]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
combine.c (try_combine): Fix SUBREG setting for HOST_BITS_PER_WIDE_INT >= 2 * BITS_PE...
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-flags.h"
90 #include "insn-codes.h"
91 #include "insn-attr.h"
92 #include "recog.h"
93 #include "real.h"
94 #include "toplev.h"
95
96 #ifndef ACCUMULATE_OUTGOING_ARGS
97 #define ACCUMULATE_OUTGOING_ARGS 0
98 #endif
99
100 /* Supply a default definition for PUSH_ARGS. */
101 #ifndef PUSH_ARGS
102 #ifdef PUSH_ROUNDING
103 #define PUSH_ARGS !ACCUMULATE_OUTGOING_ARGS
104 #else
105 #define PUSH_ARGS 0
106 #endif
107 #endif
108
109 /* It is not safe to use ordinary gen_lowpart in combine.
110 Use gen_lowpart_for_combine instead. See comments there. */
111 #define gen_lowpart dont_use_gen_lowpart_you_dummy
112
113 /* Number of attempts to combine instructions in this function. */
114
115 static int combine_attempts;
116
117 /* Number of attempts that got as far as substitution in this function. */
118
119 static int combine_merges;
120
121 /* Number of instructions combined with added SETs in this function. */
122
123 static int combine_extras;
124
125 /* Number of instructions combined in this function. */
126
127 static int combine_successes;
128
129 /* Totals over entire compilation. */
130
131 static int total_attempts, total_merges, total_extras, total_successes;
132
133 \f
134 /* Vector mapping INSN_UIDs to cuids.
135 The cuids are like uids but increase monotonically always.
136 Combine always uses cuids so that it can compare them.
137 But actually renumbering the uids, which we used to do,
138 proves to be a bad idea because it makes it hard to compare
139 the dumps produced by earlier passes with those from later passes. */
140
141 static int *uid_cuid;
142 static int max_uid_cuid;
143
144 /* Get the cuid of an insn. */
145
146 #define INSN_CUID(INSN) \
147 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
148
149 /* Maximum register number, which is the size of the tables below. */
150
151 static unsigned int combine_max_regno;
152
153 /* Record last point of death of (hard or pseudo) register n. */
154
155 static rtx *reg_last_death;
156
157 /* Record last point of modification of (hard or pseudo) register n. */
158
159 static rtx *reg_last_set;
160
161 /* Record the cuid of the last insn that invalidated memory
162 (anything that writes memory, and subroutine calls, but not pushes). */
163
164 static int mem_last_set;
165
166 /* Record the cuid of the last CALL_INSN
167 so we can tell whether a potential combination crosses any calls. */
168
169 static int last_call_cuid;
170
171 /* When `subst' is called, this is the insn that is being modified
172 (by combining in a previous insn). The PATTERN of this insn
173 is still the old pattern partially modified and it should not be
174 looked at, but this may be used to examine the successors of the insn
175 to judge whether a simplification is valid. */
176
177 static rtx subst_insn;
178
179 /* This is an insn that belongs before subst_insn, but is not currently
180 on the insn chain. */
181
182 static rtx subst_prev_insn;
183
184 /* This is the lowest CUID that `subst' is currently dealing with.
185 get_last_value will not return a value if the register was set at or
186 after this CUID. If not for this mechanism, we could get confused if
187 I2 or I1 in try_combine were an insn that used the old value of a register
188 to obtain a new value. In that case, we might erroneously get the
189 new value of the register when we wanted the old one. */
190
191 static int subst_low_cuid;
192
193 /* This contains any hard registers that are used in newpat; reg_dead_at_p
194 must consider all these registers to be always live. */
195
196 static HARD_REG_SET newpat_used_regs;
197
198 /* This is an insn to which a LOG_LINKS entry has been added. If this
199 insn is the earlier than I2 or I3, combine should rescan starting at
200 that location. */
201
202 static rtx added_links_insn;
203
204 /* Basic block number of the block in which we are performing combines. */
205 static int this_basic_block;
206
207 /* A bitmap indicating which blocks had registers go dead at entry.
208 After combine, we'll need to re-do global life analysis with
209 those blocks as starting points. */
210 static sbitmap refresh_blocks;
211 static int need_refresh;
212 \f
213 /* The next group of arrays allows the recording of the last value assigned
214 to (hard or pseudo) register n. We use this information to see if a
215 operation being processed is redundant given a prior operation performed
216 on the register. For example, an `and' with a constant is redundant if
217 all the zero bits are already known to be turned off.
218
219 We use an approach similar to that used by cse, but change it in the
220 following ways:
221
222 (1) We do not want to reinitialize at each label.
223 (2) It is useful, but not critical, to know the actual value assigned
224 to a register. Often just its form is helpful.
225
226 Therefore, we maintain the following arrays:
227
228 reg_last_set_value the last value assigned
229 reg_last_set_label records the value of label_tick when the
230 register was assigned
231 reg_last_set_table_tick records the value of label_tick when a
232 value using the register is assigned
233 reg_last_set_invalid set to non-zero when it is not valid
234 to use the value of this register in some
235 register's value
236
237 To understand the usage of these tables, it is important to understand
238 the distinction between the value in reg_last_set_value being valid
239 and the register being validly contained in some other expression in the
240 table.
241
242 Entry I in reg_last_set_value is valid if it is non-zero, and either
243 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
244
245 Register I may validly appear in any expression returned for the value
246 of another register if reg_n_sets[i] is 1. It may also appear in the
247 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
248 reg_last_set_invalid[j] is zero.
249
250 If an expression is found in the table containing a register which may
251 not validly appear in an expression, the register is replaced by
252 something that won't match, (clobber (const_int 0)).
253
254 reg_last_set_invalid[i] is set non-zero when register I is being assigned
255 to and reg_last_set_table_tick[i] == label_tick. */
256
257 /* Record last value assigned to (hard or pseudo) register n. */
258
259 static rtx *reg_last_set_value;
260
261 /* Record the value of label_tick when the value for register n is placed in
262 reg_last_set_value[n]. */
263
264 static int *reg_last_set_label;
265
266 /* Record the value of label_tick when an expression involving register n
267 is placed in reg_last_set_value. */
268
269 static int *reg_last_set_table_tick;
270
271 /* Set non-zero if references to register n in expressions should not be
272 used. */
273
274 static char *reg_last_set_invalid;
275
276 /* Incremented for each label. */
277
278 static int label_tick;
279
280 /* Some registers that are set more than once and used in more than one
281 basic block are nevertheless always set in similar ways. For example,
282 a QImode register may be loaded from memory in two places on a machine
283 where byte loads zero extend.
284
285 We record in the following array what we know about the nonzero
286 bits of a register, specifically which bits are known to be zero.
287
288 If an entry is zero, it means that we don't know anything special. */
289
290 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
291
292 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
293 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
294
295 static enum machine_mode nonzero_bits_mode;
296
297 /* Nonzero if we know that a register has some leading bits that are always
298 equal to the sign bit. */
299
300 static unsigned char *reg_sign_bit_copies;
301
302 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
303 It is zero while computing them and after combine has completed. This
304 former test prevents propagating values based on previously set values,
305 which can be incorrect if a variable is modified in a loop. */
306
307 static int nonzero_sign_valid;
308
309 /* These arrays are maintained in parallel with reg_last_set_value
310 and are used to store the mode in which the register was last set,
311 the bits that were known to be zero when it was last set, and the
312 number of sign bits copies it was known to have when it was last set. */
313
314 static enum machine_mode *reg_last_set_mode;
315 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
316 static char *reg_last_set_sign_bit_copies;
317 \f
318 /* Record one modification to rtl structure
319 to be undone by storing old_contents into *where.
320 is_int is 1 if the contents are an int. */
321
322 struct undo
323 {
324 struct undo *next;
325 int is_int;
326 union {rtx r; unsigned int i;} old_contents;
327 union {rtx *r; unsigned int *i;} where;
328 };
329
330 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
331 num_undo says how many are currently recorded.
332
333 other_insn is nonzero if we have modified some other insn in the process
334 of working on subst_insn. It must be verified too.
335
336 previous_undos is the value of undobuf.undos when we started processing
337 this substitution. This will prevent gen_rtx_combine from re-used a piece
338 from the previous expression. Doing so can produce circular rtl
339 structures. */
340
341 struct undobuf
342 {
343 struct undo *undos;
344 struct undo *frees;
345 struct undo *previous_undos;
346 rtx other_insn;
347 };
348
349 static struct undobuf undobuf;
350
351 /* Number of times the pseudo being substituted for
352 was found and replaced. */
353
354 static int n_occurrences;
355
356 static void do_SUBST PARAMS ((rtx *, rtx));
357 static void do_SUBST_INT PARAMS ((unsigned int *,
358 unsigned int));
359 static void init_reg_last_arrays PARAMS ((void));
360 static void setup_incoming_promotions PARAMS ((void));
361 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
362 static int cant_combine_insn_p PARAMS ((rtx));
363 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
364 static int sets_function_arg_p PARAMS ((rtx));
365 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
366 static int contains_muldiv PARAMS ((rtx));
367 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
368 static void undo_all PARAMS ((void));
369 static void undo_commit PARAMS ((void));
370 static rtx *find_split_point PARAMS ((rtx *, rtx));
371 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
372 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
373 static rtx simplify_if_then_else PARAMS ((rtx));
374 static rtx simplify_set PARAMS ((rtx));
375 static rtx simplify_logical PARAMS ((rtx, int));
376 static rtx expand_compound_operation PARAMS ((rtx));
377 static rtx expand_field_assignment PARAMS ((rtx));
378 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
379 rtx, unsigned HOST_WIDE_INT, int,
380 int, int));
381 static rtx extract_left_shift PARAMS ((rtx, int));
382 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
383 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
384 unsigned HOST_WIDE_INT *));
385 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
386 unsigned HOST_WIDE_INT, rtx, int));
387 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
388 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
389 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
390 static rtx make_field_assignment PARAMS ((rtx));
391 static rtx apply_distributive_law PARAMS ((rtx));
392 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
393 unsigned HOST_WIDE_INT));
394 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
395 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
396 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
397 enum rtx_code, HOST_WIDE_INT,
398 enum machine_mode, int *));
399 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
400 rtx, int));
401 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
402 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
403 static rtx gen_rtx_combine PARAMS ((enum rtx_code code, enum machine_mode mode,
404 ...));
405 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
406 rtx, rtx));
407 static rtx gen_unary PARAMS ((enum rtx_code, enum machine_mode,
408 enum machine_mode, rtx));
409 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
410 static void update_table_tick PARAMS ((rtx));
411 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
412 static void check_promoted_subreg PARAMS ((rtx, rtx));
413 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
414 static void record_dead_and_set_regs PARAMS ((rtx));
415 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
416 static rtx get_last_value PARAMS ((rtx));
417 static int use_crosses_set_p PARAMS ((rtx, int));
418 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
419 static int reg_dead_at_p PARAMS ((rtx, rtx));
420 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
421 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
422 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
423 static void distribute_links PARAMS ((rtx));
424 static void mark_used_regs_combine PARAMS ((rtx));
425 static int insn_cuid PARAMS ((rtx));
426 static void record_promoted_value PARAMS ((rtx, rtx));
427 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
428 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
429 \f
430 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
431 insn. The substitution can be undone by undo_all. If INTO is already
432 set to NEWVAL, do not record this change. Because computing NEWVAL might
433 also call SUBST, we have to compute it before we put anything into
434 the undo table. */
435
436 static void
437 do_SUBST (into, newval)
438 rtx *into, newval;
439 {
440 struct undo *buf;
441 rtx oldval = *into;
442
443 if (oldval == newval)
444 return;
445
446 if (undobuf.frees)
447 buf = undobuf.frees, undobuf.frees = buf->next;
448 else
449 buf = (struct undo *) xmalloc (sizeof (struct undo));
450
451 buf->is_int = 0;
452 buf->where.r = into;
453 buf->old_contents.r = oldval;
454 *into = newval;
455
456 buf->next = undobuf.undos, undobuf.undos = buf;
457 }
458
459 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
460
461 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
462 for the value of a HOST_WIDE_INT value (including CONST_INT) is
463 not safe. */
464
465 static void
466 do_SUBST_INT (into, newval)
467 unsigned int *into, newval;
468 {
469 struct undo *buf;
470 unsigned int oldval = *into;
471
472 if (oldval == newval)
473 return;
474
475 if (undobuf.frees)
476 buf = undobuf.frees, undobuf.frees = buf->next;
477 else
478 buf = (struct undo *) xmalloc (sizeof (struct undo));
479
480 buf->is_int = 1;
481 buf->where.i = into;
482 buf->old_contents.i = oldval;
483 *into = newval;
484
485 buf->next = undobuf.undos, undobuf.undos = buf;
486 }
487
488 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
489 \f
490 /* Main entry point for combiner. F is the first insn of the function.
491 NREGS is the first unused pseudo-reg number.
492
493 Return non-zero if the combiner has turned an indirect jump
494 instruction into a direct jump. */
495 int
496 combine_instructions (f, nregs)
497 rtx f;
498 unsigned int nregs;
499 {
500 register rtx insn, next;
501 #ifdef HAVE_cc0
502 register rtx prev;
503 #endif
504 register int i;
505 register rtx links, nextlinks;
506
507 int new_direct_jump_p = 0;
508
509 combine_attempts = 0;
510 combine_merges = 0;
511 combine_extras = 0;
512 combine_successes = 0;
513
514 combine_max_regno = nregs;
515
516 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
517 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
518 reg_sign_bit_copies
519 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
520
521 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
522 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
523 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
524 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
525 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
526 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
527 reg_last_set_mode
528 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
529 reg_last_set_nonzero_bits
530 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
531 reg_last_set_sign_bit_copies
532 = (char *) xmalloc (nregs * sizeof (char));
533
534 init_reg_last_arrays ();
535
536 init_recog_no_volatile ();
537
538 /* Compute maximum uid value so uid_cuid can be allocated. */
539
540 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
541 if (INSN_UID (insn) > i)
542 i = INSN_UID (insn);
543
544 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
545 max_uid_cuid = i;
546
547 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
548
549 /* Don't use reg_nonzero_bits when computing it. This can cause problems
550 when, for example, we have j <<= 1 in a loop. */
551
552 nonzero_sign_valid = 0;
553
554 /* Compute the mapping from uids to cuids.
555 Cuids are numbers assigned to insns, like uids,
556 except that cuids increase monotonically through the code.
557
558 Scan all SETs and see if we can deduce anything about what
559 bits are known to be zero for some registers and how many copies
560 of the sign bit are known to exist for those registers.
561
562 Also set any known values so that we can use it while searching
563 for what bits are known to be set. */
564
565 label_tick = 1;
566
567 /* We need to initialize it here, because record_dead_and_set_regs may call
568 get_last_value. */
569 subst_prev_insn = NULL_RTX;
570
571 setup_incoming_promotions ();
572
573 refresh_blocks = sbitmap_alloc (n_basic_blocks);
574 sbitmap_zero (refresh_blocks);
575 need_refresh = 0;
576
577 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
578 {
579 uid_cuid[INSN_UID (insn)] = ++i;
580 subst_low_cuid = i;
581 subst_insn = insn;
582
583 if (INSN_P (insn))
584 {
585 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
586 NULL);
587 record_dead_and_set_regs (insn);
588
589 #ifdef AUTO_INC_DEC
590 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
591 if (REG_NOTE_KIND (links) == REG_INC)
592 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
593 NULL);
594 #endif
595 }
596
597 if (GET_CODE (insn) == CODE_LABEL)
598 label_tick++;
599 }
600
601 nonzero_sign_valid = 1;
602
603 /* Now scan all the insns in forward order. */
604
605 this_basic_block = -1;
606 label_tick = 1;
607 last_call_cuid = 0;
608 mem_last_set = 0;
609 init_reg_last_arrays ();
610 setup_incoming_promotions ();
611
612 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
613 {
614 next = 0;
615
616 /* If INSN starts a new basic block, update our basic block number. */
617 if (this_basic_block + 1 < n_basic_blocks
618 && BLOCK_HEAD (this_basic_block + 1) == insn)
619 this_basic_block++;
620
621 if (GET_CODE (insn) == CODE_LABEL)
622 label_tick++;
623
624 else if (INSN_P (insn))
625 {
626 /* See if we know about function return values before this
627 insn based upon SUBREG flags. */
628 check_promoted_subreg (insn, PATTERN (insn));
629
630 /* Try this insn with each insn it links back to. */
631
632 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
633 if ((next = try_combine (insn, XEXP (links, 0),
634 NULL_RTX, &new_direct_jump_p)) != 0)
635 goto retry;
636
637 /* Try each sequence of three linked insns ending with this one. */
638
639 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
640 {
641 rtx link = XEXP (links, 0);
642
643 /* If the linked insn has been replaced by a note, then there
644 is no point in persuing this chain any further. */
645 if (GET_CODE (link) == NOTE)
646 break;
647
648 for (nextlinks = LOG_LINKS (link);
649 nextlinks;
650 nextlinks = XEXP (nextlinks, 1))
651 if ((next = try_combine (insn, XEXP (links, 0),
652 XEXP (nextlinks, 0),
653 &new_direct_jump_p)) != 0)
654 goto retry;
655 }
656
657 #ifdef HAVE_cc0
658 /* Try to combine a jump insn that uses CC0
659 with a preceding insn that sets CC0, and maybe with its
660 logical predecessor as well.
661 This is how we make decrement-and-branch insns.
662 We need this special code because data flow connections
663 via CC0 do not get entered in LOG_LINKS. */
664
665 if (GET_CODE (insn) == JUMP_INSN
666 && (prev = prev_nonnote_insn (insn)) != 0
667 && GET_CODE (prev) == INSN
668 && sets_cc0_p (PATTERN (prev)))
669 {
670 if ((next = try_combine (insn, prev,
671 NULL_RTX, &new_direct_jump_p)) != 0)
672 goto retry;
673
674 for (nextlinks = LOG_LINKS (prev); nextlinks;
675 nextlinks = XEXP (nextlinks, 1))
676 if ((next = try_combine (insn, prev,
677 XEXP (nextlinks, 0),
678 &new_direct_jump_p)) != 0)
679 goto retry;
680 }
681
682 /* Do the same for an insn that explicitly references CC0. */
683 if (GET_CODE (insn) == INSN
684 && (prev = prev_nonnote_insn (insn)) != 0
685 && GET_CODE (prev) == INSN
686 && sets_cc0_p (PATTERN (prev))
687 && GET_CODE (PATTERN (insn)) == SET
688 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
689 {
690 if ((next = try_combine (insn, prev,
691 NULL_RTX, &new_direct_jump_p)) != 0)
692 goto retry;
693
694 for (nextlinks = LOG_LINKS (prev); nextlinks;
695 nextlinks = XEXP (nextlinks, 1))
696 if ((next = try_combine (insn, prev,
697 XEXP (nextlinks, 0),
698 &new_direct_jump_p)) != 0)
699 goto retry;
700 }
701
702 /* Finally, see if any of the insns that this insn links to
703 explicitly references CC0. If so, try this insn, that insn,
704 and its predecessor if it sets CC0. */
705 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
706 if (GET_CODE (XEXP (links, 0)) == INSN
707 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
708 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
709 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
710 && GET_CODE (prev) == INSN
711 && sets_cc0_p (PATTERN (prev))
712 && (next = try_combine (insn, XEXP (links, 0),
713 prev, &new_direct_jump_p)) != 0)
714 goto retry;
715 #endif
716
717 /* Try combining an insn with two different insns whose results it
718 uses. */
719 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
720 for (nextlinks = XEXP (links, 1); nextlinks;
721 nextlinks = XEXP (nextlinks, 1))
722 if ((next = try_combine (insn, XEXP (links, 0),
723 XEXP (nextlinks, 0),
724 &new_direct_jump_p)) != 0)
725 goto retry;
726
727 if (GET_CODE (insn) != NOTE)
728 record_dead_and_set_regs (insn);
729
730 retry:
731 ;
732 }
733 }
734
735 if (need_refresh)
736 {
737 compute_bb_for_insn (get_max_uid ());
738 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
739 PROP_DEATH_NOTES);
740 }
741
742 /* Clean up. */
743 sbitmap_free (refresh_blocks);
744 free (reg_nonzero_bits);
745 free (reg_sign_bit_copies);
746 free (reg_last_death);
747 free (reg_last_set);
748 free (reg_last_set_value);
749 free (reg_last_set_table_tick);
750 free (reg_last_set_label);
751 free (reg_last_set_invalid);
752 free (reg_last_set_mode);
753 free (reg_last_set_nonzero_bits);
754 free (reg_last_set_sign_bit_copies);
755 free (uid_cuid);
756
757 {
758 struct undo *undo, *next;
759 for (undo = undobuf.frees; undo; undo = next)
760 {
761 next = undo->next;
762 free (undo);
763 }
764 undobuf.frees = 0;
765 }
766
767 total_attempts += combine_attempts;
768 total_merges += combine_merges;
769 total_extras += combine_extras;
770 total_successes += combine_successes;
771
772 nonzero_sign_valid = 0;
773
774 /* Make recognizer allow volatile MEMs again. */
775 init_recog ();
776
777 return new_direct_jump_p;
778 }
779
780 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
781
782 static void
783 init_reg_last_arrays ()
784 {
785 unsigned int nregs = combine_max_regno;
786
787 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
788 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
789 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
790 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
791 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
792 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
793 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
794 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
795 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
796 }
797 \f
798 /* Set up any promoted values for incoming argument registers. */
799
800 static void
801 setup_incoming_promotions ()
802 {
803 #ifdef PROMOTE_FUNCTION_ARGS
804 unsigned int regno;
805 rtx reg;
806 enum machine_mode mode;
807 int unsignedp;
808 rtx first = get_insns ();
809
810 #ifndef OUTGOING_REGNO
811 #define OUTGOING_REGNO(N) N
812 #endif
813 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
814 /* Check whether this register can hold an incoming pointer
815 argument. FUNCTION_ARG_REGNO_P tests outgoing register
816 numbers, so translate if necessary due to register windows. */
817 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
818 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
819 {
820 record_value_for_reg
821 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
822 : SIGN_EXTEND),
823 GET_MODE (reg),
824 gen_rtx_CLOBBER (mode, const0_rtx)));
825 }
826 #endif
827 }
828 \f
829 /* Called via note_stores. If X is a pseudo that is narrower than
830 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
831
832 If we are setting only a portion of X and we can't figure out what
833 portion, assume all bits will be used since we don't know what will
834 be happening.
835
836 Similarly, set how many bits of X are known to be copies of the sign bit
837 at all locations in the function. This is the smallest number implied
838 by any set of X. */
839
840 static void
841 set_nonzero_bits_and_sign_copies (x, set, data)
842 rtx x;
843 rtx set;
844 void *data ATTRIBUTE_UNUSED;
845 {
846 unsigned int num;
847
848 if (GET_CODE (x) == REG
849 && REGNO (x) >= FIRST_PSEUDO_REGISTER
850 /* If this register is undefined at the start of the file, we can't
851 say what its contents were. */
852 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
853 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
854 {
855 if (set == 0 || GET_CODE (set) == CLOBBER)
856 {
857 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
858 reg_sign_bit_copies[REGNO (x)] = 1;
859 return;
860 }
861
862 /* If this is a complex assignment, see if we can convert it into a
863 simple assignment. */
864 set = expand_field_assignment (set);
865
866 /* If this is a simple assignment, or we have a paradoxical SUBREG,
867 set what we know about X. */
868
869 if (SET_DEST (set) == x
870 || (GET_CODE (SET_DEST (set)) == SUBREG
871 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
872 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
873 && SUBREG_REG (SET_DEST (set)) == x))
874 {
875 rtx src = SET_SRC (set);
876
877 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
878 /* If X is narrower than a word and SRC is a non-negative
879 constant that would appear negative in the mode of X,
880 sign-extend it for use in reg_nonzero_bits because some
881 machines (maybe most) will actually do the sign-extension
882 and this is the conservative approach.
883
884 ??? For 2.5, try to tighten up the MD files in this regard
885 instead of this kludge. */
886
887 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
888 && GET_CODE (src) == CONST_INT
889 && INTVAL (src) > 0
890 && 0 != (INTVAL (src)
891 & ((HOST_WIDE_INT) 1
892 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
893 src = GEN_INT (INTVAL (src)
894 | ((HOST_WIDE_INT) (-1)
895 << GET_MODE_BITSIZE (GET_MODE (x))));
896 #endif
897
898 reg_nonzero_bits[REGNO (x)]
899 |= nonzero_bits (src, nonzero_bits_mode);
900 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
901 if (reg_sign_bit_copies[REGNO (x)] == 0
902 || reg_sign_bit_copies[REGNO (x)] > num)
903 reg_sign_bit_copies[REGNO (x)] = num;
904 }
905 else
906 {
907 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
908 reg_sign_bit_copies[REGNO (x)] = 1;
909 }
910 }
911 }
912 \f
913 /* See if INSN can be combined into I3. PRED and SUCC are optionally
914 insns that were previously combined into I3 or that will be combined
915 into the merger of INSN and I3.
916
917 Return 0 if the combination is not allowed for any reason.
918
919 If the combination is allowed, *PDEST will be set to the single
920 destination of INSN and *PSRC to the single source, and this function
921 will return 1. */
922
923 static int
924 can_combine_p (insn, i3, pred, succ, pdest, psrc)
925 rtx insn;
926 rtx i3;
927 rtx pred ATTRIBUTE_UNUSED;
928 rtx succ;
929 rtx *pdest, *psrc;
930 {
931 int i;
932 rtx set = 0, src, dest;
933 rtx p;
934 #ifdef AUTO_INC_DEC
935 rtx link;
936 #endif
937 int all_adjacent = (succ ? (next_active_insn (insn) == succ
938 && next_active_insn (succ) == i3)
939 : next_active_insn (insn) == i3);
940
941 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
942 or a PARALLEL consisting of such a SET and CLOBBERs.
943
944 If INSN has CLOBBER parallel parts, ignore them for our processing.
945 By definition, these happen during the execution of the insn. When it
946 is merged with another insn, all bets are off. If they are, in fact,
947 needed and aren't also supplied in I3, they may be added by
948 recog_for_combine. Otherwise, it won't match.
949
950 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
951 note.
952
953 Get the source and destination of INSN. If more than one, can't
954 combine. */
955
956 if (GET_CODE (PATTERN (insn)) == SET)
957 set = PATTERN (insn);
958 else if (GET_CODE (PATTERN (insn)) == PARALLEL
959 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
960 {
961 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
962 {
963 rtx elt = XVECEXP (PATTERN (insn), 0, i);
964
965 switch (GET_CODE (elt))
966 {
967 /* This is important to combine floating point insns
968 for the SH4 port. */
969 case USE:
970 /* Combining an isolated USE doesn't make sense.
971 We depend here on combinable_i3_pat to reject them. */
972 /* The code below this loop only verifies that the inputs of
973 the SET in INSN do not change. We call reg_set_between_p
974 to verify that the REG in the USE does not change betweeen
975 I3 and INSN.
976 If the USE in INSN was for a pseudo register, the matching
977 insn pattern will likely match any register; combining this
978 with any other USE would only be safe if we knew that the
979 used registers have identical values, or if there was
980 something to tell them apart, e.g. different modes. For
981 now, we forgo such compilcated tests and simply disallow
982 combining of USES of pseudo registers with any other USE. */
983 if (GET_CODE (XEXP (elt, 0)) == REG
984 && GET_CODE (PATTERN (i3)) == PARALLEL)
985 {
986 rtx i3pat = PATTERN (i3);
987 int i = XVECLEN (i3pat, 0) - 1;
988 unsigned int regno = REGNO (XEXP (elt, 0));
989
990 do
991 {
992 rtx i3elt = XVECEXP (i3pat, 0, i);
993
994 if (GET_CODE (i3elt) == USE
995 && GET_CODE (XEXP (i3elt, 0)) == REG
996 && (REGNO (XEXP (i3elt, 0)) == regno
997 ? reg_set_between_p (XEXP (elt, 0),
998 PREV_INSN (insn), i3)
999 : regno >= FIRST_PSEUDO_REGISTER))
1000 return 0;
1001 }
1002 while (--i >= 0);
1003 }
1004 break;
1005
1006 /* We can ignore CLOBBERs. */
1007 case CLOBBER:
1008 break;
1009
1010 case SET:
1011 /* Ignore SETs whose result isn't used but not those that
1012 have side-effects. */
1013 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1014 && ! side_effects_p (elt))
1015 break;
1016
1017 /* If we have already found a SET, this is a second one and
1018 so we cannot combine with this insn. */
1019 if (set)
1020 return 0;
1021
1022 set = elt;
1023 break;
1024
1025 default:
1026 /* Anything else means we can't combine. */
1027 return 0;
1028 }
1029 }
1030
1031 if (set == 0
1032 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1033 so don't do anything with it. */
1034 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1035 return 0;
1036 }
1037 else
1038 return 0;
1039
1040 if (set == 0)
1041 return 0;
1042
1043 set = expand_field_assignment (set);
1044 src = SET_SRC (set), dest = SET_DEST (set);
1045
1046 /* Don't eliminate a store in the stack pointer. */
1047 if (dest == stack_pointer_rtx
1048 /* If we couldn't eliminate a field assignment, we can't combine. */
1049 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1050 /* Don't combine with an insn that sets a register to itself if it has
1051 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1052 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1053 /* Can't merge an ASM_OPERANDS. */
1054 || GET_CODE (src) == ASM_OPERANDS
1055 /* Can't merge a function call. */
1056 || GET_CODE (src) == CALL
1057 /* Don't eliminate a function call argument. */
1058 || (GET_CODE (i3) == CALL_INSN
1059 && (find_reg_fusage (i3, USE, dest)
1060 || (GET_CODE (dest) == REG
1061 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1062 && global_regs[REGNO (dest)])))
1063 /* Don't substitute into an incremented register. */
1064 || FIND_REG_INC_NOTE (i3, dest)
1065 || (succ && FIND_REG_INC_NOTE (succ, dest))
1066 #if 0
1067 /* Don't combine the end of a libcall into anything. */
1068 /* ??? This gives worse code, and appears to be unnecessary, since no
1069 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1070 use REG_RETVAL notes for noconflict blocks, but other code here
1071 makes sure that those insns don't disappear. */
1072 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1073 #endif
1074 /* Make sure that DEST is not used after SUCC but before I3. */
1075 || (succ && ! all_adjacent
1076 && reg_used_between_p (dest, succ, i3))
1077 /* Make sure that the value that is to be substituted for the register
1078 does not use any registers whose values alter in between. However,
1079 If the insns are adjacent, a use can't cross a set even though we
1080 think it might (this can happen for a sequence of insns each setting
1081 the same destination; reg_last_set of that register might point to
1082 a NOTE). If INSN has a REG_EQUIV note, the register is always
1083 equivalent to the memory so the substitution is valid even if there
1084 are intervening stores. Also, don't move a volatile asm or
1085 UNSPEC_VOLATILE across any other insns. */
1086 || (! all_adjacent
1087 && (((GET_CODE (src) != MEM
1088 || ! find_reg_note (insn, REG_EQUIV, src))
1089 && use_crosses_set_p (src, INSN_CUID (insn)))
1090 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1091 || GET_CODE (src) == UNSPEC_VOLATILE))
1092 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1093 better register allocation by not doing the combine. */
1094 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1095 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1096 /* Don't combine across a CALL_INSN, because that would possibly
1097 change whether the life span of some REGs crosses calls or not,
1098 and it is a pain to update that information.
1099 Exception: if source is a constant, moving it later can't hurt.
1100 Accept that special case, because it helps -fforce-addr a lot. */
1101 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1102 return 0;
1103
1104 /* DEST must either be a REG or CC0. */
1105 if (GET_CODE (dest) == REG)
1106 {
1107 /* If register alignment is being enforced for multi-word items in all
1108 cases except for parameters, it is possible to have a register copy
1109 insn referencing a hard register that is not allowed to contain the
1110 mode being copied and which would not be valid as an operand of most
1111 insns. Eliminate this problem by not combining with such an insn.
1112
1113 Also, on some machines we don't want to extend the life of a hard
1114 register. */
1115
1116 if (GET_CODE (src) == REG
1117 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1118 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1119 /* Don't extend the life of a hard register unless it is
1120 user variable (if we have few registers) or it can't
1121 fit into the desired register (meaning something special
1122 is going on).
1123 Also avoid substituting a return register into I3, because
1124 reload can't handle a conflict with constraints of other
1125 inputs. */
1126 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1127 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1128 return 0;
1129 }
1130 else if (GET_CODE (dest) != CC0)
1131 return 0;
1132
1133 /* Don't substitute for a register intended as a clobberable operand.
1134 Similarly, don't substitute an expression containing a register that
1135 will be clobbered in I3. */
1136 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1137 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1138 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1139 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1140 src)
1141 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1142 return 0;
1143
1144 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1145 or not), reject, unless nothing volatile comes between it and I3 */
1146
1147 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1148 {
1149 /* Make sure succ doesn't contain a volatile reference. */
1150 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1151 return 0;
1152
1153 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1154 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1155 return 0;
1156 }
1157
1158 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1159 to be an explicit register variable, and was chosen for a reason. */
1160
1161 if (GET_CODE (src) == ASM_OPERANDS
1162 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1163 return 0;
1164
1165 /* If there are any volatile insns between INSN and I3, reject, because
1166 they might affect machine state. */
1167
1168 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1169 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1170 return 0;
1171
1172 /* If INSN or I2 contains an autoincrement or autodecrement,
1173 make sure that register is not used between there and I3,
1174 and not already used in I3 either.
1175 Also insist that I3 not be a jump; if it were one
1176 and the incremented register were spilled, we would lose. */
1177
1178 #ifdef AUTO_INC_DEC
1179 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1180 if (REG_NOTE_KIND (link) == REG_INC
1181 && (GET_CODE (i3) == JUMP_INSN
1182 || reg_used_between_p (XEXP (link, 0), insn, i3)
1183 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1184 return 0;
1185 #endif
1186
1187 #ifdef HAVE_cc0
1188 /* Don't combine an insn that follows a CC0-setting insn.
1189 An insn that uses CC0 must not be separated from the one that sets it.
1190 We do, however, allow I2 to follow a CC0-setting insn if that insn
1191 is passed as I1; in that case it will be deleted also.
1192 We also allow combining in this case if all the insns are adjacent
1193 because that would leave the two CC0 insns adjacent as well.
1194 It would be more logical to test whether CC0 occurs inside I1 or I2,
1195 but that would be much slower, and this ought to be equivalent. */
1196
1197 p = prev_nonnote_insn (insn);
1198 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1199 && ! all_adjacent)
1200 return 0;
1201 #endif
1202
1203 /* If we get here, we have passed all the tests and the combination is
1204 to be allowed. */
1205
1206 *pdest = dest;
1207 *psrc = src;
1208
1209 return 1;
1210 }
1211 \f
1212 /* Check if PAT is an insn - or a part of it - used to set up an
1213 argument for a function in a hard register. */
1214
1215 static int
1216 sets_function_arg_p (pat)
1217 rtx pat;
1218 {
1219 int i;
1220 rtx inner_dest;
1221
1222 switch (GET_CODE (pat))
1223 {
1224 case INSN:
1225 return sets_function_arg_p (PATTERN (pat));
1226
1227 case PARALLEL:
1228 for (i = XVECLEN (pat, 0); --i >= 0;)
1229 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1230 return 1;
1231
1232 break;
1233
1234 case SET:
1235 inner_dest = SET_DEST (pat);
1236 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1237 || GET_CODE (inner_dest) == SUBREG
1238 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1239 inner_dest = XEXP (inner_dest, 0);
1240
1241 return (GET_CODE (inner_dest) == REG
1242 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1243 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1244
1245 default:
1246 break;
1247 }
1248
1249 return 0;
1250 }
1251
1252 /* LOC is the location within I3 that contains its pattern or the component
1253 of a PARALLEL of the pattern. We validate that it is valid for combining.
1254
1255 One problem is if I3 modifies its output, as opposed to replacing it
1256 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1257 so would produce an insn that is not equivalent to the original insns.
1258
1259 Consider:
1260
1261 (set (reg:DI 101) (reg:DI 100))
1262 (set (subreg:SI (reg:DI 101) 0) <foo>)
1263
1264 This is NOT equivalent to:
1265
1266 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1267 (set (reg:DI 101) (reg:DI 100))])
1268
1269 Not only does this modify 100 (in which case it might still be valid
1270 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1271
1272 We can also run into a problem if I2 sets a register that I1
1273 uses and I1 gets directly substituted into I3 (not via I2). In that
1274 case, we would be getting the wrong value of I2DEST into I3, so we
1275 must reject the combination. This case occurs when I2 and I1 both
1276 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1277 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1278 of a SET must prevent combination from occurring.
1279
1280 Before doing the above check, we first try to expand a field assignment
1281 into a set of logical operations.
1282
1283 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1284 we place a register that is both set and used within I3. If more than one
1285 such register is detected, we fail.
1286
1287 Return 1 if the combination is valid, zero otherwise. */
1288
1289 static int
1290 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1291 rtx i3;
1292 rtx *loc;
1293 rtx i2dest;
1294 rtx i1dest;
1295 int i1_not_in_src;
1296 rtx *pi3dest_killed;
1297 {
1298 rtx x = *loc;
1299
1300 if (GET_CODE (x) == SET)
1301 {
1302 rtx set = expand_field_assignment (x);
1303 rtx dest = SET_DEST (set);
1304 rtx src = SET_SRC (set);
1305 rtx inner_dest = dest;
1306
1307 #if 0
1308 rtx inner_src = src;
1309 #endif
1310
1311 SUBST (*loc, set);
1312
1313 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1314 || GET_CODE (inner_dest) == SUBREG
1315 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1316 inner_dest = XEXP (inner_dest, 0);
1317
1318 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1319 was added. */
1320 #if 0
1321 while (GET_CODE (inner_src) == STRICT_LOW_PART
1322 || GET_CODE (inner_src) == SUBREG
1323 || GET_CODE (inner_src) == ZERO_EXTRACT)
1324 inner_src = XEXP (inner_src, 0);
1325
1326 /* If it is better that two different modes keep two different pseudos,
1327 avoid combining them. This avoids producing the following pattern
1328 on a 386:
1329 (set (subreg:SI (reg/v:QI 21) 0)
1330 (lshiftrt:SI (reg/v:SI 20)
1331 (const_int 24)))
1332 If that were made, reload could not handle the pair of
1333 reg 20/21, since it would try to get any GENERAL_REGS
1334 but some of them don't handle QImode. */
1335
1336 if (rtx_equal_p (inner_src, i2dest)
1337 && GET_CODE (inner_dest) == REG
1338 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1339 return 0;
1340 #endif
1341
1342 /* Check for the case where I3 modifies its output, as
1343 discussed above. */
1344 if ((inner_dest != dest
1345 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1346 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1347
1348 /* This is the same test done in can_combine_p except we can't test
1349 all_adjacent; we don't have to, since this instruction will stay
1350 in place, thus we are not considering increasing the lifetime of
1351 INNER_DEST.
1352
1353 Also, if this insn sets a function argument, combining it with
1354 something that might need a spill could clobber a previous
1355 function argument; the all_adjacent test in can_combine_p also
1356 checks this; here, we do a more specific test for this case. */
1357
1358 || (GET_CODE (inner_dest) == REG
1359 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1360 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1361 GET_MODE (inner_dest))))
1362 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1363 return 0;
1364
1365 /* If DEST is used in I3, it is being killed in this insn,
1366 so record that for later.
1367 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1368 STACK_POINTER_REGNUM, since these are always considered to be
1369 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1370 if (pi3dest_killed && GET_CODE (dest) == REG
1371 && reg_referenced_p (dest, PATTERN (i3))
1372 && REGNO (dest) != FRAME_POINTER_REGNUM
1373 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1374 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1375 #endif
1376 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1377 && (REGNO (dest) != ARG_POINTER_REGNUM
1378 || ! fixed_regs [REGNO (dest)])
1379 #endif
1380 && REGNO (dest) != STACK_POINTER_REGNUM)
1381 {
1382 if (*pi3dest_killed)
1383 return 0;
1384
1385 *pi3dest_killed = dest;
1386 }
1387 }
1388
1389 else if (GET_CODE (x) == PARALLEL)
1390 {
1391 int i;
1392
1393 for (i = 0; i < XVECLEN (x, 0); i++)
1394 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1395 i1_not_in_src, pi3dest_killed))
1396 return 0;
1397 }
1398
1399 return 1;
1400 }
1401 \f
1402 /* Return 1 if X is an arithmetic expression that contains a multiplication
1403 and division. We don't count multiplications by powers of two here. */
1404
1405 static int
1406 contains_muldiv (x)
1407 rtx x;
1408 {
1409 switch (GET_CODE (x))
1410 {
1411 case MOD: case DIV: case UMOD: case UDIV:
1412 return 1;
1413
1414 case MULT:
1415 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1416 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1417 default:
1418 switch (GET_RTX_CLASS (GET_CODE (x)))
1419 {
1420 case 'c': case '<': case '2':
1421 return contains_muldiv (XEXP (x, 0))
1422 || contains_muldiv (XEXP (x, 1));
1423
1424 case '1':
1425 return contains_muldiv (XEXP (x, 0));
1426
1427 default:
1428 return 0;
1429 }
1430 }
1431 }
1432 \f
1433 /* Determine whether INSN can be used in a combination. Return nonzero if
1434 not. This is used in try_combine to detect early some cases where we
1435 can't perform combinations. */
1436
1437 static int
1438 cant_combine_insn_p (insn)
1439 rtx insn;
1440 {
1441 rtx set;
1442 rtx src, dest;
1443
1444 /* If this isn't really an insn, we can't do anything.
1445 This can occur when flow deletes an insn that it has merged into an
1446 auto-increment address. */
1447 if (! INSN_P (insn))
1448 return 1;
1449
1450 /* Never combine loads and stores involving hard regs. The register
1451 allocator can usually handle such reg-reg moves by tying. If we allow
1452 the combiner to make substitutions of hard regs, we risk aborting in
1453 reload on machines that have SMALL_REGISTER_CLASSES.
1454 As an exception, we allow combinations involving fixed regs; these are
1455 not available to the register allocator so there's no risk involved. */
1456
1457 set = single_set (insn);
1458 if (! set)
1459 return 0;
1460 src = SET_SRC (set);
1461 dest = SET_DEST (set);
1462 if (GET_CODE (src) == SUBREG)
1463 src = SUBREG_REG (src);
1464 if (GET_CODE (dest) == SUBREG)
1465 dest = SUBREG_REG (dest);
1466 if (REG_P (src) && REG_P (dest)
1467 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1468 && ! fixed_regs[REGNO (src)])
1469 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1470 && ! fixed_regs[REGNO (dest)])))
1471 return 1;
1472
1473 return 0;
1474 }
1475
1476 /* Try to combine the insns I1 and I2 into I3.
1477 Here I1 and I2 appear earlier than I3.
1478 I1 can be zero; then we combine just I2 into I3.
1479
1480 It we are combining three insns and the resulting insn is not recognized,
1481 try splitting it into two insns. If that happens, I2 and I3 are retained
1482 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1483 are pseudo-deleted.
1484
1485 Return 0 if the combination does not work. Then nothing is changed.
1486 If we did the combination, return the insn at which combine should
1487 resume scanning.
1488
1489 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1490 new direct jump instruction. */
1491
1492 static rtx
1493 try_combine (i3, i2, i1, new_direct_jump_p)
1494 register rtx i3, i2, i1;
1495 register int *new_direct_jump_p;
1496 {
1497 /* New patterns for I3 and I2, respectively. */
1498 rtx newpat, newi2pat = 0;
1499 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1500 int added_sets_1, added_sets_2;
1501 /* Total number of SETs to put into I3. */
1502 int total_sets;
1503 /* Nonzero is I2's body now appears in I3. */
1504 int i2_is_used;
1505 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1506 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1507 /* Contains I3 if the destination of I3 is used in its source, which means
1508 that the old life of I3 is being killed. If that usage is placed into
1509 I2 and not in I3, a REG_DEAD note must be made. */
1510 rtx i3dest_killed = 0;
1511 /* SET_DEST and SET_SRC of I2 and I1. */
1512 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1513 /* PATTERN (I2), or a copy of it in certain cases. */
1514 rtx i2pat;
1515 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1516 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1517 int i1_feeds_i3 = 0;
1518 /* Notes that must be added to REG_NOTES in I3 and I2. */
1519 rtx new_i3_notes, new_i2_notes;
1520 /* Notes that we substituted I3 into I2 instead of the normal case. */
1521 int i3_subst_into_i2 = 0;
1522 /* Notes that I1, I2 or I3 is a MULT operation. */
1523 int have_mult = 0;
1524
1525 int maxreg;
1526 rtx temp;
1527 register rtx link;
1528 int i;
1529
1530 /* Exit early if one of the insns involved can't be used for
1531 combinations. */
1532 if (cant_combine_insn_p (i3)
1533 || cant_combine_insn_p (i2)
1534 || (i1 && cant_combine_insn_p (i1))
1535 /* We also can't do anything if I3 has a
1536 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1537 libcall. */
1538 #if 0
1539 /* ??? This gives worse code, and appears to be unnecessary, since no
1540 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1541 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1542 #endif
1543 )
1544 return 0;
1545
1546 combine_attempts++;
1547 undobuf.other_insn = 0;
1548
1549 /* Reset the hard register usage information. */
1550 CLEAR_HARD_REG_SET (newpat_used_regs);
1551
1552 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1553 code below, set I1 to be the earlier of the two insns. */
1554 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1555 temp = i1, i1 = i2, i2 = temp;
1556
1557 added_links_insn = 0;
1558
1559 /* First check for one important special-case that the code below will
1560 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1561 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1562 we may be able to replace that destination with the destination of I3.
1563 This occurs in the common code where we compute both a quotient and
1564 remainder into a structure, in which case we want to do the computation
1565 directly into the structure to avoid register-register copies.
1566
1567 Note that this case handles both multiple sets in I2 and also
1568 cases where I2 has a number of CLOBBER or PARALLELs.
1569
1570 We make very conservative checks below and only try to handle the
1571 most common cases of this. For example, we only handle the case
1572 where I2 and I3 are adjacent to avoid making difficult register
1573 usage tests. */
1574
1575 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1576 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1577 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1578 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1579 && GET_CODE (PATTERN (i2)) == PARALLEL
1580 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1581 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1582 below would need to check what is inside (and reg_overlap_mentioned_p
1583 doesn't support those codes anyway). Don't allow those destinations;
1584 the resulting insn isn't likely to be recognized anyway. */
1585 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1586 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1587 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1588 SET_DEST (PATTERN (i3)))
1589 && next_real_insn (i2) == i3)
1590 {
1591 rtx p2 = PATTERN (i2);
1592
1593 /* Make sure that the destination of I3,
1594 which we are going to substitute into one output of I2,
1595 is not used within another output of I2. We must avoid making this:
1596 (parallel [(set (mem (reg 69)) ...)
1597 (set (reg 69) ...)])
1598 which is not well-defined as to order of actions.
1599 (Besides, reload can't handle output reloads for this.)
