET_MODE_MASK (tmode))
8986 {
8987 op0 = gen_lowpart_for_combine (tmode, inner_op0);
8988 op1 = gen_lowpart_for_combine (tmode, inner_op1);
8989 code = unsigned_condition (code);
8990 changed = 1;
8991 break;
8992 }
8993
8994 if (! changed)
8995 break;
8996 }
8997
8998 /* If both operands are NOT, we can strip off the outer operation
8999 and adjust the comparison code for swapped operands; similarly for
9000 NEG, except that this must be an equality comparison. */
9001 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9002 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9003 && (code == EQ || code == NE)))
9004 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9005
9006 else
9007 break;
9008 }
9009
9010 /* If the first operand is a constant, swap the operands and adjust the
9011 comparison code appropriately, but don't do this if the second operand
9012 is already a constant integer. */
9013 if (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9014 {
9015 tem = op0, op0 = op1, op1 = tem;
9016 code = swap_condition (code);
9017 }
9018
9019 /* We now enter a loop during which we will try to simplify the comparison.
9020 For the most part, we only are concerned with comparisons with zero,
9021 but some things may really be comparisons with zero but not start
9022 out looking that way. */
9023
9024 while (GET_CODE (op1) == CONST_INT)
9025 {
9026 enum machine_mode mode = GET_MODE (op0);
9027 int mode_width = GET_MODE_BITSIZE (mode);
9028 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9029 int equality_comparison_p;
9030 int sign_bit_comparison_p;
9031 int unsigned_comparison_p;
9032 HOST_WIDE_INT const_op;
9033
9034 /* We only want to handle integral modes. This catches VOIDmode,
9035 CCmode, and the floating-point modes. An exception is that we
9036 can handle VOIDmode if OP0 is a COMPARE or a comparison
9037 operation. */
9038
9039 if (GET_MODE_CLASS (mode) != MODE_INT
9040 && ! (mode == VOIDmode
9041 && (GET_CODE (op0) == COMPARE
9042 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
9043 break;
9044
9045 /* Get the constant we are comparing against and turn off all bits
9046 not on in our mode. */
9047 const_op = INTVAL (op1);
9048 if (mode_width <= HOST_BITS_PER_WIDE_INT)
9049 const_op &= mask;
9050
9051 /* If we are comparing against a constant power of two and the value
9052 being compared can only have that single bit nonzero (e.g., it was
9053 `and'ed with that bit), we can replace this with a comparison
9054 with zero. */
9055 if (const_op
9056 && (code == EQ || code == NE || code == GE || code == GEU
9057 || code == LT || code == LTU)
9058 && mode_width <= HOST_BITS_PER_WIDE_INT
9059 && exact_log2 (const_op) >= 0
9060 && nonzero_bits (op0, mode) == const_op)
9061 {
9062 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9063 op1 = const0_rtx, const_op = 0;
9064 }
9065
9066 /* Similarly, if we are comparing a value known to be either -1 or
9067 0 with -1, change it to the opposite comparison against zero. */
9068
9069 if (const_op == -1
9070 && (code == EQ || code == NE || code == GT || code == LE
9071 || code == GEU || code == LTU)
9072 && num_sign_bit_copies (op0, mode) == mode_width)
9073 {
9074 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9075 op1 = const0_rtx, const_op = 0;
9076 }
9077
9078 /* Do some canonicalizations based on the comparison code. We prefer
9079 comparisons against zero and then prefer equality comparisons.
9080 If we can reduce the size of a constant, we will do that too. */
9081
9082 switch (code)
9083 {
9084 case LT:
9085 /* < C is equivalent to <= (C - 1) */
9086 if (const_op > 0)
9087 {
9088 const_op -= 1;
9089 op1 = GEN_INT (const_op);
9090 code = LE;
9091 /* ... fall through to LE case below. */
9092 }
9093 else
9094 break;
9095
9096 case LE:
9097 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9098 if (const_op < 0)
9099 {
9100 const_op += 1;
9101 op1 = GEN_INT (const_op);
9102 code = LT;
9103 }
9104
9105 /* If we are doing a <= 0 comparison on a value known to have
9106 a zero sign bit, we can replace this with == 0. */
9107 else if (const_op == 0
9108 && mode_width <= HOST_BITS_PER_WIDE_INT
9109 && (nonzero_bits (op0, mode)
9110 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9111 code = EQ;
9112 break;
9113
9114 case GE:
9115 /* >= C is equivalent to > (C - 1). */
9116 if (const_op > 0)
9117 {
9118 const_op -= 1;
9119 op1 = GEN_INT (const_op);
9120 code = GT;
9121 /* ... fall through to GT below. */
9122 }
9123 else
9124 break;
9125
9126 case GT:
9127 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
9128 if (const_op < 0)
9129 {
9130 const_op += 1;
9131 op1 = GEN_INT (const_op);
9132 code = GE;
9133 }
9134
9135 /* If we are doing a > 0 comparison on a value known to have
9136 a zero sign bit, we can replace this with != 0. */
9137 else if (const_op == 0
9138 && mode_width <= HOST_BITS_PER_WIDE_INT
9139 && (nonzero_bits (op0, mode)
9140 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9141 code = NE;
9142 break;
9143
9144 case LTU:
9145 /* < C is equivalent to <= (C - 1). */
9146 if (const_op > 0)
9147 {
9148 const_op -= 1;
9149 op1 = GEN_INT (const_op);
9150 code = LEU;
9151 /* ... fall through ... */
9152 }
9153
9154 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9155 else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
9156 {
9157 const_op = 0, op1 = const0_rtx;
9158 code = GE;
9159 break;
9160 }
9161 else
9162 break;
9163
9164 case LEU:
9165 /* unsigned <= 0 is equivalent to == 0 */
9166 if (const_op == 0)
9167 code = EQ;
9168
9169 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9170 else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
9171 {
9172 const_op = 0, op1 = const0_rtx;
9173 code = GE;
9174 }
9175 break;
9176
9177 case GEU:
9178 /* >= C is equivalent to < (C - 1). */
9179 if (const_op > 1)
9180 {
9181 const_op -= 1;
9182 op1 = GEN_INT (const_op);
9183 code = GTU;
9184 /* ... fall through ... */
9185 }
9186
9187 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9188 else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
9189 {
9190 const_op = 0, op1 = const0_rtx;
9191 code = LT;
9192 break;
9193 }
9194 else
9195 break;
9196
9197 case GTU:
9198 /* unsigned > 0 is equivalent to != 0 */
9199 if (const_op == 0)
9200 code = NE;
9201
9202 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9203 else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
9204 {
9205 const_op = 0, op1 = const0_rtx;
9206 code = LT;
9207 }
9208 break;
9209 }
9210
9211 /* Compute some predicates to simplify code below. */
9212
9213 equality_comparison_p = (code == EQ || code == NE);
9214 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9215 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9216 || code == LEU);
9217
9218 /* If this is a sign bit comparison and we can do arithmetic in
9219 MODE, say that we will only be needing the sign bit of OP0. */
9220 if (sign_bit_comparison_p
9221 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9222 op0 = force_to_mode (op0, mode,
9223 ((HOST_WIDE_INT) 1
9224 << (GET_MODE_BITSIZE (mode) - 1)),
9225 NULL_RTX, 0);
9226
9227 /* Now try cases based on the opcode of OP0. If none of the cases
9228 does a "continue", we exit this loop immediately after the
9229 switch. */
9230
9231 switch (GET_CODE (op0))
9232 {
9233 case ZERO_EXTRACT:
9234 /* If we are extracting a single bit from a variable position in
9235 a constant that has only a single bit set and are comparing it
9236 with zero, we can convert this into an equality comparison
9237 between the position and the location of the single bit. */
9238
9239 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
9240 && XEXP (op0, 1) == const1_rtx
9241 && equality_comparison_p && const_op == 0
9242 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9243 {
9244 if (BITS_BIG_ENDIAN)
9245 #ifdef HAVE_extzv
9246 i = (GET_MODE_BITSIZE
9247 (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
9248 #else
9249 i = BITS_PER_WORD - 1 - i;
9250 #endif
9251
9252 op0 = XEXP (op0, 2);
9253 op1 = GEN_INT (i);
9254 const_op = i;
9255
9256 /* Result is nonzero iff shift count is equal to I. */
9257 code = reverse_condition (code);
9258 continue;
9259 }
9260
9261 /* ... fall through ... */
9262
9263 case SIGN_EXTRACT:
9264 tem = expand_compound_operation (op0);
9265 if (tem != op0)
9266 {
9267 op0 = tem;
9268 continue;
9269 }
9270 break;
9271
9272 case NOT:
9273 /* If testing for equality, we can take the NOT of the constant. */
9274 if (equality_comparison_p
9275 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9276 {
9277 op0 = XEXP (op0, 0);
9278 op1 = tem;
9279 continue;
9280 }
9281
9282 /* If just looking at the sign bit, reverse the sense of the
9283 comparison. */
9284 if (sign_bit_comparison_p)
9285 {
9286 op0 = XEXP (op0, 0);
9287 code = (code == GE ? LT : GE);
9288 continue;
9289 }
9290 break;
9291
9292 case NEG:
9293 /* If testing for equality, we can take the NEG of the constant. */
9294 if (equality_comparison_p
9295 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9296 {