1600
1601 The problem can also happen if the dest of I3 is a memory ref,
1602 if another dest in I2 is an indirect memory ref. */
1603 for (i = 0; i < XVECLEN (p2, 0); i++)
1604 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1605 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1606 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1607 SET_DEST (XVECEXP (p2, 0, i))))
1608 break;
1609
1610 if (i == XVECLEN (p2, 0))
1611 for (i = 0; i < XVECLEN (p2, 0); i++)
1612 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1613 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1614 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1615 {
1616 combine_merges++;
1617
1618 subst_insn = i3;
1619 subst_low_cuid = INSN_CUID (i2);
1620
1621 added_sets_2 = added_sets_1 = 0;
1622 i2dest = SET_SRC (PATTERN (i3));
1623
1624 /* Replace the dest in I2 with our dest and make the resulting
1625 insn the new pattern for I3. Then skip to where we
1626 validate the pattern. Everything was set up above. */
1627 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1628 SET_DEST (PATTERN (i3)));
1629
1630 newpat = p2;
1631 i3_subst_into_i2 = 1;
1632 goto validate_replacement;
1633 }
1634 }
1635
1636 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1637 one of those words to another constant, merge them by making a new
1638 constant. */
1639 if (i1 == 0
1640 && (temp = single_set (i2)) != 0
1641 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1642 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1643 && GET_CODE (SET_DEST (temp)) == REG
1644 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1645 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1646 && GET_CODE (PATTERN (i3)) == SET
1647 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1648 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1649 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1650 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1651 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1652 {
1653 HOST_WIDE_INT lo, hi;
1654
1655 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1656 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1657 else
1658 {
1659 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1660 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1661 }
1662
1663 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1664 {
1665 /* We don't handle the case of the target word being wider
1666 than a host wide int. */
1667 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1668 abort ();
1669
1670 lo &= ~(((unsigned HOST_WIDE_INT)1 << BITS_PER_WORD) - 1);
1671 lo |= INTVAL (SET_SRC (PATTERN (i3)));
1672 }
1673 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1674 hi = INTVAL (SET_SRC (PATTERN (i3)));
1675 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1676 {
1677 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1678 >> (HOST_BITS_PER_WIDE_INT - 1));
1679
1680 lo &= ~((((unsigned HOST_WIDE_INT)1 << BITS_PER_WORD) - 1)
1681 << BITS_PER_WORD);
1682 lo |= INTVAL (SET_SRC (PATTERN (i3))) << BITS_PER_WORD;
1683 if (hi == sign)
1684 hi = lo < 0 ? -1 : 0;
1685 }
1686 else
1687 /* We don't handle the case of the higher word not fitting
1688 entirely in either hi or lo. */
1689 abort ();
1690
1691 combine_merges++;
1692 subst_insn = i3;
1693 subst_low_cuid = INSN_CUID (i2);
1694 added_sets_2 = added_sets_1 = 0;
1695 i2dest = SET_DEST (temp);
1696
1697 SUBST (SET_SRC (temp),
1698 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1699
1700 newpat = PATTERN (i2);
1701 goto validate_replacement;
1702 }
1703
1704 #ifndef HAVE_cc0
1705 /* If we have no I1 and I2 looks like:
1706 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1707 (set Y OP)])
1708 make up a dummy I1 that is
1709 (set Y OP)
1710 and change I2 to be
1711 (set (reg:CC X) (compare:CC Y (const_int 0)))
1712
1713 (We can ignore any trailing CLOBBERs.)
1714
1715 This undoes a previous combination and allows us to match a branch-and-
1716 decrement insn. */
1717
1718 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1719 && XVECLEN (PATTERN (i2), 0) >= 2
1720 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1721 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1722 == MODE_CC)
1723 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1724 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1725 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1726 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1727 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1728 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1729 {
1730 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1731 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1732 break;
1733
1734 if (i == 1)
1735 {
1736 /* We make I1 with the same INSN_UID as I2. This gives it
1737 the same INSN_CUID for value tracking. Our fake I1 will
1738 never appear in the insn stream so giving it the same INSN_UID
1739 as I2 will not cause a problem. */
1740
1741 subst_prev_insn = i1
1742 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1743 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1744 NULL_RTX);
1745
1746 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1747 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1748 SET_DEST (PATTERN (i1)));
1749 }
1750 }
1751 #endif
1752
1753 /* Verify that I2 and I1 are valid for combining. */
1754 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1755 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1756 {
1757 undo_all ();
1758 return 0;
1759 }
1760
1761 /* Record whether I2DEST is used in I2SRC and similarly for the other
1762 cases. Knowing this will help in register status updating below. */
1763 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1764 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1765 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1766
1767 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1768 in I2SRC. */
1769 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1770
1771 /* Ensure that I3's pattern can be the destination of combines. */
1772 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1773 i1 && i2dest_in_i1src && i1_feeds_i3,
1774 &i3dest_killed))
1775 {
1776 undo_all ();
1777 return 0;
1778 }
1779
1780 /* See if any of the insns is a MULT operation. Unless one is, we will
1781 reject a combination that is, since it must be slower. Be conservative
1782 here. */
1783 if (GET_CODE (i2src) == MULT
1784 || (i1 != 0 && GET_CODE (i1src) == MULT)
1785 || (GET_CODE (PATTERN (i3)) == SET
1786 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1787 have_mult = 1;
1788
1789 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1790 We used to do this EXCEPT in one case: I3 has a post-inc in an
1791 output operand. However, that exception can give rise to insns like
1792 mov r3,(r3)+
1793 which is a famous insn on the PDP-11 where the value of r3 used as the
1794 source was model-dependent. Avoid this sort of thing. */
1795
1796 #if 0
1797 if (!(GET_CODE (PATTERN (i3)) == SET
1798 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1799 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1800 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1801 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1802 /* It's not the exception. */
1803 #endif
1804 #ifdef AUTO_INC_DEC
1805 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1806 if (REG_NOTE_KIND (link) == REG_INC
1807 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1808 || (i1 != 0
1809 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1810 {
1811 undo_all ();
1812 return 0;
1813 }
1814 #endif
1815
1816 /* See if the SETs in I1 or I2 need to be kept around in the merged
1817 instruction: whenever the value set there is still needed past I3.
1818 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1819
1820 For the SET in I1, we have two cases: If I1 and I2 independently
1821 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1822 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1823 in I1 needs to be kept around unless I1DEST dies or is set in either
1824 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1825 I1DEST. If so, we know I1 feeds into I2. */
1826
1827 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1828
1829 added_sets_1
1830 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1831 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1832
1833 /* If the set in I2 needs to be kept around, we must make a copy of
1834 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1835 PATTERN (I2), we are only substituting for the original I1DEST, not into
1836 an already-substituted copy. This also prevents making self-referential
1837 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1838 I2DEST. */
1839
1840 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1841 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1842 : PATTERN (i2));
1843
1844 if (added_sets_2)
1845 i2pat = copy_rtx (i2pat);
1846
1847 combine_merges++;
1848
1849 /* Substitute in the latest insn for the regs set by the earlier ones. */
1850
1851 maxreg = max_reg_num ();
1852
1853 subst_insn = i3;
1854
1855 /* It is possible that the source of I2 or I1 may be performing an
1856 unneeded operation, such as a ZERO_EXTEND of something that is known
1857 to have the high part zero. Handle that case by letting subst look at
1858 the innermost one of them.
1859
1860 Another way to do this would be to have a function that tries to
1861 simplify a single insn instead of merging two or more insns. We don't
1862 do this because of the potential of infinite loops and because
1863 of the potential extra memory required. However, doing it the way
1864 we are is a bit of a kludge and doesn't catch all cases.
1865
1866 But only do this if -fexpensive-optimizations since it slows things down
1867 and doesn't usually win. */
1868
1869 if (flag_expensive_optimizations)
1870 {
1871 /* Pass pc_rtx so no substitutions are done, just simplifications.
1872 The cases that we are interested in here do not involve the few
1873 cases were is_replaced is checked. */
1874 if (i1)
1875 {
1876 subst_low_cuid = INSN_CUID (i1);
1877 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1878 }
1879 else
1880 {
1881 subst_low_cuid = INSN_CUID (i2);
1882 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1883 }
1884
1885 undobuf.previous_undos = undobuf.undos;
1886 }
1887
1888 #ifndef HAVE_cc0
1889 /* Many machines that don't use CC0 have insns that can both perform an
1890 arithmetic operation and set the condition code. These operations will
1891 be represented as a PARALLEL with the first element of the vector
1892 being a COMPARE of an arithmetic operation with the constant zero.
1893 The second element of the vector will set some pseudo to the result
1894 of the same arithmetic operation. If we simplify the COMPARE, we won't
1895 match such a pattern and so will generate an extra insn. Here we test
1896 for this case, where both the comparison and the operation result are
1897 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1898 I2SRC. Later we will make the PARALLEL that contains I2. */
1899
1900 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1901 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1902 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1903 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1904 {
1905 #ifdef EXTRA_CC_MODES
1906 rtx *cc_use;
1907 enum machine_mode compare_mode;
1908 #endif
1909
1910 newpat = PATTERN (i3);
1911 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1912
1913 i2_is_used = 1;
1914
1915 #ifdef EXTRA_CC_MODES
1916 /* See if a COMPARE with the operand we substituted in should be done
1917 with the mode that is currently being used. If not, do the same
1918 processing we do in `subst' for a SET; namely, if the destination
1919 is used only once, try to replace it with a register of the proper
1920 mode and also replace the COMPARE. */
1921 if (undobuf.other_insn == 0
1922 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1923 &undobuf.other_insn))
1924 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1925 i2src, const0_rtx))
1926 != GET_MODE (SET_DEST (newpat))))
1927 {
1928 unsigned int regno = REGNO (SET_DEST (newpat));
1929 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1930
1931 if (regno < FIRST_PSEUDO_REGISTER
1932 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1933 && ! REG_USERVAR_P (SET_DEST (newpat))))
1934 {
1935 if (regno >= FIRST_PSEUDO_REGISTER)
1936 SUBST (regno_reg_rtx[regno], new_dest);
1937
1938 SUBST (SET_DEST (newpat), new_dest);
1939 SUBST (XEXP (*cc_use, 0), new_dest);
1940 SUBST (SET_SRC (newpat),
1941 gen_rtx_combine (COMPARE, compare_mode,
1942 i2src, const0_rtx));
1943 }
1944 else
1945 undobuf.other_insn = 0;
1946 }
1947 #endif
1948 }
1949 else
1950 #endif
1951 {
1952 n_occurrences = 0; /* `subst' counts here */
1953
1954 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1955 need to make a unique copy of I2SRC each time we substitute it
1956 to avoid self-referential rtl. */
1957
1958 subst_low_cuid = INSN_CUID (i2);
1959 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1960 ! i1_feeds_i3 && i1dest_in_i1src);
1961 undobuf.previous_undos = undobuf.undos;
1962
1963 /* Record whether i2's body now appears within i3's body. */
1964 i2_is_used = n_occurrences;
1965 }
1966
1967 /* If we already got a failure, don't try to do more. Otherwise,
1968 try to substitute in I1 if we have it. */
1969
1970 if (i1 && GET_CODE (newpat) != CLOBBER)
1971 {
1972 /* Before we can do this substitution, we must redo the test done
1973 above (see detailed comments there) that ensures that I1DEST
1974 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1975
1976 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1977 0, NULL_PTR))
1978 {
1979 undo_all ();
1980 return 0;
1981 }
1982
1983 n_occurrences = 0;
1984 subst_low_cuid = INSN_CUID (i1);
1985 newpat = subst (newpat, i1dest, i1src, 0, 0);
1986 undobuf.previous_undos = undobuf.undos;
1987 }
1988
1989 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1990 to count all the ways that I2SRC and I1SRC can be used. */
1991 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1992 && i2_is_used + added_sets_2 > 1)
1993 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1994 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1995 > 1))
1996 /* Fail if we tried to make a new register (we used to abort, but there's
1997 really no reason to). */
1998 || max_reg_num () != maxreg
1999 /* Fail if we couldn't do something and have a CLOBBER. */
2000 || GET_CODE (newpat) == CLOBBER
2001 /* Fail if this new pattern is a MULT and we didn't have one before
2002 at the outer level. */
2003 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2004 && ! have_mult))
2005 {
2006 undo_all ();
2007 return 0;
2008 }
2009
2010 /* If the actions of the earlier insns must be kept
2011 in addition to substituting them into the latest one,
2012 we must make a new PARALLEL for the latest insn
2013 to hold additional the SETs. */
2014
2015 if (added_sets_1 || added_sets_2)
2016 {
2017 combine_extras++;
2018
2019 if (GET_CODE (newpat) == PARALLEL)
2020 {
2021 rtvec old = XVEC (newpat, 0);
2022 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2023 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2024 bcopy ((char *) &old->elem[0], (char *) XVEC (newpat, 0)->elem,
2025 sizeof (old->elem[0]) * old->num_elem);
2026 }
2027 else
2028 {
2029 rtx old = newpat;
2030 total_sets = 1 + added_sets_1 + added_sets_2;
2031 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2032 XVECEXP (newpat, 0, 0) = old;
2033 }
2034
2035 if (added_sets_1)
2036 XVECEXP (newpat, 0, --total_sets)
2037 = (GET_CODE (PATTERN (i1)) == PARALLEL
2038 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2039
2040 if (added_sets_2)
2041 {
2042 /* If there is no I1, use I2's body as is. We used to also not do
2043 the subst call below if I2 was substituted into I3,
2044 but that could lose a simplification. */
2045 if (i1 == 0)
2046 XVECEXP (newpat, 0, --total_sets) = i2pat;
2047 else
2048 /* See comment where i2pat is assigned. */
2049 XVECEXP (newpat, 0, --total_sets)
2050 = subst (i2pat, i1dest, i1src, 0, 0);
2051 }
2052 }
2053
2054 /* We come here when we are replacing a destination in I2 with the
2055 destination of I3. */
2056 validate_replacement:
2057
2058 /* Note which hard regs this insn has as inputs. */
2059 mark_used_regs_combine (newpat);
2060
2061 /* Is the result of combination a valid instruction? */
2062 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2063
2064 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2065 the second SET's destination is a register that is unused. In that case,
2066 we just need the first SET. This can occur when simplifying a divmod
2067 insn. We *must* test for this case here because the code below that
2068 splits two independent SETs doesn't handle this case correctly when it
2069 updates the register status. Also check the case where the first
2070 SET's destination is unused. That would not cause incorrect code, but
2071 does cause an unneeded insn to remain. */
2072
2073 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2074 && XVECLEN (newpat, 0) == 2
2075 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2076 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2077 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2078 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2079 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2080 && asm_noperands (newpat) < 0)
2081 {
2082 newpat = XVECEXP (newpat, 0, 0);
2083 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2084 }
2085
2086 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2087 && XVECLEN (newpat, 0) == 2
2088 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2089 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2090 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2091 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2092 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2093 && asm_noperands (newpat) < 0)
2094 {
2095 newpat = XVECEXP (newpat, 0, 1);
2096 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2097 }
2098
2099 /* If we were combining three insns and the result is a simple SET
2100 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2101 insns. There are two ways to do this. It can be split using a
2102 machine-specific method (like when you have an addition of a large
2103 constant) or by combine in the function find_split_point. */
2104
2105 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2106 && asm_noperands (newpat) < 0)
2107 {
2108 rtx m_split, *split;
2109 rtx ni2dest = i2dest;
2110
2111 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2112 use I2DEST as a scratch register will help. In the latter case,
2113 convert I2DEST to the mode of the source of NEWPAT if we can. */
2114
2115 m_split = split_insns (newpat, i3);
2116
2117 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2118 inputs of NEWPAT. */
2119
2120 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2121 possible to try that as a scratch reg. This would require adding
2122 more code to make it work though. */
2123
2124 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2125 {
2126 /* If I2DEST is a hard register or the only use of a pseudo,
2127 we can change its mode. */
2128 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2129 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2130 && GET_CODE (i2dest) == REG
2131 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2132 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2133 && ! REG_USERVAR_P (i2dest))))
2134 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2135 REGNO (i2dest));
2136
2137 m_split = split_insns (gen_rtx_PARALLEL
2138 (VOIDmode,
2139 gen_rtvec (2, newpat,
2140 gen_rtx_CLOBBER (VOIDmode,
2141 ni2dest))),
2142 i3);
2143 }
2144
2145 if (m_split && GET_CODE (m_split) != SEQUENCE)
2146 {
2147 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2148 if (insn_code_number >= 0)
2149 newpat = m_split;
2150 }
2151 else if (m_split && GET_CODE (m_split) == SEQUENCE
2152 && XVECLEN (m_split, 0) == 2
2153 && (next_real_insn (i2) == i3
2154 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2155 INSN_CUID (i2))))
2156 {
2157 rtx i2set, i3set;
2158 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2159 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2160
2161 i3set = single_set (XVECEXP (m_split, 0, 1));
2162 i2set = single_set (XVECEXP (m_split, 0, 0));
2163
2164 /* In case we changed the mode of I2DEST, replace it in the
2165 pseudo-register table here. We can't do it above in case this
2166 code doesn't get executed and we do a split the other way. */
2167
2168 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2169 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2170
2171 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2172
2173 /* If I2 or I3 has multiple SETs, we won't know how to track
2174 register status, so don't use these insns. If I2's destination
2175 is used between I2 and I3, we also can't use these insns. */
2176
2177 if (i2_code_number >= 0 && i2set && i3set
2178 && (next_real_insn (i2) == i3
2179 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2180 insn_code_number = recog_for_combine (&newi3pat, i3,
2181 &new_i3_notes);
2182 if (insn_code_number >= 0)
2183 newpat = newi3pat;
2184
2185 /* It is possible that both insns now set the destination of I3.
2186 If so, we must show an extra use of it. */
2187
2188 if (insn_code_number >= 0)
2189 {
2190 rtx new_i3_dest = SET_DEST (i3set);
2191 rtx new_i2_dest = SET_DEST (i2set);
2192
2193 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2194 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2195 || GET_CODE (new_i3_dest) == SUBREG)
2196 new_i3_dest = XEXP (new_i3_dest, 0);
2197
2198 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2199 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2200 || GET_CODE (new_i2_dest) == SUBREG)
2201 new_i2_dest = XEXP (new_i2_dest, 0);
2202
2203 if (GET_CODE (new_i3_dest) == REG
2204 && GET_CODE (new_i2_dest) == REG
2205 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2206 REG_N_SETS (REGNO (new_i2_dest))++;
2207 }
2208 }
2209
2210 /* If we can split it and use I2DEST, go ahead and see if that
2211 helps things be recognized. Verify that none of the registers
2212 are set between I2 and I3. */
2213 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2214 #ifdef HAVE_cc0
2215 && GET_CODE (i2dest) == REG
2216 #endif
2217 /* We need I2DEST in the proper mode. If it is a hard register
2218 or the only use of a pseudo, we can change its mode. */
2219 && (GET_MODE (*split) == GET_MODE (i2dest)
2220 || GET_MODE (*split) == VOIDmode
2221 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2222 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2223 && ! REG_USERVAR_P (i2dest)))
2224 && (next_real_insn (i2) == i3
2225 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2226 /* We can't overwrite I2DEST if its value is still used by
2227 NEWPAT. */
2228 && ! reg_referenced_p (i2dest, newpat))
2229 {
2230 rtx newdest = i2dest;
2231 enum rtx_code split_code = GET_CODE (*split);
2232 enum machine_mode split_mode = GET_MODE (*split);
2233
2234 /* Get NEWDEST as a register in the proper mode. We have already
2235 validated that we can do this. */
2236 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2237 {
2238 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2239
2240 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2241 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2242 }
2243
2244 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2245 an ASHIFT. This can occur if it was inside a PLUS and hence
2246 appeared to be a memory address. This is a kludge. */
2247 if (split_code == MULT
2248 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2249 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2250 {
2251 SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
2252 XEXP (*split, 0), GEN_INT (i)));
2253 /* Update split_code because we may not have a multiply
2254 anymore. */
2255 split_code = GET_CODE (*split);
2256 }
2257
2258 #ifdef INSN_SCHEDULING
2259 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2260 be written as a ZERO_EXTEND. */
2261 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2262 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
2263 XEXP (*split, 0)));
2264 #endif
2265
2266 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
2267 SUBST (*split, newdest);
2268 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2269
2270 /* If the split point was a MULT and we didn't have one before,
2271 don't use one now. */
2272 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2273 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2274 }
2275 }
2276
2277 /* Check for a case where we loaded from memory in a narrow mode and
2278 then sign extended it, but we need both registers. In that case,
2279 we have a PARALLEL with both loads from the same memory location.
2280 We can split this into a load from memory followed by a register-register
2281 copy. This saves at least one insn, more if register allocation can
2282 eliminate the copy.
2283
2284 We cannot do this if the destination of the second assignment is
2285 a register that we have already assumed is zero-extended. Similarly
2286 for a SUBREG of such a register. */
2287
2288 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2289 && GET_CODE (newpat) == PARALLEL
2290 && XVECLEN (newpat, 0) == 2
2291 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2292 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2293 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2294 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2295 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2296 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2297 INSN_CUID (i2))
2298 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2299 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2300 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2301 (GET_CODE (temp) == REG
2302 && reg_nonzero_bits[REGNO (temp)] != 0
2303 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2304 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2305 && (reg_nonzero_bits[REGNO (temp)]
2306 != GET_MODE_MASK (word_mode))))
2307 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2308 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2309 (GET_CODE (temp) == REG
2310 && reg_nonzero_bits[REGNO (temp)] != 0
2311 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2312 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2313 && (reg_nonzero_bits[REGNO (temp)]
2314 != GET_MODE_MASK (word_mode)))))
2315 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2316 SET_SRC (XVECEXP (newpat, 0, 1)))
2317 && ! find_reg_note (i3, REG_UNUSED,
2318 SET_DEST (XVECEXP (newpat, 0, 0))))
2319 {
2320 rtx ni2dest;
2321
2322 newi2pat = XVECEXP (newpat, 0, 0);
2323 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2324 newpat = XVECEXP (newpat, 0, 1);
2325 SUBST (SET_SRC (newpat),
2326 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2327 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2328
2329 if (i2_code_number >= 0)
2330 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2331
2332 if (insn_code_number >= 0)
2333 {
2334 rtx insn;
2335 rtx link;
2336
2337 /* If we will be able to accept this, we have made a change to the
2338 destination of I3. This can invalidate a LOG_LINKS pointing
2339 to I3. No other part of combine.c makes such a transformation.
2340
2341 The new I3 will have a destination that was previously the
2342 destination of I1 or I2 and which was used in i2 or I3. Call
2343 distribute_links to make a LOG_LINK from the next use of
2344 that destination. */
2345
2346 PATTERN (i3) = newpat;
2347 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2348
2349 /* I3 now uses what used to be its destination and which is
2350 now I2's destination. That means we need a LOG_LINK from
2351 I3 to I2. But we used to have one, so we still will.
2352
2353 However, some later insn might be using I2's dest and have
2354 a LOG_LINK pointing at I3. We must remove this link.
2355 The simplest way to remove the link is to point it at I1,
2356 which we know will be a NOTE. */
2357
2358 for (insn = NEXT_INSN (i3);
2359 insn && (this_basic_block == n_basic_blocks - 1
2360 || insn != BLOCK_HEAD (this_basic_block + 1));
2361 insn = NEXT_INSN (insn))
2362 {
2363 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2364 {
2365 for (link = LOG_LINKS (insn); link;
2366 link = XEXP (link, 1))
2367 if (XEXP (link, 0) == i3)
2368 XEXP (link, 0) = i1;
2369
2370 break;
2371 }
2372 }
2373 }
2374 }
2375
2376 /* Similarly, check for a case where we have a PARALLEL of two independent
2377 SETs but we started with three insns. In this case, we can do the sets
2378 as two separate insns. This case occurs when some SET allows two
2379 other insns to combine, but the destination of that SET is still live. */
2380
2381 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2382 && GET_CODE (newpat) == PARALLEL
2383 && XVECLEN (newpat, 0) == 2
2384 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2385 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2387 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2388 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2389 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2390 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2391 INSN_CUID (i2))
2392 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2393 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2394 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2395 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2396 XVECEXP (newpat, 0, 0))
2397 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2398 XVECEXP (newpat, 0, 1))
2399 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2400 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2401 {
2402 /* Normally, it doesn't matter which of the two is done first,
2403 but it does if one references cc0. In that case, it has to
2404 be first. */
2405 #ifdef HAVE_cc0
2406 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2407 {
2408 newi2pat = XVECEXP (newpat, 0, 0);
2409 newpat = XVECEXP (newpat, 0, 1);
2410 }
2411 else
2412 #endif
2413 {
2414 newi2pat = XVECEXP (newpat, 0, 1);
2415 newpat = XVECEXP (newpat, 0, 0);
2416 }
2417
2418 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2419
2420 if (i2_code_number >= 0)
2421 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2422 }
2423
2424 /* If it still isn't recognized, fail and change things back the way they
2425 were. */
2426 if ((insn_code_number < 0
2427 /* Is the result a reasonable ASM_OPERANDS? */
2428 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2429 {
2430 undo_all ();
2431 return 0;
2432 }
2433
2434 /* If we had to change another insn, make sure it is valid also. */
2435 if (undobuf.other_insn)
2436 {
2437 rtx other_pat = PATTERN (undobuf.other_insn);
2438 rtx new_other_notes;
2439 rtx note, next;
2440
2441 CLEAR_HARD_REG_SET (newpat_used_regs);
2442
2443 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2444 &new_other_notes);
2445
2446 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2447 {
2448 undo_all ();
2449 return 0;
2450 }
2451
2452 PATTERN (undobuf.other_insn) = other_pat;
2453
2454 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2455 are still valid. Then add any non-duplicate notes added by
2456 recog_for_combine. */
2457 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2458 {
2459 next = XEXP (note, 1);
2460
2461 if (REG_NOTE_KIND (note) == REG_UNUSED
2462 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2463 {
2464 if (GET_CODE (XEXP (note, 0)) == REG)
2465 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2466
2467 remove_note (undobuf.other_insn, note);
2468 }
2469 }
2470
2471 for (note = new_other_notes; note; note = XEXP (note, 1))
2472 if (GET_CODE (XEXP (note, 0)) == REG)
2473 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2474
2475 distribute_notes (new_other_notes, undobuf.other_insn,
2476 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2477 }
2478 #ifdef HAVE_cc0
2479 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2480 they are adjacent to each other or not. */
2481 {
2482 rtx p = prev_nonnote_insn (i3);
2483 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2484 && sets_cc0_p (newi2pat))
2485 {
2486 undo_all ();
2487 return 0;
2488 }
2489 }
2490 #endif
2491
2492 /* We now know that we can do this combination. Merge the insns and
2493 update the status of registers and LOG_LINKS. */
2494
2495 {
2496 rtx i3notes, i2notes, i1notes = 0;
2497 rtx i3links, i2links, i1links = 0;
2498 rtx midnotes = 0;
2499 unsigned int regno;
2500 /* Compute which registers we expect to eliminate. newi2pat may be setting
2501 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2502 same as i3dest, in which case newi2pat may be setting i1dest. */
2503 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2504 || i2dest_in_i2src || i2dest_in_i1src
2505 ? 0 : i2dest);
2506 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2507 || (newi2pat && reg_set_p (i1dest, newi2pat))
2508 ? 0 : i1dest);
2509
2510 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2511 clear them. */
2512 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2513 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2514 if (i1)
2515 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2516
2517 /* Ensure that we do not have something that should not be shared but
2518 occurs multiple times in the new insns. Check this by first
2519 resetting all the `used' flags and then copying anything is shared. */
2520
2521 reset_used_flags (i3notes);
2522 reset_used_flags (i2notes);
2523 reset_used_flags (i1notes);
2524 reset_used_flags (newpat);
2525 reset_used_flags (newi2pat);
2526 if (undobuf.other_insn)
2527 reset_used_flags (PATTERN (undobuf.other_insn));
2528
2529 i3notes = copy_rtx_if_shared (i3notes);
2530 i2notes = copy_rtx_if_shared (i2notes);
2531 i1notes = copy_rtx_if_shared (i1notes);
2532 newpat = copy_rtx_if_shared (newpat);
2533 newi2pat = copy_rtx_if_shared (newi2pat);
2534 if (undobuf.other_insn)
2535 reset_used_flags (PATTERN (undobuf.other_insn));
2536
2537 INSN_CODE (i3) = insn_code_number;
2538 PATTERN (i3) = newpat;
2539 if (undobuf.other_insn)
2540 INSN_CODE (undobuf.other_insn) = other_code_number;
2541
2542 /* We had one special case above where I2 had more than one set and
2543 we replaced a destination of one of those sets with the destination
2544 of I3. In that case, we have to update LOG_LINKS of insns later
2545 in this basic block. Note that this (expensive) case is rare.
2546
2547 Also, in this case, we must pretend that all REG_NOTEs for I2
2548 actually came from I3, so that REG_UNUSED notes from I2 will be
2549 properly handled. */
2550
2551 if (i3_subst_into_i2)
2552 {
2553 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2554 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2555 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2556 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2557 && ! find_reg_note (i2, REG_UNUSED,
2558 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2559 for (temp = NEXT_INSN (i2);
2560 temp && (this_basic_block == n_basic_blocks - 1
2561 || BLOCK_HEAD (this_basic_block) != temp);
2562 temp = NEXT_INSN (temp))
2563 if (temp != i3 && INSN_P (temp))
2564 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2565 if (XEXP (link, 0) == i2)
2566 XEXP (link, 0) = i3;
2567
2568 if (i3notes)
2569 {
2570 rtx link = i3notes;
2571 while (XEXP (link, 1))
2572 link = XEXP (link, 1);
2573 XEXP (link, 1) = i2notes;
2574 }
2575 else
2576 i3notes = i2notes;
2577 i2notes = 0;
2578 }
2579
2580 LOG_LINKS (i3) = 0;
2581 REG_NOTES (i3) = 0;
2582 LOG_LINKS (i2) = 0;
2583 REG_NOTES (i2) = 0;
2584
2585 if (newi2pat)
2586 {
2587 INSN_CODE (i2) = i2_code_number;
2588 PATTERN (i2) = newi2pat;
2589 }
2590 else
2591 {
2592 PUT_CODE (i2, NOTE);
2593 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2594 NOTE_SOURCE_FILE (i2) = 0;
2595 }
2596
2597 if (i1)
2598 {
2599 LOG_LINKS (i1) = 0;
2600 REG_NOTES (i1) = 0;
2601 PUT_CODE (i1, NOTE);
2602 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2603 NOTE_SOURCE_FILE (i1) = 0;
2604 }
2605
2606 /* Get death notes for everything that is now used in either I3 or
2607 I2 and used to die in a previous insn. If we built two new
2608 patterns, move from I1 to I2 then I2 to I3 so that we get the
2609 proper movement on registers that I2 modifies. */
2610
2611 if (newi2pat)
2612 {
2613 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2614 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2615 }
2616 else
2617 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2618 i3, &midnotes);
2619
2620 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2621 if (i3notes)
2622 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2623 elim_i2, elim_i1);
2624 if (i2notes)
2625 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2626 elim_i2, elim_i1);
2627 if (i1notes)
2628 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2629 elim_i2, elim_i1);
2630 if (midnotes)
2631 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2632 elim_i2, elim_i1);
2633
2634 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2635 know these are REG_UNUSED and want them to go to the desired insn,
2636 so we always pass it as i3. We have not counted the notes in
2637 reg_n_deaths yet, so we need to do so now. */
2638
2639 if (newi2pat && new_i2_notes)
2640 {
2641 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2642 if (GET_CODE (XEXP (temp, 0)) == REG)
2643 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2644
2645 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2646 }
2647
2648 if (new_i3_notes)
2649 {
2650 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2651 if (GET_CODE (XEXP (temp, 0)) == REG)
2652 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2653
2654 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2655 }
2656
2657 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2658 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2659 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2660 in that case, it might delete I2. Similarly for I2 and I1.
2661 Show an additional death due to the REG_DEAD note we make here. If
2662 we discard it in distribute_notes, we will decrement it again. */
2663
2664 if (i3dest_killed)
2665 {
2666 if (GET_CODE (i3dest_killed) == REG)
2667 REG_N_DEATHS (REGNO (i3dest_killed))++;
2668
2669 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2670 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2671 NULL_RTX),
2672 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2673 else
2674 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2675 NULL_RTX),
2676 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2677 elim_i2, elim_i1);
2678 }
2679
2680 if (i2dest_in_i2src)
2681 {
2682 if (GET_CODE (i2dest) == REG)
2683 REG_N_DEATHS (REGNO (i2dest))++;
2684
2685 if (newi2pat && reg_set_p (i2dest, newi2pat))
2686 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2687 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2688 else
2689 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2690 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2691 NULL_RTX, NULL_RTX);
2692 }
2693
2694 if (i1dest_in_i1src)
2695 {
2696 if (GET_CODE (i1dest) == REG)
2697 REG_N_DEATHS (REGNO (i1dest))++;
2698
2699 if (newi2pat && reg_set_p (i1dest, newi2pat))
2700 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2701 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2702 else
2703 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2704 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2705 NULL_RTX, NULL_RTX);
2706 }
2707
2708 distribute_links (i3links);
2709 distribute_links (i2links);
2710 distribute_links (i1links);
2711
2712 if (GET_CODE (i2dest) == REG)
2713 {
2714 rtx link;
2715 rtx i2_insn = 0, i2_val = 0, set;
2716
2717 /* The insn that used to set this register doesn't exist, and
2718 this life of the register may not exist either. See if one of
2719 I3's links points to an insn that sets I2DEST. If it does,
2720 that is now the last known value for I2DEST. If we don't update
2721 this and I2 set the register to a value that depended on its old
2722 contents, we will get confused. If this insn is used, thing
2723 will be set correctly in combine_instructions. */
2724
2725 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2726 if ((set = single_set (XEXP (link, 0))) != 0
2727 && rtx_equal_p (i2dest, SET_DEST (set)))
2728 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2729
2730 record_value_for_reg (i2dest, i2_insn, i2_val);
2731
2732 /* If the reg formerly set in I2 died only once and that was in I3,
2733 zero its use count so it won't make `reload' do any work. */
2734 if (! added_sets_2
2735 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2736 && ! i2dest_in_i2src)
2737 {
2738 regno = REGNO (i2dest);
2739 REG_N_SETS (regno)--;
2740 }
2741 }
2742
2743 if (i1 && GET_CODE (i1dest) == REG)
2744 {
2745 rtx link;
2746 rtx i1_insn = 0, i1_val = 0, set;
2747
2748 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2749 if ((set = single_set (XEXP (link, 0))) != 0
2750 && rtx_equal_p (i1dest, SET_DEST (set)))
2751 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2752
2753 record_value_for_reg (i1dest, i1_insn, i1_val);
2754
2755 regno = REGNO (i1dest);
2756 if (! added_sets_1 && ! i1dest_in_i1src)
2757 REG_N_SETS (regno)--;
2758 }
2759
2760 /* Update reg_nonzero_bits et al for any changes that may have been made
2761 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2762 important. Because newi2pat can affect nonzero_bits of newpat */
2763 if (newi2pat)
2764 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2765 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2766
2767 /* Set new_direct_jump_p if a new return or simple jump instruction
2768 has been created.
2769
2770 If I3 is now an unconditional jump, ensure that it has a
2771 BARRIER following it since it may have initially been a
2772 conditional jump. It may also be the last nonnote insn. */
2773
2774 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2775 {
2776 *new_direct_jump_p = 1;
2777
2778 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2779 || GET_CODE (temp) != BARRIER)
2780 emit_barrier_after (i3);
2781 }
2782 }
2783
2784 combine_successes++;
2785 undo_commit ();
2786
2787 /* Clear this here, so that subsequent get_last_value calls are not
2788 affected. */
2789 subst_prev_insn = NULL_RTX;
2790
2791 if (added_links_insn
2792 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2793 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2794 return added_links_insn;
2795 else
2796 return newi2pat ? i2 : i3;
2797 }
2798 \f
2799 /* Undo all the modifications recorded in undobuf. */
2800
2801 static void
2802 undo_all ()
2803 {
2804 struct undo *undo, *next;
2805
2806 for (undo = undobuf.undos; undo; undo = next)
2807 {
2808 next = undo->next;
2809 if (undo->is_int)
2810 *undo->where.i = undo->old_contents.i;
2811 else
2812 *undo->where.r = undo->old_contents.r;
2813
2814 undo->next = undobuf.frees;
2815 undobuf.frees = undo;
2816 }
2817
2818 undobuf.undos = undobuf.previous_undos = 0;
2819
2820 /* Clear this here, so that subsequent get_last_value calls are not
2821 affected. */
2822 subst_prev_insn = NULL_RTX;
2823 }
2824
2825 /* We've committed to accepting the changes we made. Move all
2826 of the undos to the free list. */
2827
2828 static void
2829 undo_commit ()
2830 {
2831 struct undo *undo, *next;
2832
2833 for (undo = undobuf.undos; undo; undo = next)
2834 {
2835 next = undo->next;
2836 undo->next = undobuf.frees;
2837 undobuf.frees = undo;
2838 }
2839 undobuf.undos = undobuf.previous_undos = 0;
2840 }
2841
2842 \f
2843 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2844 where we have an arithmetic expression and return that point. LOC will
2845 be inside INSN.
2846
2847 try_combine will call this function to see if an insn can be split into
2848 two insns. */
2849
2850 static rtx *
2851 find_split_point (loc, insn)
2852 rtx *loc;
2853 rtx insn;
2854 {
2855 rtx x = *loc;
2856 enum rtx_code code = GET_CODE (x);
2857 rtx *split;
2858 unsigned HOST_WIDE_INT len = 0;
2859 HOST_WIDE_INT pos = 0;
2860 int unsignedp = 0;
2861 rtx inner = NULL_RTX;
2862
2863 /* First special-case some codes. */
2864 switch (code)
2865 {
2866 case SUBREG:
2867 #ifdef INSN_SCHEDULING
2868 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2869 point. */
2870 if (GET_CODE (SUBREG_REG (x)) == MEM)
2871 return loc;
2872 #endif
2873 return find_split_point (&SUBREG_REG (x), insn);
2874
2875 case MEM:
2876 #ifdef HAVE_lo_sum
2877 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2878 using LO_SUM and HIGH. */
2879 if (GET_CODE (XEXP (x, 0)) == CONST
2880 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2881 {
2882 SUBST (XEXP (x, 0),
2883 gen_rtx_combine (LO_SUM, Pmode,
2884 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2885 XEXP (x, 0)));
2886 return &XEXP (XEXP (x, 0), 0);
2887 }
2888 #endif
2889
2890 /* If we have a PLUS whose second operand is a constant and the
2891 address is not valid, perhaps will can split it up using
2892 the machine-specific way to split large constants. We use
2893 the first pseudo-reg (one of the virtual regs) as a placeholder;
2894 it will not remain in the result. */
2895 if (GET_CODE (XEXP (x, 0)) == PLUS
2896 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2897 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2898 {
2899 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2900 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2901 subst_insn);
2902
2903 /* This should have produced two insns, each of which sets our
2904 placeholder. If the source of the second is a valid address,
2905 we can make put both sources together and make a split point
2906 in the middle. */
2907
2908 if (seq && XVECLEN (seq, 0) == 2
2909 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2910 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2911 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2912 && ! reg_mentioned_p (reg,
2913 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2914 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2915 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2916 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2917 && memory_address_p (GET_MODE (x),
2918 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2919 {
2920 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2921 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2922
2923 /* Replace the placeholder in SRC2 with SRC1. If we can
2924 find where in SRC2 it was placed, that can become our
2925 split point and we can replace this address with SRC2.
2926 Just try two obvious places. */
2927
2928 src2 = replace_rtx (src2, reg, src1);
2929 split = 0;
2930 if (XEXP (src2, 0) == src1)
2931 split = &XEXP (src2, 0);
2932 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2933 && XEXP (XEXP (src2, 0), 0) == src1)
2934 split = &XEXP (XEXP (src2, 0), 0);
2935
2936 if (split)
2937 {
2938 SUBST (XEXP (x, 0), src2);
2939 return split;
2940 }
2941 }
2942
2943 /* If that didn't work, perhaps the first operand is complex and
2944 needs to be computed separately, so make a split point there.
2945 This will occur on machines that just support REG + CONST
2946 and have a constant moved through some previous computation. */
2947
2948 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2949 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2950 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2951 == 'o')))
2952 return &XEXP (XEXP (x, 0), 0);
2953 }
2954 break;
2955
2956 case SET:
2957 #ifdef HAVE_cc0
2958 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2959 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2960 we need to put the operand into a register. So split at that
2961 point. */
2962
2963 if (SET_DEST (x) == cc0_rtx
2964 && GET_CODE (SET_SRC (x)) != COMPARE
2965 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2966 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2967 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2968 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2969 return &SET_SRC (x);
2970 #endif
2971
2972 /* See if we can split SET_SRC as it stands. */
2973 split = find_split_point (&SET_SRC (x), insn);
2974 if (split && split != &SET_SRC (x))
2975 return split;
2976
2977 /* See if we can split SET_DEST as it stands. */
2978 split = find_split_point (&SET_DEST (x), insn);
2979 if (split && split != &SET_DEST (x))
2980 return split;
2981
2982 /* See if this is a bitfield assignment with everything constant. If
2983 so, this is an IOR of an AND, so split it into that. */
2984 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2985 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2986 <= HOST_BITS_PER_WIDE_INT)
2987 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2988 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2989 && GET_CODE (SET_SRC (x)) == CONST_INT
2990 && ((INTVAL (XEXP (SET_DEST (x), 1))
2991 + INTVAL (XEXP (SET_DEST (x), 2)))
2992 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2993 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2994 {
2995 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2996 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
2997 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
2998 rtx dest = XEXP (SET_DEST (x), 0);
2999 enum machine_mode mode = GET_MODE (dest);
3000 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3001
3002 if (BITS_BIG_ENDIAN)
3003 pos = GET_MODE_BITSIZE (mode) - len - pos;
3004
3005 if (src == mask)
3006 SUBST (SET_SRC (x),
3007 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3008 else
3009 SUBST (SET_SRC (x),
3010 gen_binary (IOR, mode,
3011 gen_binary (AND, mode, dest,
3012 GEN_INT (~(mask << pos)
3013 & GET_MODE_MASK (mode))),
3014 GEN_INT (src << pos)));
3015
3016 SUBST (SET_DEST (x), dest);
3017
3018 split = find_split_point (&SET_SRC (x), insn);
3019 if (split && split != &SET_SRC (x))
3020 return split;
3021 }
3022
3023 /* Otherwise, see if this is an operation that we can split into two.
3024 If so, try to split that. */
3025 code = GET_CODE (SET_SRC (x));
3026
3027 switch (code)
3028 {
3029 case AND:
3030 /* If we are AND'ing with a large constant that is only a single
3031 bit and the result is only being used in a context where we
3032 need to know if it is zero or non-zero, replace it with a bit
3033 extraction. This will avoid the large constant, which might
3034 have taken more than one insn to make. If the constant were
3035 not a valid argument to the AND but took only one insn to make,
3036 this is no worse, but if it took more than one insn, it will
3037 be better. */
3038
3039 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3040 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3041 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3042 && GET_CODE (SET_DEST (x)) == REG
3043 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
3044 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3045 && XEXP (*split, 0) == SET_DEST (x)
3046 && XEXP (*split, 1) == const0_rtx)
3047 {
3048 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3049 XEXP (SET_SRC (x), 0),
3050 pos, NULL_RTX, 1, 1, 0, 0);
3051 if (extraction != 0)
3052 {
3053 SUBST (SET_SRC (x), extraction);
3054 return find_split_point (loc, insn);
3055 }
3056 }
3057 break;
3058
3059 case NE:
3060 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3061 is known to be on, this can be converted into a NEG of a shift. */
3062 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3063 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3064 && 1 <= (pos = exact_log2
3065 (nonzero_bits (XEXP (SET_SRC (x), 0),
3066 GET_MODE (XEXP (SET_SRC (x), 0))))))
3067 {
3068 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3069
3070 SUBST (SET_SRC (x),
3071 gen_rtx_combine (NEG, mode,
3072 gen_rtx_combine (LSHIFTRT, mode,
3073 XEXP (SET_SRC (x), 0),
3074 GEN_INT (pos))));
3075
3076 split = find_split_point (&SET_SRC (x), insn);
3077 if (split && split != &SET_SRC (x))
3078 return split;
3079 }
3080 break;
3081
3082 case SIGN_EXTEND:
3083 inner = XEXP (SET_SRC (x), 0);
3084
3085 /* We can't optimize if either mode is a partial integer
3086 mode as we don't know how many bits are significant
3087 in those modes. */
3088 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3089 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3090 break;
3091
3092 pos = 0;
3093 len = GET_MODE_BITSIZE (GET_MODE (inner));
3094 unsignedp = 0;
3095 break;
3096
3097 case SIGN_EXTRACT:
3098 case ZERO_EXTRACT:
3099 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3100 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3101 {
3102 inner = XEXP (SET_SRC (x), 0);
3103 len = INTVAL (XEXP (SET_SRC (x), 1));
3104 pos = INTVAL (XEXP (SET_SRC (x), 2));
3105
3106 if (BITS_BIG_ENDIAN)
3107 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3108 unsignedp = (code == ZERO_EXTRACT);
3109 }
3110 break;
3111
3112 default:
3113 break;
3114 }
3115
3116 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3117 {
3118 enum machine_mode mode = GET_MODE (SET_SRC (x));
3119
3120 /* For unsigned, we have a choice of a shift followed by an
3121 AND or two shifts. Use two shifts for field sizes where the
3122 constant might be too large. We assume here that we can
3123 always at least get 8-bit constants in an AND insn, which is
3124 true for every current RISC. */
3125
3126 if (unsignedp && len <= 8)
3127 {
3128 SUBST (SET_SRC (x),
3129 gen_rtx_combine
3130 (AND, mode,
3131 gen_rtx_combine (LSHIFTRT, mode,
3132 gen_lowpart_for_combine (mode, inner),
3133 GEN_INT (pos)),
3134 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3135
3136 split = find_split_point (&SET_SRC (x), insn);
3137 if (split && split != &SET_SRC (x))
3138 return split;
3139 }
3140 else
3141 {
3142 SUBST (SET_SRC (x),
3143 gen_rtx_combine
3144 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3145 gen_rtx_combine (ASHIFT, mode,
3146 gen_lowpart_for_combine (mode, inner),
3147 GEN_INT (GET_MODE_BITSIZE (mode)
3148 - len - pos)),
3149 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3150
3151 split = find_split_point (&SET_SRC (x), insn);
3152 if (split && split != &SET_SRC (x))
3153 return split;
3154 }
3155 }
3156
3157 /* See if this is a simple operation with a constant as the second
3158 operand. It might be that this constant is out of range and hence
3159 could be used as a split point. */
3160 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3161 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3162 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3163 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3164 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3165 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3166 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3167 == 'o'))))
3168 return &XEXP (SET_SRC (x), 1);
3169
3170 /* Finally, see if this is a simple operation with its first operand
3171 not in a register. The operation might require this operand in a
3172 register, so return it as a split point. We can always do this
3173 because if the first operand were another operation, we would have
3174 already found it as a split point. */
3175 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3176 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3177 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3178 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3179 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3180 return &XEXP (SET_SRC (x), 0);
3181
3182 return 0;
3183
3184 case AND:
3185 case IOR:
3186 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3187 it is better to write this as (not (ior A B)) so we can split it.
3188 Similarly for IOR. */
3189 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3190 {
3191 SUBST (*loc,
3192 gen_rtx_combine (NOT, GET_MODE (x),
3193 gen_rtx_combine (code == IOR ? AND : IOR,
3194 GET_MODE (x),
3195 XEXP (XEXP (x, 0), 0),
3196 XEXP (XEXP (x, 1), 0))));
3197 return find_split_point (loc, insn);
3198 }
3199
3200 /* Many RISC machines have a large set of logical insns. If the
3201 second operand is a NOT, put it first so we will try to split the
3202 other operand first. */
3203 if (GET_CODE (XEXP (x, 1)) == NOT)
3204 {
3205 rtx tem = XEXP (x, 0);
3206 SUBST (XEXP (x, 0), XEXP (x, 1));
3207 SUBST (XEXP (x, 1), tem);
3208 }
3209 break;
3210
3211 default:
3212 break;
3213 }
3214
3215 /* Otherwise, select our actions depending on our rtx class. */
3216 switch (GET_RTX_CLASS (code))
3217 {
3218 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3219 case '3':
3220 split = find_split_point (&XEXP (x, 2), insn);
3221 if (split)
3222 return split;
3223 /* ... fall through ... */
3224 case '2':
3225 case 'c':
3226 case '<':
3227 split = find_split_point (&XEXP (x, 1), insn);
3228 if (split)
3229 return split;
3230 /* ... fall through ... */
3231 case '1':
3232 /* Some machines have (and (shift ...) ...) insns. If X is not
3233 an AND, but XEXP (X, 0) is, use it as our split point. */
3234 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3235 return &XEXP (x, 0);
3236
3237 split = find_split_point (&XEXP (x, 0), insn);
3238 if (split)
3239 return split;
3240 return loc;
3241 }
3242
3243 /* Otherwise, we don't have a split point. */
3244 return 0;
3245 }
3246 \f
3247 /* Throughout X, replace FROM with TO, and return the result.
3248 The result is TO if X is FROM;
3249 otherwise the result is X, but its contents may have been modified.
3250 If they were modified, a record was made in undobuf so that
3251 undo_all will (among other things) return X to its original state.
3252
3253 If the number of changes necessary is too much to record to undo,
3254 the excess changes are not made, so the result is invalid.
3255 The changes already made can still be undone.
3256 undobuf.num_undo is incremented for such changes, so by testing that
3257 the caller can tell whether the result is valid.
3258
3259 `n_occurrences' is incremented each time FROM is replaced.
3260
3261 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3262
3263 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3264 by copying if `n_occurrences' is non-zero. */
3265
3266 static rtx
3267 subst (x, from, to, in_dest, unique_copy)
3268 register rtx x, from, to;
3269 int in_dest;
3270 int unique_copy;
3271 {
3272 register enum rtx_code code = GET_CODE (x);
3273 enum machine_mode op0_mode = VOIDmode;
3274 register const char *fmt;
3275 register int len, i;
3276 rtx new;
3277
3278 /* Two expressions are equal if they are identical copies of a shared
3279 RTX or if they are both registers with the same register number
3280 and mode. */
3281
3282 #define COMBINE_RTX_EQUAL_P(X,Y) \
3283 ((X) == (Y) \
3284 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3285 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3286
3287 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3288 {
3289 n_occurrences++;
3290 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3291 }
3292
3293 /* If X and FROM are the same register but different modes, they will
3294 not have been seen as equal above. However, flow.c will make a
3295 LOG_LINKS entry for that case. If we do nothing, we will try to
3296 rerecognize our original insn and, when it succeeds, we will
3297 delete the feeding insn, which is incorrect.
3298
3299 So force this insn not to match in this (rare) case. */
3300 if (! in_dest && code == REG && GET_CODE (from) == REG
3301 && REGNO (x) == REGNO (from))
3302 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3303
3304 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3305 of which may contain things that can be combined. */
3306 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3307 return x;
3308
3309 /* It is possible to have a subexpression appear twice in the insn.
3310 Suppose that FROM is a register that appears within TO.
3311 Then, after that subexpression has been scanned once by `subst',
3312 the second time it is scanned, TO may be found. If we were
3313 to scan TO here, we would find FROM within it and create a
3314 self-referent rtl structure which is completely wrong. */
3315 if (COMBINE_RTX_EQUAL_P (x, to))
3316 return to;
3317
3318 /* Parallel asm_operands need special attention because all of the
3319 inputs are shared across the arms. Furthermore, unsharing the
3320 rtl results in recognition failures. Failure to handle this case
3321 specially can result in circular rtl.
3322
3323 Solve this by doing a normal pass across the first entry of the
3324 parallel, and only processing the SET_DESTs of the subsequent
3325 entries. Ug. */
3326
3327 if (code == PARALLEL
3328 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3329 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3330 {
3331 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3332
3333 /* If this substitution failed, this whole thing fails. */
3334 if (GET_CODE (new) == CLOBBER
3335 && XEXP (new, 0) == const0_rtx)
3336 return new;
3337
3338 SUBST (XVECEXP (x, 0, 0), new);
3339
3340 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3341 {
3342 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3343
3344 if (GET_CODE (dest) != REG
3345 && GET_CODE (dest) != CC0
3346 && GET_CODE (dest) != PC)
3347 {
3348 new = subst (dest, from, to, 0, unique_copy);
3349
3350 /* If this substitution failed, this whole thing fails. */
3351 if (GET_CODE (new) == CLOBBER
3352 && XEXP (new, 0) == const0_rtx)
3353 return new;
3354
3355 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3356 }
3357 }
3358 }
3359 else
3360 {
3361 len = GET_RTX_LENGTH (code);
3362 fmt = GET_RTX_FORMAT (code);
3363
3364 /* We don't need to process a SET_DEST that is a register, CC0,
3365 or PC, so set up to skip this common case. All other cases
3366 where we want to suppress replacing something inside a
3367 SET_SRC are handled via the IN_DEST operand. */
3368 if (code == SET
3369 && (GET_CODE (SET_DEST (x)) == REG
3370 || GET_CODE (SET_DEST (x)) == CC0
3371 || GET_CODE (SET_DEST (x)) == PC))
3372 fmt = "ie";
3373
3374 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3375 constant. */
3376 if (fmt[0] == 'e')
3377 op0_mode = GET_MODE (XEXP (x, 0));
3378
3379 for (i = 0; i < len; i++)
3380 {
3381 if (fmt[i] == 'E')
3382 {
3383 register int j;
3384 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3385 {
3386 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3387 {
3388 new = (unique_copy && n_occurrences
3389 ? copy_rtx (to) : to);
3390 n_occurrences++;
3391 }
3392 else
3393 {
3394 new = subst (XVECEXP (x, i, j), from, to, 0,
3395 unique_copy);
3396
3397 /* If this substitution failed, this whole thing
3398 fails. */
3399 if (GET_CODE (new) == CLOBBER
3400 && XEXP (new, 0) == const0_rtx)
3401 return new;
3402 }
3403
3404 SUBST (XVECEXP (x, i, j), new);
3405 }
3406 }
3407 else if (fmt[i] == 'e')
3408 {
3409 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3410 {
3411 /* In general, don't install a subreg involving two
3412 modes not tieable. It can worsen register
3413 allocation, and can even make invalid reload
3414 insns, since the reg inside may need to be copied
3415 from in the outside mode, and that may be invalid
3416 if it is an fp reg copied in integer mode.
3417
3418 We allow two exceptions to this: It is valid if
3419 it is inside another SUBREG and the mode of that
3420 SUBREG and the mode of the inside of TO is
3421 tieable and it is valid if X is a SET that copies
3422 FROM to CC0. */
3423
3424 if (GET_CODE (to) == SUBREG
3425 && ! MODES_TIEABLE_P (GET_MODE (to),
3426 GET_MODE (SUBREG_REG (to)))
3427 && ! (code == SUBREG
3428 && MODES_TIEABLE_P (GET_MODE (x),
3429 GET_MODE (SUBREG_REG (to))))
3430 #ifdef HAVE_cc0
3431 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3432 #endif
3433 )
3434 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3435
3436 #ifdef CLASS_CANNOT_CHANGE_MODE
3437 if (code == SUBREG
3438 && GET_CODE (to) == REG
3439 && REGNO (to) < FIRST_PSEUDO_REGISTER
3440 && (TEST_HARD_REG_BIT
3441 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3442 REGNO (to)))
3443 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3444 GET_MODE (x)))
3445 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3446 #endif
3447
3448 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3449 n_occurrences++;
3450 }
3451 else
3452 /* If we are in a SET_DEST, suppress most cases unless we
3453 have gone inside a MEM, in which case we want to
3454 simplify the address. We assume here that things that
3455 are actually part of the destination have their inner
3456 parts in the first expression. This is true for SUBREG,
3457 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3458 things aside from REG and MEM that should appear in a
3459 SET_DEST. */
3460 new = subst (XEXP (x, i), from, to,
3461 (((in_dest
3462 && (code == SUBREG || code == STRICT_LOW_PART
3463 || code == ZERO_EXTRACT))
3464 || code == SET)
3465 && i == 0), unique_copy);
3466
3467 /* If we found that we will have to reject this combination,
3468 indicate that by returning the CLOBBER ourselves, rather than
3469 an expression containing it. This will speed things up as
3470 well as prevent accidents where two CLOBBERs are considered
3471 to be equal, thus producing an incorrect simplification. */
3472
3473 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3474 return new;
3475
3476 SUBST (XEXP (x, i), new);
3477 }
3478 }
3479 }
3480
3481 /* Try to simplify X. If the simplification changed the code, it is likely
3482 that further simplification will help, so loop, but limit the number
3483 of repetitions that will be performed. */
3484
3485 for (i = 0; i < 4; i++)
3486 {
3487 /* If X is sufficiently simple, don't bother trying to do anything
3488 with it. */
3489 if (code != CONST_INT && code != REG && code != CLOBBER)
3490 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3491
3492 if (GET_CODE (x) == code)
3493 break;
3494
3495 code = GET_CODE (x);
3496
3497 /* We no longer know the original mode of operand 0 since we
3498 have changed the form of X) */
3499 op0_mode = VOIDmode;
3500 }
3501
3502 return x;
3503 }
3504 \f
3505 /* Simplify X, a piece of RTL. We just operate on the expression at the
3506 outer level; call `subst' to simplify recursively. Return the new
3507 expression.
3508
3509 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3510 will be the iteration even if an expression with a code different from
3511 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3512
3513 static rtx
3514 combine_simplify_rtx (x, op0_mode, last, in_dest)
3515 rtx x;
3516 enum machine_mode op0_mode;
3517 int last;
3518 int in_dest;
3519 {
3520 enum rtx_code code = GET_CODE (x);
3521 enum machine_mode mode = GET_MODE (x);
3522 rtx temp;
3523 rtx reversed;
3524 int i;
3525
3526 /* If this is a commutative operation, put a constant last and a complex
3527 expression first. We don't need to do this for comparisons here. */
3528 if (GET_RTX_CLASS (code) == 'c'
3529 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
3530 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
3531 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
3532 || (GET_CODE (XEXP (x, 0)) == SUBREG
3533 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
3534 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
3535 {
3536 temp = XEXP (x, 0);
3537 SUBST (XEXP (x, 0), XEXP (x, 1));
3538 SUBST (XEXP (x, 1), temp);
3539 }
3540
3541 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3542 sign extension of a PLUS with a constant, reverse the order of the sign
3543 extension and the addition. Note that this not the same as the original
3544 code, but overflow is undefined for signed values. Also note that the
3545 PLUS will have been partially moved "inside" the sign-extension, so that
3546 the first operand of X will really look like:
3547 (ashiftrt (plus (ashift A C4) C5) C4).
3548 We convert this to
3549 (plus (ashiftrt (ashift A C4) C2) C4)
3550 and replace the first operand of X with that expression. Later parts
3551 of this function may simplify the expression further.
3552
3553 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3554 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3555 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3556
3557 We do this to simplify address expressions. */
3558
3559 if ((code == PLUS || code == MINUS || code == MULT)
3560 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3561 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3562 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3563 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3564 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3565 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3566 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3567 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3568 XEXP (XEXP (XEXP (x, 0), 0), 1),
3569 XEXP (XEXP (x, 0), 1))) != 0)
3570 {
3571 rtx new
3572 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3573 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3574 INTVAL (XEXP (XEXP (x, 0), 1)));
3575
3576 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3577 INTVAL (XEXP (XEXP (x, 0), 1)));
3578
3579 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3580 }
3581
3582 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3583 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3584 things. Check for cases where both arms are testing the same
3585 condition.
3586
3587 Don't do anything if all operands are very simple. */
3588
3589 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3590 || GET_RTX_CLASS (code) == '<')
3591 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3592 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3593 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3594 == 'o')))
3595 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3596 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3597 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3598 == 'o')))))
3599 || (GET_RTX_CLASS (code) == '1'
3600 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3601 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3602 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3603 == 'o'))))))
3604 {
3605 rtx cond, true, false;
3606
3607 cond = if_then_else_cond (x, &true, &false);
3608 if (cond != 0
3609 /* If everything is a comparison, what we have is highly unlikely
3610 to be simpler, so don't use it. */
3611 && ! (GET_RTX_CLASS (code) == '<'
3612 && (GET_RTX_CLASS (GET_CODE (true)) == '<'
3613 || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3614 {
3615 rtx cop1 = const0_rtx;
3616 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3617
3618 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3619 return x;
3620
3621 /* Simplify the alternative arms; this may collapse the true and
3622 false arms to store-flag values. */
3623 true = subst (true, pc_rtx, pc_rtx, 0, 0);
3624 false = subst (false, pc_rtx, pc_rtx, 0, 0);
3625
3626 /* If true and false are not general_operands, an if_then_else
3627 is unlikely to be simpler. */
3628 if (general_operand (true, VOIDmode)
3629 && general_operand (false, VOIDmode))
3630 {
3631 /* Restarting if we generate a store-flag expression will cause
3632 us to loop. Just drop through in this case. */
3633
3634 /* If the result values are STORE_FLAG_VALUE and zero, we can
3635 just make the comparison operation. */
3636 if (true == const_true_rtx && false == const0_rtx)
3637 x = gen_binary (cond_code, mode, cond, cop1);
3638 else if (true == const0_rtx && false == const_true_rtx)
3639 x = gen_binary (reverse_condition (cond_code),
3640 mode, cond, cop1);
3641
3642 /* Likewise, we can make the negate of a comparison operation
3643 if the result values are - STORE_FLAG_VALUE and zero. */
3644 else if (GET_CODE (true) == CONST_INT
3645 && INTVAL (true) == - STORE_FLAG_VALUE
3646 && false == const0_rtx)
3647 x = gen_unary (NEG, mode, mode,
3648 gen_binary (cond_code, mode, cond, cop1));
3649 else if (GET_CODE (false) == CONST_INT
3650 && INTVAL (false) == - STORE_FLAG_VALUE
3651 && true == const0_rtx)
3652 x = gen_unary (NEG, mode, mode,
3653 gen_binary (reverse_condition (cond_code),
3654 mode, cond, cop1));
3655 else
3656 return gen_rtx_IF_THEN_ELSE (mode,
3657 gen_binary (cond_code, VOIDmode,
3658 cond, cop1),
3659 true, false);
3660
3661 code = GET_CODE (x);
3662 op0_mode = VOIDmode;
3663 }
3664 }
3665 }
3666
3667 /* Try to fold this expression in case we have constants that weren't
3668 present before. */
3669 temp = 0;
3670 switch (GET_RTX_CLASS (code))
3671 {
3672 case '1':
3673 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3674 break;
3675 case '<':
3676 {
3677 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3678 if (cmp_mode == VOIDmode)
3679 {
3680 cmp_mode = GET_MODE (XEXP (x, 1));
3681 if (cmp_mode == VOIDmode)
3682 cmp_mode = op0_mode;
3683 }
3684 temp = simplify_relational_operation (code, cmp_mode,
3685 XEXP (x, 0), XEXP (x, 1));
3686 }
3687 #ifdef FLOAT_STORE_FLAG_VALUE
3688 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3689 {
3690 if (temp == const0_rtx)
3691 temp = CONST0_RTX (mode);
3692 else
3693 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3694 }
3695 #endif
3696 break;
3697 case 'c':
3698 case '2':
3699 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3700 break;
3701 case 'b':
3702 case '3':
3703 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3704 XEXP (x, 1), XEXP (x, 2));
3705 break;
3706 }
3707
3708 if (temp)
3709 x = temp, code = GET_CODE (temp);
3710
3711 /* First see if we can apply the inverse distributive law. */
3712 if (code == PLUS || code == MINUS
3713 || code == AND || code == IOR || code == XOR)
3714 {
3715 x = apply_distributive_law (x);
3716 code = GET_CODE (x);
3717 }
3718
3719 /* If CODE is an associative operation not otherwise handled, see if we
3720 can associate some operands. This can win if they are constants or
3721 if they are logically related (i.e. (a & b) & a. */
3722 if ((code == PLUS || code == MINUS
3723 || code == MULT || code == AND || code == IOR || code == XOR
3724 || code == DIV || code == UDIV
3725 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3726 && INTEGRAL_MODE_P (mode))
3727 {
3728 if (GET_CODE (XEXP (x, 0)) == code)
3729 {
3730 rtx other = XEXP (XEXP (x, 0), 0);
3731 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3732 rtx inner_op1 = XEXP (x, 1);
3733 rtx inner;
3734
3735 /* Make sure we pass the constant operand if any as the second
3736 one if this is a commutative operation. */
3737 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3738 {
3739 rtx tem = inner_op0;
3740 inner_op0 = inner_op1;
3741 inner_op1 = tem;
3742 }
3743 inner = simplify_binary_operation (code == MINUS ? PLUS
3744 : code == DIV ? MULT
3745 : code == UDIV ? MULT
3746 : code,
3747 mode, inner_op0, inner_op1);
3748
3749 /* For commutative operations, try the other pair if that one
3750 didn't simplify. */
3751 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3752 {
3753 other = XEXP (XEXP (x, 0), 1);
3754 inner = simplify_binary_operation (code, mode,
3755 XEXP (XEXP (x, 0), 0),
3756 XEXP (x, 1));
3757 }
3758
3759 if (inner)
3760 return gen_binary (code, mode, other, inner);
3761 }
3762 }
3763
3764 /* A little bit of algebraic simplification here. */
3765 switch (code)
3766 {
3767 case MEM:
3768 /* Ensure that our address has any ASHIFTs converted to MULT in case
3769 address-recognizing predicates are called later. */
3770 temp = make_compound_operation (XEXP (x, 0), MEM);
3771 SUBST (XEXP (x, 0), temp);
3772 break;
3773
3774 case SUBREG:
3775 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3776 is paradoxical. If we can't do that safely, then it becomes
3777 something nonsensical so that this combination won't take place. */
3778
3779 if (GET_CODE (SUBREG_REG (x)) == MEM
3780 && (GET_MODE_SIZE (mode)
3781 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3782 {
3783 rtx inner = SUBREG_REG (x);
3784 int endian_offset = 0;
3785 /* Don't change the mode of the MEM
3786 if that would change the meaning of the address. */
3787 if (MEM_VOLATILE_P (SUBREG_REG (x))
3788 || mode_dependent_address_p (XEXP (inner, 0)))
3789 return gen_rtx_CLOBBER (mode, const0_rtx);
3790
3791 if (BYTES_BIG_ENDIAN)
3792 {
3793 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3794 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3795 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3796 endian_offset -= (UNITS_PER_WORD
3797 - GET_MODE_SIZE (GET_MODE (inner)));
3798 }
3799 /* Note if the plus_constant doesn't make a valid address
3800 then this combination won't be accepted. */
3801 x = gen_rtx_MEM (mode,
3802 plus_constant (XEXP (inner, 0),
3803 (SUBREG_WORD (x) * UNITS_PER_WORD
3804 + endian_offset)));
3805 MEM_COPY_ATTRIBUTES (x, inner);
3806 return x;
3807 }
3808
3809 /* If we are in a SET_DEST, these other cases can't apply. */
3810 if (in_dest)
3811 return x;
3812
3813 /* Changing mode twice with SUBREG => just change it once,
3814 or not at all if changing back to starting mode. */
3815 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3816 {
3817 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3818 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3819 return SUBREG_REG (SUBREG_REG (x));
3820
3821 SUBST_INT (SUBREG_WORD (x),
3822 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3823 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3824 }
3825
3826 /* SUBREG of a hard register => just change the register number
3827 and/or mode. If the hard register is not valid in that mode,
3828 suppress this combination. If the hard register is the stack,
3829 frame, or argument pointer, leave this as a SUBREG. */
3830
3831 if (GET_CODE (SUBREG_REG (x)) == REG
3832 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3833 && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3834 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3835 && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3836 #endif
3837 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3838 && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3839 #endif
3840 && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3841 {
3842 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3843 mode))
3844 return gen_rtx_REG (mode,
3845 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3846 else
3847 return gen_rtx_CLOBBER (mode, const0_rtx);
3848 }
3849
3850 /* For a constant, try to pick up the part we want. Handle a full
3851 word and low-order part. Only do this if we are narrowing
3852 the constant; if it is being widened, we have no idea what
3853 the extra bits will have been set to. */
3854
3855 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3856 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3857 && GET_MODE_SIZE (op0_mode) > UNITS_PER_WORD
3858 && GET_MODE_CLASS (mode) == MODE_INT)
3859 {
3860 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3861 0, op0_mode);
3862 if (temp)
3863 return temp;
3864 }
3865
3866 /* If we want a subreg of a constant, at offset 0,
3867 take the low bits. On a little-endian machine, that's
3868 always valid. On a big-endian machine, it's valid
3869 only if the constant's mode fits in one word. Note that we
3870 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode. */
3871 if (CONSTANT_P (SUBREG_REG (x))
3872 && ((GET_MODE_SIZE (op0_mode) <= UNITS_PER_WORD
3873 || ! WORDS_BIG_ENDIAN)
3874 ? SUBREG_WORD (x) == 0
3875 : (SUBREG_WORD (x)
3876 == ((GET_MODE_SIZE (op0_mode)
3877 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
3878 / UNITS_PER_WORD)))
3879 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (op0_mode)
3880 && (! WORDS_BIG_ENDIAN
3881 || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3882 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3883
3884 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3885 since we are saying that the high bits don't matter. */
3886 if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3887 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3888 {
3889 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
3890 && (WORDS_BIG_ENDIAN || SUBREG_WORD (x) != 0))
3891 return operand_subword (SUBREG_REG (x), SUBREG_WORD (x), 0, mode);
3892 return SUBREG_REG (x);
3893 }
3894
3895 /* Note that we cannot do any narrowing for non-constants since
3896 we might have been counting on using the fact that some bits were
3897 zero. We now do this in the SET. */
3898
3899 break;
3900
3901 case NOT:
3902 /* (not (plus X -1)) can become (neg X). */
3903 if (GET_CODE (XEXP (x, 0)) == PLUS
3904 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3905 return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3906
3907 /* Similarly, (not (neg X)) is (plus X -1). */
3908 if (GET_CODE (XEXP (x, 0)) == NEG)
3909 return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3910 constm1_rtx);
3911
3912 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3913 if (GET_CODE (XEXP (x, 0)) == XOR
3914 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3915 && (temp = simplify_unary_operation (NOT, mode,
3916 XEXP (XEXP (x, 0), 1),
3917 mode)) != 0)
3918 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3919
3920 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3921 other than 1, but that is not valid. We could do a similar
3922 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3923 but this doesn't seem common enough to bother with. */
3924 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3925 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3926 return gen_rtx_ROTATE (mode, gen_unary (NOT, mode, mode, const1_rtx),
3927 XEXP (XEXP (x, 0), 1));
3928
3929 if (GET_CODE (XEXP (x, 0)) == SUBREG
3930 && subreg_lowpart_p (XEXP (x, 0))
3931 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3932 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3933 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3934 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3935 {
3936 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3937
3938 x = gen_rtx_ROTATE (inner_mode,
3939 gen_unary (NOT, inner_mode, inner_mode,
3940 const1_rtx),
3941 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3942 return gen_lowpart_for_combine (mode, x);
3943 }
3944
3945 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3946 reversing the comparison code if valid. */
3947 if (STORE_FLAG_VALUE == -1
3948 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3949 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3950 XEXP (XEXP (x, 0), 1))))
3951 return reversed;
3952
3953 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3954 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3955 perform the above simplification. */
3956
3957 if (STORE_FLAG_VALUE == -1
3958 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3959 && XEXP (x, 1) == const1_rtx
3960 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3961 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3962 return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3963
3964 /* Apply De Morgan's laws to reduce number of patterns for machines
3965 with negating logical insns (and-not, nand, etc.). If result has
3966 only one NOT, put it first, since that is how the patterns are
3967 coded. */
3968
3969 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3970 {
3971 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3972 enum machine_mode op_mode;
3973
3974 op_mode = GET_MODE (in1);
3975 in1 = gen_unary (NOT, op_mode, op_mode, in1);
3976
3977 op_mode = GET_MODE (in2);
3978 if (op_mode == VOIDmode)
3979 op_mode = mode;
3980 in2 = gen_unary (NOT, op_mode, op_mode, in2);
3981
3982 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3983 {
3984 rtx tem = in2;
3985 in2 = in1; in1 = tem;
3986 }
3987
3988 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3989 mode, in1, in2);
3990 }
3991 break;
3992
3993 case NEG:
3994 /* (neg (plus X 1)) can become (not X). */
3995 if (GET_CODE (XEXP (x, 0)) == PLUS
3996 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3997 return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3998
3999 /* Similarly, (neg (not X)) is (plus X 1). */
4000 if (GET_CODE (XEXP (x, 0)) == NOT)
4001 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4002
4003 /* (neg (minus X Y)) can become (minus Y X). */
4004 if (GET_CODE (XEXP (x, 0)) == MINUS
4005 && (! FLOAT_MODE_P (mode)
4006 /* x-y != -(y-x) with IEEE floating point. */
4007 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4008 || flag_fast_math))
4009 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4010 XEXP (XEXP (x, 0), 0));
4011
4012 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4013 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4014 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4015 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4016
4017 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4018 if we can then eliminate the NEG (e.g.,
4019 if the operand is a constant). */
4020
4021 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4022 {
4023 temp = simplify_unary_operation (NEG, mode,
4024 XEXP (XEXP (x, 0), 0), mode);
4025 if (temp)
4026 {
4027 SUBST (XEXP (XEXP (x, 0), 0), temp);
4028 return XEXP (x, 0);
4029 }
4030 }
4031
4032 temp = expand_compound_operation (XEXP (x, 0));
4033
4034 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4035 replaced by (lshiftrt X C). This will convert
4036 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4037
4038 if (GET_CODE (temp) == ASHIFTRT
4039 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4040 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4041 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4042 INTVAL (XEXP (temp, 1)));
4043
4044 /* If X has only a single bit that might be nonzero, say, bit I, convert
4045 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4046 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4047 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4048 or a SUBREG of one since we'd be making the expression more
4049 complex if it was just a register. */
4050
4051 if (GET_CODE (temp) != REG
4052 && ! (GET_CODE (temp) == SUBREG
4053 && GET_CODE (SUBREG_REG (temp)) == REG)
4054 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4055 {
4056 rtx temp1 = simplify_shift_const
4057 (NULL_RTX, ASHIFTRT, mode,
4058 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4059 GET_MODE_BITSIZE (mode) - 1 - i),
4060 GET_MODE_BITSIZE (mode) - 1 - i);
4061
4062 /* If all we did was surround TEMP with the two shifts, we
4063 haven't improved anything, so don't use it. Otherwise,
4064 we are better off with TEMP1. */
4065 if (GET_CODE (temp1) != ASHIFTRT
4066 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4067 || XEXP (XEXP (temp1, 0), 0) != temp)
4068 return temp1;
4069 }
4070 break;
4071
4072 case TRUNCATE:
4073 /* We can't handle truncation to a partial integer mode here
4074 because we don't know the real bitsize of the partial
4075 integer mode. */
4076 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4077 break;
4078
4079 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4080 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4081 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4082 SUBST (XEXP (x, 0),
4083 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4084 GET_MODE_MASK (mode), NULL_RTX, 0));
4085
4086 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4087 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4088 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4089 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4090 return XEXP (XEXP (x, 0), 0);
4091
4092 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4093 (OP:SI foo:SI) if OP is NEG or ABS. */
4094 if ((GET_CODE (XEXP (x, 0)) == ABS
4095 || GET_CODE (XEXP (x, 0)) == NEG)
4096 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4097 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4098 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4099 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
4100 XEXP (XEXP (XEXP (x, 0), 0), 0));
4101
4102 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4103 (truncate:SI x). */
4104 if (GET_CODE (XEXP (x, 0)) == SUBREG
4105 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4106 && subreg_lowpart_p (XEXP (x, 0)))
4107 return SUBREG_REG (XEXP (x, 0));
4108
4109 /* If we know that the value is already truncated, we can
4110 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4111 is nonzero for the corresponding modes. But don't do this
4112 for an (LSHIFTRT (MULT ...)) since this will cause problems
4113 with the umulXi3_highpart patterns. */
4114 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4115 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4116 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4117 >= GET_MODE_BITSIZE (mode) + 1
4118 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4119 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4120 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4121
4122 /* A truncate of a comparison can be replaced with a subreg if
4123 STORE_FLAG_VALUE permits. This is like the previous test,
4124 but it works even if the comparison is done in a mode larger
4125 than HOST_BITS_PER_WIDE_INT. */
4126 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4127 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4128 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4129 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4130
4131 /* Similarly, a truncate of a register whose value is a
4132 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4133 permits. */
4134 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4135 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4136 && (temp = get_last_value (XEXP (x, 0)))
4137 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4138 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4139
4140 break;
4141
4142 case FLOAT_TRUNCATE:
4143 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4144 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4145 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4146 return XEXP (XEXP (x, 0), 0);
4147
4148 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4149 (OP:SF foo:SF) if OP is NEG or ABS. */
4150 if ((GET_CODE (XEXP (x, 0)) == ABS
4151 || GET_CODE (XEXP (x, 0)) == NEG)
4152 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4153 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4154 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
4155 XEXP (XEXP (XEXP (x, 0), 0), 0));
4156
4157 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4158 is (float_truncate:SF x). */
4159 if (GET_CODE (XEXP (x, 0)) == SUBREG
4160 && subreg_lowpart_p (XEXP (x, 0))
4161 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4162 return SUBREG_REG (XEXP (x, 0));
4163 break;
4164
4165 #ifdef HAVE_cc0
4166 case COMPARE:
4167 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4168 using cc0, in which case we want to leave it as a COMPARE
4169 so we can distinguish it from a register-register-copy. */
4170 if (XEXP (x, 1) == const0_rtx)
4171 return XEXP (x, 0);
4172
4173 /* In IEEE floating point, x-0 is not the same as x. */
4174 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4175 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4176 || flag_fast_math)
4177 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4178 return XEXP (x, 0);
4179 break;
4180 #endif
4181
4182 case CONST:
4183 /* (const (const X)) can become (const X). Do it this way rather than
4184 returning the inner CONST since CONST can be shared with a
4185 REG_EQUAL note. */
4186 if (GET_CODE (XEXP (x, 0)) == CONST)
4187 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4188 break;
4189
4190 #ifdef HAVE_lo_sum
4191 case LO_SUM:
4192 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4193 can add in an offset. find_split_point will split this address up
4194 again if it doesn't match. */
4195 if (GET_CODE (XEXP (x, 0)) == HIGH
4196 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4197 return XEXP (x, 1);
4198 break;
4199 #endif
4200
4201 case PLUS:
4202 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4203 outermost. That's because that's the way indexed addresses are
4204 supposed to appear. This code used to check many more cases, but
4205 they are now checked elsewhere. */
4206 if (GET_CODE (XEXP (x, 0)) == PLUS
4207 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4208 return gen_binary (PLUS, mode,
4209 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4210 XEXP (x, 1)),
4211 XEXP (XEXP (x, 0), 1));
4212
4213 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4214 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4215 bit-field and can be replaced by either a sign_extend or a
4216 sign_extract. The `and' may be a zero_extend and the two
4217 <c>, -<c> constants may be reversed. */
4218 if (GET_CODE (XEXP (x, 0)) == XOR
4219 && GET_CODE (XEXP (x, 1)) == CONST_INT
4220 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4221 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4222 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4223 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4224 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4225 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4226 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4227 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4228 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4229 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4230 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4231 == (unsigned int) i + 1))))
4232 return simplify_shift_const
4233 (NULL_RTX, ASHIFTRT, mode,
4234 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4235 XEXP (XEXP (XEXP (x, 0), 0), 0),
4236 GET_MODE_BITSIZE (mode) - (i + 1)),
4237 GET_MODE_BITSIZE (mode) - (i + 1));
4238
4239 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4240 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4241 is 1. This produces better code than the alternative immediately
4242 below. */
4243 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4244 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4245 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4246 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4247 XEXP (XEXP (x, 0), 0),
4248 XEXP (XEXP (x, 0), 1))))
4249 return
4250 gen_unary (NEG, mode, mode, reversed);
4251
4252 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4253 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4254 the bitsize of the mode - 1. This allows simplification of
4255 "a = (b & 8) == 0;" */
4256 if (XEXP (x, 1) == constm1_rtx
4257 && GET_CODE (XEXP (x, 0)) != REG
4258 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4259 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4260 && nonzero_bits (XEXP (x, 0), mode) == 1)
4261 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4262 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4263 gen_rtx_combine (XOR, mode,
4264 XEXP (x, 0), const1_rtx),
4265 GET_MODE_BITSIZE (mode) - 1),
4266 GET_MODE_BITSIZE (mode) - 1);
4267
4268 /* If we are adding two things that have no bits in common, convert
4269 the addition into an IOR. This will often be further simplified,
4270 for example in cases like ((a & 1) + (a & 2)), which can
4271 become a & 3. */
4272
4273 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4274 && (nonzero_bits (XEXP (x, 0), mode)
4275 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4276 {
4277 /* Try to simplify the expression further. */
4278 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4279 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4280
4281 /* If we could, great. If not, do not go ahead with the IOR
4282 replacement, since PLUS appears in many special purpose
4283 address arithmetic instructions. */
4284 if (GET_CODE (temp) != CLOBBER && temp != tor)
4285 return temp;
4286 }
4287 break;
4288
4289 case MINUS:
4290 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4291 by reversing the comparison code if valid. */
4292 if (STORE_FLAG_VALUE == 1
4293 && XEXP (x, 0) == const1_rtx
4294 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4295 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4296 XEXP (XEXP (x, 1), 0),
4297 XEXP (XEXP (x, 1), 1))))
4298 return reversed;
4299
4300 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4301 (and <foo> (const_int pow2-1)) */
4302 if (GET_CODE (XEXP (x, 1)) == AND
4303 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4304 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4305 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4306 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4307 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4308
4309 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4310 integers. */
4311 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4312 return gen_binary (MINUS, mode,
4313 gen_binary (MINUS, mode, XEXP (x, 0),
4314 XEXP (XEXP (x, 1), 0)),
4315 XEXP (XEXP (x, 1), 1));
4316 break;
4317
4318 case MULT:
4319 /* If we have (mult (plus A B) C), apply the distributive law and then
4320 the inverse distributive law to see if things simplify. This
4321 occurs mostly in addresses, often when unrolling loops. */
4322
4323 if (GET_CODE (XEXP (x, 0)) == PLUS)
4324 {
4325 x = apply_distributive_law
4326 (gen_binary (PLUS, mode,
4327 gen_binary (MULT, mode,
4328 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4329 gen_binary (MULT, mode,
4330 XEXP (XEXP (x, 0), 1),
4331 copy_rtx (XEXP (x, 1)))));
4332
4333 if (GET_CODE (x) != MULT)
4334 return x;
4335 }
4336 break;
4337
4338 case UDIV:
4339 /* If this is a divide by a power of two, treat it as a shift if
4340 its first operand is a shift. */
4341 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4342 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4343 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4344 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4345 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4346 || GET_CODE (XEXP (x, 0)) == ROTATE
4347 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4348 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4349 break;
4350
4351 case EQ: case NE:
4352 case GT: case GTU: case GE: case GEU:
4353 case LT: case LTU: case LE: case LEU:
4354 case UNEQ: case LTGT:
4355 case UNGT: case UNGE:
4356 case UNLT: case UNLE:
4357 case UNORDERED: case ORDERED:
4358 /* If the first operand is a condition code, we can't do anything
4359 with it. */
4360 if (GET_CODE (XEXP (x, 0)) == COMPARE
4361 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4362 #ifdef HAVE_cc0
4363 && XEXP (x, 0) != cc0_rtx
4364 #endif
4365 ))
4366 {
4367 rtx op0 = XEXP (x, 0);
4368 rtx op1 = XEXP (x, 1);
4369 enum rtx_code new_code;
4370
4371 if (GET_CODE (op0) == COMPARE)
4372 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4373
4374 /* Simplify our comparison, if possible. */
4375 new_code = simplify_comparison (code, &op0, &op1);
4376
4377 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4378 if only the low-order bit is possibly nonzero in X (such as when
4379 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4380 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4381 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4382 (plus X 1).
4383
4384 Remove any ZERO_EXTRACT we made when thinking this was a
4385 comparison. It may now be simpler to use, e.g., an AND. If a
4386 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4387 the call to make_compound_operation in the SET case. */
4388
4389 if (STORE_FLAG_VALUE == 1
4390 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4391 && op1 == const0_rtx
4392 && mode == GET_MODE (op0)
4393 && nonzero_bits (op0, mode) == 1)
4394 return gen_lowpart_for_combine (mode,
4395 expand_compound_operation (op0));
4396
4397 else if (STORE_FLAG_VALUE == 1
4398 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4399 && op1 == const0_rtx
4400 && mode == GET_MODE (op0)
4401 && (num_sign_bit_copies (op0, mode)
4402 == GET_MODE_BITSIZE (mode)))
4403 {
4404 op0 = expand_compound_operation (op0);
4405 return gen_unary (NEG, mode, mode,
4406 gen_lowpart_for_combine (mode, op0));
4407 }
4408
4409 else if (STORE_FLAG_VALUE == 1
4410 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4411 && op1 == const0_rtx
4412 && mode == GET_MODE (op0)
4413 && nonzero_bits (op0, mode) == 1)
4414 {
4415 op0 = expand_compound_operation (op0);
4416 return gen_binary (XOR, mode,
4417 gen_lowpart_for_combine (mode, op0),
4418 const1_rtx);
4419 }
4420
4421 else if (STORE_FLAG_VALUE == 1
4422 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4423 && op1 == const0_rtx
4424 && mode == GET_MODE (op0)
4425 && (num_sign_bit_copies (op0, mode)
4426 == GET_MODE_BITSIZE (mode)))
4427 {
4428 op0 = expand_compound_operation (op0);
4429 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4430 }
4431
4432 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4433 those above. */
4434 if (STORE_FLAG_VALUE == -1
4435 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4436 && op1 == const0_rtx
4437 && (num_sign_bit_copies (op0, mode)
4438 == GET_MODE_BITSIZE (mode)))
4439 return gen_lowpart_for_combine (mode,
4440 expand_compound_operation (op0));
4441
4442 else if (STORE_FLAG_VALUE == -1
4443 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4444 && op1 == const0_rtx
4445 && mode == GET_MODE (op0)
4446 && nonzero_bits (op0, mode) == 1)
4447 {
4448 op0 = expand_compound_operation (op0);
4449 return gen_unary (NEG, mode, mode,
4450 gen_lowpart_for_combine (mode, op0));
4451 }
4452
4453 else if (STORE_FLAG_VALUE == -1
4454 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4455 && op1 == const0_rtx
4456 && mode == GET_MODE (op0)
4457 && (num_sign_bit_copies (op0, mode)
4458 == GET_MODE_BITSIZE (mode)))
4459 {
4460 op0 = expand_compound_operation (op0);
4461 return gen_unary (NOT, mode, mode,
4462 gen_lowpart_for_combine (mode, op0));
4463 }
4464
4465 /* If X is 0/1, (eq X 0) is X-1. */
4466 else if (STORE_FLAG_VALUE == -1
4467 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4468 && op1 == const0_rtx
4469 && mode == GET_MODE (op0)
4470 && nonzero_bits (op0, mode) == 1)
4471 {
4472 op0 = expand_compound_operation (op0);
4473 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4474 }
4475
4476 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4477 one bit that might be nonzero, we can convert (ne x 0) to
4478 (ashift x c) where C puts the bit in the sign bit. Remove any
4479 AND with STORE_FLAG_VALUE when we are done, since we are only
4480 going to test the sign bit. */
4481 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4482 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4483 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4484 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4485 && op1 == const0_rtx
4486 && mode == GET_MODE (op0)
4487 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4488 {
4489 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4490 expand_compound_operation (op0),
4491 GET_MODE_BITSIZE (mode) - 1 - i);
4492 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4493 return XEXP (x, 0);
4494 else
4495 return x;
4496 }
4497
4498 /* If the code changed, return a whole new comparison. */
4499 if (new_code != code)
4500 return gen_rtx_combine (new_code, mode, op0, op1);
4501
4502 /* Otherwise, keep this operation, but maybe change its operands.