9297 op0 = XEXP (op0, 0);
9298 op1 = tem;
9299 continue;
9300 }
9301
9302 /* The remaining cases only apply to comparisons with zero. */
9303 if (const_op != 0)
9304 break;
9305
9306 /* When X is ABS or is known positive,
9307 (neg X) is < 0 if and only if X != 0. */
9308
9309 if (sign_bit_comparison_p
9310 && (GET_CODE (XEXP (op0, 0)) == ABS
9311 || (mode_width <= HOST_BITS_PER_WIDE_INT
9312 && (nonzero_bits (XEXP (op0, 0), mode)
9313 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9314 {
9315 op0 = XEXP (op0, 0);
9316 code = (code == LT ? NE : EQ);
9317 continue;
9318 }
9319
9320 /* If we have NEG of something whose two high-order bits are the
9321 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9322 if (num_sign_bit_copies (op0, mode) >= 2)
9323 {
9324 op0 = XEXP (op0, 0);
9325 code = swap_condition (code);
9326 continue;
9327 }
9328 break;
9329
9330 case ROTATE:
9331 /* If we are testing equality and our count is a constant, we
9332 can perform the inverse operation on our RHS. */
9333 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9334 && (tem = simplify_binary_operation (ROTATERT, mode,
9335 op1, XEXP (op0, 1))) != 0)
9336 {
9337 op0 = XEXP (op0, 0);
9338 op1 = tem;
9339 continue;
9340 }
9341
9342 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9343 a particular bit. Convert it to an AND of a constant of that
9344 bit. This will be converted into a ZERO_EXTRACT. */
9345 if (const_op == 0 && sign_bit_comparison_p
9346 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9347 && mode_width <= HOST_BITS_PER_WIDE_INT)
9348 {
9349 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9350 ((HOST_WIDE_INT) 1
9351 << (mode_width - 1
9352 - INTVAL (XEXP (op0, 1)))));
9353 code = (code == LT ? NE : EQ);
9354 continue;
9355 }
9356
9357 /* ... fall through ... */
9358
9359 case ABS:
9360 /* ABS is ignorable inside an equality comparison with zero. */
9361 if (const_op == 0 && equality_comparison_p)
9362 {
9363 op0 = XEXP (op0, 0);
9364 continue;
9365 }
9366 break;
9367
9368
9369 case SIGN_EXTEND:
9370 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9371 to (compare FOO CONST) if CONST fits in FOO's mode and we
9372 are either testing inequality or have an unsigned comparison
9373 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9374 if (! unsigned_comparison_p
9375 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9376 <= HOST_BITS_PER_WIDE_INT)
9377 && ((unsigned HOST_WIDE_INT) const_op
9378 < (((HOST_WIDE_INT) 1
9379 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9380 {
9381 op0 = XEXP (op0, 0);
9382 continue;
9383 }
9384 break;
9385
9386 case SUBREG:
9387 /* Check for the case where we are comparing A - C1 with C2,
9388 both constants are smaller than 1/2 the maximum positive
9389 value in MODE, and the comparison is equality or unsigned.
9390 In that case, if A is either zero-extended to MODE or has
9391 sufficient sign bits so that the high-order bit in MODE
9392 is a copy of the sign in the inner mode, we can prove that it is
9393 safe to do the operation in the wider mode. This simplifies
9394 many range checks. */
9395
9396 if (mode_width <= HOST_BITS_PER_WIDE_INT
9397 && subreg_lowpart_p (op0)
9398 && GET_CODE (SUBREG_REG (op0)) == PLUS
9399 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
9400 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
9401 && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
9402 < GET_MODE_MASK (mode) / 2)
9403 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
9404 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
9405 GET_MODE (SUBREG_REG (op0)))
9406 & ~ GET_MODE_MASK (mode))
9407 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
9408 GET_MODE (SUBREG_REG (op0)))
9409 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
9410 - GET_MODE_BITSIZE (mode)))))
9411 {
9412 op0 = SUBREG_REG (op0);
9413 continue;
9414 }
9415
9416 /* If the inner mode is narrower and we are extracting the low part,
9417 we can treat the SUBREG as if it were a ZERO_EXTEND. */
9418 if (subreg_lowpart_p (op0)
9419 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
9420 /* Fall through */ ;
9421 else
9422 break;
9423
9424 /* ... fall through ... */
9425
9426 case ZERO_EXTEND:
9427 if ((unsigned_comparison_p || equality_comparison_p)
9428 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9429 <= HOST_BITS_PER_WIDE_INT)
9430 && ((unsigned HOST_WIDE_INT) const_op
9431 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
9432 {
9433 op0 = XEXP (op0, 0);
9434 continue;
9435 }
9436 break;
9437
9438 case PLUS:
9439 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
9440 this for equality comparisons due to pathological cases involving
9441 overflows. */
9442 if (equality_comparison_p
9443 && 0 != (tem = simplify_binary_operation (MINUS, mode,
9444 op1, XEXP (op0, 1))))
9445 {
9446 op0 = XEXP (op0, 0);
9447 op1 = tem;
9448 continue;
9449 }
9450
9451 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
9452 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
9453 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
9454 {
9455 op0 = XEXP (XEXP (op0, 0), 0);
9456 code = (code == LT ? EQ : NE);
9457 continue;
9458 }
9459 break;
9460
9461 case MINUS:
9462 /* (eq (minus A B) C) -> (eq A (plus B C)) or
9463 (eq B (minus A C)), whichever simplifies. We can only do
9464 this for equality comparisons due to pathological cases involving
9465 overflows. */
9466 if (equality_comparison_p
9467 && 0 != (tem = simplify_binary_operation (PLUS, mode,
9468 XEXP (op0, 1), op1)))
9469 {
9470 op0 = XEXP (op0, 0);
9471 op1 = tem;
9472 continue;
9473 }
9474
9475 if (equality_comparison_p
9476 && 0 != (tem = simplify_binary_operation (MINUS, mode,
9477 XEXP (op0, 0), op1)))
9478 {
9479 op0 = XEXP (op0, 1);
9480 op1 = tem;
9481 continue;
9482 }
9483
9484 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
9485 of bits in X minus 1, is one iff X > 0. */
9486 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
9487 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9488 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
9489 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
9490 {
9491 op0 = XEXP (op0, 1);
9492 code = (code == GE ? LE : GT);
9493 continue;
9494 }
9495 break;
9496
9497 case XOR:
9498 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
9499 if C is zero or B is a constant. */
9500 if (equality_comparison_p
9501 && 0 != (tem = simplify_binary_operation (XOR, mode,
9502 XEXP (op0, 1), op1)))
9503 {
9504 op0 = XEXP (op0, 0);
9505 op1 = tem;
9506 continue;
9507 }
9508 break;
9509
9510 case EQ: case NE:
9511 case LT: case LTU: case LE: case LEU:
9512 case GT: case GTU: case GE: case GEU:
9513 /* We can't do anything if OP0 is a condition code value, rather
9514 than an actual data value. */
9515 if (const_op != 0
9516 #ifdef HAVE_cc0
9517 || XEXP (op0, 0) == cc0_rtx
9518 #endif
9519 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
9520 break;
9521
9522 /* Get the two operands being compared. */
9523 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
9524 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
9525 else
9526 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
9527
9528 /* Check for the cases where we simply want the result of the
9529 earlier test or the opposite of that result. */
9530 if (code == NE
9531 || (code == EQ && reversible_comparison_p (op0))
9532 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9533 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9534 && (STORE_FLAG_VALUE
9535 & (((HOST_WIDE_INT) 1
9536 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9537 && (code == LT
9538 || (code == GE && reversible_comparison_p (op0)))))
9539 {
9540 code = (code == LT || code == NE
9541 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
9542 op0 = tem, op1 = tem1;
9543 continue;
9544 }
9545 break;
9546
9547 case IOR:
9548 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
9549 iff X <= 0. */
9550 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
9551 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
9552 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
9553 {
9554 op0 = XEXP (op0, 1);
9555 code = (code == GE ? GT : LE);
9556 continue;
9557 }
9558 break;
9559
9560 case AND:
9561 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
9562 will be converted to a ZERO_EXTRACT later. */
9563 if (const_op == 0 && equality_comparison_p
9564 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9565 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
9566 {
9567 op0 = simplify_and_const_int
9568 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
9569 XEXP (op0, 1),
9570 XEXP (XEXP (op0, 0), 1)),
9571 (HOST_WIDE_INT) 1);
9572 continue;
9573 }
9574
9575 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
9576 zero and X is a comparison and C1 and C2 describe only bits set
9577 in STORE_FLAG_VALUE, we can compare with X. */
9578 if (const_op == 0 && equality_comparison_p
9579 && mode_width <= HOST_BITS_PER_WIDE_INT
9580 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9581 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
9582 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9583 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
9584 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9585 {
9586 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
9587 << INTVAL (XEXP (XEXP (op0, 0), 1)));
9588 if ((~ STORE_FLAG_VALUE & mask) == 0
9589 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
9590 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
9591 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
9592 {
9593 op0 = XEXP (XEXP (op0, 0), 0);
9594 continue;
9595 }
9596 }
9597
9598 /* If we are doing an equality comparison of an AND of a bit equal
9599 to the sign bit, replace this with a LT or GE comparison of
9600 the underlying value. */
9601 if (equality_comparison_p
9602 && const_op == 0
9603 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9604 && mode_width <= HOST_BITS_PER_WIDE_INT
9605 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
9606 == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9607 {
9608 op0 = XEXP (op0, 0);
9609 code = (code == EQ ? GE : LT);
9610 continue;
9611 }
9612
9613 /* If this AND operation is really a ZERO_EXTEND from a narrower
9614 mode, the constant fits within that mode, and this is either an
9615 equality or unsigned comparison, try to do this comparison in
9616 the narrower mode. */
9617 if ((equality_comparison_p || unsigned_comparison_p)
9618 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9619 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
9620 & GET_MODE_MASK (mode))
9621 + 1)) >= 0
9622 && const_op >> i == 0
9623 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
9624 {
9625 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
9626 continue;
9627 }
9628 break;
9629
9630 case ASHIFT:
9631 /* If we have (compare (ashift FOO N) (const_int C)) and
9632 the high order N bits of FOO (N+1 if an inequality comparison)
9633 are known to be zero, we can do this by comparing FOO with C
9634 shifted right N bits so long as the low-order N bits of C are
9635 zero. */
9636 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
9637 && INTVAL (XEXP (op0, 1)) >= 0
9638 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
9639 < HOST_BITS_PER_WIDE_INT)
9640 && ((const_op
9641 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
9642 && mode_width <= HOST_BITS_PER_WIDE_INT
9643 && (nonzero_bits (XEXP (op0, 0), mode)
9644 & ~ (mask >> (INTVAL (XEXP (op0, 1))
9645 + ! equality_comparison_p))) == 0)
9646 {
9647 const_op >>= INTVAL (XEXP (op0, 1));
9648 op1 = GEN_INT (const_op);
9649 op0 = XEXP (op0, 0);
9650 continue;
9651 }
9652
9653 /* If we are doing a sign bit comparison, it means we are testing
9654 a particular bit. Convert it to the appropriate AND. */
9655 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9656 && mode_width <= HOST_BITS_PER_WIDE_INT)
9657 {
9658 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9659 ((HOST_WIDE_INT) 1
9660 << (mode_width - 1
9661 - INTVAL (XEXP (op0, 1)))));
9662 code = (code == LT ? NE : EQ);
9663 continue;
9664 }
9665
9666 /* If this an equality comparison with zero and we are shifting
9667 the low bit to the sign bit, we can convert this to an AND of the
9668 low-order bit. */
9669 if (const_op == 0 && equality_comparison_p
9670 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9671 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
9672 {
9673 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9674 (HOST_WIDE_INT) 1);
9675 continue;
9676 }
9677 break;
9678
9679 case ASHIFTRT:
9680 /* If this is an equality comparison with zero, we can do this
9681 as a logical shift, which might be much simpler. */
9682 if (equality_comparison_p && const_op == 0
9683 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
9684 {
9685 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
9686 XEXP (op0, 0),
9687 INTVAL (XEXP (op0, 1)));
9688 continue;
9689 }
9690
9691 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
9692 do the comparison in a narrower mode. */
9693 if (! unsigned_comparison_p
9694 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9695 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9696 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9697 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
9698 MODE_INT, 1)) != BLKmode
9699 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
9700 || ((unsigned HOST_WIDE_INT) - const_op
9701 <= GET_MODE_MASK (tmode))))
9702 {
9703 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
9704 continue;
9705 }
9706
9707 /* ... fall through ... */
9708 case LSHIFTRT:
9709 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
9710 the low order N bits of FOO are known to be zero, we can do this
9711 by comparing FOO with C shifted left N bits so long as no
9712 overflow occurs. */
9713 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
9714 && INTVAL (XEXP (op0, 1)) >= 0
9715 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9716 && mode_width <= HOST_BITS_PER_WIDE_INT
9717 && (nonzero_bits (XEXP (op0, 0), mode)
9718 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
9719 && (const_op == 0
9720 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
9721 < mode_width)))
9722 {
9723 const_op <<= INTVAL (XEXP (op0, 1));
9724 op1 = GEN_INT (const_op);
9725 op0 = XEXP (op0, 0);
9726 continue;
9727 }
9728
9729 /* If we are using this shift to extract just the sign bit, we
9730 can replace this with an LT or GE comparison. */
9731 if (const_op == 0
9732 && (equality_comparison_p || sign_bit_comparison_p)
9733 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9734 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
9735 {
9736 op0 = XEXP (op0, 0);
9737 code = (code == NE || code == GT ? LT : GE);
9738 continue;
9739 }
9740 break;
9741 }
9742
9743 break;
9744 }
9745
9746 /* Now make any compound operations involved in this comparison. Then,
9747 check for an outmost SUBREG on OP0 that isn't doing anything or is
9748 paradoxical. The latter case can only occur when it is known that the
9749 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
9750 We can never remove a SUBREG for a non-equality comparison because the
9751 sign bit is in a different place in the underlying object. */
9752
9753 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
9754 op1 = make_compound_operation (op1, SET);
9755
9756 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
9757 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9758 && (code == NE || code == EQ)
9759 && ((GET_MODE_SIZE (GET_MODE (op0))
9760 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
9761 {
9762 op0 = SUBREG_REG (op0);
9763 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
9764 }
9765
9766 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
9767 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9768 && (code == NE || code == EQ)
9769 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
9770 <= HOST_BITS_PER_WIDE_INT)
9771 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
9772 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
9773 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
9774 op1),
9775 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
9776 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
9777 op0 = SUBREG_REG (op0), op1 = tem;
9778
9779 /* We now do the opposite procedure: Some machines don't have compare
9780 insns in all modes. If OP0's mode is an integer mode smaller than a
9781 word and we can't do a compare in that mode, see if there is a larger
9782 mode for which we can do the compare. There are a number of cases in
9783 which we can use the wider mode. */
9784
9785 mode = GET_MODE (op0);
9786 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
9787 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
9788 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
9789 for (tmode = GET_MODE_WIDER_MODE (mode);
9790 (tmode != VOIDmode
9791 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
9792 tmode = GET_MODE_WIDER_MODE (tmode))
9793 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
9794 {
9795 /* If the only nonzero bits in OP0 and OP1 are those in the
9796 narrower mode and this is an equality or unsigned comparison,
9797 we can use the wider mode. Similarly for sign-extended
9798 values, in which case it is true for all comparisons. */
9799 if (((code == EQ || code == NE
9800 || code == GEU || code == GTU || code == LEU || code == LTU)
9801 && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
9802 && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
9803 || ((num_sign_bit_copies (op0, tmode)
9804 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
9805 && (num_sign_bit_copies (op1, tmode)
9806 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
9807 {
9808 op0 = gen_lowpart_for_combine (tmode, op0);
9809 op1 = gen_lowpart_for_combine (tmode, op1);
9810 break;
9811 }
9812
9813 /* If this is a test for negative, we can make an explicit