4503 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4504 SUBST (XEXP (x, 0), op0);
4505 SUBST (XEXP (x, 1), op1);
4506 }
4507 break;
4508
4509 case IF_THEN_ELSE:
4510 return simplify_if_then_else (x);
4511
4512 case ZERO_EXTRACT:
4513 case SIGN_EXTRACT:
4514 case ZERO_EXTEND:
4515 case SIGN_EXTEND:
4516 /* If we are processing SET_DEST, we are done. */
4517 if (in_dest)
4518 return x;
4519
4520 return expand_compound_operation (x);
4521
4522 case SET:
4523 return simplify_set (x);
4524
4525 case AND:
4526 case IOR:
4527 case XOR:
4528 return simplify_logical (x, last);
4529
4530 case ABS:
4531 /* (abs (neg <foo>)) -> (abs <foo>) */
4532 if (GET_CODE (XEXP (x, 0)) == NEG)
4533 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4534
4535 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4536 do nothing. */
4537 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4538 break;
4539
4540 /* If operand is something known to be positive, ignore the ABS. */
4541 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4542 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4543 <= HOST_BITS_PER_WIDE_INT)
4544 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4545 & ((HOST_WIDE_INT) 1
4546 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4547 == 0)))
4548 return XEXP (x, 0);
4549
4550 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4551 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4552 return gen_rtx_combine (NEG, mode, XEXP (x, 0));
4553
4554 break;
4555
4556 case FFS:
4557 /* (ffs (*_extend <X>)) = (ffs <X>) */
4558 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4559 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4560 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4561 break;
4562
4563 case FLOAT:
4564 /* (float (sign_extend <X>)) = (float <X>). */
4565 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4566 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4567 break;
4568
4569 case ASHIFT:
4570 case LSHIFTRT:
4571 case ASHIFTRT:
4572 case ROTATE:
4573 case ROTATERT:
4574 /* If this is a shift by a constant amount, simplify it. */
4575 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4576 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4577 INTVAL (XEXP (x, 1)));
4578
4579 #ifdef SHIFT_COUNT_TRUNCATED
4580 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4581 SUBST (XEXP (x, 1),
4582 force_to_mode (XEXP (x, 1), GET_MODE (x),
4583 ((HOST_WIDE_INT) 1
4584 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4585 - 1,
4586 NULL_RTX, 0));
4587 #endif
4588
4589 break;
4590
4591 case VEC_SELECT:
4592 {
4593 rtx op0 = XEXP (x, 0);
4594 rtx op1 = XEXP (x, 1);
4595 int len;
4596
4597 if (GET_CODE (op1) != PARALLEL)
4598 abort ();
4599 len = XVECLEN (op1, 0);
4600 if (len == 1
4601 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4602 && GET_CODE (op0) == VEC_CONCAT)
4603 {
4604 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4605
4606 /* Try to find the element in the VEC_CONCAT. */
4607 for (;;)
4608 {
4609 if (GET_MODE (op0) == GET_MODE (x))
4610 return op0;
4611 if (GET_CODE (op0) == VEC_CONCAT)
4612 {
4613 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4614 if (op0_size < offset)
4615 op0 = XEXP (op0, 0);
4616 else
4617 {
4618 offset -= op0_size;
4619 op0 = XEXP (op0, 1);
4620 }
4621 }
4622 else
4623 break;
4624 }
4625 }
4626 }
4627
4628 break;
4629
4630 default:
4631 break;
4632 }
4633
4634 return x;
4635 }
4636 \f
4637 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4638
4639 static rtx
4640 simplify_if_then_else (x)
4641 rtx x;
4642 {
4643 enum machine_mode mode = GET_MODE (x);
4644 rtx cond = XEXP (x, 0);
4645 rtx true = XEXP (x, 1);
4646 rtx false = XEXP (x, 2);
4647 enum rtx_code true_code = GET_CODE (cond);
4648 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4649 rtx temp;
4650 int i;
4651 enum rtx_code false_code;
4652 rtx reversed;
4653
4654 /* Simplify storing of the truth value. */
4655 if (comparison_p && true == const_true_rtx && false == const0_rtx)
4656 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4657
4658 /* Also when the truth value has to be reversed. */
4659 if (comparison_p
4660 && true == const0_rtx && false == const_true_rtx
4661 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4662 XEXP (cond, 1))))
4663 return reversed;
4664
4665 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4666 in it is being compared against certain values. Get the true and false
4667 comparisons and see if that says anything about the value of each arm. */
4668
4669 if (comparison_p
4670 && ((false_code = combine_reversed_comparison_code (cond))
4671 != UNKNOWN)
4672 && GET_CODE (XEXP (cond, 0)) == REG)
4673 {
4674 HOST_WIDE_INT nzb;
4675 rtx from = XEXP (cond, 0);
4676 rtx true_val = XEXP (cond, 1);
4677 rtx false_val = true_val;
4678 int swapped = 0;
4679
4680 /* If FALSE_CODE is EQ, swap the codes and arms. */
4681
4682 if (false_code == EQ)
4683 {
4684 swapped = 1, true_code = EQ, false_code = NE;
4685 temp = true, true = false, false = temp;
4686 }
4687
4688 /* If we are comparing against zero and the expression being tested has
4689 only a single bit that might be nonzero, that is its value when it is
4690 not equal to zero. Similarly if it is known to be -1 or 0. */
4691
4692 if (true_code == EQ && true_val == const0_rtx
4693 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4694 false_code = EQ, false_val = GEN_INT (nzb);
4695 else if (true_code == EQ && true_val == const0_rtx
4696 && (num_sign_bit_copies (from, GET_MODE (from))
4697 == GET_MODE_BITSIZE (GET_MODE (from))))
4698 false_code = EQ, false_val = constm1_rtx;
4699
4700 /* Now simplify an arm if we know the value of the register in the
4701 branch and it is used in the arm. Be careful due to the potential
4702 of locally-shared RTL. */
4703
4704 if (reg_mentioned_p (from, true))
4705 true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
4706 pc_rtx, pc_rtx, 0, 0);
4707 if (reg_mentioned_p (from, false))
4708 false = subst (known_cond (copy_rtx (false), false_code,
4709 from, false_val),
4710 pc_rtx, pc_rtx, 0, 0);
4711
4712 SUBST (XEXP (x, 1), swapped ? false : true);
4713 SUBST (XEXP (x, 2), swapped ? true : false);
4714
4715 true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
4716 }
4717
4718 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4719 reversed, do so to avoid needing two sets of patterns for
4720 subtract-and-branch insns. Similarly if we have a constant in the true
4721 arm, the false arm is the same as the first operand of the comparison, or
4722 the false arm is more complicated than the true arm. */
4723
4724 if (comparison_p
4725 && combine_reversed_comparison_code (cond) != UNKNOWN
4726 && (true == pc_rtx
4727 || (CONSTANT_P (true)
4728 && GET_CODE (false) != CONST_INT && false != pc_rtx)
4729 || true == const0_rtx
4730 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4731 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4732 || (GET_CODE (true) == SUBREG
4733 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4734 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4735 || reg_mentioned_p (true, false)
4736 || rtx_equal_p (false, XEXP (cond, 0))))
4737 {
4738 true_code = reversed_comparison_code (cond, NULL);
4739 SUBST (XEXP (x, 0),
4740 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4741 XEXP (cond, 1)));
4742
4743 SUBST (XEXP (x, 1), false);
4744 SUBST (XEXP (x, 2), true);
4745
4746 temp = true, true = false, false = temp, cond = XEXP (x, 0);
4747
4748 /* It is possible that the conditional has been simplified out. */
4749 true_code = GET_CODE (cond);
4750 comparison_p = GET_RTX_CLASS (true_code) == '<';
4751 }
4752
4753 /* If the two arms are identical, we don't need the comparison. */
4754
4755 if (rtx_equal_p (true, false) && ! side_effects_p (cond))
4756 return true;
4757
4758 /* Convert a == b ? b : a to "a". */
4759 if (true_code == EQ && ! side_effects_p (cond)
4760 && (! FLOAT_MODE_P (mode) || flag_fast_math)
4761 && rtx_equal_p (XEXP (cond, 0), false)
4762 && rtx_equal_p (XEXP (cond, 1), true))
4763 return false;
4764 else if (true_code == NE && ! side_effects_p (cond)
4765 && (! FLOAT_MODE_P (mode) || flag_fast_math)
4766 && rtx_equal_p (XEXP (cond, 0), true)
4767 && rtx_equal_p (XEXP (cond, 1), false))
4768 return true;
4769
4770 /* Look for cases where we have (abs x) or (neg (abs X)). */
4771
4772 if (GET_MODE_CLASS (mode) == MODE_INT
4773 && GET_CODE (false) == NEG
4774 && rtx_equal_p (true, XEXP (false, 0))
4775 && comparison_p
4776 && rtx_equal_p (true, XEXP (cond, 0))
4777 && ! side_effects_p (true))
4778 switch (true_code)
4779 {
4780 case GT:
4781 case GE:
4782 return gen_unary (ABS, mode, mode, true);
4783 case LT:
4784 case LE:
4785 return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
4786 default:
4787 break;
4788 }
4789
4790 /* Look for MIN or MAX. */
4791
4792 if ((! FLOAT_MODE_P (mode) || flag_fast_math)
4793 && comparison_p
4794 && rtx_equal_p (XEXP (cond, 0), true)
4795 && rtx_equal_p (XEXP (cond, 1), false)
4796 && ! side_effects_p (cond))
4797 switch (true_code)
4798 {
4799 case GE:
4800 case GT:
4801 return gen_binary (SMAX, mode, true, false);
4802 case LE:
4803 case LT:
4804 return gen_binary (SMIN, mode, true, false);
4805 case GEU:
4806 case GTU:
4807 return gen_binary (UMAX, mode, true, false);
4808 case LEU:
4809 case LTU:
4810 return gen_binary (UMIN, mode, true, false);
4811 default:
4812 break;
4813 }
4814
4815 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4816 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4817 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4818 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4819 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4820 neither 1 or -1, but it isn't worth checking for. */
4821
4822 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4823 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4824 {
4825 rtx t = make_compound_operation (true, SET);
4826 rtx f = make_compound_operation (false, SET);
4827 rtx cond_op0 = XEXP (cond, 0);
4828 rtx cond_op1 = XEXP (cond, 1);
4829 enum rtx_code op = NIL, extend_op = NIL;
4830 enum machine_mode m = mode;
4831 rtx z = 0, c1 = NULL_RTX;
4832
4833 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4834 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4835 || GET_CODE (t) == ASHIFT
4836 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4837 && rtx_equal_p (XEXP (t, 0), f))
4838 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4839
4840 /* If an identity-zero op is commutative, check whether there
4841 would be a match if we swapped the operands. */
4842 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4843 || GET_CODE (t) == XOR)
4844 && rtx_equal_p (XEXP (t, 1), f))
4845 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4846 else if (GET_CODE (t) == SIGN_EXTEND
4847 && (GET_CODE (XEXP (t, 0)) == PLUS
4848 || GET_CODE (XEXP (t, 0)) == MINUS
4849 || GET_CODE (XEXP (t, 0)) == IOR
4850 || GET_CODE (XEXP (t, 0)) == XOR
4851 || GET_CODE (XEXP (t, 0)) == ASHIFT
4852 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4853 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4854 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4855 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4856 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4857 && (num_sign_bit_copies (f, GET_MODE (f))
4858 > (GET_MODE_BITSIZE (mode)
4859 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4860 {
4861 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4862 extend_op = SIGN_EXTEND;
4863 m = GET_MODE (XEXP (t, 0));
4864 }
4865 else if (GET_CODE (t) == SIGN_EXTEND
4866 && (GET_CODE (XEXP (t, 0)) == PLUS
4867 || GET_CODE (XEXP (t, 0)) == IOR
4868 || GET_CODE (XEXP (t, 0)) == XOR)
4869 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4870 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4871 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4872 && (num_sign_bit_copies (f, GET_MODE (f))
4873 > (GET_MODE_BITSIZE (mode)
4874 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4875 {
4876 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4877 extend_op = SIGN_EXTEND;
4878 m = GET_MODE (XEXP (t, 0));
4879 }
4880 else if (GET_CODE (t) == ZERO_EXTEND
4881 && (GET_CODE (XEXP (t, 0)) == PLUS
4882 || GET_CODE (XEXP (t, 0)) == MINUS
4883 || GET_CODE (XEXP (t, 0)) == IOR
4884 || GET_CODE (XEXP (t, 0)) == XOR
4885 || GET_CODE (XEXP (t, 0)) == ASHIFT
4886 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4887 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4888 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4889 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4890 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4891 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4892 && ((nonzero_bits (f, GET_MODE (f))
4893 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4894 == 0))
4895 {
4896 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4897 extend_op = ZERO_EXTEND;
4898 m = GET_MODE (XEXP (t, 0));
4899 }
4900 else if (GET_CODE (t) == ZERO_EXTEND
4901 && (GET_CODE (XEXP (t, 0)) == PLUS
4902 || GET_CODE (XEXP (t, 0)) == IOR
4903 || GET_CODE (XEXP (t, 0)) == XOR)
4904 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4905 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4906 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4907 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4908 && ((nonzero_bits (f, GET_MODE (f))
4909 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4910 == 0))
4911 {
4912 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4913 extend_op = ZERO_EXTEND;
4914 m = GET_MODE (XEXP (t, 0));
4915 }
4916
4917 if (z)
4918 {
4919 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4920 pc_rtx, pc_rtx, 0, 0);
4921 temp = gen_binary (MULT, m, temp,
4922 gen_binary (MULT, m, c1, const_true_rtx));
4923 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4924 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4925
4926 if (extend_op != NIL)
4927 temp = gen_unary (extend_op, mode, m, temp);
4928
4929 return temp;
4930 }
4931 }
4932
4933 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4934 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4935 negation of a single bit, we can convert this operation to a shift. We
4936 can actually do this more generally, but it doesn't seem worth it. */
4937
4938 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4939 && false == const0_rtx && GET_CODE (true) == CONST_INT
4940 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4941 && (i = exact_log2 (INTVAL (true))) >= 0)
4942 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4943 == GET_MODE_BITSIZE (mode))
4944 && (i = exact_log2 (-INTVAL (true))) >= 0)))
4945 return
4946 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4947 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4948
4949 return x;
4950 }
4951 \f
4952 /* Simplify X, a SET expression. Return the new expression. */
4953
4954 static rtx
4955 simplify_set (x)
4956 rtx x;
4957 {
4958 rtx src = SET_SRC (x);
4959 rtx dest = SET_DEST (x);
4960 enum machine_mode mode
4961 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4962 rtx other_insn;
4963 rtx *cc_use;
4964
4965 /* (set (pc) (return)) gets written as (return). */
4966 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4967 return src;
4968
4969 /* Now that we know for sure which bits of SRC we are using, see if we can
4970 simplify the expression for the object knowing that we only need the
4971 low-order bits. */
4972
4973 if (GET_MODE_CLASS (mode) == MODE_INT)
4974 {
4975 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4976 SUBST (SET_SRC (x), src);
4977 }
4978
4979 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4980 the comparison result and try to simplify it unless we already have used
4981 undobuf.other_insn. */
4982 if ((GET_CODE (src) == COMPARE
4983 #ifdef HAVE_cc0
4984 || dest == cc0_rtx
4985 #endif
4986 )
4987 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4988 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4989 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4990 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4991 {
4992 enum rtx_code old_code = GET_CODE (*cc_use);
4993 enum rtx_code new_code;
4994 rtx op0, op1;
4995 int other_changed = 0;
4996 enum machine_mode compare_mode = GET_MODE (dest);
4997
4998 if (GET_CODE (src) == COMPARE)
4999 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5000 else
5001 op0 = src, op1 = const0_rtx;
5002
5003 /* Simplify our comparison, if possible. */
5004 new_code = simplify_comparison (old_code, &op0, &op1);
5005
5006 #ifdef EXTRA_CC_MODES
5007 /* If this machine has CC modes other than CCmode, check to see if we
5008 need to use a different CC mode here. */
5009 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5010 #endif /* EXTRA_CC_MODES */
5011
5012 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5013 /* If the mode changed, we have to change SET_DEST, the mode in the
5014 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5015 a hard register, just build new versions with the proper mode. If it
5016 is a pseudo, we lose unless it is only time we set the pseudo, in
5017 which case we can safely change its mode. */
5018 if (compare_mode != GET_MODE (dest))
5019 {
5020 unsigned int regno = REGNO (dest);
5021 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5022
5023 if (regno < FIRST_PSEUDO_REGISTER
5024 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5025 {
5026 if (regno >= FIRST_PSEUDO_REGISTER)
5027 SUBST (regno_reg_rtx[regno], new_dest);
5028
5029 SUBST (SET_DEST (x), new_dest);
5030 SUBST (XEXP (*cc_use, 0), new_dest);
5031 other_changed = 1;
5032
5033 dest = new_dest;
5034 }
5035 }
5036 #endif
5037
5038 /* If the code changed, we have to build a new comparison in
5039 undobuf.other_insn. */
5040 if (new_code != old_code)
5041 {
5042 unsigned HOST_WIDE_INT mask;
5043
5044 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
5045 dest, const0_rtx));
5046
5047 /* If the only change we made was to change an EQ into an NE or
5048 vice versa, OP0 has only one bit that might be nonzero, and OP1
5049 is zero, check if changing the user of the condition code will
5050 produce a valid insn. If it won't, we can keep the original code
5051 in that insn by surrounding our operation with an XOR. */
5052
5053 if (((old_code == NE && new_code == EQ)
5054 || (old_code == EQ && new_code == NE))
5055 && ! other_changed && op1 == const0_rtx
5056 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5057 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5058 {
5059 rtx pat = PATTERN (other_insn), note = 0;
5060
5061 if ((recog_for_combine (&pat, other_insn, &note) < 0
5062 && ! check_asm_operands (pat)))
5063 {
5064 PUT_CODE (*cc_use, old_code);
5065 other_insn = 0;
5066
5067 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5068 }
5069 }
5070
5071 other_changed = 1;
5072 }
5073
5074 if (other_changed)
5075 undobuf.other_insn = other_insn;
5076
5077 #ifdef HAVE_cc0
5078 /* If we are now comparing against zero, change our source if
5079 needed. If we do not use cc0, we always have a COMPARE. */
5080 if (op1 == const0_rtx && dest == cc0_rtx)
5081 {
5082 SUBST (SET_SRC (x), op0);
5083 src = op0;
5084 }
5085 else
5086 #endif
5087
5088 /* Otherwise, if we didn't previously have a COMPARE in the
5089 correct mode, we need one. */
5090 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5091 {
5092 SUBST (SET_SRC (x),
5093 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
5094 src = SET_SRC (x);
5095 }
5096 else
5097 {
5098 /* Otherwise, update the COMPARE if needed. */
5099 SUBST (XEXP (src, 0), op0);
5100 SUBST (XEXP (src, 1), op1);
5101 }
5102 }
5103 else
5104 {
5105 /* Get SET_SRC in a form where we have placed back any
5106 compound expressions. Then do the checks below. */
5107 src = make_compound_operation (src, SET);
5108 SUBST (SET_SRC (x), src);
5109 }
5110
5111 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5112 and X being a REG or (subreg (reg)), we may be able to convert this to
5113 (set (subreg:m2 x) (op)).
5114
5115 We can always do this if M1 is narrower than M2 because that means that
5116 we only care about the low bits of the result.
5117
5118 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5119 perform a narrower operation than requested since the high-order bits will
5120 be undefined. On machine where it is defined, this transformation is safe
5121 as long as M1 and M2 have the same number of words. */
5122
5123 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5124 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5125 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5126 / UNITS_PER_WORD)
5127 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5128 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5129 #ifndef WORD_REGISTER_OPERATIONS
5130 && (GET_MODE_SIZE (GET_MODE (src))
5131 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5132 #endif
5133 #ifdef CLASS_CANNOT_CHANGE_MODE
5134 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5135 && (TEST_HARD_REG_BIT
5136 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5137 REGNO (dest)))
5138 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5139 GET_MODE (SUBREG_REG (src))))
5140 #endif
5141 && (GET_CODE (dest) == REG
5142 || (GET_CODE (dest) == SUBREG
5143 && GET_CODE (SUBREG_REG (dest)) == REG)))
5144 {
5145 SUBST (SET_DEST (x),
5146 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5147 dest));
5148 SUBST (SET_SRC (x), SUBREG_REG (src));
5149
5150 src = SET_SRC (x), dest = SET_DEST (x);
5151 }
5152
5153 #ifdef LOAD_EXTEND_OP
5154 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5155 would require a paradoxical subreg. Replace the subreg with a
5156 zero_extend to avoid the reload that would otherwise be required. */
5157
5158 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5159 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5160 && SUBREG_WORD (src) == 0
5161 && (GET_MODE_SIZE (GET_MODE (src))
5162 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5163 && GET_CODE (SUBREG_REG (src)) == MEM)
5164 {
5165 SUBST (SET_SRC (x),
5166 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5167 GET_MODE (src), XEXP (src, 0)));
5168
5169 src = SET_SRC (x);
5170 }
5171 #endif
5172
5173 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5174 are comparing an item known to be 0 or -1 against 0, use a logical
5175 operation instead. Check for one of the arms being an IOR of the other
5176 arm with some value. We compute three terms to be IOR'ed together. In
5177 practice, at most two will be nonzero. Then we do the IOR's. */
5178
5179 if (GET_CODE (dest) != PC
5180 && GET_CODE (src) == IF_THEN_ELSE
5181 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5182 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5183 && XEXP (XEXP (src, 0), 1) == const0_rtx
5184 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5185 #ifdef HAVE_conditional_move
5186 && ! can_conditionally_move_p (GET_MODE (src))
5187 #endif
5188 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5189 GET_MODE (XEXP (XEXP (src, 0), 0)))
5190 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5191 && ! side_effects_p (src))
5192 {
5193 rtx true = (GET_CODE (XEXP (src, 0)) == NE
5194 ? XEXP (src, 1) : XEXP (src, 2));
5195 rtx false = (GET_CODE (XEXP (src, 0)) == NE
5196 ? XEXP (src, 2) : XEXP (src, 1));
5197 rtx term1 = const0_rtx, term2, term3;
5198
5199 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
5200 term1 = false, true = XEXP (true, 1), false = const0_rtx;
5201 else if (GET_CODE (true) == IOR
5202 && rtx_equal_p (XEXP (true, 1), false))
5203 term1 = false, true = XEXP (true, 0), false = const0_rtx;
5204 else if (GET_CODE (false) == IOR
5205 && rtx_equal_p (XEXP (false, 0), true))
5206 term1 = true, false = XEXP (false, 1), true = const0_rtx;
5207 else if (GET_CODE (false) == IOR
5208 && rtx_equal_p (XEXP (false, 1), true))
5209 term1 = true, false = XEXP (false, 0), true = const0_rtx;
5210
5211 term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
5212 term3 = gen_binary (AND, GET_MODE (src),
5213 gen_unary (NOT, GET_MODE (src), GET_MODE (src),
5214 XEXP (XEXP (src, 0), 0)),
5215 false);
5216
5217 SUBST (SET_SRC (x),
5218 gen_binary (IOR, GET_MODE (src),
5219 gen_binary (IOR, GET_MODE (src), term1, term2),
5220 term3));
5221
5222 src = SET_SRC (x);
5223 }
5224
5225 #ifdef HAVE_conditional_arithmetic
5226 /* If we have conditional arithmetic and the operand of a SET is
5227 a conditional expression, replace this with an IF_THEN_ELSE.
5228 We can either have a conditional expression or a MULT of that expression
5229 with a constant. */
5230 if ((GET_RTX_CLASS (GET_CODE (src)) == '1'
5231 || GET_RTX_CLASS (GET_CODE (src)) == '2'
5232 || GET_RTX_CLASS (GET_CODE (src)) == 'c')
5233 && (GET_RTX_CLASS (GET_CODE (XEXP (src, 0))) == '<'
5234 || (GET_CODE (XEXP (src, 0)) == MULT
5235 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (src, 0), 0))) == '<'
5236 && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT)))
5237 {
5238 rtx cond = XEXP (src, 0);
5239 rtx true_val = const1_rtx;
5240 rtx false_arm, true_arm;
5241 rtx reversed;
5242
5243 if (GET_CODE (cond) == MULT)
5244 {
5245 true_val = XEXP (cond, 1);
5246 cond = XEXP (cond, 0);
5247 }
5248
5249 if (GET_RTX_CLASS (GET_CODE (src)) == '1')
5250 {
5251 true_arm = gen_unary (GET_CODE (src), GET_MODE (src),
5252 GET_MODE (XEXP (src, 0)), true_val);
5253 false_arm = gen_unary (GET_CODE (src), GET_MODE (src),
5254 GET_MODE (XEXP (src, 0)), const0_rtx);
5255 }
5256 else
5257 {
5258 true_arm = gen_binary (GET_CODE (src), GET_MODE (src),
5259 true_val, XEXP (src, 1));
5260 false_arm = gen_binary (GET_CODE (src), GET_MODE (src),
5261 const0_rtx, XEXP (src, 1));
5262 }
5263
5264 /* Canonicalize if true_arm is the simpler one. */
5265 if (GET_RTX_CLASS (GET_CODE (true_arm)) == 'o'
5266 && GET_RTX_CLASS (GET_CODE (false_arm)) != 'o'
5267 && (reversed = reversed_comparison_code (cond, GET_MODE (cond),
5268 XEXP (cond, 0),
5269 XEXP (cond, 1))))
5270 {
5271 rtx temp = true_arm;
5272
5273 true_arm = false_arm;
5274 false_arm = temp;
5275
5276 cond = reversed;
5277 }
5278
5279 src = gen_rtx_combine (IF_THEN_ELSE, GET_MODE (src),
5280 gen_rtx_combine (GET_CODE (cond), VOIDmode,
5281 XEXP (cond, 0),
5282 XEXP (cond, 1)),
5283 true_arm, false_arm);
5284 SUBST (SET_SRC (x), src);
5285 }
5286 #endif
5287
5288 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5289 whole thing fail. */
5290 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5291 return src;
5292 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5293 return dest;
5294 else
5295 /* Convert this into a field assignment operation, if possible. */
5296 return make_field_assignment (x);
5297 }
5298 \f
5299 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5300 result. LAST is nonzero if this is the last retry. */
5301
5302 static rtx
5303 simplify_logical (x, last)
5304 rtx x;
5305 int last;
5306 {
5307 enum machine_mode mode = GET_MODE (x);
5308 rtx op0 = XEXP (x, 0);
5309 rtx op1 = XEXP (x, 1);
5310 rtx reversed;
5311
5312 switch (GET_CODE (x))
5313 {
5314 case AND:
5315 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5316 insn (and may simplify more). */
5317 if (GET_CODE (op0) == XOR
5318 && rtx_equal_p (XEXP (op0, 0), op1)
5319 && ! side_effects_p (op1))
5320 x = gen_binary (AND, mode,
5321 gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
5322
5323 if (GET_CODE (op0) == XOR
5324 && rtx_equal_p (XEXP (op0, 1), op1)
5325 && ! side_effects_p (op1))
5326 x = gen_binary (AND, mode,
5327 gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
5328
5329 /* Similarly for (~(A ^ B)) & A. */
5330 if (GET_CODE (op0) == NOT
5331 && GET_CODE (XEXP (op0, 0)) == XOR
5332 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5333 && ! side_effects_p (op1))
5334 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5335
5336 if (GET_CODE (op0) == NOT
5337 && GET_CODE (XEXP (op0, 0)) == XOR
5338 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5339 && ! side_effects_p (op1))
5340 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5341
5342 /* We can call simplify_and_const_int only if we don't lose
5343 any (sign) bits when converting INTVAL (op1) to
5344 "unsigned HOST_WIDE_INT". */
5345 if (GET_CODE (op1) == CONST_INT
5346 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5347 || INTVAL (op1) > 0))
5348 {
5349 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5350
5351 /* If we have (ior (and (X C1) C2)) and the next restart would be
5352 the last, simplify this by making C1 as small as possible
5353 and then exit. */
5354 if (last
5355 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5356 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5357 && GET_CODE (op1) == CONST_INT)
5358 return gen_binary (IOR, mode,
5359 gen_binary (AND, mode, XEXP (op0, 0),
5360 GEN_INT (INTVAL (XEXP (op0, 1))
5361 & ~INTVAL (op1))), op1);
5362
5363 if (GET_CODE (x) != AND)
5364 return x;
5365
5366 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5367 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5368 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5369 }
5370
5371 /* Convert (A | B) & A to A. */
5372 if (GET_CODE (op0) == IOR
5373 && (rtx_equal_p (XEXP (op0, 0), op1)
5374 || rtx_equal_p (XEXP (op0, 1), op1))
5375 && ! side_effects_p (XEXP (op0, 0))
5376 && ! side_effects_p (XEXP (op0, 1)))
5377 return op1;
5378
5379 /* In the following group of tests (and those in case IOR below),
5380 we start with some combination of logical operations and apply
5381 the distributive law followed by the inverse distributive law.
5382 Most of the time, this results in no change. However, if some of
5383 the operands are the same or inverses of each other, simplifications
5384 will result.
5385
5386 For example, (and (ior A B) (not B)) can occur as the result of
5387 expanding a bit field assignment. When we apply the distributive
5388 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5389 which then simplifies to (and (A (not B))).
5390
5391 If we have (and (ior A B) C), apply the distributive law and then
5392 the inverse distributive law to see if things simplify. */
5393
5394 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5395 {
5396 x = apply_distributive_law
5397 (gen_binary (GET_CODE (op0), mode,
5398 gen_binary (AND, mode, XEXP (op0, 0), op1),
5399 gen_binary (AND, mode, XEXP (op0, 1),
5400 copy_rtx (op1))));
5401 if (GET_CODE (x) != AND)
5402 return x;
5403 }
5404
5405 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5406 return apply_distributive_law
5407 (gen_binary (GET_CODE (op1), mode,
5408 gen_binary (AND, mode, XEXP (op1, 0), op0),
5409 gen_binary (AND, mode, XEXP (op1, 1),
5410 copy_rtx (op0))));
5411
5412 /* Similarly, taking advantage of the fact that
5413 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5414
5415 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5416 return apply_distributive_law
5417 (gen_binary (XOR, mode,
5418 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5419 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5420 XEXP (op1, 1))));
5421
5422 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5423 return apply_distributive_law
5424 (gen_binary (XOR, mode,
5425 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5426 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5427 break;
5428
5429 case IOR:
5430 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5431 if (GET_CODE (op1) == CONST_INT
5432 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5433 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5434 return op1;
5435
5436 /* Convert (A & B) | A to A. */
5437 if (GET_CODE (op0) == AND
5438 && (rtx_equal_p (XEXP (op0, 0), op1)
5439 || rtx_equal_p (XEXP (op0, 1), op1))
5440 && ! side_effects_p (XEXP (op0, 0))
5441 && ! side_effects_p (XEXP (op0, 1)))
5442 return op1;
5443
5444 /* If we have (ior (and A B) C), apply the distributive law and then
5445 the inverse distributive law to see if things simplify. */
5446
5447 if (GET_CODE (op0) == AND)
5448 {
5449 x = apply_distributive_law
5450 (gen_binary (AND, mode,
5451 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5452 gen_binary (IOR, mode, XEXP (op0, 1),
5453 copy_rtx (op1))));
5454
5455 if (GET_CODE (x) != IOR)
5456 return x;
5457 }
5458
5459 if (GET_CODE (op1) == AND)
5460 {
5461 x = apply_distributive_law
5462 (gen_binary (AND, mode,
5463 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5464 gen_binary (IOR, mode, XEXP (op1, 1),
5465 copy_rtx (op0))));
5466
5467 if (GET_CODE (x) != IOR)
5468 return x;
5469 }
5470
5471 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5472 mode size to (rotate A CX). */
5473
5474 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5475 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5476 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5477 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5478 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5479 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5480 == GET_MODE_BITSIZE (mode)))
5481 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5482 (GET_CODE (op0) == ASHIFT
5483 ? XEXP (op0, 1) : XEXP (op1, 1)));
5484
5485 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5486 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5487 does not affect any of the bits in OP1, it can really be done
5488 as a PLUS and we can associate. We do this by seeing if OP1
5489 can be safely shifted left C bits. */
5490 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5491 && GET_CODE (XEXP (op0, 0)) == PLUS
5492 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5493 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5494 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5495 {
5496 int count = INTVAL (XEXP (op0, 1));
5497 HOST_WIDE_INT mask = INTVAL (op1) << count;
5498
5499 if (mask >> count == INTVAL (op1)
5500 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5501 {
5502 SUBST (XEXP (XEXP (op0, 0), 1),
5503 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5504 return op0;
5505 }
5506 }
5507 break;
5508
5509 case XOR:
5510 /* If we are XORing two things that have no bits in common,
5511 convert them into an IOR. This helps to detect rotation encoded
5512 using those methods and possibly other simplifications. */
5513
5514 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5515 && (nonzero_bits (op0, mode)
5516 & nonzero_bits (op1, mode)) == 0)
5517 return (gen_binary (IOR, mode, op0, op1));
5518
5519 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5520 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5521 (NOT y). */
5522 {
5523 int num_negated = 0;
5524
5525 if (GET_CODE (op0) == NOT)
5526 num_negated++, op0 = XEXP (op0, 0);
5527 if (GET_CODE (op1) == NOT)
5528 num_negated++, op1 = XEXP (op1, 0);
5529
5530 if (num_negated == 2)
5531 {
5532 SUBST (XEXP (x, 0), op0);
5533 SUBST (XEXP (x, 1), op1);
5534 }
5535 else if (num_negated == 1)
5536 return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
5537 }
5538
5539 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5540 correspond to a machine insn or result in further simplifications
5541 if B is a constant. */
5542
5543 if (GET_CODE (op0) == AND
5544 && rtx_equal_p (XEXP (op0, 1), op1)
5545 && ! side_effects_p (op1))
5546 return gen_binary (AND, mode,
5547 gen_unary (NOT, mode, mode, XEXP (op0, 0)),
5548 op1);
5549
5550 else if (GET_CODE (op0) == AND
5551 && rtx_equal_p (XEXP (op0, 0), op1)
5552 && ! side_effects_p (op1))
5553 return gen_binary (AND, mode,
5554 gen_unary (NOT, mode, mode, XEXP (op0, 1)),
5555 op1);
5556
5557 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5558 comparison if STORE_FLAG_VALUE is 1. */
5559 if (STORE_FLAG_VALUE == 1
5560 && op1 == const1_rtx
5561 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5562 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5563 XEXP (op0, 1))))
5564 return reversed;
5565
5566 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5567 is (lt foo (const_int 0)), so we can perform the above
5568 simplification if STORE_FLAG_VALUE is 1. */
5569
5570 if (STORE_FLAG_VALUE == 1
5571 && op1 == const1_rtx
5572 && GET_CODE (op0) == LSHIFTRT
5573 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5574 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5575 return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
5576
5577 /* (xor (comparison foo bar) (const_int sign-bit))
5578 when STORE_FLAG_VALUE is the sign bit. */
5579 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5580 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5581 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5582 && op1 == const_true_rtx
5583 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5584 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5585 XEXP (op0, 1))))
5586 return reversed;
5587
5588 break;
5589
5590 default:
5591 abort ();
5592 }
5593
5594 return x;
5595 }
5596 \f
5597 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5598 operations" because they can be replaced with two more basic operations.
5599 ZERO_EXTEND is also considered "compound" because it can be replaced with
5600 an AND operation, which is simpler, though only one operation.
5601
5602 The function expand_compound_operation is called with an rtx expression
5603 and will convert it to the appropriate shifts and AND operations,
5604 simplifying at each stage.
5605
5606 The function make_compound_operation is called to convert an expression
5607 consisting of shifts and ANDs into the equivalent compound expression.
5608 It is the inverse of this function, loosely speaking. */
5609
5610 static rtx
5611 expand_compound_operation (x)
5612 rtx x;
5613 {
5614 unsigned HOST_WIDE_INT pos = 0, len;
5615 int unsignedp = 0;
5616 unsigned int modewidth;
5617 rtx tem;
5618
5619 switch (GET_CODE (x))
5620 {
5621 case ZERO_EXTEND:
5622 unsignedp = 1;
5623 case SIGN_EXTEND:
5624 /* We can't necessarily use a const_int for a multiword mode;
5625 it depends on implicitly extending the value.
5626 Since we don't know the right way to extend it,
5627 we can't tell whether the implicit way is right.
5628
5629 Even for a mode that is no wider than a const_int,
5630 we can't win, because we need to sign extend one of its bits through
5631 the rest of it, and we don't know which bit. */
5632 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5633 return x;
5634
5635 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5636 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5637 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5638 reloaded. If not for that, MEM's would very rarely be safe.
5639
5640 Reject MODEs bigger than a word, because we might not be able
5641 to reference a two-register group starting with an arbitrary register
5642 (and currently gen_lowpart might crash for a SUBREG). */
5643
5644 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5645 return x;
5646
5647 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5648 /* If the inner object has VOIDmode (the only way this can happen
5649 is if it is a ASM_OPERANDS), we can't do anything since we don't
5650 know how much masking to do. */
5651 if (len == 0)
5652 return x;
5653
5654 break;
5655
5656 case ZERO_EXTRACT:
5657 unsignedp = 1;
5658 case SIGN_EXTRACT:
5659 /* If the operand is a CLOBBER, just return it. */
5660 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5661 return XEXP (x, 0);
5662
5663 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5664 || GET_CODE (XEXP (x, 2)) != CONST_INT
5665 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5666 return x;
5667
5668 len = INTVAL (XEXP (x, 1));
5669 pos = INTVAL (XEXP (x, 2));
5670
5671 /* If this goes outside the object being extracted, replace the object
5672 with a (use (mem ...)) construct that only combine understands
5673 and is used only for this purpose. */
5674 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5675 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5676
5677 if (BITS_BIG_ENDIAN)
5678 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5679
5680 break;
5681
5682 default:
5683 return x;
5684 }
5685 /* Convert sign extension to zero extension, if we know that the high
5686 bit is not set, as this is easier to optimize. It will be converted
5687 back to cheaper alternative in make_extraction. */
5688 if (GET_CODE (x) == SIGN_EXTEND
5689 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5690 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5691 & ~(((unsigned HOST_WIDE_INT)
5692 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5693 >> 1))
5694 == 0)))
5695 {
5696 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5697 return expand_compound_operation (temp);
5698 }
5699
5700 /* We can optimize some special cases of ZERO_EXTEND. */
5701 if (GET_CODE (x) == ZERO_EXTEND)
5702 {
5703 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5704 know that the last value didn't have any inappropriate bits
5705 set. */
5706 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5707 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5708 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5709 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5710 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5711 return XEXP (XEXP (x, 0), 0);
5712
5713 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5714 if (GET_CODE (XEXP (x, 0)) == SUBREG
5715 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5716 && subreg_lowpart_p (XEXP (x, 0))
5717 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5718 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5719 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5720 return SUBREG_REG (XEXP (x, 0));
5721
5722 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5723 is a comparison and STORE_FLAG_VALUE permits. This is like
5724 the first case, but it works even when GET_MODE (x) is larger
5725 than HOST_WIDE_INT. */
5726 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5727 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5728 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5729 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5730 <= HOST_BITS_PER_WIDE_INT)
5731 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5732 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5733 return XEXP (XEXP (x, 0), 0);
5734
5735 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5736 if (GET_CODE (XEXP (x, 0)) == SUBREG
5737 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5738 && subreg_lowpart_p (XEXP (x, 0))
5739 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5740 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5741 <= HOST_BITS_PER_WIDE_INT)
5742 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5743 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5744 return SUBREG_REG (XEXP (x, 0));
5745
5746 }
5747
5748 /* If we reach here, we want to return a pair of shifts. The inner
5749 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5750 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5751 logical depending on the value of UNSIGNEDP.
5752
5753 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5754 converted into an AND of a shift.
5755
5756 We must check for the case where the left shift would have a negative
5757 count. This can happen in a case like (x >> 31) & 255 on machines
5758 that can't shift by a constant. On those machines, we would first
5759 combine the shift with the AND to produce a variable-position
5760 extraction. Then the constant of 31 would be substituted in to produce
5761 a such a position. */
5762
5763 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5764 if (modewidth + len >= pos)
5765 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5766 GET_MODE (x),
5767 simplify_shift_const (NULL_RTX, ASHIFT,
5768 GET_MODE (x),
5769 XEXP (x, 0),
5770 modewidth - pos - len),
5771 modewidth - len);
5772
5773 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5774 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5775 simplify_shift_const (NULL_RTX, LSHIFTRT,
5776 GET_MODE (x),
5777 XEXP (x, 0), pos),
5778 ((HOST_WIDE_INT) 1 << len) - 1);
5779 else
5780 /* Any other cases we can't handle. */
5781 return x;
5782
5783 /* If we couldn't do this for some reason, return the original
5784 expression. */
5785 if (GET_CODE (tem) == CLOBBER)
5786 return x;
5787
5788 return tem;
5789 }
5790 \f
5791 /* X is a SET which contains an assignment of one object into
5792 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5793 or certain SUBREGS). If possible, convert it into a series of
5794 logical operations.
5795
5796 We half-heartedly support variable positions, but do not at all
5797 support variable lengths. */
5798
5799 static rtx
5800 expand_field_assignment (x)
5801 rtx x;
5802 {
5803 rtx inner;
5804 rtx pos; /* Always counts from low bit. */
5805 int len;
5806 rtx mask;
5807 enum machine_mode compute_mode;
5808
5809 /* Loop until we find something we can't simplify. */
5810 while (1)
5811 {
5812 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5813 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5814 {
5815 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5816 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5817 pos = GEN_INT (BITS_PER_WORD * SUBREG_WORD (XEXP (SET_DEST (x), 0)));
5818 }
5819 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5820 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5821 {
5822 inner = XEXP (SET_DEST (x), 0);
5823 len = INTVAL (XEXP (SET_DEST (x), 1));
5824 pos = XEXP (SET_DEST (x), 2);
5825
5826 /* If the position is constant and spans the width of INNER,
5827 surround INNER with a USE to indicate this. */
5828 if (GET_CODE (pos) == CONST_INT
5829 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5830 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5831
5832 if (BITS_BIG_ENDIAN)
5833 {
5834 if (GET_CODE (pos) == CONST_INT)
5835 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5836 - INTVAL (pos));
5837 else if (GET_CODE (pos) == MINUS
5838 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5839 && (INTVAL (XEXP (pos, 1))
5840 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5841 /* If position is ADJUST - X, new position is X. */
5842 pos = XEXP (pos, 0);
5843 else
5844 pos = gen_binary (MINUS, GET_MODE (pos),
5845 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5846 - len),
5847 pos);
5848 }
5849 }
5850
5851 /* A SUBREG between two modes that occupy the same numbers of words
5852 can be done by moving the SUBREG to the source. */
5853 else if (GET_CODE (SET_DEST (x)) == SUBREG
5854 /* We need SUBREGs to compute nonzero_bits properly. */
5855 && nonzero_sign_valid
5856 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5857 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5858 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5859 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5860 {
5861 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5862 gen_lowpart_for_combine
5863 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5864 SET_SRC (x)));
5865 continue;
5866 }
5867 else
5868 break;
5869
5870 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5871 inner = SUBREG_REG (inner);
5872
5873 compute_mode = GET_MODE (inner);
5874
5875 /* Don't attempt bitwise arithmetic on non-integral modes. */
5876 if (! INTEGRAL_MODE_P (compute_mode))
5877 {
5878 enum machine_mode imode;
5879
5880 /* Something is probably seriously wrong if this matches. */
5881 if (! FLOAT_MODE_P (compute_mode))
5882 break;
5883
5884 /* Try to find an integral mode to pun with. */
5885 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5886 if (imode == BLKmode)
5887 break;
5888
5889 compute_mode = imode;
5890 inner = gen_lowpart_for_combine (imode, inner);
5891 }
5892
5893 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5894 if (len < HOST_BITS_PER_WIDE_INT)
5895 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5896 else
5897 break;
5898
5899 /* Now compute the equivalent expression. Make a copy of INNER
5900 for the SET_DEST in case it is a MEM into which we will substitute;
5901 we don't want shared RTL in that case. */
5902 x = gen_rtx_SET
5903 (VOIDmode, copy_rtx (inner),
5904 gen_binary (IOR, compute_mode,
5905 gen_binary (AND, compute_mode,
5906 gen_unary (NOT, compute_mode,
5907 compute_mode,
5908 gen_binary (ASHIFT,
5909 compute_mode,
5910 mask, pos)),
5911 inner),
5912 gen_binary (ASHIFT, compute_mode,
5913 gen_binary (AND, compute_mode,
5914 gen_lowpart_for_combine
5915 (compute_mode, SET_SRC (x)),
5916 mask),
5917 pos)));
5918 }
5919
5920 return x;
5921 }
5922 \f
5923 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5924 it is an RTX that represents a variable starting position; otherwise,
5925 POS is the (constant) starting bit position (counted from the LSB).
5926
5927 INNER may be a USE. This will occur when we started with a bitfield
5928 that went outside the boundary of the object in memory, which is
5929 allowed on most machines. To isolate this case, we produce a USE
5930 whose mode is wide enough and surround the MEM with it. The only
5931 code that understands the USE is this routine. If it is not removed,
5932 it will cause the resulting insn not to match.
5933
5934 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5935 signed reference.
5936
5937 IN_DEST is non-zero if this is a reference in the destination of a
5938 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5939 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5940 be used.
5941
5942 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5943 ZERO_EXTRACT should be built even for bits starting at bit 0.
5944
5945 MODE is the desired mode of the result (if IN_DEST == 0).
5946
5947 The result is an RTX for the extraction or NULL_RTX if the target
5948 can't handle it. */
5949
5950 static rtx
5951 make_extraction (mode, inner, pos, pos_rtx, len,
5952 unsignedp, in_dest, in_compare)
5953 enum machine_mode mode;
5954 rtx inner;
5955 HOST_WIDE_INT pos;
5956 rtx pos_rtx;
5957 unsigned HOST_WIDE_INT len;
5958 int unsignedp;
5959 int in_dest, in_compare;
5960 {
5961 /* This mode describes the size of the storage area
5962 to fetch the overall value from. Within that, we
5963 ignore the POS lowest bits, etc. */
5964 enum machine_mode is_mode = GET_MODE (inner);
5965 enum machine_mode inner_mode;
5966 enum machine_mode wanted_inner_mode = byte_mode;
5967 enum machine_mode wanted_inner_reg_mode = word_mode;
5968 enum machine_mode pos_mode = word_mode;
5969 enum machine_mode extraction_mode = word_mode;
5970 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5971 int spans_byte = 0;
5972 rtx new = 0;
5973 rtx orig_pos_rtx = pos_rtx;
5974 HOST_WIDE_INT orig_pos;
5975
5976 /* Get some information about INNER and get the innermost object. */
5977 if (GET_CODE (inner) == USE)
5978 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5979 /* We don't need to adjust the position because we set up the USE
5980 to pretend that it was a full-word object. */
5981 spans_byte = 1, inner = XEXP (inner, 0);
5982 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5983 {
5984 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5985 consider just the QI as the memory to extract from.
5986 The subreg adds or removes high bits; its mode is
5987 irrelevant to the meaning of this extraction,
5988 since POS and LEN count from the lsb. */
5989 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5990 is_mode = GET_MODE (SUBREG_REG (inner));
5991 inner = SUBREG_REG (inner);
5992 }
5993
5994 inner_mode = GET_MODE (inner);
5995
5996 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5997 pos = INTVAL (pos_rtx), pos_rtx = 0;
5998
5999 /* See if this can be done without an extraction. We never can if the
6000 width of the field is not the same as that of some integer mode. For
6001 registers, we can only avoid the extraction if the position is at the
6002 low-order bit and this is either not in the destination or we have the
6003 appropriate STRICT_LOW_PART operation available.
6004
6005 For MEM, we can avoid an extract if the field starts on an appropriate
6006 boundary and we can change the mode of the memory reference. However,
6007 we cannot directly access the MEM if we have a USE and the underlying
6008 MEM is not TMODE. This combination means that MEM was being used in a
6009 context where bits outside its mode were being referenced; that is only
6010 valid in bit-field insns. */
6011
6012 if (tmode != BLKmode
6013 && ! (spans_byte && inner_mode != tmode)
6014 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6015 && GET_CODE (inner) != MEM
6016 && (! in_dest
6017 || (GET_CODE (inner) == REG
6018 && (movstrict_optab->handlers[(int) tmode].insn_code
6019 != CODE_FOR_nothing))))
6020 || (GET_CODE (inner) == MEM && pos_rtx == 0
6021 && (pos
6022 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6023 : BITS_PER_UNIT)) == 0
6024 /* We can't do this if we are widening INNER_MODE (it
6025 may not be aligned, for one thing). */
6026 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6027 && (inner_mode == tmode
6028 || (! mode_dependent_address_p (XEXP (inner, 0))
6029 && ! MEM_VOLATILE_P (inner))))))
6030 {
6031 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6032 field. If the original and current mode are the same, we need not
6033 adjust the offset. Otherwise, we do if bytes big endian.
6034
6035 If INNER is not a MEM, get a piece consisting of just the field
6036 of interest (in this case POS % BITS_PER_WORD must be 0). */
6037
6038 if (GET_CODE (inner) == MEM)
6039 {
6040 int offset;
6041 /* POS counts from lsb, but make OFFSET count in memory order. */
6042 if (BYTES_BIG_ENDIAN)
6043 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6044 else
6045 offset = pos / BITS_PER_UNIT;
6046
6047 new = gen_rtx_MEM (tmode, plus_constant (XEXP (inner, 0), offset));
6048 MEM_COPY_ATTRIBUTES (new, inner);
6049 }
6050 else if (GET_CODE (inner) == REG)
6051 {
6052 /* We can't call gen_lowpart_for_combine here since we always want
6053 a SUBREG and it would sometimes return a new hard register. */
6054 if (tmode != inner_mode)
6055 new = gen_rtx_SUBREG (tmode, inner,
6056 (WORDS_BIG_ENDIAN
6057 && (GET_MODE_SIZE (inner_mode)
6058 > UNITS_PER_WORD)
6059 ? (((GET_MODE_SIZE (inner_mode)
6060 - GET_MODE_SIZE (tmode))
6061 / UNITS_PER_WORD)
6062 - pos / BITS_PER_WORD)
6063 : pos / BITS_PER_WORD));
6064 else
6065 new = inner;
6066 }
6067 else
6068 new = force_to_mode (inner, tmode,
6069 len >= HOST_BITS_PER_WIDE_INT
6070 ? ~(unsigned HOST_WIDE_INT) 0
6071 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6072 NULL_RTX, 0);
6073
6074 /* If this extraction is going into the destination of a SET,
6075 make a STRICT_LOW_PART unless we made a MEM. */
6076
6077 if (in_dest)
6078 return (GET_CODE (new) == MEM ? new
6079 : (GET_CODE (new) != SUBREG
6080 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6081 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
6082
6083 if (mode == tmode)
6084 return new;
6085
6086 /* If we know that no extraneous bits are set, and that the high
6087 bit is not set, convert the extraction to the cheaper of
6088 sign and zero extension, that are equivalent in these cases. */
6089 if (flag_expensive_optimizations
6090 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6091 && ((nonzero_bits (new, tmode)
6092 & ~(((unsigned HOST_WIDE_INT)
6093 GET_MODE_MASK (tmode))
6094 >> 1))
6095 == 0)))
6096 {
6097 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6098 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6099
6100 /* Prefer ZERO_EXTENSION, since it gives more information to
6101 backends. */
6102 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6103 return temp;
6104 return temp1;
6105 }
6106
6107 /* Otherwise, sign- or zero-extend unless we already are in the
6108 proper mode. */
6109
6110 return (gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6111 mode, new));
6112 }
6113
6114 /* Unless this is a COMPARE or we have a funny memory reference,
6115 don't do anything with zero-extending field extracts starting at
6116 the low-order bit since they are simple AND operations. */
6117 if (pos_rtx == 0 && pos == 0 && ! in_dest
6118 && ! in_compare && ! spans_byte && unsignedp)
6119 return 0;
6120
6121 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6122 we would be spanning bytes or if the position is not a constant and the
6123 length is not 1. In all other cases, we would only be going outside
6124 our object in cases when an original shift would have been
6125 undefined. */
6126 if (! spans_byte && GET_CODE (inner) == MEM
6127 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6128 || (pos_rtx != 0 && len != 1)))
6129 return 0;
6130
6131 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6132 and the mode for the result. */
6133 #ifdef HAVE_insv
6134 if (in_dest)
6135 {
6136 wanted_inner_reg_mode
6137 = insn_data[(int) CODE_FOR_insv].operand[0].mode;
6138 if (wanted_inner_reg_mode == VOIDmode)
6139 wanted_inner_reg_mode = word_mode;
6140
6141 pos_mode = insn_data[(int) CODE_FOR_insv].operand[2].mode;
6142 if (pos_mode == VOIDmode)
6143 pos_mode = word_mode;
6144
6145 extraction_mode = insn_data[(int) CODE_FOR_insv].operand[3].mode;
6146 if (extraction_mode == VOIDmode)
6147 extraction_mode = word_mode;
6148 }
6149 #endif
6150
6151 #ifdef HAVE_extzv
6152 if (! in_dest && unsignedp)
6153 {
6154 wanted_inner_reg_mode
6155 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
6156 if (wanted_inner_reg_mode == VOIDmode)
6157 wanted_inner_reg_mode = word_mode;
6158
6159 pos_mode = insn_data[(int) CODE_FOR_extzv].operand[3].mode;
6160 if (pos_mode == VOIDmode)
6161 pos_mode = word_mode;
6162
6163 extraction_mode = insn_data[(int) CODE_FOR_extzv].operand[0].mode;
6164 if (extraction_mode == VOIDmode)
6165 extraction_mode = word_mode;
6166 }
6167 #endif
6168
6169 #ifdef HAVE_extv
6170 if (! in_dest && ! unsignedp)
6171 {
6172 wanted_inner_reg_mode
6173 = insn_data[(int) CODE_FOR_extv].operand[1].mode;
6174 if (wanted_inner_reg_mode == VOIDmode)
6175 wanted_inner_reg_mode = word_mode;
6176
6177 pos_mode = insn_data[(int) CODE_FOR_extv].operand[3].mode;
6178 if (pos_mode == VOIDmode)
6179 pos_mode = word_mode;
6180
6181 extraction_mode = insn_data[(int) CODE_FOR_extv].operand[0].mode;
6182 if (extraction_mode == VOIDmode)
6183 extraction_mode = word_mode;
6184 }
6185 #endif
6186
6187 /* Never narrow an object, since that might not be safe. */
6188
6189 if (mode != VOIDmode
6190 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6191 extraction_mode = mode;
6192
6193 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6194 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6195 pos_mode = GET_MODE (pos_rtx);
6196
6197 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6198 if we have to change the mode of memory and cannot, the desired mode is
6199 EXTRACTION_MODE. */
6200 if (GET_CODE (inner) != MEM)
6201 wanted_inner_mode = wanted_inner_reg_mode;
6202 else if (inner_mode != wanted_inner_mode
6203 && (mode_dependent_address_p (XEXP (inner, 0))
6204 || MEM_VOLATILE_P (inner)))
6205 wanted_inner_mode = extraction_mode;
6206
6207 orig_pos = pos;
6208
6209 if (BITS_BIG_ENDIAN)
6210 {
6211 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6212 BITS_BIG_ENDIAN style. If position is constant, compute new
6213 position. Otherwise, build subtraction.
6214 Note that POS is relative to the mode of the original argument.
6215 If it's a MEM we need to recompute POS relative to that.
6216 However, if we're extracting from (or inserting into) a register,
6217 we want to recompute POS relative to wanted_inner_mode. */
6218 int width = (GET_CODE (inner) == MEM
6219 ? GET_MODE_BITSIZE (is_mode)
6220 : GET_MODE_BITSIZE (wanted_inner_mode));
6221
6222 if (pos_rtx == 0)
6223 pos = width - len - pos;
6224 else
6225 pos_rtx
6226 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
6227 GEN_INT (width - len), pos_rtx);
6228 /* POS may be less than 0 now, but we check for that below.
6229 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6230 }
6231
6232 /* If INNER has a wider mode, make it smaller. If this is a constant
6233 extract, try to adjust the byte to point to the byte containing
6234 the value. */
6235 if (wanted_inner_mode != VOIDmode
6236 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6237 && ((GET_CODE (inner) == MEM
6238 && (inner_mode == wanted_inner_mode
6239 || (! mode_dependent_address_p (XEXP (inner, 0))
6240 && ! MEM_VOLATILE_P (inner))))))
6241 {
6242 int offset = 0;
6243
6244 /* The computations below will be correct if the machine is big
6245 endian in both bits and bytes or little endian in bits and bytes.