9814 test of the sign bit. */
9815
9816 if (op1 == const0_rtx && (code == LT || code == GE)
9817 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9818 {
9819 op0 = gen_binary (AND, tmode,
9820 gen_lowpart_for_combine (tmode, op0),
9821 GEN_INT ((HOST_WIDE_INT) 1
9822 << (GET_MODE_BITSIZE (mode) - 1)));
9823 code = (code == LT) ? NE : EQ;
9824 break;
9825 }
9826 }
9827
9828 #ifdef CANONICALIZE_COMPARISON
9829 /* If this machine only supports a subset of valid comparisons, see if we
9830 can convert an unsupported one into a supported one. */
9831 CANONICALIZE_COMPARISON (code, op0, op1);
9832 #endif
9833
9834 *pop0 = op0;
9835 *pop1 = op1;
9836
9837 return code;
9838 }
9839 \f
9840 /* Return 1 if we know that X, a comparison operation, is not operating
9841 on a floating-point value or is EQ or NE, meaning that we can safely
9842 reverse it. */
9843
9844 static int
9845 reversible_comparison_p (x)
9846 rtx x;
9847 {
9848 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
9849 || flag_fast_math
9850 || GET_CODE (x) == NE || GET_CODE (x) == EQ)
9851 return 1;
9852
9853 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
9854 {
9855 case MODE_INT:
9856 case MODE_PARTIAL_INT:
9857 case MODE_COMPLEX_INT:
9858 return 1;
9859
9860 case MODE_CC:
9861 /* If the mode of the condition codes tells us that this is safe,
9862 we need look no further. */
9863 if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
9864 return 1;
9865
9866 /* Otherwise try and find where the condition codes were last set and
9867 use that. */
9868 x = get_last_value (XEXP (x, 0));
9869 return (x && GET_CODE (x) == COMPARE
9870 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
9871 }
9872
9873 return 0;
9874 }
9875 \f
9876 /* Utility function for following routine. Called when X is part of a value
9877 being stored into reg_last_set_value. Sets reg_last_set_table_tick
9878 for each register mentioned. Similar to mention_regs in cse.c */
9879
9880 static void
9881 update_table_tick (x)
9882 rtx x;
9883 {
9884 register enum rtx_code code = GET_CODE (x);
9885 register char *fmt = GET_RTX_FORMAT (code);
9886 register int i;
9887
9888 if (code == REG)
9889 {
9890 int regno = REGNO (x);
9891 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
9892 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
9893
9894 for (i = regno; i < endregno; i++)
9895 reg_last_set_table_tick[i] = label_tick;
9896
9897 return;
9898 }
9899
9900 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9901 /* Note that we can't have an "E" in values stored; see
9902 get_last_value_validate. */
9903 if (fmt[i] == 'e')
9904 update_table_tick (XEXP (x, i));
9905 }
9906
9907 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
9908 are saying that the register is clobbered and we no longer know its
9909 value. If INSN is zero, don't update reg_last_set; this is only permitted
9910 with VALUE also zero and is used to invalidate the register. */
9911
9912 static void
9913 record_value_for_reg (reg, insn, value)
9914 rtx reg;
9915 rtx insn;
9916 rtx value;
9917 {
9918 int regno = REGNO (reg);
9919 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
9920 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
9921 int i;
9922
9923 /* If VALUE contains REG and we have a previous value for REG, substitute
9924 the previous value. */
9925 if (value && insn && reg_overlap_mentioned_p (reg, value))
9926 {
9927 rtx tem;
9928
9929 /* Set things up so get_last_value is allowed to see anything set up to
9930 our insn. */
9931 subst_low_cuid = INSN_CUID (insn);
9932 tem = get_last_value (reg);
9933
9934 if (tem)
9935 value = replace_rtx (copy_rtx (value), reg, tem);
9936 }
9937
9938 /* For each register modified, show we don't know its value, that
9939 we don't know about its bitwise content, that its value has been
9940 updated, and that we don't know the location of the death of the
9941 register. */
9942 for (i = regno; i < endregno; i ++)
9943 {
9944 if (insn)
9945 reg_last_set[i] = insn;
9946 reg_last_set_value[i] = 0;
9947 reg_last_set_mode[i] = 0;
9948 reg_last_set_nonzero_bits[i] = 0;
9949 reg_last_set_sign_bit_copies[i] = 0;
9950 reg_last_death[i] = 0;
9951 }
9952
9953 /* Mark registers that are being referenced in this value. */
9954 if (value)
9955 update_table_tick (value);
9956
9957 /* Now update the status of each register being set.
9958 If someone is using this register in this block, set this register
9959 to invalid since we will get confused between the two lives in this
9960 basic block. This makes using this register always invalid. In cse, we
9961 scan the table to invalidate all entries using this register, but this
9962 is too much work for us. */
9963
9964 for (i = regno; i < endregno; i++)
9965 {
9966 reg_last_set_label[i] = label_tick;
9967 if (value && reg_last_set_table_tick[i] == label_tick)
9968 reg_last_set_invalid[i] = 1;
9969 else
9970 reg_last_set_invalid[i] = 0;
9971 }
9972
9973 /* The value being assigned might refer to X (like in "x++;"). In that
9974 case, we must replace it with (clobber (const_int 0)) to prevent
9975 infinite loops. */
9976 if (value && ! get_last_value_validate (&value,
9977 reg_last_set_label[regno], 0))
9978 {
9979 value = copy_rtx (value);
9980 if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
9981 value = 0;
9982 }
9983
9984 /* For the main register being modified, update the value, the mode, the
9985 nonzero bits, and the number of sign bit copies. */
9986
9987 reg_last_set_value[regno] = value;
9988
9989 if (value)
9990 {
9991 subst_low_cuid = INSN_CUID (insn);
9992 reg_last_set_mode[regno] = GET_MODE (reg);
9993 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
9994 reg_last_set_sign_bit_copies[regno]
9995 = num_sign_bit_copies (value, GET_MODE (reg));
9996 }
9997 }
9998
9999 /* Used for communication between the following two routines. */
10000 static rtx record_dead_insn;
10001
10002 /* Called via note_stores from record_dead_and_set_regs to handle one
10003 SET or CLOBBER in an insn. */
10004
10005 static void
10006 record_dead_and_set_regs_1 (dest, setter)
10007 rtx dest, setter;
10008 {
10009 if (GET_CODE (dest) == SUBREG)
10010 dest = SUBREG_REG (dest);
10011
10012 if (GET_CODE (dest) == REG)
10013 {
10014 /* If we are setting the whole register, we know its value. Otherwise
10015 show that we don't know the value. We can handle SUBREG in
10016 some cases. */
10017 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10018 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10019 else if (GET_CODE (setter) == SET
10020 && GET_CODE (SET_DEST (setter)) == SUBREG
10021 && SUBREG_REG (SET_DEST (setter)) == dest
10022 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10023 && subreg_lowpart_p (SET_DEST (setter)))
10024 record_value_for_reg (dest, record_dead_insn,
10025 gen_lowpart_for_combine (GET_MODE (dest),
10026 SET_SRC (setter)));
10027 else
10028 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10029 }
10030 else if (GET_CODE (dest) == MEM
10031 /* Ignore pushes, they clobber nothing. */
10032 && ! push_operand (dest, GET_MODE (dest)))
10033 mem_last_set = INSN_CUID (record_dead_insn);
10034 }
10035
10036 /* Update the records of when each REG was most recently set or killed
10037 for the things done by INSN. This is the last thing done in processing
10038 INSN in the combiner loop.
10039
10040 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
10041 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
10042 and also the similar information mem_last_set (which insn most recently
10043 modified memory) and last_call_cuid (which insn was the most recent
10044 subroutine call). */
10045
10046 static void
10047 record_dead_and_set_regs (insn)
10048 rtx insn;
10049 {
10050 register rtx link;
10051 int i;
10052
10053 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10054 {
10055 if (REG_NOTE_KIND (link) == REG_DEAD
10056 && GET_CODE (XEXP (link, 0)) == REG)
10057 {
10058 int regno = REGNO (XEXP (link, 0));
10059 int endregno
10060 = regno + (regno < FIRST_PSEUDO_REGISTER
10061 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
10062 : 1);
10063
10064 for (i = regno; i < endregno; i++)
10065 reg_last_death[i] = insn;
10066 }
10067 else if (REG_NOTE_KIND (link) == REG_INC)
10068 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10069 }
10070
10071 if (GET_CODE (insn) == CALL_INSN)
10072 {
10073 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10074 if (call_used_regs[i])
10075 {
10076 reg_last_set_value[i] = 0;
10077 reg_last_set_mode[i] = 0;
10078 reg_last_set_nonzero_bits[i] = 0;
10079 reg_last_set_sign_bit_copies[i] = 0;
10080 reg_last_death[i] = 0;
10081 }
10082
10083 last_call_cuid = mem_last_set = INSN_CUID (insn);
10084 }
10085
10086 record_dead_insn = insn;
10087 note_stores (PATTERN (insn), record_dead_and_set_regs_1);
10088 }
10089 \f
10090 /* Utility routine for the following function. Verify that all the registers
10091 mentioned in *LOC are valid when *LOC was part of a value set when
10092 label_tick == TICK. Return 0 if some are not.
10093
10094 If REPLACE is non-zero, replace the invalid reference with
10095 (clobber (const_int 0)) and return 1. This replacement is useful because
10096 we often can get useful information about the form of a value (e.g., if
10097 it was produced by a shift that always produces -1 or 0) even though
10098 we don't know exactly what registers it was produced from. */
10099
10100 static int
10101 get_last_value_validate (loc, tick, replace)
10102 rtx *loc;
10103 int tick;
10104 int replace;
10105 {
10106 rtx x = *loc;
10107 char *fmt = GET_RTX_FORMAT (GET_CODE (x));
10108 int len = GET_RTX_LENGTH (GET_CODE (x));
10109 int i;
10110
10111 if (GET_CODE (x) == REG)
10112 {
10113 int regno = REGNO (x);
10114 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10115 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10116 int j;
10117
10118 for (j = regno; j < endregno; j++)
10119 if (reg_last_set_invalid[j]
10120 /* If this is a pseudo-register that was only set once, it is
10121 always valid. */
10122 || (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
10123 && reg_last_set_label[j] > tick))
10124 {
10125 if (replace)
10126 *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
10127 return replace;
10128 }
10129
10130 return 1;
10131 }
10132
10133 for (i = 0; i < len; i++)
10134 if ((fmt[i] == 'e'
10135 && get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
10136 /* Don't bother with these. They shouldn't occur anyway. */
10137 || fmt[i] == 'E')
10138 return 0;
10139
10140 /* If we haven't found a reason for it to be invalid, it is valid. */
10141 return 1;
10142 }
10143
10144 /* Get the last value assigned to X, if known. Some registers
10145 in the value may be replaced with (clobber (const_int 0)) if their value
10146 is known longer known reliably. */
10147
10148 static rtx
10149 get_last_value (x)
10150 rtx x;
10151 {
10152 int regno;
10153 rtx value;
10154
10155 /* If this is a non-paradoxical SUBREG, get the value of its operand and
10156 then convert it to the desired mode. If this is a paradoxical SUBREG,
10157 we cannot predict what values the "extra" bits might have. */
10158 if (GET_CODE (x) == SUBREG
10159 && subreg_lowpart_p (x)
10160 && (GET_MODE_SIZE (GET_MODE (x))
10161 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
10162 && (value = get_last_value (SUBREG_REG (x))) != 0)
10163 return gen_lowpart_for_combine (GET_MODE (x), value);
10164
10165 if (GET_CODE (x) != REG)
10166 return 0;
10167
10168 regno = REGNO (x);
10169 value = reg_last_set_value[regno];
10170
10171 /* If we don't have a value or if it isn't for this basic block,
10172 return 0. */
10173
10174 if (value == 0
10175 || (reg_n_sets[regno] != 1
10176 && reg_last_set_label[regno] != label_tick))
10177 return 0;
10178
10179 /* If the value was set in a later insn than the ones we are processing,
10180 we can't use it even if the register was only set once, but make a quick
10181 check to see if the previous insn set it to something. This is commonly
10182 the case when the same pseudo is used by repeated insns.
10183
10184 This does not work if there exists an instruction which is temporarily
10185 not on the insn chain. */
10186
10187 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
10188 {
10189 rtx insn, set;
10190
10191 /* We can not do anything useful in this case, because there is
10192 an instruction which is not on the insn chain. */
10193 if (subst_prev_insn)
10194 return 0;
10195
10196 /* Skip over USE insns. They are not useful here, and they may have
10197 been made by combine, in which case they do not have a INSN_CUID
10198 value. We can't use prev_real_insn, because that would incorrectly
10199 take us backwards across labels. Skip over BARRIERs also, since
10200 they could have been made by combine. If we see one, we must be
10201 optimizing dead code, so it doesn't matter what we do. */
10202 for (insn = prev_nonnote_insn (subst_insn);
10203 insn && ((GET_CODE (insn) == INSN
10204 && GET_CODE (PATTERN (insn)) == USE)
10205 || GET_CODE (insn) == BARRIER
10206 || INSN_CUID (insn) >= subst_low_cuid);
10207 insn = prev_nonnote_insn (insn))
10208 ;
10209
10210 if (insn
10211 && (set = single_set (insn)) != 0
10212 && rtx_equal_p (SET_DEST (set), x))
10213 {
10214 value = SET_SRC (set);
10215
10216 /* Make sure that VALUE doesn't reference X. Replace any
10217 explicit references with a CLOBBER. If there are any remaining
10218 references (rare), don't use the value. */
10219
10220 if (reg_mentioned_p (x, value))
10221 value = replace_rtx (copy_rtx (value), x,
10222 gen_rtx (CLOBBER, GET_MODE (x), const0_rtx));
10223
10224 if (reg_overlap_mentioned_p (x, value))
10225 return 0;
10226 }
10227 else
10228 return 0;
10229 }
10230
10231 /* If the value has all its registers valid, return it. */
10232 if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
10233 return value;
10234
10235 /* Otherwise, make a copy and replace any invalid register with
10236 (clobber (const_int 0)). If that fails for some reason, return 0. */
10237
10238 value = copy_rtx (value);
10239 if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
10240 return value;
10241
10242 return 0;
10243 }
10244 \f
10245 /* Return nonzero if expression X refers to a REG or to memory
10246 that is set in an instruction more recent than FROM_CUID. */
10247
10248 static int
10249 use_crosses_set_p (x, from_cuid)
10250 register rtx x;
10251 int from_cuid;
10252 {
10253 register char *fmt;
10254 register int i;
10255 register enum rtx_code code = GET_CODE (x);
10256
10257 if (code == REG)
10258 {
10259 register int regno = REGNO (x);
10260 int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
10261 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10262
10263 #ifdef PUSH_ROUNDING
10264 /* Don't allow uses of the stack pointer to be moved,
10265 because we don't know whether the move crosses a push insn. */
10266 if (regno == STACK_POINTER_REGNUM)
10267 return 1;
10268 #endif
10269 for (;regno < endreg; regno++)
10270 if (reg_last_set[regno]
10271 && INSN_CUID (reg_last_set[regno]) > from_cuid)
10272 return 1;
10273 return 0;
10274 }
10275
10276 if (code == MEM && mem_last_set > from_cuid)
10277 return 1;
10278
10279 fmt = GET_RTX_FORMAT (code);
10280
10281 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10282 {
10283 if (fmt[i] == 'E')
10284 {
10285 register int j;
10286 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10287 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
10288 return 1;
10289 }
10290 else if (fmt[i] == 'e'
10291 && use_crosses_set_p (XEXP (x, i), from_cuid))
10292 return 1;
10293 }
10294 return 0;
10295 }
10296 \f
10297 /* Define three variables used for communication between the following
10298 routines. */
10299
10300 static int reg_dead_regno, reg_dead_endregno;
10301 static int reg_dead_flag;
10302
10303 /* Function called via note_stores from reg_dead_at_p.
10304
10305 If DEST is within [reg_dead_regno, reg_dead_endregno), set
10306 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
10307
10308 static void
10309 reg_dead_at_p_1 (dest, x)
10310 rtx dest;
10311 rtx x;
10312 {
10313 int regno, endregno;
10314
10315 if (GET_CODE (dest) != REG)
10316 return;
10317
10318 regno = REGNO (dest);
10319 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10320 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
10321
10322 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
10323 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
10324 }
10325
10326 /* Return non-zero if REG is known to be dead at INSN.
10327
10328 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
10329 referencing REG, it is dead. If we hit a SET referencing REG, it is
10330 live. Otherwise, see if it is live or dead at the start of the basic
10331 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
10332 must be assumed to be always live. */
10333
10334 static int
10335 reg_dead_at_p (reg, insn)
10336 rtx reg;
10337 rtx insn;
10338 {
10339 int block, i;
10340
10341 /* Set variables for reg_dead_at_p_1. */
10342 reg_dead_regno = REGNO (reg);
10343 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
10344 ? HARD_REGNO_NREGS (reg_dead_regno,
10345 GET_MODE (reg))
10346 : 1);
10347
10348 reg_dead_flag = 0;
10349
10350 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
10351 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
10352 {
10353 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
10354 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
10355 return 0;
10356 }
10357
10358 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
10359 beginning of function. */
10360 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
10361 insn = prev_nonnote_insn (insn))
10362 {
10363 note_stores (PATTERN (insn), reg_dead_at_p_1);
10364 if (reg_dead_flag)
10365 return reg_dead_flag == 1 ? 1 : 0;
10366
10367 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
10368 return 1;
10369 }
10370
10371 /* Get the basic block number that we were in. */
10372 if (insn == 0)
10373 block = 0;
10374 else
10375 {
10376 for (block = 0; block < n_basic_blocks; block++)
10377 if (insn == basic_block_head[block])
10378 break;
10379
10380 if (block == n_basic_blocks)
10381 return 0;
10382 }
10383
10384 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
10385 if (basic_block_live_at_start[block][i / REGSET_ELT_BITS]
10386 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
10387 return 0;
10388
10389 return 1;
10390 }
10391 \f
10392 /* Note hard registers in X that are used. This code is similar to
10393 that in flow.c, but much simpler since we don't care about pseudos. */
10394
10395 static void
10396 mark_used_regs_combine (x)
10397 rtx x;
10398 {
10399 register RTX_CODE code = GET_CODE (x);
10400 register int regno;
10401 int i;
10402
10403 switch (code)
10404 {
10405 case LABEL_REF:
10406 case SYMBOL_REF:
10407 case CONST_INT:
10408 case CONST:
10409 case CONST_DOUBLE:
10410 case PC:
10411 case ADDR_VEC:
10412 case ADDR_DIFF_VEC:
10413 case ASM_INPUT:
10414 #ifdef HAVE_cc0
10415 /* CC0 must die in the insn after it is set, so we don't need to take
10416 special note of it here. */
10417 case CC0:
10418 #endif
10419 return;
10420
10421 case CLOBBER:
10422 /* If we are clobbering a MEM, mark any hard registers inside the
10423 address as used. */
10424 if (GET_CODE (XEXP (x, 0)) == MEM)
10425 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
10426 return;
10427
10428 case REG:
10429 regno = REGNO (x);
10430 /* A hard reg in a wide mode may really be multiple registers.