6246 If it is mixed, we must adjust. */
6247
6248 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6249 adjust OFFSET to compensate. */
6250 if (BYTES_BIG_ENDIAN
6251 && ! spans_byte
6252 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6253 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6254
6255 /* If this is a constant position, we can move to the desired byte. */
6256 if (pos_rtx == 0)
6257 {
6258 offset += pos / BITS_PER_UNIT;
6259 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6260 }
6261
6262 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6263 && ! spans_byte
6264 && is_mode != wanted_inner_mode)
6265 offset = (GET_MODE_SIZE (is_mode)
6266 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6267
6268 if (offset != 0 || inner_mode != wanted_inner_mode)
6269 {
6270 rtx newmem = gen_rtx_MEM (wanted_inner_mode,
6271 plus_constant (XEXP (inner, 0), offset));
6272
6273 MEM_COPY_ATTRIBUTES (newmem, inner);
6274 inner = newmem;
6275 }
6276 }
6277
6278 /* If INNER is not memory, we can always get it into the proper mode. If we
6279 are changing its mode, POS must be a constant and smaller than the size
6280 of the new mode. */
6281 else if (GET_CODE (inner) != MEM)
6282 {
6283 if (GET_MODE (inner) != wanted_inner_mode
6284 && (pos_rtx != 0
6285 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6286 return 0;
6287
6288 inner = force_to_mode (inner, wanted_inner_mode,
6289 pos_rtx
6290 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6291 ? ~(unsigned HOST_WIDE_INT) 0
6292 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6293 << orig_pos),
6294 NULL_RTX, 0);
6295 }
6296
6297 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6298 have to zero extend. Otherwise, we can just use a SUBREG. */
6299 if (pos_rtx != 0
6300 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6301 {
6302 rtx temp = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
6303
6304 /* If we know that no extraneous bits are set, and that the high
6305 bit is not set, convert extraction to cheaper one - eighter
6306 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6307 cases. */
6308 if (flag_expensive_optimizations
6309 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6310 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6311 & ~(((unsigned HOST_WIDE_INT)
6312 GET_MODE_MASK (GET_MODE (pos_rtx)))
6313 >> 1))
6314 == 0)))
6315 {
6316 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6317
6318 /* Prefer ZERO_EXTENSION, since it gives more information to
6319 backends. */
6320 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6321 temp = temp1;
6322 }
6323 pos_rtx = temp;
6324 }
6325 else if (pos_rtx != 0
6326 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6327 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6328
6329 /* Make POS_RTX unless we already have it and it is correct. If we don't
6330 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6331 be a CONST_INT. */
6332 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6333 pos_rtx = orig_pos_rtx;
6334
6335 else if (pos_rtx == 0)
6336 pos_rtx = GEN_INT (pos);
6337
6338 /* Make the required operation. See if we can use existing rtx. */
6339 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6340 extraction_mode, inner, GEN_INT (len), pos_rtx);
6341 if (! in_dest)
6342 new = gen_lowpart_for_combine (mode, new);
6343
6344 return new;
6345 }
6346 \f
6347 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6348 with any other operations in X. Return X without that shift if so. */
6349
6350 static rtx
6351 extract_left_shift (x, count)
6352 rtx x;
6353 int count;
6354 {
6355 enum rtx_code code = GET_CODE (x);
6356 enum machine_mode mode = GET_MODE (x);
6357 rtx tem;
6358
6359 switch (code)
6360 {
6361 case ASHIFT:
6362 /* This is the shift itself. If it is wide enough, we will return
6363 either the value being shifted if the shift count is equal to
6364 COUNT or a shift for the difference. */
6365 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6366 && INTVAL (XEXP (x, 1)) >= count)
6367 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6368 INTVAL (XEXP (x, 1)) - count);
6369 break;
6370
6371 case NEG: case NOT:
6372 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6373 return gen_unary (code, mode, mode, tem);
6374
6375 break;
6376
6377 case PLUS: case IOR: case XOR: case AND:
6378 /* If we can safely shift this constant and we find the inner shift,
6379 make a new operation. */
6380 if (GET_CODE (XEXP (x,1)) == CONST_INT
6381 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6382 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6383 return gen_binary (code, mode, tem,
6384 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6385
6386 break;
6387
6388 default:
6389 break;
6390 }
6391
6392 return 0;
6393 }
6394 \f
6395 /* Look at the expression rooted at X. Look for expressions
6396 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6397 Form these expressions.
6398
6399 Return the new rtx, usually just X.
6400
6401 Also, for machines like the Vax that don't have logical shift insns,
6402 try to convert logical to arithmetic shift operations in cases where
6403 they are equivalent. This undoes the canonicalizations to logical
6404 shifts done elsewhere.
6405
6406 We try, as much as possible, to re-use rtl expressions to save memory.
6407
6408 IN_CODE says what kind of expression we are processing. Normally, it is
6409 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6410 being kludges), it is MEM. When processing the arguments of a comparison
6411 or a COMPARE against zero, it is COMPARE. */
6412
6413 static rtx
6414 make_compound_operation (x, in_code)
6415 rtx x;
6416 enum rtx_code in_code;
6417 {
6418 enum rtx_code code = GET_CODE (x);
6419 enum machine_mode mode = GET_MODE (x);
6420 int mode_width = GET_MODE_BITSIZE (mode);
6421 rtx rhs, lhs;
6422 enum rtx_code next_code;
6423 int i;
6424 rtx new = 0;
6425 rtx tem;
6426 const char *fmt;
6427
6428 /* Select the code to be used in recursive calls. Once we are inside an
6429 address, we stay there. If we have a comparison, set to COMPARE,
6430 but once inside, go back to our default of SET. */
6431
6432 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6433 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6434 && XEXP (x, 1) == const0_rtx) ? COMPARE
6435 : in_code == COMPARE ? SET : in_code);
6436
6437 /* Process depending on the code of this operation. If NEW is set
6438 non-zero, it will be returned. */
6439
6440 switch (code)
6441 {
6442 case ASHIFT:
6443 /* Convert shifts by constants into multiplications if inside
6444 an address. */
6445 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6446 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6447 && INTVAL (XEXP (x, 1)) >= 0)
6448 {
6449 new = make_compound_operation (XEXP (x, 0), next_code);
6450 new = gen_rtx_combine (MULT, mode, new,
6451 GEN_INT ((HOST_WIDE_INT) 1
6452 << INTVAL (XEXP (x, 1))));
6453 }
6454 break;
6455
6456 case AND:
6457 /* If the second operand is not a constant, we can't do anything
6458 with it. */
6459 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6460 break;
6461
6462 /* If the constant is a power of two minus one and the first operand
6463 is a logical right shift, make an extraction. */
6464 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6465 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6466 {
6467 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6468 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6469 0, in_code == COMPARE);
6470 }
6471
6472 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6473 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6474 && subreg_lowpart_p (XEXP (x, 0))
6475 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6476 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6477 {
6478 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6479 next_code);
6480 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6481 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6482 0, in_code == COMPARE);
6483 }
6484 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6485 else if ((GET_CODE (XEXP (x, 0)) == XOR
6486 || GET_CODE (XEXP (x, 0)) == IOR)
6487 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6488 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6489 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6490 {
6491 /* Apply the distributive law, and then try to make extractions. */
6492 new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
6493 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6494 XEXP (x, 1)),
6495 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6496 XEXP (x, 1)));
6497 new = make_compound_operation (new, in_code);
6498 }
6499
6500 /* If we are have (and (rotate X C) M) and C is larger than the number
6501 of bits in M, this is an extraction. */
6502
6503 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6504 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6505 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6506 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6507 {
6508 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6509 new = make_extraction (mode, new,
6510 (GET_MODE_BITSIZE (mode)
6511 - INTVAL (XEXP (XEXP (x, 0), 1))),
6512 NULL_RTX, i, 1, 0, in_code == COMPARE);
6513 }
6514
6515 /* On machines without logical shifts, if the operand of the AND is
6516 a logical shift and our mask turns off all the propagated sign
6517 bits, we can replace the logical shift with an arithmetic shift. */
6518 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6519 && (lshr_optab->handlers[(int) mode].insn_code
6520 == CODE_FOR_nothing)
6521 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
6522 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6523 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6524 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6525 && mode_width <= HOST_BITS_PER_WIDE_INT)
6526 {
6527 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6528
6529 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6530 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6531 SUBST (XEXP (x, 0),
6532 gen_rtx_combine (ASHIFTRT, mode,
6533 make_compound_operation (XEXP (XEXP (x, 0), 0),
6534 next_code),
6535 XEXP (XEXP (x, 0), 1)));
6536 }
6537
6538 /* If the constant is one less than a power of two, this might be
6539 representable by an extraction even if no shift is present.
6540 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6541 we are in a COMPARE. */
6542 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6543 new = make_extraction (mode,
6544 make_compound_operation (XEXP (x, 0),
6545 next_code),
6546 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6547
6548 /* If we are in a comparison and this is an AND with a power of two,
6549 convert this into the appropriate bit extract. */
6550 else if (in_code == COMPARE
6551 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6552 new = make_extraction (mode,
6553 make_compound_operation (XEXP (x, 0),
6554 next_code),
6555 i, NULL_RTX, 1, 1, 0, 1);
6556
6557 break;
6558
6559 case LSHIFTRT:
6560 /* If the sign bit is known to be zero, replace this with an
6561 arithmetic shift. */
6562 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
6563 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6564 && mode_width <= HOST_BITS_PER_WIDE_INT
6565 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6566 {
6567 new = gen_rtx_combine (ASHIFTRT, mode,
6568 make_compound_operation (XEXP (x, 0),
6569 next_code),
6570 XEXP (x, 1));
6571 break;
6572 }
6573
6574 /* ... fall through ... */
6575
6576 case ASHIFTRT:
6577 lhs = XEXP (x, 0);
6578 rhs = XEXP (x, 1);
6579
6580 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6581 this is a SIGN_EXTRACT. */
6582 if (GET_CODE (rhs) == CONST_INT
6583 && GET_CODE (lhs) == ASHIFT
6584 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6585 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6586 {
6587 new = make_compound_operation (XEXP (lhs, 0), next_code);
6588 new = make_extraction (mode, new,
6589 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6590 NULL_RTX, mode_width - INTVAL (rhs),
6591 code == LSHIFTRT, 0, in_code == COMPARE);
6592 break;
6593 }
6594
6595 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6596 If so, try to merge the shifts into a SIGN_EXTEND. We could
6597 also do this for some cases of SIGN_EXTRACT, but it doesn't
6598 seem worth the effort; the case checked for occurs on Alpha. */
6599
6600 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6601 && ! (GET_CODE (lhs) == SUBREG
6602 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6603 && GET_CODE (rhs) == CONST_INT
6604 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6605 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6606 new = make_extraction (mode, make_compound_operation (new, next_code),
6607 0, NULL_RTX, mode_width - INTVAL (rhs),
6608 code == LSHIFTRT, 0, in_code == COMPARE);
6609
6610 break;
6611
6612 case SUBREG:
6613 /* Call ourselves recursively on the inner expression. If we are
6614 narrowing the object and it has a different RTL code from
6615 what it originally did, do this SUBREG as a force_to_mode. */
6616
6617 tem = make_compound_operation (SUBREG_REG (x), in_code);
6618 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6619 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6620 && subreg_lowpart_p (x))
6621 {
6622 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6623 NULL_RTX, 0);
6624
6625 /* If we have something other than a SUBREG, we might have
6626 done an expansion, so rerun outselves. */
6627 if (GET_CODE (newer) != SUBREG)
6628 newer = make_compound_operation (newer, in_code);
6629
6630 return newer;
6631 }
6632
6633 /* If this is a paradoxical subreg, and the new code is a sign or
6634 zero extension, omit the subreg and widen the extension. If it
6635 is a regular subreg, we can still get rid of the subreg by not
6636 widening so much, or in fact removing the extension entirely. */
6637 if ((GET_CODE (tem) == SIGN_EXTEND
6638 || GET_CODE (tem) == ZERO_EXTEND)
6639 && subreg_lowpart_p (x))
6640 {
6641 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6642 || (GET_MODE_SIZE (mode) >
6643 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6644 tem = gen_rtx_combine (GET_CODE (tem), mode, XEXP (tem, 0));
6645 else
6646 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6647 return tem;
6648 }
6649 break;
6650
6651 default:
6652 break;
6653 }
6654
6655 if (new)
6656 {
6657 x = gen_lowpart_for_combine (mode, new);
6658 code = GET_CODE (x);
6659 }
6660
6661 /* Now recursively process each operand of this operation. */
6662 fmt = GET_RTX_FORMAT (code);
6663 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6664 if (fmt[i] == 'e')
6665 {
6666 new = make_compound_operation (XEXP (x, i), next_code);
6667 SUBST (XEXP (x, i), new);
6668 }
6669
6670 return x;
6671 }
6672 \f
6673 /* Given M see if it is a value that would select a field of bits
6674 within an item, but not the entire word. Return -1 if not.
6675 Otherwise, return the starting position of the field, where 0 is the
6676 low-order bit.
6677
6678 *PLEN is set to the length of the field. */
6679
6680 static int
6681 get_pos_from_mask (m, plen)
6682 unsigned HOST_WIDE_INT m;
6683 unsigned HOST_WIDE_INT *plen;
6684 {
6685 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6686 int pos = exact_log2 (m & -m);
6687 int len;
6688
6689 if (pos < 0)
6690 return -1;
6691
6692 /* Now shift off the low-order zero bits and see if we have a power of
6693 two minus 1. */
6694 len = exact_log2 ((m >> pos) + 1);
6695
6696 if (len <= 0)
6697 return -1;
6698
6699 *plen = len;
6700 return pos;
6701 }
6702 \f
6703 /* See if X can be simplified knowing that we will only refer to it in
6704 MODE and will only refer to those bits that are nonzero in MASK.
6705 If other bits are being computed or if masking operations are done
6706 that select a superset of the bits in MASK, they can sometimes be
6707 ignored.
6708
6709 Return a possibly simplified expression, but always convert X to
6710 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6711
6712 Also, if REG is non-zero and X is a register equal in value to REG,
6713 replace X with REG.
6714
6715 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6716 are all off in X. This is used when X will be complemented, by either
6717 NOT, NEG, or XOR. */
6718
6719 static rtx
6720 force_to_mode (x, mode, mask, reg, just_select)
6721 rtx x;
6722 enum machine_mode mode;
6723 unsigned HOST_WIDE_INT mask;
6724 rtx reg;
6725 int just_select;
6726 {
6727 enum rtx_code code = GET_CODE (x);
6728 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6729 enum machine_mode op_mode;
6730 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6731 rtx op0, op1, temp;
6732
6733 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6734 code below will do the wrong thing since the mode of such an
6735 expression is VOIDmode.
6736
6737 Also do nothing if X is a CLOBBER; this can happen if X was
6738 the return value from a call to gen_lowpart_for_combine. */
6739 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6740 return x;
6741
6742 /* We want to perform the operation is its present mode unless we know
6743 that the operation is valid in MODE, in which case we do the operation
6744 in MODE. */
6745 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6746 && code_to_optab[(int) code] != 0
6747 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
6748 != CODE_FOR_nothing))
6749 ? mode : GET_MODE (x));
6750
6751 /* It is not valid to do a right-shift in a narrower mode
6752 than the one it came in with. */
6753 if ((code == LSHIFTRT || code == ASHIFTRT)
6754 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6755 op_mode = GET_MODE (x);
6756
6757 /* Truncate MASK to fit OP_MODE. */
6758 if (op_mode)
6759 mask &= GET_MODE_MASK (op_mode);
6760
6761 /* When we have an arithmetic operation, or a shift whose count we
6762 do not know, we need to assume that all bit the up to the highest-order
6763 bit in MASK will be needed. This is how we form such a mask. */
6764 if (op_mode)
6765 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6766 ? GET_MODE_MASK (op_mode)
6767 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6768 - 1));
6769 else
6770 fuller_mask = ~(HOST_WIDE_INT) 0;
6771
6772 /* Determine what bits of X are guaranteed to be (non)zero. */
6773 nonzero = nonzero_bits (x, mode);
6774
6775 /* If none of the bits in X are needed, return a zero. */
6776 if (! just_select && (nonzero & mask) == 0)
6777 return const0_rtx;
6778
6779 /* If X is a CONST_INT, return a new one. Do this here since the
6780 test below will fail. */
6781 if (GET_CODE (x) == CONST_INT)
6782 {
6783 HOST_WIDE_INT cval = INTVAL (x) & mask;
6784 int width = GET_MODE_BITSIZE (mode);
6785
6786 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6787 number, sign extend it. */
6788 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6789 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6790 cval |= (HOST_WIDE_INT) -1 << width;
6791
6792 return GEN_INT (cval);
6793 }
6794
6795 /* If X is narrower than MODE and we want all the bits in X's mode, just
6796 get X in the proper mode. */
6797 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6798 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6799 return gen_lowpart_for_combine (mode, x);
6800
6801 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6802 MASK are already known to be zero in X, we need not do anything. */
6803 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6804 return x;
6805
6806 switch (code)
6807 {
6808 case CLOBBER:
6809 /* If X is a (clobber (const_int)), return it since we know we are
6810 generating something that won't match. */
6811 return x;
6812
6813 case USE:
6814 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6815 spanned the boundary of the MEM. If we are now masking so it is
6816 within that boundary, we don't need the USE any more. */
6817 if (! BITS_BIG_ENDIAN
6818 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6819 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6820 break;
6821
6822 case SIGN_EXTEND:
6823 case ZERO_EXTEND:
6824 case ZERO_EXTRACT:
6825 case SIGN_EXTRACT:
6826 x = expand_compound_operation (x);
6827 if (GET_CODE (x) != code)
6828 return force_to_mode (x, mode, mask, reg, next_select);
6829 break;
6830
6831 case REG:
6832 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6833 || rtx_equal_p (reg, get_last_value (x))))
6834 x = reg;
6835 break;
6836
6837 case SUBREG:
6838 if (subreg_lowpart_p (x)
6839 /* We can ignore the effect of this SUBREG if it narrows the mode or
6840 if the constant masks to zero all the bits the mode doesn't
6841 have. */
6842 && ((GET_MODE_SIZE (GET_MODE (x))
6843 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6844 || (0 == (mask
6845 & GET_MODE_MASK (GET_MODE (x))
6846 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6847 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6848 break;
6849
6850 case AND:
6851 /* If this is an AND with a constant, convert it into an AND
6852 whose constant is the AND of that constant with MASK. If it
6853 remains an AND of MASK, delete it since it is redundant. */
6854
6855 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6856 {
6857 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6858 mask & INTVAL (XEXP (x, 1)));
6859
6860 /* If X is still an AND, see if it is an AND with a mask that
6861 is just some low-order bits. If so, and it is MASK, we don't
6862 need it. */
6863
6864 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6865 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6866 x = XEXP (x, 0);
6867
6868 /* If it remains an AND, try making another AND with the bits
6869 in the mode mask that aren't in MASK turned on. If the
6870 constant in the AND is wide enough, this might make a
6871 cheaper constant. */
6872
6873 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6874 && GET_MODE_MASK (GET_MODE (x)) != mask
6875 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6876 {
6877 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6878 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6879 int width = GET_MODE_BITSIZE (GET_MODE (x));
6880 rtx y;
6881
6882 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6883 number, sign extend it. */
6884 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6885 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6886 cval |= (HOST_WIDE_INT) -1 << width;
6887
6888 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6889 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6890 x = y;
6891 }
6892
6893 break;
6894 }
6895
6896 goto binop;
6897
6898 case PLUS:
6899 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6900 low-order bits (as in an alignment operation) and FOO is already
6901 aligned to that boundary, mask C1 to that boundary as well.
6902 This may eliminate that PLUS and, later, the AND. */
6903
6904 {
6905 unsigned int width = GET_MODE_BITSIZE (mode);
6906 unsigned HOST_WIDE_INT smask = mask;
6907
6908 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6909 number, sign extend it. */
6910
6911 if (width < HOST_BITS_PER_WIDE_INT
6912 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6913 smask |= (HOST_WIDE_INT) -1 << width;
6914
6915 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6916 && exact_log2 (- smask) >= 0)
6917 {
6918 #ifdef STACK_BIAS
6919 if (STACK_BIAS
6920 && (XEXP (x, 0) == stack_pointer_rtx
6921 || XEXP (x, 0) == frame_pointer_rtx))
6922 {
6923 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6924 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6925
6926 sp_mask &= ~(sp_alignment - 1);
6927 if ((sp_mask & ~smask) == 0
6928 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~smask) != 0)
6929 return force_to_mode (plus_constant (XEXP (x, 0),
6930 ((INTVAL (XEXP (x, 1)) -
6931 STACK_BIAS) & smask)
6932 + STACK_BIAS),
6933 mode, smask, reg, next_select);
6934 }
6935 #endif
6936 if ((nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6937 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6938 return force_to_mode (plus_constant (XEXP (x, 0),
6939 (INTVAL (XEXP (x, 1))
6940 & smask)),
6941 mode, smask, reg, next_select);
6942 }
6943 }
6944
6945 /* ... fall through ... */
6946
6947 case MULT:
6948 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6949 most significant bit in MASK since carries from those bits will
6950 affect the bits we are interested in. */
6951 mask = fuller_mask;
6952 goto binop;
6953
6954 case MINUS:
6955 /* If X is (minus C Y) where C's least set bit is larger than any bit
6956 in the mask, then we may replace with (neg Y). */
6957 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6958 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6959 & -INTVAL (XEXP (x, 0))))
6960 > mask))
6961 {
6962 x = gen_unary (NEG, GET_MODE (x), GET_MODE (x), XEXP (x, 1));
6963 return force_to_mode (x, mode, mask, reg, next_select);
6964 }
6965
6966 /* Similarly, if C contains every bit in the mask, then we may
6967 replace with (not Y). */
6968 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6969 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6970 == INTVAL (XEXP (x, 0))))
6971 {
6972 x = gen_unary (NOT, GET_MODE (x), GET_MODE (x), XEXP (x, 1));
6973 return force_to_mode (x, mode, mask, reg, next_select);
6974 }
6975
6976 mask = fuller_mask;
6977 goto binop;
6978
6979 case IOR:
6980 case XOR:
6981 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6982 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6983 operation which may be a bitfield extraction. Ensure that the
6984 constant we form is not wider than the mode of X. */
6985
6986 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6987 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6988 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6989 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6990 && GET_CODE (XEXP (x, 1)) == CONST_INT
6991 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6992 + floor_log2 (INTVAL (XEXP (x, 1))))
6993 < GET_MODE_BITSIZE (GET_MODE (x)))
6994 && (INTVAL (XEXP (x, 1))
6995 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6996 {
6997 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6998 << INTVAL (XEXP (XEXP (x, 0), 1)));
6999 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7000 XEXP (XEXP (x, 0), 0), temp);
7001 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7002 XEXP (XEXP (x, 0), 1));
7003 return force_to_mode (x, mode, mask, reg, next_select);
7004 }
7005
7006 binop:
7007 /* For most binary operations, just propagate into the operation and
7008 change the mode if we have an operation of that mode. */
7009
7010 op0 = gen_lowpart_for_combine (op_mode,
7011 force_to_mode (XEXP (x, 0), mode, mask,
7012 reg, next_select));
7013 op1 = gen_lowpart_for_combine (op_mode,
7014 force_to_mode (XEXP (x, 1), mode, mask,
7015 reg, next_select));
7016
7017 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
7018 MASK since OP1 might have been sign-extended but we never want
7019 to turn on extra bits, since combine might have previously relied
7020 on them being off. */
7021 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
7022 && (INTVAL (op1) & mask) != 0)
7023 op1 = GEN_INT (INTVAL (op1) & mask);
7024
7025 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7026 x = gen_binary (code, op_mode, op0, op1);
7027 break;
7028
7029 case ASHIFT:
7030 /* For left shifts, do the same, but just for the first operand.
7031 However, we cannot do anything with shifts where we cannot
7032 guarantee that the counts are smaller than the size of the mode
7033 because such a count will have a different meaning in a
7034 wider mode. */
7035
7036 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7037 && INTVAL (XEXP (x, 1)) >= 0
7038 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7039 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7040 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7041 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7042 break;
7043
7044 /* If the shift count is a constant and we can do arithmetic in
7045 the mode of the shift, refine which bits we need. Otherwise, use the
7046 conservative form of the mask. */
7047 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7048 && INTVAL (XEXP (x, 1)) >= 0
7049 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7050 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7051 mask >>= INTVAL (XEXP (x, 1));
7052 else
7053 mask = fuller_mask;
7054
7055 op0 = gen_lowpart_for_combine (op_mode,
7056 force_to_mode (XEXP (x, 0), op_mode,
7057 mask, reg, next_select));
7058
7059 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7060 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7061 break;
7062
7063 case LSHIFTRT:
7064 /* Here we can only do something if the shift count is a constant,
7065 this shift constant is valid for the host, and we can do arithmetic
7066 in OP_MODE. */
7067
7068 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7069 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7070 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7071 {
7072 rtx inner = XEXP (x, 0);
7073 unsigned HOST_WIDE_INT inner_mask;
7074
7075 /* Select the mask of the bits we need for the shift operand. */
7076 inner_mask = mask << INTVAL (XEXP (x, 1));
7077
7078 /* We can only change the mode of the shift if we can do arithmetic
7079 in the mode of the shift and INNER_MASK is no wider than the
7080 width of OP_MODE. */
7081 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7082 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7083 op_mode = GET_MODE (x);
7084
7085 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7086
7087 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7088 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7089 }
7090
7091 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7092 shift and AND produces only copies of the sign bit (C2 is one less
7093 than a power of two), we can do this with just a shift. */
7094
7095 if (GET_CODE (x) == LSHIFTRT
7096 && GET_CODE (XEXP (x, 1)) == CONST_INT
7097 /* The shift puts one of the sign bit copies in the least significant
7098 bit. */
7099 && ((INTVAL (XEXP (x, 1))
7100 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7101 >= GET_MODE_BITSIZE (GET_MODE (x)))
7102 && exact_log2 (mask + 1) >= 0
7103 /* Number of bits left after the shift must be more than the mask
7104 needs. */
7105 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7106 <= GET_MODE_BITSIZE (GET_MODE (x)))
7107 /* Must be more sign bit copies than the mask needs. */
7108 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7109 >= exact_log2 (mask + 1)))
7110 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7111 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7112 - exact_log2 (mask + 1)));
7113
7114 goto shiftrt;
7115
7116 case ASHIFTRT:
7117 /* If we are just looking for the sign bit, we don't need this shift at
7118 all, even if it has a variable count. */
7119 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7120 && (mask == ((unsigned HOST_WIDE_INT) 1
7121 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7122 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7123
7124 /* If this is a shift by a constant, get a mask that contains those bits
7125 that are not copies of the sign bit. We then have two cases: If
7126 MASK only includes those bits, this can be a logical shift, which may
7127 allow simplifications. If MASK is a single-bit field not within
7128 those bits, we are requesting a copy of the sign bit and hence can
7129 shift the sign bit to the appropriate location. */
7130
7131 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7132 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7133 {
7134 int i = -1;
7135
7136 /* If the considered data is wider then HOST_WIDE_INT, we can't
7137 represent a mask for all its bits in a single scalar.
7138 But we only care about the lower bits, so calculate these. */
7139
7140 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7141 {
7142 nonzero = ~(HOST_WIDE_INT) 0;
7143
7144 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7145 is the number of bits a full-width mask would have set.
7146 We need only shift if these are fewer than nonzero can
7147 hold. If not, we must keep all bits set in nonzero. */
7148
7149 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7150 < HOST_BITS_PER_WIDE_INT)
7151 nonzero >>= INTVAL (XEXP (x, 1))
7152 + HOST_BITS_PER_WIDE_INT
7153 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7154 }
7155 else
7156 {
7157 nonzero = GET_MODE_MASK (GET_MODE (x));
7158 nonzero >>= INTVAL (XEXP (x, 1));
7159 }
7160
7161 if ((mask & ~nonzero) == 0
7162 || (i = exact_log2 (mask)) >= 0)
7163 {
7164 x = simplify_shift_const
7165 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7166 i < 0 ? INTVAL (XEXP (x, 1))
7167 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7168
7169 if (GET_CODE (x) != ASHIFTRT)
7170 return force_to_mode (x, mode, mask, reg, next_select);
7171 }
7172 }
7173
7174 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7175 even if the shift count isn't a constant. */
7176 if (mask == 1)
7177 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7178
7179 shiftrt:
7180
7181 /* If this is a zero- or sign-extension operation that just affects bits
7182 we don't care about, remove it. Be sure the call above returned
7183 something that is still a shift. */
7184
7185 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7186 && GET_CODE (XEXP (x, 1)) == CONST_INT
7187 && INTVAL (XEXP (x, 1)) >= 0
7188 && (INTVAL (XEXP (x, 1))
7189 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7190 && GET_CODE (XEXP (x, 0)) == ASHIFT
7191 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7192 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7193 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7194 reg, next_select);
7195
7196 break;
7197
7198 case ROTATE:
7199 case ROTATERT:
7200 /* If the shift count is constant and we can do computations
7201 in the mode of X, compute where the bits we care about are.
7202 Otherwise, we can't do anything. Don't change the mode of
7203 the shift or propagate MODE into the shift, though. */
7204 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7205 && INTVAL (XEXP (x, 1)) >= 0)
7206 {
7207 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7208 GET_MODE (x), GEN_INT (mask),
7209 XEXP (x, 1));
7210 if (temp && GET_CODE(temp) == CONST_INT)
7211 SUBST (XEXP (x, 0),
7212 force_to_mode (XEXP (x, 0), GET_MODE (x),
7213 INTVAL (temp), reg, next_select));
7214 }
7215 break;
7216
7217 case NEG:
7218 /* If we just want the low-order bit, the NEG isn't needed since it
7219 won't change the low-order bit. */
7220 if (mask == 1)
7221 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7222
7223 /* We need any bits less significant than the most significant bit in
7224 MASK since carries from those bits will affect the bits we are
7225 interested in. */
7226 mask = fuller_mask;
7227 goto unop;
7228
7229 case NOT:
7230 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7231 same as the XOR case above. Ensure that the constant we form is not
7232 wider than the mode of X. */
7233
7234 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7235 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7236 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7237 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7238 < GET_MODE_BITSIZE (GET_MODE (x)))
7239 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7240 {
7241 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7242 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7243 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7244
7245 return force_to_mode (x, mode, mask, reg, next_select);
7246 }
7247
7248 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7249 use the full mask inside the NOT. */
7250 mask = fuller_mask;
7251
7252 unop:
7253 op0 = gen_lowpart_for_combine (op_mode,
7254 force_to_mode (XEXP (x, 0), mode, mask,
7255 reg, next_select));
7256 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7257 x = gen_unary (code, op_mode, op_mode, op0);
7258 break;
7259
7260 case NE:
7261 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7262 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7263 which is equal to STORE_FLAG_VALUE. */
7264 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7265 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7266 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7267 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7268
7269 break;
7270
7271 case IF_THEN_ELSE:
7272 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7273 written in a narrower mode. We play it safe and do not do so. */
7274
7275 SUBST (XEXP (x, 1),
7276 gen_lowpart_for_combine (GET_MODE (x),
7277 force_to_mode (XEXP (x, 1), mode,
7278 mask, reg, next_select)));
7279 SUBST (XEXP (x, 2),
7280 gen_lowpart_for_combine (GET_MODE (x),
7281 force_to_mode (XEXP (x, 2), mode,
7282 mask, reg,next_select)));
7283 break;
7284
7285 default:
7286 break;
7287 }
7288
7289 /* Ensure we return a value of the proper mode. */
7290 return gen_lowpart_for_combine (mode, x);
7291 }
7292 \f
7293 /* Return nonzero if X is an expression that has one of two values depending on
7294 whether some other value is zero or nonzero. In that case, we return the
7295 value that is being tested, *PTRUE is set to the value if the rtx being
7296 returned has a nonzero value, and *PFALSE is set to the other alternative.
7297
7298 If we return zero, we set *PTRUE and *PFALSE to X. */
7299
7300 static rtx
7301 if_then_else_cond (x, ptrue, pfalse)
7302 rtx x;
7303 rtx *ptrue, *pfalse;
7304 {
7305 enum machine_mode mode = GET_MODE (x);
7306 enum rtx_code code = GET_CODE (x);
7307 rtx cond0, cond1, true0, true1, false0, false1;
7308 unsigned HOST_WIDE_INT nz;
7309
7310 /* If we are comparing a value against zero, we are done. */
7311 if ((code == NE || code == EQ)
7312 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7313 {
7314 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7315 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7316 return XEXP (x, 0);
7317 }
7318
7319 /* If this is a unary operation whose operand has one of two values, apply
7320 our opcode to compute those values. */
7321 else if (GET_RTX_CLASS (code) == '1'
7322 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7323 {
7324 *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
7325 *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
7326 return cond0;
7327 }
7328
7329 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7330 make can't possibly match and would suppress other optimizations. */
7331 else if (code == COMPARE)
7332 ;
7333
7334 /* If this is a binary operation, see if either side has only one of two
7335 values. If either one does or if both do and they are conditional on
7336 the same value, compute the new true and false values. */
7337 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7338 || GET_RTX_CLASS (code) == '<')
7339 {
7340 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7341 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7342
7343 if ((cond0 != 0 || cond1 != 0)
7344 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7345 {
7346 /* If if_then_else_cond returned zero, then true/false are the
7347 same rtl. We must copy one of them to prevent invalid rtl
7348 sharing. */
7349 if (cond0 == 0)
7350 true0 = copy_rtx (true0);
7351 else if (cond1 == 0)
7352 true1 = copy_rtx (true1);
7353
7354 *ptrue = gen_binary (code, mode, true0, true1);
7355 *pfalse = gen_binary (code, mode, false0, false1);
7356 return cond0 ? cond0 : cond1;
7357 }
7358
7359 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7360 operands is zero when the other is non-zero, and vice-versa,
7361 and STORE_FLAG_VALUE is 1 or -1. */
7362
7363 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7364 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7365 || code == UMAX)
7366 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7367 {
7368 rtx op0 = XEXP (XEXP (x, 0), 1);
7369 rtx op1 = XEXP (XEXP (x, 1), 1);
7370
7371 cond0 = XEXP (XEXP (x, 0), 0);
7372 cond1 = XEXP (XEXP (x, 1), 0);
7373
7374 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7375 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7376 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7377 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7378 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7379 || ((swap_condition (GET_CODE (cond0))
7380 == combine_reversed_comparison_code (cond1))
7381 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7382 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7383 && ! side_effects_p (x))
7384 {
7385 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7386 *pfalse = gen_binary (MULT, mode,
7387 (code == MINUS
7388 ? gen_unary (NEG, mode, mode, op1) : op1),
7389 const_true_rtx);
7390 return cond0;
7391 }
7392 }
7393
7394 /* Similarly for MULT, AND and UMIN, execpt that for these the result
7395 is always zero. */
7396 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7397 && (code == MULT || code == AND || code == UMIN)
7398 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7399 {
7400 cond0 = XEXP (XEXP (x, 0), 0);
7401 cond1 = XEXP (XEXP (x, 1), 0);
7402
7403 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7404 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7405 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7406 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7407 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7408 || ((swap_condition (GET_CODE (cond0))
7409 == combine_reversed_comparison_code (cond1))
7410 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7411 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7412 && ! side_effects_p (x))
7413 {
7414 *ptrue = *pfalse = const0_rtx;
7415 return cond0;
7416 }
7417 }
7418 }
7419
7420 else if (code == IF_THEN_ELSE)
7421 {
7422 /* If we have IF_THEN_ELSE already, extract the condition and
7423 canonicalize it if it is NE or EQ. */
7424 cond0 = XEXP (x, 0);
7425 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7426 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7427 return XEXP (cond0, 0);
7428 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7429 {
7430 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7431 return XEXP (cond0, 0);
7432 }
7433 else
7434 return cond0;
7435 }
7436
7437 /* If X is a normal SUBREG with both inner and outer modes integral,
7438 we can narrow both the true and false values of the inner expression,
7439 if there is a condition. */
7440 else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
7441 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
7442 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
7443 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7444 &true0, &false0)))
7445 {
7446 if ((GET_CODE (SUBREG_REG (x)) == REG
7447 || GET_CODE (SUBREG_REG (x)) == MEM
7448 || CONSTANT_P (SUBREG_REG (x)))
7449 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
7450 && (WORDS_BIG_ENDIAN || SUBREG_WORD (x) != 0))
7451 {
7452 true0 = operand_subword (true0, SUBREG_WORD (x), 0,
7453 GET_MODE (SUBREG_REG (x)));
7454 false0 = operand_subword (false0, SUBREG_WORD (x), 0,
7455 GET_MODE (SUBREG_REG (x)));
7456 }
7457 *ptrue = force_to_mode (true0, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
7458 *pfalse
7459 = force_to_mode (false0, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
7460
7461 return cond0;
7462 }
7463
7464 /* If X is a constant, this isn't special and will cause confusions
7465 if we treat it as such. Likewise if it is equivalent to a constant. */
7466 else if (CONSTANT_P (x)
7467 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7468 ;
7469
7470 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7471 will be least confusing to the rest of the compiler. */
7472 else if (mode == BImode)
7473 {
7474 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7475 return x;
7476 }
7477
7478 /* If X is known to be either 0 or -1, those are the true and
7479 false values when testing X. */
7480 else if (x == constm1_rtx || x == const0_rtx
7481 || (mode != VOIDmode
7482 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7483 {
7484 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7485 return x;
7486 }
7487
7488 /* Likewise for 0 or a single bit. */
7489 else if (mode != VOIDmode
7490 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7491 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7492 {
7493 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7494 return x;
7495 }
7496
7497 /* Otherwise fail; show no condition with true and false values the same. */
7498 *ptrue = *pfalse = x;
7499 return 0;
7500 }
7501 \f
7502 /* Return the value of expression X given the fact that condition COND
7503 is known to be true when applied to REG as its first operand and VAL
7504 as its second. X is known to not be shared and so can be modified in
7505 place.
7506
7507 We only handle the simplest cases, and specifically those cases that
7508 arise with IF_THEN_ELSE expressions. */
7509
7510 static rtx
7511 known_cond (x, cond, reg, val)
7512 rtx x;
7513 enum rtx_code cond;
7514 rtx reg, val;
7515 {
7516 enum rtx_code code = GET_CODE (x);
7517 rtx temp;
7518 const char *fmt;
7519 int i, j;
7520
7521 if (side_effects_p (x))
7522 return x;
7523
7524 if (cond == EQ && rtx_equal_p (x, reg) && !FLOAT_MODE_P (cond))
7525 return val;
7526 if (cond == UNEQ && rtx_equal_p (x, reg))
7527 return val;
7528
7529 /* If X is (abs REG) and we know something about REG's relationship
7530 with zero, we may be able to simplify this. */
7531
7532 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7533 switch (cond)
7534 {
7535 case GE: case GT: case EQ:
7536 return XEXP (x, 0);
7537 case LT: case LE:
7538 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
7539 XEXP (x, 0));
7540 default:
7541 break;
7542 }
7543
7544 /* The only other cases we handle are MIN, MAX, and comparisons if the
7545 operands are the same as REG and VAL. */
7546
7547 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7548 {
7549 if (rtx_equal_p (XEXP (x, 0), val))
7550 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7551
7552 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7553 {
7554 if (GET_RTX_CLASS (code) == '<')
7555 {
7556 if (comparison_dominates_p (cond, code))
7557 return const_true_rtx;
7558
7559 code = combine_reversed_comparison_code (x);
7560 if (code != UNKNOWN
7561 && comparison_dominates_p (cond, code))
7562 return const0_rtx;
7563 else
7564 return x;
7565 }
7566 else if (code == SMAX || code == SMIN
7567 || code == UMIN || code == UMAX)
7568 {
7569 int unsignedp = (code == UMIN || code == UMAX);
7570
7571 if (code == SMAX || code == UMAX)
7572 cond = reverse_condition (cond);
7573
7574 switch (cond)
7575 {
7576 case GE: case GT:
7577 return unsignedp ? x : XEXP (x, 1);
7578 case LE: case LT:
7579 return unsignedp ? x : XEXP (x, 0);
7580 case GEU: case GTU:
7581 return unsignedp ? XEXP (x, 1) : x;
7582 case LEU: case LTU:
7583 return unsignedp ? XEXP (x, 0) : x;
7584 default:
7585 break;
7586 }
7587 }
7588 }
7589 }
7590
7591 fmt = GET_RTX_FORMAT (code);
7592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7593 {
7594 if (fmt[i] == 'e')
7595 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7596 else if (fmt[i] == 'E')
7597 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7598 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7599 cond, reg, val));
7600 }
7601
7602 return x;
7603 }
7604 \f
7605 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7606 assignment as a field assignment. */
7607
7608 static int
7609 rtx_equal_for_field_assignment_p (x, y)
7610 rtx x;
7611 rtx y;
7612 {
7613 if (x == y || rtx_equal_p (x, y))
7614 return 1;
7615
7616 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7617 return 0;
7618
7619 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7620 Note that all SUBREGs of MEM are paradoxical; otherwise they
7621 would have been rewritten. */
7622 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7623 && GET_CODE (SUBREG_REG (y)) == MEM
7624 && rtx_equal_p (SUBREG_REG (y),
7625 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7626 return 1;
7627
7628 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7629 && GET_CODE (SUBREG_REG (x)) == MEM
7630 && rtx_equal_p (SUBREG_REG (x),
7631 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7632 return 1;
7633
7634 /* We used to see if get_last_value of X and Y were the same but that's
7635 not correct. In one direction, we'll cause the assignment to have
7636 the wrong destination and in the case, we'll import a register into this
7637 insn that might have already have been dead. So fail if none of the
7638 above cases are true. */
7639 return 0;
7640 }
7641 \f
7642 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7643 Return that assignment if so.
7644
7645 We only handle the most common cases. */
7646
7647 static rtx
7648 make_field_assignment (x)
7649 rtx x;
7650 {
7651 rtx dest = SET_DEST (x);
7652 rtx src = SET_SRC (x);
7653 rtx assign;
7654 rtx rhs, lhs;
7655 HOST_WIDE_INT c1;
7656 HOST_WIDE_INT pos;
7657 unsigned HOST_WIDE_INT len;
7658 rtx other;
7659 enum machine_mode mode;
7660
7661 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7662 a clear of a one-bit field. We will have changed it to
7663 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7664 for a SUBREG. */
7665
7666 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7667 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7668 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7669 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7670 {
7671 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7672 1, 1, 1, 0);
7673 if (assign != 0)
7674 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7675 return x;
7676 }
7677
7678 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7679 && subreg_lowpart_p (XEXP (src, 0))
7680 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7681 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7682 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7683 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7684 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7685 {
7686 assign = make_extraction (VOIDmode, dest, 0,
7687 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7688 1, 1, 1, 0);
7689 if (assign != 0)
7690 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7691 return x;
7692 }
7693
7694 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7695 one-bit field. */
7696 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7697 && XEXP (XEXP (src, 0), 0) == const1_rtx
7698 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7699 {
7700 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7701 1, 1, 1, 0);
7702 if (assign != 0)
7703 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7704 return x;
7705 }
7706
7707 /* The other case we handle is assignments into a constant-position
7708 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7709 a mask that has all one bits except for a group of zero bits and
7710 OTHER is known to have zeros where C1 has ones, this is such an
7711 assignment. Compute the position and length from C1. Shift OTHER
7712 to the appropriate position, force it to the required mode, and
7713 make the extraction. Check for the AND in both operands. */
7714
7715 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7716 return x;
7717
7718 rhs = expand_compound_operation (XEXP (src, 0));
7719 lhs = expand_compound_operation (XEXP (src, 1));
7720
7721 if (GET_CODE (rhs) == AND
7722 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7723 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7724 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7725 else if (GET_CODE (lhs) == AND
7726 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7727 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7728 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7729 else
7730 return x;
7731
7732 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7733 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7734 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7735 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7736 return x;
7737
7738 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7739 if (assign == 0)
7740 return x;
7741
7742 /* The mode to use for the source is the mode of the assignment, or of
7743 what is inside a possible STRICT_LOW_PART. */
7744 mode = (GET_CODE (assign) == STRICT_LOW_PART
7745 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7746
7747 /* Shift OTHER right POS places and make it the source, restricting it
7748 to the proper length and mode. */
7749
7750 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7751 GET_MODE (src), other, pos),
7752 mode,
7753 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7754 ? ~(unsigned HOST_WIDE_INT) 0
7755 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7756 dest, 0);
7757
7758 return gen_rtx_combine (SET, VOIDmode, assign, src);
7759 }
7760 \f
7761 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7762 if so. */
7763
7764 static rtx
7765 apply_distributive_law (x)
7766 rtx x;
7767 {
7768 enum rtx_code code = GET_CODE (x);
7769 rtx lhs, rhs, other;
7770 rtx tem;
7771 enum rtx_code inner_code;
7772
7773 /* Distributivity is not true for floating point.
7774 It can change the value. So don't do it.
7775 -- rms and moshier@world.std.com. */
7776 if (FLOAT_MODE_P (GET_MODE (x)))
7777 return x;
7778
7779 /* The outer operation can only be one of the following: */
7780 if (code != IOR && code != AND && code != XOR
7781 && code != PLUS && code != MINUS)
7782 return x;
7783
7784 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7785
7786 /* If either operand is a primitive we can't do anything, so get out
7787 fast. */
7788 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7789 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7790 return x;
7791
7792 lhs = expand_compound_operation (lhs);
7793 rhs = expand_compound_operation (rhs);
7794 inner_code = GET_CODE (lhs);
7795 if (inner_code != GET_CODE (rhs))
7796 return x;
7797
7798 /* See if the inner and outer operations distribute. */
7799 switch (inner_code)
7800 {
7801 case LSHIFTRT:
7802 case ASHIFTRT:
7803 case AND:
7804 case IOR:
7805 /* These all distribute except over PLUS. */
7806 if (code == PLUS || code == MINUS)
7807 return x;
7808 break;
7809
7810 case MULT:
7811 if (code != PLUS && code != MINUS)
7812 return x;
7813 break;
7814
7815 case ASHIFT:
7816 /* This is also a multiply, so it distributes over everything. */
7817 break;
7818
7819 case SUBREG:
7820 /* Non-paradoxical SUBREGs distributes over all operations, provided
7821 the inner modes and word numbers are the same, this is an extraction
7822 of a low-order part, we don't convert an fp operation to int or
7823 vice versa, and we would not be converting a single-word
7824 operation into a multi-word operation. The latter test is not
7825 required, but it prevents generating unneeded multi-word operations.
7826 Some of the previous tests are redundant given the latter test, but
7827 are retained because they are required for correctness.
7828
7829 We produce the result slightly differently in this case. */
7830
7831 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7832 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
7833 || ! subreg_lowpart_p (lhs)
7834 || (GET_MODE_CLASS (GET_MODE (lhs))
7835 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7836 || (GET_MODE_SIZE (GET_MODE (lhs))
7837 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7838 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7839 return x;
7840
7841 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7842 SUBREG_REG (lhs), SUBREG_REG (rhs));
7843 return gen_lowpart_for_combine (GET_MODE (x), tem);
7844
7845 default:
7846 return x;
7847 }
7848
7849 /* Set LHS and RHS to the inner operands (A and B in the example
7850 above) and set OTHER to the common operand (C in the example).
7851 These is only one way to do this unless the inner operation is
7852 commutative. */
7853 if (GET_RTX_CLASS (inner_code) == 'c'
7854 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7855 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7856 else if (GET_RTX_CLASS (inner_code) == 'c'
7857 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7858 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7859 else if (GET_RTX_CLASS (inner_code) == 'c'
7860 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7861 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7862 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7863 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7864 else
7865 return x;
7866
7867 /* Form the new inner operation, seeing if it simplifies first. */
7868 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7869
7870 /* There is one exception to the general way of distributing:
7871 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7872 if (code == XOR && inner_code == IOR)
7873 {
7874 inner_code = AND;
7875 other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
7876 }
7877
7878 /* We may be able to continuing distributing the result, so call
7879 ourselves recursively on the inner operation before forming the
7880 outer operation, which we return. */
7881 return gen_binary (inner_code, GET_MODE (x),
7882 apply_distributive_law (tem), other);
7883 }
7884 \f
7885 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7886 in MODE.