10431 If so, mark all of them just like the first. */
10432 if (regno < FIRST_PSEUDO_REGISTER)
10433 {
10434 /* None of this applies to the stack, frame or arg pointers */
10435 if (regno == STACK_POINTER_REGNUM
10436 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10437 || regno == HARD_FRAME_POINTER_REGNUM
10438 #endif
10439 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
10440 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
10441 #endif
10442 || regno == FRAME_POINTER_REGNUM)
10443 return;
10444
10445 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
10446 while (i-- > 0)
10447 SET_HARD_REG_BIT (newpat_used_regs, regno + i);
10448 }
10449 return;
10450
10451 case SET:
10452 {
10453 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
10454 the address. */
10455 register rtx testreg = SET_DEST (x);
10456
10457 while (GET_CODE (testreg) == SUBREG
10458 || GET_CODE (testreg) == ZERO_EXTRACT
10459 || GET_CODE (testreg) == SIGN_EXTRACT
10460 || GET_CODE (testreg) == STRICT_LOW_PART)
10461 testreg = XEXP (testreg, 0);
10462
10463 if (GET_CODE (testreg) == MEM)
10464 mark_used_regs_combine (XEXP (testreg, 0));
10465
10466 mark_used_regs_combine (SET_SRC (x));
10467 return;
10468 }
10469 }
10470
10471 /* Recursively scan the operands of this expression. */
10472
10473 {
10474 register char *fmt = GET_RTX_FORMAT (code);
10475
10476 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10477 {
10478 if (fmt[i] == 'e')
10479 mark_used_regs_combine (XEXP (x, i));
10480 else if (fmt[i] == 'E')
10481 {
10482 register int j;
10483
10484 for (j = 0; j < XVECLEN (x, i); j++)
10485 mark_used_regs_combine (XVECEXP (x, i, j));
10486 }
10487 }
10488 }
10489 }
10490
10491 \f
10492 /* Remove register number REGNO from the dead registers list of INSN.
10493
10494 Return the note used to record the death, if there was one. */
10495
10496 rtx
10497 remove_death (regno, insn)
10498 int regno;
10499 rtx insn;
10500 {
10501 register rtx note = find_regno_note (insn, REG_DEAD, regno);
10502
10503 if (note)
10504 {
10505 reg_n_deaths[regno]--;
10506 remove_note (insn, note);
10507 }
10508
10509 return note;
10510 }
10511
10512 /* For each register (hardware or pseudo) used within expression X, if its
10513 death is in an instruction with cuid between FROM_CUID (inclusive) and
10514 TO_INSN (exclusive), put a REG_DEAD note for that register in the
10515 list headed by PNOTES.
10516
10517 That said, don't move registers killed by maybe_kill_insn.
10518
10519 This is done when X is being merged by combination into TO_INSN. These
10520 notes will then be distributed as needed. */
10521
10522 static void
10523 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
10524 rtx x;
10525 rtx maybe_kill_insn;
10526 int from_cuid;
10527 rtx to_insn;
10528 rtx *pnotes;
10529 {
10530 register char *fmt;
10531 register int len, i;
10532 register enum rtx_code code = GET_CODE (x);
10533
10534 if (code == REG)
10535 {
10536 register int regno = REGNO (x);
10537 register rtx where_dead = reg_last_death[regno];
10538 register rtx before_dead, after_dead;
10539
10540 /* Don't move the register if it gets killed in between from and to */
10541 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
10542 && !reg_referenced_p (x, maybe_kill_insn))
10543 return;
10544
10545 /* WHERE_DEAD could be a USE insn made by combine, so first we
10546 make sure that we have insns with valid INSN_CUID values. */
10547 before_dead = where_dead;
10548 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
10549 before_dead = PREV_INSN (before_dead);
10550 after_dead = where_dead;
10551 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
10552 after_dead = NEXT_INSN (after_dead);
10553
10554 if (before_dead && after_dead
10555 && INSN_CUID (before_dead) >= from_cuid
10556 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
10557 || (where_dead != after_dead
10558 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
10559 {
10560 rtx note = remove_death (regno, where_dead);
10561
10562 /* It is possible for the call above to return 0. This can occur
10563 when reg_last_death points to I2 or I1 that we combined with.
10564 In that case make a new note.
10565
10566 We must also check for the case where X is a hard register
10567 and NOTE is a death note for a range of hard registers
10568 including X. In that case, we must put REG_DEAD notes for
10569 the remaining registers in place of NOTE. */
10570
10571 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
10572 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
10573 != GET_MODE_SIZE (GET_MODE (x))))
10574 {
10575 int deadregno = REGNO (XEXP (note, 0));
10576 int deadend
10577 = (deadregno + HARD_REGNO_NREGS (deadregno,
10578 GET_MODE (XEXP (note, 0))));
10579 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
10580 int i;
10581
10582 for (i = deadregno; i < deadend; i++)
10583 if (i < regno || i >= ourend)
10584 REG_NOTES (where_dead)
10585 = gen_rtx (EXPR_LIST, REG_DEAD,
10586 gen_rtx (REG, reg_raw_mode[i], i),
10587 REG_NOTES (where_dead));
10588 }
10589 /* If we didn't find any note, and we have a multi-reg hard
10590 register, then to be safe we must check for REG_DEAD notes
10591 for each register other than the first. They could have
10592 their own REG_DEAD notes lying around. */
10593 else if (note == 0 && regno < FIRST_PSEUDO_REGISTER
10594 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
10595 {
10596 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
10597 int i;
10598 rtx oldnotes = 0;
10599
10600 for (i = regno + 1; i < ourend; i++)
10601 move_deaths (gen_rtx (REG, reg_raw_mode[i], i),
10602 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
10603 }
10604
10605 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
10606 {
10607 XEXP (note, 1) = *pnotes;
10608 *pnotes = note;
10609 }
10610 else
10611 *pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
10612
10613 reg_n_deaths[regno]++;
10614 }
10615
10616 return;
10617 }
10618
10619 else if (GET_CODE (x) == SET)
10620 {
10621 rtx dest = SET_DEST (x);
10622
10623 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
10624
10625 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
10626 that accesses one word of a multi-word item, some
10627 piece of everything register in the expression is used by
10628 this insn, so remove any old death. */
10629
10630 if (GET_CODE (dest) == ZERO_EXTRACT
10631 || GET_CODE (dest) == STRICT_LOW_PART
10632 || (GET_CODE (dest) == SUBREG
10633 && (((GET_MODE_SIZE (GET_MODE (dest))
10634 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
10635 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
10636 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
10637 {
10638 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
10639 return;
10640 }
10641
10642 /* If this is some other SUBREG, we know it replaces the entire
10643 value, so use that as the destination. */
10644 if (GET_CODE (dest) == SUBREG)
10645 dest = SUBREG_REG (dest);
10646
10647 /* If this is a MEM, adjust deaths of anything used in the address.
10648 For a REG (the only other possibility), the entire value is
10649 being replaced so the old value is not used in this insn. */
10650
10651 if (GET_CODE (dest) == MEM)
10652 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
10653 to_insn, pnotes);
10654 return;
10655 }
10656
10657 else if (GET_CODE (x) == CLOBBER)
10658 return;
10659
10660 len = GET_RTX_LENGTH (code);
10661 fmt = GET_RTX_FORMAT (code);
10662
10663 for (i = 0; i < len; i++)
10664 {
10665 if (fmt[i] == 'E')
10666 {
10667 register int j;
10668 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10669 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
10670 to_insn, pnotes);
10671 }
10672 else if (fmt[i] == 'e')
10673 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
10674 }
10675 }
10676 \f
10677 /* Return 1 if X is the target of a bit-field assignment in BODY, the
10678 pattern of an insn. X must be a REG. */
10679
10680 static int
10681 reg_bitfield_target_p (x, body)
10682 rtx x;
10683 rtx body;
10684 {
10685 int i;
10686
10687 if (GET_CODE (body) == SET)
10688 {
10689 rtx dest = SET_DEST (body);
10690 rtx target;
10691 int regno, tregno, endregno, endtregno;
10692
10693 if (GET_CODE (dest) == ZERO_EXTRACT)
10694 target = XEXP (dest, 0);
10695 else if (GET_CODE (dest) == STRICT_LOW_PART)
10696 target = SUBREG_REG (XEXP (dest, 0));
10697 else
10698 return 0;
10699
10700 if (GET_CODE (target) == SUBREG)
10701 target = SUBREG_REG (target);
10702
10703 if (GET_CODE (target) != REG)
10704 return 0;
10705
10706 tregno = REGNO (target), regno = REGNO (x);
10707 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
10708 return target == x;
10709
10710 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
10711 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
10712
10713 return endregno > tregno && regno < endtregno;
10714 }
10715
10716 else if (GET_CODE (body) == PARALLEL)
10717 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
10718 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
10719 return 1;
10720
10721 return 0;
10722 }
10723 \f
10724 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
10725 as appropriate. I3 and I2 are the insns resulting from the combination
10726 insns including FROM (I2 may be zero).
10727
10728 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
10729 not need REG_DEAD notes because they are being substituted for. This
10730 saves searching in the most common cases.
10731
10732 Each note in the list is either ignored or placed on some insns, depending
10733 on the type of note. */
10734
10735 static void
10736 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
10737 rtx notes;
10738 rtx from_insn;
10739 rtx i3, i2;
10740 rtx elim_i2, elim_i1;
10741 {
10742 rtx note, next_note;
10743 rtx tem;
10744
10745 for (note = notes; note; note = next_note)
10746 {
10747 rtx place = 0, place2 = 0;
10748
10749 /* If this NOTE references a pseudo register, ensure it references
10750 the latest copy of that register. */
10751 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
10752 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
10753 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
10754
10755 next_note = XEXP (note, 1);
10756 switch (REG_NOTE_KIND (note))
10757 {
10758 case REG_UNUSED:
10759 /* Any clobbers for i3 may still exist, and so we must process
10760 REG_UNUSED notes from that insn.
10761
10762 Any clobbers from i2 or i1 can only exist if they were added by
10763 recog_for_combine. In that case, recog_for_combine created the
10764 necessary REG_UNUSED notes. Trying to keep any original
10765 REG_UNUSED notes from these insns can cause incorrect output
10766 if it is for the same register as the original i3 dest.
10767 In that case, we will notice that the register is set in i3,
10768 and then add a REG_UNUSED note for the destination of i3, which
10769 is wrong. However, it is possible to have REG_UNUSED notes from
10770 i2 or i1 for register which were both used and clobbered, so
10771 we keep notes from i2 or i1 if they will turn into REG_DEAD
10772 notes. */
10773
10774 /* If this register is set or clobbered in I3, put the note there
10775 unless there is one already. */
10776 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
10777 {
10778 if (from_insn != i3)
10779 break;
10780
10781 if (! (GET_CODE (XEXP (note, 0)) == REG
10782 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
10783 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
10784 place = i3;
10785 }
10786 /* Otherwise, if this register is used by I3, then this register
10787 now dies here, so we must put a REG_DEAD note here unless there
10788 is one already. */
10789 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
10790 && ! (GET_CODE (XEXP (note, 0)) == REG
10791 ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
10792 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
10793 {
10794 PUT_REG_NOTE_KIND (note, REG_DEAD);
10795 place = i3;
10796 }
10797 break;
10798
10799 case REG_EQUAL:
10800 case REG_EQUIV:
10801 case REG_NONNEG:
10802 /* These notes say something about results of an insn. We can
10803 only support them if they used to be on I3 in which case they
10804 remain on I3. Otherwise they are ignored.
10805
10806 If the note refers to an expression that is not a constant, we
10807 must also ignore the note since we cannot tell whether the
10808 equivalence is still true. It might be possible to do
10809 slightly better than this (we only have a problem if I2DEST
10810 or I1DEST is present in the expression), but it doesn't
10811 seem worth the trouble. */
10812
10813 if (from_insn == i3
10814 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
10815 place = i3;
10816 break;
10817
10818 case REG_INC:
10819 case REG_NO_CONFLICT:
10820 case REG_LABEL:
10821 /* These notes say something about how a register is used. They must
10822 be present on any use of the register in I2 or I3. */
10823 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
10824 place = i3;
10825
10826 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
10827 {
10828 if (place)
10829 place2 = i2;
10830 else
10831 place = i2;
10832 }
10833 break;
10834
10835 case REG_WAS_0:
10836 /* It is too much trouble to try to see if this note is still
10837 correct in all situations. It is better to simply delete it. */
10838 break;
10839
10840 case REG_RETVAL:
10841 /* If the insn previously containing this note still exists,
10842 put it back where it was. Otherwise move it to the previous
10843 insn. Adjust the corresponding REG_LIBCALL note. */
10844 if (GET_CODE (from_insn) != NOTE)
10845 place = from_insn;
10846 else
10847 {
10848 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
10849 place = prev_real_insn (from_insn);
10850 if (tem && place)
10851 XEXP (tem, 0) = place;
10852 }
10853 break;
10854
10855 case REG_LIBCALL:
10856 /* This is handled similarly to REG_RETVAL. */
10857 if (GET_CODE (from_insn) != NOTE)
10858 place = from_insn;
10859 else
10860 {
10861 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
10862 place = next_real_insn (from_insn);
10863 if (tem && place)
10864 XEXP (tem, 0) = place;
10865 }
10866 break;
10867
10868 case REG_DEAD:
10869 /* If the register is used as an input in I3, it dies there.
10870 Similarly for I2, if it is non-zero and adjacent to I3.
10871
10872 If the register is not used as an input in either I3 or I2
10873 and it is not one of the registers we were supposed to eliminate,
10874 there are two possibilities. We might have a non-adjacent I2
10875 or we might have somehow eliminated an additional register
10876 from a computation. For example, we might have had A & B where
10877 we discover that B will always be zero. In this case we will
10878 eliminate the reference to A.
10879
10880 In both cases, we must search to see if we can find a previous
10881 use of A and put the death note there. */
10882
10883 if (from_insn
10884 && GET_CODE (from_insn) == CALL_INSN
10885 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
10886 place = from_insn;
10887 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
10888 place = i3;
10889 else if (i2 != 0 && next_nonnote_insn (i2) == i3
10890 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
10891 place = i2;
10892
10893 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
10894 break;
10895
10896 /* If the register is used in both I2 and I3 and it dies in I3,
10897 we might have added another reference to it. If reg_n_refs
10898 was 2, bump it to 3. This has to be correct since the
10899 register must have been set somewhere. The reason this is
10900 done is because local-alloc.c treats 2 references as a
10901 special case. */
10902
10903 if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
10904 && reg_n_refs[REGNO (XEXP (note, 0))]== 2
10905 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
10906 reg_n_refs[REGNO (XEXP (note, 0))] = 3;
10907
10908 if (place == 0)
10909 {
10910 for (tem = prev_nonnote_insn (i3);
10911 place == 0 && tem
10912 && (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN);
10913 tem = prev_nonnote_insn (tem))
10914 {
10915 /* If the register is being set at TEM, see if that is all
10916 TEM is doing. If so, delete TEM. Otherwise, make this
10917 into a REG_UNUSED note instead. */
10918 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
10919 {
10920 rtx set = single_set (tem);
10921
10922 /* Verify that it was the set, and not a clobber that
10923 modified the register. */
10924
10925 if (set != 0 && ! side_effects_p (SET_SRC (set))
10926 && (rtx_equal_p (XEXP (note, 0), SET_DEST (set))
10927 || (GET_CODE (SET_DEST (set)) == SUBREG
10928 && rtx_equal_p (XEXP (note, 0),
10929 XEXP (SET_DEST (set), 0)))))
10930 {
10931 /* Move the notes and links of TEM elsewhere.
10932 This might delete other dead insns recursively.
10933 First set the pattern to something that won't use
10934 any register. */
10935
10936 PATTERN (tem) = pc_rtx;
10937
10938 distribute_notes (REG_NOTES (tem), tem, tem,
10939 NULL_RTX, NULL_RTX, NULL_RTX);
10940 distribute_links (LOG_LINKS (tem));
10941
10942 PUT_CODE (tem, NOTE);
10943 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
10944 NOTE_SOURCE_FILE (tem) = 0;
10945 }
10946 else
10947 {
10948 PUT_REG_NOTE_KIND (note, REG_UNUSED);
10949
10950 /* If there isn't already a REG_UNUSED note, put one
10951 here. */
10952 if (! find_regno_note (tem, REG_UNUSED,
10953 REGNO (XEXP (note, 0))))
10954 place = tem;
10955 break;
10956 }
10957 }
10958 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
10959 || (GET_CODE (tem) == CALL_INSN
10960 && find_reg_fusage (tem, USE, XEXP (note, 0))))
10961 {
10962 place = tem;
10963
10964 /* If we are doing a 3->2 combination, and we have a
10965 register which formerly died in i3 and was not used
10966 by i2, which now no longer dies in i3 and is used in
10967 i2 but does not die in i2, and place is between i2
10968 and i3, then we may need to move a link from place to
10969 i2. */
10970 if (i2 && INSN_UID (place) <= max_uid_cuid
10971 && INSN_CUID (place) > INSN_CUID (i2)
10972 && from_insn && INSN_CUID (from_insn) > INSN_CUID (i2)
10973 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
10974 {
10975 rtx links = LOG_LINKS (place);
10976 LOG_LINKS (place) = 0;
10977 distribute_links (links);
10978 }
10979 break;
10980 }
10981 }
10982
10983 /* If we haven't found an insn for the death note and it
10984 is still a REG_DEAD note, but we have hit a CODE_LABEL,
10985 insert a USE insn for the register at that label and
10986 put the death node there. This prevents problems with
10987 call-state tracking in caller-save.c. */
10988 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0)
10989 {
10990 place
10991 = emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (note, 0)),
10992 tem);
10993
10994 /* If this insn was emitted between blocks, then update
10995 basic_block_head of the current block to include it. */
10996 if (basic_block_end[this_basic_block - 1] == tem)
10997 basic_block_head[this_basic_block] = place;
10998 }
10999 }
11000
11001 /* If the register is set or already dead at PLACE, we needn't do
11002 anything with this note if it is still a REG_DEAD note.