7887
7888 Return an equivalent form, if different from X. Otherwise, return X. If
7889 X is zero, we are to always construct the equivalent form. */
7890
7891 static rtx
7892 simplify_and_const_int (x, mode, varop, constop)
7893 rtx x;
7894 enum machine_mode mode;
7895 rtx varop;
7896 unsigned HOST_WIDE_INT constop;
7897 {
7898 unsigned HOST_WIDE_INT nonzero;
7899 int i;
7900
7901 /* Simplify VAROP knowing that we will be only looking at some of the
7902 bits in it. */
7903 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7904
7905 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7906 CONST_INT, we are done. */
7907 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7908 return varop;
7909
7910 /* See what bits may be nonzero in VAROP. Unlike the general case of
7911 a call to nonzero_bits, here we don't care about bits outside
7912 MODE. */
7913
7914 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7915 nonzero = trunc_int_for_mode (nonzero, mode);
7916
7917 /* Turn off all bits in the constant that are known to already be zero.
7918 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7919 which is tested below. */
7920
7921 constop &= nonzero;
7922
7923 /* If we don't have any bits left, return zero. */
7924 if (constop == 0)
7925 return const0_rtx;
7926
7927 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7928 a power of two, we can replace this with a ASHIFT. */
7929 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7930 && (i = exact_log2 (constop)) >= 0)
7931 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7932
7933 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7934 or XOR, then try to apply the distributive law. This may eliminate
7935 operations if either branch can be simplified because of the AND.
7936 It may also make some cases more complex, but those cases probably
7937 won't match a pattern either with or without this. */
7938
7939 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7940 return
7941 gen_lowpart_for_combine
7942 (mode,
7943 apply_distributive_law
7944 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7945 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7946 XEXP (varop, 0), constop),
7947 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7948 XEXP (varop, 1), constop))));
7949
7950 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7951 if we already had one (just check for the simplest cases). */
7952 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7953 && GET_MODE (XEXP (x, 0)) == mode
7954 && SUBREG_REG (XEXP (x, 0)) == varop)
7955 varop = XEXP (x, 0);
7956 else
7957 varop = gen_lowpart_for_combine (mode, varop);
7958
7959 /* If we can't make the SUBREG, try to return what we were given. */
7960 if (GET_CODE (varop) == CLOBBER)
7961 return x ? x : varop;
7962
7963 /* If we are only masking insignificant bits, return VAROP. */
7964 if (constop == nonzero)
7965 x = varop;
7966
7967 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7968 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7969 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7970
7971 else
7972 {
7973 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7974 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7975 SUBST (XEXP (x, 1), GEN_INT (constop));
7976
7977 SUBST (XEXP (x, 0), varop);
7978 }
7979
7980 return x;
7981 }
7982 \f
7983 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7984 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7985 is less useful. We can't allow both, because that results in exponential
7986 run time recursion. There is a nullstone testcase that triggered
7987 this. This macro avoids accidental uses of num_sign_bit_copies. */
7988 #define num_sign_bit_copies()
7989
7990 /* Given an expression, X, compute which bits in X can be non-zero.
7991 We don't care about bits outside of those defined in MODE.
7992
7993 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7994 a shift, AND, or zero_extract, we can do better. */
7995
7996 static unsigned HOST_WIDE_INT
7997 nonzero_bits (x, mode)
7998 rtx x;
7999 enum machine_mode mode;
8000 {
8001 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8002 unsigned HOST_WIDE_INT inner_nz;
8003 enum rtx_code code;
8004 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8005 rtx tem;
8006
8007 /* For floating-point values, assume all bits are needed. */
8008 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8009 return nonzero;
8010
8011 /* If X is wider than MODE, use its mode instead. */
8012 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8013 {
8014 mode = GET_MODE (x);
8015 nonzero = GET_MODE_MASK (mode);
8016 mode_width = GET_MODE_BITSIZE (mode);
8017 }
8018
8019 if (mode_width > HOST_BITS_PER_WIDE_INT)
8020 /* Our only callers in this case look for single bit values. So
8021 just return the mode mask. Those tests will then be false. */
8022 return nonzero;
8023
8024 #ifndef WORD_REGISTER_OPERATIONS
8025 /* If MODE is wider than X, but both are a single word for both the host
8026 and target machines, we can compute this from which bits of the
8027 object might be nonzero in its own mode, taking into account the fact
8028 that on many CISC machines, accessing an object in a wider mode
8029 causes the high-order bits to become undefined. So they are
8030 not known to be zero. */
8031
8032 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8033 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8034 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8035 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8036 {
8037 nonzero &= nonzero_bits (x, GET_MODE (x));
8038 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8039 return nonzero;
8040 }
8041 #endif
8042
8043 code = GET_CODE (x);
8044 switch (code)
8045 {
8046 case REG:
8047 #ifdef POINTERS_EXTEND_UNSIGNED
8048 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8049 all the bits above ptr_mode are known to be zero. */
8050 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8051 && REG_POINTER (x))
8052 nonzero &= GET_MODE_MASK (ptr_mode);
8053 #endif
8054
8055 #ifdef STACK_BOUNDARY
8056 /* If this is the stack pointer, we may know something about its
8057 alignment. If PUSH_ROUNDING is defined, it is possible for the
8058 stack to be momentarily aligned only to that amount, so we pick
8059 the least alignment. */
8060
8061 /* We can't check for arg_pointer_rtx here, because it is not
8062 guaranteed to have as much alignment as the stack pointer.
8063 In particular, in the Irix6 n64 ABI, the stack has 128 bit
8064 alignment but the argument pointer has only 64 bit alignment. */
8065
8066 if ((x == frame_pointer_rtx
8067 || x == stack_pointer_rtx
8068 || x == hard_frame_pointer_rtx
8069 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
8070 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
8071 #ifdef STACK_BIAS
8072 && !STACK_BIAS
8073 #endif
8074 )
8075 {
8076 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8077
8078 #ifdef PUSH_ROUNDING
8079 if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
8080 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
8081 #endif
8082
8083 /* We must return here, otherwise we may get a worse result from
8084 one of the choices below. There is nothing useful below as
8085 far as the stack pointer is concerned. */
8086 return nonzero &= ~(sp_alignment - 1);
8087 }
8088 #endif
8089
8090 /* If X is a register whose nonzero bits value is current, use it.
8091 Otherwise, if X is a register whose value we can find, use that
8092 value. Otherwise, use the previously-computed global nonzero bits
8093 for this register. */
8094
8095 if (reg_last_set_value[REGNO (x)] != 0
8096 && reg_last_set_mode[REGNO (x)] == mode
8097 && (reg_last_set_label[REGNO (x)] == label_tick
8098 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8099 && REG_N_SETS (REGNO (x)) == 1
8100 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8101 REGNO (x))))
8102 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8103 return reg_last_set_nonzero_bits[REGNO (x)];
8104
8105 tem = get_last_value (x);
8106
8107 if (tem)
8108 {
8109 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8110 /* If X is narrower than MODE and TEM is a non-negative
8111 constant that would appear negative in the mode of X,
8112 sign-extend it for use in reg_nonzero_bits because some
8113 machines (maybe most) will actually do the sign-extension
8114 and this is the conservative approach.
8115
8116 ??? For 2.5, try to tighten up the MD files in this regard
8117 instead of this kludge. */
8118
8119 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8120 && GET_CODE (tem) == CONST_INT
8121 && INTVAL (tem) > 0
8122 && 0 != (INTVAL (tem)
8123 & ((HOST_WIDE_INT) 1
8124 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8125 tem = GEN_INT (INTVAL (tem)
8126 | ((HOST_WIDE_INT) (-1)
8127 << GET_MODE_BITSIZE (GET_MODE (x))));
8128 #endif
8129 return nonzero_bits (tem, mode);
8130 }
8131 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8132 return reg_nonzero_bits[REGNO (x)] & nonzero;
8133 else
8134 return nonzero;
8135
8136 case CONST_INT:
8137 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8138 /* If X is negative in MODE, sign-extend the value. */
8139 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8140 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8141 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8142 #endif
8143
8144 return INTVAL (x);
8145
8146 case MEM:
8147 #ifdef LOAD_EXTEND_OP
8148 /* In many, if not most, RISC machines, reading a byte from memory
8149 zeros the rest of the register. Noticing that fact saves a lot
8150 of extra zero-extends. */
8151 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8152 nonzero &= GET_MODE_MASK (GET_MODE (x));
8153 #endif
8154 break;
8155
8156 case EQ: case NE:
8157 case UNEQ: case LTGT:
8158 case GT: case GTU: case UNGT:
8159 case LT: case LTU: case UNLT:
8160 case GE: case GEU: case UNGE:
8161 case LE: case LEU: case UNLE:
8162 case UNORDERED: case ORDERED:
8163
8164 /* If this produces an integer result, we know which bits are set.
8165 Code here used to clear bits outside the mode of X, but that is
8166 now done above. */
8167
8168 if (GET_MODE_CLASS (mode) == MODE_INT
8169 && mode_width <= HOST_BITS_PER_WIDE_INT)
8170 nonzero = STORE_FLAG_VALUE;
8171 break;
8172
8173 case NEG:
8174 #if 0
8175 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8176 and num_sign_bit_copies. */
8177 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8178 == GET_MODE_BITSIZE (GET_MODE (x)))
8179 nonzero = 1;
8180 #endif
8181
8182 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8183 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8184 break;
8185
8186 case ABS:
8187 #if 0
8188 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8189 and num_sign_bit_copies. */
8190 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8191 == GET_MODE_BITSIZE (GET_MODE (x)))
8192 nonzero = 1;
8193 #endif
8194 break;
8195
8196 case TRUNCATE:
8197 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8198 break;
8199
8200 case ZERO_EXTEND:
8201 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8202 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8203 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8204 break;
8205
8206 case SIGN_EXTEND:
8207 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8208 Otherwise, show all the bits in the outer mode but not the inner
8209 may be non-zero. */
8210 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8211 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8212 {
8213 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8214 if (inner_nz
8215 & (((HOST_WIDE_INT) 1
8216 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8217 inner_nz |= (GET_MODE_MASK (mode)
8218 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8219 }
8220
8221 nonzero &= inner_nz;
8222 break;
8223
8224 case AND:
8225 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8226 & nonzero_bits (XEXP (x, 1), mode));
8227 break;
8228
8229 case XOR: case IOR:
8230 case UMIN: case UMAX: case SMIN: case SMAX:
8231 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8232 | nonzero_bits (XEXP (x, 1), mode));
8233 break;
8234
8235 case PLUS: case MINUS:
8236 case MULT:
8237 case DIV: case UDIV:
8238 case MOD: case UMOD:
8239 /* We can apply the rules of arithmetic to compute the number of
8240 high- and low-order zero bits of these operations. We start by
8241 computing the width (position of the highest-order non-zero bit)
8242 and the number of low-order zero bits for each value. */
8243 {
8244 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8245 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8246 int width0 = floor_log2 (nz0) + 1;
8247 int width1 = floor_log2 (nz1) + 1;
8248 int low0 = floor_log2 (nz0 & -nz0);
8249 int low1 = floor_log2 (nz1 & -nz1);
8250 HOST_WIDE_INT op0_maybe_minusp
8251 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8252 HOST_WIDE_INT op1_maybe_minusp
8253 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8254 unsigned int result_width = mode_width;
8255 int result_low = 0;
8256
8257 switch (code)
8258 {
8259 case PLUS:
8260 #ifdef STACK_BIAS
8261 if (STACK_BIAS
8262 && (XEXP (x, 0) == stack_pointer_rtx
8263 || XEXP (x, 0) == frame_pointer_rtx)
8264 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8265 {
8266 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8267
8268 nz0 = (GET_MODE_MASK (mode) & ~(sp_alignment - 1));
8269 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8270 width0 = floor_log2 (nz0) + 1;
8271 width1 = floor_log2 (nz1) + 1;
8272 low0 = floor_log2 (nz0 & -nz0);
8273 low1 = floor_log2 (nz1 & -nz1);
8274 }
8275 #endif
8276 result_width = MAX (width0, width1) + 1;
8277 result_low = MIN (low0, low1);
8278 break;
8279 case MINUS:
8280 result_low = MIN (low0, low1);
8281 break;
8282 case MULT:
8283 result_width = width0 + width1;
8284 result_low = low0 + low1;
8285 break;
8286 case DIV:
8287 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8288 result_width = width0;
8289 break;
8290 case UDIV:
8291 result_width = width0;
8292 break;
8293 case MOD:
8294 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8295 result_width = MIN (width0, width1);
8296 result_low = MIN (low0, low1);
8297 break;
8298 case UMOD:
8299 result_width = MIN (width0, width1);
8300 result_low = MIN (low0, low1);
8301 break;
8302 default:
8303 abort ();
8304 }
8305
8306 if (result_width < mode_width)
8307 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8308
8309 if (result_low > 0)
8310 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8311 }
8312 break;
8313
8314 case ZERO_EXTRACT:
8315 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8316 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8317 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8318 break;
8319
8320 case SUBREG:
8321 /* If this is a SUBREG formed for a promoted variable that has
8322 been zero-extended, we know that at least the high-order bits
8323 are zero, though others might be too. */
8324
8325 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8326 nonzero = (GET_MODE_MASK (GET_MODE (x))
8327 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8328
8329 /* If the inner mode is a single word for both the host and target
8330 machines, we can compute this from which bits of the inner
8331 object might be nonzero. */
8332 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8333 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8334 <= HOST_BITS_PER_WIDE_INT))
8335 {
8336 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8337
8338 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8339 /* If this is a typical RISC machine, we only have to worry
8340 about the way loads are extended. */
8341 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8342 ? (((nonzero
8343 & (((unsigned HOST_WIDE_INT) 1
8344 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8345 != 0))
8346 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8347 #endif
8348 {
8349 /* On many CISC machines, accessing an object in a wider mode
8350 causes the high-order bits to become undefined. So they are
8351 not known to be zero. */
8352 if (GET_MODE_SIZE (GET_MODE (x))
8353 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8354 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8355 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8356 }
8357 }
8358 break;
8359
8360 case ASHIFTRT:
8361 case LSHIFTRT:
8362 case ASHIFT:
8363 case ROTATE:
8364 /* The nonzero bits are in two classes: any bits within MODE
8365 that aren't in GET_MODE (x) are always significant. The rest of the
8366 nonzero bits are those that are significant in the operand of
8367 the shift when shifted the appropriate number of bits. This
8368 shows that high-order bits are cleared by the right shift and
8369 low-order bits by left shifts. */
8370 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8371 && INTVAL (XEXP (x, 1)) >= 0
8372 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8373 {
8374 enum machine_mode inner_mode = GET_MODE (x);
8375 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8376 int count = INTVAL (XEXP (x, 1));
8377 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8378 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8379 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8380 unsigned HOST_WIDE_INT outer = 0;
8381
8382 if (mode_width > width)
8383 outer = (op_nonzero & nonzero & ~mode_mask);
8384
8385 if (code == LSHIFTRT)
8386 inner >>= count;
8387 else if (code == ASHIFTRT)
8388 {
8389 inner >>= count;
8390
8391 /* If the sign bit may have been nonzero before the shift, we
8392 need to mark all the places it could have been copied to
8393 by the shift as possibly nonzero. */
8394 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8395 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8396 }
8397 else if (code == ASHIFT)
8398 inner <<= count;
8399 else
8400 inner = ((inner << (count % width)
8401 | (inner >> (width - (count % width)))) & mode_mask);
8402
8403 nonzero &= (outer | inner);
8404 }
8405 break;
8406
8407 case FFS:
8408 /* This is at most the number of bits in the mode. */
8409 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8410 break;
8411
8412 case IF_THEN_ELSE:
8413 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8414 | nonzero_bits (XEXP (x, 2), mode));
8415 break;
8416
8417 default:
8418 break;
8419 }
8420
8421 return nonzero;
8422 }
8423
8424 /* See the macro definition above. */
8425 #undef num_sign_bit_copies
8426 \f
8427 /* Return the number of bits at the high-order end of X that are known to
8428 be equal to the sign bit. X will be used in mode MODE; if MODE is
8429 VOIDmode, X will be used in its own mode. The returned value will always
8430 be between 1 and the number of bits in MODE. */
8431
8432 static unsigned int
8433 num_sign_bit_copies (x, mode)
8434 rtx x;
8435 enum machine_mode mode;
8436 {
8437 enum rtx_code code = GET_CODE (x);
8438 unsigned int bitwidth;
8439 int num0, num1, result;
8440 unsigned HOST_WIDE_INT nonzero;
8441 rtx tem;
8442
8443 /* If we weren't given a mode, use the mode of X. If the mode is still
8444 VOIDmode, we don't know anything. Likewise if one of the modes is
8445 floating-point. */
8446
8447 if (mode == VOIDmode)
8448 mode = GET_MODE (x);
8449
8450 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8451 return 1;
8452
8453 bitwidth = GET_MODE_BITSIZE (mode);
8454
8455 /* For a smaller object, just ignore the high bits. */
8456 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8457 {
8458 num0 = num_sign_bit_copies (x, GET_MODE (x));
8459 return MAX (1,
8460 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8461 }
8462
8463 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8464 {
8465 #ifndef WORD_REGISTER_OPERATIONS
8466 /* If this machine does not do all register operations on the entire
8467 register and MODE is wider than the mode of X, we can say nothing
8468 at all about the high-order bits. */
8469 return 1;
8470 #else
8471 /* Likewise on machines that do, if the mode of the object is smaller
8472 than a word and loads of that size don't sign extend, we can say
8473 nothing about the high order bits. */
8474 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8475 #ifdef LOAD_EXTEND_OP
8476 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8477 #endif
8478 )
8479 return 1;
8480 #endif
8481 }
8482
8483 switch (code)
8484 {
8485 case REG:
8486
8487 #ifdef POINTERS_EXTEND_UNSIGNED
8488 /* If pointers extend signed and this is a pointer in Pmode, say that
8489 all the bits above ptr_mode are known to be sign bit copies. */
8490 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8491 && REG_POINTER (x))
8492 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8493 #endif
8494
8495 if (reg_last_set_value[REGNO (x)] != 0
8496 && reg_last_set_mode[REGNO (x)] == mode
8497 && (reg_last_set_label[REGNO (x)] == label_tick
8498 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8499 && REG_N_SETS (REGNO (x)) == 1
8500 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8501 REGNO (x))))
8502 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8503 return reg_last_set_sign_bit_copies[REGNO (x)];
8504
8505 tem = get_last_value (x);
8506 if (tem != 0)
8507 return num_sign_bit_copies (tem, mode);
8508
8509 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
8510 return reg_sign_bit_copies[REGNO (x)];
8511 break;
8512
8513 case MEM:
8514 #ifdef LOAD_EXTEND_OP
8515 /* Some RISC machines sign-extend all loads of smaller than a word. */
8516 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8517 return MAX (1, ((int) bitwidth
8518 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8519 #endif
8520 break;
8521
8522 case CONST_INT:
8523 /* If the constant is negative, take its 1's complement and remask.
8524 Then see how many zero bits we have. */
8525 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8526 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8527 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8528 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8529
8530 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8531
8532 case SUBREG:
8533 /* If this is a SUBREG for a promoted object that is sign-extended
8534 and we are looking at it in a wider mode, we know that at least the
8535 high-order bits are known to be sign bit copies. */
8536
8537 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8538 {
8539 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8540 return MAX ((int) bitwidth
8541 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8542 num0);
8543 }
8544
8545 /* For a smaller object, just ignore the high bits. */
8546 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8547 {
8548 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8549 return MAX (1, (num0
8550 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8551 - bitwidth)));
8552 }
8553
8554 #ifdef WORD_REGISTER_OPERATIONS
8555 #ifdef LOAD_EXTEND_OP
8556 /* For paradoxical SUBREGs on machines where all register operations
8557 affect the entire register, just look inside. Note that we are
8558 passing MODE to the recursive call, so the number of sign bit copies
8559 will remain relative to that mode, not the inner mode. */
8560
8561 /* This works only if loads sign extend. Otherwise, if we get a
8562 reload for the inner part, it may be loaded from the stack, and
8563 then we lose all sign bit copies that existed before the store
8564 to the stack. */
8565
8566 if ((GET_MODE_SIZE (GET_MODE (x))
8567 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8568 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8569 return num_sign_bit_copies (SUBREG_REG (x), mode);
8570 #endif
8571 #endif
8572 break;
8573
8574 case SIGN_EXTRACT:
8575 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8576 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8577 break;
8578
8579 case SIGN_EXTEND:
8580 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8581 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8582
8583 case TRUNCATE:
8584 /* For a smaller object, just ignore the high bits. */
8585 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8586 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8587 - bitwidth)));
8588
8589 case NOT:
8590 return num_sign_bit_copies (XEXP (x, 0), mode);
8591
8592 case ROTATE: case ROTATERT:
8593 /* If we are rotating left by a number of bits less than the number
8594 of sign bit copies, we can just subtract that amount from the
8595 number. */
8596 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8597 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
8598 {
8599 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8600 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8601 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8602 }
8603 break;
8604
8605 case NEG:
8606 /* In general, this subtracts one sign bit copy. But if the value
8607 is known to be positive, the number of sign bit copies is the
8608 same as that of the input. Finally, if the input has just one bit
8609 that might be nonzero, all the bits are copies of the sign bit. */
8610 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8611 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8612 return num0 > 1 ? num0 - 1 : 1;
8613
8614 nonzero = nonzero_bits (XEXP (x, 0), mode);
8615 if (nonzero == 1)
8616 return bitwidth;
8617
8618 if (num0 > 1
8619 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8620 num0--;
8621
8622 return num0;
8623
8624 case IOR: case AND: case XOR:
8625 case SMIN: case SMAX: case UMIN: case UMAX:
8626 /* Logical operations will preserve the number of sign-bit copies.
8627 MIN and MAX operations always return one of the operands. */
8628 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8629 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8630 return MIN (num0, num1);
8631
8632 case PLUS: case MINUS:
8633 /* For addition and subtraction, we can have a 1-bit carry. However,
8634 if we are subtracting 1 from a positive number, there will not
8635 be such a carry. Furthermore, if the positive number is known to
8636 be 0 or 1, we know the result is either -1 or 0. */
8637
8638 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8639 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8640 {
8641 nonzero = nonzero_bits (XEXP (x, 0), mode);
8642 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8643 return (nonzero == 1 || nonzero == 0 ? bitwidth
8644 : bitwidth - floor_log2 (nonzero) - 1);
8645 }
8646
8647 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8648 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8649 return MAX (1, MIN (num0, num1) - 1);
8650
8651 case MULT:
8652 /* The number of bits of the product is the sum of the number of
8653 bits of both terms. However, unless one of the terms if known
8654 to be positive, we must allow for an additional bit since negating
8655 a negative number can remove one sign bit copy. */
8656
8657 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8658 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8659
8660 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8661 if (result > 0
8662 && (bitwidth > HOST_BITS_PER_WIDE_INT
8663 || (((nonzero_bits (XEXP (x, 0), mode)
8664 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8665 && ((nonzero_bits (XEXP (x, 1), mode)
8666 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8667 result--;
8668
8669 return MAX (1, result);
8670
8671 case UDIV:
8672 /* The result must be <= the first operand. If the first operand
8673 has the high bit set, we know nothing about the number of sign
8674 bit copies. */
8675 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8676 return 1;
8677 else if ((nonzero_bits (XEXP (x, 0), mode)
8678 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8679 return 1;
8680 else
8681 return num_sign_bit_copies (XEXP (x, 0), mode);
8682
8683 case UMOD:
8684 /* The result must be <= the scond operand. */
8685 return num_sign_bit_copies (XEXP (x, 1), mode);
8686
8687 case DIV:
8688 /* Similar to unsigned division, except that we have to worry about
8689 the case where the divisor is negative, in which case we have
8690 to add 1. */
8691 result = num_sign_bit_copies (XEXP (x, 0), mode);
8692 if (result > 1
8693 && (bitwidth > HOST_BITS_PER_WIDE_INT
8694 || (nonzero_bits (XEXP (x, 1), mode)
8695 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8696 result--;
8697
8698 return result;
8699
8700 case MOD:
8701 result = num_sign_bit_copies (XEXP (x, 1), mode);
8702 if (result > 1
8703 && (bitwidth > HOST_BITS_PER_WIDE_INT
8704 || (nonzero_bits (XEXP (x, 1), mode)
8705 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8706 result--;
8707
8708 return result;
8709
8710 case ASHIFTRT:
8711 /* Shifts by a constant add to the number of bits equal to the
8712 sign bit. */
8713 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8714 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8715 && INTVAL (XEXP (x, 1)) > 0)
8716 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
8717
8718 return num0;
8719
8720 case ASHIFT:
8721 /* Left shifts destroy copies. */
8722 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8723 || INTVAL (XEXP (x, 1)) < 0
8724 || INTVAL (XEXP (x, 1)) >= bitwidth)
8725 return 1;
8726
8727 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8728 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8729
8730 case IF_THEN_ELSE:
8731 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8732 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8733 return MIN (num0, num1);
8734
8735 case EQ: case NE: case GE: case GT: case LE: case LT:
8736 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8737 case GEU: case GTU: case LEU: case LTU:
8738 case UNORDERED: case ORDERED:
8739 /* If the constant is negative, take its 1's complement and remask.
8740 Then see how many zero bits we have. */
8741 nonzero = STORE_FLAG_VALUE;
8742 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8743 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8744 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8745
8746 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8747 break;
8748
8749 default:
8750 break;
8751 }
8752
8753 /* If we haven't been able to figure it out by one of the above rules,
8754 see if some of the high-order bits are known to be zero. If so,
8755 count those bits and return one less than that amount. If we can't
8756 safely compute the mask for this mode, always return BITWIDTH. */
8757
8758 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8759 return 1;
8760
8761 nonzero = nonzero_bits (x, mode);
8762 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8763 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8764 }
8765 \f
8766 /* Return the number of "extended" bits there are in X, when interpreted
8767 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8768 unsigned quantities, this is the number of high-order zero bits.
8769 For signed quantities, this is the number of copies of the sign bit
8770 minus 1. In both case, this function returns the number of "spare"
8771 bits. For example, if two quantities for which this function returns
8772 at least 1 are added, the addition is known not to overflow.
8773
8774 This function will always return 0 unless called during combine, which
8775 implies that it must be called from a define_split. */
8776
8777 unsigned int
8778 extended_count (x, mode, unsignedp)
8779 rtx x;
8780 enum machine_mode mode;
8781 int unsignedp;
8782 {
8783 if (nonzero_sign_valid == 0)
8784 return 0;
8785
8786 return (unsignedp
8787 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8788 ? (GET_MODE_BITSIZE (mode) - 1
8789 - floor_log2 (nonzero_bits (x, mode)))
8790 : 0)
8791 : num_sign_bit_copies (x, mode) - 1);
8792 }
8793 \f
8794 /* This function is called from `simplify_shift_const' to merge two
8795 outer operations. Specifically, we have already found that we need
8796 to perform operation *POP0 with constant *PCONST0 at the outermost
8797 position. We would now like to also perform OP1 with constant CONST1
8798 (with *POP0 being done last).
8799
8800 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8801 the resulting operation. *PCOMP_P is set to 1 if we would need to
8802 complement the innermost operand, otherwise it is unchanged.
8803
8804 MODE is the mode in which the operation will be done. No bits outside
8805 the width of this mode matter. It is assumed that the width of this mode
8806 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8807
8808 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8809 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8810 result is simply *PCONST0.
8811
8812 If the resulting operation cannot be expressed as one operation, we
8813 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8814
8815 static int
8816 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8817 enum rtx_code *pop0;
8818 HOST_WIDE_INT *pconst0;
8819 enum rtx_code op1;
8820 HOST_WIDE_INT const1;
8821 enum machine_mode mode;
8822 int *pcomp_p;
8823 {
8824 enum rtx_code op0 = *pop0;
8825 HOST_WIDE_INT const0 = *pconst0;
8826
8827 const0 &= GET_MODE_MASK (mode);
8828 const1 &= GET_MODE_MASK (mode);
8829
8830 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8831 if (op0 == AND)
8832 const1 &= const0;
8833
8834 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8835 if OP0 is SET. */
8836
8837 if (op1 == NIL || op0 == SET)
8838 return 1;
8839
8840 else if (op0 == NIL)
8841 op0 = op1, const0 = const1;
8842
8843 else if (op0 == op1)
8844 {
8845 switch (op0)
8846 {
8847 case AND:
8848 const0 &= const1;
8849 break;
8850 case IOR:
8851 const0 |= const1;
8852 break;
8853 case XOR:
8854 const0 ^= const1;
8855 break;
8856 case PLUS:
8857 const0 += const1;
8858 break;
8859 case NEG:
8860 op0 = NIL;
8861 break;
8862 default:
8863 break;
8864 }
8865 }
8866
8867 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8868 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8869 return 0;
8870
8871 /* If the two constants aren't the same, we can't do anything. The
8872 remaining six cases can all be done. */
8873 else if (const0 != const1)
8874 return 0;
8875
8876 else
8877 switch (op0)
8878 {
8879 case IOR:
8880 if (op1 == AND)
8881 /* (a & b) | b == b */
8882 op0 = SET;
8883 else /* op1 == XOR */
8884 /* (a ^ b) | b == a | b */
8885 {;}
8886 break;
8887
8888 case XOR:
8889 if (op1 == AND)
8890 /* (a & b) ^ b == (~a) & b */
8891 op0 = AND, *pcomp_p = 1;
8892 else /* op1 == IOR */
8893 /* (a | b) ^ b == a & ~b */
8894 op0 = AND, *pconst0 = ~const0;
8895 break;
8896
8897 case AND:
8898 if (op1 == IOR)
8899 /* (a | b) & b == b */
8900 op0 = SET;
8901 else /* op1 == XOR */
8902 /* (a ^ b) & b) == (~a) & b */
8903 *pcomp_p = 1;
8904 break;
8905 default:
8906 break;
8907 }
8908
8909 /* Check for NO-OP cases. */
8910 const0 &= GET_MODE_MASK (mode);
8911 if (const0 == 0
8912 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8913 op0 = NIL;
8914 else if (const0 == 0 && op0 == AND)
8915 op0 = SET;
8916 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8917 && op0 == AND)
8918 op0 = NIL;
8919
8920 /* ??? Slightly redundant with the above mask, but not entirely.
8921 Moving this above means we'd have to sign-extend the mode mask
8922 for the final test. */
8923 const0 = trunc_int_for_mode (const0, mode);
8924
8925 *pop0 = op0;
8926 *pconst0 = const0;
8927
8928 return 1;
8929 }
8930 \f
8931 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8932 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8933 that we started with.
8934
8935 The shift is normally computed in the widest mode we find in VAROP, as
8936 long as it isn't a different number of words than RESULT_MODE. Exceptions
8937 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8938
8939 static rtx
8940 simplify_shift_const (x, code, result_mode, varop, input_count)
8941 rtx x;
8942 enum rtx_code code;
8943 enum machine_mode result_mode;
8944 rtx varop;
8945 int input_count;
8946 {
8947 enum rtx_code orig_code = code;
8948 int orig_count = input_count;
8949 unsigned int count;
8950 int signed_count;
8951 enum machine_mode mode = result_mode;
8952 enum machine_mode shift_mode, tmode;
8953 unsigned int mode_words
8954 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8955 /* We form (outer_op (code varop count) (outer_const)). */
8956 enum rtx_code outer_op = NIL;
8957 HOST_WIDE_INT outer_const = 0;
8958 rtx const_rtx;
8959 int complement_p = 0;
8960 rtx new;
8961
8962 /* If we were given an invalid count, don't do anything except exactly
8963 what was requested. */
8964
8965 if (input_count < 0 || input_count > (int) GET_MODE_BITSIZE (mode))
8966 {
8967 if (x)
8968 return x;
8969
8970 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (input_count));
8971 }
8972
8973 count = input_count;
8974
8975 /* Make sure and truncate the "natural" shift on the way in. We don't
8976 want to do this inside the loop as it makes it more difficult to
8977 combine shifts. */
8978 #ifdef SHIFT_COUNT_TRUNCATED
8979 if (SHIFT_COUNT_TRUNCATED)
8980 count %= GET_MODE_BITSIZE (mode);
8981 #endif
8982
8983 /* Unless one of the branches of the `if' in this loop does a `continue',
8984 we will `break' the loop after the `if'. */
8985
8986 while (count != 0)
8987 {
8988 /* If we have an operand of (clobber (const_int 0)), just return that
8989 value. */
8990 if (GET_CODE (varop) == CLOBBER)
8991 return varop;
8992
8993 /* If we discovered we had to complement VAROP, leave. Making a NOT
8994 here would cause an infinite loop. */
8995 if (complement_p)
8996 break;
8997
8998 /* Convert ROTATERT to ROTATE. */
8999 if (code == ROTATERT)
9000 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
9001
9002 /* We need to determine what mode we will do the shift in. If the
9003 shift is a right shift or a ROTATE, we must always do it in the mode
9004 it was originally done in. Otherwise, we can do it in MODE, the
9005 widest mode encountered. */
9006 shift_mode
9007 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9008 ? result_mode : mode);
9009
9010 /* Handle cases where the count is greater than the size of the mode
9011 minus 1. For ASHIFT, use the size minus one as the count (this can
9012 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9013 take the count modulo the size. For other shifts, the result is
9014 zero.
9015
9016 Since these shifts are being produced by the compiler by combining
9017 multiple operations, each of which are defined, we know what the
9018 result is supposed to be. */
9019
9020 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
9021 {
9022 if (code == ASHIFTRT)
9023 count = GET_MODE_BITSIZE (shift_mode) - 1;
9024 else if (code == ROTATE || code == ROTATERT)
9025 count %= GET_MODE_BITSIZE (shift_mode);
9026 else
9027 {
9028 /* We can't simply return zero because there may be an
9029 outer op. */
9030 varop = const0_rtx;
9031 count = 0;
9032 break;
9033 }
9034 }
9035
9036 /* An arithmetic right shift of a quantity known to be -1 or 0
9037 is a no-op. */
9038 if (code == ASHIFTRT
9039 && (num_sign_bit_copies (varop, shift_mode)
9040 == GET_MODE_BITSIZE (shift_mode)))
9041 {
9042 count = 0;
9043 break;
9044 }
9045
9046 /* If we are doing an arithmetic right shift and discarding all but
9047 the sign bit copies, this is equivalent to doing a shift by the
9048 bitsize minus one. Convert it into that shift because it will often
9049 allow other simplifications. */
9050
9051 if (code == ASHIFTRT
9052 && (count + num_sign_bit_copies (varop, shift_mode)
9053 >= GET_MODE_BITSIZE (shift_mode)))
9054 count = GET_MODE_BITSIZE (shift_mode) - 1;
9055
9056 /* We simplify the tests below and elsewhere by converting
9057 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9058 `make_compound_operation' will convert it to a ASHIFTRT for
9059 those machines (such as Vax) that don't have a LSHIFTRT. */
9060 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9061 && code == ASHIFTRT
9062 && ((nonzero_bits (varop, shift_mode)
9063 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9064 == 0))
9065 code = LSHIFTRT;
9066
9067 switch (GET_CODE (varop))
9068 {
9069 case SIGN_EXTEND:
9070 case ZERO_EXTEND:
9071 case SIGN_EXTRACT:
9072 case ZERO_EXTRACT:
9073 new = expand_compound_operation (varop);
9074 if (new != varop)
9075 {
9076 varop = new;
9077 continue;
9078 }
9079 break;
9080
9081 case MEM:
9082 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9083 minus the width of a smaller mode, we can do this with a
9084 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9085 if ((code == ASHIFTRT || code == LSHIFTRT)
9086 && ! mode_dependent_address_p (XEXP (varop, 0))
9087 && ! MEM_VOLATILE_P (varop)
9088 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9089 MODE_INT, 1)) != BLKmode)
9090 {
9091 if (BYTES_BIG_ENDIAN)
9092 new = gen_rtx_MEM (tmode, XEXP (varop, 0));
9093 else
9094 new = gen_rtx_MEM (tmode,
9095 plus_constant (XEXP (varop, 0),
9096 count / BITS_PER_UNIT));
9097
9098 MEM_COPY_ATTRIBUTES (new, varop);
9099 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
9100 : ZERO_EXTEND, mode, new);
9101 count = 0;
9102 continue;
9103 }
9104 break;
9105
9106 case USE:
9107 /* Similar to the case above, except that we can only do this if
9108 the resulting mode is the same as that of the underlying
9109 MEM and adjust the address depending on the *bits* endianness
9110 because of the way that bit-field extract insns are defined. */
9111 if ((code == ASHIFTRT || code == LSHIFTRT)
9112 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9113 MODE_INT, 1)) != BLKmode
9114 && tmode == GET_MODE (XEXP (varop, 0)))
9115 {
9116 if (BITS_BIG_ENDIAN)
9117 new = XEXP (varop, 0);
9118 else
9119 {
9120 new = copy_rtx (XEXP (varop, 0));
9121 SUBST (XEXP (new, 0),
9122 plus_constant (XEXP (new, 0),
9123 count / BITS_PER_UNIT));
9124 }
9125
9126 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
9127 : ZERO_EXTEND, mode, new);
9128 count = 0;
9129 continue;
9130 }
9131 break;
9132
9133 case SUBREG:
9134 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9135 the same number of words as what we've seen so far. Then store
9136 the widest mode in MODE. */
9137 if (subreg_lowpart_p (varop)
9138 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9139 > GET_MODE_SIZE (GET_MODE (varop)))
9140 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9141 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9142 == mode_words))
9143 {
9144 varop = SUBREG_REG (varop);
9145 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9146 mode = GET_MODE (varop);
9147 continue;
9148 }
9149 break;
9150
9151 case MULT:
9152 /* Some machines use MULT instead of ASHIFT because MULT
9153 is cheaper. But it is still better on those machines to
9154 merge two shifts into one. */
9155 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9156 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9157 {
9158 varop
9159 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9160 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9161 continue;
9162 }
9163 break;
9164
9165 case UDIV:
9166 /* Similar, for when divides are cheaper. */
9167 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9168 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9169 {
9170 varop
9171 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9172 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9173 continue;
9174 }
9175 break;
9176
9177 case ASHIFTRT:
9178 /* If we are extracting just the sign bit of an arithmetic
9179 right shift, that shift is not needed. However, the sign
9180 bit of a wider mode may be different from what would be
9181 interpreted as the sign bit in a narrower mode, so, if
9182 the result is narrower, don't discard the shift. */
9183 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9184 && (GET_MODE_BITSIZE (result_mode)
9185 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9186 {
9187 varop = XEXP (varop, 0);
9188 continue;
9189 }
9190
9191 /* ... fall through ... */
9192
9193 case LSHIFTRT:
9194 case ASHIFT:
9195 case ROTATE:
9196 /* Here we have two nested shifts. The result is usually the
9197 AND of a new shift with a mask. We compute the result below. */
9198 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9199 && INTVAL (XEXP (varop, 1)) >= 0
9200 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9201 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9202 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9203 {
9204 enum rtx_code first_code = GET_CODE (varop);
9205 unsigned int first_count = INTVAL (XEXP (varop, 1));
9206 unsigned HOST_WIDE_INT mask;
9207 rtx mask_rtx;
9208
9209 /* We have one common special case. We can't do any merging if
9210 the inner code is an ASHIFTRT of a smaller mode. However, if
9211 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9212 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9213 we can convert it to
9214 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9215 This simplifies certain SIGN_EXTEND operations. */
9216 if (code == ASHIFT && first_code == ASHIFTRT
9217 && (GET_MODE_BITSIZE (result_mode)
9218 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9219 {
9220 /* C3 has the low-order C1 bits zero. */
9221
9222 mask = (GET_MODE_MASK (mode)
9223 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9224
9225 varop = simplify_and_const_int (NULL_RTX, result_mode,
9226 XEXP (varop, 0), mask);
9227 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9228 varop, count);
9229 count = first_count;
9230 code = ASHIFTRT;
9231 continue;
9232 }
9233
9234 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9235 than C1 high-order bits equal to the sign bit, we can convert
9236 this to either an ASHIFT or a ASHIFTRT depending on the
9237 two counts.
9238
9239 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9240
9241 if (code == ASHIFTRT && first_code == ASHIFT
9242 && GET_MODE (varop) == shift_mode
9243 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9244 > first_count))
9245 {
9246 varop = XEXP (varop, 0);
9247
9248 signed_count = count - first_count;
9249 if (signed_count < 0)
9250 count = -signed_count, code = ASHIFT;
9251 else
9252 count = signed_count;
9253
9254 continue;
9255 }
9256
9257 /* There are some cases we can't do. If CODE is ASHIFTRT,
9258 we can only do this if FIRST_CODE is also ASHIFTRT.
9259
9260 We can't do the case when CODE is ROTATE and FIRST_CODE is
9261 ASHIFTRT.
9262
9263 If the mode of this shift is not the mode of the outer shift,
9264 we can't do this if either shift is a right shift or ROTATE.
9265
9266 Finally, we can't do any of these if the mode is too wide
9267 unless the codes are the same.
9268
9269 Handle the case where the shift codes are the same
9270 first. */
9271
9272 if (code == first_code)
9273 {
9274 if (GET_MODE (varop) != result_mode
9275 && (code == ASHIFTRT || code == LSHIFTRT
9276 || code == ROTATE))
9277 break;
9278
9279 count += first_count;
9280 varop = XEXP (varop, 0);
9281 continue;
9282 }
9283
9284 if (code == ASHIFTRT
9285 || (code == ROTATE && first_code == ASHIFTRT)
9286 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9287 || (GET_MODE (varop) != result_mode
9288 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9289 || first_code == ROTATE
9290 || code == ROTATE)))
9291 break;
9292
9293 /* To compute the mask to apply after the shift, shift the
9294 nonzero bits of the inner shift the same way the
9295 outer shift will. */
9296
9297 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9298
9299 mask_rtx
9300 = simplify_binary_operation (code, result_mode, mask_rtx,
9301 GEN_INT (count));
9302
9303 /* Give up if we can't compute an outer operation to use. */
9304 if (mask_rtx == 0
9305 || GET_CODE (mask_rtx) != CONST_INT
9306 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9307 INTVAL (mask_rtx),
9308 result_mode, &complement_p))
9309 break;
9310
9311 /* If the shifts are in the same direction, we add the
9312 counts. Otherwise, we subtract them. */
9313 signed_count = count;
9314 if ((code == ASHIFTRT || code == LSHIFTRT)
9315 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9316 signed_count += first_count;
9317 else
9318 signed_count -= first_count;
9319
9320 /* If COUNT is positive, the new shift is usually CODE,
9321 except for the two exceptions below, in which case it is
9322 FIRST_CODE. If the count is negative, FIRST_CODE should
9323 always be used */
9324 if (signed_count > 0
9325 && ((first_code == ROTATE && code == ASHIFT)
9326 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9327 code = first_code, count = signed_count;
9328 else if (signed_count < 0)
9329 code = first_code, count = -signed_count;
9330 else
9331 count = signed_count;
9332
9333 varop = XEXP (varop, 0);
9334 continue;
9335 }
9336
9337 /* If we have (A << B << C) for any shift, we can convert this to
9338 (A << C << B). This wins if A is a constant. Only try this if
9339 B is not a constant. */
9340
9341 else if (GET_CODE (varop) == code
9342 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9343 && 0 != (new
9344 = simplify_binary_operation (code, mode,
9345 XEXP (varop, 0),
9346 GEN_INT (count))))
9347 {
9348 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
9349 count = 0;
9350 continue;
9351 }
9352 break;
9353
9354 case NOT:
9355 /* Make this fit the case below. */
9356 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
9357 GEN_INT (GET_MODE_MASK (mode)));
9358 continue;
9359
9360 case IOR:
9361 case AND:
9362 case XOR:
9363 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9364 with C the size of VAROP - 1 and the shift is logical if
9365 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9366 we have an (le X 0) operation. If we have an arithmetic shift
9367 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9368 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9369
9370 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9371 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9372 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9373 && (code == LSHIFTRT || code == ASHIFTRT)
9374 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9375 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9376 {
9377 count = 0;
9378 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
9379 const0_rtx);
9380
9381 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9382 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
9383
9384 continue;
9385 }
9386
9387 /* If we have (shift (logical)), move the logical to the outside
9388 to allow it to possibly combine with another logical and the
9389 shift to combine with another shift. This also canonicalizes to
9390 what a ZERO_EXTRACT looks like. Also, some machines have
9391 (and (shift)) insns. */
9392
9393 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9394 && (new = simplify_binary_operation (code, result_mode,
9395 XEXP (varop, 1),
9396 GEN_INT (count))) != 0
9397 && GET_CODE (new) == CONST_INT
9398 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9399 INTVAL (new), result_mode, &complement_p))
9400 {
9401 varop = XEXP (varop, 0);
9402 continue;
9403 }
9404
9405 /* If we can't do that, try to simplify the shift in each arm of the
9406 logical expression, make a new logical expression, and apply
9407 the inverse distributive law. */
9408 {
9409 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9410 XEXP (varop, 0), count);
9411 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9412 XEXP (varop, 1), count);
9413
9414 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9415 varop = apply_distributive_law (varop);
9416
9417 count = 0;
9418 }
9419 break;
9420
9421 case EQ:
9422 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9423 says that the sign bit can be tested, FOO has mode MODE, C is
9424 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9425 that may be nonzero. */
9426 if (code == LSHIFTRT
9427 && XEXP (varop, 1) == const0_rtx
9428 && GET_MODE (XEXP (varop, 0)) == result_mode
9429 && count == GET_MODE_BITSIZE (result_mode) - 1
9430 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9431 && ((STORE_FLAG_VALUE
9432 & ((HOST_WIDE_INT) 1
9433 < (GET_MODE_BITSIZE (result_mode) - 1))))
9434 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9435 && merge_outer_ops (&outer_op, &outer_const, XOR,
9436 (HOST_WIDE_INT) 1, result_mode,
9437 &complement_p))
9438 {
9439 varop = XEXP (varop, 0);
9440 count = 0;
9441 continue;
9442 }
9443 break;
9444
9445 case NEG:
9446 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9447 than the number of bits in the mode is equivalent to A. */
9448 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9449 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9450 {
9451 varop = XEXP (varop, 0);
9452 count = 0;
9453 continue;
9454 }
9455
9456 /* NEG commutes with ASHIFT since it is multiplication. Move the
9457 NEG outside to allow shifts to combine. */
9458 if (code == ASHIFT
9459 && merge_outer_ops (&outer_op, &outer_const, NEG,
9460 (HOST_WIDE_INT) 0, result_mode,
9461 &complement_p))
9462 {
9463 varop = XEXP (varop, 0);
9464 continue;
9465 }
9466 break;
9467
9468 case PLUS:
9469 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9470 is one less than the number of bits in the mode is
9471 equivalent to (xor A 1). */
9472 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9473 && XEXP (varop, 1) == constm1_rtx
9474 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9475 && merge_outer_ops (&outer_op, &outer_const, XOR,
9476 (HOST_WIDE_INT) 1, result_mode,
9477 &complement_p))
9478 {
9479 count = 0;
9480 varop = XEXP (varop, 0);
9481 continue;
9482 }
9483
9484 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9485 that might be nonzero in BAR are those being shifted out and those
9486 bits are known zero in FOO, we can replace the PLUS with FOO.