11003
11004 Note that we cannot use just `dead_or_set_p' here since we can
11005 convert an assignment to a register into a bit-field assignment.
11006 Therefore, we must also omit the note if the register is the
11007 target of a bitfield assignment. */
11008
11009 if (place && REG_NOTE_KIND (note) == REG_DEAD)
11010 {
11011 int regno = REGNO (XEXP (note, 0));
11012
11013 if (dead_or_set_p (place, XEXP (note, 0))
11014 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
11015 {
11016 /* Unless the register previously died in PLACE, clear
11017 reg_last_death. [I no longer understand why this is
11018 being done.] */
11019 if (reg_last_death[regno] != place)
11020 reg_last_death[regno] = 0;
11021 place = 0;
11022 }
11023 else
11024 reg_last_death[regno] = place;
11025
11026 /* If this is a death note for a hard reg that is occupying
11027 multiple registers, ensure that we are still using all
11028 parts of the object. If we find a piece of the object
11029 that is unused, we must add a USE for that piece before
11030 PLACE and put the appropriate REG_DEAD note on it.
11031
11032 An alternative would be to put a REG_UNUSED for the pieces
11033 on the insn that set the register, but that can't be done if
11034 it is not in the same block. It is simpler, though less
11035 efficient, to add the USE insns. */
11036
11037 if (place && regno < FIRST_PSEUDO_REGISTER
11038 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
11039 {
11040 int endregno
11041 = regno + HARD_REGNO_NREGS (regno,
11042 GET_MODE (XEXP (note, 0)));
11043 int all_used = 1;
11044 int i;
11045
11046 for (i = regno; i < endregno; i++)
11047 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
11048 && ! find_regno_fusage (place, USE, i))
11049 {
11050 rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
11051 rtx p;
11052
11053 /* See if we already placed a USE note for this
11054 register in front of PLACE. */
11055 for (p = place;
11056 GET_CODE (PREV_INSN (p)) == INSN
11057 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
11058 p = PREV_INSN (p))
11059 if (rtx_equal_p (piece,
11060 XEXP (PATTERN (PREV_INSN (p)), 0)))
11061 {
11062 p = 0;
11063 break;
11064 }
11065
11066 if (p)
11067 {
11068 rtx use_insn
11069 = emit_insn_before (gen_rtx (USE, VOIDmode,
11070 piece),
11071 p);
11072 REG_NOTES (use_insn)
11073 = gen_rtx (EXPR_LIST, REG_DEAD, piece,
11074 REG_NOTES (use_insn));
11075 }
11076
11077 all_used = 0;
11078 }
11079
11080 /* Check for the case where the register dying partially
11081 overlaps the register set by this insn. */
11082 if (all_used)
11083 for (i = regno; i < endregno; i++)
11084 if (dead_or_set_regno_p (place, i))
11085 {
11086 all_used = 0;
11087 break;
11088 }
11089
11090 if (! all_used)
11091 {
11092 /* Put only REG_DEAD notes for pieces that are
11093 still used and that are not already dead or set. */
11094
11095 for (i = regno; i < endregno; i++)
11096 {
11097 rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
11098
11099 if ((reg_referenced_p (piece, PATTERN (place))
11100 || (GET_CODE (place) == CALL_INSN
11101 && find_reg_fusage (place, USE, piece)))
11102 && ! dead_or_set_p (place, piece)
11103 && ! reg_bitfield_target_p (piece,
11104 PATTERN (place)))
11105 REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
11106 piece,
11107 REG_NOTES (place));
11108 }
11109
11110 place = 0;
11111 }
11112 }
11113 }
11114 break;
11115
11116 default:
11117 /* Any other notes should not be present at this point in the
11118 compilation. */
11119 abort ();
11120 }
11121
11122 if (place)
11123 {
11124 XEXP (note, 1) = REG_NOTES (place);
11125 REG_NOTES (place) = note;
11126 }
11127 else if ((REG_NOTE_KIND (note) == REG_DEAD
11128 || REG_NOTE_KIND (note) == REG_UNUSED)
11129 && GET_CODE (XEXP (note, 0)) == REG)
11130 reg_n_deaths[REGNO (XEXP (note, 0))]--;
11131
11132 if (place2)
11133 {
11134 if ((REG_NOTE_KIND (note) == REG_DEAD
11135 || REG_NOTE_KIND (note) == REG_UNUSED)
11136 && GET_CODE (XEXP (note, 0)) == REG)
11137 reg_n_deaths[REGNO (XEXP (note, 0))]++;
11138
11139 REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
11140 XEXP (note, 0), REG_NOTES (place2));
11141 }
11142 }
11143 }
11144 \f
11145 /* Similarly to above, distribute the LOG_LINKS that used to be present on
11146 I3, I2, and I1 to new locations. This is also called in one case to
11147 add a link pointing at I3 when I3's destination is changed. */
11148
11149 static void
11150 distribute_links (links)
11151 rtx links;
11152 {
11153 rtx link, next_link;
11154
11155 for (link = links; link; link = next_link)
11156 {
11157 rtx place = 0;
11158 rtx insn;
11159 rtx set, reg;
11160
11161 next_link = XEXP (link, 1);
11162
11163 /* If the insn that this link points to is a NOTE or isn't a single
11164 set, ignore it. In the latter case, it isn't clear what we
11165 can do other than ignore the link, since we can't tell which
11166 register it was for. Such links wouldn't be used by combine
11167 anyway.
11168
11169 It is not possible for the destination of the target of the link to
11170 have been changed by combine. The only potential of this is if we
11171 replace I3, I2, and I1 by I3 and I2. But in that case the
11172 destination of I2 also remains unchanged. */
11173
11174 if (GET_CODE (XEXP (link, 0)) == NOTE
11175 || (set = single_set (XEXP (link, 0))) == 0)
11176 continue;
11177
11178 reg = SET_DEST (set);
11179 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
11180 || GET_CODE (reg) == SIGN_EXTRACT
11181 || GET_CODE (reg) == STRICT_LOW_PART)
11182 reg = XEXP (reg, 0);
11183
11184 /* A LOG_LINK is defined as being placed on the first insn that uses
11185 a register and points to the insn that sets the register. Start
11186 searching at the next insn after the target of the link and stop
11187 when we reach a set of the register or the end of the basic block.
11188
11189 Note that this correctly handles the link that used to point from
11190 I3 to I2. Also note that not much searching is typically done here
11191 since most links don't point very far away. */
11192
11193 for (insn = NEXT_INSN (XEXP (link, 0));
11194 (insn && (this_basic_block == n_basic_blocks - 1
11195 || basic_block_head[this_basic_block + 1] != insn));
11196 insn = NEXT_INSN (insn))
11197 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
11198 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
11199 {
11200 if (reg_referenced_p (reg, PATTERN (insn)))
11201 place = insn;
11202 break;
11203 }
11204 else if (GET_CODE (insn) == CALL_INSN
11205 && find_reg_fusage (insn, USE, reg))
11206 {
11207 place = insn;
11208 break;
11209 }
11210
11211 /* If we found a place to put the link, place it there unless there
11212 is already a link to the same insn as LINK at that point. */
11213
11214 if (place)
11215 {
11216 rtx link2;
11217
11218 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
11219 if (XEXP (link2, 0) == XEXP (link, 0))
11220 break;
11221
11222 if (link2 == 0)
11223 {
11224 XEXP (link, 1) = LOG_LINKS (place);
11225 LOG_LINKS (place) = link;
11226
11227 /* Set added_links_insn to the earliest insn we added a
11228 link to. */
11229 if (added_links_insn == 0
11230 || INSN_CUID (added_links_insn) > INSN_CUID (place))
11231 added_links_insn = place;
11232 }
11233 }
11234 }
11235 }
11236 \f
11237 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
11238
11239 static int
11240 insn_cuid (insn)
11241 rtx insn;
11242 {
11243 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
11244 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
11245 insn = NEXT_INSN (insn);
11246
11247 if (INSN_UID (insn) > max_uid_cuid)
11248 abort ();
11249
11250 return INSN_CUID (insn);
11251 }
11252 \f
11253 void
11254 dump_combine_stats (file)
11255 FILE *file;
11256 {
11257 fprintf
11258 (file,
11259 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
11260 combine_attempts, combine_merges, combine_extras, combine_successes);
11261 }
11262
11263 void
11264 dump_combine_total_stats (file)
11265 FILE *file;
11266 {
11267 fprintf
11268 (file,
11269 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
11270 total_attempts, total_merges, total_extras, total_successes);
11271 }
This page took 0.645037 seconds and 5 git commands to generate.