9487 Similarly in the other operand order. This code occurs when
9488 we are computing the size of a variable-size array. */
9489
9490 if ((code == ASHIFTRT || code == LSHIFTRT)
9491 && count < HOST_BITS_PER_WIDE_INT
9492 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9493 && (nonzero_bits (XEXP (varop, 1), result_mode)
9494 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9495 {
9496 varop = XEXP (varop, 0);
9497 continue;
9498 }
9499 else if ((code == ASHIFTRT || code == LSHIFTRT)
9500 && count < HOST_BITS_PER_WIDE_INT
9501 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9502 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9503 >> count)
9504 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9505 & nonzero_bits (XEXP (varop, 1),
9506 result_mode)))
9507 {
9508 varop = XEXP (varop, 1);
9509 continue;
9510 }
9511
9512 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9513 if (code == ASHIFT
9514 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9515 && (new = simplify_binary_operation (ASHIFT, result_mode,
9516 XEXP (varop, 1),
9517 GEN_INT (count))) != 0
9518 && GET_CODE (new) == CONST_INT
9519 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9520 INTVAL (new), result_mode, &complement_p))
9521 {
9522 varop = XEXP (varop, 0);
9523 continue;
9524 }
9525 break;
9526
9527 case MINUS:
9528 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9529 with C the size of VAROP - 1 and the shift is logical if
9530 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9531 we have a (gt X 0) operation. If the shift is arithmetic with
9532 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9533 we have a (neg (gt X 0)) operation. */
9534
9535 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9536 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9537 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9538 && (code == LSHIFTRT || code == ASHIFTRT)
9539 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9540 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9541 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9542 {
9543 count = 0;
9544 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
9545 const0_rtx);
9546
9547 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9548 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
9549
9550 continue;
9551 }
9552 break;
9553
9554 case TRUNCATE:
9555 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9556 if the truncate does not affect the value. */
9557 if (code == LSHIFTRT
9558 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9559 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9560 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9561 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9562 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9563 {
9564 rtx varop_inner = XEXP (varop, 0);
9565
9566 varop_inner
9567 = gen_rtx_combine (LSHIFTRT, GET_MODE (varop_inner),
9568 XEXP (varop_inner, 0),
9569 GEN_INT (count
9570 + INTVAL (XEXP (varop_inner, 1))));
9571 varop = gen_rtx_combine (TRUNCATE, GET_MODE (varop),
9572 varop_inner);
9573 count = 0;
9574 continue;
9575 }
9576 break;
9577
9578 default:
9579 break;
9580 }
9581
9582 break;
9583 }
9584
9585 /* We need to determine what mode to do the shift in. If the shift is
9586 a right shift or ROTATE, we must always do it in the mode it was
9587 originally done in. Otherwise, we can do it in MODE, the widest mode
9588 encountered. The code we care about is that of the shift that will
9589 actually be done, not the shift that was originally requested. */
9590 shift_mode
9591 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9592 ? result_mode : mode);
9593
9594 /* We have now finished analyzing the shift. The result should be
9595 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9596 OUTER_OP is non-NIL, it is an operation that needs to be applied
9597 to the result of the shift. OUTER_CONST is the relevant constant,
9598 but we must turn off all bits turned off in the shift.
9599
9600 If we were passed a value for X, see if we can use any pieces of
9601 it. If not, make new rtx. */
9602
9603 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9604 && GET_CODE (XEXP (x, 1)) == CONST_INT
9605 && INTVAL (XEXP (x, 1)) == count)
9606 const_rtx = XEXP (x, 1);
9607 else
9608 const_rtx = GEN_INT (count);
9609
9610 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9611 && GET_MODE (XEXP (x, 0)) == shift_mode
9612 && SUBREG_REG (XEXP (x, 0)) == varop)
9613 varop = XEXP (x, 0);
9614 else if (GET_MODE (varop) != shift_mode)
9615 varop = gen_lowpart_for_combine (shift_mode, varop);
9616
9617 /* If we can't make the SUBREG, try to return what we were given. */
9618 if (GET_CODE (varop) == CLOBBER)
9619 return x ? x : varop;
9620
9621 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9622 if (new != 0)
9623 x = new;
9624 else
9625 {
9626 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9627 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
9628
9629 SUBST (XEXP (x, 0), varop);
9630 SUBST (XEXP (x, 1), const_rtx);
9631 }
9632
9633 /* If we have an outer operation and we just made a shift, it is
9634 possible that we could have simplified the shift were it not
9635 for the outer operation. So try to do the simplification
9636 recursively. */
9637
9638 if (outer_op != NIL && GET_CODE (x) == code
9639 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9640 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9641 INTVAL (XEXP (x, 1)));
9642
9643 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9644 turn off all the bits that the shift would have turned off. */
9645 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9646 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9647 GET_MODE_MASK (result_mode) >> orig_count);
9648
9649 /* Do the remainder of the processing in RESULT_MODE. */
9650 x = gen_lowpart_for_combine (result_mode, x);
9651
9652 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9653 operation. */
9654 if (complement_p)
9655 x = gen_unary (NOT, result_mode, result_mode, x);
9656
9657 if (outer_op != NIL)
9658 {
9659 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9660 outer_const = trunc_int_for_mode (outer_const, result_mode);
9661
9662 if (outer_op == AND)
9663 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9664 else if (outer_op == SET)
9665 /* This means that we have determined that the result is
9666 equivalent to a constant. This should be rare. */
9667 x = GEN_INT (outer_const);
9668 else if (GET_RTX_CLASS (outer_op) == '1')
9669 x = gen_unary (outer_op, result_mode, result_mode, x);
9670 else
9671 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9672 }
9673
9674 return x;
9675 }
9676 \f
9677 /* Like recog, but we receive the address of a pointer to a new pattern.
9678 We try to match the rtx that the pointer points to.
9679 If that fails, we may try to modify or replace the pattern,
9680 storing the replacement into the same pointer object.
9681
9682 Modifications include deletion or addition of CLOBBERs.
9683
9684 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9685 the CLOBBERs are placed.
9686
9687 The value is the final insn code from the pattern ultimately matched,
9688 or -1. */
9689
9690 static int
9691 recog_for_combine (pnewpat, insn, pnotes)
9692 rtx *pnewpat;
9693 rtx insn;
9694 rtx *pnotes;
9695 {
9696 register rtx pat = *pnewpat;
9697 int insn_code_number;
9698 int num_clobbers_to_add = 0;
9699 int i;
9700 rtx notes = 0;
9701 rtx old_notes;
9702
9703 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9704 we use to indicate that something didn't match. If we find such a
9705 thing, force rejection. */
9706 if (GET_CODE (pat) == PARALLEL)
9707 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9708 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9709 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9710 return -1;
9711
9712 /* Remove the old notes prior to trying to recognize the new pattern. */
9713 old_notes = REG_NOTES (insn);
9714 REG_NOTES (insn) = 0;
9715
9716 /* Is the result of combination a valid instruction? */
9717 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9718
9719 /* If it isn't, there is the possibility that we previously had an insn
9720 that clobbered some register as a side effect, but the combined
9721 insn doesn't need to do that. So try once more without the clobbers
9722 unless this represents an ASM insn. */
9723
9724 if (insn_code_number < 0 && ! check_asm_operands (pat)
9725 && GET_CODE (pat) == PARALLEL)
9726 {
9727 int pos;
9728
9729 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9730 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9731 {
9732 if (i != pos)
9733 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9734 pos++;
9735 }
9736
9737 SUBST_INT (XVECLEN (pat, 0), pos);
9738
9739 if (pos == 1)
9740 pat = XVECEXP (pat, 0, 0);
9741
9742 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9743 }
9744
9745 REG_NOTES (insn) = old_notes;
9746
9747 /* If we had any clobbers to add, make a new pattern than contains
9748 them. Then check to make sure that all of them are dead. */
9749 if (num_clobbers_to_add)
9750 {
9751 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9752 rtvec_alloc (GET_CODE (pat) == PARALLEL
9753 ? (XVECLEN (pat, 0)
9754 + num_clobbers_to_add)
9755 : num_clobbers_to_add + 1));
9756
9757 if (GET_CODE (pat) == PARALLEL)
9758 for (i = 0; i < XVECLEN (pat, 0); i++)
9759 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9760 else
9761 XVECEXP (newpat, 0, 0) = pat;
9762
9763 add_clobbers (newpat, insn_code_number);
9764
9765 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9766 i < XVECLEN (newpat, 0); i++)
9767 {
9768 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9769 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9770 return -1;
9771 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9772 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9773 }
9774 pat = newpat;
9775 }
9776
9777 *pnewpat = pat;
9778 *pnotes = notes;
9779
9780 return insn_code_number;
9781 }
9782 \f
9783 /* Like gen_lowpart but for use by combine. In combine it is not possible
9784 to create any new pseudoregs. However, it is safe to create
9785 invalid memory addresses, because combine will try to recognize
9786 them and all they will do is make the combine attempt fail.
9787
9788 If for some reason this cannot do its job, an rtx
9789 (clobber (const_int 0)) is returned.
9790 An insn containing that will not be recognized. */
9791
9792 #undef gen_lowpart
9793
9794 static rtx
9795 gen_lowpart_for_combine (mode, x)
9796 enum machine_mode mode;
9797 register rtx x;
9798 {
9799 rtx result;
9800
9801 if (GET_MODE (x) == mode)
9802 return x;
9803
9804 /* We can only support MODE being wider than a word if X is a
9805 constant integer or has a mode the same size. */
9806
9807 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9808 && ! ((GET_MODE (x) == VOIDmode
9809 && (GET_CODE (x) == CONST_INT
9810 || GET_CODE (x) == CONST_DOUBLE))
9811 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9812 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9813
9814 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9815 won't know what to do. So we will strip off the SUBREG here and
9816 process normally. */
9817 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9818 {
9819 x = SUBREG_REG (x);
9820 if (GET_MODE (x) == mode)
9821 return x;
9822 }
9823
9824 result = gen_lowpart_common (mode, x);
9825 #ifdef CLASS_CANNOT_CHANGE_MODE
9826 if (result != 0
9827 && GET_CODE (result) == SUBREG
9828 && GET_CODE (SUBREG_REG (result)) == REG
9829 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9830 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9831 GET_MODE (SUBREG_REG (result))))
9832 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9833 #endif
9834
9835 if (result)
9836 return result;
9837
9838 if (GET_CODE (x) == MEM)
9839 {
9840 register int offset = 0;
9841 rtx new;
9842
9843 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9844 address. */
9845 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9846 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9847
9848 /* If we want to refer to something bigger than the original memref,
9849 generate a perverse subreg instead. That will force a reload
9850 of the original memref X. */
9851 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9852 return gen_rtx_SUBREG (mode, x, 0);
9853
9854 if (WORDS_BIG_ENDIAN)
9855 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9856 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9857
9858 if (BYTES_BIG_ENDIAN)
9859 {
9860 /* Adjust the address so that the address-after-the-data is
9861 unchanged. */
9862 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9863 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9864 }
9865 new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
9866 MEM_COPY_ATTRIBUTES (new, x);
9867 return new;
9868 }
9869
9870 /* If X is a comparison operator, rewrite it in a new mode. This
9871 probably won't match, but may allow further simplifications. */
9872 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9873 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9874
9875 /* If we couldn't simplify X any other way, just enclose it in a
9876 SUBREG. Normally, this SUBREG won't match, but some patterns may
9877 include an explicit SUBREG or we may simplify it further in combine. */
9878 else
9879 {
9880 int word = 0;
9881
9882 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
9883 word = ((GET_MODE_SIZE (GET_MODE (x))
9884 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
9885 / UNITS_PER_WORD);
9886 return gen_rtx_SUBREG (mode, x, word);
9887 }
9888 }
9889 \f
9890 /* Make an rtx expression. This is a subset of gen_rtx and only supports
9891 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
9892
9893 If the identical expression was previously in the insn (in the undobuf),
9894 it will be returned. Only if it is not found will a new expression
9895 be made. */
9896
9897 /*VARARGS2*/
9898 static rtx
9899 gen_rtx_combine VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
9900 {
9901 #ifndef ANSI_PROTOTYPES
9902 enum rtx_code code;
9903 enum machine_mode mode;
9904 #endif
9905 va_list p;
9906 int n_args;
9907 rtx args[3];
9908 int j;
9909 const char *fmt;
9910 rtx rt;
9911 struct undo *undo;
9912
9913 VA_START (p, mode);
9914
9915 #ifndef ANSI_PROTOTYPES
9916 code = va_arg (p, enum rtx_code);
9917 mode = va_arg (p, enum machine_mode);
9918 #endif
9919
9920 n_args = GET_RTX_LENGTH (code);
9921 fmt = GET_RTX_FORMAT (code);
9922
9923 if (n_args == 0 || n_args > 3)
9924 abort ();
9925
9926 /* Get each arg and verify that it is supposed to be an expression. */
9927 for (j = 0; j < n_args; j++)
9928 {
9929 if (*fmt++ != 'e')
9930 abort ();
9931
9932 args[j] = va_arg (p, rtx);
9933 }
9934
9935 va_end (p);
9936
9937 /* See if this is in undobuf. Be sure we don't use objects that came
9938 from another insn; this could produce circular rtl structures. */
9939
9940 for (undo = undobuf.undos; undo != undobuf.previous_undos; undo = undo->next)
9941 if (!undo->is_int
9942 && GET_CODE (undo->old_contents.r) == code
9943 && GET_MODE (undo->old_contents.r) == mode)
9944 {
9945 for (j = 0; j < n_args; j++)
9946 if (XEXP (undo->old_contents.r, j) != args[j])
9947 break;
9948
9949 if (j == n_args)
9950 return undo->old_contents.r;
9951 }
9952
9953 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
9954 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
9955 rt = rtx_alloc (code);
9956 PUT_MODE (rt, mode);
9957 XEXP (rt, 0) = args[0];
9958 if (n_args > 1)
9959 {
9960 XEXP (rt, 1) = args[1];
9961 if (n_args > 2)
9962 XEXP (rt, 2) = args[2];
9963 }
9964 return rt;
9965 }
9966
9967 /* These routines make binary and unary operations by first seeing if they
9968 fold; if not, a new expression is allocated. */
9969
9970 static rtx
9971 gen_binary (code, mode, op0, op1)
9972 enum rtx_code code;
9973 enum machine_mode mode;
9974 rtx op0, op1;
9975 {
9976 rtx result;
9977 rtx tem;
9978
9979 if (GET_RTX_CLASS (code) == 'c'
9980 && (GET_CODE (op0) == CONST_INT
9981 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
9982 tem = op0, op0 = op1, op1 = tem;
9983
9984 if (GET_RTX_CLASS (code) == '<')
9985 {
9986 enum machine_mode op_mode = GET_MODE (op0);
9987
9988 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9989 just (REL_OP X Y). */
9990 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9991 {
9992 op1 = XEXP (op0, 1);
9993 op0 = XEXP (op0, 0);
9994 op_mode = GET_MODE (op0);
9995 }
9996
9997 if (op_mode == VOIDmode)
9998 op_mode = GET_MODE (op1);
9999 result = simplify_relational_operation (code, op_mode, op0, op1);
10000 }
10001 else
10002 result = simplify_binary_operation (code, mode, op0, op1);
10003
10004 if (result)
10005 return result;
10006
10007 /* Put complex operands first and constants second. */
10008 if (GET_RTX_CLASS (code) == 'c'
10009 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
10010 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
10011 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
10012 || (GET_CODE (op0) == SUBREG
10013 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
10014 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
10015 return gen_rtx_combine (code, mode, op1, op0);
10016
10017 /* If we are turning off bits already known off in OP0, we need not do
10018 an AND. */
10019 else if (code == AND && GET_CODE (op1) == CONST_INT
10020 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10021 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10022 return op0;
10023
10024 return gen_rtx_combine (code, mode, op0, op1);
10025 }
10026
10027 static rtx
10028 gen_unary (code, mode, op0_mode, op0)
10029 enum rtx_code code;
10030 enum machine_mode mode, op0_mode;
10031 rtx op0;
10032 {
10033 rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
10034
10035 if (result)
10036 return result;
10037
10038 return gen_rtx_combine (code, mode, op0);
10039 }
10040 \f
10041 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10042 comparison code that will be tested.
10043
10044 The result is a possibly different comparison code to use. *POP0 and
10045 *POP1 may be updated.
10046
10047 It is possible that we might detect that a comparison is either always
10048 true or always false. However, we do not perform general constant
10049 folding in combine, so this knowledge isn't useful. Such tautologies
10050 should have been detected earlier. Hence we ignore all such cases. */
10051
10052 static enum rtx_code
10053 simplify_comparison (code, pop0, pop1)
10054 enum rtx_code code;
10055 rtx *pop0;
10056 rtx *pop1;
10057 {
10058 rtx op0 = *pop0;
10059 rtx op1 = *pop1;
10060 rtx tem, tem1;
10061 int i;
10062 enum machine_mode mode, tmode;
10063
10064 /* Try a few ways of applying the same transformation to both operands. */
10065 while (1)
10066 {
10067 #ifndef WORD_REGISTER_OPERATIONS
10068 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10069 so check specially. */
10070 if (code != GTU && code != GEU && code != LTU && code != LEU
10071 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10072 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10073 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10074 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10075 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10076 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10077 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10078 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10079 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10080 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10081 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10082 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10083 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10084 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10085 && (INTVAL (XEXP (op0, 1))
10086 == (GET_MODE_BITSIZE (GET_MODE (op0))
10087 - (GET_MODE_BITSIZE
10088 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10089 {
10090 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10091 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10092 }
10093 #endif
10094
10095 /* If both operands are the same constant shift, see if we can ignore the
10096 shift. We can if the shift is a rotate or if the bits shifted out of
10097 this shift are known to be zero for both inputs and if the type of
10098 comparison is compatible with the shift. */
10099 if (GET_CODE (op0) == GET_CODE (op1)
10100 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10101 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10102 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10103 && (code != GT && code != LT && code != GE && code != LE))
10104 || (GET_CODE (op0) == ASHIFTRT
10105 && (code != GTU && code != LTU
10106 && code != GEU && code != GEU)))
10107 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10108 && INTVAL (XEXP (op0, 1)) >= 0
10109 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10110 && XEXP (op0, 1) == XEXP (op1, 1))
10111 {
10112 enum machine_mode mode = GET_MODE (op0);
10113 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10114 int shift_count = INTVAL (XEXP (op0, 1));
10115
10116 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10117 mask &= (mask >> shift_count) << shift_count;
10118 else if (GET_CODE (op0) == ASHIFT)
10119 mask = (mask & (mask << shift_count)) >> shift_count;
10120
10121 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10122 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10123 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10124 else
10125 break;
10126 }
10127
10128 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10129 SUBREGs are of the same mode, and, in both cases, the AND would
10130 be redundant if the comparison was done in the narrower mode,
10131 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10132 and the operand's possibly nonzero bits are 0xffffff01; in that case
10133 if we only care about QImode, we don't need the AND). This case
10134 occurs if the output mode of an scc insn is not SImode and
10135 STORE_FLAG_VALUE == 1 (e.g., the 386).
10136
10137 Similarly, check for a case where the AND's are ZERO_EXTEND
10138 operations from some narrower mode even though a SUBREG is not
10139 present. */
10140
10141 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10142 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10143 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10144 {
10145 rtx inner_op0 = XEXP (op0, 0);
10146 rtx inner_op1 = XEXP (op1, 0);
10147 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10148 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10149 int changed = 0;
10150
10151 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10152 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10153 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10154 && (GET_MODE (SUBREG_REG (inner_op0))
10155 == GET_MODE (SUBREG_REG (inner_op1)))
10156 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10157 <= HOST_BITS_PER_WIDE_INT)
10158 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10159 GET_MODE (SUBREG_REG (inner_op0)))))
10160 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10161 GET_MODE (SUBREG_REG (inner_op1))))))
10162 {
10163 op0 = SUBREG_REG (inner_op0);
10164 op1 = SUBREG_REG (inner_op1);
10165
10166 /* The resulting comparison is always unsigned since we masked
10167 off the original sign bit. */
10168 code = unsigned_condition (code);
10169
10170 changed = 1;
10171 }
10172
10173 else if (c0 == c1)
10174 for (tmode = GET_CLASS_NARROWEST_MODE
10175 (GET_MODE_CLASS (GET_MODE (op0)));
10176 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10177 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10178 {
10179 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10180 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10181 code = unsigned_condition (code);
10182 changed = 1;
10183 break;
10184 }
10185
10186 if (! changed)
10187 break;
10188 }
10189
10190 /* If both operands are NOT, we can strip off the outer operation
10191 and adjust the comparison code for swapped operands; similarly for
10192 NEG, except that this must be an equality comparison. */
10193 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10194 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10195 && (code == EQ || code == NE)))
10196 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10197
10198 else
10199 break;
10200 }
10201
10202 /* If the first operand is a constant, swap the operands and adjust the
10203 comparison code appropriately, but don't do this if the second operand
10204 is already a constant integer. */
10205 if (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
10206 {
10207 tem = op0, op0 = op1, op1 = tem;
10208 code = swap_condition (code);
10209 }
10210
10211 /* We now enter a loop during which we will try to simplify the comparison.
10212 For the most part, we only are concerned with comparisons with zero,
10213 but some things may really be comparisons with zero but not start
10214 out looking that way. */
10215
10216 while (GET_CODE (op1) == CONST_INT)
10217 {
10218 enum machine_mode mode = GET_MODE (op0);
10219 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10220 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10221 int equality_comparison_p;
10222 int sign_bit_comparison_p;
10223 int unsigned_comparison_p;
10224 HOST_WIDE_INT const_op;
10225
10226 /* We only want to handle integral modes. This catches VOIDmode,
10227 CCmode, and the floating-point modes. An exception is that we
10228 can handle VOIDmode if OP0 is a COMPARE or a comparison
10229 operation. */
10230
10231 if (GET_MODE_CLASS (mode) != MODE_INT
10232 && ! (mode == VOIDmode
10233 && (GET_CODE (op0) == COMPARE
10234 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10235 break;
10236
10237 /* Get the constant we are comparing against and turn off all bits
10238 not on in our mode. */
10239 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10240
10241 /* If we are comparing against a constant power of two and the value
10242 being compared can only have that single bit nonzero (e.g., it was
10243 `and'ed with that bit), we can replace this with a comparison
10244 with zero. */
10245 if (const_op
10246 && (code == EQ || code == NE || code == GE || code == GEU
10247 || code == LT || code == LTU)
10248 && mode_width <= HOST_BITS_PER_WIDE_INT
10249 && exact_log2 (const_op) >= 0
10250 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10251 {
10252 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10253 op1 = const0_rtx, const_op = 0;
10254 }
10255
10256 /* Similarly, if we are comparing a value known to be either -1 or
10257 0 with -1, change it to the opposite comparison against zero. */
10258
10259 if (const_op == -1
10260 && (code == EQ || code == NE || code == GT || code == LE
10261 || code == GEU || code == LTU)
10262 && num_sign_bit_copies (op0, mode) == mode_width)
10263 {
10264 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10265 op1 = const0_rtx, const_op = 0;
10266 }
10267
10268 /* Do some canonicalizations based on the comparison code. We prefer
10269 comparisons against zero and then prefer equality comparisons.
10270 If we can reduce the size of a constant, we will do that too. */
10271
10272 switch (code)
10273 {
10274 case LT:
10275 /* < C is equivalent to <= (C - 1) */
10276 if (const_op > 0)
10277 {
10278 const_op -= 1;
10279 op1 = GEN_INT (const_op);
10280 code = LE;
10281 /* ... fall through to LE case below. */
10282 }
10283 else
10284 break;
10285
10286 case LE:
10287 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10288 if (const_op < 0)
10289 {
10290 const_op += 1;
10291 op1 = GEN_INT (const_op);
10292 code = LT;
10293 }
10294
10295 /* If we are doing a <= 0 comparison on a value known to have
10296 a zero sign bit, we can replace this with == 0. */
10297 else if (const_op == 0
10298 && mode_width <= HOST_BITS_PER_WIDE_INT
10299 && (nonzero_bits (op0, mode)
10300 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10301 code = EQ;
10302 break;
10303
10304 case GE:
10305 /* >= C is equivalent to > (C - 1). */
10306 if (const_op > 0)
10307 {
10308 const_op -= 1;
10309 op1 = GEN_INT (const_op);
10310 code = GT;
10311 /* ... fall through to GT below. */
10312 }
10313 else
10314 break;
10315
10316 case GT:
10317 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10318 if (const_op < 0)
10319 {
10320 const_op += 1;
10321 op1 = GEN_INT (const_op);
10322 code = GE;
10323 }
10324
10325 /* If we are doing a > 0 comparison on a value known to have
10326 a zero sign bit, we can replace this with != 0. */
10327 else if (const_op == 0
10328 && mode_width <= HOST_BITS_PER_WIDE_INT
10329 && (nonzero_bits (op0, mode)
10330 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10331 code = NE;
10332 break;
10333
10334 case LTU:
10335 /* < C is equivalent to <= (C - 1). */
10336 if (const_op > 0)
10337 {
10338 const_op -= 1;
10339 op1 = GEN_INT (const_op);
10340 code = LEU;
10341 /* ... fall through ... */
10342 }
10343
10344 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10345 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10346 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10347 {
10348 const_op = 0, op1 = const0_rtx;
10349 code = GE;
10350 break;
10351 }
10352 else
10353 break;
10354
10355 case LEU:
10356 /* unsigned <= 0 is equivalent to == 0 */
10357 if (const_op == 0)
10358 code = EQ;
10359
10360 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10361 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10362 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10363 {
10364 const_op = 0, op1 = const0_rtx;
10365 code = GE;
10366 }
10367 break;
10368
10369 case GEU:
10370 /* >= C is equivalent to < (C - 1). */
10371 if (const_op > 1)
10372 {
10373 const_op -= 1;
10374 op1 = GEN_INT (const_op);
10375 code = GTU;
10376 /* ... fall through ... */
10377 }
10378
10379 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10380 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10381 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10382 {
10383 const_op = 0, op1 = const0_rtx;
10384 code = LT;
10385 break;
10386 }
10387 else
10388 break;
10389
10390 case GTU:
10391 /* unsigned > 0 is equivalent to != 0 */
10392 if (const_op == 0)
10393 code = NE;
10394
10395 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10396 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10397 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10398 {
10399 const_op = 0, op1 = const0_rtx;
10400 code = LT;
10401 }
10402 break;
10403
10404 default:
10405 break;
10406 }
10407
10408 /* Compute some predicates to simplify code below. */
10409
10410 equality_comparison_p = (code == EQ || code == NE);
10411 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10412 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10413 || code == GEU);
10414
10415 /* If this is a sign bit comparison and we can do arithmetic in
10416 MODE, say that we will only be needing the sign bit of OP0. */
10417 if (sign_bit_comparison_p
10418 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10419 op0 = force_to_mode (op0, mode,
10420 ((HOST_WIDE_INT) 1
10421 << (GET_MODE_BITSIZE (mode) - 1)),
10422 NULL_RTX, 0);
10423
10424 /* Now try cases based on the opcode of OP0. If none of the cases
10425 does a "continue", we exit this loop immediately after the
10426 switch. */
10427
10428 switch (GET_CODE (op0))
10429 {
10430 case ZERO_EXTRACT:
10431 /* If we are extracting a single bit from a variable position in
10432 a constant that has only a single bit set and are comparing it
10433 with zero, we can convert this into an equality comparison
10434 between the position and the location of the single bit. */
10435
10436 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10437 && XEXP (op0, 1) == const1_rtx
10438 && equality_comparison_p && const_op == 0
10439 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10440 {
10441 if (BITS_BIG_ENDIAN)
10442 {
10443 #ifdef HAVE_extzv
10444 mode = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
10445 if (mode == VOIDmode)
10446 mode = word_mode;
10447 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10448 #else
10449 i = BITS_PER_WORD - 1 - i;
10450 #endif
10451 }
10452
10453 op0 = XEXP (op0, 2);
10454 op1 = GEN_INT (i);
10455 const_op = i;
10456
10457 /* Result is nonzero iff shift count is equal to I. */
10458 code = reverse_condition (code);
10459 continue;
10460 }
10461
10462 /* ... fall through ... */
10463
10464 case SIGN_EXTRACT:
10465 tem = expand_compound_operation (op0);
10466 if (tem != op0)
10467 {
10468 op0 = tem;
10469 continue;
10470 }
10471 break;
10472
10473 case NOT:
10474 /* If testing for equality, we can take the NOT of the constant. */
10475 if (equality_comparison_p
10476 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10477 {
10478 op0 = XEXP (op0, 0);
10479 op1 = tem;
10480 continue;
10481 }
10482
10483 /* If just looking at the sign bit, reverse the sense of the
10484 comparison. */
10485 if (sign_bit_comparison_p)
10486 {
10487 op0 = XEXP (op0, 0);
10488 code = (code == GE ? LT : GE);
10489 continue;
10490 }
10491 break;
10492
10493 case NEG:
10494 /* If testing for equality, we can take the NEG of the constant. */
10495 if (equality_comparison_p
10496 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10497 {
10498 op0 = XEXP (op0, 0);
10499 op1 = tem;
10500 continue;
10501 }
10502
10503 /* The remaining cases only apply to comparisons with zero. */
10504 if (const_op != 0)
10505 break;
10506
10507 /* When X is ABS or is known positive,
10508 (neg X) is < 0 if and only if X != 0. */
10509
10510 if (sign_bit_comparison_p
10511 && (GET_CODE (XEXP (op0, 0)) == ABS
10512 || (mode_width <= HOST_BITS_PER_WIDE_INT
10513 && (nonzero_bits (XEXP (op0, 0), mode)
10514 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10515 {
10516 op0 = XEXP (op0, 0);
10517 code = (code == LT ? NE : EQ);
10518 continue;
10519 }
10520
10521 /* If we have NEG of something whose two high-order bits are the
10522 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10523 if (num_sign_bit_copies (op0, mode) >= 2)
10524 {
10525 op0 = XEXP (op0, 0);
10526 code = swap_condition (code);
10527 continue;
10528 }
10529 break;
10530
10531 case ROTATE:
10532 /* If we are testing equality and our count is a constant, we
10533 can perform the inverse operation on our RHS. */
10534 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10535 && (tem = simplify_binary_operation (ROTATERT, mode,
10536 op1, XEXP (op0, 1))) != 0)
10537 {
10538 op0 = XEXP (op0, 0);
10539 op1 = tem;
10540 continue;
10541 }
10542
10543 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10544 a particular bit. Convert it to an AND of a constant of that
10545 bit. This will be converted into a ZERO_EXTRACT. */
10546 if (const_op == 0 && sign_bit_comparison_p
10547 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10548 && mode_width <= HOST_BITS_PER_WIDE_INT)
10549 {
10550 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10551 ((HOST_WIDE_INT) 1
10552 << (mode_width - 1
10553 - INTVAL (XEXP (op0, 1)))));
10554 code = (code == LT ? NE : EQ);
10555 continue;
10556 }
10557
10558 /* Fall through. */
10559
10560 case ABS:
10561 /* ABS is ignorable inside an equality comparison with zero. */
10562 if (const_op == 0 && equality_comparison_p)
10563 {
10564 op0 = XEXP (op0, 0);
10565 continue;
10566 }
10567 break;
10568
10569 case SIGN_EXTEND:
10570 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10571 to (compare FOO CONST) if CONST fits in FOO's mode and we
10572 are either testing inequality or have an unsigned comparison
10573 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10574 if (! unsigned_comparison_p
10575 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10576 <= HOST_BITS_PER_WIDE_INT)
10577 && ((unsigned HOST_WIDE_INT) const_op
10578 < (((unsigned HOST_WIDE_INT) 1
10579 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10580 {
10581 op0 = XEXP (op0, 0);
10582 continue;
10583 }
10584 break;
10585
10586 case SUBREG:
10587 /* Check for the case where we are comparing A - C1 with C2,
10588 both constants are smaller than 1/2 the maximum positive
10589 value in MODE, and the comparison is equality or unsigned.
10590 In that case, if A is either zero-extended to MODE or has
10591 sufficient sign bits so that the high-order bit in MODE
10592 is a copy of the sign in the inner mode, we can prove that it is
10593 safe to do the operation in the wider mode. This simplifies
10594 many range checks. */
10595
10596 if (mode_width <= HOST_BITS_PER_WIDE_INT
10597 && subreg_lowpart_p (op0)
10598 && GET_CODE (SUBREG_REG (op0)) == PLUS
10599 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10600 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10601 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10602 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10603 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10604 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10605 GET_MODE (SUBREG_REG (op0)))
10606 & ~GET_MODE_MASK (mode))
10607 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10608 GET_MODE (SUBREG_REG (op0)))
10609 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10610 - GET_MODE_BITSIZE (mode)))))
10611 {
10612 op0 = SUBREG_REG (op0);
10613 continue;
10614 }
10615
10616 /* If the inner mode is narrower and we are extracting the low part,
10617 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10618 if (subreg_lowpart_p (op0)
10619 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10620 /* Fall through */ ;
10621 else
10622 break;
10623
10624 /* ... fall through ... */
10625
10626 case ZERO_EXTEND:
10627 if ((unsigned_comparison_p || equality_comparison_p)
10628 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10629 <= HOST_BITS_PER_WIDE_INT)
10630 && ((unsigned HOST_WIDE_INT) const_op
10631 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10632 {
10633 op0 = XEXP (op0, 0);
10634 continue;
10635 }
10636 break;
10637
10638 case PLUS:
10639 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10640 this for equality comparisons due to pathological cases involving
10641 overflows. */
10642 if (equality_comparison_p
10643 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10644 op1, XEXP (op0, 1))))
10645 {
10646 op0 = XEXP (op0, 0);
10647 op1 = tem;
10648 continue;
10649 }
10650
10651 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10652 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10653 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10654 {
10655 op0 = XEXP (XEXP (op0, 0), 0);
10656 code = (code == LT ? EQ : NE);
10657 continue;
10658 }
10659 break;
10660
10661 case MINUS:
10662 /* We used to optimize signed comparisons against zero, but that
10663 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10664 arrive here as equality comparisons, or (GEU, LTU) are
10665 optimized away. No need to special-case them. */
10666
10667 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10668 (eq B (minus A C)), whichever simplifies. We can only do
10669 this for equality comparisons due to pathological cases involving
10670 overflows. */
10671 if (equality_comparison_p
10672 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10673 XEXP (op0, 1), op1)))
10674 {
10675 op0 = XEXP (op0, 0);
10676 op1 = tem;
10677 continue;
10678 }
10679
10680 if (equality_comparison_p
10681 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10682 XEXP (op0, 0), op1)))
10683 {
10684 op0 = XEXP (op0, 1);
10685 op1 = tem;
10686 continue;
10687 }
10688
10689 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10690 of bits in X minus 1, is one iff X > 0. */
10691 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10692 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10693 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10694 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10695 {
10696 op0 = XEXP (op0, 1);
10697 code = (code == GE ? LE : GT);
10698 continue;
10699 }
10700 break;
10701
10702 case XOR:
10703 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10704 if C is zero or B is a constant. */
10705 if (equality_comparison_p
10706 && 0 != (tem = simplify_binary_operation (XOR, mode,
10707 XEXP (op0, 1), op1)))
10708 {
10709 op0 = XEXP (op0, 0);
10710 op1 = tem;
10711 continue;
10712 }
10713 break;
10714
10715 case EQ: case NE:
10716 case UNEQ: case LTGT:
10717 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10718 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10719 case UNORDERED: case ORDERED:
10720 /* We can't do anything if OP0 is a condition code value, rather
10721 than an actual data value. */
10722 if (const_op != 0
10723 #ifdef HAVE_cc0
10724 || XEXP (op0, 0) == cc0_rtx
10725 #endif
10726 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10727 break;
10728
10729 /* Get the two operands being compared. */
10730 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10731 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10732 else
10733 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10734
10735 /* Check for the cases where we simply want the result of the
10736 earlier test or the opposite of that result. */
10737 if (code == NE || code == EQ
10738 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10739 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10740 && (STORE_FLAG_VALUE
10741 & (((HOST_WIDE_INT) 1
10742 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10743 && (code == LT || code == GE)))
10744 {
10745 enum rtx_code new_code;
10746 if (code == LT || code == NE)
10747 new_code = GET_CODE (op0);
10748 else
10749 new_code = combine_reversed_comparison_code (op0);
10750
10751 if (new_code != UNKNOWN)
10752 {
10753 code = new_code;
10754 op0 = tem;
10755 op1 = tem1;
10756 continue;
10757 }
10758 }
10759 break;
10760
10761 case IOR:
10762 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10763 iff X <= 0. */
10764 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10765 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10766 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10767 {
10768 op0 = XEXP (op0, 1);
10769 code = (code == GE ? GT : LE);
10770 continue;
10771 }
10772 break;
10773
10774 case AND:
10775 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10776 will be converted to a ZERO_EXTRACT later. */
10777 if (const_op == 0 && equality_comparison_p
10778 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10779 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10780 {
10781 op0 = simplify_and_const_int
10782 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
10783 XEXP (op0, 1),
10784 XEXP (XEXP (op0, 0), 1)),
10785 (HOST_WIDE_INT) 1);
10786 continue;
10787 }
10788
10789 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10790 zero and X is a comparison and C1 and C2 describe only bits set
10791 in STORE_FLAG_VALUE, we can compare with X. */
10792 if (const_op == 0 && equality_comparison_p
10793 && mode_width <= HOST_BITS_PER_WIDE_INT
10794 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10795 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10796 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10797 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10798 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10799 {
10800 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10801 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10802 if ((~STORE_FLAG_VALUE & mask) == 0
10803 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10804 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10805 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10806 {
10807 op0 = XEXP (XEXP (op0, 0), 0);
10808 continue;
10809 }
10810 }
10811
10812 /* If we are doing an equality comparison of an AND of a bit equal
10813 to the sign bit, replace this with a LT or GE comparison of
10814 the underlying value. */
10815 if (equality_comparison_p
10816 && const_op == 0
10817 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10818 && mode_width <= HOST_BITS_PER_WIDE_INT
10819 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10820 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10821 {
10822 op0 = XEXP (op0, 0);
10823 code = (code == EQ ? GE : LT);
10824 continue;
10825 }
10826
10827 /* If this AND operation is really a ZERO_EXTEND from a narrower
10828 mode, the constant fits within that mode, and this is either an
10829 equality or unsigned comparison, try to do this comparison in
10830 the narrower mode. */
10831 if ((equality_comparison_p || unsigned_comparison_p)
10832 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10833 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10834 & GET_MODE_MASK (mode))
10835 + 1)) >= 0
10836 && const_op >> i == 0
10837 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10838 {
10839 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10840 continue;
10841 }
10842
10843 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10844 in both M1 and M2 and the SUBREG is either paradoxical or
10845 represents the low part, permute the SUBREG and the AND and
10846 try again. */
10847 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10848 && (0
10849 #ifdef WORD_REGISTER_OPERATIONS
10850 || ((mode_width
10851 > (GET_MODE_BITSIZE
10852 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10853 && mode_width <= BITS_PER_WORD)
10854 #endif
10855 || ((mode_width
10856 <= (GET_MODE_BITSIZE
10857 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10858 && subreg_lowpart_p (XEXP (op0, 0))))
10859 #ifndef WORD_REGISTER_OPERATIONS
10860 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10861 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10862 As originally written the upper bits have a defined value
10863 due to the AND operation. However, if we commute the AND
10864 inside the SUBREG then they no longer have defined values
10865 and the meaning of the code has been changed. */
10866 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10867 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10868 #endif
10869 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10870 && mode_width <= HOST_BITS_PER_WIDE_INT
10871 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10872 <= HOST_BITS_PER_WIDE_INT)
10873 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10874 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10875 & INTVAL (XEXP (op0, 1)))
10876 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10877 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10878 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10879
10880 {
10881 op0
10882 = gen_lowpart_for_combine
10883 (mode,
10884 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10885 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10886 continue;
10887 }
10888
10889 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10890 (eq (and (lshiftrt X) 1) 0). */
10891 if (const_op == 0 && equality_comparison_p
10892 && XEXP (op0, 1) == const1_rtx
10893 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10894 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10895 {
10896 op0 = simplify_and_const_int
10897 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
10898 XEXP (XEXP (XEXP (op0, 0), 0), 0),
10899 XEXP (XEXP (op0, 0), 1)),
10900 (HOST_WIDE_INT) 1);
10901 code = (code == NE ? EQ : NE);
10902 continue;
10903 }
10904 break;
10905
10906 case ASHIFT:
10907 /* If we have (compare (ashift FOO N) (const_int C)) and
10908 the high order N bits of FOO (N+1 if an inequality comparison)
10909 are known to be zero, we can do this by comparing FOO with C
10910 shifted right N bits so long as the low-order N bits of C are
10911 zero. */
10912 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10913 && INTVAL (XEXP (op0, 1)) >= 0
10914 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10915 < HOST_BITS_PER_WIDE_INT)
10916 && ((const_op
10917 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10918 && mode_width <= HOST_BITS_PER_WIDE_INT
10919 && (nonzero_bits (XEXP (op0, 0), mode)
10920 & ~(mask >> (INTVAL (XEXP (op0, 1))
10921 + ! equality_comparison_p))) == 0)
10922 {
10923 /* We must perform a logical shift, not an arithmetic one,
10924 as we want the top N bits of C to be zero. */
10925 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10926
10927 temp >>= INTVAL (XEXP (op0, 1));
10928 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10929 op0 = XEXP (op0, 0);
10930 continue;
10931 }
10932
10933 /* If we are doing a sign bit comparison, it means we are testing
10934 a particular bit. Convert it to the appropriate AND. */
10935 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10936 && mode_width <= HOST_BITS_PER_WIDE_INT)
10937 {
10938 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10939 ((HOST_WIDE_INT) 1
10940 << (mode_width - 1
10941 - INTVAL (XEXP (op0, 1)))));
10942 code = (code == LT ? NE : EQ);
10943 continue;
10944 }
10945
10946 /* If this an equality comparison with zero and we are shifting
10947 the low bit to the sign bit, we can convert this to an AND of the
10948 low-order bit. */
10949 if (const_op == 0 && equality_comparison_p
10950 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10951 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10952 {
10953 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10954 (HOST_WIDE_INT) 1);
10955 continue;
10956 }
10957 break;
10958
10959 case ASHIFTRT:
10960 /* If this is an equality comparison with zero, we can do this
10961 as a logical shift, which might be much simpler. */
10962 if (equality_comparison_p && const_op == 0
10963 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10964 {
10965 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10966 XEXP (op0, 0),
10967 INTVAL (XEXP (op0, 1)));
10968 continue;
10969 }
10970
10971 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10972 do the comparison in a narrower mode. */
10973 if (! unsigned_comparison_p
10974 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10975 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10976 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10977 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10978 MODE_INT, 1)) != BLKmode
10979 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10980 || ((unsigned HOST_WIDE_INT) -const_op
10981 <= GET_MODE_MASK (tmode))))
10982 {
10983 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10984 continue;
10985 }
10986
10987 /* Likewise if OP0 is a PLUS of a sign extension with a
10988 constant, which is usually represented with the PLUS
10989 between the shifts. */
10990 if (! unsigned_comparison_p
10991 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10992 && GET_CODE (XEXP (op0, 0)) == PLUS
10993 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10994 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10995 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10996 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10997 MODE_INT, 1)) != BLKmode
10998 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10999 || ((unsigned HOST_WIDE_INT) -const_op
11000 <= GET_MODE_MASK (tmode))))
11001 {
11002 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11003 rtx add_const = XEXP (XEXP (op0, 0), 1);
11004 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11005 XEXP (op0, 1));
11006
11007 op0 = gen_binary (PLUS, tmode,
11008 gen_lowpart_for_combine (tmode, inner),
11009 new_const);
11010 continue;
11011 }
11012
11013 /* ... fall through ... */
11014 case LSHIFTRT:
11015 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11016 the low order N bits of FOO are known to be zero, we can do this
11017 by comparing FOO with C shifted left N bits so long as no
11018 overflow occurs. */
11019 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11020 && INTVAL (XEXP (op0, 1)) >= 0
11021 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11022 && mode_width <= HOST_BITS_PER_WIDE_INT
11023 && (nonzero_bits (XEXP (op0, 0), mode)
11024 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11025 && (const_op == 0
11026 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
11027 < mode_width)))
11028 {
11029 const_op <<= INTVAL (XEXP (op0, 1));
11030 op1 = GEN_INT (const_op);
11031 op0 = XEXP (op0, 0);
11032 continue;
11033 }
11034
11035 /* If we are using this shift to extract just the sign bit, we
11036 can replace this with an LT or GE comparison. */
11037 if (const_op == 0
11038 && (equality_comparison_p || sign_bit_comparison_p)
11039 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11040 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
11041 {
11042 op0 = XEXP (op0, 0);
11043 code = (code == NE || code == GT ? LT : GE);
11044 continue;
11045 }
11046 break;
11047
11048 default:
11049 break;
11050 }
11051
11052 break;
11053 }
11054
11055 /* Now make any compound operations involved in this comparison. Then,
11056 check for an outmost SUBREG on OP0 that is not doing anything or is
11057 paradoxical. The latter case can only occur when it is known that the
11058 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
11059 We can never remove a SUBREG for a non-equality comparison because the
11060 sign bit is in a different place in the underlying object. */
11061
11062 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11063 op1 = make_compound_operation (op1, SET);
11064
11065 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11066 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11067 && (code == NE || code == EQ)
11068 && ((GET_MODE_SIZE (GET_MODE (op0))
11069 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
11070 {
11071 op0 = SUBREG_REG (op0);
11072 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11073 }
11074
11075 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11076 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11077 && (code == NE || code == EQ)
11078 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11079 <= HOST_BITS_PER_WIDE_INT)
11080 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
11081 & ~GET_MODE_MASK (GET_MODE (op0))) == 0
11082 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
11083 op1),
11084 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11085 & ~GET_MODE_MASK (GET_MODE (op0))) == 0))
11086 op0 = SUBREG_REG (op0), op1 = tem;
11087
11088 /* We now do the opposite procedure: Some machines don't have compare
11089 insns in all modes. If OP0's mode is an integer mode smaller than a
11090 word and we can't do a compare in that mode, see if there is a larger
11091 mode for which we can do the compare. There are a number of cases in
11092 which we can use the wider mode. */
11093
11094 mode = GET_MODE (op0);
11095 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11096 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11097 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
11098 for (tmode = GET_MODE_WIDER_MODE (mode);
11099 (tmode != VOIDmode
11100 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11101 tmode = GET_MODE_WIDER_MODE (tmode))
11102 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
11103 {
11104 /* If the only nonzero bits in OP0 and OP1 are those in the
11105 narrower mode and this is an equality or unsigned comparison,
11106 we can use the wider mode. Similarly for sign-extended
11107 values, in which case it is true for all comparisons. */
11108 if (((code == EQ || code == NE
11109 || code == GEU || code == GTU || code == LEU || code == LTU)
11110 && (nonzero_bits (op0, tmode) & ~GET_MODE_MASK (mode)) == 0
11111 && (nonzero_bits (op1, tmode) & ~GET_MODE_MASK (mode)) == 0)
11112 || ((num_sign_bit_copies (op0, tmode)
11113 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
11114 && (num_sign_bit_copies (op1, tmode)
11115 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
11116 {
11117 /* If OP0 is an AND and we don't have an AND in MODE either,
11118 make a new AND in the proper mode. */
11119 if (GET_CODE (op0) == AND
11120 && (add_optab->handlers[(int) mode].insn_code
11121 == CODE_FOR_nothing))
11122 op0 = gen_binary (AND, tmode,
11123 gen_lowpart_for_combine (tmode,
11124 XEXP (op0, 0)),
11125 gen_lowpart_for_combine (tmode,
11126 XEXP (op0, 1)));
11127
11128 op0 = gen_lowpart_for_combine (tmode, op0);
11129 op1 = gen_lowpart_for_combine (tmode, op1);
11130 break;
11131 }
11132
11133 /* If this is a test for negative, we can make an explicit
11134 test of the sign bit. */
11135
11136 if (op1 == const0_rtx && (code == LT || code == GE)
11137 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11138 {
11139 op0 = gen_binary (AND, tmode,
11140 gen_lowpart_for_combine (tmode, op0),
11141 GEN_INT ((HOST_WIDE_INT) 1
11142 << (GET_MODE_BITSIZE (mode) - 1)));
11143 code = (code == LT) ? NE : EQ;
11144 break;
11145 }
11146 }
11147
11148 #ifdef CANONICALIZE_COMPARISON
11149 /* If this machine only supports a subset of valid comparisons, see if we
11150 can convert an unsupported one into a supported one. */
11151 CANONICALIZE_COMPARISON (code, op0, op1);
11152 #endif
11153
11154 *pop0 = op0;
11155 *pop1 = op1;
11156
11157 return code;
11158 }
11159 \f
11160 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11161 searching backward. */
11162 static enum rtx_code
11163 combine_reversed_comparison_code (exp)
11164 rtx exp;
11165 {
11166 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11167 rtx x;
11168
11169 if (code1 != UNKNOWN
11170 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11171 return code1;
11172 /* Otherwise try and find where the condition codes were last set and
11173 use that. */
11174 x = get_last_value (XEXP (exp, 0));
11175 if (!x || GET_CODE (x) != COMPARE)
11176 return UNKNOWN;
11177 return reversed_comparison_code_parts (GET_CODE (exp),
11178 XEXP (x, 0), XEXP (x, 1), NULL);
11179 }
11180 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11181 Return NULL_RTX in case we fail to do the reversal. */
11182 static rtx
11183 reversed_comparison (exp, mode, op0, op1)
11184 rtx exp, op0, op1;
11185 enum machine_mode mode;
11186 {
11187 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11188 if (reversed_code == UNKNOWN)
11189 return NULL_RTX;
11190 else
11191 return gen_binary (reversed_code, mode, op0, op1);
11192 }
11193 \f
11194 /* Utility function for following routine. Called when X is part of a value
11195 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11196 for each register mentioned. Similar to mention_regs in cse.c */
11197
11198 static void
11199 update_table_tick (x)
11200 rtx x;
11201 {
11202 register enum rtx_code code = GET_CODE (x);
11203 register const char *fmt = GET_RTX_FORMAT (code);
11204 register int i;
11205
11206 if (code == REG)
11207 {
11208 unsigned int regno = REGNO (x);
11209 unsigned int endregno
11210 = regno + (regno < FIRST_PSEUDO_REGISTER
11211 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11212 unsigned int r;
11213
11214 for (r = regno; r < endregno; r++)
11215 reg_last_set_table_tick[r] = label_tick;
11216
11217 return;
11218 }
11219
11220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11221 /* Note that we can't have an "E" in values stored; see
11222 get_last_value_validate. */
11223 if (fmt[i] == 'e')
11224 update_table_tick (XEXP (x, i));
11225 }
11226
11227 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11228 are saying that the register is clobbered and we no longer know its
11229 value. If INSN is zero, don't update reg_last_set; this is only permitted
11230 with VALUE also zero and is used to invalidate the register. */
11231
11232 static void
11233 record_value_for_reg (reg, insn, value)
11234 rtx reg;
11235 rtx insn;
11236 rtx value;
11237 {
11238 unsigned int regno = REGNO (reg);
11239 unsigned int endregno
11240 = regno + (regno < FIRST_PSEUDO_REGISTER
11241 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11242 unsigned int i;
11243
11244 /* If VALUE contains REG and we have a previous value for REG, substitute
11245 the previous value. */
11246 if (value && insn && reg_overlap_mentioned_p (reg, value))
11247 {
11248 rtx tem;
11249
11250 /* Set things up so get_last_value is allowed to see anything set up to
11251 our insn. */
11252 subst_low_cuid = INSN_CUID (insn);
11253 tem = get_last_value (reg);
11254
11255 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11256 it isn't going to be useful and will take a lot of time to process,
11257 so just use the CLOBBER. */
11258
11259 if (tem)
11260 {
11261 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11262 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11263 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11264 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11265 tem = XEXP (tem, 0);
11266
11267 value = replace_rtx (copy_rtx (value), reg, tem);
11268 }
11269 }
11270
11271 /* For each register modified, show we don't know its value, that
11272 we don't know about its bitwise content, that its value has been
11273 updated, and that we don't know the location of the death of the
11274 register. */
11275 for (i = regno; i < endregno; i++)
11276 {
11277 if (insn)
11278 reg_last_set[i] = insn;
11279
11280 reg_last_set_value[i] = 0;
11281 reg_last_set_mode[i] = 0;
11282 reg_last_set_nonzero_bits[i] = 0;
11283 reg_last_set_sign_bit_copies[i] = 0;
11284 reg_last_death[i] = 0;
11285 }
11286
11287 /* Mark registers that are being referenced in this value. */
11288 if (value)
11289 update_table_tick (value);
11290
11291 /* Now update the status of each register being set.
11292 If someone is using this register in this block, set this register
11293 to invalid since we will get confused between the two lives in this
11294 basic block. This makes using this register always invalid. In cse, we
11295 scan the table to invalidate all entries using this register, but this
11296 is too much work for us. */
11297
11298 for (i = regno; i < endregno; i++)
11299 {
11300 reg_last_set_label[i] = label_tick;
11301 if (value && reg_last_set_table_tick[i] == label_tick)
11302 reg_last_set_invalid[i] = 1;
11303 else
11304 reg_last_set_invalid[i] = 0;
11305 }
11306
11307 /* The value being assigned might refer to X (like in "x++;"). In that
11308 case, we must replace it with (clobber (const_int 0)) to prevent
11309 infinite loops. */
11310 if (value && ! get_last_value_validate (&value, insn,
11311 reg_last_set_label[regno], 0))
11312 {
11313 value = copy_rtx (value);
11314 if (! get_last_value_validate (&value, insn,
11315 reg_last_set_label[regno], 1))
11316 value = 0;
11317 }
11318
11319 /* For the main register being modified, update the value, the mode, the
11320 nonzero bits, and the number of sign bit copies. */
11321
11322 reg_last_set_value[regno] = value;
11323
11324 if (value)
11325 {
11326 subst_low_cuid = INSN_CUID (insn);
11327 reg_last_set_mode[regno] = GET_MODE (reg);
11328 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11329 reg_last_set_sign_bit_copies[regno]
11330 = num_sign_bit_copies (value, GET_MODE (reg));
11331 }
11332 }
11333
11334 /* Called via note_stores from record_dead_and_set_regs to handle one
11335 SET or CLOBBER in an insn. DATA is the instruction in which the
11336 set is occurring. */
11337
11338 static void
11339 record_dead_and_set_regs_1 (dest, setter, data)
11340 rtx dest, setter;
11341 void *data;
11342 {
11343 rtx record_dead_insn = (rtx) data;
11344
11345 if (GET_CODE (dest) == SUBREG)
11346 dest = SUBREG_REG (dest);
11347
11348 if (GET_CODE (dest) == REG)
11349 {
11350 /* If we are setting the whole register, we know its value. Otherwise
11351 show that we don't know the value. We can handle SUBREG in
11352 some cases. */
11353 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11354 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11355 else if (GET_CODE (setter) == SET
11356 && GET_CODE (SET_DEST (setter)) == SUBREG
11357 && SUBREG_REG (SET_DEST (setter)) == dest
11358 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11359 && subreg_lowpart_p (SET_DEST (setter)))
11360 record_value_for_reg (dest, record_dead_insn,
11361 gen_lowpart_for_combine (GET_MODE (dest),
11362 SET_SRC (setter)));
11363 else
11364 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11365 }
11366 else if (GET_CODE (dest) == MEM
11367 /* Ignore pushes, they clobber nothing. */
11368 && ! push_operand (dest, GET_MODE (dest)))
11369 mem_last_set = INSN_CUID (record_dead_insn);
11370 }
11371
11372 /* Update the records of when each REG was most recently set or killed
11373 for the things done by INSN. This is the last thing done in processing
11374 INSN in the combiner loop.
11375
11376 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11377 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11378 and also the similar information mem_last_set (which insn most recently
11379 modified memory) and last_call_cuid (which insn was the most recent
11380 subroutine call). */
11381
11382 static void
11383 record_dead_and_set_regs (insn)
11384 rtx insn;
11385 {
11386 register rtx link;
11387 unsigned int i;
11388
11389 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11390 {
11391 if (REG_NOTE_KIND (link) == REG_DEAD
11392 && GET_CODE (XEXP (link, 0)) == REG)
11393 {
11394 unsigned int regno = REGNO (XEXP (link, 0));
11395 unsigned int endregno
11396 = regno + (regno < FIRST_PSEUDO_REGISTER
11397 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11398 : 1);
11399
11400 for (i = regno; i < endregno; i++)
11401 reg_last_death[i] = insn;
11402 }
11403 else if (REG_NOTE_KIND (link) == REG_INC)
11404 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11405 }
11406
11407 if (GET_CODE (insn) == CALL_INSN)
11408 {
11409 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11410 if (call_used_regs[i])
11411 {
11412 reg_last_set_value[i] = 0;
11413 reg_last_set_mode[i] = 0;
11414 reg_last_set_nonzero_bits[i] = 0;
11415 reg_last_set_sign_bit_copies[i] = 0;
11416 reg_last_death[i] = 0;
11417 }
11418
11419 last_call_cuid = mem_last_set = INSN_CUID (insn);
11420 }
11421
11422 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11423 }
11424
11425 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11426 register present in the SUBREG, so for each such SUBREG go back and
11427 adjust nonzero and sign bit information of the registers that are
11428 known to have some zero/sign bits set.
11429
11430 This is needed because when combine blows the SUBREGs away, the
11431 information on zero/sign bits is lost and further combines can be
11432 missed because of that. */
11433
11434 static void
11435 record_promoted_value (insn, subreg)
11436 rtx insn;
11437 rtx subreg;
11438 {
11439 rtx links, set;
11440 unsigned int regno = REGNO (SUBREG_REG (subreg));
11441 enum machine_mode mode = GET_MODE (subreg);
11442
11443 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11444 return;
11445
11446 for (links = LOG_LINKS (insn); links;)
11447 {
11448 insn = XEXP (links, 0);
11449 set = single_set (insn);
11450
11451 if (! set || GET_CODE (SET_DEST (set)) != REG
11452 || REGNO (SET_DEST (set)) != regno
11453 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11454 {
11455 links = XEXP (links, 1);
11456 continue;
11457 }
11458
11459 if (reg_last_set[regno] == insn)
11460 {
11461 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11462 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11463 }
11464
11465 if (GET_CODE (SET_SRC (set)) == REG)
11466 {
11467 regno = REGNO (SET_SRC (set));
11468 links = LOG_LINKS (insn);
11469 }
11470 else
11471 break;
11472 }
11473 }
11474
11475 /* Scan X for promoted SUBREGs. For each one found,
11476 note what it implies to the registers used in it. */
11477
11478 static void
11479 check_promoted_subreg (insn, x)
11480 rtx insn;
11481 rtx x;
11482 {
11483 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11484 && GET_CODE (SUBREG_REG (x)) == REG)
11485 record_promoted_value (insn, x);
11486 else
11487 {
11488 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11489 int i, j;
11490
11491 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11492 switch (format[i])
11493 {
11494 case 'e':
11495 check_promoted_subreg (insn, XEXP (x, i));
11496 break;
11497 case 'V':
11498 case 'E':
11499 if (XVEC (x, i) != 0)
11500 for (j = 0; j < XVECLEN (x, i); j++)
11501 check_promoted_subreg (insn, XVECEXP (x, i, j));
11502 break;
11503 }
11504 }
11505 }
11506 \f
11507 /* Utility routine for the following function. Verify that all the registers
11508 mentioned in *LOC are valid when *LOC was part of a value set when
11509 label_tick == TICK. Return 0 if some are not.
11510
11511 If REPLACE is non-zero, replace the invalid reference with
11512 (clobber (const_int 0)) and return 1. This replacement is useful because
11513 we often can get useful information about the form of a value (e.g., if
11514 it was produced by a shift that always produces -1 or 0) even though
11515 we don't know exactly what registers it was produced from. */
11516
11517 static int
11518 get_last_value_validate (loc, insn, tick, replace)
11519 rtx *loc;
11520 rtx insn;
11521 int tick;
11522 int replace;
11523 {
11524 rtx x = *loc;
11525 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11526 int len = GET_RTX_LENGTH (GET_CODE (x));
11527 int i;
11528
11529 if (GET_CODE (x) == REG)
11530 {
11531 unsigned int regno = REGNO (x);
11532 unsigned int endregno
11533 = regno + (regno < FIRST_PSEUDO_REGISTER
11534 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11535 unsigned int j;
11536
11537 for (j = regno; j < endregno; j++)
11538 if (reg_last_set_invalid[j]
11539 /* If this is a pseudo-register that was only set once and not
11540 live at the beginning of the function, it is always valid. */
11541 || (! (regno >= FIRST_PSEUDO_REGISTER
11542 && REG_N_SETS (regno) == 1
11543 && (! REGNO_REG_SET_P
11544 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11545 && reg_last_set_label[j] > tick))
11546 {
11547 if (replace)
11548 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11549 return replace;
11550 }
11551
11552 return 1;
11553 }
11554 /* If this is a memory reference, make sure that there were
11555 no stores after it that might have clobbered the value. We don't
11556 have alias info, so we assume any store invalidates it. */
11557 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11558 && INSN_CUID (insn) <= mem_last_set)
11559 {
11560 if (replace)
11561 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11562 return replace;
11563 }
11564
11565 for (i = 0; i < len; i++)
11566 if ((fmt[i] == 'e'
11567 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11568 /* Don't bother with these. They shouldn't occur anyway. */
11569 || fmt[i] == 'E')
11570 return 0;
11571
11572 /* If we haven't found a reason for it to be invalid, it is valid. */
11573 return 1;
11574 }
11575
11576 /* Get the last value assigned to X, if known. Some registers
11577 in the value may be replaced with (clobber (const_int 0)) if their value
11578 is known longer known reliably. */
11579
11580 static rtx
11581 get_last_value (x)
11582 rtx x;
11583 {
11584 unsigned int regno;
11585 rtx value;
11586
11587 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11588 then convert it to the desired mode. If this is a paradoxical SUBREG,
11589 we cannot predict what values the "extra" bits might have. */
11590 if (GET_CODE (x) == SUBREG
11591 && subreg_lowpart_p (x)
11592 && (GET_MODE_SIZE (GET_MODE (x))
11593 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11594 && (value = get_last_value (SUBREG_REG (x))) != 0)
11595 return gen_lowpart_for_combine (GET_MODE (x), value);
11596
11597 if (GET_CODE (x) != REG)
11598 return 0;
11599
11600 regno = REGNO (x);
11601 value = reg_last_set_value[regno];
11602
11603 /* If we don't have a value, or if it isn't for this basic block and
11604 it's either a hard register, set more than once, or it's a live
11605 at the beginning of the function, return 0.
11606
11607 Because if it's not live at the beginnning of the function then the reg
11608 is always set before being used (is never used without being set).
11609 And, if it's set only once, and it's always set before use, then all
11610 uses must have the same last value, even if it's not from this basic
11611 block. */
11612
11613 if (value == 0
11614 || (reg_last_set_label[regno] != label_tick
11615 && (regno < FIRST_PSEUDO_REGISTER
11616 || REG_N_SETS (regno) != 1
11617 || (REGNO_REG_SET_P
11618 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11619 return 0;
11620
11621 /* If the value was set in a later insn than the ones we are processing,
11622 we can't use it even if the register was only set once. */
11623 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11624 return 0;
11625
11626 /* If the value has all its registers valid, return it. */
11627 if (get_last_value_validate (&value, reg_last_set[regno],
11628 reg_last_set_label[regno], 0))
11629 return value;
11630
11631 /* Otherwise, make a copy and replace any invalid register with
11632 (clobber (const_int 0)). If that fails for some reason, return 0. */
11633
11634 value = copy_rtx (value);
11635 if (get_last_value_validate (&value, reg_last_set[regno],
11636 reg_last_set_label[regno], 1))
11637 return value;
11638
11639 return 0;
11640 }
11641 \f
11642 /* Return nonzero if expression X refers to a REG or to memory
11643 that is set in an instruction more recent than FROM_CUID. */
11644
11645 static int
11646 use_crosses_set_p (x, from_cuid)
11647 register rtx x;
11648 int from_cuid;
11649 {
11650 register const char *fmt;
11651 register int i;
11652 register enum rtx_code code = GET_CODE (x);
11653
11654 if (code == REG)
11655 {
11656 unsigned int regno = REGNO (x);
11657 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11658 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11659
11660 #ifdef PUSH_ROUNDING
11661 /* Don't allow uses of the stack pointer to be moved,
11662 because we don't know whether the move crosses a push insn. */
11663 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11664 return 1;
11665 #endif
11666 for (; regno < endreg; regno++)
11667 if (reg_last_set[regno]
11668 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11669 return 1;
11670 return 0;
11671 }
11672
11673 if (code == MEM && mem_last_set > from_cuid)
11674 return 1;
11675
11676 fmt = GET_RTX_FORMAT (code);
11677
11678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11679 {
11680 if (fmt[i] == 'E')
11681 {
11682 register int j;
11683 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11684 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11685 return 1;
11686 }
11687 else if (fmt[i] == 'e'
11688 && use_crosses_set_p (XEXP (x, i), from_cuid))
11689 return 1;
11690 }
11691 return 0;
11692 }
11693 \f
11694 /* Define three variables used for communication between the following
11695 routines. */
11696
11697 static unsigned int reg_dead_regno, reg_dead_endregno;
11698 static int reg_dead_flag;
11699
11700 /* Function called via note_stores from reg_dead_at_p.
11701
11702 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11703 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11704
11705 static void
11706 reg_dead_at_p_1 (dest, x, data)
11707 rtx dest;
11708 rtx x;
11709 void *data ATTRIBUTE_UNUSED;
11710 {
11711 unsigned int regno, endregno;
11712
11713 if (GET_CODE (dest) != REG)
11714 return;
11715
11716 regno = REGNO (dest);
11717 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11718 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11719
11720 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11721 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11722 }
11723
11724 /* Return non-zero if REG is known to be dead at INSN.
11725
11726 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11727 referencing REG, it is dead. If we hit a SET referencing REG, it is
11728 live. Otherwise, see if it is live or dead at the start of the basic
11729 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11730 must be assumed to be always live. */
11731
11732 static int
11733 reg_dead_at_p (reg, insn)
11734 rtx reg;
11735 rtx insn;
11736 {
11737 int block;
11738 unsigned int i;
11739
11740 /* Set variables for reg_dead_at_p_1. */
11741 reg_dead_regno = REGNO (reg);
11742 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11743 ? HARD_REGNO_NREGS (reg_dead_regno,
11744 GET_MODE (reg))
11745 : 1);
11746
11747 reg_dead_flag = 0;
11748
11749 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11750 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11751 {
11752 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11753 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11754 return 0;
11755 }
11756
11757 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11758 beginning of function. */
11759 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11760 insn = prev_nonnote_insn (insn))
11761 {
11762 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11763 if (reg_dead_flag)
11764 return reg_dead_flag == 1 ? 1 : 0;
11765
11766 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11767 return 1;
11768 }
11769
11770 /* Get the basic block number that we were in. */
11771 if (insn == 0)
11772 block = 0;
11773 else
11774 {
11775 for (block = 0; block < n_basic_blocks; block++)
11776 if (insn == BLOCK_HEAD (block))
11777 break;
11778
11779 if (block == n_basic_blocks)
11780 return 0;
11781 }
11782
11783 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11784 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11785 return 0;
11786
11787 return 1;
11788 }
11789 \f
11790 /* Note hard registers in X that are used. This code is similar to
11791 that in flow.c, but much simpler since we don't care about pseudos. */
11792
11793 static void
11794 mark_used_regs_combine (x)
11795 rtx x;
11796 {
11797 RTX_CODE code = GET_CODE (x);
11798 unsigned int regno;
11799 int i;
11800
11801 switch (code)
11802 {
11803 case LABEL_REF:
11804 case SYMBOL_REF:
11805 case CONST_INT:
11806 case CONST:
11807 case CONST_DOUBLE:
11808 case PC:
11809 case ADDR_VEC:
11810 case ADDR_DIFF_VEC:
11811 case ASM_INPUT:
11812 #ifdef HAVE_cc0
11813 /* CC0 must die in the insn after it is set, so we don't need to take
11814 special note of it here. */
11815 case CC0:
11816 #endif
11817 return;
11818
11819 case CLOBBER:
11820 /* If we are clobbering a MEM, mark any hard registers inside the
11821 address as used. */
11822 if (GET_CODE (XEXP (x, 0)) == MEM)
11823 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11824 return;
11825
11826 case REG:
11827 regno = REGNO (x);
11828 /* A hard reg in a wide mode may really be multiple registers.
11829 If so, mark all of them just like the first. */
11830 if (regno < FIRST_PSEUDO_REGISTER)
11831 {
11832 unsigned int endregno, r;
11833
11834 /* None of this applies to the stack, frame or arg pointers */
11835 if (regno == STACK_POINTER_REGNUM
11836 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11837 || regno == HARD_FRAME_POINTER_REGNUM
11838 #endif
11839 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11840 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11841 #endif
11842 || regno == FRAME_POINTER_REGNUM)
11843 return;
11844
11845 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11846 for (r = regno; r < endregno; r++)
11847 SET_HARD_REG_BIT (newpat_used_regs, r);
11848 }
11849 return;
11850
11851 case SET:
11852 {
11853 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11854 the address. */
11855 register rtx testreg = SET_DEST (x);
11856
11857 while (GET_CODE (testreg) == SUBREG
11858 || GET_CODE (testreg) == ZERO_EXTRACT
11859 || GET_CODE (testreg) == SIGN_EXTRACT
11860 || GET_CODE (testreg) == STRICT_LOW_PART)
11861 testreg = XEXP (testreg, 0);
11862
11863 if (GET_CODE (testreg) == MEM)
11864 mark_used_regs_combine (XEXP (testreg, 0));
11865
11866 mark_used_regs_combine (SET_SRC (x));
11867 }
11868 return;
11869
11870 default:
11871 break;
11872 }
11873
11874 /* Recursively scan the operands of this expression. */
11875
11876 {
11877 register const char *fmt = GET_RTX_FORMAT (code);
11878
11879 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11880 {
11881 if (fmt[i] == 'e')
11882 mark_used_regs_combine (XEXP (x, i));
11883 else if (fmt[i] == 'E')
11884 {
11885 register int j;
11886
11887 for (j = 0; j < XVECLEN (x, i); j++)
11888 mark_used_regs_combine (XVECEXP (x, i, j));
11889 }
11890 }
11891 }
11892 }
11893 \f
11894 /* Remove register number REGNO from the dead registers list of INSN.
11895
11896 Return the note used to record the death, if there was one. */
11897
11898 rtx
11899 remove_death (regno, insn)
11900 unsigned int regno;
11901 rtx insn;
11902 {
11903 register rtx note = find_regno_note (insn, REG_DEAD, regno);
11904
11905 if (note)
11906 {
11907 REG_N_DEATHS (regno)--;
11908 remove_note (insn, note);
11909 }
11910
11911 return note;
11912 }
11913
11914 /* For each register (hardware or pseudo) used within expression X, if its
11915 death is in an instruction with cuid between FROM_CUID (inclusive) and
11916 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11917 list headed by PNOTES.
11918
11919 That said, don't move registers killed by maybe_kill_insn.
11920
11921 This is done when X is being merged by combination into TO_INSN. These
11922 notes will then be distributed as needed. */
11923
11924 static void
11925 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11926 rtx x;
11927 rtx maybe_kill_insn;
11928 int from_cuid;
11929 rtx to_insn;
11930 rtx *pnotes;
11931 {
11932 register const char *fmt;
11933 register int len, i;
11934 register enum rtx_code code = GET_CODE (x);
11935
11936 if (code == REG)
11937 {
11938 unsigned int regno = REGNO (x);
11939 register rtx where_dead = reg_last_death[regno];
11940 register rtx before_dead, after_dead;
11941
11942 /* Don't move the register if it gets killed in between from and to */
11943 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11944 && ! reg_referenced_p (x, maybe_kill_insn))
11945 return;
11946
11947 /* WHERE_DEAD could be a USE insn made by combine, so first we
11948 make sure that we have insns with valid INSN_CUID values. */
11949 before_dead = where_dead;
11950 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11951 before_dead = PREV_INSN (before_dead);
11952
11953 after_dead = where_dead;
11954 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11955 after_dead = NEXT_INSN (after_dead);
11956
11957 if (before_dead && after_dead
11958 && INSN_CUID (before_dead) >= from_cuid
11959 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11960 || (where_dead != after_dead
11961 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11962 {
11963 rtx note = remove_death (regno, where_dead);
11964
11965 /* It is possible for the call above to return 0. This can occur
11966 when reg_last_death points to I2 or I1 that we combined with.
11967 In that case make a new note.
11968
11969 We must also check for the case where X is a hard register
11970 and NOTE is a death note for a range of hard registers
11971 including X. In that case, we must put REG_DEAD notes for
11972 the remaining registers in place of NOTE. */
11973
11974 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11975 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11976 > GET_MODE_SIZE (GET_MODE (x))))
11977 {
11978 unsigned int deadregno = REGNO (XEXP (note, 0));
11979 unsigned int deadend
11980 = (deadregno + HARD_REGNO_NREGS (deadregno,
11981 GET_MODE (XEXP (note, 0))));
11982 unsigned int ourend
11983 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11984 unsigned int i;
11985
11986 for (i = deadregno; i < deadend; i++)
11987 if (i < regno || i >= ourend)
11988 REG_NOTES (where_dead)
11989 = gen_rtx_EXPR_LIST (REG_DEAD,
11990 gen_rtx_REG (reg_raw_mode[i], i),
11991 REG_NOTES (where_dead));
11992 }
11993
11994 /* If we didn't find any note, or if we found a REG_DEAD note that
11995 covers only part of the given reg, and we have a multi-reg hard
11996 register, then to be safe we must check for REG_DEAD notes
11997 for each register other than the first. They could have
11998 their own REG_DEAD notes lying around. */
11999 else if ((note == 0
12000 || (note != 0
12001 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12002 < GET_MODE_SIZE (GET_MODE (x)))))
12003 && regno < FIRST_PSEUDO_REGISTER
12004 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12005 {
12006 unsigned int ourend
12007 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12008 unsigned int i, offset;
12009 rtx oldnotes = 0;
12010
12011 if (note)
12012 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12013 else
12014 offset = 1;
12015
12016 for (i = regno + offset; i < ourend; i++)
12017 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
12018 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12019 }
12020
12021 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12022 {
12023 XEXP (note, 1) = *pnotes;
12024 *pnotes = note;
12025 }
12026 else
12027 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12028
12029 REG_N_DEATHS (regno)++;
12030 }
12031
12032 return;
12033 }
12034
12035 else if (GET_CODE (x) == SET)
12036 {
12037 rtx dest = SET_DEST (x);
12038
12039 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12040
12041 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12042 that accesses one word of a multi-word item, some
12043 piece of everything register in the expression is used by
12044 this insn, so remove any old death. */
12045
12046 if (GET_CODE (dest) == ZERO_EXTRACT
12047 || GET_CODE (dest) == STRICT_LOW_PART
12048 || (GET_CODE (dest) == SUBREG
12049 && (((GET_MODE_SIZE (GET_MODE (dest))
12050 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12051 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12052 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12053 {
12054 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12055 return;
12056 }
12057
12058 /* If this is some other SUBREG, we know it replaces the entire
12059 value, so use that as the destination. */
12060 if (GET_CODE (dest) == SUBREG)
12061 dest = SUBREG_REG (dest);
12062
12063 /* If this is a MEM, adjust deaths of anything used in the address.
12064 For a REG (the only other possibility), the entire value is
12065 being replaced so the old value is not used in this insn. */
12066
12067 if (GET_CODE (dest) == MEM)
12068 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12069 to_insn, pnotes);
12070 return;
12071 }
12072
12073 else if (GET_CODE (x) == CLOBBER)
12074 return;
12075
12076 len = GET_RTX_LENGTH (code);
12077 fmt = GET_RTX_FORMAT (code);
12078
12079 for (i = 0; i < len; i++)
12080 {
12081 if (fmt[i] == 'E')
12082 {
12083 register int j;
12084 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12085 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12086 to_insn, pnotes);
12087 }
12088 else if (fmt[i] == 'e')
12089 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12090 }
12091 }
12092 \f
12093 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12094 pattern of an insn. X must be a REG. */
12095
12096 static int
12097 reg_bitfield_target_p (x, body)
12098 rtx x;
12099 rtx body;
12100 {
12101 int i;
12102
12103 if (GET_CODE (body) == SET)
12104 {
12105 rtx dest = SET_DEST (body);
12106 rtx target;
12107 unsigned int regno, tregno, endregno, endtregno;
12108
12109 if (GET_CODE (dest) == ZERO_EXTRACT)
12110 target = XEXP (dest, 0);
12111 else if (GET_CODE (dest) == STRICT_LOW_PART)
12112 target = SUBREG_REG (XEXP (dest, 0));
12113 else
12114 return 0;
12115
12116 if (GET_CODE (target) == SUBREG)
12117 target = SUBREG_REG (target);
12118
12119 if (GET_CODE (target) != REG)
12120 return 0;
12121
12122 tregno = REGNO (target), regno = REGNO (x);
12123 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12124 return target == x;
12125
12126 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12127 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12128
12129 return endregno > tregno && regno < endtregno;
12130 }
12131
12132 else if (GET_CODE (body) == PARALLEL)
12133 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12134 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12135 return 1;
12136
12137 return 0;
12138 }
12139 \f
12140 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12141 as appropriate. I3 and I2 are the insns resulting from the combination
12142 insns including FROM (I2 may be zero).
12143
12144 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12145 not need REG_DEAD notes because they are being substituted for. This
12146 saves searching in the most common cases.
12147
12148 Each note in the list is either ignored or placed on some insns, depending
12149 on the type of note. */
12150
12151 static void
12152 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12153 rtx notes;
12154 rtx from_insn;
12155 rtx i3, i2;
12156 rtx elim_i2, elim_i1;
12157 {
12158 rtx note, next_note;
12159 rtx tem;
12160
12161 for (note = notes; note; note = next_note)
12162 {
12163 rtx place = 0, place2 = 0;
12164
12165 /* If this NOTE references a pseudo register, ensure it references
12166 the latest copy of that register. */
12167 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12168 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12169 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12170
12171 next_note = XEXP (note, 1);
12172 switch (REG_NOTE_KIND (note))
12173 {
12174 case REG_BR_PROB:
12175 case REG_EXEC_COUNT:
12176 /* Doesn't matter much where we put this, as long as it's somewhere.
12177 It is preferable to keep these notes on branches, which is most
12178 likely to be i3. */
12179 place = i3;
12180 break;
12181
12182 case REG_NON_LOCAL_GOTO:
12183 if (GET_CODE (i3) == JUMP_INSN)
12184 place = i3;
12185 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12186 place = i2;
12187 else
12188 abort();
12189 break;
12190
12191 case REG_EH_REGION:
12192 case REG_EH_RETHROW:
12193 case REG_NORETURN:
12194 /* These notes must remain with the call. It should not be
12195 possible for both I2 and I3 to be a call. */
12196 if (GET_CODE (i3) == CALL_INSN)
12197 place = i3;
12198 else if (i2 && GET_CODE (i2) == CALL_INSN)
12199 place = i2;
12200 else
12201 abort ();
12202 break;
12203
12204 case REG_UNUSED:
12205 /* Any clobbers for i3 may still exist, and so we must process
12206 REG_UNUSED notes from that insn.
12207
12208 Any clobbers from i2 or i1 can only exist if they were added by
12209 recog_for_combine. In that case, recog_for_combine created the
12210 necessary REG_UNUSED notes. Trying to keep any original
12211 REG_UNUSED notes from these insns can cause incorrect output
12212 if it is for the same register as the original i3 dest.
12213 In that case, we will notice that the register is set in i3,
12214 and then add a REG_UNUSED note for the destination of i3, which
12215 is wrong. However, it is possible to have REG_UNUSED notes from
12216 i2 or i1 for register which were both used and clobbered, so
12217 we keep notes from i2 or i1 if they will turn into REG_DEAD
12218 notes. */
12219
12220 /* If this register is set or clobbered in I3, put the note there
12221 unless there is one already. */
12222 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12223 {
12224 if (from_insn != i3)
12225 break;
12226
12227 if (! (GET_CODE (XEXP (note, 0)) == REG
12228 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12229 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12230 place = i3;
12231 }
12232 /* Otherwise, if this register is used by I3, then this register
12233 now dies here, so we must put a REG_DEAD note here unless there
12234 is one already. */
12235 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12236 && ! (GET_CODE (XEXP (note, 0)) == REG
12237 ? find_regno_note (i3, REG_DEAD,
12238 REGNO (XEXP (note, 0)))
12239 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12240 {
12241 PUT_REG_NOTE_KIND (note, REG_DEAD);
12242 place = i3;
12243 }
12244 break;
12245
12246 case REG_EQUAL:
12247 case REG_EQUIV:
12248 case REG_NOALIAS:
12249 /* These notes say something about results of an insn. We can
12250 only support them if they used to be on I3 in which case they
12251 remain on I3. Otherwise they are ignored.
12252
12253 If the note refers to an expression that is not a constant, we
12254 must also ignore the note since we cannot tell whether the
12255 equivalence is still true. It might be possible to do
12256 slightly better than this (we only have a problem if I2DEST
12257 or I1DEST is present in the expression), but it doesn't
12258 seem worth the trouble. */
12259
12260 if (from_insn == i3
12261 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12262 place = i3;
12263 break;
12264
12265 case REG_INC:
12266 case REG_NO_CONFLICT:
12267 /* These notes say something about how a register is used. They must
12268 be present on any use of the register in I2 or I3. */
12269 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12270 place = i3;
12271
12272 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12273 {
12274 if (place)
12275 place2 = i2;
12276 else
12277 place = i2;
12278 }
12279 break;
12280
12281 case REG_LABEL:
12282 /* This can show up in several ways -- either directly in the
12283 pattern, or hidden off in the constant pool with (or without?)
12284 a REG_EQUAL note. */
12285 /* ??? Ignore the without-reg_equal-note problem for now. */
12286 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12287 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12288 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12289 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12290 place = i3;
12291
12292 if (i2
12293 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12294 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12295 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12296 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12297 {
12298 if (place)
12299 place2 = i2;
12300 else
12301 place = i2;
12302 }
12303 break;
12304
12305 case REG_NONNEG:
12306 case REG_WAS_0:
12307 /* These notes say something about the value of a register prior
12308 to the execution of an insn. It is too much trouble to see
12309 if the note is still correct in all situations. It is better
12310 to simply delete it. */
12311 break;
12312
12313 case REG_RETVAL:
12314 /* If the insn previously containing this note still exists,
12315 put it back where it was. Otherwise move it to the previous
12316 insn. Adjust the corresponding REG_LIBCALL note. */
12317 if (GET_CODE (from_insn) != NOTE)
12318 place = from_insn;
12319 else
12320 {
12321 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12322 place = prev_real_insn (from_insn);
12323 if (tem && place)
12324 XEXP (tem, 0) = place;
12325 /* If we're deleting the last remaining instruction of a
12326 libcall sequence, don't add the notes. */
12327 else if (XEXP (note, 0) == from_insn)
12328 tem = place = 0;
12329 }
12330 break;
12331
12332 case REG_LIBCALL:
12333 /* This is handled similarly to REG_RETVAL. */
12334 if (GET_CODE (from_insn) != NOTE)
12335 place = from_insn;
12336 else
12337 {
12338 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12339 place = next_real_insn (from_insn);
12340 if (tem && place)
12341 XEXP (tem, 0) = place;
12342 /* If we're deleting the last remaining instruction of a
12343 libcall sequence, don't add the notes. */
12344 else if (XEXP (note, 0) == from_insn)
12345 tem = place = 0;
12346 }
12347 break;
12348
12349 case REG_DEAD:
12350 /* If the register is used as an input in I3, it dies there.
12351 Similarly for I2, if it is non-zero and adjacent to I3.
12352
12353 If the register is not used as an input in either I3 or I2
12354 and it is not one of the registers we were supposed to eliminate,
12355 there are two possibilities. We might have a non-adjacent I2
12356 or we might have somehow eliminated an additional register
12357 from a computation. For example, we might have had A & B where
12358 we discover that B will always be zero. In this case we will
12359 eliminate the reference to A.
12360
12361 In both cases, we must search to see if we can find a previous
12362 use of A and put the death note there. */
12363
12364 if (from_insn
12365 && GET_CODE (from_insn) == CALL_INSN
12366 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12367 place = from_insn;
12368 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12369 place = i3;
12370 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12371 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12372 place = i2;
12373
12374 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12375 || rtx_equal_p (XEXP (note, 0), elim_i1))
12376 break;
12377
12378 if (place == 0)
12379 {
12380 basic_block bb = BASIC_BLOCK (this_basic_block);
12381
12382 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12383 {
12384 if (! INSN_P (tem))
12385 {
12386 if (tem == bb->head)
12387 break;
12388 continue;
12389 }
12390
12391 /* If the register is being set at TEM, see if that is all
12392 TEM is doing. If so, delete TEM. Otherwise, make this
12393 into a REG_UNUSED note instead. */
12394 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12395 {
12396 rtx set = single_set (tem);
12397 rtx inner_dest = 0;
12398 #ifdef HAVE_cc0
12399 rtx cc0_setter = NULL_RTX;
12400 #endif
12401
12402 if (set != 0)
12403 for (inner_dest = SET_DEST (set);
12404 (GET_CODE (inner_dest) == STRICT_LOW_PART
12405 || GET_CODE (inner_dest) == SUBREG
12406 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12407 inner_dest = XEXP (inner_dest, 0))
12408 ;
12409
12410 /* Verify that it was the set, and not a clobber that
12411 modified the register.
12412
12413 CC0 targets must be careful to maintain setter/user
12414 pairs. If we cannot delete the setter due to side
12415 effects, mark the user with an UNUSED note instead
12416 of deleting it. */
12417
12418 if (set != 0 && ! side_effects_p (SET_SRC (set))
12419 && rtx_equal_p (XEXP (note, 0), inner_dest)
12420 #ifdef HAVE_cc0
12421 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12422 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12423 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12424 #endif
12425 )
12426 {
12427 /* Move the notes and links of TEM elsewhere.
12428 This might delete other dead insns recursively.
12429 First set the pattern to something that won't use
12430 any register. */
12431
12432 PATTERN (tem) = pc_rtx;
12433
12434 distribute_notes (REG_NOTES (tem), tem, tem,
12435 NULL_RTX, NULL_RTX, NULL_RTX);
12436 distribute_links (LOG_LINKS (tem));
12437
12438 PUT_CODE (tem, NOTE);
12439 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12440 NOTE_SOURCE_FILE (tem) = 0;
12441
12442 #ifdef HAVE_cc0
12443 /* Delete the setter too. */
12444 if (cc0_setter)
12445 {
12446 PATTERN (cc0_setter) = pc_rtx;
12447
12448 distribute_notes (REG_NOTES (cc0_setter),
12449 cc0_setter, cc0_setter,
12450 NULL_RTX, NULL_RTX, NULL_RTX);
12451 distribute_links (LOG_LINKS (cc0_setter));
12452
12453 PUT_CODE (cc0_setter, NOTE);
12454 NOTE_LINE_NUMBER (cc0_setter)
12455 = NOTE_INSN_DELETED;
12456 NOTE_SOURCE_FILE (cc0_setter) = 0;
12457 }
12458 #endif
12459 }
12460 /* If the register is both set and used here, put the
12461 REG_DEAD note here, but place a REG_UNUSED note
12462 here too unless there already is one. */
12463 else if (reg_referenced_p (XEXP (note, 0),
12464 PATTERN (tem)))
12465 {
12466 place = tem;
12467
12468 if (! find_regno_note (tem, REG_UNUSED,
12469 REGNO (XEXP (note, 0))))
12470 REG_NOTES (tem)
12471 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12472 REG_NOTES (tem));
12473 }
12474 else
12475 {
12476 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12477
12478 /* If there isn't already a REG_UNUSED note, put one
12479 here. */
12480 if (! find_regno_note (tem, REG_UNUSED,
12481 REGNO (XEXP (note, 0))))
12482 place = tem;
12483 break;
12484 }
12485 }
12486 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12487 || (GET_CODE (tem) == CALL_INSN
12488 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12489 {
12490 place = tem;
12491
12492 /* If we are doing a 3->2 combination, and we have a
12493 register which formerly died in i3 and was not used
12494 by i2, which now no longer dies in i3 and is used in
12495 i2 but does not die in i2, and place is between i2
12496 and i3, then we may need to move a link from place to
12497 i2. */
12498 if (i2 && INSN_UID (place) <= max_uid_cuid
12499 && INSN_CUID (place) > INSN_CUID (i2)
12500 && from_insn
12501 && INSN_CUID (from_insn) > INSN_CUID (i2)
12502 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12503 {
12504 rtx links = LOG_LINKS (place);
12505 LOG_LINKS (place) = 0;
12506 distribute_links (links);
12507 }
12508 break;
12509 }
12510
12511 if (tem == bb->head)
12512 break;
12513 }
12514
12515 /* We haven't found an insn for the death note and it
12516 is still a REG_DEAD note, but we have hit the beginning
12517 of the block. If the existing life info says the reg
12518 was dead, there's nothing left to do. Otherwise, we'll
12519 need to do a global life update after combine. */
12520 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12521 && REGNO_REG_SET_P (bb->global_live_at_start,
12522 REGNO (XEXP (note, 0))))
12523 {
12524 SET_BIT (refresh_blocks, this_basic_block);
12525 need_refresh = 1;
12526 }
12527 }
12528
12529 /* If the register is set or already dead at PLACE, we needn't do
12530 anything with this note if it is still a REG_DEAD note.
12531 We can here if it is set at all, not if is it totally replace,
12532 which is what `dead_or_set_p' checks, so also check for it being
12533 set partially. */
12534
12535 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12536 {
12537 unsigned int regno = REGNO (XEXP (note, 0));
12538
12539 if (dead_or_set_p (place, XEXP (note, 0))
12540 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12541 {
12542 /* Unless the register previously died in PLACE, clear
12543 reg_last_death. [I no longer understand why this is
12544 being done.] */
12545 if (reg_last_death[regno] != place)
12546 reg_last_death[regno] = 0;
12547 place = 0;
12548 }
12549 else
12550 reg_last_death[regno] = place;
12551
12552 /* If this is a death note for a hard reg that is occupying
12553 multiple registers, ensure that we are still using all
12554 parts of the object. If we find a piece of the object
12555 that is unused, we must arrange for an appropriate REG_DEAD
12556 note to be added for it. However, we can't just emit a USE
12557 and tag the note to it, since the register might actually
12558 be dead; so we recourse, and the recursive call then finds
12559 the previous insn that used this register. */
12560
12561 if (place && regno < FIRST_PSEUDO_REGISTER
12562 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12563 {
12564 unsigned int endregno
12565 = regno + HARD_REGNO_NREGS (regno,
12566 GET_MODE (XEXP (note, 0)));
12567 int all_used = 1;
12568 unsigned int i;
12569
12570 for (i = regno; i < endregno; i++)
12571 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12572 && ! find_regno_fusage (place, USE, i))
12573 || dead_or_set_regno_p (place, i))
12574 all_used = 0;
12575
12576 if (! all_used)
12577 {
12578 /* Put only REG_DEAD notes for pieces that are
12579 not already dead or set. */
12580
12581 for (i = regno; i < endregno;
12582 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12583 {
12584 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12585 basic_block bb = BASIC_BLOCK (this_basic_block);
12586
12587 if (! dead_or_set_p (place, piece)
12588 && ! reg_bitfield_target_p (piece,
12589 PATTERN (place)))
12590 {
12591 rtx new_note
12592 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12593
12594 distribute_notes (new_note, place, place,
12595 NULL_RTX, NULL_RTX, NULL_RTX);
12596 }
12597 else if (! refers_to_regno_p (i, i + 1,
12598 PATTERN (place), 0)
12599 && ! find_regno_fusage (place, USE, i))
12600 for (tem = PREV_INSN (place); ;
12601 tem = PREV_INSN (tem))
12602 {
12603 if (! INSN_P (tem))
12604 {
12605 if (tem == bb->head)
12606 {
12607 SET_BIT (refresh_blocks,
12608 this_basic_block);
12609 need_refresh = 1;
12610 break;
12611 }
12612 continue;
12613 }
12614 if (dead_or_set_p (tem, piece)
12615 || reg_bitfield_target_p (piece,
12616 PATTERN (tem)))
12617 {
12618 REG_NOTES (tem)
12619 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12620 REG_NOTES (tem));
12621 break;
12622 }
12623 }
12624
12625 }
12626
12627 place = 0;
12628 }
12629 }
12630 }
12631 break;
12632
12633 default:
12634 /* Any other notes should not be present at this point in the
12635 compilation. */
12636 abort ();
12637 }
12638
12639 if (place)
12640 {
12641 XEXP (note, 1) = REG_NOTES (place);
12642 REG_NOTES (place) = note;
12643 }
12644 else if ((REG_NOTE_KIND (note) == REG_DEAD
12645 || REG_NOTE_KIND (note) == REG_UNUSED)
12646 && GET_CODE (XEXP (note, 0)) == REG)
12647 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12648
12649 if (place2)
12650 {
12651 if ((REG_NOTE_KIND (note) == REG_DEAD
12652 || REG_NOTE_KIND (note) == REG_UNUSED)
12653 && GET_CODE (XEXP (note, 0)) == REG)
12654 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12655
12656 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12657 REG_NOTE_KIND (note),
12658 XEXP (note, 0),
12659 REG_NOTES (place2));
12660 }
12661 }
12662 }
12663 \f
12664 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12665 I3, I2, and I1 to new locations. This is also called in one case to
12666 add a link pointing at I3 when I3's destination is changed. */
12667
12668 static void
12669 distribute_links (links)
12670 rtx links;
12671 {
12672 rtx link, next_link;
12673
12674 for (link = links; link; link = next_link)
12675 {
12676 rtx place = 0;
12677 rtx insn;
12678 rtx set, reg;
12679
12680 next_link = XEXP (link, 1);
12681
12682 /* If the insn that this link points to is a NOTE or isn't a single
12683 set, ignore it. In the latter case, it isn't clear what we
12684 can do other than ignore the link, since we can't tell which
12685 register it was for. Such links wouldn't be used by combine
12686 anyway.
12687
12688 It is not possible for the destination of the target of the link to
12689 have been changed by combine. The only potential of this is if we
12690 replace I3, I2, and I1 by I3 and I2. But in that case the
12691 destination of I2 also remains unchanged. */
12692
12693 if (GET_CODE (XEXP (link, 0)) == NOTE
12694 || (set = single_set (XEXP (link, 0))) == 0)
12695 continue;
12696
12697 reg = SET_DEST (set);
12698 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12699 || GET_CODE (reg) == SIGN_EXTRACT
12700 || GET_CODE (reg) == STRICT_LOW_PART)
12701 reg = XEXP (reg, 0);
12702
12703 /* A LOG_LINK is defined as being placed on the first insn that uses
12704 a register and points to the insn that sets the register. Start
12705 searching at the next insn after the target of the link and stop
12706 when we reach a set of the register or the end of the basic block.
12707
12708 Note that this correctly handles the link that used to point from
12709 I3 to I2. Also note that not much searching is typically done here
12710 since most links don't point very far away. */
12711
12712 for (insn = NEXT_INSN (XEXP (link, 0));
12713 (insn && (this_basic_block == n_basic_blocks - 1
12714 || BLOCK_HEAD (this_basic_block + 1) != insn));
12715 insn = NEXT_INSN (insn))
12716 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12717 {
12718 if (reg_referenced_p (reg, PATTERN (insn)))
12719 place = insn;
12720 break;
12721 }
12722 else if (GET_CODE (insn) == CALL_INSN
12723 && find_reg_fusage (insn, USE, reg))
12724 {
12725 place = insn;
12726 break;
12727 }
12728
12729 /* If we found a place to put the link, place it there unless there
12730 is already a link to the same insn as LINK at that point. */
12731
12732 if (place)
12733 {
12734 rtx link2;
12735
12736 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12737 if (XEXP (link2, 0) == XEXP (link, 0))
12738 break;
12739
12740 if (link2 == 0)
12741 {
12742 XEXP (link, 1) = LOG_LINKS (place);
12743 LOG_LINKS (place) = link;
12744
12745 /* Set added_links_insn to the earliest insn we added a
12746 link to. */
12747 if (added_links_insn == 0
12748 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12749 added_links_insn = place;
12750 }
12751 }
12752 }
12753 }
12754 \f
12755 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12756
12757 static int
12758 insn_cuid (insn)
12759 rtx insn;
12760 {
12761 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12762 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12763 insn = NEXT_INSN (insn);
12764
12765 if (INSN_UID (insn) > max_uid_cuid)
12766 abort ();
12767
12768 return INSN_CUID (insn);
12769 }
12770 \f
12771 void
12772 dump_combine_stats (file)
12773 FILE *file;
12774 {
12775 fnotice
12776 (file,
12777 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12778 combine_attempts, combine_merges, combine_extras, combine_successes);
12779 }
12780
12781 void
12782 dump_combine_total_stats (file)
12783 FILE *file;
12784 {
12785 fnotice
12786 (file,
12787 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12788 total_attempts, total_merges, total_extras, total_successes);
12789 }
This page took 0.689288 seconds and 5 git commands to generate.